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Abstract

Connerty, Thomas Robert. M.A.Sc. Royal Military College of Canada, September
2014. Optimal Trajectories for Autonomous Thermal Soaring. Supervised by Ruben
E. Perez, B.Eng., M.A.Sc., Ph.D., P.Eng., Assistant Professor.

Autonomous thermal soaring aircraft exploit the use of naturally occurring updrafts
to increase their overall energy state. Thermal soaring strategies for these types of
aircraft have been developed and refined to increase aircraft range and/or endurance
performance through pilot flying experience and an increased knowledge of gliding
flight theory. Current autopilot development for thermal centering control makes use
of analytical expressions or accepted soaring techniques for their implementation.
The use of trajectory optimization to analyze thermal centering strategies has been
very limited given the numerical difficulties encountered when analyzing the problem
in a Cartesian coordinate system. In this study, the generalized aircraft equations of
motion are restructured in cylindrical coordinates, to reduce numerical computational
issues arising during optimization, and are augmented with wind component forces.
To generate optimal trajectories for autonomous thermal soaring, the optimal control
problem is defined as maximizing either the aircraft’s instantaneous or final specific
energy state and the trajectories are solved using a direct collocation method using
nonlinear programming. Optimal flight trajectories are presented for a small au-
tonomous aircraft operating in multiple thermal profiles of varying strengths. These
trajectories are compared to the derived analytic expressions and a thermal centering
strategy for controller development is presented. As an application, optimal flight
trajectories are presented that maximize thermal energy extraction whilst providing
persistent aerial surveillance coverage for a variety of thermal and target locations.

Keywords: Aerial Surveillance, Autonomous Soaring, Direct Collocation, Feed-
back Control, Optimal Trajectories, Target Acquisition, Thermals, Thermal Center-
ing, Thermal Soaring
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Résumé

Connerty, Thomas Robert. M.A.Sc. Collège militaire royal du Canada, Septem-
bre 2014. Trajectoires optimales en vol plané autonome utilisant des ascendants
thermiques. Thèse dirigée par Ruben E. Perez, B.Eng., M.A.Sc., Ph.D., P.Eng., Pro-
fesseur adjoint.

Le vol à voile autonome utilise le vol thermique pour accroı̂tre leur énergie. Des
stratégies de vol thermique ont été développées et améliorées pour accroı̂tre la dis-
tance franchissable et/ou le temps de vol en utilisant l’expérience des pilotes ou la
mécanique du vol plané. La commande de positionnement sur l’ascendant thermique
des pilotes automatiques actuelles est basée sur des expressions analytiques ou des
techniques de vol connues. L’emploie d’optimisateur de trajectoire pour déterminer
la commande de positionnement est prescrit dû aux difficultés numériques lors de
l’analyse en coordonnées cartésiens. Pour cette étude, les équations générales du
mouvement sont réécrites en coordonnées cylindriques, afin de réduire les diffi-
cultés numériques durant l’optimisation et sont accompagnées de composantes de
la force du vent. La commande optimale par méthode de point intérieure non linéaire
est utilisée pour générer les trajectoires optimales en vol thermique et est définie
comme le maxima de l’énergie instantanée ou de l’énergie finale. Les trajectoires
optimales sont présentées pour de petit aéronef autonome volant dans de multi-
ple profiles d’ascendant thermique de force différente. Ces trajectoires sont com-
parées avec les expressions analytiques et stratégies de positionnement. Comme
exemple d’application, les trajectoires optimales maximisant l’apport d’énergie de
la thermique à l’avion en maintenant une surveillance aérienne d’un territoire pour
différents ascendants thermiques et cibles terrestres.

Mots clés: Surveillance aérienne, vol plané autonome, méthode de point intérieure,
asservissement, trajectoires optimales, ascendants thermiques, utilisant des ascen-
dants thermiques
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1 Introduction

1.1 Motivation for the Research

In the modern battle space, the application of an Intelligence, Surveillance, Target
Acquisition, and Reconnaissance (ISTAR) architecture is imperative to link multiple
battlefield functions together with the aim of assisting a combat group in the appli-
cation of force. Intelligence information is collected through systematic observation
of enemy territories, dispositions, targets, and intents. The information is analyzed
by intelligence personnel and is used by the Commander to formulate battle plans.
A variety of platforms and sensors from the Air Force, Army and Navy elements are
available to collect this information, and it is imperative that these assets provide full
coverage of the enemy for extended periods. One of the platforms used to gather
intelligence information are Small Unmanned Aerial Vehicles (SUAVs), which are
defined as vehicles that can operate up to 600 m (2,000 ft) above ground level (AGL)
and have an operating range of 5,000 m (16,400 ft). These air vehicles are rapidly de-
ployed by ground troops to gather timely information of the enemy for rapid decision
making. Given their relatively small payload capacity, SUAVs are highly constrained
in the types of sensors they can employ and the amount of fuel or energy they can
store resulting in a shortened flight endurance.

