
 

 

 

 

 

A COMPARISON OF TWO STOCHASTIC 

GLOBAL OPTIMIZATION METHODS 

FOR THE GENERATION OF ELECTRONIC 

COUNTERMEASURES TECHNIQUES 

 

 

UNE COMPARAISON DE DEUX MÉTHODES 

STOCHASTIQUES D’OPTIMISATION GLOBALE 

POUR LA PRODUCTION DE TECHNIQUES DE 

CONTRE-MESURES ÉLECTRONIQUES 

 

 

 

 

A Thesis Submitted to the Division of Graduate Studies 

of the Royal Military College of Canada 

by 

 

Dean Theodore Vogelsang, CD, MSc, BEng, rmc 

Captain 

 

In Partial Fulfillment of the Requirements for the Degree of 

Masters of Applied Science in Electrical Engineering 

 

September, 2019 

© This thesis may be used within the Department of National Defence but 

copyright for open publication remains the property of the author.



 ii 

 

 

 

 

 

 

 

 
To my wife, Susan, whose unwavering support over the last two years  

made this work possible. Her strength, humour, and inspiration 

are what pushed me across the finish line. 

 



 iii 

Acknowledgements 

This thesis was made possible through the unwavering support and guidance of my 

supervisor, Dr. Joey Bray. His expertise in the fields of electromagnetics and radar 

were complemented by an uncanny ability to provide just the right balance of 

motivation and praise to keep me moving forward. I would also like to thank 

Dr. Vincent Roberge, whose instruction and troubleshooting in the areas of global 

optimization and parallelization was crucial to the success of this work. Also 

deserving of my thanks is Major Randy Hartmann, whose experience in the field of 

airborne electronic warfare was vital to my understanding of key concepts. Finally, 

I would like to thank the Royal Canadian Air Force Aerospace Warfare Centre, 

whose sponsorship made this thesis possible. 

 



 iv 

Abstract 

Choosing the optimal set of parameters of an electronic countermeasures technique 

from the vast solution space provided by modern deception jamming systems is time 

consuming and non-trivial. Optimization algorithms can be used to find the optimal 

parameter set to a given problem in a fraction of the time required of direct-search 

methods. Both the genetic algorithm and particle swarm optimization have been shown 

to be effective when dealing with electromagnetic engineering problems. Previous 

attempts to improve electronic countermeasures techniques have used a genetic 

algorithm in a limited fashion to generate range gate pull-off and velocity gate pull-off 

techniques using a hardware-in-the-loop simulation. In the public domain, the particle 

swarm optimization has never been used for this specific problem. 

This thesis compares the effectiveness and efficiency of the genetic algorithm 

and the particle swarm optimization when applied to the problem of electronic 

countermeasure technique parameter selection. To do so, the MATLAB® Global 

Optimization Toolbox and Tactical Engagement Simulation Software (TESS™) were 

integrated to provide a fitness evaluation of each candidate solution generated via the 

iterative process. Multiple optimizations were conducted for engagement scenarios 

between a ground-based radio-frequency command-guided surface-to-air missile 

system and an airborne target aircraft using a self-protection deception jammer. 

Simulation results show that effective electronic countermeasures deception jamming 

techniques can be generated using both optimization algorithms. However, the particle 

swarm optimization found effective techniques more often and in less time than the 

genetic algorithm. 
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Résumé 

Les systèmes modernes de brouillage déceptif exigent plusieurs paramètres d’entrée. 

L’optimisation des paramètres d’une technique de contre-mesure électronique s’avère 

alors d’une tâche longue et difficile. Des algorithmes d’optimisation sont souvent plus 

rapides que la méthode de recherche directe pour estimer la solution optimale d’un 

problème à paramètres multiples. L’algorithme génétique et l’optimisation des essaims 

particulaires se sont révélés efficaces pour traiter certains problèmes de génie 

électromagnétique. Des tentatives précédentes visant à améliorer les techniques de 

contre-mesures électroniques ont utilisé l’algorithme génétique de manière limitée pour 

générer des techniques de déréglage des portes de distance et de vitesse dans une 

simulation de matériel incorporé. Cependant, les sources publiées ne mentionnent pas 

l’optimisation des essaims particulaires pour cette tâche. 

Dans cette thèse, l’efficacité et l’efficience de l’algorithme génétique et de 

l’optimisation des essaims particulaires sont comparées pour l’estimation des 

paramètres optimaux des techniques de brouillage déceptif. Pour ce faire, la boîte à 

outils d’optimisation globale MATLAB® et le logiciel de simulation d’engagement 

tactique (TESS™) ont été intégrés pour évaluer les solutions candidates générées lors 

des itérations. De multiples optimisations ont été effectuées pour des engagements 

simulés entre un système de missile sol-air guidé par commande radiofréquences et un 

aéronef cible auto-protégé par un brouilleur de déception. Les résultats démontrent que 

les deux algorithmes d’optimisation sont capables de générer des techniques de 

brouillage déceptif efficaces. Cependant, l’optimisation des essaims particulaires a 

identifié des techniques efficaces plus souvent et plus rapidement que l’algorithme 

génétique. 
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1 Introduction 

1.1 Background 

The search for methods with which to deceive or defeat threat radar systems has 

been ongoing since World War II when chaff (referred to as window) was dropped 

to jam and spoof radar and navigation signals [1]. Technological advances have 

resulted in progress on both fronts, leading to a constant cycle of innovation. As 

radar systems have advanced, so too have the electronic countermeasures (ECM) 

designed to defeat them. Today, the most important aspects of the ECM 

development process are the acquisition of information about threat systems and 

the speed at which that information can be exploited. Although technology has 

provided greater flexibility in the production and use of highly effective ECM 

techniques, a vast solution space also exists from which to find suitable techniques. 

The manual development of the jamming waveforms for ECM techniques 

can take considerable time and is often non-trivial in terms of parameter selection 

and technique validation. The setup, configuration, and evaluation of a particular 

system’s circuit design and operation can require a large number of resources, 

including test sets, test facilities, and indoor/outdoor range space and time 

allocation. ECM waveforms are described by a large number of independent 

parameters that must be carefully selected and tuned to maximize the overall 

effectiveness against a threat radar system. Although it is possible to select these 

parameters based on experience regarding the applicable systems along with a trial 

and error approach, such a method is by no means optimal and is susceptible to 
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human error and the availability of suitable personnel. In theory, the use of 

signal-processing platforms designed to use evolutionary heuristic search methods 

and integrated with existing ECM test systems could offer an alternative approach 

to the development of optimized deception jamming waveforms and ECM 

techniques. 

Evolutionary heuristics such as the genetic algorithm (GA) and the particle 

swarm optimization (PSO) have been proven effective across multiple disciplines 

when applied to complex, multi-objective optimization problems, and have been 

demonstrated to be more efficient than other more exhaustive search algorithms 

[2]–[4]. Each optimization technique is based on completely different philosophies, 

leading to strengths and weaknesses that are unique to each. Recent work has 

demonstrated that the GA and the PSO can be successfully applied to 

electromagnetic applications such as antenna design, radiation patterns, and 

waveform optimization [5]–[7]. Although there is no evidence (in the public 

domain) that the PSO has been applied to ECM technique development, the GA 

has been used recently to select optimal ECM parameters in a laboratory 

hardware-in-the-loop ECM simulation environment using MATLAB® and the 

Lab-Volt™ Radar Training System [8]. However, the GA was found to be 

time-consuming due to its serial implementation in MATLAB® [8]. Furthermore, 

the simulations used limited target motion profiles such as constant velocity, 

constant acceleration, and linear acceleration. The profiles did not address more 

realistic flight paths of a target such as changes from constant velocity to linear 

acceleration, nor did they use both range and velocity techniques concurrently for 

false target generation. 

Other, more computationally simplistic stochastic global optimization 

methods, such as the PSO, which have not been used for ECM optimization, might 

be faster and more effective. The relative performance of the GA and the PSO 

should be compared based on their computational time and the effectiveness of the 

solutions they produce. 
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The computer-based simulation of threat and target engagements using a 

commercial off-the-shelf product such as the Tactical Engagement Simulation 

Software™ (TESS) [9] developed by Tactical Technologies Inc. (TTI) could prove 

to be useful for optimizing ECM waveforms in more realistic scenarios. The 

TESS™ product, being MATLAB®/Simulink® based, is an ideal platform to use as 

an evaluation tool. 

1.2 Problem Statement 

The sophisticated waveforms provided by modern jammer systems imply that a 

vast solution space exists from which to find optimal ECM techniques. Manual 

searches for effective techniques can be time consuming and non-trivial in nature. 

Although previous research has shown the feasibility of using the GA to develop 

ECM techniques, the work focussed on a hardware-in-the-loop simulation using a 

radar system that was scaled-down to a laboratory environment and which used 

non-manoeuvring target profiles. No publicly published work has documented the 

use of evolutionary heuristics, such as the GA or PSO, to optimize ECM 

techniques for more realistic threat and target platforms. The GA and PSO have the 

potential to reduce the workload associated with ECM technique development and 

may also lead to the discovery of new, previously unidentified techniques. 

1.3 Thesis Statement 

Effective electronic countermeasures deception jamming techniques can be 

generated by using evolutionary heuristics such as the genetic algorithm and the 

particle swarm optimization. A comparison of both methods is required to 

determine the best optimization method in terms of ECM effectiveness and 

efficiency. 
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1.4 Scope 

Two evolutionary heuristics, specifically the GA and the PSO, will be used for 

global optimization. The study is limited to computer-based simulations using the 

software products MATLAB®/Simulink® and TESS™. Simulated engagements 

will be restricted to command-guided (CG) surface-to-air missile (SAM) threat 

systems with pulsed target tracking radars (TTRs) and either fighter or rotary-wing 

aircraft using a self-protection jammer. Only ECM deception jamming techniques 

that provide false range and velocity information will be generated. 

1.5 Methodology 

Building upon concepts previously explored using the GA [8], but using a purely 

software simulation, ECM technique candidate solutions will be generated through 

the global optimization algorithms GA and PSO and evaluated through simulated 

engagements between a representative threat system and a defensive target 

platform. Each optimization algorithm will be assessed based on effectiveness (i.e. 

how close the algorithm approaches the defined global optimum solution) and 

efficiency (i.e. the computational effort and time required for the algorithm to 

converge to the defined global optimum solution). 

1.5.1 Software Integration 

The first requirement is to integrate the MATLAB® Global Optimization 

Toolbox™, specifically, the GA and PSO functions, with the proprietary TESS™ 

product. This step includes configuring a two-way transfer of data; the candidate 

solution values generated by the optimization algorithm must be transferred to 

TESS™ as jammer parameters and the engagement simulation results must be 

returned to the optimization algorithm to compute a fitness score. 
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1.5.2 Fitness Function 

The fitness function is a user-defined mathematical expression, or algorithm, that 

evaluates the effectiveness of a candidate solution (e.g. an ECM technique). The 

fitness function must be carefully chosen because it defines the metrics against 

which effectiveness is evaluated, and thereby influences the evolution of the 

optimization algorithms. TESS™ generates effectiveness measures in the form of 

scalar output variables for each engagement simulation including: missile miss 

distance, probability of kill, and probability of survival. In addition, a number of 

time-series output variables that characterize the engagement are generated, 

including: threat radar boresight angles, waveform power values (e.g. target and 

covering pulse amplitudes at the receiver), radar mode (i.e. search, acquisition, and 

track), and missile parameters. The fitness function may use some, or all of these 

variables as inputs to evaluate effectiveness. 

1.5.3 Parallelization 

Although a single TESS™ engagement simulation takes less than a minute to 

complete (depending on the scenario setup), the large number of candidate 

solutions imposes a significant time expense on the convergence rate of each 

algorithm. Parallelization using the MATLAB® Parallel Computing Toolbox™ is 

essential to reduce the total execution time of each optimization algorithm by 

conducting multiple engagement simulations concurrently rather than sequentially. 

1.5.4 Simulation, Analysis, and Comparison 

The TESS™ Air RF Master Interface provides a wide range of customization for 

engagement simulations, including threat and defensive platform selection, 

engagement flightpath characteristics, and jammer settings. The simulated threat 

system will be based on a realistic CG surface-to-air weapon system. A limited 
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number of engagement scenarios will be defined and simulated; variables such as 

target altitude, airspeed, and approach angle relative to the threat will be held 

constant. Simulations will also involve modifications to the optimization 

parameters of each algorithm to explore the suitability of each algorithm in dealing 

with the problem of ECM technique generation and to compare the two algorithms 

in their performance. 

1.6 Risks and Mitigations 

A number of risks have been identified that could influence the successful 

generation of ECM techniques through global optimization methods. First, the 

software integration of the MATLAB® Global Optimization Toolbox™ with the 

proprietary TESS™ product is not a trivial task, as TESS™ has not been used in 

this context before. Fortunately, as previously mentioned, the fact that TESS™ is 

based on MATLAB®/Simulink® suggests the integration is feasible. 

The process of parallelization, which could significantly decrease the 

execution time for the optimization process, poses additional risks.  TESS™ may 

require licensing for multiple instances of the program to be run simultaneously. 

Furthermore, the integration of TESS™ with the Parallel Computing Toolbox™ 

has not been done before. TESS™ does support multicore computing, which 

indicates that parallel computing should be possible. 

The limited public availability of threat and jammer system specifications 

for definition in TESS™ poses another risk, since the TESS™ interface requires a 

number of system parameters to define a system model. These parameters include 

transmitter and receiver specifications, waveform operating characteristics, and 

physical features. Fortunately, TESS™ comes pre-loaded with a limited number of 

default threat, target platform, and jammer systems that should be sufficient for use 

in engagement scenarios. 
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Finally, the large number of optimization parameters and simulation 

variables that can be modified for each algorithm threaten to increase the scope, 

and consequently, the time required to collect sufficient data for a comparison of 

each algorithm. To assess the effect of a single algorithm option change or 

simulation variable may require multiple optimization runs, which imposes a time 

constraint risk for this thesis. Only a limited number of simulation variables should 

be modified between engagement scenarios; the majority of optimization 

parameters should be held at their default values with only a limited number 

modified to improve the optimization process, if required.  

1.7 Thesis Outline 

Chapter 2 provides a high-level overview of ECM deception jamming techniques, 

focussing on the general concepts of jamming and more specifically on the 

deception techniques used in this work. Additionally, a brief overview of the ECM 

waveform parameters is provided. The global optimization algorithms, GA and 

PSO, are introduced, along with the MATLAB® Global Optimization Toolbox™ 

[10] in which these algorithms are implemented. Finally, the TESS™ software 

product is introduced. 

 Chapter 3 describes the initial validation conducted on the GA and PSO 

algorithms using a series of test functions to analyze algorithm setup, convergence 

rates, and their suitability for application to the ECM technique generation 

problem. The GA and PSO implementations in MATLAB® are also reviewed and 

compared. 

 Chapter 4 presents the design process used in the development of the 

simulation system, including the software architecture chosen for the 

implementation. The integration of TESS™ with the MATLAB® Global 

Optimization Toolbox™ is explained, and each of the program blocks required for 

system operation are described. The requirements for and integration of the 
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MATLAB® Parallel Computing Toolbox™ are discussed. Finally, the design of the 

deception jamming techniques, in the context of the TESS™ jammer 

implementation, is covered. 

 Chapter 5 presents the results of the software simulations. First, the selection 

of optimization options and solution space bounds used during the simulation 

process is discussed. Engagement scenario design and simulation conditions are 

also examined. The optimization results are then presented and analyzed, with a 

focus on the effects of each deception technique parameter, or optimization 

variable, on the performance of the generated ECM techniques against the threat 

system and their resulting fitness. The performance of the two optimization 

algorithms is compared, concentrating on the complexity of the algorithm, its 

convergence speed, and the generation of suitable ECM techniques by comparing 

the fitness scores. 

 Chapter 6 concludes the thesis and discusses areas of future research for the 

use of global optimization algorithms in the development of ECM techniques. 
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2 Literature Review 

2.1 Electronic Countermeasures 

ECM, in the context of the radio frequency (RF) spectrum, can be defined as the 

systems, tactics, and techniques used to interfere with the operation of radars 

through the denial of information sought by the radar or to surround the desired 

radar returns with so many false targets that the true information is unresolvable 

[11], [12]. ECM can be classified as either active or passive and includes both 

noise and deception jamming [12]. 

2.1.1 Jamming 

The intentional transmission or re-transmission of amplitude, frequency, phase, or 

otherwise modulated intermittent or continuous RF signals to interfere with, 

exploit, deceive, mask, or degrade the reception of radar returns is called jamming 

[12]. A jammer can interfere with a victim radar either by injecting artificial noise 

or deceptive signals into the receiver. The strength of the jamming signal is 

normally quantified as the ratio of the effective jammer power, (the jammer signal 

power at the radar receiver) to the signal power, (the original target echoes the 

victim radar wants to receive), otherwise known as the jamming-to-signal ratio, 

𝐽𝑆𝑅 [11]. For a monostatic radar tracking a target with a self-protection jammer, 

the power received at the victim radar from the jammer, 𝐽, may be represented by 

the one-way radar range equation [13]: 



2.1 Electronic Countermeasures 

 

 10 

 𝐽 =
𝑃𝑗𝐺𝑗𝐺𝑟𝜆2

(4𝜋)2𝑅2
 (2.1) 

where 

𝑃𝑗 is the peak transmitted power from the jammer in watts; 

𝐺𝑗 is the gain of the transmit antenna of the jammer; 

𝐺𝑟 is the gain of the receive antenna of the victim radar; 

𝜆 is the wavelength of the transmitted signal in meters; and 

𝑅 is the range from the target platform/jammer to the victim radar in meters. 

The power of the target echo received at the victim radar, 𝑆, may be represented by 

the two-way radar range equation [13]: 

 𝑆 =
𝑃𝑡𝐺𝑡𝐺𝑟𝜆2𝜎

(4𝜋)3𝑅4
  (2.2) 

where 

𝑃𝑡 is the peak transmitted power from the radar in watts; 

𝐺𝑡 is the gain of the transmit antenna of the radar; and 

𝜎 is the radar cross section (RCS) of the target in square meters. 

