

GPU Parallelization of the MVDR Beamforming

Algorithm for Multiple Input Multiple Output Radar

Parallélisation sur GPU de l’algorithme de formation

de faisceaux MVDR pour le radar à entrées multiples

et à sorties multiples

A Thesis Submitted to the Division of Graduate Studies

of the Royal Military College of Canada

by

Gillian Frances Rideout, BEng, rmc

Captain

In Partial Fulfillment of the Requirements for the Degree of

Master of Applied Science in Electrical Engineering

September 2019

© This thesis may be used within the Department of National Defence but

copyright for open publication remains the property of the author

 ii

Acknowledgements

This thesis was made possible due to the support of my supervisor, Dr. Mostafa

Hefnawi. His knowledge in the field of communications, beamforming, and MIMO

radar provided the background necessary to carry out this research. His ability to

provide solutions and motivation proved invaluable to completion of this thesis. I

would also like to thank Dr. Vincent Roberge, whose instruction in parallel

programming was crucial to this thesis and my understanding of Graphical Processor

Units and their theory. Finally, I would like to thank the Royal Canadian Air Force

Aerospace Warfare Centre, whose generous sponsorship made this thesis possible.

 iii

Abstract

Using a Multiple Input Multiple Output (MIMO) radar provides numerous

advantages, such as improving the spatial resolution, the immunity to interference,

the signal-to-noise ratio (SNR) and the probability of detection for targets. Also,

MIMO radar is beneficial as it can scan an entire region in a few pulses, and much

faster than a phased array, which requires a scanning beam throughout the entire

region. However, MIMO radar requires significant signal processing, which can

introduce significant latency; this can be solved by using a Graphics Processor Unit

(GPU). GPUs contain thousands of cores and can execute many operations in

parallel. This capacity enables them to execute tasks significantly faster and more

efficiently than Central Processing Units (CPUs). This thesis examines the design,

development, and simulation of a parallel GPU implementation of minimum

variance distortionless (MVDR) beamforming for a MIMO radar system. This

algorithm was compared to a tradition CPU version. In all cases, it was found that

the GPU executed the algorithm faster than the CPU version while successfully

detecting all targets. This result proves that GPUs can be successfully integrated

within a MIMO radar setup and would aide in decreasing the overall signal

processing time required for target detection. This would be an excellent inclusion

in massive MIMO radar, where hundreds of transmitters and receivers will be used.

 iv

Résumé

L'utilisation d'un radar MIMO (Multiple Input Multiple Output) offre de nombreux

avantages par rapport au radar à balayage de phase; il permet l'amélioration de la

résolution spatiale, de l'immunité aux interférences, du rapport signal-sur-bruit

(SNR) et de la probabilité de détection des cibles. Il permet aussi d’analyser une

région entière en quelques impulsions et beaucoup plus rapidement qu'un radar à

balayage de phase. Cependant, le radar MIMO nécessite un traitement de signal

important qui peut introduire une latence significative. Ce problème peut être résolu

à l'aide d'un processeur graphique (GPU). Les GPU intègrent des milliers de cœurs

et peuvent exécuter de nombreuses opérations en parallèle. Cette capacité leur

permet d'exécuter des tâches bien plus rapidement et efficacement que les unités

centrales (CPU). Cette thèse examine la conception, le développement et la

simulation d’une implémentation parallèle sur GPU de l’algorithme à formation de

faisceaux MVDR (Réponse sans distorsion à variance minimale) pour un système

radar MIMO. Cet algorithme a été comparé à une version sur processeur traditionnel.

Dans tous les cas, il a été constaté que GPU exécute l'algorithme plus rapidement

que la version sur CPU tout en détectant avec succès toutes les cibles. Ce résultat

prouve que les GPU peuvent être intégrés avec succès dans une configuration radar

MIMO pour réduire le temps de traitement du signal global nécessaire à la détection

de cibles. Ce serait une excellente intégration dans les radar MIMO à grande échelle,

où des centaines d'émetteurs et de récepteurs seront utilisés.

 v

Contents

Acknowledgements ii

Abstract iii

Résumé iv

Contents v

List of Tables vii

List of Figures viii

List of Acronyms x

1 Introduction 1

1.1 Background .. 1

1.2 Problem Statement ... 2

1.3 Thesis Statement .. 3

1.4 Methodology .. 3

1.5 Thesis Outline .. 4

2 Literature Review 5

2.1 MIMO Radar .. 5

2.1.1 Orthogonal Waves ... 7

2.1.2 Virtual Array ... 9

2.1.3 MVDR Beamforming .. 11

2.1.4 MVDR Beamforming for MIMO Radar 13

2.2 GPUs .. 14

2.2.1 GPU Architecture/Programming Model 15

2.2.2 Heterogeneous Computing .. 17

Contents

 vi

2.2.3 Common Unified Developer Architecture 19

2.3 GPU Programming in MATLAB® .. 20

2.3.1 Parallel Computing ToolboxTM ... 20

2.3.2 Phased Array ToolboxTM ... 22

3 Multi-Target Detection using ULA 23

3.1 System Model .. 23

3.2 MVDR Algorithm .. 25

3.3 Results and Analysis .. 29

3.3.1 Hardware and Software Specifications ... 29

3.3.2 Simulation Results .. 30

4 MIMO Radar Simulation 37

4.1 System Model .. 37

4.1.1 Transmit/Receive/Virtual Array Creation 39

4.1.2 Radar Sensor Parameters and Setup .. 40

4.1.3 Radar Target Simulation ... 41

4.1.4 MIMO Radar Simulation .. 44

4.2 Results and Analysis .. 53

5 Conclusion 62

5.1 Summary .. 62

5.2 Conclusions .. 63

5.3 Contributions .. 64

5.4 Future Work ... 65

Bibliography 66

A MATLAB® Code 72

A.1 ULA Simulation Code ... 72

A.2 MIMO Radar Simulation Code .. 74

 vii

List of Tables

Table 2.1 Virtual Array Locations using (2.1) .. 11

Table 3.1 ULA Characteristics ... 25

Table 3.2 NVIDIA GeForce GTX TITAN Operating Specifications 30

Table 3.3 CPU and GPU execution times and execution speedup for various ULA

elements .. 35

Table 4.1 MIMO Radar System Operating Parameters .. 39

Table 4.2 Radar Sensor Parameters .. 40

Table 4.3 Radar Motion Parameters ... 42

Table 4.4 Car Target Parameters .. 43

Table 4.5 Transmitted FMCW Properties ... 46

Table 4.6 Radar Simulation Loop Operating Parameters 50

Table 4.7 CPU and GPU Execution Time and Speedup for Two Transmit Elements

 .. 60

 viii

List of Figures

Figure 2.1 Generic MIMO radar with one target (modified from [11]) 6

Figure 2.2 FMCW Waveform (reproduced from [17]) ... 9

Figure 2.3 An example of a virtual array (reproduced from [3]) 10

Figure 2.4 Generic beamformer scheme (reproduced from [24]) 13

Figure 2.5 GPU thread and block model with N threads and (x ,y, z) block size

(reproduced from [10]) ... 17

Figure 2.6 GPU vs CPU architecture (reproduced from [2]) 19

Figure 3.1 ULA Simulation Diagram ... 24

Figure 3.2 CPU MVDR Spectrum with eight ULA elements 33

Figure 3.3 GPU MVDR Spectrum with eight ULA elements 34

Figure 3.4 MSE between CPU and GPU data with a ULA of eight elements 35

Figure 3.5 CPU vs GPU Execution Times for various ULA elements 36

Figure 4.1 ACC (reproduced from [47]) ... 38

Figure 4.2 MIMO Radar ACC (Radar View) ... 38

Figure 4.3 Array Creation Code.. 40

Figure 4.4 Code to Define Radar Sensor Parameters.. 41

Figure 4.5 Code to Define Target Motion .. 42

Figure 4.6 Transmitted FMCW Wave and Spectrogram .. 46

Figure 4.7 Transmitted FMCW Wave (zoomed in) .. 47

Figure 4.8 Code to Create FMCW signal ... 48

Figure 4.9 Transmit Array Element Arrangement .. 50

Figure 4.10 Code used to Simulate Radar Operation .. 51

List of Figures

 ix

Figure 4.11 Radar Simulation Flowchart .. 52

Figure 4.12 CPU MVDR Spectrum for two transmitting elements and four receiving

elements .. 57

Figure 4.13 GPU MVDR Spectrum for two transmitting elements and four receiving

elements .. 58

Figure 4.14 Two Way Beam Pattern for Four Receivers .. 59

Figure 4.15 MSE for Two Transmit Elements and Four Receive Elements 60

Figure 4.16 CPU vs GPU Execution Time for Two Transmitters 61

 x

List of Acronyms

ACC Adaptive Cruise Control

ALU Arithmetic Logic Unit

AOI Area of Interest

CPI Coherent Processing Interval

CPU Central Processing Unit

CUDA Common Uniform Developer Architecture

DOA Direction of Arrival

FMCW Frequency Modulated Continuous Wave

GPU Graphical Processor Unit

GPGPU General Purpose Graphical Processor Unit

ID Identification

LU Lower Upper

MSE Mean Square Error

MIMO Multiple Input Multiple Output

MVDR Minimum Variance Distortionless Response

RAM Random Access Memory

RCS Radar Cross Section

SINR Signal to Interference Noise Ratio

SM Stream Multiprocessor

TDM Time Division Multiplexing

ULA Uniform Linear Array

 1

1 Introduction

1.1 Background

Multiple Input Multiple Output (MIMO) radar systems is a type of phased array

radar which has multiple transmit elements and multiple receive elements in a single

radar system. Once these signals are returned to the system, extensive signal

processing is then required to identify targets. This is usually done through a

combination of hardware and software. Historically, software is run using a Central

Processing Unit (CPU), whose parallel computing capability is limited to the number

of CPU cores in the system. This typically means that signal processing can take a

significant amount of time.

 However, there is an innovative solution to this problem. Graphics Processor

Units (GPUs) contain thousands of cores and can execute software programs in

parallel. The number of cores available implies that a GPU can deliver high

throughput on a significantly large data set (hundreds of thousands of data points,

depending on the size and type of the data to be manipulated) [1]. The trick with

using a GPU is to ensure that the algorithm will benefit from the effort to parallelize

its operation. It is lucky then that many algorithms used within MIMO radar systems

are highly parallel and computationally intensive, which makes them ideal

candidates for a GPU implementation [1]. GPUs are also capable of delivering real-

time throughput and can be reconfigured quickly to handle changing workloads [1].

1.2 Problem Statement

 2

While CPU performance has flat lined, GPU performance continues to grow

exponentially as technology is developed [2].

1.2 Problem Statement

The minimum variance distortionless response (MVDR) algorithm has been

thoroughly investigated for traditional phased array radars. For MIMO radar

systems, however, it requires matrix inversions for each pulse that is transmitted by

the MIMO radar. In a small system, the time to complete these calculations on a

CPU may be acceptable. However, when a system grows to be quite large (such as

in the case of massive MIMO where the transmitters and/or receivers can be in the

hundreds or thousands), the required calculation time to carry out the MVDR

beamforming algorithm would be enormous and unacceptable. While a MIMO radar

has benefits over a phased array, it is more computationally intensive. For example,

in [3], it was shown that a MIMO radar can detect a target 13.3 times faster than a

phased array [3].

 A survey paper completed in 2017 showed that there has been much success

in using GPUs in traditional single input single output (SISO) radar systems [4];

significant computational speedups were found to have occurred. As well, several

papers were found which had success integrating GPU and MIMO in communication

scenarios that provided optimization or greater accuracy [1], [5]–[10]. However,

there was little research to be found with respect to integrating MIMO radar and

GPUs.

1.3 Thesis Statement

 3

1.3 Thesis Statement

This thesis explores the use of GPU technology in a traditional MIMO radar. More

specifically, the objective of this thesis is to develop a parallel MVDR algorithm that

will be used on a simulated MIMO radar system. The developed algorithm will be

compared against a traditional serial algorithm.

1.4 Methodology

Since this thesis will be simulation based, an iterative programming approach will

be used to ensure validity of the obtained results.

The first phase undertaken to develop the proposed algorithm in the thesis

statement is to create a simplified version of the problem presented. To do this, a

uniform linear array (ULA) system will be created in MATLAB®. The ULA will be

used to test the validity of the designed MVDR algorithm to ensure correct results

are obtained using both serial (CPU) and parallel (GPU) implementations. Various

simulations are conducted with varying targets and varying array lengths.

Finally, the last portion of this thesis conducts simulations using a traditional

MIMO radar setup and the developed MVDR algorithm. In this portion, targets are

defined using Radar Cross Section (RCS) and are simulated to produce radar returns.

Various simulations are run with the same target and different array lengths to

determine the execution time of the developed GPU-based MVDR algorithm.