Improved flight endurance for SUAVs can be achieved through improvements in
aerodynamic and propulsive efficiency, and material advancements. However, it is
equally important to examine the operational flight envelope to develop manoeuvres
and strategies to enhance the performance of the vehicle. Birds have evolved to
extract energy from the atmosphere whilst exerting very little of their own energy. As
an example, an albatross has developed a highly efficient soaring strategy that enables
them to exploit weather systems to perform transoceanic flights without flapping [1].

Extracting energy from the atmosphere is not a new concept and has attracted
the attention of researchers, aircraft designers and glider pilots. A number of soaring
techniques has been developed to extract the abundant energy that is readily available
in the atmosphere while at the same time minimizing the inherent sinking properties
of a gliding vehicle. Energy extraction can be achieved through a number of soaring
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techniques including thermal, gust, dynamic or wave soaring [2–4]. The application
of some of these techniques is limited based on the available topology or climate of
the operating environment. The mechanics of thermal soaring in that rising bubbles
or columns of air are formed on the ground through warming of the Earth’s surface
from solar heating, make it an attractive soaring technique and it is quite often em-
ployed by birds of prey [5].

For effective thermal soaring, several successful phases are required to ensure
efficient energy extraction. Initially, a method of detecting thermal activity is critical
and as such a sound understanding of weather that is conducive to thermal soaring
is required. Once thermal detection has occurred, the craft must enter and center on
the thermal core. Once centered, an optimal climb rate is achieved by commanding
an aircraft bank angle and airspeed appropriate for a given thermal strength and cap-
turing altitude. The final phase is defined as the thermal departure. At this point,
an aerodynamically efficient flight condition is either adopted or the potential energy
gained by the thermal climb can used to extend the range or accomplish other mis-
sion tasks. Each distinct phase of the thermal soaring problem forms the basis of the
various research areas in this field, which can be defined as thermal mapping, thermal
centering strategies, controller development, and path planning.

1.2 Research Objectives

This research will focus primarily on thermal centering strategies and achieving en-
ergy efficient climb rates for a thermal that has been detected with a known size and
strength. The development of these strategies will be approached numerically using
trajectory optimization as the framework while employing an energy approach to an-
alyze aircraft performance and to define the objective function. More specifically,
this thesis will address the following research objectives:

i. Determine the optimal flight trajectories for autonomous thermal soaring aircraft
for a thermal of known size and strength using numerical methods.

ii. Compare the optimal trajectories with the predictive analytic approaches.
iii. Develop a strategy for thermal centering control using standard flight control

surfaces and using sensor information that is available on gliding aircraft.
iv. Investigate the change in the optimal flight trajectories when the aircraft is pro-

vided with a concurrent objective of providing persistent aerial surveillance cov-
erage at a predefined minimum image resolution.
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1.3 Thesis Layout

The remainder of this thesis dissertation is organized into seven chapters. Chap-
ter 2 presents the literature review with a focus on the current state-of-the-art of
the research completed in the autonomous soaring field. A detailed investigation of
the performance, and gliding flight characteristics of a representative SUAV used in
this research is performed in Chapter 3, including the development of the analysis
tools used to generate the point-mass aircraft model used in trajectory optimization.
Current mathematical models of the various thermal types, and the state-of-the-art
thermal models that have been developed and will be used in this study are detailed
in Chapter 4. Chapter 5 introduces the optimal control problem and the applica-
tion of the direct collocation method using nonlinear programming to solve the op-
timal trajectories. Furthermore, the generalized aircraft equations of motion are re-
structured in cylindrical coordinates, and in Chapter 6 optimal flight trajectories are
solved to maximize thermal energy extraction and are compared to derived analytic
predictions. As an application, trajectories that are concurrently optimized for en-
ergy extraction and providing persistent aerial surveillance are presented in Chapter
7. Chapter 8 provides concluding arguments and recommendations for future areas
of research on this topic. Given that the standard in aviation is to represent units
of measure in the Imperial Measurement System, all units will be presented herein
using this same standard.

1.4 Contributions

• The performance equations of motion are restructured in cylindrical coordi-
nates and are augmented with wind component forces to provide a framework
to numerically solve the optimal soaring problem.
• Optimal flight trajectories that maximize thermal energy extraction are pre-

sented for a small autonomous aircraft operating in multiple thermal profiles
of varying strengths.
• Analytical expressions are presented and their predictions are compared to the

optimal flight trajectories.
• A thermal centering strategy for controller development is presented based on

an energy approach and the optimal soaring trajectories.
• As an application, optimal flight trajectories are presented that maximize ther-

mal energy extraction whilst providing persistent aerial surveillance coverage
for a variety of thermal and target locations.
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2 Literature Review

Autonomous soaring for an SUAV is a challenging endeavour given its limited pay-
load capacity and on-board decision making capabilities. The overall challenge is
to locate a thermal sufficiently strong to enable energy extraction, while at the same
time position the SUAV to use the potential energy gained to accomplish mission
tasks. In this chapter, an investigation of the current research that has been con-
ducted for each phase of the thermal soaring problem is presented. As previously
identified, the various research areas in this field were defined as thermal mapping,
thermal centering strategies, controller development, and path planning.