The 𝐽𝑆𝑅 can then be derived by combining (2.4) and (2.2) to give: 

 𝐽𝑆𝑅 =
𝑃𝑗𝐺𝑗4𝜋𝑅2

𝑃𝑡𝐺𝑡𝜎
 . (2.3) 

The 𝐽𝑆𝑅 is usually specified in decibels (dB), which is obtained as follows: 

 𝐽𝑆𝑅𝑑𝐵 = 10𝑙𝑜𝑔(𝐽𝑆𝑅) . (2.4) 

The range at which the jammer power equals the signal power is called the 

crossover range, 𝑅𝐽=𝑆, given by [13]: 

 𝑅𝐽=𝑆 = √
𝑃𝑡𝐺𝑡𝜎

𝑃𝑗𝐺𝑗4𝜋
 . (2.5) 
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The distance from the tracking radar to the target at which adequate desired signal 

strength is available to track the target, despite the jammer signal, is called the 

burn-through range, 𝑅𝐵𝑇 [13]. Although burn-through may occur at the crossover 

range, effective jamming usually requires a 𝐽𝑆𝑅𝑑𝐵 that is greater than 0 dB, called 

𝐽𝑆𝑅𝑚𝑖𝑛 (in linear form). The burn-through range, 𝑅𝐵𝑇, is therefore given by [13]: 

 𝑅𝐵𝑇 = √
𝑃𝑡𝐺𝑡𝜎𝐽𝑆𝑅𝑚𝑖𝑛

𝑃𝑗𝐺𝑗4𝜋
 . (2.6) 

In spite of jamming, a target is detectable by the radar when the target’s range is 

less than RBT. 

Equation (2.6) can be used in the design of ECM techniques when the victim 

radar characteristics are known. Often, radar systems may be designed with higher 

than necessary power to increase the range at which burn-through occurs against 

jamming targets [13]. Accurate threat system intelligence can enable selection of 

the jammer power, 𝑃𝑗, in order to decrease the burn-through range. 

Deception jamming is a more advanced type of jamming. Whereas 

traditional jamming involves the active transmission of noise, deception jamming 

uses sophisticated waveforms designed to provide false range or velocity 

information to a victim radar system [11]. Deception jammers are more 

sophisticated than noise jammers since the waveform parameters are directly 

related to the performance parameters and modes of operation of the victim system. 

As a result, deception jammers consist of more complex hardware and software to 

generate the desired signals. When successful, the victim radar improperly accepts 

the jamming signal as a target with a false range, velocity, or angle. Prime 

examples of deception jamming against tracking radars include the range gate 

pull-off (RGPO), range gate pull-in (RGPI) and the velocity gate pull-off (VGPO). 
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2.1.2 Range Gate Pull-Off 

A tracking radar maintains and updates estimates of a target’s range, velocity, 

and/or angle. These estimates are often bounded by a narrow window of values 

known for historical reasons as a gate. Typically, a radar tracks a target in range 

through the use of early and late gates. The gates are moved in unison to constantly 

equalize the energy of a return pulse between the early and late gate, which centers 

the target between the gates. During an RGPO attack, the jammer transmits a false 

return pulse similar to the reflected pulse that the target would produce (i.e. its skin 

return), but at a higher power, which captures the radar’s range gate. The 

transmission of the jammer pulse is then delayed by a gradually increasing amount, 

as depicted in Figure 2.1 [14]. By capturing the range gates of the victim radar with 

a stronger delayed pulse, the gates are pulled away from the true radar return, as 

shown in Figure 2.2 [14]. The increase in power in the late gate causes the victim 

radar, which determines range to the target based on the arrival time of reflected 

pulses, to incorrectly calculate a range to target that is greater than the true target 

range [11], [13], [14]. Increasing the delay time either parabolically or 

exponentially will make it appear to the victim radar that the target is turning away 

from the radar [14].  

Careful consideration is required when determining the speed at which the 

range gates will be pulled away from the target. If the rate of pull-off exceeds the 

tracking rate of the victim radar, the jamming will be ineffective. Selection of the 

pull-off rate requires either technical knowledge of the victim radar or 

consideration of the task the radar was designed to carry out [11]. The use of an 

improper pull-off rate may also lead some radar systems to detect the presence of 

jamming leading to the use of electronic counter-countermeasures (ECCM). 
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Figure 2.1: RGPO jammer operation (reproduced from [14]) 

 

Figure 2.2: Delayed, amplified pulses of RGPO (reproduced from [14]) 
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2.1.3 Range Gate Pull-In 

A similar form of range deception involves tracking the pulse repetition frequency 

of the victim radar to anticipate the arrival time of each pulse and transmitting 

subsequent false return pulses at a higher power and in advance of the true skin 

return, as shown in Figure 2.3 [14]. By leading the true skin returns by an 

increasing amount with each jamming pulse, the RGPI makes it appear as though 

the target is turning toward the radar. The increase in power in the early gate of the 

victim radar causes the victim radar to pull its range estimate away from the target. 

 Since the timing of future pulses must be calculated, RGPI is effective only 

against tracking radars with fixed or staggered pulse repetition intervals (PRI) [14]. 

Radars that use randomly jittered PRI are not susceptible to RGPI jamming since 

the PRI cannot be predicted. 

 

 

Figure 2.3: RGPI jammer operation (reproduced from [14]) 
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2.1.4 Velocity Gate Pull-Off 

Radar targets reflect the transmitted energy back at a shifted frequency 

proportional to the relative radial speed between the radar and the reflecting object. 

The frequency offset, known as the Doppler frequency, 𝑓𝑑, is given by [14]: 

 𝑓𝑑 =
2𝑓𝑇𝑥𝑣𝑡

𝑐
 (2.7) 

where 𝑓𝑇𝑥 is the transmitter frequency, 𝑣𝑡 is the radial target velocity relative to the 

receiver, and 𝑐 is the speed of light. A negative frequency corresponds to a target 

receding from the receiver (i.e. a negative velocity) whereas a positive frequency 

corresponds to a target closing on the receiver (i.e. a positive velocity). The 

Doppler frequency is the basis for the target radial velocity estimation that is 

performed by both continuous wave and pulse-Doppler (coherent) tracking radars. 

A frequency filter, or velocity gate, isolates the desired target return based 

on its frequency shift, corresponding to a relative velocity. The VGPO jamming 

technique generates a false radar return with the same frequency offset as that of 

the target, but at a higher power to capture the gate [11], [13]. The false return is 

then swept away from the frequency of the true target return, breaking the victim 

radar’s velocity track, as shown in Figure 2.4. As with RGPO, the rate of pull-off is 

an important consideration because the radar tracking circuitry will be designed to 

track only up to the maximum rate of change in velocity of a known class of 

targets. 
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Figure 2.4: VGPO jammer operation [11] 

Use of a single range or frequency deception jamming technique is not 

sufficient to deceive a radar system that tracks in both range and velocity, as shown 

in Figure 2.5. Therefore, deception jamming techniques must attack both range and 

velocity gates to be effective against coherent radar systems. A jamming technique 

that targets both range and velocity (frequency) is said to be a coordinated attack. 



2.1 Electronic Countermeasures 

 

 17 

 

Figure 2.5: Range and velocity tracking gates of coherent pulse-Doppler radars 

2.1.5 Technique Modelling and Parameter Selection 

A deception jamming technique that creates a false target (i.e. RGPO, VGPO, or a 

combination of the two) has several parameters. The duration of the attack, during 

which the gate is walked-off of the true target, is referred to as the false target 

walk-off time. The initial distance between the true target and false target, referred 

to as initial delay, may be some value greater than or equal to zero, given in units 

of distance or time. Similarly, the maximum distance between the true and false 

targets is referred to as maximum delay. The rate at which the false target moves 

away from the true target may be defined as constant velocity, constant 

acceleration, or linear acceleration. Finally, the 𝐽𝑆𝑅 must be defined for the 

walk-off, including the rate of amplitude increase and the maximum 𝐽𝑆𝑅 value. 

Techniques may also include a dwell time at the beginning and/or end of the 

walk-off. Although many more parameters may be defined for a given technique, 

these seven parameters are the focus of this research. 
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2.1.6 Technique Scoring 

Determining the effectiveness of a given ECM technique in simulation normally 

involves pitting a model of the target platform and its self-protection jammer 

against a modelled threat radar and weapon system. The effectiveness measures of 

such simulations are often given as scalar outputs in terms of: the likelihood that 

the weapon system would disable or destroy the target (i.e. probability of kill, 

𝑃𝑘𝑖𝑙𝑙), the likelihood that the target would survive the engagement (i.e. probability 

of survival, 𝑃𝑠𝑢𝑟𝑣), and the shortest distance measured between the weapon system 

and target platform during an engagement (i.e. miss distance, 𝐷𝑚𝑖𝑠𝑠). In addition to 

the programmed parameters of the ECM technique, a number of external factors 

can also affect the scoring, including target/threat relative orientation and distance, 

target manoeuvring, and relative velocity. The effectiveness or fitness of a given 

ECM technique can be calculated using the simulation output data as input to a 

function. This fitness function generates a scalar value between 0 and 1 

representing the score for the ECM technique, where 0 is defined as the ideal 

solution and 1 is a completely ineffective technique. 

  



2.2 The Genetic Algorithm 

 

 19 

2.2 The Genetic Algorithm 

Relying on random variation and selection, evolutionary algorithms mimic nature’s 

tendencies towards competition and innovation to solve optimization problems [2]. 

GAs, first proposed in the 1960’s, are a class of evolutionary algorithms inspired 

by natural selection whereby a system learns and adapts to the surrounding 

environment [2]. GAs are set apart from other evolutionary algorithms by three 

distinguishing features [5]: 

1. the representation of data is typically via bit-strings; 

2. the probability of selection is proportional to the relative fitness of an 

individual; and, 

3. the creation of new individuals is primarily performed through crossover 

between population members. 

Exploitation of the above distinguishing properties can achieve parameter 

optimization; however, a clear understanding of the search environment is 

required. When the fitness function is properly defined such that suitable 

population members can be identified, the fitness function performs in much the 

same way as nature when selecting the fittest of a species. 

2.2.1 Terminology 

As the name would imply, the GA draws many parallels with that of biological 

genetics. The fundamental building blocks in biology, known as genes, are 

represented in the GA as data bit-strings, or a binary encoding of a parameter. An 

array of parameter values then forms a chromosome. For an N-dimensional 

optimization of 𝑁 parameters (given by 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑁), the chromosome would 

be defined as [5]: 

 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 = [𝑝1𝑝2𝑝3 … 𝑝𝑁] . (2.8) 
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The parameters can be defined as discrete or continuous. Continuous parameters 

necessitate the application of limits (representing physical properties or other 

bounds) or the restriction of the parameters to a subset of possible values. The 

population takes the form of a matrix in which each row is represented by a 

chromosome [6]: 

 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = [

𝑐ℎ𝑟𝑜𝑚1

𝑐ℎ𝑟𝑜𝑚2

⋮
𝑐ℎ𝑟𝑜𝑚𝑁

] . (2.9) 

A fitness function f takes each chromosome as an input and calculates the fitness 

associated with each one [6]: 

 𝑓 {[

𝑐ℎ𝑟𝑜𝑚1

𝑐ℎ𝑟𝑜𝑚2

⋮
𝑐ℎ𝑟𝑜𝑚𝑁

]} = [

𝑓𝑖𝑡𝑛𝑒𝑠𝑠1

𝑓𝑖𝑡𝑛𝑒𝑠𝑠2

⋮
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑁

] . (2.10) 

Through natural selection, only the fittest members of a population may 

survive, which is accomplished in the GA via one of two main methods. One 

involves sorting the population by fitness and then discarding all but a certain 

number of members. Another sets a threshold fitness and discards all those 

members that fail to meet the threshold fitness value. After selection for survival, 

only some members of the population will be selected for mating. The selection of 

mates can be carried out via either a roulette wheel or tournament. In the roulette 

wheel, also known as a proportionate selection, each chromosome is assigned a 

probability of selection based on its fitness. Conversely, tournament selection 

randomly divides the population into subsets and then selects the chromosome with 

the best fitness in each group to breed [6]. 

The generation of offspring, or new potential solution sets, is normally 

carried out by some form of crossover. Crossover operates on two of the selected 

parents, randomly selecting portions of each parent chromosome and splicing the 
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data together to form one or more offspring [2]. Chromosome mutation involves 

the replacement at random of a parameter, or portion of the chromosome with 

some other value during breeding. Through mutation, the algorithm continues to 

explore diverse areas of the solution-space [6]. 

2.2.2 Algorithm Description 

The generalized flow chart of a GA is shown in Figure 2.6. The initial population, 

or starting matrix of chromosomes, is normally generated via a random guess at the 

optimal solution [6]. During algorithm design, the initial population size must be 

carefully considered, taking into account the desired computational complexity and 

the tendency towards premature convergence. A large population size will 

thoroughly explore the solution-space, but convergence to the desired end state will 

take longer. Smaller population sizes will perform a coarse search of the solution 

space and will tend to converge on local maxima/minima rather than the global 

maxima/minima. Selection then begins via the previously discussed means. 

Application of the fitness function will determine what intermediate population 

will move on to selection for the mating pool. Both the number of crossover points 

in the mating process along with the mating pairs are chosen via probabilistic 

processes. Careful definition of the crossover probability will help to prevent exact 

replication between population generations, which is normally undesirable. 

Random mutation within the offspring helps to prevent premature convergence; 

however, it should be used to alter only a small portion of the total population. For 

electromagnetic applications the mutation rate is normally accepted to be on the 

order of 0.1 to 1 % of all genes [5]. 
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Figure 2.6: GA flowchart [15] 



2.3 The Particle Swarm Optimization 

 

 23 

Once the offspring have been created, the fitness function is applied to 

determine how well each offspring satisfies the conditions for optimization. The 

assignment of fitness values follows, after which the offspring and parents are 

grouped as the current generation and a check for solution conditions completes the 

cycle. The exit criteria for the algorithm may be based on any number of different 

tests. Examples include a minimum average fitness, a best performance achieved, 

or some other tolerance level in which the majority of the chromosomes settle 

within a given error of one another. When the exit criteria are met, the optimized 

chromosome represents the desired solution.  

2.3 The Particle Swarm Optimization 

The PSO was first proposed in 1995 in an attempt to simulate the social behaviour 

and movement of flocking birds, schools of fish, or swarming bees [4], [16]. The 

initial swarm consists of a set of randomly generated candidate solutions which 

then propagate in the pre-defined solution space towards the optimal solution over 

a number of iterations [17]. The members of the swarm assimilate and share 

information about the solution space amongst each other through consecutive 

iterations. The inspiration for the PSO is “the ability of flocks of birds, schools of 

fish, and herds of animals to adapt to their environment, find rich sources of food, 

and avoid predators by implementing an “information sharing” approach, hence, 

developing an evolutionary advantage.” [17] 

2.3.1 Algorithm Description 

The principle of the algorithm is that each candidate solution may be represented 

by a particle in a swarm [4]. Each particle has a position and velocity vector, where 

the position coordinate represents a parameter value. For an N-dimensional 

optimization, each particle will have a position in N-dimensional space 
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representing a candidate solution [4], [16]. The PSO algorithm consists of three 

steps: generation of the particles’ positions and velocities, velocity update, and 

position update. The generalized flow chart of the PSO algorithm is shown in 

Figure 2.7. 
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Figure 2.7: PSO algorithm flowchart [4] 
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The positions and velocities of the initial swarm of particles are usually 

randomly generated using upper and lower bounds 𝐱𝑚𝑎𝑥 and 𝐱𝑚𝑖𝑛 on the 

parameter values. For the ith particle at time k = 0, the position 𝐱𝑘
𝑖  and velocity 𝐯𝑘

𝑖  

are given by [17]: 

 𝐱0
𝑖 = 𝐱𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑1(𝐱𝑚𝑎𝑥 − 𝐱𝑚𝑖𝑛) (2.11) 

and 

 𝐯0
𝑖 =

𝐱𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑2(𝐱𝑚𝑎𝑥 − 𝐱𝑚𝑖𝑛)

∆𝑡
=

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑡𝑖𝑚𝑒
 . (2.12) 

The terms 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are uniformly distributed random variables having 

any value between 0 and 1. The initialization process therefore ensures that the 

swarm is randomly distributed across the solution space. 

The second step is to update the velocities of all particles at time k + 1 using 

the particles’ fitness values, which are functions of the particles’ current positions 

in the solution space at time k. The fitness value of a particle determines which 

particle has the best global value in the current swarm, 𝐩𝑘
𝑔

, and also determines the 

best position of each particle over time, 𝐩𝑖. The velocity update formula uses these 

two pieces of information for each particle in the swarm along with the effect of 

current motion, 𝐯𝑘
𝑖 , to provide a search direction, 𝐯𝑘+1

𝑖 , for the next iteration. The 

velocity update formula is given by [16], [17]: 

 𝐯𝑘+1
𝑖 = 𝑤𝐯𝑘

𝑖 + 𝑐1𝑟𝑎𝑛𝑑3

(𝐩𝑖 − 𝐱𝑘
𝑖 )

∆𝑡
+ 𝑐2𝑟𝑎𝑛𝑑4

(𝐩𝑘
𝑔

− 𝐱𝑘
𝑖 )

∆𝑡
 (2.13) 

which includes two random parameters, represented by the uniformly distributed 

variables, 𝑟𝑎𝑛𝑑3 and 𝑟𝑎𝑛𝑑4, to ensure appropriate coverage of the solution space 

and avoid entrapment in local optima. The first term represents the current motion, 

the second term represents the particle memory influence, and the third term 

represents the swarm influence, all of which affect the new search direction. Three 

weight factors, namely, inertia factor, 𝑤, self-confidence factor, 𝑐1, and swarm 
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confidence factor, 𝑐2, control the rate of convergence of the algorithm. Although 

the original PSO algorithm used the values of 1, 2, and 2 for 𝑤, 𝑐1, and 𝑐2, 

respectively [16], [17], it has been suggested that setting them to 0.5, 1.5, and 1.5, 

respectively, provides the best convergence rate for a range of test problems 

considered [17]. 

Finally, each iteration requires a position update for each particle in the 

swarm, as depicted in Figure 2.8. The position update formula is given by [16], 

[17]: 

 𝐱𝑘+1
𝑖 = 𝐱𝑘

𝑖 + 𝐯𝑘+1
𝑖 ∆𝑡 . (2.14) 

 

 

Figure 2.8: PSO velocity and position updates (reproduced from [17]) 
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2.4 MATLAB® Global Optimization Toolbox™ 

The Global Optimization Toolbox™  comprises a series of functions that search for 

global solutions to single and multi-objective problems [10]. The toolbox provides 

options for algorithm behaviour, tolerances, and stopping criteria. In addition, 

intermediate results of an optimization can be accessed using output functions, 

including plotting functions. The toolbox allows the user to define the fitness 

function, which can use data from an external simulation. In this case, simulations 

within TESS™ can generate the engagement results used by the fitness function to 

generate a fitness score for each candidate solution. 

 Both the GA and PSO toolbox functions accept lower and upper bounds; 

these bounds limit the components of the solution 𝐱 and can be used to obtain 

faster and more reliable solutions. For example, bounds can be used to restrict the 

minimum and maximum delay, velocity, and acceleration rate of a range deception 

technique pulse. 

Detailed descriptions of the MATLAB® implementations of the GA and 

PSO may be found at [18] and [19], respectively, with summaries included in 

Appendix A. 

