
OPTIMIZING TRAINING

ARCHITECTURES FOR A

HIGH-DIMENSIONAL, MULTI-AGENT

SYSTEM IN MISSILE DEFENCE

A Thesis Submitted to the Division of Graduate Studies
of the Royal Military College of Canada

by

Callaghan Wilmott

In Partial Fulfillment of the Requirements for the Degree of
Master of Science in Computer Science

July, 2023

© This thesis may be used within the Department of National Defence
but copyright for open publication remains the property of the author.

Acknowledgments

I extend my sincere gratitude to everyone who has supported my thesis jour-
ney. I’m deeply appreciative of my supervisor, Dr. Francois Rivest, for his
unwavering guidance and substantial impact on my academic growth.

My heartfelt thanks go to my thesis committee for their insightful input
and constructive criticism which greatly improved this work. I also wish to
acknowledge my lab colleagues for their cooperation, with a special mention to
Karla Gonzalez for her indispensable contribution to the missile environment
simulator, and Masih Hashemi for his meticulous code reviews.

I am thankful to my family and friends for their steadfast support and
encouragement throughout this journey. Lastly, I recognize the broader aca-
demic community whose dedication to knowledge advancement made my re-
search possible. Thank you all for your invaluable roles in my academic jour-
ney.

ii

Abstract

This study is focused on identifying an effective state representation, neural
network architecture, and multi-agent training paradigm for high-dimensional
missile defence scenarios. We follow a progressive approach, beginning with
simpler environments and problem structures, then extending our findings to
more complex settings. Initially, we analyze the impact of state representa-
tions on agent learning in the MountainCar environment. We demonstrate
that higher resolution representations, such as the Radial Basis Function
(RBF) transformation paired with convolutional deep learning architectures,
enhance agent performance. Furthermore, we provide evidence that even lower
resolution representations with higher noise can be trained effectively when
a higher resolution representation is used as input to the critic network. We
then broaden our exploration to a multi-agent particle environment, where
we investigate the relative merits of centralized and decentralized execution
paradigms, finding the decentralized paradigm to consistently outperform the
centralized one. Lastly, we introduce the custom missile defence environment,
where we apply lessons learned and perform ablation studies to validate the
generalizability of our findings. We compare the performance of our trained
agents with hard-coded baseline agents, effectively demonstrating the success
of our progressively complex approach in the domain of Deep Reinforcement
Learning (DRL) methods for missile defence scenarios.

iii

Résumé

Cette étude se concentre sur l’identification d’une représentation efficace des
états, d’une architecture de réseau neuronal et d’un paradigme de formation
multi-agents pour des scénarios de défense antimissile de grande dimension.
Nous suivons une approche progressive, commençant par des environnements
et des structures de problèmes plus simples, puis étendant nos découvertes
à des contextes plus complexes. Dans un premier temps, nous analysons
l’impact des représentations d’état sur l’apprentissage des agents dans
l’environnement MountainCar. Nous démontrons que les représentations à
plus haute résolution, telles que la transformation par fonction a base radiale,
associées à des architectures d’apprentissage profond convolutif, améliorent
les performances des agents. De plus, nous démontrons que même des
représentations à plus faible résolution avec un bruit plus élevé peuvent être
entrâınées efficacement lorsqu’une représentation à plus haute résolution est
utilisée comme entrée dans le réseau critique. Nous élargissons ensuite notre
exploration à un environnement de particules multi-agents, où nous étudions
les mérites relatifs des paradigmes d’exécution centralisés et décentralisés,
trouvant que le paradigme décentralisé surpasse systématiquement le
paradigme centralisé. Enfin, nous introduisons l’environnement de défense
antimissile personnalisé, dans lequel nous appliquons les leçons apprises
et effectuons des études d’ablation pour valider la généralisabilité de nos
résultats. Nous comparons les performances de nos agents formés avec des
agents de base codés en dur, démontrant ainsi le succès de notre approche
de plus en plus complexe dans le domaine des méthodes d’apprentissage par
renforcement profond (DRL) pour les scénarios de défense antimissile.

iv

Contents

Acknowledgments ii

Abstract iii

Résumé iv

List of Tables vii

List of Figures xi

Acronyms xvi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Formulation . 2
1.3 Contribution . 3
1.4 Organization of Thesis . 4

2 Literature Review 6
2.1 Reinforcement Learning . 6
2.2 Deep Learning . 10

2.2.1 Neural Networks . 11
2.2.2 Activation Functions . 12
2.2.3 Loss Functions . 13

2.3 Deep Reinforcement Learning 15
2.4 Feature Representation . 20

2.4.1 State Encoding . 20
2.4.2 Representation Learning 22

2.5 Asymmetric Architectures . 23
2.6 Multi-Agent Reinforcement Learning 26

v

Contents

2.7 Conclusion . 30

3 Experimental Environments 32
3.1 Introduction . 32
3.2 Mountain Car Environment . 33

3.2.1 Problem Definition . 33
3.2.2 Method . 34
3.2.3 Results & Discussion . 48

3.3 Multi-agent Particle Environment 56
3.3.1 Problem Definition . 56
3.3.2 Method . 59
3.3.3 Results & Discussion . 65

3.4 Conclusion . 72

4 Missile Defence Environment 80
4.1 Introduction . 80
4.2 Related Work . 81
4.3 Environment Background & Baseline Policies 82

4.3.1 Environment Background 82
4.3.2 Baseline Policies . 84

4.4 Agent Representation & Architecture 87
4.4.1 Observation Representation 87
4.4.2 Action Representation 92
4.4.3 Neural Network Architecture 97

4.5 Experiments & Results . 101
4.5.1 Experiment Background 101
4.5.2 Results & Discussion . 102

4.6 Conclusion . 107

5 Summary and Conclusions 109
5.1 Summary . 109
5.2 Limitations and Future Work 110

Bibliography 113

vi

List of Tables

3.1 A summary of precision by representation type. 42
3.2 Neural Network Architectures Utilized with MountainCar Experi-

ments. The count of the number of layers includes convolutional,
dense, and the output layer, but excludes the input layer. 47

3.3 Hyperparameters used with Proximal Policy Optimization (PPO)
for the MountainCar experiments 48

3.4 The mean and standard deviation of the asymptotic performance,
and the convergence characteristics, for each representation config-
uration over 10 training runs. Configurations are ordered by mean
asymptotic reward. Success is defined as an agent that consistently
reaches the goal position, and mean timesteps to converge is deter-
mined by averaging the timesteps of the first datapoints exceeding
93 units of reward from each successful training run. 53

3.5 Tukey’s HSD Test Results comparing mean rewards between
groups. The columns represent the following: ‘Configuration
Pair’ are the two configurations being compared; ‘Mean Diff.’ is
the difference in mean reward between the two groups; ‘p-adj’
is the adjusted p-value; ‘Lower’ and ‘Upper’ are the lower and
upper bounds of the 95% confidence interval, respectively; ‘Reject’
indicates whether the null hypothesis of no difference in means
can be rejected (True) or not (False). 55

3.6 The reference figures and parameter counts for the neural network
utilized in each configuration. Note that configurations 2, 6 and 9
refer to figures in Section 3.2. For these configurations, the archi-
tectures utilized in this section differ from those referenced only in
the input dimension, which is now 10 instead of 2. 62

3.7 Hyperparameters used with PPO for the Multi-agent Particle En-
vironment (MPE) experiments . 72

vii

List of Tables

3.8 Configuration definitions for each experiment conducted in MPE.
The Actor Input and Critic Input columns specify the inputs to
the policy and value networks, respectively. The Merged Other
Agents column is only relevant when utilizing an RBF represen-
tation and specifies whether a single channel is used to represent
information pertaining to other agents or if it is split into one layer
per other agent. The Shared Feature Extractor specifies whether
the actor and critic networks have any shared parameters between
them. Finally, the Training & Execution Paradigm column indi-
cates whether the same policy network parameters are utilized in
action selection for all agents (CTCE), or whether each agent in
the environment has parameters specific to each agent in the envi-
ronment (CTDE). 73

3.9 The mean and standard deviation of the final performance for each
representation configuration, with the highest-performing learning
rate shown. Results are averaged over 5 training runs with the
given learning rate. 76

3.10 Shorthand introduced to more readily interpret experiment con-
figurations when referenced in results. CTCE and CTDE refer to
the training paradigm utilized; RBF/RC/RBF1D indicates RBF
(2D), Raw-continuous or RBF (1D) observation types respectively;
SYM/ASYM indicate whether the actor and critic architecture or
symmetric or asymmetric respectively; M/NM indicates whether
the other agents are merged or not merged into a single channel
respectively; S/NS indicates whether the feature extractor is shared
or not shared between the actor and critic. 77

3.11 The performance difference and statistical comparison resulting
from using the Merged Other Agents representation, as opposed
to using separate channels for other agents. Paired configurations
are identical except for this representation decision. A positive Rel-
ative Performance ∆ indicates higher performance resulting from
using Merged Other Agents as opposed to using separate channels. 77

3.12 The performance difference resulting from changing the Training
and Execution Paradigm. Paired configurations are identical ex-
cept for the use of a Centralized Training with Centralized Exe-
cution (CTCE) or Centralized Training with Decentralized Execu-
tion (CTDE) paradigm. A positive Relative Performance ∆ indi-
cates higher performance resulting from using a CTDE paradigm
as opposed to a CTCE paradigm. 78

viii

List of Tables

3.13 The performance difference resulting from changing the Shared
Feature Extractor. Paired configurations are identical except for
the use of a Shared Feature Extractor as opposed to entirely sepa-
rate actor and critic networks. A positive Relative Performance ∆
indicates higher performance resulting from using separate actor
and critic networks as opposed to a Shared Feature Extractor. . . . 78

3.14 The performance difference resulting from changing the input rep-
resentation to actor and critic. Paired configurations are identical
except for the use of an RBF (2D) or Raw-continuous input rep-
resentation. Note that two corresponding RBF (2D) runs exist for
each Raw-continuous run due to the added configuration param-
eter Merged Other Agents in RBF (2D) experiments, so the best
performing of the two is shown for this comparison table since no
significant difference was found in experiments varying the Merged
Other Agents configuration. Note that shorthand corresponding
to Merged Other Agents is omitted since it does not apply to Raw-
continuous representations. A positive Relative Performance ∆ in-
dicates higher performance resulting from using a Raw-continuous
input representation as opposed to an RBF (2D) representation. . 79

3.15 The performance difference resulting from our additional experi-
ments, including the ablation experiment utilizing RBF (1D) rep-
resentations, and our experiment utilizing an asymmetric architec-
ture. In the RBF (1D) experiments, a positive Relative Perfor-
mance ∆ indicates worse performance resulting from using a RBF
(1D) input representation as opposed to the relevant alternative
representation. In the asymmetric experiment, a positive Relative
Performance ∆ indicates worse performance resulting from using
the asymmetric architecture. 79

4.1 Hyperparameters used with PPO for the missile defence environ-
ment experiments . 100

4.2 Agent configurations with figure reference: Type, Training
Paradigm, and Network Architecture. 102

4.3 Agent configurations with figure reference: Observation. 102
4.4 Agent configurations with shorthand reference. 103

ix

List of Tables

4.5 Adversarial performance of attacker and defender policies over a
constant 100-member set of test scenarios. All agent configurations
are trained 5 times to produce the mean and standard deviations
shown, with the standard deviation being calculated over all 5×100
test scenario performances for the given agent configuration. For
the attackers, a higher mean represents better performance, while
for the defenders, a lower mean represents better performance. . . 105

4.6 Adversarial performance of attacker and defender policies over a
constant 100-member set of test scenarios. All agent configura-
tions are trained 5 times to produce the mean and standard devi-
ations shown, with the standard deviation being calculated from
the means of the 5 iterations of test scenario performances for the
given agent configuration. For the attackers, a higher mean rep-
resents better performance, while for the defenders, a lower mean
represents better performance. 105

x

List of Figures

2.1 The typical loop structure utilized to demonstrate the interaction
between environment and agent. The environment provides the
agent with an observation, i.e. a representation of the state of the
environment, from which an agent returns an action to be executed
in the environment. The environment additionally provides a re-
ward signal to the agent based on the state, along with the new
observation resulting from the action and environment events. . . . 6

2.2 The Rectified Linear Unit (ReLU) and Gaussian Error Linear Unit
(GELU) activation functions utilized in this work. 14

3.1 A selection of representations of the environment. (a): The floating
point Raw-continuous representation. (b): The Radial Basis Func-
tion (RBF) (1D) representation, which is a representation consist-
ing of 2 1-dimensional arrays as shown. The array centers are
indicated by the red arrows to clearly show the shift in the entry of
peak intensity in the velocity array. (c): An RBF (2D) image rep-
resentation of the state. (d): The One-hot image representation of
the state. (e): A Human-img representation, consisting of a stack
of three grayscale renderings from the most recent three timesteps. 36

3.2 A representation of a 9x9 RBF (2D) observation showing the
greater precision deduced through sampling of 3 pixel values. . . . 39

3.3 The architecture utilized in training with proximal policy optimiza-
tion for the Raw-continuous representation (1,017,506 parameters). 43

3.4 The architecture utilized in training with proximal policy optimiza-
tion for the RBF (1D) representation (1,014,306 parameters). . . . 44

3.5 The architecture utilized in training with proximal policy op-
timization for the image-based representations of RBF (2D)
(1,010,210 parameters), One-hot (1,010,210 parameters), and
Human-img (1,014,306 parameters). 45

xi

List of Figures

3.6 The architecture utilized in training with proximal policy optimiza-
tion for the Hybrid representation (1,016,386 parameters) where
the actor receives the Human-img representation and the critic
receives the RBF (2D) representation. 46

3.7 The mean episodic reward achieved by our agents in 10 indepen-
dent training runs of 301,056 timesteps each, when utilizing a Raw-
continuous representation. 49

3.8 The mean episodic reward achieved by our agents in 10 indepen-
dent training runs of 301,056 timesteps each, when utilizing a RBF
(1D) representation. 50

3.9 The mean episodic reward achieved by our agents in 10 indepen-
dent training runs of 301,056 timesteps each, when utilizing a RBF
(2D) representation. 51

3.10 The mean episodic reward achieved by our agents in 10 indepen-
dent training runs of 301,056 timesteps each, when utilizing a One-
hot representation. 52

3.11 The mean episodic reward achieved by our agents in 10 inde-
pendent training runs of 301,056 timesteps each, when utilizing
a Human-img representation. 53

3.12 The mean episodic reward achieved by our agents in 10 indepen-
dent training runs of 301,056 timesteps each, when utilizing a Hy-
brid representation. 54

3.13 The final positions of agents around the landmark when following
an effective formation policy. The agents are shown to be ap-
proximately equidistant from the landmark, and are separated by
approximately 2π

3 radians. 58
3.14 A selection of state representations of the MPE environment. The

default Raw-continuous state representation is shown at the top.
RBF (2D) is a 50x50 3-channel image. RBF (1D) consists of 10
vectors of length 50, with each vector representing a dimension of
the Raw-continuous representation, in an x and y frame of ref-
erence. The RBF-based figures are with respect to the darkest
agent in the Render image, and are transformed to be in an agent-
centered coordinate frame. 61

3.15 The CTCE architecture utilized when training on RBF (2D) ob-
servations, without shared parameters between the actor and critic
networks. The total number of trainable parameters in this archi-
tecture is 1,024,838. 64

xii

List of Figures

3.16 The CTCE architecture utilized when training on Raw-continuous
observations, without shared parameters between the actor and
critic networks. The total number of trainable parameters in this
architecture is 1,014,566. 65

3.17 The multi-head CTDE architecture utilized when training on RBF
(2D) observations, with shared parameters between the actor and
critic networks. The total number of trainable parameters in this
architecture is 1,004,910. 66

3.18 The multi-head CTDE architecture utilized when training on Raw-
continuous observations, with shared parameters between the actor
and critic networks. The total number of trainable parameters in
this architecture is 1,056,124. 67

3.19 The CTDE architecture utilized when training on Raw-continuous
observations, without shared parameters between the actor and
critic networks. The total number of trainable parameters in this
architecture is 1,011,120. 68

3.20 The CTDE architecture utilized when training on RBF (2D) ob-
servations, without shared parameters between the actor and critic
networks. The total number of trainable parameters in this archi-
tecture is 1,029,582. 69

3.21 The CTDE architecture utilized when training on Hybrid obser-
vations, without shared parameters between the actor and critic
networks. The actor networks receive Raw-continuous observa-
tions, while the critic receives RBF (2D) observations. The total
number of trainable parameters in this architecture is 1,023,180. . 70

3.22 The CTDE architecture utilized when training on RBF (1D) ob-
servations, without shared parameters between the actor and critic
networks. The total number of trainable parameters in this archi-
tecture is 1,033,704. 71

3.23 The mean episodic reward achieved by all of our agent configu-
rations through 302,400 timesteps of training in the multi-agent
particle environment’s formation task. The mean and standard
deviation are calculated from 5 training runs at each configuration
and learning rate combination. 74

3.24 The mean episodic reward achieved by our highest performing
agents in each configuration through 302,400 timesteps of train-
ing in the multi-agent particle environment’s formation task with
corresponding learning rate shown. 75

xiii

List of Figures

4.1 A map showing a rendering of the environment state, with key
entities labelled. The skew normal distributions sampled when
initializing the x-positions for defenders (in blue) and targets (in
green) are also shown. The targets’ radii are proportional to their
value. The defenders’ detection and interception radii are pictured
in yellow and red, respectively. 83

4.2 A full set of channels representing the RBF (2D) observation of
an agent, with their corresponding indices shown below the image.
The ‘H’ panel is not part of the observation, but represents the
human-rendered representation of the environment. 93

4.3 The observation representation, consisting of a 9x84x84 image, uti-
lized as input to the actor and critic when training symmetric at-
tackers, and as input to the actor only when training asymmetric
attackers. The channels are numbered in accordance with the pre-
viously listed set of possible channels. 94

4.4 The observation representation, consisting of a 15x84x84 image,
utilized as input to the actor and critic when training symmetric
defenders, and as input to the actor only when training asymmet-
ric defenders. The channels are numbered in accordance with the
previously listed set of possible channels. 94

4.5 The observation representation, consisting of a 13x84x84 image,
utilized as input to the critic when training asymmetric attackers
and asymmetric defenders. The channels are numbered in accor-
dance with the previously listed set of possible channels. 95

4.6 A sample of the output action logits, generated from a symmet-
ric policy network, demonstrating the higher likelihood actions
surrounding high-value target locations, as seen in the human-
rendered representation of the environment on the right-hand side. 96

4.7 The U-Net feature extraction architecture utilized in all agent con-
figurations. 97

4.8 The actor-critic network architecture used in the configuration 0,
2, 4 and 6 CTDE PPO implementation, with entirely separate
networks for the actor and critic, and the same input utilized
for each. Attacker configurations 0 & 2 contain 2,684,825 trainable
parameters, while defender configurations 4 & 6 contain 4,063,709
trainable parameters. 98

xiv

List of Figures

4.9 The actor-critic network architecture used in the configuration 1,
3, 5 and 7 CTDE PPO implementation, with entirely separate
networks for the actor and critic, and asymmetric input repre-
sentations utilized for the actor and critic. Attacker configurations
1 & 3 contain 2,693,081 trainable parameters, while defender con-
figurations 5 & 7 contain 4,059,581 trainable parameters. 99

4.10 The train loss (left) and mean episodic reward (right) for attacker
agents over 1,024,000 timesteps of training. 104

4.11 The train loss (left) and mean episodic reward (right) for defender
agents over 1,024,000 timesteps of training. 104

xv

Acronyms

A2C Advantage Actor Critic
A3C Asynchronous Advantage Actor-Critic
ACER Actor-Critic Experience Replay
AI Artificial Intelligence
ASM Anti-Ship Missile
BMDS Ballistic Missile Defense System
CE Cross-Entropy
CNN Convolutional Neural Network
COMA Counterfactual Multi-Agent
CTCE Centralized Training with Centralized Execution
CTDE Centralized Training with Decentralized Execution
DDPG Deep Deterministic Policy Gradient
DDQN Double Deep Q-Network
Dec-POMDP Decentralized Partially Observable Markov Decision Process
DL Deep Learning
DNN Dense Neural Network
DQN Deep Q-Network
DRL Deep Reinforcement Learning
DRQN Deep Recurrent Q-Network
GAE Generalized Advantage Estimation
GELU Gaussian Error Linear Unit
HSD Honestly Significant Difference
MADDPG Multi-Agent Deep Deterministic Policy Gradient
MANA Map Aware Non-uniform Automata
MAPPO Multi-Agent Proximal Policy Optimization
MARL Multi-Agent Reinforcement Learning
MDP Markov Decision Process
ML Machine Learning
MLR Mask-based Latent Reconstruction
MPE Multi-agent Particle Environment

xvi

MSE Mean Squared Error
NLP Natural Language Processing
PG Policy Gradient
POMDP Partially Observable Markov Decision Process
PPO Proximal Policy Optimization
QMIX Q-value Mixture
RBF Radial Basis Function
ReLU Rectified Linear Unit
RL Reinforcement Learning
SC2LE StarCraft II Learning Environment
SMAC StarCraft Multi-Agent Challenge
SoS System of Systems
SOTA State-of-the-art
ST-DIM Spatiotemporal DeepInfomax
TD Temporal Difference
TRPO Trust-Region Policy Optimization
UAV Unmanned Aerial Vehicle
WTA Weapon-Target Assignment

xvii

1 Introduction

1.1 Motivation

The field of Deep Learning (DL) involves learning functions capable of map-
ping input data to some useful output, where this output depends on the task
at hand. Reinforcement Learning (RL) aims to develop optimal agents, where
an optimal agent is defined as an agent capable of maximizing cumulative
reward through interaction with their environment. Such an agent is able to
output the action that is expected to progress the agent along a cumulative
reward-maximizing path, given an input observation of the state. The conflu-
ence of the fields of RL and DL is present in the field of Deep Reinforcement
Learning (DRL), whereby the function approximators used in the RL domain
are represented as deep neural networks. This field has demonstrated signifi-
cant promise at extending RL methods to higher-dimensional input spaces and
at learning more expressive and hierarchical representations of the environ-
ment [50, 51, 98]. By leveraging the power of deep neural networks, DRL has
shown remarkable success in various domains, including robotics, gaming, and
natural language processing [13, 85, 57]. These models can learn directly from
raw sensory inputs, enabling them to process complex and high-dimensional
data, and extract meaningful features that aid in decision-making.

That said, in the context of RL, the data quantity and compute capacity
for training a DL model capable of learning useful representations from real-
world high-dimensional data are not always present [25]. The magnitude of
these requirements is contingent on the input representation utilized. When
working in real-world domains, the representation of an agent’s state might
be predetermined by the sensors available in a system. However, training
agents purely on data collected from a real-world system is limiting due to the
high relative time and cost required to gather such data [18]. Additionally,
in certain systems, the cost of an agent following a non-optimized policy can
lead to damage to the system itself, further contributing to the high cost of
collecting data in this manner. For this reason, it is often desirable to recreate

1

1.2. Problem Formulation

the defining parameters and dynamics of an agent and its environment in
a simulated setting. In such a setting, data can be gathered much faster
and at a much lower cost, with a trade-off existing for decreased fidelity in
the simulation environment when compared to the real world system [38].
When discussing simulated environments, along with reducing the cost and
time burden of data generation, one also removes the constraint imposed by
real-world system sensors as the representation of the agent’s state. The
observation, or state representation, that an agent has access to can take on
a wide variety of forms in such a setting.

Although the use of simulated environments offers significant advantages,
it is important to note the limitations of utilizing simulations [38]. One key
limitation, as previously mentioned, is the fidelity gap between the simulation
and the real-world system. Simulated environments may not perfectly cap-
ture the intricacies of real-world scenarios. Additionally, simulations rely on
predefined models and assumptions about the environment, which may not
fully capture the complexity and stochasticity of real-world systems. This
limitation can introduce biases or inaccuracies in the learned policies. These
issues ultimately create difficulty for agents to generalize effectively to real-
world systems when trained in simulation. While these issues fundamentally
relate to state representation differences between real-world and simulation,
this work does not look to explore this angle of state representation issues.
Instead, we focus on how the state representation can be modified in simula-
tion environments to improve agent performance and expedite convergence to
an effective/optimal policy.

1.2 Problem Formulation

In this work, the environment of greatest interest to us is a custom, OpenAI
Gym-style missile defence simulator. This environment presents numerous
challenges when trying to train effective DRL agents. Firstly, there are many
environment features that might play a role in an effective policy, making the
decision of what state representation to utilize essential in the agent training
architecture. The choice of state representation additionally plays a significant
role in the design of neural network architecture. Secondly, the mixed coop-
erative and competitive environment contains multiple agents, which raises
an additional set of questions relating to the multi-agent training architecture
and paradigm to utilize.

With our objective of finding an effective representation, neural network
architecture and multi-agent training paradigm for a high-dimensional mis-

2

1.3. Contribution

sile defence environment, we have formulated a problem structure of escalat-
ing complexity. We start with simpler problem formulations and scenarios
in environments of lower dimensionality and complexity when compared to
our missile defence environment, to establish a foundation of understanding.
We then apply the lessons learned to our increasingly complex problem for-
mulations and environments, thereby following a constrained and progressive
approach.

Our first problem formulation is based in the MountainCar environment,
a classic benchmark in the field of reinforcement learning. This relatively
simple setting allows us to explore the fundamentals of state representation
and neural network architectures without the intricacies of a multi-agent sce-
nario. These experiments look at varying the state representation and neural
network architecture on agent performance and convergence characteristics.
This experiment also introduces an asymmetric architecture, to see if a high-
performance representation can be utilized to train actor networks to infer on
an otherwise low-performing representation.

Progressing further into the multi-agent problem, we turn our attention to
the Multi-agent Particle Environment (MPE). Here, we extend our experimen-
tation into a multi-agent system. We utilize the top performing representa-
tions from the MountainCar environment to keep the scope of experimentation
manageable and to see if the performance results extend to this environment.
While continuing to refine our understanding of the impact of state representa-
tions and neural network architectures on agent learning in this environment,
we additionally experiment with both centralized and decentralized execution
paradigms.

Finally, we extend the experimentation to a custom OpenAI Gym-style en-
vironment simulating a missile defence scenario. After having gained valuable
insights from simpler domains, we are able to utilize lessons learned to keep
the breadth of experimentation in this complex domain within a manageable
scope. These insights guide us in crafting an effective state representation,
neural network architecture, and training paradigm capable of managing a
high-dimensional, multi-agent system, which is the ultimate objective of this
thesis.

1.3 Contribution

The overarching objective of this thesis is to identify an effective state repre-
sentation and training architecture to utilize in a high dimension, multi-agent
missile defence simulation environment. To this end, we break the problem

3

1.4. Organization of Thesis

into constituent parts, and define the following contributions:

• A study on the impact of varying state representation, and correspond-
ing neural network architectures, on the performance and rate of conver-
gence to an effective policy of agents trained in the simple MountainCar
environment.

• A study of varying state representation, corresponding neural network
architecture, and multi-agent training paradigm on agent performance
in the MPE. This study utilizes the outcome from the prior study in
the MountainCar environment to focus the experimental scope.

• A formulation of a missile defence simulation environment, with state
representation and training architecture guided by findings from prior
experiments. We contribute a study on the impact of utilizing asym-
metric observations for the actor and critic on agent performance in this
environment. We demonstrate that a pixelized action space coupled with
a segmentation network, using image-like observation representations as
input, can enable training of performant agents in the environment. We
additionally contribute an ablation study comparing agents trained on
RBF (2D) representations to those trained one One-hot representations,
to demonstrate the merit of the former representation type.

