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Abstract

The usage of unmanned aerial vehicles (UAVs) have been growing at increasing
rates and primarily for the execution of surveillance and reconnaissance tasks.
Motivations for their use pertain to their versatility, low cost, elimination of
human risk, and potential autonomous capabilities. Intelligence, surveillance
and reconnaissance (ISR) tasks for UAVs generally require the aircraft to
overfly specified points of interest in an efficient manner while avoiding ter-
rain and dangerous regions to gather data and information. A step towards
autonomous UAV’s is a path planning module, capable of solving the com-
plex optimization problem of computing the routing in a reliable and timely
manner. This speed is essential to allow for rapid flight path updating due to
variabilities in the environment and changing objectives. Deploying multiple
UAVs on a mission allows for faster objective completion and provides a higher
level of redundancy; however, adds complexity as the problem of resource al-
location and coordination must be considered. This thesis work investigates
a fast flight planning algorithm for an ISR scenario involving multiple UAV’s
over a known geographical area. A path planning algorithm was developed,
it consists of the setup and formatting of data, solving the routing problem
for each POI using Bellman-Ford, and the distribution and assignment of the
appropriate paths for multiple UAV’s using the Genetic Algorithm. The ac-
celeration of this process was achieved using a Graphics Processing Unit and
allowed for significant speed-up enabling rapid path planning and in-mission
recalculations. The path planning program was tested and verified on a variety
of real-world terrain scenario’s simulating an ISR type mission with varying
number of UAVs.
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Résumé

L’utilisation de véhicules aériens sans pilote (UAV) augmente de plus en plus
rapidement et sert principalement à l’exécution de tâches de surveillance et de
reconnaissance. Leur utilisation est motivée par leur polyvalence, leur faible
coût, l’élimination des risques pour l’homme et leur autonomie. Les tâches
de renseignement, de surveillance et de reconnaissance (ISR) pour les UAV
requièrt de survoler des points d’intérêt spécifiés de manière efficace tout en
évitant les terrains et les régions dangereuses pour collecter des données et
de l’information. En marche vers leur autonomie, les UAV doivent disposer
d’un module de planification de trajectoire capable de résoudre le problème
complexe d’optimisation de calcul de manière robuste et rapide. Cela permet
une mise-à-jour rapide de la trajectoire de vol en raison de la variabilité de
l’environnement et des objectifs changeants. Une complexité supplémentaire
est introduite lors d’un scénario où plusieurs UAV sont déployés. Cela permet
d’accomplir les objectifs plus rapidement et offre un niveau de redondance plus
élevé, mais l’affectation des ressources et la coordination des aéronefs doivent
être prise en compte. Cette thèse présente une solution de planification de
vol pour un scénario ISR où plusieurs UAV survolent une zone géographique
donnée. Cela a été accompli grâce à la configuration et au formatage des
données d’entrée, à la résolution du problème du chemin le plus court à source
unique pour chaque point d’intérêt utilisant Bellman-Ford, ainsi qu’à la distri-
bution et à l’attribution des chemins appropriés pour plusieurs UAV utilisant
la métaheuristique de l’algorithme génétique. L’accélération de ce processus,
obtenue à l’aide d’un processeur graphique, a produit un gain significatif per-
mettant la planification et le re calcul des trajectoires de manière très rapide.
De plus, le programme de planification de trajectoire a été testé et vérifié pour
divers scénarios représentant un terrain réel et simulant une mission de type
ISR avec un nombre variable d’UAV.
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1 Introduction

UAV is an acronym for Unmanned Aerial Vehicle, which are versatile air-

craft platforms used in a variety of applications and has been experiencing

significant growths in the military and commercial sectors. Usages vary from

performing tasks in intelligence, surveillance and reconnaissance (ISR), target-

ing, seeding in farms, weather forecasting, and hazardous environment moni-

toring. A significant benefit of employing a UAV is the lower costs compared

to a crewed aircraft, risk mitigation due to the elimination of the onboard

pilot and the development of autonomous features.

Due to these lowering costs, deploying multiple UAVs (multi-UAVs) in the

same environment to perform a given set of objectives has become a popular

choice, providing a further increase in efficiency and redundancy. Multi UAV

deployment also allows for larger scale operations in terms of area coverage and

the scale of mission environments. More recent developments in technology

have brought to light the ability of UAVs to perform tasks requiring lesser

amounts of human intervention and interaction, with the eventual goal to

have fully autonomous flight capability. A vital step to achieve this is the

path planning module, which is the system capable of generating a trajectory

for the UAV control system to follow throughout the flight.

1.1 UAVs and Path Planning

UAVs form a subset of the unmanned systems category, classified as either

a remotely piloted aircraft (RPV), generally flown by a pilot located at a

ground control station, or an autonomous platform, control coming from an

1



1.1. UAVs and Path Planning

autonomous based system usually from a pre-programmed flight plan or may

consist of more complex dynamic systems. Additionally, the concept of a

Unmanned Aircraft System (UAS) has emerged as in many cases an entire

system is required to adequately support the UAV(s). These systems may

include ground station aspects such as communication systems, remote pilot

stations, and centralized computational resources.

The military role of UAVs have been growing at unprecedented rates, rapid

advances in technology are enabling more and more capability to be located on

smaller airframes which are spurring a substantial increase in the number of

deployments on the battlefield [1]. Research and development in this domain

have enabled UAV usage in a multitude of mission categories; however, the ISR

mission remains to date the most popular. These UAVs range from thousands

to millions of dollars in cost and range in size from a Micro Air Vehicle (MAV)

weighing less than one pound to large aircraft over 40,000 pounds.

Even with the development of new capabilities, a diverse collection of

UAVs have already been deployed in a variety of mission scenarios. Some of

the current bounds of UAV operation are demonstrated by the vehicles shown

in Figures 1.1.1 - 1.1.4. The Northrop Grumman RQ-4 Block 10 Global Hawk

(Figure 1.1.1) is one of the largest UAVs currently in deployment, with a mass

of 12,000 kilograms and a 35-meter wingspan [2]. With a range of over 20,000

kilometers, the Global Hawk UAV can provide real-time imaging for broad

mission-level intelligence, surveillance, and reconnaissance (ISR). Figure 1.1.3

is an image of a smaller, launch based fixed-wing UAV for smaller mission

areas.

At the other end, more portable and smaller sized UAVs capable of verti-

cal take-off and lift (VTOL) provide squad-level support in local and possibly

cluttered environments. One such example is the Indago (Figure 1.1.4, de-

veloped by Lockheed Martin and already in operation which weighs in at

approximately 2.2 kilograms and is capable of covering an area greater than

3 kilometers [4].

Some early UAVs were referred to as drones due to their lack of sophis-

tication as they were no more than radio controlled aircraft being controlled

by a human pilot at all times. More modern UAVs employ systems such as

2



1.1. UAVs and Path Planning

Figure 1.1.1: The Northrop Grumman RQ-4 Global Hawk. An example of a
UAV for long range, high altitude ISR missions [2].

Figure 1.1.2: The C170 Heron is a medium-altitude long-endurance UAV used
in Afghanistan [2].

built-in controllers, autopilot, and even simple pre-scripted navigation func-

tions such as waypoint following. Despite having such systems, a UAV cannot

be considered autonomous. The field of air vehicle autonomy is an emerging

field, primarily driven by the military to develop technology to assist in the

modern day and ever-changing battlefield. Compared to the manufacturing

of UAV flight hardware, the area of autonomy technology is considered to be

a new and developing field. Due to this, autonomy has been and may con-

tinue to bottleneck future developments in the field of unmanned systems thus

emphasized in terms of research and development.

Autonomy in the context of this field is the ability to make decisions during

flight and would allow for mission completion without human intervention. A

significant aspect of this is tied in with path planning and navigation, with

3



1.1. UAVs and Path Planning

Figure 1.1.3: Lockheed Martin Stalker XE is an example of a launcher based
UAV for military missions [3].

Figure 1.1.4: Lockheed Martin Indago is a UAV capable of VTOL for short
range ISR type missions [4].

technological development mostly following a bottom-up approach correlating

to control science instead of computer science. Similarly, autonomy has been

and probably will continue to be considered an extension of the controls field

[5]. In the foreseeable future, however, the two fields will merge to a much

higher degree, and practitioners and researchers from both disciplines will

work together to spawn rapid technological development in the area. To some

extent, the ultimate goal in the development of autonomous technology is to

replace the human pilot. It remains to be seen whether future events, the

perception of this technology, and the political climate surrounding the use

4



1.2. Motivation

of the technology, will be limiting factors in the usage of autonomy for UAV

applications.

1.2 Motivation

UAV’s benefit in terms of use in industrial and military applications due to

their low operational costs, low risk, and increased flight time in compari-

son to crewed aircraft. By having no flight crew on-board, they can be used

for long duration flights without fatigue limitations, and in dangerous envi-

ronments that would otherwise be deemed unsafe to fly. UAV’s are versatile

platforms, capable of performing a variety of tasks such as surveillance, recon-

naissance, targeting, weather forecasting, and hazardous environment moni-

toring amongst others. For the accomplishment of these tasks, the UAV must

possess the ability to navigate and explore the area in which it operates. ISR

platforms such as UAVs have been vital and continue to be a growing interest

in the military domain. As UAVs do not have the burden of the physiological

limitations of human pilots, they can be designed for maximized on-station

times. The maximum flight duration of unmanned aerial vehicles varies widely.

Internal combustion engine aircraft endurance depends strongly on the per-

centage of fuel burned as a fraction of total weight, and quadcopter designed

rely on battery capacity and efficiency. In accomplishing an ISR mission, the

UAV must be capable of overflying specified way-points, avoid obstacles, and

do so in the most efficient manner possible. Demand for adequate ISR data to

support ongoing military operations is significant as it can detect and provide

early warning of enemy threats, also enables forces to increase effectiveness,

coordination, and lethality.

Moreover, employing UAV’s to work as a group in an ISR setting presents

the opportunity for more excellent operational capability. Having multiple

UAVs operate together in the same environment to execute a given set of

objectives can increase the efficiency in a mission portfolio and decrease the

amount of time as the UAVs can gather data from different specified locations.