2.5 Tactical Engagement Simulation Software™ 

TESS™ is a commercial physics-based software simulator for modelling guided 

missile engagements [20]. The Air RF Master Interface is specifically designed for 

RF guided systems and includes tools for simulating combinations of defensive 

countermeasures such as chaff and decoy deployment, active jamming, and 

platform manoeuvres in a realistic electromagnetic and physical environment. The 

interface provides for full customization of both the threat system and target 

platform, including waveform parameters of threat radars and target jammers. With 

a capability to perform either single engagements or sequential batch runs, the 
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interface captures and stores the miss distance, probability of kill, probability of 

survival, and radar mode (as a percentage of engagement time) for each 

engagement simulation. TESS™ generates a series of output plots during 

simulation execution, including: signal power levels at the threat radar, radar 

boresight, target, and jammer pulse positions (azimuth, range, elevation, Doppler), 

radar mode, and missile lateral acceleration. In addition, a display of the 

engagement simulation space is provided, an example of which is shown in Figure 

2.9. Since TESS™ is MATLAB®/Simulink® based, integration with the 

MATLAB® toolboxes is feasible. Detailed descriptions of the TESS™ software 

package may be found in [20] and [21]. 

 

 

Figure 2.9: TESS™ engagement simulation display 
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3 Optimization Algorithm Validation and 

Comparison 

 

 

This chapter describes the validation process of the two chosen stochastic global 

optimization algorithms. Before using the optimization algorithms for the problem 

of ECM technique generation, a validation was conducted to analyze algorithm 

setup, convergence rates, and suitability in dealing with single-objective 

optimization problems. An initial comparison of the two algorithms was performed 

to aid in optimization parameter selection and setting solution space bounds for the 

intended problem of ECM technique generation. 

The GA and PSO algorithms were applied to a series of test functions to 

validate their overall utility and suitability for their application to the ECM 

technique generation problem. In addition, the MATLAB® implementations of the 

optimization algorithms were compared by addressing the capabilities of each 

function, the flexibility of user customization through options and input 

parameters, and the complexity associated with parameter selection to tailor the 

optimization process to a specific problem. 
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3.1 Test Functions 

A number of test functions, referred to as artificial landscapes or benchmark 

functions, can be used to evaluate the performance of optimization algorithms [22]. 

The convergence rate, accuracy, and overall performance of a given optimization 

algorithm can be characterized and compared to other optimization methods. Test 

functions provide different situations that optimization algorithms may have to deal 

with when applied to optimization problems, such as a single global minimum 

among multiple local minima spread throughout a wide search space, a single 

global minimum within a steep, narrow valley, or multiple global minima 

interspersed among local minima. The use of test functions with known solutions 

also permits the tuning of optimization parameters to increase the convergence rate 

and accuracy of each optimization algorithm, although there is no guarantee that 

the settings will apply to other solution spaces. 

3.1.1 Rosenbrock Function 

The Rosenbrock function [23], [24], also known as Rosenbrock’s valley or 

Rosenbrock’s banana function, is a non-convex (i.e. neither convex nor concave: it 

curves up and down), multimodal (i.e. having multiple local minima) function with 

a single global minimum within a long, narrow, parabolic-shaped valley. Although 

finding the valley is trivial, convergence to the global minimum is difficult. In 

2-dimensional space, the function is defined by 

 𝑓(𝑥, 𝑦) = (𝑎 − 𝑥)2 + 𝑏(𝑦 − 𝑥2)2. (3.1) 

The global minimum is located at (𝑥, 𝑦) = (𝑎, 𝑎2), where 𝑓(𝑥, 𝑦) = 0. 

Normally the parameters are set as 𝑎 = 1 and 𝑏 = 100 such that the global 

minimum is at (1, 1). A plot of the Rosenbrock function of two variables is shown 

in Figure 3.1. 
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Figure 3.1: Plot of the Rosenbrock function of two variables 

The Rosenbrock function may be defined in n-dimensional space. The 

multidimensional generalization of the Rosenbrock function is  

 𝑓(𝐱) = ∑ [(𝑎 − 𝑥𝑖)2 + 𝑏(𝑥𝑖+1 − 𝑥𝑖
2)

2
]

𝑛−1

𝑖=1

 (3.2) 

where 𝐱 = [𝑥1, 𝑥2, . . . , 𝑥𝑛] ∈ ℝ𝑛. When the parameters are set to 𝑎 = 1 and 

𝑏 = 100, the global minimum 𝑓(𝐱) = 0 is at (𝑥1, 𝑥2, . . . , 𝑥𝑛) = (1, 1, . . . ,1); for 

4 ≤ 𝑛 ≤ 7 a local minimum also occurs near (𝑥1, 𝑥2, . . . , 𝑥𝑛) = (−1, 1, . . . ,1). 
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3.1.2 Rastrigin Function 

The Rastrigin function [25]–[27] is a non-convex multimodal function defined in 

n-dimensional space. Since the Rastrigin function covers a large search space and 

has a large number of local minima, finding the global minimum is difficult. For an 

n-dimensional domain, the function is defined by 

 𝑓(𝐱) = 𝐴𝑛 + ∑[𝑥𝑖
2 − 𝐴 cos(2𝜋𝑥𝑖)]

𝑛

𝑖=1

 (3.3) 

where 𝐴 = 10 and 𝑥𝑖 ∈ [−5.12, 5.12]. The global minimum is at 𝐱 = 0 where 

𝑓(𝐱) = 0. A plot of the Rastrigin function of two variables is shown in Figure 3.2. 

 

Figure 3.2: Plot of the Rastrigin function of two variables 
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3.1.3 Hölder Table Function 

The Hölder table function [22] is another example of a non-convex multimodal 

function. This function, defined on 2-dimensional space, has many local minima 

and four global minima. The function is defined by 

 𝑓(𝑥, 𝑦) = − |sin(𝑥) cos(𝑦) 𝑒𝑥𝑝 (|1 −
√𝑥2 + 𝑦2

𝜋
|)|. (3.4) 

The function can be defined on any input domain but is usually evaluated on  

𝑥 ∈ [−10,10] and 𝑦 ∈ [−10,10]. The four global minima are at  

𝐱 = (±8.05502, ±9.66459) where 𝑓(𝐱) = −19.2085. A plot of the Hölder table 

function is shown in Figure 3.3. 

 

Figure 3.3: Plot of the Hölder table function 
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3.2 Validation Test Results 

Both the GA and PSO were initially executed using the default optimization 

options [18], [19] for each of the three test functions with two input variables. The 

Rosenbrock and Rastrigin functions were not bounded, whereas the Hölder table 

function was bounded to 𝑥 ∈ [−10,10] and 𝑦 ∈ [−10,10]. The default population 

size for the GA was 50; the PSO had a default swarm size of 20. As each algorithm 

used randomly generated values when initializing the population/swarm, the 

random number generation was controlled using the function rng and the input 

default (the default settings were the Mersenne Twister [28] with seed 0). 

A round was one complete optimization from generation of the initial 

population/swarm to termination of the algorithm at convergence. Each algorithm 

was called within a for loop and 101 rounds were performed for each. The 

random number generator was reset prior to each for loop such that each 

algorithm started with the same random seed but results varied between each 

round. The first round of each algorithm always took longer by an order of 

magnitude or more than subsequent rounds. The results from the first round of each 

algorithm were documented separately, the results of rounds 2 through 101 were 

averaged, and the best result was noted. The results of the optimization for each of 

the three test functions are shown in Table 3.1, Table 3.2, and Table 3.3, 

respectively. 

Neither algorithm performed particularly well for the Rosenbrock function. 

The best solution achieved by the PSO was better than the GA, but the average 

solution of the GA was better. In fact, the average of the solutions found by the 

PSO was so poor that it was not even located within the valley of the Rosenbrock 

function. The PSO achieved the exact solution of the Rastrigin function on three 

rounds and multiple rounds came within 1 × 10−10 or better of the solution; 

however, the average was not sufficient to be considered solved. Although the GA 
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converged to within 2.1 × 10−3 of the solution, this was not considered close 

enough to be a solution to the unbounded Rastrigin function. Both algorithms 

found one of the four minima of the bounded Hölder table function the majority of 

the time. In most cases the optimization terminated because the change in the 

objective value was less than the function tolerance (exit flag 1), where the default 

value was 1 × 10−6 for both algorithms. Some optimizations terminated when the 

maximum number of generations/iterations was reached (exit flag 0). Following 

the first round, in which the PSO was consistently slower than the GA, the PSO 

consistently terminated the optimization faster than the GA, having performed 

fewer function evaluations; however, the number of iterations of the PSO was 

usually greater than the number of generations of the GA. Although a direct 

comparison of speed is possible, the results are skewed by the population/swarm 

sizes. 

Table 3.1: Rosenbrock function optimization results 

Algorithm 

Rosenbrock (Unbounded) 

Round 
Execution 

Time (s) 
Solution Value 

Generations

/ Iterations 

Function 

Evaluations 

Exit 

Flag 

GA 

1 0.3622 
[0.345440, 

0.144399] 
0.491302 119 6000 1 

Best 

(69) 
0.04623 

[0.980075, 

0.962232] 
6.808183e–04 91 4600 1 

Average 0.04567 
[1.075226, 

2.361244] 
2.161397 86.7 4386 

1 (95) 

0 (5) 

PSO 

1 1.0308 
[–7.398292, 

54.749688] 
70.553699 124 2500 1 

Best 

(99) 
0.03734 

[1.000178, 

1.000358] 
3.191513e–08 170 3420 1 

Average 0.03029 
[–3.038250, 

448.406533] 
495.185175 132.8 2676 

1 (97) 
0 (3) 
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Table 3.2: Rastrigin function optimization results 

Algorithm 

Rastrigin (Unbounded) 

Round 
Execution 

Time (s) 
Solution Value 

Generations 

/ Iterations 

Function 

Evaluations 

Exit 

Flag 

GA 

1 0.3379 
[0.978493, 

0.944311] 
2.546291 56 2850 1 

Best 
(67) 

0.1034 
[0.000823973, 

–0.00313809] 
0.00208832 200 10050 0 

Average 0.05886 
[0.00166144, 

0.0799611] 
1.214550 104.5 5274 

1 (90) 

0 (10) 

PSO 

1 1.0316 
[1.919633e–06, 

–6.562464e–07] 
8.165131e–10 127 2560 1 

Best (32, 
45, 64)1 

0.02485 
[5.471364e–10, 

1.387164e–09] 
0 107 2160 1 

Average 0.02193 
[0.0199385, 

0.0197586] 
0.139830 90.6 1831 

1 

(100) 

Note: 1. Where multiple rounds tied for best, the first round to reach the best minimum is included. 

 

Table 3.3: Hölder Table function optimization results 

Algorithm 

Hölder Table [–10,10] 

Round 
Execution 

Time (s) 
Solution Value 

Generations 

/ Iterations 

Function 

Evaluations 

Exit 

Flag 

GA 

1 0.4422 
[8.0550341, 

–9.664599] 
–19.208503 71 3600 1 

Best 1 

Average 0.08721 
[±8.055446, 

±9.633054] 
–19.112425 67.5 3425 

1 

(100) 

PSO 

1 1.0240 
[8.0550253, 

–9.664583] 
–19.208503 54 1100 1 

Best 2 

Average 0.01463 
[±8.093156, 

±9.704444] 
–19.010340 49.8 1017 

1 

(100) 

Notes: 1. Only one round did not converge to the solution; the remaining 100 rounds tied for best. 

2. Only 12 rounds did not converge to the solution. 

 
Next, the search spaces for the Rosenbrock and Rastrigin functions were bounded 

to 𝑥𝑖 ∈ [−2, 2] and 𝑥𝑖 ∈ [−5.12, 5.12], respectively, and the optimizations were 

rerun with default options. The results for the bounded Rosenbrock and Rastrigin 

functions are shown in Table 3.4 and Table 3.5, respectively. 
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Bounding the Rosenbrock and Rastrigin functions improved the results for 

both algorithms, which were able to converge to the known solutions multiple 

times. The solutions generated by the PSO, when evaluated to at least four 

significant figures, were more accurate than those generated by the GA; the PSO 

also took less time (by an order of magnitude in the case of the Rosenbrock) to find 

the solutions. Clearly, bounding the search space had an influence on the 

optimization process; however, the data also indicated that a single execution of 

either optimization algorithm was not sufficient to draw the conclusion that the 

optimal solution had been achieved. This suggested that multiple rounds of each 

optimization algorithm with different random seeds for each round would be 

required to achieve a reliable solution. 

The default optimization options for each algorithm resulted in convergence 

to known solutions when applied to the selected test functions; however, the 

optimization parameters might need to be modified or ‘tuned’ in order to better 

address the unique problem of ECM technique generation. 

Table 3.4: Bounded Rosenbrock function optimization results 

Test 

Function 

Rosenbrock [–2,2] 

Round 
Execution 

Time (s) 
Solution Value 

Generations 

/ Iterations 

Function 

Evaluations 

Exit 

Flag 

GA 

1 0.6059 
[1.272954, 

1.620862] 
0.0745241 200 10050 0 

Best 

(97) 
0.07984 

[0.999496, 

0.998977] 
2.772922e–07 68 3450 1 

Average 0.2064 
[1.011465, 

1.030856] 
0.00796079 180.1 9055 

1 (20) 

0 (80) 

PSO 

1 1.0399 
[1.022435, 
1.045581] 

5.076459e–04 58 1180 1 

Best 
(75) 

0.02798 
[0.999982, 
0.999964] 

3.315381e–10 128 2580 1 

Average 0.02303 
[0.998285, 

0.996755] 
3.052633e–04 96 1940 

1 

(100) 
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Table 3.5: Bounded Rastrigin function optimization results 

Test 

Function 

Rastrigin [–5.12,5.12] 

Round 
Execution 

Time (s) 
Solution Value 

Generations 

/ Iterations 

Function 

Evaluations 

Exit 

Flag 

GA 

1 0.4520 
[0.994964, 

9.627379e–06] 
0.994959 83 4200 1 

Best 

(3) 
0.1034 

[6.164289e–07, 

–5.736482e–07] 
1.406697e–10 84 4250 1 

Average 0.09810 
[0.0492594, 

0.0394104] 
0.325086 79.2 4008 

1 

(100) 

PSO 

1 1.0485 
[0.978493, 

0.944311] 
2.546291 48 980 1 

Best 

(75, 77) 
0.01712 

[–1.476723e–09, 

–2.689717e–09] 
0 71 1440 1 

Average 0.01882 
[–0.0295536, 

–3.020851e–07] 
0.108362 72.2 1463 

1 
(100) 

 

3.3 MATLAB® Implementation Comparison 

Review of the available documentation immediately identified key differences 

between the MATLAB® implementations of the GA and PSO. In terms of 

capability, the most significant difference is that only the GA can accept 

constraints on the optimization problem. To accomplish a direct comparison of the 

two algorithms the candidate solutions they generate should be restricted by the 

same bounds and constraints. Since constraints are not possible for the PSO, 

control of the candidate solutions, when applied to real-world scenarios, will be 

limited to the application of lower and upper bounds on each variable of the 

candidate solution. 

 A number of MATLAB® GA and PSO optimization options influence the 

execution time of each function. The default values for the population/swarm size, 

maximum number of generations/iterations, and maximum number of stall 

generations/iterations are different for each, making a direct comparison difficult 

without changes to the default settings. 
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 The GA function has 28 unique options that can be user-modified. The three 

options that most significantly control GA operation are selection, crossover, and 

mutation. The options provide user-selectable selection, crossover, and mutation 

functions, along with modifiable parameters for each function; however, there are a 

number of available built-in functions for each option, plus the ability to write 

custom functions. There are also two reproduction options: elite count and 

crossover fraction. Elite count specifies the number of individuals that are 

guaranteed to survive to the next generation, and crossover fraction specifies the 

fraction of the next generation, other than elite children, that are produced by 

crossover [18]. Depending on the functions chosen for selection, crossover, and 

mutation, as many as nine options and parameter settings are available to modify. 

Modifications to the default GA options would be time-consuming and require a 

number of simulations to determine the best combination of settings. 

 The PSO function has 20 unique options that can be user-modified. There 

are four options that directly control PSO operation: inertia range, minimum 

adaptive neighborhood size, self-adjustment weight, and social-adjustment weight. 

Since these options are either a two-element vector or a scalar value, the total 

number of parameter settings to control the algorithm is much lower for the PSO 

when compared to the GA. 

The optimization options for each algorithm, along with their default values 

and those values used in this thesis, are described in detail in Appendix A. 
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3.4 Summary 

The GA and PSO optimization algorithms were validated using three test 

functions: the Rosenbrock, the Rastrigin, and Hölder table. Both algorithms were 

shown to converge to the known solutions of each test function; however, 

bounding the search space was required to achieve an acceptable result. In 

addition, a single optimization run was not sufficient to converge to the known 

solution. Instead, multiple optimization runs, each beginning with a different 

random seed, will provide an indication of the tendency for the algorithm to 

approach the known solution. 

 For a bound solution space, the PSO consistently achieved solutions closer 

to the known solution, when compared to the GA. The PSO also took less time to 

converge; however, this was due to the default swarm size being significantly 

smaller than the GA population size (20 vs. 50, for the PSO and GA, respectively). 

This indicates that the PSO is capable of converging to a better solution while 

testing fewer candidate solutions at each iteration. The PSO would appear to be 

more efficient when solving the test functions used; however, the problem of ECM 

technique generation may prove different. 

Selection of options that control algorithm operation needs to follow an 

iterative trial and error process to determine their effect on the optimization 

outcome. The wide degree of customization afforded by the MATLAB® 

implementations of the GA and PSO, although flexible, imposes a significant time 

cost in ‘tuning’ the algorithms to a specific problem. The problem of ECM 

technique generation may not require significant deviation from the option default 

values to achieve the generation of effective ECM techniques. 
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4 ECM Technique Generation Methodology 

This chapter presents an overview of the design of the software architecture that 

bridges the existing TESS™ proprietary software with the task-specific 

MATLAB® toolboxes. The combined system is designed to generate ECM 

techniques using global optimization, which can be faster than direct-search 

methods. The following sections detail the design process, challenges, and 

considerations, including development of the fitness function, parallelization of the 

process for reduced computation time, and the definition of deception jamming 

techniques compatible with the TESS™ product. 

4.1 Integration of TESS™ with the Global 

Optimization Toolbox™ 

The TESS™ product is based in MATLAB®/Simulink® and is normally accessed 

via a graphical user interface (GUI). TESS™ permits the modification of a number 

of threat, target platform, and environmental parameters for either single 

engagements or batch runs (in which multiple engagements with different 

parameter values are run either sequentially or in parallel). Engagement parameters 

are normally modified in dialog boxes of the GUI by the user. Such manual 

parameter updates are sufficient for simulating engagements with pre-planned 

conditions and techniques; however, global optimization randomly generates initial 

candidate solutions, updating the candidate solution parameters through multiple 
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iterations in which subsequent populations are based on the results of previous 

populations. 