1.4 Organization of Thesis

The remainder of this thesis is split into a literature review, 2 core chapters,
followed by a conclusion. Chapter 2 contains the fundamental background and
literature review, which provides the foundational concepts upon which the
rest of this document is built. Chapters 3 and 4 are the core chapters. Chapter
3 is further divided into two subsections, the first of which focuses on the low
dimension, single-agent MountainCar environment, and the second of which
focuses on the slightly higher dimension MPE. This chapter explores repre-
sentation and architecture selection in both environments through a selection
of experiments using varying state representations and neural network archi-
tectures, and subsequent analysis of agent performance. Chapter 4 focuses on
the multi-agent missile defence simulation environment. It begins by outlining
the structure and dynamics of the environment, the baseline agent behaviors,
and the justifications for parameter selections utilized in the environment. It
then utilizes the lessons learned from Chapter 3 to train both attacking and
defending agents, and concludes by analyzing agent performance against our
selection of baseline agents, with particular focus on comparing symmetric
and asymmetric training architectures. Furthermore, Chapter 4 incorporates

4

1.4. Organization of Thesis

an ablation study of utilizing One-hot representations, to confirm the merit of
RBF (2D) representations in the given environment. The thesis finishes with
Chapter 5, which concludes and summarizes the findings of our experiments,
and outlines potential future research directions.

5

2 Literature Review

2.1 Reinforcement Learning

A common problem of interest in artificial intelligence research is that of de-
termining the actions an agent should perform in an environment in order to
meet a defined objective. Success in solving this problem in a multitude of
realms has been achieved through the application of RL algorithms. Typical
RL implementations aim to develop a policy for an agent’s decisions by defin-
ing an environment and an objective, having the agent sequentially interact
with the environment, and improving the agent’s policy through provision of
reward for completion of the objective. The general framework by which RL
methods operate is encapsulated by the loop as shown in Figure 2.1.

Figure 2.1: The typical loop structure utilized to demonstrate the interaction
between environment and agent. The environment provides the
agent with an observation, i.e. a representation of the state of the
environment, from which an agent returns an action to be exe-
cuted in the environment. The environment additionally provides
a reward signal to the agent based on the state, along with the new
observation resulting from the action and environment events.

A common framework utilized to represent the sequential decision-making
processes studied in RL is the Markov Decision Process (MDP) [10]. An MDP
can be viewed as an expansion of the agent/environment loop into the con-
stituent states, actions, transition probabilities and rewards that are possible

6

2.1. Reinforcement Learning

in the given agent/environment configuration. More formally, any RL task
that satisfies the Markov property, which requires that the conditional prob-
ability of future states of the process (conditioned on both past and present
states) depends only upon the present state, not on the sequence of events
that preceded it, can be represented as an MDP.

The standard MDP consists of the tuple (S, A, P, R, γ), where the con-
stituents of this tuple are defined as follows:

• S: The state space, which equates to a finite set of states.
• A: The action space, which equates to a finite set of actions.
• P: The transition probabilities between states. This represents a func-

tion which, given the current state and selected action, provides the
probability distribution over the set of possible subsequent states of
transitioning to the given state. The domain of this function is a cross
product of the current state (an element of S), the action (an element
of A), and the next state (an element of S). Its value can be anywhere
in the range 0 to 1. P : S ×A× S → [0, 1]

• R: The reward function, which provides the immediate reward from
state transition given the provided action. The domain of this function
is a cross product of the current state (an element of S), the action (an
element of A), and the next state (an element of S). Its value can be any
real number. R : S ×A× S → R

• γ: The discount factor, which is used to temporally adjust the value of
rewards in order to favor immediate reward signals over delayed reward
signals. In the case of MDPs with infinite time horizons, this discount
factor is required to ensure that the expected returns are well-defined
and finite. This can take any value in the range 0 to 1. γ → [0, 1]

Building upon the foundation of the MDP, one can view the Bellman Ex-
pectation Equation as a representation of an MDP that’s driven by a certain
policy. A Bellman equation is a common method of representing a recursive
relationship in an equation, which is useful in the realm of dynamic program-
ming and optimization to demonstrate the well-defined nature of optimal solu-
tions to optimization problems. The Bellman Expectation Equation provides
a recursive calculation of the expected value for each state under that policy,
as shown in Equation 2.1.

Vπ(s) =
∑
a∈A

π(a|s)
∑
s′∈S

P (s′|s, a)[R(s, a, s′) + γVπ(s′)] (2.1)

The Bellman Expectation Equation states that the value of a particular
state under a certain policy is the expected immediate reward, plus the ex-

7

2.1. Reinforcement Learning

pected value of the future states, given the current state and action. It sums
over all possible actions, taking the probability of each action into account,
and for each action, it sums over all possible next states, weighted by their
probabilities, considering the immediate reward and the discounted value of
the future state.

A breakdown of the components of the Bellman Expectation Equation is
as follows:

• V (s): Represents the value function under a policy π for state s. It is
the expected return from state s when actions are chosen according to
π.

•
∑

a∈A π(a|s): This is an expectation over all actions a that can be taken
in state s, under the policy π. It signifies the average effect of all possible
actions, weighted by their probability under the policy.

•
∑

s′∈S P (s′|s, a): This is an expectation over all possible next states s′.
It signifies the average effect of all possible next states, weighted by their
transition probability when taking action a in state s.

• P (s′|s, a): Represents the transition probability of reaching state s′ after
taking action a in state s.

• [R(s, a, s′)+γV (s′)]: Represents the expected return from taking action
a in state s and transitioning to state s′. It’s composed of the immediate
reward R(s, a, s′) plus the discounted (γ) expected return from the next
state s′ under the policy π.

While the Bellman Expectation Equation provides us with a method for
calculating the value of a state based on a particular policy, it doesn’t nec-
essarily give us the optimal strategy. That’s where the Bellman Optimality
Equation comes in, shifting from averaging over all possible actions according
to a certain policy to choosing the action that maximizes expected return. Es-
sentially, the Bellman Optimality Equation represents the most advantageous
action we can take at any given state to achieve the highest future rewards,
thus defining the best policy. To optimally solve an MDP is to find a policy
function, π, that maps states to the optimal action from that state, where
optimality is as defined in the Bellman Optimality Equation, which results
from taking the argmax over all possible policies in Equation 2.1, resulting in
Equation 2.2.

V ∗(s) = max
a∈A

∑
s′∈S

P (s′|s, a)[R(s, a, s′) + γV ∗(s′)] (2.2)

In RL algorithms, the value function of a state plays a critical role as
it helps guide the decision-making process towards the optimal policy. The

8

2.1. Reinforcement Learning

Bellman Expectation Equation expresses the future return as π(s′), the dis-
counted value of the next state, averaged over all actions and next states. It
has a recursive nature, which allows it to be used for dynamic programming
methods such as value iteration and policy iteration. A common alternate
representation of the value function expresses the future return as a sum over
future rewards, explicitly taking into account the timing of each reward. It
directly shows that the value of a state is an expected sum of future rewards.
This perspective of the value function is as defined in Equation 2.3. The state
value function under policy π, Vπ(s), represents the expected return from state
s when actions are chosen according to policy π. This function encapsulates
the agent’s anticipations about future rewards, and forms the basis for the
iterative improvement of the policy.

Vπ(s) = Eπ

[∞∑
k=0

γtRt+k+1

∣∣∣∣∣St = s

]
(2.3)

In addition to approaches based on the value function, another significant
family of methods in reinforcement learning stems from the concept of the
state-action value function. Also known as the Q-function, this is a funda-
mental concept that broadens the perspective beyond states alone, to consider
the implications of specific actions taken within those states. The Q-function
quantifies the expected return or cumulative discounted future reward of tak-
ing a particular action in a given state, under a specific policy. The state-action
value function for a policy, denoted by Qπ(s, a), is defined as the expected re-
turn when starting in state s, taking action a, and thereafter following policy
π, as shown in Equation 2.4. A key point is that the state-action value func-
tion takes both a state and an action as its argument, compared to the value
function which only considers the state. The state-action value function forms
the basis for many RL algorithms, such as Q-learning [90] and SARSA [64].

Qπ(s, a) = Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s,At = a

]
(2.4)

The value function and state-action value function form the foundation of
many RL methods, collectively being referred to as value-based methods.

A core decision required when formulating an RL problem is how to repre-
sent the state of the environment to the learning agent. This decision can have
significant implications for the agent’s ability to identify important features
in the environment, and consequently learn an effective policy.

A variety of common methods of representing a state to the value function
exist, with a key distinction existing between tabular methods and function

9

2.2. Deep Learning

approximation methods. Tabular methods are typically limited to small, dis-
crete state spaces, as they involve representing the entire state space in a
tabular format, with rows corresponding to states and columns corresponding
to actions (or vice-versa). The objective of tabular methods is to learn a value
for each state-action pair. Because of the requirement that each state and ac-
tion be uniquely represented with tabular methods, its memory requirements
can quickly become prohibitive in high-dimensional environments due to the
exponential growth of the table with increasing state space and action space
dimension. Additionally, the requirement that each state-action pair be vis-
ited to generate adequate value estimates for the given table entry becomes
prohibitive with growing state and action space dimension.

Due to this combinatorial growth of state-action spaces when using
tabular methods, a common generalization for environments that are
high-dimensional, or with continuous state and action spaces, is to utilize
function approximation methods. Function approximation methods involve
parameterizing the value, Vπ, or policy functions. When provided the state
or state-action pair as input, the parameterized value or policy functions will
output a value or action (or probability distribution over possible actions),
respectively. The parameters of the functions utilized with these methods are
iteratively updated through the RL process, with the objective of providing
incrementally improved estimates of the value of a given state/state-action
pair input, or the optimal action from the same input as is the case with a
parameterized policy function. The primary benefit of function approxima-
tion methods when compared to tabular methods is their ability to handle
larger state and action spaces, in particular due to their ability to generalize
across similar unseen states or state-action pairs. When provided with an
unseen input, these methods can rely on inputs with similar features that
were seen in training to produce effective outputs. They do, however, come
with some limitations, as it is oftentimes challenging to ensure that function
approximation methods converge to a globally optimal solution, V ∗. This
is particularly the case with environments of greater complexity, or greater
dimensionality in regard to their state and action spaces.

2.2 Deep Learning

Deep Learning is a subfield of Artificial Intelligence (AI), that leverages back-
propogation to train neural networks to map a given input to a target output.
These algorithms process data with a hierarchy of multiple layers of artificial
neurons. In the last two decades, with the explosion of computational power

10

2.2. Deep Learning

and the availability of large-scale datasets, DL has progressed from theoretical
foundations to a wide variety of real-world applications.

This review will delve into the primary components and mechanisms of DL,
focusing on the architectural components utilized later in this work. To begin,
it will look at two fundamental neural network architectures - Dense Neural
Networks (DNNs) and Convolutional Neural Networks (CNNs). Then, it will
discuss the roles and implications of different activation functions, particularly
the ReLU and the GELU. Finally, this review will discuss the applications of
a key loss function, namely the Mean Squared Error (MSE).

2.2.1 Neural Networks

Neural network architectures provide the structural foundation for DL mod-
els. They are mathematically formulated algorithms that mimic the neural
structure of the brain, allowing computers to learn from observed data. Two
widely used types of neural network architectures are DNNs, often referred to
as Fully Connected Networks, and CNNs.

DNNs are a type of artificial neural network where each neuron in a layer is
connected to all neurons in the previous and next layer. They are termed dense
due to the high number of connections between neurons. These architectures
are a common choice for solving simple regression and classification tasks
where the inputs are not spatially structured. The structure of a DNN consists
of an input layer, one or more hidden layers, and an output layer. Each layer
comprises multiple neurons or nodes, where the information from the previous
layer is processed and passed onto the next layer, with an activation function
applied to the sum of a node’s inputs.

DNNs have been used successfully in a wide variety of applications, form-
ing a core component of numerous architectures. They are flexible, easy to
understand, and can model complex non-linear relationships.

However, DNNs also have their limitations. They often require a large
amount of training data to avoid overfitting. Additionally, they do not con-
sider the spatial hierarchy of data, which is why they are not as effective for
tasks such as image recognition where the relative position of pixels carries
significant information.

CNNs, on the other hand, are a specialized kind of neural network that
introduce a strong inductive bias for spatial relationships. They achieve this
by employing the convolution operation. In the broadest sense, convolution
is a mathematical operation on two functions that produces a third function.
This third function represents how the shape of one function is modified by
the other. In the case of 2D convolution, the input might be an image (treated

11

2.2. Deep Learning

as a matrix of pixel values), and the kernel is a smaller matrix of weights that
slides over the image (i.e., it’s convolved with the image). The output is a
new matrix (often called a feature map or convolutional layer) that represents
features detected in the input image by the kernel. For example, a kernel
might learn to detect edges, in which case the output feature map would have
high values in areas of the image where there are edges.

The architecture of CNNs includes convolutional layers that use filters or
kernels to perform local operations, allowing them to detect spatial patterns
such as edges, corners, and textures. These convolutional layers are followed
by pooling layers that downsample the spatial dimensions, retaining the most
important information. By repeatedly applying these operations, CNNs can
effectively learn hierarchical representations of spatial features in the input
data. The final fully connected layers then map these features to the final
output, such as class labels in a classification task.

CNNs have proven to be highly effective for image and video processing
tasks, largely owing to their distinctive spatial invariance and locality proper-
ties. Unlike DNNs, CNNs are designed to automatically learn spatial hierar-
chies of features, which allows them to handle the high dimensionality of raw
image data and exploit spatial correlations. This spatial invariance, combined
with spatial locality, results in CNNs having a significantly lower number of
parameters than DNNs of comparable performance in the spatial domain.

2.2.2 Activation Functions

One of the key components in neural networks is the activation function ap-
plied to the weighted sum of the inputs to a given node in a neural network
layer. Activation functions introduce non-linear properties to the network, en-
abling them to learn from the complex patterns and dependencies in the data.
Without activation functions, neural networks would only be able to learn
linear relationships, which are often insufficient for real-world tasks. Two
commonly used activation functions in DL, which are utilized in this work,
are the ReLU and the GELU.

ReLU is perhaps the most widely used activation function in DL models
[53]. It’s mathematically defined as shown in Equation 2.5, which defines a
function that returns x if x is positive, and 0 otherwise.

ReLU(x) = max(0, x) (2.5)

ReLU has several advantageous properties. Its simplicity makes it compu-
tationally efficient, reducing the time needed for training deep neural networks.

12

2.2. Deep Learning

Moreover, it helps mitigate the vanishing gradient problem, a common issue
in training neural networks where gradients tend to get closer to zero as they
backpropagate through the layers, slowing down the learning process or caus-
ing it to stop completely. This alleviation of the vanishing gradient issue is
due to the derivative of the ReLU function. Specifically, for positive input
values, the derivative of ReLU is 1, resulting in a sustained gradient during
backpropagation and preventing the gradients from diminishing for these in-
puts. For negative inputs, the ReLU function’s output is zero, nullifying their
contribution to the gradient. This property facilitates more effective gradient
propagation through deep networks.

However, ReLU is not without its limitations. It suffers from a problem
known as the Dying ReLU issue. Since the output is zero for all negative
inputs, during the training process, some neurons might end up always pro-
ducing negative outputs, causing their weights to not update. As a result,
these neurons become unresponsive to variations in error, essentially leading
to a portion of the model being inactive or dead.

GELU is another activation function that has been gaining popularity in
recent years [35]. It is defined in Equation 2.6, which defines a function that
approximates the cumulative distribution function of a Gaussian distribution.

GeLU(x) = 0.5x

(
1 + tanh

(√
2

π

(
x + 0.044715x3

)))
(2.6)

The continuous and smooth nature of the GELU function helps in dealing
with the vanishing gradient problem, similar to the ReLU function. Moreover,
GELU does not suffer from the Dying ReLU problem as it activates for both
positive and negative inputs, reducing the likelihood of neurons becoming
unresponsive.

However, the more complex nature of the GELU function compared to
ReLU means it is computationally more expensive. This might be a factor
to consider when training large models or when computational resources are
limited. For our purposes, we limit usage of GELU to the higher dimensional
models utilized in the missile environment experiments, and use the ReLU
activation for experiments in the lower dimensional environments. A visual
comparison of the two activation functions can be seen in Figure 2.2.

2.2.3 Loss Functions

Loss functions play a critical role in the training of neural networks as a
function approximator to map a given data input to a desired output. They

13

2.2. Deep Learning

Figure 2.2: The ReLU and GELU activation functions utilized in this work.

measure the discrepancy between the model’s predictions on a given input
and the actual data’s expected output, and this information is used to adjust
the model’s parameters during training using backpropagation. A widely used
loss function that forms a component of our RL objective function is MSE.

MSE is a popular loss function primarily used in regression tasks. It cal-
culates the average squared difference between a network’s predicted value,
and the actual value corresponding to the given input. Mathematically, it is
defined in Equation 2.7, where y represents the actual values, ŷ represents the
predicted values, and n is the number of data points over which the mean is

14

2.3. Deep Reinforcement Learning

being taken.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2.7)

The intuition behind the MSE is simple: by squaring the difference, one en-
sures that the error is always positive, and by averaging these squared errors,
we provide a single measure of how well the model is performing to guide
parameter updates. The goal during the training process is to minimize this
error through gradient descent.

One of the strengths of the MSE is its simplicity and ease of computa-
tion. Additionally, by squaring the errors, it penalizes large errors more than
smaller ones, making it suitable for tasks where large errors are particularly
undesirable.

The loss function to utilize depends on the specific problem being solved,
the nature of the data, and the output requirements of the model. While MSE
is popular in regression problems, alternatives, such as Cross-Entropy (CE)
loss, are popular in classification tasks. For our own purposes, we utilize a
custom loss function as described in the relevant section on PPO. Though
this custom loss function makes use of MSE in its calculation, it is specifically
formulated to fit the structure of the PPO algorithm.

2.3 Deep Reinforcement Learning

Fundamentally, RL algorithms rely on the learning of a function to develop
an effective policy. The parametrization of these functions can take a variety
of forms, however recent success has been found coupling the advances in the
field of deep learning with the RL domain, by utilizing neural networks for this
function parameterization. The application of DL techniques to RL problems
has demonstrated great promise at adapting RL to high-dimensional input
observations [6]. Such strategies are collectively known as DRL.

A common approach used by algorithms is to focus on learning the value,
or as is the case with Q-learning and SARSA, the state-action value function.
A notable early success in the field of value-based DRL can be seen in the
work of Mnih et al. with the advent of the Deep Q-Network (DQN) algorithm
[50, 51]. Their implementation makes use of a deep convolutional network to
approximate the optimal state-action value function.

Previous analysis of utilizing a function approximator to represent the
state-action value function demonstrated instability in training [81]. To
counter this, DQN training utilizes experience replay and a separated target
state-action value function from the evaluation function, with the target

15

2.3. Deep Reinforcement Learning

updated iteratively at a lower frequency to the evaluation function. Updates
are then performed by sampling randomly from the experience replay to
generate batches, thereby removing the instability issues present in training
without this strategy, due to correlation between sequential observations.

Utilizing the value-based paradigm described, Mnih et al. were able to suc-
cessfully achieve human-level performance in 49 Atari games, with an identical
training architecture used in each case. Hence, they were able to achieve this
performance just from the rendering of the games to the screen using this DRL
architecture, without the requirement of task-specific feature engineering.

Traditional value-based methods are known to be ineffective at dealing
with scenarios where the action space is continuous or where the optimal pol-
icy is stochastic. Policy Gradient (PG) methods [93, 79] are a particular class
of RL algorithms that look to address the issues present in value-based meth-
ods by instead representing the policy as a function approximation. This is
accomplished by parameterizing the policy. Typically, this parameterization
of the policy is in the form of a neural network where the policy network gener-
ates a probability distribution over the action space. PG methods function by
performing updates to the policy based on the gradient of policy parameters
with respect to some performance metric, such as expected return.

While PG-based algorithms have yielded promising results in a variety of
domains, they do have drawbacks. Vanilla PG methods, such as REINFORCE
[79], are entirely on-policy, meaning that they update their policy while in-
teracting with the environment using the current policy, and utilize episodes
just once for parameter updates. This makes the issue of sample inefficiency
significant. Once the policy is updated, the collected data becomes outdated
as the agent’s behavior has changed. This leads to inefficient use of collected
data, requiring the agent to collect new samples for each update. Additionally,
since the policy network is continuously being updated, problems of stability
in training can arise whereby the impact of a parameter update is too large
and leads to complete deterioration of performance in subsequent episodes.

Mitigation strategies for the sample-inefficiency issue of vanilla PG meth-
ods have been proposed. One such example can be seen with Trust-Region
Policy Optimization (TRPO) [69], which incorporates a trust region approach,
limiting the extent of policy updates. It constrains the policy update to a cer-
tain neighborhood around the current policy, preventing large policy changes
that could lead to instability or catastrophic performance degradation. By en-
forcing a more conservative update strategy, TRPO achieves more stable and
incremental improvements, leading to improved sample efficiency. Another im-
proved approach can be seen in Actor-Critic Experience Replay (ACER) [89],
which utilizes experience replay, a technique popularized by deep Q-learning,

16

2.3. Deep Reinforcement Learning

to improve sample efficiency. Instead of immediately using the collected expe-
riences to update the policy, ACER stores them in a replay buffer and samples
batches of experiences during training. This allows for more efficient use of
the data and reduces the variance of updates.

Due to the importance from the standpoint of state/observation informa-
tion encoding, in particular their allowance of asymmetric information during
training and inference, we now wish to discuss in greater detail a popular
subset of these algorithms known as actor-critic methods [8], of which TRPO
and ACER are examples. As previously discussed, traditional RL algorithms
often are subdivided into value-based and policy-based methods. Actor-critic
methods are unique in the fact that they combine policy-based learning and
value-based learning, in an attempt to harness the benefits of both paradigms.
Actor-critic methods are named as such due to their combination of function
approximation for the policy, defined as the actor, and the function approxi-
mation for the value, defined as the critic.

The Advantage Actor Critic (A2C) algorithm is one such algorithm. The
training paradigm of A2C reinforces actions that were found to be better than
expected, and weakens actions that were found to be worse than expected.
This is accomplished through the following Temporal Difference (TD) error
evaluation:

δt = rt + γVθ(st+1)− Vθ(st) (2.8)

where Vθ is the current value function evaluated by the critic. By utilizing
this TD error, or advantage estimate, the critic is able to determine the quality
of the action, at, that causes the agent to transition from state st to state
st+1. If the advantage is positive, and therefore indicates that the action
result was better than expected, the action leading to that state is reinforced
by increasing the probability of selecting that action from the given starting
state. The converse is true should the TD error be negative.

Due to its proven success in multi-agent domains [97, 61], and our ex-
tensive usage of the algorithm in this work, an actor-critic algorithm that
we wish to define in greater detail is PPO. PPO aims to address the insta-
bility of vanilla PG and improve sample efficiency, while remaining easy to
implement [71]. This is achieved by having the agent interact with the envi-
ronment with its current policy to generate a batch of data samples, and using
this batch to optimize a surrogate objective function with stochastic gradient
ascent over multiple epochs. Typical implementations additionally clip the
objective function to be within a defined range to avoid too large of a step at
each policy parameter update as in TRPO. This procedure is then repeated

17

2.3. Deep Reinforcement Learning

for a certain number of iterations with the new policy being used to generate
new batches of data samples each iteration. This procedure improves sample
efficiency by using a batch of data samples in multiple epochs of parameter
updates. The fact that a batch of data samples is used for parameter up-
dates, along with the clipping of the objective function, improves the stability
characteristics of the algorithm. PPO incorporates the Generalized Advan-
tage Estimation (GAE) for effective variance reduction, further enhancing the
stability and performance of the algorithm [70]. GAE computes a weighted
sum of n-step estimators, with weights determined by λ raised to the power
of the time-step, making it a kind of exponentially-weighted moving average
of n-step estimators. On one side, you have the Temporal Difference (TD)
error when λ = 0, which has low variance but can be highly biased. On the
other side, you have the Monte Carlo (MC) method when λ = 1, which is un-
biased but can have high variance. This amalgamation of multiple advantage
estimates smoothes the policy update, facilitating more stable learning. The
PPO algorithm utilized is defined as follows:

LCLIP
t (θ) = Êt[min(ρt(θ)Ât, clip(ρt(θ), 1− ε, 1 + ε)Ât)] (2.9)

LV F
t (θ) = (Vθ(st)− V targ

t)2 (2.10)

V targ
t = Gλ

t = (1− λ)
∞∑
n=1

λn−1G
(n)
t (2.11)

Ât = δt + (γλ)δt+1 + . . . + (γλ)T−t+1δT−1 (2.12)

LCLIP+V F+S
t (θ) = Êt[L

CLIP
t (θ)− c1L

V F
t (θ) + c2S[πθ](st)] (2.13)

18

2.3. Deep Reinforcement Learning

Algorithm 1 Proximal Policy Optimization (PPO)

Require: Actor-critic model with policy πθ(at|st) and value function Vϕ(st),
environment with transition dynamics p(st+1, rt|st, at), hyperparameters
ϵ, K, T

Ensure: Trained policy πθ
1: Initialize actor and critic network parameters θ0, ϕ0

2: Set old policy parameters θold ← θ0
3: for iteration n = 1, . . . , N do
4: Run policy πθold in environment for T timesteps
5: Compute advantages At using GAE as in Equation 2.12
6: Compute λ-return Gλ

t

7: Compute action probabilities at ∼ πθ(at|st)
8: Compute old action probabilities aoldt ∼ πθold(at|st)
9: Compute surrogate objective function, L, using Equation 2.13

10: Update actor and critic network parameters using gradient ascent on
calculated L for K epochs and with minibatch size M ≤ T

11: Set θold ← θ
12: end for
13: return Trained policy πθ

Where equation and algorithm parameters are defined as follows:

• θ: the policy or value function neural network parameters
• Êt: the empirical expectation over timesteps
• ρt(θ): the ratio of the probabilities in the new policy to those in the old

policy, defined as: ρt(θ) = πθ(at|st)
πθold

(at|st)

• Ât: the advantage estimate at time t, as calculated by Equation 2.12
• ε: the clipping parameter, to prevent too large a policy update step in

a given update
• Vθ(st): The parameterized value function as defined by our network

output
• V targ

t : The empirical, or target, value, as defined in Equation 2.11
• Gλ

t : The λ-return, used as the target in value function optimization
• Gn

t : The n-step return of following a trajectory
• rt: The immediate reward after taking an action at time t
• c1: the value loss coefficient
• c2: the entropy loss (bonus) coefficient
• S[πθ](st): the entropy loss (bonus) of the current policy given a state
• δt: The temporal difference error as calculated by Equation 2.8

19

2.4. Feature Representation

• λ: The GAE lambda parameter.
• K: Number of epochs when optimizing the surrogate loss
• N: The number of iterations to run the optimization procedure to update

actor and critic network parameters
• T: The number of timesteps in a batch, or a single iteration, N
• M: The minibatch size, where a minibatch is a subset from the T-length

rollout collected in the current iteration

When performing stochastic gradient ascent on the surrogate objective
function defined in Equation 2.13, it is important to note that while the value
function contributes to the calculation of advantage, At, and the target value,
V targ
t , which in turn contribute to the policy gradient loss, LCLIP

t (θ), the
gradient does not flow through these values. In the PyTorch implementation
of this algorithm utilized, they are detached from the computation graph prior
to being used in the loss calculations. Similarly, the old log probabilities, πθold ,
utilized in calculated ρt, are detached. The gradient only flows through Vθ(st)
in LV F

t (θ), and πθ in LCLIP
t (θ).

