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Abstract

Zhu, Jiang Ph.D. student, Royal Military College of Canada, September 2016.
Robust Adaptive Control for a Class of Nonlinear Systems with Uncertainties
of Unknown Bounds. Supervised by Dr. Karim Khayati, Ph.D., P.Eng., As-
sociate Professor.

Although linear control theory has been applied in industry successfully over
a long period, it has been found to be inadequate in many physical systems
having nonlinear properties such as friction, hysteresis, backlash, and satu-
ration. To deal with the nonlinear systems with uncertainties of unknown
bounds, adaptive sliding mode control (ASMC) techniques with integral and
modified integral adaptation law have been introduced during the past two
decades. However, the integral type adaptation laws have a weakness that
they can not achieve fast response to the uncertainties and lower chattering
simultaneously.

The dissertation first reviews the general idea of ASMC techniques for
nonlinear systems with uncertainties of unknown bounds. The necessary and
sufficient conditions are discussed. It shows that any positive definite mono-
tonic function of the sliding variable can be used in the integral adaptation
law. Moreover, a special type of function is proposed to smooth the chattering.

The dissertation then investigates the convergence and boundedness in
the existing classic ASMC techniques. By applying a new Lyapunov method
and a new majorant curve approach, it successfully proves the finite-time
convergence (FTC) of the sliding variable and uniformly ultimately bounded
(UUB) convergence of the switching gain. Moreover, it deduces a new formula
for reaching time estimation (RTE). The new RTE shows the relationship that
the reaching time is inversely proportional to the square root of the designed
integral parameter. The explicit relationship indicates that the classic ASMC
techniques cannot achieve fast response and lower chattering simultaneously.
Thus, it reveals the inherent reason of the slow response existing in the classic
ASMC techniques with integral adaptation laws.
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In order to thoroughly resolve the trade-offs involved in system response to
the uncertainties and chattering attenuation, a new adaptation law, integral-
exponential reaching law, of first order ASMC for nonlinear uncertain systems
of uncertainties is proposed. The new algorithm combines the classic integral
reaching law with an exponential term. With the newly added exponential
term, the system responds to the uncertainties quickly. Moreover, it reduces
the final switching gain. Thus, the lower chattering level is achieved simulta-
neously. Moreover, the new design can deal with the uncertainties bounded
with not only unknown constant bounds but also polynomial bounds in the
norm of the states.

Illustrative simulations are provided to help understand the existing and
the proposed ASMC adaptation processes. The proposed designs are then
numerically verified upon different real nonlinear dynamic systems such as
a variable-length pendulum, a two-degree-of-freedom (2-DOF) experimental
helicopter and a 5-DOF robotic manipulator. Moreover, the experiments are
conducted on the 2-DOF experimental helicopter-model-based setup to com-
pare the proposed designs with the existing ASMC designs and the common
proportional-integral-derivative (PID) designs. Both numerical and experi-
mental results show that the new proposed ASMC designs for nonlinear dy-
namic systems with uncertainties of unknown bounds can significantly im-
prove the robustness of the systems and reduce the chattering level compared
to currently existing ASMC designs.

Keywords: nonlinear systems, uncertainties of unknown bounds,
adaptive sliding mode control, integral-exponential adaptation law,
robustness, reaching time estimation, chattering attenuation.
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Résumé

Jiang Zhu, doctorant, collège militaire royal du Canada, septembre 2016.
Commande robuste adaptative pour une classe de systèmes non linéaires avec
des incertitudes de bornes inconnues. Supervisé par M. Karim Khayati, Ph.D.,
P.Eng., Professeur agrégé.

Bien que la théorie de commande linéaire a été appliquée avec succès dans
l’industrie longtemps, elle a été jugée insuffisante dans de nombreux systèmes
physiques ayant des propriétés non linéaires tels que le frottement, l’hystérésis,
le jeu, et la saturation. Pour faire face aux systèmes non linéaires avec des
incertitudes de limites inconnues, des techniques de commande par mode de
glissement adaptatif (CMGA) avec des lois d’adaptations intégrales simplifiées
et modifiées ont été introduites durant les deux dernières décennies. Cepen-
dant, les lois d’adaptation de type intégral ont des faiblesses; elles ne peuvent
pas garantir une réponse rapide aux incertitudes et des niveaux de bruit bas
simultanément.

La présente thèse examine d’abord l’idée générale des techniques de CMGA
appliquées aux systèmes non linéaires avec des incertitudes de limites incon-
nues. Les conditions nécessaires et suffisantes sont discutées. On montre que
toute fonction définie positive monotone par rapport à la variable de glisse-
ment peut être utilisée dans la loi d’adaptation intégrale. En plus, un type de
fonctions est proposé pour atténuer le niveau de bruit.

La thèse étudie par la suite la convergence et bornitude dans les techniques
classiques existantes de CMGA. En appliquant une nouvelle méthode de Lya-
punov et une nouvelle approche de la courbe de majorants, on prouve avec
succès la convergence à temps finie de la variable de glissement et de celle uni-
formément bornée du gain de commutation . En outre, on déduit une nouvelle
formule pour évaluer l’estimation du temps convergence (ETC). La nouvelle
relation d’ETC montre que cette durée est inversement proportionnelle à la
racine carrée du paramètre d’adaptation choisi. La relation explicite indique
que les techniques classiques de CMGA ne peuvent pas obtenir une réponse
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rapide et des niveaux de bruits réduits simultanément. Ainsi, cette thèse
révèle la raison intrinsèque de la réponse lente existant dans les techniques de
CMGA classiques avec les lois d’adaptation intégrale.

Afin de résoudre complètement les compromis impliqués dans la réponse
des systèmes incertains et l’atténuation des bruits, une nouvelle loi d’adapta-
tion, dite intégral/exponentielle, pour la classe de CMGA de premier ordre
pour les systèmes non linéaires incertains, est proposée. Le nouvel algorithme
combine la loi d’adaptation intégrale classique avec un terme exponentiel.
Avec la composante exponentielle nouvellement ajoutée, le système répond
aux incertitudes plus rapidement tout en réduisant le gain de commutation
final. En plus, le niveau de bruit dans la commande proposée est inférieur
à ceux réalisé avec les anciennes approches. En outre, la nouvelle concep-
tion peut faire face aux incertitudes limitées non seulement avec les limites
constantes inconnues, mais aussi des limites à base de polynômes.

Des simulations simplifiées, pour illustrer et comprendre le processus d’ada-
ptation des CMGA existants et proposés, sont fournies. Les conceptions pro-
posées sont ensuite numériquement vérifiées sur des systèmes dynamiques non
linéaires réels différents, comme un pendule de longueur variable, un modèle
à deux degrés de liberté (2-ddl) d’hélicoptère expérimental et un modèle de
robot manipulateur à 5-ddl. Finalement, des expériences réelles sont menées
sur le modèle simulateur à 2-ddl d’hélicoptère expérimental comparant les
résultats de l’approche proposé avec la principale méthode de CMGA exis-
tante et la commande PID conventionnelle. Les deux résultats numériques et
expérimentaux montrent que la nouvelle approche concept de CMGA conçue
pour les systèmes dynamique non linéaires incertains avec des incertitudes
des limites inconnues peuvent améliorer considérablement la robustesse du
système et réduire le niveau de bruit par rapport aux concepts de CMGA
existants actuellement.

Mots-clés : systèmes non linéaires, incertitudes avec des limites in-
connues, commande par mode de glissement adaptatif, loi d’adapta-
tion intégrante/exponentielle, robustesse, estimation du temps de
convergence, atténuation de bruit.
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Statement of Contributions

Statement of Contributions

The major contributions of the research work presented in this thesis are
summarised as follows:

• A large class of nonlinear dynamic systems to be stabilized. Since the
proposed ASMC designs aim to stabilize nonlinear systems with un-
certainties of unknown bounds not necessarily constant, these systems
represent a large class of dynamic systems and are very close to real
mechanical dynamic systems. The successful application on a 2-DOF
experimental helicopter-based model could be extended to a wide class
of nonlinear dynamic systems.

• Generalization of the adaptation function, smoothing technique. Based
on the analysis of the necessary and sufficient conditions for the classic
ASMC designs, the generalization of the adaptation function is found.
Moreover, functions for smoothing the chattering phenomenon are pro-
posed.

• New proofs for the convergence in a UUB sense of the switching gain
and FTC of the sliding variable, new formula for RTE and new property
characterizing the ASMC action. The UUB switching gain and the FTC
of the sliding variable for the integral-adaptation based ASMC are anal-
ysed by identifying the existence of two phases, a compensating phase
and a reaching phase during the adaptation process. A new Lyapunov
function and a new majorant curve methods are adopted to prove the
FTC property. Moreover, a completely new formula for reaching time
estimation is deduced with high accuracy. The new formula also re-
veals the fact that the conventional integral-type ASMC designs have
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1 Introduction

1.1 Uncertain Nonlinear Systems

Although linear control theory has been applied in industry successfully over a
long period, it has been found to be inadequate in many physical systems hav-
ing nonlinear properties such as Coulomb friction, hysteresis, backlash, and
saturation [1]. These nonlinarities often cause undesirable behaviour when
linear controllers are applied. To obtain acceptable performaces of nonlinear
systems, the design of nonlinear controllers has attracted researchers over the
past few decades [2–6]. Usually nonlinear dynamics may be modelled via phys-
ical or chemical laws, and the parameters of nonlinear systems can be tested
priorly. If the parameters are constant and calibrated precisely, the exact
shape of the nonlinear functions are known. However, the system parameters
may be uncertain because of mode parameter errors and possibly wrong ex-
perimental testing methods. Parameters may also be slowly time-varying, for
instance, the overall mass of an aircraft in flying condition decreases slowly
due to fuel consumption. Such uncertainties in nonlinear systems are classi-
fied as uncertain parameters. In many mechanical systems, some nonlinearities
such as external disturbances, measure noises or backlash cannot be modelled
exactly. Moreover, some nonlinearities such as high order terms in Taylor
expansion are ignored. These types of uncertainties are called uncertain non-
linear functions, uncertain nonlinearities or simply uncertainties. Usually,
the uncertainties are assumed to be bounded in different ways. Sometimes,
they are assumed to be bounded within some constants. They may also be
assumed to be bounded within some affine functions or higher order (polyno-
mial) functions. Most conventional robust controllers are designed based on
the knowledge of the bounds. Specifically, the values of the constants or the
parameters of the affine functions must be known a priori. The most con-
servative situation is that knowledge of the bounds are unknown a priori, for
example, an unmanned-aerial-vehicle flying through a snow storm.
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1.2 Techniques for Uncertain Nonlinear Systems

Among the techniques dealing with nonlinear systems with uncertainties, two
major classes of control methods can be classified, according to the method of
dealing with the uncertain dynamics, as adaptive control and robust control
[7, 8].

To deal with parametric uncertainties, techniques of adaptive control have
been introduced over the past few decades. In this case, the uncertainties are
parameterized in terms of unknown parameters. These uncertain parameters
are estimated by adaptive laws and then used in controllers directly or in-
directly. In a more extensive adaptive scheme, the controller might be also
learning certain unknown nonlinear functions through some neural network
training [9]. Usually, the adaptive control method requires that the uncer-
tainties are parameterizable, i.e., the knowledge of the explicit form of the
nonlinearities are known a priori though the parameters of these nonlinear-
ities are unknown. Moreover, the persistent excitation (PE) is a necessary
condition in most adaptive control techniques to ensure the convergence of
parameter estimation.

Robust control, on the other hand, characterizes the uncertain nonlin-
earities as perturbations. The robust controller is designed to work well in
spite of these perturbations if these perturbations are within some bounds.
Thus, the uncertainties are usually assumed to be bounded by some a pri-
ori known constants in the state vector norm [10]. Most conventional lin-
ear and nonlinear robust control techniques such as H-infinity loop shaping,
linear-quadratic-Gaussian control, quantitative feedback theory, conventional
sliding mode control (SMC) and high-order sliding mode control (HOSMC)
are designed based on the knowledge of the bounds of uncertainties. In fact,
the designed feedback gain in the above techniques must be greater than the
bounds of the lumped uncertainties such that it will ultimately compensate
for these uncertainties.

However, in most cases, such perturbation bounds are unknown and rarely
estimated a priori. Thus, the conventional robust control algorithms face a
dilemma: If the designed feedback gain is based on underestimated bounds of
the actual uncertainties, the system may become unstable, and, if the designed
feedback gain is based on an overestimation of the actual uncertainty bounds,
the system may encounter high chattering and consume ‘unnecessary’ high
energy.

To solve the problem of nonlinear systems with uncertainties of unknown
bounds, techniques of SMC with perturbation estimation (SMCPE) [11] and
active disturbance rejection control (ADRC) [12] were proposed to estimate
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the bounds of uncertainties and then reject them. Both techniques of SMCPE
and ADRC require a differentiator to obtain knowledge of the system’s high
order state (e.g., acceleration). The differentiator required for these methods
also amplifies the noise in the input signals and may create further uncer-
tainties and large errors. Without using differentiators and without using the
knowledge of the explicit form of the nonlinearities, another nonlinear con-
trol technique, the ASMC, has been introduced during the past two decades
to design a feedback gain adaptively compensating for the lumped uncertain-
ties [10,11,13–19]. These ASMC designs commonly use an integral adaptation
law to compensate for the uncertainties of unknown constant bounds. The
uncertainties may also be assumed to be bounded by affine functions with
unknown parameters. To deal with these nonlinearities, ASMC with a mod-
ified integral adaptation law was introduced. However, some problems exist
in these ASMC techniques. First, the chattering phenomenon is still observed
during the adaptation process and the feedback gain is still overestimated; sec-
ond, the stability analysis is not complete and the FTC property is not proven
adequately; third, the convergence rate is still not understood quantitatively,
i.e., no one reveals the quantitative relationship between the convergence rate
and the designed parameter.

So far, all the existing ASMC techniques dealing with the nonlinear sys-
tems with uncertainties bounded by unknown constants or unknown affine
functions (e.g., [10, 16]) have integral and modified integral adaptation laws.
Despite the nonlinear systems with uncertainties bounded by some unknown
constants or unknown affine functions, other common kinds of uncertain sys-
tems still exist. For instance, if the system’s parameters are unknown, the
Duffing dynamics (i.e., mechanical systems with softening springs) and the
tunnel-diode circuit dynamics contain uncertainties bounded by polynomi-
als [1]. Moreover, according to Taylor’s theorem, most continuous nonlinear-
ities can be approximated by polynomials. A new question then arises: how
to control the nonlinear dynamical systems with uncertainties bounded by
unknown polynomials. This question and the weakness found in the existing
ASMC techniques motivate the new ASMC design discussed in this disserta-
tion.

1.3 Motivations and Problem Statement

Despite the recent vast advances on the subject of ASMC, limitations still
exist. One drawback in the existing ASMC methods is that the controller
responds to the external perturbation relatively slowly. Consequently, the
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system state may be driven far away from its equilibrium point. Another
limitation is that the gain is still overestimated during the adaptation process.
Therefore, the chattering phenomenon is still observed during the adaptation
process. Investigation of the existing ASMC techniques, to find the hidden
reason why they have these limitations, comes out as the first motivation of
the dissertation.

During the sliding mode, the system shows robustness to both parametric
uncertainties and unknown nonlinear functions. However, the discontinuity
across sliding surfaces often leads to control chattering when involving high
frequency control activity which may excite the neglected high-frequency dy-
namics. Although smoothing techniques such as the traditional boundary-
layer-based ones [20] preserve the transient performance at large, there is a
trade-off between the control bandwidth and the tracking precision. New
smoothing ASMC techniques are required leading to the second motivation.

The third motivation comes from the parameter uncertainties as well as un-
certain nonlinearities. Sometimes, the parameters in mechanical systems are
not provided truly or could not be fully reliable. For example, in the Quanser
2-DOF helicopter 2006 manual [21], six major mistakes were found and these
mistakes caused the provided parameters a drift greatly from their true val-
ues. Consequently, it is extremely difficult to stabilize the 2-DOF helicopter
by using the provided but wrong parameters. Moreover, the nonlinearities
in the 2-DOF helicopter are quadratic functions of the system states. Com-
bined with unknown parameters, the system is under uncertainties bounded
within unknown-parameter quadratic functions of the system states. No ex-
isting ASMC controller can deal with this kind of uncertainties. Thus, new
ASMC techniques must be developed.

Motivated by the practical requirement of solving the above problems and
through literature searches, we aim to design a new robust adaptive controller
using new ASMC techniques to stabilize a large class of nonlinear systems
which have uncertainties with unknown constant or polynomial bounds. This
leads to the objectives of the thesis.

1.4 Objectives

The objectives of the undertaken research are stated as follows.
• ASMC Framework. The first objective is to analyse the framework of

the general ASMC designs. Sufficient and necessary conditions must be
analysed before proposing the smoothing techniques in classic ASMC.
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• ASMC Properties. The second objective is to investigate classic ASMC
properties. Specifically, the FTC property of the sliding variable and
the boundedness of the switching gain must be accurately addressed.
Moreover, the reaching time estimation of the ASMC must be given as
accurately as possible.
• New ASMC Design for Nonlinear System with Uncertainties of Unknown

Constant Bounds. The new design must have simultaneous robustness of
fast response to the external perturbation and small variation of the state
to the equilibrium, and minimum admissible switching gain resulting in
minimum chattering level and minimum energy consumption.
• New ASMC Design for Nonlinear System with Uncertainties of Unknown

Polynomial Bounds. Not only for uncertainties of unknown constant
bounds, the new ASMC design must also deal with uncertainties of un-
known polynomial bounds. The details of the adaptation law as well as
the controller design must be given.
• Applications. All designs need to be tested numerically through MAT-

LAB Simulink first. Then, they must be demonstrated experimentally
through an electro-mechanical setup, i.e., a 2-DOF experimental helicop-
ter model plant available in the Instrumentation Laboratory in the De-
partment of Mechanical and Aerospace Engineering.

1.5 Methodology

Based on the analysis of the existing techniques, the dissertation proposes
new ASMC designs for a large class of nonlinear systems with uncertainties
of unknown bounds. This study is carried out as follows
• Analysis of stability will be based on Lyapunov stability theorems. The

majorant curve of differential inequalities will be first-time introduced
to prove the FTC property and estimate the maximum reaching time.
• A newly developed boundary layer method will be adopted to prevent

the wind-up without sacrificing the stability in real implementation.
• An exponential term will be introduced to the new design to speed up

the system response to the various uncertainties and reduce the final
switching gain. The classic integral adaptation law will be kept as a
part of the new design to compensate for the uncertainties of unknown
constant bounds and to guarantee the FTC of the feedback system.
• The performance of the designed control schemes will be simulated by

MATLAB software and then implemented on a real nonlinear system,
i.e., the 2-DOF experimental helicopter model to demonstrate the effec-
tiveness of our design.
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Figure 1.1: Quanser 2DOF helicopter [21]

1.6 Apparatus and Software

The performance of the control schemes were simulated first. The experi-
mental works were carried out on a 2-DOF experimental helicopter which is
available in the Instrumentation Laboratory, Mechanical and Aerospace En-
gineering, RMC. Specifically,
• MATLAB software with Simulink including Control and Simmechanics

toolboxes – The MATLAB software is used for design, simulation and control.
• 2-DOF experimental helicopter made by Quanser – The Quanser 2-DOF

Helicopter model, shown in 1.1, is mounted on a fixed base with two propellers
that are driven by DC motors, respectively. The front propeller controls the
elevation of the helicopter nose about the pitch axis and the back propeller
controls the side to side motions of the helicopter about the yaw axis. The
pitch and yaw angles are measured using high-resolution encoders. By using
a slip-ring, the yaw angle can rotate freely 360 degrees [21]. This model,
with uncertain parameters, limited output and highly coupled nonlinearities
between the pitch dynamics and the yaw dynamics, is a typical representative
of the large class of nonlinear systems we intend to control.

1.7 Outline of the Thesis

The rest of the thesis is organized into seven chapters:
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Chapter 2 gives a review of the literature regarding the main subjects
treated in this thesis.

Chapter 3 models the 2-DOF helicopter-model setup. It first introduces
the common nonlinear systems models. Then, it briefly presents the concept
of transformation matrices and Lagrangian mechanics. Based on the trans-
formation matrices and Lagrangian mechanics of the 2-DOF helicopter-model
setup, the kinematic and nonlinear dynamic equations of the helicopter model
are developed. Some corrections to the manual 2006 of [21] are pointed out.
The methods of parameter validation are discussed. New designs of adaptive
observers are proposed to estimate the parameters.

Chapter 4 presents the framework of ASMC. The concepts of stabilities are
introduced first following the basic structures of SMC. The ASMC techniques
are then presented in terms of equivalent control method, the discussion of
sufficient and necessary conditions and the ideal and real ASMC. As a result,
the extension of the switching function as well as the techniques of smoothing
ASMC is proposed. The application of the proposed smooth techniques is
conducted via simulations and experiments on a reduced dynamics of the 1-
DOF helicopter model.

Chapter 5 investigates the properties of the classic integral-based ASMC
techniques. The upper-bound of the switching gain and the FTC of the ASMC
are proven through the analysis of the two phases: the compensating phase
and the reaching phase, existing in the ASMC process. Two approaches of
using a new Lyapunov function and of using a majorant curve are developed
to prove the FTC property. Along with the FTC proof, a completely new
formula for RTE is deduced. Simulations and experiments are performed to
verify the two phases and the new formula of RTE.

Chapter 6 develops a new algorithm of ASMC for nonlinear systems with
uncertainties of unknown constant bounds. An exponential term is combined
with the integral-based adaptation law to speed up the system response to
various uncertainties and reduce the final switching gain. The new algorithm
for the scalar case and ideal ASMC is discussed first for the sake of sim-
plicity. Then, the new method is extended to real ASMC and multi-input-
multi-output (MIMO) nonlinear systems. Simulations are conducted on a
variable-length pendulum and the 2-DOF helicopter model. Experimental
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stabilizations of the equilibrium point are performed to compare the proposed
new design to the traditional PID laws and the existing ASMC with IG laws.

Chapter 7 further proves that the new ASMC design is capable of stabiliz-
ing nonlinear systems with uncertainties of unknown polynomial bounds on
the norm of the states. The corresponding MIMO ASMC controller designs
for the two cases of the uncertain input parameters are provided. The appli-
cations of the proposed new ASMC design to the trajectory tracking control
of a 5-link robotic manipulator are simulated via Simmechanics toolbox of
MATLAB with comparisons to the existing ASMC and the traditional PID
control. Experimental trajectory tracking control are performed on the 2-
DOF helicopter model to compare the proposed new ASMC with the existing
ASMC.

Chapter 8 presents a summary of this thesis, and proposes some recom-
mendations arising from the different subjects discussed in the thesis.
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2 Literature Review

2.1 Robust Adaptive Control

The robust adaptive control has extensive literature full of different tech-
niques for the design, analysis, and performance, covering many applica-
tions [7, 14, 22–31]. In 1960s, adaptive pole placement schemes, model refer-
ence controls, a dual control idea and dynamic programming were suggested
by Kalman [32], Osburn et al. [33], Fel’dbaum [34] and Bellman [35], re-
spectively. The introduction of state space techniques and Lyapunov-based
stability theory contributed to the research in the 1970s and 1980s [6,7,22,36].
The concepts of Lyapunov redesign have been used to develop a wide class of
model reference adaptive control (MRAC) schemes with good stability prop-
erties [7, 27, 37]. However, controversies that the adaptive schemes of the two
decades could easily become unstable in the presence of small disturbances [38]
were found. The nonrobust behavior of adaptive control motivated many re-
searchers to study the concept of the robust adaptive control (RAC), whose
objective was to design an adaptive controller to be also robust by guaran-
teeing signal boundedness in the presence of‘reasonable’ classes of unmodeled
dynamics and bounded disturbances as well as performance error bounds that
are of the order of the modeling errors [6, 39]. In view of the importance
of PE property in adaptive systems, Narendra and Annaswamy [23] demon-
strated that the degree of persistent excitation would determine whether or
not the system would be robust in the presence of specified disturbances.
Boyd and Sastry [22] used Generalized Harmonic Analysis to show the nec-
essary and sufficient conditions for the parameter convergence in MRAC of
linear systems, that is, if the reference signal‘contains enough frequencies’
then the parameter vector converges to its correct value. For most applica-
tions such as tracking error control, the reference input (or desired output
trajectory) normally does not satisfy the PE condition. By introducing δ-
modification [40] and ε-modification [6] in the adaptation law in linear sys-
tems, Ioannou et al. demonstrated that a semi-global boundedness result is
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guaranteed in the presence of unmodeled dynamics provided that the input is
PE.

When trying to extend the RAC from linear systems to nonlinear systems,
the linearization of nonlinear systems were considered first with specific prob-
lems such as the control of robot manipulators [29]. Since robot dynamics
are described by a set of highly coupled nonlinear differential equations with
parametric uncertainties such as the payload, the control of such a system is
challenging. Many methods, such as the computed torque method [41] and
RAC scheme using reference trajectory information rather than the actual
state [42, 43], are applied. For the uncertainty-constrained schemes, the con-
trol matching condition(CMC) were assumed to develop a feedback control
scheme for a class of nonlinear plants with parametric and dynamic uncer-
tainties (loosely speaking, the CMC implies that control and uncertainty enter
the system dynamics via the same channel) [44]. By applying the properties
of a novel Lyapunov function introduced by [45], feedback linearization de-
signs [46] and output-feedback designs [47] were studied. To relax the restric-
tions on nonlinearities existing in the feedback-linearization-based adaptive
controllers, an RAC with backstepping is introduced in [8]. For a class of non-
linear systems transformable to a parametric strict-feedback canonical form,
a systematic design of globally stable and asymptotically tracking adaptive
controllers was presented in [48]. Other than the above discussed RC and
RAC techniques, a nonlinear control method, the SMC technique, has been
gained much attention during the past decades for its robustness and finite
time convergence.

2.2 SMC and ASMC

Sliding mode control, or SMC, is a nonlinear control method that forces the
system trajectories to reach a sliding manifold (also, called sliding surface)
in a finite time and to stay on or ‘slide’ along the manifold thereafter by
applying a discontinuous control signal [49]. This method has gained much
attention for its robustness in terms of parameter variations that occur in
the control channel and the finite time convergence (FTC) to the sliding sur-
face [5, 8, 10,11, 13,16, 17, 19,39, 49–57]. The state-feedback control law is not
a continuous function of time. Instead, it can switch from one continuous
structure to another based on the current position in the state space. Hence,
SMC is a variable structure control method. The multiple control structures
are designed so that trajectories always move toward an adjacent region with
a different control structure, and so that the ultimate trajectory will not exist
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entirely within one control structure. Instead, it will slide along the bound-
aries of the control structures. The motion of the system as it slides along
these boundaries is called a sliding mode and the geometrical locus consisting
of the boundaries is called the sliding surface or sliding hypersurface [1]. In
the context of modern control theory, any variable structure system, like a
system under SMC, may be viewed as a special case of a hybrid dynamical
system as the system flows through a continuous state space and also moves
through different discrete control modes [1]. In a conventional SMC design,
a priori knowledge of the bounds on system uncertainties has to be acquired
to compensate for these uncertainties. As a result, the control gain tends to
be overestimated, which may excite the unmodeled dynamics and induce poor
tracking performance and undesirable chattering [13, 58]. This scenario hap-
pens, in particular, when the estimate of the uncertainty bounds is inaccurate,
or very weak.

To suppress the chattering phenomenon which is commonly observed in
SMC, different techniques have been used, such as the boundary layer method
[49, 52], the HOSMC [18, 50, 59], the terminal sliding mode [60], the filtered
switching function [13, 61] and the exponential reaching law [56] methods.
Also, [62] deployed a chain of PID sliding surfaces. However, in all of these
approaches, knowledge of the uncertainty bounds is required.

To overcome the drawback of overestimation in a conventional SMC scheme
and to deal with uncertainties of unknown bounds, on the one hand, the SM-
CPE design [11, 63, 64] and active disturbance rejection control (ADRC) [12]
were proposed to estimate the values of uncertainties and then reject them.
In SMCPE, the modeling uncertainties and disturbances are estimated on-line
by properly utilizing the feedback from the present position and velocity sens-
ing devices as well as the control decisions. Different SMCPE controllers have
been designed such as SMCPE with PID sliding surface [11], SMCPE with a
PI feedforward compensator [64], SMCPE by solving a set of partial differen-
tial equations [65], etc. Such SMCPE designs often require the information of
very-high-order state (VHOS), e.g., the acceleration. In fact, when only low-
order state, e.g., the position is measured, the SMCPE and ADRC usually has
to estimate the VHOS, either by the differentiation method or by the observer
method [11, 12], to estimate the perturbation. When the noise and error ex-
ist in low-order state measurement, SMCPE and ADRC may encounter the
risk of large estimation errors and result in a degraded performance. In fact,
the differentiator often required for these methods amplifies the noisy input
signals and creates further uncertainties and large errors.

On the other hand, to avoid the risk of estimating VHOS in SMCPE and
ADRC, the design of an ASMC with a time-varying switching gain (using
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an integral adaptation law) dynamically compensating for the perturbation
was introduced [10,11,13,14,16,17,19,49,66–71]. The time-varying switching
gain is designed to adaptively compensate for the lumped uncertainties. Most
ASMC techniques use integral-type adaptation laws. The pure integral adap-
tation law is often used in an ideal sliding mode where the system trajectory
is constrained on the sliding surface for all time after reaching this surface.
However, the overshoot is still large at the beginning of the adaptation process
and the chattering still exists in the control input and the system trajecto-
ries before the end of the adaptation process. The efficiency of this sliding
mode structure has been demonstrated using an observer-based control design
for mechanical systems with uncertainties reducing significantly the levels of
chatter and improving accuracy [72]. In particular, within the case of a real
sliding mode, the sliding variable is generally non-zero due to measurement
noise, sampled computation or imperfect switching action. As a result, the
switching gain will be always increasing and become unbounded whenever the
sliding variable is not identically equal to zero. To avoid this phenomenon of
unbounded or overestimated switching gain, ASMC techniques for real SMC
were suggested using integral-type adaptation law with some modifications.
Motivated by the σ-modification used in the adaptive control, [10] proposed
an ASMC scheme with σ-modification method. ASMC techniques using a
dead zone method can be found in [11, 14]. For the ASMC designs, the thor-
ough analysis for stabilities is still lacking. In [73], it is shown that, by us-
ing integral-type adaptation law, the systems with uncertainties of unknown
constant bounds have finite-time stability (i.e., the systems are stabilized in
finite time). However, the system response to the perturbation is relatively
slow and, even though the overestimation is avoided somehow, the chattering
phenomenon is still observed. Since the magnitude of the switching gain is
proportional to the magnitude of the chattering level [61], a possible adap-
tation law is to reduce this switching gain to the minimum admissible value.
The method suggested in [13] evaluates the disturbance magnitude once the
sliding mode occurs. It uses a low-pass filter to tune the switching gain in
the control and allows a decrease in the switching gain once the sliding mode
is established. Therefore, the gain adaptation law does not overestimate the
magnitude of the perturbations. However, it still requires knowledge of the
bounds of perturbations, and the use of a low-pass filter introduces a time
delay which affects the transient phenomenon. Most recently, the control gain
in [16, 17, 74] depends on the distance from the sliding variable to a discon-
tinuity surface referred to as a boundary layer which is different from the
conventional boundary lay used to replace the switching function, often, a
signum function, so that the switching gain is reduced gradually when the
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sliding variable is inside the boundary layer. To avoid the wind-up in the
process of gain adaptation, [16] suggests that the boundary layer parameter
should be large enough or tuned dynamically with the switching gain.

The ASMC is also improved with the application to HOSMC. In [61], the
authors apply ASMC to “super-twisting” algorithm, and in [18] ASMC is com-
bined with a second-order SMC. The improved algorithms successfully reduced
the switching gain so that the chattering level is lowered. However, in [18],
the exact robust differentiator is required and the design fits mainly for ideal
sliding mode; while in [13,16,17,19,61], the system response is relatively slow
at the beginning of the presence of perturbations. Since the sliding surface is
mostly designed such that the system state is stable when the trajectory is on
the surface, a slow response to the sliding variable variation may encounter a
serious stability problem. To achieve fast response and chattering-free prop-
erty, asymptotic reaching laws rather than ASMC can be found as the form
of power reaching law [5] and an exponential reaching law [56]. However, they
either lose the robustness when system states are around the sliding surface [5]
or require a priori knowledge of the uncertainty bounds [56].

For the uncertainties in the nonlinear systems, many assumptions were
made. Mostly, the uncertainties are assumed to be bounded within some un-
known constants or affine function of the norm of the state with unknown co-
efficients. To deal with uncertainties of unknown bounds, the integral adapta-
tion law has been often used [11,13–19,75–78] over the past two decades. Also,
uncertainties bounded by affine functions have been treated using an ASMC
design with “improved” integral adaptation laws [10, 61, 79–81] . Despite the
nonlinear systems with uncertainties bounded by some unknown constants
or unknown affine functions, other common kinds of uncertain systems still
exist. For instance, if the system’s parameters are unknown, the Duffing dy-
namics (i.e., mechanical systems with softening springs) and the tunnel-diode
circuit dynamics contain uncertainties bounded by polynomials [1]. Moreover,
according to Taylor’s theorem, most continuous nonlinearities can be approx-
imated by polynomials. Thus, the uncertainties bounded with some unknown
polynomials exist. However, most the existing ASMC techniques only deal
with the nonlinear systems with uncertainties bounded by constants or affine
functions.

2.3 Applications to Robot Systems

Robotic manipulators play an important role in modern industry. The con-
trol of rigid manipulators has gained much attention during the past decades.
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Since the rigid manipulators often face significant difficulties related to highly
nonlinear, time-varying and coupled dynamic behavior, and external distur-
bance, numerous control methods, from linear to nonlinear control, adpative
to robust control, and model-based to fuzzy and neural network control, have
been widely applied to these complex dynamics [20, 42, 43, 56, 60, 79, 81–86].
In particular, the SMC attracts much attention for its robustness in terms
of parameter variations that occur in the control channel and its FTC prop-
erty [39,60]. In a conventional SMC design, a priori knowledge of the bounds
on system uncertainties has to be acquired to compensate for these uncertain-
ties [60, 87]. As a result, the control action tends to be overestimated and
may excite the unmodeled dynamics inducing poor tracking performance and
undesirable chattering [13]. To deal with these issues in the controller design
for robotic manipulators, [56] introduced an exponential reaching law, [87,88]
used a continuous terminal sliding mode (TSM) control, and [11,62] deployed
a chain of PID sliding surfaces. However, the exponential reaching law [56] and
the continuous TSM [87,88] require knowledge of the upper bounds of the un-
certainties. To deal with uncertainties of unknown bounds, ASMC techniques
has been also applied to the control of robotic manipulators with an integral-
type adaptation law [10,11,79,80,83]. In particular, a high order integral-type
adaptation law was designed in [79] for nonlinear systems with uncertainties
bounded by some high order polynomial functions with unknown parameters.
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3 Modelling and Validation of
2-DOF Experimental
Helicopter-Model Setup

In this Chapter, we first present some commonly used nonlinear system mod-
els. Then, we briefly introduce the space transformation matrices and Euler-
Lagrange method in Section 3.2. In Section 3.3, the kinematic and dynamic
equations of the experimental helicopter-model setup will be analyzed based
on the space transformation matrices and the Euler-Lagrange method. Some
discrepancies, between the description of the dynamics given in this chapter
and the one shown in the 2006 manual of the setup [21], will be pointed out.
The parameter validations are discussed in Section 3.4 where the parameter
estimation methods, based on adaptive observers with asymptotic and expo-
nential stabilizations, are briefly presented with simulation demonstrations.

3.1 Nonlinear System Modeling

In this section, we briefly present the main models of nonlinear dynamic sys-
tems. Usually, nonlinear dynamics are modelled via various (physical, chemi-
cal, mechanical, and/or electrical) laws, and can be expressed as

ẋ = a(x, u, t) (3.1a)

y = c(x, u, t) (3.1b)

where t ∈ R is the time, x ∈ Rn the state vector, u ∈ Rm the input vector,
and y ∈ Rp the output. a(x, u, t) and c(x, u, t) are nonlinear functions in Rn
and Rp, respectively. The following special form, called a control/input affine
system with uncertainties [1], is commonly used to deal with different control
objectives (e.g., stabilization)

ẋ = f(x, t) + g(x, t) ·u (3.2)
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3.1. Nonlinear System Modeling

where x ∈ χ is the state vector, with χ ⊂ Rn a domain containing the ori-
gin, and u ∈ Rm the input vector. The vector f(x, t) ∈ Rn and the matrix
g(x, t) ∈ Rn×m are nonlinear time-varying smooth functions containing para-
metric uncertainties and external disturbances [14,16,51,74,89,90]. In general,
the bounds of these uncertainties are unknown a priori. The model (3.2) rep-
resents a large class of nonlinear dynamics on which different designs and
analyses discussed in this thesis will be based.

Example 3.1. Most mechanical dynamic systems involve position, velocity
and acceleration. One general form of this kind of dynamics is

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τd (3.3)

where q ∈ Rn refers to the position, τ ∈ Rm the input vector (of torques and
forces) and τd input disturbance vector (such as unknown friction torques).
D(q) is the inertia matrix, C(q, q̇)q̇ the vector of Coriolis and centrifugal forces,
and g(q) the vector of gravitational forces [91]. Based on the fact that D(q)
is regular [52, 85], the dynamics (3.3) can be rewritten in the standard state-
space form (3.2) with u = τ , x = [xT1 , x

T
2 ]T = [qT , q̇T ]T , The nonlinear field

functions of (3.3) are given by

f(x) =

[
x2

D−1(x1) ·
[
− C(x1, x2)x2 − g(x1) + τd

]
]

(3.4)

and

g(x) =

[
0
D−1(x1)

]
(3.5)

respectively.

When the system has linearly joined unknown parameters, (3.1) can be
written in state-space representaion with known and unmeasurable nonlinear-
ities [92]

ẋ = Ax+ fm(y, u) +B
[
fu(x, u) + fr(x, u)θ

]
(3.6a)

y = Cx (3.6b)

with A ∈ Rn×n, B ∈ Rn×r and C ∈ Rp×n. x ∈ Rn designates the state vector,
u ∈ Rm the input vector, y ∈ Rp the output, and θ ∈ Rq the vector of unknown
constant parameters. fm(y, u), fu(x, u) and fr(x, u) are nonlinear functions
in Rn, Rr and Rr×q, respectively. The usefulness for this representation will
be highlighted later when we discuss the parameter estimation.
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3.2. Modelization Tools

3.2 Modelization Tools

3.2.1 Space Transformation

The movement of a body in a three-dimensional (3-D) Euclidean space changes
its positions and orientations by translation and rotation. The motion of a
rotation and a translation can be represented by a rotation matrix and a
translation matrix, respectively. To calculate the position of a mass after
some movements in a 3-D space, we use homogeneous transformation ma-
trices containing homogeneous coordinates so that translations can be seam-
lessly intermixed with rotations [93]. The homogeneous coordinates of a 3-D
(x, y, z)T are represented as a vector (x, y, z, 1)T of dimension four. The trans-
lation matrix containing homogeneous coordinates (lx, ly, lz, 1)T is described
as [93]

Trans(lx,ly ,lz) =




1 0 0 lx
0 1 0 ly
0 0 1 lz
0 0 0 1


 (3.7)

Then, after a 3-D translation, the new coordinates (x1, y1, z1, 1)T of a point
vector expressed in the base coordinate system can be obtained from the multi-
plication of the translation matrix with its original coordinates (x0, y0, z0, 1)T ,
as

(x1, y1, z1, 1)T = Trans(lx,ly ,lz)(x0, y0, z0, 1)T

=




1 0 0 lx
0 1 0 ly
0 0 1 lz
0 0 0 1







x0

y0

z0

1


 =




x0 + lx
y0 + ly
z0 + lz
1


 (3.8)

Similarly, the affine rotation matrices are expanded from their general rotation
matrices. The affine rotation matrices for the rotations about x, y and z axes
with angles θ, φ and ψ, respectively, are defined as [93]

Rot(x,θ) =




1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1


 (3.9)
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3.2. Modelization Tools

Figure 3.1: Pitch, yaw and roll rotations (adapted from the internet)

Rot(y,φ) =




cosφ 0 sinφ 0
0 1 0 0
− sinφ 0 cosφ 0
0 0 0 1


 (3.10)

and

Rot(z,ψ) =




cosψ − sinψ 0 0
sinψ cosψ 0 0
0 0 1 0
0 0 0 1


 (3.11)

3.2.2 Definition of Pitch, Yaw and Roll

An aircraft in flight is free to rotate in three dimensions. In particular, the
three rotations are defined, from the pilot’s view, as (see Figure 3.1) [94]:
• pitch, nose up or down about an axis running from the pilot’s left to

right in a piloted aircraft;
• yaw, nose right or left about an axis running from top to bottom; and
• roll, rotation about an axis drawn through the body of the vehicle from

tail to nose in the normal direction of flight.
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3.3. Modelling of 2-DOF Experimental Helicopter Model

Thus, we know the positive angles of pitch, yaw and roll based on the right-
hand rule
• pitch positive, nose up
• yaw positive, nose right
• roll positive, left wing up and right wing down

The axes are alternatively designated as lateral, vertical, and longitudinal.
These definitions were analogously applied to spacecraft when the first manned
spacecraft were designed in the late 1950s [95]. However, we only use pitch
and yaw throughout this thesis.

3.2.3 Lagrangian Mechanics

As a reformulation of classical mechanics, Lagrangian mechanics is widely used
to solve mechanical problems in physics and engineering [96]. It is ideal for
systems with conservative forces [96]. Instead of forces, Lagrangian mechanics
uses the energies in the system. The central quantity of Lagrangian mechanics
is the Lagrangian, a function which summarizes the dynamics of the entire
system. The Lagrangian for a system of particles can be defined by [96]

L = T − V (3.12)

where

T =
1

2

N∑

i=1

miv
2
i (3.13)

is the total kinetic energy and V the potential energy of the system. The
Lagrange’s equations are defined as [96]

d

dt

∂L

∂q̇j
− ∂T

∂qj
= Qj (3.14)

where Qj are the generalized forces, qj the generalized coordinates and q̇j the
generalized velocities.

3.3 Modelling of 2-DOF Experimental Helicopter
Model

To validate the effectiveness of the proposed control schemes that will be dis-
cussed in this thesis, we consider a 2-DOF helicopter simulator model actuated
with two propellers as shown in Figure 1.1 [21]. The front propeller controls
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3.3. Modelling of 2-DOF Experimental Helicopter Model

Figure 3.2: Correct pitch and yaw [21]

the elevation of the helicopter nose about the pitch axis and the back propeller
controls the side to side motions of the helicopter about the yaw axis. A com-
puter equipped with a QuaRC-Simulink configuration and a data acquisition
board is installed to control and monitor the plant in real-time and in de-
signing the controller through Simulink of MATLAB. The 2-DOF helicopter
simulator model is provided by Quanser Company. The 2006 manual version
provides some details of modelling. However, the modelling methods in the
2006 manual are not all correct. In this section, we investigate the modelling
of the helicopter simulator in more detail.

3.3.1 Base Coordinate System

Based on the definitions of pitch, yaw and roll discussed in subsection 3.2.2,
we define [21] the pitch-yaw-roll coordinates as (see Figure 3.2) [95]

• X (roll) axis – positive forward, through nose of aircraft
• Y (pitch) axis – positive to right of X axis
• Z (yaw) axis – positive downwards, perpendicular to X-Y plane

The X−Y −Z coordinate system is the base coordinate system in the following
discussion dealing with the kinematics of the setup.
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3.3. Modelling of 2-DOF Experimental Helicopter Model

3.3.2 Kinematics

To analyse the kinematics of the helicopter, we consider the following move-
ments
• Step 1: the center of mass moves from the origin with a distance lcm

along the X-direction.
• Step 2: the center of mass rotates about Y (pitch) axis with angle φ.
• Step 3: the center of mass rotates about Z (yaw) axis with angle ψ.

Step 1 can be represented by an affine transformation (translation) matrix in
the form of (3.7) as

Trans(lcm,0,0) =




1 0 0 lcm
0 1 0 0
0 0 1 0
0 0 0 1


 (3.15)

Steps 2 and 3 can be represented by the affine transformation (rotation) ma-
trices Rot(z,ψ) and Rot(y,φ) in the forms of (3.10) and (3.11), respectively.
Thus, the total transformation matrix can be obtained by multiplying the
three individual translation and rotation matrices as [93]

Ttransf = Rot(z,ψ)Rot(y,φ)Trans(lcm,0,0)

=




cosψ − sinψ 0 0
sinψ cosψ 0 0
0 0 1 0
0 0 0 1







cosφ 0 sinφ 0
0 1 0 0
− sinφ 0 cosφ 0
0 0 0 1







1 0 0 lcm
0 1 0 0
0 0 1 0
0 0 0 1




=




cosψ · cosφ − sinψ cosψ · sinφ cosψ · cosφ · lcm
sinψ · cosφ cosψ sinψ · sinφ sinψ · cosφ · lcm
− sinφ 0 cosφ − sinφ · lcm
0 0 0 1


 (3.16)

Using the transformation matrix (3.16), the homogeneous position of the cen-
ter of mass after the three movements can be obtained (in the base coordinate
system OXY Z)




xcm
ycm
zcm
1


 = Transf




0
0
0
1


 =




lcm · cosψ · cosφ
lcm · sinψ · cosφ
−lcm · sinφ
1


 (3.17)
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3.3. Modelling of 2-DOF Experimental Helicopter Model

Figure 3.3: Center of mass [21]

Note that the actual position vector is simply obtained by removing the fourth
element of the homogeneous position vector, i.e.,




xcm
ycm
zcm


 =




lcm · cosψ · cosφ
lcm · sinψ · cosφ
−lcm · sinφ


 (3.18)

Remark 3.1. lcm is the center of mass where the system should statically
balance at the point. Based on Figure 3.3, the center of mass is calculated as
follows: if the mass of the body is negligible,

(mp +mshield)(rp − lcm) = (my +mshield)(ry + lcm)

which yields

lcm =
(mp +mshield)rp − (my +mshield)ry

mp +my + 2mshield
(3.19)

where mp, my and mshield represents the mass of pitch rotor (or front rotor),
yaw rotor (or rear rotor) and the shield. rp and rp are the distances of the
pitch rotor and yaw rotor to the pivot, respectively.
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3.3. Modelling of 2-DOF Experimental Helicopter Model

If the mass of the body is not negligible,

(mp +mshield)(rp − lcm) +
[
mbody

rp − lcm
rp + ry

]rp − lcm
2

= (my +mshield)(ry + lcm) +
[
mbody

ry + lcm
rp + ry

]ry + lcm
2

(3.20)

which yields

lcm =

(mp +mshield)rp − (my +mshield)ry +mbody

r2
p − r2

y

2(rp + ry)

mp +my + 2mshield +mbody
(3.21)

The Equations (3.19) and (3.21) correct the equation calculating the center
of mass in [21] where its form is similar to (3.19) but with a positive sign ‘+’
replacing the negative sign ‘−’ in the numerator of (3.19).

Taking the time derivative of the position vector (3.18), we obtain the
velocity vector of the center of mass.




ẋcm
ẏcm
żcm


 =



−lcm

(
ψ̇ sinψ · cosφ+ φ̇ · cosψ · sinφ

)

lcm
(
ψ̇ cosψ · cosφ− φ̇ · sinψ · sinφ

)

−φ̇ · cosφ · lcm


 (3.22)

where ẋcm, ẏcm and żcm are the linear velocities of the center of mass. φ̇ and
ψ̇ are the angular velocities about the pitch and yaw axes, respectively.

Remark 3.2. The transformation matrix (3.16), the position vector (3.18) and
the velocity vector (3.22) are now different from the results obtained in [21].

3.3.3 Kinematic and Potential Energy

To develop the dynamic equations of the helicopter, we apply the Lagrangian
equation (3.14). First, we calculate the Lagrangian L which is the difference
of the kinematic energy T and the potential energy V .

The total kinetic energy is the sum of the rotational kinetic energies acting
from the pitch, Tr,p, and from the yaw, Tr,y, along with the translational kinetic
energy generated by moving the center of mass, Tt, defined as

T = Tr,p + Tr,y + Tt (3.23)

The pitch rotational energy Tr,p and yaw rotational energy Tr,y are

Tr,p =
1

2
· Jp · φ̇2 (3.24)
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3.3. Modelling of 2-DOF Experimental Helicopter Model

and

Tr,y =
1

2
· Jy · ψ̇2 (3.25)

where Jp and Jy are the equivalent moments of inertia of the pitch and yaw,
respectively. The equivalent moments of inertia about the pitch axis and the
yaw axis can be calculated as follows [21]

Jp = Jrotor,p + Jbody,p + Jm,p + Jm,y (3.26)

and

Jy = Jrotor,y + Jbody,y + Jm,p + Jm,y + Jshaft (3.27)

where Jrotor,p (resp., Jrotor,y) is the pitch (resp., yaw) rotors moment of inertia,
Jbody,p (resp., Jbody,y) is the moment of inertia of the helicopter body about its
center-of-mass, Jm,p (resp., Jm,y) is the moment of inertia of pitch (resp., yaw)
motor and guard assembly about pivot, and Jshaft is the moment of inertia
of the yaw shaft. Moreover, [21]

Jbody,p =
mbody,pL

2
body

12
+mbody,p · l2cm (3.28a)

Jbody,y =
mbody,yL

2
body

12
+mbody,y · l2cm (3.28b)

Jshaft =
mshaftr

2
shaft

2
(3.28c)

where mbody,p (resp., mbody,y) is the equivalent mass of the helicopter body
about the pitch (resp., yaw), mshaft the mass of the yaw shaft, Lbody the
length of the helicopter body and rshaft the radius of the yaw shaft. We use
the approximations (3.28a) and (3.28b) since lcm is very small compared to
Lbody.

Remark 3.3. The Equations (3.28) are slightly different from those in [21]

The translational kinetic energy is obtained from the mass and the linear
velocity of the helicopter (3.22), as

Tt =
1

2
mheli

(√
ẋ2
cm + ẏ2

cm + ż2
cm

)2
(3.29)

where mheli is the mass of the helicopter given by

mheli = mp +my +mbody + 2 ·mshield (3.30)
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3.3. Modelling of 2-DOF Experimental Helicopter Model

Substituting (3.22) into (3.29), the translational kinetic energy is obtained

Tt =
1

2
mheli · l2cm ·

(
ψ̇2 · cos2 φ+ φ̇2

)
(3.31)

Thus, we have the total kinetic energy

T =
1

2
· Jp · φ̇2 +

1

2
· Jy · ψ̇2 +

1

2
mheli · l2cm ·

(
ψ̇2 · cos2 φ+ φ̇2

)
(3.32)

The potential energy due to gravity is

V = mheli · g · (−zcm)

= mheli · g · lcm · sinφ (3.33)

where g is the gravitational acceleration and zcm the position of the center of
mass on Z0-axis. We use negative zcm here because the positive z direction
is downwards. The Lagrangian L is the difference between the kinetic and
potential energy of the system. Substituting (3.32) and (3.33) into (3.12), we
obtain the Lagrangian [96].

L =
1

2
· Jp · φ̇2 +

1

2
· Jy · ψ̇2 +

1

2
mheli · l2cm ·

(
ψ̇2 · cos2 φ+ φ̇2

)

−mheli · g · lcm · sinφ (3.34)

In the following, we use (3.34) to derive the dynamics of motion of the heli-
copter model.

3.3.4 Nonlinear Equation of Motion

Choosing the generalized coordinates

q = [q1, q2]T = [φ, ψ]T (3.35)

the Euler-Lagrange equations (3.14) of the 2-DOF helicopter become

∂

∂t

∂L

∂φ̇
− ∂

∂φ
L = Qp (3.36a)

∂

∂t

∂L

∂ψ̇
− ∂

∂ψ
L = Qy (3.36b)

where Qp and Qy are the generalized forces on pitch and yaw respectively.
Using (3.34), we have

∂L

∂φ
= − cosφ · (ψ̇2 · lcm · sinφ+ g) ·mheli · lcm (3.37)
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and

∂

∂t

∂L

∂φ̇
= (Jp +mheli · l2cm)φ̈ (3.38)

Now, by substituting (3.37) and (3.38) into (3.36a), we obtain

(Jp +mheli · l2cm)φ̈+m · g · lcm · cosφ+mheli · l2cm · ψ̇2 cosφ sinφ = Qp (3.39)

where φ̈ is the pitch angular acceleration. Similarly, we determine the terms
of (3.36b) using (3.34) to obtain

(Jy +mheli · l2cm cos2 φ)ψ̈ − 2mheli · l2cm · φ̇ · ψ̇ cosφ sinφ = Qy (3.40)

where ψ̈ is the yaw angular acceleration.
The generalized forces are the total forces from the propellers and the

viscous damping given by [96]

Qp = KppVp +KpyVy −Bpφ̇ (3.41)

and

Qy = KypVp +KyyVy −Byψ̇ (3.42)

where Vp and Vy are the applied torques on pitch and yaw rotations, respec-
tively. Bp (resp., By) is the viscous damping about pitch (resp., yaw) axis,
Kpp (resp. Kpy) the thrust torque constant acting on the pitch axis from
the pitch (resp., yaw) motor/propeller, Kyy (resp., Kyp) the thrust torque
constant acting on the yaw axis from the yaw (resp., pitch) motor/propeller.

Substituting (3.41) and (3.42) into Euler-Lagrange expression (3.39) and
(3.40), we obtain the nonlinear equations of motion

(Jp +mheli · l2cm)φ̈ =KppVp +KpyVy −Bpφ̇−mheli · g · lcm · cosφ

−mheli · l2cm · ψ̇2 · cosφ sinφ (3.43a)

(Jy +mheli · l2cm cos2 φ)ψ̈ =KypVp +KyyVy −Byψ̇
+ 2mheli · l2cm · φ̇ · ψ̇ · cosφ sinφ (3.43b)

Note that the terms ψ̇2 · sinφ cosφ, φ̇ · ψ̇ · sinφ cosφ and mheli · g · lcm · cosφ,
shown in (3.43a) and (3.43b), are typical nonlinear dynamics with quadratic
polynomial and trigonometric functions of the system state. Thus, the helicopter-
model setup is a typical nonlinear dynamic system. However, if the pitch angle
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3.3. Modelling of 2-DOF Experimental Helicopter Model

keeps strictly constant, i.e., φ̇ = 0, the setup can be considered as a linear
dynamic system.

In the following, for the sake of simplicity, we use m (instead of mheli) and
l (instead of lcm) to represent the mass of the helicopter and the center of the
mass, respectively.

The equations (3.43a) and (3.43b) can be packaged in the matrix form
(recall (3.3))

D(q)q̈ + C(q, q̇)q̇ + g(q) = Bτ (3.44)

where q = [φ, ψ]T ∈ R2 refers to the position and τ = [Vp, Vy]
T ∈ R2 the input

torque. The matrix D(q) is the inertia matrix, C(q, q̇)q̇ the vector of Coriolis
and centrifugal forces, g(q) the vector of gravitational forces, and B the input
matrix [91].

D(q) =

[
Jp +m · l2 0

0 Jy +m · l2 cos2 φ

]
(3.45)

C(q, q̇) =

[
Bp m · l2 · ψ̇ cosφ sinφ

−2m · l2 · ψ̇ cosφ sinφ By

]
(3.46)

g(q) =

[
m · g · l · cosφ
0

]
(3.47)

and

B =

[
Kpp Kpy
Kyp Kyy

]
(3.48)

Let x1 = φ, x2 = ψ, x3 = φ̇ and x4 = ψ̇ be the measurable states and
u = [u1 u2]T = [Vp Vy]

T the input vector. The dynamics (3.43a) and (3.43b)
can be rewritten in the form of (recall (3.2))

ẋ = f(x, t) + g(x, t) ·u (3.49)

where the nonlinear uncertain dynamics are given by

f(x, t) =
[
x3, x4, f1(x), f2(x)

]T
(3.50)

and

g(x, t) =
[
g1(x, t), g2(x, t)

]
(3.51)
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Table 3.1: Some nominal values of the model parameters [21]

Parameters Values Units Parameters Values Units

mm,p 0.292 kg mm,y 0.128 kg

mbody,p 0.633 kg mbody,y 0.667 kg

mshield 0.167 kg mshaft 0.151 kg

Jp 0.038 kg ·m2 Jy 0.043 kg ·m2

Kpp 0.204 N ·m/V Kpy 0.007 N ·m/V
Kyp 0.022 N ·m/V Kyy 0.072 N ·m/V
Bp 0.800 N/V By 0.318 N/V

l 0.054∗ m Lbody 0.280 m

m 1.3872 kg g 9.810 m/sec2

∗ In [21], l = 0.186 m.

with

f1(x) =
−Bpx3 −mgl cosx1 −ml2 sinx1 cosx1 ·x2

4

Jp +ml2
(3.52)

f2(x) =
−Byx4 + 2ml2 sinx1 cosx1 ·x3x4

Jy +ml2 cos2 x1
(3.53)

g1(x, t) =
(
0, 0,

Kpp

Jp +ml2
,

Kyp

Jy +ml2 cos2 x1

)T
(3.54)

and

g2(x, t) =
(
0, 0,

Kpy

Jp +ml2
,

Kyy

Jy +ml2 cos2 x1

)T
(3.55)

3.4 Model Parameters

3.4.1 Provided Values

Some of the numerical values of the helicopter model are provided by [21]
(see Table 3.1, except parameter l). These values were obtained by static
experiments and by calculations. However, the calculations are not always
correct. For example, the center of mass in [21] is calculated using

lcm =
(mp +mshield)rp + (my +mshield)ry

mp +my + 2mshield
(3.56)
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which is different from the Equations (3.19) and (3.21). The resulting value
of lcm is then very different.

Another example is the calculations of the moments of inertia Jbody,p,
Jbody,y and Jshaft in [21]:

Jbody,p =
mbody,pL

2
body

12
(3.57a)

Jbody,y =
mbody,yL

2
body

12
(3.57b)

Jshaft =
mshaftL

2
shaft

3
(3.57c)

which are different from (3.28). Thus, it is necessary to estimate the pa-
rameters again. In fact, a dynamic estimation method based on adaptive
observer techniques is designed to estimate the unknown constant parame-
ters [92,97–102]. These techniques are based on the state-space representation
(3.6) where the unknown constant parameters are set as the linearly joined
vector θ.