2.1 Thermal Mapping

The first major obstacle to soaring flight is locating a thermal within a defined oper-
ating environment. Thermal detection can either be accomplished by using a single
aircraft or using a cooperative team working together to search, detect and map a par-
ticular area. Cheng and Langelaan presented an approach to use a group of aircraft to
explore regions that were associated with both a high likelihood of thermal activity
and areas with an elevated level of uncertainty in vertical wind estimates [6]. The
operating environment was discretized into a grid and a Kalman filter was used to
estimate vertical wind speed in each cell. An exploration priority function was com-
puted for each of these cells, that was calculated primarily based on a relationship
between the operating topography, vertical wind covariance and the solar incidence
angle. The search algorithm was guided by this exploration priority and simulations
were performed to investigate the trade off between group size and mapping altitude.
Even though this approach was effective in mapping thermal activity in a defined
area, it required a priori knowledge of the topography and was computationally in-
tensive for the pre-flight planning of the mission. In the case of target reassignment
or rapid redeployment of the SUAV to another location outside the currently mapped
area, this technique would be impractical to employ operationally.

An alternative approach to thermal mapping is to use a single aircraft for simul-
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taneous mapping and utilizing a detected wind field for soaring as was proposed
by Lawrance and Sukkarieh [7]. In this case, an overarching global planner was
employed to facilitate full wind field velocity mapping of the operating region by
defining global target locations. Additionally, a low-level planning algorithm used
an energy-based heuristic to identify control actions that maximized local energy
capture while concurrently reducing local area map uncertainty and achieving the
global target. Wind estimation models were generated using a Gaussian process re-
gression technique from the wind field data that was measured as point observations
throughout the flight. The approach was tested in simulation with wind fields con-
sisting of single and multiple stationary thermal bubbles and it was reported that a
single aircraft could effectively explore and exploit an unknown wind field. The
main advantage of the Gaussian process regression technique was that it provided a
variance estimate at each test point. The variance estimate allowed the path planner
to identify regions of low or noisy information in the field, which could be targeted
for further exploration. However, this comes at the cost of high computational and
storage requirements, which may be significant depending on the application.

Alternatively, Andersson et al. used an energy approach as the steering criteria
for aircraft guidance and control to investigate the possible benefits of using a co-
operating team of small UAVs to increase the probability of finding thermal lift [8].
More specifically, an algorithm was developed to define the switching logic between
soaring and search modes. The main switching criteria was based on a minimum
threshold value of the rate of change of energy height, Ėh encountered by the air-
craft. The cooperative portion of the algorithm consisted of guiding vehicles that
were operating in the search mode toward the estimated location of a thermal center
where another vehicle was soaring. The trajectories were corrected for the drift of the
thermal and taking into consideration collision avoidance. The algorithm and colli-
sion avoidance system were operated from a ground control station, which greatly
increased the support requirements to implement this strategy. Additionally, Ėh was
obtained by differentiating the signal from the pitot static system and required mul-
tiple filters to avoid significant latency errors in the controller. Using a minimum
threshold value of the rate of change of energy height as a switching logic was a
sound approach, but performance would be improved if it could be measured di-
rectly.

2.2 Thermal Centering and Control

Once the location of a thermal updraft has been detected, whether through a detailed
mapping of the environment provided by a mission planning architecture or by an
on-board sensing system, the next challenge is to quickly center on and circle the
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thermal core. Cross-wind components can drift the thermal core from the detected
or predicted location. As such, continual flight control adjustments are required to
achieve optimal climb rates and remain centered on the core. For decades, glider
pilots have developed and continue to refine heuristic techniques to center thermals.
Reichmann outlined the following three centering methods, which are shown in Fig-
ure 2.1 and that were based on changes in rate of climb vice the absolute climb
rate [4]:

i. Method 1 - When lift is encountered, level out the aircraft and fly straight for a
short duration before starting to circle again,

ii. Method 2 - Once the lift appears weaker, fly a half circle as tightly as possible
until the rate of climb begins to increase at which time resume the original bank
angle, or

iii. Method 3 - The final method combines the features of the first two methods and
is more methodical in its approach, namely:
• As the climb rate improves, flatten the circle by decreasing the angle of

bank to within the range of φ ∈ [π/12,π/9] rad.
• As the climb rate deteriorates, tighten the circle by increasing the angle of

bank to φ = 5π/18 rad.
• If climb remains constant, maintain a constant bank angle within a range

of φ ∈ [5π/36,π/6] rad.

In the Glider Flying Handbook that was produced by the Federal Aviation Ad-
ministration (FAA) of the U.S. Department of Transportation, the following centering
technique was detailed as a correction method that a pilot could employ when rolling
into a thermal and immediately encountered a sink rate [2]:

• Once a sink rate is encountered, complete a 3π/2 rad turn.
• Following the turn, straighten out for a few seconds and determine if positive

lift is encountered.
• If positive lift is confirmed, initiate a turn into the direction that was originally

commanded.
• If the aircraft is still sinking, repeat the procedure until a climb rate is gener-

ated. Avoid reversing the direction of turn, as the distance flown while revers-
ing turns can lead the aircraft completely away from the thermal.