2.4 Feature Representation

2.4.1 State Encoding

A linear function approximation involves representing a function as a weighted
sum of input features. The effectiveness of linear approaches to function ap-
proximation heavily depends on how the states are portrayed via features.
Ideally, these features should encapsulate regions of the state space where gen-
eralization is appropriate. However, a significant constraint of linear methods
is their inability to handle interrelations between different features. To cap-
ture these interrelations, feature construction becomes an essential avenue for
domain-specific knowledge of feature relationships to be incorporated into a
linear solution to a task [78]. For this reason, a variety of state space represen-
tations have been explored in literature, such as those utilizing Fourier basis
functions [42], coarse coding [88, 36], tile coding [3], and radial basis functions
[60].

When utilizing non-linear methods, interactions between features don’t
need to be explicitly encoded in the state representation, because these meth-
ods can inherently capture and model the complex relationships through non-
linear function approximation. The decision of how to encode a state is largely
influenced by the problem at hand, and the simulation environment in ques-
tion. In certain environments, such as the games of chess, Go, and shogi, or

20

2.4. Feature Representation

the simulation environment utilized to train AlphaDev [48], the state space is
both discrete, and sufficiently small, that information pertaining to the agent’s
state can be completely captured by the state representation. In other cases,
such as in Atari games, Starcraft II, Dota 2, and self-driving car simulations,
the state space is too large for this to be practical, and hence approximate
representations of the state need to be utilized.

Google’s DeepMind had success in training agents to play the games of
chess, Go, and shogi [74, 72, 68]. These successful agents relied on state rep-
resentations that were exact rather than approximate. Taking, as an example,
their success in the game of chess [74], the state is encoded as an image of
multiple layers. The 8x8 board results in an image of 8x8 pixels, with each
of the 119 channels in the image encoding a different piece of information
relevant to the game covering the most recent 8 timesteps of play. Encoded
information includes binary-encoded piece locations for each player at each of
the 8 timesteps, and a single channel representing a count of the total moves
made so far in the game.

AlphaDev, another algorithm trained by Google’s DeepMind, demon-
strated the ability of DRL methods to discover faster sorting algorithms
[48]. In their work, the action space of the environment consists of selecting
an assembly language instruction, and the the state of the environment is
represented as a combination of two elements. The first of these elements is
a list of assembly language instructions, corresponding to the prior actions
taken by the agent, and the second is the state of CPU memory and registers.
These two elements are passed through independent encoders to generate
embeddings for CPU state and assembly algorithm respectively, which are
then combined to create a state representation of the environment.

In the groundbreaking work introducing DQN applied to Atari games, the
capability of learning directly from high-dimensional state representations was
demonstrated [50]. Their representation of the state is a grayscale image of
84x84 pixels. To make computations simpler, these grayscale representations
of the Atari environment state are created by preprocessing raw Atari frames.
Initially, these are 210 x 160 pixel images with a palette of 128 colors. They
transform these into grayscale and down-sample to 110 x 84 pixels. Finally, an
84 x 84 area is cropped from the image, which generally contains the gameplay
area. This procedure reduces input dimensionality, producing an approximate
state representation that enhances computational efficiency.

OpenAI were able to find success in the high-dimensional, multi-agent
setting of the video game Dota 2 [56]. However, a significant degree of fea-
ture engineering and specialist knowledge was utilized to enable the results
achieved. Unlike the Atari environment, where success was found utilizing

21

2.4. Feature Representation

high-dimensional sensory input, OpenAI Five utilized a vector representation
of the environment, consisting of approximately 16,000 float and categorical
variables defining various characteristics of the state, such as unit positions,
health, and time remaining before major scheduled events.

2.4.2 Representation Learning

While appropriate hand-crafted features can yield effective model performance
[56], it is oftentimes undesirable [12]. Firstly, generating such representations
entails a high degree of manual effort, coupled with domain expertise, to pro-
duce high-quality features [39]. Additionally, it can lead to reduced expres-
sivity of the generated agent model due to the fact that the feature engineer’s
biases are pre-encoded into the representation, at the potential expense of
more abstract relationships in the data that are not captured in the feature
set. Together, these issues can result in models with a high cost to imple-
ment, that may produce suboptimal results, and might not generalize well to
different domains [73].

Recent research effort in deep learning has been put towards algorithms
and methods that are able to extract useful representations automatically
through the training process, rather than relying on specialized formulations
of problems to develop effective models [75, 28, 34, 5]. One such example
of a novel model-based approach to deep reinforcement learning in high-
dimensional environments can be seen in the work of Hafner et al. [32]. Their
paper introduces Dreamer, a reinforcement learning agent that learns long-
horizon tasks by ‘imagining’ in a more compact, and therefore more efficient,
latent space derived from high-dimensional sensory inputs. Dreamer uses a
unique actor-critic algorithm to optimize the predicted state values and ac-
tions within this latent space, maximizing their value using analytic gradients.
The agent outperforms existing model-based and model-free approaches on the
DeepMind Control Suite, showing improved data-efficiency, computation time,
and final performance when compared to alternatives such as PlaNet [33] and
Asynchronous Advantage Actor-Critic (A3C) [49].

The solutions to the issue of learning useful representations from input
data in the deep learning domain, and the solutions to these issues in the
DRL domain often align. An example of this can be seen in the work of Anand
et al. where unsupervised methods are adapted to a DRL domain [4]. The
paper presents a new method for unsupervised state representation learning
in the domain of DRL named Spatiotemporal DeepInfomax (ST-DIM), taking
inspiration from advances in DL literature on estimation of mutual information
[9, 82, 37, 83]. The ST-DIM technique maximizes mutual information across

22

2.5. Asymmetric Architectures

both spatial and temporal axes of neural encoder observations, exploiting the
spatio-temporal nature of visual observations in an RL setting.

Another example of adapting DL methods to the DRL domain can be seen
in recent efforts to adapt self-supervised learning methodologies into DRL. As
seen in the work of Yu et al. [98], success has been found with a Mask-based
Latent Reconstruction (MLR) objective, whereby an auxilliary objective is
defined with the aim of augmenting the representational understanding of the
trained model. Specifically, they utilize a method inspired by successful meth-
ods in the Natural Language Processing (NLP) domain. In order to generate
State-of-the-art (SOTA) results in NLP tasks, models typically undergo a pre-
training stage whereby tokens are masked, and the model is trained to fill in
the masked words [24, 76, 96]. Similarly, in the case of MLR, the model is
given an auxilliary objective of reconstructing masked data in a latent space
representation of a given visual input. The latent space reconstruction is uti-
lized as opposed to reconstruction of the raw visual input data due to the
relatively high dimensionality, and inclusion of excessive noise in the visual
input representation.

In summary, the challenge at the heart of DL and more specifically, DRL,
is the ability to learn efficient representations of data. Hand-crafted features,
while powerful, have significant drawbacks including the need for domain ex-
pertise, reduced expressivity, and potential bias. Novel methods from the
realm of DL are seeking to address these issues through automated feature
extraction and learning representations, showcasing significant improvements
in performance and efficiency.

While novel methods exist of ensuring the learned representations are ef-
fective and expressive, such as the aforementioned ST-DIM and MLR, these
architectures will not be explored in this work. Instead, we focus on the im-
pact of state encoding and the corresponding neural network architecture on
the performance of an RL agent across a selection of tasks. The ultimate ob-
jective of this work will be to find an effective state representation and neural
network architecture to be used in the training of agents in our custom missile
defence simulation environment.

2.5 Asymmetric Architectures

The observation embedding utilized for model inference is often subject to
restrictions. In the real world, these restrictions can be viewed from the
limitations imposed by the sensors available to observe the system. In the
multi-agent domain, this can be viewed from the standpoint of each agent’s

23

2.5. Asymmetric Architectures

knowledge of the policies of the other agents in the environment [47]. How-
ever, the same limitations need not apply during training. This fact has been
utilized advantageously in the actor-critic paradigm to develop policies that
demonstrate effective performance at a variety of tasks. A standard approach
in actor-critic methods is to utilize symmetric architectures, whereby both
actor and critic receive the same state representation as input. To benefit
from the reduced limitations on state representation in simulation environ-
ments, asymmetric architectures can be utilized, whereby the actor and critic
portions of the architecture receive differing inputs.

The utility of exploiting the presence of additional information during
training was demonstrated by Pinto et al. in the realm of robotics [58]. In
the field of robotics, real world training can be both time and cost prohibitive
due to the number of episodes often required for policies to converge, and the
damage due to cycling this would entail for a physical system. For this reason,
a common tool in reinforcement learning for robotic control is to train policies
in a simulation environment prior to testing the policies in the real world. The
observability of the environment in simulation is not the same as in reality.
In a simulation setting, it is possible to obtain full state representations of
a robot and its environment. In reality, the environment is only partially
observable, limited by the sensors available. Training a DRL algorithm on the
fully observable states of the robot and environment in the simulation setting
yield effective policies, however these policies are not extendable to a real
world setting where the actor network can only receive partial observations. If
instead only the partial observations, for example in the form of RGBD images
of the robot and its environment, are utilized for training, algorithms often
fail to converge on tasks involving complex behaviors. Pinto et al. address
this issue utilizing a hybrid system much like the strategies employed in the
multi-agent domain [47], whereby the observation representation utilized in
training is not identical to that used during testing. Specifically, they utilize
an actor-critic method, allowing them to differ the information received by the
critic to that received by the actor. This allows them to benefit from the full
observability of the simulator during training to guide policy updates, while
still allowing the policies developed by the actor portion of the algorithm to be
applicable in a real world scenario where full observability is not available. In
the architecture they utilize, the critic network receives the complete state (full
observation) of the system from the simulation environment, while the actor
network receives an image rendered from the simulation from a viewpoint that
is aligned with the camera positioning in the real world robotic system.

The concept of advantageously utilizing information available during train-
ing that is not available during inference to develop policies that are demon-

24

2.5. Asymmetric Architectures

strably more effective during inference was also a core component of the suc-
cess of Vinyals et al. in their StarCraft II reinforcement learning agent [84].
In their work, they utilize DRL to create an agent that has been shown to
beat advanced human players in StarCraft II. Their training pipeline begins
by utilizing a dataset of human-played games to generate policies that mimic
human behavior in a supervised manner. This is due to the difficulty, due
to the high dimensionality of the search space, of starting with a randomly
initialized agent and relying on exploration to find effective strategies. From
this baseline agent, they then utilize DRL to improve the agent performance.

The success of their agent at winning in StarCraft II against advanced
human players was due to a plethora of DRL tricks and details in their DRL
training architecture, including their novel league play approach, but a signif-
icant component of their success was their utilization of asymmetric informa-
tion during training and inference.

The DRL algorithm utilized is a policy gradient method similar to A2C.
During training, the critic network (value function) of their model receives
both the player info along with the opponent info. A significant component
of their design paradigm involved avoiding providing too great an advantage
to their agent on the basis of it being non-human. This led them to include
features such as a limiting the action rate and simulated latency for action
execution to the system. For this same reason, despite its theoretical availabil-
ity during inference, the inclusion of opponent information during inference
would lead to a significant advantage to the agent-based player over a human
player, and hence must be omitted during inference. Since only the policy
networks, which are trained without this information, are utilized during in-
ference, while the critic network is omitted, they are able to take advantage of
the availability of opponent information in the critic network during training
to develop better policy networks. This is just a small detail in their design
decision, but is shown to have significant performance implications. Accord-
ing to the results they report, the inclusion of opponent information in their
observations for the critic increased the average win rate percentage of their
agents from 22% to 82% [84].

An example of the utility of asymmetric information in a multi-agent do-
main, as is the focus of later portions of this work, can be seen in the work
of Lowe et al. where DRL methods were successfully applied to both cooper-
ative and competitive multi-agent domains. The approach described in their
work, named Multi-Agent Deep Deterministic Policy Gradient (MADDPG),
takes advantage of the asymmetry of information available during training
and inference. A novel component of their approach was to utilize centralized
training of the agents with decentralized execution. The architecture utilizes

25

2.6. Multi-Agent Reinforcement Learning

an actor and a critic for each agent in the environment. Hence, for N agents,
a total of 2N networks are trained. The actor networks receive an observation
and output an action for that agent to take. The critic networks receive the
observations of each agent, along with the actions taken by each agent.

An advantage of this approach, as noted by Lowe et al., is the applica-
bility of the architecture to a variety of domains. Specifically, whether the
environment in question is cooperative, competitive, or mixed, the architec-
ture is applicable. With varying reward structures, or even conflicting reward
signals as would be the case in a competitive environment, each agent is able
to independently approximate their state-action value function by means of
their independent critic network.

In this work, we will look to explore the utility of applying the technique
of utilizing an asymmetric architecture, whereby the actor and critic inputs
differ, to our selection of tasks. In Chapter 3, this will be explored by provid-
ing the critic with a different state encoding that the actor. In Chapter 4, we
deal with an adversarial scenario, where a natural asymmetry of information
exists during inference in a similar manner to the StarCraft II environment.
The attacker and defender agents might only have partial observability of each
other’s state. In this chapter, we will explore the merit of asymmetric archi-
tectures by providing the critic with greater observability of the opponent’s
state, to see if doing so allows for the training of more performant policy
networks.

2.6 Multi-Agent Reinforcement Learning

Traditional applications of RL have focused on single-agent environments,
however many environments of interest cannot be modelled as such. In par-
ticular, certain environments may need to be modelled as multi-agent sys-
tems, where the agents within the environment must take the behavior of
other agents into account to learn an effective policy. These agents may need
to exhibit a combination of cooperative and competitive behavior in order to
maximize their reward. This fact has led to increasing interest in the field
of Multi-Agent Reinforcement Learning (MARL), where the concepts devel-
oped in single-agent environments have been adapted and extended to solve
multi-agent problems. Notable examples include real-world coverage control
of Unmanned Aerial Vehicle (UAV)s whereby the environment is purely co-
operative [99], and AlphaStar whereby the environment is competitive [84].

The training procedure for MARL systems, much like single-agent RL,
relies on agents sequentially interacting with their environment, and learning

26

2.6. Multi-Agent Reinforcement Learning

from their experiences. This is accomplished through agents observing their
environment, actions taken, and resulting reward received, with the objective
being to develop policies from this experience that favor the actions that led to
high expected reward when provided with a particular observation. Research
into MARL has often focused on extending concepts from single-agent RL to
suit a multi-agent domain.

Many of the problems present in the single-agent RL setting are still
present, and in many cases augmented, when translated to multi-agent do-
mains [29]. In single-agent domains, the issue of credit assignment exists,
whereby difficulty in determining which actions or events should receive credit
for the agent’s performance arises. This is oftentimes thought of in tempo-
ral terms [80]. However, in multi-agent domains, the dimensionality of the
issue increases due to the added structural credit assignment [2]. In multi-
agent domains, there exists an additional difficulty of assigning credit to the
relevant agent’s action among multiple interacting agents [92, 19, 94]. An ad-
ditional issue arises when looking at the non-stationarity of the environment
with the presence of multiple agents. Since the policies of the other agents in
the environment are simultaneously changing during the learning process, an
issue of non-stationarity of the environment arises. The changing policy of the
other agents in the environment leads to an environment that appears non-
stationary from the perspective of a single agent. Consequently, the Markov
assumption of an MDP no longer holds, presenting agents with a challenge
known as the moving target problem [16, 95].

Given the prevalence of multi-agent system problems ranging from guid-
ance of UAV swarm behavior [20] to learning to play video games such as
StarCraft II [84], there is increasing interest in the applications of RL meth-
ods to multi-agent systems. The environments that can be modelled as multi-
agent systems come in a variety of configurations, but are most often divided
into the broad categories of cooperative, competitive and mixed environments.
Cooperative environments are those environments where the optimal policies
of the agents involve cooperation to accomplish a shared objective. Compet-
itive environments are typically zero-sum games, where two agents compete
to maximize reward in their respective directions. Mixed environments, gen-
erally considered the most computationally and theoretically complex of the
three environment types [99, 17], are those where optimal policies require a
combination of competitive and cooperative behavior. Further subdivisions,
of course, exist within each of these divisions of MARL. Important configura-
tions in these subdivisions include the degree of observability that the agents
have of the environment and their peers, whether the training is centralized
or distributed, and whether the execution is centralized or decentralized.

27

2.6. Multi-Agent Reinforcement Learning

In terms of observability in MARL, real-world scenarios often involve envi-
ronments with varying degrees of observability. Agents may have full observ-
ability, where they can see the entire state of the environment and the actions
of other agents, or they may operate under partial observability, where they
can only observe a portion of the environment or the actions of others. The
latter scenario, which turns the problem into a Partially Observable Markov
Decision Process (POMDP), makes learning more complex [100], as agents
must make decisions based on incomplete information and need to predict or
estimate the unseen parts of the environment or the actions of their peers.

Training schemes in MARL can be broadly classified into centralized and
distributed methodologies. In centralized training, agents’ policies are up-
dated based on mutual information. An example of such mutual information
can be in the form of centralized value estimation during training [65, 77]. In
contrast, distributed training involves each agent learning independently using
its own experiences, without relying on any exchange of information between
agents during the training procedure.

Execution in MARL can either be centralized or decentralized. Centralized
execution implies that there is a central controller that decides the actions of
all agents. On the other hand, decentralized execution allows each agent to
make its own decisions based on their individual policies. Extending on the
POMDP concept, the Decentralized Partially Observable Markov Decision
Process (Dec-POMDP) is a framework for decision-making in multi-agent set-
tings, where each agent has partial and possibly different observations of the
environment, and the overall system dynamics are influenced by the combined
actions of all agents [11].

Value-based methods have seen success being applied to multi-agent set-
tings. The first such example can be seen in the Q-value Mixture (QMIX)
algorithm [61]. QMIX is a value-based multi-agent reinforcement learning
algorithm designed for cooperative scenarios, aiming to overcome challenges
related to credit assignment and exploration. It uses a decentralized setup
where each agent has its own Q-network, producing individual state-action
value functions, which are then combined using a mixing network to ap-
proximate the joint state-action value function. An additional example of
value-based methods succeeding in multi-agent scenarios is demonstrated by
the work of Samvelyan et al. [67]. The environment utilized in their work
is a custom-designed selection of cooperative StarCraft II scenarios, which
they collectively refer to as the StarCraft Multi-Agent Challenge (SMAC). In
this environment, they demonstrated the effectiveness of a selection of Deep
Recurrent Q-Network (DRQN) architectures, including one policy gradient
architecture with an additional Q-value critic network, at learning decentral-

28

2.6. Multi-Agent Reinforcement Learning

ized policies for agents with the objective of winning a small scale two-team
combat scenario. While the results were impressive, with the trained agents
consistently outperforming the built-in heuristic-based AI, it is worth noting
a couple of limitations of their approach. Firstly, they countered the issue of
having a sparse reward system if they were to only reward wins, by instead
establishing the default reward system to utilize a shaped reward that, aside
from rewarding wins, additionally rewarded damage and kills of enemy agents.
This is an understandable design decision given the environment context, but
has implications on the generalizability of their results. Additionally, they
opted to test only one on-policy, policy gradient architecture, Counterfactual
Multi-Agent (COMA) policy gradients [27]. That said, their decision to focus
on value-based methods does make sense given the discrete action space and
mostly deterministic environment [85].

Vanilla policy gradient methods have seen limited success in multi-agent
settings, which has been attributed to the fact that high variance in policy
gradient estimation arises when applying them to multi-agent settings [67,
44, 47]. Additionally, the sample inefficiency of policy-gradient versions has
been limiting to their performance when compared to value-based, off-policy
alternatives [67]. However, variations of the algorithm have demonstrated
promising results in multi-agent settings, as demonstrated by the work of
Lowe et al. [47] which also serves as the origin of the MPE framework. In
their work, they demonstrated the success of their multi-agent adaptation
of Deep Deterministic Policy Gradient (DDPG) [46], which they refer to as
MADDPG. This is an off-policy actor-critic algorithm that combines both Q-
learning and PG methods to learn a centralized critic. They compared their
MADDPG algorithm to DDPG with decentralized critics, and consistently
found it to outperform across a variety of multi-agent scenarios.

In the case of the SMAC, Samvelyan et al. demonstrated that their Multi-
Agent Proximal Policy Optimization (MAPPO) was able to perform at a level
superior to the off-policy QMIX algorithm [61] across a majority of scenarios
tested. This result is notable given the complete failure of COMA on challeng-
ing tasks in the work of attributed to the poor sample efficiency of on-policy
methods, and the fact that the original work found QMIX to be, on average,
the best performing agent. Furthermore, they rated a selection of their sce-
narios as Super Hard on the basis of QMIX being the only algorithm able
to learn a winning policy from the algorithms they tested. This failure was
attributed to insufficient exploration. MAPPO, however, was able to learn
effective policies in these environments.

Yu et al. were further able to demonstrate the effectiveness of MAPPO in
the MPE framework [97]. Of the three cooperative tasks tested, they demon-

29

2.7. Conclusion

strated performance on par with MADDPG on two tasks and superior to
MADDPG on the third task. Agarwal et al. demonstrated a novel PPO
implementation in the MPE framework that utilized an agent-entity graph
embedding of a selection of cooperative scenarios, where graph edges were
used to represent communication channels [1]. The algorithm demonstrated
superior performance on the selection of cooperative tasks when compared to
all algorithms tested, including MADDPG and QMIX.

Due to its demonstrated success in multi-agent settings, a multi-agent
implementation of PPO will be utilized in the multi-agent experiments in this
work.

2.7 Conclusion

This chapter has provided an extensive review of the current literature in the
foundational subject areas that form the basis of the experiments to come.
Specifically, we provide a review of relevant literature in the fields of Rein-
forcement Learning (RL), Deep Learning (DL), Deep Reinforcement Learning
(DRL), and Multi-Agent Reinforcement Learning (MARL). The discussion
commenced with an exploration of fundamental RL principles, advancing fur-
ther into the more sophisticated DL techniques, which are critical to the suc-
cess of DRL.

From the literature, we can see that the state representation or state en-
coding, neural network architecture, and multi-agent training methodology are
all important decisions with significant impact on the success of agent train-
ing. In the case of neural network architecture, in particular, the symmetry
or asymmetry of information provided to the actor compared to that provided
to the critic is seen to have a role on agent performance. In the case of the
multi-agent training paradigm, we see that various training paradigms exist,
particularly in relation the presence of a single policy network controlling all
agents, or one policy network per agent.

Each of these areas is critical to our upcoming experiments. In the fol-
lowing chapters, we will apply the concepts discussed in this literature review
to our set of experimental environments. Specifically, in Chapter 3, we will
experiment with two simple RL environments to gain an understanding of the
dynamics and challenges in a simpler setting. Using the lessons-learned from
these experiments, in Chapter 4, we will extend these concepts to a specific ap-
plication of greater complexity, due to its higher dimensional state-space and
multi-agent nature - the missile defence Environment. Through the upcoming
experimental work, we hope to contribute insights to the effective training of

30

2.7. Conclusion

agents in this complex, multi-agent missile defence scenario. This literature
review will act as a reference point, underlining the theoretical foundations on
which our experiments are based.

31

3 Experimental Environments

3.1 Introduction

Recent work has demonstrated the capabilities of DRL to generate effective
reward-maximizing agents in environments where the state representation is
of high dimension. Given an observation of high dimension, DRL methods
have been demonstrated to be capable of learning useful representations that
enable effective decision making and control in these environments, in some
tasks to a level of performance competitive with the highest-performing hu-
mans [56, 72, 74, 85]. However, agent performance on high-dimensional ob-
servations is contingent on the learning algorithm’s ability to learn these use-
ful representations of their environment [78]. A limitation of this work that
should be noted is that it focuses on the PPO actor-critic architecture in all
experiments across all environments tested.

One objective of this chapter is to systematically elucidate how the choice
of state representations and the design of neural network architecture, uti-
lized with the PPO actor-critic algorithm, can impact agent learning in RL
environments. Specifically, we look to focus on raw variable representations
coupled with dense networks, compared to image-like transformations of the
raw variables coupled with convolutional networks. To do this, we will utilize
the low-dimensional single-agent MountainCar environment.

The MountainCar environment serves as a representative low-dimensional,
single-agent environment which allows us to conduct a focused analysis on the
effect of various state representations on agent performance. Moreover, we also
aim to investigate whether utilizing asymmetric architectures can help enhance
agent performance, especially on low-performing representations. The goal
here is to examine if the provision of a high-performing representation to the
critic can lead to an improved overall performance.

The objective of Section 3.3 is to dissect the challenges associated with
DRL in multi-agent systems, and further determine the efficacy of our pro-
posed state representations and architectures under such circumstances. To

32

3.2. Mountain Car Environment

do this, we utilize the MPE. The MPE offers a slightly more complex sce-
nario, due to its higher dimensionality and the presence of multiple agents,
as compared to the MountainCar. In this setting, we are able to confirm
whether findings regarding representation, neural network architecture and
asymmetric architectures from our MountainCar experiments extend to this
new environment, and we are able to expand the realm of experimentation to
consider different multi-agent training architectures.

3.2 Mountain Car Environment

3.2.1 Problem Definition

Experiment Background

To better understand the impact of state representation on agent performance,
a selection of popular representation options will be detailed, with results
of training a DRL agent on each presented. Throughout this experiment,
we will additionally define the precision of each representation we utilize, in
order to identify whether a relationship exists between the precision of the
information provided to the agent in training, and their ultimate performance
in the environment.

Finally, to better understand whether an asymmetric architecture can aug-
ment performance on low-performing representations, an asymmetric architec-
ture will be presented, with the actor and critic input representations for this
architecture being selected based on the results of the representation perfor-
mance experiment.

Environment Background

The popular MountainCar environment, utilized in this work, contains a car
that is initialized in the valley of a sinusoidal terrain. Reward is provided to
the agent for reaching an objective at the peak of the terrain. The amplitude
of the terrain and the power of the car are defined such that the car cannot
directly drive to the goal, and instead, must first build momentum to overcome
the effect of gravity.

The continuous action space of the environment is of dimension 1, with the
value corresponding to the force applied to the car in the given timestep. This
action, at, can be any floating point value between -1 and 1. The state space
is 2-dimensional and the state is updated according to Equations 3.1 and 3.2,
with resultant values clipped to remain in their valid ranges of -1.2 to 0.6 for
xpos and -0.07 to 0.07 for xvel. These variable ranges are taken as default from

33

3.2. Mountain Car Environment

the MountainCar environment. The car’s velocity in a given timestep, xvel,t
is calculated as shown in Equation 3.1 using the car’s velocity in the prior
timestep, xvel,t−1, the selected action for the given timestep, at, the car’s
position in the previous timestep, xpos,t−1, along with the car’s power, P , and
gravity, g, which are constants equal to 0.0015 and 0.0025 respectively. The
car’s position in a given timestep, xpos,t, is then updated according to Equation
3.2 by taking the sum of the position in the previous timestep, xpos,t−1, and
the velocity in the current timestep, xvel,t.

xvel,t = xvel,t−1 + at × P − g × cos(3xpos,t−1) (3.1)

xpos,t = xpos,t−1 + xvel,t (3.2)

At the start of an episode, the car is initialized with an xpos between -0.6
and -0.4 by sampling a uniformly random distribution, and an xvel of 0, with
the goal state being located at xpos = 0.45. Reaching this goal state results in
a reward of 100 and terminates the episode. A negative reward is also assigned
at each timestep according to the energy utilized by the agent, with a 0.1 unit
penalty applied for taking a non-zero action in each timestep.