3.4.2 Parameterization

Let x1 = φ, x2 = ψ, x3 = φ̇ and x4 = ψ̇ be the state variables, u = [u1 u2]T =
[Vp Vy]

T the input vector and y = [x1 x2]T the output vector (i.e., measurable
states), the dynamics (3.43a) and (3.43b) can also be written in the form of
state-space representation (3.6), where the matrices A, B and C are given by:

A =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


 , B =




0 0
0 0
1 0
0 1


 , C =

(
1 0 0 0
0 1 0 0

)
(3.58)

Assuming that the parameters Jp, Jy, Kpp, · · · etc., are uncertain, we have
fm(y, u) = 0 and fu(x, u) = 0. The unmeasured nonlinear term, often called
regression function, with uncertain parameters is written as

fr(x, u)θ =




Kppu1 +Kpyu2

Jp +ml2
+ f1(x)

Kypu1 +Kyyu2

Jy +ml2 cos2 x1
+ f2(x)


 (3.59)

To deal with the nonlinear parameterization depicted in (3.59), an approx-
imation resulting in uncertain bounded terms is used to develop the modeling
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scheme. If we denote by a =
1

Jy +ml2
, we notice actually that ml2a sin2 x1 �

1 (from the provided values a priori), we apply the Taylor series decomposition

to the nonlinear parameter dependent term
1

Jy +ml2 cos2 x1
as

1

Jy +ml2 cos2 x1
=

a

1−ml2a sin2 x1

= a
(
1 +O(sin2 x1)

)

≈ a (3.60)

where O(sin2 x1) , ml2a sin2 x1 +m2l4a2 sin4 x1 +m3l6a3 sin6 x1 + . . . is very
small. We use this approximation to linearize the yaw dynamics (3.59) w.r.t.
its independent parameters. We can also use a second order extended form
of the approximation instead of the reduced approximation (limited to the

constant a =
1

Jy +ml2
) for the sake of accuracy.

Using (3.60), the components of the unknown parameter vector θ ∈ R9

are θ1 =
Kpp

Jp +ml2
, θ2 =

Kpy

Jp +ml2
, θ3 =

Bp
Jp +ml2

, θ4 =
mgl

Jp +ml2
, θ5 =

ml2

Jp +ml2
, θ6 = aKyp, θ7 = aKyy, θ8 = aBy and θ9 = aml2, respectively. Note

that, given the validated values of θ1 to θ9 and any two correct values of Table
3.1 (for instance, g = 9.81 m/sec2 and m = 1.3872 kg), we can derive all of
the remaining model parameters in Table 3.1.

Also, the nonlinear function fr(x, u) ∈ R2×9 containing unmeasured states
has the form

fr(x, u) =

[
fr1(x, u) 0

0 fr2(x, u)

]
(3.61)

with fr1(x, u) =
[
u1 u2 −x3 − cosx1

−x24 sin 2x1
2

]
and fr2(x, u) =

[
u1 u2

−x4 x3x4 sin 2x1

]
.

3.4.3 Validation – Parameter Estimation

Adaptive observer techniques are designed to estimate the unknown constant
parameters. In particular, the designs of the adaptive observer with asymp-
totic and exponential convergences are proposed in [92]. These schemes will
be briefly introduced in the following.

Consider the state representation (3.6). For the forthcoming designs, we
consider the following assumptions [97–100]
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Assumption 3.1. The matrix B is a strict full-column-rank matrix, that is
rk(B) = r < n, the output vector y does not recover the whole states of x, that
is m < n, and the pair (A,C) is observable.

Assumption 3.2. There exist matrices Φ and Ψ of Rn×p chosen, s.t.

ΨCB = 0 (3.62)

and
ΦC + ΨCA = In (3.63)

Assumption 3.3. The vector of unknown constant parameters θ is bounded
with

‖θ‖ < β0 (3.64)

Assumption 3.4. The functions fu and fr are continuously bounded and
Lipschitz in x, with

‖fu(x, u)− fu(x̂, u)‖ ≤ βu‖x− x̂‖ (3.65)

and
‖fr(x, u)− fr(x̂, u)‖ ≤ β‖x− x̂‖ (3.66)

Assumption 3.5. The input vector u is of class C1 (i.e., continuous and dif-
ferentiable function having continuous derivatives). In addition, u is required
to fulfill the PE condition.

These hypotheses are commonly used in related research and can char-
acterize adequately many real plants [98, 102–107]. In particular, by setting
up Assumptions 3.1 and 3.2, one can neutralize the following inappropriate
observer forms: form 1, where B is right invertible (i.e., B regular square
matrix or full-row-rank), and form 2, where C is a full-column rank matrix.
In fact, with form 1, there always exists a transformation reducing the num-
ber of channels within the parameter matching term Bfr(x, u)θ, by reducing
and/or combining the elements of fr(x, u)θ to lower r under the number of
states n, while with form 2, the output vector y would recover the whole state
vector x. Moreover, we notice, from (3.62) of Assumption 3.2, that in the
case where the columns of B lie in the null space of C, i.e., CB = 0, Ψ and
Φ will be selected based on the equality requirement (3.63) only. However,
when CB 6= 0, Assumption 3.2 requires the selection of a matrix Ψ in the
null space of C, i.e., ΨC = 0, then we select Φ s.t. ΦC = I. This statement
remains strenuous. Otherwise, we select Ψ simply in the null space of CB,
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i.e., Ψ · (CB) = 0, and Φ s.t. (3.63) holds. Later, when we deal with the expo-
nentially stable adaptive observer design, the condition (3.63) of Assumption
3.2 will be slightly relaxed from [97,100,102] enrolling a wider set of dynamics.
In fact, we substitute the following conditions for the constraint (3.63), as

Assumption 3.2.s. There exist matrices Φ and Ψ of Rn×m chosen, s.t.
(3.62) holds and B̃ =

(
ΦC + ΨCA

)
B is full-column rank.

Note that, from Assumptions 3.1 and 3.2.s,
(
ΦC + ΨCA

)
can be either

regular (that is, there exist Φ and Ψ s.t. (3.63) holds), or singular.

Adaptive Observer with Asymptotic Stability

The design of a nonlinear adaptive observer for the nonlinear dynamics, gen-
eralizes a concept introduced and widely discussed in [92, 97, 100]. Known
as an asymptotically stable adaptive observer (ASAO), the detailed proof of
the asymptotic stability of the overall scheme is discussed using appropriate
Lyapunov function and linear matrix inequality (LMI) frameworks. Based on
the dynamics (3.6), we propose the following full-order nonlinear observer

˙̂x = Ax̂+ fm(y, u) +B
[
fu(x̂, u) + fr(x̂, u)θ̂

]
+ L

(
y − Cx̂

)
(3.67)

coupled with the adaptation law

˙̆
θ =

[
G(t)TP

(
Φ + ΨCL

)
− Ġ(t)TPΨ

]
·
(
y − Cx̂

)
(3.68)

θ̂ = θ̆ +G(t)TPΨ ·
(
y − Cx̂

)
(3.69)

with
G(t) = Bfr(x̂, u)Q (3.70)

where Q = QT > 0 and L are matrices of Rq×q and Rn×p, respectively. Φ
and Ψ are matrices of Rn×p, and Ġ(t) the total time derivative of G. The
following result discusses the conditions that guarantee the convergence of the
estimates of both the states and parameters to their actual values [97–100].

Proposition 3.1 (LMI-based ASAO Design). Under Assumptions 3.1-3.5,
for δ = βu + β0β > 0, if there exist matrices P = P T > 0 in Rn×n and W in
Rn×p, s.t.




PA+ATP −WC − CTW T PB In
BTP −1

δ Ip 0
In 0 −1

δ In


 < 0 (3.71)
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and if Bfr(x, u) respects the PE condition, that is, there exist positive scalars
α1, α2 and t0, s.t. ∀t

α1Iq ≤
∫ t0+t

t
fTr (u, x)BTBfr(x, u)dτ ≤ α2Iq (3.72)

then the adaptive observer (3.67)–(3.70) for the system (3.6), with the observer
gain matrix L = P−1W , is asymptotically stable, that is, the state estimate
error x̃ and the parameter estimate error θ̃ tend both to zero as t→∞.

Proof. See [92] (Refer to Appendix C.2).

A robust adaptive observer version derived from this scheme has been
investigated in [99, 100]. In the following, a modified form is proposed to in-
vestigate the exponential stability of the entire dynamics (state and parameter
estimates).

Adaptive Observer with Exponential Stability

The following design of a nonlinear adaptive observer for the nonlinear dy-
namics is derived from the scheme presented above. The detailed proof of the
exponential stability of the overall dynamics is based on the Lyapunov the-
ory. We consider the model dynamics (3.6). We modify the previous adaptive
observer scheme to ensure the exponential convergence of both the state and
parameter estimates. We use appropriate change of variables and Lyapunov
function candidates to extend the scenario introduced first in [102] and sub-
due the weaknesses depicted therein. In the following, this new form will be
referred to as expoentially stable adaptive observer (ESAO).

We propose the full-order nonlinear observer

˙̆x = Ax̂+ fm(u, y) +B
[
fu(x̂, u)− ΛΓ(t)θ̂

]
+ L

(
y − Cx̂

)
(3.73)

x̂ = x̆+BΓ(t)θ̂ (3.74)

where Γ(t) ∈ Rr×q is defined as

Γ̇ = ΛΓ + fr(x̂, u) (3.75)

with Λ ∈ Rr×r any Hurwitz matrix, coupled with the adaptation law

˙̆
θ =

[
G(t)TP

(
Φ + ΨCL

)
− Ġ(t)TPΨ

]
·
(
y − Cx̂

)
(3.76)

θ̂ = θ̆ +G(t)TPΨ ·
(
y − Cx̂

)
(3.77)
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where P = P T > 0 is a matrix of Rn×n, L, Φ and Ψ matrices of Rn×p, and
G(t) ∈ Rn×q is defined by

G(t) = P−1ΥB̃Γ(t)Q (3.78)

with Υ = ΥT > 0 in Rn×n, Q = QT > 0 in Rq×q and B̃ =
(
ΦC + ΨCA

)
B.

Finally, Ġ(t) denotes the total time derivative of G.

Proposition 3.2 (LMI-based ESAO Design – Form 1). Under Assumptions
3.1, 3.2.s, 3.3-3.5, if there exist matrices P = P T > 0, Υ = ΥT > 0 in Rn×n,
W ∈ Rn×p, s.t.




T (P,W ) SΛ(P,W,Υ) PB In 0

STΛ (P,W,Υ) −2B̃TΥB̃ 0 0 BT

BTP 0 − 1
2δ Ip 0 0

In 0 0 −1
δ In 0

0 B 0 0 −1
δ In



< 0 (3.79)

with T (P,W ) = PA+ATP −WC −CTW T , SΛ(P,W,Υ) = PAB −WCB −
PBΛ−

(
ΦC + ΨCA

)T
ΥB̃, Φ and Ψ in Rn×p, Λ ∈ Rr×r any Hurwitz matrix,

δ = βu + β0β > 0, and if Γ is PE, that is, there exist positive scalars α0 and
t0, s.t. ∀t [106–108]

α0t0Iq ≤
∫ t+t0

t
Γ(τ)TΓ(τ)dτ (3.80)

then the state estimation error vector x̃ and the parameter estimate error
vector θ̃ of the nonlinear adaptive observer (3.73)–(3.78), designed for the
nonlinear system (3.6), tend to zero exponentially as t→∞. The closed-loop
observer gain matrix L is computed as L = P−1W .

Proof. See [92] (Refer to Appendix C.2).

Corollary 3.1 (LMI-based ESAO Design – Form 2). Under Assumptions
3.1, 3.2.s, 3.3-3.5, if there exist matrices P = P T > 0, Υ = ΥT > 0 in Rn×n,
R ∈ Rr×r and W ∈ Rn×p, s.t.




BTT (P,W )B S(P,R,W,Υ) BTPB BT 0

ST (P,R,W,Υ) −2B̃TΥB̃ 0 0 BT

BTPB 0 − 1
2δ Ip 0 0

B 0 0 −1
δ In 0

0 B 0 0 −1
δ In



< 0 (3.81)
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and
R+RT < 0 (3.82)

with B̃ =
(
ΦC+ΨCA

)
B, T (P,W ) = PA+ATP−WC−CTW T , S(P,R,W,Υ)

= BTPAB−BTWCB−R−B̃TΥB̃, Φ and Ψ in Rn×p, δ = βu+β0β > 0, and
if Γ is PE, then the state estimation error vector x̃ and the parameter estimate
error vector θ̃ of the nonlinear adaptive observer (3.73)–(3.78), designed for
the nonlinear system (3.6), tend to zero exponentially as t→∞. The closed-
loop observer gain matrix L is computed as L = P−1W and the Hurwitz
matrix Λ =

(
BTPB

)−1
R ∈ Rr×r exists for any full-column rank matrix B

and P = P T > 0. Q = QT > 0 can be freely selected in Rq×q.

Proof. See [92] (Refer to Appendix C.2).

Further discussions of these designs are given in [92]. Also, these new ap-
proaches are exhaustively elaborated from backgrounds to advanced features
in [97–102]. To keep consistency and entire forms of the present thesis on
its main research subject dealing with robust adaptive sliding mode control
techniques (discussed in the following chapters), the study on these adaptive
observers is presented concisely. The validation of such techniques follows.

3.4.4 Simulation Results

The techniques of adaptive observer are tested on the 2-DOF helicopter simu-
lator model [21]. We assume that all the input and state signals are bounded.
The values of the actual parameters characterizing the simulated helicopter-
based dynamics are determined in [21] and shown in Table 3.1. Moreover,
the terms sinφ cosφ · ψ̇2 and sinφ cosφ · φ̇ψ̇, shown in (3.43a) and (3.43b)
respectively, are not globally Lipschitz functions in the state variables. Nev-
ertheless, we consider the terms depicted above as Lipschitz since in practice
they are bounded based on the boundedness of the states (any function, which
is not globally Lipschitz, can be referred to as a weak Lipschitz function if it
is bounded). The matrices Φ and Ψ are simply computed from the matrix
equality (3.63) as

Φ =




1 0
0 1
0 0
0 0


 , Ψ =




0 0
0 0
1 0
0 1


 (3.83)

The computation of the ASAO gains L and P is based on the LMI design of the
asymptotic stability (refer to Proposition 3.1). Meanwhile, the observer gains
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L, P , Υ and Λ of the ESAO scheme are computed based on the exponential
stability (refer to Corollary 3.1). The observer and adaptation law parameters
of the ASAO (3.67)–(3.70) are

P =




4471.1 0 −25.6 0
0 4471.1 0 −25.6

−25.6 0 1.2 0
0 −25.6 0 1.2


 (3.84a)

L =




23.9 0
0 23.9

3984.2 0
0 3984.2


 (3.84b)

The observer and adaptation law parameters of the ESAO (3.73)–(3.78) are
therefore selected as

P =




6595.9 0 −20.6 0
0 6595.9 0 −20.6

−20.6 0 0.8 0
0 −20.6 0 0.8


 (3.85a)

L =




28.4 0
0 28.4

8776.3 0
0 8776.3


 (3.85b)

Λ =

(
−4395.6 0

0 −4395.6

)
(3.85c)

Υ =




6061.6 0 0 0
0 6061.6 0 0
0 0 3425.9 0
0 0 0 3425.9


 (3.85d)

and
Q = diag(20, 20, 20, 20, 400, 20, 400, 2000, 200) (3.86)

for both ASAO and ESAO schemes. The computation of the observer gains, in
both cases, are cast as LMI problems which can easily be solved by using the
interior point optimization method implemented in the MATLAB software
using the LMI control toolbox [109]. While the selection of the adaptation
matrix Q, which is significant for the algorithms regarding the parameter
estimation performance (rate and accuracy), is freely adjusted, it is reduced to
a positive diagonal matrix (more simply, can be any positive scalar multiplying
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the identity matrix). In fact, the parametrization and the implementation of
the proposed algorithms remain moderately easier (less laborious) than many
other algorithms for similar adaptive observer problems (see e.g. [107, 110–
114]).

Consider the input signals u1 = 3.4+2.7 sin(4.3πt)+4.0 sin(3.0πt+0.4π)+
3.7 sin(2.0πt+0.4π)+3.2 sin(0.4πt)+1.9 sin(0.3πt) and u2 = 1.0+3.1 sin(5.1πt−
0.25π) + 2.7 sin(3.1πt − 0.5π) + 2.5 sin(1.7πt + 0.4π) + 3.3 sin(πt + 0.5π) +
2.3 sin(0.6πt+ 0.5π) which result in sufficient PE signals. The simulation re-
sults for the estimation of the parameters and states are shown in Figures
3.4-3.14. It can be seen that both the state and the parameter estimates con-
verge to their actual values accurately. However, the transient responses of
the ESAO design are more satisfactory than those of the ASAO (see Figure
3.4–3.12). The estimation errors of the states are demonstrated within a very
short time (see Figures 3.13 and 3.14). Indeed, their convergences are much
faster than the parameter estimates. Note that we use the ASAO and ESAO
schemes by considering the effect of the uncertainty approximations negligi-
ble. It should be pointed out that the effect of the approximation uncertainty
due to the nonlinear parameter dependency within the yaw dynamics is well
rejected and cannot be distinguished in the different estimation results shown.
However, to deal with any external perturbation or any modeling uncertainty,
given by d(x, t) added to the system dynamics (3.6), the different adaptive ob-
servers discussed above can be extended to robust ASAO and ESAO designs
based on any H∞ minimization of the loop transfer from the lumped uncer-
tainty amount d(x, t) to the estimate errors (for instance, x̃). In addition, such
multi-objective designs can be investigated under further LMI constraints en-
countering specific transient performances and robustness properties. Some
experimental results are tentatively obtained by the implementation of the
ESAO scheme (refer to Figures B.1-B.11 in Appendix B.1). Further adjust-
ments of the freely selected parameters (e.g., Q) will most probably improve
the accuracy of estimation. But also, the inaccuracy depicted there justifies
the requirement for robust control techniques for systems with uncertainties
poorly evaluated (principal objective investigated in this thesis).
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Figure 3.4: Estimate of parameter θ1
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Figure 3.5: Estimate of parameter θ2
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Figure 3.6: Estimate of parameter θ3
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Figure 3.7: Estimate of parameter θ4
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Figure 3.9: Estimate of parameter θ6
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Figure 3.10: Estimate of parameter θ7

0 500 1000 1500 2000
0

6.73
12

18

24

30

Time [sec]

θ̂
8
w
it
h
A
S
A
O

Parameter estimate θ8

0 500 1000 1500 2000
0

6.73
12

18

24

30

Time [sec]

θ̂
8
w
it
h
E
S
A
O

Figure 3.11: Estimate of parameter θ8
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Figure 3.14: State estimate errors of x3 and x4
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3.5 Conclusion

This chapter models the 2-DOF experimental helicopter-based setup and val-
idates the model parameters. The nonlinear dynamics of the helicopter model
are derived based on space transformation and Lagrangian mechanics. The
validations of the parameters are discussed. Techniques of adaptive observer
with asymptotic and exponential designs are provided to validate the unknown
constant parameters of the setup. Simulation results on the 2-DOF experi-
mental helicopter model setup demonstrate the effectiveness of the adaptive
observer designs.

The dynamics of the setup containing quadratic and trigonometric func-
tions of the system states with uncertain parameters is a typical nonlinear
uncertain system. When the setup with uncertain parameters is close to its
equilibrium state, it can be treated as a nonlinear system with uncertainties
of unknown constant bounds. When the system states are far from the equi-
librium states, the uncertainties are bonded with some quadratic polynomials
of the system states.

More details in terms of motivations, objectives, novelties, pros and cons
of this chapter contents are presented in Table 3.2.
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Table 3.2: Chapter 3 Recap

Motivation(s)

- Modeling and parameterization of the principal
setup to validate the different control approaches
discussed in the current thesis.

Objective(s)

- Parameter estimation of nonlinear dynamics with
unmeasurable regression matrix (i.e., matching
with the unknown parameter vector).

Novelty(ies)

- New nonlinear adaptive observer schemes
- Asymptotic stability vs. exponential stability based

design.

Pro(s)

- LMI-based design.
- Applicability to electromechanical dynamics.
- Extendible to perturbed dynamics (robustness).
- Exponential stability of both state and parameter

estimate dynamics.

Con(s)

- Uneven adjustment of adaptation law gains (as
most of adaptive schemes).

- PE condition still required.
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4 Adaptive Sliding Mode
Control – General Framework

As discussed in Chapter 3, constant parameters of the nonlinear uncertain dy-
namic systems can be obtained by static experiments, calculations and adap-
tive observer techniques. However, for unknown time-varying uncertainties
(e.g., unknown time-varying parameters and unknown external disturbances),
robust control techniques are required. In this chapter, we introduce the gen-
eral framework of a robust control technique – ASMC. Stability types will
be presented first. Then, the conventional SMC model will be discussed.
Based on the analysis of the necessary and sufficient conditions for the FTC
of ASMC, an extension of the integral adaptation law is proposed for the
ASMC design. The relevant mathematical definitions and theorems can be
found in Appendix A and can also be seen in [1, 49, 115]. Some propositions
are reported in [116–118].

4.1 Types of Stability

The stability definitions and theorems can be found in many textbooks. Some
of them used in this dissertation are mainly from [1]. Given any dynamic
system with some equilibria (refer to A.1 of Appendix A), roughly speaking,
an equilibrium is stable if all solutions starting at nearby points remain nearby.
If all solutions of a stable system are ultimately bounded, it is UUB. It is
asymptotically stable (AS) or asymptotically converges to the equilibrium if
all solutions starting at nearby points not only stay nearby, but also tend to
the equilibrium as time approaches infinity [1]. If all the solutions of an AS
system converge to its equilibrium with some exponential rate, the equilibrium
is exponentially stable (ES) or the solutions converge exponentially. It is finite-
time stable or stable with FTC to the equilibrium if all solutions starting at
nearby points tend to the equilibrium in finite time interval [49]. Figure 4.1
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Figure 4.1: Different convergences: asymptotic convergence (AC), exponential
convergence (EC), FTC, and convergence in UUB sense. The equilibrium
point is at the origin

shows these different stabilities (convergences). For the nonlinear systems with
uncertainties, the stability analysis is mainly based on Lyapunov’s stability
theorem and other Lemmas such as Barbalat’s Lemma, LaSalle’s Invariance
Principle, Comparison Lemma and Fillipov Integration. They can be found
in many books (e.g. [1, 119]). Also, they are partially presented in Appendix
A.

4.2 Sliding Mode Control

4.2.1 Motivation Example

Consider the following nonlinear scalar dynamics:

ẋ = a cosx+ bu (4.1)

where a and b are uncertain parameters and u the control input. Consider the
two cases
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Figure 4.2: Closed-loop switching control response of (4.1)-(4.3) – Case 1

• Case 1: a and b are constants with b > 0. For instance, a = 1 and b = 1.
• Case 2: a and b are uncertain varying terms. For instance, a = sin t and
b = 1 + 0.25 sin 3t.

For both cases, the following feedback control will stabilize the state x to zero
in finite time.

u = −1.5 sgn(x) (4.2)

where sgn( · ) is the signum function defined as follows

sgn(x) :=




−1 if x < 0
0 if x = 0
1 if x > 0

(4.3)

The time-responses of the closed-loop system are shown in Figures 4.2 and
4.3. This is an example of a typical SMC design. From this example, we can
see two main properties of SMC:
• The system is robust against the uncertainties that can be time invariant

(constant) or varying.
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Figure 4.3: Closed-loop switching control response of (4.1)-(4.3) – Case 2

• The system is stabilized to its equilibrium point in finite time.
To achieve these two properties, we use a switching function sign( · ) in the
feedback control, u = −Ksign(x), with the switching gain K = 1.5. In this
example, the feedback gain K is designed greater than the magnitudes of the

lumped uncertainties, i.e., u >
|a|
b

such that the state x can be stabilized

to zero in finite time no matter whether the uncertainties are constant or
time-varying.

Typically, the SMC is a nonlinear control method that forces the trajecto-
ries to reach a sliding manifold [1] (also, called sliding hypersurface) in finite
time and to stay on the manifold thereafter. The sliding manifold can be
simply an equilibrium state of the system (as in the above example, x = 0)
or any designed variable dynamics (usually the system state has asymptotic
stability when the system is on this surface). The state-feedback control law in
SMC switches from one continuous structure to another based on the current
position in the state space. Hence, the control signal in classic SMC is discon-
tinuous. In Figure 4.4, system trajectories reach the sliding surface in finite
time and then stay on or slide along this surface. The main strength of SMC
is its robustness in terms of non-sensitivity to parameter variations that enter
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4.2. Sliding Mode Control

Figure 4.4: Ideal Sliding Mode [52]: Phase plane trajectory of a system being
stabilized by any SMC. After the initial reaching phase, the system state (red)
slides along the sliding surface σ = 0 (black)

Figure 4.5: Real Sliding Mode [52]: Phase plane trajectory of a system being
stabilized by any SMC. After the initial reaching phase, the system state (red)
slides along the vicinity of the sliding surface σ = 0 (black)
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into the control channel, i.e., CMC, and FTC to the sliding surface. In real
implementations of SMC, however, the generally non-deterministic switching
control signal causes the system to ‘chatter’ in a tight neighborhood of the
sliding surface. In addition to chatter, energy loss, plant damage, and ex-
citation of unmodeled dynamics may also occur [1, 61, 120]. In Figure 4.5,
system states (red) chatter along the sliding surface as the system asymptoti-
cally approaches the origin. Thus, in the real implementation of SMC, smooth
techniques must be adopted.

4.2.2 SMC Scheme

Consider the nonlinear dynamic system (3.2). Defining a sliding variable (also
called sliding function, switching variable, switching function, or sliding quan-
tity) σ(x, t) ∈ Rm that represents a kind of distance at which the states x are
away from a sliding surface, then we have:
• σ(x, t) 6= 0, when the state is outside the sliding surface
• σ(x, t) = 0, when the state is on the sliding surface

Mathematically, the variable σ is a continuous function, and the set

Σ = {x ∈ χ | σ(x, t) = 0} (4.4)

is non-empty and is locally an integral set in the sense of Filippov [16,53].

Definition 4.1. The set Σ is called sliding surface (sliding manifold) [16,53].

The sliding surface σ(x, t) = 0 is a designed state mode where the system
state on this mode is stable or has a desired behaviour. For example, we can
select

σ(x, t) = x+ ẋ (4.5)

that is, σ = 0 yields x = x0e
−t,

σ(x, t) = KP ·x+KI

∫ t

0
xdτ +KD · ẋ (4.6)

σ(x, t) = e = x− xdesired (4.7)

and

σ(x, t) = KP · e+KI

∫ t

0
edτ +KD · ė (4.8)

The system state on the sliding surface (4.5) has an exponential stability. The
sliding surface can also be designed as a PID form (4.6) in the state or a
function of the trajectory error (4.7) or (4.8).
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4.2. Sliding Mode Control

Definition 4.2. The motion on Σ is called sliding mode [16, 53,120]

Therefore, the control objectives of SMC are such that:
1. The system is capable of reaching σ(x, t) = 0 in finite time from any

initial condition.
2. Having reached the surface σ(x, t) = 0, the system stays on it.
Ideally, the system state slides along the sliding surface σ = 0 exactly.

However, in real implementation, the system state can not stay on the sliding
surface exactly due to measurement and computation imperfections. Instead,
the state slides along the vicinity of the sliding surface σ = 0 in real sliding
mode.

Definition 4.3. Ideal sliding mode: The motion of the system as it takes
place strictly on the constraint manifold σ = 0 [53].

Definition 4.4. Real sliding mode: The motion of the system as it takes place
on the sliding manifold |σ| ≤ δ with δ > 0, i.e., it slides along the vicinity of
the sliding surface σ = 0 [53].

Figures 4.4 and 4.5 show the ideal sliding mode and real sliding mode
respectively.

4.2.3 Switching Feedback Control Law

To fulfil the objectives of SMC, we first consider the feedback control law
based on Lyapunov redesign. Let us first write the sliding variable dynamics.
Recall the nonlinear dynamics (3.2) introduced in Chapter 3,

ẋ = f(x, t) + g(x, t) ·u (4.9)

From (4.9), we have

σ̇(x, t) =
∂σ

∂t
+
∂σ

∂x
· ẋ

=
∂σ

∂t
+
∂σ

∂x
· f(x, t) +

∂σ

∂x
· g(x, t)u (4.10)

That is,

σ̇(x, t) = Ψ(x, t) + Γ(x, t) ·u (4.11)

where Ψ(x, t) =
∂σ

∂t
+
∂σ

∂x
· f(x, t) and Γ(x, t) =

∂σ

∂x
· g(x, t) are nonlinear time-

varying smooth functions containing parametric uncertainties and external

52



4.2. Sliding Mode Control

disturbances [16, 51, 74, 90]. In the following, the arguments of these scalar-
valued functions (i.e., x and t in σ, Ψ and Γ) will be omitted occasionally for
the sake of simplicity. In (4.11), the control input u appears in the first order
derivative of the sliding variable. Thus, the relative degree of the system is
equal to one [53].

Definition 4.5. The dynamic system (4.9) has a relative degree of r if the
control input appears on the r−th order derivative of the sliding variable
σ [53].

Most mechanical systems have a relative degree of one. We also consider
that the target nonlinear systems have a relative degree of one throughout the
dissertation, i.e., we only consider the first order SMC.

Consider a Lyapunov candidate function

V =
1

2
σT (t)σ(t) (4.12)

Using (4.11), the time derivative of V is

V̇ = σT σ̇

= σT [Ψ + Γu] (4.13)

A sufficient condition for the existence of a sliding mode is that V̇ is less than
zero, i.e., the feedback control law u(x) is chosen such that σ and σ̇ have
opposite signs. We present two ideas.

One way is to select u(x) such that

σ̇ = −µ · sgn(σ) (4.14)

where sgn( · ) is the signum vector function in Rm defined as [sgn(σ1), · · · ,
sgn(σm)]T . Assume that Γ(x, t) is non-singular. Then, we can find the feed-
back control u by rewriting (4.14),

Ψ + Γu = −µ · sgn(σ) (4.15)

We take

u = −Γ−1
[
Ψ + µ · sgn(σ)

]
(4.16)

From (4.16), one can see that the control u requires the exact knowledge of
Ψ(x, t) and Γ(x, t). By choosing the control (4.16), we have the following
lemma.
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Lemma 4.1. Consider the nonlinear uncertain system (4.9) with the sliding
variable dynamics (4.11) controlled by (4.16). A sliding mode can be estab-
lished in finite time with the maximum reaching time tr estimated as

tr =

√
2V (0)

µ
(4.17)

where
√

2V (0) = |σ(0)| is the initial state.

Proof. Denoting by ‖σ‖p = (|σ1|p+|σ2|p+· · ·+|σm|p)1/p for any integer p ≥ 1,
the lp-norm of any vector σ ∈ Rm. In particular, when p = 1, we have ‖σ‖1
= |σ1| + |σ2| + · · · + |σm|. We have ∀σ ∈ Rm, ‖σ‖2 ≤ ‖σ‖1 ≤

√
m‖σ‖2 [121].

Substituting (4.14) into (4.13), we obtain

V̇ = −µσT · sgn(σ)

= −µ‖σ‖1
≤ −µ‖σ‖2
≤ −µ

√
2V (4.18)

This result implies that the trajectories always approach the sliding surface

with the speed σ̇ · sgn(σ) ≡ d

dt
|σ| toward the switching surface fixed by µ [122].

In fact, from (4.18), we have, for σ 6= 0 (i.e., V 6= 0),

d
√
V

dt
≤ − µ√

2
(4.19)

Integrating both sides of (4.19) from 0 to t ≥ 0, we have

√
V (t) ≤ −

√
2µ

2
t+

√
V (0) (4.20)

The inequality (4.20) implies that the positive function
√
V will decrease with

a rate at least
µ√
2

and reach zero with a maximum reaching time tr estimated

as (4.17) [1, 49,61].

Alternatively, we select u(x) such that

d

dt
|σ| ≤ −µ (4.21)
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For the sake of simplicity, we consider a single sliding variable dynamic (i.e.,
m = 1). The objective (4.21) implies that the positive term |σ| will be decreas-
ing at a rate of at least µ per second and, therefore, reaches the sliding surface
|σ| = 0 in finite time from any bounded initial value |σ(0)|. Considering the
case σ 6= 0, (4.21) can be rewritten as

d

dt
|σ| = σ̇ · sgn(σ) ≤ −µ (4.22)

Then, substituting (4.11) into (4.22), we obtain

Ψ · sgn(σ) + Γ · sgn(σ) ·u ≤ −µ (4.23)

We assume Γ is positive definite. Denote by Ψ̄ the upper bound of |Ψ| and Γ
the lower bound of Γ, i.e.,

|Ψ| ≤ Ψ̄ (4.24)

and

0 < Γ ≤ Γ (4.25)

Noticing that sgn(σ) · sgn(σ) = 1 for σ 6= 0, one can verify that by taking

u = −Ksgn(σ) (4.26)

with the switching gain K large enough

K ≥ Ψ̄ + µ

Γ
(4.27)

then (4.21) will be met and the sliding variable will reach the sliding surface
in finite time.

Lemma 4.2. Consider the nonlinear uncertain system (4.9) with the sliding
variable dynamics (4.11) controlled by (4.26) satisfying (4.27). A sliding mode
can be established in finite time with the maximum reaching time tr estimated
as

tr ≤
|σ(0)|
µ

(4.28)

Proof. Integrating both sides of (4.21) from 0 to t ≥ 0, we obtain

|σ(t)| ≤ −µt+ |σ(0)| (4.29)

The inequality (4.29) implies that the positive amount |σ| will decrease with a
rate at least µ and will reach zero with a maximum reaching time tr estimated
as (4.28) [1].
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It can be seen that the first SMC design (4.16) requires a full knowledge of
the uncertainties Ψ and Γ, while in the second method (i.e., equations (4.26)
and (4.27)) the upper bound of |Ψ| and the lower bound of Γ, must be given.

The above results using conventional SMC show that the knowledge of
the bounds of the uncertainties must be a priori known so that a constant
switching gain can be selected to ensure the FTC. For the nonlinear system
with uncertainties of unknown bounds, ASMC techniques are developed trying
to design a time-varying switching gain K such that it can compensate for the
uncertainties dynamically.

4.3 ASMC – Equivalent Control Method

Given the dynamics (4.9) with the sliding variable dynamics (4.11), if we know
the nominal values of the uncertainties Ψ and Γ, it is usually a good choice to
apply the equivalent control first [49]. For the sake of simplicity, we consider
in the following the scalar dynamics, i.e., m = 1.

Separating Ψ and Γ into nominal and uncertain parts, i.e.Ψ , Ψ̂ + Ψ̃ and
Γ , Γ̂ + Γ̃ with Ψ̂ (resp., Γ̂) and Ψ̃ (resp., Γ̃) representing the nominal and
uncertain values respectively, the sliding variable dynamics is then written as

σ̇ = Ψ̂ + Ψ̃ + (Γ̂ + Γ̃)u (4.30)

By using the equivalent control method, the control input consists of two
parts:

u = ueq + usw (4.31)

where ueq represents the equivalent control part and usw the switching control
part. The equivalent control ueq is obtained by solving the following equation

σ̇ = Ψ̂ + Γ̂ueq = 0 (4.32)

i.e., by assuming that the uncertainties Ψ̃ and Γ̃ are zero and by letting the
sliding variable dynamics be at equilibrium. The equivalent control is then
obtained

ueq = −Γ̂−1Ψ̂ (4.33)

The term ueq compensates for the nominal parts of the nonlinear system. It
determines the behaviour of the nominal system restricted to the switching
surface. The term usw represents the switching part to compensate the effect
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of the uncertainties Ψ̃ and Γ̃, and drives the system trajectories toward the
switching surface until intersection occurs [10]. Substituting (4.31) with ueq
defined by (4.33) into (4.30), we obtain

σ̇ =
(
Ψ̃− Γ̃Γ̂−1Ψ̂

)
+ Γusw (4.34)

The term
(
Ψ̃− Γ̃Γ̂−1Ψ̂

)
in (4.34) is fully uncertain. The dynamics (4.34) has

a similar form as (4.11). Indeed, the intermediate control usw can be treated
in the same way as (4.26), i.e.,

usw = −K(t) · sgn(σ) (4.35)

Substituting (4.33) and (4.35) into (4.31), we obtain the final control input

u = −Γ̂−1Ψ̂−K(t) · sgn(σ) (4.36)

In most electro-mechanical dynamic systems, we know some nominal values.
Thus, in real implementation of ASMC, the control has the form (4.36) since
the compensator (4.33) would help to reduce the magnitudes of the eventual
SMC structure. Without loss of generality and for the sake of simplicity for
the rest of the chapter, we assume that Ψ is fully uncertain, i.e., Ψ̂ = 0, so
that the control is reduced to its switching structure, i.e., u ≡ usw. In other
words, we focus on the design of the time-varying switching gain in order to
suppress the uncertainties.

4.4 ASMC - Sufficient and Necessary Conditions

As discussed above, for the case of unknown nominal values of the uncertain-
ties, the corresponding control input (4.36) eventually turns to the form of
(4.35) which has only a switching part. Thus, for simplicity, we consider that
for the sliding variable dynamics (4.11) the uncertainty Ψ is fully unknown.
Therefore the control input only has a switching part, i.e.,

u = −K(t) · sgn(σ) (4.37)

The objective of ASMC is to design a time-varying switching gain K(t) so
that the sliding variable σ(x, t) can be stabilized to zero in finite time. In this
section, we discuss the ASMC conditions which are slightly different from the
previous publications (e.g., [123,124]). These conditions must satisfy the two
main requirements of ASMC (4.37) for any dynamics (4.11). First, the control

u(t) compensates for any bounded perturbation
Ψ

Γ
, standardly. Second, after
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compensating for
Ψ

Γ
, the sliding mode can be established in finite time. For

the dynamics (4.11) subject to the control (4.37), we consider the case of ideal
sliding ASMC, where the sliding mode is said to be established when σ = 0
for all time after reaching the designed manifold.

Substituting (4.37) into (4.11), we obtain the sliding variable dynamics in
terms of the switching gain K(t)

σ̇ = Ψ− ΓK(t) · sgn(σ) (4.38)

4.4.1 Sufficient Condition

The following result discusses a “minimum” conditional statement to be tied
to the existence of a sliding mode.

Lemma 4.3. Consider the nonlinear uncertain system (4.9) with the sliding
variable dynamics (4.11) controlled by (4.37). Given the scalars t∗ ≥ 0 and
ε > 0 small, for any varying (or dynamically changing) switching gain K(t)
satisfying

K(t) ≥ |Ψ|
Γ

+ ε (4.39)

for all t ≥ t∗, a sliding mode can be established in finite time tr ≥ t∗.

Proof. Noticing |σ| = σ · sgn(σ) for σ 6= 0, assuming (4.25) and combining
(4.38) and (4.39), we have for t ≥ t∗

d

dt
|σ| = σ̇ · sgn(σ)

= Ψsgn(σ)− ΓK

≤ −εΓ (4.40)

where Γ is the positive lower bound of Γ introduced in (4.25). By integrating
the differential inequality (4.40) between t∗ and t ≥ t∗, we obtain

|σ| ≤ |σ(t∗)| − Γε(t− t∗) (4.41)

Thus, |σ| → 0 in finite time. In addition, an upper-bound of the reaching time
is estimated as

tr ≤ t∗ +
|σ(t∗)|

Γε
(4.42)

for given t∗ ≥ 0 and ε > 0.
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Roughly, from the sufficient condition (4.39) of Lemma 4.3, t∗ refers to
the so-called compensating phase, when the switching gain compensates com-
pletely for the lumped uncertainties, while the reaching phase time frame can

be depicted from the second term of the right member of (4.42), i.e.,
|σ(t∗)|

Γε
.

The concept of these two phases will be discussed more extensively in Sec-
tion 4.6. The second phase is sensitively monitored by the given positive
scalar ε; which has an impact on the overall reaching time performance. The
requirement for (4.39) establishing the sliding mode in form (4.37) for the
dynamics (4.11) can be relaxed. In fact, (4.39) demonstrates that the aimed
gain value would be slightly greater than the instantaneous uncertainty mag-
nitude in order to hold an optimum sliding mode in terms of compensating
performance. These conditions convey some conservativeness in computing
undesirable high gains as in the case of conventional SMC [13, 58]. The fol-
lowing counter-example illustrates this limitation.

Example 4.1. Consider a single mass m = 1 in kg, moving on a horizontal
surface with an initial velocity σ(0) > 0 under a static frictional resistance of
−2sgn(σ), in N, and an applied force u in the form of bang-bang controller (i.e.,
feedback controller switching abruptly between two states) as u = −Ksgn(σ).
The velocity feedback dynamics can be stated as σ̇ = −2sgn(σ) + u = −(2 +

K)sgn(σ). For such dynamics, written in form (4.38), we note that
|Ψ|
Γ

= 2.

Obviously, we verify that any constant or varying switching gain K > −2
(e.g., K = 1, K = sinσ, provided that it is greater than −2) can guarantee the
existence of a sliding mode and σ → 0 in finite time from any initial velocity

σ(0) > 0. In conclusion, the condition (4.39) introduced above, K >
|Ψ|
Γ

= 2,

is no longer required in this case.

4.4.2 Necessary and Sufficient Condition

Now, we present diversely a result treating a necessary and sufficient condition
for any sliding mode to be guaranteed using appropriate ASMC gain dynamics.
To this end, we substitute the expression Ψsgn(σ) for the term |Ψ| in (4.39),
i.e.,

K(t) ≥ Ψsgn(σ)

Γ
+ ε (4.43)

Lemma 4.4. Consider the nonlinear uncertain system (4.9) with the sliding
variable dynamics (4.11) controlled by (4.37). Given σ 6= 0, a sliding mode
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can be established in finite time if, and only if, there exist t∗ ≥ 0 and ε > 0
such that a switching gain K(t), satisfying (4.43) for all t ≥ t∗, exists.

Proof. First, we discuss the sufficient condition. Using (4.25), we combine
(4.38) and (4.43) to obtain, for t ≥ t∗,

σσ̇ ≤ Ψσ − ΓK|σ|
≤ Ψσ −

[
Ψsgn(σ) + εΓ

]
|σ|

≤ −εΓ|σ| (4.44)

Then, taking V = σ2 a Lyapunov function, its time derivative satisfies for
t ≥ t∗ and σ 6= 0,

1

2
V̇ ≤ −εΓ

√
V (4.45)

That is,

d

dt

√
V ≤ −εΓ (4.46)

By integrating the above differential inequality between t∗ and t ≥ t∗ and
following (4.40)–(4.42), we obtain

√
V = |σ| → 0 in finite time with the

upper-bound of the reaching time estimated as tr ≤ t∗ +
|σ(t∗)|

Γε
.

Now, let us prove the necessary condition. We assume that ∀t ≥ 0, K(t)

satisfies K(t) ≤ Ψsgn(σ)

Γ
. Then, from (4.38), we obtain σ̇sgn(σ) =

d

dt
|σ| ≥ 0,

that is, |σ| never decreases as t → ∞, and no FTC exists if (4.43) does not
hold. Thus, we show indirectly (i.e., by contradiction) that the existence of
FTC solution for (4.11), controlled by (4.37), results in (4.43).

The sufficient condition (4.43) refers to the compensating phase. Even
though the conditions (4.39) and (4.43) remain hard to employ physically for
the design of ASMC gain dynamics (as uncertainties are actually unknown),
they show signs of interest in determining guidelines for best instantaneous
uncertainty compensation. In [16], the authors have presumably introduced
and discussed the ASMC design from the concept cast by (4.39). The con-
dition (4.43) is seemingly performing the same objective. More preferably, it
should improve somewhat the use of the gain dynamics (to optimum), and
relaxing the older condition (4.39). To justify the subtlety of (4.43), one can
see from (4.38) that when σ and Ψ have different signs, any nonzero gain value
would be enough to realize the move of σ toward the sliding surface, naturally.
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4.5 Existing ASMC

Assuming that the perturbations present in any dynamic system have un-
known bounds a priori, ASMC will be designed using a switching gain dy-
namically changing with the sliding variable. One idea is that the gain keeps
increasing whenever the sliding variable is nonzero, reducing its rate as the
sliding variable is bordering the sliding surface, and finally stops increasing as
soon as σ = 0 [17,61,125,126].

4.5.1 Ideal ASMC

For the ASMC with ideal sliding mode, the integral adaptation law is com-
monly used to define the time-varying switching gain [10, 11, 13, 14, 16, 17, 19,
49,66,67].

K̇(t) = α · |σ| (4.47)

where α > 0 is a tuning parameter. We state the following results.

Lemma 4.5. For the uncertain system described in (4.9) with the sliding
dynamics (4.11) controlled by (4.37) with the switching gain adaptation law
(4.47), the gain K has an upper bound, i.e., there exists a positive constant
K∗ so that ∀t > 0.

K ≤ K∗ (4.48)

Proof. See Appendix A.4

Theorem 4.1. Consider the nonlinear uncertain system (3.2) with the sliding
variable dynamics (4.11) controlled by (4.37). Given σ 6= 0, a sliding mode
can be established in finite time if the switching gain K(t) is defined as (4.47).

Proof. See Appendix A.5

4.5.2 Real ASMC

For the ASMC with real sliding mode, the integral adaptation law with mod-
ified boundary-layer is commonly used to define the time-varying switching
gain [10, 11, 13, 14, 16, 17, 19, 67]. The following form of the adaptation law is
commonly used.

61



4.5. Existing ASMC

K̇(t) = α · |σ| · sgn(|σ| − ε) (4.49)

where α > 0 is a tuning parameter.

Theorem 4.2. Consider the nonlinear uncertain system (4.9) with the sliding
variable dynamics (4.11) controlled by (4.37). Given |σ| > ε, a sliding mode
can be established in finite time, that is, |σ| tends to the domain |σ| < ε in
finite time, if the switching gain K(t) is defined as (4.49).

Proof. Refer to Theorem 4 of [16]. The proof is based on Lyapunov stability
criterion. Define the switching gain adaptation error K̃ = K −K∗, where K∗

is an upper bound value of K defined in (4.48). Indeed, from Lemma 4.5,
there always exists a constant K∗ s.t. K̃ < 0 ∀t > 0, i.e., K̃ = −|K̃|. Given
the closed-loop system (4.37) with (4.49), consider the following Lyapunov
candidate function

V =
1

2
σ2 +

1

2γ
K̃2 (4.50)

with γ > 0. Since Ψ and Γ are bounded, there exist Ψ̄ and Γ s.t.
∣∣Ψ
∣∣ ≤ Ψ̄

and Γ ≤ Γ (refer to (4.24) and (4.25)). Noting that K∗ is constant and
K(t) > 0∀t > 0, the time derivative of V is

V̇ = σσ̇ +
1

γ
K̃K̇

= σ
[
Ψ− ΓKsgn(σ)

]
+

1

γ
K̃α · |σ| · sgn(|σ| − ε)

≤ |σ|(Ψ̄− ΓK) +
1

γ
K̃α · |σ| · sgn(|σ| − ε) + |σ|ΓK∗ − |σ|ΓK∗

≤ −|σ|
[
− Ψ̄ + ΓK∗

]
+

1

γ
K̃α · |σ| · sgn(|σ| − ε)− |σ|ΓK̃

≤ −|σ|
[
− Ψ̄ + ΓK∗

]
− βK |K̃| − |K̃| ·

[α
γ
· |σ| · sgn(|σ| − ε)− |σ|Γ− βK

]
(4.51)

for any βK > 0. Note that there always exists K∗ s.t βσ , −Ψ̄+ΓK∗ > 0 [16].
Then, two cases arise.

Case 1: |σ| > ε > 0, i.e., sgn(|σ| − ε) = 1, if we select γ <
αε

Γε+ βK
and

β = min(βσ, βK
√
γ), then

V̇ ≤ −β · (2V )1/2 (4.52)

62



4.6. Extension of Integral Adaptation Law

Therefore, a finite time convergence to a domain |σ| ≤ ε is guaranteed from
any initial condition |σ(0)| > ε > 0, and the reaching time can be estimated [1]

tF ≤
√

2V (0)1/2

β
(4.53)

Case 2: |σ| ≤ ε, V̇ would be sign indefinite and the stability inside the
boundary layer is not certain [16]. Therefore, the sliding variable |σ| can
increase over the boundary layer. As soon as |σ| > ε, the Lyapunov stability
(refer to (4.50) and (4.52)) is established again and |σ| is attracted to the
boundary layer (i.e., |σ| < ε).

Remark 4.1. The purpose of the boundary layer principle in (4.49) is to pro-
vide a decreasing phase of switching gain so that its overestimation could be
avoided. This scheme is different from the traditional boundary layer whose
purpose is to replace the signum function by a smooth switching action.

4.6 Extension of Integral Adaptation Law

Given the nonlinear uncertain system (4.9) with the sliding variable dynamics
(4.11) controlled by (4.37), a general ASMC design with integral adaptation
law is introduced below based on the necessary and sufficient condition (4.43)
discussed in Lemma 4.4.

Proposition 4.1. If the gain K(t), in (4.37), is designed explicitly as

K(t) =

∫ t

0
G(|σ|)dτ (4.54)

where G(|σ|) is any strictly positive non-decreasing function in its argument
|σ| 6= 0 satisfying G(0) = 0, then the sliding variable σ → 0 in finite time.

Proof. First, we investigate the existence of a compensating phase during
which the lumped perturbation will be eventually compensated by the pro-
posed switching gain. Then, we discuss the existence of a reaching phase.

Compensating phase: For any perturbation greater than the switching
gain, eventually

Ψsgn(σ)

Γ
> K(t) (4.55)
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we have, from (4.38),

σσ̇ = Ψσ − ΓK|σ| > 0 (4.56)

Thus, |σ| is increasing and, from (4.54), K(t) is increasing also with a rate
G(|σ|) > 0. Since Ψ and Γ are bounded, there always exists a finite time

t∗ ≥ 0 so that K(t∗) compensates
Ψsgn(σ)

Γ
, i.e.,

K(t∗) =
Ψ(t∗)sgn(σ)

Γ(t∗)
(4.57)

Insofar as the non-decreasing K(t) reacts and compensates for any perturba-

tion greater than it, we state, without loss of generality, K(t) >
Ψsgn(σ)

Γ
for

all t > t∗. Hint: In a future time, if the level of perturbation exceeds the
switching gain, the latter reacts and compensates again which means that the
compensating instant t∗ always exists.

Reaching phase: As far as K(t) >
Ψsgn(σ)

Γ
for t > t∗, there always exists

ε > 0 s.t.(4.43) holds. Then, from Lemma 4.4, the system trajectory moves
into the reaching phase and σ = 0 is established in finite time. Moreover, the

maximum reaching time is estimated as tr ≤ t∗ +
|σ(t∗)|

Γε

The existing compensating and reaching phases referred to above will be
thoroughly discussed in the next Chapter. Alternatively, the form (4.54) can
be presented implicitly as [117]

K̇(t) = G(|σ|) (4.58)

Figure 4.6 shows the ideal case for which the sliding variable |σ|, its corre-
sponding reshaped variable G(|σ|) and the switching gain K(t) change with
time t under perturbation |Ψ/Γ|. At time t0, the switching gain K(t0) compen-
sates for lumped perturbation |Ψ(t0)/Γ(t0)| and the sliding variable σ starts
decreasing. At time t∗, K(t∗) completely compensates for maximum pertur-
bation max|Ψ(t)/Γ(t)|.

Ideally, by reaching the sliding surface, i.e., σ = 0, the trajectory will re-
main on the surface thereafter and the switching gain K(t) will stop increasing
(refer to (4.58)). However, in practice, σ could not remain exactly zero due
to sampling time delay, calculation error and measurement noise. Thus, K(t)
may keep increasing for any small deviation from the sliding surface, i.e.,
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Regular G(|σ(t)|) and K(t) under ideal case
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max|Ψ(t)/Γ(t)|

Figure 4.6: Ideal case for sliding variable |σ|, reshaped one G(|σ|) and switch-
ing gain K(t) vs. time under perturbation |Ψ/Γ|

σ 6= 0. To overcome this problem, [13] and [61] propose a low-pass filter to
slowly decrease the switching gain whenever σ reaches zero. Also a bound-
ary layer method is provided in [16] and [17]. Here, we propose a modified
boundary layer method with smoother adaptation shape about the boundary
layer. In Figure 4.7, G(|σ|) is quite smaller than |σ| when the trajectory is
around the boundary layer. This shape will allow reducing the “large jump”
of the switching gain dynamics which may force the trajectory to jump over
the opposite limit of the boundary layer. In other words, the risks, that the
sliding variable σ never gets inside the boundary layer and the switching gain
K(t) keeps increasing, will be minimized by choosing appropriately the gain
function G(|σ|).

The dynamics (4.58) represents a standard form of a switching gain law.
The term G(|σ|) in (4.58) generally refers to the varying rate of increase of the
compensation gain, and then, it affects the ASMC reaction during the com-
pensating and reaching time frames. In particular, this function is chosen as
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Proposed G(|σ(t)|) and boundary layer ǫ
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Figure 4.7: Sliding variable |σ|, reshaped function G(|σ|) and switching gain
K(t) vs. time under perturbation |Ψ/Γ| for the proposed method

G(|σ|) = α|σ| with α > 0 in [11,14–17,19], and (4.58) becomes (4.47) for ideal
ASMC [115]. In general, we emphasize the selection of G(|σ|) from numerous
function candidates that respect the necessary and sufficient conditions for
ASMC discussed above. More details can be seen in [73,116]. The adaptation
law (4.47) is able to control the nonlinear uncertain system (4.9). However,
the result of (4.47) exhibits relatively slow response at the beginning stage so
that the sliding variable is leaving the sliding surface forced by perturbations.
It also maintains relatively high value (because K is non-decreasing) after the
sliding mode has been built and thus produces relatively high chattering lev-
els. The selection of the form of the rate function G(|σ|) allows the tuning of
the chattering level according to the desired accuracy/stability performance.

Remark 4.2. It is reasonable to develop an adaptation method so that the
magnitude could be reduced to a minimum admissible value whenever the
sliding mode is established. The idea is to choose the terminal condition
for the adaptation process as: “When K(t) completely compensates for the
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perturbation Ψ(t)
Γ(t) , it would stop increasing.” But, since the magnitude of the

perturbation is unknown, we could not directly use this threshold. However,
we note that the accomplished compensation implies the time derivative of |σ|,
denoted by

d

dt
|σ| ≡ σ̇ · sgn(σ) (or, equivalently the derivative of σ2,

d

dt
σ2), is

negative. This objective can be achieved by a negative threshold of the time
derivative of |σ| as [125]

K̇ =

{
0 if σ̇ · sgn(σ) ≤ −Vσ
K̄ ·G

(
|σ|
)

otherwise
(4.59)

where Vσ > 0 represents the threshold amplitude of the time derivative of |σ|,
K(0) > 0 and K̄ > 0.

4.7 Techniques of Smoothing SMC: Alternative
Switching Gain

Since the chattering phenomenon is mainly due to the discontinuous switching
across the sliding surface, it may be attenuated by introducing a smooth func-
tion to replace the discontinuous sgn( · ) function. Another way is to select an
appropriate integral function G(|σ|) based on the previous discussion of the
necessary and sufficient conditions.

4.7.1 Existing Method: Replacement of Signum Function

Traditionally, some smooth functions have been proposed to replace the signum
function. If a continuous function satisfies

1. F (σ) ≈ 1 when σ ≥ ε > 0,
2. F (σ) ≈ −1 when σ ≤ −ε < 0, and
3. F (σ) very small when −ε < σ < ε < 0

with ε > 0 is the width of the boundary layer, then F (σ) can be the candidate
function to replace the signum function and the trajectory will be sliding along
the adjacent of the sliding surface instead of the ideal sliding surface σ = 0.
The true trajectory may not smoothly follow |σ(x, t)| ≤ ε, but it will always
return to this layer |σ(x, t)| ≤ ε after leaving it. One candidate of the smooth
function is the commonly used saturation function

F (σ) =





σ

|σ| if |σ| ≥ ε
σ

ε
if |σ| < ε

(4.60)
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where ε > 0 represents the width of the boundary layer. The expression (4.60)
is a continuous function with a discontinuous derivative. Another candidate
of the smooth function is

F (σ) =
2

π
tan−1(

σ

ε
) (4.61)

This function is continuously differentiable. It can replace the signum function
sgn( · ) if ε is sufficiently small. In practice, we do not want F (σ) to completely
work as sgn( · ). Instead, we want some transient performance, that is, when
the trajectory enter the layer |σ(x, t)| ≤ ε, the speed |σ̇| also slows down.

4.7.2 Alternative Switching Gain

Upon the extended integral function, one can have many choices from which
to select this integral function appropriately. In [116, 117], G(|σ|) is selected
to be quite a bit smaller than |σ| when the trajectory is around the boundary
layer. The switching gain rate changes smoothly along the boundary layer
and the chattering phenomenon due to switching dynamics can be reduced
substantially. In other words, the risk that the sliding variable σ never gets
inside the boundary layer or that the switching gain K(t) keeps increasing will
be avoided by choosing the gain rate function G(|σ|) appropriately [117]. For
instance, the adaptation law can be modified as

K̇ = α · |σ| ·
[ 2

π
· tan−1(σ4)

]
· sgn(|σ| − ε) (4.62)

withK(0) > 0, α > 0 and ε > 0 being small [117]. The increment or decrement
of K tends to be smaller while

(
|σ|− ε

)
→ 0 (i.e. as |σ| approaches ε from the

outside or the inside of the boundary layer).
Another candidate function for G can be simply chosen as |σ|r with r > 1

and the adaptation law will be

K̇ = α · |σ|r · sgn(|σ| − ε) (4.63)

with K(0) > 0, α > 0, r > 1 and ε > 0 be very small. Then, one has the
following proposition, similar to Theorem 4 of [16].

Proposition 4.2. Given the uncertain system (4.9) with the sliding variable
σ given by (4.11) and controlled by (4.37) with the switching gain adaptation
law (4.63), for any initial trajectory outside the boundary layer, i.e., |σ(0)| >
ε > 0, there exists a finite time tF > 0 so that a real sliding mode is established
for all t > tF .
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Figure 4.8: Different gain rate functions G(|σ|)

Proof. Since the integral function is positive definite in its argument |σ|, the
proof is ended by applying Proposition 4.1.

The proposed adaptation laws (4.62) and (4.63) provide new choices to
control the smoothness of the switching gain about the boundary layer. These
equations show that K̇ (in other words, the increment or decrement of K)
tends to be smaller while |σ| approaches ε from the outside or the inside of
the boundary layer, i.e. as |σ| → ε. To illustrate this property, refer to the
zoomed frame in Figure 4.8 which shows different gain rate function G(|σ|)
shapes with reduced levels about any small value of ε. Thus, the switching gain
changes smoothly along the boundary layer and the chattering phenomenon
due to switching gain adaptation can be suppressed substantially.

Remark 4.3. It should also be pointed out that the boundary layer ε for
the switching gain adaptation is different from the boundary layer ε used
in the continuous function to replace the discontinuous sgn( · ) function. The
thickness ε of the boundary layer in switching gain adaptation (4.62) and
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(4.63) may be time-varying (e.g., depending on the sliding variable in [16])
whereas the thickness ε of the boundary layer in the traditional smoothing
functions (4.60) and (4.61) is usually fixed.

Remark 4.4. Similar to the negative threshold of σ̇ · sgn(σ) discussed in [125],
the adaptation law for the real ASMC can be stated as [126]

K̇ =

{
0 if σ̇ · sgn(σ) ≤ −Vσ and |σ| > ε
K̄ ·G

(
|σ|
)
sgn
(
|σ| − ε

)
otherwise

(4.64)

where K(0) > 0, K̄ > 0 and Vσ > 0.