Additionally, it allows for more extensive operations in terms of the number

of reachable way-points, or the amount of area to be surveyed. A layer of

5



1.3. Path Planning and Scenarios

redundancy is also added, as the ability to accomplish the objectives is still

possible in the event one or multiple vehicles are lost.

Autonomous path planning is a sought after feature for UAVs due to sev-

eral reasons. An obvious one is the reduction of human workload in terms of

creating the appropriate flight plan for aircraft to follow which is generally a

tedious task. Rapid calculation of flight paths for multiple UAVs in a scenario

expands mission capabilities through live flight path updating. The incorpora-

tion of a flight path planning module in UAV systems is a crucial step towards

providing UAVs the ability to accomplish ISR missions autonomously. This

brings path planning to the forefront in terms of enabling autonomous flight

operations [6].

The US Department of Defence Unmanned Systems Roadmap 2005-2030

details a vision for the development of all types of unmanned systems [7]. It

is their goal to integrate manned and unmanned systems for optimal mission

execution seamlessly. According to the timeline, UAVs will be able to perform

a full range of mission tasks by 2030 including surveillance, counter air strikes,

penetrating strikes, and airlifts. There will be a need for increased autonomy

as these vehicles perform more complex tasks in dynamic environments. Au-

tomation will by no means eliminate the need for human involvement in the

operation of the unmanned systems but does alter what this interaction en-

tails. Operators will move into supervisory roles, monitoring and guiding the

activities of the vehicle through computer interfaces rather than mechanically

controlling its movements [8]. The trend of autonomous UAV capabilities has

been exponentially growing based on the results found in Figure 1.2.1 of which

past and future UAVs have been plotted based on the respective autonomous

control level. These control levels range from the basic remote controlled UAV

to a fully autonomous swarm (group) of UAVs being the final and highest level

sought.

1.3 Path Planning and Scenarios

The ISR mission profile considered in this work was formulated as follows. The

mission area would be known in terms of geographical and natural features,

6



1.3. Path Planning and Scenarios

Figure 1.2.1: The trend in UAV autonomous capabilities. [8]

with a defined maximum altitude. There are multiple points of interest (POI)

at locations specified by the user and must be directly overflown by at least

one UAV to collect observation data. The positions of the POIs can be at

various altitude levels above the given geographical terrain, limited to the

mission area. A path consisting of waypoints must be generated for each

autonomous UAV to define its routing between specified POIs. The generation

of these paths would be through a path planning module, which was the focus

of this work. In this scenario, multiple UAV’s would be deployed at the

same time from a single starting location of which they return upon reaching

their assigned POI’s. For this case, the path planner is a centralized system,

calculating the flight paths for all UAV’s with the ability to communicate and

send updated flight paths if needed throughout the mission.

The most straightforward path would consist of straight lines of point to

point routing passing through the POIs. This is inadequate as it is desirable

to create more optimized routing for the sake of efficiency and to evaluate

the path for safety. In path planning for multi-UAVs, besides optimizing and

calculating the routing, the allocation of UAVs must be performed. A simple

7



1.3. Path Planning and Scenarios

example of a path planning scenario shown in Figure 1.3.1 consists of terrain

features, a start position, and the desired POIs.

In a given path planning scenario there can be a variety of natural terrain

and manufactured features. In ensuring safety, paths must remain free of

collisions. Additionally, aspects such as altitude should be minimized to reduce

the risk of detection by both enemy observers and radars. In performing this

minimization, it is likely that the UAV path will want to follow the terrain

closely. As the path closes in on terrain, it becomes imperative that the path

has sufficient resolution and remains collision-free.

Figure 1.3.1: An example of a 3D environment used for path planning with
the starting point located at the bottom left, and POIs located in yellow
throughout.

Currently, a large amount of time spent during the operation of unmanned

vehicles is directing, planning, and re-planning their desired route [9]. In a

changing environment, the planned route may have to be recomputed numer-

ous times hence acceleration and achieving fast runtimes is a topic of interest

for researchers. Computing on GPU’s has become increasingly popular espe-

cially when parallelism can be exploited. Their relatively high thread to cost

8
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ratio allows for a massively parallel system capable of high data throughput

and have proven effectiveness in running specific algorithms.

1.4 Research Aim

This research aimed to investigate and improve on the current state of multi-

UAV path planning. A path planning method was proposed that provides

higher quality paths with fast computation times, even with a high number

of POIs and UAVs. The research undergone pertained to the usage of an

exact algorithm, capable of evaluating the entire map for possible routing

solutions. Additionally, it was proposed that the speed-up potential through

the utilization of GPU parallel processing could enable fast runtimes. Fast in

terms of computation time, allowing for in-mission recalculations, and by using

an exact algorithm, it would allow for the reliable generation of solutions. The

routing solutions would then be combined with the usage of a meta-heuristic

algorithm to enable the deployment and optimization of multi-UAVs in the

stated ISR mission.

Research was performed to investigate current path planning approaches

and to determine areas of improvement. Such areas were identified as inad-

equate route optimization, as many solutions do not optimize for the entire

routing path and difficulties in solving with a larger number of POIs and

UAVs. In researching this hypothesized path planner, the desired output was

first determined to be 3D paths for many UAVs directly overflying all spec-

ified POI’s. The paths should be capable of following terrain and optimized

considering the entire route and mission area. The development of a multi-

objective cost function was undertaken for optimized path calculations and

provided the ability to minimize a variety of parameters. With this informa-

tion, the Bellman-Ford (BF) pathfinding method was selected for modification

to suit the defined problem area. Selection of the BF was based on the algo-

rithms parallel programming potential and reliability to generate a solution.

Furthermore, the problem of solving for multi-UAVs involved developing an

instance of the Genetic Algorithm to optimize the division and allocation of

POIs based on the number of UAVs present.

9



1.4. Research Aim

The proposed planner was to be tested through simulations on a desktop

computer using several scenarios on realistic and real-world 3D terrains. These

simulations tested for a variety of input parameters and evaluated for runtimes,

particularly in terms of achieved speed-up, and for the validity of the generated

routes. To adequately demonstrate the program, real-world terrain maps of

large areas were presented to ensure feasibility.

1.4.1 Constraints and Limitations

In formulating the problem space, various aspects were defined to constrain

the bounds of this work. This path planner was to be presented a bounded and

known area. The POI locations would be entered at the start of the program,

with locations throughout the map space at various altitudes. The POIs were

constrained to the resolution of the map, numbering from 1-25. The UAV

type remained generic with its flight dynamics not being accounted for, of

which general optimization parameters and values were used. This assumed

that the UAV could turn and ascend at any rate. The number of UAVs in a

scenario would vary from 1-10, under the assumption that they possess the

adequate control systems to follow the paths outputted by this program.

1.4.2 Thesis Objective

This work contributes to the future development of autonomous UAVs, by

expanding in the area of path planning in terms of quick calculations for

in-mission use and providing a high-quality solution. The objective of this

thesis was to assess the feasibility and speed-up of a centralized flight planning

algorithm for multi-UAVs through parallel implementation on a GPU. It was

to be shown that adequate speed-up of the BF algorithm can be achieved to

generate routing between all the POIs. Additionally, these results were then

to be utilized to assign the routes to each UAV adequately. The algorithm

would be tested on several scenarios to assess its speed-up and characteristics.

10



1.5. Thesis Outline

1.5 Thesis Outline

The remainder of this document presents the research in greater detail. The

next chapter consists of a literature review summarizing relevant past works

in this research domain, followed by a background of the appropriate data

structures, algorithms, and the GPU processing platform. Following that,

the methodology is then presented, outlining the program implemented to

test the path planning algorithm. The next chapter consists of the results

and program validation. The final chapter contains the discussion with a

statement of contributions, ending with the conclusion.
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2 Literature Review

This chapter presents some of the more popular existing approaches and meth-

ods used in solving the UAV path planning problem. In surveying the field, it

was found that both deterministic and non-deterministic algorithm types had

been used, with non-deterministic tending to be a more popular choice. Map

representation techniques are briefly assessed, followed by presenting previous

works in solving the single UAV, and then the multi-UAV case.

2.1 Map Representation

2D & 3D Grid

In this representation, the input planning space was encoded as a 2D ma-

trix in which the elements represent the elevation of the terrain [10]. This

was adequately suited for the processing of certain algorithms with the ability

to recreate the original map through the process of interpolation. The de-

sired waypoints are overlaid independently of the planning space at elevations

greater than the interpolated terrain height. Additionally, other features such

as radar keep out zones can be included in this map representation format. A

network of closely connected tetrahedrons with nodes was used to represent an

entire 3D space. This representation style is known as Delaunay triangulation

and can be used to quickly partition an input space[6]. With their method,

threatening areas were embedded in the network in which the pathfinding

algorithm can then avoid.
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Voronoi diagram

The input space can be converted to a Voronoi diagram to be processed by cer-

tain pathfinding algorithms. The Voronoi diagram partitions a plane of points

into polygons containing exactly one point. The construction of Voronoi dia-

grams centers around an input with polygon edges initialized with a weight.

It was successfully used to represent an environment with edge weights cal-

culated accounting for fuel costs, threats, terrain, and distances in which a

pathfinding algorithm was applied [11]. Voronoi diagrams were used to rep-

resent an urban environment [12] in which an automatic building detection

method was used and enabled the use of 3D path planning.