3.2.2 Method

State Space Representation

In order to evaluate the impact of the state space representation, we defined
six different ways the state could be represented, observed or encoded by the
agent (see Figure 3.1):

• Raw-continuous: The default observation space from MountainCar
consisting of two float values, xpos and xvel, corresponding to the car’s
x-position and x-velocity (See Figure 3.1(a)).

• RBF (1D): The popular RBF representation [15, 59], which has seen
particular success when applied to the MountainCar problem [45]. RBF
(1D) utilizes a 1-dimensional variation of the RBF, utilizing Equations
3.3 and 3.7 to create two 1-dimensional arrays to represent the state.
A sample of the two arrays created using this method can be seen in
Figure 3.1 (b).

• RBF (2D): A 2-dimensional representation akin to a smoother version
of the One-hot representation, using an RBF transformation of the Raw-
continuous variables, consisting of a single-channel image (See Figure
3.1(c)).

34

3.2. Mountain Car Environment

• One-hot: A table-based version that discretizes the continuous space
into a 50x50 grid and sets as 1 the table location corresponding to the
xpos and xvel variables’ values, which correspond to the axes of the grid
(See Figure 3.1(d)).

• Human-img: A stack of three single-channel images corresponding to
the renderings from the OpenAI gym environment’s render function,
from the three most recent timesteps (See Figure 3.1(e)).

• Hybrid: A pair of representations containing asymmetric [58] entries
for the actor and critic, whereby the actor receives the Human-img rep-
resentation and the critic receives the RBF (2D) representation. These
two were selected for the Hybrid experiment based on the high perfor-
mance of the RBF (2D) representation and the low performance of the
Human-img representation, as will be demonstrated in the Results &
Discussion section.

Radial Basis Function Transformations
Figure 3.1 (b) shows a sample of the two vectors that comprise an RBF

(1D) representation. For the vector representing position on the left of the
figure, the standard equation to generate an RBF is utilized as detailed in
Equation 3.3. The index of an element in this vector corresponds to the x-
position of the environment, and the mean of the RBF is xpos,t. The value of
a given pixel, i, is then calculated using the center-point of the given pixel,
ci, the mean of the RBF, xpos,t, and a standard deviation of 1/16 of the axis
range. This standard deviation was selected based on qualitative assessment
of the generated vectors with this value, and equates to a σpos of 0.1125.

ϕRBF1D,pos(ci) = (
1

σpos
√

2π
e

−(xpos,t−ci)
2

2σ2
pos) (3.3)

For the vector representing x-velocity generated with Equation 3.7, a trans-
formation is performed to ensure the axis of this vector also corresponds to the
x-position axis of the environment, instead of corresponding to the x-velocity
axis. This transformation brings the velocity vector representation into the
same reference frame as the position vector, so the 1-dimensional convolution
operation is performed in the same reference frame. To accomplish this, a blur
effect is applied to the x-position representation according to the magnitude
and direction of xvel.

The mean of the RBF, µvel is generated by calculating the center point be-
tween the current position and the expected next position, assuming current

35

3.2. Mountain Car Environment

(Position, Velocity)=(-0.6692099571228027,-0.035347260534763336)

(a)

(b)

(c) (d)

(e)

Figure 3.1: A selection of representations of the environment. (a): The float-
ing point Raw-continuous representation. (b): The RBF (1D) rep-
resentation, which is a representation consisting of 2 1-dimensional
arrays as shown. The array centers are indicated by the red ar-
rows to clearly show the shift in the entry of peak intensity in
the velocity array. (c): An RBF (2D) image representation of the
state. (d): The One-hot image representation of the state. (e): A
Human-img representation, consisting of a stack of three grayscale
renderings from the most recent three timesteps.

36

3.2. Mountain Car Environment

velocity, xvel,t, were maintained in the next timestep. This shift is demon-
strated in Equation 3.5, where Equation 3.4 is utilized to estimate xpos,t+1.
The blur of the vector to represent the velocity is then accomplished with
Equation 3.6, where the standard deviation for the velocity vector, σvel, is
calculated by stretching the standard deviation of the position vector, σpos,
by an amount that increases in proportion to velocity.

x̂pos,t+1 = xpos,t + xvel,t (3.4)

µvel =
xpos,t + x̂pos,t+1

2
= xpos,t +

xvel,t
2

(3.5)

σvel,RBF1D = (1 + |x̂pos,t+1 − xpos,t|)× σpos (3.6)

Once we have a mean, µvel, and standard deviation, σvel, calculated for
our RBF vector representing velocity, we then generate the pixel values of the
vector using these values in conjunction with the center-point of each pixel,
ci.

ϕRBF1D,vel(ci) = (
1

σvel,RBF1D

√
2π

e

−(µvel−ci)
2

2σ2
vel,RBF1D) (3.7)

For the RBF (2D) representation, the position blur is not utilized. Instead,
Equation 3.8 is utilized to generate the single-channel image, where one axis
represents the environment’s x-position axis, as previously seen in the RBF
(1D) representation, but the other axis represents the environment’s x-velocity
axis. Variables ci and cj are the coordinates along these respective axes of
the center of a given pixel. The Raw-continuous observation values for x-
position and x-velocity are used as the mean values, xpos and xvel, which
correspond to the coordinates of the center of the RBF. We utilize a standard
deviation of 1/16 of the respective axis ranges based on qualitative assessment
of the generated image with this standard deviation, which equates to a σvel
of 0.00875 and a σpos of 0.1125.

ϕRBF2D(ci, cj) = (
1

σpos
√

2π
e

−(xpos−ci)
2

2σ2
pos)× (

1

σvel
√

2π
e

−(xvel−cj)
2

2σ2
vel) (3.8)

Information on the underlying state of the environment is limited by the
precision of the selected representation. For this reason, we look to quantify

37

3.2. Mountain Car Environment

the impact on precision of each representation in order to utilize this quantifi-
cation when comparing agent performance.

To begin with, we will look at the Raw-continuous representation from
which all other observations are derived. The limiting factor for this repre-
sentation’s precision is the datatype precision of the variables representing
position and velocity. In our case, these variables are represented using scalar
values, and hence the precision is limited to 15 decimal places. As a percentage
of the magnitude of our variable ranges, this provides a precision percentage,
PrecRaw−continuous, as defined by Equation 3.9:

PrecRaw−continuous =
1e−15

|I|
(3.9)

With an xpos range magnitude, |Ixpos |, of 1.8 and an xvel range magni-
tude, |Ixvel

|, of 0.14, this yields resolutions of approximately 5.56e−14% and
7.14e−13% for the respective variables.

In the case of the RBF (1D) and RBF (2D) representations, each pixel
intensity in a given representation is derived from a calculation utilizing the
Raw-continuous values, with precision as defined in Equation 3.9. As such,
by inverting the arithmetic that led to a selection of pixels having their given
value, one can deduce the original variable values precisely.

Let us first consider the position representation, xpos, as defined in Equa-
tion 3.3. We can rearrange this equation to obtain an expression for the
underlying variable value, xpos, as follows:

xpos,t = ci ±
√
−2σ2

posln(σpos
√

2πϕRBF1D,pos(ci)) (3.10)

By sampling two possible values for ϕRBF1D,pos(c) and obtaining the roots
above, one can deduce the original value for xpos,t from which the representa-
tion was generated by taking the root that remains constant across the two
samples. That said, RBF (1D) utilizes Equation 3.7 in its creation of the vec-
tor representing velocity. This derived representation utilizes both xpos,t and
xvel,t in its creation. Hence, at least three points would have to be sampled
to recover the original xvel,t representation through regression.

Similarly, when performing the same analysis in 2-dimensional space, one
ends up with a solution space that corresponds to the equation of an ellipse.
This can be seen in the rearrangement of Equation 3.8 as seen in Equation
3.11.

38

3.2. Mountain Car Environment

(xpos − ci)
2

−2σ2
posln(2πσposσvelϕRBF2D(ci, cj))

+
(xvel − cj)

2

−2σ2
velln(2πσposσvelϕRBF2D(ci, cj))

= 1

(3.11)
By sampling three points and identifying the intersection point of these so-
lution spaces, one can deduce the coordinate corresponding to the original
Raw-continuous representation. This can be seen in Figure 3.2.

Figure 3.2: A representation of a 9x9 RBF (2D) observation showing the
greater precision deduced through sampling of 3 pixel values.

The following parameters are utilized in Equation 3.11 to obtain the el-
lipses shown:

• Ellipse 0 Parameters:
– Point(ci, cj) = (-0.3, -0.0175)

– ϕ(ci, cj) = 1.158181450274851

– σpos = 0.1125

39

3.2. Mountain Car Environment

– σvel = 0.00875
• Ellipse 1 Parameters:

– Point(ci, cj) = (-0.075, 0.035)

– ϕ(ci, cj) = 0.36935165886629207

– σpos = 0.1125

– σvel = 0.00875
• Ellipse 2 Parameters:

– Point(ci, cj) = (-0.3, 0.035)

– ϕ(ci, cj) = 2.7291601267802785

– σpos = 0.1125

– σvel = 0.00875
Following similar logic with RBF (1D) representations, the original preci-

sion of the xpos,t and xvel,t values can be recovered using regression on 2 vector
values for each state variable. Hence, with a total of 4 vector values, 2 from
each RBF vector representing xpos,t and xvel,t, the original precision of the
variables can be recovered. Ultimately, this results in an equivalent precision
between the RBF (1D), RBF (2D) and Raw-continuous representations.

PrecRBF1D = PrecRBF2D = PrecRaw−continuous (3.12)

When looking at the One-hot representation, the limiting factor of our
precision is the grid resolution selected in generating the table representation.
Since the continuous domain is discretized according to the image resolution,
Resimage, selected for the other representations (50x50), the value will be
translated to the pixel for which that value lies closest in the discretized do-
main. We can then calculate the precision as a percentage of the x-range,
Resimage,x, provided by this representation in the following manner (note the
same calculation holds for both variables since it is square):

PrecOne−hot =
1

Resimage,x − 1
= 2.04% (3.13)

In the case of Human-img observations, position is captured in the pixel
location of the rendered car, while velocity is captured by stacking renderings
from consecutive timesteps. The pixel location of the car will change between
images in the stack, thereby capturing the motion of the car. Higher velocity
will lead to larger differences in pixel location of the rendered car between
consecutive renderings.

As shown by Equations 3.1 and 3.2 detailing the transition dynamics of
the environment, the current velocity is determined by the velocity from the

40

3.2. Mountain Car Environment

previous timestep xvel,t−1, the action taken in the current timestep at and
the position in the previous timestep xpos,t−1. In the Human-img representa-
tion, we have access to renderings that give us information on xpos,t, xpos,t−1

and xpos,t−2. Using this information along with the fact that our timestep size
between consecutive renderings a single environment timestep, we can approx-
imate xvel,t−1 to a level of precision determined by the rendered resolution,
however we do not have any information that allows us to approximate at.
Because of this, we can only approximate xvel,t−1 with this representation,
and not xvel,t.

The precision of the approximation of xpos,t is determined by the pixel
resolution utilized. In this work, we utilize an image resolution of 50x50, so our
xpos range is divided into 50 grid squares. Following an identical calculation as
was utilized for the One-hot representation, the precision can be determined
to be 2.04%.

PrecHuman−img,xpos,t =
1

Resimage,x − 1
= 2.04% (3.14)

In the case of approximating xvel,t−1, since we do not have the necessary
information to approximate xvel,t, the determining factor for precision is the
precision of the approximations of xpos,t and xpos,t−1 since the timestep size
between consecutive renderings in the image stack is equivalent to a single
environment timestep. We can approximate the velocity using Equation 3.16.
More precisely, since our ∆t is equal to a single timestep with no error associ-
ated with this time measurement, the calculation can be simplified to Equation
3.17. Since the precision error on xpos,t and xpos,t−1 are both equivalent to
2.04%, the precision error on the result for xvel,t−1 will be the sum of the
precision error on these two values, or 4.08%.

xvel,t−1 =
xpos,t − xpos,t−1

∆t
(3.15)

xvel,t−1 =
xpos,t − xpos,t−1

∆t
(3.16)

xvel,t−1 = xpos,t − xpos,t−1 (3.17)

PrecHuman−img,xvel,t−1
= 2× PrecHuman−img,xpos,t = 4.08% (3.18)

41

3.2. Mountain Car Environment

Representation
Precision

Precxpos Precxvel

Raw-continuous 5.56× 10−14% 7.14× 10−13%
RBF (1D) 5.56× 10−14% 7.14× 10−13%
RBF (2D) 5.56× 10−14% 7.14× 10−13%
One-hot 2.04% 2.04%

Human-img 2.04% 4.08%

Table 3.1: A summary of precision by representation type.

Neural Network Architectures

The objective of this work is to compare agent performance with varying
representation, and neural network architecture. Dense layers were utilized for
the Raw-continuous representation. One-dimensional convolution was utilized
for the RBF (1D) representations. Two-dimensional convolution was utilized
in architectures that receive image-like inputs. Specifically, it is utilized with
RBF (2D), One-hot, and Human-img representations, and the actor network
of the Hybrid representation.

The influence of parameter count in a given architecture is often over-
looked when comparing network performance, potentially skewing results and
interpretations. To ensure the credibility and fairness of our results, we ac-
knowledged the potential bias induced by a large difference in the number
of parameters. An important aspect of our work was to align the number
of trainable parameters across all architectures to approximately 1M in each
case, mitigating the confounding influence of architectural differences and pro-
viding a more balanced comparison between representations and architectures.
In the case of our MountainCar architectures, there is less than a 1% difference
between parameter counts of each network, which we deem to be close enough
to not have a significant influence on agent performance. Details regarding
the parameter alignment are presented in Figures 3.3-3.6.

For the default Raw-continuous representation of dimension two, the actor-
critic architecture utilized is detailed in Figure 3.3. A shared feature extractor
of three dense layers, with each layer containing 480 units, precedes the actor
and critic heads. The actor and critic heads have two layers each of the same
architecture, consisting of a dense layer of 480 units followed by a dense layer
of 96 units. The actor head finishes with a single unit output, corresponding
to the selected action, which is a scalar value between -1 and 1 as previously
detailed in the discussion of the environment action space. The critic head
also finishes with a single unit as output, where the value of this scalar output

42

3.2. Mountain Car Environment

Figure 3.3: The architecture utilized in training with proximal policy opti-
mization for the Raw-continuous representation (1,017,506 param-
eters).

corresponds to the value estimate of the input state representation. The ac-
tivation function applied to all layers, with the exception of the output layer
which does not utilize activation, is ReLU. The same outputs of a single scalar
value each for the actor and critic, and the same ReLU activations on all other
layers, are utilized across all architectures. Taking the quantity of weights and
biases present in this architecture yields a total trainable parameter count of
1,017,506.

In the case of the RBF (1D) representation, the architecture utilized can
be seen in Figure 3.4. As shown, a single 1-D convolution layer is utilized
for feature extraction from the two input vectors of dimension 50. This 1-D
convolution layer has 32 filters, a kernel size of 8, and a stride of 4. The output
of this operation is then flattened to create a vector of dimension 352, which is
then fed into separate actor and critic heads. The architectures of these heads
are once again symmetrical, consisting of two dense layers. The first layer of

43

3.2. Mountain Car Environment

Figure 3.4: The architecture utilized in training with proximal policy opti-
mization for the RBF (1D) representation (1,014,306 parameters).

640 units is followed by a second of 440 units. The calculation of the number
of trainable parameters in this architecture yields a result of 1,014,306.

The next architecture utilized can be seen in Figure 3.5. This architecture
is the most commonly utilized in our experiments, as it is used in training
with One-hot, RBF (2D) and Human-img representations. To extract features
from the input images, a single 2-D convolution layer is present containing 32
filters, a kernel size of 8, and a stride of 4. The result of this operation is
flattened to create a vector of dimension 3872, which is then processed by
the actor and critic heads separately. These symmetrical heads contain a
dense layer of 128 units, followed by another dense layer of 64 units. The
result of calculating the number of trainable parameters in this architecture
differs slightly depending on the representation utilized, since the number of
channels in the input varies. For the single-channel RBF (2D) and One-hot
representations, there are 1,010,210 trainable parameters, while for the three-
channel Human-img representation, there are 1,014,306. The architectures
used for both single-channel and three-channel images are identical aside from

44

3.2. Mountain Car Environment

Figure 3.5: The architecture utilized in training with proximal policy op-
timization for the image-based representations of RBF (2D)
(1,010,210 parameters), One-hot (1,010,210 parameters), and
Human-img (1,014,306 parameters).

the difference in number of input channels.
The final architecture utilized in our experiments can be seen in Figure

3.6. Rather than sharing a feature extractor between the actor and critic,
this architecture completely separates the two components of the algorithm
into their own neural network architectures. The actor and critic are entirely
symmetrical, with the exception of the input layer, since this architecture
is utilized with Hybrid representations. The actor receives the Human-img
representation, a three-channel image, while the critic receives the RBF (2D)
representation, a single-channel image. Following this input is a single 2-
D convolution layer with 32 filters, a kernel size of 8, and a stride of 4. The
result of this operation is then flattened into a vector of dimension 3872, which
is then passed through two dense layers prior to the output layer. The first of
these layers contains 128 units, while the second contains 64 units. In total,
this architecture contains 1,016,386 trainable parameters, taking into account

45

3.2. Mountain Car Environment

Figure 3.6: The architecture utilized in training with proximal policy op-
timization for the Hybrid representation (1,016,386 parameters)
where the actor receives the Human-img representation and the
critic receives the RBF (2D) representation.

46

3.2. Mountain Car Environment

both the actor and critic networks.

Table 3.2: Neural Network Architectures Utilized with MountainCar Experi-
ments. The count of the number of layers includes convolutional,
dense, and the output layer, but excludes the input layer.

Model Input Type Input Shape # of Layers # of Pa-
rameters

Raw-
continuous

Dense (2,) 6 (3 shared
by actor &
critic)

1,017,506

RBF (1D) Vector (2,50) 4 (1 shared
by actor &
critic)

1,014,306

RBF (2D)
& One-hot

Image (1,50,50) 4 (1 shared
by actor &
critic)

1,010,210

Human-
img

Image (3,50,50) 4 (1 shared
by actor &
critic)

1,014,306

Hybrid Image Actor: (3,50,50)
Critic: (1,50,50)

4 (0 shared
by actor &
critic)

1,016,386

Training Configuration

Our agents were trained until total rollout timesteps exceeds 300,000. Due to
our use of 2048 timesteps in each rollout, this equates to a total of 301,056
timesteps of training. We utilize PPO [71] for 10 training runs per agent
configuration. It should be noted that we negate the terms in the surrogate
objective function detailed in Equation 2.13, and perform stochastic gradi-
ent descent on the resulting surrogate objective function. This approach is
taken in all subsequent experiments in this work, and should be noted when
observing figures of loss curves. The average episode length varies through
the training process from a minimum of approximately 66 timesteps when the
agent is consistently solving the task, to a maximum of 1000 when the agent
is unable to solve the task. On this basis, the 301,056 timesteps of train-
ing equates to between 500-600 episodes of training. The Adam optimizer is
utilized for parameter updates utilizing a learning rate of 3×10−4, and the re-
mainder of hyperparameters set to default PyTorch values (notably, β1 = 0.9,

47

3.2. Mountain Car Environment

β2 = 0.999). Other important hyperparameter selections are detailed in Table
3.3.

Table 3.3: Hyperparameters used with PPO for the MountainCar experiments

Hyperparameter Value

Learning Rate 3× 10−4

Rollout Timesteps, T 2048
Total Timesteps 301056
Minibatch Size, M 64
Iterations, N 147
Epochs, K 10
Discount Factor, γ 0.99
GAE Lambda, λ 0.95
Value Loss Coefficient, c1 0.5
Entropy Loss Coefficient, c2 0
Clipping Ratio, ε 0.2

3.2.3 Results & Discussion

The mean episodic reward achieved by agents in the 10 training runs, for each
experiment configuration, are shown in Figures 3.7. The asymptotic reward
and convergence characteristic results are further summarized in Table 3.12.
In the case of the Raw-continuous representation, 7 out of 10 training results
produced agents capable of consistently solving the task, while 3 training runs
resulted in agents that learned to take the do-nothing action consistently to
avoid the penalty for selecting the other actions, as shown in Figure 3.7. This
results in an agent that remains in the trough of the sinusoidal terrain. Of
all representations from which agents were able to solve the task, the Raw-
continuous representation ranks 4th in convergence success rate, and was the
slowest to converge, taking 238,629 timesteps on average.

Looking next at the RBF (1D) results in Figure 3.8, it can be seen that
a higher success rate is achieved, with 8 of 10 agents learning to consistently
reach the objective location, which ranks the representation at a tied 3rd
in success rate with Hybrid. It also has the 2nd fastest mean timesteps to
converge, at 160,400.

RBF (2D) proves to be the highest performing representation, ranking 1st
in both success rate at 100%, and mean timesteps to converge at 122,240, as
demonstrated in Figure 3.9.

48

3.2. Mountain Car Environment

Figure 3.7: The mean episodic reward achieved by our agents in 10 indepen-
dent training runs of 301,056 timesteps each, when utilizing a Raw-
continuous representation.

The results for the One-hot representation, as seen in Figure 3.10, show
just 6 of the 10 agents learning to consistently reach the objective location,
ranking the representation 5th on this metric. The mean timesteps to con-
verge over these 6 successful runs was calculated at 203,733, ranking this
representation 4th on this metric.

The last representation utilized is the Human-img, which yielded the worst
results of all those tested, as can be seen in Figure 3.11. None of the agents
were able to successfully learn to reach the objective, and instead, all agents
learned to consistently select the do-nothing action.

The preceding results guided our choice of representations to utilize in the
Hybrid representation. Since the clear highest performer on both convergence
metrics was shown to be the RBF (2D) representation, and the clear worst-
performing agent on these same metrics was shown to be Human-img, we
opted to utilize these two representations for our Hybrid configuration. Since
only the actor network is required at inference time, and since an effective
actor network could not be produced when utilizing the Human-img represen-
tation alone, we configured the Hybrid representation to utilize a Human-img
representation as input to the actor network, and RBF (2D) as input to the

49

3.2. Mountain Car Environment

Figure 3.8: The mean episodic reward achieved by our agents in 10 indepen-
dent training runs of 301,056 timesteps each, when utilizing a RBF
(1D) representation.

critic network. As shown in Figure 3.12, this configuration is tied for 3rd in
convergence success rate, and is 3rd in mean timesteps to converge, showing
that one can generate an actor network capable of inferring on Human-img
representations by utilizing the high-performing RBF (2D) representation as
input to the critic network during training.

Utilizing the Hybrid architecture would generally entail smaller actor and
critic network sizes when viewed in isolation if many parameters were shared
between the networks. In our case, however, only the first convolution layer
was shared between the actor and critic in the image-based architectures utiliz-
ing RBF (2D), One-hot, and Human-img representations. This layer contains
just 6,176 parameters in the Human-img architecture, and 2,080 parameters
in the RBF (2D) architecture, so the separation of the actor and critic net-
works in the Hybrid architecture does not require downsizing of the actor
and critic network size to keep the total parameter count in alignment across
architectures.

For the final reward result groups, we run a one-way ANOVA test to assess
the statistical significance of the differences in the mean rewards of each con-
figuration. The ANOVA found a statistically significant difference in reward

50

3.2. Mountain Car Environment

Figure 3.9: The mean episodic reward achieved by our agents in 10 indepen-
dent training runs of 301,056 timesteps each, when utilizing a RBF
(2D) representation.

between at least two groups (F (4, 45) = 8.0241, p < 0.001). Additionally,
we ran a post-hoc Tukey’s Honestly Significant Difference (HSD) test, the re-
sults of which are shown in Table 3.5. In the conducted Tukey’s HSD test,
statistically significant differences in mean reward were observed between all
pairings involving the Human-img representation. Human-img is found to be
the worst performing representation on this basis.

While we made an attempt to make a fair comparison between various
representations and corresponding neural network architectures by balancing
the parameter count between them, there are many other design decisions
that could have played a role. A limitation can be seen in the fact that layers
are of different dimension throughout the architectures, and in the case of
the architecture utilized with Raw-continuous, contain different numbers of
layers. These design decisions ultimately could have an impact on relative
agent performance.

To summarize, we have demonstrated that RBF (2D) coupled with convo-
lutional neural networks to parameterize the actor and critic is by far the best
performing architecture, in terms of the the success rate and mean asymp-
totic reward, along with the rate of convergence. While the literature lacks

51

3.2. Mountain Car Environment

Figure 3.10: The mean episodic reward achieved by our agents in 10 indepen-
dent training runs of 301,056 timesteps each, when utilizing a
One-hot representation.

direct benchmarks for our specific training architecture and observation en-
coding, the performance of RBF-based methods in our study aligns with the
documented success of applying RBF-based methods to the MountainCar en-
vironment [45]. Overall, the results of the symmetric architectures indicates
that higher precision observations yield more performant agents. Additionally,
we have demonstrated the merit of utilizing high-performing, high-precision
observations as input to the critic, to train actor networks on low-performing,
low-precision representations, as can be seen in our Hybrid training runs.
These findings will be utilized to guide the formulation of our subsequent
experiments.

52

3.2. Mountain Car Environment

Figure 3.11: The mean episodic reward achieved by our agents in 10 indepen-
dent training runs of 301,056 timesteps each, when utilizing a
Human-img representation.

Table 3.4: The mean and standard deviation of the asymptotic performance,
and the convergence characteristics, for each representation config-
uration over 10 training runs. Configurations are ordered by mean
asymptotic reward. Success is defined as an agent that consistently
reaches the goal position, and mean timesteps to converge is deter-
mined by averaging the timesteps of the first datapoints exceeding
93 units of reward from each successful training run.

Configuration Mean Final Reward
Convergence Input Precision

Mean Timesteps Success Rate Precxpos Precxvel

RBF (2D) 93.76 ± 0.08 122,240 100% 5.56× 10−14% 7.14× 10−13%

Hybrid 72.02 ± 42.25 195,600 80% – –

RBF (1D) 71.02 ± 45.36 160,400 80% 5.56× 10−14% 7.14× 10−13%

Raw-continuous 61.68 ± 48.62 238,629 70% 5.56× 10−14% 7.14× 10−13%

One-hot 50.62 ± 52.44 203,733 60% 2.04% 2.04%

Human-img -12.45 ± 0.28 N/A 0% 2.04% 4.08%

53

3.2. Mountain Car Environment

Figure 3.12: The mean episodic reward achieved by our agents in 10 indepen-
dent training runs of 301,056 timesteps each, when utilizing a
Hybrid representation.

54

3.2. Mountain Car Environment

Table 3.5: Tukey’s HSD Test Results comparing mean rewards between
groups. The columns represent the following: ‘Configuration Pair’
are the two configurations being compared; ‘Mean Diff.’ is the
difference in mean reward between the two groups; ‘p-adj’ is the
adjusted p-value; ‘Lower’ and ‘Upper’ are the lower and upper
bounds of the 95% confidence interval, respectively; ‘Reject’ in-
dicates whether the null hypothesis of no difference in means can
be rejected (True) or not (False).