1.5 Thesis Outline

 4

1.5 Thesis Outline

Chapter 2 presents a high-level overview of MIMO radar and GPUs. It presents the

definition of a MIMO radar system, and specifically discusses virtual array creation,

beamforming, and MVDR beamforming. This chapter also presents a high-level

overview of GPUs, their history, architecture, and how they can be used in

heterogeneous computing.

 Chapter 3 outlines the methodology that was used to design and program the

serial and parallel version of the MVDR algorithm. It describes the initial ULA setup

used to simulate the developed MVDR algorithm as well as the results that were

obtained.

 Chapter 4 discusses the MIMO radar setup that is created to test the MVDR

algorithm. It outlines the design parameters, simulation, and provides an in-depth

analysis of the results that were obtained.

 Chapter 5 concludes this thesis and discusses area of future research for the

use of MIMO radar and GPUs.

 5

2 Literature Review

2.1 MIMO Radar

In a MIMO radar system, more than one antenna is capable of transmitting a signal

while more than one antenna is also receiving the signal which creates different

transmit-receive paths; Figure 2.1 shows a MIMO radar, with M transmitters and N

receivers [11]. The data collected from the multiple transmitted/received signals is

processed together [12].

 The operation of MIMO radar falls under one of two main configurations. In

the first, the transmit and receive array elements are widely spaced, which will

provide independent scattering responses for each antenna pairing. This is

sometimes referred to as statistical MIMO radar [11]. In the second configuration,

the transmit and receive array elements are closely spaced, also known as coherent

MIMO radar [11]. This thesis will focus on the second configuration and

transmitting orthogonal independent waveforms are considered.

In a systems with M independent transmitters and N receivers, MN paths are

produced for the return from the kth target [3] . The generic form of the total received

signal in this configuration is the sum of returns from all targets and can be expressed

as [3]

 𝑦𝑛[𝑛] = ∑ 𝛼(𝜃𝑘) ∑ 𝑒−𝑗𝜔𝑐𝜏𝑚𝑛(𝜃𝑘)𝑠𝑚[𝑛] + 𝑤𝑛[𝑛]

𝑀

𝑚=1

𝐾

𝑘=1

 (2.1)

2.1 MIMO Radar

 6

where 𝛼 is the complex amplitude of the kth return signal from a target located at

angle 𝜃𝑘, 𝑠𝑚 are the baseband samples of the mth transmitted signal, 𝜏𝑚𝑛(𝜃𝑘) is the

phase delay between the mth transmitted element, the kth target and the nth receiver,

𝜔𝑐 is the carrier’s angular frequency, [n] is the time index, and 𝑤𝑛[𝑛] is the additive

white Gaussian noise with a covariance matrix 𝑅𝑤 = 𝜎2𝐼 where I is the identity

matrix [3].

It is important to note that unlike a phased array radar which only contains

returns from its directed beam, MIMO radar systems can scan the desired area in as

little as one pulse instead of scanning a beam throughout the entire region as long as

the MIMO radar can detect the received paths independently through the use of

orthogonal waveforms and matched filters [3]. Separating the transmit and receive

paths is critical, as these signals are used to create the virtual array to be used by the

MVDR beamforming algorithm [3]. However, due to this greater search area, less

power is directed towards the target which results in a lower signal to noise (SNR)

ratio of the target which can lead to issues with detection [3]. This can be mitigated

if pulses are integrated over a longer coherent processing interval [3].

Figure 2.1 Generic MIMO radar with one target (modified from [11])

2.1 MIMO Radar

 7

2.1.1 Orthogonal Waves

Orthogonal signals are a key component in MIMO radar, as they allow for

simultaneous transmission from all elements without requiring beamforming on

transmission [3] These waveforms have very little, or no, cross correlation [13], such

that

 𝑐𝑜𝑟[𝑥(𝑡), 𝑦(𝑡)] = ∫ 𝑥(𝑡)𝑦(𝑡)𝑑𝑡 = 0
∞

−∞

 (2.2)

where 𝑥(𝑡) and 𝑦(𝑡) are two time varying signals [3]. Using orthogonal signals

allows for all transmitting paths to be independent [3]. Orthogonality in signals can

be achieved in numerous ways, one of which is time division multiplexing.

 The coherence matrix, R, for an M element uniform linear array (ULA) is

 𝑹 =
1

𝑁
∑ 𝑠[𝑛]𝑠𝐻[𝑛] = [

1 𝛽12 ⋯ 𝛽1𝑀

𝛽21 1 ⋯ 𝛽2𝑀

⋮ ⋮ ⋱ ⋮
𝛽𝑀1 𝛽𝑀2 ⋯ 1

]

𝑁

𝑛=1

 (2.3)

Where 𝑠[𝑛] is the transmitted baseband signal vector from M element ULA, n

represents the time index, 𝛽𝑖𝑗 is the complex correlation coefficient between signals

𝑖 and 𝑗 and 𝐻 is the Hermitian operator [14]. The phases of the diagonal elements

control the transmitted beam direction; since the signals transmitted are orthogonal

the coherence matrix is an identity matrix 𝑹 = 𝑰 [14].

 Transmitting using orthogonal signals increases the beam width, which results

in a greater area of interest (AOI) scanned within each beam compared to phased

array radar, but decreases the gain [14].

2.1 MIMO Radar

 8

2.1.1.1 Frequency Modulated Continuous Waveform with Time Division

Multiplexing

The orthogonal waveform that is used for transmission in this thesis is a Frequency

Modulated Continuous Wave (FMCW) that uses time division multiplexing (TDM).

Unlike pulsed radar systems, FMCW radars transmit a continuous wave where the

frequency of the transmitted wave is linearly modulated [13]. The FMCW has three

distinct advantages compared to a pulse radar system: a constant power envelope, a

high Doppler shift tolerance and the ability to use simplified receiver processing

[15]. A single chirp FMCW signal (a sinusoidal wave whose frequency increases

linearly over time over time) at the transmitter can be represented as [15]

 𝑠𝑇𝑥(𝑡) = 𝑒
𝑗2𝜋(𝑓𝑠𝑡+

1
2

𝛼𝑡2)
 (2.4)

where t is the time variable signal within the single chirp period, 𝑓𝑠 denotes the start

frequency of the chirp, and 𝛼 is the sweep rate (bandwidth of the chirp divided by

the chirp duration). The received reflection from a target within the area of interest

is a time-delayed copy of the transmitted signal, where the time delay is related to

the range [15]. An example of a transmitted FMCW waveform can be seen in Figure

2.2.

Signal orthogonality is obtained in the time domain by employing TDM, a

technique that switches between transmitting elements. The typical TDM switching

scheme consists in activating only one transmit antenna at once, starting from the

element at position zero and sweeping through the array until all elements have

transmitted; upon reaching the end of the array, the scheme is then repeated from the

beginning of the array [16]. Using TDM allows for the calculation of amplitude and

phase of a large number of points in the area of interest [16].

2.1 MIMO Radar

 9

Figure 2.2 FMCW Waveform (reproduced from [17])

2.1.2 Virtual Array

In a MIMO radar, a virtual array is constructed to hold the received data. This

concept is an extension of the coarray used for coherent imaging, described in [11].

The virtual array will vary in size depending on the number of transmitting and

receiving elements in the radar. If an array of M elements are used for transmitting

and N elements are used for receiving, then the corresponding virtual array has up to

MN elements; the data located within the array is the return information received by

the Nth receiver from the Mth transmitter [3]. The configuration of the virtual array

will be dependent on the spacing between the transmit and receive elements; the

elements of the virtual array are formed from the spatial convolution between the

transmit and receive elements, represented as [18]:

 𝑉𝑖𝑟𝑡𝑎𝑢𝑙 𝐴𝑟𝑟𝑎𝑦(𝑥) = ∑ ∑ 𝛿(𝑥 − (𝑥𝑚 + 𝑥𝑛))

𝑁−1

𝑛=0

𝑀−1

𝑚=0

 (2.5)

where 𝑥 is the position across the array, 𝑥𝑚 are the location of the transmit elements

and 𝑥𝑛 are the locations of the receive elements. Using a virtual array allows for the

system to increase the resolution and accuracy beyond the physical number of

elements that are present in the transmit and receive arrays [19]. It also allows for a

sparsely filled array to maintain the same resolution of a full array, without the added

cost of more hardware [19].

 Figure 2.3 illustrates how the virtual array is formed using (2.5). The physical

transmit and receive arrays are the top two rows while the bottom row is the

2.1 MIMO Radar

 10

corresponding virtual array. In this example, there are three transmitting elements

located at (0), (5), and (10) and five receiving elements at (-2), (-1), (0), (1), and (2).

Therefore, there are 15 elements in the virtual array after the spatial convolutions of

transmit and receive arrays are conducted [3]. The first five virtual array elements

are formed through the spatial convolution of the transmitter located at (0) and the

five receiving elements; the remaining 10 elements are formed by using the

transmitters located at (5) and (10) with the other two receivers. A detailed

breakdown of how (2.5) is used to determine locations of virtual array elements can

be found in Table 2.1. After the virtual array has been constructed, signal processing

is carried out to determine if a target was detected.

Figure 2.3 An example of a virtual array (reproduced from [3])

2.1 MIMO Radar

 11

Table 2.1 Virtual Array Locations using (2.1)

𝑥𝑚 𝑥𝑛 𝑥𝑚 + 𝑥𝑛 𝛿(𝑥 − (𝑥𝑚 + 𝑥𝑛)) Position

5 -2 3 𝛿(𝑥 − 3) 3

5 -1 4 𝛿(𝑥 − 4) 4

5 0 5 𝛿(𝑥 − 5) 5

5 1 6 𝛿(𝑥 − 6) 6

5 2 7 𝛿(𝑥 − 7) 7

2.1.3 MVDR Beamforming

An array of receivers, such as the receive array on a MIMO radar, is capable

of steering a beam in space by using a process called beamforming [20]. In MIMO

radar systems, adaptive beamforming techniques such as the MVDR can be used to

obtain the best possible estimation of the desired signal by suppressing the undesired

interference and noise components as much as possible [21].

MVDR beamforming is also known as Capon beamforming, which is

described in [22]. In MVDR, the signal correlation matrix is used to provide

direction of arrival (DOA) estimation [23]. The MVDR technique attempts to

minimize the noise and interference by creating nulls toward their directions and

maintaining a fixed gain in the look direction [23]. Peaks in the MVDR spectrum

occur when the direction vector is orthogonal to the noise [23].

 Figure 2.4 denotes a traditional beamformer block diagram. The output signal

of the beamformer is given by [24]

 𝑦(𝑘) = 𝒘𝐻𝒙(𝑘) (2.6)

where 𝑘 is the time index, 𝒙(𝑘) = [𝑥1(𝑘), … , 𝑥𝑀(𝑘)]𝑇 is the M x 1 complex vector

of array observations, 𝒘 = [𝑤1, … , 𝑤𝑀]𝑇 is the M x 1 complex vector of

2.1 MIMO Radar

 12

beamformer weights, M is the number of array sensors, and (.)𝑇 and (.)𝐻 denote the

transpose and Hermitian transpose [24].

 The array observation vector, 𝒙(𝑘), is given by

 𝒙(𝑘) = 𝛽𝒔𝑠(𝑡) + 𝒊(𝑡) + 𝒏(𝑡) (2.7)

where 𝒔𝑠(𝑡), 𝒊(𝑡), and 𝒏(𝑡) are independent components of the desired signal,

interference, and sensor noise, and 𝛽 is the primary response parameter, which is

typically one.

 To find the optimal solution for the beamformer weights,𝒘, the signal to

interference ratio (SINR) should be optimized. The general form of the SINR is

given by [24]

 𝑆𝐼𝑁𝑅 =
𝒘𝐻𝑹𝑠𝒘

𝒘𝐻𝑹𝑖+𝑛𝒘
 (2.8)

where 𝑹𝑠 and 𝑹𝑖+𝑛 are the M x M signal and interference-plus-noise covariance

matrices. Therefore, (2.8) can be optimized by

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑤 𝒘𝐻𝑹𝑖+𝑛𝒘

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒘𝐻𝑹𝑠𝒘 = 1
(2.9)

The solution to (2.9) can be found by using Lagrange multipliers, and taking the

gradient and equating it to zero [24]. Therefore, the optimal weight vector can be

written as

 𝒘𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝜌{𝑹𝑖+𝑛
−1𝑹𝑠} (2.10)

where 𝜌 is the operator which returns the maximal eigenvalue in the matrix [24].

2.1 MIMO Radar

 13

Figure 2.4 Generic beamformer scheme (reproduced from [24])

2.1.4 MVDR Beamforming for MIMO Radar

Since a MIMO radar is a two-channel system and possesses a steering vector which

adds constructive interference, the SINR has a slightly different form than (2.8).