2.2 Algorithms for Single UAV Path Planning

Dijkstra’s Algorithm

Dijkstra is a traditional graph-based pathfinding algorithm [13], in its original

form has a computational complexity of O(|E|+|V |2). Where E represents the

number of edges and V represented the number of vertices in the graph. For

sparse graphs and a rearranged data structure this complexity can be reduced

to O(|E|+ |V |log|V |) [14]. There have been adaptations of this algorithm for

the use in UAV path planning [15], [16]. Palossi et. al. proposed a real-time

3D path planning algorithm utilizing Dijkstra’s Single Source Shortest Path

(SSSP) algorithm [17]. The enabling factor for it to be real-time was its imple-

mentation on a GPU; they showed the algorithm to be energy efficient hence

applicable for UAVs with limited power resources. A year later in another

publication, the same author expanded on the algorithm, [18] highlighting

high GPU utilization, additional speed-up, and greater accuracy. It should

be noted that this work was applied to a relatively small input space (under

100m2) indicative of substantial time increases or failure to solve in larger

areas.
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2.2. Algorithms for Single UAV Path Planning

A* Algorithm

The A* pathfinding algorithm has commonalities to Dijkstra, however, has a

more heuristic approach [19]. This allows for a better selection of the next node

queued in the search and enables the algorithm to reach the specified end node

faster. This pathfinding algorithm has lower computational complexity than

the Dijkstra, and in conjunction with a cost function, can be used for optimized

path planning. Feng et. al. measures the performance of A* against Dijkstra’s

algorithm in the context of UAV path planning [20]. The A* method was

shown to produce results faster than the previously stated algorithms. Their

work was limited to solving in 2D domain taking into account obstacles with

an unsmoothed path. They tested the algorithm solving for the path of more

than one UAV and produced meaningful solutions through the minimization

of distance traveled.

Bellman Ford Algorithm

The Bellman Ford is a deterministic algorithm for the computation of the

shortest path on a graph input [21]. A key difference in the BF is its ability

to handle negative edge weight cycles. It, however, suffers from a higher

computational complexity in comparison being O(|E| |V |) [22]. Where again,

E and V represented the number of edges and vertices in the graph.

The algorithm was adapted for use in UAV path planning with obstacle

avoidance utilizing a multi-objective cost function [23]. The authors provided

an extension allowing for 2D path planning with the consideration of a min-

imum turning radius while still directly overflying the waypoints. In a later

publication is was shown that the Bellman-Ford algorithm to find the SSSP

is a magnitude faster in terms of execution time when comparing a parallel

implementation against a sequential version.

Ant Colony Optimization

The ant colony optimization (ACO) was a common metaheuristic approach

applied to the path planning problem. The algorithm was inspired by the
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swarm intelligence seen in the behaviours of ants in the wild. In this case, a

number of ants searching for the shortest path to the given waypoints. The

ants travel between points based on pheromone lookup table and distances.

Each ant completes a tour and updates the pheromone table to be fed to the

next generation of ants. Generations of ants are continuously created and seek

out paths using past knowledge to ideally find a more optimal path. This is

repeated until a termination criterion is met. The ACO was first applied to

the UAV path planning problem in 2D [24], building on their work, a more

realistic path planner utilizing a hybrid ACO and differential evolution (DE)

algorithm [25]. This approach produced an optimized, smoothened 3D trajec-

tory minimizing fuel consumption while preserving the reliableness offered by

the original ACO.

Building on the ACO approach, the authors of [26] use the multi-colony

ACO algorithm for single UAV path planning. The ACO has been proven

to be quite efficient, although it can be prone to stagnation or early conver-

gence. By having multiple ant colonies communicating and working on the

same problem each generation of ants can draw from a more comprehensive

pheromone table enhancing the potential solution of a given generation. Their

experimental results show their method to produce a more feasible solution

for UAV path planning in comparison to the single colony ACO. Furthermore,

it was shown that the ACO can be parallelized and experienced a speed-up of

82x in comparison to its sequential counterpart [27].

Genetic Algorithm

There have been promising advances in the application of a parallelized ver-

sion of the GA to solve the complex UAV pathfinding problem. This version

of the traditional algorithm was developed to run on CUDA architecture and

was shown to have considerable speed-up and good convergence [28]. The

work, however, was limited to solving the 2D TSP in the context of UAV

SSSP. The parallel GA was later applied to a 3D environment for single UAV

path planning [29]. In their work, the results showed that the parallel ver-

sion experienced a notable speed-up compared against a sequential version.
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Additionally, there were minimal effects on GPU execution time with popula-

tion size increase as opposed to almost exponential time increase with CPU.

The most recent work found consisted of an all-encompassing solution by in

which optimal, multi-objective path planning was achieved in a 3D environ-

ment for fixed-wing UAVs [30]. Their algorithm which provides a complete,

smoothened path, gained an average 290x performance improvement over the

sequential version. Another significance of their work is the introduction of

a fitness function allowing for a higher quality solution, accounting for no-fly

zones, obstacle detection, vertical speed limits, distance, fuel consumption.

They also accelerate path smoothing on the GPU which is performed based

on the GA solution. This work was promising due to having a 0.647 second

execution time feasible for the use of in-mission path recalculation. How-

ever, this number was limited to cases in which only a low amount of POIs

were solved for, and the algorithm was not suitable for use in complex terrain

environments.

Particle Swarm Optimization

The Particle Swarm Optimization (PSO) is a swarm optimization metaheuris-

tic, it can be related to groups such as flocks of birds attempting to find an

optimized solution [31]. The basis of the algorithm is to use a population

of candidate solutions, called particles, and moving them toward the best-

known positions in the search space based on the calculated results from each

iteration. The movement of each particle is dependent on its assigned loca-

tion and velocity which are influenced by the swarm’s best-known position.

This method was adapted for UAV path planning [32] in which terrain avoid-

ance and threat evasion were successful. The authors of [33] compared the

parallel GA and PSO UAV path planning algorithms both of which were

multi-threaded on a CPU. The algorithms accounted for a multi-objective

cost function in a 3D environment with path smoothing. The conclusion was

that both algorithms experience speed-up through parallel implementations,

however it was shown that the GA was more likely to produce a superior result

than the PSO.
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Reinforcement Learning

Within the domain of machine learning exists a method known as reinforce-

ment learning. An approach called adaptive and random exploration (ARE)

with a Q-learning network was proposed as a solution for UAV path planning.

They showed their method was adequate for path planning in a 2D environ-

ment with complex obstacles [34]. Limited work has been performed in this

domain, although there is a possibility that reinforcement learning could be

a viable option for the complex pathfinding problem. The drawback of these

methods and similar reinforcement learning based methods are their signifi-

cantly slower execution times in comparison to heuristics as there is a need

for the system to undergo learning before its use.

2.3 Algorithms for Multi-UAV Path Planning

Dijkstra’s Algorithm

Representing the environment using a Voronoi diagram allowed for the SSSP

to be calculated using Dijkstra’s algorithm [12]. In their work, up to six UAVs

were used to accomplish a reconnaissance task in the shortest amount of time.

The path planning of multi-UAVs was through determining the minimum

time taken by a given vehicle over those paths calculated. They recalculated

paths based on an update in the environment however failed to indicate if the

performance of the algorithm is suited for online path planning.

Genetic Algorithm

Sahingoz applied the GA to multi UAV path planning and uses path smooth-

ing to ensure flyable path based on UAV dynamics [35]. The same author then

later produced a parallel version of this algorithm presented in [36]. Limita-

tions of their work were the assumptions the UAV does not change altitude

and flies at a constant speed, this makes it challenging to find an optimal

solution given a multi-objective cost function.
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More recently, Cekmez et al. implemented the parallel GA for multi-UAV

path planning [37]. They used k-partitioning to partition the POIs into K

convenient parts to be assigned to a single UAV. This partitioning was sped

up significantly by implementing it on the GPU. Next, the parallel GA was

run on each partition separately solving for each UAV independently. Their

solution resulted in up to 4.20x faster mission times by using four UAVs and

executed from 185x to 223x faster than the sequential implementation. The

path accounted for and avoided obstacles, however only was solved for a 2D

input space optimizing just for distance. Additionally, the paths were only

point-to-point between the POIs in which the route was not entirely evaluated.

Their solution was not capable of solving adequately when presented with

greater numbers of POIs or UAVs.

Wolf Pack Search

The wolf pack search (WPS) algorithm is a swarm intelligence method in

which was modified for use in 3D space for multiple UAVs [10]. The WPS

has promise in this domain is due to strong convergence, the ability for global

search, and parallel computing capability. The WPS works by performing

the following steps: Initialization, Fitness (evaluation of the cost functions of

entire pack), Elitism (selecting group from within the pack), Safari (small scale

optimization), Update (move wolves closer to best wolf), Replacement (replace

weak wolves in pack), and returns to fitness step until reaching a stopping

criterion. Using a 2D matrix planning space, each POI was represented as a

gene, and each wolf had a unique chromosome being an entire path.

The novelty of the work in this paper is the inclusion of the GA crossover

and mutation operations to the original WPS algorithm. It was shown that

this modified WPS algorithm retains all the beneficial qualities of the original

while offering an improvement. The authors, through simulations, showed the

modified WPS to be reliable and outperforms the original WPS, and GA by

returning a more optimal solution. However, this algorithm takes significantly

longer to run which would be a hindrance in online path planning and suffers

similar traits as the GA in terms of larger problem sizes.
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Ant Colony Optimization

An improved ant colony optimization method was used to solve for multi-

UAV path planning [11]; the approach used Voronoi graphs to allow for the

optimization of fuel, and minimize threats based on the environment. They

combined the usage of the ACO with k-degree smoothing to solve for the multi-

UAV case. The work pertained more to multi-UAV coordination in which

k-degree smoothing was used allowing the UAVs to arrive at the destination

simultaneously or in an acceptable time interval. They produced feasible

coordination with their method; however, it did not use any terrain collision

avoidance evaluation.

Reinforcement Learning

The Partially Observable Markov Decision Processes (POMDPs) was used for

flight path planning for the use of target tracking [38]. Their work enabled

the use of multiple UAVs in a dynamic environment and was able to maximize

performance, and their calculated trajectory was constrained to the dynam-

ics of the UAV. A policy-based Q-learning method was used; the policy was

derived from Bellman’s principle of optimality and incorporated coordination

amongst multiple UAVs. Zhang et al. introduced a collaborative framework

for multi-UAVs to produce a low-risk path [39]. Their method allowed for

the collaboration of UAVs observations in path calculation as well as their

locations to avoid mid-air collisions.

2.4 Consideration of UAV Dynamics

The result of most pathfinding algorithms is a point to point solution which is

unlikely to be flyable by a fixed-wing UAV due to its minimum turning radius

and flight dynamics. To modify the routing, a common approach was to apply

a path smoothing algorithm on the point to point solution. After the applica-

tion of path smoothing, the path may then be checked to ensure it does not

violate any of the constraints such as collision with terrain. The modification

19



2.5. Summary

of the path also can result in the UAV no longer directly overflying the desired

POI. Depending on the objectives of the flight this may not be acceptable.