Configuration Pair Mean Diff. p-adj Lower Upper Reject

Human-img, One-hot 63.0685 0.0128 9.2572 116.8797 True

Human-img, RBF (2D) 106.2105 < 0.001 52.3992 160.0218 True

Human-img, RBF (1D) 83.472 0.0004 29.6607 137.2833 True

Human-img, Hybrid 84.4655 0.0003 30.6542 138.2767 True

Human-img, Raw-continuous 74.1316 0.002 20.3203 127.9429 True

Hybrid, Raw-continuous -10.3339 0.9927 -64.1452 43.4774 False

Hybrid, One-hot -21.397 0.8468 -75.2083 32.4143 False

Hybrid, RBF (2D) 21.745 0.8378 -32.0662 75.5563 False

Hybrid, RBF (1D) -0.9935 > 0.999 -54.8048 52.8178 False

Raw-continuous, One-hot -11.0631 0.9901 -64.8744 42.7481 False

Raw-continuous, RBF (2D) 32.0789 0.4987 -21.7324 85.8902 False

Raw-continuous, RBF (1D) 9.3404 0.9955 -44.4709 63.1517 False

One-hot, RBF (2D) 43.1421 0.1857 -10.6692 96.9533 False

One-hot, RBF (1D) 20.4035 0.8709 -33.4078 74.2148 False

RBF (2D), RBF (1D) -22.7385 0.8109 -76.5498 31.0728 False

55

3.3. Multi-agent Particle Environment

3.3 Multi-agent Particle Environment

3.3.1 Problem Definition

Experiment Background

We now wish to expand our domain of experimentation to include multi-
agent environments. The primary focus of this section will be to compare
two popular multi-agent paradigms. Specifically, we will compare the two
configurations of training with centralized training - CTDE and CTCE. We
focus on these two paradigms as they both present potential advantages.

In both the CTCE and CTDE paradigms, a centralized training scheme
is utilized, due to the reported superiority of such methods [31] over their
distributed counterparts. In the centralized training scheme implemented in
this work, a centralized critic network in the actor-critic architecture predicts
the value of all agents’ states. The sum of the critic network’s output for each
of the agents’ observations is utilized in calculating the value loss.

An additional advantage that led us to focus on these paradigms is that
the CTDE paradigm has been reported as SOTA for learning in environments
with multiple agents [43, 55, 29], making it an obvious choice for our own
experiments.

However, due to the fact that the CTDE paradigm allows for agent-specific
parameters in the actor networks, either through multiple actor heads or en-
tirely separate actor networks for each agent, the paradigm allows for special-
ized policies to be learned for each agent. This does not allow for new agents
to be introduced to the environment while maintaining performance, since this
would require the instantiation of new parameters for each additional agent.

The benefit of the CTCE paradigm that we believe warranted its inclusion
in our experiments is that the same actor parameters control all agents in the
environment. While the learned policy may still be conditioned on the number
of agents during training, we believe it to be worth experimenting with this
paradigm due to its potential generalizability to changing numbers of agents
without the need for new parameters to be instantiated for each additional
agent.

Our findings from Section 3.2 indicate that higher precision representa-
tions, in particular, the RBF (2D) and RBF (1D) representations, have the
fastest rate of convergence to their asymptotic performance levels. An objec-
tive of our next set of experiments is to see whether the findings from the very
low-dimensional, single-agent MountainCar environment extend to a higher
dimensional, multi-agent setting. These experiments will focus on the perfor-

56

3.3. Multi-agent Particle Environment

mance of the top two fastest converging representations in MountainCar, RBF
(2D) and RBF (1D), compared against the Raw-continuous representation.

Finally, in these experiments, we want to know the impact of learning
rate on agent performance. In the MountainCar experiment, we utilized a
constant learning rate throughout all experiments. Now, we wish to run the
experiments with a variety of learning rates, to see if any relationships can
be derived between learning rate and agent performance, taking the other
experiment configuration parameters into account.

The presence of multiple agents in the environment leads us to an increased
dimensionality in the possible configurations of our experiments when com-
pared to the single-agent MountainCar problem. The purpose of this next
set of experiments is to move the realm of experimentation into a multi-agent
domain, with the ultimate objective of applying these lessons in our multi-
agent missile environment in Chapter 4. To this end, we define a selection
of experiment configurations to help in understanding the impact of varying
certain key experiment configuration parameters on final agent performance.

Ultimately, this section aims to answer three questions. Firstly, we wish
to know the impact on agent performance of using a CTDE, when compared
to a CTCE paradigm. Secondly, we wish to see the impact of representation
on agent performance. Lastly, we wish to run the experiments with a range
of learning rates, to see how the variation of this hyperparameter impacts our
final agent performances.

Environment Background

An environment that has seen significant attention in literature due to its
adaptability and simplicity is OpenAI’s MPE [47, 52]. This environment pro-
vides a framework for experimenting with both competitive and collaborative
multi-agent scenarios in a simple, computationally-efficient, 2-dimensional set-
ting.

The environment consists of a selection of particles in a 2-dimensional
plane. These particles, or environment entities, can either be agents or land-
marks. Agents in the environment are controlled by a policy, whereas land-
marks are static entities. A selection of scenarios have been created in this
environment, where the key determinant in a scenario is the configuration of
agents and landmarks, the presence or absence of communication channels
between agents, and the corresponding reward function for the given scenario.

While a variety of scenarios exist, the scenario of focus in our work is that
of the purely cooperative formation task, without communication channels
existing between agents. In this formation task, N agents are initialized in the

57

3.3. Multi-agent Particle Environment

environment, along with a single landmark. An example of a formation with
3 agents can be seen in Figure 3.13.

Figure 3.13: The final positions of agents around the landmark when follow-
ing an effective formation policy. The agents are shown to be
approximately equidistant from the landmark, and are separated
by approximately 2π

3 radians.

In this scenario, the collaborating agents are assigned a single, collective
reward. This reward is calculated by first calculating the relative positions
of each agent with respect to the landmark, along with their corresponding
angles relative to the horizontal line passing through the landmark. The agent
with the minimum calculated angle is taken as the anchor, and then optimal
locations for the other agents are calculated based on the anchor location
and the target radius of the formation. From these optimal locations, along
with the actual positions of the agents, a Hungarian matching algorithm is
utilized to find the pairing of optimal locations and agents that minimizes the
distance between each paired location and agent. The mean distance found in
this pairing is then clipped to be within the range of 0 and 2, and the negative
of this value is assigned as reward to the agents.

The frame of reference for the Raw-continuous observation space for this
environment is adjusted according to each agent, and is calculated based on
the individual agents’ locations. It is of dimension 10 for an environment
containing 3 agents. The first two entries, at index locations 0 and 1, are the
x and y components of the agent’s velocity, taking values in the range [-1,1].
The next values, at index locations 2 and 3, are the x-position and y-position
of the agent in a global coordinate frame, in the range [-1,1]. Index positions

58

3.3. Multi-agent Particle Environment

4 and 5 then contain the landmark x and y positions, in the given agent’s
coordinate frame, in the range [-2, 2]. The remainder of the observation,
which in the case of a 3-agent scenario consists of index locations 6-9, contain
the x and y coordinates of the other agents in the environment, in the subject
agent’s coordinate frame, in the range [-2,2].

3.3.2 Method

State Space Representation

In addition to the Raw-continuous observation space of dimension 10 described
in Section 3.3.1, we implement RBF (2D) and RBF (1D) transformations of
the default observation space.

The RBF (2D) is a 50x50 image, where the Raw-continuous representation
of dimension 10 is condensed into a single agent-centered frame of reference.
The representation is additionally divided into two unique formats, yielding
final observation dimensions of either 50x50x4 or 50x50x3, depending on the
format utilized. In the first format of 50x50x4, the information pertaining
to the two other agents in the environment, that are not observers of the
given observation, exists in two separate channels. In the second format, this
information is condensed into a single channel where the pixel values of the
single channel are determined by taking the maximum pixel value of the two
channels.

Each channel in this image encodes coordinate variables from the Raw-
continuous observation representation, in a similar manner to the position and
velocity RBF (2D) representation of the MountainCar’s state from Equation
3.8 in Chapter 3.2, however in an x and y coordinate plane. We additionally
represent velocity in an x and y coordinate plane by employing a similar blur
methodology as detailed for the RBF (1D) velocity representation in Chapter
3.2 Equations 3.4-3.6, but are additionally extended to include y-velocity, as
detailed in Equations 3.19-3.24.

ŷpos,t+1 = ypos,t + yvel,t (3.19)

µvel,y =
ypos,t + ŷpos,t+1

2
= ypos,t +

yvel,t
2

(3.20)

σvel,y = (1 + |ŷpos,t+1 − ypos,t|)× σpos,y (3.21)

59

3.3. Multi-agent Particle Environment

x̂pos,t+1 = xpos,t + xvel,t (3.22)

µvel,x =
xpos,t + x̂pos,t+1

2
= xpos,t +

xvel,t
2

(3.23)

σvel,x = (1 + |x̂pos,t+1 − xpos,t|)× σpos,x (3.24)

As in MountainCar experiments, we utilize a value of σpos equal to 1/16th
the range of the variable. In this case, since we are shifting to an agent-
centered coordinate frame, the [-1, 1] global coordinate frame no longer ap-
plies. Instead, we have a [-2, 2] coordinate frame, yielding a σpos of 0.25 in
both the x and y direction. Utilizing the results of Equations 3.19-3.24, along
with our xpos and ypos we are then able to calculate our pixel values in our
image using Equations 3.25 and 3.26.

ϕpos,RBF2D(ci, cj) = (
1

σpos,x
√

2π
e

−(xpos−ci)
2

2σ2
pos,x)× (

1

σpos,y
√

2π
e

−(ypos−cj)
2

2σ2
pos,y)

(3.25)

ϕvel,RBF2D(ci, cj) = (
1

σvel,x
√

2π
e

−(µvel,x−ci)
2

2σ2
vel,x)× (

1

σvel,y
√

2π
e

−(µvel,y−cj)
2

2σ2
vel,y)

(3.26)

A sample of the representation where the other agent information has
been merged into a single channel can be seen in Figure 3.14, where Channel
0 utilizes Equation 3.26 in its generation, while Channel 1 and Channel 2
utilize Equation 3.25.

We make one important modification to the default environment to ensure
the varying representations are compared in a fair manner. In the default en-
vironment, the agents are able to move anywhere in the 2-dimensional plane.
However, in our implementation, the x and y positions of each agent are
clipped to ensure they remain within the range [-1, 1] of the global coordi-
nate frame. While the default Raw-continuous representation can capture the
location of the agents accurately outside of this clipped range, the RBF rep-
resentations require a defined range be utilized in their creation. Should the
agents move outside of this range, the RBF would contain near zero values,
leading to poorer sample efficiency when utilizing these representations.

60

3.3. Multi-agent Particle Environment

Raw-continuous Observation
-0.21875, 0, -0.66792509, -0.49805831, 1.06178903, 0.97781595, 0.83366437,

0.48666542, 1.16444368, 0.48517012

RBF (2D) Observation

Channel 0: x-velocity Channel 1: Landmark
and y-velocity x-position and y-position

Channel 2: Other agents’
x-position and y-position

Render RBF (1D) Observation

Figure 3.14: A selection of state representations of the MPE environment.
The default Raw-continuous state representation is shown at the
top. RBF (2D) is a 50x50 3-channel image. RBF (1D) consists of
10 vectors of length 50, with each vector representing a dimension
of the Raw-continuous representation, in an x and y frame of
reference. The RBF-based figures are with respect to the darkest
agent in the Render image, and are transformed to be in an agent-
centered coordinate frame.

61

3.3. Multi-agent Particle Environment

Table 3.6: The reference figures and parameter counts for the neural network
utilized in each configuration. Note that configurations 2, 6 and 9
refer to figures in Section 3.2. For these configurations, the archi-
tectures utilized in this section differ from those referenced only in
the input dimension, which is now 10 instead of 2.

Configuration Figure Parameter Count

0 3.15 1,024,838
1 3.20 1,029,582
2 3.5 1,016,614
3 3.17 1,004,910
4 3.15 1,014,566
5 3.20 1,021,390
6 3.5 1,014,566
7 3.17 1,002,862
8 3.16 1,018,666
9 3.3 1,021,734
10 3.19 1,011,120
11 3.18 1,056,124
12 3.21 1,023,180
13 3.22 1,033,704

Neural Network Architectures

In our experiments, a total of 14 configurations are trained, with 10 distinct
neural network architectures utilized across these experiments. The neural
network figure references for each configuration can be seen in Table 3.6. This
table also demonstrates the alignment of parameter count to approximately
1M across all configurations. The variations in neural network architecture
across experiments are centered around three distinct areas. Firstly, differ-
ent architectures are utilized for CTDE as compared to CTCE configurations.
Secondly, certain configurations utilize a shared feature extractor between ac-
tor and critic networks, while others have entirely independent actor and critic
networks. Thirdly, since configurations use different input representations to
the actor and critic networks, the architectures are modified to ensure the
feature extraction methodology is suitable for the given input representation.

Training & Execution Paradigm The first defining characteristic of the
neural network architectures relates to the training and execution paradigm
utilized in the given configuration. In configurations 0, 2, 4, 6, 8 and 9 a CTCE

62

3.3. Multi-agent Particle Environment

paradigm is utilized, while in all other configurations, a CTDE paradigm is
utilized. In the CTDE configurations, each agent in the environment has pa-
rameters in their actor network that are only responsible for learning the given
agent’s policy. In the CTCE configurations, on the other hand, all parameters
are shared between all agents. Due to this difference, the total parameter
count for each individual actor network is decreased in CTDE experiments
when compared to their CTCE network counterparts, to ensure alignment in
total parameter count across configurations.

Shared Feature Extractor The second defining characteristic of the neu-
ral network architectures utilized in these experiments can be seen in whether
they share a feature extractor between actor and critic networks. This design
decision is tested in both CTCE and CTDE training paradigms. Examples of
shared feature extraction architectures can be seen in Figures 3.17, 3.18, 3.3
and 3.5. Examples without shared feature extraction, where the actor and
critic networks are entirely separated, can be seen in Figures 3.15, 3.16, 3.19
and 3.20.

Actor & Critic Inputs The third and final contributing factor in the neu-
ral network architecture designs utilized relates to the input representation for
the actor and critic networks. These can individually be one of three options:
RBF (2D), Raw-continuous, or RBF (1D). Since we saw success utilizing an
asymmetric architecture with the Hybrid representation in the MountainCar
experiments, we additionally choose to experiment with one such architecture
in the configuration 12 experiment, where we utilize a Raw-continuous repre-
sentation as input to the policy network, and a RBF (2D) representation as
input to the critic. This specific combination was selected for the asymmet-
ric experiment due to the success observed in the MountainCar experiments
when utilizing an RBF (2D) representation for the critic’s input, along with
the success more generally seen in literature when utilizing radial basis func-
tions with value-based methods. A final configuration utilizing RBF (1D)
input representations is defined, in configuration 13, to confirm whether the
Raw-continuous and RBF (2D) outperformance holds in this new environ-
ment.

Considering the variation and combination of each of these three determi-
nants of neural network design, along with the Merged Other Agents represen-
tation option discussed in the prior section for RBF (2D) state representations,
we define our 14 experiment configurations. Ultimately, our experiments make
use of the distinct configurations detailed in Table 3.8.

63

3.3. Multi-agent Particle Environment

Figure 3.15: The CTCE architecture utilized when training on RBF (2D)
observations, without shared parameters between the actor and
critic networks. The total number of trainable parameters in this
architecture is 1,024,838.

Training Configuration

Our agents were trained until total rollout timesteps exceeds 300,000. Due to
our use of 4800 timesteps in each rollout, this equates to a total of 302,400
timesteps of training. We utilize PPO with a constant learning rate used
for each training run, but varied between training runs on a base-10 log-
interval between 1×10−5 and 1×10−1. In total, 5 agents are trained for each
configuration, at 5 different learning rates, for a total of 25 training runs per
configuration. We report the mean and standard deviation of the five runs at
each learning rate and configuration combination. Hyperparameters, with the
exception of learning rate, are aligned across all training runs.

64

3.3. Multi-agent Particle Environment

Figure 3.16: The CTCE architecture utilized when training on Raw-
continuous observations, without shared parameters between the
actor and critic networks. The total number of trainable param-
eters in this architecture is 1,014,566.

3.3.3 Results & Discussion

The result of training all 14 configurations with varying learning rates can be
seen in Figure 3.23. In the case of our MPE architectures, there is less than a
5% difference between parameter counts, which we deem to be close enough to
not have a significant influence on agent performance. For example the best
performing agent is one of those with the smallest number of parameters. In
general, we did not see any relationship between parameter count and agent
performance.

Performance in each configuration can be seen to vary significantly based
on the learning rate used during training. We take the best performing agent,
based on the final mean episodic reward reached, from each configuration and
plot their performances in Figure 3.24. In three of the configurations, 7, 8

65

3.3. Multi-agent Particle Environment

Figure 3.17: The multi-head CTDE architecture utilized when training on
RBF (2D) observations, with shared parameters between the ac-
tor and critic networks. The total number of trainable parame-
ters in this architecture is 1,004,910.

and 11, the best performance was seen with a learning rate of 1 × 10−3. In
three configurations, 0, 1 and 3, the highest performance was seen with a
learning rate of 1× 10−5. Generally, however, a learning rate of 1× 10−4 was
found to produce the highest performing agents, with eight configurations
seeing the best agent performance when using this learning rate. For the
rest of this section, we consider the highest performing learning rate for each
configuration, as detailed in Table 3.9.

For the 14 configuration groups, we conducted a one-way ANOVA test
to evaluate the statistical significance of the differences in the means. The
test revealed a statistically significant difference between at least two groups
(F (13, 56) = 63.74, p < 0.001). We then run a post-hoc Tukey’s HSD test.
We omit the complete set of results due to the large number of combinations
of configurations, and the fact that certain comparisons are not particularly
illuminating, and instead choose to focus on certain key configuration combi-
nations. These results are reported in Tables 3.11-3.13.

66

3.3. Multi-agent Particle Environment

Figure 3.18: The multi-head CTDE architecture utilized when training on
Raw-continuous observations, with shared parameters between
the actor and critic networks. The total number of trainable
parameters in this architecture is 1,056,124.

Merged Other Agents When looking at the impact of combining the chan-
nels that represent the two other agents in the environment into a single chan-
nel, no significant performance differences can be derived, as demonstrated by
the low relative change in performance with this changing variable seen in
Table 3.11, and the Tukey’s HSD tests yielding no statistically significant
differences in any of the pairings.

Training & Execution Paradigm Looking next at the impact of using
CTDE as opposed to CTCE, we see significant differences, as detailed in
Table 3.12. Across all experiment configurations, significantly higher perfor-
mance is found when utilizing a CTDE paradigm. The Tukey’s HSD tests
yield statistically significant differences in all of the configuration pairings.
This demonstrates that, in the MPE environment, having parameters in each
actor network that are able to learn a policy specific to one agent in the envi-
ronment yields more performant policies than when utilizing the same policy
parameters for all agents in the environment. Our findings in this regard align
with those from literature noting the performance of CTDE [43, 55, 29], in

67

3.3. Multi-agent Particle Environment

Figure 3.19: The CTDE architecture utilized when training on Raw-
continuous observations, without shared parameters between the
actor and critic networks. The total number of trainable param-
eters in this architecture is 1,011,120.

particular in the MPE domain [47].

Shared Feature Extractor The impact of utilizing a shared feature ex-
tractor between actor and critic networks is found to be minimal in most cases,
but varies significantly. Based on the results shown in Table 3.13, there seems
to be a slight improvement in performance when utilizing a shared feature ex-
tractor with RBF (2D) representations when comparing to an equivalent sized
network with separate actor and critic networks. However, there seems a sig-
nificant degradation in performance when utilizing a shared feature extractor,
as opposed to separate networks, with Raw-continuous representations and
the CTCE paradigm. The only statistically significant pairing is found to be

68

3.3. Multi-agent Particle Environment

Figure 3.20: The CTDE architecture utilized when training on RBF (2D)
observations, without shared parameters between the actor and
critic networks. The total number of trainable parameters in this
architecture is 1,029,582.

that of Configurations 8 and 9 based on the Tukey’s HSD test performed.

Actor & Critic Inputs When looking at the impact of varying input rep-
resentation on performance, it can be seen in Table 3.14 to be dependent on
the configuration pairing. The second and fourth row of this table indicate
that RBF (2D) representations and corresponding architectures significantly
outperform in the CTCE configurations. The first and third rows of this
table indicate that Raw-continuous representations and corresponding archi-
tectures outperform in the CTDE configurations. Looking at the top perform-
ing symmetric representation and architecture, configuration 10, compared to
the asymmetric architecture in configuration 12, we find a comparable, but
marginally worse performance when utilizing the asymmetric architecture, as
shown in the fifth row of the results table.

69

3.3. Multi-agent Particle Environment

Figure 3.21: The CTDE architecture utilized when training on Hybrid obser-
vations, without shared parameters between the actor and critic
networks. The actor networks receive Raw-continuous observa-
tions, while the critic receives RBF (2D) observations. The total
number of trainable parameters in this architecture is 1,023,180.

Based on post-hoc Tukey’s HSD tests performed on each configuration,
we find just 1 pairing to have statistically significant performance differences
based on the input representation. This is the pairing of Configuration 6 and 9.
This seems to indicate that the RBF (2D) configuration with a shared feature
extractor is more performant than a comparable Raw-continuous architecture
when utilizing a CTCE paradigm.

These experiments leave us with two key takeaways that will guide future
experimentation. Firstly, we note the relatively higher performance of CTDE
architectures when compared to CTCE. Secondly, we note that the highest
performing configuration is configuration 10, which utilizes a Raw-continuous
representation, however we also note that architectures utilizing RBF (2D)

70

3.3. Multi-agent Particle Environment

Figure 3.22: The CTDE architecture utilized when training on RBF (1D)
observations, without shared parameters between the actor and
critic networks. The total number of trainable parameters in this
architecture is 1,033,704.

representations are highly competitive.
From our final set of miscellaneous experiment comparisons, detailed by

the Tukey’s HSD test results in Table 3.15, we can see that there is a statisti-
cally significant difference in performance when training with an architeccture
that receives RBF (1D) representations as input. This can be seen to be true
when compared against architectures utilizing both Raw-continuous and RBF
(2D) representations. In the case of the asymmetric architecture, while the
performance appears to slightly worsen based on the performance difference,
the results show that the difference is not statistically significant.

71

3.4. Conclusion

Table 3.7: Hyperparameters used with PPO for the MPE experiments

Hyperparameter Value

Learning Rate [1e-5, 1e-4, 1e-3, 1e-2, 1e-1]
Rollout Timesteps, T 4800
Total Timesteps 302400
Minibatch Size, M 1600
Iterations, N 63
Epochs, K 10
Discount Factor, γ 0.95
GAE Lambda, λ 0.95
Value Loss Coefficient, c1 0.5
Entropy Loss Coefficient, c2 0.01
Clipping Ratio, ε 0.2

3.4 Conclusion

This chapter sought to explore low-dimensional simulation environments, fo-
cusing particularly on the MountainCar environment and the MPE. We con-
ducted numerous experiments with diverse state representations to discern
their combined influence with varying neural network architectures on the
performance of trained agents. In the case of the MPE, we additionally ex-
plore the effects of varying learning rates and multi-agent execution paradigms
- centralized versus decentralized - on performance outcomes.

The findings from our investigation in both the MountainCar environment
and the MPE point towards the superior performance of decentralized exe-
cution and high-resolution state representations, specifically RBF (2D) and
Raw-continuous representations. In Section 3.3, we further demonstrate the
performance of agents trained using a CTDE paradigm, and demonstrate the
consistent performance of agents trained in the MPE using a learning rate of
‘1× 10−4’, across multiple experiment configurations.

These results suggest that the choice of state representation, neural net-
work architecture, multi-agent training paradigm, and learning rate can signif-
icantly influence the effectiveness of an agent within a given environment. The
apparent superiority of decentralized execution paradigms and high-resolution
representations like RBF (2D) and Raw-continuous will be utilized to guide
experimentation in the subsequent work.

72

3.4. Conclusion

Table 3.8: Configuration definitions for each experiment conducted in MPE.
The Actor Input and Critic Input columns specify the inputs to
the policy and value networks, respectively. The Merged Other
Agents column is only relevant when utilizing an RBF represen-
tation and specifies whether a single channel is used to represent
information pertaining to other agents or if it is split into one layer
per other agent. The Shared Feature Extractor specifies whether
the actor and critic networks have any shared parameters between
them. Finally, the Training & Execution Paradigm column indi-
cates whether the same policy network parameters are utilized in
action selection for all agents (CTCE), or whether each agent in
the environment has parameters specific to each agent in the envi-
ronment (CTDE).

Configuration
Input Representation Network Architecture

Actor Input Critic Input Merged Other Agents Shared Feature Extractor Training & Execution Paradigm

0 RBF (2D) RBF (2D) No No CTCE

1 RBF (2D) RBF (2D) No No CTDE

2 RBF (2D) RBF (2D) No Yes CTCE

3 RBF (2D) RBF (2D) No Yes CTDE

4 RBF (2D) RBF (2D) Yes No CTCE

5 RBF (2D) RBF (2D) Yes No CTDE

6 RBF (2D) RBF (2D) Yes Yes CTCE

7 RBF (2D) RBF (2D) Yes Yes CTDE

8 Raw-continuous Raw-continuous N/A No CTCE

9 Raw-continuous Raw-continuous N/A Yes CTCE

10 Raw-continuous Raw-continuous N/A No CTDE

11 Raw-continuous Raw-continuous N/A Yes CTDE

12 Raw-continuous RBF (2D) No N/A CTDE

13 RBF (1D) RBF (1D) No No CTDE

73

3.4. Conclusion

Figure 3.23: The mean episodic reward achieved by all of our agent configu-
rations through 302,400 timesteps of training in the multi-agent
particle environment’s formation task. The mean and standard
deviation are calculated from 5 training runs at each configura-
tion and learning rate combination.

74

3.4. Conclusion

Figure 3.24: The mean episodic reward achieved by our highest performing
agents in each configuration through 302,400 timesteps of train-
ing in the multi-agent particle environment’s formation task with
corresponding learning rate shown.

75

3.4. Conclusion

Table 3.9: The mean and standard deviation of the final performance for each
representation configuration, with the highest-performing learning
rate shown. Results are averaged over 5 training runs with the
given learning rate.

Configuration Learning Rate Final Reward

0 1× 10−5 −84.53± 3.41

1 1× 10−5 −18.98± 2.01

2 1× 10−4 −80.09± 5.29

3 1× 10−3 −16.68± 2.03

4 1× 10−4 −79.72± 2.36

5 1× 10−4 −19.22± 2.42

6 1× 10−4 −79.94± 3.74

7 1× 10−3 −15.74± 0.49

8 1× 10−3 −75.38± 2.92

9 1× 10−4 −121.29± 15.77

10 1× 10−4 −12.70± 0.15

11 1× 10−3 −22.85± 20.48

12 1× 10−4 −14.85± 0.35

13 1× 10−4 −56.93± 20.32

76

3.4. Conclusion

Table 3.10: Shorthand introduced to more readily interpret experiment con-
figurations when referenced in results. CTCE and CTDE refer to
the training paradigm utilized; RBF/RC/RBF1D indicates RBF
(2D), Raw-continuous or RBF (1D) observation types respec-
tively; SYM/ASYM indicate whether the actor and critic archi-
tecture or symmetric or asymmetric respectively; M/NM indicates
whether the other agents are merged or not merged into a single
channel respectively; S/NS indicates whether the feature extrac-
tor is shared or not shared between the actor and critic.