Global optimization algorithms have not previously been used to provide 

input parameters to TESS™, which presents a number of challenges. The TESS™ 

GUI does not provide direct access to parameters, which are stored either as 

variables in the MATLAB® base workspace or as Simulink® mask parameters. 

Fortunately, the core component of TESS™, the Simulink® model, can be run 

directly from the MATLAB® environment without the requirement to access 

TESS™ via its GUI. This feature is essential since the optimization algorithms in 

the MATLAB® Global Optimization Toolbox™, which are functions called from 

the MATLAB® command line, require that a candidate solution be passed as an 

input argument to a MATLAB® function and the computed fitness be passed back 

to the optimization algorithm as an output argument. 

Candidate solution parameters generated by the optimization algorithm must 

be mapped to the TESS™ Simulink® model variables stored in the MATLAB® 

base workspace and engagement simulation output variables must be accessed to 

permit fitness function computation. The hierarchical structure of the MATLAB® 

workspaces (i.e. a separate workspace is created for each function, with a base 

workspace for the command line), combined with the MATLAB® implementations 

of the GA and PSO (in which all subsequent processes are executed from a 

function instantiated by the GA or PSO function), require that the process flow 

include the following steps: 

1. Initialize the program with user inputs (defined below); 

2. Call the optimization function (GA or PSO); 

3. Transfer the input parameters to the TESS™ Simulink® model base 

workspace variables; 

4. Simulate the engagement using  the TESS™ Simulink® model; 

5. Compute a fitness score based on the TESS™ Simulink® model output 

variables and a user-defined fitness function; 
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6. Iteratively continue the process until convergence to a solution is 

achieved; and  

7. Output the parameters of the generated ECM technique. 

The resulting high-level software architecture is shown in Figure 4.1. Each block is 

described in the following subsections. 

 

Main Program (Optimization Routine)

TESS™ 

Simulink
®
 

Model 

Simulation 

Management 

and Scoring

User Input Output

 

Figure 4.1: ECM technique generation software architecture 

4.1.1 User Input 

The user input includes a number of user-selectable options for the program: the 

optimization algorithm to be used, optimization algorithm options (e.g. 

population/swarm size, maximum number of iterations, search space upper and 

lower bounds, number of optimization variables), airborne target type and initial 

conditions (e.g. altitude, velocity, approach angle relative to the threat), and target 

manoeuvre profiles. User inputs were hard-coded variables in the main MATLAB® 

script that could be modified prior to program execution. 

4.1.2 Main Program 

The main program serves as the user interface of the ECM technique generation 

program. The program includes settings for the simulation conditions and 

optimization options (user input), initialization routines for loading variables and 
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opening the TESS™ Simulink® model, the function call for the optimization 

algorithm, and functions for viewing and saving the results. The optimization 

function call (GA or PSO) enters an iterative loop in which all simulation and 

scoring functions are executed until the optimization ends, due to one of several 

exit criteria (as detailed in Appendix A). 

4.1.3 TESS™ Simulink® Model 

The threat system, RF channel, transmit and receive environments, and target 

platform, are simulated entirely within TESS™. The core TESS™ component 

includes a Simulink® model designed to simulate engagement scenarios for a 

specific class of weapon system. The Command Guided Surface-to-Air Missiles 

and Anti-Aircraft Artillery (SAMCGAAA) model was chosen because it provides 

a threat system capability conducive to the evaluation of range and frequency 

deception jamming techniques. The top-level block diagram of the TESS™ 

Simulink® model is shown in Figure 4.2 [29]. 
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Figure 4.2: TESS™ SAMCGAAA Simulink® model [29] 

Each block has a series of system parameters that are modifiable either 

through dialog boxes within Simulink® or through the MATLAB® command line. 

Within the Threat System blocks are the transmit and receive systems as well as the 

missile system. The Target Platform block includes the target aircraft and its 

self-protection systems, including the jammer and other ECM systems such as 

chaff, towed decoys, and expendable active decoys. 

The TESS™ SAMCGAAA Simulink® model was delivered with generic 

pre-programmed systems, including: one threat system, an airborne target 

represented by a fighter or rotary-wing aircraft, and one self-protection jammer 

system. Although unclassified publicly-available specifications were used in the 

programming of these systems, it is understood that TTI made a number of 
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educated assumptions and extrapolations of specific systems to populate the system 

block parameters. As a result, the TESS™ product is considered Controlled Goods 

under the Defence Production Act [30] and the system parameters of the particular 

threat and jammer systems that were simulated cannot be disclosed herein. The 

threat, airborne target, and self-protection jammer system parameters were verified, 

where possible, against unclassified data widely available on the internet. 

Although generic pre-programmed systems were used in this thesis, the 

generic system blocks are customizable and can be altered to better represent 

specific military systems, should this intelligence be made available to the user. 

4.1.3.1 Ground-Based Threat System 

The threat system is based on unclassified system specifications for the 9K33 Osa 

(NATO reporting name SA-8 Gecko) [31]. The SA-8 is an anti-aircraft SAM 

system that provides missile tracking via an RF command guidance system (i.e. 

missile guidance is provided solely through the ground-based radar system). 

Although early versions of the SA-8 had limited range and altitude performance, 

the SA-8 was shown to be effective against low-flying fixed and rotary-wing 

aircraft [32]. Upgrades have increased system performance to a maximum 

engagement altitude of 12 km and maximum range of 15 km [33]. Use of a pulsed 

TTR make this system appropriate for evaluating the effectiveness of range and 

frequency deception techniques in protecting fixed and rotary-wing aircraft. The 

generic threat used both non-coherent and coherent receiver modes for evaluating 

range-only (i.e. RGPO/RGPI) and range and frequency coordinated 

(i.e. RGPO/RGPI and VGPO) deception jamming techniques. A photograph of the 

SA-8B transporter erector launcher and radar (TELAR) vehicle is shown in Figure 

4.3. The rotating parabolic dish antenna mounted on top of the vehicle is for 

surveillance and acquisition whereas the flat-panel arrays (tan coloured) are those 

used for target tracking, fire control, and command guidance of the missile. 
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Figure 4.3: 9K33AKM Osa AKM / SA-8B Gecko TELAR vehicle [31] 

4.1.3.2 Airborne Target Platform 

The airborne target platform can be selected as either a fixed or rotary-wing 

aircraft, modelled as a cylinder. The aircraft dimensions are used by TESS™ in the 

calculation of miss distance [20]. The model also includes a parameter called 

vulnerable area, given in square meters, which is used in the probability of kill and 

probability of survival calculations [20]. The default values for radius, length, and 

vulnerable area are: 5 m, 14 m, and 50 m2. The default dimensions were retained 

since they are representative of either a fighter aircraft (e.g. the F-16 is 

approximately 15 m long and 4.9 m high [34]) or an escort/attack helicopter 

(e.g. the Bell CH-146 is approximately 17.1 m long and 4.6 m high [35]), which 

are examples of airborne targets likely to be engaged by the SA-8 threat system. 
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4.1.3.3 Self-Protection Jammer 

The self-protection jammer is based on unclassified system specifications for the 

AN/ALQ-126B Airborne Defensive Electronic Countermeasures (DECM) set [36]. 

This legacy system, still carried on the CF-18 fighter aircraft, is primarily designed 

to jam TTRs [37] and is capable of a number of deception jamming techniques, 

including both RGPO/RGPI and VGPO. The jammer provides coverage up to the 

I/J RF bands and is capable of emitting in excess of 1 kW power per band. Fore 

and aft high-band antennas provide 60-degree beam width with a 15-degree 

lookdown angle for ground threat coverage. 

4.1.4 Simulation Management and Scoring 

The optimization algorithms included in the Global Optimization Toolbox™ 

require that all simulation and scoring functions take place within a function 

(referred to in MATLAB® documentation as a fitness or objective function) called 

by the optimization algorithm function. Once the optimization function is called 

from the MATLAB® command line, all subsequent function calls take place within 

this objective function or a custom output function, typically used to save or plot 

intermediate optimization states and results at the completion of each iteration of 

the optimization. Simulation management and scoring includes the following tasks: 

1. Transfer the ECM technique candidate solution variable set generated by 

the optimization algorithm to the base workspace jammer parameters of 

the TESS™ Simulink® model;  

2. Set the target platform initial flight path approach angle in the base 

workspace target platform parameters of the TESS™ Simulink® model; 

3. Simulate the engagement via the TESS™ Simulink® model; and 

4. Evaluate the engagement results and generate a fitness score that is 

passed back to the optimization algorithm. 
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4.1.4.1 Fitness Function 

No publicly available guidance, either theoretical or experimental, exists for an 

optimal ECM fitness function. Therefore, the fitness function was designed based 

on the available performance output parameters from the Simulink® model and the 

desired engagement outcomes resulting from an effective ECM technique. 

Effective ECM outcomes include: 

1. Prevention of a missile launch; 

2. Maximizing the missile miss distance; and 

3. Minimizing the engagement time in which the threat radar is tracking the 

real target. 

The fitness function contains a series of conditional statements that evaluate 

the airborne target’s ability to survive the missile engagement. The fitness score is 

computed using a series of equations that are solved sequentially based upon the 

values of select output parameters. Five distinct conditions are evaluated to arrive 

at the final fitness score of the ECM technique candidate solution. 

 TESS™ computes the probability of kill, 𝑃𝑘𝑖𝑙𝑙, and probability of survival, 

𝑃𝑠𝑢𝑟𝑣, such that: 

 𝑃𝑘𝑖𝑙𝑙 + 𝑃𝑠𝑢𝑟𝑣 = 100 . (4.1) 

Although a number of engagement simulation parameters (such as target 

vulnerable area) are used in computing 𝑃𝑘𝑖𝑙𝑙, it is largely based on the missile miss 

distance, 𝐷𝑚𝑖𝑠𝑠, between the target aircraft and the missile. 

When 𝑃𝑘𝑖𝑙𝑙 is greater than or equal to 90 percent, the ECM candidate 

solution is deemed ineffective and the fitness score is set to 1. If multiple target 

platform flight path approach angles are undergoing evaluation for the current 

candidate solution, the optimization is terminated, the candidate solution is 

dismissed, and the remaining approach angles are not evaluated. 
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 If a missile launch does not occur, the candidate solution is deemed 100 

percent effective and the fitness score is set to 0. If multiple target platform flight 

path approach angles are undergoing evaluation for the current candidate solution, 

the remaining approach angles are evaluated. 

 If 𝐷𝑚𝑖𝑠𝑠 is greater than 100 m but less than 500 m, the fitness is computed as 

a linear function of 𝐷𝑚𝑖𝑠𝑠 from 0.3 to 0.1: 

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 0.35 − 0.0005 × 𝐷𝑚𝑖𝑠𝑠 . (4.2) 

If 𝐷𝑚𝑖𝑠𝑠 is less than or equal to 100 m, the fitness is computed as a weighted 

sum of the probability of survival, 𝑃𝑠𝑢𝑟𝑣, 𝐷𝑚𝑖𝑠𝑠, and percent of engagement time 

that the threat radar is not in track mode, where 𝑇𝑡𝑟𝑎𝑐𝑘 is the percent of time that 

the radar is in track mode: 

 
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 1 −

1

100
(𝑊𝑠𝑢𝑟𝑣𝑃𝑠𝑢𝑟𝑣 + 𝑊𝑚𝑖𝑠𝑠𝐷𝑚𝑖𝑠𝑠

+ 𝑊𝑡𝑟𝑎𝑐𝑘(100 − 𝑇𝑡𝑟𝑎𝑐𝑘)) 
(4.3) 

The weights were chosen as follows: 

Probability of survival weight, 𝑊𝑠𝑢𝑟𝑣 = 0.1; 

Miss distance weight, 𝑊𝑚𝑖𝑠𝑠 = 0.5; and 

Percent of time not in track mode weight, 𝑊𝑡𝑟𝑎𝑐𝑘 = 0.4. 

These weight values were chosen for two reasons: since 𝑃𝑘𝑖𝑙𝑙 and 𝑃𝑠𝑢𝑟𝑣 are based 

on 𝐷𝑚𝑖𝑠𝑠, they provide limited value in determining the fitness for small miss 

distances; and, using the above weights, for a 𝑃𝑠𝑢𝑟𝑣 of 100 percent, a 𝐷𝑚𝑖𝑠𝑠 of 

100 m, and the threat radar in track mode 75 percent of the engagement time, the 

computed fitness using (4.3) is 0.3. This value aligns with the linear function from 

(4.2) and provides continuity, rather than a step change, between (4.2) and (4.3). 

 Where multiple target platform flight path approach angles are evaluated for 

a single ECM candidate solution, the overall fitness score is computed as the 

maximum fitness (worst case) value for all approach angles evaluated. 
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Simulation management and scoring, which includes the fitness function, is 

displayed as a flowchart in Figure 4.4. 
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Figure 4.4: Simulation management and scoring flowchart 
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4.1.5 Program Output 

Each optimization algorithm provides as output a data set after each 

iteration/generation. Included in the data set are the values of each candidate 

solution in the swarm/population along with the fitness score of each member. 

From this information the best and average fitness scores can be computed for each 

iteration/generation. A history of the entire optimization process is recorded by the 

main program for later analysis. At the completion of the optimization process the 

candidate solution with the best fitness score along with various metrics (such as 

execution times and exit flags) are also recorded. 

4.2 Parallelization 

Parallelization refers to the execution of similar or iterative processes 

simultaneously rather than in a sequential manner [38]. The MATLAB® Parallel 

Computing Toolbox™ permits the use of multicore central processing units 

(CPUs), graphics processing units (GPUs), and computer clusters to solve 

computationally and data-intensive problems [39]. 

The Global Optimization Toolbox™ allowed for parallelization of the 

optimization via the Parallel Computing Toolbox™. However, the addition of the 

TESS™ Simulink® model and its associated parameters and hidden internal 

variables, when combined with the customized fitness scoring process, made 

parallelization a non-trivial endeavour. Modifications to the initialization of the 

optimization routine were required to enable a parallelized fitness function. 

Taking advantage of the processing power of multicore computing, 

MATLAB® computational engines, or workers can be run locally with one worker 

per core available. The function that carries out simulation management and 

scoring is instantiated once per worker with each one using its own workspace and 

executing its own instance of the TESS™ Simulink® model. Since a directory of 
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files in support of the TESS™ Simulink® model is dynamically updated during 

each simulation, it is necessary to copy the entire directory, along with the model 

file and MATLAB® script and functions, to a temporary directory for each worker 

in the parallel pool. The parallelization, where 𝑛 is the total number of CPU cores 

available, is depicted in Figure 4.5. 
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Figure 4.5: Parallelization of the simulation and scoring functions 
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4.2.1 Serial versus Parallel Benchmark Comparison 

The serial and parallel implementations of the simulation and scoring functions 

were compared using an engagement simulation to determine the speed increase 

obtained via parallelization. The simulated engagement was conducted between the 

TESSTM generic fighter aircraft and threat system (with a non-coherent receiver). 

Optimizations of a six-variable range-only technique (i.e. initial position, final 

position, initial dwell time, final dwell time, velocity, and acceleration) were 

conducted using both the GA and PSO, each using their default options and a 

population/swarm size of 20. All optimization variables and bounds were held 

constant for the serial and parallel executions and the same initial random seed was 

used. 

Simulations were run on a computer with the Windows 7 Enterprise (with 

Service Pack 1) 64-bit operating system. Two Intel® Xeon® CPU E5-2650 v4 

processors, rated at 2.20 GHz, were installed. The computer had 32 GB of random 

access memory (RAM) installed. Due to computer memory constraints at the time 

of benchmark testing, a maximum of 16 parallel workers were used. 

 The results of the benchmark comparison are shown in Table 4.1. Execution 

overhead is the time required by the program to conduct the setup and initialization 

of the simulation, including opening the TESSTM Simulink® model, loading 

initialization variables, and closing the model upon completion of the optimization. 

The parallel implementation includes the additional tasks of starting the parallel 

pool, creating temporary directories, copying the model files, and loading the 

Simulink® model for each worker, as well as closing the model, removing model 

files and temporary directories, and shutting down the parallel pool. Although this 

additional execution overhead was greater for the parallel implementation, it did 

not have a significant impact on the overall execution time given the time required 

to run a single optimization round. 
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Table 4.1: Serial vs. parallel benchmark comparison results 

 Overhead 
GA 

Execution Time 

PSO 

Execution Time 

Total 

 Execution 

Time 

Serial 0.75 847.48 465.59 1313.82 

Parallel 3.51 145.04 81.21 229.76 

Overall Speedup 5.72x 

Note: All times are in minutes. 

 
 The results (i.e. the ECM techniques and associated fitness scores) for the 

serial and parallel implementations were identical. For both serial and parallel 

implementations, the GA required 68 generations and 1380 function evaluations to 

converge to a solution, whereas the PSO required 37 iterations and 760 function 

evaluations to converge. Although the parallel implementation demonstrated 

increased overhead associated with initialization, for the specific variable set, 

simulation parameters, and population/swarm size, it was 5.72 times faster than the 

serial implementation. The parallelization of the simulation and scoring functions 

allowed ECM technique generation to be performed in hours instead of days. The 

increase in speed can be used to intensify the optimizations, either by increasing 

the population/swarm size and the number of individual rounds for each 

optimization algorithm (each with a unique random seed), or by using multiple 

engagement geometries. 

 Each worker uses approximately 2 to 2.5 GB of RAM when running the 

parallelized optimization routine. As a result, to maximize the use of all available 

CPU cores, the available RAM should be no less than 2.5 times the number of 

cores. Subsequent simulations were performed on the same computer as described 

above, but with a total of 64 GB of RAM installed. This permitted the use of all 24 

CPU cores when running the parallelized optimization routine. 
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4.3 Deception Jamming Technique Design 

The deception jamming techniques introduced in Chapter 2, namely the 

RGPO/RGPI and VGPO, are used for the engagement simulations. TESS™ 

provides options for programming single techniques or combinations of multiple 

techniques for the generation of false targets. The design of range and frequency 

deception jamming techniques was limited to the parameters available within the 

TESS™ jammer system. 