Therefore, the SINR in a MIMO radar, is defined as [25]

 𝑆𝐼𝑁𝑅 =
|𝜎𝒘𝐻𝒔(𝜃𝑡)|2

𝒘𝐻𝑹𝑖+𝑛𝒘
 (2.11)

where 𝜎 is the radar cross section (RCS) of the target and 𝑠(𝜃𝑡) is a steering vector

corresponding to the target at location 𝜃𝑡. To maximize (2.11), Schwartz`s inequality

is used and can be re-written as [25]

𝑆𝐼𝑁𝑅 =
|𝜎𝒘𝐻𝑹𝑖+𝑛

1
2𝑹𝑖+𝑛

−
1
2𝒔(𝜃𝑡)|

2

𝒘𝐻𝑹𝑖+𝑛𝒘

≤ 𝜎2
𝒘𝐻𝑹𝑖+𝑛𝒘𝑠𝐻(𝜃𝑡)𝑹𝑖+𝑛

−1𝒔(𝜃𝑡)

𝒘𝐻𝑹𝑖+𝑛𝒘

≤ 𝜎2𝒔𝐻(𝜃𝑡)𝑹𝑖 + 𝑛−1𝒔(𝜃𝑡)

(2.12)

2.2 GPUs

 14

Assuming that 𝜎= 1, the optimal 𝒘 that produces the maximum value of (2.12) is

[25]

 𝒘 =
𝑹𝑖+𝑛

−1𝑠(𝜃𝑡)

𝒔𝐻(𝜃𝑡)𝑹𝑖+𝑛
−1𝒔(𝜃𝑡)

 (2.13)

 In practice, it is difficult to obtain 𝑹𝑖 , instead, the sample covariance matrix

of the receiver, 𝑹𝑥𝑥 = ∑ 𝑥𝑛𝑥𝑛
𝐻 𝑁

𝑛=1 , is used where 𝑥𝑛 are data snapshots which are

collected from N different radar pulses. Therefore, (2.13) becomes [26]

 𝒘 =
𝑹𝑥𝑥

−1𝑠(𝜃𝑡)

𝒔𝐻(𝜃𝑡)𝑹𝑥𝑥
−1𝒔(𝜃𝑡)

 (2.14)

 Capon has shown in [22] that the MVDR spectrum can be found by

 𝑆 =
1

𝒔𝐻(𝜃𝑡)𝑹𝑥𝑥
−1𝒔(𝜃𝑡)

 (2.15)

where 𝑆 is the MVDR spectrum. Since it is not possible to carry out division on a

matrix, (2.17) is computed by finding an inverse. Therefore, it can be re-written as

 𝑆 = (𝒔𝐻(𝜃𝑡)𝑹𝑥𝑥
−1𝒔(𝜃𝑡))

−1
 (2.16)

This thesis is interested in exploring the MVDR spectrum for its applicability to

target detection. Therefore, (2.16) will be used as a basis to create an algorithm to

extract targets from the MVDR spectrum.

2.2 GPUs

Starting around 1980, CPU innovation produced rapid performance increases for

almost 20 years. These performance increases have allowed greater software

functionality, and improved user interfaces [13]. However, this in turn has also made

2.2 GPUs

 15

users place greater demands for further development once they have become

accustomed to the improvement.

Human-generated code has traditionally been written as a serial program. The

sequential code can be understood easily by humans, as we can step through each

line of code at a time. Because of the rapid hardware developments made until the

early 2000s, developers have been relying on hardware advances to improve

software speed; with a faster microprocessor the same code will simply run faster

[2]. Sequential (or serial) code will only run on one processor core instead of several.

Since we have reached the limit of processor innovation, new ways must be

developed to achieve performance increases. An example is the development of the

GPU. Instead of having a small number of processor cores available to compute

serial code, a GPU has hundreds (possibly even thousands) of cores available to

compute parallelized code. Parallelizing code can take some effort as it is not as

intuitive as serial code, however the extra development time is acceptable when a

speed up is possible.

 Originally developed for the video game industry, GPUs are now being

used for a multitude of purposes, such as parallel execution of computationally

intensive algorithms (i.e. matrix inversion). General Purpose Graphic Processor

Units (GPGPUs) are now being used in applications which require intense

computing ability due to its unique architecture.

2.2.1 GPU Architecture/Programming Model

A GPU can carry out parallelized processing based on its architecture. A GPU has

multiple stream multiprocessors (SMs), which have a certain number of cores [2];

the exact amount of SMs and cores on a GPU depends on the exact model of GPU

used.

 In a GPU, there are five specific types of memory available to the

programmer: registers, global memory shared memory, constant memory, and

2.2 GPUs

 16

texture memory [2]. Registers are dynamically allocated and are private to each

thread and provide the fastest access to data [2]. Global memory, also known as off-

chip memory, is accessible to all threads/thread blocks with a large capacity,

however the read/write access time can be slow [2]. Shared memory, also called on-

chip memory, is accessible by all threads within a block. Access time for shared

memory is approximately 100 times faster than that of global memory, however it

has significantly less capacity than that of global memory [2]. Constant memory and

textured memory are both located off-chip, however they are both cached [2].

Therefore, these types of memory are also significantly faster than global memory.

Variables and arrays used within kernel launches can be stored in any of these five

memory types [2]; the type of memory chosen will depend on the algorithm that is

to be executed.

GPUs contain cores which execute threads. These are located within a thread

block, which are located within a grid [10]; blocks and grids can either be one, two,

or three dimensional [2]. Figure 2.5 displays a GPU architecture with N threads, a

three-dimensional block size of (x, y, z) and a one-dimensional grid size.

 Threads are the basic unit in parallel programming. Threads within a block

can synchronize their behavior and communicate with each other [2]. Threads are

managed, scheduled, and created in groups of 32 which are known as warps [2]. The

threads that will execute the parallel code are created when a kernel launch to that

parallel code is invoked [2]. Each thread can select data using its’ unique thread

identification (ID) and is then able to execute the programmed algorithm with its

selected data and store it in the appropriate location [10].

2.2 GPUs

 17

Figure 2.5 GPU thread and block model with N threads and (x ,y, z) block size (reproduced

from [10])

2.2.2 Heterogeneous Computing

Due to the fundamental hardware difference between a CPU and a GPU, there are

some scenarios where a CPU would be better suited than a GPU based on design and

architecture. The design of a CPU is optimized for peak sequential code performance

and makes use of sophisticated logic to allow instructions to be carried out in

parallel, but still maintaining the sequential flow of the program [2]. The most

important design to highlight is the CPU’s large memory cache, which reduces

latency in instructions and data memory access [2]. GPUs are designed to optimize

execution throughput by efficiently utilizing their many cores to execute parallel

operations [27]. The multi-thread GPU floating-point calculation throughput is

approximately 10 times that of a multicore CPU [2].

 CPUs are designed to minimize the execution time of a single thread. Its large

on-chip caches are designed to capture frequently accessed data into short-latency

cache access [2]. The arithmetic logic units (ALUs) are also designed to minimize

operation latency, which increases their use of the available chip area [2]. By

reducing the latency of single thread operations, the CPU hardware reduces the

2.2 GPUs

 18

overall latency of a single thread [2]. However, the CPU large cache memory, low-

latency ALUs and sophisticated logic consume much of the available chip area and

power [2].

 GPUs were designed to optimize the execution throughput of a massive

number of threads. This design reduces the overall chip area and power by allowing

memory channels and arithmetic operations to have long latency [2]. The reduced

area and power allows designers to have more hardware on a chip, increasing total

execution throughput of the GPU [2]. Therefore, GPU software applications are

expected to be written to maximize the number of threads that are used within the

operation.

From this, it is possible to deduce that CPUs will provide better performance

that have low numbers of threads or a small data set; GPUs will provide a higher

execution throughput when a program has a very large number of threads or a

massively large data set [2]. Therefore, there will be many applications where both

a CPU and a GPU should be used in tandem to achieve the best possible

performance.

Figure 2.6 highlight the difference in GPU and CPU architecture. From this

Fig, it is possible to visually see the difference in architecture described above. The

CPU has a greater cache, and four ALUs and the controller take up approximately

80% of available chip space [2]. Conversely, the GPU has a small cache available

for multiple ALUs, but there are a significantly greater number of ALUs. Each ALU

on the GPU is also significantly smaller small those on the CPU; however, all the

ALUs take up approximately 90% of the chip space [2]. By looking at Fig 4, it can

be rationalized that a CPU would perform better with very few threads while a GPU

would have better performance with a massive number of threads.

Heterogeneous computing exploits the advantages of both CPUs and GPUs to

achieve the fastest possible program. In this form of programming, code is written

in a pre-existing serial programming language (i.e. C, Python, and FORTRAN). The

CPU will run the serial code, until a call to the GPU code is detected. Once the GPU

2.2 GPUs

 19

work is completed, the CPU will continue the serial execution until the program is

completed or the GPU is required again [2] . GPUs are typically assigned

computationally intensive algorithms to reduce the workload on the CPU, while

basic instructions and code is executed on the CPU due its low latency. The

combination of sequential and parallel programming in one overall program is done

using a programming extension called Common Unified Developer Architecture

(CUDA).

Figure 2.6 GPU vs CPU architecture (reproduced from [2])

2.2.3 Common Unified Developer Architecture

CUDA is a programming language that exploits the parallel processing capabilities

of GPUs and is used in heterogeneous computing; CUDA can be used in conjunction

with the C programming language in order to write parallel programs [6]; NVIDIA

has developed CUDA extensions that can be used with other languages, such as

FORTRAN and Python [28]. A CUDA C program contains a mixture of sequential

(CPU) and parallel (GPU) code, where the CPU is known as the host and the GPU

is known as the device [2]. In the program, the programmer writes a kernel which at

launch time will execute the portion of the code which will be carried out on the

GPU [10]. After the kernel is complete, it then returns to the host so that the host can

continue executing the program.

2.3 GPU Programming in MATLAB®

 20

 Since CUDA is compatible with several different programming languages, the

coder can use a language which he or she is familiar with; this decreases the learning

curve associated with parallel programming.

2.3 GPU Programming in MATLAB®

The simulation created and described in Chapters 3 and 4 use standard MATLAB®

commands, as well as the Parallel Computing ToolboxTM and Phased Array

ToolboxTM. These toolboxes allow for the use of a GPU to execute parallel code

within a MATLAB® script and provides algorithms for the design and simulation

of sensor array systems.

2.3.1 Parallel Computing ToolboxTM

The Parallel Computing ToolboxTM allows the user to parallelize MATLAB®

applications and code without having to use CUDA programming [29]. Using this

ToolboxTM, the user can create traditional MATLAB® code and parallel code within

the same simulation.

 A major advantage to this toolbox is not having to use CUDA in conjunction

with a programming language to execute parallel code. Programming in CUDA

requires the user to code in a low level programming language (i.e. C, python) and

to create numerous portions of code, including but not limited to specifying block

size, specifying grid size, allocating/deallocating memory, determine in which type

of memory the algorithm will execute, copy data back and forth from the CPU and

GPU, and creating a kernel which will switch execution from CPU to GPU. Since

MATLAB® is a high-level programming language, all the overhead required to set

up a parallel program is done behind the scenes without user programming. Users

who are already familiar with MATLAB® and its programming language will have

2.3 GPU Programming in MATLAB®

 21

an advantage, as many of the programming commands can be used to manipulate

data once it has been copied to the GPU.

 This strength is also one of the toolbox’s limitations. Using MATLAB®,

programmers are unable to use low-level GPU features, such as shared memory. The

programmer also cannot attempt to manipulate block size or grid size, which could

also increase the overall speedup obtained. The inability to dictate in which memory

space the calculations will occur also limits the speedup obtained. Since shared

memory is approximately 100 times faster than global memory, it is advised to utilize

shared memory as much as possible which is not possible using MATLAB®.

It is possible to combine C and CUDA to utilize shared memory through MEX

files [30]. Through MEX files, programmers can create their own independent C,

C++, or FORTRAN subroutines and then execute them in MATLAB® as if they are

built in MATLAB® functions [31]. Using this capability requires creating the

function in a C, C++, or FORTRAN source file, installing a compatible compiler,

creating a gateway function in one of the source files, and using the MATLAB®

mex command to create a build script which will create a binary MEX file [32]. This

MATLAB® capability was not explored in this thesis.

 Even with MATLAB®’s limitations, it was decided to use it to program and

run the simulations coded within this section. This decision was made primarily

because of MATLAB®’s simplified programming structure. Using shared memory

could potentially increase the speedup obtained, however obtaining the fastest

possible execution speedup was not the main goal of this thesis; successful

implementation of the designed MVDR algorithm along with an overall system

speedup was the main achievements that were sought.

2.3 GPU Programming in MATLAB®

 22

2.3.2 Phased Array ToolboxTM

The Phased array ToolboxTM provides code for the design, simulation, and analysis

of array systems in radar applications [33]. This toolbox allows the user to design

and create phased arrays and analyze their performance using data of their choice

[33].