Remark 4.5. The designs introduced in [125, 126] (refer to Remarks 4.2 and
4.4) require knowledge of the rate of the sliding dynamics. However, σ̇ is
not always available. Instead, we can use any dynamic observer (e.g., high
gain, sliding-mode-based one) or a derivative filter to estimate σ̇. Since σ̇ is
not directly measured, we use a low-pass derivative filter, denoted by σ̇f , to

replace σ̇, as σ̇f =
[ ω2

cs
s2+2ζωcs+ω2

c

]
σ, with ωc and ζ given cut-off frequency and

damping ratio, respectively [126]. The low-pass filtered signal σ̇f blocks the
high frequency white noise. It also provides some time delay . The latter is
not always harmful. It may slow down the system response, and during a time
period after completely compensating the perturbations, it allows slightly the
increase of K(t). In other words, it provides higher feedback control gain to
speed up the convergence of σ. This time delay balances the reaching time
tr of FTC and the maximum switching gain K(t). First, if is too large, K(t)
will increase. Then, tr is reduced. More chattering may appear or the system
accuracy may be sacrificed. Second, if is too small, the maximum value of
K(t) would be just equal to the compensated perturbation magnitude. Then,
tr is increased, the chattering is much lower and the accuracy is improved.
Thus, when the control objective requires systems with high accuracy and low
chatter, it will be used to guarantee small . Such a delay should rather be too
small than too large because the system trajectories are globally UUB with
excellent accuracy and compressed chattering phenomenon even tr is “slow”.

Remark 4.6. The problem of delayed response (due to low-pass filtered signal
σ̇f ) can be fixed by adding a speed threshold (refer to nonzero Vσ in (4.64)).
The negative speed threshold −Vσ controls the rate of FTC for σ. It also helps
to eliminate the phenomenon of delayed system response caused by time delay
τd at the beginning of compensating phase [126].
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Figure 4.9: Simulations: White noise in position measurement

4.8 Applications

To illustrate the ideas discussed in this Chapter, simulations and experiments
are implemented. The simulation results are obtained by applying the pro-
posed algorithm (4.63), while the proposed algorithm (4.62) is tested experi-
mentally.

4.8.1 Simulation Results

We consider the equation of only the pitch motion of the experimental he-
licopter model setup (refer to Figure 1.1 in Section 1.6 of Chapter 1, Intro-
duction and Figure 3.2) with external disturbances. That is, the yaw motion
inhibits while the rear motor is stopped. Rewriting (3.43a) with ψ̇ = 0 and
adding an external disturbance, we obtain

φ̈ =
Kppu−Bpφ̇−mgl cosφ

Jp +ml2
+ w(t) (4.65)

where w(t) denotes the external disturbance. Note that all the parameters Jp,
m, l, Kpp and Bb are bounded but may be time-varying. Let x1 = φ, x2 = φ̇
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Figure 4.10: Simulations: Desired and actual trajectories for ε = 0.1

and u = Vp. The state space representation is

ẋ =

[
x2

−θ2x2 − θ3 cosx1 + ω(t)

]
+

[
0
θ1

]
u (4.66)

where θ1 =
Kpp

Jp +ml2
, θ2 =

Bp
Jp +ml2

, and θ3 =
mgl

Jp +ml2
are uncertain

parameters. Given θ̂1, θ̂2 and θ̂3 their nominal values, and θ̃1, θ̃2 and θ̃3 their
corresponding variations, respectively, (4.66) can be written in form

ẋ = f̂(x) + ĝ(x)u+ [0, d(t)]T (4.67)

where

d(t) = θ̃1u− θ̃2x2 − θ̃3 cosx1 + ω(t) (4.68)

is the lumped perturbation.
Assuming that the pitch angle tracks a continuously differentiable trajec-

tory x1d and denoting by ep = x1 − x1d the tracking error, a PID sliding
surface can be built as [11]

σ = Kpep +Ki

∫
epdτ +Kdėp (4.69)
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Figure 4.11: Simulations: Desired and actual trajectories for ε = 0.01

This PID sliding surface implies a transfer function from the sliding variable
σ to the tracking error ep as

ep(s)

σ(s)
=

s

Kds2 +Kps+Ki
(4.70)

Differentiating the sliding variable σ w.r.t. time and substituting (4.66), we
obtain the sliding dynamics in the form (4.11) with

Γ =Kd · θ1 (4.71)

Ψ =Kp · (x2 − ẋ1d) +Ki · (x1 − x1d)−Kd · ẍ1d+

Kd ·
[
− θ2x2 − θ3 cosx1 + ω(t)

]
(4.72)

The nominal values of Γ and Ψ and their uncertainties are

Γ̂ =Kd · θ̂1 (4.73)

Ψ̂ =Kp · (x2 − ẋ1d) +Ki · (x1 − x1d)−Kd · ẍ1d (4.74)

+Kd ·
[
− θ̂2x2 − θ̂3 cosx1

]
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Figure 4.12: Simulations: Position errors for ε = 0.1

Table 4.1: Parameter nominal values and variations for the simulations

Nominal Values Time-Varying Uncertainties

θ̂1 5 θ̃1 0.1θ̂2 sin(0.6t)

θ̂2 0.2 θ̃2 0.2θ̂2 sin(0.5t)

θ̂3 20 θ̃3 0.3θ̂3 sin(0.43t)

and

Ψ̃ =Kd · d(t) (4.75)

Information for the simulations is listed in Table 4.1 which gives the nominal
values and time-varying uncertainties of the parameters. Table 4.2 shows the
desired trajectory, initial value, ASMC parameters and the sampling period Ts.
The external disturbance w(t) in (4.66) is roughly set as w(t) = 6.15 sin(10t).

To be closer to the actual experimental implementation, a white noise is
added to the position measurement (see Figure 4.9), and the input signal is
saturated at ±24 volt [21].
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Figure 4.13: Simulations: Position errors for ε = 0.01

Table 4.2: Desired trajectory, initial values and ASMC parameters

x1,desired x1(0) x2(0) K̂pp(0) α ρ Ts

0.15 sin(1.25t+
3

4
π) −0.15 0 100 0.1 0.01 0.005

The proposed smooth ASMC is compared with the existing ASMC design,
introduced in [16]

K =

{
α|σ| · sgn(|σ| − ε) if K > ρ
ρ if K ≤ ρ (4.76)

using different fixed values of the parameter ε. The desired and actual trajec-
tories are shown in Figure 4.10 for ε = 0.1 and Figure 4.11 for ε = 0.01. The
error performances are shown in Figures 4.12 and 4.13, respectively. The cor-
responding control input u(t) is shown in Figure 4.16 and Figure 4.17, while
Figure 4.14 and Figure 4.15 show the switching gain adaptation evolution in
time, respectively. When ε is tuned from a relatively large value of 0.1 to a
smaller value 0.01, one can see that accuracy is improved for both algorithms;
however, the control gain K of the existing ASMC keeps increasing rapidly
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Figure 4.14: Switching gain K(t) for ε = 0.1

and becomes unstable (see Figure 4.15) and the corresponding control u(t) of
the ASMC becomes saturated. In contrast, the switching gain K and the con-
trol u(t) of the proposed smooth ASMC keep a good, and definitely, optimal
pace of progress.
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Figure 4.15: Simulations: Switching gain K(t) for ε = 0.01
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Figure 4.16: Simulations: Control u(t) for ε = 0.1
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Figure 4.17: Simulations: Control u(t) for ε = 0.01
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Table 4.3: Nominal values of the model parameters [21] for the experiments

Parameters Values Units

Ĵp 0.038 kg ·m2

K̂pp 0.204 N ·m/V
K̂yp 0.022 N ·m/V
B̂p 0.800 N/V

l̂ 0.054 m

m̂ 1.3872 kg

4.8.2 Experimental Results

Experiments are carried out on the actual helicopter model setup (see Figure
1.1 in Chapter 1, Introduction). We consider its 1-DOF body mounted on a
fixed base with a front propeller that is driven by a DC motor (refer to Section
1.6 for further details about the description of this setup). We rewrite the
dynamic model of the rotating body about the pitch axis with perturbations
and parameter uncertainties as

Ĵ ẍ = K̂ppu− B̂pẋ− m̂gl̂ cosx+ d(t) (4.77)

with d(t) = ω(t) + K̃u − J̃ ẍ − B̃pẋ + (mgl − m̂gl̂) cosx. J = Jp + ml2 is
the lumped moment of inertia about the rotating pivot, x, ẋ and ẍ are the
displacement angle, velocity and acceleration, respectively. ω(t) represents
the unmodeled dynamics, uncertainties and external disturbances. The given
parameters have been roughly estimated, i.e., of known constant values Ĵ ,
K̂pp, B̂p, m̂ and l̂, with unknown uncertainties, i.e., J̃ , K̃pp, B̂p, m̂ and l̂.
Parameter values are shown in Table 4.3

We apply the adaptation law (4.62) during the experiments. Results of
the response of a step input signal are shown in Figures 4.18-4.21. One can
see that the accuracy is improved (see Figure 4.18) and the magnitude and
the chattering level of the control input are reduced (see Figure 4.19). These
phenomena resulted from the improved accuracy of sliding variable (see Figure
4.20) and reduced switching gain (see Figure 4.21), respectively.

Figures 4.22-4.26 show the responses of a sine wave trajectory tracking.
One can see that the accuracy is also improved (see Figures 4.22 and 4.23
for tracking accuracy and Figure 4.25 for sliding variable accuracy) and the
switching gain is reduced as well (see Figure 4.26). Moreover, the magnitude
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Figure 4.18: Experimental step response results: Angle displacement

and the chattering level of the control input are slightly reduced (see Figure
4.24).

The performances with more experiments obtained using different widths
of the boundary layer ε, i.e., ε = 10−3, ε = 10−1 and ε-tuning [16], are
summarized in Table 4.4 for the error root-mean-square (RMS) and error peak
in % of maximum displacement and in Table 4.5 for the control input. From
Table 4.4, one can see that, comparing to the algorithm given in [16], the error
RMS with the proposed algorithm is reduced from 29% up to 76% for step
response and from 28% up to 74% for sine wave trajectory tracking. Also the
peaks errors are reduced 16%−82% by using the proposed method. Table 4.5
summarizes the performance of the control inputs. By applying the proposed
algorithm, both Input RMS and Input Average values are improved for fixed
ε = 10−3. However, there is no significant improvement for fixed ε = 10−1 and
ε-tuning in terms of robustness and the magnitudes of the control inputs.
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Figure 4.19: Experimental step response results: Input voltage

Table 4.4: Recap: Experimental results – Error RMS and peak values in % of
maximum displacement

Performance Error RMS Error Peak

Switch. Gain Design of [16] Proposed of [16] Proposed

Input Signal Step

ε = 10−3 8.1 1.9 27.9 5.1

ε = 10−1 1.7 1.2 8.1 4.2

ε-tunning 1.4 1.0 3.7 2.8

Input Signal Sine

ε = 10−3 9.0 2.3 30.9 5.8

ε = 10−1 3.8 3.8 7.3 7.9

ε-tunning 3.6 2.6 7.7 6.5
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Figure 4.20: Experimental step response results: Sliding variable
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Figure 4.21: Experimental step response results: Switching gain
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Figure 4.22: Experimental sine response results: Tracking performance
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Figure 4.23: Experimental sine response results: Tracking error
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Figure 4.24: Experimental sine response results: Input voltage
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Figure 4.25: Experimental sine response results: Sliding variable
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Figure 4.26: Experimental sine response results: Switching gain

Table 4.5: Recap: Experimental results – Input performance in Volt

Input Performance Input RMS Input Mean

Switch. Gain Design of [16] Proposed of [16] Proposed

Input Signal Step

ε = 10−3 8.1 1.9 16.8 9.6

ε = 10−1 1.7 1.2 9.8 9.8

ε-tunning 1.4 1.0 9.7 9.7

Input Signal Sine

ε = 10−3 19.2 9.9 17.7 9.8

ε = 10−1 9.6 9.6 9.6 9.6

ε-tunning 9.4 9.7 9.4 9.6
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4.9 Conclusions

In this chapter, the framework of SMC and ASMC are presented with the dis-
cussion of necessary and sufficient conditions. As a result, the integral adap-
tation law is extended. Based on these discussions, a modified ASMC design
with a smooth adaptation of the switching gain is proposed for nonlinear sys-
tems with unknown uncertainties. The algorithm is developed based on the
idea of smoothing the adaptation gain change along the boundary layer with-
out sacrificing the system response performance. Compared to the algorithm
given in [16], accuracy is improved and the chattering phenomenon is further
suppressed. Numerical simulations and experimental results demonstrate the
proposed design for both ideal and real ASMC. However, the magnitudes of
the control inputs and the robustness (overshoot) do not show significant im-
provement for the proposed design. These phenomena will be discussed in
Chapter 5, while new ASMC designs to solve these problems will be given in
Chapter 6 and 7. More details in terms of motivations, objectives, novelties,
pros and cons of this chapter are presented in Table 4.6.
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Table 4.6: Chapter 4 Recap

Motivation(s)

- Control of perturbured and nonlinear dynamics
with limited knowledge of the uncertainty levels.

- Investigation of new frameworks of SMC with var-
ious dynamical switching gain laws.

Objective(s)

- Study of the existing laws.
- Advantages and limitations of most common ASMC

design (widely used in literature).

Novelty(ies)

- New necessary and sufficient conditions for estab-
lishment of any sliding mode.

- Extended integral adaptation laws proposed to
smooth the switching control along the boundary.

Pro(s)

- FTC, one of the most important characteristic of
SMC but often ignored when designing the ASMC,
is pointed out and tentatively fixed.

- Chattering phenomenon and control performance
are improved with the proposed forms of adaptation
laws.

Con(s)

- Large overshot still exists.
- Uncommon and highly nonlinear function forms of

the modified gain laws.
- Diversity of the smoothing function could be source

of ambivalence.
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5 Adaptive Sliding Mode
Control – Properties

This chapter reviews the main ASMC designs for nonlinear systems with finite
uncertainties of unknown bounds. Different statements of convergence refer-
ring to UUB property, AC and FTC for ASMC shown in recent papers are
analyzed. Weaknesses and incomplete proofs apropos FTC are pointed out.
Thereafter, a new approach is proposed to successfully demonstrate FTC of
the sliding variable. We identify a compensating phase and a reaching phase
during the ASMC process as two separate stages characterizing the sliding
mode dynamics. A new explicit form for estimating the upper-bound reach-
ing time is provided for any bounded perturbation. Finally, numerical and
experimental applications are performed to convey the discussed results.

5.1 Introduction

FTC of the sliding variable to zero is one of the two main features that SMC
deserves and differs from other control methods [19]. From a stability point
of view, FTC is distinctive from the other two forms: AC (including EC) and
convergence in UUB sense. Since FTC refers to the time required to build
the sliding mode, it directly affects the overall system response [1, 39, 49].
Moreover, under certain conditions, dynamics with FTC properties exhibit
better rejection of bounded perturbations than the Lipschitzian ES systems
[123].

The main idea in ASMC is that the switching gain is designed to be time-
varying so that it dynamically compensates for the perturbations. In the
various ASMC designs established in the literature, a core algorithm, based
on integral switching gain (ISG), is commonly deployed to deal with uncer-
tainties of unknown bounds. For ASMC designs utilizing ISG (we call them
IG-ASMC designs), three different statements of sliding variable convergence
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(in the UUB sense, AC and FTC) have been acknowledged over the past
decade. The AC of the sliding variable to zero was stated in [10, 11, 15]. Re-
cently, the authors discussed in [16] the FTC of the sliding variable for ideal
ASMC design, and in [17], the UUB sliding variable and the switching gain
adaptation error for real sliding using a boundary-layer-based ASMC were
investigated. In [79, 127], the authors obtained FTC result of the designed
sliding variable; however, the switching gain adaptation error only has AC
property. In [14, 16, 18, 19], the authors state that both the sliding variable
and the switching gain adaptation error converge to zero in finite time. How-
ever, the main result of [14] could not sustain authentically the FTC of both
the sliding variable and adaptation gain. The discussed problem in [14] con-
sidered a Lyapunov function in two independent variables, the sliding variable
and the switching gain adaptation error, differing from the required condition
on the time derivative of this Lyapunov function, and then discrediting the ef-
fectiveness of the original result in this case. The reader can refer to Theorem
4.2 in [123] and its applications in [116,117,128] for further understanding of
this argumentative result. In [16,18,19], when dealing with ideal sliding mode,
deficiencies exist in the estimated reaching time. According to the given for-
mulas, this reaching time tends to infinity as the sliding variable approaches
zero, and there is no guarantee of FTC in [16, 19]. Hence, the convergence
can only be achieved over an infinite time interval (which is indeed intrinsic
to AC property rather than FTC).

Roughly speaking, for the ASMC designs presented over the past decade,
researchers either have not referred to FTC (have shown only AC, e.g., in
[10,11,15] and UUB performances in [17]) or have stated FTC results encoun-
tering weaknesses (e.g., [14,16–19]). These limits will be discussed thoroughly
leading to the three main contributions of this chapter. First, it demystifies the
confusion of convergence types in ASMC designs applied for uncertain systems
with unknown bounds. It overcomes weaknesses and inadequate statements
depicted from existing ASMC designs discussed above. We revisit the FTC
of the sliding variable to zero in these ASMC designs by demonstrating the
existence of a compensating phase and a reaching phase during the sliding
process. Second, a new Lyapunov-based FTC property is discussed. A majo-
rant curve approach is proposed to prove FTC. Along with the new proof, a
new formula of RTE, different from any existing result, is provided. This new
explicit RTE formulates simply the relationship between the reaching time
and the switching gain.

This chapter focuses on the completeness of convergence and RTE in
ASMC designs in recent years. In Section 5.2, we present some mathematical
preliminaries and state the control problem. Section 5.3 analyzes deficiencies
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(in terms of sliding variable convergence) depicted in existing statements of
ASMC designs for the ideal case. A new framework, introducing results about
switching gain boundedness and estimating finite reaching time, is proposed
in Section 5.4 and represents the main contribution of this paper. The imple-
mentation of real ASMC is discussed in Section 5.5. A tutorial example and
experimental results are shown in Section 5.6 to verify the effectiveness of the
new formula of RTE and the improvement of the modified reaching law for
real ASMC designs, while Section 5.7 concludes this chapter.

5.2 Mathematical Preliminaries and Problem
Statement

In this section, we first present some properties that can be retrieved from
[1,11,123]. Then, we state the control problem and assumptions for nonlinear
systems with finite uncertainties of unknown bounds.

5.2.1 Mathematical Preliminaries

Useful definitions of the AC, UUB and FTC are presented in Appendix A
(refer to Section A.3.1)

Given a second order dynamic system

ẋ = f1(x, y) (5.1a)

ẏ = f2(x, y) (5.1b)

where fi : χ → R, i = 1, 2, is Lipschitzian in (x, y) on an open neighborhood
χ of the origin (0, 0) which is an equilibrium point for (5.1). Consider the
Lyapunov function

V = ax2 + by2 (5.2)

where a > 0 and b > 0. V is positive definite.

Lemma 5.1. If there exists c > 0 s.t. ∀(x, y) ∈ D ⊆ χ

V̇ ≤ −c|x| (5.3)

then, for any x(0) 6= 0, x→ 0 asymptotically and y is stable.
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Proof. Integrating both sides of (5.3), we have

∫ t

0
|x|dτ ≤ V (0)− V (t)

c

≤ V (0)

c
(5.4)

First, based on Theorem 4.18 of [1], we obtain, from (5.2) and (5.3), x and
y UUB. Then, as t → ∞, from (5.4), the non-negative integral is always less

than
V (0)

c
. So, limt→∞

∫ t
0 |x|dτ exists and is finite. By Barbalat’s Lemma [1],

it yields that limt→∞ |x| = 0.

The above Lemma indicates well the AC of x→ 0 for any x 6= 0. However,
the AC of y → 0 is not guaranteed. Actually, as V (t) decreases (by referring
to V̇ ≤ −c|x|), x converges to zero and y is stable [1], i.e., y can be AS or
UUB. Moreover, the FTC of both dynamics to zero is not necessarily true.
Indeed, this statement can be validated by the following example.

Example 5.1. First, given the nominal dynamic system

ẋ = −2x (5.5a)

ẏ = −x− y (5.5b)

with x(0) 6= 0 and
y(0)

x(0)
≥ 1. We have

x(t) = e−2tx(0) (5.6a)

y(t) = e−ty(0) + (e−2t − e−t)x(0) (5.6b)

For any x(0) > 0 and −y(0)

x(0)
+ 1 < 0, we have x(t) 6= 0 and y(t) 6= 0 ∀t ≥ 0.

From (5.6a) and (5.6b), x(t) and y(t) converge to zero infinitely (exponentially
as t → ∞). In addition, by selecting V = x2 + y2 which satisfies (5.2), we
have

V̇ = 2xẋ+ 2yẏ

= −4x2 − 2xy − 2y2 (5.7)
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Note, from (5.6a), that x(t) > 0. Assuming x(0) 6= 0 and
y(0)

x(0)
> 1, from

(5.6b), we write y(t) = x(t) + e−t
(
y(0)− x(0)

)
, and we obtain

V̇ ≤ −2y2

≤ −2x2 − 2e−t
(
y(0)− x(0)

)
x(t)− e2t

(
y(0)− x(0)

)2

≤ −
(
y(0)− x(0)

)2 |x(t)|
x(0)

(5.8)

verifying (5.3). It is clear that x and y are ES, but no FTC is guaranteed.
Now, consider the perturbed system

ẋ = −2x (5.9a)

ẏ = −x− y + d (5.9b)

with d unknown positive constant. We have x is ES and y UUB but there is
no FTC of these dynamics (refer to Appendix A.6 for more details).

Lemma 5.2. Given the Lyapunov function (5.2), if there exists a non-negative
function h(x, y) in x and y s.t.

V̇ ≤ −h(x, y) (5.10)

then h(x, y)→ 0 as t→∞. In particular,
• If h(x, y) = c|xy|, with c > 0, we obtain |x| → 0 or |y| → 0 as t→∞.
• If h(x, y) = c1|x|+ c2|xy|, for c1 > 0 and c2 > 0, we have |x| → 0 and y

is UUB as t→∞.

Proof. Similar to Lemma 5.1.

Note that Lemma 5.2 represents a general form of Lemma 5.1 regarded as
a factor in the Lyapunov function distinction studying the stability statement
of the problem of SMC that will be discussed in the following subsection.

Lemma 5.3. (refer to [123]) Given the Lyapunov function (5.2), if there exist
real scalars t∗ ≥ 0, k > 0 and 0 < λ < 1, s.t. ∀t ≥ t∗

V̇ (x, y) + kV λ(x, y) ≤ 0 (5.11)

then, the dynamics (5.1) is finite-time stable. Moreover, the settling time
satisfies

tr ≤
V (x0, y0)1−λ

k(1− λ)
+ t∗ (5.12)

for all (x, y) ∈ R2\{(0, 0)}.
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Note that Lemma 5.3 is a simple extension of a classical FTC theorem
(where t∗ = 0) in SMC designs [1, 39,49].

5.2.2 Problem Statement of SMC Scheme

Recall the uncertain dynamic system

ẋ = f(x, t) + g(x, t)u, x(0) = x0 (5.13)

where x ∈ χ is the state vector, with χ as a domain of Rn containing the
origin, and u ∈ R the input signal. Let x = 0 be an equilibrium point for
(5.13). Functions f(x, t) and g(x, t), containing parameter uncertainties and
external disturbances, are bounded in χ×R+ [52]. The bounds of f(x, t) and
g(x, t) are unknown with g(x, t) 6= 0 in χ×R+ [16]. Recall the sliding variable
dynamics with a relative degree equal to 1 w.r.t. u

σ̇(x, t) = Ψ(x, t) + Γ(x, t)u, σ(x0, 0) = σ0 (5.14)

where the scalar functions Ψ(x, t) and Γ(x, t) are bounded. The sign of Γ
remains the same. In fact, without loss of generality, it will be assumed to be
strictly positive, i.e.,

0 < Γ ≤ Γ(x, t) ≤ Γ̄ (5.15)

with Γ and Γ̄ representing the lower and upper bounds of Γ, respectively,
whose values are unknown a priori [16].

5.3 ASMC Law and Existing Results

In this section, we recall some recent results, introduced in [10,11,13–19], and
we analyze the sliding variable convergence and RTE statements as shown in
these references. The incurred deficiencies in these works will be highlighted,
eventually.

5.3.1 ASMC Law

As discussed in Chapter 4, for the case where the uncertainties are fully un-
known, the feedback control u(t) in SMC is defined as

u(t) = −K(t) · sgn(σ) (5.16)

where sgn( · ) refers to the signum function. In particular, with classic SMC
design, the switching gain K is a constant scalar which is designed to be
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sufficiently large so that it can compensate for the uncertainties [39,52]. How-
ever, the ASMC techniques are designed as further SMC structures without
knowledge of the bounds of uncertainties a priori. The forms introduced
in [10,11,13–19] use time-varying gain K(t) to adaptively compensate for the
lumped uncertainties. We substitute (5.16) into (5.14)

σ̇ = Ψ− ΓKsgn(σ), σ(x(0), 0) = σ0 (5.17)

Among the numerous ASMC designs shown during the past decade (e.g.,
[10, 11, 13–19]), a common gain adaptation law under the ideal sliding case is
stated as ISG law (recall integral adaptation law for ideal ASMC discussed in
Chapter 3)

K̇ = α|σ|, K(0) = K0 (5.18)

with α > 0 representing the gain of the adaptation law. Note that in the case
of ideal ASMC, the sliding mode is said to be established when σ = 0 for
all time after reaching the required manifold, and the switching control time
interval can be infinitely small.

Remark 5.1. For a real ASMC, the law (5.18) will force K to increase con-
stantly without bound since σ will never be identically zero due to inherent
processing delays, finite sampling rates, measurement errors, noises, etc. Thus
for real ASMC, the law (5.18) should be changed to other forms. For instance,
in [16], this integral gain (IG) adaptation law for real ASMC is given by (refer
to Chapter 4),

K̇ = α|σ| · sgn(|σ| − ε) (5.19)

to provide the ability that K reduces its value after σ entering a small bound-
ary layer (i.e., |σ| ≤ ε). However, we consider mainly the ideal sliding ASMC
in this chapter to analyse the boundedness, FTC, and RTE for the sake of
simplicity.

5.3.2 Comments on Existing Results

Essentially, two different statements about the sliding variable convergence
(referring to AC and FTC) have been discussed in [10, 11, 14–19] for the case
of ideal ASMC design (5.16) and (5.18). To prove these statements, for a pre-
sumed maximum gain K∗ compensating for the overall lumped uncertainties,
the authors have commonly used the following Lyapunov candidate function

V =
1

2
σ2 +

1

2γ
K̃2 (5.20)
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where σ is the sliding variable, K̃ = K −K∗ the gain error and γ a positive
scalar. In the following, the first Theorem states the FTC of the designed
ASMC, while the second one shows the AC performance.

Remark 5.2. K∗ is defined as a presumed maximum gain to which K con-
verges. Some researchers defined K∗ as the maximum value of Ψ/Γ. How-
ever, during the adaptation process, K mostly converges to a value greater
than |Ψ/Γ|max (refer to the numerical illustration discussed later in Section
5.6.1 of this chapter); it is also possible that K converges to a value less than
|Ψ/Γ| (refer to Example 4.1 in Chapter 4). There is no reason that K con-
verges to the upper-bound of Ψ/Γ. Such a statement implies that defining K∗

as the upper-bound of Ψ/Γ will make the Lyapunov candidate function (5.20)
deficient.

Theorem 5.1. (refer to [14, 16–19]) Given the nonlinear uncertain system
(5.13) with the sliding variable dynamics (5.14) controlled by (5.16) and (5.18),
both the sliding variable σ and the switching gain error K̃ converge to zero in
finite time.

As will be shown later, this statement of FTC for both arguments, σ and
K̃, would be true. In the following we discuss the ways (i.e., steps taken in
order to achieve this particular end) addressed in the cited references. On the
one hand, in [14], the authors use the Lyapunov function (5.20) and conduct
to the inequality

V̇ ≤ −β1|σ| (5.21)

for some β1 > 0 and all t > 0, where V̇ is the time derivative of V . Then,
they conclude the FTC of the dynamics. According to Lemma 5.1 introduced
above, we can only state that σ → 0 asymptotically and K̃ is UUB. The
example 5.1 discussed in Subsection 5.2.1 is definitely a counterexample of
the analysis demonstrated in [14]. On the other hand, the determination of
FTC for both σ and K̃ presented in [16, 18, 19] is different from that in [14].
Given the Lyapunov candidate function (5.20), the authors conclude that for
all t > 0, the inequality

V̇ ≤ −βσ|σ| − βk|K̃| (5.22)

holds for βσ > 0, βk =
(
− Γ +

α

γ

)
· |σ| > 0 and 0 < γ <

α

Γ
, leading to FTC of

the sliding variable [18]. In addition, a maximum reaching time is estimated
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as

tr ≤
√

2V (0)

β2
(5.23)

with β2 = min(βσ, βk
√
γ). In this case, the idea of FTC of V , as well as of

its arguments σ and K̃, is not well conveyed in [16, 18, 19]. In fact, one can
see that as |σ| approaches zero βk → 0 and β2 → 0 too, and from (5.23), the
reaching time tr tends to ∞, actually. Thus, there is no guarantee of FTC for
both σ and K̃. Alternatively, (5.22) can be rewritten as

V̇ ≤ −βσ|σ| − βσk|σ| · |K̃| (5.24)

with βσk =
(
− Γ +

α

γ

)
> 0. So, according to Lemma 5.2 discussed above, we

can only state that σ → 0 asymptotically and K̃ is UUB. Finally, in [17], the
authors admit first the AC of the sliding variable σ → 0. Then, they state
intuitively the FTC of σ. Roughly, they notice that if the condition (5.22)
is satisfied and if the design parameter α, introduced in (5.18), is selected
sufficiently large, as

α > βσ,t2 · max |Ψ| (5.25)

for some positive scalar βσ,t2 which is predetermined and correlated with σ
and some instant t2 (referring to the finite time when the maximum value of
the lumped uncertainty occurs), then the FTC of σ can be guaranteed [17].
In fact, since βσ,t2 is difficult to estimate, the requirement for a sufficiently
large α would affect the design (5.18) and may cause the switching gain to be
extremely high. Although the FTC result is true, the discussed proof remains
injudicious, and the intuitive investigation of FTC in [17] relies on high gain
design, as far as the maximum lumped uncertainty is unknown (rather than
the SMC which requires knowledge of such upper-bounds of uncertainties, i.e.,
max |Ψ|) or by sacrificing an extra time consumption (refer to the parameter
t2 introduced above) to adjust the switching gain.

Theorem 5.2. (refer to [10,11,15]) For the nonlinear uncertain system (5.13)
with the sliding variable dynamics (5.14) controlled by (5.16) and (5.18), the
sliding variable σ → 0 asymptotically.

Using the Lyapunov function (5.20), assuming that there exists β1 > 0 so
that (17) holds for all t > 0. Then, the proof is basically ended by Lemma
5.1. As opposed to the results on FTC and their deficiencies, the AC result
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of Theorem 5.2 is well stated in numerical form of the references [10, 11, 15].
However, Theorem 5.2 does not reveal the FTC result, often presented as the
aimed statement for the convergence of the sliding variable σ and the dynamic
gain error K̃.

In summary, the results discussed in [14,16,17,19] support poorly the FTC
statement, while the works conducted in [10,11,15] do not conclude the FTC.
In the following section, we will prove properly that both the sliding variable
σ and the gain error K̃, in the nonlinear uncertain systems (5.13) with the
sliding variable dynamics (5.14) controlled by (5.16) and (5.18), have FTC to
zero. Moreover, a new formula, different from any existing equation, will be
deduced to estimate the upper-bound of reaching time tr.

5.4 Upper-Bound of Switching Gain and FTC –
New Framework

In this section, we first recall Lemma 1 of [16] (see Lemma 2.1 of [19] as
well). The proof will be discussed in detail in light of further evidence on the
boundedness property of the switching gain dynamics. Then, based on the
revised proof, we demonstrate the FTC of the sliding variable σ to zero by
showing the existence of a finite-time compensating phase and the existence of
a finite-time reaching phase. During the compensating phase, any perturbation
will be eventually compensated in finite time by the switching gain. Also, the
sliding variable will stop increasing its value at the end of the compensating
phase. During the reaching phase the sliding variable will reach the sliding
surface in finite time. Moreover, we introduce a new form to estimate the
upper-bound of the maximum reaching time.

5.4.1 Upper-Bound of Switching Gain

The following Lemma states the boundedness of the switching gain.

Lemma 5.4. (refer to Lemma 2.1 in [19] and Lemma 1 in [16]) Consider the
nonlinear uncertain system (5.13) with the sliding variable dynamics (5.14)
controlled by (5.16) and (5.18) with K(0) > 0. The gain K(t) has an upper-
bound, i.e., there exists a finite positive constant K∗ so that ∀t > 0

K(t) ≤ K∗ (5.26)
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Proof. From (5.18), ∀t ≥ 0, K̇(t) ≥ 0, i.e., ∀t1 > 0 and t2 > t1, we have
K(t2) ≥ K(t1) > 0. K(t) is a monotonically continuous function. Two cases
may arise.

Case 1 (finite limit) i.e., K(t)→ K∞ as t→∞, for a given finite constant
K∞ > 0. Thus, it always exists K∗ > 0 s.t. K∗ ≥ K∞ and, ∀t > 0,
K(t) ≤ K∞ ≤ K∗.

Case 2 (infinite limit) i.e., K(t)→∞ as t→∞. Then, there exist αk > 0
and t1 > 0 s.t. ∀t ≥ t1

max |Ψ|
Γ

+
αk
Γ
≤ K(t) (5.27)

that is,

max |Ψ| − ΓK(t) ≤ −αk (5.28)

Now, consider the Lyapunov function V = σ2. Using (5.17) and (5.28), we
obtain ∀t ≥ t1

V̇ ≤ −2αk
√
V (5.29)

Then, |σ| → 0 in finite time (by applying Lemma 5.3 introduced in subsection
5.2.1). Let t2 be the time at which σ reaches zero. Then, for all t ≥ t2, we
have K̇(t) = α|σ| = 0, i.e., K(t) stops increasing for all t ≥ t2. Thus, K(t)
is upper-bounded, which is a contradiction of the statement of Case 2. Thus,
we conclude that K(t) is finitely bounded.

5.4.2 Existence of Compensating Phase

In the ASMC processes, there usually exist two phases: compensating phase
and reaching phase [73]. The compensating phase is the phase during which
the control u(t) is automatically increasing and corresponding to the increase

of unknown perturbations
Ψ

Γ
. This phase continues until the moment when

the control u(t) completely compensates for the perturbation
Ψ

Γ
for all future

time (see Figure 5.1). Such an event refers to the end of the compensating
phase, and then, the beginning of the reaching phase. At this moment, the

time rate of the sliding variable is non-positive, i.e.,
d|σ|
dt
≤ 0. The converging

phase, identified also as reaching phase, is the phase during which the sliding
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Ψ(t)sgn(σ)/Γ(t)

Figure 5.1: Illustration of the switching gain K for a given lumped perturba-

tion
Ψ

Γ
. The ASMC between t = 0 and t = t∗ is in compensating phase mode.

The reaching phase corresponds to the time period from t = t∗ to t ≈ 4 (in
sec).

variable is forced to reach the sliding surface (see Figure 5.1). Based on the
idea of the aforementioned proof of upper-bounded switching gain, we will
demonstrate that both phases exist in ideal ASMC processes under unknown
bounded perturbations. We deal with the ASMC dynamics as follows. The
compensating phase is first presented in Lemma 5.5; then the reaching phase
is discussed in Theorems 5.3 and 5.4.

Lemma 5.5. (Existence of compensating phase [73]) Given the nonlinear
uncertain system (5.13) with the sliding variable dynamics (5.14) controlled
by (5.16) and (5.18), there exists a time t∗ so that for all t ≥ t∗

K(t∗) ≥ Ψsgn(σ)

Γ
(5.30)

Proof. It is based on the same idea and procedure of the proof of Lemma
5.4.
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Since K(t) keeps growing whenever σ 6= 0 (refer to gain dynamics (5.18)),
there exists a positive time interval ∆t > 0 and a positive scalar κ > 0 so that
the following inequality holds

K(t) ≥ K(t∗) + κ ≥ Ψsgn(σ)

Γ
+ κ (5.31)

for all t ≥ t∗ + ∆t. Lemma 5.5 implies that, for σ 6= 0, the monotonically
growing gain K(t) will completely compensate for the lumped perturbations
at the time instant t∗ so that (5.30) holds for all t ≥ t∗. In other words, there
always exists t∗ so that (5.30) holds for all future time t ≥ t∗. Obviously,
the inequality (5.30) holding for t ≥ t∗ can be extended to any time t ≥ 0.
Lemma 5.5 demonstrates the existence of a compensating phase in the ASMC
process and t∗ represents the compensating time (refer to compensating phase
in Figure 5.1). Considering Γ > 0, note that, from (5.31), we have

ΓK ≥ Ψsgn(σ) + Γκ (5.32)

Remark 5.3. It should be pointed out that, during the adaptation process,

K(t∗) only compensates for
Ψsgn(σ)

Γ
. K(t∗) can be smaller than

∣∣Ψ
Γ

∣∣ (see

Example 4.1 in Chapter 4.

Particular Case: Let us consider the compensating phase, for t between 0
and t∗. For simplicity, assume constant perturbations and uncertainties (i.e.,
Ψ and Γ are constants) occur (or take form) at t = 0. The compensating phase
implies that, if the uncertainties cause |σ| initially increasing, K will eventually
compensate for such uncertainties. Thus, during the compensating phase,
sgn(σ) = sgn(σ0) and Ψsgn(σ) = Ψsgn(σ0) > ΓK. If Ψsgn(σ) = Ψsgn(σ0) ≤
ΓK, technically there is no compensating phase or the compensating time
t∗ = 0. We have

d

dt
|σ| = σ̇sgn(σ) = Ψsgn(σ0)− ΓK > 0 (5.33)

Differentiating both sides of (5.33) and noticing (5.18), we have

d2

dt2
|σ| = −Γα|σ| (5.34)

It has a general solution

|σ| = c sin(
√

Γα · t+ Φ) (5.35)
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where c and Φ are constant. To determine Φ, we integrate both sides of (5.18)
from 0 to t and apply (5.35). We obtain

K(t) = K0 +
αc√
Γα

[cos Φ− cos(
√

Γα · t+ Φ)] (5.36)

where K0 is the initial value of K. Thus, (5.33) becomes

d

dt
|σ| = Ψsgn(σ0)− Γ

[
K0 +

αc√
Γα

[cos Φ− cos(
√

Γα · t+ Φ)]
]

(5.37)

Also, from (5.35), we have

d

dt
|σ| = c

√
Γα cos(

√
Γα · t+ Φ) (5.38)

Equating the right sides of (5.37) and (5.38), we obtain

c
√

Γα cos Φ = Ψsgn(σ0)− ΓK0 (5.39)

Moreover, from (5.35), we have for t = 0

|σ0| = c sin Φ (5.40)

Combine (5.39) and (5.40) to write

tan Φ =
|σ0|
√

Γα

Ψsgn(σ0)− ΓK0
(5.41)

At the end of the compensating phase, the perturbations
Ψsgn(σ)

Γ
are

compensated by the gain K and
d

dt
|σ| = 0 (refer to dynamics (5.33)). In

other words, |σ| reaches its maximum distance from the sliding surface (i.e.,
sin(
√

Γαt + Φ) = 1 in (5.35)). Then, the compensating time t∗ can be esti-

mated by letting
√

Γαt∗ + Φ =
π

2
, i.e.,

t∗ =
π − 2Φ

2
√

Γα
(5.42)

with Φ = arctan
( |σ0|

√
Γα

Ψsgn(σ0)− ΓK0

)
obtained from (5.41).
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5.4.3 FTC of the Closed-Loop ASMC System – Lyapunov
Approach

In [10, 11, 14, 16–19], the stability of ASMC design is based on the Lyapunov
analysis by using the candidate positive definite function (5.20). As discussed
in Section 5.3, however, the results can only conclude AC thoroughly, but
not FTC. In the following, we propose a new Lyapunov candidate function,
novelly contributing to prove FTC of σ → 0, as

V = (|σ|+ |K̃|)2 = σ2 + 2|σ||K̃|+ K̃2 (5.43)

Obviously, V is continuous and positive definite and it is differentiable almost
everywhere (except at the origin, i.e., σ = 0 and K̃ = 0).

Theorem 5.3. Given the nonlinear uncertain system (5.13) with the sliding
variable dynamics (5.14) controlled by (5.16) and (5.18), the sliding variable
σ → 0 in finite time. Moreover, the upper-bound of the settling time can be
estimated as [73]

tr ≤

√
V (σ0, K̃0)

Γκ
+ t′ (5.44)

for some positive scalars κ and t′. σ0 and K̃0 designate the initial values of σ
and K̃, respectively, and Γ is the lower bound of Γ.

Proof. Considering the Lyapunov candidate function (5.43), its time derivative
is

V̇ = 2σσ̇ + 2
d|σ|
dt
|K̃|+ 2|σ|d|K̃|

dt
+ 2|K̃| d

dt
|K̃| (5.45)

Notice that, for σ 6= 0, we have |σ| = σsgn(σ),
d

dt
|σ| = Ψsgn(σ)−ΓK, and, for

K̃ 6= 0, K̃ = K−K∗ = −|K̃| (refer to (5.26) in Lemma 5.4) then
d

dt
|K̃| = −K̇.

Consider t∗ the time instant when the compensating phase is reached (refer
to Lemma 5.5). Then, from (5.32) and (5.45), the time derivative, along the
trajectories of (5.17) and (5.18), for t ≥ t′ = t∗ + ∆t, σ 6= 0 and K̃ 6= 0, is

V̇ = −2|σ|
[
ΓK −Ψsgn(σ)

]
− 2
[
ΓK −Ψsgn(σ)

]
|K̃| − 2α|σ|2 − 2α|σ| · |K̃|

≤ −2|σ|Γκ− 2Γκ|K̃| − 2α|σ|2 − 2α|σ||K̃|
≤ −2Γκ ·

(
|σ|+ |K̃|

)

≤ −2Γκ
√
V (5.46)
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Then, the proof is ended by applying Lemma 5.3.

With the new approach, the settling time depends on the initial state
and system parameters. It does not depend on the magnitude of the sliding
variable |σ|, which is different from the FTC discussed in [16,18,19].

5.4.4 FTC of the Closed-Loop ASMC System – Majorant
Curve Approach

The Lyapunov-based approach of Theorem 5.3 has successfully proven the
FTC occurred during the reaching phase that follows the compensating phase.
However, it is difficult to practically estimate the reaching time because of the
difficulty to calculate κ and the initial gain error K̃0. In this subsection, we
propose a new approach (contributing to a new analysis framework of the
ASMC problem) to prove the existence of the reaching phase and to give a
new formula of RTE. Based on Lemma 5.5, we have the following Theorem.

Theorem 5.4. ( Existence of reaching phase [73]) Given the nonlinear un-
certain system (5.13) with the sliding variable dynamics (5.14) controlled by
(5.16) and (5.18), the sliding variable σ → 0 and switching gain error K̃ → 0
in finite time. Moreover, the maximum reaching time of σ to sliding surface
can be estimated as

tr ≤
π

2
√

Γα
+ t∗ (5.47)

where t∗ is the compensating time defined in Lemma 5.5, α the designed adap-
tation gain rate introduced in (5.18) and Γ > 0 the lower-bound of Γ.

Proof. We refer to the reaching phase and we integrate (5.18) between 0 and
any instant t ≥ t∗ to obtain

K(t) = K(t∗) +

∫ t

t∗
α|σ|dτ (5.48)

Since σ = 0 represents the establishment of the sliding mode (i.e., the objective
of ASMC), we consider only σ > 0 or σ < 0. Using Lemma 5.5 and noticing

that (5.17) is equivalent to
d|σ|
dt

= Ψsgn(σ)− ΓK, we obtain from (5.30) and
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(5.48)

d|σ|
dt

= Ψsgn(σ)− ΓK(t∗)− Γ

∫ t

t∗
α|σ|dτ

≤ −Γα

∫ t

t∗
|σ|dτ (5.49)

The above differential inequality shows that the positive amount |σ(t)| is de-
creasing with a time-varying rate of at least Γα

∫ t
t∗ |σ|dτ . From (5.49), we

derive the following limit case for the time evolution of σ (i.e., the worst in
terms of time response rate) which depends on the initial condition of the
reaching phase. In fact, the trajectory of |σ| geometrically lies below the
majorant curve [53,89] of |σ| governed by

d|σ|
dt

= −Γα

∫ t

t∗
|σ|dτ (5.50)

Then, the reaching time can be generically estimated by solving (5.50) with
the limit conditions |σ(t∗)| = |σ∗| and |σ̇(t∗)| = 0. The explicit formula of the
majorant curve can be written as

|σ(t)| = |σ∗| cos
(√

Γα · (t− t∗)
)

(5.51)

The sliding variable σ reaches 0 when the argument of the cosine function

(5.51) reaches
π

2
from 0 (initial value corresponding to t = t∗). Thus, the

upper-bound of RTE, tr − t∗, is written as

tr − t∗ ≤
π

2
√

Γα
(5.52)

Note that (5.52) is evaluated by letting |σ(t)| = 0 in (5.51). Moreover, from
(5.18), K stops increasing as soon as σ reaches zero. Thus, K̃ reaches zero at
the same time that σ reaches zero.

From (5.47), the estimation of the maximum reaching time comprises two
time frames. First, the interim, limited by t∗ (i.e., from t = 0 to t = t∗), is
the time period of compensating phase where the switching gain K(t) value
is increasing to be sufficiently large to completely compensate for the pertur-

bation. The second frame, with a maximum magnitude of
π

2
√

Γα
, is the time

period of reaching phase, i.e., the maximum time required to force the sliding
variable σ to reach zero from σ∗ = σ(t∗). Note, from (5.52), that the reaching
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phase interval from t∗ to tr depends neither on σ(t∗) (i.e., the initial value
of σ during the reaching phase), nor on the maximum uncertain perturba-
tion, max |Ψ|. More specifically, no matter whether σ(t∗) and |Ψ| are small

or large, we figure tr − t∗ ≤
π

2
√

Γα
. Let us recall that this term represents an

upper-bound or a maximum value of the “slowest” sliding variable dynamics.
The new result of reaching time (5.47) represents a better estimate than the
existing ones given in [16,19] (e.g., refer to (5.23)) by making its upper-bound
value tightened thoroughly.

In summary, the FTC property of ASMC design is obtained by demon-
strating the existence of a compensating phase (refer to Lemma 5.5) and a
reaching phase (refer to Theorem 5.3 and 5.4) during the ASMC process [73].
Even though the estimation of the FTC was estimated differently in [16] (refer
to (5.23) discussed above), explicit forms of the sliding variable and switching
gain dynamics, as introduced in [16] w.r.t. the “worst” case of uncertain-
ties and perturbations, can be adapted to obtain the estimated reaching time
(5.47). Along with the discussions and proofs introduced above, new formulas
to estimate specifically the upper-bounds of both compensating and reach-
ing periods are derived (see (5.42) and (5.47)). Finally, we note that (5.42)
remains valid only for the particular case of uncertainties with constant am-
plitudes, and despite the fact that it is a limited scenario, it is considered as
an instructive case study to interpret the dynamics of any ASMC. Acknowl-
edging its benefit, a maximum range of FTC for this particular case can be

computed from (5.42) and (5.47), as tr ≤
π − Φ√

Γα
.

5.5 Implementation of Real ASMC

For a real sliding mode, as discussed in Chapter 4 (refer to Subsection 4.5.2)
the law (5.18) would force K to increase constantly without bound since σ
would rarely be “identically” zero due to inherent processing delays, finite
sampling rate, measurement errors and noise [16]. Thus, the switching gain
(5.18) has been modified for real ASMC using boundary-layer-dependent gain
laws [16, 17, 117]. With such forms, the control gain K reduces its value
after σ entering a small boundary layer (i.e., |σ| ≤ ε).The thickness of the
boundary layer ε in switching gain adaptation may be fixed or time-varying
(e.g., depending on the gainK and the sampling time Ts) according to [16,116].
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5.5.1 Existing Real ASMC

We recall the real ASMC design with discontinuous gain rate at the layer limit
ε as [16].

K̇ = α|σ| · sgn(|σ| − ε) (5.53)

The FTC of this ASMC design has been proven by choosing the Lyapunov

candidate function V =
1

2
σ2 +

1

2γ
K̃2 with K̃ = K−K∗ for appropriate γ > 0

(refer to (5.20)). Moreover, the maximum reaching time has been estimated
as [16,74]

tr ≤
√

2V (0)

β2
(5.54)

where β2 = min{βσ, βk
√
γ} with βσ > 0 and 0 < βk < (−1 +

α

γ
) · |σ|. Once

again, since βk is constrained by |σ|, the RTE suffers from some weakness.
First, according to (5.54), tr depends on the sliding variable σ, which in turn
depends on the boundary layer ε. In fact, to achieve fast response, i.e., reduced
tr, it requires large values of |σ|, which in turn implies a large thickness of
the boundary layer and poor accuracy. More recently, in [17], the gain rate
continuously alternate at the layer limit ε as

K̇ = α ·
(
|σ| − ε

)
(5.55)

However, the proof for FTC of σ to the boundary layer |σ| ≤ ε is not provided.
Note that the boundary layer used in (5.53) and (5.55) is different from the
traditional boundary layer that counts originally for the input signal of the
conventional SMC [1,52].

5.5.2 Alternative Switching Gain Law for Real ASMC

Based on the aforementioned ASMC schemes, we consider the following gen-
eral ASMC design for the real case using the boundary-layer method.

K̇ = α ·G(|σ|) · sgn(|σ| − ε) (5.56)

where G(|σ|) is a positive definite function in its argument |σ| [73, 116, 117].
Upon this general design, one can have many choices to select this switch-
ing function appropriately [116, 117]. Recall the modified adaptation law,
discussed in Chapter 4, as

K̇ = α · |σ| ·
[ 2

π
· tan−1(σ4)

]
· sgn(|σ| − ε) (5.57)
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with K(0) > 0, α > 0, and ε > 0 being small [117]. The increment or
decrement of K tends to be smaller while

(
|σ|−ε

)
→ 0 (i.e., as |σ| approaches

ε from the outside or the inside of the boundary layer).

5.5.3 FTC of Real ASMC

For the real ASMC design based on switching gains (5.53) and (5.55), the
sliding variable converges to its targeted domain in finite time. However, the
proof of FTC and the maximum RTE are different from [16] and (5.54).

Proposition 5.1. Given the nonlinear uncertain system (5.13) with the slid-
ing variable dynamics (5.14) controlled by (5.16), if the switching gain is de-
signed as (5.53) or (5.55), the sliding variable σ converges to a domain |σ| < ε
in finite time. Moreover, the maximum reaching time can be estimated as

tr ≤
π

2
√

Γα
+ t∗.

Proof. See Appendix A.7

Note that the definitions of t∗, α and Γ are the same as those of (5.47).
Obviously, the same results can be obtained with the algorithm (5.55) (or
(5.57), eventually). The proofs using (5.53) and (5.55) are similar to the
proof of Theorem 5.4, while the one using (5.57) is similar to the proof of
Theorem 5.3.

5.6 Simulation and Experimental Illustrations

5.6.1 Numerical Illustration of an Ideal ASMC

Consider a simple scalar dynamics with uncertainties

σ̇ = Ψ(t) + Γ(t) ·u (5.58)

where Ψ(t) is an unknown-bound perturbation, Γ(t) > 0 is a time-varying
uncertain parameter and u is the control input. The control objective is to
stabilize the state σ at the origin, i.e., σ = 0. Ψ(t) and Γ(t) are chosen as

Ψ(t) =− 1.6 + 0.7δ(t− 0.5) + 5.4δ(t− 2.5) + 0.5δ(t− 2.7)− 0.5δ(t− 3.8)+

0.5δ(t− 3.9)− 0.5δ(t− 4.5) + 0.5δ(t− 4.6)− 0.3δ(t− 6.1) (5.59a)

Γ(t) =2 +
n=5∑

n=0

1

2n+ 1
sin
((2n+ 1)π(t− 2.5)

2

)
(5.59b)
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Figure 5.2: Uncertainties Ψ(t) and Γ(t) used in the simulation.

where δ(t− ti) is a shifted unit step function which has a value of 0 up to time
t = ti and a value of 1 thereafter (see Figure 5.2). The control parameters
used in simulations to establish and discuss the sliding mode are K(0) = 0.3,
σ(0) = 0.6, α = 2, 4, 10 and 20, respectively.

Roughly, the lumped perturbation can be split into three levels (Ψ/Γ)0∼2.5,
(Ψ/Γ)2.5∼4.5 and (Ψ/Γ)4.5∼∞ for time intervals 0 ∼ 2.5, 2.5 ∼ 4.5 and 4.5 ∼ ∞,
respectively. Figure 5.3 shows the evolutions of perturbation Ψ/Γ, sliding
variable σ and switching gain K during the adaptation process for α = 2.
During the adaptation procedure, the switching gain K(t) is tuned automati-
cally without a priori knowledge of the bounds of Ψ and compensates for the
three levels of perturbations at time instants tc,1, tc,2 and tc,3, respectively.
Note, during the time interval 0 ∼ 2.5, the sliding variable first reaches zero

at tr,0 due to K(t)0∼tr,0 ≥
(Ψsgn(σ)

Γ

)
0∼tr,0 even though K∗0∼tr,0 <

∣∣Ψ
Γ

∣∣
0∼tr,0 .

This phenomenon shows the possibility that σ can reach zero even though K
keeps some value less than the upper bounds of Ψ/Γ. A real Example 4.1 in
Chapter 4 also shows that K → K∗ less than sup

∣∣Ψ/Γ
∣∣. After tr,0, σ becomes

negative because the lumped perturbation is greater than the switching gain,
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Figure 5.3: Simulations: sliding variable σ, lumped perturbation Ψ/Γ, and
switching gain K for α = 2.

i.e.,
(Ψsgn(σ)

Γ

)
0∼tc,1 ≥ K(t)0∼tc,1 > 0. Also, during the time interval 0 ∼ tr,1,

K monotonically increases its value until it compensates for the perturbation
(Ψsgn(σ)

Γ

)
0∼tc,1 at tc,1. After the first compensating time tc,1, of the first

perturbation level, K(t)tc,1∼2.5 ≥
(Ψsgn(σ)

Γ

)
tc,1∼2.5

> 0 forces σ → 0 at tr,1.

Similarly, for the perturbation levels,
(
Ψ/Γ

)
2.5∼4.5

and
(
Ψ/Γ

)
4.5∼∞ (during

the time intervals 2.5 ∼ 4.5 and 4.5 ∼ ∞, respectively), the switching gain
K(t) is tuned automatically and compensates for the two levels of perturba-
tions at time instants tc,2 and tc,3, and forces σ to reach the sliding surface
at tr,2 and tr,3, respectively. As discussed in Subsection 5.4.2, for any per-
turbation, K will compensate for it. From Figure 5.4, one can see that the
reaching time is reducing while α increases its value. The switching gain K(t)
is proportional to α. K(t) increases its value faster as α is larger. For the
cases where α has a value of 10 or 20 (see Figure 5.4), the negative perturba-
tion (occuring first) has been completely compensated by K(t) when σ for the
first time reaches zero and stays on the surface thereafter during the negative
perturbation. So, different from the cases of α = 2 and α = 4, there is no
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Figure 5.4: Simulations: trajectories of sliding variable σ with different values
of α: (a) α = 2, (b) α = 4, (c) α = 10 and (d) α = 20.

compensating-reaching phases reacting to the first perturbation for the cases
of α = 10 and α = 20. The relationship between the reaching time during the
reaching phase, i.e., tr − t∗, and α is shown in Figure 5.5. The reaching time

is approximately proportional to
1√
α

, which demonstrates the effectiveness of

the new form of RTE (5.47).

5.6.2 Experimental Illustration of a Real ASMC

Experiments were conducted on the experimental helicopter-model designed
by Quanser Inc. [21] (see Figure 1.1 in Chapter 1 and Figure 3.2 in Chapter 3
and refer to Section 1.6 for further details about the description of this setup)
to test the relationship of the reaching time and parameter α of the real ASMC
(5.19) introduced in [16], and the improvement of the modified ASMC design
discussed in this chapter (refer to (5.57)). To illustrate a single input ASMC
design, we consider the pitch dynamics entirely uncertain (i.e., can be written
in form (5.13), controlled with the front motor voltage u, while the body can
independently move about the yaw axis). This motion provides perturbation
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Figure 5.5: Simulations: reaching time tr − t∗ (i.e., reaching phase) vs.
1√
α
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effects on the controlled pitch dynamics. More details about the dynamics of
this model has been presented in the application section of Chapter 4 (refer to
dynamic model (3.43a) and Table 3.1 in Chapter 3. The pitch angle φ and rate

φ̇ are measurable. The sliding variable is defined as σ = φ̇+ φ+
1

2

∫ t
0 φ(τ)dτ .

The boundary layer thickness ε is settled to 4TsK, i.e., varying with K(t) [16].
The sampling period is chosen as Ts = 5 · 10−3 sec [21].

Figure 5.6 shows the convergence of the sliding variable σ by applying the
real ASMC law (5.19) with different values of the parameter α. One can see
that the reaching time tr reduces as α increases. However the relationship of
tr and α is not inversely proportional. In fact, it can be seen from Figure 5.7
that tr is roughly inversely proportional to

√
α which verifies Proposition 5.1.

The experimental performances of the real ASMC designs (5.19) and (5.57)
are shown in Figures 5.8-5.10. We can see that the accuracy is improved (see
Figure 5.8) with the modified switching gain design (5.57) and the control
chattering level is also reduced (see Figure 5.9) compared to the switching
gain design (5.19). These improvements are due to the reduced switching
gain amplitudes (see Figure 5.10) when applying the algorithm (5.57). In
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Figure 5.6: Experiments: Sliding variable with different values of α: (a) α = 1,
(b) α = 2, (c) α = 5 and (d) α = 10.

fact, we note that the chattering level is proportional to the magnitude of the
switching gain [61].