Configuration Shorthand

0 CTCE-RBF-SYM-NM-NS

1 CTDE-RBF-SYM-NM-NS

2 CTCE-RBF-SYM-NM-S

3 CTDE-RBF-SYM-NM-S

4 CTCE-RBF-SYM-M-NS

5 CTDE-RBF-SYM-M-NS

6 CTCE-RBF-SYM-M-S

7 CTDE-RBF-SYM-M-S

8 CTCE-RC-SYM-NS

9 CTCE-RC-SYM-S

10 CTDE-RC-SYM-NS

11 CTDE-RC-SYM-S

12 CTDE-ASYM-NM

13 CTDE-RBF1D-SYM-NM-NS

Table 3.11: The performance difference and statistical comparison resulting
from using the Merged Other Agents representation, as opposed
to using separate channels for other agents. Paired configurations
are identical except for this representation decision. A positive
Relative Performance ∆ indicates higher performance resulting
from using Merged Other Agents as opposed to using separate
channels.

Config. Pair Shorthand, X = NM or M Abs. Perf. ∆ Rel. Perf. ∆ (%) P-value Reject

0,4 CTCE-RBF-SYM-X-NS -4.81 5.69 > 0.999 False

1,5 CTDE-RBF-SYM-X-NS 0.24 -1.26 > 0.999 False

2,6 CTCE-RBF-SYM-X-S -0.15 0.19 > 0.999 False

3,7 CTDE-RBF-SYM-X-S -0.94 5.64 > 0.999 False

77

3.4. Conclusion

Table 3.12: The performance difference resulting from changing the Train-
ing and Execution Paradigm. Paired configurations are identical
except for the use of a CTCE or CTDE paradigm. A positive Rel-
ative Performance ∆ indicates higher performance resulting from
using a CTDE paradigm as opposed to a CTCE paradigm.

Config. Pair Shorthand, X = CTCE or CTDE Abs. Perf. ∆ Rel. Perf. ∆ (%) P-value Reject

0,1 X-RBF-SYM-NM-NS -65.55 77.55 < 0.001 True

2,3 X-RBF-SYM-NM-S -63.41 79.17 < 0.001 True

4,5 X-RBF-SYM-M-NS -60.50 75.89 < 0.001 True

6,7 X-RBF-SYM-M-S -64.20 80.31 < 0.001 True

8,10 X-RC-SYM-NS -62.68 83.15 < 0.001 True

9,11 X-RC-SYM-S -98.44 81.16 < 0.001 True

Table 3.13: The performance difference resulting from changing the Shared
Feature Extractor. Paired configurations are identical except for
the use of a Shared Feature Extractor as opposed to entirely sepa-
rate actor and critic networks. A positive Relative Performance ∆
indicates higher performance resulting from using separate actor
and critic networks as opposed to a Shared Feature Extractor.

Config. Pair Shorthand, X = NS or S Abs. Perf. ∆ Rel. Perf. ∆ (%) P-value Reject

0,2 CTCE-RBF-SYM-NM-X -4.44 5.25 > 0.999 False

1,3 CTDE-RBF-SYM-NM-X -2.30 12.12 > 0.999 False

4,6 CTCE-RBF-SYM-M-X 0.22 -0.28 > 0.999 False

5,7 CTDE-RBF-SYM-M-X -3.48 18.11 > 0.999 False

8,9 CTCE-RC-SYM-X 45.91 -60.90 < 0.001 True

10,11 CTDE-RC-SYM-X 10.15 -79.92 0.9456 False

78

3.4. Conclusion

Table 3.14: The performance difference resulting from changing the input rep-
resentation to actor and critic. Paired configurations are identical
except for the use of an RBF (2D) or Raw-continuous input rep-
resentation. Note that two corresponding RBF (2D) runs exist
for each Raw-continuous run due to the added configuration pa-
rameter Merged Other Agents in RBF (2D) experiments, so the
best performing of the two is shown for this comparison table
since no significant difference was found in experiments varying
the Merged Other Agents configuration. Note that shorthand cor-
responding to Merged Other Agents is omitted since it does not
apply to Raw-continuous representations. A positive Relative Per-
formance ∆ indicates higher performance resulting from using a
Raw-continuous input representation as opposed to an RBF (2D)
representation.

Config. Pair Shorthand, X = RBF or RC Abs. Perf. ∆ Rel. Perf. ∆ (%) P-value Reject

4,8 CTCE-X-SYM-NS -4.34 5.44 > 0.999 False

6,9 CTCE-X-SYM-S 41.35 -51.73 < 0.001 True

1,10 CTDE-X-SYM-NS -6.28 33.09 0.9993 False

7,11 CTDE-X-SYM-S 7.11 -45.17 0.9975 False

Table 3.15: The performance difference resulting from our additional experi-
ments, including the ablation experiment utilizing RBF (1D) rep-
resentations, and our experiment utilizing an asymmetric archi-
tecture. In the RBF (1D) experiments, a positive Relative Perfor-
mance ∆ indicates worse performance resulting from using a RBF
(1D) input representation as opposed to the relevant alternative
representation. In the asymmetric experiment, a positive Relative
Performance ∆ indicates worse performance resulting from using
the asymmetric architecture.

Config. Pair Type Abs. Perf. ∆ Rel. Perf. ∆ (%) P-value Reject

1, 13 RBF (1D) 37.95 -199.95 < 0.001 True

10, 13 RBF (1D) 44.23 -348.27 < 0.001 True

10,12 Asym 2.15 -16.93 > 0.999 False

79

4 Missile Defence Environment

4.1 Introduction

Modelling & Simulation (M&S) techniques have long been utilized in the de-
fence community as a means of gaining insight into problems of interest with-
out the limitations of real-world systems [54]. By developing computational
models to the necessary level of fidelity to be a sufficient proxy for reality, a
multitude of systems and scenarios can be explored and evaluated. This capa-
bility is especially valuable in optimization problems where real-world data is
lacking or cost-prohibitive to obtain, or where the search space for parameters
of interest is extensive.

In recent years, increasing interest has been devoted to modelling ap-
proaches that make use of dynamic programming [62], artificial intelligence
(AI) and machine learning (ML) to develop outcomes that may not be achiev-
able with traditional methods. The utility of AI/ML approaches has been
highlighted in a wide variety of problems, including efficient resource alloca-
tion and task scheduling [14], and agent-based simulation. Simulations have
found utility for scenarios aligned with the subject of this research, in missile
defence applications [26, 87, 91].

In this chapter, we develop a multi-agent reinforcement learning framework
for training of offensive and defensive strategies. Our mixed cooperative and
competitive missile simulation environment incorporates a team of defensive
agents with the ability to launch interceptor missiles at incoming attacker
missiles. The environment additionally incorporates a single offensive agent.
Our objective is to develop an effective state representation, and corresponding
neural network architecture, to allow for deep neural network agent learning
in our simulation environment, and to demonstrate this effectiveness through
comparison of our trained agents’ mean episodic reward to that achieved by
a selection of hard-coded baselines.

80

4.2. Related Work

4.2 Related Work

In this section, we delve into an examination of prior work pertinent to the
topic of Deep Reinforcement Learning (DRL) for missile defence. We will
first look at M&S techniques applied to defence problems more broadly, be-
fore moving into work relating to agent-based modelling in missile defence
scenarios.

M&S techniques have found extensive use in predicting and strategizing
against threats like improvised explosive devices (IEDs). Studies have shown
the effectiveness of these techniques in modeling complex agent relationships
that underpin IED placement, allowing for phase-specific countermeasures [30,
23]. Notably, Dekker et al. proposed the use of RL to imbue simulated agents
with adaptive behavior.

Agent-based simulation, a key element in M&S, has also been utilized to
assess security and efficiency in an airport setting, demonstrating that these
two factors need not be in conflict [40]. Countermeasures against IEDs, such
as ground-based and aerial jamming systems, have been evaluated using a
comprehensive array of simulation parameters [7].

The defence-focused Map Aware Non-uniform Automata (MANA) simu-
lation tool is used for broader applications beyond IED-related scenarios. For
instance, MANA was used in simulating a maritime counter-piracy scenario,
with automated red teaming and data farming methods employed to assess
vulnerabilities and explore variable parameters [21, 22].

Prior work on missile defence applications of simulations have made use of
surrogate modelling due to the computational complexity of a typical System
of Systems (SoS) simulation architecture. These surrogate models utilize sta-
tistical methods to ensure representation of the design space and have found
particular utility in Ballistic Missile Defense System (BMDS) simulations
[26, 87, 91].

The air defence problem has been approached through Weapon-Target
Assignment (WTA), with M&S methodologies aiding in defensive capability
analysis of naval task groups against Anti-Ship Missile (ASM) fire [41]. The
spatio-temporal dimensions and non-homogenous nature of the WTA problem
have been further explored, revealing the superiority of non-heuristic meth-
ods, especially DRL, in managing combinatorially complex solution spaces.
The DRL-based Double Deep Q-Network (DDQN) solution, in particular,
demonstrated high performance and computational efficiency, outperforming
evolutionary algorithms [66].

While the aforementioned surrogate modelling approaches look to effi-
ciently model the complex dynamics of BMDS simulations, our work looks

81

4.3. Environment Background & Baseline Policies

to focus on learning strategies for attacking and defending agents, rather than
focusing on efficient high-fidelity modelling. We look to take a novel approach
of modelling the missile defence scenario as a multi-agent environment so that
MARL methodologies and architectures can be utilized. This work is addi-
tionally differentiated from the DRL approaches to the WTA problem [66]
that generate policies for an environment with a fixed number of weapons to
be assigned to a fixed number of targets, as we look to generate policies that
incorporate entity dynamics in the simulation environment.

4.3 Environment Background & Baseline Policies

4.3.1 Environment Background

The environment developed for the analysis of missile defence scenarios is
modelled after an OpenAI gym-style architecture. In the mixed cooperative
and competitive multi-agent simulation, a team of defenders is tasked with
protecting a selection of targets of differing values from a single attacking
agent, and the attacking agent is tasked with firing missiles at these targets.
The team of defending agents are not able to communicate with each other to
inform their action selection.

For the initialization of entities in the environment, probability distribu-
tions are utilized that aim to approximate the locations of such entities along
a sea coast. We generate maps with both a length and width of 2000 units
and divide the map into 4 quarters vertically, as can be seen in Figure 4.1. A
total of 15 targets are initialized, with values uniformly randomly generated
between 0 and 1 units of reward.

The attacker entity is uniformly, randomly positioned in the rightmost
quarter. The defenders are positioned with uniformly random y-positions, and
skew-normal distributed x-positions where the distribution spans the middle
two quarters with a peak in the central-right quarter. Similarly, the targets are
positioned with uniformly random y-positions, and skew-normal x-positions
where the distribution spans the three leftmost quarters, with a peak in the
center of the map, just behind the defenders’ peak. The rightmost target po-
sition is clipped to ensure that it will never be farther right than the rightmost
defender.

The defenders have a detection radius of 250 units, and an interception
radius of 160 units. The detection radius corresponds to the zone within
which a defender can begin computing interception opportunities on incoming
missiles, while the interception radius corresponds to the zone within which
these interceptions can take place. Each defender is initialized with 8 missiles

82

4.3. Environment Background & Baseline Policies

Figure 4.1: A map showing a rendering of the environment state, with key
entities labelled. The skew normal distributions sampled when
initializing the x-positions for defenders (in blue) and targets (in
green) are also shown. The targets’ radii are proportional to their
value. The defenders’ detection and interception radii are pictured
in yellow and red, respectively.

to launch, with each missile able to travel at a speed of 42 units per timestep.
The reload time required between a single defender’s successive launches is
set to 1 timestep. A total of 4 defenders are initialized in the environment
at the start of a simulation. The attacker is initialized with 10 missiles to
launch, with each missile able to travel at a speed of 15 units per timestep.
The time required between the attacker’s successive launches is 5 timesteps.
The success rate of defender interception events being successful once taken
is set to 100%.

The simulation environment can be viewed as a zero-sum game for the at-
tacker and defenders, where the defenders are collectively penalized for targets
being hit by the attacker, and the attacker is conversely rewarded an equal and

83

4.3. Environment Background & Baseline Policies

opposite amount. More specifically, the reward (penalty) signal is collectively
received by the agents when a target is hit, and the magnitude of this signal is
equal to the value of the target prior to the impact, multiplied by a constant
to represent the percentage of damage done to the target on impact, which is
set to 70%. The value of the target is then updated by subtracting this value
from it’s value prior to impact. Following this methodology implies targets
will continuously decrease in value through consecutive missile impacts, and
the reward (penalty) for successive impacts will be subject to decay, following
a geometric progression.

Each step through the simulation environment progresses the environment
clock forward a timestep. The actions available to the attacker agent consist
of firing at a target of their choice, if they have the ammunition available and
are not reloading, or doing nothing. The defenders, similarly, can take an
interception opportunity if one is available, or they can do nothing. The envi-
ronment tracks the opportunities available to the defenders at each timestep.
The opportunities define where each defender has the ability to intercept an
incoming missile if they fire at the current timestep. All agents act simultane-
ously and the actions received by the environment step function are added to
the event queue. Scheduled events are then processed in order if they occur
in the current timestep, invalidated future events are removed from the queue
(i.e. if an attacker missile is intercepted, pending interception events on that
missile are removed), and all relevant environment variables are updated.

4.3.2 Baseline Policies

To benchmark agent performance, the environment includes a selection of
hard-coded baseline policies. These policies have been created to control both
the attacker and defender behaviors according to predefined rules. The naming
and corresponding behaviour definitions are as follows:

• Attacker Baselines
– Greedy: The attacker will fire at the current highest value target

on the map as soon as the action is available.

– SLS-Greedy: The attacker will fire at the current highest value
target on the map if the action is available and no other active
missiles are present on the map. This baseline can be considered
to be a Shoot-Look-Shoot (SLS) policy.

– Random: The attacker will fire at a random target on the map as
soon as the action is available.

• Defender Baselines

84

4.3. Environment Background & Baseline Policies

– Greedy: The defender will take an opportunity to intercept an
attacker missile as soon as the opportunity is available.

– SLS-Greedy: The defender will take an opportunity to intercept
an attacker missile as long as no other interception event is pending
for the given attacker missile. This baseline can be considered to
be a Shoot-Look-Shoot (SLS) policy.

– Random: When an opportunity is available to a defender, the
defender has a 5% probability of taking it and a 95% probability
of not taking it.

For the Random Defender, we cannot use a uniformly distributed random
action, as it would almost always entail intercepting the missile. A 5% fire
probability for the Random baseline was selected to give the defender an
approximately 50% probability of firing at a missile when its path of travel
passes through the interception zone of a defender. In this case, since defender
missiles are faster than attacker missiles, the defender can intercept an attacker
missile at any point that it is passing through the diameter of the interception
zone of the given defender. To compute the selected probability assigned to
taking an opportunity, we use the following schema.

The expected number of timesteps, nts, that an attacker missile will spend
in the defender’s interception zone when travelling along this diameter can be
calculated as follows:

nts =
2× r

Vatt
(4.1)

Since we define the interception radius, r as 160 units, and the attacker
missile velocity, Vatt as 15 units

timestep , the expected number of timesteps that
an attacker missile will spend in the interception zone can be determined as
follows:

nts =
2× 160units

(15 units
timestep)

= 21.333timesteps (4.2)

We can then calculate the probability of the defender never firing at the
attacker missile while it is travelling across the diameter of the interception
zone as follows:

Pno−intercept = (1− Pfire,ts)
nts (4.3)

With an expected number of timesteps in the interception zone of 21.333 and a
single timestep probability of firing, Pfire,ts, of 5%, the probability of a missile
travelling through the center of the circle without an interception event taking
place is then determined to be:

85

4.3. Environment Background & Baseline Policies

Pno−intercept = (1− Pfire,ts)
nts = (1− 0.05)21.333 ≈ 0.335 (4.4)

We can expand this calculation to consider the average case, rather than
the diameter trajectory case, by considering the expected distance that a
missile must travel through the interception zone. This distance can be ap-
proximated by taking the area of the interception zone, and dividing by the
diameter of the zone. This equates to the average distance a missile would
travel if it were to pass through any trajectory over the interception zone par-
allel to a trajectory that passes along a diameter of the zone. In our case, we
can calculate this average trajectory length, D, as:

D =
π × r2

2× r
=

π × r

2
=

π × 160units

2
= 251.33units (4.5)

We then use this value along with the attacker’s missile velocity, Vatt, to
determine the expected number of timesteps, nts. The expected number of
timesteps, nts, that a missile will spend within the interception zone in the
general case can be calculated as:

nts =
D

Vatt
=

251.33units

15 units
timestep

≈ 16.78timesteps (4.6)

In the simulation configuration using a 100% probability of an interception
event being successful, Ps,t, we can then determine probability of no intercep-
tion event taking place in a given timestep, Pni,t, as the sum of the probability
of a defender not firing, and the probability of the defender firing multiplied
by the probability of that interception event being unsuccessful.

Pni,t = 1− Pfire,t + Pfire,t × (1− Ps,t)

= 1− 0.05 + 0.05× (1− 1) = 0.95− 0

= 0.95

(4.7)

We can then calculate the probability that no successful interception is
made over all timesteps that the attacker missile is in a defender’s interception
zone, Pni, as follows:

Pni = Pnts
ni,t = 0.9516.78 ≈ 0.45 (4.8)

Therefore, there is an approximately 45% chance that a missile with a
trajectory over a defender interception zone will not be taken down by the
defender in the 100% interception success, Random Defender configuration.
In other words, there is an approximately 55% chance that the missile will be
taken down in this configuration when its trajectory travels over a defender
interception zone.

86

4.4. Agent Representation & Architecture

4.4 Agent Representation & Architecture

4.4.1 Observation Representation

The observation representation utilized in our experiments is dependent on
the agent being trained, with differing representations being utilized for at-
tacker and defender agents. The difference between the attacker and defender
representations can be seen in Figure 4.3, representing the attacker’s obser-
vation representation, and Figure 4.4, representing the defenders’ observation
representation. Additionally, asymmetric architectures utilize a more com-
plete representation of the state as input to the critic, as show in Figure 4.5.
The motivation behind this asymmetric representation is discussed in Sec-
tion 4.5.1, and relates to the natural asymmetry of information in adversarial
scenarios. The representations for attacker, defender, and asymmetric critic
share a common layer dimension of 84x84, meaning each pixel equates to a
region of approximately 23.8× 23.8 units. However, the observation represen-
tations differ in number of channels, where each channel represents a different
piece of information in the environment. The attacker actor input consists
of 9 channels, while the defenders’ actor inputs consist of 15 channels. The
observation input to the defenders’ actor networks contain 5 channels to rep-
resent information pertaining only to the defender for which the network must
generate an action. The asymmetric critic input representation contains 13
channels, consisting of state information pertaining to both the attacker and
defender.

To generate these image-based observations, we utilize the RBF (2D)
methodology. The decision to utilize an image-based representation was made
due to its success at generating effective agents in Chapter 3, along with the
success of comparable representations seen in literature on complex adversarial
scenarios, in particular the StarCraft II Learning Environment (SC2LE) [85].
We additionally implement a One-hot version, in order to confirm whether
the superior performance of RBF (2D) representations found in prior envi-
ronments extends to the missile environment.

The following describes the content of each channel of an observation in
the RBF (2D) and One-hot cases. The visual representations of RBF (2D) are
additionally available in Figure 4.2. We utilize the general format of Equation
4.9 for the generation of RBF (2D) images, where the σ value varies by layer.
Note than in all channels containing information from multiple agents, the
maximum pixel value from overlapping RBF (2D) circles is kept in the final
layer generated.

In encoding our states as 2-dimensional RBF-based representations, a key

87

4.4. Agent Representation & Architecture

parameter to consider is the spread of RBFs. While the primary application
of varying RBF spread in our context was to represent variables of differing
magnitude in the same channel, it could also serve to encode uncertainty.
One such example of this could be to encapsulate the uncertainty in entity
locations in the environment, or uncertainty in the likelihood of interception
events being successful.

One key point throughout our experiments was that the agents assume a
fully observable state observation that encapsulates all information relevant to
the action selection of a given agent. For this reason, we include the defender
locations explicitly in the observations of attacker agents, as this is deemed a
core piece of information in developing an effective attacking strategy.

ϕRBF2D(ci, cj) = (
1

σ
√

2π
e

−(xpos−ci)
2

2σ2)× (
1

σ
√

2π
e

−(ypos−cj)
2

2σ2) (4.9)

Complete List of Possible State Representation Layers

0. Target Value
– RBF (2D): A single channel to represent the current value of targets

on the map. Each circle is generated using Equation 4.9, where
the radius of the circle is proportional to the value of the target,
since we utilize a σ = 1

16 × Target Value. The center of each circle
corresponds to the target xpos and ypos, and pixel intensity increases
to a maximum of 1 at the center.

– One-hot : A single pixel per target located at the targets’ xpos and
ypos, with pixel intensities equal to target values.

1. Defender Reload Delay
– RBF (2D): A single channel to represent the current reload delay

of each of the defenders. Each circle is generated using Equation
4.9, where the radius of the circle is inversely proportional to the
number of timesteps until the reload process is completed, since
we utilize a σ = 1

16 ×
1

Defender Reload Delay+1 . The center of each
circle corresponds to the defender xpos and ypos, and pixel intensity
increases to a maximum of 1 at the center.

– One-hot : A single pixel per defender located at the defenders’ xpos
and ypos, with pixel intensities equal to 1

Defender Reload Delay+1 .
2. Defender Ammunition

– RBF (2D): A single channel to represent the ammunition remaining
for each of the defenders. Each circle is generated using Equation

88

4.4. Agent Representation & Architecture

4.9, where the radius of the circle is proportional to the number
of interceptor missiles that the given defender has remaining, since
we utilize a σ = 1

16 ×
Defender Ammunition

Defender Max Ammunition . The center of each
circle corresponds to the defender xpos and ypos, and pixel intensity
increases to a maximum of 1 at the center.

– One-hot : A single pixel per defender located at the defenders’ xpos
and ypos, with pixel intensities equal to Defender Ammunition

Defender Max Ammunition .

3. Defender Detection
– RBF (2D): A single channel to represent the detection zone for

each of the defenders. Each circle is generated according to the
predefined 250-unit detection radius, which is uniform among all
defenders. The center of each circle corresponds to the defender
location, and pixel intensity is equal to 1 through the entire circle
corresponding to the detection region. This region is calculated
by taking the Euclidean distance from the center of each pixel to
the center of the defender, and setting the pixel value to 1 if this
distance is less that the 250-unit detection radius.

– One-hot : Identical to RBF (2D) for this channel.
4. Defender Interception

– RBF (2D): A single channel to represent the interception zone for
each of the defenders. Each circle is generated according to the
predefined 160-unit interception radius, which is uniform among
all defenders. The center of each circle corresponds to the defender
location, and pixel intensity is equal to 1 through the entire circle
corresponding to the interception region. This region is calculated
by taking the Euclidean distance from the center of each pixel to
the center of the defender, and setting the pixel value to 1 if this
distance is less that the 160-unit interception radius.

– One-hot : Identical to RBF (2D) for this channel.
5. Defender Opportunities

– RBF (2D): A single channel to represent the current opportunities
available for all defenders. Each circle is generated using Equation
4.9, where the radius of the circle is constant, since we utilize a
σ = 1

16 × 0.3. The center of each circle corresponds to the xpos
and ypos of the opportunities, and pixel intensity increases to a
maximum of 1 at the center.

– One-hot : A single pixel per opportunity located at the opportuni-
ties’ xpos and ypos, with pixel intensities equal 1.

89

4.4. Agent Representation & Architecture

6. Defender Opportunities Taken
– RBF (2D): A single channel to represent the opportunities taken

by all defenders. Each circle is generated using Equation 4.9, where
the radius of the circle is constant, since we utilize a σ = 1

16 × 0.3.
The center of each circle corresponds to the xpos and ypos of the
opportunities, and pixel intensity increases to a maximum of 1 at
the center.

– One-hot : A single pixel per opportunity taken located at the op-
portunities’ xpos and ypos, with pixel intensities equal 1.

7. Attacker Reload Delay
– RBF (2D): A single channel to represent the current reload delay

of the attacker. The circle is generated using Equation 4.9, where
the radius of the circle is inversely proportional to the number of
timesteps until the reload process is completed, since we utilize a
σ = 1

16 ×
1

Attacker Reload Delay+1 . The center of the circle corresponds
to the attacker xpos and ypos, and pixel intensity increases to a
maximum of 1 at the center.

– One-hot : A single pixel located at the attacker’s xpos and ypos, with
pixel intensity equal to 1

Attacker Reload Delay+1 .
8. Attacker Ammunition

– RBF (2D): A single channel to represent the ammunition remain-
ing for the attacker. The circle is generated using Equation 4.9,
where the radius of the circle is proportional to the number of
missiles that the attacker has remaining, since we utilize a σ =
1
16 ×

Attacker Ammunition
Attacker Max Ammunition . The center of the circle corresponds

to the attacker xpos and ypos, and pixel intensity increases to a
maximum of 1 at the center.

– One-hot : A single pixel located at the attacker’s xpos and ypos, with
pixel intensity equal to Attacker Ammunition

Attacker Max Ammunition .
9-11. Attacker Missile Positions (t=[T,T-1,T-2])

– RBF (2D): Three channels to represent the positions of the at-
tacker’s missiles in the most recent three timesteps. Each circle
is generated using Equation 4.9, where the radius of the circle is
constant, since we utilize a σ = 1

16 × 0.15. The center of each circle
corresponds to the xpos and ypos of the active missiles, and pixel
intensity increases to a maximum of 1 at the center.

– One-hot : Three channels to represent the positions of the attacker’s
missiles in the most recent three timesteps. A single pixel is ac-
tivated in each channel per active attacker missile in the given

90

4.4. Agent Representation & Architecture

timestep of the channel. These pixels are located at the xpos and
ypos of the active missiles in the timestep of the channel, with pixel
intensities equal 1.

12. Target Value Loss if Pending Hits Completed

– RBF (2D): A single channel to represent the value to be taken from
a target and provided as reward to an attacker agent, or penalty to
the defending agents, should the presently active missiles hit their
intended targets. Each circle is generated using Equation 4.9, where
the radius of the circle is determined by the value of the target and
the incoming attacker missiles on a given target, since we utilize a
σ = 1

16 × (Target Value) × (1 − 0.3Natt). Note that Natt is equal
to the number of incoming attacker missiles for a given target, and
(Target Value)× (1− 0.3Natt) is equivalent to the expected reward,
or penalty, should the pending missiles reach their intended target.
The center of each circle corresponds to the target xpos and ypos,
and pixel intensity increases to a maximum of 1 at the center.

– One-hot : A single pixel per target located at the targets’ xpos and
ypos, with pixel intensities equal to (Target Value)× (1− 0.3Natt).

13. Individual Defender Reload Delay: A single channel to represent
the current reload delay of the individual defender for which the network
must generate an action. This layer uses the same generation method-
ology as the respective RBF (2D) and One-hot representations in the
Defender Reload Delay layer, however it only contains a single defender’s
information.

14. Individual Defender Ammunition: A single channel to represent the
ammunition remaining for the individual defender for which the network
must generate an action. This layer is the same as the Defender Ammu-
nition layer, however it only contains a single defender’s information.