Using this toolbox provides the user with a straightforward, practical ability

to create and manipulate phased arrays and aspects associated with phased arrays. In

the simulations described in this chapter, this toolbox is used mainly to create the

ULA, the transmit arrays, the received arrays, and the steering vector.

 23

3 Multi-Target Detection using ULA

 To ensure that the developed MVDR algorithm functioned correctly, the first

simulations that were performed used ULAs. A ULA is an array of sensor elements

which are arranged along a line in space with uniform spacing between elements

[34]; a MIMO radar uses ULAs for its transmit and receive arrays. ULAs allow for

a simpler transmit/receive scheme than a MIMO radar simulation, allowing for easier

debugging of the algorithm.

3.1 System Model

The first simulation that was designed used a ULA to detect signals using the MVDR

spectrum; the MATLAB® code can be found in Appendix A Section A.1. A ULA

was chosen as the starting point as the system is much less complex than a full

MIMO radar setup; starting with a simpler system allows for greater ease during the

debugging process. It was solely created to ensure accurate target detection of the

designed MVDR algorithm; decreasing the algorithm’s execution time was not the

primary goal of this simulation creation.

 In this scenario, targets are pre-positioned at an angle relative to zero degrees

from a ULA. Returns are collected from these assumed DOAs and processed using

the MVDR algorithm for target detection; a pictograph of this setup can be found in

Figure 3.1. This figure is for visual purposes only and is not to scale for the

simulation that is described in this section.

3.1 System Model

 24

Figure 3.1 ULA Simulation Diagram

The first step taken to simulate this system is to define the required operating

parameters, create the required ULA, and simulate the systems with static targets.

The chosen operating parameters can be seen in Table 3.1. A basic ULA with 0.5λ

element spacing was created. The frequency associated with each of the sine wave

inputs outlined in Table 3.1 is the carrier wave frequency of each signal.

 Four input sine waves were chosen, all occurring at different frequencies and

direction of arrival angles. The DOA is measured from the center of the ULA, where

the center is considered an angle of zero degrees. A negative degree value would be

on the left side of the array, where a positive degree value would occur on the right

side of the array. The MATLAB® function collectPlaneWave() was used to

simulate the system. This function returns the received signals of the ULA from the

input signals that arrive from a given direction; in this function it is assumed that the

input signals are plane waves [35].

3.2 MVDR Algorithm

 25

Table 3.1 ULA Characteristics

ULA Operating Frequency 300 MHz

Wavelength 0.99m

Input Signals 100 Hz sine wave

200 Hz sine wave

300 Hz sine wave

400 Hz sine wave

Signal DOA -40 degrees

-20 degrees

10 degrees

30 degrees

3.2 MVDR Algorithm

Although MATLAB® has a built in MVDR function (mvdrweights()), a custom

algorithm was developed for use in this simulation. The MATLAB® function returns

the beamformer weights for a phased array; these weights must then be applied to

the array to steer the array response in a specific arrival direction [36]. Since this

thesis is interested in examining the MVDR spectrum for target detection, a custom

MVDR algorithm needed to be developed.

 The MVDR algorithm outlined in Section 2.1.3 and 2.1.4 describes the

MVDR algorithm in general and with respect to MIMO radar. Since this thesis will

focus on the MVDR spectrum, (2.16) will be used as the backbone of the developed

MVDR algorithm.

The steering vector for the ULA is created using a MATLAB® built in

function, phased.SteeringVector() and the covariance matrix of the

received signals is determined. Initially, the cov() function in MATLAB® was used

to determine this matrix. However, it was found that using this function to produce

3.2 MVDR Algorithm

 26

the covariance matrix gave inconsistent data between the CPU and GPU. From the

cov() documentation provided by MATLAB®, the covariance matrix is calculated

using the same equation and algorithm regardless of data type or operating platform

[37]. Due to this, it is assumed that there is a problem within the cov() source code

that causes incorrect calculations or memory overwrites while executing on the GPU.

It is unclear exactly what caused the different covariance matrices, as the cov()

command is a well-tested MATLAB® function; without the ability to drill far

enough into source code to debug this function, it is difficult to determine the exact

cause of the error.

Since the cov() command could not provide fidelity in its calculations, the

covariance matrix was instead calculated by

 𝑹𝑥𝑥 = (𝒙′) ∗ 𝒙 (3.1)

where 𝒙 is a matrix containing the received signal returns, and 𝒙′ is the complex

conjugate transpose of the matrix containing the received signal returns. Once the

steering vector and the covariance matrix have been determined, the algorithm

commences.

 The MVDR algorithm that was designed manipulates the steering vector and

the covariance matrix to evaluate the spectrum for target direction determination. In

MATLAB®, the following code was written to translate (2.16) into code:

 S = inv(transpose(sv)*inv(Rxx)*sv)' (3.2)

where 𝑺 is the MVDR spectrum, sv is the steering vector, transpose(sv) is

the non-conjugate transpose of the steering vector, inv(Rxx) is the inverse of the

covariance matrix, and ' is used to determine the complex conjugate transpose. The

complex conjugate transpose is required to negate the imaginary parts of the complex

numbers within S.

Using (3.2) provided accurate target detection on the CPU, however it was

found that on the GPU, erroneous targets were found. Upon closer review, it was

3.2 MVDR Algorithm

 27

found that the spectrum determined using (3.2) did not produce the same matrix

inverse using the inv() MATLAB® command. The MATLAB® documentation

provided for the inv() command states that inv() performs a lower-upper (LU)

decomposition of the matrix and then uses this decomposition to form a linear system

whose solution is the matrix inverse [38]. A LU decomposition is a factorization; it

is a way of decomposing a matrix into an upper rectangular matrix, U, a lower

rectangular matrix, L, and a permutation matrix, P [39]. These matrices describe the

steps needed to perform Gaussian elimination on the matrix to solve the system of

equations. For the GPU to calculate a different inverse than the CPU, the solution to

the system of equations created and solved by the inv() command must be

different. Unfortunately, it is unknown where the discrepancy between the CPU and

GPU solution exists, and the user is unable to delve deep enough into MATLAB®

source code to pinpoint the exact cause of the error.

With a different solution found on the GPU, a different mathematical solution

for the MVDR spectrum was required. According to (2.7), the covariance matrix can

be written as

 𝑹𝑥𝑥 = 𝑺𝑣𝑹𝑠𝑠𝑺𝑣
𝐻 + 𝑹𝑖+𝑛 (3.3)

where 𝑹𝑠𝑠 is the signal diagonal covariance matrix. 𝑹𝑥𝑥 can be diagonalized as

follows:

 𝑹𝑥𝑥 = 𝑽𝚲𝑽𝐻 (3.4)

where 𝑽 is a unitary matrix containing the eigenvectors, and 𝚲 is a diagonal matrix

containing the corresponding eigenvalues. For high SINR we can assume the

following approximations: 𝚲 ≈ 𝑹𝑠𝑠 and 𝑽 ≈ 𝑺𝑣. It follows that the MVDR spectrum

can be simplified as [40]

3.2 MVDR Algorithm

 28

 𝑺 = 𝒅𝒊𝒂𝒈−𝟏{𝑺𝑣
𝑇𝑅𝑥𝑥

−1𝑺𝑣} (3.5)

and the following code was then used to determine the spectrum in decibels:

 S_dB = -10long(transpose(sc)*(Rxx\sv)) (3.6)

It should be noted that (3.6) is valid only for high SINR. On the other hand, if there

is a strong interference, additional processing, such as the diagonal loading

compensation [41], is required. For this thesis, we assume the receiver treats

interference as noise. The \ operator used in (3.3) executes the mldivide()

command in MATLAB®. This operation solves the following linear system of

equations

 𝑨 ∗ 𝒙 = 𝑩 (3.7)

so that

 𝒙 = 𝑨/𝑩 (3.8)

where A and B are matrices with the same number of rows [42]. The exact algorithm

used to solve this system of equations varies depending on numerous factors:

whether the arrays are dense or sparse, dimensions of the matrices involved, and the

numerical values found along the matrix diagonal [42]. The exact algorithm that

MATLAB® chooses for the execution is hidden from the user as this logic flow is

found within MATLAB®’s source code.

There is an inherent speedup in using (3.6) versus (3.2), as a full matrix

inversion does not need to be calculated. Matrix inversions are computationally

intensive and will slow down a program; by removing the inversion a speedup on

both the CPU and GPU would be seen when comparing (3.6) to (3.2).

(3.6) was then tested using data produced by both the CPU and the GPU. After

careful comparison between CPU and GPU calculations of the spectrum, the results

3.3 Results and Analysis

 29

were found to be identical. When the spectrum was plotted, identical results were

found, indicating that (3.6) was providing the required functionality and operating

correctly

3.3 Results and Analysis

3.3.1 Hardware and Software Specifications

The simulations run and the results obtained within this section were all completed

using the same computer. This was done to ensure that any differences in hardware

across platforms would not have an impact on execution times. Using a different

computer with different hardware could produce a different execution time for each

scenario.

For these simulations, a Microsoft computer running Windows 7 with 32 GB

of random-access memory (RAM) was used to run MATLAB® 2018b. The GPU

used to carry out the parallel algorithm is a NVIDIA GeForce GTX TITAN.

Specifications for this GPU can be found in Table 3.2 [43], [44], [45]. This GPU is

based on the Kepler Architecture [28].

Computing capability is represented by a version number [28]. This number

(in the case of the GPU used in this thesis, 3.5) identifies features that are supported

by the GPU hardware and used at runtime to determine which features are available

to the GPU [28]. GPUs which have the same computing capability number have the

same architecture [28].

3.3 Results and Analysis

 30

Table 3.2 NVIDIA GeForce GTX TITAN Operating Specifications

CUDA Cores 2688

Base Clock 837 MHz

Boost Clock 876 MHz

Memory Clock 6.0 Gbps

Memory Bandwidth 288.4 GB/sec

Computing Capability 3.5

Max Threads/Warp 32

Max Threads/Multiprocessor 2048

Max Blocks/Multiprocessor 16

Max Shared Memory/thread block 48 kilobytes

Max Registers/block 65536

Max X Grid Dimension 232-1

3.3.2 Simulation Results

The simulation design used to obtain the results discussed in this section is described

in Section 3.1. Four targets, placed at -40, -20, 10, and 30 degrees were used in order

to determine accurate target detection.

The first simulation used eight elements in the ULA array. In this simulation,

it was determined that the CPU developed algorithm was successful in detecting all

targets; the MVDR spectrum showing the correct target detection is found in Figure

3.2. The GPU was also able to successfully detect all targets; its MVDR spectrum

can be found in Figure 3.3. In both figures, peaks can be seen at -40, -20, 10 and 30

degrees. These peaks represent each of the targets that were defined at the beginning

of the simulations. Since these peaks occur at the angles where the targets were

defined, it is inferred that the both the serial and parallel algorithms were

programmed correctly and function as desired.

3.3 Results and Analysis

 31

 The mean square error (MSE) was also evaluated between the two MVDR

spectrums calculated on the CPU and the GPU. The overall MSE found for an eight

element ULA system was 1.084 x10-7 and the root MSE was 3.30 x10-4, which is the

average error between both sets of data. Figure 3.4 shows the MSE over all angles

within the spectrum. The MSE fluctuates most around the angles at which the four

targets occur; this is expected since this is where the calculated differences would be

expected to be the greatest. These small errors highlight that the MVDR algorithm

is functioning correctly on the GPU, as we would expect given the visual indication

found in Figure 3.2 and Figure 3.3.

 With the developed algorithm functionality verified, the number of elements

in the ULA was gradually increased. Table 3.3 details the CPU and GPU execution

times of the simulations run with varying numbers of ULA elements, as well as the

execution speedup that was obtained; Figure 3.5 shows a pictographic view of Table

3.3’s result.

 The results that are present from both Table 3.3 and Figure 3.5 are what one

would expect to see from this basic simulation setup. The simulation results show

that the GPU performed the developed MVDR algorithm faster than the CPU version

in all simulations that were run. Since the GPU can execute multiple tasks at once,

it is expected that the GPU would execute the algorithm faster than the GPU. An

anomaly is observed when eight elements are used in the ULA. When eight ULA

elements are simulated, the MVDR algorithm takes approximate 2.6 times longer

than when 16 elements are simulated. This is unexpected, as it is assumed that a

simulation with less elements should be faster. This anomaly can be explained since

the eight element ULA does not have enough data to take advantage of the parallel

capabilities of the GPU. As outlined in Section 2.2.2, GPUs work by maximizing the

efficiency of a massive number of threads; a single thread will have higher latency

on the GPU then the CPU as a result. When the eight element ULA is executed on

the GPU, the number of threads launched and used to carry out the algorithm are not

enough to reduce the latency of each thread so that the execution time is reduced.