We also note, from Figure 5.6, that the reaching time cannot be reduced
too small. Otherwise, the chattering level will be increased (see Figure 5.6
(d)). This can be explained by the new form of RTE (5.47) where a too

small value of
1√
α

requires an extremely large α. For example, to reduce the

reaching time tr−t∗ to its 10th value, the control parameter α must be roughly
increased 100 times. As a result, the system responds to the perturbations
relatively slowly by using the existing ASMC gain law (5.19) or the alternative
gain law (5.57) (see Figure 5.8). In other words, the system is not very robust
while using the integral-based gain law (5.19) or (5.57).
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Figure 5.8: Experiments: Pitch angle results using algorithm (5.19) in green
dash-dot line and modified algorithm (5.57) in blue solid line, for different
values of α: (a) α = 1, (b) α = 2, (c) α = 5 and (d) α = 10.
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Figure 5.9: Experiments: Front motor voltage u results using algorithm (5.19)
in green dash-dot line and modified algorithm (5.57) in blue solid line, for
different values of α: (a) α = 1, (b) α = 2, (c) α = 5 and (d) α = 10.
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Figure 5.10: Experiments: Switching gain K results using algorithm (5.19)
in green dash-dot line and modified algorithm (5.57) in blue solid line, for
different values of α: (a) α = 1, (b) α = 2, (c) α = 5 and (d) α = 10.
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5.7 Conclusions

The main ASMC designs for nonlinear systems with unknown bounded un-
certainties under ideal sliding mode case are analyzed. Deficiencies in the
proofs and statements of ASMC designs of some recent contributions depicted
in papers and books are pointed out (e.g., [14, 16, 17, 52]). The behaviour of
the sliding variable is revisited with a new concept demonstrating the exis-
tence of compensating and reaching phases during the ASMC process. The
FTC results for the sliding variable and the switching gain error are proven
via a new Lyapunov approach and a novel majorant curve approach. Along
with the latest new proof, a new form for RTE is provided and explicitly re-
veals the influence of ASMC conditions (the gain α of the adaptation law and
the lower bound of the uncertainty Γ) on the upper-bound of the reaching
time. A tutorial example shows the different phases (i.e., compensating and
reaching periods). Then, with these numerical simulations, the experimental
results on a 1-DOF subsystem of the helicopter-model setup demonstrate the
effectiveness of the new form of RTE.

The simulation and experimental results also show that, by using the ex-
isting or the proposed gain law, the system responds to the perturbations
relatively slowly and the magnitudes of the control inputs (or the switching
gain) are relatively high. In other words, the system is not very robust and
the switching gain is overestimated for the integral-type adaptation gain laws
(the alternative gain law is an integral type adaptation gain law). The phe-
nomena can be explained by the new form of RTE where the reaching time
cannot be reduced too small. To further improve the robustness and reduce
the magnitudes of the switching gain, new approaches of ASMC designs will
be proposed in the following chapter.

More details in terms of motivations, objectives, novelties, pros and cons
of this chapter are presented in Table 5.1.
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Table 5.1: Chapter 5 Recap

Motivation(s)

- Evaluate the properties of the common adaptation
law for ASMC: FTC and gain boundedness.

- Application of the existing ASMC design.

Objective(s)

- Investigation of stability, FTC and robustness prop-
erties.

- Evaluation of the existing ASMC design.

Novelty(ies)

- New mathematical lemmas are analysed for proof
of the ASMC stability.

- A new concept demonstrates the existence of com-
pensating and reaching phases during the ASMC
process.

- A new Lyapunov approach and a novel majorant
curve method are provided to prove the FTC of
the existing IG-ASMC.

- A new form for RTE is provided and explicitly re-
veals the influence of ASMC conditions.

Pro(s)

- Final gain magnitudes of the existing IG-ASMC are
relaxed with the epsilon tuning method.

- The FTC of the existing IG-ASMC is novelly
proven.

- The weaknesses of less robustness and chattering
phenomena existing in IG-ASMC are pointed out
and explained with the new form of RTE.

Con(s)

- The system with IG-ASMC responds to the pertur-
bations relatively slowly.

- The switching gains in IG-ASMC are still overesti-
mated during the adaptation process.

- No solution provided regarding the weaknesses dis-
cussed above.
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6 Adaptive Sliding Mode
Control for Nonlinear
Systems with Uncertainties of
Unknown Constant Bounds –
New Design

This chapter proposes a new approach for ASMC designs. The goal is to obtain
robust, smooth, and fast transient performance for nonlinear systems with fi-
nite uncertainties of unknown bounds and limited available inputs so that the
phenomena of the slow response and the gain overestimation in most ASMC
designs can be greatly improved. Based on the sufficient conditions, we in-
troduce an integral-exponential adaptation law targeting the reduction of the
chatter levels of the sliding mode by significantly reducing the gain overestima-
tion while simultaneously speeding up the system response to the uncertain-
ties [118]. An illustrative example, numerical simulations on a variable-length
pendulum and a 2DOF helicopter model dynamics [21], as well as experiments
on the helicopter-based setup are performed to convey the discussed results.
This chapter is organized as follows. The overall context of the new proposed
ASMC design is introduced in Section 6.1. In Section 6.2, we state the control
problem and necessary assumptions, and we discuss the continuous equiva-
lent control. Section 6.3 first reviews the extended ASMC design discussed in
chapter 4 and three existing asymptotic reaching laws along with a new simple
exponential reaching law. Then, it proposes an ASMC design with a new gain
adaptation, called integral-exponential adaptation law, for scalar case and
ideal sliding mode (we call the design as IEG-ASMC design). Section 6.4 de-
velops the systematic ASMC designs using the proposed integral-exponential
adaptation law with a boundary-layer for real sliding mode. Simulations and
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experiments on a 2-DOF model device are discussed in Section 6.5, while
Section 6.6 concludes this Chapter.

6.1 Introduction

As discussed in the previous chapters, most ASMC designs have an integral
type adaptation law. However, for the ASMC designs with integral-type adap-
tation laws, the system response to the perturbation is relatively slow; more-
over, even the overestimation is avoided somehow, the chattering phenomenon
is still observed. Since the magnitude of the switching gain is proportional
to the magnitude of chattering level [61], a possible adaptation law is to re-
duce this switching gain to the minimum admissible value. Most recently,
the control gain in [16, 17] depends on the distance from the sliding vari-
able to a discontinuity surface (or a boundary layer which is different from
the conventional boundary layer used to replace the signum function) so that
the switching gain is reduced gradually when the sliding variable is inside
the boundary layer. The ASMC is also improved with the application to
HOSMC. In [61], the authors apply ASMC using a “super-twisting” algo-
rithm and in [18] ASMC is combined with second-order SMC. The improved
algorithms successfully reduced the switching gain so that the chattering level
is suppressed. However, in [18], the exact robust differentiator is required and
the design fits mainly for the ideal sliding mode; while in [13,16,17,19,61], the
system response is relatively slow at the beginning of the perturbation pro-
cess. Since the sliding surface is mostly designed such that the system state
is stable when the trajectory is on the surface, a slow response to the sliding
variable variation may encounter a serious stability problem. To achieve fast
response and chattering-free property, asymptotic reaching laws rather than
ASMC can be found in the form of the power reaching law [5] and exponen-
tial reaching law [56]. However, they either lose the robustness when system
states are around the sliding surface [5] or require a priori knowledge of the
uncertainty bounds [56].

The objective in this chapter is to propose a novel systematic ASMC ap-
proach for nonlinear systems with finite but unknown uncertainties. The con-
trol only appears in the first-order sliding mode, then the differentiator is not
required. Using the new design, the system reacts quickly to the perturbation
so that the overshoot is reduced, and the switching gain and the chatter-
ing level are further lowered. To investigate adequately the stabilization of
ASMC designs, the FTC will be briefly discussed in terms of compensating
phase and reaching phase during the ASMC process. To overcome the slow
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response in the existing real ASMC process, in particular, during the com-
pensating phase, and to simultaneously reduce the overall switching gain, an
integral-exponential gain (IEG) adaptation law combined with a boundary-
layer scheme will be proposed Finally, the new algorithm will be demonstrated
numerically and experimentally.

6.2 On ASMC Design Problem

In this section, we first state the control problem and assumptions for nonlinear
systems with finite uncertainty of unknown bounds. Then, we recall some
existing real ASMC designs.

6.2.1 Problem Statement and Assumptions

Recall the uncertain nonlinear dynamics

ẋ = f(x, t) + g(x, t) ·u (6.1)

where x ∈ χ is the state vector, with χ ⊂ Rn a domain containing the origin,
and u ∈ Rm the control input with m ≤ n. The vector f(x, t) ∈ Rn and the
matrix g(x, t) ∈ Rn×m are nonlinear time-varying smooth functions contain-
ing parametric uncertainties and external disturbances [14, 16, 51, 74, 89, 90].
The bounds of these uncertainties are unknown a priori. Solutions of dy-
namics (7.1) with discontinuous right-hand side are defined in the sense of
Fillipov [119]. Let f̂(x, t) and ĝ(x, t) be the known nominal parts of the vec-
tor fields f(x, t) and g(x, t), respectively, while f̃(x, t) and g̃(x, t) denote their
corresponding uncertain, bounded and unknown parts. Thus, we can write

f(x, t) = f̂(x, t) + f̃(x, t) (6.2)

and

g(x, t) = ĝ(x, t) + g̃(x, t) (6.3)

respectively. We assume [129]

Assumption 6.1. The uncertain term f̃(x, t) is norm-upper-bounded as

‖f̃(x, t)‖ ≤ fM (6.4)

for some unknown constant fM ≥ 0.
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Assumption 6.2. The uncertain term g̃(x, t) is norm-lower-bounded as

0 < gm ≤ ‖g̃(x, t)‖ (6.5)

for some unknown constant gm > 0.

Let x = 0 be an equilibrium point for (6.1). Consider σ(x, t) ∈ Rm a
measurable sliding vector composed of smooth functions in χ × [0,∞]. We
recall the targeted manifold Σ = {x ∈ χ s.t. ‖σ(x, t)‖ = 0} as the ‘ideal sliding
mode set’, and we introduce Σδ = {x ∈ χ s.t. ‖σ(x, t)‖ ≤ δ}, with δ > 0, as
the ‘real sliding mode set’ [115]. Moreover, we define for some δ ≥ ε > 0, the
manifold Σε = {x ∈ χ s.t. ‖σ(x, t)‖ ≤ ε} as the “target manifold”. Recall
that σ is designed such that, as soon as the vector x(t) reaches the set Σδ

in finite time t = tr > 0 and belongs to it thereafter, i.e., ∀t ∈ [tr,∞], the
dynamics (6.1) has to be stable in the real sliding mode. In addition, the
relative degree of (6.1) is given as r = [1, 1, · · · , 1]T1×m [74] (Recall the sliding
variable dynamics (4.11)), that is, the total time derivative of σ satisfies

σ̇(x, t) = Ψ(x, t) + Γ(x, t) ·u (6.6)

with Ψ(x, t) =
∂σ

∂t
+
∂σ

∂x
· f(x, t) and Γ(x, t) =

∂σ

∂x
· g(x, t) [74].

In the following, the arguments x and t of all the given vector fields (i.e.,
σ, Ψ, Γ, etc.) will be omitted for simplicity. Let Ψ and Γ can be defined by
nominal values (Ψ̂ and Γ̂) and uncertain amounts (Ψ̃ and Γ̃), respectively, as

Ψ = Ψ̂ + Ψ̃ and Γ = Γ̂ + Γ̃ (6.7)

We call Ψ “fully uncertain” if its nominal value is unknown or unreliable, (i.e.,
Ψ̂ = 0 and Ψ = Ψ̃). Based on Assumptions 6.1 and 6.2, we assume that

Assumption 6.3. The uncertain vector Ψ̃ ∈ Rm is norm-upper-bounded as

‖Ψ̃‖ ≤ ΨM (6.8)

where ΨM ≥ 0 is unknown a priori.

Assumption 6.4. The uncertain matrix Γ ∈ Rm×m is positive definite in the
wider sense, that is, its symmetric part Γs defined by

Γs =
1

2

(
Γ + ΓT

)
(6.9)

is positive definite in the regular meaning [130]. In particular, if m = 1, the
scalar term Γ is lower-bounded as

0 < Γ ≤ Γ (6.10)
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We notice that Assumptions 6.3 and 6.4 can be roughly considered as the
results of the Assumptions 6.1 and 6.2. For instance, if the sliding function
is designed as a PI transfer relation in the state vector x defined by (7.1),
i.e., σ = Kpx + Ki

∫ t
0 xdτ , then the sliding mode dynamics can be written

as σ̇ = Kpẋ + Kix. Thus, from (6.2) and (6.3), the nominal and uncertain

values of Ψ and Γ can be obtained as Ψ̂ = Kpf̂ + Kix, Ψ̃ = Kpf̃ , Γ̂ = Kpĝ
and Γ̃ = Kpg̃, respectively. Indeed, based on Assumptions 6.1 and 6.2, the
assumptions of the inequalities (6.8) and (6.10) can be easily satisfied in this
case.

6.2.2 Equivalent Control

For given nominal values of both Ψ and Γ known and reliable, it is often
recommended to apply the so-called equivalent control (Refer to Section 4.3 in
Chapter 4) to eliminate the known nonlinear term. Consider the compensator
[16,61]

u = ueq + us (6.11)

where the equivalent control ueq is designed to compensate for Ψ̂ using Γ̂, and
corresponds to the control action when all uncertainties vanish. The term us
compensates the uncertain dynamics. We define.

ueq = −Γ̂−1Ψ̂ and us = Γ̂−1v (6.12)

Given (6.7), we substitute (6.11) and (6.12) into (6.6)

σ̇ =
(
Ψ̃− Γ̃Γ̂−1Ψ̂

)
︸ ︷︷ ︸

Ψeq

+
(
I + Γ̃Γ̂−1

)
︸ ︷︷ ︸

Γeq

v (6.13)

The newly obtained terms Ψeq and Γeq are ‘residual’ uncertainties with un-
known bounds. However, if the nominal values are sufficiently reliable (close
to their actual values), the magnitudes of the new bounds for Ψeq and Γeq
are supposed to be smaller than those for Ψ and Γ in (6.6). As a result, the
control performance is supposed to be better as well. From (6.13), one can
see that the newly obtained uncertain term Ψeq has fully unknown bounds. In
other words, for any first order nonlinear dynamic system, in form (6.6), with
uncertainties of unknown bounds, essentially we face the problem of bounded
uncertain dynamics with unknown bounds. From (6.11) and (6.12), one can
also see that u(v) and v(u) are bijective. Without loss of generality and for
simplicity, we consider that Ψ is fully uncertain (without any reliable nominal
values), i.e., Ψ , Ψ̃, provided that Γ is nonsingular.
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6.3 New integral-exponential Reaching Law for
Ideal ASMC – Scalar Case

Two important considerations in targeted ASMC design including fast re-
sponse and low chattering will be required. In this section, we first recall two
used switching schemes: integral adaptation laws and asymptotic reaching
laws. Then, we introduce our new design, called integral-exponential adapta-
tion law [129].

Consider the uncertain nonlinear system (6.1) and the sliding variable
dynamics (6.6) with m = 1. When the uncertainties are fully unknown (i.e.,
the nominal values are not available), we recall the feedback control

u = −K · sgn(σ) (6.14)

6.3.1 Integral Adaptation Laws for Ideal Sliding

Given the nonlinear uncertain system (6.1) with the sliding variable dynamics
(6.6) controlled by (6.14), we recall the extended ASMC design with integral
adaptation law based on the necessary and sufficient condition (4.43) discussed
in Lemma 4.4 (refer to Section 4.4 in Chapter 4),

K(t) =

∫ t

0
G(|σ|)dτ (6.15)

Alternatively, the form (6.15) can be presented implicitly as [117]

K̇(t) = G(|σ|) (6.16)

In particular, this function is chosen as G(|σ|) = α|σ| with α > 0, that is,
(6.16) becomes [11,14–17,19]

K̇ = α|σ| (6.17)

for ideal ASMC [115]. As analysed in Theorem 5.4, the reaching time of (6.17)

can be estimated as tr ≤
π

2
√

Γα
+ t∗ with t∗ the compensating time defined in

Lemma 5.5 (refer to Section 5.4 in Chapter 5). Based on the FTC analysis, the
reaching time can be tuned by the design parameter α. In fact, it is inversely
proportional to the square root of α. This square root limits the effort of
α. For example, to reduce the reaching time tr to its 10th value, the design
parameter α is required to increase its value 100 times. This implies that, in
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the existing ASMC designs with integral adaptation law (e.g., (6.17)) tr cannot
be reduced significantly and the system response to perturbations is relatively
slow. Moreover, the switching gain K still increases during the reaching phase
even though it has already compensated for the lumped perturbation after the
compensating phase. This fact introduces the undesirable overestimation of
K and, consequently, high level of chattering [61].

6.3.2 Asymptotic Reaching Law

To suppress the chattering phenomena, asymptotic reaching laws were in-
troduced [5, 56, 60, 131]. Two approaches have been used: affine and power
switching function gains given by [5, 60]

K(σ) = K0 +K1|σ| (6.18)

with K0, K1 > 0, and

K(σ) = K0|σ|γ (6.19)

with 0 < γ < 1, respectively. These gains called reaching laws increase the
reaching speed when the state is far away from the switching surface, and
reduce the rate when the state is near the surface. The application of these
laws results in FTC with low chattering. However, the reaching law (6.18)
requires a priori knowledge of the bounds of the uncertainties [5,60]. The form
(6.19) rapidly decreases its feedback gain and thus reduces the robustness of
the controller near the sliding surface. To overcome the drawbacks of (6.19),
an exponential reaching law is proposed in [56]

K(σ) = − K0

δ0 + (1− δ0)e−γ1|σ|p
(6.20)

with K0 > 0, 0 < δ0 < 1, γ1 > 0 and p a strictly positive integer. The result
of the exponential reaching law (6.20) exhibits fast response, low chattering
and robustness near the sliding surface. However, it still requires a priori
knowledge of the bounds of the uncertainties. Otherwise, the robustness might

be lost if K0 <
Ψsgn(σ)

Γ
, the feedback is even unstable if

K0

δ0
<

Ψsgn(σ)

Γ
, and

the chattering level might be too high if K0 >>
Ψsgn(σ)

Γ
.
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6.3.3 Simple Exponential Law

To overcome these limitations and to keep the advantage from this exponential
form, (6.19) and (6.20) can be fitted in terms of properties as

K(σ) = K0e
γ1|σ|p (6.21)

with γ1 > 0 and p a strictly positive integer. This form continues intensively
to take advantage of the form (6.20) without requiring knowledge of the un-
certainty upper-bounds. Also, it equips the same advantages of (6.18) and
(6.19).

Proposition 6.1. Consider the nonlinear uncertain system (6.1), with the
sliding variable dynamics (6.6), controlled by (6.14) and (6.21). The sliding
variable σ converges to

• 0 in finite time if there exists η > 0 s.t. K0 ≥
Ψsgn(σ)

Γ
+η for all t ≥ 0.

• a domain |σ| ≤
[ 1

γ1
ln(
|Ψ|

ΓK0
)
]1/p

asymptotically otherwise.

Proof. For the case when K0 ≥
Ψsgn(σ)

Γ
+ η, we have, from (6.6) and (6.14),

d

dt
|σ| = Ψsgn(σ)− ΓK0e

γ1|σ|p ≤ −ηΓ (6.22)

From the differential inequality (6.22), we obtain

|σ(t)| ≤ |σ(0)| − ηΓt (6.23)

that is, |σ(t)| = 0 at most after tr =
|σ(0)|
ηΓ

.

For the case when |σ| >
[ 1

γ1
ln(
|Ψ|

ΓK0
)
]1/p

, we have, from (6.6) and (6.14),

d

dt
|σ| = Ψsgn(σ)− ΓK0e

γ1|σ|p

< Ψsgn(σ)− Γ
|Ψ|
Γ

< 0 (6.24)

Then, |σ| converges to the domain |σ| ≤
[ 1

γ1
ln(
|Ψ|

ΓK0
)
]1/p

, asymptotically

[1].
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Proposition 6.1 provides rather a new asymptotic reaching law than an
ASMC law. Comparing to the simple feedback law “u = −K0σ” where σ is

only converging to the domain |σ| ≤ |Ψ|
ΓK0

, the ASMC (6.14) with (6.21) could

confine the sliding variable σ closer to the sliding surface σ = 0 by tuning γ1

and p. With this new law, σ will never diverge because it is UUB even the
bounds of uncertainties are unknown. Thus, it improves the exponential law
(6.20) introduced in [56]. However, it still requires a priori knowledge of the
bounds of the uncertainties to assure FTC of σ to zero.

6.3.4 integral-exponential Adaptation Law

In order to overcome the drawbacks of the aforementioned reaching laws and
simultaneously keep their advantages, we introduce a new reaching law com-
bining an integral adaptation term with an exponential term as

{
˙̆
K(σ) = G(|σ|)
K(σ) = K̆(σ) + γ0(eγ1|σ|

p − 1)
(6.25)

where γ0 > 0, γ1 > 0, p is a strictly positive integer and G(|σ|) is a positive
definite function of |σ| [116]. To simply illustrate the new design, we use
G(|σ|) = α|σ| [129], i.e.,

{
˙̆
K(σ) = α|σ|
K(σ) = K̆(σ) + γ0(eγ1|σ|

p − 1)
(6.26)

To illustrate the new design more simply, we remove the tuning parameters
γ1 and p and replace γ0 with β > 0 [129], i.e.,

{
˙̆
K(σ) = α|σ|
K(σ) = K̆(σ) + β(e|σ| − 1)

(6.27)

Theorem 6.1. Consider the nonlinear uncertain system (6.1), with the sliding
variable dynamics (6.6), controlled by (6.14). If the gain K(t) is designed as
(6.25), then the sliding variable σ → 0 in finite time.

Proof. In this new design, there still exist a compensating phase and a reaching
phase. Thus, the proof refers to the one of Proposition 4.1 (refer to Section
4.6 in Chapter 4) with a slight difference. We briefly state:
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Compensating phase: Since K̆ keeps growing whenever σ 6= 0, γ0(eγ1|σ|
p−

1) > 0 and any lumped perturbation
Ψsgn(σ)

Γ
is bounded. There always exist

a time instant t∗ ≥ 0 and positive scalar η > 0 s.t. for all t ≥ t∗

K(t) ≥ Ψsgn(σ)

Γ
+ η (6.28)

Reaching phase: From Lemma 4.4 (refer to Section 4.4 in Chapter 4),
the system trajectory moves into reaching phase and σ = 0 is established
in finite time. Moreover, the upper-bound of reaching time is estimated as

tr ≤
|σ(t∗)|

Γε
+ t∗

Remark 6.1. Theorem 6.3 can be exactly the same when we use (6.26) or
(6.27).

The new design (6.25) (in particular, (6.27)) has two parts. The first part,
integration term K̆(σ), provides the ability to compensate for uncertainties
with unknown bounds and forces the sliding variable to converge to the sliding
surface in finite time. Compared to the well-known ASMC law (6.17), the new
algorithm (6.25) adds an exponential term which has the following properties.

On the one hand, the exponential term γ0(eγ1|σ|
p − 1) provides an extra

but sufficiently high gain when the state is far away (i.e., |σ| is large) from the
sliding surface. Then, K (with the exponential term) reaches and compensates

for the lumped perturbation
Ψsgn(σ)

Γ
more quickly than K̆ alone (i.e., law

(6.17) or K without an exponential term). Thus, the compensating time t∗

is reduced; the leaving σ from the sliding surface (because of
Ψsgn(σ)

Γ
>

K) quickly turns around and heads to the sliding surface, and the system
response to perturbations is speeded up. On the other hand, when σ → 0, the
exponential term reduces its value rapidly until it disappears at the sliding
surface. Then, after reaching the sliding surface, the overall gain is reduced
and the unwanted chattering level is expected to be much more reduced [129].

Remark 6.2. The tuning parameter p introduced in (6.25) (as well as (6.21)
and (6.27)) comes from the exponential reaching law (6.20). It affects the
response and the attraction region. From (6.21) and the end of the proof of

Proposition 6.1, if
[ 1

γ1
ln(
|Ψ|

ΓK0
)
]
> 1, a large p speeds up the response and

improves the accuracy; if
[ 1

γ1
ln(
|Ψ|

ΓK0
)
]
< 1, a large p slows down the response
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and sacrifices accuracy. We choose p = 1 in the simulation results of this paper
for the sake of simplicity and brevity.

Remark 6.3. It should be noted that the switching gain remains constant after
the sliding mode is achieved (i.e., when σ = 0). Thus, the new algorithm
reduces the overall gain with a significant amount and speeds up the system
response. In the sense of fast compensation for the uncertainties, the new
algorithm exhibits the ability of estimating the perturbations with limited
information. In other words, it equips the ability of SMCPE but does not
require the information of VHOS. Moreover, one can see, by evaluating the
final gain reduction, that the system state is constrained near the sliding
surface [129]. Roughly speaking, the final gain reduction is the vanished term,
i.e., the exponential term, and the maximum gain reduction can be roughly
estimated as

max(Kreduction) ≈ γ0(eγ1 max |σ|p − 1) (6.29)

From (6.29), one can see that the new algorithm either provides a large gain
reduction (if max |σ| is relatively large) or confines |σ| not leaving far away
from the sliding surface (if max |σ| is small). As a result, the chattering level
is reduced. Moreover, while |σ| leaves the sliding manifold Σ, the switching
gain increases its value quickly and compensates for the lumped perturbation
quickly thanks to the added exponential term. Thus, it forces |σ| to turn
around quickly and start to head to the sliding manifold. As a result, the
system state is constrained near the sliding manifold and the system is more
robust (not leaving far away from the sliding manifold Σ). In the sense of fast
compensation for the uncertainties, the new algorithm exhibits the ability
of estimating the perturbations with limited information. In other words,
it equips the ability of SMC with perturbation estimation without need for
further information of VHOS. In brief, compared to the existing ASMC design
(e.g., [11, 14–17, 19, 74]), the new design (6.25) greatly improves the system’s
robustness and maintains a lower overall gain while the sliding mode is built
[129].

6.3.5 Motivational Example

To illustrate the dynamic behavior of the ASMC design using the new gain
law introduced in its simple form (6.27) with K(0) = K0, we consider the
simple closed-loop dynamics

σ̇ = 1−K(t)sgn · (σ) (6.30)
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Figure 6.1: Maximum gain performance

Obviously σ → 0 in finite time. The performance of these closed-loop dynam-
ics are tested for different values of α, β and K(0). Figures 6.1 and 6.2 show
the maximum gain Kmax reached during the adaptation process and reaching
finite time Tc for the different cases [132]. From Figure 6.1, one can see that
Kmax is decreasing when β is increasing or K0 increasing. However, Kmax is
increasing as α is increasing. In contrast, Tc is decreasing when α and K0 are
increasing, and Tc increasing as β increasing (see Figure 6.2).

6.3.6 Tutorial Example

In the following example, we compare the reaching performance (RTE, and
accuracy), the gain evolution and consequently the perturbation estimation
of three different gain algorithms: (a) Integral law (6.17), introduced in [14,
16, 19], (b) Exponential reaching law (6.21) and (c) integral-exponential law
(6.27). Consider a simple scalar dynamics (with uncertainties) in the form
of (6.1). The control objective is to stabilize the state x at the origin, i.e.,
x = 0. The sliding variable is selected as σ = x simply. From (6.1), Ψ = f(t)
and Γ = g(t) are chosen as (recall the equation (5.59) and see Figure 5.2 in
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Figure 6.2: Finite time performance

Chapter 5) [129]

Ψ =− 1.6 + 0.7δ(t− 0.5) + 5.4δ(t− 2.5) + 0.5δ(t− 2.7)− 0.5δ(t− 3.8)

+ 0.5δ(t− 3.9)− 0.5δ(t− 4.5) + 0.5δ(t− 4.6)− 0.3δ(t− 6.1) (6.31)

Γ =2 +
5∑

n=0

1

2n+ 1
sin
((2n+ 1)π(t− 2.5)

2

)
(6.32)

where δ(t− ti) is a shifted unit step function which has a value of 0 up to time
instant ti and 1 thereafter. K(0) = K0 = 0.3 and σ(0) = 0.6.

One can see that in Figure 6.3 there are three stages of perturbations:
first perturbation (negative perturbation, from t = 0 to t ≈ 2.5 sec), second
perturbation (positive perturbation, from t ≈ 2.5 to t ≈ 4.5 sec) and third
perturbation (positive perturbation, from t ≈ 4.5 to t ≈ 6.5 sec). These
perturbations force σ to swing to the negative side (σ < 0) and positive
side (σ > 0), respectively. Figure 6.3 also shows that the switching gain

K(t) compensates for the lumped perturbation
Ψ

Γ
at time instants tc,1, tc,2

and tc,3 and then reaches the sliding surface at time instants tr,1, tr,2 and
tr,3, respectively. One can see in Figure 6.3 that the sliding variable from
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Figure 6.3: Switching gain K(t), lumped perturbation
Ψ

Γ
and the resulting

sliding variable σ (using algorithm (a): Integral law (6.17) with α = 3 [14,16,
19]).

the positive side converges to the sliding surface (σ = 0), reaches it at tr,0
and moves away to the negative side (i.e., it does not stay on the sliding
surface) as the ultimate in compensating phase is not achieved yet. In fact,

after that K(t) compensates for the lumped perturbation
Ψsign(σ)

Γ
at the

time instant tc,1, σ starts to converge to the sliding surface and reaches it
at tr,1. After a while, the perturbation again exceeds the switching gain at
t ≈ 2.5, σ departs from the sliding surface, and K starts to increase its value
to compensate for the new perturbation and forces the sliding variable to
reach the sliding surface. This compensating-reaching phase repeats untill the
maximum lumped perturbation is completely compensated by the switching
gain at t = t∗ (see Figure 6.3). Based on the adaptation process, the switching
gain K(t) is tuned automatically without a priori knowledge of the bounds
of Ψ. Also, in Figure 6.3, σ reaches the sliding surface from t = 0 to t = tr,0

while K(t) >
Ψsign(σ)

Γ
but K(t) <

|Ψ|
Γ

. It implies that while the sliding

130



6.3. New integral-exponential Reaching Law for Ideal ASMC – Scalar Case
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Figure 6.4: Switching gain K(t), lumped perturbation
Ψ

Γ
and the resulting

sliding variable σ (using algorithm (b): Exponential reaching law (6.21) with
K0 = 1, γ1 = 5 and p = 1).

variable may still approach the sliding surface even K(t) <
|Ψ|
Γ

(i.e., even the

sufficient condition (4.39) for σ → 0 of Lemma 4.3, introduced in Section 4.4
of Chapter 4) does not hold

Figure 6.4 is obtained from exponential reaching law (6.21). It shows

that the switching gain K(t) ‘almost’ follows the lumped perturbation
Ψ

Γ
which means that the new exponential reaching law (6.21) provides ‘almost’
the required gain without the knowledge of the lumped perturbation bounds.
This phenomenon also indicates the fast response to any change of uncertainty
levels. Moreover, the final gain in Figure 6.4 is reduced by approximately 70%
of its corresponding value in Figure 6.3. Thus, the gain overestimation noticed
in conventional ASMC is greatly reduced when using (6.21). However, when
looking at the behaviour of σ in Figure 6.4, it is only UUB not FTC (σ did
not converge to zero). This convergence in a UUB sense phenomenon confirms
Proposition 6.1.

Figure 6.5 is obtained under the new adaptation law, integral-exponential
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K(t) and Ψ(t)/Γ(t)
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Figure 6.5: Switching gain K(t), lumped perturbation
Ψ

Γ
and the resulting

sliding variable σ (using new algorithm (c): integral-exponential adaptation
law (6.27) with α = 3, γ0 = 1, γ1 = 5 and p = 1).

gain (6.27), with α = 3, γ0 = 1, γ1 = 5 and p = 1. It shows how the

switching gain K(t) follows the lumped perturbation
Ψ

Γ
, closely. The proposed

integral-exponential reaching law (6.27) also provides roughly the required
gain without the knowledge of the lumped perturbation bounds. Comparing
to Figure 6.3, one can see from Figure 6.5 that, with the new algorithm,
the switching gain quickly responds to the perturbation and the variation
of σ is greatly suppressed. Moreover, the final switching gain is reduced by
approximately 60% of its value given in Figure 6.3. It implies that the gain
overestimation is greatly reduced and the chattering level would be suppressed
as well. Comparing to Figure 6.4, the sliding variable σ in Figure 6.5 reaches
the sliding surface at tr,3 which verifies FTC stated by Theorem 6.1.

Thus, with the new algorithm the control objectives, such as the reach-
ing time, the chattering level, the maximum variation of σ and the energy
consumed, in ASMC design for nonlinear systems with unknown bounds are
relatively optimized and simultaneously achieved.
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6.4 integral-exponential Reaching Law for Real
ASMC Designs

6.4.1 Integral Adaptation Law for Real Sliding

In real ASMC techniques [11, 13–17, 19], K is designed to adaptively com-
pensate for the uncertainties. We recall the two similar boundary-layer -based
approaches

K̇ = α · |σ| · sgn
(
|σ| − ε

)
(6.33)

introduced in [16] and

K̇ = α ·
(
|σ| − ε

)
(6.34)

in [17], respectively. ε is the width of the boundary layer. The properties of
both designs are very similar. As discussed in Proposition 5.1 (refer to Section

5.5 in Chapter 5), the reaching time is also estimated as tr ≤
π

2
√

Γα
+t∗ (same

as the case of ASMC for ideal sliding). Thus, it still exhibits relatively slow
response at the beginning stage that the sliding variable is leaving the sliding
surface forced by perturbations. It also maintains relatively high values after
the sliding mode has been built, and thus, produces relatively high chattering
levels.

6.4.2 Case of a Single Input

Given the sliding dynamics (6.6) with the switching control (6.14), consider
the dynamic gain design

{
˙̆
K = α‖σ‖ · sgn

(
‖σ‖ − ε

)

K = K̆ + β ·
(
e‖σ‖ − 1

) (6.35)

with ε > 0 and β > 0. The reaching law (6.35) is an extension of (6.27) to the
real ASMC. In the case of a single input (i.e., m = 1), the norm of the variable
is simply reduced to its absolute value. We have the following theorem [118].

Theorem 6.2. Consider the nonlinear uncertain system (6.1), with the sliding
variable dynamics (6.6), under Assumptions 6.1-6.4, controlled by (6.14). If
the gain K(t) is designed as (6.35), then for any initial condition |σ| > ε the
sliding variable σ converges to the domain |σ| ≤ ε and stays on the domain
|σ| ≤ δ, i.e., x ∈ Σδ in finite time.

Proof. The detailed proof is shown in Appendix A.8.
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6.4.3 Illustrative Example

Consider the following nonlinear scalar dynamics with external disturbance

σ̇ = cosσ + d(t) + bu (6.36)

where b = 1 + 0.1 sin 3t is a positive time-varying coefficient of the input u.
d(t) =

(
1+r1

)(
δ(t−5)−δ(t−10)

)
+
(
2+r2

)(
δ(t−10)−δ(t−15)

)
, where r1 and

r2 are random values drawn from the standard uniform distribution on the
open interval

(
0, 1
)
, that is, d(t) is an external disturbance taking a first ran-

dom value between 1 and 2, exerting on the system at t = 5 and disappearing
at t = 10, then a second random value between 2 and 3, exerting on the system
at t = 10 and disappearing at t = 15. Using the switching control (6.14), the
gain K, defined by (6.35), is able to stabilize σ to zero. Taking the parameter
ε = 0.01, the initial conditions σ(0) = 0 and K̆(0) = 0, and the sampling time
Ts = 5 ms, the simulations have been conducted for different values of α and
β. The simulations have been run repeatedly creating a population of results
shown in Figures 6.6-6.11. Each iteration corresponds to simulations using one
generated random disturbance magnitude (from one pair of (r1, r2)). We sim-
ulate the closed-loop dynamics using the different adaptation laws and their
parameters. Applying multiple iterations, the collected data are summarized
in terms of maximum state values σmax depicted during the simulation period
of 20 s (see Figures 6.6 and 6.7), steady-state values |σ|min (i.e., absolute state
error) during the permanent regime (see Figures 6.8 and 6.9), and maximum
switching gain values Kmax (see Figures 6.10 and 6.11).
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Figure 6.6: Numerical illustration data: Maximum state values σmax obtained
for different random disturbances (evaluated in terms of average values). Re-
sults using the existing IG-ASMC (7.10) (green dot) and the proposed IEG-
ASMC (6.35) (blue cross for β = 10 and black plus sign for β = 100) combined
with α = 1
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Figure 6.7: Numerical illustration data: Maximum state values σmax obtained
for different random disturbances (evaluated in terms of average values). Re-
sults using the existing IG-ASMC (7.10) (green dot) and the proposed IEG-
ASMC (6.35) (blue cross for β = 10 and black plus sign for β = 100) combined
with α = 10
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Figure 6.8: Numerical illustration data: Steady-state values |σ|min obtained
for different random disturbances (evaluated in terms of average values). Re-
sults using the existing IG-ASMC (7.10) (green dot) and the proposed IEG-
ASMC (6.35) (blue cross for β = 10 and black plus sign for β = 100) combined
with α = 1
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Figure 6.9: Numerical illustration data: Steady-state values |σ|min obtained
for different random disturbances (evaluated in terms of average values). Re-
sults using the existing IG-ASMC (7.10) (green dot) and the proposed IEG-
ASMC (6.35) (blue cross for β = 10 and black plus sign for β = 100) combined
with α = 10
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Figure 6.10: Numerical illustration data: Maximum switching gain values
Kmax obtained for different random disturbances (evaluated in terms of aver-
age values). Results using the existing IG-ASMC (7.10) (green dot) and the
proposed IEG-ASMC (6.35) (blue cross for β = 10 and black plus sign for
β = 100) combined with α = 1
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Figure 6.11: Numerical illustration data: Maximum switching gain values
Kmax obtained for different random disturbances (evaluated in terms of aver-
age values). Results using the existing IG-ASMC (7.10) (green dot) and the
proposed IEG-ASMC (6.35) (blue cross for β = 10 and black plus sign for
β = 100) combined with α = 10
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Figures 6.12-6.17 show a sample depicted from the simulation data de-
scribed above. The state σ, the input u and the switching gain K under the
external disturbance d(t) are given using the existing IG based ASMC (i.e.,
(6.33)), simply referred to as IG-ASMC in the following, and the proposed
IEG-based ASMC (i.e., (6.35)), referred to as IEG-ASMC, for α = 1 and
α = 10, and β = 10 and β = 100. From the collected data (refer to Figures
6.6-6.11), we can observe that the results obtained with the existing approach
with α = 1 and α = 10 show higher maximum state values (getting temporar-
ily far from the origin), greater errors and relatively high switching gain values
compared to the proposed approach. The samples shown in Figures 6.12-6.17
validate these facts of large states and nondecreasing gains of the IG-ASMC.
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Figure 6.12: Numerical illustration sample: State σ under undetermined
bounded external (random) disturbance d(t). Results using the existing IG-
ASMC (6.33) (green dot) and the proposed IEG-ASMC (6.35) (blue cross for
β = 10 and black plus sign for β = 100) combined with α = 1

These gains are higher as α increases, while the time evolutions of the state
are improved in terms of maximum reachable values. Such performances are
improved in terms of large state escape, error performance and switching gain
values with different scenarios of IEG-ASMC. In particular, using α = β = 10
demonstrates the best performances in general regarding all the criteria. One
can see that the system compensated by the proposed adaptation law (6.35)
responds to the disturbance d(t) faster and constrains the state closer to the
sliding surface than with the existing adaptation law (6.33). Moreover, the
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Figure 6.13: Numerical illustration sample: State σ under undetermined
bounded external (random) disturbance d(t). Results using the existing IG-
ASMC (6.33) (green dot) and the proposed IEG-ASMC (6.35) (blue cross for
β = 10 and black plus sign for β = 100) combined with α = 10
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Figure 6.14: Numerical illustration sample: Input u under undetermined
bounded external (random) disturbance d(t). Results using the existing IG-
ASMC (6.33) (green dot) and the proposed IEG-ASMC (6.35) (blue cross for
β = 10 and black plus sign for β = 100) combined with α = 1
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Figure 6.15: Numerical illustration sample: Input u under undetermined
bounded external (random) disturbance d(t). Results using the existing IG-
ASMC (6.33) (green dot) and the proposed IEG-ASMC (6.35) (blue cross for
β = 10 and black plus sign for β = 100) combined with α = 10
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Figure 6.16: Numerical illustration sample: Switching gain K under undeter-
mined bounded external (random) disturbance d(t). Results using the existing
IG-ASMC (6.33) (green dot) and the proposed IEG-ASMC (6.35) (blue cross
for β = 10 and black plus sign for β = 100) combined with α = 1
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Figure 6.17: Numerical illustration sample: Switching gain K under undeter-
mined bounded external (random) disturbance d(t). Results using the existing
IG-ASMC (6.33) (green dot) and the proposed IEG-ASMC (6.35) (blue cross
for β = 10 and black plus sign for β = 100) combined with α = 1

control input using the proposed law has less magnitude and a smaller chat-
tering level than with the existing law. Also, by increasing α from 1 to 10, the
error performance of the proposed method does not change. The maximum
variation of the state σ by using the existing method is indeed reduced when α
increases. However, the existing method simultaneously creates more chatter-
ing phenomenon and non-decreasing gains. When α = 10, the switching gain
K of the existing adapted law (6.33) starts to wind up while the one computed
from (6.35) keeps almost the same shape, except the hyper-excited variation
with small magnitudes during the steady state regime (see Figures 6.12-6.17).
The new algorithm avoids gain overestimation observed when max |σ| is rela-
tively large (refer to Figures 6.12, 6.13, 6.16 and 6.17), confines |σ| not leaving
far from the sliding surface (see zoomed sections in Figures 6.12 and 6.13) and
reduces the control chattering (refer to Figures 6.14 and 6.15). Moreover,
while |σ| leaves the sliding manifold Σ, the switching gain increases its value
quickly and compensates for the lumped perturbation instantaneously thanks
to the added exponential term (see Figures 6.16-6.17). Thus, it forces |σ| to
turn around and start to head to the sliding manifold.
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6.4.4 Case of MIMO Unit Control with Uncertain Γ

Consider the case of MIMO sliding dynamics (6.6) with the feedback control
u(t) ∈ Rm defined by [74,120]

u(t) =

{
−K(t) · σ‖σ‖ if σ 6= 0

0 if σ = 0
(6.37)

Substituting (6.37) into (6.6), we obtain for σ 6= 0

σ̇ = Ψ− K

‖σ‖Γ ·σ (6.38)

Consider the case ‖σ‖ > ε and the target manifold Σδ, We have the following
Theorem.

Theorem 6.3. Consider the nonlinear uncertain system (6.1), with the sliding
dynamics (6.6), under Assumptions 6.3–6.4, controlled by (6.37). If the gain
K(t) is designed as (6.35), then for any initial condition ‖σ‖ > ε, the sliding
variable σ converges to the domain ‖σ‖ ≤ ε and stays on the domain ‖σ‖ ≤ δ,
i.e., x ∈ Σδ in finite time.

Proof. Let the positive definite function

V = σTσ (6.39)

be a Lyapunov function candidate. Using (6.38), for σ 6= 0, the time derivative
of V along the system trajectories is

V̇ = σT σ̇ + σ̇Tσ

= 2σTΨ− K

‖σ‖(σTΓσ + σTΓTσ) (6.40)

Using (6.9) and (6.35), we have

V̇ = 2‖σ‖
(σTΨ

‖σ‖ −
K

‖σ‖2σ
T
[1
2

(Γ + ΓT )
]
σ
)

= 2‖σ‖
(σTΨ

‖σ‖ −K
σTΓsσ

σTσ

)

= 2‖σ‖
(σTΨ

‖σ‖ − β
(
e‖σ‖ − 1

)σTΓsσ

σTσ
− K̆ σTΓsσ

σTσ

)
(6.41)
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We denote by Ω1(t) =
σTΨ

‖σ‖ − β(e‖σ‖ − 1)
σTΓsσ

σTσ
. The scalar Ω1(t) is upper-

bounded since Γs > 0, e‖σ‖− 1 > 0 and ‖Ψ‖ ≤ ΨM (refer to Assumption 6.3).
For ‖σ‖ > ε, (6.41) can be rewritten as

V̇

2
√
V

= Ω1(t)− K̆ σTΓsσ

σTσ
(6.42)

For any ‖σ‖ > ε, from (6.35), K̆ keeps growing and the positive scalar

K̆
σTΓsσ

σTσ
will eventually compensate for the upper-bounded Ω1(t), i.e., K̆

σTΓsσ

σTσ
>

Ω1(t). Since this compensating action will occur for any ‖σ‖ > ε and Ω1(t) ≥

K̆
σTΓsσ

σTσ
(i.e.,

d

dt
‖σ‖ ≡ V̇

2
√
V
≥ 0), we conclude that there exist a time

instant t∗ and a positive scalar ω1 such that

K̆
σTΓsσ

σTσ
≥ Ω1(t) + ω1 (6.43)

or, equivalently, using (6.42) for all t ≥ t∗

d

dt
‖σ‖ ≤ −ω1 (6.44)

Now, integrating both sides of the inequality (6.44) between t∗ and t ≥ t∗, we
obtain

‖σ‖ ≤ −ω1 ·
(
t− t∗

)
+ ‖σ(t∗)‖

Then, ‖σ‖ is decreasing with a rate of at least ω1 and reaches the domain ‖σ‖ ≤
ε in finite time [1]. Moreover, the maximum reaching time tr is estimated as

tr ≤
‖σ(t∗)‖ − ε

ω1
+ t∗ (6.45)

for some t∗ ≥ 0, ε > 0 and ω1 > 0.

As soon as ‖σ‖ reaches the boundary layer, i.e., ‖σ‖ < ε, K̆ starts
to decrease (refer to (6.35)). The decrease of K̆ continues until the scalar

K̆
σTΓsσ

σTσ
≤ Ω1(t), i.e., V̇ ≥ 0. Then, V (as well as ‖σ‖) starts to increase.

So, it is possible that ‖σ‖ increases over ε. As soon as ‖σ‖ > ε, it turns to the
case discussed above. In brief, K̆ changes its value around Ω1 and ‖σ‖ stays
around the boundary layer limit ‖σ‖ = ε. This also implies that “σ has stable
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finite reaching time dynamics with a bounded deviation of σ from the domain
Σ during the transient response” [74], i.e., σ keeps in a real sliding mode set
Σδ after reaching the target manifold Σ [16,74].

Compared to the ASMC law (6.33), the new algorithm (6.35) adds the ex-
ponential term, β(e‖σ‖−1), which provides an extra but sufficiently high gain
when the state is far away from the sliding surface (i.e., ‖σ‖ is large). Thus,

K
σTΓsσ

σTσ
(including the exponential term) compensates for the perturbation

σTΨ

‖σ‖ more quickly than with K̆ alone and forces the sliding multi-variable

σ initially far away from its desired sliding manifold (because of V̇ > 0, i.e.,
σTΨ

‖σ‖ > K
σTΓsσ

σTσ
) to turn around heading to the sliding manifold Σ apace.

Moreover, when ‖σ‖ tends to Σ, the exponential term reduces its value rapidly.
Then, after reaching Σ, the overall gain is reduced and the unwanted chat-
tering level is expected to be much lower since the amplitude of chattering is
proportional to the magnitude of the switching gain [61].

Different from the traditional boundary layer ε whose purpose is to smooth
out the control discontinuity by replacing the discontinuous signum function

with a continuous one (e.g.,
‖σ‖
ε

) within the layer [49], the boundary layer

‖σ‖ ≤ ε introduced in (6.35) is to provide the reduction of switching gain after
reaching the layer so that the gain can be gradually reduced to its minimum

admissible value (i.e., K
σTΓsσ

σTσ
≈ σTΨ

‖σ‖ ). Moreover, the traditional boundary

layer ε is of constant width usually, while ε in the proposed ASMC can be
either constant if the magnitudes of uncertainties Ψ and Γ are fully unknown,
or time-varying (depending on the switching gain K [16,74]) if some nominal
values of Ψ and Γ are known. Indeed, given that the nominal values are greater
than the corresponding uncertain values, an ε-tuning relation can be applied
(see [16] for more details).

6.4.5 Case of an MIMO Unit Control for Indefinite Γ

When the parameter matrix Γ is neither positive definite nor negative definite,
the control defined by (6.37) is not appropriate. In this case, it is required that
Γ is nonsingular. Moreover, denoting nominal values of Γ by Γ̂, we consider
the following assumption
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Assumption 6.5. The matrix L(t) defined by

L(t) = Γ̂−1Γ (6.46)

for some regular and finite matrix Γ̂ is positive definite in the wider sense,

i.e., the symmetric part Ls =
1

2
(L + LT ) is positive definite in the regular

meaning [130].

Now, we define the control as [120]

u(t) =




−K(t) · Γ̂Tσ

‖Γ̂Tσ‖
if σ 6= 0

0 if σ = 0

(6.47)

Substituting (6.47) into (6.6), we obtain, for σ 6= 0

σ̇ = Ψ− ΓK(t) · Γ̂Tσ

‖Γ̂Tσ‖
(6.48)

Under Assumption 6.5 and the switching law (6.35), we have the following
theorem

Theorem 6.4. Consider the nonlinear uncertain system (6.1), with the sliding
multi-variable dynamics (6.6), under Assumptions 6.3 and 6.5, controlled by
(6.47). If the gain K(t) is designed as (6.35), then for any initial condition
‖σ‖ > ε the sliding variable σ converges to the domain ‖σ‖ ≤ ε and stays on
the domain ‖σ‖ ≤ δ, i.e., x ∈ Σδ in finite time.

Proof. Consider the Lyapunov candidate function (6.39). Let s = Γ̂Tσ be a
new variable. Since Γ̂ is regular, we have σT = sT Γ̂−1. Using Assumption 6.5,
the time derivative of V along the system trajectories is

V̇ = 2σT
(

Ψ− ΓK
ΓTσ

‖ΓTσ‖
)

= 2‖s‖
(sT (Γ̂−1Ψ)

‖s‖ −KsTLss

‖s‖2
)

= 2‖s‖
(

Ω2(t)− K̆ sTLss

‖s‖2
)

(6.49)
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with Ω2(t) =
sT
(
Γ̂−1Ψ

)

‖s‖ −β
(
e‖σ‖−1

)sTLss
‖s‖2 . The scalar Ω2 is upper-bounded

for any vector s. For ‖σ‖ > ε, K̆ will keep growing and eventually the posi-

tive scalar K̆
sTLss

sT s
will compensate for the upper-bounded scalar Ω2(t), i.e.,

K̆
sTLss

‖s‖2 > Ω2(t). Since this compensating action will occur for any ‖σ‖ > ε

and Ω2(t) ≥ K̆ sTLss

‖s‖2 (i.e.,
d

dt
‖σ‖ ≡ V̇

2
√
V
≥ 0), we conclude that there exists

a time instant t∗ and a positive scalar ω2 such that

K̆
sTLss

‖s‖2 ≥ Ω2(t) + ω2 (6.50)

then, for all t ≥ t∗
V̇ ≤ −2ω2‖s‖ (6.51)

Since ‖s‖2 = σT Γ̂Γ̂Tσ ≥ λσTσ with λ the minimum eigenvalue of the positive
definite matrix Γ̂Γ̂T , we have ‖s‖ ≥ √λ‖σ‖. Then, from (6.51), we obtain

d
√
V

dt
≤ −ω2

√
λ (6.52)

Thus, σ converges to the domain ‖σ‖ ≤ ε in finite time with a maximum

reaching time tr ≤
‖σ(t∗)‖ − ε
ω2
√
λ

+ t∗ [1].

It should be noted that, without completely eliminating the overestima-
tion, the new algorithm reduces the overall gain with a significant amount
compared to the existing algorithms (e.g., (6.33) and (6.34) [16,17]). Roughly
speaking, the vanishing term, i.e., exponential amount, corresponds to the
maximum gain reduction when σ reaches the boundary layer. In fact, as
previously discussed in the illustrative example, the new algorithm either pro-
vides a large gain reduction (if max ‖σ‖ is relatively large) or confines ‖σ‖
to the sliding surface. As a result, the chattering level is reduced or even
eliminated. In addition, out of the sliding manifold Σ, the switching gain in-
creases its value and compensates for the lumped perturbation quickly thanks
to the added exponential term. Thus, it forces ‖σ‖ to turn around and start
to head to the sliding manifold in shorter time. As a result, the system state
is constrained near the sliding manifold, and the system is more robust (not
leaving far from the sliding manifold Σ). In the sense of fast compensation
for the uncertainties, the new algorithm exhibits the ability of estimating the
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perturbations with limited information. In other words, it equips the ability
of SMC with perturbation estimation without need for further information of
very-high-order states. The latter was a fundamental requirement in [11]. In
brief, compared to the existing ASMC design (e.g., [11,14–17,19,74]), the new
design (6.35) greatly improves the system robustness and maintains a lower
overall gain while the sliding mode is built.

6.5 Simulations and Experiments

6.5.1 Simulation Results – Variable-Length Pendulum

We consider the variable-length pendulum dynamic control moving in a ver-
tical plane [18,59]

ẍ = −2
Ṙ(t)

R(t)
ẋ− g

R(t)
sinx+

1

mR(t)2
u (6.53)

where m = 1 kg is the mass and g = 9.81 m/sec2 the gravity acceleration. u
is the input torque, and x, ẋ and ẍ are the angle displacement, velocity and
acceleration, respectively, for zero initial conditions. The uncertain parameter
R is chosen as R(t) = 1+0.25 sin 4t+0.5 cos t. The desired angle displacement
is given by xd = 0.5 sin 0.5t + 0.5 cos t. The sliding variable is σ = ẋ − ẋd +
2(x− xd). We design the ASMC using three switching gain laws: (a) Integral
law (6.17), (b) Exponential reaching law (6.21) and (c) integral-exponential
law (6.27). The ASMC parameters are α = 2, K(0) = 4, p = 1, γ0 = 16,
γ1 = 1. The sampling period is Ts = 10−3 sec. Results are shown in Figures
6.18-6.21.

From Figure 6.18, one can see that the angle trajectory generated by using
the proposed integral-exponential law (c) follows the desired path more accu-
rately than the exponential law (b) and the conventional ASMC law (a). The
tracking error by applying the new law (c) is reduced by 80% and 60% of its
values obtained with (a) and (b), respectively. It can be also seen from Figure
6.19 that the chattering magnitudes observed with the new law (c) and law
(b) are reduced approximately by 30% w.r.t. the chattering level generated
by law (a).

Figure 6.20 shows that the magnitude of the final (or post-perturbation)
switching gains with the proposed integral-exponential algorithm (c) and the
exponential one (b) are reduced approximately by 30% compared to the value
of the integral one (a).

Comparing the three algorithms of the switching gain, we conclude that
the proposed integral-exponential algorithm (c) has simultaneously higher ac-
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Figure 6.18: Simulation Results for a Variable-length Pendulum: Positions
and sliding variables vs. time, results with algorithm (a) in green dash line,
results with algorithm (b) in blue dash-dot line and results with algorithm (c)
in black solid line.
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Figure 6.19: Simulation Results for a Variable-length Pendulum: Inputs vs.
time, results with algorithm (a) in green dash line,results with algorithm (b)
in blue dash-dot line and results with algorithm (c) in black solid line.
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Figure 6.20: Simulation Results for a Variable-length Pendulum: Feedback
switching gains vs. time, Gain with algorithm (a) in green dash line, results
with algorithm (b) in blue dash-dot line, results with algorithm (c) in black
solid line and respective lumped uncertainties in red lines.

curacy, quick response, enhanced stability and lower chattering level than
traditional ASMC law (a). For almost same level of chattering amplitude, the
tracking response is better with the proposed integral-exponential algorithm
(c) than the exponential one (b). The algorithm (a) shows a higher level of
chattering. The gains of algorithms (b) and (c) are changing dynamically with
the magnitude of the lumped uncertainties more than that of the algorithm
(a) which keeps increasing with any increase in the magnitude of lumped un-
certainties (refer to Figure 6.21). The proposed algorithm (c) is responding
more quickly to any change in the uncertainty levels.
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Figure 6.21: Simulation Results for a Variable-length Pendulum: Gains and
lumped uncertainties vs. time, Gain with algorithm (a) in green dash line,
results with algorithm (b) in blue dash-dot line, results with algorithm (c) in
black solid line and respective lumped uncertainties in red lines.
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6.5.2 Simulation Results for a 2-DOF Experimental
Helicopter

We consider the 2-DOF helicopter simulator model actuated with two pro-
pellers [21] as shown in Figure 1.1 in Chapter 1 and Figure 3.2 in Chapter
3. Recall its nonlinear dynamic equations (refer to (3.43a) and (3.43b) in
Chapter 3)

(
Jp +ml2

)
φ̈ =KppVp +KpyVy −Bpφ̇−mgl · cosφ

−ml2 sinφ cosφ · ψ̇2 (6.54)
(
Jy +ml2 cos2 φ

)
ψ̈ =KypVp +KyyVy −Byψ̇ + 2ml2 sinφ cosφ · φ̇ψ̇ (6.55)

Let x1 = φ, x2 = ψ, x3 = φ̇ and x4 = ψ̇ be the measurable states and
u = [u1 u2]T = [Vp Vy]

T . The dynamics (6.54) and (6.55) can be rewritten in
the form of (6.1). The expression of f(x, t) and g(x, t) are given by (refer to
(3.50)-(3.55) in Chapter 3)

f(x, t) =
[
x3, x4, f1(x), f2(x)

]T
(6.56)

and

g(x, t) =
[
g1(x, t), g2(x, t)

]
(6.57)

with

f1(x) =
−Bpx3 −mgl cosx1 −ml2(sinx1 cosx1)x2

4

Jp +ml2
(6.58)

f2(x) =
−Byx4 + 2ml2(sinx1 cosx1)x3x4

Jy +ml2 cos2 x1
(6.59)

g1(x, t) =
(
0, 0,

Kpp

Jp +ml2
,

Kyp

Jy +ml2 cos2 x1

)T
(6.60)

and

g2(x, t) =
(
0, 0,

Kpy

Jp +ml2
,

Kyy

Jy +ml2 cos2 x1

)T
(6.61)

Assuming that the pitch and yaw angles are required to be stabilized to

zero exponentially, we design a sliding hyper-surface as σ =
[
σ1 σ2

]T
with

σi = xi+2 + KPxi + KI

∫
xidt, for i = 1, 2 [11]. Then, the sliding dynamics

can be written in form (6.6) with

Ψ =

(
Ψ1

Ψ2

)
=

(
KPx3 +KIx1 + f1(x, t)
KPx4 +KIx2 + f2(x, t)

)
(6.62)
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Table 6.1: Nominal values of the model parameters [21]

Parameters Values Units Parameters Values Units

Ĵp 0.038 kg ·m2 Ĵy 0.043 kg ·m2

K̂pp 0.204 N ·m/V K̂py 0.007 N ·m/V
K̂yp 0.022 N ·m/V K̂yy 0.072 N ·m/V
B̂p 0.800 N/V B̂y 0.318 N/V

l̂ 0.186 m g 9.810 m/sec2

m̂ 1.3872 kg

and

Γ =

(
Γ11 Γ12

Γ21 Γ22

)
=




Kpp

Jp +ml2
Kpy

Jp +ml2

Kyp

Jy +ml2 cos2 x1

Kyy

Jy +ml2 cos2 x1


 (6.63)

where f1(x, t) and f2(x, t) are given in (6.58) and (6.59), respectively. The
nominal parts f̂1 and f̂2 (as well as their corresponding terms Ψ̂ and Γ̂) are
obtained using the nominal values of the model parameters provided by Table
6.1 [21] (refer to Table 3.1).