4.3.1 Range Deception 

In TESS™, the jammer range deception program is defined via ten parameters, 

defined in Table 4.2. For a given single pulse range technique, the pulse is assumed 

to be On for the duration of the engagement. Thus, the parameters Pulse On and 

Pulse Off are excluded from the variable set. Therefore, any single pulse range 

technique is defined by the eight remaining variables. 
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Table 4.2: TESS™ jammer range program parameters 

Parameter Units Description 

Pulse On s 
Elapsed time from jammer turn-on time until 

the pulse sequence commences 

Pulse Off s 
Elapsed time from Pulse On until the pulse 

turns off 

Initial Position, 𝑅0 
μs 

(1 μs = 150 m) 

Initial position of the pulse false range target, 

relative to the aircraft position 

Final Position, 𝑅𝑚𝑎𝑥 
μs 

 (1 μs = 150 m) 

Final position of the pulse false range target, 

relative to the aircraft position 

Initial Dwell Time, 𝑇𝑖  s 
Time that the pulse false range target dwells 

over the Pulse Initial Position 

Final Dwell Time, 𝑇𝑓 s 
Time that the pulse false range target dwells 

over the Pulse Final Position 

Velocity, 𝑣 m/s 

Velocity with which the pulse false range 

target moves from the Pulse Initial Position to 

the Pulse Final Position 

Acceleration, 𝑎 m/s2 Acceleration of the pulse false range target 

Cover Pulse Reduction dB 
Attenuation relative to the jammer’s full 

power 

Pulse Width, 𝑃𝑊 μs 
Pulse width used by the pulse false range 

target 

 

The TESS™ implementation models the most common range deception 

profile: constant acceleration. The resulting walk-off profile for a single pulse of 

the range deception technique is shown in Figure 4.6. 
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Figure 4.6: Range deception walk-off profile (single pulse) 
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The jammer pulse starts at or near the real target, at 𝑅0, dwells (stays with 

the target aircraft) for some period of time, 𝑇𝑖, and then accelerates at a constant 

rate, 𝑎, away from the target until the maximum velocity, 𝑣, is reached (or the 

maximum range, 𝑅𝑚𝑎𝑥, is reached; whichever occurs first). The pulse then 

continues to move away from the target at constant velocity until reaching the 

maximum range, 𝑅𝑚𝑎𝑥 (if 𝑅𝑚𝑎𝑥 was not reached prior to achieving the maximum 

velocity). The pulse dwells in position for some period of time, 𝑇𝑓, before 

transmission ceases and the cycle begins again. The constant acceleration and 

combined linear/constant velocity profile result in a combined parabolic/linear 

position profile. 

4.3.2 Frequency Deception 

In TESS™, frequency deception programs are defined by waveform type 

(programmable, sinusoid, and noise) and then by a corresponding set of 

parameters. To achieve a frequency deception technique (i.e. VGPO), coordinated 

with a given range technique, the programmable type is used. The programmable 

frequency deception program accepts two vectors, each containing up to 50 values. 

A vector of time values, in seconds, corresponds to a vector of frequency values, in 

kHz. Together, the time and frequency vectors form a single period of a piece-wise 

linear periodic sequence. The frequency profile corresponding to a false target 

turning away from the threat radar (i.e. negative Doppler frequency shift, RGPO) is 

shown in Figure 4.7. 
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Figure 4.7: Frequency deception walk-off profile (single pulse) 

The frequency technique can be coordinated with a given single-pulse range 

technique using the initial and final positions, 𝑅0 and 𝑅𝑚𝑎𝑥, initial and final dwell 

times, 𝑇𝑖 and 𝑇𝑓, velocity, 𝑣, and acceleration, 𝑎, of the range technique pulse. The 

basic equations of motion [40] can then be used to compute the instantaneous 

velocity corresponding to the programmed range technique. Recalling that the 

frequency program can only use up to 50 discrete frequency values, the Doppler 

frequency, 𝑓𝑑, required for a defined time step is computed using (2.7). Since the 

frequency technique uses the range technique parameters to generate the time and 

frequency values, only one additional parameter is required for a coordinated 

range/frequency technique: a binary number where a 0 indicates frequency 

coordination is not used and a 1 indicates frequency coordination is active. 

Therefore, a frequency coordinated range technique is defined by nine variables. 

When both range and frequency deception programs are executed 

concurrently, the false target pulse will inject coordinated false range and velocity 

information into the receiver of a coherent pulse-Doppler radar system. The 

technique, if effective, will either force the victim radar to lose target track 

(break-lock) so frequently that a missile launch will be prevented, or the false 

range and velocity information will lead a launched missile off course to miss the 

target aircraft. 
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4.4 Summary 

This chapter presented the design of the software architecture that bridges the 

proprietary TESS™ Simulink® model with the MATLAB® Global Optimization 

Toolbox™ and Parallel Computing Toolbox™. The design process, challenges, 

and considerations, including development of the fitness function and 

parallelization of the process for reduced computation time, were covered. Details 

of the TESS™ Simulink® model, such as the default parameter settings for the 

threat system, airborne target, and self-protection jammer, were introduced. The 

definition of deception jamming techniques that meet the programming 

requirements of TESS™ was also explored. 

 The final design of the software architecture was dictated by the TESS™ 

Simulink® model, the MATLAB® optimization functions, and the resulting storage 

and transfer of data between each software block. Despite these constraints, 

integration of the proprietary TESS™ Simulink® model with the MATLAB® 

Global Optimization Toolbox™ was achieved for the first time. Parallelization of 

the simulation and scoring processes was also accomplished, and was demonstrated 

to significantly decrease the execution time for the optimization process when 

compared to the serial implementation in benchmark testing. 

 Successful integration of the required software elements was a significant 

milestone in the development of a system capable of generating ECM techniques 

using global optimization, which can be faster than direct-search methods. 

However, each optimization algorithm has a series of parameters and options that 

must be carefully selected to achieve convergence in minimal execution time. 

Finally, a series of engagement simulations with specific conditions such as threat-

target geometry, target type, altitude, and airspeed, and both non-manoeuvring and 

manoeuvring profiles, must be defined. 
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5 Simulation Setup and Results 

This chapter begins with a discussion of the optimization setup, which includes 

optimization options and solution space bounds, focussing on the reasoning behind 

selecting specific values and their effect on the optimization process. Engagement 

scenario design, including the simulation conditions and their role in scoping the 

overall execution, is also examined. 

The results from each engagement scenario are presented and analyzed, with 

a focus on the effects of each deception technique parameter, or optimization 

variable, on the performance of the generated ECM techniques against the threat 

system and their resulting fitness. The performance of each optimization algorithm 

is compared, concentrating on the convergence speed and the generation of suitable 

ECM techniques by comparing the fitness scores. 

5.1 Optimization Setup 

The optimization setup involves defining all parameters required to carry out the 

optimization with each algorithm function. Each algorithm is run with the same 

optimization options, where possible and appropriate (e.g. options that affect total 

execution time or termination criteria). Other options unique to each algorithm 

must be set accordingly if the default value is not to be used. Setup also involves 

selecting upper and lower bounds on each optimization variable in the problem. 

Finally, each optimization algorithm must be initialized with a random seed, which 

is a number used to generate a pseudo-random sequence of numbers that are in turn 
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used by the algorithm at each generation/iteration. Each algorithm is run ten times 

per simulation, where each run is referred to as a round. Each round is seeded with 

the number sequence of the round (e.g. round one is seeded with ‘1’, round two is 

seeded with ‘2’, etc.); this is done for reproducibility. At the end of each 

simulation, ten rounds using GA and ten rounds using PSO are completed, 

resulting in a total of 20 ECM techniques and their associated fitness score. 

5.1.1 Optimization Options 

Only a limited number of available optimization options were modified for each 

algorithm. All simulations were run using the parallelized simulation and scoring 

functions, using 24 CPU cores. This permitted 24 candidate solutions to be 

evaluated simultaneously. The population/swarm size was limited to 48 for all 

simulations. Choosing a multiple of 24 meant that all CPU cores were used to 

evaluate the population/swarm at each generation/iteration, maximizing the 

efficient use of the available computing capability. Keeping this number at 48 also 

provided the best trade-off in terms of overall execution time and search of the 

bounded solution space. 

 The fitness limit (referred to as objective limit by the PSO algorithm), was 

set to 0, since this was the minimum value that the fitness function was designed to 

find. Once the scoring system found a candidate solution with a fitness of 0 the 

simulation would end. The function tolerance was used to determine whether the 

average relative change in the best fitness score was changing between 

generations/iterations. Initially, the function tolerance was kept at its default value 

of 1 × 10−6; however, this was later changed to 1 × 10−3 since the fitness 

function only provided fitness scores measured to more than one significant figure 

if the miss distance was less than 500 m. The maximum number of 

generations/iterations was limited to 100; however, no simulation was observed to 

reach this maximum. The maximum stall generations/iterations were options that 
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were found to significantly influence the execution time of each algorithm. The 

default value for the GA is 50; however, the default value for the PSO is only 20. If 

a simulation did not converge to the minimum fitness score of 0 it would usually 

stall at a fitness score of 0.1 and continue until reaching the maximum stall 

generations/iterations. Initially, the GA option was kept at the default of 50, which 

resulted in the GA always taking much longer to complete a simulation when 

compared to the PSO. In these cases, observing the scores at each generation 

indicated that function evaluations beyond 20 generations, when the fitness score 

had stalled, had no effect on improving the fitness score. Thus, for subsequent 

simulations, the value was set to 20 generations for the GA. 

 Optimization options that influence crossover and mutation rates for the GA 

were modified from the default values once during testing. The results of those 

changes are discussed in the results section of this chapter. 

5.1.2 Optimization Bounds 

Since constraints could not be defined for the PSO algorithm implemented in 

MATLAB®, only optimization bounds were used to provide an equal basis of 

comparison between the two algorithms. The upper and lower bounds for each 

optimization variable are chosen to limit the solution space. Limiting the solution 

space reduces the number of candidate solutions, decreasing the execution time 

required to converge to an optimized solution. However, the chosen bounds may 

also exclude potential global solutions. The bounds imposed on each optimization 

variable must be logical when considering the problem and should consider the 

capabilities and limitations of the jammer system being simulated. The 

optimization variable bounds chosen for ECM technique generation are shown in 

Table 5.1. 
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Table 5.1: Optimization variable bounds 

Optimization 

Variable 
Units Lower Bound Upper Bound 

Initial Position, 𝑅0 μs –5 5 

Final Position, 𝑅𝑚𝑎𝑥 μs –15 15 

Initial Dwell Time, 𝑇𝑖  s 0 5 

Final Dwell Time, 𝑇𝑓 s 0 5 

Velocity, 𝑣 m/s 
200 (Fighter) 

5 (Rotary) 

600 (Fighter) 

90 (Rotary) 

Acceleration, 𝑎 m/s2 
10 (Fighter) 

10 (Rotary) 

60 (Fighter) 

30 (Rotary) 

Frequency Coordination - 0 1 

Cover Pulse Reduction –dB 0 3 

Pulse Width, 𝑃𝑊 μs 0.5 2 

 

 The pulse positions are defined in units of μs, where 1 μs equals 150 m. For 

a RGPO/RGPI technique, the pulse initial position is normally expected to be 

directly over or very close to the actual target position. The chosen bounds permit 

the initial pulse position to be within 750 m of the target, which is greater than the 

range resolution of the threat system (the SA-8 has a published acquisition radar 

accuracy of 300 m and an engagement radar range resolution accuracy of 55 m). 

The pulse final position is expected to be some distance from the target, either 

closer to the threat (a pull-in), or further from the target (a pull-out). The chosen 

bounds permit the final pulse position to be within 2250 m of the target. 

 The dwell times are limited to 5 s. The earliest launch time of a missile is 4 s 

after simulation start (this is due to threat system settings described in the next 

section). An initial dwell time of 5 s permits a scenario in which a missile launch 

occurs before the pulse accelerates away from its initial position. 
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The maximum fighter velocity of 600 m/s is equivalent to 1,166 knots or 

approximately Mach 1.75 (at sea level), which is typical of fourth generation 

fighter aircraft. The minimum velocity of 200 m/s or 389 knots is near the lower 

end of cruise speeds for fighter aircraft. The maximum rotary-wing velocity of 

90 m/s is equivalent to 175 knots, which is typical of military helicopters. Since 

helicopters can hover (zero velocity) the minimum velocity is 5 m/s or 

approximately 10 knots (the pulse must be able to move during the pull-off 

technique). 

Although fighter aircraft are capable of higher lateral accelerations (up to 

9 g), the pulse acceleration is limited to approximately 6 g since the acceleration of 

the pulse should simulate the turn-in or turn-out of the target with respect to the 

threat; evasive manoeuvres above 6 g are uncommon due to the rapid energy loss 

associated with high load factors. Pulse acceleration for the rotary-wing aircraft 

was initially limited to approximately 3 g, since the design standard load factor 

limit for helicopters is 3.5 g, and helicopters rarely reach load factors above 2 g. 

The velocity and acceleration limits for rotary-wing simulations were later changed 

to match those of the fighter aircraft since the simulated threat system does not 

have the ability to distinguish between aircraft types when tracking the target or 

jamming pulse. 

Since frequency coordination is a binary selection (it is either on or off) the 

variable is limited as such. Generated values less than 0.5 are rounded to 0 and 

values 0.5 or greater are rounded to 1. 

Pulse attenuation is limited to a maximum of 3 dB, or half the maximum 

transmit power of the jammer. 

The pulse width (PW) of the jamming pulse is limited to between 0.5 and 

2 μs. The PW of the radar transmitter is 0.5 μs, and a reflected signal would be 

expected at the same PW. As discussed further in the results, PWs approaching 

0.1 μs resulted in unexpected threat radar system behaviour. 
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5.2 Engagement Scenario Design 

A series of engagement scenarios were developed to test the ability of the 

integrated system to generate suitable ECM techniques. The design involved 

consideration of realistic flight profiles for the target aircraft, including altitude, 

airspeed, flight orientation relative to the threat, and range to the threat. 

 The time required to conduct a single optimization round dictated that a 

limited number of variables could be considered when developing the engagement 

scenarios. As a result, the altitude and airspeed of the fighter and rotary-wing 

targets were held constant and only the direction of flight, or approach angle 

relative to the threat, was varied between optimizations. Due to time constraints, 

only two scenarios used a target manoeuvring at constant altitude and airspeed. 

5.2.1 Scenario Setup 

The threat system TTR consisted of a radar transmitter in the Ku band with a fixed 

PRI and a receiver type called scan-with-compensation (SWC), a form of 

monopulse tracking. A SWC system uses two Lobe-On-Receive-Only (LORO) 

signals, 180 degrees out of phase with each other, which are fed into separate 

receiver channels. Target tracking techniques such as SWC and LORO are 

described further in [21]. Except where noted otherwise, the radar was a coherent 

system (i.e. pulse-Doppler). TESS™ offers ECCM options for the threat system; 

by default, the track on jam option was enabled. 

 For all engagements, the threat platform was located due North from the 

target platform at a range of 9260 m (5 nautical miles) and an altitude of 5 m above 

sea level. The default setting for missile launch time was 0.5 s (i.e. the time 

required for the missile to launch). TESS™ provides an option to require the threat 

system to have a tracking lock for a minimum period of time before missile launch. 

Although the SA-8 has a published reaction time (from target detection to launch) 
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of 26 s [32], the simulated threat system would immediately launch upon 

simulation start since the target was within the engagement envelope of the threat 

system. To prevent immediate launch and provide for the generation of ECM 

techniques that may generate a repetitive break-lock condition, the post lock-on 

delay before launch was set to 3 s. This value was chosen since it provided an 

appropriate delay for the threat system. Longer delays would be unrealistic and 

unfairly inhibit the threat system; shorter delays resulted in a missile launch for 

every engagement, regardless of the ECM technique in use. 

 At the start of each engagement, the target platform was located due South 

from the threat system. The fighter target platform was at an altitude of 4572 m 

(15,000 feet), at a velocity of 309 m/s (600 knots). The rotary-wing target platform 

was at an altitude of 152 m (500 feet), at a velocity of 77 m/s (150 knots). The 

target platform direction of flight was defined as an approach angle relative to the 

threat system at the start of the simulation (i.e. an approach angle of 0 degrees 

indicated that the target platform was travelling due North directly toward the 

threat system; an approach angle of 90 degrees indicated that the target platform 

was travelling due East, perpendicular to the threat system). The engagement 

scenario geometry, showing both the side view and horizontal plan view, is 

depicted in Figure 5.1. Engagements ended when the missile reached its point of 

closest approach to the target. When no missile launch occurred, simulations were 

limited to a maximum of 40 s; this provided sufficient time for the threat to engage 

the target and resulted in the target flying directly over the threat if its approach 

angle was set to 0 degrees. 
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Note: Figure not to scale. 

Figure 5.1: Engagement geometry (left: side view, right: horizontal view) 

5.2.2 Scenario Variations 

Some engagement scenarios were run with one or more simulation variables 

changed from the standard scenario setup. Engagements were run with the jammer 

turned off to collect baseline data between the threat system and target at each 

approach angle. Engagements against coherent and non-coherent TTRs were 

conducted to analyze the effect of frequency coordination on the generation of 

effective ECM techniques. 
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5.3 Simulation Results 

For each engagement scenario, ten optimization rounds with unique random seeds 

were run for each algorithm. Individual ECM techniques generated during the 

optimization process were also analyzed through single engagements to confirm 

the results and to compare the algorithm performance. The simulation results are 

summarized in the following sections and included in tabular form in Appendix B. 

5.3.1 Non-Jamming Targets 

The engagement scenario was first run with each target flying the defined flight 

profile but with the jammer turned off. The engagements were run individually, 

thus no optimization was performed. The results of each engagement are given in 

Table 5.2 and Table 5.3, for the fighter and rotary-wing aircraft, respectively. 

Table 5.2: Non-jamming fighter engagement results 

Approach 

Angle (deg) 
Miss Distance (m) Pkill Psurv % Radar Track % Radar Search 

0 5.52 95.57 4.43 95.55 0.21 

45 15.96 31.13 68.87 96.08 0.16 

90 175.13 0 100 75.31 21.86 

135 2447.10 0 100 25.93 71.77 

180 920.52 0 100 98.43 0.075 

 

Table 5.3: Non-jamming rotary-wing engagement results 

Approach 

Angle (deg) 
Miss Distance (m) Pkill Psurv % Radar Track % Radar Search 

0 3.92 100 0 96.02 0.16 

45 4.11 100 0 96.13 0.15 

90 5.31 100 0 96.39 0.14 

135 3.39 100 0 96.64 0.13 

180 1.70 100 0 96.74 0.13 
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 In the case of the fighter engagement, the probability of kill quickly dropped 

off when the target was not directly in-bound to the threat. At an approach angle of 

90 degrees the threat radar lost its target track at 16.59 s and entered search mode, 

unable to re-acquire the target for the remainder of the engagement (which ended at 

40 s). The target track loss occurred when the target reached a horizontal range of 

10,584 m (a slant range of 11,530 m) from the threat. At 135 degrees the threat 

radar lost track at 7.39 s, entered search mode, and was unable to re-acquire the 

target. The target track loss occurred at a horizontal range of 11,538 m (a slant 

range of 12,411 m). At 180 degrees the target track was maintained for the duration 

of the engagement but the missile was unable to catch up to the target before 40 s 

had elapsed. The published acquisition and tracking ranges for the SA-8 are 30 km 

and 20 km, respectively, although the engagement range and altitude of the missile 

is much lower (estimated to be 10 to 12 km in altitude and up to 15 km in range). 

The low probability of kill was likely associated with the target moving away from 

the threat at high speed and at the upper altitude range of the threat’s engagement 

range. 