3.3 Results and Analysis

 32

With the additional elements in the 16-element array and the increase in data, the

algorithm processing is more efficiently distributed across the GPU cores which

allows for a decreased execution time. The exact number of threads launched in the

eight and 16 element ULA is unable to be determined due to MATLAB® limitations.

It should be noted that the relative efficiency gained by using a parallel

implementation of the MVDR algorithm with a ULA is small regardless of the

chosen element size. The mean speedup found during this analysis was only 1.8

times. In a real-world scenario where a ULA would be used with this algorithm, it

would not be recommended to create and execute a GPU version of the algorithm.

While there is a speedup obtained (1.11 x, 2.7x, 1.78x, 1.87x, and 1.78x), the

execution time decrease is minimal, even when 128 array elements are used. The

small decrease in execution time is negated by the increased effort by the

programmer to create parallel code.

 Even though the code is only written once and can be used by a fielded system

many times, it takes much more effort on the part of the programmer to design,

create, and debug a parallel program. The creation of parallel code is not an intuitive

process and requires a different program flow and programming than serial code. It

is not possible to do a tradition debug process where the programmer can step

through each line of code to verify execution. On the GPU, it is not possible to

guarantee the order of executions. Thread blocks do not execute in sequential order;

their order of execution is random and unpredictable, and it is not possible to view

data in memory once it is on the GPU. Therefore, the only option for debugging

purposes is to create data transfers between the CPU and GPU to verify data. This

creates a higher overhead cost during the development process and more time

requirements from the programmer. It must be evaluated that the higher overhead

and longer programming time is worth the potential speedup obtained. In the case of

the ULA system that is simulated in this chapter, it would not be recommended as

the speed shown in the system is too small (mean speedup of only 1.7x) to warrant

the extra programming overhead.

3.3 Results and Analysis

 33

Figure 3.2 CPU MVDR Spectrum with eight ULA elements

3.3 Results and Analysis

 34

Figure 3.3 GPU MVDR Spectrum with eight ULA elements

3.3 Results and Analysis

 35

Figure 3.4 MSE between CPU and GPU data with a ULA of eight elements

Table 3.3 CPU and GPU execution times and execution speedup for various ULA elements

Number of

Elements

CPU Execution

Time (ms)

GPU Execution

Time (ms)

Execution

Speedup

8 25.772 23.307 1.11x

16 23.837 8.824 2.70x

32 24.356 13.724 1.78x

64 29.988 16.036 1.87x

128 44.51 24.889 1.79x

3.3 Results and Analysis

 36

Figure 3.5 CPU vs GPU Execution Times for various ULA elements

0

5

10

15

20

25

30

35

40

45

50

8 16 32 64 128

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

Number of ULA Elements

CPU vs GPU Execution Time for ULA

CPU Execution Time

GPU Execution Time

 37

4 MIMO Radar Simulation

Since the target acquisition MVDR algorithm was found to function accurately, a

true MIMO radar setup using two moving cars as targets was then simulated. The

MATLAB® code created to run this simulation can be found in Appendix A Section

A.2. The simulation created in this chapter is based off the MATLAB® example

“Increasing Angular Resolution with MIMO Radars” [46]. The radar is a MIMO

radar which is onboard an autonomous vehicle; there are two moving vehicle targets.

The parameters used in this simulation are based off those used for automotive

adaptive cruise control (ACC).

4.1 System Model

 In this simulation, the transmit array on the car transmits a signal. This signal

encounters the targets in the AOI, which then returns an echo to the receive array.

This data is then transferred to the virtual array and processed for target detection. A

visual representation of how this process works using vehicles can be seen in Figure

4.1; a visual representation of this focusing on the radar operation can be seen in

Figure 4.2. In Figure 4.2, the element- by-element transmission scheme that is

described in Section 4.1.4.2 is shown by each transmitting element having its own

beam; in the simulation however, only one transmitting element will transmit at a

time. These figures are for visual purposes only and are not to scale for the simulation

that is described in this section.

4.1 System Model

 38

 Figure 4.1 ACC (reproduced from [47])

Figure 4.2 MIMO Radar ACC (Radar View)

4.1 System Model

 39

In order to accurately simulate the MIMO radar system, there are various system

parameters which must be set. The parameters chosen for this simulation can be

found in Table 4.1. This is MIMO radar setup differs from a multistatic radar, as all

of the data received by the receive array is jointly processed to determine if a target

has been detected; this is done by using the virtual array (discussed in Section

4.1.4.3) [48]. In a multistatic radar, signal processing is carried out by each

independent receive radar in the multistatic system, with a central unit that will then

process the output of each receiver system to determine if a target is present [48].

Table 4.1 MIMO Radar System Operating Parameters

Sampling Frequency 8000 Hz

Operating Frequency 300 MHz

Wavelength (λ) 0.99 m

Transmit Array Spacing 0.5λ

Receive Array spacing 0.5λ

4.1.1 Transmit/Receive/Virtual Array Creation

Once the defining characteristics of the simulation are set, the transmit, receive, and

virtual arrays are created. All arrays are created using the phased.ULA()

MATLAB® function; the code used to create these arrays can be found in Figure

4.3. This function is embedded within the Phased Array ToolboxTM , and will create

a ULA with the desired number of elements and the required array element spacing

[34]. To create the transmit and receive arrays, the number of transmit and receive

elements that is desired is used in phased.ULA() for the desired number of

elements. However, the virtual array is created slightly differently. Since the virtual

array is created by convolving the transmit and array antennas together, the elements

4.1 System Model

 40

of the transmit and receive arrays are multiplied together. The array spacing used for

the virtual array is that of the receive array.

Figure 4.3 Array Creation Code

4.1.2 Radar Sensor Parameters and Setup

Since the simulation in this scenario is not using the collectPlaneWave()

MATLAB® function to simulate targets, it is necessary to define the operating

characteristics of the transmitting and receiver elements. These parameters are

outlined in Table 4.2.

Table 4.2 Radar Sensor Parameters

Transmitter Peak Power 0.001 W

Transmitter Gain 36 dB

Receiver Gain 40 dB

Receiver Sample Rate 8000 Hz

Receiver Noise Figure 4.5 dB

With the transmitter and receiver operating characteristics defined, the

transmit and receive array then need to be set as a radiator and a collector. In a

physical MIMO radar setup, it is possible to transmit and receive simultaneously; an

array can be both a radiator and a collector. However, since this design is completely

software based, it is required to define a separate array as a radiator (the transmit

array) and another array as a collector (the receive array). The designation of the

radiator and collector, along with the required parameters, is done using the

4.1 System Model

 41

phased.Radiator() and phased.Collector() commands available from

the Phased Array ToolboxTM. The code that carries out this step can be seen in Figure

4.4.The virtual array which is created and defined in Section 4.1.1 does not apply to

this section/ Figure 4.4 as the virtual array is not used for receiving the radar returns

from the AOI; the data is transferred to the virtual array once it has been received by

the receive array.

Figure 4.4 Code to Define Radar Sensor Parameters

4.1.3 Radar Target Simulation

With the operating characteristics of the simulation defined, the targets that will be

used in this simulation need to be defined. In this simulation, two moving cars are

used as the targets. The motion of the radar is defined in Table 4.3; the car targets

are defined by the parameters outlined in Table 4.4.

 The cars are then created as a radar target using phased.RadarTarget(),

and their motion is simulated using phased.Platform(). The command

phased.RadarTarget() is used to define how the radar signal will be reflected

from the radar targets [49].The MATLAB® command phased.Platform()

models the translational motion of a platform in space [50]. This platform can be a

target (airplane, vehicle, etc.) or a sonar or radar transmitter or receiver [50]. The

model created assumes that the platform undergoes its motion at a constant velocity

during the simulation; positions and velocities are defined within the global

4.1 System Model

 42

coordinate system [50].With the targets defined and their motion defined, the MIMO

radar can now be simulated. The code used to define position and motion of the

target is illustrated in Figure 4.5.

Table 4.3 Radar Motion Parameters

Radar Initial Position x direction: 0 m

y direction: 0 m

Z direction: 0.5 m

Radar Velocity x direction: 100 km/hr

y direction: 0 km/hr

Z direction: 0 km/hr

Figure 4.5 Code to Define Target Motion

4.1 System Model

 43

Table 4.4 Car Target Parameters

Car 1 Velocity -80 km/h

y direction: 0 km/hr

z direction: 0 km/hr

Azimuth -30 degrees

RCS 20 m2

Starting Position x direction: 34.64m

y direction: -20m

z direction: 0.5m

Distance between car and

autonomous vehicle

sensor

40 m

Car 2 Velocity x direction:96 km/h

y direction: 0 km/hr

z direction: 0 km/hr

Azimuth 10 degrees

RCS 40 m2

Starting Position x direction: 49.24m

y direction: 8.68m

z direction: 0.5m

Distance between car and

autonomous vehicle

sensor

50 m

4.1 System Model

 44

4.1.4 MIMO Radar Simulation

The next step taken in this simulation is to create a radar simulation using the

operating characteristics, radar specifications, and target parameters that were

previously defined.

4.1.4.1 Waveform Creation

Before the radar simulation can be started, it is first required to choose and define

the type of waveform that will be used. In this simulation, a Frequency Modulation

Continuous Wave (FMCW) is used; FMCW is described in more detail in Section

2.1.1. The waveform used in this simulation is created using an embedded

MATLAB® function, helperDesignFMCWWaveform(). The properties of this

FMCW wave can be found in Table 4.5; a snapshot of the wave can be found in

Figure 4.6 and Figure 4.7. The code used to create this waveform is found in Figure

4.8

 Since this simulation uses operating characteristics that are based on vehicle

ACC, a maximum range of 200 m and a range resolution of 1 m was used [51]. The

range resolution of 1 m was chosen to ensure that targets which are separated by 1

m or greater are visible to the system. On a highway, it is not uncommon to have 1

m separation between cars (i.e. cars in different lanes). This is what necessitated the

1 m range resolution.

Generally, the sweep time for a FMCW wave should be approximately five to

six times the round trip time to account for the time needed for the signal to travel

the maximum unambiguous range [51]; in this thesis 5.5 was used. FMCW signals

typically have a wide bandwidth. Setting the sample rate of the wave to twice the

bandwidth (as per the Nyquist theorem) can stress hardware. Although this

simulation is virtual, taking real world hardware limitations into account will allow

for a more real-world result. Therefore, the sample rate of the FMCW signal can be

4.1 System Model

 45

set by considering the maximum beat frequency that the radar would need to detect;

the sample rate of the signal would need to be, at a minimum, twice the maximum

beat frequency. In practicality, the maximum speed of an average car is 230 km/hr

[51]; therefore the maximum beat frequency would be

 𝑓𝑏𝑚𝑎𝑥
= 𝑓𝑟𝑚𝑎𝑥 + 𝑓𝑑𝑚𝑎𝑥

 (4.1)

where 𝑓𝑟𝑚𝑎𝑥 is the beat frequency corresponding to the maximum range and 𝑓𝑑𝑚𝑎𝑥

is the maximum Doppler shift. In this system, 𝑓𝑟𝑚𝑎𝑥 and 𝑓𝑑𝑚𝑎𝑥
 were found using

 fr_max=

range2beat(range_max,sweep_slope,c)
(4.2)

 fd_max = speed2dop(2*v_max,lambda) (4.3)

It was found that 𝑓𝑟𝑚𝑎𝑥 was 27.2 MHz and 𝑓𝑑𝑚𝑎𝑥
 was 127.9 Hz. Therefore,

𝑓𝑏𝑚𝑎𝑥
= 𝑓𝑟𝑚𝑎𝑥 + 𝑓𝑑𝑚𝑎𝑥

= 27.254 MHz

(4.4)

In order to ensure that the Nyquist sampling theorem is respected, the sample

rate of the wave is chosen based on whichever property is larger: twice the beat

frequency or the sweep bandwidth. Since the sweep bandwidth of the signal is 150

MHz, the maximum beat frequency needs to be at least 300 MHz if we are to choose

it. The following code was used to determine which was greater:

fs = max(2*fb_max,bw)

(4.5)

Therefore, the sweep bandwidth was found to be greater than the maximum beat

frequency and was used as the sample rate. The signal that is created is an up-sweep

linear FMCW signal, which is often referred to as a saw tooth [51]

4.1 System Model

 46

Table 4.5 Transmitted FMCW Properties

Maximum Unambiguous Range 200 m

Sample Rate 150 MHz

Sweep Time 7.3 µs

Sweep Bandwidth 150 MHz

Figure 4.6 Transmitted FMCW Wave and Spectrogram

4.1 System Model

 47

Figure 4.7 Transmitted FMCW Wave (zoomed in)

4.1 System Model

 48

Figure 4.8 Code to Create FMCW signal

4.1.4.2 Radar Execution

The radar function execution was carried out using a for loop that was designed to

mimic the process of a physical radar emitting a signal and collecting returns that

have been returned from a target. The for loop that was used to simulate MIMO

radar operation is given in Appendix A. 2. Before the for loop is run, it is first

necessary to define some characteristics of the loop, which are outlined in Table 4.6.