The sampling time Ts = 5 ms is picked to be the same as the sensor
sampling time of the 2-DOF experimental helicopter. Moreover, we add the
following time-varying uncertainties

Ψ̃ = 0.1 sin(1.5t) ·
(
f̂1(x, t)

f̂2(x, t)

)
(6.64)

The sliding model dynamics of the setup in the simulations are built based
on (6.62) and (6.63) which contain the nominal parts Ψ̂ and Γ̂ and the un-
certain part Ψ̃ (6.64). We compare the proposed IEG-ASMC algorithm, with
the IG-ASMC one of [16, 74]. The pitch and yaw angles are supposed to be
stabilized at the origin. Two control strategies are selected for the following
scenarios. First, the parameters provided by [21] are considered inaccurate
with uncertain model dynamics. The ASMC controllers are then built based
on the assumption that the nominal values of Ψ and Γ are totally unknown,
except for the fact that Γ is positive definite. In other words, the bounds of
Ψ and Γ in the control are unknown a priori (since the nominal terms Ψ̂ and
Γ̂, and then, the bounds of Ψ̃ introduced in (6.64) are unknown). We only
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consider the positive definiteness of Γ. Thus, in the first set of simulations,
the control is defined using (6.37) (refer to Theorem 6.3). The second step of
simulations and experiments is conducted using the pitch and yaw dynamics
described by (6.54) and (6.55). The values of their parameters introduced
above are considered to design the nominal parts of these dynamics. So, an
equivalent control is designed based on these nominal dynamics. Then, based
on assumption A.6.5 and the nominal term Γ̂, the switching control is ob-
tained from (6.47) (refer to Theorem 6.4). We use the nominal values of the
parameters (and the corresponding terms Ψ̂ and Γ̂) to design the equivalent
control (6.12) and the switching control (6.47). However, the bounds of the
uncertainties Ψ̃ and Γ̃ are unknown a priori.
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Figure 6.22: Simulation results of ASMC only (i.e., no equivalent control):
States φ and ψ

First, the terms Ψ and Γ in (6.6) are considered to be uncertain with Γ > 0
to evaluate properly the proposed algorithm and compare it with the existing
ASMC design of [16, 74] exclusively. The sliding surface parameters selected
are KP = KI = 1. The IG and IEG adaptation laws are totally parametrized
by the initial condition K̆(0), the target band limit ε, and the coefficients
α and β (note that β = 0 in the IG algorithm). The results shown here
correspond to two sets of simulations with the IG and IEG laws. The design
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Figure 6.23: Simulation results of ASMC only (i.e., no equivalent control):
Inputs u1 and u2

(6.35) with the control input (6.37) is deployed using the design parameters
shown in Tables 6.2 and 6.3 (refer to second column). The asterisk in Table
6.2 marks the parameters used later for experiments.

The time evolutions of pitch angle φ and yaw angle ψ are shown in Figure
6.22. Both angles are stabilized with reduced undershoot and very low over-
shoot for both pitch and yaw angles, respectively, with the proposed gain law
rather than with the existing gain law. The existing IG-ASMC demonstrates
more overshoots during the transient period. Figure 6.23 shows the control
inputs u1 and u2. One can see that with the two IEG cases, the control mag-
nitudes are chattering free whereas the controls with the existing IG-ASMC
design show more chattering.

Considering the dynamics (6.38), let Ω = Γ−1Ψ be the lumped pertur-
bation. Figures 6.24 and 6.25 demonstrate how the switching gains of the
IEG cases have the minimum required values (i.e., gains just compensating
for the lumped perturbations ‖Ω‖) [61] while Figures 6.26 and 6.27 show the
IG-based switching laws and their corresponding lumped perturbation behav-
iors. It can be seen that the magnitude of the generated gains are greater
and ultimately increasing. Moreover, the new design compensates the lumped
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Figure 6.24: Simulation results of ASMC only (i.e., no equivalent control):
Corresponding lumped uncertainty ‖Ω‖ using IEG (1)

perturbations without overestimation. It works as a ‘smart’ switching gain
being able to compensate for the lumped uncertainties instantaneously. Table
6.2 summarizes the performance of the IG-ASMC and IEG-ASMC techniques
in terms of accuracy evaluated by the maximum error (i.e., Peak value) and
quadratic mean error (or RMS value).

Table 6.2: Simulation results: Pitch and yaw error (i.e., φ̃ and ψ̃) performance,
in % of maximum displacement, using ASMC with fixed ε = 10−2

Gain law method (paramters)
Error peak Error RMS

φ̃ ψ̃ φ̃ ψ̃

IG-(1) (K(0) = 10, α = 2) 0.33 0.41 0.12 0.12

IG-(2)* (K(0) = 13.5, α = 0.01) 0.82 0.23 0.33 0.09

IEG-(1) (K(0) = 10, α = 2, β = 60) 0.53 0.17 0.49 0.16

IEG-(2)* (K(0) = 10, α = 0.01, β = 5) 0.18 0.08 0.18 0.08

155



6.5. Simulations and Experiments

0 5 10 15 20
10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

Time [sec]

K

Switching gain vs. lumped uncertainties, using ASMC

 

 

IEG (2) Corresponding ||Ω||

Figure 6.25: Simulation results of ASMC only (i.e., no equivalent control):
Switching gain K vs. corresponding lumped uncertainty ‖Ω‖ using IEG (2)
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Figure 6.26: Simulation results of ASMC only (i.e., no equivalent control):
Switching gain K vs. corresponding lumped uncertainty ‖Ω‖ using IG
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Figure 6.27: Simulation results of ASMC only (i.e., no equivalent control):
Switching gain K vs. corresponding lumped uncertainty ‖Ω‖ using IG (2)
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Figure 6.28: Simulation results of ASMC with equivalent control: States φ
and ψ

In the second simulations, the nominal dynamics of the system is used to
design the equivalent control reducing the level of uncertainties. The sliding
surface parameters are selected KP = 4KI = 1. The IG-ASMC and IEG-
ASMC designs are computed using α, β and K̆(0) shown in Table 6.3. For
these simulations, we use the ε-tuning (with ε = 4TsK [16, 74]). Note that,
with the ε-tuning, ε is time-varying and depending on K. In addition, the
design requires Γ to be normalizable (i.e., Assumption 6.5 must be satisfied)
[16,74].

The results of pitch and yaw angles are shown in Figure 6.28. One can
see that both angles are stabilized with low overshoot and show improved
accuracy with the proposed gain law compared to the existing gain adaptation.
Figure 6.29 shows the control signals u1 and u2. One can conclude that the
magnitudes of the control inputs with the proposed design are less important
than those obtained with the existing design. The control magnitudes are
limited and non-decreasing now compared to the previous results obtained
without equivalent control. The actual switching gains and the magnitude of
the lumped uncertainties are shown in Figures 6.30 and 6.31 for the proposed
design and Figures 6.32 and 6.33 for the existing gain dynamics. Despite the
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Figure 6.29: Simulation results of ASMC with equivalent control: Inputs u1

and u2

pitch and yaw stabilization occurring with the existing design (refer to Figure
6.29), the switching gains in Figures 6.32 and 6.33 are not matching with the
changing uncertainties. These gains keep increasing to overcome the actual
uncertainty levels. Table 6.3 summarizes the performance of the IG-ASMC
and IEG-ASMC with the equivalent control in terms of maximum error and
quadratic mean error. These errors are much more reduced with the proposed
design.
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Figure 6.30: Simulation results of ASMC with equivalent control: Switching
gain K vs. corresponding lumped uncertainty ‖Ω‖ using IEG (1)

Table 6.3: Simulation results: Pitch and yaw error (i.e., φ̃ and ψ̃) performance,
in % of maximum displacement, using ASMC + ueq with ε-tuning

Gain law method (paramters)
Error peak Error RMS

φ̃ ψ̃ φ̃ ψ̃

IG-(1) (K(0) = 1, α = 2) 1.89 3.08 0.97 1.50

IG-(2)* (K(0) = 1, α = 0.5) 6.22 7.45 3.45 4.25

IEG-(1) (K(0) = 1, α = 2, β = 120) 0.87 0.59 0.41 0.24

IEG-(2)* (K(0) = 1, α = 0.5, β = 40) 1.58 1.15 0.75 0.63
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Figure 6.31: Simulation results of ASMC with equivalent control: Switching
gain K vs. corresponding lumped uncertainty ‖Ω‖ using IEG (2)
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Figure 6.32: Simulation results of ASMC with equivalent control: Switching
gain K vs. corresponding lumped uncertainty ‖Ω‖ using IG (1)
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Figure 6.33: Simulation results of ASMC with equivalent control: Switching
gain K vs. corresponding lumped uncertainty ‖Ω‖ using IG (2)
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6.5.3 Experimental Results – 2-DOF Helicopter-Model Setup

Note that the input voltages of the front and rear motors are saturated to
±24 V and ±15 V, respectively [21] (refer to Section 1.6 for further details
about the description of this setup). The pitch angle φ and yaw angle ψ are
still required to stabilize at zero.

First, Ψ and Γ are uncertain. The ASMC controllers are built using the
switching control defined by (6.37). The parameters of the sliding dynamics
are chosen as KP = KI = 1. We use a fixed-value ε = 10−2, and the ASMC
parameters are chosen as α = 0.01 and β = 5 with initial gain K(0) = 10
(refer to Table 6.4). The results are shown in Figures 6.34 and 6.35. One can
see that, with the proposed integral-exponential algorithm, both pitch and
yaw are stabilized to zero in finite time with an acceptable accuracy. The
steady-state pitch and yaw angle errors obtained with the proposed design
are smaller than those obtained with the existing method (refer to perfor-
mances of IEG-ASMC and IG-ASMC in Table 6.4). Also, the time response
with the proposed method is reduced (see Figure 6.34). Moreover, Figure 6.35
shows that the chattering magnitudes of the control inputs using the proposed
algorithm are much lower than those using the existing algorithm. This phe-
nomenon corresponds to the fact that the chattering level is proportional to
the magnitude of the switching gain [61].

Table 6.4: Pitch and yaw error (i.e., φ̃ and ψ̃) performance, in % of maximum
displacement, in experiments using ASMC with ε = 10−2

Gain law method (paramters)
Error peak Error RMS

φ̃ ψ̃ φ̃ ψ̃

IG (K(0) = 13.5, α = 0.01) 6.0 5.9 2.4 2.0

IEG (K(0) = 10, α = 0.01, β = 5) 3.7 2.4 1.3 0.9
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Figure 6.34: Experimental results: φ and ψ (left); u1 and u2 (right) – Using
the proposed IEG-ASMC and the existing IG-ASMC [74]
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Figure 6.35: Experimental results: φ and ψ (left); u1 and u2 (right) – Using
the proposed IEG-ASMC and the existing IG-ASMC [74]
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The second experiments were conducted using the ASMC designs (i.e.,
IEG-ASMC and IG-ASMC) with the equivalent control obtained from the
known nominal dynamics. The parameters of the sliding dynamics were chosen
to be KP = 4KI = 1. The ε-tuning (with ε = 4TsK [16, 74]) was preferred
for the IG-ASMC to reduce the chattering levels and improve the overall
performance. The ASMC parameters are α = 0.5 and β = 40 with initial
gain K(0) = 1 (refer to Table 6.5). The results are shown in Figures 6.36
and 6.37. With the proposed algorithm, both pitch and yaw stabilized to
the desired static positions at the origin with an acceptable accuracy. In
contrast, by using the existing algorithm (6.33), both pitch and yaw oscillated
more around the desired trajectories (see Figure 6.36). From Figure 6.37, one
can note that the chattering levels of the control inputs using the proposed
algorithm are much lower than those using the existing algorithm. Table 6.5
demonstrates the error performance of the different control schemes tested
above. Observing all results, we conclude that the proposed algorithm always
represents a better behavior in terms of accuracy, time-response and control
magnitudes than the existing algorithm. Finally, we note that the inaccuracy
of the given nominal dynamics creates some instability when they are used in
experiments, in particular with the existing ASMC methods. The performance
of the only IG-ASMC and IEG-ASMC is sufficient unless we investigate further
the dynamic modeling of the actual setup. In fact, the given results of the
ASMC techniques with equivalent control terms are obtained after multiple
tests tentatively trying to improve the results.

Table 6.5: Pitch and yaw error (i.e., φ̃ and ψ̃) performance, in % of maximum
displacement, in experiments using ASMC + ueq with ε-tuning

Gain law method (paramters)
Error peak Error RMS

φ̃ ψ̃ φ̃ ψ̃

IG (K(0) = 1, α = 0.5) 28.3 13.8 11.5 6.5

IEG (K(0) = 1, α = 0.5, β = 40) 7.7 8.1 3.1 3.4
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Figure 6.36: Experimental results: φ and ψ – Using equivalent control +
IEG-ASMC and IG-ASMC
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Figure 6.37: Experimental results: u1 and u2 – Using equivalent control +
IEG-ASMC and IG-ASMC
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6.6 Conclusions

The main contribution of this chapter proposes a novel adaptation law called
integral-exponential gain law for ASMC. While most existing contributions
dealing with ASMC designs address relatively lower response to uncertainties
and/or relatively higher switching gain overestimation, the proposed algorithm
provides simultaneously ‘closely’ the required compensating gain without a
prior knowledge of the lumped uncertainties bounds and greatly reduces final
(or post-perturbation) gain. With the proposed algorithm, the closed-loop dy-
namic system has fast response to perturbations. The gain overestimation is
greatly reduced during the adaptation process and, consequently, the chatter-
ing level is greatly reduced. A tutorial example shows the compensating phase
and the reaching phase during the adaptation process. Simulation results on
a variable length pendulum and a 2-DOF helicopter model, and experimental
results on the 2-DOF helicopter simulator setup demonstrate the effectiveness
of the proposed new design in terms of fast response, enhanced stability and
reduced chattering level. More details in terms of motivations, objectives,
novelties, pros and cons of this chapter are presented in Table 6.6.
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Table 6.6: Chapter 6 Recap

Motivation(s)

- The existing IG-ASMC encounters the problems of
gain overestimation, robustness and chattering phe-
nomena.

Objective(s) - Solving the weakness of the existing IG-ASMC.

Novelty(ies)

- A new simple exponential reaching law is provided.
- An ASMC design with new adaptation law, called

integral-exponential gain, is proposed
- New IEG-ASMC methods for different cases of

MIMO systems are provided.

Pro(s)

- Fast response and robustness to perturbations.
- Better accuracy.
- Greatly reduced switching gain during the adapta-

tion process.
- Reduced final gain and greatly reduced chattering

level.

Con(s)

- Less aggressive (i.e., reduced) gains lead to rela-
tively long settling time.

- Dilemma of chattering vs. control performance in
some cases.

- Comparison to the PID control not provided.
- Application to nonlinear systems with unknown

polynomial bounds on the norm of the state are
not investigated.
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7 Application of Adaptive
Sliding Mode Control to
Nonlinear Systems with
Uncertainties of Unknown
Polynomial Bounds

In this chapter, we discuss the application of the proposed ASMC design, for
a wide class of nonlinear systems with unknown polynomial bounds on un-
certainty norm. An FTC-based stability solution is obtained with low chat-
ter on control action and fast transient performance for ASMC handling the
nonlinear systems with uncertainties of amplitudes bounded within unknown
polynomials in the state vector norm. It prevents the instability issues that
encounters the classic integral-gain-law-based ASMC when underestimating
its initial gain or gain rate parameter. A simple motivation example will illus-
trate the convergence of the proposed ASMC. The applications of the proposed
ASMC design to a nonlinear spring-mass system (simulation results), a 5-link
robotic manipulator (simulation results) and the helicopter-model setup (ex-
perimental results) with stabilization and trajectory tracking control will be
conducted with comparisons to the existing ASMC designs and the conven-
tional PID control.

7.1 Introduction

In the numerous contributions of the past two decades, the uncertainties are
often assumed to be bounded within possibly unknown constant bounds or
affine functions. In particular, ASMC design with integral adaptation laws
have been widely used in [10,11,13,16,17,19,57,71,78]. However, other com-
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mon kinds of uncertain systems still exist. For instance, if their parameters
are unknown, the Duffing dynamics (i.e., mechanical systems with softening
springs) and the tunnel-diode circuit dynamics contain uncertainties bounded
by polynomial functions of the state [1]. Moreover, according to Taylor’s the-
orem, most continuous nonlinearities can be approximated by polynomials.
The new question then arises: how to control the nonlinear dynamical systems
where there exist uncertainties bounded by unknown polynomials. This ques-
tion motivates the studies of nonlinear systems with polynomially bounded
uncertainties. If the bounds and the degree of the polynomial uncertainties
are known, the stability region was analyzed in [133] and a polynomial-type
dependent gain can be designed [134]. Only given the degree of the polyno-
mial uncertainties, a high order integral-type adaptation law was discussed
in [79]. However, in the case where both the degree and the bounds of the
polynomial uncertainties are unknown a priori, to our best knowledge, no
existing control method has been proposed. This chapter discusses the appli-
cation of the new ASMC design introduced in the previous chapter to such
a kind of nonlinear systems. The scalar case and the MIMO structures of
ASMC are also provided with a theoretical proof that it has the ability to
handle nonlinear systems with uncertainties of unknown polynomial bounds.
It will be shown that the new approach constrains the lumped uncertainties
bounded by polynomials of unknown parameters. Moreover, it confines the
trajectory much close to the sliding surface and greatly reduces the overshoot
by reducing the final gain. Then, the stability and robustness are improved,
and the chattering is suppressed. Simulation and experimental results will
demonstrate the effectiveness of the application of the new algorithm in terms
of stability, fast response, smaller trajectory variation and reduced chattering
level [135](paper in review, refer to Appendix C.1 for full text).

This chapter is organized as follows. In Section 7.2, we state the control
problem and existing ASMC designs. Section 7.3 investigates the integral-
exponential adaptation law of ASMC design for polynomial upper-bounds on
norm uncertainties. An illustrative example of scalar state dynamics is pre-
sented first to motivate the proposed design. Then, theoretic results prove the
stability of the closed-loop system. The applications of the proposed ASMC
designs to a nonlinear spring-mass system and a robot manipulator model are
shown in Sections 7.4 and 7.5, respectively, through simulation results. The
application to the 2-DOF helicopter model setup is demonstrated in Section
7.6 comparing experimentally the proposed ASMC with the existing ASMC
and the commonly used PID control. Section 7.7 concludes this chapter.
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7.2 ASMC Problem and Existing Designs

In this section, we first state the control problem and assumptions for nonlinear
systems with uncertainties upper-bounded with polynomials in the norm of
the state vector. Then, we recall some existing ASMC tentatively designed.

7.2.1 Problem Statement and Assumptions

Recall the uncertain nonlinear dynamics [135]

ẋ = f(x, t) + g(x, t) ·u (7.1)

where x ∈ χ is the state vector, with χ ⊂ Rn a domain containing the ori-
gin, and u ∈ Rm the control input. The vector f(x, t) ∈ Rn and the ma-
trix g(x, t) ∈ Rn×m are nonlinear time-varying smooth functions containing
parametric uncertainties and external disturbances [14, 16, 51, 74, 89, 90]. It is
assumed that [135]:

Assumption 7.1. The norm of the perturbation f(x, t) is upper-bounded with
some unknown polynomials in the state vector x ∈ χ, and the norm of the
uncertain term g(x, t) is bounded by some unknown scalars. More specifically,

‖f(x, t)‖ ≤
q∑

i=0

ai‖x‖i (7.2)

0 < b ≤ ‖g(x, t)‖ ≤ b (7.3)

where q is an uncertain finite integer, ai (i = 0, 1, · · · , q) have uncertain non-
negative finite values, b and b are some unknown positive finite constants.

Assumption 7.1 takes into account a large class of uncertainties, including
(but not limited to):
• a0 > 0 and ai = 0∀i ≥ 1, i.e., ‖f(x, t)‖ ≤ a0, that is, the system

uncertainty is regularly bounded by a constant;
• a0 > 0, a1 > 0 and ai = 0∀i ≥ 2, i.e., ‖f(x, t)‖ ≤ a0 + a1‖x‖, that is,

the system uncertainty is bounded by an affine function in the norm of
the system state;
• a0 > 0, a1 > 0, a2 > 0 and ai = 0∀i ≥ 3,, i.e., ‖f(x, t)‖ ≤ a0 + a1‖x‖+
a2‖x‖2, that is, the system uncertainty is constrained by a quadratic
function in the norm of the system state vector.

Let x = 0 be an equilibrium point for (7.1). Consider a measurable sliding
vector σ(x, t) ∈ Rm. We recall the targeted manifolds Σ = {x ∈ χ : ‖σ(x, t)‖ =
0} and Σδ = {x ∈ χ : ‖σ(x, t)‖ ≤ δ} for some δ > 0. Σ and Σδ are called
“ideal sliding mode set” and “real sliding mode set” [115], respectively.

171



7.2. ASMC Problem and Existing Designs

Assumption 7.2. σ is freely designed such that, as soon as the vector x(t)
reaches the set Σ (resp. Σδ) in finite time t = tr > 0 and belongs to it
thereafter, (7.1) has to be stable in the ideal (resp. real) sliding mode. σ is
treated as the output of (7.1) [61,74]. In addition, we assume that there exists
finite positive scalars γ1 > 0 and γ2 ≥ 0 s.t.

‖σ‖ ≥ γ1 · ‖x‖ − γ2 (7.4)

Recall the time derivative of σ along the system trajectory

σ̇(x, t) = Ψ(x, t) + Γ(x, t) ·u (7.5)

with Ψ(x, t) ∈ Rm and Γ(x, t) ∈ Rm×m. So, σ(x, t) has a relative degree vector
of r = [1, 1, · · · , 1]T1×m [16,74]. Solutions of the dynamics (7.5) with discontin-
uous right-hand side are defined in the sense of Fillipov [119]. Without loss
of generality and based on Assumption 7.1, we consider

Assumption 7.3. The perturbation vector Ψ ∈ Rm is bounded by some un-
known polynomials in x, i.e.,

‖Ψ‖ ≤
q∑

i=0

di‖x‖i (7.6)

where di (i = 0, 1, · · · , q) are unknown finite non-negative constants.

Recall Assumption 6.9.

Assumption 7.4. The uncertain matrix Γ ∈ Rm×m is positive definite in the
wider sense, i.e., its symmetric part Γs defined by

Γs =
1

2
(Γ + ΓT ) (7.7)

is positive definite in the regular meaning [130]. In particular, if m = 1, the
term Γ is lower-bounded as

0 < Γ ≤ Γ (7.8)

where Γ is a positive, finite, and eventually, unknown constant.
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7.2.2 Existing ASMC Laws and Motivation

Given the dynamics (7.5) with uncertainty Ψ fully unknown (refer to Sections
4.3 and 6.2 where we discussed the relaxed scenario when part of these dynam-
ics are known eventually), we recall the control law given by (6.37)) [74,120]

u(t) =

{
−K · σ‖σ‖ if σ 6= 0

0 if σ = 0
(7.9)

where K in ASMC techniques is time-varying to adaptively compensate for
the uncertainties [10,11,13–17,19]. In particular, the integral-type adaptation
laws

K̇ = α · ‖σ‖ (7.10)

and

K̇ = α1 · ‖σ‖+ α2 · ‖x‖ · ‖σ‖ (7.11)

have been exhaustively discussed in [11, 14, 15, 17, 19, 74, 78] and [10, 81] for
the cases of uncertainties bounded by unknown constants and unknown affine
functions in the state vector, respectively. The adaptation laws (7.10) and
(7.11) are designed for ideal sliding mode, while the real case is treated with
slightly modified versions of these forms [10, 16]. The two adaptation laws,
for either ideal or real sliding mode, still have relatively large overshoots and
chattering phenomena during the adaptation process. In the following, we
consider mostly the ideal sliding case analysis for the sake of simplicity.

7.3 integral-exponential Reaching Law-based
ASMC Design

To overcome the common weaknesses encountered by most existing ASMC
forms, the integral-exponential law has been proposed and widely discussed
in the previous chapter. In the following, we will prove that this ASMC
design has the ability to handle nonlinear systems with upper-bounds on the
norm of uncertainties of unknown polynomials in the norm of the state vector
(i.e., written in form (7.1) with uncertainties bounded by (7.2), (7.3) and
(7.6)). First, the FTC is shown for the scalar ideal sliding case. Then, the
proposed ASMC design will be adapted to the multi-dimensional case, using
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the feedback control (7.9). Recall the proposed adaptation law for the ASMC
design of the nonlinear systems with fully-unknown uncertainties [129,135]

˙̆
K = α · ‖σ‖ (7.12a)

K = K̆ + β
(
e‖σ‖ − 1

)
(7.12b)

for some α > 0 and β > 0.

7.3.1 Scalar Case

Let us first consider the case of single-input-single-output sliding scalar dy-
namics (i.e., n = 1) and select σ = x trivially, that is, from (7.4), we have
γ1 = 1 and γ2 = 0. Note that the norm of the sliding variable is reduced to
its absolute value. Then, the feedback control (7.9) is simply defined as

u = −K · sgn(σ) (7.13)

where sgn( · ) refers to the real-value signum function.

Motivation Example. Consider the following simple scalar dynamics

σ̇ = c0 + c1σ + c2σ
2 + u (7.14)

The state σ is to be stabilized to zero for unknown (or uncertain) coefficients
c0, c1 and c2. Using the switching control (7.13) with the adaptation law
(7.12), the state σ of the dynamics (7.14) can be stabilized to zero in finite
time for any value of the initial state σ0 and uncertain c0, c1, c2. To simulate
the dynamics (7.14), these parameters are selected as σ0 = c0 = c1 = c2 = 1
(corresponding to uncertain condition I) and σ0 = c0 = c1 = c2 = 5 (corre-
sponding to uncertain condition II). Figures 7.1-7.4 show the obtained switch-
ing gain K and the state σ using the (Old-1) existing gain law (7.10), the
(Old-2) existing gain law (7.11) and the (New) proposed gain law (7.12) with
the control parameter chosen as α = α1 = 2α2 = 2β = 2 (see Figures 7.1 and
7.2) and α = α1 = 2α2 = 2β = 10 (see Figures 7.3 and 7.4), respectively.

One can see that, by using the proposed integral-exponential gain law
(7.12), σ is stabilized to zero in finite time for any initial and uncertain condi-
tions. However, the existing integral-gain-law-based ASMC (i.e., using (7.10))
and modified-integral-gain-law-based ASMC (i.e., using (7.11)) only work for
some situations where the control parameters are sufficiently high and the
uncertain parameters are small. In fact, when α, α1 and α2 are small, the
closed-loop dynamics (7.14) diverges. For any other large uncertain values of
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Figure 7.1: Illustrative example using the control parameters α = α1 = 2α2 =
2β = 2: Switching gain K (top) and state σ (bottom) performances of the
closed-loop dynamics (7.14) with (7.13) under uncertain conditions I.

σ0, c0, c1, c2, the proposed method (7.12) works even with small α and β,
but the existing ASMC methods (7.10) and (7.11) do not. Furthermore, the
switching gain amplitude is ultimately reduced with the new design.

Theorem 7.1. Consider the nonlinear uncertain system (7.1), with the sliding
variable dynamics (7.5), under Assumptions 7.1–7.4, controlled by (7.13). If
the gain K(t) is designed as (7.12), then for any initial condition |σ| 6= 0 the
sliding variable σ converges to the hyper-surface |σ| = 0, i.e., x tends to the
domain Σ in finite time.

Proof. The stability analysis is similar to the case of the ideal ASMC design
for bounded uncertainties discussed in Chapter 6 [118, 129]. The main dif-
ference will be highlighted in the following to deal with the general case of
polynomially bounded uncertainty amounts.

From (7.5), (7.12) and (7.13), the time derivative of |σ| along the system
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Figure 7.2: Illustrative example using the control parameters α = α1 = 2α2 =
2β = 2: Switching gain K (top) and state σ (bottom) performances of the
closed-loop dynamics (7.14) with (7.13) under uncertain conditions II.

trajectory is

d

dt
|σ| = σ̇ · sgn(σ)

= Γ ·
(
h(σ)− K̆

)
(7.15)

with h(σ) =
Ψ · sgn(σ)

Γ
−β
(
e|σ|− 1

)
. Note, h(σ) is upper-bounded, i.e., there

exist finite-values σ∗ and h∗ = h(σ∗) s.t.

h(σ) ≤ h∗ (7.16)

for all |σ| ≥ 0 (see Appendix A.9 for details). Basically, the term h(σ) repre-
sents a combination of the lumped system uncertainties with the exponential
compensating gain of the scalar dynamics (7.5) under the feedback control
(7.13) using the reaching law (7.12).

For σ 6= 0, from (7.12a), K̆(|σ|) keeps growing with a rate of, at least,
α|σ| > 0. Thus, the growing state gain K̆ will be greater than (eventually
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Figure 7.3: Illustrative example using the control parameters α = α1 = 2α2 =
β = 10: Switching gain K (top) and state σ (bottom) performances of the
closed-loop dynamics (7.14) with (7.13) under uncertain conditions I.

compensate for) the bounded term h(σ) in (7.15). Since this compensation

action will occur for any h(σ) ≥ K̆ (i.e.,
d

dt
|σ| ≥ 0) and σ 6= 0, we can

conclude that there always exist a positive scalar κ0 and an ultimate time
instant t∗ ≥ 0 s.t.

h(σ) + κ0 < K̆ (7.17)

for all t ≥ t∗. Then,

d

dt
|σ| ≤ −Γκ0 ≤ −Γκ0 (7.18)

for t ≥ t∗. We conclude that |σ| converges to the domain Σ in finite time
[1].

Unlike most ASMC designs dealing with bounded uncertainties [11,14–17,
19,78] or affine-function uncertainties [10,61,79–81], this work deals with un-
known polynomially bounded uncertainties in the norm of state vector, which
are more general than bounded uncertainties and affine-function uncertainties.
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Figure 7.4: Illustrative example using the control parameters α = α1 = 2α2 =
β = 10: Switching gain K (top) and state σ (bottom) performances of the
closed-loop dynamics (7.14) with (7.13) under uncertain conditions II.

The new design (7.12) provides simultaneous fast response and chattering
reduction. The first part, i.e., integration term K̆, provides the ability to
compensate for uncertainties with unknown polynomial bounds and forces
the sliding variable to converge to the domain Σ in finite time. Furthermore,
it should be pointed out that the dynamic term (7.12a) remains necessary to
guarantee FTC; otherwise, it only guarantees UUB solutions. One can test
that, without the integral term (i.e., α = 0 in (7.12)), the state is only UUB.
The results of the application of the design (7.12) for the illustrative model
dynamics (7.14) when α = 0 are shown in Appendix B.2.

7.3.2 Multi-dimensional Case

Substituting (7.9) into (7.5), we obtain for σ 6= 0

σ̇ = Ψ− K

‖σ‖Γσ (7.19)

We state the following theorem [135].
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Theorem 7.2. Consider the nonlinear uncertain system (7.1), with the closed-
loop sliding dynamics (7.19), under Assumptions 7.1–7.4. If the gain K(t) is
designed as (7.12), then for any initial condition ‖σ‖ 6= 0 the sliding variable
σ converges to the manifold ‖σ‖ = 0, i.e., x ∈ Σ in finite time.

Proof. Let the positive definite function

V = σTσ (7.20)

be a Lyapunov function candidate. Using (7.7), (7.12) and (7.19), for σ 6= 0,
the time derivative of V along the system trajectories is

V̇ = 2σT σ̇

= 2‖σ‖
(σTΨ

‖σ‖ − β
(
e‖σ‖ − 1

)σTΓsσ

σTσ
− K̆ σTΓsσ

σTσ

)
(7.21)

We denote by hs(σ) =
σTΨ

‖σ‖ − β
(
e‖σ‖ − 1

)σTΓsσ

σTσ
. For σ 6= 0, (7.21) can be

rewritten as

V̇

2
√
V

= hΓs(σ)− K̆ σTΓsσ

σTσ
(7.22)

Using (7.4) and (7.6), the scalar hs(σ) is upper-bounded. In fact,

hs(σ) ≤
q∑

i=0

di‖x‖i − β
(eγ1‖x‖
eγ2

− 1
)
λ(Γs) (7.23)

with λ(Γs) denoting the minimum eigenvalue of the symmetric positive definite
matrix Γs (refer to Assumption 7.4). Note that, a positive exponential function
ultimately grows faster than any polynomial (refer to proof shown in Appendix
A.9 for more details). For any σ 6= 0, from (7.12), K̆ keeps growing and the

positive scalar K̆
σTΓsσ

σTσ
in (7.22) will eventually compensate for the upper-

bounded hs(σ), i.e., K̆
σTΓsσ

σTσ
> hs(σ). Since this compensating action will

occur for any ‖σ‖ 6= 0 where hs(σ) ≥ K̆
σTΓsσ

σTσ
(i.e., from (7.21) and (7.23),

d

dt
‖σ‖ ≡ V̇

2
√
V
≥ 0), we conclude that there exist a time instant t∗ and a

positive scalar κ1 s.t., for t ≥ t∗

K̆
σTΓsσ

σTσ
≥ hs(σ) + κ1 (7.24)
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Thus, from (7.20), (7.21), (7.23) and (7.24), we obtain

d

dt
‖σ‖ ≤ −κ1 (7.25)

for t ≥ t∗. Now, by integrating both sides of (7.25) between t∗ and t ≥ t∗, we
obtain

‖σ‖ ≤ −κ1 ·
(
t− t∗

)
+ ‖σ(t∗)‖

Then, ‖σ‖ is decreasing with a rate κ1 and reaches the domain ‖σ‖ = 0 in
finite time [1].

The proof discussed above is effectively based on Assumption 7.2. We
note that whenever the design condition (7.4) is violated numerically or an-
alytically, a modified version of the switching gain law can still exist to keep
the main properties of the proposed integral-exponential design regarding the
compensation of uncertainties upper-bounded with polynomials in the norm
of the state vector. In fact, substituting eγ‖x‖ for e‖σ‖ in (7.12b), for some
small positive scalar γ, would keep possible the compensation for the class of
perturbations mainly discussed in this paper (refer to Assumptions 7.2 and
7.3).

From the condition (7.8), we note that the uncertain gain matrix Γ match-
ing with the input u in (7.5) does not require any upper-boundedness on its
norm magnitude allowing definitely unlimited uncertainty levels of this term
as long as it is nonzero (or nonsingular matrix in the wider sense).

Finally, we note that when the parameter matrix Γ is indefinite (i.e., nei-
ther positive definite nor negative definite), the control defined by (7.9) is
not appropriate. In this case, it is required to define a nonsingular matrix
Γ̂ alluding to the nominal value of Γ. Moreover, we assume that the matrix
L(t) = Γ̂−1Γ is positive definite in the wider sense, i.e., the symmetric part

Ls =
1

2
(L + LT ) is positive definite in the regular meaning [130]. Note that

the positiveness of L implies that the value of the nominal matrix Γ̂ is close
to that of its real matrix Γ. Then, by replacing σ with Γ̂Tσ in the control law
(7.9) as [120]

u(t) =




−K · Γ̂Tσ

‖Γ̂Tσ‖
if σ 6= 0

0 if σ = 0

(7.26)
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and applying the adaptation law (7.12), we guarantee the FTC of the states
to the targeted manifold Σ. By substituting (7.26) into (7.5), we obtain, for
σ 6= 0

σ̇ = Ψ− ΓK(t) · Γ̂Tσ

‖Γ̂Tσ‖
(7.27)

Then, we state the following theorem

Theorem 7.3. Consider the nonlinear uncertain system (7.1), subject to the

closed-loop dynamics (7.27), under Assumptions 7.1–7.3. Given Ls =
1

2
(L+

LT ) a symmetric positive definite matrix with L(t) = Γ̂−1Γ, if the gain K(t) is
designed as (7.12), then for any initial condition ‖σ‖ 6= 0 the sliding variable
σ converges to the sliding surface ‖σ‖ = 0, i.e., x ∈ Σ in finite time.

Proof. See Appendix A.10.

7.3.3 Case of Real Sliding Mode

To avoid the wind-up phenomenon [16], the ideal ASMC design should be
modified for the real implementation. Consider the real sliding set Σδ defined
in Section 7.2. Recall the dynamic gain design of (6.35) [118,129]

˙̆
K = α‖σ‖ · sgn

(
‖σ‖ − ε

)
(7.28a)

K = K̆ + β ·
(
e‖σ‖ − 1

)
(7.28b)

If β = 0, then (7.28) is reduced to the integral gain law presented in [74]. We
obtain the following theorem in the case of real ASMC design [135].

Theorem 7.4. Consider the nonlinear uncertain system (7.1), with the sliding
dynamics (7.5), under Assumptions 7.1–7.4, controlled by (7.9). If the gain
K(t) is designed as (7.28), then for any initial condition ‖σ‖ > ε the sliding
variable σ converges to the domain ‖σ‖ ≤ ε and stays on the domain ‖σ‖ ≤ δ,
i.e., x ∈ Σδ in finite time.

Proof. It remains drastically identical to the proof of theorem 7.2.

In the following sections, we validate the effectiveness of the proposed
scheme, by considering the dynamics of a nonlinear mass-spring system model
as depicted from [136], a five-link robot manipulator with uncertain dynamics
and a 2-DOF helicopter simulator model actuated with two propellers [21].
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7.4 Applications – Stabilization and Trajectory
Tracking Control for a Nonlinear Mass-Spring
System

7.4.1 Modelling

The nonlinear mass-spring system consists of two masses m1 and m2 connected
by a linear-cubic spring. We denote by x1 and x2 the positions of the masses.
The nonlinear dynamics of the system can be written as [136]

m1ẍ1 + k1(x1 − x2) + k2(x1 − x2)3 = u1 (7.29a)

m2ẍ2 − k1(x1 − x2)− k2(x1 − x2)3 = u2 (7.29b)

or

Mẍ+K1x+ k2f(x) = u (7.30)

with u =
(
x1 x2

)T
and u =

(
u1 u2

)T
. We have

M =

(
m1 0
0 m2

)
, K1 =

(
k1 −k1

−k1 k1

)
, f(x) =

(
(x1 − x2)3

−(x1 − x2)3

)

(7.31)

The mass and spring constant variations are 0.5 < m1 < 1.5, 0.5 < m2 < 1.5,
0.5 < k1 < 2 and −0.5 < k2 < 0.2, with nominal values m̂1 = m̂2 = k̂1 = 1
and k̂2 = −0.1 [136]. Note that M is a positive definite diagonal matrix and
f(x) is a cubic polynomial in the system states.

7.4.2 Sliding Variable Design

It is desired that the system follows a trajectory xd. Denote by x̃ = x−xd the
trajectory error. Assuming that the positions and velocities of the two masses
are measurable, we design a PID sliding variable [11]

σ = Kpx̃+Ki

∫
x̃dτ +Kd

˙̃x (7.32)

with Kp, Ki and Kd positive definite matrices of R2×2. Taking the time
derivative of both sides of (7.32) and substituting (7.30), the sliding variable
dynamics can be written as

σ̇ = Kp
˙̃x+Kix̃+KdM

−1 ·
(
u−K1x− k2f(x)−Mẍd

)
(7.33)
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7.4.3 Equivalent Control

Consider partitions M = M̂ + M̃ , K1 = K̂1 + K̃1 and k2 = k̂2 + k̃2 where
M̂ , K̂1 and k̂2 are the nominal values of M , K1 and k2, and M̃ , K̃1 and k̃2

their corresponding uncertain values. We apply the equivalent control method
where the control input consists of a combination of a smooth nonlinear control
input and a switching control input [120], as

u = ueq + usw (7.34)

ueq is obtained by assuming that all uncertainties vanish at the permanent

sliding regime, i.e., M = M̂ , K1 = K̂1, k2 = k̂2 and σ̇ = 0. We write from
(7.33)

0 = Kp
˙̃x+Kix̃+KdM̂

−1 ·
(
ueq − K̂1x− k̂2f(x)− M̂ẍd

)
(7.35)

that is,

ueq = K̂1x+ k̂2f(x) + M̂ẍd − M̂K−1
d ·

(
Kp

˙̃x+Kix̃
)

(7.36)

Substituting (7.36) into (7.33), we obtain the sliding variable dynamics in
terms of the switching control (refer to the general form (7.5))

σ̇(x, t) = Ψ(x, t) + Γ(x, t) ·usw (7.37)

with

Ψ(x, t) = KdM
−1M̃K−1

d ·
(
Kp

˙̃x+Kix̃
)
+

KdM
−1 ·

(
− K̃1x− k̃2f(x)− M̃ẍd

)
(7.38)

and

Γ(x, t) = KdM
−1 (7.39)

Note that f(x) in (7.38) contains a cubic polynomial of the state x and k̃2

is an uncertain parameter. That is, Ψ(x, t) is an uncertainty bounded within
an unknown-coefficient-cubic polynomial. Since the diagonal matrix M and
the matrix Kd are positive definite of R2×2, then Γ is positive definite. Based
on Theorem 7.2, we apply the switching control usw in form (7.9) with the
adaptation law (7.28).
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Figure 7.5: Simulation results of nonlinear mass-spring system – Position
stabilization. Results in real sliding mode using the existing IG-ASMC, i.e.,
adaptation law (7.28) with β = 0 (solid green for fixed ε and dash-dot magenta
for ε–tuning) and proposed IEG-ASMC, i.e., adaptation law (7.28) with β > 0
(dash red for β = 2 and dot black for β = 20).

7.4.4 Simulation Results

First, the two masses m1 and m2 are stabilized at the origin. Then, in the

second simulations, they are desired to follow trajectories xd1 = sin(πt +
π

2
)

and xd2 = 0.5 sin(πt+
π

2
), respectively. Given, a sampling period Ts = 5 · 10−3

and PID matrix gains selected as Kp = 4Ki = Kd = I2, we apply the real
ASMC design using the proposed reaching law (7.28) (refer to as IEG-ASMC),
with a fixed boundary-layer limit ε = 10−3, α = 10, and applying β = 2 and 20.
Then, we compare its performance to the existing adaptation gain dynamics
discussed in [16, 74] (i.e., (7.28) with β = 0, refer to as IG-ASMC), using
α = 10, with boundary-layer limit fixed at ε = 10−3, and varying ε-tuning [16].
The simulation results are shown in Figures 7.5 to 7.10. From Figure 7.5,
one can see that there is no significant difference in terms of stabilization
and accuracy for all ASMC implementations. However, the magnitudes and
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Figure 7.6: Simulation results of nonlinear mass-spring system – Control in-
puts in position stabilization. Results in real sliding mode using the existing
IG-ASMC, i.e., adaptation law (7.28) with β = 0 (solid green for fixed ε and
dash-dot magenta for ε–tuning) and proposed IEG-ASMC, i.e., adaptation
law (7.28) with β > 0 (dash red for β = 2 and dot black for β = 20).

chattering levels of the corresponding control inputs in the proposed IEG-
ASMC are much less than those in the existing IG-ASMC (see Figure 7.6).
From Figures 7.8 and 7.9, one can see that, compared to those using the
existing ASMC, both the trajectory errors and the magnitudes of the control
inputs (as well as the chattering levels) when using the proposed ASMC (7.28)
are reduced simultaneously. The tracking of the first mass displacement x1

with the proposed design is much faster than with the existing ones. The
switching gain magnitudes are much lower with the proposed design for both
position stabilization and trajectory tracking (see Figures 7.7 and 7.10).
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Figure 7.7: Simulation results of nonlinear mass-spring system – Switching
gains in position stabilization. Results in real sliding mode using the existing
IG-ASMC, i.e., adaptation law (7.28) with β = 0 (solid green for fixed ε and
dash-dot magenta for ε–tuning) and proposed IEG-ASMC, i.e., adaptation
law (7.28) with β > 0 (dash red for β = 2 and dot black for β = 20).
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Figure 7.8: Simulation results of nonlinear mass-spring system – Trajectory
errors in tracking control of sine waves. Results in real sliding mode using
the existing IG-ASMC, i.e., adaptation law (7.28) with β = 0 (solid green
for fixed ε and dash-dot magenta for ε–tuning) and proposed IEG-ASMC,
i.e., adaptation law (7.28) with β > 0 (dash red for β = 2 and dot black for
β = 20).
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Figure 7.9: Simulation results of nonlinear mass-spring system – Control in-
puts in tracking control of sine waves. Results in real sliding mode using the
existing IG-ASMC, i.e., adaptation law (7.28) with β = 0 (solid green for
fixed ε and dash-dot magenta for ε–tuning) and proposed IEG-ASMC, i.e.,
adaptation law (7.28) with β > 0 (dash red for β = 2 and dot black for
β = 20).
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Figure 7.10: Simulation results of nonlinear mass-spring system – Switch-
ing gains in trajectory tracking control of sine waves. Results in real sliding
mode using the existing IG-ASMC, i.e., adaptation law (7.28) with β = 0
(solid green for fixed ε and dash-dot magenta for ε–tuning) and proposed
IEG-ASMC, i.e., adaptation law (7.28) with β > 0 (dash red for β = 2 and
dot black for β = 20).
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7.5 Applications – Trajectory Tracking Control of
Robot Manipulators

In the following, we discuss the trajectory tracking control of a five-link robot
manipulator with uncertain dynamics by applying the proposed ASMC design
with integral-exponential adaptation law.

7.5.1 Robot Model

Consider the dynamics of an m−link rigid robotic manipulator [52,85]

M(q)q̈ + C(q, q̇)q̇ +G(q) = u+ d(t) (7.40)

where q ∈ Rm refers to the m−dimensional vector of joint angles, d(t) is
the vector of the bounded input disturbance, and u ∈ Rm is the applied
torque vector. M(q) is the inertia matrix, C(q, q̇)q̇ the vector of Coriolis and
centrifugal forces, and G(q) the vector of gravitational forces [85]. Note that,
in most robot systems, Assumption 7.1 is satisfied.

When reliable nominal terms of the robot dynamics are available, the
equivalent control method discussed in Chapter 4.3 can be combined with the
ASMC to deal with known dynamics in order to reduce the effect of lumped
uncertainties. The equivalent control of robot manipulators is shown in Ap-
pendix A.11. Here, we consider simply the case where the reliable nominal
terms of the robot dynamics are unavailable, i.e., the terms M(q), C(q, q̇) and
G(q) are fully uncertain except that M(q) is positive definite [52,85].

7.5.2 Sliding Variable and Sliding Surface Design

The trajectory tracking problem of the robot manipulator can be formulated
as follows: given qd twice differentiable desired bounded trajectory of Rm,
define the trajectory error as

e = q − qd (7.41)

The error dynamics corresponding to (7.40) is

ë = −q̈d −M−1(Cq̇ +G) +M−1d(t) +M−1u (7.42)

The control objective is to find a feedback control law u such that the output
q tracks the desired trajectory qd, and the tracking error e converges to zero
exponentially or in finite time. For this purpose, different schemes of sliding
variable dynamics have been presented in [132, 137, 138]. In particular, the
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sliding surface design along with comments on the existing TSM methods has
been exhaustively discussed in [138]. We define the new state σ as

σ = ė+D · e (7.43)

Consider the time derivative of σ. By using (7.42) and (7.43), we obtain the
sliding variable dynamics

σ̇ = − q̈d −M−1(Cq̇ +G) +M−1d(t) +D · ė+M−1u (7.44)

Based on the fact that the inertia matrix is positive definite (see e.g., [52,85])
and by assuming the boundedness of the desired trajectories, one can see that
the dynamics (7.44) can be written in form (7.5) with

Ψ(t) = −q̈d −M−1(Cq̇ +G) +M−1d(t) +D · ė (7.45)

Γ(t) = M−1 > 0 (7.46)

Then, we apply the unit control (7.9).

7.5.3 Simulation Results

The five-link robot manipulator to be controlled is designed using Simme-
chanics (see in Figure 7.11). We compare the performance of the proposed
control scheme (7.28) with the existing ASMC (7.11) in real sliding mode,
i.e., integral-type adaptation law [79,80,83,139] combined with the boundary
layer method

K̇ =
(
α1 · ‖σ‖+ α2 · ‖x‖ · ‖σ‖

)
· sgn

(
‖σ‖ − ε

)
(7.47)

and a simple joint-independent PID control [85]. The parameters for the
proposed ASMC (7.28) and the existing ASMC (7.47) are set as α = α1 =
α2 = 1 and β = 50. For fully uncertainties Ψ and Γ, we use a fixed ε = 0.1.
The parameters for PID control are chosen from a similar design presented
in [140] (see Table 7.1). The trajectories to be followed by each joint are shown
in Figure 7.12.

The position errors from link #1 to link #5 and the corresponding control
inputs are presented in Figures 7.13-7.17 where ASMC (1) in green dashed
lines refers to the results of ASMC by using the existing reaching law (7.47),
ASMC (2) in black solid lines refers to the results of ASMC by using the pro-
posed reaching law (7.28), and the magenta dash-dot lines refer to the results of
the PID control. It can be seen that the existing ASMC (7.47) has the largest
position errors and chatter levels during the ASMC process. The position
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Figure 7.11: Five-link robot manipulator

Table 7.1: Trajectory tracking control on robot manipulators: PID control
parameters [140]

Link # 1 2 3 4 5

kp 81.1 81.1 81.1 81.1 81.1

ki 20.1 20.1 20.1 20.1 562.4

kd 15.6 15.6 15.6 15.6 15.6

errors for the existing ASMC (7.47) are also relatively large at the beginning
of the ASMC process. The recommended PID control experiences smooth
control actions (i.e., low levels of chatter) and, however, relatively large posi-
tion errors. The proposed ASMC design allows accurate tracking trajectories
with reasonably smooth control actions. The results clearly demonstrate that
the proposed scheme is capable of solving the robust tracking problem on
robotic manipulators. Many advantages can be depicted from the proposed
controllers. The resulting closed-loop dynamic system has fast response to
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Figure 7.12: Desired trajectories qdi , for i = 1 . . . 5

uncertainties, while the accuracy and stability are well enhanced. The control
term does not require the computation of the inverse of the matrix M(q). Skew
symmetry, passivity and linearity w.r.t. the parameters are not exploited in
the proposed design. Knowledge of upper bounds of perturbations, including
the input gain matrix, is not required a priori.
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Figure 7.13: Trajectory tracking control on robot manipulators – Angular
position error e1 and control input u1

0 10 20 30 40 50 60
−2

0

2

e
2
[◦
]

Angle error e2

 

 

PID ASMC (1) ASMC (2)

0 10 20 30 40 50 60

−200

0

200

400

Time [sec]

u
2
[N

·
m
]

Input torque u2

 

 
PID ASMC (1) ASMC (2)

Figure 7.14: Trajectory tracking control on robot manipulators – Angular
position error e2 and control input u2
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Figure 7.15: Trajectory tracking control on robot manipulators – Angular
position error e3 and control input u3
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Figure 7.16: Trajectory tracking control on robot manipulators – Angular
position error e4 and control input u4
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Figure 7.17: Trajectory tracking control on robot manipulators – Angular
position error e5 and control input u5
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7.6 Applications – Stabilization and Trajectory
Tracking Control for a 2-DOF Helicopter
Model Setup

7.6.1 Modelling

Recall the dynamic equations of the experimental helicopter model [21] dis-
cussed in Chapter 3 (refer to, (3.43a) and (3.43b)). Refer to Section 1.6 for
further details about the description of this setup.

(
Jp +ml2

)
φ̈ =KppVp +KpyVy −Bpφ̇−mgl · cosφ

−ml2 sinφ cosφ · ψ̇2 (7.48a)
(
Jy +ml2 cos2 φ

)
ψ̈ =KypVp +KyyVy −Byψ̇

+ 2ml2 sinφ cosφ · φ̇ψ̇ (7.48b)

For any desired trajectories φd and ψd, with their time derivatives φ̇d

and ψ̇d, let x1 = φ̃ = φ − φd, x2 = ψ̃ = ψ − ψd, x3 =
˙̃
φ = φ̇ − φ̇d and

x4 =
˙̃
ψ = ψ̇ − ψ̇d be the measurable states, and u = [u1 u2]T = [Vp Vy]

T

the input vector. Then, dynamics (7.48) can be rewritten in the form of (7.1)
where the nonlinear uncertain dynamics are given by

f(x, t) =
[
x3, x4, f1(x), f2(x)

]T
(7.49)

and

g(x, t) =
[
g1(x, t), g2(x, t)

]
(7.50)

with

f1(x) =
1

Jp +ml2

[
−Bp(x3 + φ̇d)−mgl cos(x1 + φd)

− 1

2
ml2(x4 + ψ̇d)

2 sin
(
2(x1 + φd)

)]
+ φ̈d (7.51)

f2(x) =
−By(x4 + ψ̇d) +ml2(x3 + φ̇d)(x4 + ψ̇d) sin

(
2(x1 + φ)

)

Jy +ml2 cos2(x1 + φd)
− ψ̈d (7.52)

and

g1(x, t) =
(
0, 0,

Kpp

Jp +ml2
,

Kyp

Jy +ml2 cos2(x1 + φd)

)T
(7.53)

g2(x, t) =
(
0, 0,

Kpy

Jp +ml2
,

Kyy

Jy +ml2 cos2(x1 + φd)

)T
(7.54)
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For the control design purpose, we consider a PI sliding hyper-surface
as [11]

σ = Kpx+Ki

∫
xdτ (7.55)

Note that when the system is on the sliding surface (σ = 0) it has an exponen-
tial stability (i.e., x→ 0 and

∫
xdτ → 0 exponentially). Then, the dynamics

of σ can be written in form (7.5) where the uncertainty vector Ψ(x, t) includes
affine and quadratic terms in the state variables, in form a(t)x2

4 and b(t)x3x4

with a(t) and b(t) uncertain bounded coefficients.
We use a fixed-value ε instead of ε-tuning (i.e., ε time-varying and depend-

ing on K) which requires that Γ is normalizable [16]. Moreover, by applying
the ε-tuning, we realize that there is no improvement in the experimental re-
sults for the case where all coefficients of (7.48) are unknown. Then, for their
consistency, we keep ε the same during all the experiments.

We apply the real ASMC design (with a boundary-layer limit ε = 10−2

and a sampling period Ts = 5 · 10−3) using the proposed reaching law (7.28)
and we compare its performance to the existing adaptation gain dynamics
discussed in [16, 74] (i.e., (7.28) with β = 0) and conventional PID controls.
Experiments are conducted using different values of α and β.

7.6.2 Experiments – Pitch and Yaw Stabilization at 0◦

Positions

In the first experiments, we consider the pitch and yaw positions stabilized at
the origin (P0Y0), i.e., φd = φ̇d = 0 and ψd = ψ̇d = 0 in (7.49)-(7.54). Then,
the helicopter model setup can be roughly considered as a linear dynamic
system when the system is close to these desired positions. The initial pitch
and yaw positions are set as −40.5◦ and 10◦, respectively.

Figures 7.18 and 7.19 show the experimental results of the pitch and yaw
displacements and control inputs, respectively, by using the existing ASMC,
referred to as Exst (blue dash) reaching law discussed in [16, 74] (i.e., (7.28)
with α = 0.1 and β = 0), PID control (red dash-dot) and proposed ASMC,
referred to as Prpsd (black solid line), with α = 0.1 and β = 10, while the
experimental results for α = 0.1 and β = 20 are shown in Figures 7.21 and
7.20. The experiments for α = 0.05 and α = 0.2 combined with β = 10 and
β = 20 have similar results and are shown in Figures B.17-B.22 in Appendix
B.3. The experimental results for α = 0.05, α = 0.1 and α = 0.2 combined
with β = 5 are not shown in the thesis since the results are similar to other
combination ones.
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Figure 7.18: Experiment results – Pitch and yaw displacements in regulation
problem about 0◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.1 and β = 10.

One can see that the PID control has the best performance in terms of
chattering levels, overshoots and accuracies, while the results by using pro-
posed ASMC are also good. However, the results by using the existing ASMC
are only acceptable. The experimental results of P0Y0 demonstrate that the
PID control is a good choice for linear dynamic systems. Table 7.2 summarizes
the experimental results (error peak and RMS performances) for the pitch and
yaw stabilization with all combinations of control parameters α and β, i.e.,
α = 0.05, α = 0.1 and α = 0.2 combined with β = 5, β = 10 and β = 20
where the best results are obtained by PID control and highlighted in bold
fonts. The other better results are underlined.
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Figure 7.19: Experiment results – Pitch and yaw control inputs in regulation
problem about 0◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.1 and β = 10.
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Figure 7.20: Experiment results – Pitch and yaw displacements in regulation
problem about 0◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.1 and β = 20.
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Figure 7.21: Experiment results – Pitch and yaw control inputs in regulation
problem about 0◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.1 and β = 20.
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Table 7.2: Experimental results recap – Pitch and yaw error (i.e., φ̃ and ψ̃)
performance in position stabilization at 0◦. Results are in % of maximum
displacement.

P0Y0 Pitch Angle Yaw Angle

Method α β RMS Peak RMS Peak

PID 0.5 1.4 2.2 5.5

Existing

0.05

0 4.0 15.2 23.3 72.3

Proposed

5 0.9 2.8 6.9 16.5

10 0.7 1.8 5.7 13.4

20 1.8 7.0 3.5 12.1

Existing

0.1

0 3.1 10 23.4 53.9

Proposed

5 1.4 2.2 7.0 20.5

10 1.0 1.8 4.3 9.5

20 2.3 8.1 2.6 8.2

Existing

0.2

0 3.4 13.4 21.6 57.8

Proposed

5 2.8 4.0 9.7 18.2

10 1.5 2.7 4.6 9.0

20 2.2 8.1 3.5 9.9
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7.6.3 Experiments – Pitch Stabilization at the Origin 0◦ and
Yaw Sine-Wave Trajectory Tracking

In the experiments of pitch stabilization at the origin and yaw sine-wave tra-
jectory tracking (P0Yv), the pitch is stabilized at φd = 0◦, and yaw position

follows the time-varying trajectory ψd = 10◦ sin(0.15πt+
π

2
). The initial pitch

and yaw positions are set as −40.5◦ and 10◦, respectively.
Figures 7.22-7.24 show the experimental results of the pitch and yaw dis-

placements, their corresponding errors and the control inputs, respectively, by
using the existing ASMC (blue dash) reaching law discussed in [16, 74] (i.e.,
(7.28) with α = 0.1 and β = 0), PID (red dash-dot) and proposed ASMC
(black solid line) reaching law (7.28) with α = 0.1 and β = 10, while the
experimental results for α = 0.1 and β = 20 are shown in Figures 7.25-7.27.
The experiments for α = 0.05 and α = 0.2 combined with β = 10 and β = 20
have similar results and are shown in Figures B.26-B.34 in Appendix B.4. The
experimental results for α = 0.05, α = 0.1 and α = 0.2 combined with β = 5
are not shown in the thesis since the results are similar. Table 7.3 summarizes
the experimental results (in terms of peak and RMS errors) for all combina-
tions of α and β, i.e., α = 0.05, α = 0.1 and α = 0.2 combined with β = 5,
β = 10 and β = 20.

In comparison with the existing ASMC, one can see that, by using the
proposed gain law, both pitch input u1 and yaw input u2 have less chattering
levels and smaller magnitude variations than those using the existing one.
With ASMC using the existing gain law, the voltages of the rear and front
propeller motors are often saturated at their maximum levels of ±15V and
±24V, respectively, while the magnitudes of these values are limited to about
10V with the new design. Simultaneously, the pitch and yaw follow the desired
trajectories more accurately by using the proposed gain law than those using
the existing one. From Table 7.3, it can be seen that, by using the proposed
gain law (i.e., with any β > 0), the errors are largely reduced compared to
those using the existing gain law (i.e., β = 0). The RMS errors of the pitch
angle trajectories with the new design can be reduced by 20%-81% compared
to the existing ones and by 29%-83% for yaw angles, while their peak errors
can be down by 50%-87% and 45%-82%, respectively.