The fuel consumption can be quite complex to calculate, formulas simpli-

fying the equations of motion allow for faster computation of approximate but

precise solutions [40].

Wind is one of the most substantial disturbances for aircraft during flight,

and it can delay or speed-up flight times as well as veer aircraft off course

if not corrected for. Weather such as thunderstorms must also be avoided

as they are more than capable of causing loss of an aircraft, and at a more

minor level cause disturbances in communication and sensor data. Weather is

a changing environmental factor and flight planning modules must be capable

of recalculating paths based on these changes. In this authors work, the

Dubins path vehicle routing problem established for UAV path planning and

was extended, accounting for steady state winds [41]. Another example was

accounting for winds when planning a path for target tracking [38]. There

have been seminal work regarding integrating this aspect in path planning

algorithms.

2.5 Summary

There has been a significant amount of work published regarding autonomous

UAV path planning for both the single and multi-UAV case; however, only

a handful of solutions produce results capable of providing a complete path

planning solution. The speed-up of the algorithm types used for path plan-

ning through parallel computing have been quite promising and continues to

be a growing area of exploration in research. The significance of this is the

application to in-mission path planning, which is a crucial milestone to allow

autonomous UAVs to adapt to changing conditions. Throughout researching

this topic, it seems that researchers tend to focus on specific aspects of the

problem such as execution time, accounting for danger zones, problem repre-

sentation, resource allocation with the tendency to miss one or more of these

aspects. These limitations likely occur due to the complexity of the problem

and the scale of the work needed to address all the possible problem areas.

20



2.5. Summary

Some publications, such as [10] stand out by offering an almost entirely com-

plete solution in terms of a realistic and flyable path by multi-UAVs but is

still limited by straight lines between POIs.

Many works, although showing promising execution time improvements

should be further expanded on to provide a more thorough solution. This

expansion could very well result in the executing time not being viable as

initially indicated such as for increases in problem size.

Research seems to indicate that parallelized meta-heuristic algorithms are

a promising approach to tackling the multi-UAV problem. However, it ap-

pears that these algorithms may not be suitable for cases where many POIs

are present especially in conjunction with larger and more complex terrain.

Additionally, there are gaps in the resource allocation and coordination as-

pect of employing multi-UAVs in an environment and the integration into the

pathfinding algorithm used.

In the approach taken, the aim was to utilize the reliability of an exact

algorithm, accelerate it via using the parallel processing capabilities of a GPU.

Then use a meta-heuristic to converge on an optimized solution in terms of

solving paths for multi-UAVs.
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3 Background

This chapter provides the reader with information relevant to the path plan-

ning problem, optimization algorithms, and GPU programming. The path

planning problem is further expanded on and defined for this work. The

graph data structure will be presented due to its relation to pathfinding al-

gorithms which in turn the Bellman-Ford (BF) algorithm will be presented.

The genetic algorithm is then discussed. The chapter ends with the structure

of GPU’s in which the programming model and considerations are included.

3.1 Path Planning for UAVs

Path planning is a crucial element to any flight, and a functional path planner

is essential to enabling autonomous UAV’s. A path for UAV’s should be

provided in 3-dimensional space utilizing a multi-objective cost function to

minimize parameters. A simple example of a path planning case for UAV’s

was illustrated earlier in chapter 1 Figure 1.3.1 in which consisted of the

environment and contained multiple POIs at various altitudes. The result of

a path planning algorithm should include the 3D trajectory necessary for the

UAV to fly and reach a specified set of way-points. The resultant path must

account for constraints such as obstacle avoidance, dynamic flight properties,

borderlines, and mission goals. It allows the UAV to autonomously compute

an optimal or near-optimal flight path between the initial point to the end by

checking some specific control points or fulfil some mission specific constraints

(path length, obstacle avoidance, fuel consumption, etc.). In the use of UAVs,

generally, the path planning process tries to arrange a new path in 3D space
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for checking a specific area or specific control points.

Path planning can be defined as determining an optimal path for the vehi-

cle to go while meeting particular objectives and constraints, such as avoiding

obstacles. For the case of an ISR mission as focused on in this work, the

UAV’s will all begin and finish their journey at a single starting location.

Task allocation and scheduling are determining the optimal distribution of

tasks amongst a group of agents, with time and equipment constraints, with

cooperative tactics being the formulation of an optimal sequence and spatial

distribution of activities between agents to maximize the chance of success in

any given mission scenario.

3.1.1 Path Planning Complexity

Planning an optimized route through a known environment is a computation-

ally expensive task due to a variety of factors which have been previously

presented. There are a variety of problem domains that involve path plan-

ning, such as routing for robotics and vehicles. These differ however due to the

problem space and desired output, mainly due to the freedom of navigation

an aircraft has in 3D space.

In the computation of a flight path, it is popular to optimize based on

a multi-objective cost function. Based on numerous papers in the subject,

standard parameters that have been deemed necessary to minimize include

distance, average altitude, radar exposure, and fuel consumption. Throughout

the flight, it is critical for the planned route to avoid any terrain or obstacles

to avoid collision and the loss of a vehicle. In a changing environment, the

planned route may have to be recomputed numerous times bringing important

to the resources and time to execute this.

3.1.2 Relation to the Travelling Salesman Problem

The UAV path planning problem can be considered a subset of the tradi-

tional travelling salesman problem (TSP). The TSP is an NP-hard (non-

deterministic, polynomial time, hard) optimization problem. The aim of TSP

is merely to route a salesperson through several cities where the locations
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are known. The route must be the shortest possible way to pass every given

city exactly once and return to back to the starting point. In TSP solving,

there are (N − 1)!/2 single solutions where N is the number of cities. At least

one of these solutions is the best one concerning its total distance. As the

problem domain increases as does to computational requirements, with large

scale problems causing the failure of many search algorithms to converge on

a solution. With extensive data sets, and average computers will have se-

vere difficulties solving through an exact algorithm. With such limitations,

it is common to apply a heuristic approach to converge on a near-optimal

result. Using the optimization algorithms focused on problems such as TSP

can be seen as an effective way to study the UAV path planning problem.

Additionally, the multiple travelling salesman problem (m-TSP) require more

than one travelling body to be computed for and is often applied or related

to multi-UAV path planning.

3.2 Graphs

Graphs are a versatile and powerful method of which is commonly used to

represent a variety of data and situations. A graph contains two main data

types; nodes that hold data, and edges representing connections between nodes

and may also contain additional data. In an undirected graph, the edges are all

bi-directional allowing for traversal to/from any connection, a directed graph

has uni-directional edges allowing for one way traversal only. In most cases,

including this work, the graph is weighted; containing weights representative

of a cost associated with edges between the nodes. The method of graph

representation and implementation may vary widely based on the problem

domain and decisions made by the developer, and the intended uses of the

graph. In graph implementation, it is usually desirable to have the ability to

add/delete nodes and edges, along with modifying the weight values. Some

methods of graph representation are summarized below. [42]

Adjacency Matrix is a 2D array of size V x V where V is the number

of vertices in a graph if a valid edge connection exists between two nodes, its

respective index will contain a value. For example, a value of 1 at row i, column
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j would indicate a connection between node i and j. In the case of a weighted

graph, this value would represent the edge weight of the connection. It can

also be noted that the adjacency matrix for undirected graphs are always

symmetric. This method is relatively simple to implement and allows for

easy and efficient edge modification with queries taking only O(1) time. This

method, however, consumes significant amounts of memory O(V 2) despite the

connectivity of the graph, and for the case of a sparsely connected graph, most

of the memory is wasted space. Adding a vertex is O(V 2) time.

Adjacency List is a method in which an array of lists are used, each list

containing the list of vertices adjacent its respective vertex. For the case of a

weighted graph, the weights of edges can be represented as lists of pairs. This

method has a better memory utilization as the size of the array is equivalent

to the number of vertices.

Edge lists are a simple graph representation, being just an array of |E|,
called an edge list. Each entry in this array contains two vertex numbers

that the edges are incident to. For weighted graphs, an additional element is

added representing the edge’s weight. Since each edge contains just two or

three numbers, the total space for an edge list is O(E). Edge lists are simple,

but if we want to find whether the graph contains a particular edge, we have

to search through the edge list. If the edges appear in the edge list in no

specific order, that’s a linear search through |E|.
Representing graph structures as arrays are desired, particularly when uti-

lizing GPU processing, this can be accomplished through a number of meth-

ods, usually based on the graph connectivity (the edge/node ratio). For this

work, it was desired to use a lightweight, simple, graph representation. This

was to allow for minimal memory overhead, a high number of nodes and edges,

and fast indexing. Another critical advantage was due to this works defined

problem space being fixed at the beginning of the program; the of nodes and

edges could be fixed with their respective connections.

25



3.3. Optimization Algorithms

3.3 Optimization Algorithms

This thesis work’s primary focus was the adaptation and acceleration of two

existing algorithms to solve the defined problem. The Bellman-Ford, a single

source shortest path (SSSP) finding algorithm was modified to suit the needs

of map area processing. Further, an adaptation of the Genetic Algorithm

was implemented to solve the task allocation and cooperative problem for

multi-UAVs.

3.3.1 Bellman Ford

The Bellman-Ford algorithm in its original form, it computes a path based

on a weighted graph input, the details of its original implementation can be

found in [21]. The algorithm is a single source shortest paths solver for directed

graphs defined G = (V,E) with embedded edge lengths l(u, v) ε E and starting

node s ε V . The desired output is all of the shortest distance values dist(u),

u being all the vertices reachable from s. These values are calculated through

an iterative process run for |V | − 1 times, each iteration updating all edges

e ε E

The time complexity of this algorithm is O(|V | ∗ |E|), this has typically

led to other methods, such as the Dijkstra’s algorithm O((E + V ) log(V )) to

be employed. An advantage of the BF is its ability to handle negative edge

weights, which causes algorithms such as Dijkstra to fail. It can also be noted

that the BF will perform a check for each vertex, and is not dependent on the

edge processing order. This allows for more straightforward implementation

in a distributed computing environment such as on a GPU platform.