The flight path of this technique is shown in Figure 2.2. Additionally, the following
three variations to the aforementioned correction method were also presented [2]:

i Variation 1 - When weaker lift is encountered, reduce the turn slightly by φ =
π/36→ π/8 rad until a stronger lift force is felt. If the turn is too shallow, it is
possible to fly completely away from the updraft. Once positive lift is felt, the
original bank angle should be commanded.
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2.2. Thermal Centering and Control

Figure 2.1: Reichmann Centering Methods [4]

ii Variation 2 - Following a heading change of π/3 rad after the worst sink rate
had been indicated by the variometer, straighten or shallow the turn for a few
seconds. This accounts for the lag in the variometer, as the worst sink rate will
have occurred a couple of seconds earlier than was indicated. Resume the original
bank angle.

iii Variation 3 - Straighten or shallow the turn for a few seconds when the strongest
surge is felt and then resume the original bank angle.

Most of the aforementioned centering strategies were developed through glider
piloting experience and an analytical knowledge of gliding flight. These heuris-
tic strategies have formed the foundation of many of the centering algorithms that
have been currently developed. Several of these outer-loop soaring controllers were
loosely based on Reichmann’s third method for thermal centering, which was previ-
ously defined above [4]. Allen [9] was one of the first to attempt to use analytical
simulation as an approach to quantify the increase in endurance as a result of au-
tonomous soaring.
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Figure 2.2: 270◦ Centering Correction Method [2]

Allen and Lin furthered the research by investigating whether the aircraft total
energy state, E could be used to detect and soar within thermals, which was defined
as [10, 11]:

E = mgh+
1
2

mV 2 (2.1)

where m is the aircraft mass, W is the aircraft weight, h is the height above the ground,
V is the aircraft true airspeed, and g is the acceleration due to gravity. Additionally,
the aircraft energy state was normalized with respect to the aircraft weight and rep-
resented an energy height, Eh. The normalized energy state of the aircraft was used
to estimate thermal position, drift rate, strength and radius. A switching mode logic
was developed to determine when the aircraft should search for thermals or enter the
centering mode. The switching criteria was a threshold change in the aircraft normal-
ized energy state. The circle guidance calculates the turn rate, position and velocity
error for tracking a circular path inside the thermal. The controller attempts to drive
position and velocity errors to zero and respond to changes in the rate of change of
energy height. The turn rate to fly at a given aircraft velocity, V was given as [10,11]:

ψ̇ =
V

rcmd
(2.2)
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where ψ̇ is the aircraft turn rate and rcmd was chosen as 65% of the thermal ra-
dius. This radius command ensured a flight path radius that was small enough to
remain within the thermal core, but large enough to avoid high aircraft sink rates
associated with large bank angles. Latency in the rate of change of energy height
estimates was reported to be the primary cause of reduced controller performance in
weak thermals. Furthermore, it was suggested that soaring algorithms must incor-
porate aircraft acceleration information to improve the energy state estimations. An
additional contribution was a chimney thermal updraft model that was derived from
surface and rawinsonde balloon measurements taken at Desert Rock, Nevada.

Andersson et al. also used Reichmann’s third method as a foundation for their
thermal centering controller [12, 13]. Reichmann’s method was implemented by ap-
plying a feedback control law where the change in specific energy acceleration was
used to represent a change in the aircraft’s climb rate to generate the turn rate com-
mands. A thermal centering controller producing a turn rate command to the onboard
autopilot was proposed as [13]:

ψ̇ =
V
rd
− k1Ëh (2.3)

where rd was the desired aircraft radial distance to the core of the updraft once cen-
tered on the thermal, k1 was the feedback coefficient, and Ëh was used to represent
changes in the time rate of change of energy height. Additionally, a measure of the
aircraft’s tangential track with respect to the thermal (time derivatives of η) and the
thermal radius, r were used to develop the following kinematic equations that de-
scribed the centering problem [13]:

η̇ = ψ̇− V cosη

r
ṙ =−V sinη

(2.4)

The control objective was to drive η to zero, and r to rd by controlling the turn rate,
ψ̇ , of the glider. The overall objective of the controller was to adjust the flight path
of the UAV so that it’s centered on the updraft by driving the Ëh to zero, in which
case Ėh, over time, converges to a positive constant value. Following simulation and
initial flight testing, it was proposed that the controller be updated to incorporate a
term containing

...
Eh (the time derivative of Ëh) [12]:

ψ̇ =
V
rd
− k1Ëh− k2

...
Eh (2.5)

This was done to improve performance by better handling lag caused by the filtering
of feedback signals. The controller was shown to be asymptotically stable, and a
region of attraction was established with the size dependent on the updraft’s size
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2.2. Thermal Centering and Control

and strength as well as the controller feedback gain and desired range to the thermal
center.