The arrangement of elements is shown in Figure 4.9.

A decimation factor is used to decrease the sample rate; decreasing the

sampling rate will make the for loop much less computationally intensive and

reduce the time required to simulate the radar [52]. Therefore, since a decimation

factor of two was used, the sampling frequency of the radar execution loop is now

4000 Hz since

4.1 System Model

 49

 𝑓𝑠𝑛
=

𝑓𝑠

𝐷
 (4.6)

where 𝑓𝑠𝑛
 is the new sampling frequency, 𝑓𝑠 is the sampling frequency of the radar

system (previous defined as 8000 Hz), and 𝐷 is the decimation factor [46]. The

number of sweeps dictates how many times the FMCW waveform will be emitted.

Several sweeps are required to distinguish the Doppler shift of the moving targets;

within one pulse, the Doppler frequency is indistinguishable from the beat frequency

[51]. Therefore, 64 sweeps were chosen to be conducted. Because there are two

transmit elements in the transmitting array, it is necessary to define which element

will be radiating first; in this simulation element zero will transmit first.

There are six basic steps used to simulate the radar execution and to obtain the

raw data cube that would be received by the physical receive array. These steps are

summarized in Figure 4.11 and consist of updating radar and target position,

transmitting the waveform, toggling the transmit element; propagating the signal and

reflect off the target, dechirping the received radar return, and decimating the return

(to reduce computation requirements). Dechirping is an operation in which the

received signal and transmit signal are nixed together, which allows for the beat

frequency to be measured [51]

The code used to simulate the radar operation is outlined in Figure 4.10. The

radar and target position are updated at the beginning of each loop to ensure that the

movement of both the radar and the target have been updated before the data is

collected. During the first sweep, the radar and car motion are that of the starting

position and velocities previously defined in Section 4.1.2 and Section 4.1.3. The

signal is emitted using element 0 only and then the element is toggled to element 1

so that element 1 will emit the signal during the next sweep, Once the signal has

been emitted, it is propagated through free space and reflected off the targets if they

are present. The data is then extracted from the receive array, dechirped and

4.1 System Model

 50

decimated. To completely update the motion profile of the radar, the radar position,

radar velocity, target position, target velocity, and the target angle of the cars needs

to be updated at the start of each sweep.

Table 4.6 Radar Simulation Loop Operating Parameters

Decimation Factor 2

Number of Sweeps 64

Sampling Frequency 4000 Hz

Starting Transmit Element Element 0

Figure 4.9 Transmit Array Element Arrangement

4.1 System Model

 51

Figure 4.10 Code used to Simulate Radar Operation

4.1 System Model

 52

Figure 4.11 Radar Simulation Flowchart

4.2 Results and Analysis

 53

4.1.4.3 Virtual Array Processing

The raw data that is received by the physical receive array must be processed in order

to associate the returns with the correct transmit element. Since this simulation uses

two transmit elements, the virtual array data can be processed by doing two sweeps

of the data. This is done once the simulation described in Section 4.1.4.2 has been

completed.

 Since there were 64 radar sweeps completed, 32 of these sweeps will

correspond to transmit element zero and 32 belong to transmit element one. Since

the transmitters are toggled midway through the simulation, it is deduced that every

other data cube will belong to the same transmitter, with the odd elements

corresponding to element zero and the even corresponding to element One. This is

counterintuitive to what one might think, however MATLAB® using an indexing

base of one instead of zero. Therefore, to separate the data that is from different

transmitters, the raw data is extracted and placed in an array to collocate the data

from each transmitter together. These two arrays are then catenated together to create

the virtual array data.

4.2 Results and Analysis

With the radar simulated and the virtual array created, the data is ready to be

used with the MVDR algorithm. The algorithm that is used to carry out the

calculation is described in detail in Section 3.2 and is used on both the CPU and

GPU. The hardware setup used to run these simulations is the one outlined in Section

3.3.1.

The MATLAB® code found in Appendix A.2 was run using various

combinations of transmitters and receivers in order to properly analyse its

functionality. For simplicity, the MIMO radar system with only two transmit

elements were simulated. Initially, the system was run with four receive elements to

4.2 Results and Analysis

 54

validate correct functionality of the MVDR algorithm. With the success of a four

receive element system, the number of receivers was increased to eight, 16, 24, 48,

75, 100, and 300 to determine what effect this would have on the GPU speedup and

execution times. All transmit and receive arrays in the simulated systems used 0.5λ

spacing. In a real-world scenario, an ACC system would not have 24, 48, 75, 100 or

300 receiving elements, however in this scenario these numbers are used to

determine how an increased number of receivers will affect the speedups and

execution times.

 The CPU and GPU MVDR spectrum when two transmitters and four receivers

are used can be found in Figure 4.12 and Figure 4.13; the two way beam pattern for

the system can be seen in Figure 4.14. From these figures, it is deduced that the

MIMO radar simulation that was conducted, the virtual array construction, and the

MVDR algorithm is functioning correctly. This was determined since the spectrum

clearly shows two independent targets in the spectrum; the targets found in the

spectrum correctly represent the azimuth of both cars.

 For a two transmitter, four receiver system, it was determined that the overall

MSE was 0.0167 and the root MSE was 0.1294. The MSE for all angles within the

spectrum can be seen in Figure 4.15. Therefore, both data sets are shown to be similar

in value, as expected based on the observed similarity shown in Figure 4.12 and

Figure 4.13. Variations around the MSE are seen to be greatest around the angles at

which the targets occur, -30 and 10 degrees. This is not unsurprising as this would

be where the greatest variation in calculation would occur. The small MSE and root

MSE also confirms the designed MVDR algorithm’s correct functionality on the

GPU, and that a GPU can be integrated with a MIMO radar system.

The data obtained from the simulations run using the MIMO radar system is

summarized in Table 4.7 and Figure 4.16. Table 4.7 details the execution time for

the CPU and GPU execution time for a varying number of receiving elements, as

well as the speed up that was obtained by utilizing the GPU; Figure 4.16 shows the

CPU and GPU execution times pictographically. From this table and this figure, it is

4.2 Results and Analysis

 55

shown that the GPU provides a significant benefit when the complete MIMO radar

setup is simulated- all scenarios showed a speedup achieved when using the GPU.

The speedups obtained were 5.04x, 4.97x, 5.69x, 6.26x, 6.00x, 5.96x, 7.26x, and

7.71x.

The execution speedup highlighted in Table 4.7 shows that as the number of

receivers is increased the overall speedup obtained also increases. This is an

expected result, since large data sets will take longer to execute serially than in a

parallel operation. The strength of the GPU’s parallel computing capability is

highlighted once the receivers are increased to numbers in the hundreds (i.e. 100 and

300), as the overall speed up of the MVDR algorithm is increased to 7.26x and 7.71x.

It can be extrapolated that the overall speedup in the system would continue to

increase as the number of receivers in the system also increases. The system in this

thesis is more complex than a ULA system, but not as complex as those commonly

used in MIMO communication systems or much larger MIMO radar systems

(tens/hundreds of transmitters and/or receivers). It is expected that as the number of

transmitters and receivers were to increase, the efficiency obtained in using a GPU

would be much greater than those obtained in this thesis.

There are limitations that come with using MATLAB® as the programming

platform. While MATLAB® does make it much less time intensive to program

parallel code compared to CUDA, there is a design trade off that occurs- the

programmer does not have the ability to specify memory location or dictate which

type of memory will be used for the mathematical operations. Since shared memory

is much faster than global, it can be inferred that if the programmer was able to

exploit shared memory for the MVDR algorithm, the overall speedup would be

greater. The faster execution time associated with shared memory is a well-

documented property and once that programmers are advised to exploit [2], [28]. In

this simulation, the speedup obtained is still evident, however with a bigger, more

complex system (thousands/millions of transmit/received elements instead of the

hundreds in this system at its greatest) utilizing shared memory would allow for an

4.2 Results and Analysis

 56

even greater advantage. Although the storage space available for shared memory is

small (kilobytes on average), the memory access time is small and would require

many less reads and writes from global memory. A read/write would be required

from global into shared to utilize shared memory and then a single write would be

needed to transfer the data back to global. If global memory is strictly used, many

more read/writes are required to manipulate the data and then store the result. The

grid size, block size, and number of threads also cannot be dictated at run time.

Depending on the data and computations to be carried out, changing the grid size,

block size, and number of executed threads could also decrease execution time.

Unfortunately, neither of these possibilities were unable to be explored due to

MATLAB®’s limitations.

Overall, this simulation was a success and has proven that a simulated MIMO

radar system can be successfully integrated with a GPU. This simulation was

completely software based; it shows a promising result towards practical

applications with hardware and a physical radar setup.

4.2 Results and Analysis

 57

Figure 4.12 CPU MVDR Spectrum for two transmitting elements and four receiving

elements

4.2 Results and Analysis

 58

Figure 4.13 GPU MVDR Spectrum for two transmitting elements and four receiving

elements

4.2 Results and Analysis

 59

Figure 4.14 Two Way Beam Pattern for Four Receivers

4.2 Results and Analysis

 60

Figure 4.15 MSE for Two Transmit Elements and Four Receive Elements

Table 4.7 CPU and GPU Execution Time and Speedup for Two Transmit Elements

Number of

Receivers

CPU Execution

Time (ms)

GPU Execution

Time (ms)

Speedup

4 269.68 53.57 5.04

8 270.68 54.46 4.97

16 343.704 60.44 5.69

24 387.34 61.92 6.26

48 529.22 88.30 6.00

75 703.60 118.13 5.96

100 890.50 122.78 7.26

300 2427.50 314.66 7.71

4.2 Results and Analysis

 61

Figure 4.16 CPU vs GPU Execution Time for Two Transmitters

0

500

1000

1500

2000

2500

3000

4 8 16 24 48 75 100 300

Ti
m

e
(m

s)

Number of Receivers

CPU and GPU Execution Time with Two
Transmitters

CPU Execution Time

GPU Execution Time

5.1 Summary

 62

5 Conclusion

5.1 Summary

As discussed in Chapter 2, a MIMO radar can transmit and receive multiple signals

at once. Once the return signals have been collected by the receiver, extensive signal

processing is required to determine if a target has been detected. A MIMO radar

offers many advantages; however, it is computationally intensive. Historically, this

signal processing has been done using CPUs. There is much room left to explore

the GPU’s computing capabilities and applications to current algorithms. A GPU

contains thousands of cores and can be programmed to execute parallel code which

decreases execution time for computationally intensive programs in comparison to a

CPU. Most of the research papers and documentation read and analysed over the

course of this thesis found little research has been done into the use of GPUs with

MIMO radar systems. Most of the research that has been published uses GPU with

traditional SISO radar or MIMO in a communications application. The lack of

integration of a GPU with a MIMO radar is a significant gap that should be more

thoroughly explored.

Chapter 3 outlined the design of a ULA scenario which was used to determine

if the developed MVDR algorithm was functioning correctly. Its simulation

environment was explained, and specialty toolboxes required for the simulation were

examined. The results for this simulation were presented, along with the hardware

used to run the simulations. It was found that the MVDR algorithm’s functionality

was as desired, as it was able to detect the four targets used. While this design

showed a speedup when the GPU was used, it is not recommended to combine ULAs

and GPUs in practice, considering the simplicity of the system and the complexity

involved with parallel programming.

5.2 Conclusions

 63

 Chapter 4 described the design of the simulated MIMO radar and its results.

In this chapter, a MIMO radar is simulated based on a radar system that would be

embedded on a moving car for ACC; two moving cars are used as targets. The results

that were obtained are analysed, and it was found that GPUs can successfully be used

to speedup beamforming calculations for a MIMO radar.

5.2 Conclusions

The hypothesis for this thesis was that it would be possible to design and

develop a serial and parallel MVDR algorithm that would carry out target detection

for a MIMO radar system. The designed MVDR algorithm was tested using two

different systems, a ULA system and a MIMO radar system.

The designed MVDR algorithm was first tested within a ULA since the system

is simple and allows for easy debugging of the MVDR algorithm. The goal of this

test environment was to validate the functionality of the MVDR algorithm;

decreasing execution time was not a priority for this system. The initial debugging

of the algorithm found that two of MATLAB®’s built in functions, cov() and

inv() did not function correctly on the GPU. Unfortunately, due to MATLAB®’s

high-level programming language and inability to access source code meant that the

exact cause of incorrect functionality could be verified. The equation to calculate the

MVDR power spectrum was changed and used matrix diagonalization. Using

diagonalization presents a limitation to the algorithm, as it will not function correctly

if there is interference present within the system. With this change, the MVDR

algorithm was able to resolve all four targets which were present within the system.