 The threat system achieved a 100 percent probability of kill against the 

rotary-wing aircraft for all approach angles simulated. This is hypothesized to be 

due to the fact that the target was travelling at relatively low speed at a low 

altitude, well within the engagement range of the threat system. 

 Although the simulated threat system is not particularly effective against a 

fast-moving, medium to high altitude target, the ability of the ECM technique 

generation system can still be evaluated. Techniques that either prevent missile 

launch or increase the miss distance may exist which improve upon the benefit of 

altitude and airspeed against the threat system. The initial engagement results 

indicate that only approach angles from 0 through 90 degrees require further study 

when using the fighter target platform; whereas approach angles from 0 through 

180 degrees should be explored with the rotary-wing target platform. 



5.3 Simulation Results 

 

 73 

5.3.2 Generated ECM Techniques 

Jammer range techniques generated by both algorithms converged to one of two 

forms: short-duration pulses, or long-duration pulses. Pulses with a total duration 

of less than 8 s (i.e. the total time inclusive of dwell times and the time required to 

move from the initial position to the final position using the technique acceleration 

rate) captured the TTR range and velocity gates (for a coherent threat) and forced 

the threat radar to continually cycle between its search, acquisition, and track 

modes, as shown in Figure 5.2. For approach angles between 0 and 45 degrees and 

135 and 180 degrees, pulses of this type prevented a track lock of sufficient time to 

permit a missile launch (i.e. no-launch condition) and received fitness scores of 0. 

However, the threshold of 8 s for pulse duration was not observed to be fixed; for 

ten unique engagement scenarios there were six individual techniques that had a 

total duration longer than 8 s (up to 14.01 s) and yet prevented a missile launch. 

 

 

Figure 5.2: Radar mode for no missile launch (typical) 

 Technique pulses with a total duration greater than 8 s were still able to 

capture the TTR range and velocity gates; however, since the threat radar 
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maintained a track (on the false target pulse), missile launch occurred. Such 

techniques resulted in the missile reaching its point of closest approach to the target 

while the TTR was in search mode, as shown in Figure 5.3. This implies that the 

command guidance control to the missile was providing incorrect tracking, which 

is a desirable result. In this case, techniques that were able to maximize the missile 

miss distance received fitness scores of 0.1 (for miss distances greater than 500 m). 

However, as with the short duration pulses above, the 8 s threshold was not fixed, 

since for the same ten unique engagement scenarios there were three individual 

techniques that had a total duration shorter than 8 s (as low as 4.1 s) that did not 

prevent a missile launch. 

 

 

Figure 5.3: Radar mode for large missile miss distance (typical) 

 The short-duration and long-duration pulse types described above consist of 

very different pulse parameters. In terms of the defined solution space and fitness 

function, techniques capable of preventing a missile launch exist near a global 

minimum (within the bounded solution space); whereas, techniques that maximize 

miss distance exist near a local minimum. These global and local minima are far 

apart within the solution space (e.g. short duration pulses vs. long duration pulses). 
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5.3.3 Target Approach Angle 

The approach angle between the target aircraft direction of flight and the threat 

system was varied from 0 to 180 degrees at 45 degree increments between 

optimization runs. Since the probability of kill for the fighter at 135 and 180 degree 

approach angles was zero, with associated large miss distances, engagements at 

those angles were not run for the fighter. 

 ECM techniques generated for both the fighter and rotary-wing aircraft 

indicate that prevention of a missile launch is possible at approach angles of 0 and 

45 degrees. In addition, rotary-wing techniques indicate that prevention of a missile 

launch is also possible at approach angles of 135 and 180 degrees. Neither 

algorithm found ECM techniques that prevent a missile launch at approach angles 

of 90 degrees. This is likely due to the geometry of the jammer antenna patterns, 

which are forward and aft facing with 60 degree beamwidths. At a 90 degree 

approach angle, very little jammer transmitted energy would be received at the 

threat radar. 

5.3.4 Algorithm Performance 

For the engagement scenarios and system specifications tested, the PSO was 

consistently better at converging to solutions with fitness scores of 0 

(i.e. converging to 0), requiring fewer iterations, on average, than the GA for the 

same scenarios. Of twelve unique engagement scenarios, ten yielded a no-launch 

result (i.e. a fitness score of 0) from either algorithm. The GA converged to 0 for 

seven of the scenarios, whereas the PSO converged to 0 for nine scenarios. Given 

that there are ten rounds per scenario, per algorithm, out of 100 optimization 

rounds, the PSO converged to 0 a total of 65 times; the GA converged to 0 only 36 

times. 
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The PSO algorithm methodology likely lends itself better to this problem 

type, when compared to the GA. Using the default PSO options, the PSO 

performed well when searching the solution space. The fact that every particle has 

its velocity and position updated based on both its own performance and the 

performance of the swarm means that every particle will improve over time; 

however, with particles moving about the solution space there is also a good 

chance that the global best position can change if a single particle nears a global 

minimum. 

The GA is limited to random changes in a portion of the population based on 

the previous performance of selected population members. If the population begins 

to converge to a local minimum there is less chance that convergence to the global 

minimum will be achieved. The mutation function is a GA option intended to 

prevent premature convergence to a local minimum and allow for a wider search of 

the solution space. The default function in MATLAB® is called mutationgaussian, 

which as the name implies, generates mutation from a Gaussian distribution with a 

standard deviation that is scaled by a recursive formula between generations [41]. 

The level of mutation provided by the default option is likely insufficient for this 

problem. 

One scenario in which the PSO converged to 0 in five of ten optimization 

rounds, but where the GA never converged to 0, was rerun for the GA with 

different mutation options. Five optimization rounds were run using the GA 

mutation function mutationuniform with a mutation rate of 0.05 (i.e. 5 percent). 

The GA converged to 0 in only one of the five rounds (requiring 4 generations). A 

higher mutation rate may improve the performance of the GA; however, the 

requirement to optimize the mutation rate is one of the weaknesses of the GA. 

Performance may improve as a function of mutation rate, but assessing such an 

improvement consumes time; this process is unnecessary with the PSO. 
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5.3.5 Algorithm Speed and Execution Time 

In terms of algorithm speed in completing each generation/iteration, the GA and 

PSO were equivalent. The mean time required per generation for the GA was only 

slightly shorter (around 1 to 2 min) than the mean time required per iteration for 

the PSO, as shown in Table 5.4. This is likely due to the standard time required to 

conduct a single engagement simulation via the TESS™ Simulink® model, which 

is significantly longer than any other individual process carried out by each 

optimization algorithm (such as initialization, population/swarm creation, and 

candidate solution updates at each generation/iteration). 

Table 5.4: Optimization algorithm mean execution time 

Scenario Type 
GA – Mean Time Per 

Generation (min) 

PSO – Mean Time 

Per Iteration (min) 

Fighter vs Coherent Threat 

(0, 45, 90 deg) 
3.401 3.791 

Fighter vs Non-Coherent Threat 

(0, 45 deg) 
12.33 13.48 

Manoeuvring Fighter vs Coherent Threat 

(0, 45 deg) 
13.68 15.55 

Rotary-Wing vs Coherent Threat 

(0, 45, 90, 135, 180 deg) 
14.11 15.20 

Note: 1. Following a software license extension for TESS™, issued by TTI, execution times 

inexplicably increased by a factor of about 4 to 5 times for both algorithms. 

 
The total execution time required to converge to a solution is a better 

measurement to perform a comparison. As stated in the previous section, the PSO 

converged to 0 more often and required fewer iterations to do so, on average, than 

the GA. Thus, the PSO consistently took less time to converge to 0, despite the fact 

that the mean time per iteration for the PSO was 1 to 2 min longer than the mean 

time per generation for the GA. For example, for the ten unique scenarios where a 

no-launch result was found (by either algorithm), the mean number of iterations 

required for the PSO to converge to 0 (in the 65 optimization rounds that did so), 
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was 3.9 iterations; whereas, the GA required a mean of 4.5 generations to converge 

to 0 (in the 36 optimization rounds that did so). The PSO reveals itself to be the 

faster of the two algorithms. Examples of the algorithms converging to 0 are shown 

in Figure 5.4 and Figure 5.5, for the GA and PSO, respectively. 

Where the algorithm stalled and converged to 0.1, and the number of stall 

generations/iterations (a user-defined optimization option) was equal, both 

algorithms took, on average, the same amount of time. Examples of the algorithms 

stalling at fitness scores of 0.1 are shown in Figure 5.6 and Figure 5.7, for the GA 

and PSO, respectively. The best fitness score in the current population/swarm is 

shown for each generation/iteration, along with the mean fitness of all the 

candidate solutions in the current population/swarm for each generation/iteration. 

  



5.3 Simulation Results 

 

 79 

 

Figure 5.4: GA convergence to 0 (typical) 

 

Figure 5.5: PS convergence to 0 (typical) 
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Figure 5.6: GA stall at 0.1 (typical) 

 

Figure 5.7: PS stall at 0.1 (typical) 
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5.3.6 Algorithm Convergence 

As previously stated, the PSO performed better in terms of the number of approach 

angles for which a no-launch condition was achieved (i.e. 9 for the PSO vs. 7 for 

the GA), the number of individual ECM techniques generated that achieved a 

no-launch condition (i.e. 65 for the PSO vs. 36 for the GA), and the number of 

iterations required to converge (thus the total execution time). However, both 

algorithms demonstrate interesting behaviour when the convergence process is 

analyzed more closely. 

 In general, when conducting an optimization with the PSO, the mean fitness 

score of the swarm would decrease quickly (within five to ten iterations) to a value 

near 0.1 (mean fitness scores between 0.11 and 0.15). The mean fitness score 

would then remain stable between 0.1 and 0.11 for the remaining iterations until 

either the best fitness score decreased further to 0 or the maximum number of stall 

iterations was reached. Figure 5.7 provides an example of this typical behaviour of 

the PSO algorithm. 

 Conversely, when conducting an optimization with the GA, the mean fitness 

score of the population would initially decrease (normally at a lower rate than the 

PSO) from its starting value but then continue to randomly change by as much as 

±0.11 between generations. This suggests that the process of mutation between 

generations continues the random search of the solution space while the algorithm 

is stalled near a local minimum. This is an example of how the GA might be better 

at exploring the solution space while at a local minimum; however, despite this 

quality, it performed worse than the PSO. It is hypothesized that a larger stall limit 

may provide a better chance for the GA to escape from the local minimum than the 

PSO has, but at the expense of a longer simulation time. Figure 5.6 provides an 

example of this typical behaviour of the GA; Figure 5.8 is an example of an 

extreme case of the mean fitness changing between generations. 

 



5.3 Simulation Results 

 

 82 

 

Figure 5.8: GA mean fitness changes between generations 

 As presented previously, five optimization rounds were run using the GA 

mutation function mutationuniform with a mutation rate of 0.05 (i.e. 5 percent). 

Use of this mutation function for the optimization process generated convergence 

to 0 for one round, where the default mutation function was unable to do so for the 

same scenario in ten rounds. Both optimizations had a maximum of 50 stall 

generations. The four rounds that stalled at a best fitness score of 0.1 showed less 

random oscillation in the mean fitness score between generations; however, these 

results are not sufficient to draw a conclusion regarding the change in mutation 

rate, since only one round converged to 0, which could be considered luck for the 

GA. An example of the GA optimization using the mutation function 

mutationuniform with a mutation rate of 0.05 is shown in Figure 5.9. 
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Figure 5.9: GA mean fitness changes between generations with uniform mutation rate 0.05 

 The convergence behaviour of both algorithms was markedly different for 

one engagement scenario when compared to all other scenarios. An engagement 

between the rotary-wing aircraft and the coherent threat radar system was 

simulated at an approach angle of 90 degrees, using the fighter velocity and 

acceleration rate upper and lower bounds. In ten optimization rounds for each 

algorithm, neither algorithm was able to converge to fitness scores of either 0.1 or 

0. 

The lowest fitness score achieved by the GA was 0.303, which corresponded 

to a missile miss distance of 93.35 m. That same round also took the greatest 

number of generations (25) to converge for this scenario. The nine other rounds 

took between 21 and 24 generations to converge to fitness scores between 0.321 

and 0.340. An example of the GA convergence behaviour is shown in Figure 5.10. 
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Figure 5.10: GA convergence for rotary-wing at 90 degrees (typical) 

The lowest fitness score achieved by the PSO was 0.279, which 

corresponded to a missile miss distance of 142.44 m. Surprisingly, the PSO 

required between 26 and 81 iterations to converge during the ten optimization 

rounds; the worst fitness score achieved was 0.334 in 26 iterations. For most of the 

optimization rounds, the mean fitness score remained relatively high (between 0.8 

and 1.0) for as many as 50 iterations and never came any closer than 0.25 above 

the best fitness score. Therefore, the majority of candidate solutions generated by 

the PSO were ineffective. An example of the PSO convergence behaviour is shown 

in Figure 5.11. 
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Figure 5.11: PSO convergence for rotary-wing at 90 degrees (typical) 

Although the GA performed better than the PSO for this scenario, this is 

likely an example of a scenario for which the jammer offers very limited 

protection. In this case, one algorithm is not favoured over the other. However, for 

the vast majority of engagement scenarios investigated, the PSO provided better 

convergence rates and more optimal results. 

5.3.7 Frequency Coordinated Techniques 

Against the threat system with a coherent TTR, ECM techniques, with two 

exceptions, were generated with frequency coordination included. Where 

techniques did not include frequency coordination, the techniques were normally 

unable to prevent a missile launch (i.e. fitness scores greater than or equal to 0.1). 

Two techniques were generated without frequency coordination that were able to 

prevent a missile launch (i.e. fitness scores of 0) (rotary-wing at 45 and 
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180 degrees approach angle with fighter optimization bounds; PSO algorithm). 

Techniques that included frequency coordination and were able to prevent missile 

launch were subsequently unable to achieve the same result if frequency 

coordination was disabled. This indicates that frequency coordination is an 

important parameter in the optimization process against this particular threat. 

 Against the non-coherent threat, frequency coordination had no influence 

over the technique fitness scores (i.e. techniques that were generated with 

frequency coordination could have that parameter disabled and still achieve the 

same fitness score). 

5.3.8 Jammer Pulse Width Effects 

By not bounding the search space, or using bounds larger than one would normally 

assign to a given problem, the GA and PSO are capable of finding novel solutions 

that may not be assumed to exist. An example that highlights this benefit follows. 

Initially, the lower bound on PW was set to 0.1 µs. During initial 

optimization rounds, using both the GA and PSO, generated techniques with PWs 

approaching the lower bound (0.1 µs) did not require frequency coordination to 

prevent missile launch (i.e. fitness score of 0). Such a narrow PW would not 

usually be considered as a potential solution, as the radar is tuned to expect echoes 

having the same PW as that which are emitted. Visual analysis of the radar range, 

azimuth, elevation, and Doppler traces for one such engagement, shown in Figure 

5.12, Figure 5.13, Figure 5.14, and Figure 5.15, respectively, show that although 

the threat radar attempted to track the false target pulse, the tracking position 

oscillated around the pulse position in range, azimuth, and Doppler. In elevation, 

the radar position oscillated around a gradually decreasing elevation, tracking 

neither the target nor the false target pulse. This resulted in the threat radar 

continually cycling between its search, acquisition, and track modes, as shown in 

Figure 5.16, preventing a track lock of sufficient time to permit a missile launch. 
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Figure 5.12: Radar range tracking for 0.1 µs jammer PW 

 

 

Figure 5.13: Radar azimuth tracking for 0.1 µs jammer PW 
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Figure 5.14: Radar elevation tracking for 0.1 µs jammer PW 

 

 

Figure 5.15: Radar Doppler frequency tracking for 0.1 µs jammer PW 
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Figure 5.16: Radar mode for 0.1 µs jammer PW 

This characteristic may be related to the design of the TESS™ Simulink® 

model threat system and the resonance frequency of one of its tracking loops. At 

such a small PW, the resulting bandwidth may have overwhelmed the modelled 

receiver tracking circuit, causing the oscillation. This result is an example of 

stochastic optimization techniques finding unexpected solutions, since such 

effective jamming would not be anticipated from use of such a short PW. Since this 

was likely a limitation of the model, the PW lower bound was set to 0.5 µs for all 

subsequent simulations. 
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5.3.9 Jammer Pulse Power Reduction 

Within the defined bounds, where the pulse power reduction ranged from 0 dB 

(i.e. full jammer transmit power) to 3 dB (i.e. half the jammer transmit power), 

there was no correlation between the generated value and effectiveness of the 

associated technique. In a number of cases, techniques with similar values for all 

other parameters had pulse power reduction values at the extremes of the defined 

range, with equal fitness scores. Techniques capable of preventing missile launch 

were re-simulated under the same conditions with only the pulse power reduction 

value varied; technique performance was unchanged. 

 With the target beginning at 5 nautical miles and flying directly toward the 

threat, the unreduced jammer power in the radar tracking cell remained in the range 

of –70 to –80 dBW; the power of the target return ranged from –120 to –100 dBW, 

as shown in Figure 5.17. Burn-through occurred between 25.8 and 26.2 s into the 

engagement, when the target was between 1.16 and 1.29 km (horizontal range) 

from the threat. Burn-through occurred at such a close range to the threat that the 

TTR was unable to reacquire and track the target. 

 

Figure 5.17: Radar tracking cell power levels for an unreduced jammer pulse 
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5.3.10 Target Manoeuvring 

Due to time limitations, only two engagement scenarios with a manoeuvring target 

aircraft were simulated against a threat system with a coherent TTR. The fighter 

aircraft conducted a 3 g level left turn for 10 s, starting at 1 s after the engagement 

start. The target aircraft flight profiles are shown in Figure 5.18 and Figure 5.19 for 

initial approach angles of 0 and 45 degrees, respectively. 

 For both scenarios, both algorithms generated ECM techniques capable of 

preventing a missile launch. At 0 degrees, the PSO converged to 0 for all 10 

optimization rounds, whereas the GA only converged to 0 for two rounds. At 45 

degrees, the PSO converged to 0 for all but one round, whereas the GA converged 

to 0 in seven out of ten rounds. As with previous scenarios, the PSO converged 

faster, requiring fewer iterations, on average, than the GA. Both algorithms are 

therefore capable of generating ECM techniques for manoeuvring target profiles. 

Further research into various manoeuvring profiles combined with jamming 

techniques is recommended.  
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Figure 5.18: Fighter manoeuvre profile, 0 degree initial approach, 3 g left turn 
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Figure 5.19: Fighter manoeuvre profile, 45 degree initial approach, 3 g left turn 

5.4 Summary 

This chapter discussed the optimization setup, including the optimization options 

and solution space bounds. The selection of specific values and their effect on the 

optimization process was highlighted. Commonalities between each unique 

engagement scenario, including the simulation conditions and their role in scoping 

the overall execution, was also examined. 