The pseudo-code of the original BF algorithm (Algorithm 1) details the im-

plementation and steps performed throughout. The initialization takes place

from line 1 - 5, the loop initializes two components per vertex. All the sepa-

rately stored vertex shortest distance values are set to infinite, and an addi-

tional list containing the previous node based on the shortest path calculation

is initialized. Additionally, the starting node (s) is set to 0. The following for

loop from line 6 - 12 consists of the iterative process, the critical operation is

the edge relaxation found on line 8 and 9. Edge relaxation is performed on
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each edge V − 1 times, which checks the cost of the edge and current vertex

to the next location and updates with the lower value when necessary. This is

done by checking the previous node u weight and the edge length l connecting

it to the current node v, updating as necessary and adding the node to the

array containing previous nodes in the path represented as prev.

Algorithm 1 Bellman Ford Pseudo-code

1: for all u ε V do
2: dist(u) =∞
3: prev(u) = nil
4: end for
5: dist(s) = 0
6:

7: for i = 0 to |V | − 1 do
8: for all e ε E do
9: if dist(u) + l(u, v) < dist(v) then

10: dist(v) = dist(u) + l(u, v)
11: prev(v) = u
12: end if
13: end for
14: end for

In this work, the algorithm was adapted for use in UAV path planning

utilizing the data structure with the embedded cost function previously dis-

cussed. Primary reasons for its selection was its reliableness and effectiveness

as a highly parallelizable SSSP algorithm [43].

3.3.2 Genetic Algorithm

The Genetic Algorithm is a meta-heuristic approach to the optimization of a

given problem and is presented in Algorithm 2. Its inspiration was from the

evolution process experienced in species over time. Similarly to the natural

selection process experienced, the GA aims to improve a set of candidate so-

lutions over the course of ’evolutions’ [44]. The aim is to reach an optimized

solution based on the set criteria employed, generally in the form of a calcu-

lation of a fitness function. In the usage of a meta-heuristic approach, and

evaluation of the results can be performed by analyzing how well the potential
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candidates converge to a solution. It is desirable to have a fast convergence in

terms of runtime, and that the algorithm indeed does converge to a solution.

Reasons for an unreliable GA are commonly due to inappropriate initialization

in which convergence may never be reached [45].

The first step of the algorithm to initialize a group of chromosomes called

the initial population each of which represents a possible solution. In our im-

plementation, a two chromosome technique was used consisting of two arrays

of length n each being a list of POIs and UAVs. For scenarios containing POIs

outnumbering UAVs, a single UAV will be associated with multiple POIs. The

fitness of each solution is evaluated using the weights from the provided weight

matrix, and the mating pool is selected favouring fit parents. Children solu-

tions are created from the selected parents using a crossover method in which a

section of data from two parent chromosomes is swapped. Mutation then takes

place by randomly selecting and swapping two data points. This allows for

variability in the children chromosomes and prevents premature termination.

These new children chromosomes will replace the old parent chromosomes if

they have better fitness values. The process is repeated until it reaches the

termination criterion, depending on the situation could be a number of iter-

ations or a certain fitness value threshold. The result of the GA is now an

optimized chromosome containing the data, depending on the chromosome

encoding to be of the most optimized solution found throughout the iterative

process.

Algorithm 2 Pseudo-code of Genetic Algorithm

1: Initialize Generation of random candidate solutions
2: while Stopping Criteria is False do
3: Compute fitness values
4: Selection: Select parent solutions
5: Crossover: Generate children solutions using a crossover method
6: Mutation: Mutate the children solutions
7: Local Optimization: Replace parent solutions with improved children

solutions
8: end while
9: return Best Solution
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The GA was implemented in previous works for solving the m-TSP prob-

lem [46] [47]. Furthermore, the GA was chosen due to its versatility, existing

usage in path planning applications, and speed-up through multi-threading

[48].

3.4 GPU Background

3.4.1 Overview of CUDA Enabled GPU’s

Graphics Processing Units (GPUs) are massively parallel processing compo-

nents which generally contains cores commonly numbering in the thousands.

They were originally developed for the gaming industry to deal with the large

amounts of data that needs to be processed continually. More recently they

have been adapted for use as a general-purpose programming platform for

various applications. This architecture differs from the traditional central

processing unit (CPU) which contains at most a few amounts of cores, but

they have been designed and highly optimized for peak sequential code per-

formance. Recently, the advancement in achieving higher clock frequencies on

CPU chips has slowed significantly largely due to the inability to meet the

heat dissipation requirements. This has caused the progression of increasing

the processing power of CPU’s to slow down, resulting in other approaches,

particularly the use of GPU’s to take the spotlight. GPU’s offer an alternative

solution for increasing computing power. Instead of increasing clock frequency,

they introduce a higher number of threads, allowing for the massive amounts

of data to be processed in parallel. A commonly used performance metric

known as floating point operations per second (FLOPS) is used to evaluate

the capability of a GPU to perform calculations.

GPU’s offer qualities which are well suited for the lightweight computation

of large amounts of data, they have the potential to perform with execution

times magnitudes less than that of traditional CPU’s with a much lower per-

core cost. To implement a program which effectively uses the features of

a GPU generally has a much greater development time as opposed to its

sequential implementation. Hence it is critical to ensure that the resulting
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program has the speed-up potential if being parallelized.

Nvidia has created an API and parallel computing platform known as

Compute Unified Device Architecture (CUDA) in which allows for general

purpose computing on graphics processing units (GPGPU). CUDA has been

designed to work with C, C++ and Fortran languages; it also contains accel-

erated libraries, debugging and optimization tools [49]. CUDA has become

quite popular in the development of applications for GPU’s and was found to

be used in most of the work which implemented parallelized path planning al-

gorithms. Many of these algorithms are suited for parallelism, as elements can

undergo independent processing in parallel, resulting in a significant overall

speed up [27].

3.4.2 GPU Programming Model and Architecture

In the development of a massively parallel program, it is imperative to un-

derstand the GPU hardware design and architecture to create an efficient and

effective program. CUDA enabled GPU hardware designs to have slight vari-

ations since its release. However, the base architecture remains the same and

will be discussed.

In CUDA, threads are organized into a configurable two-tiered hierarchy

of grids, and blocks found within each grid presented in Figure 3.4.1. The

maximum number of threads within a single block is 1,024 which is configured

in one, two or three dimensions. Additionally, grids can also be launched in

up to the third dimension. Threads are launched from the CPU (host) with

identical copies of a kernel function, a method explicitly compiled to be run

on the GPU. This type of processing is known as single instruction, multiple

threads (SIMT).

Another aspect of processing on a GPU is the organization of memory

(Figure 3.4.2) and the consideration of its access patterns. The global (device)

memory is made up of banks of double data rate random access memory [51] in

which is the only location apart from constant memory that data can be copied

to and from the CPU before and after launching kernel functions. Global

memory large in size but the trade-off is its high latency. Shared memory is
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3.4. GPU Background

Figure 3.4.1: Launching kernels from the CPU in grids consisting of blocks.
In this case each kernel function is launched on a 2D grid consisting of four
blocks, each of which had threads arranged in 3D. Reproduced from [50].

much smaller in size and has a scope limited to each individual thread block

but offers significantly lower latency in comparison to global memory making

it useful for storage of data which experiences a high number of operations.

One vital aspect of parallel processing is the coalescing of global memory read

and writes. This ensures that the actual throughput of the device can reach

values close to its theoretical throughput which is a metric of how effectively

the programmer is utilizing the GPU. A memory access instruction is capable

of retrieving large segments of aligned data; having misaligned data can result

in the program bottle-necking as each of these instructions are relatively slow.

The execution of instructions are performed on a block by block basis by

streaming multiprocessors (SM’s) found in Figure 3.4.3, with blocks assigned

at runtime. The number of SM’s as well as the number of blocks assigned

to each are limited, often causing the actual number of threads concurrently

running instructions to be less than the total number of threads launched,

particularly in applications a large number of threads. Each SM runs the same
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3.4. GPU Background

Figure 3.4.2: GPU memory hierarchy illustrating memory scopes. Reproduced
from [50].

instruction on a group of 32 threads called a warp; the execution efficiency

of the warps is a major consideration when creating and analyzing a parallel

program. Reason for this being that SM’s have limited scheduling resources,

and are designed to fetch and execute one instruction at a time hence making

it desirable to have all threads within a warp execute together. A delay of a

single thread will cause the entire warp to bottleneck, a common cause of this

is thread divergence through the use of conditional statements in the kernel

function.
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3.4. GPU Background

Figure 3.4.3: The architecture of streaming multiprocessors (SM’s). Repro-
duced from [50].
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4 Method

The proposed flight planning program employed a three-step methodology

which, in conjunction proved capable of achieving the desired results. The

flow of the program can be explained as follows: Step 1 consists of the raw

data processing and cost function calculations, Step 2 processes the formatted

map data for each POI using the Bellman-Ford algorithm accelerated on a

GPU, Step 3 uses the resultant information to assign each UAV to POI(s)

using the Genetic Algorithm and construct complete paths. Figure 4.0.1 is

a high-level program flowchart showing the steps performed by the program

throughout its execution.

Figure 4.0.1: A flowchart of the program steps illustrating the inputs and
outputs

4.1 Step 1: Data Formatting and Initialization

For a path planning program, an appropriate design decision must be made

to appropriately correlate the data structure and format with the algorithm

used. The usage of the BF dictated that it would be necessary to use a graph-

based representation. The raw data had to be processed and used in the

creation of the path planning scenario containing all the required parameters

and information for the program. In this work, the term scenario referred to
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4.1. Step 1: Data Formatting and Initialization

the software object created internally to the program that was subsequently

passed through the two algorithms and contained the information for the final

reconstruction.

4.1.1 Map Representation

The raw data of the terrain map consisted of a 2D matrix of the terrain

elevation heights; each value’s index represented a position in x-y coordinated

based on the specified scale for the map. The dimensions of this matrix along

with the scaling factor was used to set two indexing values; the number of

rows n and columns m, these two values also represent the x-y limits of the

map space. Another map parameter was the number of vertical layers which

dictated the vertical resolution and spacing.