15. Individual Defender Detection: A single channel to represent the
detection zone for the individual defender for which the network must
generate an action. This layer uses the same generation methodology as
the respective RBF (2D) and One-hot representations in the Defender
Detection layer, however it only contains a single defender’s information.

16. Individual Defender Interception: A single channel to represent
the interception zone for the individual defender for which the network
must generate an action. This layer uses the same generation method-
ology as the respective RBF (2D) and One-hot representations in the
Defender Interception layer, however it only contains a single defender’s
information.

91

4.4. Agent Representation & Architecture

17. Individual Defender Opportunities: A single channel to represent
the current opportunities available for the individual defender for which
the network must generate an action. This layer uses the same gener-
ation methodology as the respective RBF (2D) and One-hot represen-
tations in the Defender Opportunities layer, however it only contains a
single defender’s information.

The attacker actor, defender actor, and asymmetric critic input represen-
tations consist of subsets from this set of possible layers. These subsets are
detailed in the following list, and are further visualized in Figures 4.3, 4.4,
and 4.5.

Components of Each Network Input

• Symmetric Attacker Actor and Critic Input, Asymmetric Attacker Actor
Input: [0, 3, 4, 7, 8, 9, 10, 11, 12] (Figure 4.3)

• Symmetric Defender Actor and Critic Input, Asymmetric Defender Ac-
tor Input: [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 15, 16, 17] (Figure
4.4)

• Asymmetric Attacker and Asymmetric Defender Critic Input: [0, 1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12] (Figure 4.5)

4.4.2 Action Representation

Another key decision in terms of representation is that of the action space.
The environment is inherently spatial and dynamic. A traditional dense rep-
resentation could struggle to capture the nuances of this spatial aspect and
fall short in effectively representing the state of the environment at any given
time, since it doesn’t inherently encode relative positions or spatial depen-
dencies. Additionally, while we utilize a constant number of entities in our
training, in reality this number could vary. In order to generalize to varying
numbers of valid actions, an index-based action representation could not be
naively utilized.

One option for encoding the inputs and outputs of the policy network to
allow for generalization to scenarios with a varying number of valid actions
would be to utilize a pointer network [86], where each input would be a feature
vector representing a possible action, and the output would be a probability
distribution over these inputs. However, utilizing this method would take the
observation and action representation out of the topographical domain.

92

4.4. Agent Representation & Architecture

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 H

Figure 4.2: A full set of channels representing the RBF (2D) observation of
an agent, with their corresponding indices shown below the image.
The ‘H’ panel is not part of the observation, but represents the
human-rendered representation of the environment.

93

4.4. Agent Representation & Architecture

Figure 4.3: The observation representation, consisting of a 9x84x84 image,
utilized as input to the actor and critic when training symmetric
attackers, and as input to the actor only when training asymmetric
attackers. The channels are numbered in accordance with the
previously listed set of possible channels.

Figure 4.4: The observation representation, consisting of a 15x84x84 image,
utilized as input to the actor and critic when training symmetric
defenders, and as input to the actor only when training asymmet-
ric defenders. The channels are numbered in accordance with the
previously listed set of possible channels.

94

4.4. Agent Representation & Architecture

Figure 4.5: The observation representation, consisting of a 13x84x84 image,
utilized as input to the critic when training asymmetric attackers
and asymmetric defenders. The channels are numbered in accor-
dance with the previously listed set of possible channels.

We instead choose to represent the action space as an image, similar to
our input observation representation, resulting in action selection correspond-
ing to a spatial action. By representing the action space as an image, in a
similar manner to the observation space, this allows the agent to learn spatial
dependencies directly, exploiting convolutional neural networks’ proficiency
in capturing local patterns in data. Ultimately, incorporating convolutional
architectures’ spatial bias and image-like representations enhances agent learn-
ing and generalization efficiency. The decision to utilize a spatial action space
was made in part due to the success of a comparable architecture in the adver-
sarial SC2LE [85]. Additionally, it allows us to maintain the spatial structure
of the input, which encodes the valid actions directly as part of the input
channels for both attacker and defender agents. While we can’t say with cer-
tainty that a spatial observation and action space is the top performing agent
configuration, a complete experimental analysis of the alternatives is beyond
the scope of this thesis.

Aligned with the single-layer observation dimension of 84x84, we define the
action space as a single 84x84 layer, where the pixels in this layer correspond
to the action of firing at that location of the environment. In the case of
the attacker, the agent can choose to fire at a target if they have remaining
ammunition and are not reloading, or they can choose to do nothing and wait
until the next timestep. The valid actions in pixel-space, therefore, are defined
as one pixel in the location of each of the targets, along with one pixel at the
location of the attacker itself to represent the do-nothing action.

Defenders, on the other hand, can either fire at an opportunity if present,
assuming reload delay is zero and the defender has ammunition remaining,

95

4.4. Agent Representation & Architecture

Figure 4.6: A sample of the output action logits, generated from a symmet-
ric policy network, demonstrating the higher likelihood actions
surrounding high-value target locations, as seen in the human-
rendered representation of the environment on the right-hand side.

or they can do nothing. Hence, for each defender, the actions in pixel space
are represented as one pixel for each interception opportunity available at the
location of the forecast interception event, along with one pixel at the location
of the defender to represent the do-nothing action.

In both attacker and defender cases, to generate a probability distribution
over the action space, the logits output by the policy network are masked
to replace invalid actions with large, negative values. By masking before
selecting an action, we prevent outputs that would provide uninformative,
high levels of negative error to the network when selecting invalid actions.
Without masking, in any given timestep an agent would have mostly invalid
actions to choose from. A sample of the environment state and action logits
produced in the case of a trained attacker agent can be seen in Figure 4.6.
A categorical distribution is created by applying Softmax activation to the
masked logits, and action selection then proceeds by either sampling from
the resulting distribution during training, or selecting the highest probability
action during inference.

96

4.4. Agent Representation & Architecture

Figure 4.7: The U-Net feature extraction architecture utilized in all agent con-
figurations.

4.4.3 Neural Network Architecture

In all experiments shown, the same core feature extraction architecture is
utilized for both the actor and critic. This architecture is inspired by the
popular U-Net architecture for image segmentation [63], and consists of a
series of standard convolution layers which comprise the downward section of
the U-Net, followed by a series of transpose convolution layers that comprise
the upward section of the U-Net. There are skip-connections between the
downward and upward portions of the U-Net, as the upward layers take as
input the output of the corresponding tier from the downward section. In
addition to these skip-connection inputs, the upward layers also take as input
the output of the transpose convolution from the prior layer in the upward
U-Net. This architecture is illustrated in Figure 4.7. GELU activation is

97

4.4. Agent Representation & Architecture

Figure 4.8: The actor-critic network architecture used in the configuration 0,
2, 4 and 6 CTDE PPO implementation, with entirely separate
networks for the actor and critic, and the same input utilized
for each. Attacker configurations 0 & 2 contain 2,684,825 trainable
parameters, while defender configurations 4 & 6 contain 4,063,709
trainable parameters.

used throughout, with the exception of the output activation, where the actor
networks utilize Softmax and the critic network utilizes no activation function.
The decision to utilize GELU in these experiments was made to minimize
the risk of the vanishing gradient and Dying ReLU problems, as discussed in
Section 2.2.2.

As in the previous chapter, we are interested in comparing both symmetric
and asymmetric architectures, due to the natural asymmetry of information in
adversarial scenarios, along with the success of such architectures observed in
the previous chapter. The symmetric and asymmetric architectures differ by
the inputs utilized during training, as previously mentioned in Section 4.4.1.

In the case of the symmetric architecture, the actor and critic networks
both receive the same representation. Each U-Net receives an observation
as input, where the content of this observation is determined by whether the
agent is controlling a defender or an attacker. The actor network then flattens
the 84x84 dimensional output, and uses the resulting 7056 dimension tensor as
the logits, which are then masked and utilized to create a categorical distribu-
tion with Softmax activation on the masked logits. The critic network applies
GELU activation to the the output of the U-Net, and then flattens the 84x84
dimensional output. The resulting 7056 dimension output of this operation is
then connected to a linear layer of dimension 256 with GELU activation, prior
to being connected to a single output node, without activation, corresponding
to the predicted value. This agent’s architecture is shown in Figure 4.8.

98

4.4. Agent Representation & Architecture

Figure 4.9: The actor-critic network architecture used in the configuration 1,
3, 5 and 7 CTDE PPO implementation, with entirely separate
networks for the actor and critic, and asymmetric input repre-
sentations utilized for the actor and critic. Attacker configurations
1 & 3 contain 2,693,081 trainable parameters, while defender con-
figurations 5 & 7 contain 4,059,581 trainable parameters.

The asymmetric architecture, on the other hand, utilizes entirely sepa-
rate actor and critic network inputs. The asymmetric architecture uses the
same U-Net architecture for the actor and critic networks as described for the
symmetric architecture, however the critic network receives additional infor-
mation pertaining to the state of the environment, as detailed in Figure 4.5.
This agent’s architecture is shown in Figure 4.9, highlighting the different
inputs to the actor and critic networks.

In the case of training defender agents, since we opt to test both the
CTDE and CTCE training and execution paradigms. When utilizing the
CTDE paradigm, each defender agent present in the environment has its own
actor network. So, the actor network shown at the top of Figures 4.8 and 4.9
are duplicated 4 times for each of the 4 defender agents in the environment. In
the case of attackers and CTCE defenders, just one actor network is utilized.

In our experiments with the missile defence environment, we once again
trained our agents using PPO. The training process involved a total of
1,024,000 timesteps, where each rollout consisted of 25,600 timesteps, for a
total of 40 training iterations. We used a minibatch size of 512. The discount
factor γ was set to 1.0, ensuring equal importance to immediate and future re-
wards, since agents should be agnostic to the time of experiencing a reward or
penalty. We employed the Generalized Advantage Estimation (GAE) with a
lambda value of 0.95 to estimate advantages. The value loss coefficient c1 was
set to 1.0, emphasizing the importance of the value function in the overall loss,

99

4.4. Agent Representation & Architecture

Table 4.1: Hyperparameters used with PPO for the missile defence environ-
ment experiments

Hyperparameter Value

Learning Rate 1e-4
Rollout Timesteps, T 25600
Total Timesteps 1024000
Minibatch Size, M 512
Iterations, N 40
Epochs, K 10
Discount Factor, γ 1.0
GAE Lambda, λ 0.95
Value Loss Coefficient, c1 1.0
Entropy Loss Coefficient, c2 0.01
Clipping Ratio, ε 0.2

while the entropy loss coefficient c2 was set to 0.01 to encourage exploration.
To control the update step size, we used a clipping ratio ε of 0.2.

Regarding the learning rate, we used a constant value of 1×10−4. Although
the experiments from MPE may not be indicative of performance in the missile
environment, we opted to utilize this learning rate based on the performance
of agents trained in the MPE experiments. In total, we trained five agents
for each configuration, with hyperparameters kept constant to those listed in
Table 4.1 across all training runs.

Regarding computational resource demands for training, there were ob-
servable disparities based on specific configurations. Defenders typically re-
quired a training duration spanning between 7 to 14 hours, while attackers,
on the other hand, demanded shorter intervals, generally ranging from 3 to 6
hours. Training was executed on a Tesla V100 GPU, housed in a DGX system.
At inference time, empirical evaluations of the networks found inference times
on a single timestep consistently below 50 milliseconds. Inference operations
were carried out on a RTX 3070 GPU. Such rapid processing allows for its
application in real-world settings, as a decision support system would neces-
sitate swift responses. However, it’s pivotal to highlight that these runtimes
are contingent on the hardware available.

100

4.5. Experiments & Results

4.5 Experiments & Results

4.5.1 Experiment Background

In Chapter 3.2, utilizing the simple MountainCar environment, we demon-
strated the apparent correlation between observation resolution and resultant
agent performance, with particularly high performance found when utilizing
a 2-dimensional RBF transformation of the state. Additionally, we demon-
strated the merit of utilizing an asymmetric architecture to enable the training
of an effective actor on a poorer performing state representation by provid-
ing a higher performing representation as input to the critic during training.
Subsequently, in Chapter 3.3, we demonstrated the merit of utilizing a cen-
tralized training with decentralized execution (CTDE) training paradigm in
a multi-agent setting.

These findings guided the experiment configurations detailed in Tables 4.2
and 4.3, where the former details whether the configuration is attacking or
defending, the training paradigm used, and the network architecture. The
latter provides details on the input observation, both in terms of the encoding
type as either RBF (2D) or One-hot, and the symmetry or asymmetry of the
actor and critic network inputs.

Our decision to focus on the comparison of RBF (2D) and One-hot rep-
resentation types is based on the results from Chapter 3. While RBF (2D)
was shown to perform well, we wish to confirm whether these results hold in
the more complex missile environment by comparing performance to agents
trained using One-hot representations, which had inferior results in the prior
experiments. We opt for these two representations as they both are image-
based, which allows us to effectively design networks taking these representa-
tions as input for the image-based action space output.

The symmetric and asymmetric comparison is also chosen for experiments
in this section due to the results seen using this method in Chapter 3, and
the natural asymmetry of information in the adversarial missile environment.
In a real-world scenario, it is likely that the attacking and defending agents
would only have partial observability of the environment state. The agents
might not have full observability of their adversary’s state during inference.
However, during training, it might be useful for the opposing agents to have
their critics receive a more complete representation of state, while their ac-
tor receives the limited representation. This chapter aims to use the lessons
learned from Chapter 3 to train effective attacking and defending agents in
our missile defence scenario, while evaluating the merit of utilizing asymmetric
architectures in the training procedure.

101

4.5. Experiments & Results

Table 4.2: Agent configurations with figure reference: Type, Training
Paradigm, and Network Architecture.

Configuration Agent Type Training Paradigm Network Architecture

0 Attacker Single-agent Figure 4.8

1 Attacker Single-agent Figure 4.9

2 Attacker Single-agent Figure 4.8

3 Attacker Single-agent Figure 4.9

4 Defender CTDE Figure 4.8 (With 4 Actor Networks)

5 Defender CTDE Figure 4.9 (With 4 Actor Networks)

6 Defender CTDE Figure 4.8 (With 4 Actor Networks)

7 Defender CTDE Figure 4.9 (With 4 Actor Networks)

8 Defender CTCE Figure 4.9 (With 1 Actor Network)

9 Defender CTCE Figure 4.8 (With 1 Actor Network)

10 Defender CTCE Figure 4.9 (With 1 Actor Network)

11 Defender CTCE Figure 4.8 (With 1 Actor Network)

Table 4.3: Agent configurations with figure reference: Observation.

Configuration Observation Type Actor Input Critic Input Symmetric? (Y/N)

0 RBF (2D) Figure 4.3 Figure 4.3 Y

1 RBF (2D) Figure 4.3 Figure 4.5 N

2 One-hot Figure 4.3 Figure 4.3 Y

3 One-hot Figure 4.3 Figure 4.5 N

4 RBF (2D) Figure 4.4 Figure 4.4 Y

5 RBF (2D) Figure 4.4 Figure 4.5 N

6 One-hot Figure 4.4 Figure 4.4 Y

7 One-hot Figure 4.4 Figure 4.5 N

8 One-hot Figure 4.4 Figure 4.5 N

9 One-hot Figure 4.4 Figure 4.4 Y

10 RBF (2D) Figure 4.4 Figure 4.5 N

11 RBF (2D) Figure 4.4 Figure 4.4 Y

To assess the effectiveness of our trained agents, we generate a set of 100
test scenarios. Agent performance will be compared directly against agent and
baseline adversaries on this constant set of test scenarios. By using the same
100 scenarios for comparison, we minimize the impact of the high variance in
episodic reward when utilizing randomly initialized scenarios on the analysis
of results.

4.5.2 Results & Discussion

Symmetric and asymmetric attacker configurations were trained against a
Greedy defender for 1,024,000 timesteps. This adversary was selected due to
it being the middle performer amongst the defender baselines, as shown in
the Greedy defender row of Table 4.5. Similarly, symmetric and asymmetric

102

4.5. Experiments & Results

Table 4.4: Agent configurations with shorthand reference.

Configuration Agent Type Training Paradigm Observation Type Symmetric? (Y/N) Shorthand

0 Attacker Single-agent RBF (2D) Y SA-RBF-SYM

1 Attacker Single-agent RBF (2D) N SA-RBF-ASYM

2 Attacker Single-agent One-hot Y SA-OH-SYM

3 Attacker Single-agent One-hot N SA-OH-ASYM

4 Defender CTDE RBF (2D) Y CTDE-RBF-SYM

5 Defender CTDE RBF (2D) N CTDE-RBF-ASYM

6 Defender CTDE One-hot Y CTDE-OH-SYM

7 Defender CTDE One-hot N CTDE-OH-ASYM

8 Defender CTCE One-hot N CTCE-OH-ASYM

9 Defender CTCE One-hot Y CTCE-OH-SYM

10 Defender CTCE RBF (2D) N CTCE-RBF-ASYM

11 Defender CTCE RBF (2D) Y CTCE-RBF-SYM

defender configurations were trained against a Random attacker for 1,024,000
timesteps. This attacker baseline was selected due to it being the middle per-
former amongst the attacker baselines. The total loss, as defined in Equation
2.13, over the course of each training regime can be seen in the left-hand plots
of Figures 4.10 and 4.11. Furthermore, the mean episodic reward over the
course of training can be seen in the right-hand plots of these same figures.

The trained agents were then used for inference against the baseline
Greedy, SLS-Greedy and Random defenders. Additionally, they were used for
inference against each other. The baseline agents were also placed against
each other for comparison. The mean and standard deviation of the reward
obtained by the attacking team in the 100-scenario test set can be seen in
Table 4.5. Note that instead of configuration numbers, we utilize shorthand,
as defined in Table 4.4, to define each agent configuration in the result tables
to make configuration variations more readily interpretable.

In addition to calculation of the standard deviation on a scenario basis,
we also report the standard deviation of the mean performance on the set of
100 test scenarios of each of the 5 trained agents. These results are reported
in Table 4.6. It can be seen by comparing the standard deviations reported
in Tables 4.5 and 4.6 that agent performance between scenarios is of high
variance, while performance between agents has much lower variance.

In the case of the defender baselines, the SLS-Greedy behavior, as seen in
the first row in Table 4.5, was found to generally yield the best results, as evi-
denced by the relatively low values present in this row. Utilizing this strategy,
wastage of ammunition is minimized. This is particularly expected to be the
case due to the simulation parameters utilized. The combination of the inter-
ceptor missile speed being much greater than the cruise missile speed, along
with the short reload delay of defenders, leads to defenders having multiple
opportunities to fire at a single missile before an initial opportunity taken is
concluded. Since the probability of an interception opportunity succeeding

103

4.5. Experiments & Results

Figure 4.10: The train loss (left) and mean episodic reward (right) for attacker
agents over 1,024,000 timesteps of training.

Figure 4.11: The train loss (left) and mean episodic reward (right) for defender
agents over 1,024,000 timesteps of training.

once taken is 100%, firing multiple interceptor missiles at a single attacker
missile is a wasteful, non-optimal policy. This is further demonstrated when
looking at the performance of the Greedy defender baseline in the third row
of the table, where poor performance can empirically be found to originate
from scenarios where defenders run out of ammunition intercepting attacker
missiles in the early stages of an episode, so are unable to intercept missiles in
later stages of the episode. The worst performing defender baseline, however,
can be seen in the Random results in the second row of the table, where at-
tacker missiles are in many cases allowed to pass through defender interception
zones unhindered.

Regarding the defence strategies, neural network defenders outperformed
the Random and Greedy baselines, but were consistently outperformed by

104

4.5. Experiments & Results

Table 4.5: Adversarial performance of attacker and defender policies over a
constant 100-member set of test scenarios. All agent configurations
are trained 5 times to produce the mean and standard deviations
shown, with the standard deviation being calculated over all 5×100
test scenario performances for the given agent configuration. For
the attackers, a higher mean represents better performance, while
for the defenders, a lower mean represents better performance.

Attacker Mode
SLS-Greedy Random Greedy SA-RBF-SYM SA-RBF-ASYM SA-OH-SYM SA-OH-ASYM

D
ef

en
d

er
M

o
d

e

SLS-Greedy 0.99± 1.04 1.21± 0.81 0.67± 0.38 1.73± 1.11 1.73± 1.10 1.41± 0.93 1.30± 0.85
Random 2.67± 1.19 1.90± 0.70 0.93± 0.21 2.50± 0.86 2.57± 0.85 2.04± 0.77 1.89± 0.71
Greedy 2.17± 0.95 1.41± 0.72 0.92± 0.19 2.06± 0.90 2.09± 0.91 1.65± 0.79 1.51± 0.76

CTDE-RBF-SYM 1.73± 1.13 1.36± 0.74 0.83± 0.32 1.94± 0.95 1.97± 1.00 1.54± 0.84 1.45± 0.80
CTDE-RBF-ASYM 1.71± 1.16 1.33± 0.76 0.82± 0.33 1.92± 1.00 1.96± 0.99 1.56± 0.85 1.46± 0.78

CTDE-OH-SYM 1.72± 1.16 1.37± 0.77 0.82± 0.32 1.98± 0.98 2.01± 0.97 1.57± 0.82 1.47± 0.78
CTDE-OH-ASYM 1.71± 1.13 1.33± 0.77 0.82± 0.32 1.94± 0.97 1.97± 0.99 1.57± 0.85 1.44± 0.79
CTCE-OH-ASYM 1.71± 1.13 1.30± 0.78 0.82± 0.32 1.92± 1.00 1.97± 1.00 1.54± 0.82 1.43± 0.77
CTCE-OH-SYM 1.72± 1.13 1.36± 0.78 0.82± 0.31 1.98± 0.99 2.00± 0.98 1.58± 0.85 1.44± 0.79

CTCE-RBF-ASYM 1.60± 1.16 1.34± 0.77 0.80± 0.34 1.90± 1.00 1.93± 1.00 1.53± 0.86 1.43± 0.80
CTCE-RBF-SYM 1.72± 1.15 1.34± 0.77 0.82± 0.33 1.94± 0.98 1.96± 1.00 1.54± 0.83 1.43± 0.78

Table 4.6: Adversarial performance of attacker and defender policies over a
constant 100-member set of test scenarios. All agent configura-
tions are trained 5 times to produce the mean and standard devi-
ations shown, with the standard deviation being calculated from
the means of the 5 iterations of test scenario performances for the
given agent configuration. For the attackers, a higher mean rep-
resents better performance, while for the defenders, a lower mean
represents better performance.

Attacker Mode
SLS-Greedy Random Greedy SA-RBF-SYM SA-RBF-ASYM SA-OH-SYM SA-OH-ASYM

D
ef

en
d

er
M

o
d

e

SLS-Greedy 0.99± 0.00 1.21± 0.08 0.67± 0.00 1.73± 0.06 1.73± 0.06 1.41± 0.08 1.30± 0.18
Random 2.67± 0.04 1.90± 0.04 0.93± 0.01 2.50± 0.09 2.57± 0.05 2.04± 0.16 1.89± 0.22
Greedy 2.17± 0.00 1.41± 0.05 0.92± 0.00 2.06± 0.08 2.09± 0.08 1.65± 0.09 1.51± 0.18

CTDE-RBF-SYM 1.73± 0.05 1.36± 0.04 0.83± 0.02 1.94± 0.07 1.97± 0.09 1.54± 0.1 1.45± 0.19
CTDE-RBF-ASYM 1.71± 0.04 1.33± 0.03 0.82± 0.02 1.92± 0.06 1.96± 0.08 1.56± 0.09 1.46± 0.19

CTDE-OH-SYM 1.72± 0.09 1.37± 0.05 0.82± 0.02 1.98± 0.05 2.01± 0.11 1.57± 0.08 1.47± 0.18
CTDE-OH-ASYM 1.71± 0.04 1.33± 0.04 0.82± 0.01 1.94± 0.08 1.97± 0.06 1.57± 0.12 1.44± 0.17
CTCE-OH-ASYM 1.71± 0.03 1.30± 0.02 0.82± 0.01 1.92± 0.07 1.97± 0.06 1.54± 0.09 1.43± 0.19
CTCE-OH-SYM 1.72± 0.04 1.36± 0.07 0.82± 0.01 1.98± 0.06 2.00± 0.07 1.58± 0.09 1.44± 0.15

CTCE-RBF-ASYM 1.60± 0.04 1.34± 0.05 0.80± 0.01 1.90± 0.07 1.93± 0.09 1.53± 0.13 1.43± 0.19
CTCE-RBF-SYM 1.72± 0.05 1.34± 0.03 0.82± 0.02 1.94± 0.06 1.96± 0.06 1.54± 0.09 1.43± 0.2

SLS-Greedy. The best performing defender can be seen in the CTCE-RBF-
ASYM configuration row, as this agent has the lowest mean penalty of all
defender training configurations when playing against 5 of the 7 possible at-
tacker adversaries. Additionally, it is tied with CTCE-OH-ASYM and CTCE-

105

4.5. Experiments & Results

RBF-SYM configurations as the top performer against SA-OH-ASYM config-
uration attackers. That said, the differences in performance of CTCE-RBF-
ASYM configuration to the next highest performing defender agent in each
given column are not significant in most cases. The only column with a differ-
ence greater than 3% between the top two neural network defender agents is
that of the SLS-Greedy attacker, where the CTCE-RBF-ASYM configuration
has a mean approximately 6.9% lower than the next best configuration.

Overall, for defender agents, the representation being One-hot or RBF
(2D), the symmetry or asymmetry of observations used as input to the actor
and critic networks, and the use of a CTDE or CTCE paradigm were not
found to play a significant role in agent learning. While the performance dif-
ferences were significant in the attacker case, they are fairly homogeneous in
the defender case. When looking at the loss curve for the defenders in Figure
4.11, it can be seen to be decreasing through training. However, when looking
at the mean episodic reward curves in the same figure, agent performance im-
provement is not evident. We believe this to be a result of the high variance
in scenario initial conditions, resulting in high variance in mean episodic re-
ward achievable. Because of this, defenders quickly learn to take opportunities
when available, akin to a Greedy policy, regardless of observation.

When looking at the performances of the attacker baselines, SLS-Greedy
can generally be seen to perform the best, as evidenced by the higher aver-
age values in that column. A notable exception can be seen when the SLS-
Greedy attacker is facing an SLS-Greedy defender, where the baseline does
not perform. The worst performing attacker baseline, against every defender
adversary, can be seen in the Greedy column. This baseline empirically is
found to dedicate multiple missiles to a small number of targets, resulting in
diminishing reward for multiple impacts on the same targets.

The neural network attackers utilizing RBF (2D) representations, while
performing slightly worse than the SLS-Greedy attacker against Random and
Greedy baseline defenders, demonstrated superior performance against all
other adversaries. Moreover, asymmetric experiment configurations, where
the critic receives a more complete state representation than the actor, yielded
marginally higher-performing attacking agents at inference time in the RBF
(2D) representation case. They were, however, worse performing in the One-
hot representation case. The attacker agents trained utilizing RBF (2D) rep-
resentations, SA-RBF-SYM and SA-RBF-ASYM configurations, were on av-
erage found to perform 0.47 points higher than their One-hot counterparts.

Of final note is that with the exception of results in the Random col-
umn and Greedy row of Tables 4.5 and 4.6, all results reported are out-of-
distribution, as the agents are trained against constant adversary policies. It

106

4.6. Conclusion

is expected that performance of agents would be higher should the adversary
that the agent was trained against be in-distribution in all cases.