In comparison with PID, one can see that, by using the proposed ASMC
gain law, both pitch input u1 and yaw input u2 have almost the same levels
as those using the PID. Also, the pitch stabilization errors and yaw trajectory
tracking errors are almost same for the proposed ASMC and the PID control.
However, the overshoot and peak error of the yaw tracking using the PID are
much higher than those obtained using the proposed ASMC.
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Figure 7.22: Experiment results – Pitch and yaw displacements in pitch reg-
ulation and yaw sine wave tracking problem, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.1
and β = 10.
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Figure 7.23: Experiment results – Pitch and yaw position errors in pitch
regulation and yaw sine wave tracking problem, using the existing ASMC
(blue dash), PID (red dash-dot) and proposed ASMC (black solid line) with
α = 0.1 and β = 10.
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Figure 7.24: Experiment results – Pitch and yaw control inputs in pitch reg-
ulation and yaw sine wave tracking problem, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.1
and β = 10.
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Figure 7.25: Experiment results – Pitch and yaw displacements in pitch reg-
ulation and yaw sine wave tracking problem, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.1
and β = 20.
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Figure 7.26: Experiment results – Pitch and yaw position errors in pitch
regulation and yaw sine wave tracking problem, using the existing ASMC
(blue dash), PID (red dash-dot) and proposed ASMC (black solid line) with
α = 0.1 and β = 20.
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Figure 7.27: Experiment results – Pitch and yaw control inputs in pitch reg-
ulation and yaw sine wave tracking problem, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.1
and β = 20.
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Table 7.3: Experimental results recap – Pitch and yaw error (i.e., φ̃ and
ψ̃) performance in pitch position stabilization and yaw trajectory tracking.
Results are in % of maximum displacement.

P0Yv Pitch Angle Yaw Angle

Method α β RMS Peak RMS Peak

PID 0.5 1.7 7.1 19.9

Existing

0.05

0 3.7 14.1 26.4 63.0

Proposed

5 1.1 3.9 19.0 34.9

10 0.7 1.8 12.7 26.9

20 1.5 5.5 5.7 15.2

Existing

0.1

0 3.2 8.4 25.7 62.5

Proposed

5 1.6 2.9 14.6 31.4

10 1.0 2.0 10.2 23.9

20 1.8 7.0 4.4 12.9

Existing

0.2

0 3.2 10.8 26.2 62.9

Proposed

5 2.9 4.8 18.2 32.6

10 1.8 3.1 11.6 25.3

20 1.8 7.0 4.7 11.3
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7.6.4 Experiments – Pitch Sine-Wave Trajectory Tracking
and Yaw Stabilization at the Origin 0◦

In the experiments of pitch sine-wave trajectory tracking and yaw stabilization
at the origin (PvY0), the pitch follows the time-varying trajectory, φd =

10◦ sin(0.4πt− π
2

), and yaw is stabilized at ψd = 0◦. The initial pitch and yaw

positions are set as −40.5◦ and 10◦, respectively.
Figures 7.28-7.30 show the experimental results of the pitch and yaw dis-

placements, their corresponding position errors and the control inputs, re-
spectively, by using the existing ASMC (blue dash) reaching law discussed
in [16, 74] (i.e., (7.28) with α = 0.1 and β = 0), PID (red dash-dot) and pro-
posed ASMC (black solid line) reaching law (7.28) with α = 0.1 and β = 10,
while the experimental results for α = 0.1 and β = 20 are shown in Figures
7.31-7.33. The experiments for α = 0.05 and α = 0.2 combined with β = 10
and β = 20 have similar results and are shown in Figures B.36-B.47 in Ap-
pendix B.5. The experimental results for α = 0.05, α = 0.1 and α = 0.2
combined with β = 5 are not shown in the thesis since the results are similar
to other combination ones. Table 7.4 summarizes the experimental results (in
terms of error performances) for all combinations of α and β, i.e., α = 0.05,
α = 0.1 and α = 0.2 combined with β = 5, β = 10 and β = 20.

In comparison with the existing ASMC, one can see that, by using the
proposed gain law, both pitch input u1 and yaw input u2 have less chattering
levels and smaller magnitude variations than those using the existing one.
With ASMC using the existing gain law, the voltages of both propeller motors
are often saturated, while the magnitudes of these values are limited to about
10V with the new design. Simultaneously, the pitch and yaw follow the desired
trajectories more accurately by using the proposed gain law than those using
the existing one. From Table 7.4, it can be seen that, by using the proposed
gain law (i.e., with any β > 0), the errors are largely reduced compared to
those using the existing gain law (i.e., β = 0). The RMS errors of the pitch
angle trajectories with the new design can be reduced by 68%-83% compared
to the existing ones and by 73%-93% for yaw angles, while their peak errors
can be down by 70%-89% and 85%-92%, respectively.

In comparison with PID, one can see that, by using the proposed ASMC
gain law, both pitch input u1 and yaw input u2 have almost the same levels as
those obtained using the PID. Also, the pitch trajectory tracking errors and
yaw stabilization errors are almost same for the proposed ASMC and the PID
control.
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Figure 7.28: Experiment results – Pitch and yaw displacements in pitch sine
wave tracking control and yaw regulation, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.1
and β = 10.
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Figure 7.29: Experiment results – Pitch and yaw position errors in pitch
sine wave tracking control and yaw regulation, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.1
and β = 10.
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Figure 7.30: Experiment results – Pitch and yaw control inputs in pitch sine
wave tracking control and yaw regulation, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.1
and β = 10.
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Figure 7.31: Experiment results – Pitch and yaw displacements in pitch sine
wave tracking control and yaw regulation, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.1
and β = 20.
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Figure 7.32: Experiment results – Pitch and yaw position errors in pitch
sine wave tracking control and yaw regulation, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.1
and β = 20.
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Figure 7.33: Experiment results – Pitch and yaw control inputs in pitch sine
wave tracking control and yaw regulation, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.1
and β = 20.
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Table 7.4: Experimental results recap – Pitch and yaw error (i.e., φ̃ and
ψ̃) performance in pitch trajectory tracking and yaw position stabilization.
Results are in % of maximum displacement.

PvY0 Pitch Angle Yaw Angle

Method α β RMS Peak RMS Peak

PID 7.2 19.8 4.7 11.8

Existing

0.05

0 19.5 79.9 34.2 100.4

Proposed

5 4.0 11.2 5.9 17.4

10 3.3 8.5 4.0 10.8

20 5.1 21.1 2.9 9.0

Existing

0.1

0 15.2 39.2 27.6 66.3

Proposed

5 6.2 12.3 5.3 12.5

10 4.1 9.8 4.0 13.9

20 6.1 23.7 2.8 9.0

Existing

0.2

0 15.4 36.6 36.8 112.3

Proposed

5 11.3 18.4 9.8 15.6

10 6.0 11.8 3.4 8.0

20 6.0 20.6 3.9 10.8
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7.6.5 Experiments – Pitch and Yaw Stabilization at 10◦

Position

In the experiments of pitch and yaw stabilization at 10◦ (P10Y10), we consider
the pitch and yaw positions stabilized at the desired angle, i.e., φd = ψd = 10◦

in (7.49)-(7.54). The initial pitch and yaw positions are set as −40.5◦ and 0◦,
respectively.

Figures 7.34 and 7.35 show the experimental results of the pitch and yaw
displacements and the control inputs, respectively, by using the existing ASMC
(blue dash) reaching law discussed in [16, 74] (i.e., (7.28) with α = 0.1 and
β = 0), PID (red dash-dot) and proposed ASMC (black solid line) reaching
law (7.28) with α = 0.1 and β = 10, while the experimental results for α = 0.1
and β = 20 are shown in Figures 7.36 and 7.37. The experiments for α = 0.05
and α = 0.2 combined with β = 10 and β = 20 have similar results and
are shown in Figures B.48-B.51 in Appendix B.6. The experimental results
for α = 0.05, α = 0.1 and α = 0.2 combined with β = 5 are not shown in
the thesis since the results are similar to other combination ones. Table 7.5
summarizes the experimental results of the pitch and yaw stabilization errors
for all combinations of control parameters α and β, i.e., α = 0.05, α = 0.1
and α = 0.2 combined with β = 5, β = 10 and β = 20.

One can see that the proposed ASMC has the best performance in terms of
robustness, smoothness and accuracy, while the results using existing ASMC
are acceptable. However, the results using PID control are unacceptable (un-
stable). In Table 7.5, the best results are highlighted in bold fonts, and the
second better performances are underlined. Since the setup at pitch and yaw
positions of 10◦ is a typical highly coupled nonlinear system, the results in-
dicate that the PID control may not be a good choice for nonlinear dynamic
systems (system unstable). In contrast, the proposed ASMC might be a good
choice.
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Figure 7.34: Experiment results – Pitch and yaw displacements in regulation
problem about 0◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.1 and β = 10.
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Figure 7.35: Experiment results – Pitch and yaw control inputs in regulation
problem about 0◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.1 and β = 10.
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Figure 7.36: Experiment results – Pitch and yaw displacements in regulation
problem about 0◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.1 and β = 20.
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Figure 7.37: Experiment results – Pitch and yaw control inputs in regulation
problem about 0◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.1 and β = 20.
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Table 7.5: Experimental results recap – Pitch and yaw error (i.e., φ̃ and ψ̃)
performance in positions stabilization at 10◦. Results are in % of maximum
displacement.

P10Y10 Pitch Angle Yaw Angle

Method α β RMS Peak RMS Peak

PID 13.2 50.47 1597.24 2631.25

Existing

0.05

0 21.0 67.3 28.5 18.9

Proposed

5 3.3 8.4 5.8 16.1

10 3.0 9.2 3.1 10.4

20 5.0 21.5 3.2 13.0

Existing

0.1

0 15.4 48.0 25.8 61.3

Proposed

5 6.0 9.2 7.2 16.1

10 3.9 7.4 3.9 9.5

20 4.7 18.0 3.3 12.6

Existing

0.2

0 17.9 60.3 29.3 69.7

Proposed

5 12.3 18.0 11.7 21.3

10 6.9 13.6 5.3 12.6

20 5.7 18.8 4.7 15.6
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7.6.6 Experiments – Pitch and Yaw Trajectory Tracking
Control

In the experiments of pitch and yaw trajectories tracking control, the pitch and

yaw positions follow the time-varying trajectories, φd = 10◦ sin(0.4πt− π

2
) =

−10◦ cos 0.4πt and ψd = 10◦ sin(0.15πt +
π

2
) = 10◦ cos 0.15πt, respectively.

The initial pitch and yaw positions are set as −40.5◦ and 10◦, respectively.
Figures 7.38-7.40 show the experimental results of the pitch and yaw dis-

placements, the position errors, and the control inputs, respectively, using the
existing ASMC (blue dash) reaching law discussed in [16, 74] (i.e., reaching
law (7.28) with α = 0.1 and β = 0), PID (red dash-dot) and proposed ASMC
(black solid line) reaching law (7.28) with α = 0.1 and β = 10, while the
experimental results for α = 0.1 and β = 20 are shown in Figures 7.41-7.43.
The experiments for α = 0.05 and α = 0.2 combined with β = 10 and β = 20
have similar results and are shown in Figures B.56-B.67 in Appendix B.7. The
experimental results for α = 0.05, α = 0.1 and α = 0.2 combined with β = 5
are not shown in the thesis since the results are similar to other combination
ones. Table 7.6 summarizes the experimental results for all combinations of α
and β, i.e., α = 0.05, α = 0.1 and α = 0.2 combined with β = 5, β = 10 and
β = 20.

In comparison with the existing ASMC, one can see that, by using the pro-
posed IEG-ASMC, both pitch and yaw inputs have less chattering levels and
smaller magnitude variations than those using the existing IG-ASMC. With
IG-ASMC, the voltages of both the front and rear propeller motors are often
saturated at their maximum levels of ±24V and ±15V, respectively, while
these values are limited to about 10V with the new design. Simultaneously,
the pitch and yaw follow the desired trajectories more accurately when using
the proposed gain law than with those using the existing one. From Table 7.6,
it can be seen that, by using the proposed IEG-ASMC, the errors are largely
reduced compared to those by using the existing gain law (i.e., β = 0). The
RMS errors of the pitch angle trajectories with the new design can be reduced
by up to 72% compared to the existing ones and by up to 80% for yaw angles,
while their peak errors can be down by 43%-76% and 50%-83%, respectively.

In comparison with PID, it can be seen that, by using the proposed gain
law, the pitch follows the desired trajectories more accurately than when using
the PID. Though the accuracy of the yaw tracking by using the PID has the
same level of those using the proposed gain law, the overshoot and peak error
of the yaw tracking using the PID is much higher than those using the proposed
ASMC. Simultaneously, both pitch input u1 and yaw input u2 have almost
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Figure 7.38: Experiment results – Pitch and yaw displacements in sine wave
tracking for both pitch and yaw angles, using the existing ASMC (blue dash),
PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.1 and
β = 10.

the same levels for the proposed IEG-ASMC and PID.
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Figure 7.39: Experiment results – Pitch and yaw position errors in sine wave
tracking for both pitch and yaw angles, using the existing ASMC (blue dash),
PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.1 and
β = 10.
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Figure 7.40: Experiment results – Pitch and yaw control inputs in sine wave
tracking for both pitch and yaw angles, using the existing ASMC (blue dash),
PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.1 and
β = 10.

219



7.6. Applications – Stabilization and Trajectory Tracking Control for a
2-DOF Helicopter Model Setup

0 5 10 15 20 25
−30

−20

−10

0

10

φ
[◦
]

Pitch angle φ, α = 0.1 β = 20, PvYv

 

 

Exst PID Prpsd β = 20

0 5 10 15 20 25
−20

0

20

Time [sec]

ψ
[◦
]

Yaw angle ψ, α = 0.1 β = 20, PvYv

 

 
Exst PID Prpsd

Figure 7.41: Experiment results – Pitch and yaw displacements in sine wave
tracking for both pitch and yaw angles, using the existing ASMC (blue dash),
PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.1 and
β = 20.

0 5 10 15 20 25
−60

−40

−20

0

20

Time [sec]

ψ
[◦
]

Yaw errors ψ̃, α = 0.1 β = 20, PvYv

0 5 10 15 20 25

−40

−20

0

φ
[◦
]

Pitch errors φ̃, α = 0.1 β = 20, PvYv

 

 

Exst
PID
Prpsd12 16 20 24

−2
−1
0
1

 

 

12 16 20 24
−2
−1
0
1

Figure 7.42: Experiment results – Pitch and yaw position errors in sine wave
tracking for both pitch and yaw angles, using the existing ASMC (blue dash),
PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.1 and
β = 20.
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Figure 7.43: Experiment results – Pitch and yaw control inputs in sine wave
tracking for both pitch and yaw angles, using the existing ASMC (blue dash),
PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.1 and
β = 20.
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Table 7.6: Experimental results recap – Pitch and yaw error (i.e., φ̃ and ψ̃)
performance in tracking control of sine wave trajectories. Results are in % of
maximum displacement.

PvYv Pitch Angle Yaw Angle

Method α β RMS Peak RMS Peak

PID 8.0 18.1 8.1 19.4

Existing

0.05

0 14.6 36.1 27.8 73.7

Proposed

5 4.7 14.9 15.4 36.0

10 5.6 20.0 10.9 21.8

20 5.8 19.8 6.3 12.6

Existing

0.1

0 16.9 48.0 27.6 65.7

Proposed

5 8.1 16.2 15.2 27.8

10 5.4 11.6 11.5 25.8

20 6.0 16.9 6.3 13.3

Existing

0.2

0 15.3 35.8 30.0 68.1

Proposed

5 13.2 27.2 16.5 36.6

10 7.3 13.1 9.5 23.0

20 7.3 17.6 6.0 15.3
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7.6.7 Experimental results recap – Comments on the
Proposed ASMC, Existing ASMC and PID

The performance of all the experimental results are summarized in Table 7.7.
One can see that when the pitch of the helicopter-model setup is stabilized
at the origin 0◦ where the system is roughly linear, the PID control has the
best performance. However, when the pitch of the helicopter-model setup is
stabilized at the origin 10◦ where the system is highly nonlinear, the PID
control has the worst performance. In contrast, the proposed ASMC design
has good performance for pitch stabilization at the origin 0◦ and the best
performance for stabilization at 10◦ and trajectory tracking.

Table 7.7: Experimental results recap – Comments on the three control meth-
ods, proposed ASMC (i.e., IEG-ASMC), existing ASMC (i.e., IE-ASMC) and
PID

Control
Objectives

Best Good
Occasionally
Acceptable

Not Accept-
able

P0Y0 PID IEG-ASMC IG-ASMC

P0Yv IEG-ASMC PID IG-ASMC

PvY0 IEG-ASMC PID IG-ASMC

P10Y10 IEG-ASMC IG-ASMC PID

PvYv IEG-ASMC PID IG-ASMC
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7.7 Conclusions

The application of the proposed ASMC techniques to a large class of nonlin-
ear systems with unknown polynomial uncertainties are investigated. While
most existing papers on ASMC designs deal with uncertainties bounded by
constants or affine functions, the proposed design with integral-exponential
gain law successfully handles the uncertainties bounded by unknown poly-
nomials in the norm of system state vector. Moreover, the new algorithm
provides simultaneously the required compensating gain “almost” and greatly
reduced the final (or post-perturbation) gain. With the proposed algorithm,
the closed-loop dynamic system has fast response to uncertainties, the accu-
racy and stability are enhanced, and a much lower level of gain overestima-
tion reduces the chattering level eventually. A simple motivation example
illustrates the feasibility of the proposed ASMC. The applications, including
simulations and experiments, of the proposed ASMC design on a nonlinear
mass-spring system, a 5-link robotic manipulator and the helicopter-model
setup with stabilization and trajectory tracking control are conducted with
comparisons to the existing ASMC design and the conventional PID control.
The simulation and experimental results demonstrate the effectiveness of the
proposed design in terms of stability, chattering reduction and error perfor-
mances for handling nonlinear systems with unknown polynomial (and more
general) uncertainties. Also, the simulation results on the 5-link robot ma-
nipulator and the experimental results on the 2-DOF helicopter-model setup
show that the PID control is a good choice for linear uncertain systems, but
may not be a good choice for nonlinear uncertain systems. In contrast, the
proposed ASMC is a good choice or the best choice for nonlinear uncertain
systems and most situations.

The extension of the improved adaptation law discussed in this chapter
can be easily adapted to a large class of uncertain dynamics with uneven
upper-bounds on the norm of uncertainties. Such bounds can be modelled by
any real-value function, in the state norm, provided that its output does not
exceed any exponential-based model. This requirement remains fundamental
to keep the design parameters of the proposed method independent of the
uncertainty levels (i.e., that can be freely selected as most of ASMC gain
laws).

More details in terms of motivations, objectives, novelties, pros and cons
of this chapter are presented in Table 7.8.
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7.7. Conclusions

Table 7.8: Chapter 7 Recap

Motivation(s)

- Many dynamic systems encounter nonlinear
(mostly, polynomial) terms with unknown param-
eters.

Objective(s)

- Application of the new ASMC techniques to the
nonlinear systems with uncertainties bounded by
unknown polynomial in the norm of the states.

- Further investigation of the new ASMC.

Novelty(ies)

- The application of the new IEG-ASMC is provided
for systems with uncertainties of unknown polyno-
mial bounds .

- The stabilities of the new ASMC methods for dif-
ferent cases of MIMO systems with unknown poly-
nomial uncertainties are proven.

Pro(s)

- The new ASMC successfully handles the nonlinear
systems with uncertainties of unknown polynomial
bounds in the norm of the states.

- In practice, we show better performance than the
existing IG-ASMC for any situation and better per-
formance than PID control for nonlinear situations.

Con(s)

- No significant improvement compared to the PID
control when systems in linear mode.

- Extension of the proposed IEG-ASMC to high-
order ASMC not investigated.
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8 Conclusion

The dissertation focuses on the analysis, design and applications of robust
adaptive controllers to the nonlinear systems with uncertainties of unknown
bounds. In particular, ASMC techniques with integral or modified integral
adaptation laws introduced for two decades have been thoroughly analysed.
Through analysis of the existence of FTC in ASMC, new necessary and suf-
ficient conditions, different from the existing analyses, are provided with the
conclusion that any positive definite function of the sliding variable can be
used in the integral adaptation law. Moreover, a special type of function is
proposed to smooth the chattering.

The dissertation then investigates the convergence and boundedness in
the existing classic IG-ASMC techniques. The applications of a new Lya-
punov approach and a new majorant curve approach successfully prove the
FTC of sliding variable and UUB of the switching gain. Moreover, a new
formula for RTE is deduced showing the relationship that the reaching time
is inverse-proportional to the square root of the designed integral parameter.
The explicit relationship indicates that the classic ASMC techniques cannot
achieve fast response and lower chattering simultaneously. Thus, it reveals the
inherent reason of the slow response existing in the classic ASMC techniques
with integral adaptation laws.

In order to thoroughly resolve the trade-offs involved in system response
to the uncertainties and chattering attenuation, a new adaptation formula,
called integral-exponential reaching law, of first order ASMC is proposed. The
new algorithm combines the classic integral reaching law with an exponential
term. With the newly added exponential term, the system responds to the
uncertainties quickly. Simultaneously, it reduces the final switching gain and
lower chattering levels are achieved. The stability of the new IEG-ASMC
designs are proven based on the Lyapunov theorems.

Further investigations show that the new design not only deals with non-
linear systems with the uncertainties bounded by unknown constants, but also
successfully handles the uncertainties bounded by unknown polynomials in the
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norm of system state vector. Since the upper-bounds of most uncertainties
can be modelled by some unknown polynomials, the proposed IEG-ASMC
can be easily adapted to a large class of uncertain dynamics with uneven
upper-bounds. This requirement also remains fundamental to keep the design
parameters of the proposed method independent of the uncertainty levels.

The proposed designs are numerically verified upon different nonlinear
dynamic systems: a variable-length pendulum, a 2-DOF experimental heli-
copter and a 5-link robotic manipulator. The experiments are conducted on
the 2-DOF experimental helicopter compared with the existing ASMC de-
signs and the general PID designs. Both numerical and experimental results
show that the new proposed ASMC designs for nonlinear dynamic systems of
uncertainties of unknown bounds can significantly improve the system’s ro-
bustness and reduce the chattering level compared to currently existing ASMC
designs. Compared to PID control, the proposed IEG-ASMC shows notable
improvement in terms of robustness and accuracy when systems are in non-
linear mode. However, when the system is in linear mode (i.e., about the
equilibium), the ASMC techniques do not show any significant improvement
compared to PID controllers. The proposed IEG-ASMC is designed for non-
linear uncertain systems with limited input measurements (e.g., only position
signals are available). For the nonlinear uncertain systems with full input mea-
surements (e.g., other than positions, velocities and/or accelerations are also
available), the proposed IEG-ASMC may not be the best or optimal control
method. New questions arise:

• How to borrow the idea of IEG-ASMC to develop a high-performance
control algorithm for nonlinear systems with full input measurements?
• Combination/implementation of the proposed algorithm presented in

this thesis with robust differentiator tools.
• How to apply the proposed IEG-ASMC to the control of a more complex

structure of any robotic system or a UAV flying through a snow storm?

These questions motivate the future research: the implementation of the
proposed IEG-ASMC in a real industrial product (e.g., robot arms, a UAV
with high stability performance in a snow storm, etc.).
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A Basic Definitions, Teorems
and Proofs

A.1 Dynamic Systems and Equilibrium

Definition A.1. [1] When the input u does not present explicitly in (3.1) or
(3.2), we obtain the unforced state equation

ẋ = f(x, t) (A.1)

Note, the input u is not required to be zero for an unforced system. In fact,
substituting the input u = γ(x, t) into (3.2) yields an unforced state equation.

Definition A.2. [1] When the function a does not depend explicitly on time
t, the system (A.1) is said to be autonomous or time invariant, i.e.,

ẋ = f(x) (A.2)

If the system is not autonomous, then it is called non-autonomous or time-
varying.

The concept of equilibrium points plays an important role in analysing the
dynamic system (A.1).

Definition A.3. [1] A point x = xe in the state space is called an equilibrium
point of (A.1) if it has the property that whenever the state of the system
starts at xe, it will remain at xe for all future time.

Without loss of generality, we state all definitions and theorems for the
case when the equilibrium point is at the origin, i.e., xe = 0. Therefore, we
will always study the stability of the origin x = 0.
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A.2 Fundamental Properties of Ordinary
Differential Equations

Since the dynamic system (A.1) is essentially a system of ordinary differential
equations (ODE), we introduce some fundamental properties of ODE. In the
theory of differential equations, the Lipschitz continuity is the central condi-
tion of the Picard–Lindelöf theorem [141] which guarantees the existence and
uniqueness of the solution to an initial value problem.

Definition A.4. [142] Given two metric spaces (X, dX) and (Y, dY ), where
dX denotes the metric on the set X and dY is the metric on set Y (for example,
Y might be the set of real numbers R with the metric dY (X,Y ) = |X − Y |,
and X might be a subset of R), a function f : X → Y is called Lipschitz
continuous if there exists a real constant L ≥ 0 s.t., for all x1 and x2 in X,

dY (f(x1), f(x2)) ≤ L · dX(x1, x2) (A.3)

Since the metric space considered in most engineering area is n−dimensional
Euclidean space (Rn), we call that the system (A.1) with initial condition
x(t0) = x0 satisfies Lipschitz Condition if there exist a real constant L ≥ 0
s.t., for all (x, t) and (y, t) in some neighbourhood of (x0, t0), [1]

‖f(x, t)− f(y, t)‖ ≤ L‖x− y‖ (A.4)

where ‖ · ‖ denotes an Euclidean norm and the constant L is called a Lips-
chitz Constant. A function satisfying (A.4) is said to be Lipschitz in x. The
Lipschitz property is stronger than continuity and weaker than continuous
differentiability. By applying the Lipschitz condition, we have the following
theorem for the local existence and uniqueness.

Theorem A.1. [1] Given r > 0. Let f(x, t) be piecewise continuous in t and
satisfy the Lipschitz condition (A.4) ∀x, y ∈ X = {x ∈ Rn : ‖x − x0‖ ≤ r}.
Then, there exists some δ > 0 such that the state equation (A.1) with initial
condition x(t0) = x0 has a unique solution over [t0, t0 + δ].

Mostly, f(x, t) in (3.2) is considered to be Lipschitz in x on [a, b] × χ ⊂
R × Rn. If f(x, t) is bounded by some polynomial function of degree greater
than 1 in R × Rn, then f is not Lipschitz globally. In the later of the thesis,
the non-Lipschitz condition will be considered and a solution to stabilize the
nonlinear system (3.2) will be given.

Since the vector f(x, t) ∈ Rn and the matrix g(x, t) ∈ Rn×m of the non-
linear system (3.2) are nonlinear time-varying smooth functions containing
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parametric uncertainties and external disturbances, they are usually consid-
ered to be bounded by some functions. Consider the state equation ẋ = f(x, t)
as the unforced form of (3.2) with the uncertain function f(x, t) bounded by
F (x, t), i.e.,

ẋ ≤ F (x, t) (A.5)

The Comparison Lemma is commonly used to deal with this differential in-
equality.

Lemma A.1 (Comparison Lemma). [1] Consider the scalar differential
equation

v̇ = F (v, t), v(t0) = v0 (A.6)

where F (v, t) is continuous in t and locally Lipschitz in v for all (t, v) ∈ R×χ.
Let [t0, T ) be the maximal interval of existence of the solution v(t), and suppose
v(t) ∈ χ for all t ∈ [t0, T ). Let x(t) be a continuous function whose upper
right-hand derivative D+x(t) satisfies the differential inequality

D+x(t) = f(x, t) ≤ F (x, t), x(t0) = v0 (A.7)

with x(t) ∈ χ for all t ∈ [t0, T ). Then, x(t) ≤ v(t) for all t ∈ [t0, T ).

The Comparison Lemma states that the state (or trajectory) x(t) of the
uncertain system ẋ = f(x, t) is governed (or upper-bounded) by the solution
of the explicit system ẋ = F (x, t).

A.3 Stability

A.3.1 Definitions

Consider the autonomous system (A.2) where f(x) is Locally Lipschitz map
from a domain χ ⊂ Rn into Rn.

Definition A.5. [1] [123] The equilibrium x = 0 is
• stable if, for each ε > 0, there exist δ = δ(ε) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ 0 (A.8)

• unstable if it is not stable
• asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0 (A.9)
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• finite-time stable if it is stable, there exists finite time T ∈ [0,∞), and
δ can be chosen such that,

‖x(0)‖ < δ ⇒ lim
t→T

x(t) = 0 (A.10)

Consider the non-autonomous system (A.1) where f(x, t) is a map from
a domain [0,∞) × χ into Rn and χ ⊂ Rn is a domain containing the origin.
Assuming that f(x, t) is locally Lipschitz in x

Definition A.6. [1] [123] The equilibrium x = 0 of (A.1) is
• stable if, for each ε > 0, there exist δ = δ(ε, t0) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ t0 ≥ 0 (A.11)

• uniformly stable if, for each ε > 0, there exist δ = δ(ε) > 0, independent
of t0 such that (A.11) is satisfied.
• unstable if it is not stable
• asymptotically stable if it is stable and there exists a positive constant
c = c(t0) such that x(t)→ 0 as t→∞, for all x(t0) ≤ c.
• finite-time stable if it is stable and there exist positive constant c = c(t0)

and T such that x(t)→ 0 as t→ T , for all x(t0) ≤ c.

Definition A.7. [1] [123] The solution of (A.1) is
• uniformly bounded if there exists a positive constant c, independent of
t0 ≥ 0, and for every a ∈ (0, c), there exist β = β(a) > 0 independent of
t0, such that

‖x(t0)‖ < a⇒ ‖x(t)‖ < β, ∀t ≥ t0 ≥ 0 (A.12)

• globally uniformly bounded if (A.12) holds for arbitrarily large a.
• uniformly ultimately bounded with an ultimate bound b if there exist

positive constants b and c, independent of t0 ≥ 0, and for every a ∈ (0, c),
there exists T = T (a, b) ≥ 0 independent of t0, such that

‖x(t0)‖ < a⇒ ‖x(t)‖ < b, ∀t ≥ t0 + T (A.13)

• globally uniformly ultimately bounded if (A.13) holds for arbitrarily large
a.

Given a dynamic system ẋ = f(x) where f is continuous on any open
domain χ ⊆ Rn comprising the origin which is an equilibrium of this dynamics,
we have

244



A.4. Proof of Lemma 4.5

Definition A.8. (refer to [123,143]) The equilibrium x = 0 is asymptotically
convergent if there exists an open neighborhood U ⊆ χ of the origin such
that the solution trajectory x(t,x0) starting from initial point x0 ∈ U\{0} is
well-defined and unique in forward time for t ∈ R and x(t,x0)→ 0 as t→∞.

Definition A.9. (refer to [18, 123]) The equilibrium x = 0 is finite-time
convergent if there exists an open neighborhood U ⊆ χ of the origin and
a function tx : U\{0} → R\{0}, such that the solution trajectory x(t,x0)
starting from initial point x0 ∈ U\{0} is well-defined and unique in forward
time for t ∈ [0, tx(x0)) and x(t,x0)→ 0 as t→ tx(x0).

A.3.2 Stability Theorems

For the nonlinear systems with uncertainties, the stability analysis is mainly
based on Lyapunov’s Stability Theorem and its extensions such as Barbalat’s
Lemma, LaSalle’s Invariance Principle, Comparison Lemma, Fillipov Integra-
tion, etc. [1].

A.4 Proof of Lemma 4.5

Proof. Refer to Lemma 2 of [16]. The proof is based on Lyapunov stability
criterion. Consider the following Lyapunov candidate function

V =
1

2
σ2 (A.14)

The time derivative of V is

V̇ = σσ̇

= σ(Ψ− ΓKsgn(σ))

= [Ψsgn(σ)− ΓK]|σ| (A.15)

Note that Ψsgn(σ) is bounded, Γ > 0 and K is an monotonically increasing
function. There exist a K(t∗) = K∗ large enough and a positive scalar κ > 0
s.t. ∀t ≥ t∗

V̇ ≤ −κ|σ|
≤ −κ

√
2V (A.16)

That is,

d

dt

√
V ≤ − κ√

2
(A.17)
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The inequality (A.17) implies that the positive
√
V will decrease with a rate

at least
κ√
2

and reaches zero in finite time and stay on zero thereafter [1].

Denote the finite time as tf . Then
√
V = |σ| = 0 for all t ≥ t∗ + tf . From

(4.47), we conclude that K stops increasing for all t ≥ t∗ + tf and thus K is
upper bounded.

A.5 Proof of Theorem 4.1

Proof. Refer to Theorem 3 of [16]. The proof is based on Lyapunov stability
criterion. Define the switching gain adaptation error K̃ = K −K∗, where K∗

is an upper bound value of K defined in (4.48). Indeed, from Lemma 4.5,
there always exists a constant K∗ s.t. K̃ < 0 ∀t > 0, i.e., K̃ = −|K̃|. Given
the closed-loop system (4.37) with (4.47), consider the following Lyapunov
candidate function

V =
1

2
σ2 +

1

2γ
K̃2 (A.18)

with γ > 0. Since Ψ and Γ are bounded, there exist Ψ̄ and Γ s.t.
∣∣Ψ
∣∣ ≤ Ψ̄ and

Γ ≤ Γ (refer to (4.24) and (4.25)). Noting that K∗ is constant and K(t) > 0∀t,
the time derivative of V is

V̇ = σσ̇ +
1

γ
K̃K̇

= σ
[
Ψ− ΓKsgn(σ)

]
+

1

γ
K̃α · |σ|

≤ |σ|(Ψ̄− ΓK) +
1

γ
K̃α · |σ|+ |σ|ΓK∗ − |σ|ΓK∗

≤ −|σ|
[
− Ψ̄ + ΓK∗

]
+

1

γ
K̃α · |σ| − |σ|ΓK̃

≤ −|σ|
[
− Ψ̄ + ΓK∗

]
− |K̃| ·

[α
γ
· |σ| − |σ|Γ

]
(A.19)

Note that there always exists K∗ and γ > 0 small s.t. βσ , −Ψ̄ + ΓK∗ > 0,

0 < γ <
α

Γ
and βk =

(
− Γ +

α

γ

)
· |σ| > 0 [16]. Then,

V̇ ≤ −βσ|σ| − βk|K̃| (A.20)

Then

V̇ ≤ −β · (2V )1/2 (A.21)
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with β = min(βσ, βK
√
γ). Therefore, a finite time convergence to a domain

|σ| ≤ ε is guaranteed from any initial condition |σ(0)| > ε > 0, and the
reaching time can be estimated [1]

tF ≤
√

2V (0)1/2

β
(A.22)

A.6 Example of a System Verifying Lemma 5.1

The following is an example of a system varifying Lemma 5.1 that it does not
show FTC.

Given the perturbed system

ẋ = −2x (A.23a)

ẏ = −x− y + d (A.23b)

with y(0) > x(0) ≥ 0 and d > 0 unknown positive constant satisfying y(0) −
x(0)− d > 0. We have

x(t) = e−2tx(0) (A.24a)

y(t) = x(t) + e−t
(
y(0)− x(0)− d

)
+ d (A.24b)

Obviously, x(t) → 0 (exponentially) and y(t) → d (bounded) as t → ∞.
Taking the time derivative of (A.24b), we have

ẏ = −2x−
(
y(0)− x(0)− d

)
e−t (A.25)

Noting that
(
y(0)− x(0)− d

)
e−t > 0 and y(t) > 0, we have

yẏ ≤ −2xy

≤ −2dx (A.26)

Given V = x2 + y2 which satisfies (5.2) and noting that x(t) > 0, we have,
∀X = (x, y) ∈ χ ⊂ R2,

V̇ = 2xẋ+ 2yẏ

≤ −4x2 − 4dx

≤ −4d‖x‖ (A.27)

which verifies Lemma 5.1 without any FTC. In stead, x is ES and y UUB.
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A.7 Proof of Proposition 5.1

Proof. The proofs for adaptation laws (5.53) or (5.55) are similar and are
derived from their ideal case discussed in [118]. We briefly show the FTC proof
of adaptation law (5.55) for the sake of simplicity. Basically, it is separated
into two steps. First, we prove that there exists a compensating phase for any
|σ| > ε. At the end of the compensating phase, the lumped perturbation will
be eventually compensated by the switching gain. Then, we prove that there
exists a finite time reaching phase. During this second phase, the switching
gain is always greater than the lumped perturbation, i.e., the time derivative
of |σ| is always negative. Thus the sliding variable reaches the domain |σ| ≤ ε
from any |σ| > ε in finite time. In fact, we have

Compensating phase: Recall the closed-loop dynamics (5.17)

σ̇ = Ψ− ΓKsgn(σ) (A.28)

with the dynamic gain law introduced in (5.19)

K̇ = α|σ| · (|σ| − ε) (A.29)

For any perturbation
Ψ · sgn(σ)

Γ
no less than the actual switching gain K, i.e.,

Ψ · sgn(σ)

Γ
≥ K(t) (A.30)

We have, from (A.28)

d

dt
|σ| = Ψ · sgn(σ)− ΓK

≥ 0 (A.31)

Thus, |σ| is non-decreasing and from (A.29), K(t) keeps increasing. Noting

that
Ψ · sgn(σ)

Γ
is bounded, the gain K(t) will eventually compensate for the

lumped uncertainties
Ψ · sgn(σ)

Γ
. Since the non-decreasing switching gainK(t)

reacts and compensates for any perturbation
Ψ · sgn(σ)

Γ
, we state that there

always exists a time instant t∗ ≥ 0 so that K(t∗) compensates for
Ψ · sgn(σ)

Γ
,

i.e., for all t ≥ t∗

K(t∗) ≥ Ψ · sgn(σ)

Γ
(A.32)
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The discussion of the compensating phase is dealing with the two different
cases σ > ε > 0 and σ < ε < 0, simultaneously.

Reaching phase: After the compensating phase, the system trajectory
moves into the reaching phase. We integrate (A.29) between t∗ and any instant
t ≥ t∗ to obtain

K(t) = K(t∗) +

∫ t

t∗
α · (|σ| − ε)dτ (A.33)

From (A.28) and (A.33), we have, for |σ| > ε > 0,

d

dt
(|σ| − ε) = Ψsgn(σ)− ΓK(t∗)− Γ

∫ t

t∗
α · (|σ| − ε)dτ

Noting (A.32) and Γ ≥ Γ > 0, we have

d

dt
(|σ| − ε) ≤ −αΓ

∫ t

t∗
(|σ| − ε)dτ (A.34)

The above differential inequality shows that the positive amount (|σ| − ε) is
decreasing with a time-varying rate of at least αΓ

∫ t
t∗(|σ|− ε)dτ . From (A.34),

we derive the following limit case (i.e., the worst in terms of response rate) for
the time evolution of σ during the reaching phase with the initial condition
stated at the instant t∗ (i.e., the end of the compensating phase). In fact, the
trajectory of (|σ| − ε) geometrically lies below the majorant curve [53, 89] of
(|σ| − ε) governed by

d
(
|σ| − ε

)

dt
= −αΓ

∫ t

t∗

(
|σ| − ε

)
dτ (A.35)

Then, the reaching time can be generically estimated by solving (A.35) with
the limit conditions |σ(t∗)| = |σ∗| and |σ̇(t∗)| = 0. We write the explicit
formula of the majorant curve as

|σ(t)| − ε =
(
|σ∗| − ε

)
· cos

(√
Γα · (t− t∗)

)
(A.36)

which reaches the domain |σ| ≤ ε when the argument of the cosine function in

(A.36) reaches
π

2
from 0 (i.e., initial value corresponding to t = t∗), that is,

√
Γα · (t− t∗) =

π

2
. Thus, the upper-bound of the reaching time is estimated

as

tr − t∗ ≤
π

2
√

Γα
(A.37)

where t∗ is the compensating time. t∗ +
π

2
√

Γα
represents an estimate of the

total FTC of the sliding variable to the domain |σ| ≤ ε.
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A.8 Proof of Theorem 6.2

Proof. In this new design, there still exists a compensating phase and a reach-
ing phase. Thus, the proof is similar to Theorem 1 in the case of bounded
uncertainties for the ideal ASMC design introduced in [118].

Compensating phase: Recall the scalar sliding variable dynamics (6.6)

σ̇(x, t) = Ψ(x, t) + Γ(x, t)u (A.38)

controlled by the switching control

u(t) = −K(t) · sgn(σ) (A.39)

with the adaptation gain law (6.25)

{
˙̆
K(σ) = α|σ|
K(σ) = K̆(σ) + β(e|σ| − 1)

(A.40)

For any perturbation no less than the switching gain, i.e.,

Ψ · sgn(σ)

Γ
≥ K(t) (A.41)

we have, from (A.38)

d

dt
|σ| = Γ

(Ψ · sgn(σ)

Γ
−K

)

≥ 0 (A.42)

Then, |σ| is non-decreasing. Using (A.40) and Γ > 0, the above inequality is
equivalent to

K̆(|σ|) ≤ Ψ · sgn(σ)

Γ
− β

(
e|σ| − 1

)
(A.43)

Since |σ| is non-decreasing, from (A.40), K̆(|σ|) keeps growing with a rate
of at least α|σ| > 0. Thus, the growing state gain K̆ of the left side of
(A.43) will eventually compensate for the upper bounded right side of (A.43).
Consequently, the growing K will consequently completely compensate for the

perturbation
Ψ · sgn(σ)

Γ
in (A.41) at some time instant t∗. In other words, for

any perturbations and bounded uncertain terms Ψ and Γ by assumptions 6.3
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and 6.4 (refer to Section 6.2 of Chapter 6), respectively, and for any |σ| > ε,
there always exists an ultimate time instant t∗ ≥ 0 such that

K̆(|σ|) > Ψ · sgn(σ)

Γ
− β

(
e|σ| − 1

)
(A.44)

and, equivalently,

K(t) >
Ψ · sgn(σ)

Γ
(A.45)

for all t ≥ t∗. If the perturbation exceeds the switching gain in the future, the
state gain K̆(t) and the switching again K(t) react and compensate for the
perturbation again. So, there always exists such a time instant t∗ ≥ 0. Since
K̆(|σ|) still keeps increasing for any |σ| > ε, without loss of generality, there
exists κ > 0 and δt > 0 such that

K̆(|σ|) ≥ Ψ · sgn(σ)

Γ
− β(e|σ| − 1) + κ (A.46)

and, equivalently,

K(t) ≥ Ψ · sgn(σ)

Γ
+ κ (A.47)

for all t ≥ t∗ + δt.
Reaching phase: After the compensating phase, the system trajectory

moves ultimately into the reaching phase. This statement happens when K̆ is
large enough to compensate for the compound uncertainties independently of
the exponential term. Prior to this ultimate regime, the exponential term of
the switching gain (A.40) could intermittently increase and decrease depend-
ing on the fact that the instantaneous total switching gain is compensating

or not for the lumped uncertainties (i.e.,
d|σ|
dt

< 0 or
d|σ|
dt

> 0), while the

integral term, i.e., K̆, is always increasing as far as |σ| > ε. Now, we consider
the following Lyapunov candidate function

V = σ2 (A.48)

We have, from (A.47), for all t ≥ t∗ + δt,

V̇ = 2|σ| · sgn(σ)σ̇

= 2
√
V · [Ψsgn(σ)− ΓK]

≤ −2
√
V ·Γκ

251



A.9. Upper-Boundedness of Combined Lumped Uncertainties with
Exponential Gain – Scalar Dynamics Case

That is,

d
√
V ≤ −Γκ · dt (A.49)

Integrating both sides of (A.49) between t∗ + δt and t ≥ t∗ + δt, we conclude
that the positive definite function V , as well as |σ|, converges to the domain
|σ| ≤ ε in finite time [1].

A.9 Upper-Boundedness of Combined Lumped
Uncertainties with Exponential Gain – Scalar
Dynamics Case

In the following, we demonstrate the upper-boundedness of term h(σ) intro-
duced in (7.15) (i.e., Proof of (7.16)).

Proof. Note here that σ = x. From assumptions 7.2 – 7.4, we have for any
σ ∈ R

h(σ) =
Ψ · sgn(σ)

Γ
− β(e|σ| − 1)

≤
(
β +

d0

Γ

)
+

q∑

i=1

di
Γ
|σ|i − βe|σ| (A.50)

Given scalars β > 0 and di ≥ 0 (i = 0, · · · , q), there always exist a positive
integer r, real scalars δ0 ≥ 0 and δ ≥ 0 s.t.

h(σ) ≤ δ0 + δ|σ|r − βe|σ| (A.51)

The two terms δ0 + δ|σ|r and βe|σ| of the right side of (A.51) are continuously
monotonically increasing as |σ| increases on [0,+∞). However, by applying
L’Hopital’s rule repeatedly [144], we obtain

lim
|σ|→∞

δ0 + δ|σ|r
βe|σ|

= 0 (A.52)

That is, the polynomial term δ0 + δ|σ|r grows with a slower rate than the
exponential term βe|σ|. In other words, there exists h∗ ∈ R s.t., for all |σ| 6= 0,

h(σ) ≤ h∗ = sup
|σ|

(
δ0 + δ|σ|r − βe|σ|

)
(A.53)

Note that h∗ is a finite value.
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A.10. Switching Control in the Case of Indefinite Parameter Matrix Γ

A.10 Switching Control in the Case of Indefinite
Parameter Matrix Γ

In the following, we demonstrate the FTC problem of theorem 6.4.

Proof. Recall the closed-loop dynamics (6.48)

σ̇ = Ψ− ΓK(t) · Γ̂Tσ

‖Γ̂Tσ‖
(A.54)

Consider the Lyapunov function candidate V = σTσ. Let s = Γ̂Tσ. Using

L(t) = Γ̂−1Γ, Ls =
1

2
(L+ LT ) and (A.54), the time derivative of V along the

system trajectories is

V̇ = 2‖s‖
(sT (Γ̂−1Ψ)

‖s‖ −KsTLss

‖s‖2
)

= 2‖s‖
(
hLs(σ)− K̆ sTLss

‖s‖2
)

(A.55)

with hLs(σ) =
sT
(
Γ̂−1Ψ

)

‖s‖ − β
(
e‖σ‖ − 1

)sTLss
‖s‖2 . The scalar hLs(σ) is upper-

bounded for any value of σ. For any ‖σ‖ > ε, K̆ will keep growing and

eventually the positive scalar K̆
sTLss

sT s
will compensate for the upper-bounded

scalar hLs(σ), i.e., K̆
sTLss

‖s‖2 > hLs(σ). Since this compensating action will

occur for any ‖σ‖ > ε where hLs(σ) ≥ K̆ sTLss

‖s‖2 (i.e.,
d

dt
‖σ‖ ≡ V̇

2
√
V
≥ 0), we

conclude that there exists a time instant t∗ and a positive scalar κ2 such that

K̆
sTLss

‖s‖2 ≥ hLs(σ) + κ2 (A.56)

for t ≥ t∗. Then,

V̇ ≤ −2κ2‖s‖ (A.57)

for t ≥ t∗. Since ‖s‖2 = σT Γ̂Γ̂Tσ ≥ λ(Γ̂)2σTσ with λ(Γ̂) > 0 the minimum
singular value of the matrix Γ̂, we have ‖s‖ ≥ λ(Γ̂)‖σ‖. Then, from (6.51),
we obtain

d
√
V

dt
≤ −κ2λ(Γ̂) (A.58)
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A.11. Equivalent Control of Robot Manipulators

Thus, σ converges to the domain ‖σ‖ ≤ ε in finite time with a maximum

reaching time tr ≤
‖σ(t∗)‖ − ε
κ2λ(Γ̂)

+ t∗ [1].

A.11 Equivalent Control of Robot Manipulators

When reliable nominal terms of the robot dynamics are available, the equiv-
alent control method can be combined with the ASMC to deal with known
dynamics in order to reduce the effect of lumped uncertainties. In this case, the
uncertain elements M(q), C(q, q̇) and G(q) defined in (7.40) will be replaced by
the corresponding modeling errors, parameter variations and unknown loads
in the dynamic model of rigid manipulator (7.40) as

M(q) = M̂(q) + M̃(q) (A.59a)

C(q, q̇) = Ĉ(q, q̇) + C̃(q, q̇) (A.59b)

G(q) = Ĝ(q) + G̃(q) (A.59c)

where M̂(q), Ĉ(q, q̇) and Ĝ(q) represent the nominal values and M̃(q), C̃(q, q̇)
and G̃(q) the uncertain values. Then, from (A.59), the dynamics (7.40) can
be written as

M̂(q)q̈ + Ĉ(q, q̇)q̇ + Ĝ(q) = u+ ρ(t) (A.60)

where ρ(t) is the lumped uncertainty.

ρ(t) = −M̃ q̈ − C̃q̇ − G̃+ d(t) (A.61)

Note that, in most robot systems, Assumption 7.1 is satisfied.
Given qd twice differentiable desired bounded trajectory of Rn, consider

the trajectory error (7.41)

e = q − qd (A.62)

The error dynamics corresponding to (A.60) is

ë = −q̈d − M̂−1(Ĉq̇ + Ĝ) + M̂−1u+ M̂−1ρ(t) (A.63)

Noting the sliding variable defined by (7.43), the sliding variable dynamics is
written as the time derivative of (7.43)

σ̇ = −q̈d − M̂−1(Ĉq̇ + Ĝ) + M̂−1u+ M̂−1ρ(t) +D · ė (A.64)
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A.11. Equivalent Control of Robot Manipulators

The equivalent control applied to the rigid robotic manipulator consists of two
parts as

u = ueq + us (A.65)

The smooth control ueq is used to maintain the movement of the system on
the sliding surface and the discontinuous switching control us drives the sys-
tem trajectory to reach the sliding surface. The equivalent control can be
determined, in the absence of uncertainties (i.e., M̃ = 0, C̃ = 0, G̃ = 0 and
d(t) = 0), from

σ̇ = 0 (A.66)

That is, letting ρ(t) = 0 and replacing u with ueq in (A.64), we have from
(7.43)

−q̈d − M̂−1(Ĉq̇ + Ĝ) + M̂−1ueq +D · ė = 0

The expression of the equivalent control is then obtained by solving the above
equation in the variable ueq as

ueq = (Ĉq̇ + Ĝ) + M̂
(
q̈d −D · ė

)
(A.67)

Substituting (A.65) into (A.64) with ueq defined by (A.67), we obtain the
sliding variable dynamics in terms of the switching control us

σ̇ = M̂−1us + M̂−1ρ(t) (A.68)

Defining the new lumped uncertainty Ψ = M̂−1ρ(t), the sliding variable dy-
namics can be written as

σ̇ = Ψ(t) + M̂−1us (A.69)

Noting that M̂−1 is known and positive definite, we define the unit switch-
ing control as [120,138]

us =




−K · M̂

−Tσ

‖M̂−Tσ‖
if σ 6= 0

0 if σ = 0

(A.70)

where K > 0 is the switching gain. Applying the adaptation law (7.28), we
guarantee the FTC of the states to the targeted manifold Σδ [138].
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B Further Simulation and
Experiment Results

B.1 Experimental Results of ESAO Design
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Figure B.1: Experimental Results – Estimate of parameter θ1
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B.1. Experimental Results of ESAO Design
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Figure B.2: Experimental Results – Estimate of parameter θ2
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Figure B.3: Experimental Results – Estimate of parameter θ3
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B.1. Experimental Results of ESAO Design

0 100 200 300 400 500 600 700 800
−60

−40

−20

0

20

40

60

80

Time [sec]

θ̂
4

Parameter estimate θ4

 

 

Estimated value
Smoothed value
Given value

Figure B.4: Experimental Results – Estimate of parameter θ4
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Figure B.5: Experimental Results – Experimental Results – Estimate of pa-
rameter θ5
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B.1. Experimental Results of ESAO Design
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Figure B.6: Experimental Results – Estimate of parameter θ6
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Figure B.7: Experimental Results – Estimate of parameter θ7
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B.1. Experimental Results of ESAO Design
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Figure B.8: Experimental Results – Estimate of parameter θ8
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Figure B.9: Experimental Results – Estimate of parameter θ9
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B.1. Experimental Results of ESAO Design
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Figure B.10: Experimental Results – State estimate errors x1 and x2
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Figure B.11: Experimental Results – State estimate errors of x3 and x4
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B.2. Results of the Illustrative Model Dynamics (7.14) When α = 0 in
Chapter 7
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Figure B.12: Illustrative example using the control parameters α = 0 and
α = 2 with β = 1: Switching gain K (top) and state σ (bottom) performances
of the closed-loop dynamics (7.14) with (7.13) under uncertain conditions I.

B.2 Results of the Illustrative Model Dynamics
(7.14) When α = 0 in Chapter 7

The results of the application of the design (7.12) for the illustrative model
dynamics (7.14) when α = 0 are shown in Figures B.12-B.15
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B.2. Results of the Illustrative Model Dynamics (7.14) When α = 0 in
Chapter 7
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Figure B.13: Illustrative example using the control parameters α = 0 and
α = 2 with β = 1: Switching gain K (top) and state σ (bottom) performances
of the closed-loop dynamics (7.14) with (7.13) under uncertain conditions II.
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Figure B.14: Illustrative example using the control parameters α = 0 and
α = 10 with β = 5: Switching gain K (top) and state σ (bottom) performances
of the closed-loop dynamics (7.14) with (7.13) under uncertain conditions I.
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B.2. Results of the Illustrative Model Dynamics (7.14) When α = 0 in
Chapter 7
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Figure B.15: Illustrative example using the control parameters α = 0 and
α = 10 with β = 5: Switching gain K (top) and state σ (bottom) performances
of the closed-loop dynamics (7.14) with (7.13) under uncertain conditions II.
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B.3. Experimental Results of P0Y0 for α = 0.05, α = 0.2, β = 10 and
β = 20
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Figure B.16: Experiment results – Pitch and yaw displacements in regulation
problem about 0◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.05 and β = 10.

B.3 Experimental Results of P0Y0 for α = 0.05,
α = 0.2, β = 10 and β = 20

The experimental results for α = 0.05, α = 0.2, β = 10 and β = 20 are shown
here as the supplement to the subsection 7.6.3 in Chapter 7. Figures B.16 and
B.17 show the experimental results of the pitch and yaw displacements and
the control inputs, respectively, using the existing ASMC (blue dash) reaching
law discussed in [16,74] (i.e., (7.28) with α = 0.05 and β = 0), PID (red dash-
dot) and proposed ASMC (black solid line) reaching law (7.28) with α = 0.05
and β = 10, while the results for α = 0.05 and β = 20 are shown in Figures
B.18 and B.19, α = 0.2 and β = 10 in Figures B.20 and B.21, and α = 0.2
and β = 20 in Figures B.22 and B.23.
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B.3. Experimental Results of P0Y0 for α = 0.05, α = 0.2, β = 10 and
β = 20
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Figure B.17: Experiment results – Pitch and yaw control inputs in regulation
problem about 0◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.05 and β = 10.
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Figure B.18: Experiment results – Pitch and yaw displacements in regulation
problem about 0◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.05 and β = 20.
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B.3. Experimental Results of P0Y0 for α = 0.05, α = 0.2, β = 10 and
β = 20
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Figure B.19: Experiment results – Pitch and yaw control inputs in regulation
problem about 0◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.05 and β = 20.
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Figure B.20: Experiment results – Pitch and yaw displacements in regulation
problem about 0◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.2 and β = 10.
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B.3. Experimental Results of P0Y0 for α = 0.05, α = 0.2, β = 10 and
β = 20
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Figure B.21: Experiment results – Pitch and yaw control inputs in regulation
problem about 0◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.2 and β = 10.
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Figure B.22: Experiment results – Pitch and yaw displacements in regulation
problem about 0◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.2 and β = 20.
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B.3. Experimental Results of P0Y0 for α = 0.05, α = 0.2, β = 10 and
β = 20
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Figure B.23: Experiment results – Pitch and yaw control inputs in regulation
problem about 0◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.2 and β = 20.
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B.4. Experiment Results of P0Yv for α = 0.05, α = 0.2, β = 10 and β = 20

0 5 10 15 20 25
−30

−20

−10

0

10

φ
[◦
]

Pitch angle φ, α = 0.05 β = 10, P0Yv

 

 

Exst PID Prpsd

0 5 10 15 20 25
−20

0

20

Time [sec]

ψ
[◦
]

Yaw angle ψ, α = 0.05 β = 10, P0Yv

 

 
Exst PID Prpsd

Figure B.24: Experiment results – Pitch and yaw displacements in pitch reg-
ulation and yaw sine wave tracking problem, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.05
and β = 10.

B.4 Experiment Results of P0Yv for α = 0.05,
α = 0.2, β = 10 and β = 20

The experimental results for α = 0.05, α = 0.2, β = 10 and β = 20 are shown
here as the supplement to the subsection 7.6.3 in Chapter 7. Figures B.24-
B.26 show the experimental results of the pitch and yaw displacements, the
position errors, and the control inputs, respectively, using the existing ASMC
(blue dash) reaching law discussed in [16, 74] (i.e., (7.28) with α = 0.05 and
β = 0), PID (red dash-dot) and proposed ASMC (black solid line) reaching
law (7.28) with α = 0.05 and β = 10, while the results for α = 0.05 and β = 20
are shown in Figures B.27-B.29, α = 0.2 and β = 10 in Figures B.30-B.32,
and α = 0.2 and β = 20 in Figures B.33-B.35.
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B.4. Experiment Results of P0Yv for α = 0.05, α = 0.2, β = 10 and β = 20
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Figure B.25: Experiment results – Pitch and yaw position errors in pitch
regulation and yaw sine wave tracking problem, using the existing ASMC
(blue dash), PID (red dash-dot) and proposed ASMC (black solid line) with
α = 0.05 and β = 10.
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Figure B.26: Experiment results – Pitch and yaw control inputs in pitch
regulation and yaw sine wave tracking problem, using the existing ASMC
(blue dash), PID (red dash-dot) and proposed ASMC (black solid line) with
α = 0.05 and β = 10.
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B.4. Experiment Results of P0Yv for α = 0.05, α = 0.2, β = 10 and β = 20
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Figure B.27: Experiment results – Pitch and yaw displacements in pitch reg-
ulation and yaw sine wave tracking problem, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.05
and β = 20.
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Figure B.28: Experiment results – Pitch and yaw position errors in pitch
regulation and yaw sine wave tracking problem, using the existing ASMC
(blue dash), PID (red dash-dot) and proposed ASMC (black solid line) with
α = 0.05 and β = 20.
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B.4. Experiment Results of P0Yv for α = 0.05, α = 0.2, β = 10 and β = 20
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Figure B.29: Experiment results – Pitch and yaw control inputs in pitch
regulation and yaw sine wave tracking problem, using the existing ASMC
(blue dash), PID (red dash-dot) and proposed ASMC (black solid line) with
α = 0.05 and β = 20.
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Figure B.30: Experiment results – Pitch and yaw displacements in pitch reg-
ulation and yaw sine wave tracking problem, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.2
and β = 10.
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B.4. Experiment Results of P0Yv for α = 0.05, α = 0.2, β = 10 and β = 20
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Figure B.31: Experiment results – Pitch and yaw position errors in pitch
regulation and yaw sine wave tracking problem, using the existing ASMC
(blue dash), PID (red dash-dot) and proposed ASMC (black solid line) with
α = 0.2 and β = 10.
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Figure B.32: Experiment results – Pitch and yaw control inputs in pitch
regulation and yaw sine wave tracking problem, using the existing ASMC
(blue dash), PID (red dash-dot) and proposed ASMC (black solid line) with
α = 0.2 and β = 10.
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B.4. Experiment Results of P0Yv for α = 0.05, α = 0.2, β = 10 and β = 20
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Figure B.33: Experiment results – Pitch and yaw displacements in pitch reg-
ulation and yaw sine wave tracking problem, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.2
and β = 20.
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Figure B.34: Experiment results – Pitch and yaw position errors in pitch
regulation and yaw sine wave tracking problem, using the existing ASMC
(blue dash), PID (red dash-dot) and proposed ASMC (black solid line) with
α = 0.2 and β = 20.
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B.4. Experiment Results of P0Yv for α = 0.05, α = 0.2, β = 10 and β = 20
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Figure B.35: Experiment results – Pitch and yaw control inputs in pitch
regulation and yaw sine wave tracking problem, using the existing ASMC
(blue dash), PID (red dash-dot) and proposed ASMC (black solid line) with
α = 0.2 and β = 20.
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B.5. Experiment Results of PvY0 for α = 0.05, α = 0.2, β = 10 and β = 20
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Figure B.36: Experiment results – Pitch and yaw displacements in pitch sine
wave tracking control and yaw regulation, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.05
and β = 10.