It was also found that this system provided different speedups for different number

of elements within the ULA: 1.11x for eight elements, 2.70x for 16 elements, 1.78x

for 32 elements, 1.87 for 64 elements, and 1.79x for 128 elements. This scenario

confirms what was initially suspected, that it is possible to parallelize the MVDR

algorithm and use it for successful target detection.

5.3 Contributions

 64

Once the designed MVDR algorithm was tested, it was then implemented within a

MIMO radar system. The system that was designed used an ACC system on board

an autonomous car as the basis for all radar and target parameters; the waveform

used for the transmitted was an FMCW wave that used TDM to achieve

orthogonality. This system was simulated using two transmitters and four, eight, 16,

24, 48, 75, 100, and 300 receivers. All these combinations were successful at

resolving the two moving targets that were within the system and produced speedups

of 5.04x, 4.97x, 5.69x, 6.26x, 6.00x, 5.96x, 7.26x, and 7.71x respectively. This

simulation proved that not only can the MVDR algorithm be parallelized and

produce a system speedup, it is also possible to integrate a GPU within a MIMO

radar system. In conclusion, a GPU can reduce the time required to carry out the

MVDR beamforming algorithm, as demonstrated in the ULA and MIMO radar

system simulations. While MATLAB® allows for an easier coding experience, it

does provide the programmer with limitations that could impact the observed overall

speedup. If achieving the fastest possible execution time is of highest importance,

the programmer should opt to use CUDA or MEX files to have the greatest possible

influence over programming; if ease of programming is a higher priority, then

MATLAB® is an acceptable software program to use.

5.3 Contributions

The most important contributions of this work are:

a) the design and implementation of a serial and parallel version of the MVDR

algorithm;

b) the implementation of a MIMO radar system coded in MATLAB® using

the developed MVDR algorithm to accurately detect both stationary and

moving targets; and

c) validation that a GPU can be successfully integrated into a MIMO radar

simulation.

5.4 Future Work

 65

As a result of the work conducted in this thesis, it has been proven that a

simulated MIMO radar system can be successfully integrated with a GPU, and that

the GPU will reduce the execution time required to carry out beamforming.

5.4 Future Work

There are many areas for research in MIMO radar and GPUs. Modifying the

simulation run in Section 3.3 to allow for different input waveforms should be

implemented. This change would allow for the study of how different waveforms

impact GPU performance and the overall execution time of the system.

 The equation used to carry out the MVDR algorithm should be investigated

further to find a solution which does not involve matrix diagonalization since this

limits the systems that the designed MVDR algorithm can be integrated in. It should

also be investigated further as to the exact reason why well tested MATLAB®

commands, such as cov() and inv() have incorrect functionality on a GPU and

ways to mitigate this issue.

 The code in Section 3.3 should be made adaptive to allow for an increase

beyond two transmitting elements; different targets should also be used. With more

transmitting elements and various targets (stationary and moving) will provide a

more holistic picture of the benefits of using GPUs in MIMO radar processing.

 Lastly, the designed algorithm and a GPU should be combined with a physical

MIMO radar. Moving the developed algorithm from a purely software simulation

would increase its robustness and allow for real world application validation.

 66

Bibliography

[1] M. Wu, Y. Sun, and J. R. Cavallaro, “Reconfigurable Real-time MIMO

Detector on GPU,” presented at the 43rd Asilomar Conf. Signals, Systems,

and Computers, Pacific Grove, CA, USA, 2009, pp. 690–694.

[2] D. B. Kirk and W. W. Hwu, Programming Massively Parallel Processors,

Third. Cambridge, MA, United State: Elsevier, 2017.

[3] J. Bathurst, “Multiple Input Multiple Output (MIMO) radar detection of

moving targets on the ocean surface,” MASc Thesis, Division of Graduate

Studies, Royal Military College of Canada, Kingston, ON, 2017.

[4] R. S. Perdana, B. Sitohang, and A. B. Suksmono, “A survey of graphics

processing unit (GPU) utilization for radar signal and data processing system,”

in 2017 6th International Conference on Electrical Engineering and

Informatics (ICEEI), Langkawi, 2017, pp. 1–6.

[5] Y. Liu, X. Wan, and X. Sun, “GPU parallel acceleration of target detection in

passive radar system,” in 2016 CIE International Conference on Radar

(RADAR), Guangzhou, China, 2016, pp. 1–4.

[6] T. Nylanden, J. Janhunen, O. Silven, and M. Juntti, “A GPU implementation

for two MIMO-OFDM detectors,” in 2010 International Conference on

Embedded Computer Systems: Architectures, Modeling and Simulation,

Samos, Greece, 2010, pp. 293–300.

[7] C. M. Jozsa, F. Domene, G. Pinero, A. Gonzalez, and A. M. Vidal, “Efficient

GPU implementation of Lattice-Reduction-Aided Multiuser Precoding,” in

10th ISWCS, Ilmenau, Germany, 2013, pp. 1–5.

[8] T. Chen and H. Leib, “GPU acceleration for fixed complexity sphere decoder

in large MIMO uplink systems,” in 2015 IEEE 28th Canadian Conference on

Electrical and Computer Engineering (CCECE), Halifax, NS, Canada, 2015,

pp. 771–777.

Conclusion

 67

[9] Y. Sun and J. R. Cavallaro, “High throughput VLSI architecture for soft-

output mimo detection based on a greedy graph algorithm,” in Proceedings of

the 19th ACM Great Lakes symposium on VLSI - GLSVLSI ’09, Boston Area,

MA, USA, 2009, p. 445.

[10] S. Roger, C. Ramiro, A. Gonzalez, V. Almenar, and A. M. Vidal, “Fully

Parallel GPU Implementation of a Fixed-Complexity Soft-Output MIMO

Detector,” IEEE Transactions on Vehicular Technology, vol. 61, no. 8, pp.

3796–3800, Oct. 2012.

[11] J. Li and P. Stoica, “MIMO Radar: Concepts, Performance, Enhancements,

and Applications,” in MIMO Radar Signal Processing, 1st ed., Hoboken, NJ,

United States: John Wiley and Sons, 2009, pp. 65–71.

[12] F. Jameel, Faisal, M. A. A. Haider, and A. A. Butt, “Massive MIMO: A survey

of recent advances, research issues and future directions,” in 2017

International Symposium on Recent Advances in Electrical Engineering

(RAEE), Islamabad, 2017, pp. 1–6.

[13] J. J. M. de Wit, W. L. van Rossum, and A. J. de Jong, “Orthogonal waveforms

for FMCW MIMO radar,” in 2011 IEEE RadarCon (RADAR), 2011, pp. 686–

691.

[14] I. Bekkerman and J. Tabrikian, “Target Detection and Localization Using

MIMO Radars and Sonars,” IEEE Transactions on Signal Processing, vol. 54,

no. 10, pp. 3873–3883, Oct. 2006.

[15] J. O. Hinz and U. Zolzer, “A MIMO FMCW Radar Approach to HFSWR,”

Advances Radio Science, vol. 9, pp. 159–163.

[16] A. Ganis et al., “A Portable 3-D Imaging FMCW MIMO Radar Demonstrator

With a 24×24 Antenna Array for Medium-Range Applications,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 56, no. 1, pp. 298–312,

Jan. 2018.

[17] Z. Fang, L. Lou, C. Yang, K. Tang, and Y. Zheng, “A Ku-band FMCW Radar

on Chip for Wireless Micro Physiological Signal Monitoring by

Interferometry Phase Analysis,” in 2018 IEEE International Symposium on

Circuits and Systems (ISCAS), 2018, pp. 1–4.

[18] P. Sévigny, P. W. Moo, and T. Laneve, “Experimental Verification of

Multiple-input Multiple Output (MIMO) Beamforming Capabilities Using a

Conclusion

 68

Time-division Coherent MIMO Radar,” IET Radar Sonar Navig., p. 62, Aug.

2015.

[19] E. Brookner, “MIMO radars demystified — and their conventional

equivalents,” in 2016 IEEE International Symposium on Phased Array

Systems and Technology (PAST), Waltham, MA, USA, 2016, pp. 1–10.

[20] E. Fishler, A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and R. Valenzuela,

“MIMO radar: an idea whose time has come,” in Proceedings of the 2004

IEEE Radar Conference (IEEE Cat. No.04CH37509), Philadelphia, PA, USA,

2004, pp. 71–78.

[21] S. A. Vorobyov, “Principles of minimum variance robust adaptive

beamforming design,” Signal Processing, vol. 93, no. 12, pp. 3264–3277,

Dec. 2013.

[22] J. Capon, “High- Resolution Frequency-Wavenumber Spectrum Analysis,”

Proceedings of the IEEE, vol. 57, no. 57, No. 8, pp. 1408–1418, Aug. 1969.

[23] J. Sanson, A. Gameiro, D. Castanheira, and P. P. Monteiro, “Comparison of

DoA Algorithms for MIMO OFDM Radar,” in 2018 15th European Radar

Conference (EuRAD), 2018, pp. 226–229.

[24] J. Li and P. Stoica, Eds., Robust adaptive beamforming / edited by Jian Li and

Petre Stoica. Hoboken, NJ: John Wiley, 2006.

[25] S. Ahmed and M.-S. Alouini, “Low complexity receiver design for MIMO-

radar,” in 2012 IEEE Globecom Workshops, Anaheim, CA, USA, 2012, pp.

1394–1398.

[26] Y. Zhang and J. Wang, “Transmit-receive beamforming for MIMO radar,” in

2010 2nd International Conference on Signal Processing Systems, 2010, vol.

3, pp. V3-803-V3-806.

[27] Y. Boers and J. N. Driessen, “Multitarget particle filter track before detect

application,” IEE Proceedings - Radar, Sonar and Navigation, vol. 151, no.

6, p. 351, 2004.

[28] NVIDIA, NVIDIA CUDA C Programming Guide. Santa Clara, CA, 2012.

[29] The MathWorks, Inc., “Parallel Computing Toolbox User’s Guide.” 2019.

[30] “Accessing Advanced CUDA Features Using MEX - MATLAB & Simulink

Example.” [Online]. Available: https://www.mathworks.com/help/parallel-

Conclusion

 69

computing/examples/accessing-advanced-cuda-features-using-mex.html.

[Accessed: 13-Aug-2019].

[31] “Introducing MEX Files - MATLAB & Simulink.” [Online]. Available:

https://www.mathworks.com/help/matlab/matlab_external/introducing-mex-

files.html. [Accessed: 13-Aug-2019].

[32] “What You Need to Build MEX Files - MATLAB & Simulink.” [Online].

Available: https://www.mathworks.com/help/matlab/matlab_external/what-

you-need-to-build-mex-files.html. [Accessed: 14-Aug-2019].

[33] The MathWorks, Inc., “Phased Array System Toolbox Getting Started

Guide.” .

[34] “Uniform linear array - MATLAB.” [Online]. Available:

https://www.mathworks.com/help/phased/ref/phased.ula-system-

object.html#bso1s4m-2. [Accessed: 08-Jul-2019].

[35] “Simulate received plane waves - MATLAB.” [Online]. Available:

https://www.mathworks.com/help/phased/ref/phased.ula.collectplanewave.ht

ml. [Accessed: 19-Jun-2019].

[36] “Minimum variance distortionless response (MVDR) beamformer weights -

MATLAB mvdrweights.” [Online]. Available:

https://www.mathworks.com/help/phased/ref/mvdrweights.html. [Accessed:

19-Jun-2019].

[37] “Covariance - MATLAB cov.” [Online]. Available:

https://www.mathworks.com/help/matlab/ref/cov.html. [Accessed: 21-Sep-

2019].

[38] “Matrix inverse - MATLAB inv.” [Online]. Available:

https://www.mathworks.com/help/matlab/ref/inv.html?s_tid=doc_ta.

[Accessed: 20-Sep-2019].

[39] “LU matrix factorization - MATLAB lu.” [Online]. Available:

https://www.mathworks.com/help/matlab/ref/lu.html?searchHighlight=lu%2

0decomposition&s_tid=doc_srchtitle. [Accessed: 20-Sep-2019].

[40] J. Benesty, J. Chen, and Y. Huang, “A Generalized MVDR Spectrum,” IEEE

Signal Processing Letters, vol. 12, no. 12, Dec. 2005.

Conclusion

 70

[41] Y. Xiao, J. Yin, H. Qi, H. Yin, and G. Hua, “MVDR Algorithm Based on

Estimated Diagonal Loading for Beamforming,” Mathematical Problems in

Engineering, 2017.

[42] “Solve systems of linear equations Ax = B for x - MATLAB mldivide \.”

[Online]. Available:

https://www.mathworks.com/help/matlab/ref/mldivide.html. [Accessed: 20-

Sep-2019].