Based on these inputs, nodes were then generated, each representing a

potential location in which a UAV can occupy. The number of nodes was

based on two parameters, the map resolution from the terrain matrix, and the

desired number of layers vertically. In a partial visual representation found in

Figure 4.1.1, they can be seen overlaid as vertically stacked layers of 2D grids

on top of the terrain. In determining the vertical spacing of layers, at each

point a floor altitude was set as an offset from the respective points terrain

elevation. A top altitude was also defined for the entire map, calculated as

an offset from the highest terrain feature in the given area. For each x-y

location, the nodes were evenly spaced between the floor altitude and the top

altitude. This resulted with node elveation changes when advancing towards

terrain, and vertical spacing between nodes reduce over elevated terrain. To

keep track of these node altitudes, an array of node elevations was stored,

later used in cost function calculations and path regeneration. This method

was chosen over having consistently spaced nodes vertically as it prevented

drastic altitude changes as nodes neighbouring steep terrain features were

highly separated.

With this structured node layout, each node has a set of adjacent nodes in

each cardinal and diagonal direction on its current layer and the layer above

and below it. A corresponding edge array was then generated and used to
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4.1. Step 1: Data Formatting and Initialization

track the connections leading from each node to its neighbours; the values

contained in this array represented the cost of travel between nodes.

This representation was chosen due to the structured nature of the map

3D grid of neighbouring nodes with a predetermined amount of edges. An

advantage of the grid representation was that the edge connections can be

determined without additional data, and there was no need to store the nodes’

previous information as paths will consist of adjacent nodes. This structure

consumed O(N + E) space, growing linearly in size with the map.

Figure 4.1.1: An example showing the 3D distribution of partial segments
of nodes. Note this only shows two lines of nodes at a low resolution for
visualization purposes.

36



4.1. Step 1: Data Formatting and Initialization

4.1.2 Data Formatting & Size

As previously stated, there is potential for reduction in the BF computational

complexity, this can be achieved through modifications to the graph data

structure. Since the graph was considered sparsely connected as each node had

only connections to adjacent nodes the data representation was simplified into

a list style format. The edges and nodes were represented as two independent

lists, and rather than having additional data relating the two for indexing,

indexing was based on the map parameters.

The edges were all contained within a single array, edges for node N(E)

was accessed through N ∗ connectivity. The node array was formatted as a

1D array, based on its indexing however was based on the number of columns,

rows, and layers: N index

Several in-line functions were implemented within the scenario class, each

returning the index of the neighbours of a node in a specified direction. Based

on the indexing shown in Figure 4.1.2, the index can be found through math-

ematical operations using the number of rows n and columns m along with

layer size. The letters in the array depict the direction the edge leads towards;

F, B, L, R, U, D, represent front, back, left, right, up, down.

Figure 4.1.2: An example of the data array format created and passed to the
next stage of the program in which a modified version of the BF algorithm
utilizes the data in this format.

In the implementation, a new boolean array was used as an indicator if a

node does indeed exist in the direction being checked. This addressed the edge

cases for the map and upper and lower limits. Using this array, simplified the

repetitive calling of the inline functions and reduced the number of parameters

passed between functions. It was particularly helpful in GPU programming,

allowing for a direction validity check before trying to access an array index,

otherwise resulting in a segmentation fault if invalid.

A table of the data sizes was created, due to the GPU having a dedicated
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and limited amount of memory it was essential to establish the data size

limitations prior to proceeding. The table presented in 4.1.3 was parametric

with some key parameters such as the map size, resolution, and the number

of POIs.

Figure 4.1.3: An example of the data size calculations undergone during initial
stages of program development. A fairly extreme example is shown with a
resolution 10 meter resolution, 20 POIs.

4.1.3 Cost Function Embedding

Path planning, along with most optimization problems, involve the minimiza-

tion of parameter(s). As stated, an objective of this work was to implement

a solution which allows for the consideration of multiple parameters. Op-

timization was achieved through the use of a multi-objective cost function

parametrize the metrics chosen for minimization such as in [52]. Two objec-

tives were decided upon, the first was minimizing the distance travelled by

each UAV, and the second was to maintain a minimum altitude. Optimizing

for distance was essential due to limited operating range of aircraft, this also

directly affects the overall flight and mission time. Additionally, a significant

cost of UAV operation is its fuel consumption, which was minimized through

distance, as well as altitude.
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Unnecessary changes in altitude are undesirable, due to increases in fuel

consumption and add complexity to routing. It is however desired to maintain

a minimal altitude as it minimizes the risk of detection from enemy observers

and radar [53]. Due to the high map resolution, and the method of path

planning it was possible to generate paths capable of close terrain following.

It can also be noted that this cost function was expandable if user require-

ments demanded. A key aspect in formulating a multi-objective cost function

was the integration of the parameters. This was achieved through the us-

age of reference values and weights for each objective. After the creation of

the edges, each connecting two adjacent nodes E(u, v) the cost of each edge

C(u, v) was calculated through the function shown in Equation 4.1.

C(u, v) = ω1 ∗
d(u,v)

dref
+ ω2 ∗

a(u,v)

aref
(4.1)

This equation required finding two reference values used for normalization,

dref , aref . These were found using the locations of the two furthest POIs (i

and j) in the scenario of which the straight line distance and difference in

altitude were calculated respectively. For the case of zero altitude change,

the reference value would be set to 1 preventing division by zero in the cost

calculation.

d(u,v) =

horzscale if E(u, v) is Cardinal

horzscale
sin(45) if E(u, v) is Diagonal

(4.2)

The distance between each of the selected points d(u,v) and altitude change

a(u,v) were the two factors taken into account. The cartesian distance and

altitude reference values were simply calculated as:

dref =
√

[i(x)− j(x)]2 + [i(y)− j(y)]2 (4.3)

aref = |nodeelev(i)− nodeelev(j)| (4.4)

The two additional parameters ω1 and ω2 were used as weights for the

distance and elevation costs respectively. These values could be varied based
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on user preference.

4.1.4 Results of Step 1

Upon completion of this step, the scenario was now considered initialized,

ready for further processing. The data that the scenario contains was then

used for the next step in which a BF algorithm was run to calculate the paths

of least cost. The essential data for this is contained in the edge array, of which

the cost function is now embedded. Additionally, the list of nodes including

the start point was organized into an array.

4.2 Step 2: POI Solving

This next step utilized an adaptation of the Bellman-Ford algorithm specific

for the data in the scenarios and was modified to exploit the massively parallel

nature of a GPU.

The BF was run once for each point, calculating an array of node weights

for each respective point as the starting location. The result of this was an

array of nodes for each POI, with the calculated cost it would take to fly to

each point in the map space. The data from these arrays were summarized

in a POI connectivity weight matrix consisting of the total path costs from

the POI to all the other POIs including the start point. This was run on a

pre-allocated set of node arrays kept in order through an additional array of

pointers.

4.2.1 BF Sequential Implementation

The BF was first implemented in sequential on the CPU to ensure feasibil-

ity for solving the given scenario. Algorithm 3 outlines the BF implemen-

tation which was a modified take on the original version located in Chapter

2. Notable changes were in collecting the neighbouring node data, and the

utilization of a flag to determine when the stopping condition was reached.

Before running the algorithm, the node weight arrays were initialized to

’infinity’ except for the source node. This value in the program was the max-
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imum value of a float data type. The source node is either the start/end

location, or a POI node was initialized to zero, causing iterations to update

nodes beginning at this point. Each node is then iterated through, and up-

dated in Line 6 if, based on its weight and associated edge weights a lower

weight is found. An advantage of the data format is knowing beforehand the

edges associated with the node, along with the neighbouring nodes weight val-

ues. These values were preloaded into temporary arrays to check if the node

needed weight updating, eliminating the need to check for every edge.

Algorithm 3 Sequential Implementation of Bellman Ford

1: for all POI do
2: Node weights V (G) =∞, POI node V (s) = 0
3: Flag = False
4: while Flag = False do
5: Flag = True
6: for all Nodes: V (i)εV (G) do
7: for all Neighbour Nodes V (n) do
8: if V (n) + E(n, i) < w(i) then
9: w(i) = V (n) + E(n, i)

10: Flag = False
11: end if
12: end for
13: end for
14: end while
15: end for
16: return Minimal routing costs

Each iteration would progressively update nodes further and further away

from the starting node until no further changes are required. This is indicated

by using a flag in addition to updating node weights.

The results from this step were tested through reconstructing a single path

between two points. It became clear an additional method of setting the nodes

lying at the map perimeter to a maximum value was needed to prevent the

path from leading off course.

Having tested this algorithm on a variety of scenarios including scaled

down resolutions, a various number of layers and simple cases it was shown
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to be a valid shortest path solving method with the primary downside is the

exponentially increasing run-times with increases in data size and POIs.

4.2.2 BF Parallel Implementation

As previously discussed, there are a variety of aspects that need to be consid-

ered in converting a program for GPU acceleration. The data was formatted

in such a way to maximize accessibility to data in memory, and with the

nature of the selected BF based search method, parallel processing of nodes

was deemed possible. The relatively independent nature of the data structure

allowed for parallel implementation as threads could independently work on

the calculation of node weights without much concern about run-ons.

Due to the GPU having a separate, dedicated memory, the copy of relevant

data was necessary prior to the algorithm starts. Fortunately, only the edge

array containing each edge weight needed to be copied. The node arrays were

initialized on the GPU using a simple kernel function with the final results then

copied back to the CPU for validation and to be used to complete this step by

creating the POI connectivity matrix (PCM), and later for path construction.

In calling kernel functions, each GPU thread was individually assigned to

a node matching its index, allowing for each node to be independently worked

on, and updated if necessary. This method was chosen over running a thread

per edge, negating the potential for race conditions. However, due to nodes

being updated in parallel the spread of weight information through the graph

would likely take more iterations. This was proven and can be found in the

following chapter in which a comparison is performed based on the number of

iterations required. Despite having the potential for more iterations, it can be

expected that the speed-up allowed though using GPU would be substantial.