Akhtar et al. used a combination of an analytical approach using the simplified
aircraft performance equations of motion and a soaring strategy to develop a ther-
mal centering algorithm [14]. The basis for the centering algorithm was defined as
follows:

• If a thermal updraft is detected, an angle of φ = 7π/30 rad is commanded.
• If a sink rate is measured, the sailplane continues to circle. After a heading

change of 5π/6 rad, the bank angle is reduced for 3 s before resuming φ =
7π/30 rad turns.

This method assumed that the center of the thermal core was known and used the
aircraft positional information with respect to the thermal core to correct for a devi-
ation in the target aircraft turn radius. The target airspeed and angle of bank were
determined graphically from the relationship between aircraft airspeed, turn radius,
minimum sink rate, and the profile of the thermal encountered. An arbitrary average
turn radius of 200 ft was targeted during all simulations regardless of the thermal
characteristics, and a Proportional-Plus-Integral (PI) structure was used for the air-
speed and bank angle controllers.

Much of the research on thermal centering controllers has focused on centering
the aircraft’s trajectory around the core of the thermal by adjusting the turn rate,
and using Reichmann’s centering method as its foundation [15–17]. It was reported
that this thermal centering strategy offers the following advantages for thermal soar-
ing [16]:

i. The algorithm does not require an estimate of the thermal profile.
ii. Use of the aircraft’s sink polar is not required, and as such the algorithm works

for multiple aircraft without the need for additional tuning.
iii. The strategy is simple to implement, with minimal computational and memory

requirements.
iv. The controller easily adapts to changing thermal conditions.

Additionally, the research has focused on how to either estimate or measure total
aircraft energy. In some cases, estimations of Ėh were made directly using sensor
measurements for local updraft strength using a netto variometer [15]. Other tech-
niques involved using an asymmetric Savitzky-Golay filter that computes estimates
of total energy, rate of change of total energy and the second derivative of total en-
ergy using polynomial approximations over a moving time window [16]. Despite
the differences in measuring techniques, successful simulations with stable thermal
centering were reported and in some instances, a flight range of over 25 nmi was
achieved using only the energy from a 450 ft high launch [15].
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Liu et al. pursued a more advanced control strategy in that a nonlinear predictive
control system was used to harvest the energy from the atmospheric updrafts [18]. In
this framework, an online estimation of the updraft distribution using a two-layer
Generalized Regression Neural Network (GRNN) was combined with a heuristic
search method to obtain an optimal trajectory for the UAV. To allow for real-time
computation of the control commands, the optimal control problem was solved in a
Cartesian coordinate system using a 3DOF model and the control inputs were ap-
plied to a more realistic 6DOF model. Simulations showed that the control system
succeeded in energy extraction in a challenging dynamic atmospheric environment
while satisfying its real-time constraints.

Robust adaptive control and anti-windup design tools were used by Kahveci et
al. to develop an adaptive control scheme based on Linear Quadratic (LQ) control
with disturbance rejection [19]. In this investigation, the presence of actuator satu-
ration nonlinearities and large parametric uncertainties were considered only for the
linearized longitudinal dynamics of the aircraft to determine an optimal horizontal
velocity for static soaring. The saturation-type nonlinearity was addressed by an
adaptive version of a Linear Matrix Inequality (LMI) based anti-windup design.

In this research area, a number of heuristic and analytical approaches have been
investigated to determine an effective method to center thermals. Most of the outer-
loop controller strategies used a turn rate command that was easy to implement in
real-time and produced decent results. However, these controllers were primarily
based on heuristic strategies and did not consider the full set of aircraft states and
controls nor actuator limitations. Additionally, the resulting trajectory from the cen-
tering algorithm was not analyzed to determine if the aircraft was in fact optimally
extracting energy from the thermal updraft. As such and before developing a con-
troller for thermal centering, the optimal trajectory for soaring flight in a given ther-
mal updraft strength must first be solved and compared to analytic derivations to
better understand the flight condition required for thermal soaring.

2.3 Path Planning

Once a thermal updraft has been detected and its available energy has been exploited,
the next phase in the autonomous soaring problem is path planning or determining
how the aircraft should best utilize the potential energy gained. One of the potential
options that was previously discussed is thermal mapping. Lawrance and Sukkarieh
extended their technique of thermal energy mapping of the wind field to develop
a path planning and dynamic target assignment algorithm to generate energy-gain
paths from the current wind estimate [20, 21].

Path planning for an autonomous vehicle becomes a bit more of a challenge as
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typical visual cueing aides are not available or apparent to the SUAV. Chakrabarty and
Langelaan developed a graph-based method for planning energy-efficient trajectories
over a set of waypoints [22, 23]. This approach introduced an energy map, which
provided the path to the destination as a sequence of waypoints, the optimal speeds
to fly for each segment between waypoints, and the heading required to fly along
a segment while accounting for a known three-dimensional wind field. The target
airspeed was computed by minimizing the energy expenditure for that segment. As
such, the total energy required to reach the destination goal defined the energy map.
The major constraint in generating the energy map was that each path had to always
proceed toward the goal. As a result, lower-energy trajectories may have existed
that proceeded away from the goal for some portion of the path. The computation
of minimum energy to fly between waypoints was used with a heuristic planner to
determine the effect of the progress-to-goal constraint. Although there may have
existed paths that were more efficient from an energy perspective in some cases, the
cost was often an increased distance flown to the destination.