B.5 Experiment Results of PvY0 for α = 0.05,
α = 0.2, β = 10 and β = 20

The experimental results for α = 0.05, α = 0.2, β = 10 and β = 20 are shown
here as the supplement to the subsection 7.6.4 in Chapter 7. Figures B.36-
B.38 show the experimental results of the pitch and yaw displacements, the
position errors, and the control inputs, respectively, using the existing ASMC
(blue dash) reaching law discussed in [16, 74] (i.e., (7.28) with α = 0.05 and
β = 0), PID (red dash-dot) and proposed ASMC (black solid line) reaching
law (7.28) with α = 0.05 and β = 10, while the results for α = 0.05 and β = 20
are shown in Figures B.39-B.41, α = 0.2 and β = 10 in Figures B.42-B.44,
and α = 0.2 and β = 20 in Figures B.45-B.47.
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B.5. Experiment Results of PvY0 for α = 0.05, α = 0.2, β = 10 and β = 20
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Figure B.37: Experiment results – Pitch and yaw position errors in pitch
sine wave tracking control and yaw regulation, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.05
and β = 10.
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Figure B.38: Experiment results – Pitch and yaw control inputs in pitch
sine wave tracking control and yaw regulation, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.05
and β = 10.
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B.5. Experiment Results of PvY0 for α = 0.05, α = 0.2, β = 10 and β = 20
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Figure B.39: Experiment results – Pitch and yaw displacements in pitch sine
wave tracking control and yaw regulation, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.05
and β = 20.
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Figure B.40: Experiment results – Pitch and yaw position errors in pitch
sine wave tracking control and yaw regulation, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.05
and β = 20.
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B.5. Experiment Results of PvY0 for α = 0.05, α = 0.2, β = 10 and β = 20
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Figure B.41: Experiment results – Pitch and yaw control inputs in pitch
sine wave tracking control and yaw regulation, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.05
and β = 20.
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Figure B.42: Experiment results – Pitch and yaw displacements in pitch sine
wave tracking control and yaw regulation, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.2
and β = 10.
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B.5. Experiment Results of PvY0 for α = 0.05, α = 0.2, β = 10 and β = 20
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Figure B.43: Experiment results – Pitch and yaw position errors in pitch
sine wave tracking control and yaw regulation, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.2
and β = 10.

0 5 10 15 20 25
−20

0

20

40

u
1
[V

]

Control inputs u1, α = 0.2 β = 10, PvY0

 

 
Exst PID Prpsd

0 5 10 15 20 25
−20

0

20

Time [sec]

u
2
[V

]

Control inputs u2, α = 0.2 β = 10, PvY0

 

 
Exst PID Prpsd

Figure B.44: Experiment results – Pitch and yaw control inputs in pitch
sine wave tracking control and yaw regulation, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.2
and β = 10.
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B.5. Experiment Results of PvY0 for α = 0.05, α = 0.2, β = 10 and β = 20

0 5 10 15 20 25
−30

−20

−10

0

10

φ
[◦
]

Pitch angle φ, α = 0.2 β = 20, PvY0

 

 

Exst PID Prpsd

0 5 10 15 20 25
−10

0

10

Time [sec]

ψ
[◦
]

Yaw angle ψ, α = 0.2 β = 20, PvY0

 

 
Exst PID Prpsd

Figure B.45: Experiment results – Pitch and yaw displacements in pitch sine
wave tracking control and yaw regulation, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.2
and β = 20.
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Figure B.46: Experiment results – Pitch and yaw position errors in pitch
sine wave tracking control and yaw regulation, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.2
and β = 20.
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B.5. Experiment Results of PvY0 for α = 0.05, α = 0.2, β = 10 and β = 20
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Figure B.47: Experiment results – Pitch and yaw control inputs in pitch
sine wave tracking control and yaw regulation, using the existing ASMC (blue
dash), PID (red dash-dot) and proposed ASMC (black solid line) with α = 0.2
and β = 20.
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B.6. Experiment Results of P10Y10 for α = 0.05, α = 0.2, β = 10 and
β = 20
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Figure B.48: Experiment results – Pitch and yaw displacements in regulation
problem about 10◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.05 and β = 10.

B.6 Experiment Results of P10Y10 for α = 0.05,
α = 0.2, β = 10 and β = 20

The experimental results for α = 0.05, α = 0.2, β = 10 and β = 20 are shown
here as the supplement to the subsection 7.6.5 in Chapter 7. Figures B.48 and
B.49 show the experimental results of the pitch and yaw displacements and
the control inputs, respectively, using the existing ASMC (blue dash) reaching
law discussed in [16,74] (i.e., (7.28) with α = 0.05 and β = 0), PID (red dash-
dot) and proposed ASMC (black solid line) reaching law (7.28) with α = 0.05
and β = 10, while the results for α = 0.05 and β = 20 are shown in Figures
B.50 and B.51, α = 0.2 and β = 10 in Figures B.52 and B.53, and α = 0.2
and β = 20 in Figures B.54 and B.55.
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B.6. Experiment Results of P10Y10 for α = 0.05, α = 0.2, β = 10 and
β = 20
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Figure B.49: Experiment results – Pitch and yaw control inputs in regulation
problem about 10◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.05 and β = 10.
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Figure B.50: Experiment results – Pitch and yaw displacements in regulation
problem about 10◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.05 and β = 20.
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B.6. Experiment Results of P10Y10 for α = 0.05, α = 0.2, β = 10 and
β = 20
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Figure B.51: Experiment results – Pitch and yaw control inputs in regulation
problem about 10◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.05 and β = 20.
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Figure B.52: Experiment results – Pitch and yaw displacements in regulation
problem about 10◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.2 and β = 10.
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B.6. Experiment Results of P10Y10 for α = 0.05, α = 0.2, β = 10 and
β = 20
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Figure B.53: Experiment results – Pitch and yaw control inputs in regulation
problem about 10◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.2 and β = 10.
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Figure B.54: Experiment results – Pitch and yaw displacements in regulation
problem about 10◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.2 and β = 20.
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B.6. Experiment Results of P10Y10 for α = 0.05, α = 0.2, β = 10 and
β = 20
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Figure B.55: Experiment results – Pitch and yaw control inputs in regulation
problem about 10◦ using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.2 and β = 20.
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B.7. Experiment Results of PvYv for α = 0.05, α = 0.2, β = 10 and β = 20
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Figure B.56: Experiment results – Pitch and yaw displacements in sine waves
tracking control, using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.05 and β = 10.

B.7 Experiment Results of PvYv for α = 0.05,
α = 0.2, β = 10 and β = 20

The experimental results for α = 0.05, α = 0.2, β = 10 and β = 20 are shown
here as the supplement to the subsection 7.6.6 in Chapter 7. Figures B.56-
B.58 show the experimental results of the pitch and yaw displacements, the
position errors, and the control inputs, respectively, using the existing ASMC
(blue dash) reaching law discussed in [16, 74] (i.e., (7.28) with α = 0.05 and
β = 0), PID (red dash-dot) and proposed ASMC (black solid line) reaching
law (7.28) with α = 0.05 and β = 10, while the results for α = 0.05 and β = 20
are shown in Figures B.59-B.61, α = 0.2 and β = 10 in Figures B.62-B.64,
and α = 0.2 and β = 20 in Figures B.65-B.67.
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B.7. Experiment Results of PvYv for α = 0.05, α = 0.2, β = 10 and β = 20
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Figure B.57: Experiment results – Pitch and yaw position errors in sine waves
tracking control, using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.05 and β = 10.
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Figure B.58: Experiment results – Pitch and yaw control inputs in sine waves
tracking control, using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.05 and β = 10.
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B.7. Experiment Results of PvYv for α = 0.05, α = 0.2, β = 10 and β = 20
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Figure B.59: Experiment results – Pitch and yaw displacements in sine waves
tracking control, using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.05 and β = 20.
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Figure B.60: Experiment results – Pitch and yaw position errors in sine waves
tracking control, using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.05 and β = 20.
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Figure B.61: Experiment results – Pitch and yaw control inputs in sine waves
tracking control, using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.05 and β = 20.
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Figure B.62: Experiment results – Pitch and yaw displacements in sine waves
tracking control, using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.2 and β = 10.
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Figure B.63: Experiment results – Pitch and yaw position errors in sine waves
tracking control, using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.2 and β = 10.
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Figure B.64: Experiment results – Pitch and yaw control inputs in sine waves
tracking control, using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.2 and β = 10.
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Figure B.65: Experiment results – Pitch and yaw displacements in sine waves
tracking control, using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.2 and β = 20.
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Figure B.66: Experiment results – Pitch and yaw position errors in sine waves
tracking control, using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.2 and β = 20.
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Figure B.67: Experiment results – Pitch and yaw control inputs in sine waves
tracking control, using the existing ASMC (blue dash), PID (red dash-dot)
and proposed ASMC (black solid line) with α = 0.2 and β = 20.

295



C Papers in Review in Journals

C.1 Application of Adaptive Sliding Mode Control
to Nonlinear Systems with Unknown
Polynomial Bounded Uncertainties

Jiang Zhu and Karim Khayati. Application of Adaptive Sliding Mode Con-
trol to Nonlinear Systems with Unknown Polynomial Bounded Uncertainties.
In review in Transactions of the Institute of Measurement and Control, 2016.

296



For Peer Review

July 29, 2016 Transactions of the Institute of Measurement and Control ASMC˙TIMC˙poly2

To appear in the Transactions of the Institute of Measurement and Control

Vol. 00, No. 00, Month 20XX, 1–33

Application of Adaptive Sliding Mode Control for Nonlinear Systems with

Unknown Polynomial Bounded Uncertainties

Jiang Zhua and Karim Khayatia ∗

aDepartment of Mechanical and Aerospace Engineering, Royal Military College of Canada, Kingston,

Ontario, K7K 7B4, Canada

(v1.0 released December 2014)

In this paper, we discuss the application of a novel switching gain law – integral/exponential adaptation

law, recently proposed for adaptive sliding mode control (ASMC) design, for a wide class of nonlinear

systems with unknown polynomial bounds on uncertainty norm. A robust finite time convergence (FTC),

i.e., stability solution, is obtained with low chatter on control action and fast transient performance for

ASMC handling the multi-input multi output (MIMO) nonlinear systems with uncertainties of amplitudes

bounded within unknown polynomials in the state vector norm. The exponential term of the proposed

adaptation law targets the reduction of the chatter levels of the sliding mode by significantly reducing the

gain overestimation while simultaneously suppressing the overshoot by speeding up the system response

to the uncertainties. It also prevents the instability issues that encounters the classic integral-gain-law-

based ASMC when underestimating its initial gain or gain rate parameter. A simple example illustrates

the motivation and feasibility of the proposed ASMC. The applications on a nonlinear mass-spring system
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and on a two-degree-of-freedom (2-DOF) electromechanical rotative plant demonstrate the effectiveness

of the proposed design.

Keywords: nonlinear systems, polynomially bounded uncertainties, adaptive sliding mode control,

finite time convergence, integral/exponential adaptation law, chattering reduction.

1. Introduction

Control theory for linear systems has been developed for a long time. In the real world, however,

most control systems are nonlinear. Moreover, the nonlinear systems often withstand parameter

uncertainties (e.g., the loading or unloading action of a helicopter changes its mass and moment

of inertia) and external disturbances (e.g., unmanned-aerial-vehicle flying through a snow storm).

The control techniques developed for linear dynamical systems are not always suitable for nonlin-

ear systems, particularly for those with uncertainties. Such uncertainties are often assumed to be

bounded (Ullah, Han, & Khattak, 2016; Utkin & Poznyak, 2013b; Mazinan, Kazemi, & Shirzad,

2014; Y. Li & Xu, 2010; Plestan, Shtessel, Brgeault, & Poznyak, 2010; Wang & Stengel, 2002;

Khalil, 2002; Slotine & Li, 1991). Most conventional linear and nonlinear robust control techniques

such as H-infinity control, conventional sliding mode control (SMC) and high-order SMC are de-

signed based on the knowledge of the bounds of uncertainties. In fact, the designed feedback gain

must be greater than the bounds of the lumped uncertainties to ultimately compensates for these

uncertainties (Utkin & Poznyak, 2013b; Khalil, 2002; Slotine & Li, 1991; Levant, 2001; Young,

Utkin, & Ozguner, 1999). However, in most cases, such perturbation bounds are unknown and

rarely estimated a priori. Thus, the conventional control algorithms face a dilemma: If the de-

signed feedback gain is based on underestimated bounds of the actual uncertainties, the system

may become unstable, and, if the designed feedback gain is based on an overestimation of the
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actual uncertainty bounds, the system may encounter high chattering and consume “unnecessary”

high energy. To solve the problem of nonlinear systems with uncertainties of unknown bounds,

techniques of perturbation-estimation-SMC (Y. Li & Xu, 2010) and active disturbance rejection

control (J. Han, 2009) were proposed to estimate the bounds of uncertainties and then reject them.

Both techniques require a differentiator to obtain the knowledge of the system’s high order state

(e.g., acceleration). The differentiator required for these methods also amplifies the noisy input

signals and may create further uncertainties and large errors. Without using differentiators, an-

other nonlinear control technique, the adaptive sliding mode control (ASMC), has been introduced

during the past decade to design a feedback gain adaptively compensating for the lumped uncer-

tainties (Wheeler, Su, & Stepanenko, 1998; Lee & Utkin, 2007; Cheng, Chien, & Shih, 2010; Y. Li

& Xu, 2010; Plestan et al., 2010; Cong, Chen, & Liu, 2012; Utkin & Poznyak, 2013b; Nourisola &

Ahmadi, 2014; Lin, 2014). The chattering attenuation and the trajectory accuracy in the existing

ASMC methods are acceptable after the end of the adaptation process. The efficiency of this slid-

ing mode structure has been demonstrated using an observer-based control design for mechanical

systems with uncertainties reducing significantly the levels of chatter and improving the accuracy

(Khayati, 2015). However, the overshoot is still large at the beginning of the adaptation process

and the chattering still exists in the control input and the system trajectories before the end of the

adaptation process (Zhu & Khayati, 2016a). To improve the overshoot and chattering levels during

the adaptation process, time-varying boundary-layer-based gain law for real ASMC (Plestan et al.,

2010) and improved forms of the switching gain near the boundary-layer (Zhu & Khayati, 2014a,

2014b) have been proposed and tested accordingly. More recently, an integral/exponential gain

law has been introduced in (Zhu & Khayati, 2016b). This new algorithm provides instantaneously

“almost” the required compensating gain without a prior knowledge of the lumped uncertainty
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bounds.

In the numerous contributions of the past two decades, the uncertainties are often assumed to

be bounded within possibly unknown constant bounds or affine functions. In particular, ASMC

design with integral adaptation laws (Zhang & Zheng, 2014; Utkin & Poznyak, 2013b; Cong et

al., 2012; Y. Li & Xu, 2010; Plestan et al., 2010; Lee & Utkin, 2007; Wheeler et al., 1998) have

been widely used. However, other common kinds uncertain systems still exist. For instance, if their

parameters are unknown, the Duffing dynamics (i.e., mechanical systems with softening springs)

and the tunnel-diode circuit dynamics contain uncertainties bounded by polynomial functions of

the state (Khalil, 2002). Moreover, according to Taylor’s theorem, most continuous nonlinearities

can be approximated by polynomials. The new question then arises: how to control the nonlinear

dynamical systems where there exist uncertainties bounded by unknown polynomials. The ques-

tion motivates the studies of nonlinear systems with polynomially bounded uncertainties. If the

bounds and the maximum order of the polynomial uncertainties are known, the stability region

was analyzed in (Topuc & Packard, 2007) and a polynomial-type dependent gain can be designed

(M. C. Han & Chen, 1992). Only given the maximum order of the polynomial uncertainties, a

high order integral-type adaptation law was discussed in (Cheng et al., 2010). In the case that

both the order and the bounds of the polynomial uncertainties are unknown a priori, however,

to our best knowledge, no existing control method has been proposed. This paper discusses the

application of the recently developed ASMC (Zhu & Khayati, 2016b) to such kind of nonlinear

systems. Slightly different from the ASMC design in (Zhu & Khayati, 2016b), the ASMC structure

proposed in this paper has less tuning parameters. In addition the scalar ASMC in (Zhu & Khayati,

2016b), the MIMO structures of ASMC are provided in this paper with theoretical proof that it

has the ability to handle nonlinear systems with uncertainties of unknown polynomial bounds. It
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will be shown that the new approach constrains the lumped uncertainties bounded by polynomials

of unknown parameters. Moreover, it confines the trajectory much close to the sliding surface and

greatly reduces the overshoot by reducing the final gain. Then, the stability and robustness are

improved, and the chattering is suppressed. Simulation and experimental results will demonstrate

the effectiveness of the application of the new algorithm in terms of stability, fast response, smaller

trajectory variation and reduced chattering level.

This paper is organized as follows. In Section 2, we state the control problem and existing ASMC

designs. Section 3 proposes the integral/exponential adaptation law of ASMC design for polynomial

upper-bounds on norm uncertainties. An simple example of scalar dynamics is presented first to

illustrate the proposed design. Then, theoretic results prove the stability of the closed-loop MIMO

system. Applications of the proposed ASMC on a nonlinear mass-spring system and a 2-DOF

helicopter setup are shown in Section 4, while Section 5 concludes this work.

2. ASMC Problem and Existing Designs

In this section, we first state the control problem and assumptions for nonlinear systems with

uncertainties of unknown bounds. Then, we recall some existing ASMC designs.

2.1 Problem Statement and Assumptions

Consider the uncertain nonlinear dynamics

ẋ = f(x, t) + g(x, t) · u (1)

where x ∈ χ is the state vector in a domain χ ⊂ Rn containing the origin, and u ∈ Rm the control

input. The vector f(x, t) ∈ Rn and the matrix g(x, t) ∈ Rn×m are nonlinear time-varying smooth
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functions containing parametric uncertainties and external disturbances (Levant, 2003; Plestan et

al., 2010; Plestan, Shtessel, Bregeault, & Poznyak, 2013; Shtessel, Taleb, & Plestan, 2012; Taleb,

Plestan, & Bououlid, 2015). It is assumed that

Assumption 1: The norm of the perturbation f(x, t) is upper-bounded with some unknown poly-

nomials in the state vector x ∈ χ, and the norm of the uncertain term g(x, t) is bounded by some

unknown scalars. More specifically,

‖f(x, t)‖ ≤ c0 +

q∑

i=1

ci‖x‖i (2)

0 < b ≤ ‖g(x, t)‖ ≤ b (3)

where q is a finite uncertain integer, c0 and ci (i = 1, 2, · · · , q) have finite uncertain non-negative

values, b and b are unknown positive finite constants.

The assumption A.1 takes into account a large class of uncertainties, including (but not limited

to) the following cases:

• c0 > 0 and c1 = c2 = · · · = 0, i.e., ‖f(x, t)‖ ≤ c0, that is, the system uncertainty is regularly

bounded;

• c0 > 0, c1 > 0 and c2 = c3 = · · · = 0, i.e., ‖f(x, t)‖ ≤ c0 + c1‖x‖, that is, the system

uncertainty is bounded by an affine function of the system state vector;

• c0 > 0, c1 > 0, c2 > 0 and c3 = a4 = · · · = 0, i.e., ‖f(x, t)‖ ≤ c0 + c1‖x‖+ c2‖x‖2, that is, the

system uncertainty is constrained by a quadratic function in the norm of the system state

vector.

Let x = 0 be an equilibrium point for (1). Consider a measurable sliding vector σ(x, t) ∈ Rm.

We define the targeted manifolds Σ = {x ∈ χ : ‖σ(x, t)‖ = 0} and Σε = {x ∈ χ : ‖σ(x, t)‖ ≤ ε} for
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some ε > 0. Σ and Σε are called “ideal sliding mode set” and “real sliding mode set”, respectively

(Levant, 2001).

Assumption 2: σ is freely designed such that, as soon as the vector x(t) reaches the set Σ (resp.

Σε) in finite time tr > 0 and belongs to it thereafter, the dynamics (1) have to be stable in the

ideal (resp. real) sliding mode. σ is its output (Plestan et al., 2013; Utkin & Poznyak, 2013a). In

addition, we assume that there exists finite positive scalars γ1 and γ2 s.t.

‖σ‖ ≥ γ1 · ‖x‖ − γ2 (4)

Consider the time derivative of σ along the system trajectory

σ̇(x, t) = Ψ(x, t) + Γ(x, t) · u (5)

with Ψ(x, t) ∈ Rm and Γ(x, t) ∈ Rm×m, that is, σ(x, t) has a vector relative degree of r =

[1, 1, · · · , 1]T1×m (Plestan et al., 2013; Levant, 2003). Solutions of the dynamics (5) with discon-

tinuous right-hand side are defined in the sense of Fillipov (Fillippov, 1988). In the following, the

arguments x and t of these functions will be omitted for simplicity. Moreover, without loss of

generality and based on assumption A.1, we consider

Assumption 3: The perturbation vector Ψ ∈ Rm is bounded by unknown polynomials in x, i.e.,

‖Ψ‖ ≤ d0 +

q∑

i=1

di‖x‖i (6)

where d0 and di (i = 1, 2, · · · , q) are unknown finite non-negative constants.

Assumption 4: The uncertain matrix Γ ∈ Rm×m is positive definite in the wider sense, i.e., its
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symmetric part Γs defined by

Γs =
1

2
(Γ + ΓT ) (7)

is positive definite in the regular meaning (Marcus & Minc, 2010). In particular, if m = 1, the

term Γ is lower-bounded by a positive constant Γ, a priori unknown, i.e.,

0 < Γ ≤ Γ (8)

2.2 Existing ASMC Laws and Motivation

Given the dynamics (5), we consider the control law (Utkin, Guldner, & Shi, 1999; Plestan et al.,

2013)

u(t) =





−K · σ

‖σ‖ if σ 6= 0

0 if σ = 0

(9)

For classic SMC design, the gain K is a constant scalar which is designed to be sufficiently large so

that it can compensate for the lumped uncertainties (Young et al., 1999; Slotine & Li, 1991). To

deal with uncertainties of unknown bounds, K in ASMC techniques is time-varying to adaptively

compensate for the uncertainties (Wheeler et al., 1998; Lee & Utkin, 2007; Y. Li & Xu, 2010;

Plestan et al., 2010; Cong et al., 2012; Utkin & Poznyak, 2013b). In particular, adaptation laws in

form

K̇ = α · ‖σ‖ (10)
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and

K̇ = α1 · ‖σ‖+ α2 · ‖x‖ · ‖σ‖ (11)

have been exhaustively proposed in (Y. Li & Xu, 2010; Cong et al., 2012; Utkin & Poznyak, 2013b;

Plestan et al., 2013; Zhang & Zheng, 2014; Wheeler et al., 1998; H. Li, Yu, Hilton, & Liu, 2013)

for uncertainties bounded by unknown constants and unknown affine functions in the state vector,

respectively. The adaptation laws (10) and (11) are designed for ideal sliding mode, while the real

case is treated with slightly modified versions of these forms (Plestan et al., 2010; Wheeler et al.,

1998). The two adaptation laws, for either ideal or real sliding mode, still have relatively large

overshoots and chattering phenomena during the adaptation process. In the following, we consider

mostly the ideal sliding case analysis for the sake of simplicity.

3. Integral/Exponential Reaching Law-based ASMC Design

To overcome the common weaknesses encountered by most existing ASMC forms, an integral/ex-

ponential law was proposed in (Zhu & Khayati, 2016b) for uncertainties of unknown bounds. In the

following, we will prove that this ASMC design has the ability to handle nonlinear systems with

uncertainties of unknown polynomial bounds in the norm of the state vector (i.e., refer to the model

(1) with the sliding dynamics (5) under assumptions A.1–A.4). The new ASMC design (slightly

different from that introduced in (Zhu & Khayati, 2016b)) will follow for the multi-dimensional

case, using the feedback control (9), as

˙̆
K = α · ‖σ‖ (12a)

K = K̆ + β
(
e‖σ‖ − 1

)
(12b)
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for some α > 0 and β > 0.

3.1 Scalar Case

Let us first consider the case of single-input-single-output sliding scalar dynamics, i.e., n = 1, and

select σ = x trivially (that is, from (4), γ1 = 1 and γ2 = 0). The norm of the sliding variable is

reduced to its absolute value. Then, the feedback control (9) is simply defined as

u = −K · sgn(σ) (13)

where sgn(·) refers to the real-valued signum function.

Motivation Example. Consider the following simple scalar dynamics

σ̇ = c0 + c1σ + c2σ
2 + u (14)

The state σ is to be stabilized to zero for unknown (or uncertain) coefficients c0, c1 and c2. Using

the switching control (13) with the adaptation law (12), the state σ of the dynamics (14) can

be stabilized to zero in finite time for any values of the initial state σ0 and uncertain c0, c1, c2.

To simulate the dynamics (14), these parameters are selected as σ0 = c0 = c1 = c2 = 1 (under

uncertain condition I) and σ0 = c0 = c1 = c2 = 5 (under uncertain condition II). Figures 1 and 2

show the obtained switching gain K and the state σ using the (Old-1) existing gain law (10), the

(Old-2) existing gain law (11) and the (New) proposed gain law (12) with the control parameter

chosen as α = α1 = 2α2 = 2β = 2 and α = α1 = 2α2 = 2β = 10, respectively.

One can see that, by using the proposed integral/exponential gain law (12), σ is stabilized to zero

in finite time for any initial and uncertain conditions. However, the existing integral-gain-law-based
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Figure 1. Illustrative example using the control parameters α = α1 = 2α2 = 2β = 2:

Switching gain K (left) and state σ (right) performances of the closed-loop dynamics

(14) with (13) under different uncertain conditions.

ASMC (i.e., using (10)) and modified-integral-gain-law-based ASMC (i.e., using (11)) only work

for some situations when the control parameters are sufficiently high and the uncertain parameters

are small. Otherwise (when α, α1 and α2 are small), the dynamics (14) diverges. For any other

large uncertain values of σ0, c0, c1, c2, the proposed method (12) also works even with small α

and β, but the existing ASMC methods (10) and (11) do not. Furthermore, the switching gain

amplitude is ultimately reduced with the new design.

Theorem 1: Consider the nonlinear uncertain system (1), with the sliding variable dynamics (5),

under assumptions A.1–A.4, controlled by (13). If the gain K(t) is designed as (12), then for any

initial condition |σ| 6= 0 the sliding variable σ converges to the domain Σ in finite time.

Proof. The ASMC design for bounded uncertainties discussed in (Zhu & Khayati, 2016b) inspired
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Figure 2. Illustrative example using the control parameters α = α1 = 2α2 = β = 10:

Switching gain K (left) and state σ (right) performances of the closed-loop dynamics

(14) with (13) under different uncertain conditions.

us to deal with the general case of polynomially bounded uncertainty amounts.

From (5), (12) and (13), the time derivative of |σ| along the system trajectory is

d

dt
|σ| = σ̇ · sgn(σ)

= Γ
(
h(σ)− K̆

)
(15)

with h(σ) =
Ψ · sgn(σ)

Γ
−β
(
e|σ|− 1

)
. Note, h(σ) is upper-bounded, i.e., there exist finite values σ∗

and h∗ = h(σ∗), s.t.,

h(σ) ≤ h∗ (16)

for all |σ| ≥ 0 (see Appendix 6.1 for details). Basically, the term h(σ) represents a combination

of the lumped system uncertainties with the exponential compensating gain of the dynamics (5)
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(considering the scalar case) under the feedback control (13) using the reaching law (12).

For σ 6= 0, from (12a), K̆(|σ|) keeps growing with a rate of, at least, α|σ| > 0. Thus, the growing

state gain K̆ will eventually compensate for (i.e., be greater than) the bounded h(σ) in (15). Since

this compensation action will occur for any h(σ) ≥ K̆ (i.e.,
d

dt
|σ| ≥ 0) and σ 6= 0, we can conclude

that there will always exist a positive scalar κ0 and an ultimate time instant t∗ ≥ 0, s.t.,

h(σ) + κ0 ≤ K̆ (17)

for all t ≥ t∗. Then, we obtain from (15)

d

dt
|σ| ≤ −Γκ0 ≤ −Γκ0 (18)

for all t ≥ t∗. We conclude that |σ| converges to the domain Σ in finite time (Khalil, 2002).

Unlike most ASMC designs dealing with bounded uncertainties (Plestan et al., 2010) or affine-

function uncertainties (Wheeler et al., 1998), this work deals with unknown polynomial bounded

uncertainties which are more than bounded uncertainties and affine-function uncertainties. In addi-

tion, the new design (12) provides simultaneously fast response and chattering reduction. The first

part, integration state term K̆, provides the ability to compensate for uncertainties with unknown

polynomial bounds and forces the sliding variable to converge to the domain Σ in finite time. Fur-

thermore, it should be pointed out that the integral term (12a) guarantees the FTC; otherwise, the

exponential term only guarantees ultimately uniformly bounded (UUB) solutions. One can test

that, without the integral term (i.e., α = 0 in (12)), the state is only UUB. The results of the

application of the design (12) for the illustrative model dynamics (14) when α = 0 are omitted

here due to lack of space.

Comparing to the ASMC laws (10) and (11), the new algorithm (12) adds the exponential term
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β
(
e|σ| − 1

)
, which provides an extra but sufficiently high gain to compensate for the lumped

perturbation Γ−1Ψsgn(σ) (which is possibly bounded by unknown polynomial) when the state is

far (i.e., |σ| is large) from the sliding surface. Thus, K (with the exponential term) forces the sliding

variable σ, if it is far from its desired sliding manifold Σ, to quickly turn around and be heading to

the sliding surface. Moreover, when |σ| tends to Σ, the exponential term reduces its value rapidly.

Then, after reaching the sliding surface, the overall gain is reduced and the unwanted chattering

level is expected to be much lower.

3.2 Multi-dimensional Case

Substituting (12) and (9) into (5), we obtain for σ 6= 0

σ̇ = Ψ− K

‖σ‖Γσ (19)

Then, we state the following theorem.

Theorem 2: Consider the nonlinear uncertain system (1), with the sliding dynamics (5), under

assumptions A.1–A.4, controlled by (9). If the gain K(t) is designed as (12), then for any initial

condition ‖σ‖ 6= 0 the sliding variable σ converges to the manifold ‖σ‖ = 0, i.e., x ∈ Σ in finite

time.

Proof. Let the positive definite function

V = σTσ (20)

be a Lyapunov function candidate. Using (7), (12) and (19), for σ 6= 0, the time derivative of V
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along the system trajectories is

V̇ = 2σT σ̇

= 2‖σ‖
(σTΨ

‖σ‖ − β
(
e‖σ‖ − 1

)σTΓsσ

σTσ
− K̆ σTΓsσ

σTσ

)
(21)

We denote by hΓ(σ) =
σTΨ

‖σ‖ − β
(
e‖σ‖ − 1

)σTΓsσ

σTσ
. For σ 6= 0, (21) can be rewritten as

V̇

2
√
V

= hΓ(σ)− K̆ σTΓsσ

σTσ
(22)

Using (4) and (6), the scalar hΓ(σ) is upper-bounded. In fact,

hΓ(σ) ≤ d0 +

q∑

i=1

di‖x‖i − β
(
eγ1‖x‖−γ2 − 1

)
λ(Γs) (23)

with λ(Γs) denoting the minimum eigenvalue of the symmetric positive definite Γs (refer to as-

sumption A.4). Then, a positive exponential function ultimately grows faster than any polynomial

(refer to the proof shown in Appendix 6.1 for more details).

For any σ 6= 0, from (12), K̆ keeps growing and the positive scalar K̆
σTΓsσ

σTσ
in (22) will eventually

compensate for the upper-bounded hΓ(σ), i.e., K̆
σTΓsσ

σTσ
> hΓ(σ). Since this compensating action

will occur for any ‖σ‖ 6= 0 where hΓ(σ) ≥ K̆ σTΓsσ

σTσ
(i.e., from (21) and (23),

d

dt
‖σ‖ , V̇

2
√
V
≥ 0),

we conclude that there exist a time instant t∗ and a positive scalar κ1, s.t., for t ≥ t∗

K̆
σTΓsσ

σTσ
≥ hΓ(σ) + κ1 (24)

Thus, from (20), (21), (23) and (24), we obtain

d

dt
‖σ‖ ≤ −κ1 (25)
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for ‖σ 6= 0‖ and t ≥ t∗. Now, by integrating both sides of (25) between t∗ and t ≥ t∗, we obtain

‖σ‖ ≤ −κ1 ·
(
t− t∗

)
+ ‖σ(t∗)‖

Then, ‖σ‖ is decreasing with a rate κ1 and reaches the domain ‖σ‖ = 0 in finite time (Khalil,

2002).

The proof discussed above is effectively based on assumption A.2. We note that whenever the

design condition (4) is violated numerically or analytically, a modified version of the switching gain

law can still exist to maintain the integral/exponential form. In fact, substituting eγ‖x‖ for e‖σ‖

in (12b), for some small positive scalar γ, would keep possible the compensation for the class of

perturbations mainly discussed in this paper (refer to assumptions A.2 and A.3).

From the condition (8), we note that the uncertain gain matrix Γ matching with the input u in

(5) does not require any upper-boundedness on its norm magnitude allowing definitely unlimited

uncertainty levels of this term as long as it is nonzero (or nonsingular matrix in the wider sense).

Finally, we note that when the parameter matrix Γ is indefinite (i.e., neither positive definite

nor negative definite), the control defined by (9) is not appropriate. In this case, it is required to

define a nonsingular matrix Γ̂ alluding to the nominal value of Γ. Moreover, we assume that the

matrix L(t) = Γ̂−1Γ is positive definite in the wider sense, i.e., the symmetric part Ls =
1

2
(L+LT )

is positive definite in the regular meaning (Marcus & Minc, 2010). Note that the positiveness of

L implies that the value of the nominal matrix Γ̂ is close to that of its real matrix Γ. Then, by

replacing σ with Γ̂Tσ in the control law (9) as (Utkin et al., 1999)

u(t) =





−K · Γ̂Tσ

‖Γ̂Tσ‖
if σ 6= 0

0 if σ = 0

(26)
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and applying the adaptation law (12), we guarantee the FTC of the states to the targeted manifold

Σ. In deed, substituting (26) into (5), we obtain, for σ 6= 0

σ̇ = Ψ− ΓK(t) · Γ̂Tσ

‖Γ̂Tσ‖
(27)

Then, we state the following theorem

Theorem 3: Consider the nonlinear uncertain system (1), subject to the closed-loop dynamics

(27), under assumptions A.1–A.3. Given Ls =
1

2
(L + LT ) a symmetric positive definite matrix

with L(t) = Γ̂−1Γ, if the gain K(t) is designed as (12), then for any initial condition ‖σ‖ 6= 0 the

sliding variable σ converges to the sliding surface ‖σ‖ = 0, i.e., x ∈ Σ in finite time.

Proof. See Appendix 6.2.

3.3 Case of Real Sliding Mode

Different from the ideal sliding mode, where the sliding variable is constrained perfectly on the

sliding surface after reaching the targeted manifold Σ, the sliding variable σ in the real sliding

mode is generally non-zero due to measurement and computation imperfections. In other words, σ

may be nonzero though it has reached the aimed manifold. As a result, the use of the adaptation

law of ideal case to the real sliding mode has the risk of resulting in a permanently increasing

and unbounded switching gain K. Thus, the ideal ASMC design should be modified for the real

implementation. Consider the real sliding set Σε defined in Section 2. The dynamic gain design is
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defined as

˙̆
K = α‖σ‖ · sgn

(
‖σ‖ − ε

)
(28a)

K = K̆ + β ·
(
e‖σ‖ − 1

)
(28b)

If β = 0, then (28) is reduced to the integral gain law presented in (Plestan et al., 2013). We obtain

the following theorem of real ASMC design.

Theorem 4: Consider the nonlinear uncertain system (1), with the sliding dynamics (5), under

assumptions A.1–A.4, controlled by (9). If the gain K(t) is designed as (28), then for any initial

condition ‖σ‖ > ε the sliding variable σ converges to the domain ‖σ‖ ≤ ε, i.e., x ∈ Σε in finite

time.

Proof. It is similar to the proof of theorem 2 and is omitted here.

4. Applications

To validate the effectiveness of the proposed scheme, we consider a nonlinear mass-spring system

model depicted from (Wang & Stengel, 2002) and a 2-DOF helicopter simulator model actuated

with two propellers (Quanser, 2006).

4.1 Control of a Nonlinear Mass-Spring System

4.1.1 Modelling

The nonlinear mass-spring system consists of two masses m1 and m2 connected by a linear-cubic

spring. We denote by x1 and x2 the positions of the masses. The nonlinear dynamics of the system
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can be written as

m1ẍ1 + k1(x1 − x2) + k2(x1 − x2)3 = u1 (29a)

m2ẍ2 − k1(x1 − x2)− k2(x1 − x2)3 = u2 (29b)

or

Mẍ+K1x+ k2f(x) = u (30)

where u =
(
x1 x2

)T
and u =

(
u1 u2

)T
. We have

M =



m1 0

0 m2


 , K1 =




k1 −k1

−k1 k1


 , f(x) =




(x1 − x2)3

−(x1 − x2)3


 (31)

The mass and spring constant variations are 0.5 < m1 < 1.5, 0.5 < m2 < 1.5, 0.5 < k1 < 2 and

−0.5 < k2 < 0.2, with nominal values as m̂1 = m̂2 = k̂1 = 1 and k̂2 = −0.1 (Wang & Stengel,

2002). Note that M is a positive definite diagonal matrix and f(x) is a cubic polynomial in the

system states.

4.1.2 Sliding variable design

It is desired that the system follows a trajectory xd. Denote by x̃ = x − xd the trajectory error.

Assuming that the positions and velocities of the two masses are measurable, we design a PID

sliding variable (Y. Li & Xu, 2010)

σ = Kpx̃+Ki

∫
x̃dτ +Kd

˙̃x (32)
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with Kp, Ki and Kd positive definite matrices of R2×2. Taking the time derivative of the both sides

of (32) and substituting (30), the sliding variable dynamics can be written as

σ̇ = Kp
˙̃x+Kix̃+KdM

−1 ·
(
u−K1x− k2f(x)−Mẍd

)
(33)

4.1.3 Equivalent control

Consider M = M̂ + M̃ , K1 = K̂1 + K̃1 and k2 = k̂2 + k̃2 where M̂ , K̂1 and k̂2 are given nominal

values of M , K1 and k2, and M̃ , K̃1 and k̃2 their corresponding uncertain values. We apply the

equivalent control method where the control input consists of a combination of an equivalent control

input and a switching control input (Utkin et al., 1999), as

u = ueq + usw (34)

ueq is obtained by assuming that all uncertainties vanish at the permanent sliding regime, i.e.,

M = M̂ , K1 = K̂1, k2 = k̂2 and σ̇ = 0. We have

0 = Kp
˙̃x+Kix̃+KdM̂

−1 ·
(
ueq − K̂1x− k̂2f(x)− M̂ẍd

)
(35)

That is,

ueq = K̂1x+ k̂2f(x) + M̂ẍd − M̂K−1
d ·

(
Kp

˙̃x+Kix̃
)

(36)

Substituting (36) into (33), we obtain the sliding variable dynamics in terms of the switching

control (refer to (5))

σ̇(x, t) = Ψ(x, t) + Γ(x, t) · usw (37)

20

Page 20 of 33

http://mc.manuscriptcentral.com/timc

Transactions of the Institute of Measurement and Control

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

C.1. Application of Adaptive Sliding Mode Control to Nonlinear Systems
with Unknown Polynomial Bounded Uncertainties

316



For Peer Review

July 29, 2016 Transactions of the Institute of Measurement and Control ASMC˙TIMC˙poly2

with

Ψ(x, t) = KdM
−1M̃K−1

d ·
(
Kp

˙̃x+Kix̃
)

+KdM
−1 ·

(
− K̃1x− k̃2f(x)− M̃ẍd

)
(38)

and

Γ(x, t) = KdM
−1 (39)

Note that f(x) in (38) contains a cubic polynomial of the state x and k̃2 is an uncertain parameter.

That is, Ψ(x, t) is an uncertainty bounded within an unknown-coefficient-cubic polynomial. Since

the diagonal matrix M and the matrix Kd are positive definite of R2×2, then Γ is positive definite.

Based on Theorem 2, we apply the switching control usw in form (9) with the adaptation law (28).

4.1.4 Simulation results

First, the two masses m1 and m2 are stabilized at the equilibrium positions. Then, in the second

simulations, they are desired to follow trajectories xd1 = sin(πt +
π

2
) and xd2 = 0.5 sin(πt +

π

2
),

respectively. Given, a sampling period Ts = 5 · 10−3 and PID matrix gains selected as Kp =

4Ki = Kd = I2, we apply the real ASMC design using the (Proposed) reaching law (28), with a

fixed boundary-layer limit ε = 10−3, α = 10, and applying β = 2 and 20. Then, we compare its

performance to the (Existing) adaptation gain dynamics discussed in (Plestan et al., 2013, 2010)

(i.e., (28) with β = 0), using α = 10, with boundary-layer limit fixed at ε = 10−3, and varying

ε-tuning (Plestan et al., 2010). The simulation results are shown in Figures 3 to 5. From Figure

3, one can see that there is no significant difference in terms of stabilization and accuracy for

all ASMC implementations. However, the magnitudes and chattering levels of the corresponding

control inputs in the proposed ASMC are much less than those in the existing ASMC. From Figure
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4, one can see that, comparing to those using the existing ASMC, both the trajectory errors and

the magnitudes of the control inputs (as well as the chattering levels) by using the proposed ASMC

(28) are reduced simultaneously. The tracking of the first mass displacement x̃1 with the proposed

design is much faster than with the existing ones. The switching gain magnitudes are much lower

with the proposed design (see Figure 5).

Figure 3. Simulation results of nonlinear spring-mass system – Position stabilizations

and the corresponding control inputs. Results in real sliding mode using the existing

IG-ASMC, i.e., adaptation law (28) with β = 0 (solid green for fixed ε and dash-dot

magenta for ε–tuning) and proposed IEG-ASMC, i.e., adaptation law (28) with β > 0

(dash red for β = 2 and dot black for β = 20).

4.2 Control of a 2-DOF Helicopter-Model Setup

The 2-DOF helicopter simulator model, built by Quanser Inc., is actuated with two propellers

(Quanser, 2006). The front propeller controls the elevation of the helicopter nose about the pitch
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Figure 4. Simulation results of nonlinear spring-mass system – Trajectory errors of

sine waves and the corresponding control inputs. Results in real sliding mode using

the existing IG-ASMC, i.e., adaptation law (28) with β = 0 (solid green for fixed ε and

dash-dot magenta for ε–tuning) and proposed IEG-ASMC, i.e., adaptation law (28) with

β > 0 (dash red for β = 2 and dot black for β = 20).

axis and the back propeller controls the side to side motions of the helicopter about the yaw axis.

We define (Quanser, 2006)

(
Jp +ml2

)
φ̈ = KppVp +KpyVy −Bpφ̇−mgl · cosφ−ml2 sinφ cosφ · ψ̇2 (40a)

(
Jy +ml2 cos2 φ

)
ψ̈ = KypVp +KyyVy −Byψ̇ + 2ml2 sinφ cosφ · φ̇ψ̇ (40b)

where Vp and Vy are the applied voltages, φ the pitch angle position, ψ the yaw angle position, φ̇

and ψ̇ the pitch and yaw angular velocities, respectively. Bp (resp. By) is the viscous damping about

pitch (resp. yaw) axis, Jp (resp. Jy) the moment of inertia about pitch (resp. yaw) pivot, Kpp (resp.

Kpy) the thrust torque constant acting on pitch axis from pitch (resp. yaw) motor/propeller, Kyy
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Figure 5. Simulation results of nonlinear spring-mass system – the switching gains in

position stabilization (left sub-figure) and the switching gains in trajectory tracking

control (right sub-figure). Results in real sliding mode using the existing IG-ASMC, i.e.,

adaptation law (28) with β = 0 (solid green for fixed ε and dash-dot magenta for ε–

tuning) and proposed IEG-ASMC, i.e., adaptation law (28) with β > 0 (dash red for

β = 2 and dot black for β = 20).

(resp. Kyp) the thrust torque constant acting on yaw axis from yaw (resp. pitch) motor/propeller,

l the center-of-mass length along the helicopter body from pitch axis, m the mass of the helicopter

and g the gravitational acceleration. The voltage of the front and rear propeller motors are limited

to ±25V and ±15V, respectively (Quanser, 2006).

It is desired that the helicopter follows trajectories φd, ψd with their time derivatives φ̇d, ψ̇d.

Let x1 , φ − φd, x2 , ψ − ψd, x3 , φ̇ − φ̇d and x4 , ψ̇ − ψ̇d be the measurable states, and

u = [u1 u2]T , [Vp Vy]
T the input vector. Assuming all parameters of the dynamics (40) are

unknown, the latter can be rewritten in the form of (1). For the control design purpose, we consider

a proportional-integral sliding hyper-surface as σ , Kpx+Ki

∫
xdτ (Y. Li & Xu, 2010). Note when

the system is on the sliding surface (σ = 0) it has an exponential stability, i.e., x→ 0 and
∫
xdτ → 0

exponentially. Then, the dynamics of σ can be written in form (5) where the uncertainty vector
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Ψ(x, t) shows affine and quadratic terms in the state variables, in form a(t)x2
2 and b(t)x1x2 with

a(t) and b(t) uncertain bounded coefficients.

During the experiments, the pitch and yaw positions are supposed to follow the time-varying

trajectories, φd = −10◦ cos 0.4πt and ψd = 10◦ cos 0.15πt, respectively. We apply the real ASMC

design (with a boundary-layer limit ε = 10−2 and a sampling period Ts = 5 · 10−3) using the

(Proposed) reaching law (28) and we compare its performance to the (Existing) adaptation gain

dynamics discussed in (Plestan et al., 2013, 2010) (i.e., (28) with β = 0). The experiments are

conducted using different values of α and β. We use a fixed-value ε instead of ε-tuning (i.e., ε

time-varying and depending on K) which requires that Γ is normalizable (Plestan et al., 2010).

Moreover, by applying the ε-tuning, we realize that there is no improvement in the experimental

results. Then, for their consistency we keep ε the same during all the experiments. Figures 6 and

7 show results obtained with α = 0.2, β = 20 and α = 0.05, β = 5, respectively. The other results

are omitted here to save space. Table 1 shows the summary of the tracking errors in terms of

root-mean-square (RMS) and peak (i.e., maximum absolute value) for these experiments. One can

see that, by using the proposed gain law, both pitch input u1 and yaw input u2 have less chattering

levels and smaller magnitude variations than those using the existing one. With ASMC using the

existing gain law, the voltages of the rear propeller motor are often saturated at their minimum

and maximum levels of ±15V, respectively, while these values are limited about −10V with the

new design. For the front motor, the input voltages oscillate within ±20V with the existing design,

while the new design requires voltages of about 10V with α = 0.05, β = 5 and up to 20V with

α = 0.2, β = 20. Simultaneously, the pitch and yaw angles follow the desired trajectories more

accurately by using the proposed gain law than those using the existing one. From Table 1, it can

be seen that, by using the proposed gain law (i.e., with any β > 0), the errors are largely reduced
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Figure 6. Input voltages (in volt) and angular positions (in degree) for α = 0.2 and

β = 20.

Figure 7. Input voltages (in volt) and angular positions (in degree) for α = 0.05 and

β = 5.

compared to those obtained by using the existing gain law (i.e., β = 0). The RMS errors of the

pitch angle trajectories with the new design can be reduced by 70% compared to the existing ones

and by 80% for yaw angles, while their peak errors can be down by 70% and more than 50%,

respectively.
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Table 1. Recap – Error RMS and Peak Values in % of Maximum Displacement

Pitch Angle Yaw Angle

Method α β RMS Peak RMS Peak

Existing

0.05

0 14.6 36.1 27.8 73.7

Proposed

5 4.7 14.9 15.4 36.0

10 5.6 20.0 10.9 21.8

20 5.8 19.8 6.3 12.6

Existing

0.1

0 16.9 48.0 27.6 65.7

Proposed

5 8.1 16.2 15.2 27.8

10 5.4 11.6 11.5 25.8

20 6.0 16.9 6.3 13.3

Existing

0.2

0 15.3 35.8 30.0 68.1

Proposed

5 13.2 27.2 16.5 36.6

10 7.3 13.1 9.5 23.0

20 7.3 17.6 6.0 15.3

5. Conclusions

The application of a newly developed ASMC for nonlinear systems with unknown polynomial un-

certainties are presented. While most existing papers on ASMC designs deal with uncertainties

bounded by constants or affine functions, the recently proposed design with integral/exponential
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gain law successfully handles the uncertainties bounded by unknown polynomials in the norm of

system state vector. Moreover, the new algorithm provides simultaneously the “almost” required

compensating gain and the greatly reduced final (or post-perturbation) gain. With the proposed

algorithm, the closed-loop dynamic system has fast response to uncertainties, the accuracy and sta-

bility are enhanced, and a much lower level of gain reduces the chattering level eventually. A simple

example illustrates the feasibility of the proposed ASMC. The applications on a nonlinear mass-

spring system and on a 2-DOF electromechanical rotative plant demonstrate the effectiveness of

the proposed design in terms of stability, chattering reduction and error performances for handling

nonlinear systems with unknown polynomial uncertainties. This requirement remains fundamental

to keep the design parameters of the proposed method independent of the initial conditions and

the uncertainty levels (i.e., that can be freely selected as most of ASMC gain laws).
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6. Appendices

6.1 Upper-Boundedness of Combined Lumped Uncertainties with Exponential Gain

– Scalar Dynamics Case

In the following, we demonstrate the upper-boundedness of term h(σ) introduced in (15) (i.e.,

Proof of (16)).

31

Page 31 of 33

http://mc.manuscriptcentral.com/timc

Transactions of the Institute of Measurement and Control

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

C.1. Application of Adaptive Sliding Mode Control to Nonlinear Systems
with Unknown Polynomial Bounded Uncertainties

327



For Peer Review

July 29, 2016 Transactions of the Institute of Measurement and Control ASMC˙TIMC˙poly2

Proof. From (4), (6) and (8), we have for any σ ∈ R

h(σ) =
Ψ · sgn(σ)

Γ
− β(e|σ| − 1)

≤
(
β +

d0

Γ

)
+

q∑

i=1

di
Γ
|σ|i − βe|σ| (41)

Given scalars β > 0, d0 ≥ 0, di ≥ 0 and i > 0 (i = 1, · · · , q), there always exist a positive integer

r, real scalars δ0 ≥ 0 and δ ≥ 0, s.t.,

h(σ) ≤ δ0 + δ|σ|r − βe|σ| (42)

The two terms δ0 +δ|σ|r and βeγ|σ| of the right side of (42) are continuously monotonically increas-

ing as |σ| increases on [0,+∞). However, by applying L’Hopital’s rule (Arfken, 1985) repeatedly,

we have

lim
|σ|→∞

δ0 + δ|σ|r
βe|σ|

= 0 (43)

Thus, the polynomial term δ0 + δ|σ|r grows with a slower rate than the exponential term βe|σ|. In

other words, there exists a finite value h∗ ∈ R, s.t., for all |σ| 6= 0,

h(σ) ≤ h∗ , sup
|σ|

(
δ0 + δ|σ|r − βe|σ|

)
(44)

That is, h(σ) is upper-bounded.

6.2 Switching Control in the Case of Indefinite Parameter Matrix Γ

In the following, we demonstrate the FTC problem of theorem 3.

Proof. Consider the Lyapunov function candidate V = σTσ. Given s = Γ̂Tσ, using L(t) = Γ̂−1Γ,
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Ls =
1

2
(L+ LT ) and (27), the time derivative of V along the system trajectories is

V̇ = 2‖s‖
(sT (Γ̂−1Ψ)

‖s‖ −KsTLss

‖s‖2
)

= 2‖s‖
(
hL(σ)− K̆ sTLss

‖s‖2
)

(45)

with hL(σ) =
sT
(
Γ̂−1Ψ

)

‖s‖ − β
(
e‖σ‖ − 1

)sTLss
‖s‖2 . The scalar hL(σ) is upper-bounded for any value of

σ. For ‖σ‖ > ε, K̆ will keep growing and eventually the positive scalar K̆
sTLss

sT s
will compensate

for the upper-bounded scalar hL(σ), i.e., K̆
sTLss

‖s‖2 > hL(σ). Since this compensating action will

occur for any ‖σ‖ > ε where hL(σ) ≥ K̆
sTLss

‖s‖2 (i.e.,
d

dt
‖σ‖ , V̇

2
√
V
≥ 0), we conclude that there

exist a time instant t∗ and a positive scalar κ2, s.t.,

K̆
sTLss

‖s‖2 ≥ hL(σ) + κ2 (46)

for t ≥ t∗. Then,

V̇ ≤ −2κ2‖s‖ (47)

for t ≥ t∗. Since ‖s‖2 = σT Γ̂Γ̂Tσ ≥ λ(Γ̂)2σTσ with λ(Γ̂) > 0 the minimum singular value of the

matrix Γ̂, we have ‖s‖ ≥ λ(Γ̂)‖σ‖. Then, from (47), we obtain

d
√
V

dt
≤ −κ2λ(Γ̂) (48)

Thus, σ converges to the domain ‖σ‖ ≤ ε in finite time with a maximum reaching time tr ≤
‖σ(t∗)‖ − ε
κ2λ(Γ̂)

+ t∗ (Khalil, 2002).
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SUMMARY

In this paper, a comprehensive review of the literature of the adaptive observers is presented. Then, we

investigate the design of adaptive observers for a large class of nonlinear systems with linearly dependent

parameters that are joined with unmeasured regression dynamics. Asymptotic and exponential stabilities of

both the state and parameter estimates are developed. The calculus of the observer gains and the adaptation

law parameters are cast as linear matrix inequality (LMI) feasibility problems. Simulation results are shown

to demonstrate the effectiveness of the proposed estimating patterns. Copyright c© 2016 John Wiley & Sons,

Ltd.

Received . . .

KEY WORDS: Nonlinear Systems; Adaptive Observer; Asymptotic Stability; Exponential Stability

1. INTRODUCTION

Over the past few decades, numerous adaptive observers have been proposed, in linear forms (e.g.

proportional-integral-like) and in nonlinear gain shapes, estimating the unmeasurable states for

different classes of nonlinear systems [1–7]. The discussed schemes are continuously adapted to
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guarantee a uniformly bounded and convergent observation error. However, such observers do not

estimate the parameter uncertainties and the adaptation law may be complicated. For linear systems

and nonlinear systems that are linearly transformable, the well-known Luenburger and the switched

mode observers including sliding mode observers and Kalman filters have been widely used [6, 7].

However, the high gains eventually required for such techniques lead to peaking phenomena that

make the initial error amplified to probably unsafe levels when implemented within any closed-loop

control design.

For nonlinear systems where all states are measurable, the gradient algorithm and the least

square algorithm have been applied for the parameter identification problem [8]. Also, for

nonlinear dynamics satisfying the Lipschitz condition [9], a high gain observer is designed in

[10], whereas the adaptive observer design that can be applied for both Lipschitz and monotone

nonlinearities (that are not necessarily Lipschitz) is presented in [11]. However, the alleviation of

the limitation on monotonic nonlinearities needs more investigation. And withal, Luenberger-like

observers have been applied for nonlinear systems with unknown states and uncertain parameters,

where nonlinearities are measurable [12, 13]. In the case where nonlinear terms are dependent

on unmeasured states, various observers are designed in [13–17] under the so-called matching

condition. This condition has been essentially revisited in [18], and then, to relax it, the authors

have introduced a new LMI-based adaptive observer which successfully estimates the unknown

parameters and the unmeasured nonlinearity with an asymptotic convergence [18, 19]. This work

has been extended to estimate both the states and the parameters of a large class of perturbed and

noisy nonlinear systems with a regressor matrix function of unknown states [20, 21]. Noting that

some nonlinearly dependent parameter systems can be transformed into parameter affine dynamics

(i.e. linearly dependent on unknown parameters) [16], the author has applied an adaptive observer

to nonlinear parameterized systems which estimates the states only with a uniformly bounded error

performance. Furthermore, an adaptive observer has been developed for linear time-varying systems

which comprise unknown parameters in the output equation. The realization of such dynamic

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
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models is assumed to be uniformly completely observable [22]. These systems can refer indeed

to nonlinear dynamics with known nonlinearities (in particular the regressor terms) [22].

In most nonlinear observer design techniques, the stability analysis is based on the Lyapunov

criteria guaranteeing the asymptotic convergence. This feature is often based on the strict-positive-

real (SPR) property (widely defined in the literature, see e.g. [9]) of the relationship between the

parameter matching nonlinearities and a sub-set of the measurable states [23–25]. Recently, in

[26], the authors consider the more general problem of asymptotic reconstruction of the state and

parameter values in dynamic systems with nonlinearly parameterized terms. However, all the results

proposed therein are basically dependent on the restrictive SPR assumption. In addition, it has been

shown in [27] that subject to the linear part of the most natural dynamics is observable, there is

a time-varying parameter-dependent coordinate transformation such that in new coordinates the

SPR condition is satisfied [26]. Nonetheless, the design of a global state-space diffeomorphism

transforming any system into the required form could be either unfeasible or discordant with the

investigated system representation.

A unifying adaptive observer form is proposed in [28] based on the property of the parameter-

independent detectability, known later as the passivity-like condition, in addition to the appropriate

and common persistent excitation (PE) condition. The author discusses this generic adaptive design

for nonlinear dynamics with unknown parameters matching only with the measurable state sub-

system (i.e., the dynamics of the unmeasurable signals are independent of the unknown parameters).