 The simulation results were presented, beginning with the engagement 

scenario outcomes for a non-jamming target aircraft. Those simulations indicated 

that the threat system was ineffective against a fighter aircraft at typical speeds and 
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altitudes, when the approach angle between the target and threat was between 90 

and 180 degrees. The results of early engagement scenarios helped to limit the 

number of scenarios required for the comparison and contributed to the selection of 

solution space bounds and optimization options. 

 It was shown that jammer range techniques generated by both algorithms 

took on one of two forms: those that prevented a missile launch or those that 

maximized the missile miss distance. The way in which the fitness function was 

defined for this thesis meant that the optimization algorithms were judged based on 

their ability to find a no-launch solution (i.e. a single objective). The distance 

between the two solution types, within the solution space, tested each algorithm’s 

ability to explore a wide range of the solution space in a minimal amount of time. 

 The effect of each ECM technique parameter on the overall performance of 

the technique was also analyzed. The nine parameters that defined a combined 

range and frequency deception jammer program in TESS™ were shown to have 

varying levels of importance when implemented against the defined threat system. 

Initial and final positions were of less importance as long as the initial and final 

dwell times, velocity, and acceleration were of appropriate values to generate a 

short, fast pulse. Frequency coordination was crucial against coherent threat 

systems, as expected. Cover pulse attenuation was not a significant factor in 

technique performance unless it was of sufficient magnitude to permit 

burn-through while the TTR was still tracking the target aircraft or false target. The 

jammer PW, if set relatively close to the TTR PW, played no discernable roll in 

technique performance; however, as the PW approached 0.1 µs, an oscillation in 

the target tracking system of the TTR appeared, resulting in the threat radar 

continually cycling between its search, acquisition, and track modes. Although this 

method was effective in jamming the threat radar, it remains to be determined 

whether this was a characteristic of the TESS™ Simulink® model or whether an 

actual system would be similarly affected. 
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 Finally, the flight dynamics of the target aircraft were found to have a 

significant effect on the ECM techniques generated and the time required to carry 

out the optimization. The distance from the threat system, as well as the approach 

angle relative to the threat, determined whether sufficient jammer power was 

received at the TTR so as to have an effect on the threat radar receiver and target 

tracking system. Level flight manoeuvring (i.e. level, constant-speed turns) did not 

reduce the ability of either algorithm to converge to a solution; ECM techniques 

that prevented missile launch were found for engagement scenarios with 

manoeuvring aircraft. Further investigation into more dynamic target manoeuvring 

is recommended. 
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6 Conclusion 

6.1 Summary 

As radar systems continue to evolve and adapt, so too must ECM techniques to 

remain effective against modern threats. Stochastic global optimization has 

provided an alternative to direct-search methods when searching for solutions to 

complex problems. However, evolutionary heuristics such as the GA and PSO have 

not previously been used to generate ECM range and frequency deception jamming 

techniques. 

 Through the use of test functions, the GA and PSO algorithms were 

compared for overall speed, accuracy (i.e. convergence to known solutions), and 

simplicity of use. The PSO was shown to be more efficient, in that it converged to 

solutions closer to the known function values, and in less time than the GA. The 

PSO also had fewer options to control the optimization process, making it more 

simplistic and easier to use. 

 The software integration of the MATLAB® Global Optimization Toolbox™ 

with the proprietary TESS™ product was not a trivial task, as TESS™ had not 

been used in this context before. Fortunately, the fact that TESS™ is based on 

MATLAB®/Simulink® allowed for a successful integration, which had not 

previously been accomplished. Without the availability of guidance or experience 

from previous work, a fitness function capable of determining the effectiveness of 

a candidate solution ECM technique was developed. The fitness function, when 

combined with the simulation and scoring system and the TESS™ Simulink® 
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model, generated a fitness score based on the ability of the ECM technique to 

either prevent a missile launch or maximize the missile miss distance. Successful 

parallelization of the simulation and scoring functions allowed ECM technique 

generation to be performed in hours instead of days. The increase in speed 

permitted an increase in the population/swarm size and the number of individual 

rounds for each optimization algorithm, as well as the use of multiple engagement 

geometries. 

 Optimization options and solution space bounds were chosen to maximize 

convergence speed while maintaining a large solution space from which to draw 

effective ECM techniques. The engagement scenarios were designed to simulate a 

CG SAM threat system with a pulsed TTR and either fighter or rotary-wing aircraft 

using a self-protection jammer. Only ECM deception jamming techniques that 

provide false range and velocity information were generated. 

6.2 Conclusions 

Both the GA and PSO were successful in finding effective ECM techniques for the 

simulated jammer to use against the threat radar system. The ECM range and 

frequency deception jamming techniques generated by both the GA and PSO 

algorithms took on one of two forms: those that prevented a missile launch or those 

that maximized the missile miss distance. For this thesis, the fitness function was 

defined such that the optimization algorithms were judged based on their ability to 

find a no-launch solution, with less-favourable fitness scores based on the missile 

miss distance produced by the ECM technique. The distance between the two 

solution types, within the solution space, required each algorithm to explore a wide 

range of the solution space in a minimal amount of time. Although both algorithms 

were successful in finding ECM techniques capable of preventing a missile launch, 

the tendency for both algorithms to stall in local minima resulted in the algorithms 
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failing to find the (bounded) global minimum on a number of optimization rounds 

where the global minimum existed in the bounded solution space. 

 The PSO demonstrated superior performance both in terms of the number of 

ECM techniques that reached the defined global optimum (65 for the PSO vs. 36 

for the GA), and the total time to converge to those solutions. In most cases, the 

PSO converged faster to the defined optimal solution, doing so in an average of 

3.88 iterations, as compared to 4.5 generations for the GA, or stabilized much more 

quickly to a solution with a large missile miss distance. However, the GA was still 

capable of generating effective ECM techniques. The GA continues to explore the 

solution space in a stalled state depending on the mutation options selected; 

however, no discernable improvement in performance during a stalled state was 

shown in this work. The ECM technique generation system developed for this 

thesis was most effective when using the PSO algorithm. 

6.3 Contributions 

The most important contributions of this thesis are: 

1. The design and implementation of an automated system, bridging the 

proprietary TESS™ Simulink® model with the MATLAB® Global 

Optimization Toolbox™, capable of generating effective ECM range and 

frequency deception jamming techniques through stochastic global 

optimization. 

2. Successful parallelization of the above process via the MATLAB® 

Parallel Computing Toolbox™, permitting a reduction in computation 

time by 5.72 times for this specific problem. 

3. Definition of a single-objective fitness function and implementation of a 

scoring system for determining ECM technique effectiveness against CG 

SAM threat radar systems. 
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4. Scenario-based comparison of the GA and PSO global optimization 

algorithms when generating ECM range and frequency deception 

jamming techniques. 

5. Validation of the GA and PSO algorithms for the generation of effective 

ECM techniques, and identification of suitable optimization parameters 

for algorithm performance. 

6. Identification of the most important ECM technique parameters when 

generating techniques through stochastic global optimization. 

The successful integration of the proprietary TESS™ Simulink® model with 

the MATLAB® Global Optimization Toolbox™ and Parallel Computing 

Toolbox™ was shown to be effective in automatically generating ECM techniques 

through stochastic global optimization. The resulting system may be useful in 

discovering new or previously unrealized ECM techniques, in less time than 

conventional means. 

6.4 Future Work  

Through the completion of this thesis, three areas of study requiring future work 

were identified. First, the definition of the fitness function used to score 

engagement scenario results and to determine the effectiveness of a given 

technique should be further explored. Other simulation outputs such as the angular, 

range, and Doppler error of the TTR may provide further valuable information for 

the scoring process. 

 Second, the performance of the GA may be significantly improved through 

better selection of optimization options. For example, changes to the mutation 

function and mutation rate may increase the probability of the GA converging to 

the optimal solution faster, if the defined global optimum exists. Although the PSO 

was shown to be faster and more simplistic in its use, the GA provides additional 

optimization options not available from the PSO. 
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 Finally, use of the ECM technique generation system developed for this 

thesis should be demonstrated using the specifications and system parameters of 

actual threat systems, target aircraft, and self-protection jammers. Such simulations 

would be of a classified nature, but may demonstrate the suitability of the 

developed system for application to the processes of technique generation, 

validation, and DECM system programming. 
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A MATLAB® Global Optimization Toolbox™ 

Algorithm Implementations 

This appendix provides a summary of the GA and PSO algorithm implementations 

in MATLAB®, with a focus on the input variables, optimization options, and 

output arguments as they are used in this thesis. 

A.1 Genetic Algorithm 

The MATLAB® Global Optimization Toolbox™ [10] implements the GA as 

ga.m, which finds the local constrained or unconstrained minimum in a defined 

fitness (objective) function [18]. A 1 × 𝑁 vector argument is accepted as the input 

to the fitness function. The variable inputs for optimization are given in Table A.1 

and are listed in the order in which they are included when calling the GA function. 

For this thesis, the fitness function performs both the processes of simulation of the 

TESS™ Simulink® model and scoring of the results to generate a fitness score for 

the candidate solution. This thesis did not use constraints, thus the input variables 

to the GA function were the fitness function, the number of variables, lower and 

upper bounds, and the options. 
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Table A.1: GA input variables [18] 

Variable Definition 

fun Fitness (objective) function to evaluate 

nvars Number of design variables in the fitness function to evaluate (dimension) 

A Matrix for inequality constraints (𝐴 · 𝑥 ≤ 𝑏) 

b Vector for inequality constraints (𝐴 · 𝑥 ≤ 𝑏) 

Aeq Matrix for equality constraints (𝐴𝑒𝑞 · 𝑥 = 𝑏𝑒𝑞) 

beq Vector for equality constraints (𝐴𝑒𝑞 · 𝑥 = 𝑏𝑒𝑞) 

lb Lower bounds on design variables 

ub Upper bounds on design variables 

nonlcon Nonlinear constraint function 

Intcon Integer constraints (Note: When there are integer constraints, ga does not 

accept linear or nonlinear equality constraints, only inequality constraints) 

options Options structure (set using optimoptions) 

 
The options structure contains the user-customizable parameters that define 

the operation of the GA. If required, select options are modified in the main 

program script prior to calling the GA function. Table A.2 provides a summary of 

the options available for the GA, their default values, and the values for this thesis 

(where modified from the default values). The reasoning for each option value 

modification is described in Chapter 5. 
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Table A.2: GA optimization options [18] 

Option Description Default / Modified Value 

ConstraintTolerance Determines the feasibility 

with respect to nonlinear 

constraints. 

Positive scalar | {1e-3} 

CreationFcn Function that creates the 

initial population. 

{‘gacreationuniform’} 

CrossoverFcn Function that the algorithm 

uses to create crossover 

children. 

{‘crossoverscattered’} 

CrossoverFraction The fraction of the 

population at the next 

generation, not including 

elite children, which the 

crossover function creates. 

Positive scalar | {0.8} 

Display Level of display returned to 

the command line. 

{‘final’} 

EliteCount Number of individuals in 

the current generation that 

are guaranteed to survive to 

the next generation. 

Positive integer | 

{ceil(0.05* 

PopulationSize)} 

FitnessLimit If the fitness function attains 

the value of FitnessLimit, 

the algorithm halts. 

Scalar | {-Inf} 

 

Modified: {0} 

FitnessScalingFcn Function that scales the 

values of the fitness 

function. 

{‘fitscalingrank’} 

FunctionTolerance The algorithm stops if the 

average relative change in 

the best fitness function 

value over 

MaxStallGenerations 

generations is less than or 

equal to FunctionTolerance. 

Positive scalar | {1e-6} 

 

Modified: {1e-3} 

HybridFcn Function that continues the 

optimization after ga 

terminates. 

{[]} 
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Option Description Default / Modified Value 

InitialPopulationMatrix Initial population used to 

seed the genetic algorithm. 

Has up to PopulationSize 

rows and N columns, 

where N is the number of 

variables. 

Matrix | {[]} 

InitialPopulationRange Matrix or vector specifying 

the range of the individuals 

in the initial population. 

Applies to 
gacreationuniform 

creation function. ga shifts 

and scales the default initial 

range to match any finite 

bounds. 

Matrix or vector |  

{[-10;10]} for unbounded 

components,  

{[-1e4 + 1; 1e4 + 1]} for 

unbounded components of 

integer-constrained 

problems, {[lb;ub]} for 

bounded components, 

with the default range 

modified to match one-

sided bounds. 

InitialScoresMatrix Initial scores used to 

determine fitness. Has up to 

PopulationSize rows. 

Column vector | {[]} 

 

MaxGenerations Maximum number of 

iterations before the 

algorithm halts. 

Positive integer | 

{100*nvars} 

 

Modified: {100} 

MaxStallGenerations The algorithm stops if the 

average relative change in 

the best fitness function 

value over 

MaxStallGenerations 

generations is less than or 

equal to FunctionTolerance. 

Positive integer | {50} 

 

Modified: {20} 

MaxStallTime The algorithm stops if there 

is no improvement in the 

objective function for 

MaxStallTime seconds, as 

measured by tic and toc. 

Positive scalar | {Inf} 

MaxTime The algorithm stops after 

running for MaxTime 

seconds, as measured 

by tic and toc. This limit 

is enforced after each 

iteration, so ga can exceed 

the limit when an iteration 

takes substantial time. 

Positive scalar | {Inf} 
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Option Description Default / Modified Value 

MutationFcn Function that produces 

mutation children. 

{‘mutationgaussian’} 

 

Modified: 

{‘mutationuniform’, 

rate: 0.05} 

NonlinearConstraintAlgorithm Nonlinear constraint 

algorithm. 

{‘auglag’} 

OutputFcn Functions that ga calls at 

each iteration. 

Function handle or cell 

array of function handles | 

{[]} 

 

Modified to use function 

handle of user-defined 

output function 

PlotFcn Function that plots data 

computed by the algorithm. 

Function handle or cell 

array of function handles | 

{[]} 

PopulationSize Size of the population. Positive integer | 

{50} when 

nvars <= 5, {200} 

otherwise 

 

Modified: {48} 

PopulationType Data type of the population. {‘doubleVector’} 

SelectionFcn Function that selects parents 

of crossover and mutation 

children. 

{‘selectionstochunif’} 

UseParallel Compute fitness and 

nonlinear constraint 

functions in parallel when 

true. 

Boolean | {false} 

 

Modified: {true} 

UseVectorized Compute functions in 

vectorized fashion when 

true. 

Boolean | {false} 
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The output arguments generated by the GA, all of which were used for this 

thesis to record algorithm performance and results, are given in Table A.3 and are 

listed in the order in which they can be requested. 

Table A.3: GA output arguments [18] 

Variable Definition 

x Solution, returned as a real vector. x is the best point that ga located during 

its iterations. 

fval Objective function value at the solution, returned as a real number. 

exitflag Reason that ga stopped, returned as an integer. 

output Information about the optimization process, returned as a structure. 

population Final population, returned as a 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 × 𝑛𝑣𝑎𝑟𝑠 matrix. The rows 

of population are the individuals. 

scores Final scores, returned as a column vector. 

 
The first two and last two output arguments provide the results of the 

optimization problem; the best solution and score values were printed to the 

command window and stored for later analysis. The population and scores were 

saved using a custom output function at the end of each generation. The exitflag 

variable provides a scalar integer indicating the reason for algorithm termination. 

The exitflag values and their descriptions are summarized in Table A.4. 



A.1 Genetic Algorithm 

 

 111 

Table A.4: GA exitflag descriptions [18] 

Exit 

Flag 

Meaning 

1 Average cumulative change in value of the fitness function over 

MaxStallGenerations generations is less than FunctionTolerance, and the 

constraint violation is less than ConstraintTolerance. 

3 Value of the fitness function did not change in MaxStallGenerations generations 

and the constraint violation is less than ConstraintTolerance. 

4 Magnitude of step smaller than machine precision and the constraint violation is 

less than ConstraintTolerance. 

5 Minimum fitness limit FitnessLimit reached and the constraint violation is less 

than ConstraintTolerance. 

0 Maximum number of generations MaxGenerations exceeded. 

–1 Optimization terminated by an output function or plot function. 

–2 No feasible point found. 

–4 Stall time limit MaxStallTime exceeded. 

–5 Time limit MaxTime exceeded. 

 
For this thesis, the best fitness score attainable by a candidate solution was 0 

(i.e. the FitnessLimit). Thus, the ideal reason for algorithm termination was if the 

minimum fitness limit was reached, indicated by exit flag 5 for the GA. Only exit 

flags 1 and 5 were encountered during this thesis, indicating that the algorithm 

either stalled at a local minimum (exit flag 1) or converged to the global minimum 

(exit flag 5). 

The output variable provides performance specifications as a result of each 

execution of the algorithm. The parameters from the output structure are described 

in Table A.5. The rngstate variable permits re-creation of the results by using the 

same seed variables when executing the optimization algorithm. This was useful 

when validating the parallelized implementation with the serial program to ensure 

identical results were generated. The number of generations and function 

evaluations was useful when comparing the GA to the PSO in terms of 

optimization efficiency and execution time. 
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Table A.5: GA output structure descriptions [18] 

Variable Definition 

problemtype Problem type, one of: unconstrained, boundconstraints, 

linearconstraints, nonlinearconstr, or integerconstraints. 

rngstate State of the random number generator, just before the algorithm started. 

generations Number of generations computed. 

funccount Number of evaluations of the fitness function. 

message Reason the algorithm terminated. 

maxconstraint Maximum constraint violation, if any. 
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A.2 Particle Swarm Optimization 

The MATLAB® Global Optimization Toolbox™ [10] implements the PSO as 

particleswarm.m, which finds the local unconstrained minimum in a defined 

fitness (objective) function [19]. A 1 × 𝑁 vector argument is accepted as the input 

to the fitness function. The variable inputs for optimization are given in Table A.6 

and are listed in the order in which they are included when calling the PSO 

function. Unlike the GA implementation, the PSO cannot accept constraints as 

variable inputs. The fitness function, number of variables, and bounds were 

identical for both the GA and PSO. 

Table A.6: PSO input variables [19] 

Variable Definition 

fun Fitness (objective) function to evaluate 

nvars Number of design variables in the fitness function to evaluate (dimension) 

lb Lower bounds on design variables 

ub Upper bounds on design variables 

options Options structure (set using optimoptions) 

 
As with the GA, the PSO options structure contains user-customizable 

parameters that define the algorithm’s operation. If required, select options are 

modified in the main program script prior to calling the PSO function. Table A.7 

provides a summary of the options available for the PSO, their default values, and 

the values for this thesis (where modified from the default values). The reasoning 

for each option value modification is described in Chapter 5. 
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Table A.7: PSO optimization options [19] 

Option Description Default / Modified Value 

CreationFcn Function that creates the initial 

swarm. 

{‘pswcreationuniform’} 

Display Level of display returned to the 

command line. 

{‘final’} 

FunctionTolerance Iterations end when the relative 

change in best fitness function 

value over the last 

MaxStallIterations iterations is 

less than FunctionTolerance. 