Langelaan also developed a tree-based approach to find a feasible trajectory be-
tween the start position and an objective that was well beyond the simple gliding
range of an aircraft [24]. Trajectory branches were predefined to decrease computa-
tional efforts in expanding the tree during optimization. Given the high nonlinearities
and non-convexity of the problem, tree paths were expanded randomly to find feasi-
ble solutions. Wind speed and direction were known quantities but were not included
in the set of predefined trajectory branches. Nodes were defined within the branches
and encoded aircraft position, heading, airspeed, its energy state, and distance from
the objective. A weighted random approach was used for node selection, with the
weight dependent on specific energy height and the distance from the objective. This
directed the search towards the goal but allowed for exploration of the operating en-
vironment. Upon the selection of a node, this set of branches was added to the tree
and checked for feasibility based on height above the ground and the allowable di-
vergence from the goal. Infeasible nodes were pruned and tree expansion terminated
when a node was within gliding distance of the goal.

As an extension to the maximizing range mission objective, Kahveci and Ioannou
proposed using Genetic Algorithms (GAs) for path planning in an attempt to reach
the assigned destination objective in the shortest amount of time while minimizing
use of the on-board power supply [25]. Thermal updrafts were given a predefined
location in an operating area on a map and were represented by the genes on the
chromosomes describing a potential thermal soaring route. For a given population
size, the chromosomes were randomly initialized denoting a proposed flight path.
Based on the natural evolution paradigm, near-optimal solutions were obtained for
a determinant number of generations. Additionally, GA simulation optimal route
results were consistent with those obtained by iterative style algorithms.
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One of the main underlining assumptions made for the development of these
energy-based path planning approaches was having knowledge of the wind field in
the operating region. In practice, the thermal locations and strengths are unknown
and will evolve, shift, and dissipate making it extremely difficult to map out an entire
trajectory. The dynamic nature of thermal activity and the highly nonlinear behaviour
of the updraft fields make it extremely difficult, if not impossible, to implement these
approaches in practice.

2.4 Target Acquisition and Surveillance

An operational use of the energy gained through thermal energy exploitation is target
acquisition and surveillance. Guo et al. [26] investigated the basic patterns as well
as tradeoffs in UAV flights that maximized see-ability while concurrently minimized
power consumptions. A see-ability model was established that peaked when the UAV
was flying at a certain angle from the normal vector perpendicular to the surface of
the target and was defined as [26]:

Sa =
cos(θ −θop)

1+κ(R/dc)2 (2.6)

where θop was the optimal viewing angle, dc = V 2
c /g was the normalizing quantity

for distance for a commanded airspeed Vc, and κ was a scaling factor. UAV flights
were formulated as nonlinear periodic optimal control problems that were subject to
various motion constraints and these trajectories were solved using a gradient-based
optimizer.

Nguyen et al. also explored the same objective of searching for a ground target
while simultaneously collecting energy from known thermal updraft sources [27].
However, the objective was formulated as a tree search problem by dividing the mis-
sion into similar segments of flying between and climbing in thermals. This algo-
rithm attempted to maximize the probability of detecting a target by exploring a tree
of the possible thermal-to-thermal transitions and solving the trajectories using a
gradient-based optimizer.

Makovkin and Langelaan considered a coordinated soaring approach where a
flock of SUAVs relied on thermal exploitation to maximize endurance for monitor-
ing missions [28]. More specifically, each SUAV repeated a round-trip between a
thermal and a target of interest so as to maintain persistent surveillance of the tar-
get. The research focused on minimizing the number of agents required to maintain
continuous, complete surveillance of the target for a given thermal strength, location,
and distance between the thermal and target. It was shown that the optimal cruis-
ing speed for maximizing the endurance of monitoring-type missions varied between
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the minimum sink airspeed and speed for best aerodynamic efficiency defined as the
MacCready speed. Additionally, an examination of multiple-thermal exploitation
was also presented to determine the flock size needed to provide full aerial coverage.

Another application that SUAVs can perform between thermal energy extraction
flight phases, is to perform target localization. Since target localization is highly
dependent on the vehicle trajectory, Ponda et al. explored the development of optimal
trajectories for this usage [29].

2.5 Knowledge Gaps in the Research

Based on the literature review, knowledge gaps exist in this research field and to fill
some of these gaps the following areas will be explored in this thesis dissertation:

i. Obtain a better understanding of the flight trajectory required for optimal thermal
soaring flight.

ii. Determine the relationship between the optimal flight trajectory and a particular
thermal updraft strength and aircraft geometric characteristics.

iii. Compare the full aircraft states and controls from the trajectories with the an-
alytic derivations to better understand the flight condition required for thermal
soaring.

iv. Develop a control strategy that can be implemented real-time with no prior
knowledge of the wind field in a given operating environment.

v. Investigate whether an aircraft can simultaneously observe a target with good
image resolution and efficiently extract energy from a thermal updraft.
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3 Aircraft Characterization

The first step in trying to solve for an optimal thermal soaring trajectory is to fully
understand and characterize the dynamics of an aircraft system. For the purposes of
this research project, the Cularis D-5223 aircraft was acquired for the experimental
implementation of a thermal soaring algorithm. In this chapter, a development of the
aircraft point-mass and a full characterization of the Cularis aircraft are presented.
Additionally, a study of the effect of the wind updraft component contributions on an
aircraft dynamic system is also covered.