[43] “GeForce GTX TITAN | Specifications | GeForce.” [Online]. Available:

https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-

titan/specifications. [Accessed: 13-Jun-2019].

[44] “CUDA GPUs,” NVIDIA Developer, 04-Jun-2012. [Online]. Available:

https://developer.nvidia.com/cuda-gpus. [Accessed: 14-Jun-2019].

[45] NVIDIA, “NVIDIA Kepler GK110 GK210 Architecture White Paper.” .

[46] “Increasing Angular Resolution with MIMO Radars - MATLAB &

Simulink.” [Online]. Available:

https://www.mathworks.com/help/phased/examples/increasing-angular-

resolution-with-mimo-radars.html. [Accessed: 21-Aug-2019].

[47] “Adaptive cruise control,” Wikipedia. 05-Aug-2019.

[48] N. Pandey, “Beamforming in MIMO Radar,” National Institute of Technology

Rourkela, Rourkela, India, 2014.

[49] “Radar target - MATLAB.” [Online]. Available:

https://www.mathworks.com/help/phased/ref/phased.radartarget-system-

object.html?searchHighlight=phased.RadarTarget&s_tid=doc_srchtitle.

[Accessed: 21-Aug-2019].

[50] “Model platform motion - MATLAB.” [Online]. Available:

https://www.mathworks.com/help/phased/ref/phased.platform-system-

object.html?searchHighlight=phased.Platform&s_tid=doc_srchtitle.

[Accessed: 21-Aug-2019].

[51] “Automotive Adaptive Cruise Control Using FMCW Technology - MATLAB

& Simulink.” [Online]. Available:

https://www.mathworks.com/help/phased/examples/automotive-adaptive-

cruise-control-using-fmcw-technology.html. [Accessed: 21-Aug-2019].

Conclusion

 71

[52] G. J. Dolecek and J. C. Suarez, “Improving alias rejection in comb decimation

filters for odd decimation factors,” in 2017 IEEE 60th International Midwest

Symposium on Circuits and Systems (MWSCAS), 2017, pp. 397–400.

 72

A MATLAB® Code

A.1 ULA Simulation Code

%%%

%%%%%%%%%%%%%%%%%%

%

%This file creates a ULA simulation with CPU/GPU

implementation of

%MVDR beamforming.

%

% This file is structured in the following format

% a. Define signals and target directions

% b. Create the ULA and simulate the system using

plane waves

% c. CPU version of MVDR beamforming is carried out

% d. GPU Version of MVDR beamforming is carried out

%

%NOTE: The MVDR beamforming used in this file is hand

coded for easier

%comparison between CPU/GPU. This version uses the

diagonalization of a

%matrix instead of determining a matrix inverse to

avoid the issues that

%arise with unstable inversion.

%

%%%

%%%%%%%%%%%%%%%%%%%

clearvars;

close all;

clear all;

%sampling frequency

A.1. ULA Simulation Code

 73

fs = 8000;

t = (0:1/fs:1).';

%signals

x1 = cos(2*pi*t*100);

x2 = cos(2*pi*t*200);

x3 = cos(2*pi*t*300);

x4 = cos(2*pi*t*600);

sig_dir = [-40 -20 10 30]

N=256; %number of elements in the array

fc = 300.0e6;

c = physconst('LightSpeed');

lambda = c/fc;

%create array

array =

phased.ULA('NumElements',N,'ElementSpacing',lambda/2);

%simulate received signals using signals above

x = collectPlaneWave(array,[x1 x2 x3 x4],sig_dir,fc);

%%CPU MVDR COMPUTATION

% Compute the MVDR spatial spectrum

steervec = phased.SteeringVector('SensorArray',array);

teta=linspace(-45,45,1000);

sv = steervec(fc,teta);

Rxx=transpose(x)*x;

%start the MVDR algorithm and record execution time

tic;

S=diag(transpose(sv)*(Rxx\sv));

toc;

S_dB=-10*log10(S);

%plot specturm

figure;

plot(teta,S_dB);

title('CPU Version- MVDR Spectrum');

xlabel('Angle(degrees)');

ylabel('Power (dB)');

A.2. MIMO Radar Simulation Code

 74

%%GPU MVDR COMPUTATION

%transfer required data to GPU

sv_parallel = gpuArray(sv);

Rxx_parallel = gpuArray(Rxx);

%carry out MVDR algorithm on GPU

tic;

S_parallel=diag(transpose(sv_parallel)*(Rxx_parallel\sv

_parallel));

toc;

%transfer data back to Matlab workspace

mvdr_spectrum_gpu = gather(S_parallel);

mvdr_spectrum_gpu_dB=-

10*log10(abs((mvdr_spectrum_gpu)));

%plot specturm

figure;

plot(teta,mvdr_spectrum_gpu_dB);

title('GPU Version- MVDR Spectrum');

xlabel('Angle(degrees)');

ylabel('Power (dB)');

A.2 MIMO Radar Simulation Code

%%%

%%%%%%%%%%%%%%%%%%

%

%This file creates a MIMO Radar simulation with CPU/GPU

implementation of

%MVDR beamforming.

%

% This file is structured in the following format

% a. operating characteristics of the radar are set

% b. transmitting and receiving arrays of the radar

are created

% c. CPU version of MVDR beamforming is carried out

% d. GPU Version of MVDR beamforming is carried out

%

A.2. MIMO Radar Simulation Code

 75

%Radar operation: This file simulates a TDM MIMO radar.

The TX array will

%"transmit" a signal which will then bounce off a

target and be received

%by the RX array. This data is then used to construct

the virtual array,

%which then carries out the MVDR algorithm that was

validated in the .m

%file MIMO_MVDR_matrix_diagonalization.m

%

%NOTE: The MVDR beamforming used in this file is hand

coded for easier

%comparison between CPU/GPU. This version uses the

diagonalization of a

%matrix instead of determining a matrix inverse to

avoid the issues that

%arise with unstable inversion.

%

%%%

%%%%%%%%%%%%%%%%%%%

close all;

clear all;

%DEFINE OPERATING PARAMETERS

fs = 8000;

fc = 300.0e6;

t = (0:1/fs:1).';

c = physconst('LightSpeed');

lambda =c/fc;

teta = linspace(-90,90,5000);

waveform = helperDesignFMCWWaveform(c,lambda);

fs = waveform.SampleRate;

%CREATE TX AND RX ARRAYS

%number of transmitters

Nt=2;

%number of receivers

Nr=4;

A.2. MIMO Radar Simulation Code

 76

%create array spacing (2lamda for Tx, 0.5lamda for dr)

% dt = Nr*lambda/2;

dt =lambda/2;

dr = lambda/2;

%create arrays

tx_array = phased.ULA(Nt,dt);

rx_array = phased.ULA(Nr,dr);

virtual_array = phased.ULA(Nt*Nr, dr);

%DEFINE RADAR SENSOR PARAMETERS

transmitter =

phased.Transmitter('PeakPower',0.001,'Gain',36);

receiver =

phased.ReceiverPreamp('Gain',40,'NoiseFigure',4.5,'Samp

leRate',fs);

tx_radiator =

phased.Radiator('Sensor',tx_array,'OperatingFrequency',

fc,...

 'PropagationSpeed',c,'WeightsInputPort',true);

rx_collector =

phased.Collector('Sensor',rx_array,'OperatingFrequency'

,fc,...

 'PropagationSpeed',c);

%DEFINE POSITION AND MOTION OF TARGET

%target used in this simulation is an ego vehicle and 2

cars

radar_speed = 100*1000/3600; % speed 100 km/h

radarmotion =

phased.Platform('InitialPosition',[0;0;0.5],'Velocity',

[radar_speed;0;0]);

car_dist = [40 50]; % Distance between

sensor and cars (meters)

car_speed = [-80 96]*1000/3600; % km/h -> m/s

A.2. MIMO Radar Simulation Code

 77

car_az = [-30 10];

car_rcs = [20 40];

car_pos =

[car_dist.*cosd(car_az);car_dist.*sind(car_az);0.5

0.5];

cars =

phased.RadarTarget('MeanRCS',car_rcs,'PropagationSpeed'

,c,'OperatingFrequency',fc);

carmotion =

phased.Platform('InitialPosition',car_pos,'Velocity',[c

ar_speed;0 0;0 0]);

%DEFINE PROPOGATION MODEL

%assumedto be free space

channel = phased.FreeSpace('PropagationSpeed',c,...

'OperatingFrequency',fc,'SampleRate',fs,'TwoWayPropagat

ion',true);

%SIMULATE THE SYSTEM

rng(2017);

Nsweep = 64;

Dn = 2; % Decimation factor

fs = fs/Dn;

xr = complex(zeros(fs*waveform.SweepTime,Nr,Nsweep));

w0=[0;1]; % weights to enable/disable radiating

elements

for m = 1:Nsweep

 % Update radar and target positions

 [radar_pos,radar_vel] =

radarmotion(waveform.SweepTime);

 [tgt_pos,tgt_vel] = carmotion(waveform.SweepTime);

 [~,tgt_ang] = rangeangle(tgt_pos,radar_pos);

 % Transmit FMCW waveform

 sig = waveform();

 txsig = transmitter(sig);

A.2. MIMO Radar Simulation Code

 78

 % Toggle transmit element

 w0 = 1-w0;

 txsig = tx_radiator(txsig,tgt_ang,w0);

 % Propagate the signal and reflect off the target

 txsig =

channel(txsig,radar_pos,tgt_pos,radar_vel,tgt_vel);

 txsig = cars(txsig);

 % Dechirp the received radar return

 rxsig = rx_collector(txsig,tgt_ang);

 rxsig = receiver(rxsig);

 dechirpsig = dechirp(rxsig,sig);

 % Decimate the return to reduce computation

requirements

 for n = size(xr,2):-1:1

 xr(:,n,m) = decimate(dechirpsig(:,n),Dn,'FIR');

 end

end

%VIRTUAL ARRAY PROCESSING

%data cube received by the physical RX array but be

processed to form the

%virtual array cube. Since the measurements taken

correspond to 2 TX

%antennas, elements can be recovered from 2 consecutive

sweeps

Nvsweep = Nsweep/2;

xr1 = xr(:,:,1:2:end); %returns corresponsing to the

1st TX element

xr2 = xr(:,:,2:2:end); %returns corresponding to 2nd TX

element

%create virtual array

xrv = cat(2, xr1,xr2);

%remove the third dimension of xrv since it's not

required for this simulation

xrv = xrv(:,:,1);

A.2. MIMO Radar Simulation Code

 79

%%CPU MVDR COMPUTATION

%create sterring vector to hold phase differences

between elements in the

%virtual array

%

steervec =

phased.SteeringVector('SensorArray',virtual_array);

sv = steervec(fc,teta);

Rxx = transpose(xrv)*xrv;

%carry out MVDR Algorithm

tic %start timer

S=diag(transpose(sv)*(Rxx\sv));

toc %stop timer

S_dB=-10*log10(S);

%PLOT SPECTRUM

figure;

plot(teta,S_dB);

title('CPU Version- MVDR Spectrum');

xlabel('Angle(degrees)');

ylabel('Power (dB)');

%%%

%%%%%%%%%%%%%%%%%%%%

%%GPU MVDR CALCULATION

%copy necessary data to the GPU

sv_parallel = gpuArray(sv);

Rxx_parallel = gpuArray(Rxx);

%carry out MVDR algorithm

tic %start timer

S_parallel=diag(transpose(sv_parallel)*(Rxx_parallel\sv

_parallel));

%S_parallel=diag(S_parallel);

toc %stop timer

A.2. MIMO Radar Simulation Code

 80

%TRANSFER DATA BACK TO MATLAB WORKSPACE

mvdr_spectrum_gpu = gather(S_parallel);

mvdr_spectrum_gpu_dB=-

10*log10(abs((mvdr_spectrum_gpu)));

%PLOT SPECTRUM

figure;

plot(teta,mvdr_spectrum_gpu_dB);

title ('GPU Version- MVDR Spectrum');

xlabel('Angle(degrees)');

ylabel('Power (dB)');

function wav = helperDesignFMCWWaveform(c,lambda)

% This function is provided by Mathworks as part of

their MIMO Radar

% Virtual Array Example file to simulate a FMCW

waveform. It was used in

% this simulation to create the same wave.

% Copyright 2017 The MathWorks, Inc.

range_max = 200;

tm = 5.5*range2time(range_max,c);

range_res = 1;

bw = range2bw(range_res,c);

sweep_slope = bw/tm;

fr_max = range2beat(range_max,sweep_slope,c);

v_max = 230*1000/3600;

fd_max = speed2dop(2*v_max,lambda);

fb_max = fr_max+fd_max;

fs = max(2*fb_max,bw);

wav =

phased.FMCWWaveform('SweepTime',tm,'SweepBandwidth',bw,

...

 'SampleRate',fs);

end