Each iteration required a single kernel launch containing the method with

the Bellman-Ford algorithm. The kernel function would first initialize the

data required for its specified node, similarly to the sequential implementation

and run through the edge relaxation process. To implement the flag check,

indicative of algorithm completion, a memory copy from the GPU to CPU of

the single boolean had to be called. As these instances of memory copied is
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time intensive, it was deemed faster to perform memory copies after a given

number of iterations on the GPU, enough to allow for an adequate amount of

data spread, however short enough to prevent too many unnecessary iterations

of which no updates occur.

Algorithm 4 Parallel Implementation of Bellman Ford

1: for all POI do
2: Launch: Initialize Kernel
3: Edge Array Copy: CPU → GPU
4: Node Direction Array Copy: CPU → GPU
5: Launch: Flag Reset Kernel
6: while Flag == False do
7: Launch: Launch BF Kernel
8: Flag Copy: CPU ← GPU
9: end while

10: Node Array Copy: CPU ← GPU
11: end for
12: return Route costs for all POIs

Algorithm 4 shows the program flow and kernel launching from the CPU.

Algorithm 5 consists of the kernel implementation launched on each GPU

thread.

Algorithm 5 Bellman Ford CUDA Kernel

1: NodeID = ThreadID
2: Flag = True
3: Load Neighbouring Nodes into temp array
4: Load Incoming Edge Weights into temp array
5: Edge Relaxation
6: if Edge Relaxation Occurs then
7: Flag = False
8: end if

In the initial program development, the sequential node array results were

compared to the node arrays copied from the GPU program which would then

be considered ’correct’ if the values matches within a small margin of error.

The margin of error was caused due to the precision of the data type (float)

and was within acceptable tolerance for the application.
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4.2.3 BF Results

As stated, there was a significant amount of data from the result of this step.

This data was arrays of nodes, now each with its final calculated weight. Based

on the array for each point set as the ’source’, each node weight within that

array represents the least cost to reach that location. These costs were derived

from the originally embedded cost function from the edges. An advantage of

incorporating distance as a weight is that there was a positive gradient in terms

of node values moving further from the start location as shown in Figure 4.2.1.

Additionally, the cost of changing altitude varied based on the terrain features.

This aided in allowing for quick path construction found in the final stage of

the program.

Figure 4.2.1: A visual representation of the resultant node weight array for a
single point. The result presented was reconstructed based on the location of
each node despite being represented as a 1D array within the program.

The relevant results, the cost for any possible desired path was gathered

and stored in a smaller, node weight matrix (Figure4.2.2), representing the

interconnectivity of each POI and start point, was then to be passed as an

input for the next algorithm/step.
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This was achieved by looping through each POI p, returning the node

weight of every other POI node weight from within the node array belonging

to p.

Figure 4.2.2: A visual representation of the resultant matrix from step 2. S
represents the starting point, letters A,B,C represent three POIs in which
the path cost to/from another point can be found.

4.3 Step 3: Multi-UAV Solving

Now having the complete set of weights for any possible path routing between

points, the next step was to create the complete routing of a minimal cost by

optimizing the order of POIs visited and the allocation of the UAVs to the

POIs. This problem becomes less trivial when dealing with larger numbers

of POIs and/or UAVs. It was decided to use a meta-heuristic approach to

generate an optimized solution rapidly and reliably given the conditions for

this step in the program. In this work, the Genetic Algorithm was used to

simulate the evolution of UAV and POI pairings through the process of selec-

tion, crossover, and mutation allowing for fast convergence to an optimized

solution. It can be noted that solving this problem is quite similar to solving

the m-TSP problem, although now utilizing the data calculated as a result of

the BF solver.

4.3.1 Genetic Algorithm

The primary modifications to the GA were identified as: adapt to solve for the

multiple UAVs and POIs, accounting for the single depot situation in which

45



4.3. Step 3: Multi-UAV Solving

each aircraft must return to the start point, and utilization of the POI weight

connectivity matrix.

In this approach, the number of UAVs and POIs were defined as m and

n respectively. Each chromosome consisted of two arrays of equal length n

one being a list of POIs and the second, its respective assigned UAV number.

With this format, UAVs are matched with POI(s) based on its indexing within

the arrays. For scenarios containing POIs outnumbering UAVs, a single UAV

will be associated with multiple POIs.

The initial population of candidate solutions were generated at random.

Each chromosomes POI array consisted of all the POI numbers shuffled at

random, without any repeating values. The UAV assignment to the POIs was

generated at random. The chromosomes were then evaluated based on the

overall path cost for each UAV prior to starting the GA iterative process.

Figure 4.3.1: A visual representation of a chromosome used in the GA with 9
POIs and 4 UAVs.

The fitness of each candidate solution was evaluated using the weights

from the provided weight matrix. Tournament selection was used to choose

parent chromosomes. This was performed by checking a set number of par-

ent chromosomes and selecting the one with best fitness. Children solutions

are created from the selected parents using a crossover method in which the

POIs from one parent chromosome was copied over and the UAV arrays were

merged, favouring each parent equally. This method can be found in Figure

4.3.2.

Mutation then takes place by randomly selecting and swapping two points.

This allows for variability in the children chromosomes and prevents premature

termination.

With the new generation of candidate solutions, the order of POIs assigned

to each UAV from within each chromosome. To ensure the POI order was

feasible, and did not cross over itself, the 2-opt TSP solving method was
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Figure 4.3.2: Illustrating the crossover method for the specified chromosome
format. This exmaple contains 9 POIs and 3 UAVs.

applied. These new children chromosomes would then replace the old parent

chromosomes if they have better fitness. The algorithm is repeated until it

reaches the termination criterion, a set number of iterations. This was deemed

adequate due to the speed of each iteration being in the range of a millisecond.

An advantage was the ability to run the 2-opt operation in parallel on

the CPU using the openMP library. This resulted in speed-up for a very low

development cost.

Another notable advantage to this method was the fitness values being

taken from the weight matrix rather than being calculated in each iteration

allowing for fast iterations. Additionally, the two chromosome coding method

allows for better population evolution enabling faster convergence. The stop-

ping criteria was set to limit the number of generations, through testing it

was found that 100 generations and 100 candidate solutions would produce

acceptable results with a significantly fast runtime.

Due to having a relatively small amount of input data from the previous

step this allowed for the algorithm to a quickly converge to an optimized

solution. This was first tested in a standalone environment using Matlab,

which randomized inputs were fed to the solver and map results were plotted,

along with convergence values. The weight values based on the Cartesian

distance at this point which was replaced with the weight values from the

POI connectivity matrix.
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4.3.2 Path Construction

The result of the GA was an optimized chromosome containing the order of

POIs with their respective UAV assignment. Based on the best chromosome

from the last generation of the GA, a list of POIs per UAV was extracted.

Routing cost was calculated under the assumption of a round trip from the

start point; however, this point was not included in the chromosome data.

This segment was added to the solution enabling the UAV to return upon

mission completion. Through using the saved weighted node arrays from Step

2, a detailed path can then be traced between the POI’s distributed to each

of the UAVs. This path consisted of adjacent nodes for the UAV will travel

through. This allowed for a path of high resolution, and that remains true to

the calculated cost.

Algorithm 6 Path Segment Construction

Input : Start Node, End Node

1: PathArray[0] = End Node
2: i = 1
3: while PathArray[i-1] ! = Start Node do
4: PathArray[i] = nextNode()
5: i++
6: end while
7: Reverse Path Array
8: return Number of Nodes, Path Array

A lightweight function was implemented to construct the paths, performed

by descending through the array of node weights (Algorithm 6), and returns

the path segment (a list of way-points) between two points. Due to the na-

ture of the node weights, there was a gradient at each point, allowing for

precise, and quick construction. Finally, on a per UAV basis, the segments

were stitched together resulting in a complete list of desired way-points for

each UAV to travel through starting and finishing at the ’start point’.

These lists, combined with the input scenario information was used to

reconstruct the map, with paths highlighted for visualization. This was the

final desired result of the program, which was then evaluated in terms of
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runtimes, and visual inspection further discussed in the following chapter.
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5 Results

Chapter 1 introduced the path planning problem and highlighted the crite-

ria needed for the implementation of a UAV path planner and provided and

overview of the work performed in this thesis. Chapter 3 provided the reader

with background of the algorithm types employed in the work, and program-

ming considerations in order to achieve speed-up through GPU utilization.

The previous chapter described, in depth, the methodology and development

of the path planner presented in this work. This chapter serves to present the

reader with the validation of the program and the achievement of the goals

set out in Chapter 1. First, the verification of the individual program steps

are presented, followed by the overall program output validation performed

for a variety of scenarios. This serves to show that the generated paths are in-

deed feasible, and through scenario reconstruction and visual inspection, can

be seen as an adequate results. Next, testing of the program for timing and

speed-up was performed to validate the acceleration using the GPU, feasibil-

ity for in-mission recalculation capability, and to evaluate program behaviour

given a variety of hyper-parameters.

5.1 Verification

The program verification began by establishing that the output for each pro-

gram stage was as desired as per the design requirements. For the first step

this was through checking through samples of edge weights, ensuring their

values were as expected based on the cost function. In step two, the node

weights were verified and plotted to check the behaviour of the BF algorithm.
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Lastly the GA was checked by creating simple routing paths with a set number

of UAV’s. Finally the entire program output was verified by passing multiple

scenario’s through and rebuilding the final results which included the routing

for each UAV’s as defined in each scenario. The program was developed in

C++ with CUDA 9.1 on Visual Studio. The program was executed on a HP

Z820 workstation with 18 GB of DDR3 RAM, an Intel Xeon E5-2650 CPU

and Nvidia GeForce GTX 1080 Ti. The CPU contained a total of 16 cores

with 32 logical processors. The GPU had 3584 CUDA cores with a clock speed

of 1582 MHz and 11GB of memory.

5.1.1 Verification of BF

In verifying the output of the BF step for which node weight arrays were

calculated by the GPU, the implemented sequential version of the BF was

also run. The output node arrays for an individual point generated by each

version was compared for correctness. This performed for each scenario tested,

however, in final program implementation it would be possible to negate the

sequential BF in order to achieve speed-up. Additionally, to evaluate the

behaviour of the algorithm and its propagation of the cost function, plots of

the node weight values were created on a layer by layer basis. An example of

this can be found in Figure 5.1.1 where it can be seen that the weights increase

further away from the starting point, and terrain features are accounted for.