3.1 Reference Axis Systems

The analysis of the flight path of an autonomous soaring vehicle requires the def-
inition of a system of axes to which its relative motion can be referred. All axis
systems follow right-hand rule methodology to define their orientation. The Earth
axis system is selected as the fixed frame with its origin located on the surface with
the axes denoted with a subscript e. The translational and rotational transformations
from the Earth to the body axes of the aircraft (denoted subscript b) is outlined in
Figure 3.1. Additionally, detailed angular relationships are presented in Figure 3.2 to
show the relationship between the Earth’s axes and the aircraft’s body and velocity
(denoted subscript v) axis system. The origins of these additional reference axis sys-
tems are located at the center of gravity of the aircraft. For the purposes of this study,
the point-mass model has been assumed to be accurate enough to simulate aircraft
trajectories while its simplicity helps to improve algorithm efficiency for the opti-
mization of such trajectories. The point-mass model aircraft equations of motions
are derived in the velocity axis system with respect to the Earth’s axes.

3.2 Point-Mass Model Equations of Motion

The aircraft is modeled as a point-mass system and its motion is related to the Earth’s
fixed reference frame by its velocity vector. A free-body diagram showing the forces
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3.2. Point-Mass Model Equations of Motion

(a) Pitch Angle

(b) Aircraft Heading

Figure 3.2: Angular Relationships Between Earth, Body, and Velocity Axes (sub-
scripts e, b, and v respectively) [30]
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acting on an aircraft is shown in Figure 3.3. Using Newton’s second law of motion,
the general equations of motion for an aircraft are derived in terms of its resultant
inertial force vector, FI that is resolved in the velocity axis system [30]. The forces
acting on the aircraft are defined as gravitational, Fg aerodynamic,Fa and propulsive,
Fp, which act in the Earth, wind, and body axis systems respectively.

[FI]v =

Fx

Fy

Fz


v

=
d(mV )v

dt
(3.1)

[Fg]e =

Fg,x

Fg,y

Fg,z


e

=

 0
0

mg


e

(3.2)

[Fa]w =

Fa,x

Fa,y

Fa,z


w

=

−D
Y
−L


w

(3.3)

The full development of the generic equations of motion for an aircraft are summa-
rized as follows:

−D+[T cos(α + τ1)cosβ −DM ]−mgsinγ2 = mV̇ + ṁV

Y cosγ1 +Lsinγ1 +T [−cos(α + τ1)sinβ cosγ1 + sin(α + τ1)sinγ1] = mV γ̇3 cosγ2

Y sinγ1−Lcosγ1 +T [−cos(α + τ1)sinβ sinγ1− sin(α + τ1)cosγ1]+mgcosγ2 = −mV γ̇2

where the description of each variable is contained in Table 3.1. Assuming the air-
craft is trimmed, the following assumptions can be made for gliding flight:

i. The rate of change of aircraft mass is negligible, ṁ = 0,
ii. The aircraft is in symmetric flight, such that β = 0 and Y = 0, and

iii. The sailplane is not powered and as such there is no net thrust available from the
propulsive system, T = 0 hence no momentum drag is generated, Dm = 0.

Using the aforementioned assumptions, the equations of motion are reduced to:

−D−mgsinγ2 = mV̇
Lsinγ1 = mV γ̇3 cosγ2

Lcosγ1−mgcosγ2 = mV γ̇2

(3.4)

These equations represent the dynamics of the aircraft system in the velocity axes.
In order to use the aforementioned dynamics for thermal soaring, they must be aug-
mented with wind component forces to fully characterize the motion of the system.
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3.2. Point-Mass Model Equations of Motion

Figure 3.3: Free Body Diagram Outlining the Forces Acting on the Aircraft

Table 3.1: Performance Equations of Motion Variables

Variable Description Units
D Drag of the Aircraft lbf

DM Momentum Drag lbf
L Aircraft Lift lbf
T Aircraft Thrust lbf
Y Side Force lbf
m Aircraft Mass slug
ṁ Rate of Change of Aircraft Mass slug/s
V Aircraft True Airspeed ft/s
V̇ Rate of Change of Aircraft True Airspeed ft/s2

α Angle of Attack rad
τ1 Propulsion Vectoring rad
β Sideslip Angle rad
γ1 Bank Angle rad
γ2 Climb Angle rad
γ3 Track Angle rad
γ̇1 Roll Rate rad/s
γ̇2 Climb Rate rad/s
γ̇3 Turn Rate rad/s