In [29], the authors redesign an adaptive observer by solving a partial differential equation instead

of applying the SPR property, even though this differential equation is hard to be solved in practice.

However, in [30], the authors use the Lyapunov analysis and a nonlinear transformation to design

the adaptive observers for nonlinear dynamics where the unknown parameters are only present

in the unmeasurable state dynamics. This method requires a sector condition on the nonlinear

matching terms related to the unknown parameters [9]. The state and parameter estimation dynamics

are uniformly globally asymptotically stable while the corresponding linearized form is uniformly

locally exponentially stable. Noting that the asymptotical stability is characterized by a relatively

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
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slow rate of convergence compared to the exponential stability, adaptive observers with exponential

convergence have been investigated [31,32]. The exponential convergence of the parameter estimate

has been guaranteed by using appropriate gradient and least square algorithms when all the states

are measureable [8, 33]. However, in most cases the states are not completely measurable. In

[32], the authors characterize the use of filtered transformations to obtain a canonical form of the

adaptive observer where the unknown parameters are joined to the measured nonlinearities only. The

method introduced in [11] applies the differential mean value theorem to design an LMI-based H∞

adaptive observer capable of estimating the unmeasured nonlinearities and unknown parameters,

where the equality constraint in terms of matching conditions is not required. This method

illustrates an exponential convergence of the state estimation and an asymptotical convergence

of the parameter estimation. More recently, [34] uses a converse Lyapunov-like theorem with

sufficient gain conditions. This approach aims to apply a parameter and state estimator with an

exponential convergence rate to an adaptive controller using a nonlinear damping term. Moreover,

an exponentially stable nonlinear adaptive observer for a large class of nonlinear systems, with a

regressor matrix function of both measurable and unmeasurable states, has been discussed in [31].

The authors have set up a stability feature based on a memoryless nonlinear mapping satisfying

a sector condition with respect to the parameter estimate error. The latter remains a conservative

condition regarding the implementation purpose. In fact, the concerned nonlinear mapping is

particularly dependent on the state estimates, which makes the required condition hard to predict

and needs excessively high adaptation gains.

The objective of this paper is to build an asymptotically stable adaptive observer (ASAO) and an

exponentially stable adaptive observers (ESAO) for nonlinear systems with unmeasured regression

terms (i.e., nonlinearities coupled with unknown parameters) based on common requirements

such as Lipschitz and bounded nonlinearities. The design uses the same technique developed in

[18,19,31] to eliminate the passivity-like equality condition on the Lyapunov matrix gain. Thus, the

design will be based essentially on LMIs to determine the Lyapunov, observer and adaptation gain

matrices, and independently on further algebraic matrix equations and Hurwitz constraints applied

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
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to the remaining variables that lead to the exponential stability. It represents an extension of the

observer dynamics, discussed in [20, 21, 35], by adding coupling terms along with the algorithm

improvement to achieve the requirements of the exponential stability of the estimates (of both the

states and the parameters). The paper is organized as follows. Section 2 is devoted to the presentation

of the nonlinear dynamics. The asymptotic stability for the observer design is first introduced in

Section 3. In Section 4, the adaptive observer scheme showing an exponential convergence of

the parameter and state estimates is then developed. Finally, in order to illustrate the proposed

techniques, numerical results are presented in Section 5, while Section 6 concludes this work.

2. NONLINEAR DYNAMIC MODELS

The proposed observers in this paper are based essentially on nominal dynamical systems with

linearly parameterized unknown continuous nonlinearities. An adaptation law will be designed

to estimate the unknown parameters. The term “unknown nonlinearities” refers here to the

nonlinearities matching with the parameters and depending on the unmeasurable states.

2.1. Problem Statement and Assumptions

We consider the following nonlinear dynamics

ẋ = Ax+ fm(y, u) +B
[
fu(x, u) + f(x, u)θ

]
(1)

y = Cx (2)

with A ∈ Rn×n, B ∈ Rn×p and C ∈ Rm×n. x ∈ Rn designates the state vector, u ∈ Rk the input

vector, y ∈ Rm the output, and θ ∈ Rq the vector of unknown constant parameters. fm(y, u),

fu(x, u) and f(x, u) are nonlinear functions inRn,Rp andRp×q, respectively. For the forthcoming

designs, we consider the following assumptions:

(A1) The matrix B is a strict full-column-rank matrix, that is rk(B) = p < n, the output vector y

does not recover the whole states of x, that is m < n, and the pair (A,C) is observable.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
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(A2) There exist matrices Φ and Ψ of Rn×m chosen, s.t.

ΨCB = 0 (3)

and

ΦC + ΨCA = In (4)

(A3) The vector of unknown constant parameters θ is bounded with

‖θ‖ < β0 (5)

(A4) The functions fu and f are continuously bounded and Lipschitz in x, with

‖fu(x, u)− fu(x̂, u)‖ ≤ βu‖x− x̂‖ (6)

and

‖f(x, u)− f(x̂, u)‖ ≤ β‖x− x̂‖ (7)

(A5) The input vector u is of class C1 (i.e., continuous and differentiable function having continuous

derivatives). In addition, u is required to fulfill the PE condition.

These hypotheses are commonly used in related works and can characterize adequately many real

plants [4, 17, 18, 32, 36]. In particular, by setting up assumptions A1 and A2, one can neutralize the

following inappropriate observer forms: form 1, where B is right invertible (i.e., B regular square

matrix or full-row-rank), and form 2, where C is a full-column rank matrix. In fact, with form 1,

there always exists a transformation reducing the number of channels within the parameter matching

termBf(x, u)θ, by reducing and/or combining the elements of f(x, u)θ to lower p under the number

of states n, while with form 2, the output vector y would recover the whole state vector x. Moreover,

we notice, from (3) of assumption A2, that in the case where the columns ofB lie in the null space of

C, i.e., CB = 0, then Ψ and Φ will be selected based on the equality requirement (4) only. However,

when CB 6= 0, the assumption A2 requires the selection of a matrix Ψ in the null space of C, i.e.,

ΨC = 0, then we select Φ s.t. ΦC = I . This statement remains strenuous. Otherwise, we select Ψ

simply in the null space of CB, i.e., Ψ · (CB) = 0, and Φ s.t. (4) holds. Later in this paper, where

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
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we deal with the ESAO design, the condition (4) of assumption A2 will be slightly relaxed from

[19, 21, 35] enrolling wider set of dynamics. In fact, we substitute the following conditions for the

constraint (4), as

(A2.s) There exist matrices Φ and Ψ of Rn×m chosen, s.t. (3) holds and B̃ =
(
ΦC + ΨCA

)
B is

full-column rank.

Note that, from assumptions A1 and A2.s,
(
ΦC + ΨCA

)
can be either regular (that is, there exist

Φ and Ψ s.t. (4) holds), or singular.

Finally, we notice that the representation (1) and (2) can be reduced, without loss of generality, to

the system model discussed in [35] as

ẋ = Ax+ fm(y, u) +Bf(x, u)θ (8)

y = Cx (9)

In fact, disregarding the unmeasurable state function and reducing the non-matching nonlinearity to

the term fm(y, u) do not limit the use of algorithms that will be discussed in this paper. The further

term in the form of fu(x, u) could be combined with the matching nonlinearities Bf(x, u) and the

parameter vector θ could be augmented to consider such a combination, as far as the matching matrix

B remains of full-column-rank [35]. The model (1) and (2) considered above, with the assumptions

A1 and A2, represents a wide class of nonlinear dynamics called adaptive observer forms and

gathers most of the forms discussed in literature.

2.2. Further General Models

The proposed designs respond appropriately in the case of systems where the condition (3) (refer

to assumption A2) holds and the eventual global state-space diffeomorphism discussed in [27] fails.

Among these models, we recall the observer form [37, 38]

ẏ = z (10)

ż = f1(q, z, u) + f(q, z, u)θ =M−1(q)
(
u− C(q, z)z − G(q)

)
(11)

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
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with z = q̇ and y = q, obtained from the robot equation [39]

M(q)q̈ + C(q, q̇)q̇ + G(q) = u (12)

where only the positions q are available through measurement and u is the input. We note that

the systematic approach introduced in [4, 40, 41] cannot be applied for such dynamics. The main

result provided therein is based on some restrictive equality condition regarding the Lyapunov

design matrix [41]. Fundamentally, the realization of the system between the unknown parameters

and some of the measured outputs have to be strictly positive [9]. This condition has been also

discussed in more recent works dealing with the stability of the observer error dynamics [13, 42].

In order to solve the problem with only strict inequalities, the authors propose in [40] to find a set

of matrices P such that BTPC† = 0; C† is in null space of C. This subset is then used to solve the

feasibility of the proposed matrix inequality problem in the remaining unknown decision variables

of P . In [19], the authors have cited evidence and motivated the redesign of the adaptive observer

for the class of nonlinear systems introduced above, by showing analytical examples of dynamic

representations with unknown parameters lacking the required condition of passivity, PB 6= CT1

for all P > 0 and C1 in span (i.e., row space) of C. The algorithms that will be discussed in this

paper represent a redesign of adaptive observers revoking both the limited sector condition of the

nonlinear regression term (matching with unknown parameter vector) required in [30, 31] and the

hardly achievable design of [40] (when dealing with models investigated in [20, 21]). A forward

general form including (10) and (11) as

ẏ = A1x+ f1(y, u) (13)

ż = A2x+ f21(y, u) + f22(z, t) + f(x, u)θ (14)

can be directly referred to as of (1) and (2), where y ∈ Rm is the measurable state vector, z ∈ Rn−m

the unmeasurable state vector, x = (yT , zT )T ∈ Rn the overall state vector, u the input and θ ∈ Rq

the vector of constant uncertain parameters. The further condition n ≤ 2m on the partition of the

measurable and unmeasurable states is relevant for the validation of (4). Then, more generally, the

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
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dynamic form [29, 30]

ẏ = A11y +A12z + f11(y, u) + f12(z, t) (15)

ż = A2x+ f21(y, u) + f22(z, t) + f(x, u)θ (16)

with f12 continuously differentiable w.r.t. time, can be transformed into the set of equations (13) and

(14) by either adjoining part of the dynamics of y that acquires f12(z, u) from (15) to (16), as far as

n ≤ 2m remains valid (to let (4) hold for some Φ and Ψ), or by applying some appropriate change

of variable z′ , z −B2f12(z, t).

Finally, we note that the nonlinear adaptive observer form enclosing the unknown parameter

vector within the measurable state dynamics as [28]

ẏ = f1(y, z, u, t) + f(y, z, u, t)θ (17)

ż = f2(y, z, u, t) (18)

is not directly covered by the proposed model (1) and (2). An algorithm of the corresponding

adaptive observer is discussed in [28]. It is based on the Lipschitz property of the nonlinear functions

f1, f2 and f of the states and the input signals, and requires the existence of a candidate nonlinear

Lyapunov function respecting appropriate conditions as given therein. The explicit form of such a

Lyapunov function is not shown, and only an artificial design is proposed based on the hypothetic

conditions of this function [28, 43]. However, we notice that the approach of [4, 41] could be

appropriately concordant with the model (17) and (18) whenever the equality condition on the

Lyapunov positive definite matrix (referred as the SPR) is valid.

2.3. Useful Notations and Properties

L2 and L∞ represent the classes of finite∞-norm and 2-norm time-vector-functions, respectively.

In this paper, we denote by Ii the identity matrix of order i. λ(·), λ(·) and λ(·) represent any

eigenvalue, minimal and maximal eigenvalues of any matrix, respectively. For simplicity, we denote

by x̃ , x− x̂ the state estimate error, θ̃ , θ − θ̂ the parameter estimate error, fu , fu(x, u) (resp.

f , f(x, u)) the unmeasured nonlinearity (resp. the nonlinear regression term), f̂u , fu(x̂, u) (resp.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
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f̂ , f(x̂, u)) the estimated unmeasured nonlinearity (resp. the estimated nonlinear regression term)

and f̃u , fu − f̂u (resp. f̃ , f − f̂ ) the estimate errors of the nonlinear terms.

3. ADAPTIVE OBSERVER WITH ASYMPTOTIC STABILITY

In this section, we present the design of a nonlinear adaptive observer for the nonlinear dynamics,

generalizing a previous one introduced in [19, 21]. The detailed proof of the asymptotic stability of

the overall scheme is discussed using an appropriate Lyapunov function. Based on the dynamics (1)

and (2), we propose the following full-order nonlinear observer

˙̂x = Ax̂+ fm(y, u) +B
[
fu(x̂, u) + f(x̂, u)θ̂

]
+ L

(
y − Cx̂

)
(19)

coupled with the adaptation law

˙̆
θ =

[
G(t)TP

(
Φ + ΨCL

)
− Ġ(t)TPΨ

]
·
(
y − Cx̂

)
(20)

θ̂ = θ̆ +G(t)TPΨ ·
(
y − Cx̂

)
(21)

with

G(t) = Bf(x̂, u)Q (22)

where Q = QT > 0 and L are matrices of Rq×q and Rn×m, respectively. Φ and Ψ are matrices of

Rn×m, and Ġ(t) the total time derivative of G. The following result discusses the conditions that

guarantee the convergence of the estimates of both states and parameters to their actual values.

Proposition 1 (LMI-based ASAO Design)

Under assumptions A1–A5, for δ = βu + β0β > 0, if there exist matrices P = PT > 0 in Rn×n

and W in Rn×m, s.t.



PA+ATP −WC − CTWT PB In

BTP − 1
δ Ip 0

In 0 − 1
δ In



< 0 (23)

and if Bf(x, u) respects the PE condition, that is, there exist positive scalars α1, α2 and t0, s.t. ∀t

α1Iq ≤
∫ t0+t

t

fT (u, x)BTBf(x, u)dτ ≤ α2Iq (24)
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then the adaptive observer (19)–(22) for the system (1) and (2), with the observer gain matrix

L = P−1W , is asymptotically stable, that is, the state estimate error x̃ and the parameter estimate

error θ̃ tend both to zero as t→∞.

Proof

This proof is updated from [21]. Given x̃ = x− x̂ and noting f̃u = fu − f̂u, the estimation error

dynamics are obtained from (1), (2) and (19)

˙̃x =
(
A− LC

)
x̃+B

(
f̃u + fθ − f̂ θ̂

)
(25)

Using the adaptation law (20) and (21), and the estimation error dynamics (25), we obtain

˙̂
θ = G(t)TP ·

[(
Φ + ΨCL

)
C + ΨC

(
A− LC

)]
x̃+G(t)TPΨCB

(
f̃u + fθ − f̂ θ̂

)
(26)

Given θ̃ = θ − θ̂ and based on assumption A3, we have ˙̃
θ = − ˙̂

θ. Then, using (3), (4) and (22), we

derive the adaptation error dynamics

˙̃
θ = −Qf̂TBTPx̃ (27)

Now, to investigate the stability, consider the Lyapunov candidate function

Va(t) = x̃TPx̃+ θ̃TQ−1θ̃ (28)

with P = PT > 0 and Q = QT > 0. Using (25) and (27) and noting θ̃ = θ − θ̂, f̃u = fu − f̂u and

f̃ = f − f̂ , the time derivative of Va is

V̇a = 2x̃TP ˙̃x+ 2θ̃TQ−1 ˙̃
θ

= 2x̃TP ·
[(
A− LC

)
x̃+B

(
f̃u + f̃ θ

)]
(29)

Noting W = PL and based on assumptions A3 and A4, we have

V̇a ≤ x̃T
(
PA+ATP −WC − CTWT

)
x̃+ 2

(
βu + β0β

)∥∥BTPx̃
∥∥‖x̃‖ (30)

Denoting by δ = βu + β0β > 0 the total Lipschitz constant, we write

2δ
∥∥BTPx̃

∥∥‖x̃‖ ≤ δ ·
(
x̃TPBBTPx̃+ x̃T x̃

)
(31)
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From (30) and (31), we obtain

V̇a ≤ x̃T
[
PA+ATP −WC − CTWT + δ

(
PBBTP + In

)]
x̃ (32)

The right member of the inequality (32) is negative definite if

PA+ATP −WC − CTWT + δ ·
(
PBBTP + In

)
< 0 (33)

We use the Schur complement [44] to transform the nonlinear inequality (33) into the LMI

(23) in the decision variables P and W . From (33), ∃ε > 0, s.t. PA+ATP −WC − CTWT +

δ
(
PBBTP + In

)
< −εIn. Thus,

V̇a < −ε‖x̃‖2 (34)

This implies Va(t) ∈ L∞ (i.e., time-function of finite ∞-norm), and then, using Theorem 4.18 of

[9], we show that x̃ ∈ L∞ and θ̃ ∈ L∞. Integrating (34) leads to Va(t) ≤ Va(0)− ε
∫ t

0
‖x̃‖2dt. Since

Va(0) is finite, we obtain x̃ ∈ L2. From (25), we have ˙̃x ∈ L∞. Therefore, by applying Theorem

8.4 of [9] based on Barbalat’s Lemma, x̂→ x when t→∞. Now, note that
∫∞

0
˙̃xdt = −x̃(0)

is bounded, f is Lipschitz continuous, and θ̂ continuous. From (25), ˙̃x is uniformly continuous

[9]. Then, according to Barbalat’s Lemma, we have ˙̃x→ 0. Also, from (25) and (29), we have

B
(
fθ − f̂ θ̂

)
→ 0. Now, using assumptions A3 and A4 and noting that x̃→ 0, we have Bf̃θ → 0.

Then, from θ̃ = θ − θ̂ ∈ L∞ and A3, we obtain Bf̃θ̂ → 0 and Bfθ̃ → 0 as t→∞. Hence, since f

is bounded (refer to A4), fTBTBfθ̃ → 0 as t→∞. In the following, we apply the property of PE

to obtain θ̃(t)→ 0 [36, 45]. Define h(t0) ,
∫ t0
t
fTBTBfdτ . Note that h(t) = 0. Using integration

by parts, we obtain

∫ t0+t

t

fTBTBfθ̃(τ)dτ = h(t0 + t) · θ̃(t0 + t)−
∫ t0+t

t

h(τ)
˙̃
θ(τ)dτ (35)

Since fTBTBfθ̃ → 0, then, for any finite t0, we have
∫ t0+t

t
fT BTBfθ̃(τ)dτ → 0 as t→∞.

Now, based on assumption A4 and since x̃→ 0 and f̂ is bounded, we have from (27), ˙̃
θ → 0, and

then,
∫ t0+t

t
h(τ)

˙̃
θ(τ)dτ → 0 as t→∞. Thus, we obtain h(t0 + t)θ̃(t0 + t)→ 0 as t→∞. From

(24), i.e., α1Iq ≤ h(t0 + t) ≤ α2Iq for some α1 > 0 and α2 > 0, we obtain θ̃(t0 + t)→ 0, implying

θ̃(t)→ 0 [36].
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The matching condition in terms of the equality constraint on the Lyapunov matrix (i.e.,

BTPC⊥ = 0 where CC⊥ = 0) required in several previous works (e.g. [4, 13, 16, 36]) is not

necessary anymore in the proposed scheme, neutralizing the conservative SPR condition on the

design Lyapunov matrix P [11, 31].

The proof of the proposed design is presented in a recent contribution of the authors [21].

However, because of the few changes brought into the LMI (23) compared to the equivalent form

shown in Proposition 1 of [21], we present here the detailed proof of such a result. The discussion

of the parameter estimate convergence based on the PE condition is more exhaustively analyzed

in the proof shown above. The observer gain synthesis of the nonlinear ASAO introduced in this

section is slightly different from the one discussed in previous works, e.g. [19, 20, 31]. In fact,

the transformation of the quadratic amount into separated terms of PB and BTP in the LMI (23)

(refer to the proof of Proposition 1 for more details) is relaxing the LMI condition w.r.t. the Lipschitz

constant (in terms of feasible magnitude limit on δ), as compared to the decomposition used in many

of the previous works [4, 20, 21] where the Lipschitz constant is more restrictive. It has been tested

that the maximum value of δ for which the LMI (23) holds is much higher than the one obtained

with the LMI syntheis of the Proposition 1 of [21]. Moreover, we notice that (30) (which leads to

(23)) holds for some 0 < δ ≤ βu + β0β. In practice, this coefficient can be obtained directly from

‖f̃u + f̃ θ‖ ≤ δ‖x̃‖, replacing the combined assumptions A3 and A4, to relax the LMI explicitly

depending on δ. In fact, large values of δ may result in high gains L or even infeasible LMIs.

Actually, δ is chosen as small as possible under the constraint ‖f̃u + f̃ θ‖ ≤ δ‖x̃‖. Various scenarios

can be investigated to overcome the possible large values of δ if the solution of the decision variables

for the LMI (23) vanishes. In [19], we have designed the observer gains for particular second order

nonlinear systems using an analytical solution based on the negativeness of the unmeasurable state-

dependent matching function. This property has allowed the existence of a solution for the nonlinear

adaptive observer in form (19)–(22), where the LMI synthesis has been reduced to simply placing

the closed-loop poles of the linear part (A− LC), whereas the nonlinear matching term has been

treated using a further designed gain (refer to [19]). In a more general context, less conservative
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Lipschitz conditions have been proposed in [46]. These new conditions defined here as

∥∥fu(x, u)− fu(x̂, u)
∥∥ ≤

∥∥Fu · (x− x̂)
∥∥ (36)

and
∥∥f(x, u)− f(x̂, u)

∥∥ ≤
∥∥F · (x− x̂)

∥∥ (37)

for some sparely populated matrices Fu and F [46], can be used to make
∥∥Fu · (x− x̂)

∥∥ (resp.
∥∥F · (x− x̂)

∥∥) much smaller than βu‖x− x̂‖ (resp. β‖x− x̂‖), introduced earlier in (6) and (7) for

the same nonlinear functions, eventually. Moreover, from the LMI (23), not only do we need the

pair (A,C) to be observable, but also need its “distance to unobservability” to be large. In fact, it

could not be enough to place the eigenvalues of (A− LC) far into the left half-plane [41].

Moreover, from the LMI problem presented above (refer to Proposition 1), we can estimate the

“maximum” upper-bound values of δ for which the LMI (23) hold by solving these LMIs in P ,

(eventually R), W and minimizing ζ , 1
δ > 0. This strategy can validate the feasibility of the

LMI problem discussed above (and also those discussed in the following) and its limits in terms

of Lipschitz conditions.

The time-varying gain matrix G(t) of the adaptation dynamics (20) and (21) would be high

enough to achieve a better convergence rate of the parameter estimate. Thus, (22) requires the matrix

Q to be of large weighting values (e.g., any diagonal matrix with large coefficients).

Finally, we note that the term Ġ, introduced in (20), can be actually computed using the expression

of ˙̂x, introduced in (19), where all the terms are known, as

Ġ(t) = B
df

dt
(u, x̂)Q (38)

The terms dfij
dt (u, x̂), i = 1, . . . , p and j = 1, . . . , q, of the time-derivative of the regression matrix

f(x̂, u) are implemented using the continuously bounded and differentiable input u (refer to

assumption A5), x̂ and their derivatives u̇ and ˙̂x as

dfij
dt

(u, x̂) =
∂fij
∂x̂

(u, x̂) ˙̂x+
∂fij
∂u

(u, x̂)u̇ (39)

In the following section, we will overcome such extra computations of the time derivatives within

the design of the ESAO.
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4. ADAPTIVE OBSERVER WITH EXPONENTIAL STABILITY

In this section, we present the design of a nonlinear adaptive observer for the nonlinear dynamics.

The detailed proof of the exponential stability of the overall scheme is based on the Lyapunov theory.

We consider the model dynamics (1) and (2). We modify the previous adaptive observer scheme to

ensure the exponential convergence of both the state and parameter estimates. We use appropriate

change of variables and Lyapunov function candidates to extend the scenario introduced first in [35]

and subdue the weaknesses depicted therein.

We propose the following full-order nonlinear observer

˙̆x = Ax̂+ fm(u, y) +B
[
fu(x̂, u)− ΛΓ(t)θ̂

]
+ L

(
y − Cx̂

)
(40)

x̂ = x̆+BΓ(t)θ̂ (41)

where Γ(t) ∈ Rp×q is defined as

Γ̇ = ΛΓ + f(x̂, u) (42)

with Λ ∈ Rp×p any Hurwitz matrix, coupled with the adaptation law

˙̆
θ =

[
G(t)TP

(
Φ + ΨCL

)
− Ġ(t)TPΨ

]
·
(
y − Cx̂

)
(43)

θ̂ = θ̆ +G(t)TPΨ ·
(
y − Cx̂

)
(44)

where P = PT > 0 is a matrix ofRn×n, L, Φ and Ψ matrices ofRn×m, andG(t) ∈ Rn×q is defined

by

G(t) = P−1ΥB̃Γ(t)Q (45)

with Υ = ΥT > 0 in Rn×n, Q = QT > 0 in Rq×q and B̃ =
(
ΦC + ΨCA

)
B. Finally, Ġ(t) denotes

the total time derivative of G.

Proposition 2 (LMI-based ESAO Design – Form 1)

Under assumptions A1, A2.s, A3–A5, if there exist matrices P = PT > 0, Υ = ΥT > 0 in Rn×n,
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W ∈ Rn×m, s.t.



T (P,W ) SΛ(P,W,Υ) PB In 0

STΛ (P,W,Υ) −2B̃TΥB̃ 0 0 BT

BTP 0 − 1
2δ Ip 0 0

In 0 0 − 1
δ In 0

0 B 0 0 − 1
δ In




< 0 (46)

with T (P,W ) = PA+ATP −WC − CTWT , SΛ(P,W,Υ) = PAB −WCB − PBΛ−
(
ΦC +

ΨCA
)T

ΥB̃, Φ and Ψ in Rn×m, Λ ∈ Rp×p any Hurwitz matrix, δ = βu + β0β > 0, and if Γ is PE,

that is, there exist positive scalars α0 and t0, s.t. ∀t [17, 36, 47]

α0t0Iq ≤
∫ t+t0

t

Γ(τ)TΓ(τ)dτ (47)

then the state estimation error vector x̃ and the parameter estimate error vector θ̃ of the

nonlinear adaptive observer (40)–(45), designed for the nonlinear system (1) and (2), tend to zero

exponentially as t→∞. The closed-loop observer gain matrix L is computed as L = P−1W .

Proof

Given x̃ = x− x̂ and noting that f̃u = fu − f̂u, we derive from (1), (2), (40)–(42) the state

estimation error dynamics

˙̃x =
(
A− LC

)
x̃+B

(
f̃u + fθ − f̂ θ̂ − Γ

˙̂
θ
)

(48)

Given θ̃ = θ − θ̂, we introduce the new variable vector χ , x̃−BΓθ̃, i.e., x̃ = χ+BΓθ̃. Denote by

B̄ ,
(
A− LC

)
B −BΛ and f̃ = f − f̂ , and notice from A3 that ˙̂

θ = − ˙̃
θ. By using (42) and (48),

we derive

χ̇ = ˙̃x−BΓ̇θ̃ −BΓ
˙̃
θ

=
(
A− LC

)
χ+B

(
f̃u + f̃ θ

)
+ B̄Γθ̃ (49)

From the parameter estimate dynamics (43) and (44), we use (3) and (48) to obtain

˙̂
θ =

˙̆
θ + Ġ(t)TPΨCx̃+G(t)TPΨC ˙̃x

= G(t)TP ·
(
ΦC + ΨCA

)
x̃ (50)
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Based on ˙̃
θ = − ˙̂

θ, using x̃ = χ+BΓθ̃ and B̃ =
(
ΦC + ΨCA

)
B, and applying A2.s, we substitute

(45) into (50)

˙̃
θ = −QΓT B̃TΥB̃Γθ̃ −QΓT B̃TΥ

(
ΦC + ΨCA

)
χ (51)

Now, consider the Lyapunov candidate function

Ve(t) = χTPχ+ θ̃TQ−1θ̃ (52)

We have

k1 ·
(
‖χ‖2 + ‖θ̃‖2

)
≤ Ve(t) ≤ k2 ·

(
‖χ‖2 + ‖θ̃‖2

)
(53)

with k1 , min
(
λ(P ), λ(Q−1)

)
> 0 and k2 , max

(
λ(P ), λ(Q−1)

)
> 0. Using (49) and (51), the

time derivative of (52) is

V̇e(t) = 2χTPχ̇+ 2θ̃TQ−1 ˙̃
θ

= χT
[
P
(
A− LC

)
+
(
A− LC

)T
P
]
χ+ 2χTPB

(
f̃u + f̃ θ

)
+ 2χTPB̄Γθ̃ −

2θ̃TΓT B̃TΥB̃Γθ̃ − 2θ̃TΓT B̃TΥ
(
ΦC + ΨCA

)
χ (54)

Noting δ = βu + β0β, based on the inequalities (5)–(7), and substituting x̃ = χ+BΓθ̃, we have

2χTPB
(
f̃u + f̃ θ

)
≤ 2

∥∥χTPB
∥∥ ·
(
‖f̃u‖+ ‖f̃‖ · ‖θ‖

)

≤ 2δ
∥∥χTPB

∥∥ · ‖x̃‖

≤ δ
(
2χTPBBTPχ+ χTχ+ θ̃TΓTBTBΓθ̃

)
(55)

Using W = PL, we deduce from (54) and (55)

V̇e(t) ≤ χT
(
PA+ATP −WC − CTWT

)
χ+ 2δχTPBBTPχ+ δχTχ+ δθ̃TΓTBTBΓθ̃ +

2χTPB̄Γθ̃ − 2θ̃TΓT B̃TΥ
(
ΦC + ΨCA

)
χ− 2θ̃TΓT B̃TΥB̃Γθ̃ (56)

Recall B̄ ,
(
A− LC

)
B −BΛ. Noting T (P,W ) = PA+ATP −WC − CTWT and

SΛ(P,W,Υ) = PAB −WCB − PBΛ−
(
ΦC + ΨCA

)T
ΥB̃, if the inequality



T (P,W ) + 2δPBBTP + δIn SΛ(P,W,Υ)

STΛ (P,W,Υ) δBTB − 2B̃TΥB̃


 < 0 (57)
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holds, then the right member of the inequality (56) is negative. Given any Hurwitz matrix Λ and the

matrices Φ and Ψ respecting A2.s, using the Schur complement [44], the LMI (46) is equivalent to

(57), and, there exists a positive scalar ε s.t.

V̇e(t) ≤ −εχTχ− εθ̃TΓTΓθ̃ (58)

Then, χ ∈ L2, χ ∈ L∞ and θ̃ ∈ L∞, that is Ve(t) ∈ L∞ [9]. Moreover, we have χ→ 0, as t→∞.

In particular, from (58), we have V̇e(t) ≤ −εχTχ, then we obtain

Ve(t) ≤ Ve(0)− ε
∫ t

0

χTχdτ (59)

Noting Ve(t) ∈ L∞, Ve(0) is finite and χ ∈ L2, from (49) we obtain χ̇ ∈ L∞. Because χ→ 0 as t→

∞, we have
∫∞

0
χ̇dt = χ(∞)− χ(0) = −χ(0) bounded. By (49), using the Lipschitz continuity of

fu and f (refer to assumption A4), χ̇ is uniformly continuous [36]. Thus, using Barbalat’s lemma,

we obtain χ̇→ 0 [9], and then, f̃ ∈ L∞ (resp. f̂ ∈ L∞), as f is bounded. In addition, given Λ a

finite Hurwitz matrix of (42), we obtain Γ ∈ L∞, i.e., Γ is finite. Alternatively, the boundedness of

Γ can be obtained from (49) using Micaelli and Samson Lemma [48].

Now, let us introduce the following lemma that will be used in the sequel.

Lemma 1

Assume that Γ(t) is PE, that is ∃α0 > 0 and t0 > 0 s.t. (47) holds [17, 36, 47]. Then, there exists

0 < ε0 <
k2

ε
s.t.

∫ t+t0

t

(
χTχ+ θ̃TΓTΓθ̃

)
dτ ≥ ε0 ·

(
χ(t)Tχ(t) + θ̃(t)T θ̃(t)

)
(60)

Proof

See Appendix A.

We integrate (58) between t and t+ t0 and we use (60) to obtain

Ve(t+ t0)− Ve(t) ≤ −ε
∫ t+t0

t

(
χTχ+ θ̃TΓTΓθ̃

)
dτ

≤ −εε0 ·
(
χ(t)Tχ(t) + θ̃(t)T θ̃(t)

)
(61)
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Using (53), we write

Ve(t+ t0)− Ve(t) ≤ −
εε0
k2
Ve(t) (62)

Noting the fact that ε0 <
k2

ε
, we have obviously 0 <

εε0
k2

< 1. Thus, Ve(t+ t0) ≤
(
1− εε0

k2

)
Ve(t).

Hence, Ve(t)→ 0 as t→∞ exponentially fast, and χ→ 0 and θ̃ → 0 as t→∞ [9]. Finally, as

Γ ∈ L∞, we obtain x̃ = χ+BΓθ̃ → 0 exponentially as t→∞.

The state representation (40) and (41) with (42) is simply equivalent to

˙̂x = Ax̂+ fm(u, y) +B
[
fu(x̂, u) + f(x̂, u)θ̂

]
+ L(y − Cx̂) +BΓ(t)

˙̂
θ (63)

However, for the implementation purpose, we use (40) and (41) computed from known terms instead

of the combined form (63) which may induce an algebraic loop by the calculation of ˙̂
θ from (44).

The adaptation dynamics (43)–(45) of the proposed ESAO uses basically the same structure of

the ASAO scheme (compare the pair (20) and (21) v.s. (43) and (44)) to deal with the nonlinear

matching term in the state estimate dynamics and its connection with the adaptation error dynamics.

The parameters P , Υ and Q of the time-varying gain are introduced carefully in (45). In fact, the

term P−1Υ is used to eliminate the Lyapunov matrix P from the parameter estimate dynamics and

replace it by the positive definite matrix Υ. This parametrization would make the LMI design (46)

relaxed by the new decision variable Υ. In fact, if we replace (45) by G(t) = B̃Γ(t)Q simply, we

substitute the variable Υ for the matrix P in the LMI (46), which will reduce the feasibility range

of this LMI in the decision variables P and W compared to the same LMI in P , W and Υ. The

parameters of the positive definite matrix Q can be freely selected to adjust the parameter estimate

rates.

In (43), the term Ġ is much easier to compute analytically, from (42), than the one required for

the algorithm (20) of the ASAO discussed in the previous section, and is given by

Ġ(t) = P−1ΥB̃Γ̇(t)Q = P−1ΥB̃ΛΓQ+ P−1ΥB̃f(x̂, u)Q (64)

where all terms are well-known.

The PE condition of Γ(t), required in Proposition 2, depends on the estimated nonlinearity f(x̂, u)

(equivalently, f(x, u) required to be PE a priori), and therefore depends on the input signal u. Thus,
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a sufficiently rich input signal guarantees the PE condition that is typically required for parameter

estimation problems.

The techniques proposed in this paper are roughly built around the same observer and adaptation

dynamics discussed in [18,31], and are also based on the LMI frameworks, to determine the observer

and adaptation gain matrices, independently of the additional equality and Hurwitz constraints

applied to the remaining variables (i.e., Φ, Ψ and Λ). Compared to [31], the scheme introduced

above shows a difference corresponding to the use of the extra coupling dynamics (42) adding a

mutual link between the observer dynamics and the adaptation law matching with the Lyapunov

function. Inspired from ideas dealing with the exponential stability (see e.g. [22, 23] and references

cited therein), this coupling represents the key-element of the exponential stability of both the

state and parameter estimates. The ESAO design proposed in this paper extends the algorithm

introduced in [35] treating the more general case where B̄ , (A− LC)B −BΛ 6= 0. The main

difference between the two cases can be depicted by the reduction of the term SΛ(P,W,Υ) =

PAB −WCB − PBΛ−
(
ΦC + ΨCA

)T
ΥB̃ from (46). In addition, the computation of the term

(
ΦC + ΨCA

)
is relaxed from [35] (refer to assumptions A2 v.s. A2.s). Literally, if CB = 0, then

SΛ(P,W,Υ) is explicitly independent of W and L.

Basically, the condition Λ Hurwitz [9] makes the coupling matrix dynamics (42) stable. In the

LMI (46), this matrix is selected a priori, eliminating the nonlinear term PBΛ, then leading to a

sensitive trial-by-error procedure. Nonetheless, it is still possible to include the Hurwitz matrix Λ in

the set of decision variables. Denoting by R = PBΛ a new variable where B is full-column rank,

the computation of the Hurwitz matrix Λ can be obtained from the following LMI problem.

Corollary 1 to Proposition 2 (LMI-based ESAO Design – Form 2)

Under assumptions A1, A2.s, A3–A5, if there exist matrices P = PT > 0, Υ = ΥT > 0 in Rn×n,
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R ∈ Rn×p and W ∈ Rn×m, s.t.



T (P,W ) S(P,R,W,Υ) PB In 0

ST (P,R,W,Υ) −2B̃TΥB̃ 0 0 BT

BTP 0 − 1
2δ Ip 0 0

In 0 0 − 1
δ In 0

0 B 0 0 − 1
δ In




< 0 (65)

and

BTR+RTB < 0 (66)

with B̃ =
(
ΦC + ΨCA

)
B, T (P,W ) = PA+ATP −WC − CTWT , S(P,R,W,Υ) = PAB −

WCB −R−
(
ΦC + ΨCA

)T
ΥB̃, Φ and Ψ in Rn×m, δ = βu + β0β > 0, and if Γ is PE, then the

state estimation error vector x̃ and the parameter estimate error vector θ̃ of the nonlinear adaptive

observer (40)–(45), designed for the nonlinear system (1) and (2), tend to zero exponentially as

t→∞. The closed-loop observer gain matrix L is computed as L = P−1W and the Hurwitz

matrix Λ =
(
BTPB

)−1
BTR ∈ Rp×p exists for any full-column rank matrix B and P = PT > 0.

Q = QT > 0 is selected freely in Rq×q.

Proof

It is similar to Proposition 2. Noting that the matrix B is of full-column rank, we denote by

R = PBΛ the additional decision variable.

Definitely, the term STΛ (P,W,Υ) in (46) which is nonlinear in the unknown matrix Λ is now

replaced by the term S(P,R,W,Υ) linear in the new decision variables. The LMI (66) represents a

conservative condition that is proposed to guarantee the convexity of the LMI problem by seeking a

common Lypunov matrix P for the LMI (65) and the Hurwitz condition (66) simultaneously. In fact,

we note that seeking a single Lyapunov matrix to investigate multiple constraints has been widely

used in scientific literature (see [49] and references cited therein).

Alternatively, if CB 6= 0, we denote by R = BTPBΛ the new variable. Then, we can set up the

following result:
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Corollary 2 to Proposition 2 (LMI-based ESAO Design – Form 3)

Under assumptions A1, A2.s, A3–A5, if there exist matrices P = PT > 0, Υ = ΥT > 0 in Rn×n,

R ∈ Rp×p and W ∈ Rn×m, s.t.



BTT (P,W )B S(P,R,W,Υ) BTPB BT 0

ST (P,R,W,Υ) −2B̃TΥB̃ 0 0 BT

BTPB 0 − 1
2δ Ip 0 0

B 0 0 − 1
δ In 0

0 B 0 0 − 1
δ In




< 0 (67)

and

R+RT < 0 (68)

with B̃ =
(
ΦC + ΨCA

)
B, T (P,W ) = PA+ATP −WC − CTWT , S(P,R,W,Υ) =

BTPAB −BTWCB −R− B̃TΥB̃, Φ and Ψ in Rn×m, δ = βu + β0β > 0, and if Γ is PE,

then the state estimation error vector x̃ and the parameter estimate error vector θ̃ of the

nonlinear adaptive observer (40)–(45), designed for the nonlinear system (1) and (2), tend to zero

exponentially as t→∞. The closed-loop observer gain matrix L is computed as L = P−1W

and the Hurwitz matrix Λ =
(
BTPB

)−1
R ∈ Rp×p exists for any full-column rank matrix B and

P = PT > 0. Q = QT > 0 can be freely in Rq×q.

Proof

It is similar to Proposition 2. In addition, noting that the matrixB is of full-column rank and denoting

by R = BTPBΛ, we substitute the nonlinear inequality (46), in Λ, P and W , by the new form (67)

obtained from the pre-multiplication and post-multiplication of (46) by the block-diagonal matrices

diag(BT , Ip, Ip, In, In) and diag(B, Ip, Ip, In, In), respectively.

5. ILLUSTRATIVE EXAMPLE

In this section, we present the example that motivates the techniques discussed in this paper. We

consider a two-degree-of-freedom helicopter simulator model actuated with two propellers [50].
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The front propeller controls the elevation of the helicopter nose about the pitch axis and the back

propeller controls the side to side motions of the helicopter about the yaw axis. We define [50]

(
Jp +ml2

)
φ̈ = Kppup +Kpyuy −Bpφ̇−mgl · cosφ−ml2 sinφ cosφ · ψ̇2 (69)

and

(
Jy +ml2 cos2 φ

)
ψ̈ = Kypup +Kyyuy −Byψ̇ + 2ml2 sinφ cosφ · φ̇ψ̇ (70)

where up and uy are the applied forces, φ the pitch angle position, ψ the yaw angle position, φ̇

and ψ̇ the pitch and yaw angular velocities. Bp (resp. By) is the viscous damping about pitch

(resp. yaw) axis, Jp (resp. Jy) the moment of inertia about pitch (resp. yaw) pivot, Kpp (resp.

Kpy) the thrust torque constant acting on pitch axis from pitch (resp. yaw) motor/propeller, Kyy

(resp. Kyp) the thrust torque constant acting on yaw axis from yaw (resp. pitch) motor/propeller, l

the center-of-mass length along the helicopter body from pitch axis, m the mass of the helicopter

and g the gravitational acceleration. We assume that only the pitch and yaw angles are measured.

Let x1 = φ, x2 = ψ, x3 = φ̇ and x4 = ψ̇ be the states, u =

[
Vm,p Vm,y

]T
the input vector and

y =

[
x1 x2

]T
the output vector.

To deal with the nonlinear parametrization depicted in (70) when we tend to write

the corresponding state representation, an approximation technique resulting in uncertain

bounded terms is used to develop the modeling scheme. Denote a =
1

Jy +ml2
. Noting that

ml2a2 sin2 φ� 1, we apply the Taylor series decomposition to the nonlinear parameter dependent

term
1

Jy +ml2 cos2 φ
as

1

Jy +ml2 cos2 φ
=

a

1−ml2a sin2 φ
= a+O(sin2 φ) where O(sin2 φ) ,

ml2a2 sin2 φ+m2l4a3 sin4 φ+m3l6a4 sin6 φ+ . . . is very small. We use this approximation to

linearize the yaw dynamics (70) w.r.t. its independent parameters. We can also use a second order

extended form of the approximation instead of the reduced approximation (limited to the constant

a =
1

Jy +ml2
) for the sake of accuracy. The plant (69) and (70) can be considered as nonlinear

dynamics (1)–(2) subject to assumptions A1–A5 (and A2.s), where x ∈ R4 is the state vector,

u ∈ R2 the input vector, y ∈ R2 the output and θ ∈ R9 vector of unknown constant parameters.

From (69) and (70), the components of the unknown parameter vector are θ1 =
Kpp

Jp +ml2
, θ2 =
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Kpy

Jp +ml2
, θ3 =

Bp
Jp +ml2

, θ4 =
mgl

Jp +ml2
, θ5 =

ml2

Jp +ml2
, θ6 = aKyp, θ7 = aKyy, θ8 = aBy and

θ9 = aml2, respectively. The matrices A, B and C are given by:

A =




0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0




, B =




0 0

0 0

1 0

0 1




, C =




1 0 0 0

0 1 0 0


 (71)

fm(y, u) = 0, fu(x, u) = 0 and f(x, u) ∈ R2×13 can be easily depicted from (69)–(70), according

to the parameter vector θ defined above. Note that the matrices A, B and C respect in particular

the equality conditions (3) and (4) of assumption A2, as well as assumption A2.s. We assume that

all the input and state signals are bounded. The values of the actual parameters characterizing the

simulated helicopter-based dynamics are determined in [50]. Moreover, the terms sinφ cosφ · ψ̇2,

sinφ cosφ · φ̇ψ̇, shown in (69) and (70) respectively, are not globally Lipschitz functions in the state

variables (any function, which is not globally Lipschitz, can be referred to as a weak Lipschitz

function if it is bounded). Nevertheless, we consider the terms depicted above as Lipschitz since

in practice they are bounded (based on the boundedness of the states). The matrices Φ and Ψ are

simply computed from the matrix equality (4) as

Φ =




1 0

0 1

0 0

0 0




, Ψ =




0 0

0 0

1 0

0 1




(72)

The computation of the ASAO gains L and P is based on the LMI design of the asymptotic stability

(refer to Proposition 1). Meanwhile, the observer gains L, P , Υ and Λ of the ESAO scheme are

computed based on the exponential stability (refer to Corollary 2 to Proposition 2, i.e., ESAO –
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Form 2). The observer and adaptation law parameters of the ASAO (19)–(22) are

P =




4471.1 0 −25.6 0

0 4471.1 0 −25.6

−25.6 0 1.2 0

0 −25.6 0 1.2




, L =




23.9 0

0 23.9

3984.2 0

0 3984.2




(73)

The observer and adaptation law parameters of the ESAO (40)–(45) are therefore selected as

P =




6595.9 0 −20.6 0

0 6595.9 0 −20.6

−20.6 0 0.8 0

0 −20.6 0 0.8




, L =




28.4 0

0 28.4

8776.3 0

0 8776.3




(74)

Λ =



−4395.6 0

0 −4395.6


 , Υ =




6061.6 0 0 0

0 6061.6 0 0

0 0 3425.9 0

0 0 0 3425.9




(75)

and

Q = diag(20, 20, 20, 20, 400, 20, 400, 2000, 200) (76)

for both ASAO and ESAO schemes. The computation of the observer gains, in both cases, are

cast as LMI problems which can easily be solved by using the interior point optimization method

implemented in the MATLAB software using the LMI control toolbox [51]. While the selection of

the adaptation matrix Q, which is significant for the algorithms proposed in this paper regarding the

parameter estimation performance (rate and accuracy), is freely adjusted, it is reduced to a positive

diagonal matrix (more simply, can be any positive scalar multiplying the identity matrix). In fact,

the parametrization and the implementation of the proposed algorithms remain moderately easier

(less laborious) than many other algorithms for the similar adaptive observer problems (see e.g.

[11, 16, 17, 28, 30, 52]).

Consider the input signals u1 = 3.4 + 2.7 sin(4.3πt) + 4.0 sin(3.0πt+ 0.4π) + 3.7 sin(2.0πt+

0.4π) + 3.2 sin(0.4πt) + 1.9 sin(0.3πt) and u2 = 1.0 + 3.1 sin(5.1πt− 0.25π) + 2.7 sin(3.1πt−
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0.5π) + 2.5 sin(1.7πt+ 0.4π) + 3.3 sin(πt+ 0.5π) + 2.3 sin(0.6πt+ 0.5π) which result in suffi-

ciently PE signals. The simulation results for the estimation of the parameters and states are shown

in Fig. 1–6. It can be seen that both the state and the parameter estimates converge to their actual

values accurately. However, the transient responses of the ESAO design are more satisfactory than

those of the ASAO (see Fig. 1–5). The estimation errors of the states are demonstrated within

a very short time (see Fig. 6). Indeed, their convergences are much faster than the parameter

estimate. We notice that we use the ASAO and ESAO schemes by considering the effect of the

uncertainty approximations negligible. It should be pointed out that the effect of the approximation

uncertainty due to the nonlinear parameter dependency within the yaw dynamics is well rejected

and cannot be distinguished in the different estimation graphics shown. However, to deal with

any external perturbation or any modeling uncertainty, given by d(x, t) added to the system

dynamics, the different adaptive observers discussed above can be extended to robust ASAO and

ESAO designs based on any H∞ minimization of the loop transfer from the lumped uncertainty

amount d(x, t) to the estimate errors (for instance, x̃). In addition, such multi-objective designs

can be investigated under further LMI constraints encountering specific transient performances and

robustness properties.

Figure 1. Estimate of parameters θ1 and θ2
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Figure 2. Estimate of parameters θ3 and θ4

Figure 3. Estimate of parameters θ5 and θ6

6. CONCLUSIONS

In this paper, we propose the design of adaptive observers with asymptotic and exponential

parameter estimation convergence for a general nonlinear system with unmeasured regressor matrix

based on common Lipschitz and boundedness requirements. An example of a multi-input-multi-

output dynamics is tested through simulation results that successfully demonstrate the effectiveness

of the proposed algorithms which exhibit a satisfactory convergence of both the states and the
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Figure 4. Estimate of parameters θ7 and θ8

Figure 5. Estimate of parameter θ9

parameters to the actual values. These results show an adequate comparison between the ASAO

and ESAO performances.
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APPENDIX A – PROOF OF LEMMA 1

We recall the following inequality

(x+ y)2 ≥ 1

2
x2 − y2 (A-1)

First, using the inequality (A-1), we write, for τ > 0 and t > 0

θ̃(τ)TΓ(τ)TΓ(τ)θ̃(τ) =
[
θ̃(t) +

(
θ̃(τ)− θ̃(t)

)]T
Γ(τ)TΓ(τ)

[
θ̃(t) +

(
θ̃(τ)− θ̃(t)

)]

≥ 1

2

(
Γ(τ)θ̃(t)

)T (
Γ(τ)θ̃(t)

)
−
(
θ̃(τ)− θ̃(t)

)T
Γ(τ)T

Γ(τ)
(
θ̃(τ)− θ̃(t)

)
(A-2)

From (47), we have, for t > 0 and t0 > 0

1

2

∫ t+t0

t

(
Γ(τ)θ̃(t)

)T (
Γ(τ)θ̃(t)

)
dτ =

1

2

∫ t+t0

t

θ̃(t)TΓ(τ)TΓ(τ)θ̃(t)dτ

=
1

2
θ̃(t)T

∫ t+t0

t

Γ(τ)TΓ(τ)dτ θ̃(t)

≥ α0t0
2

θ̃(t)T θ̃(t) (A-3)

Now, we note that

θ̃(τ)− θ̃(t) =

∫ τ

t

˙̃
θ(s)ds (A-4)
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Using the Schwartz inequality [45], we have

∫ t+t0

t

(
θ̃(τ)− θ̃(t)

)T
Γ(τ)TΓ(τ)

(
θ̃(τ)− θ̃(t)

)
dτ =

∫ t+t0

t

[ ∫ τ

t

˙̃
θ(s)ds

]T
Γ(τ)TΓ(τ)

[ ∫ τ

t

˙̃
θ(s)ds

]
dτ

≤
∫ t+t0

t

[ ∫ τ

t

Γ(τ)
˙̃
θ(s)ds

]T [ ∫ τ

t

Γ(τ)
˙̃
θ(s)ds

]
dτ

≤
∫ t+t0

t

∫ τ

t

‖Γ(τ)‖2ds ·
∫ τ

t

‖ ˙̃
θ(s)‖2dsdτ (A-5)

Since Γ ∈ L∞, i.e., ρ2 = supτ≥0 ‖Γ(τ)‖ is a finite constant, we have

∫ t+t0

t

(
θ̃(τ)− θ̃(t)

)T
Γ(τ)TΓ(τ)

(
θ̃(τ)− θ̃(t)

)
dτ ≤

∫ t+t0

t

(τ − t)ρ2
2 ·
∫ τ

t

‖ ˙̃
θ(s)‖2dsdτ (A-6)

Then, using the integration by parts, we obtain

∫ t+t0

t

(
θ̃(τ)− θ̃(t)

)T
Γ(τ)TΓ(τ)

(
θ̃(τ)− θ̃(t)

)
dτ ≤ρ2

2

∫ t+t0

t

‖ ˙̃
θ(τ)‖2 ·

∫ t+t0

τ

(s− t)dsdτ

≤ρ2
2

∫ t+t0

t

‖ ˙̃
θ(τ)‖2 ·

( t20
2
− (τ − t)2

2

)
dτ

≤ρ2
2

t20
2

∫ t+t0

t

‖ ˙̃
θ(τ)‖2dτ

≤ρ2
2

t20
2

∫ t+t0

t

‖G(τ)TP‖2‖x̃‖2dτ (A-7)

From (45), we note that G ∈ L∞, i.e., ρ3 = supτ≥0 ‖G(τ)TP‖ is a finite positive constant. Then,

using x̃ = χ+BΓθ̃, we have

∫ t+t0

t

(
θ̃(τ)− θ̃(t)

)T
Γ(τ)TΓ(τ)

(
θ̃(τ)− θ̃(t)

)
dτ ≤ ρ2

2ρ
2
3

t20
2

∫ t+t0

t

(
‖χ‖2 + ‖BΓθ̃‖2

)
dτ (A-8)

Now, using ‖BΓθ̃‖ ≤ ρ4‖Γθ̃‖ with ρ4 = ‖B‖ > 0, we obtain from (A-8)

∫ t+t0

t

(
θ̃(τ)− θ̃(t)

)T
Γ(τ)TΓ(τ)

(
θ̃(τ)− θ̃(t)

)
dτ ≤ ρ2

2ρ
2
3

t20
2

∫ t+t0

t

(
‖χ‖2 + ρ2

4‖Γθ̃‖2
)
dτ (A-9)

Integrating (A-2) between t and t+ t0, and using (A-3) and (A-9), we have

∫ t+t0

t

θ̃TΓTΓθ̃dτ ≥ 1

2

∫ t+t0

t

(
Γ(τ)θ̃(t)

)T (
Γ(τ)θ̃(t)

)
dτ −

∫ t+t0

t

(
θ̃(τ)− θ̃(t)

)T
Γ(τ)TΓ(τ)

(
θ̃(τ)− θ̃(t)

)
dτ

≥ α0t0
2

θ̃(t)T θ̃(t)− ρ2
2ρ

2
3

t20
2

∫ t+t0

t

(
‖χ‖2 + ρ2

4‖Γθ̃‖2
)
dτ (A-10)

Thus, we have

η2

∫ t+t0

t

χTχdτ + η3

∫ t+t0

t

θ̃TΓTΓθ̃dτ ≥ α0t0
2

θ̃(t)T θ̃(t) (A-11)
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with η2 = ρ2
2ρ

2
3

t20
2

and η3 = 1 + ρ2
2ρ

2
3ρ

2
4

t20
2

.

Second, using the inequality (A-1), we write, for τ > 0 and t > 0

χT (τ)χ(τ) =
[
χ(t) +

(
χ(τ)− χ(t)

)]T [
χ(t) +

(
χ(τ)− χ(t)

)]

≥ 1

2
χ(t)Tχ(t)−

(
χ(τ)− χ(t)

)T (
χ(τ)− χ(t)

)
(A-12)

Noting that

χ(τ)− χ(t) =

∫ τ

t

χ̇(s)ds (A-13)

and using the Schwartz inequality [45], we obtain

∫ t+t0

t

(
χ(τ)− χ(t)

)T (
χ(τ)− χ(t)

)
dτ =

∫ t+t0

t

[ ∫ τ

t

χ̇(s)ds
]T [ ∫ τ

t

χ̇(s)ds
]
dτ

≤
∫ t+t0

t

‖
∫ τ

t

χ̇(s)ds‖2dτ

≤
∫ t+t0

t

(∫ τ

t

ds
)(∫ τ

t

‖χ̇(s)‖2ds
)
dτ

≤
∫ t+t0

t

(
τ − t

)(∫ τ

t

‖χ̇(s)‖2ds
)
dτ (A-14)

Then, using the integration by parts, we obtain

∫ t+t0

t

(
χ(τ)− χ(t)

)T (
χ(τ)− χ(t)

)
dτ ≤

∫ t+t0

t

‖χ̇(τ)‖2 ·
(∫ t+t0

τ

(s− t)ds
)
dτ

≤
∫ t+t0

t

‖χ̇(τ)‖2 ·
( t20

2
− (τ − t)2

2

)
dτ

≤ t20
2

∫ t+t0

t

‖χ̇(τ)‖2dτ (A-15)

From (49), using (5)–(7), we have

‖χ̇‖2 ≤ ‖A− LC‖2‖χ‖2 + ‖B‖2
(
‖f̃u‖2 + ‖f̃‖2‖θ‖2

)
‖x̃‖2 + ‖B̄‖2‖Γθ̃‖2

≤ ‖A− LC‖2‖χ‖2 + ρ2
4

(
β2
u + β2β2

0

)(
‖χ‖2 + ‖B‖2‖Γθ̃‖2

)
+ ‖B̄‖2‖Γθ̃‖2

≤
(
ρ2

4

(
β2
u + β2β2

0

)
+ ρ2

5

)
‖χ‖2 +

(
ρ4

4

(
β2
u + β2β2

0

)
+ ρ2

6

)
‖Γθ̃‖2 (A-16)

with ρ5 = ‖A− LC‖ and ρ6 = ‖B̄‖. Then,

∫ t+t0

t

(
χ(τ)− χ(t)

)T (
χ(τ)− χ(t)

)
dτ ≤

(
ρ2

4

(
β2
u + β2β2

0

)
+ ρ2

5

) t20
2

∫ t+t0

t

‖χ‖2dτ +

(
ρ4

4

(
β2
u + β2β2

0

)
+ ρ2

6

) t20
2

∫ t+t0

t

‖Γθ̃‖2dτ (A-17)
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Integrating (A-12) between t and t+ t0, and using (A-15) and (A-17), we obtain

∫ t+t0

t

χT (τ)χ(τ)dτ ≥ t0
2
χ(t)Tχ(t)−

(
ρ2

4

(
β2
u + β2β2

0

)
+ ρ2

5

) t20
2

∫ t+t0

t

χTχdτ −
(
ρ4

4

(
β2
u + β2β2

0

)
+ ρ2

6

) t20
2

∫ t+t0

t

‖Γθ̃‖2dτ (A-18)

Thus, we have

η4

∫ t+t0

t

χT (τ)χ(τ)dτ + η5

∫ t+t0

t

θ̃TΓTΓθ̃dτ ≥ t0
2
χ(t)Tχ(t) (A-19)

with η4 = 1 + ρ2
4

(
β2
u + β2β2

0

) t20
2

+ ρ2
5

t20
2

and η5 =
(
ρ4

4

(
β2
u + β2β2

0

)
+ ρ2

6

) t20
2

Now, combine (A-11) and (A-19)

(
η2 + η4

) ∫ t+t0

t

χTχdτ +
(
η3 + η5

) ∫ t+t0

t

θ̃TΓTΓθ̃dτ ≥ t0
2
χ(t)Tχ(t) +

α0t0
2

θ̃(t)T θ̃(t) (A-20)

Then, given η̄ = max
(
η2 + η4, η3 + η5

)
, we have

∫ t+t0

t

χTχdτ +

∫ t+t0

t

θ̃TΓTΓθ̃dτ ≥ t0
2η̄
χ(t)Tχ(t) +

α0t0
2η̄

θ̃(t)T θ̃(t)

≥ ε0
(
χ(t)Tχ(t) + θ̃(t)T θ̃(t)

)
(A-21)

with ε0 = min
( t0

2η̄
,
t0α0

2η̄

)
> 0. Moreover, ε0 can be selected as ε0 < min

( t0
2η̄
,
t0α0

2η̄
,
k2

ε

)
where k2

and ε are introduced in (53) and (34), respectively.
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