Positive scalar | {1e-6} 

 

Modified: {1e-3} 

HybridFcn Function that continues the 

optimization after 

particleswarm terminates. 

{[]} 

InertiaRange Two-element real vector with 

same sign values in increasing 

order. Gives the lower and upper 

bound of the adaptive inertia. To 

obtain a constant (non-adaptive) 

inertia, set both elements of 

InertiaRange to the same value. 

{[0.1,1.1]} 

InitialSwarmMatrix Initial population or partial 

population of particles. M-by-

nvars matrix, where each row 

represents one particle. If 

M < SwarmSize, then 

particleswarm creates more 

particles so that the total number 

is SwarmSize. If M > SwarmSize, 

then particleswarm uses the 

first SwarmSize rows. 

Matrix | {[]} 

InitialSwarmSpan Initial range of particle positions 

that pswcreationuniform 

creates. Can be a positive scalar 

or a vector with nvars elements. 

The range for any particle 

component is 

-InitialSwarmSpan/2, 

InitialSwarmSpan/2, shifted and 

scaled if necessary to match any 

bounds. InitialSwarmSpan also 

affects the range of initial particle 

velocities. 

Positive scalar or vector | 

{2000} 
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Option Description Default / Modified Value 

MaxIterations Maximum number of iterations 

before the algorithm halts. 

Positive integer | 

{200*nvars} 

 

Modified: {100} 

MaxStallIterations The algorithm stops if the 

average relative change in the 

best fitness function value over 

MaxStallIterations iterations is 

less than or equal to 

FunctionTolerance. 

Positive integer | {20} 

MaxStallTime The algorithm stops if there is no 

improvement in the objective 

function for MaxStallTime 

seconds, as measured by tic and 

toc. 

Positive scalar | {Inf} 

MaxTime The algorithm stops after running 

for MaxTime seconds, as 

measured by tic and toc. 

Positive scalar | {Inf} 

MinNeighborsFraction Minimum adaptive neighborhood 

size, a scalar from 0 to 1. 

Positive scalar | {0.25} 

ObjectiveLimit If the fitness function attains the 

value of ObjectiveLimit, the 

algorithm halts. 

Scalar | {-Inf} 

 

Modified: {0} 

OutputFcn Function handle or cell array of 

function handles. Output 

functions can read iterative data, 

and stop the solver. 

{[]} 

 

Modified to use function 

handle of user-defined 

output function 

PlotFcn Function name, function handle, 

or cell array of function handles. 

Plot functions can read iterative 

data, plot each iteration, and stop 

the solver. 

{[]} 

SelfAdjustmentWeight Weighting of each particle’s best 

position when adjusting velocity. 

Finite scalar | {1.49} 

SocialAdjustmentWeight Weighting of the neighborhood’s 

best position when adjusting 

velocity. 

Finite scalar | {1.49} 

SwarmSize Number of particles in the 

swarm. 

Positive integer greater than 

1 | {min(100,10*nvars)} 

 

Modified: {48} 



A.2 Particle Swarm Optimization 

 

 116 

Option Description Default / Modified Value 

UseParallel Compute fitness function in 

parallel when true. 

Boolean | {false} 

 

Modified: {true} 

UseVectorized Compute fitness function in 

vectorized fashion when true. 

Boolean | {false} 

 
The output arguments generated by the PSO are given in Table A.8 and are 

listed in the order in which they can be requested. 

Table A.8: PSO output arguments [19] 

Variable Definition 

x Solution, returned as a real vector that minimizes the objective function 

subject to any bound constraints. 

fval Objective value, returned as the real scalar fun(x). 

exitflag Algorithm stopping condition, returned as an integer identifying the reason 

the algorithm stopped. 

output Solution process summary, returned as a structure containing information 

about the optimization process. 

 
Unlike the GA, which returns the values of the entire population as well as 

each member’s fitness, the PSO only returns the position and fitness of the global 

best particle in the swarm at function exit. A custom output function was used to 

save all the swarm positions and fitness scores at the end of each iteration. Similar 

to the GA, an exitflag variable is provided, as described in Table A.9.  
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Table A.9: PSO exitflag descriptions [19] 

Exit Flag Meaning 

1 Relative change in the objective value over the last MaxStallIterations 

iterations is less than FunctionTolerance. 

0 Number of iterations exceeded MaxIterations. 

–1 Iterations stopped by output function or plot function. 

–2 Bounds are inconsistent: for some 𝑖, 𝑙𝑏(𝑖)  >  𝑢𝑏(𝑖). 

–3 Best objective function value is at or below ObjectiveLimit. 

–4 Best objective function value did not change within MaxStallTime seconds. 

–5 Run time exceeded MaxTime seconds. 

 
As with the GA, the best fitness score attainable by a candidate solution was 

0 (i.e. the ObjectiveLimit). Thus, the ideal reason for algorithm termination was if 

the minimum fitness limit was reached, indicated by exit flag –3 for the PSO. Only 

exit flags 1 and –3 were encountered during this thesis, indicating that the 

algorithm either stalled at a local minimum (exit flag 1) or converged to the global 

minimum (exit flag –3). 

Finally, the output variable is included to provide information about the 

optimization process. The parameters from the output structure are described in 

Table A.10. As with the GA, the rngstate variable permits re-creation of the results 

by using the same seed variables when executing the optimization algorithm. This 

was useful when validating the parallelized implementation with the serial program 

to ensure identical results were generated. The number of iterations and function 

evaluations was useful when comparing the PSO to the GA in terms of 

optimization efficiency and execution time. 
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Table A.10: PSO output structure descriptions [19] 

Variable Definition 

iterations Number of solver iterations. 

funccount Number of objective function evaluations. 

message Reason the algorithm stopped. 

rngstate State of the default random number generator just before the algorithm 

started. 
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B ECM Technique Generation Results 

This appendix presents the results of each optimization round for select 

engagement scenarios conducted during this thesis, in table form. Each 

engagement scenario is briefly described and variables unique to the scenario are 

stated. The results from each optimization round are provided in separate tables for 

the GA and PSO. An analysis of the simulation results is provided in Chapter 5. 
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B.1 Fighter vs. Non-Coherent TTR 

The fighter airborne target was flown at an approach angle of 0 degrees against the 

threat system with a non-coherent TTR. The optimization bounds were those listed 

in Table 5.1. The results of the optimization are in Table B.1 and Table B.2 for the 

GA and PSO, respectively. 

Table B.1: GA optimization results – fighter vs. non-coherent TTR, 0 degrees 

Round 1 2 3 4 5 6 7 8 9 10 

Exit Flag1 1 1 1 1 1 1 1 1 1 1 

Time [min] 299.16 270.17 270.90 270.90 270.88 270.33 270.69 269.76 270.31 270.95 

Generations 21 21 21 21 21 21 21 21 21 21 

Mean 

Time Per 

Generation 

[min] 

13.60 12.28 12.31 12.31 12.31 12.29 12.30 12.26 12.29 12.32 

Function 

Evaluations 
1056 1056 1056 1056 1056 1056 1056 1056 1056 1056 

Fitness 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

𝑹𝟎 [μs] 1.80 -4.42 -0.41 2.54 -2.72 -3.60 0.35 -0.45 3.87 1.98 

𝑹𝒎𝒂𝒙 [μs] -14.64 -14.48 -14.47 -14.68 -14.86 -14.86 -14.79 -13.84 -13.39 -14.95 

𝑻𝒊 [s] 0.42 3.09 2.30 0.48 2.85 2.15 0.43 1.41 1.69 0.12 

𝑻𝒇 [s] 4.51 0.18 0.65 4.82 3.91 1.13 2.82 3.41 2.55 3.14 

𝒗 [m/s] 405 380 340 425 540 380 445 275 445 595 

𝒂 [m/s2] 55 30 50 35 35 35 50 40 45 30 

Frequency 

Coord 
1 0 0 0 0 1 0 0 0 1 

Power 

Reduction 

[–dB] 

2.21 2.01 2.04 1.90 2.34 1.53 2.90 0.37 0.18 2.79 

𝑷𝑾 [μs] 1.50 1.90 1.10 0.60 1.20 1.40 1.10 1.40 0.60 2.00 

Note: 1. GA exit flag definitions may be found in Appendix A, Table A.4. 
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Table B.2: PSO optimization results – fighter vs. non-coherent TTR, 0 degrees 

Round 1 2 3 4 5 6 7 8 9 10 

Exit Flag1 1 1 1 1 1 1 1 1 1 1 

Time [min] 270.09 269.82 269.91 270.23 270.09 270.34 269.98 269.51 270.38 270.41 

Iterations 21 21 21 21 21 21 21 21 21 21 

Mean 

Time Per 

Iteration 

[min] 

12.28 12.26 12.27 12.28 12.28 12.29 12.27 12.25 12.29 12.29 

Function 

Evaluations 
1056 1056 1056 1056 1056 1056 1056 1056 1056 1056 

Fitness 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

𝑹𝟎 [μs] -5.00 3.12 -5.00 2.73 -5.00 -5.00 0.47 -1.73 -4.86 4.85 

𝑹𝒎𝒂𝒙 [μs] -15.00 -14.40 -13.42 -15.00 -15.00 -15.00 -15.00 -14.88 -15.00 -15.00 

𝑻𝒊 [s] 2.75 0.14 1.30 1.67 1.38 1.85 1.49 4.73 0.00 1.47 

𝑻𝒇 [s] 4.56 4.09 2.68 4.90 4.37 5.00 5.00 4.93 3.32 0.00 

𝒗 [m/s] 600 270 465 600 345 600 360 600 365 365 

𝒂 [m/s2] 50 50 35 40 25 25 40 60 30 60 

Frequency 

Coord 
1 0 1 0 1 1 0 1 1 1 

Power 

Reduction 

[–dB] 

0.34 0.97 0.00 0.00 3.00 2.32 0.00 2.70 1.49 2.47 

𝑷𝑾 [μs] 1.40 0.80 0.80 1.20 1.00 0.80 1.20 0.50 0.70 1.00 

Note: 1. PSO exit flag definitions may be found in Appendix A, Table A.9. 
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B.2 Fighter vs. Coherent TTR 

The fighter airborne target was flown at an approach angle of 45 degrees against 

the threat system with a coherent TTR. The optimization bounds were those listed 

in Table 5.1. The PW was held constant at 0.5 μs. Five additional optimization 

rounds of the GA were completed using the mutation function mutationuniform 

with a mutation rate of 0.05. The results of the optimization are in Table B.3 and 

Table B.4 for the GA, and Table B.5 for the PSO, respectively. 

Table B.3: GA optimization results – fighter vs. coherent TTR, 45 degrees 

Round 1 2 3 4 5 6 7 8 9 10 

Exit Flag 1 1 1 1 1 1 1 1 1 1 

Time [min] 148.99 151.03 149.16 152.51 149.12 153.65 154.61 150.95 150.78 151.05 

Generations 51 51 51 51 51 51 51 51 51 51 

Mean 

Time Per 

Generation 

[min] 

2.87 2.90 2.87 2.93 2.87 2.95 2.97 2.90 2.90 2.90 

Function 

Evaluations 
2496 2496 2496 2496 2496 2496 2496 2496 2496 2496 

Fitness 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

𝑹𝟎 [μs] -3.42 4.77 -2.25 -1.97 2.31 -0.82 -3.59 -3.6 0.95 2.71 

𝑹𝒎𝒂𝒙 [μs] -4.79 -9.09 -9.81 -14.73 -13.21 7.23 -14.65 -6.11 -9.63 -14.55 

𝑻𝒊 [s] 0.83 1.42 0.85 2.34 3.35 1.37 0.49 0.49 1.1 0.61 

𝑻𝒇 [s] 0.25 0.13 0.41 4.8 0.94 4.83 1.09 2.72 1.31 4.29 

𝒗 [m/s] 525 500 450 500 385 235 245 410 505 335 

𝒂 [m/s2] 45 40 50 15 45 50 25 40 50 60 

Frequency 

Coord 
1 1 1 1 1 1 1 1 1 1 

Power 

Reduction 

[–dB] 

1.02 2.76 1.83 2.55 0.86 1.39 1.75 1.07 1.06 1.58 
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Table B.4: GA optimization results, mutationuniform with mutation rate 0.05 

Round 1 2 3 4 5 

Exit Flag 1 5 1 1 1 

Time [min] 149.40 19.07 151.91 155.33 148.86 

Generations 51 4 51 51 51 

Mean 

Time Per 

Generation 

[min] 

2.87 3.81 2.92 2.99 2.86 

Function 

Evaluations 
2496 240 2496 2496 2496 

Fitness 0.1 0 0.1 0.1 0.1 

𝑹𝟎 [μs] -0.63 2.44 0.23 3.33 1.8 

𝑹𝒎𝒂𝒙 [μs] -12.74 4.03 -10.05 -12.83 -7.38 

𝑻𝒊 [s] 2.89 0.4 3.13 2.94 4.22 

𝑻𝒇 [s] 1.35 0.09 3.75 4.96 4.06 

𝒗 [m/s] 460 305 535 390 515 

𝒂 [m/s2] 15 60 55 60 25 

Frequency 

Coord 
1 1 1 0 1 

Power 

Reduction 

[–dB] 

1.66 0.79 0.97 1.74 1.72 
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Table B.5: PSO optimization results – fighter vs. coherent TTR, 45 degrees 

Round 1 2 3 4 5 6 7 8 9 10 

Exit Flag 1 1 -3 1 -3 -3 1 1 -3 -3 

Time [min] 67.44 66.33 12.07 67.18 11.25 25.35 67.19 67.21 31.13 37.18 

Iterations 21 21 1 21 1 6 21 21 8 10 

Mean 

Time Per 

Iteration 

[min] 

3.07 3.02 6.04 3.05 5.62 3.62 3.05 3.06 3.46 3.38 

Function 

Evaluations 
1056 1056 96 1056 96 336 1056 1056 432 528 

Fitness 0.1 0.1 0 0.1 0 0 0.1 0.1 0 0 

𝑹𝟎 [μs] 3.83 -5 5 -3.82 3.79 5 -5 -2.08 3.02 2.57 

𝑹𝒎𝒂𝒙 [μs] -12.18 -15 7.06 -9.74 4.87 5.43 -9.82 -15 3.98 1.88 

𝑻𝒊 [s] 0 4.62 0 4.58 0 0 4.92 4.59 0 0 

𝑻𝒇 [s] 0 0 2.33 0 0.74 3.84 2.3 5 0.2 5 

𝒗 [m/s] 200 480 200 230 200 200 280 200 325 200 

𝒂 [m/s2] 60 20 60 40 60 60 60 55 60 60 

Frequency 

Coord 
1 1 1 1 1 1 1 0 1 1 

Power 

Reduction 

[–dB] 

2.05 3 2.52 1.63 0 0 2.41 1.38 0 3 
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B.3 Rotary-Wing vs. Coherent TTR 

The rotary-wing airborne target was flown at an approach angle of 90 degrees 

against the threat system with a coherent TTR. The optimization bounds were those 

listed in Table 5.1, with fighter velocity and acceleration bounds. The results of the 

optimization are in Table B.6 and Table B.7 for the GA and PSO, respectively. 

Table B.6: GA optimization results – rotary-wing vs. coherent TTR, 90 degrees 

Round 1 2 3 4 5 6 7 8 9 10 

Exit Flag 1 1 1 1 1 1 1 1 1 1 

Time [min] 364.96 321.21 321.55 378.98 320.43 321.05 321.57 364.34 321.34 321.03 

Generations 24 21 21 25 21 21 21 24 21 21 

Mean 

Time Per 

Generation 

[min] 

14.60 14.60 14.62 14.58 14.57 14.59 14.62 14.57 14.61 14.59 

Function 

Evaluations 
1200 1056 1056 1248 1056 1056 1056 1200 1056 1056 

Fitness 0.3399 0.3268 0.3234 0.3032 0.3308 0.3258 0.3272 0.3206 0.3321 0.3268 

𝑹𝟎 [μs] -3.58 -0.83 -0.58 -1.12 -1.84 -0.09 -1.00 -1.08 -0.85 -2.75 

𝑹𝒎𝒂𝒙 [μs] 11.73 0.85 -2.05 10.28 12.89 -1.51 5.54 0.76 -8.40 0.20 

𝑻𝒊 [s] 0.25 0.09 4.58 1.37 1.80 0.08 2.76 4.78 0.20 1.11 

𝑻𝒇 [s] 0.86 1.06 2.86 1.75 0.69 1.31 4.08 1.81 0.00 1.04 

𝒗 [m/s] 575 505 545 355 560 200 220 240 500 295 

𝒂 [m/s2] 35 10 50 25 40 40 40 20 10 15 

Frequency 

Coord 
0 0 0 1 0 0 1 1 0 0 

Power 

Reduction 

[–dB] 

0.81 0.23 0.10 0.10 0.04 0.00 0.45 2.63 0.25 0.13 

𝑷𝑾 [μs] 2.00 1.60 1.30 1.40 1.90 1.20 1.30 1.50 1.20 1.60 
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Table B.7: PSO optimization results – rotary-wing vs. coherent TTR, 90 degrees 

Round 1 2 3 4 5 6 7 8 9 10 

Exit Flag 1 1 1 1 1 1 1 1 1 1 

Time [min] 851.26 391.13 1182.6 636.51 1007.8 679.06 782.44 1040.5 666.51 1001.4 

Iterations 58 26 81 43 61 46 53 71 45 64 

Mean 

Time Per 

Iteration 

[min] 

14.43 14.49 14.42 14.47 16.25 14.45 14.49 14.45 14.49 15.41 

Function 

Evaluations 
2832 1296 3936 2112 2976 2256 2592 3456 2208 3120 

Fitness 0.3228 0.3336 0.323 0.325 0.3171 0.327 0.2788 0.2901 0.3278 0.3278 

𝑹𝟎 [μs] 4.66 -1.92 -1.21 -0.87 3.74 3.05 -1.45 -1.40 -1.00 -0.78 

𝑹𝒎𝒂𝒙 [μs] -9.48 -1.26 -3.31 -2.66 -7.15 -2.64 5.06 14.73 -3.66 -6.12 

𝑻𝒊 [s] 0.91 2.49 0.38 0.61 0.14 1.90 0.88 0.14 4.23 2.85 

𝑻𝒇 [s] 1.08 3.04 1.83 0.54 4.06 0.83 0.00 3.37 3.60 2.01 

𝒗 [m/s] 460 600 385 395 410 405 455 525 410 255 

𝒂 [m/s2] 60 10 60 40 60 40 10 30 55 35 

Frequency 

Coord 
0 0 0 0 0 0 1 1 0 0 

Power 

Reduction 

[–dB] 

0.66 0.71 0.05 0.14 0.05 0.41 1.24 0.01 0.35 0.63 

𝑷𝑾 [μs] 1.80 1.90 1.90 1.70 1.40 1.40 1.60 2.00 1.70 2.00 
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