4.6 Conclusion

The objective of this chapter was to first develop a simulation environment
conducive for the investigation of DRL methods in a missile defence task,
and then to develop DRL agents and analyze their performance against our
environment baselines.

We analyzed a range of DRL agents of varying architecture and input
representation in our constructed missile defence scenario, through compari-
son of agent performance to the selection of hard-coded baselines. Following
this evaluation, for defence strategies, SLS-Greedy emerged as the superior
baseline. Neural network defenders were found to outperform the other base-
lines, however did not outperform SLS-Greedy. Of the 8 defender configura-
tions tested, the CTCE-RBF-ASYM configuration defender agent utilizing an
RBF (2D) state representation, asymmetric inputs to the actor and critic, and
CTCE training and execution paradigm was found to perform marginally bet-
ter against certain adversaries. However, no significant performance difference
was observed amongst the configurations.

The highest performing attacker baseline was found to be SLS-Greedy.
Similarly, the neural network attackers performed slightly worse than the SLS-
Greedy, however outperformed the Random and Greedy baselines. Of note is
that the asymmetric experiment configuration, where the critic receives a more
complete state representation than the actor, yields higher-performing agents
at inference time.

In our experiments on varying input representation in this chapter, we
further demonstrated the merit of utilizing RBF (2D) representations. In the
attacker agent case, these representations were found to once again outper-
form a comparable neural network architecture trained utilizing a One-hot
representation of the state.

The architectures and training methodologies utilized demonstrated
promise in their ability to create performant agents, however future work
could look at different avenues to augment this performance. The addition
of model-based methods, perhaps through Monte Carlo Tree Search (MCTS)
being utilized in conjunction with the neural network [74, 72], might augment
the neural network performance. Additionally, due to the lack of discernible
difference in defender performance with varying configuration, more research
is warranted to improve the performance of these agents. Effort should

107

4.6. Conclusion

be made to better understand the cause of the relatively homogeneous
performance amongst defender agents. This could include experiments
adjusting the frame of reference to be agent-centered in a similar manner to
the MPE observation encoding, and experiments with adversarial examples
where a policy of always firing at an opportunity is non-performant. The
final recommendation for future work is to look at observation and action
space representations that were omitted in this thesis. While we focused on
spatial observation and action spaces, alternative approaches utilizing pointer
networks, or attention mechanisms, to represent entities and actions warrant
exploration.

108

5 Summary and Conclusions

5.1 Summary

In this study, we conducted an investigation into the impact of different state
representations, corresponding neural network architectures, and multi-agent
training and execution paradigms on agent learning, with the objective of
training effective agents in a high-dimensional, multi-agent missile defence
simulation environment. To explore this, we employed the MountainCar en-
vironment as our initial testbed. Our findings revealed that employing a RBF
(2D) transformation of the default representation, coupled with a CNN, re-
sulted in exceptional performance and convergence characteristics.

Furthermore, in the Human-img experiments of Chapter 3.2 we examined
the potential of lower resolution representations with higher levels of noise.
Such representations were experimentally found to hinder agents from learn-
ing effective policies when trained directly. However, we discovered that by
utilizing an asymmetric architecture, where a higher resolution representation
is utilized as input to the critic network as is the case in the Hybrid experi-
ments, these lower resolution representations could still be effectively trained.
This novel approach enabled the agents to overcome the limitations of lower
resolution representations and achieve notable performance in the Mountain-
Car environment.

Building upon our insights from the MountainCar experiments, we ex-
tended our research to a higher-dimensional, multi-agent particle environment.
Here, we leveraged the most successful representations we had identified in the
MountainCar environment—the RBF (1D), RBF (2D) and Raw-continuous
representations. However, in this new setting, we expanded our experimen-
tation to include aspects of the multi-agent training paradigm. Specifically,
we compared the performance of agents trained using a centralized versus a
decentralized training paradigm. After thorough analysis, we consistently ob-
served that the decentralized paradigm outperformed the centralized paradigm
in terms of agent performance. This finding confirms the advantages of decen-

109

5.2. Limitations and Future Work

tralized execution in multi-agent settings, aligning with findings in literature
[47, 97, 43, 55].

Lastly, we introduced a custom environment, which was specifically de-
signed to explore the application of deep reinforcement learning (DRL) meth-
ods in a missile defence scenario. Leveraging the knowledge gained from our
previous experiments in the MountainCar and multi-agent particle environ-
ments, we integrated our prior learnings into the training architecture for this
new environment. By doing so, we aimed to showcase the merits of our trained
agents in comparison to a selection of hard-coded baseline agents. Through
a comprehensive performance evaluation, we demonstrated the effectiveness
of our trained agents in tackling the challenges posed by the missile defence
environment, further validating the effectiveness of our approach.

5.2 Limitations and Future Work

While our study on different state representations and agent learning yielded
promising results, there are several limitations that should be acknowledged.
Firstly, our initial experiments were primarily focused on the MountainCar
environment and the higher-dimensional, multi-agent particle environment.
Although these environments are representative of certain types of problems,
they may not fully capture the complexity and diversity of real-world scenarios.
Therefore, the generalizability of our findings to other domains should be
approached with caution.

Secondly, our investigation mainly concentrated on the effects of state
representations, with primary focus on the default Raw-continuous compared
against One-hot and RBF-based representations. While these representations
demonstrated consistent performance in our experiments, there may exist
other state representations or transformations that could yield even better
results. Exploring a wider range of state representations could provide addi-
tional insights and potentially uncover superior approaches.

Another notable aspect is that our experiments did not utilize commu-
nication between agents in both the MPE and missile defence environment.
Communication, especially in multi-agent systems, can significantly influence
agent performance and learning dynamics. Introducing inter-agent commu-
nication might allow agents to share valuable information, make collective
decisions, and adapt to the environment more effectively. Future work should
consider experimenting with various communication mechanisms to determine
their impact on agent performance and cooperation.

Another pivotal assumption underpinning our experiments in the missile

110

5.2. Limitations and Future Work

environment was the utilization of a state observation designed to encapsulate
information deemed pertinent to an agent’s action selection. Yet, it’s impor-
tant to recognize that in real-world scenarios, the same level of information
might not be accessible. As such, alternative methods might be worth ex-
ploration. For example, an LSTM or recurrence-based approach might allow
agents to derive insights from intra-episode feedback by integrating observa-
tions and events from various timesteps into the current state. This might pro-
vide the agent with an intrinsic memory of past events, potentially filling the
void of missing immediate observations. Another analytical approach worth
exploring could be the direct updating of state observations from an agent’s
accumulated experience. The uncertainty on location could then be encoded
using the spread of an RBF centered at the estimated location. For instance,
by maintaining a record of locations where attacker missiles are intercepted,
agents can adapt their strategies, even when lacking real-time defender loca-
tion data. Both methodologies offer prospects for enhancing agent efficacy in
less-than-ideal informational landscapes, and may be worth exploration to en-
hance the real-world applicability of the agents trained in the missile defence
environment.

Additionally, our study focused on the comparison of centralized and de-
centralized training paradigms in the context of the multi-agent particle envi-
ronment. While we consistently observed superior performance with the de-
centralized paradigm, it is important to note that the effectiveness of training
paradigms can heavily depend on the specific problem and environment. This
is evidenced by the homogeneous performance of CTCE and CTDE agents in
the missile defence environment, despite the outperformance of CTDE agents
in the MPE. Different scenarios may require tailored training approaches, and
the decentralized paradigm may not always be the optimal choice. Further
investigation is needed to explore the factors that influence the suitability of
different training paradigms across various domains.

Furthermore, our evaluation of agent performance in the missile defence
environment was primarily conducted through a comparison with hard-coded
baseline agents. While this approach provides a benchmark for assessing the
effectiveness of our trained agents, it does not capture the full spectrum of
potential performance levels. Additional evaluations against other state-of-
the-art DRL methods or human expert performance would offer a more com-
prehensive assessment of our agents’ capabilities.

Lastly, our study did not extensively address the computational and re-
source requirements associated with training agents using different state rep-
resentations and training paradigms. Training agents with higher resolution
representations or employing decentralized paradigms may demand increased

111

5.2. Limitations and Future Work

computational power and longer training times. These practical constraints
should be taken into account when considering the scalability and real-world
applicability of our approaches.

In conclusion, while our study sheds light on the benefits of different state
representations and decentralized training paradigms, it is important to recog-
nize the limitations inherent in our research. Further exploration in diverse en-
vironments, consideration of alternative state representations, investigation of
domain-specific training paradigms, comprehensive performance evaluations,
and addressing practical constraints will contribute to a more comprehensive
understanding of agent learning and its applicability in real-world scenarios.

112

Bibliography

[1] Akshat Agarwal, Sumit Kumar, Katia Sycara, and Michael Lewis.
Learning transferable cooperative behavior in multi-agent teams. In
Proceedings of the 19th International Conference on Autonomous Agents
and MultiAgent Systems, AAMAS ’20, page 1741–1743, Richland, SC,
2020. International Foundation for Autonomous Agents and Multiagent
Systems.

[2] Adrian K. Agogino and Kagan Tumer. Unifying temporal and structural
credit assignment problems. In Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems - Vol-
ume 2, AAMAS ’04, page 980–987, USA, 2004. IEEE Computer Society.

[3] James S. Albus. A theory of cerebellar function. Mathematical Bio-
sciences, 10(1):25–61, 1971.

[4] Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-
Alexandre Côté, and R Devon Hjelm. Unsupervised state representation
learning in atari, 2020.

[5] Grigory Antipov, Sid-Ahmed Berrani, Natacha Ruchaud, and Jean-Luc
Dugelay. Learned vs. hand-crafted features for pedestrian gender recog-
nition. In Proceedings of the 23rd ACM International Conference on
Multimedia, MM ’15, page 1263–1266, New York, NY, USA, 2015. As-
sociation for Computing Machinery.

[6] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and
Anil Anthony Bharath. Deep reinforcement learning: A brief survey.
IEEE Signal Processing Magazine, 34(6):26–38, Nov 2017.

[7] Umit Ayvaz, Murat Dere, and Yao Tiah. Using the mana agent-based
simulation tool to evaluate and compare the effectiveness of ground-
based and airborne communications jammers in countering the ied
threat to ground convoys. pages 113–118, 01 2007.

113

Bibliography

[8] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neu-
ronlike adaptive elements that can solve difficult learning control prob-
lems. IEEE Transactions on Systems, Man, and Cybernetics, SMC-
13(5):834–846, 1983.

[9] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil
Ozair, Yoshua Bengio, Aaron Courville, and R Devon Hjelm. Mine:
Mutual information neural estimation, 2021.

[10] Richard Bellman. A markovian decision process. Indiana Univ. Math.
J., 6:679–684, 1957.

[11] Daniel S Bernstein, Shlomo Zilberstein, and Neil Immerman. The com-
plexity of decentralized control of markov decision processes, 2013.

[12] John A. Bogovic, Gary B. Huang, and Viren Jain. Learned versus hand-
designed feature representations for 3d agglomeration, 2013.

[13] Steven Bohez, Tim Verbelen, Elias De Coninck, Bert Vankeirsbilck,
Pieter Simoens, and Bart Dhoedt. Sensor fusion for robot control
through deep reinforcement learning, 2017.

[14] Anne-Claire Boury-Brisset and Jean Berger. Benefits and challenges
of ai/ml in support of intelligence and targeting in hybrid military
operations. IST-190 Research Symposium (RSY) on Artificial Intel-
ligence, Machine Learning and Big Data for Hybrid Military Operations
(AI4HMO), Oct 2021.

[15] David Broomhead and David Lowe. Multi-variable functional interpola-
tion and adaptive networks. ROYAL SIGNALS AND RADAR ESTAB-
LISHMENT MALVERN (UNITED KINGDOM), RSRE-MEMO-4148,
03 1988.

[16] Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehen-
sive survey of multiagent reinforcement learning. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
38(2):156–172, 2008.

[17] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. Multi-agent
reinforcement learning: An overview. Innovations in Multi-Agent Sys-
tems and Applications - 1 Studies in Computational Intelligence, page
183–221, 2010.

[18] Wendelin Böhmer, Jost Springenberg, Joschka Boedecker, Martin Ried-
miller, and Klaus Obermayer. Autonomous learning of state represen-
tations for control: An emerging field aims to autonomously learn state

114

Bibliography

representations for reinforcement learning agents from their real-world
sensor observations. KI - Künstliche Intelligenz, 29, 03 2015.

[19] Yu-han Chang, Tracey Ho, and Leslie Kaelbling. All learning is local:
Multi-agent learning in global reward games. In S. Thrun, L. Saul,
and B. Schölkopf, editors, Advances in Neural Information Processing
Systems, volume 16. MIT Press, 2003.

[20] Jingjing Cui, Yuanwei Liu, and Arumugam Nallanathan. Multi-agent
reinforcement learning based resource allocation for uav networks, 2018.

[21] James Decraene, Mark Anderson, and Malcolm Y. H. Low. Maritime
counter-piracy study using agent-based simulations. page 165, 01 2010.

[22] James Decraene, Fanchao Zeng, Malcolm Y. H. Low, Suiping Zhou, and
Wentong Cai. Research advances in automated red teaming. page 47,
01 2010.

[23] Anthony Dekker. Agent-based simulation for counter-ied: A simulation
science survey. 05 2010.

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding, 2019.

[25] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges
of real-world reinforcement learning, 2019.

[26] Tommer Ender, Ryan Leurck, Brian Weaver, Paul Miceli, W. Dale Blair,
Phil West, and Dimitri Mavris. Systems-of-systems analysis of ballis-
tic missile defense architecture effectiveness through surrogate modeling
and simulation. In 2008 2nd Annual IEEE Systems Conference, pages
1–8, 2008.

[27] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas
Nardelli, and Shimon Whiteson. Counterfactual multi-agent policy gra-
dients, 2017.

[28] Lauren E. Gillespie, Gabriela R. Gonzalez, and Jacob Schrum. Com-
paring direct and indirect encodings using both raw and hand-designed
features in tetris. In Proceedings of the Genetic and Evolutionary Com-
putation Conference, GECCO ’17, page 179–186, New York, NY, USA,
2017. Association for Computing Machinery.

[29] Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement
learning: A survey. Artif. Intell. Rev., 55(2):895–943, feb 2022.

115

Bibliography

[30] Jaff Guo, Joe Armstrong, and David Unrau. Predicting emplacements
of improvised explosive devices. The Journal of Defense Modeling and
Simulation: Applications, Methodology, Technology, 10:75–86, 01 2013.

[31] Jayesh K. Gupta, Maxim Egorov, and Mykel Kochenderfer. Coopera-
tive multi-agent control using deep reinforcement learning. In Gita Suk-
thankar and Juan A. Rodriguez-Aguilar, editors, Autonomous Agents
and Multiagent Systems, pages 66–83, Cham, 2017. Springer Interna-
tional Publishing.

[32] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi.
Dream to control: Learning behaviors by latent imagination, 2020.

[33] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David
Ha, Honglak Lee, and James Davidson. Learning latent dynamics for
planning from pixels, 2019.

[34] Liqiang He, Dan Su, and Dong Yu. Learned transferable architectures
can surpass hand-designed architectures for large scale speech recogni-
tion. In ICASSP 2021 - 2021 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages 6788–6792, 2021.

[35] Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochas-
tic regularizers with gaussian error linear units. CoRR, abs/1606.08415,
2016.

[36] Geoffrey E. Hinton, James L. Mcclelland, and David E. Rumelhart. Dis-
tributed representations. In David E. Rumelhart and James L. Mcclel-
land, editors, Parallel Distributed Processing: Explorations in the Mi-
crostructure of Cognition, Volume 1: Foundations, pages 77–109. MIT
Press, Cambridge, MA, 1986.

[37] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Gre-
wal, Phil Bachman, Adam Trischler, and Yoshua Bengio. Learning deep
representations by mutual information estimation and maximization,
2019.

[38] Sebastian Höfer, Kostas Bekris, Ankur Handa, Juan Camilo Gamboa,
Melissa Mozifian, Florian Golemo, Chris Atkeson, Dieter Fox, Ken Gold-
berg, John Leonard, C. Karen Liu, Jan Peters, Shuran Song, Peter
Welinder, and Martha White. Sim2real in robotics and automation:
Applications and challenges. IEEE Transactions on Automation Sci-
ence and Engineering, 18(2):398–400, 2021.

[39] Christian Janiesch, Patrick Zschech, and Kai Heinrich. Machine learning
and deep learning. Electronic Markets, 31(3):685–695, 2021.

116

Bibliography

[40] Stef Janssen, Alexei Sharpanskykh, and Richard Curran. Agent-based
modelling and analysis of security and efficiency in airport terminals.
Transportation Research Part C Emerging Technologies, 100:142–160,
01 2019.

[41] Orhan Karasakal. Air defense missile-target allocation models for a naval
task group. Computers OR, 35:1759–1770, 06 2008.

[42] George Konidaris, Sarah Osentoski, and Philip Thomas. Value function
approximation in reinforcement learning using the fourier basis. 01 2011.

[43] Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement
learning as a rehearsal for decentralized planning. Neurocomputing,
190:82–94, 2016.

[44] Jakub Grudzien Kuba, Muning Wen, Yaodong Yang, Linghui Meng,
Shangding Gu, Haifeng Zhang, David Henry Mguni, and Jun Wang.
Settling the variance of multi-agent policy gradients, 2021.

[45] Chun-Gui Li, Meng Wang, Zhen-Jin Huang, and Zeng-Fang Zhang. An
actor-critic reinforcement learning algorithm based on adaptive rbf net-
work. In 2009 International Conference on Machine Learning and Cy-
bernetics, volume 2, pages 984–988, 2009.

[46] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Con-
tinuous control with deep reinforcement learning, 2019.

[47] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor
Mordatch. Multi-agent actor-critic for mixed cooperative-competitive
environments. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17, page 6382–6393, Red
Hook, NY, USA, 2017. Curran Associates Inc.

[48] Daniel Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco
Selvi, Cosmin Paduraru, Edouard Leurent, Shariq Iqbal, Jean-Baptiste
Lespiau, Alex Ahern, Thomas Köppe, Kevin Millikin, Stephen Gaffney,
Sophie Elster, Jackson Broshear, Chris Gamble, Kieran Milan, Robert
Tung, Minjae Hwang, and David Silver. Faster sorting algorithms dis-
covered using deep reinforcement learning. Nature, 618:257–263, 06
2023.

[49] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex
Graves, Timothy P. Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep reinforcement learning,
2016.

117

Bibliography

[50] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-
nis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari
with deep reinforcement learning.

[51] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control
through deep reinforcement learning. 518(7540):529–533, 2015.

[52] Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional
language in multi-agent populations. arXiv preprint arXiv:1703.04908,
2017.

[53] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th Interna-
tional Conference on International Conference on Machine Learning,
ICML’10, page 807–814, Madison, WI, USA, 2010. Omnipress.

[54] Klaus Niemeyer. Modeling and simulation in defense. Information &
Security An International Journal, 12:19–42, 2003.

[55] F. A. Oliehoek, M. T. J. Spaan, and N. Vlassis. Optimal and approxi-
mate q-value functions for decentralized POMDPs. Journal of Artificial
Intelligence Research, 32:289–353, may 2008.

[56] OpenAI, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki
Cheung, Przemys law Debiak, Christy Dennison, David Farhi, Quirin
Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz, Scott Gray,
Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique P.
d. O. Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas
Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Su-
san Zhang. Dota 2 with large scale deep reinforcement learning, 2019.

[57] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wain-
wright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina
Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Chris-
tiano, Jan Leike, and Ryan Lowe. Training language models to follow
instructions with human feedback.

[58] Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba,
and Pieter Abbeel. Asymmetric actor critic for image-based robot learn-
ing. In Robotics: Science and Systems XIV. Robotics: Science and Sys-
tems Foundation, 2018.

118

Bibliography

[59] T. Poggio and F. Girosi. Networks for approximation and learning.
Proceedings of the IEEE, 78(9):1481–1497, 1990.

[60] M. J. D. Powell. Radial Basis Functions for Multivariable Interpolation:
A Review, page 143–167. Clarendon Press, USA, 1987.

[61] Tabish Rashid and Mikayel Samvelyan. QMIX: Monotonic value func-
tion factorisation for deep multi-agent reinforcement learning.

[62] M. Rempel and J. Cai. A review of approximate dynamic programming
applications within military operations research. 8:100204, 2021.

[63] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolu-
tional networks for biomedical image segmentation.

[64] G. Rummery and Mahesan Niranjan. On-line q-learning using connec-
tionist systems. Technical Report CUED/F-INFENG/TR 166, 11 1994.

[65] Stuart Russell and Andrew L. Zimdars. Q-decomposition for rein-
forcement learning agents. In Proceedings of the Twentieth Interna-
tional Conference on International Conference on Machine Learning,
ICML’03, page 656–663. AAAI Press, 2003.

[66] Alex Salgo, Jeremy Banks, and François Rivest. Exploring decision
support systems in task scheduling. 11 2021.

[67] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gre-
gory Farquhar, Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung,
Philiph H. S. Torr, Jakob Foerster, and Shimon Whiteson. The Star-
Craft Multi-Agent Challenge. CoRR, abs/1902.04043, 2019.

[68] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Si-
monyan, Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart,
Demis Hassabis, Thore Graepel, Timothy Lillicrap, and David Silver.
Mastering atari, go, chess and shogi by planning with a learned model.
Nature, 588(7839):604–609, dec 2020.

[69] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and
Pieter Abbeel. Trust region policy optimization, 2017.

[70] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and
Pieter Abbeel. High-dimensional continuous control using generalized
advantage estimation, 2015.

[71] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. CoRR,
abs/1707.06347, 2017.

119

Bibliography

[72] David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Lau-
rent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timo-
thy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and
Demis Hassabis. Mastering the game of go with deep neural networks
and tree search. Nature, 529:484–503, 2016.

[73] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Ku-
maran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis
Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

[74] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan
Kumaran, Thore Graepel, Timothy P. Lillicrap, Karen Simonyan, and
Demis Hassabis. Mastering chess and shogi by self-play with a general
reinforcement learning algorithm. CoRR, abs/1712.01815, 2017.

[75] David Silver, Satinder Singh, Doina Precup, and Richard S. Sutton.
Reward is enough. 299:103535, 2021.

[76] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mass:
Masked sequence to sequence pre-training for language generation, 05
2019.

[77] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czar-
necki, Vinicius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas
Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore Graepel. Value-
decomposition networks for cooperative multi-agent learning, 2017.

[78] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. The MIT Press, second edition, 2018.

[79] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Man-
sour. Policy gradient methods for reinforcement learning with function
approximation. In Advances in Neural Information Processing Systems,
volume 12. MIT Press, 1999.

[80] Richard Stuart Sutton. Temporal Credit Assignment in Reinforcement
Learning. PhD thesis, 1984. AAI8410337.

[81] J.N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learn-
ing with function approximation. IEEE Transactions on Automatic
Control, 42(5):674–690, 1997.

120

Bibliography

[82] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learn-
ing with contrastive predictive coding, 2019.

[83] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò,
Yoshua Bengio, and R Devon Hjelm. Deep graph infomax, 2018.

[84] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Math-
ieu, Andrew Dudzik, Junyoung Chung, David H. Choi, Richard Pow-
ell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel
Kroiss, Ivo Danihelka, Aja Huang, L. Sifre, Trevor Cai, John P. Agapiou,
Max Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias
Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy,
Tom Le Paine, Caglar Gulcehre, Ziyun Wang, Tobias Pfaff, Yuhuai Wu,
Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver
Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis
Hassabis, Chris Apps, and David Silver. Grandmaster level in starcraft
ii using multi-agent reinforcement learning. Nature, pages 1–5, 2019.

[85] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexan-
der Sasha Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich
Küttler, John Agapiou, Julian Schrittwieser, John Quan, Stephen
Gaffney, Stig Petersen, Karen Simonyan, Tom Schaul, Hado van Hasselt,
David Silver, Timothy Lillicrap, Kevin Calderone, Paul Keet, Anthony
Brunasso, David Lawrence, Anders Ekermo, Jacob Repp, and Rodney
Tsing. StarCraft II: A new challenge for reinforcement learning.

[86] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks,
2017.

[87] Brian Wade. Creating surrogate models for an air and missile defense
simulation using design of experiments and neural networks. The Jour-
nal of Defense Modeling and Simulation: Applications, Methodology,
Technology, 18:154851291987798, 09 2019.

[88] M. Waltz and K. Fu. A heuristic approach to reinforcement learning
control systems. IEEE Transactions on Automatic Control, 10(4):390–
398, 1965.

[89] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos,
Koray Kavukcuoglu, and Nando de Freitas. Sample efficient actor-critic
with experience replay, 2017.

[90] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine
Learning, 8(3):279–292, May 1992.

121

Bibliography

[91] Brian Weaver. A methodology for ballistic missile defense systems anal-
ysis using nested neural networks. 01 2008.

[92] Gerhard Weiß. Distributed reinforcement learning. In Luc Steels, editor,
The Biology and Technology of Intelligent Autonomous Agents, pages
415–428, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

[93] R. J. Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine Learning, 8:229–256, 1992.

[94] David H. Wolpert and Kagan Tumer. An introduction to collective
intelligence, 1999.

[95] Erfu Yang and Dongbing Gu. Multiagent reinforcement learning for
multi-robot systems: A survey. 06 2004.

[96] Gokul Yenduri, Ramalingam M, Chemmalar Selvi G, Supriya Y, Gau-
tam Srivastava, Praveen Kumar Reddy Maddikunta, Deepti Raj G,
Rutvij H Jhaveri, Prabadevi B, Weizheng Wang, Athanasios V. Vasi-
lakos, and Thippa Reddy Gadekallu. Generative pre-trained trans-
former: A comprehensive review on enabling technologies, potential ap-
plications, emerging challenges, and future directions, 2023.

[97] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen,
and Yi Wu. The surprising effectiveness of ppo in cooperative multi-
agent games, 2021.

[98] Tao Yu, Zhizheng Zhang, Cuiling Lan, Yan Lu, and Zhibo Chen. Mask-
based latent reconstruction for reinforcement learning, 2022.

[99] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-Agent Rein-
forcement Learning: A Selective Overview of Theories and Algorithms,
pages 321–384. Springer International Publishing, Cham, 2021.

[100] Åström, Karl Johan. Optimal Control of Markov Processes with Incom-
plete State Information I. 10:174–205, 1965.

122

	Acknowledgments
	Abstract
	Résumé
	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation
	Problem Formulation
	Contribution
	Organization of Thesis

	Literature Review
	Reinforcement Learning
	Deep Learning
	Neural Networks
	Activation Functions
	Loss Functions

	Deep Reinforcement Learning
	Feature Representation
	State Encoding
	Representation Learning

	Asymmetric Architectures
	Multi-Agent Reinforcement Learning
	Conclusion

	Experimental Environments
	Introduction
	Mountain Car Environment
	Problem Definition
	Method
	Results & Discussion

	Multi-agent Particle Environment
	Problem Definition
	Method
	Results & Discussion

	Conclusion

	Missile Defence Environment
	Introduction
	Related Work
	Environment Background & Baseline Policies
	Environment Background
	Baseline Policies

	Agent Representation & Architecture
	Observation Representation
	Action Representation
	Neural Network Architecture

	Experiments & Results
	Experiment Background
	Results & Discussion

	Conclusion

	Summary and Conclusions
	Summary
	Limitations and Future Work

	Bibliography