5.1.2 Verification of GA

The standalone verification of the GA with modifications for use with the

POI connectivity matrix with a varying number of UAV’s was performed uti-

lizing Matlab. The tests run were: 1) UAV assignments to POI’s 2) Solution

convergence.

A set of randomly generated POI’s each with a set of Cartesian x-y coordi-

nates were used to test the assignment of UAV’s with the algorithm evaluating

routing based on distance. The resulting point to point routes were plotted

for visual inspection to gauge the behaviour of the algorithm.
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Figure 5.1.1: BF Weight Array verification output

Additionally, it had to be verified that sufficient iterations were undergone

as that was the decided the stopping criteria. A method for checking was

through plotting the fitness values of each generation of which convergence

to a value was an expected outcome. Figure 5.1.2 illustrates an example of

a convergence plot, this was performed for many test scenarios, in which it

was determined that setting the iteration amount to 100 resulted in adequate

convergence.

5.2 UAV Path Quality

The first step in UAV path planning verification is through visual inspection of

the output path quality. This allows checking of the path, ensuring it remains

collision free, has logical routing, and also provides for a deeper understanding

of the algorithm behaviour.

It was noted in the development of the path reconstruction, with cases

of routing near the edge of the map there may be instances of the program
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Figure 5.1.2: The average and best fitness values plotted over the course of
100 iterations showing adequate convergence

getting ’lost’ in determining the next way-point. This was rectified by adding

a padding layer around the map edges.

As the path for each UAV is a list of adjacent nodes, it can be seen that

routes remain free of terrain conflicts. This is attributed to the nodes being

an offset of terrain elevations, resulting in their valid connecting edges also

remaining free of conflict.

Figures 5.2.1 - 5.2.3 present three examples of the scenario reconstruction

with the final resultant paths for each UAV. The first scenario consisted of

fictitious terrain features which was used for program development and test-

ing. The following two scenarios are examples of two real world terrain maps

based on geography from various regions. This was done to ensure program

feasibility in complex, real-world scenarios.
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Figure 5.2.1: Scenario reconstruction with two UAV’s and four POI’s
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Figure 5.2.2: Scenario reconstruction with three UAV’s and six POI’s
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Figure 5.2.3: Scenario reconstruction with two UAV’s and seven POI’s

It can be seen from the scenarios, the paths are of high resolution, capable

of closely following the terrain, minimizing altitude, overflying the desired

POI’s and return back to the starting point. These paths are considered of

high quality as they have high resolution, truly achieve proper path creation

with the consideration of terrain and high level of cost minimization, all of

which has been shortcomings of many existing methods.

5.3 Numerical Results

The second step of program verification for the purpose of this work was

ensuring adequate speed-up was achieved. Slight variances in runtimes were

expected, hence each timing data point used was an average based on a number

of repeated runs.

In overall program evaluation, each step and in turn, function was mea-

sured in terms of time consumed. As expected the sequential BF method

consumed significantly more time than any other aspect. The timing was
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greatly reduced and work balance was evened out as can be seen in Figure

5.3.1.

Figure 5.3.1: Chart comparing the amount of work performed at each step.
The key aspect is the reduction in the BF processing work.

Figure 5.3.2: An average overall program runtime broken into steps. This
illustrates the significant advantage of using a GPU in accelerating the BF
SSSP algorithm.

5.3.1 BF Timing

As the change in hyper-parameters primarily affected the BF algorithm, fur-

ther timing analysis was performed and can be found in Figures 5.3.5 - 5.3.8.

Behaviours such as number of iterations required to variation of GPU param-

eters were also tested.

As expected the number of iterations required by the BF kernel function

outnumbered the CPU version, this was tested for varying the number of POI’s

in a scenario (Figure 5.3.3). This indicates that the parallel algorithm was not

as work efficient in comparison to the sequential. Meaning the propagation

across the map nodes occur at a slower pace. The per iteration runtime

however was significantly faster resulting in a high amount of speed-up as
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found in Figures 5.3.5 and 5.3.6. This speed-up negates the greater number

of iterations required. It was also noted that the number of iterations is

largely based on the number of POI’s, however do vary as each POI required

a different number of iterations to solve based on its location.

Figure 5.3.3: Comparison of the amount of host and device BF iterations
required with varying POI numbers.

An important parameter was the number of threads launched per block

on the GPU in running the BF kernel. This parameter was tested at a fixed

problem size and it was determined the best speed-up occurred with a block

size of 256. At greater numbers the amount of parallelism no longer benefits

algorithm speed-up.
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Figure 5.3.4: BF runtime varying the block size GPU parameter

Figure 5.3.5 depicts the significant runtime reduction achieved from using

the GPU to run the BF algorithm. Identical problem cases were run with

both the sequential and parallel versions with various number of POI’s. The

results of the algorithm matched, however it can be seen that the sequential

version runtime would not allow for rapid recalculations. Using the same data

obtained, the speed-up of the BF algorithm is shown in Figure 5.3.6 which

peaked at approximately 45x.
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Figure 5.3.5: BF runtime varying the number of POI’s.

Figure 5.3.6: BF speed-up varying the number of POI’s.

The massively parallel nature of GPU and its advantage can be seen
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through the increase in data size. Figure 5.3.7 shows the speed-up achieved

from running the BF algorithm on an increasing number of nodes based on

various map resolutions.

Figure 5.3.7: BF speed-up varying the map number of nodes through changing
map resolution and number of layers.

Figure 5.3.8 characterizes the speed-up of the BF given a variety of 3D

and 2D resolutions. Similar to the previous figure, this further shows the

advantage of the parallel implementation with larger amounts of data. The

speed-up continued to significantly increase with the resolution, hence further

justifying the use of a GPU for larger scenarios.

61



5.3. Numerical Results

Figure 5.3.8: BF runtime varying the map 2D and 3D resolution.

5.3.2 GA Timing

The following two plots were created to characterize the GA timing behaviour

given a varying amount of POI’s and UAV’s. Despite these variances, it can

be noted that the runtimes were all short. It can be noted that the GA

runs adequately fast given a the range of POI’s, however runtimes start to

increase significantly beyond 25 as seen in Figure 5.3.9. Figure 5.3.10 shows

the runtime for a scenario for two UAV’s, which was a poor case in terms of

algorithm runtime.
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Figure 5.3.9: GA runtime with varying number of POI and two UAV’s.

Figure 5.3.10: GA runtime with 15 POI’s and a varying number of UAV’s.
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6 Discussion and Conclusion

Previous chapters introduced the multi-UAV path planning problem, provided

background on the subject area and presented the method researched and

implemented as a solution to this problem. This section serves to provide the

reader with a continuation of the previous results chapter, including research

contributions, a discussion of limitations, and potential future work. The work

is then concluded.

6.1 Discussion

6.1.1 Research Contributions

This research contributes to the field of multi-UAV path planning compu-

tation, which as previously discussed is of growing interest to many. The

work presented aims to provide a combined solution in terms of calculating

optimized paths and solving for the multi-UAV case. It was desired to have

a solution consisting of high-quality paths while achieving fast computation

times, even with a high number of POIs and UAVs.

The approach used was two-fold. The usage of the BF to calculate the

path costs based on a multi-objective cost function was run. This generated a

matrix containing all possible paths and their respective costs between POIs,

including the starting point. This data was then utilized by a GA to allo-

cate and solve for the multi-UAV case with the output being a high-resolution

path for each UAV. Through the adaptation of the BF algorithm for pro-

cessing on a CUDA enabled GPU, it was shown to have significant speed-up,

allowing in-mission recalculations. The results of this method were then veri-
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fied qualitatively through visual inspection of the reconstructed scenarios, and

numerically.

It was proven that this method was capable of providing a solution that

provided 1) higher quality routing 2) significant overall speed-up through GPU

utilization.

6.1.2 Limitations

The ability to achieve the demonstrated acceleration was through the usage

of a Nvidia GPU, hence the computing platform for this program is limited

to one with a CUDA enabled GPU.

Another consideration is that this is algorithm must be run under the

assumption that all features are known. Though capabilities for recalculation

in-mission are possible given new information, this system is not to be confused

with a UAV guidance system which would calculate a trajectory in an unknown

environment.

An assumption that was made was that an additional unit responsible for

the control of the UAV would be present, and would be capable of following

the paths generated by this algorithm.

6.1.3 Future Work

Path planning capabilities for autonomous UAVs is ever growing and must

address a variety of criteria. The path planner presented in this work includes

the necessary components for multi-UAV path planning, however, there is a

potential for further development. Due to this planner used for a generic

UAV, the cost function was around the concept of reducing factors such as

altitude and distance travelled. Future work could involve updating this to

reflect a specific UAV model based on flight parameters and characteristics,

and this would more accurately balance the cost function components and

provide route limitations based on factors such as maximum UAV distance.

Additionally, the inclusion of features such as known danger/keep-out

zones could be added to scenarios, allowing for more accurate modelling of the

region, and are situations encountered throughout flight navigation. Lastly,
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for more practical use, the development of a GUI could be considered allowing

for more accessible user interface and input of data such as the desired POIs.

6.2 Conclusion

UAV autonomy will continue to be a growing field with advances in technol-

ogy. This research was undertaken to improve the current state of UAV path

planning through the development and testing of an algorithm accelerated on

a GPU platform.

This research involved investigating the parallel processing capabilities of

a GPU to achieve the necessary runtimes needed by a flight planner algorithm.

In this work, the processing of raw data for the use of a path planning algo-

rithm is presented, along with the algorithm itself, consisting of two primary

components. By launching the BF SSSP solver using the CUDA platform, it

was shown that significant speed-up was achievable due to the nature of the

data and algorithm type. The data generated was then used to create the POI

connectivity matrix to enable task allocation and distribution for the multi-

UAV environment. As a result, this work showed that through the speed-up

capabilities of a GPU, an exact algorithm can be used to evaluate and provide

highly detailed routing on a known environment, then allocated to multiple

UAVs to accomplish an ISR mission scenario with capability for in-mission

recalculations.
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