19



3.2. Point-Mass Model Equations of Motion

3.2.1 Equations of Motion with Wind Component Forces

The wind force, Fw acts in the Earth axis system and can be expressed in the follow-
ing matrix form:

[Fw]e =

Fw,x

Fw,y

Fw,z


e

=

mV̇w,x

mV̇w,y

mV̇w,z


e

(3.5)

where V̇w,x, V̇w,y, and V̇w,z are the components of the wind acceleration. In order to
include the effect of the wind on the aircraft, the wind force must be transferred from
the Earth to velocity axes using a rotational matrix as follows:

[Fw]v =

cosγ2 0 −sinγ2
0 1 0

sinγ2 0 cosγ2

 cosγ3 sinγ3 0
−sinγ3 cosγ3 0

0 0 1

Fw,x

Fw,y

Fw,z


e

[Fw]v =

cosγ2 cosγ3 cosγ2 sinγ3 −sinγ2
−sinγ3 cosγ3 0

sinγ2 cosγ3 sinγ2 sinγ3 cosγ2

mV̇w,x

mV̇w,y

mV̇w,z


e

[Fw]v =

m[V̇w,x]e cosγ2 cosγ3 +m[V̇w,y]e cosγ2 sinγ3−m[V̇w,z]e sinγ2
−m[V̇w,x]e sinγ3 +m[V̇w,y]e cosγ3

m[V̇w,x]e sinγ2 cosγ3 +m[V̇w,y]e sinγ2 sinγ3 +m[V̇w,z]e cosγ2

 (3.6)

Using the result from Equation 3.6, the wind force contribution can be added to
the reduced equations of motion defined in Equation 3.4 to yield the soaring flight
equations of motion for a point-mass aircraft model:

−D−mgsinγ2 +m[V̇w,x]e cosγ2 cosγ3 +m[V̇w,y]e cosγ2 sinγ3−m[V̇w,z]e sinγ2 = mV̇

Lsinγ1−m[V̇w,x]e sinγ3 +m[V̇w,y]e cosγ3 = mV γ̇3 cosγ2

Lcosγ1−mgcosγ2 +m[V̇w,x]e sinγ2 cosγ3 +m[V̇w,y]e sinγ2 sinγ3 +m[V̇w,z]e cosγ2 = mV γ̇2

From the equations of motion, it can observed that a definition of a point-mass model
of an aircraft is required. More specifically, the geometrics, aerodynamics, and
weight of the aircraft need to be defined. The contribution of the thermal updraft
acceleration terms will be covered in the development of the thermal models that
introduced in Chapter 4.
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3.3 General Aircraft Description

As part of a long-term research project, the Cularis D-5223 aircraft was acquired
with the aim of implementing a real-time thermal soaring algorithm on an SUAV. The
Multiplex Cularis D-5223 was an electric powered radio-controlled glider that was
fitted with a single Himax HC3522-0700 brushless outrunner motor and two folding
propeller blades. The main aircraft structures were manufactured from an expanded
polypropylene foam, or Elapor foam that was designed to be crash resistant. It had a
maximum take-off weight of 4.81 lbf and a wing span of 8.53 ft. The aircraft is shown
in Figure 3.4, while a breakdown of the installed components and their contribution
to the overall aircraft weight is outlined in Table 3.2. A more detailed description of
the aircraft can be obtained from the building and operating instruction manual [31].

Figure 3.4: Multiplex Cularis D-5223 Glider [32]

Table 3.2: Aircraft Component List and Weights

Component Description Value Units
Fuselage and HC3522-0700 Engine 1.62 lbf
Canopy 0.40 lbf
Wings 1.44 lbf
3 Cell 11.1V LiPo Battery (2) 0.88 lbf
Electronic Speed Controller 0.15 lbf
Autopilot (Ardupilot 2.5) 0.07 lbf
GPS and Antenna 0.04 lbf
Power Module, Telemetry and Pitot Static System 0.22 lbf
Total Aircraft Weight 4.81 lbf
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3.4 Characterization of the Aircraft Aerodynamics

3.4.1 Aircraft Geometric Model

The Cularis glider was modeled in pythonTM using the Geometry class within the
pyACDT [33] object-oriented framework. pyACDT is a tool that was developed by
Perez et al. to facilitate the definition, analysis, and optimization during concep-
tual design of aircraft. Within this framework, individual aircraft components were
treated as objects and were classified, characterized, and associated based on their
configuration and utility. These components were created from common physical
and geometric attributes, and were combined into full-aircraft configurations that
could be analyzed using the disciplinary analysis tools contained within pyACDT.
Additionally, airfoil coordinate data that was unit-normalized as compared to the
chord length could be uploaded to model the wing, vertical and horizontal tail profile
shapes. The geometric model of the Cularis aircraft is shown in Figure 3.5 and the
code used to generate the model is contained in Listing A.1. Additionally, the profile
shapes of the aircraft’s airfoils were digitized using a FaroArm Coordinate Mea-
suring Machine (CCM) and were compared to existing airfoil data to determine an
appropriate airfoil designation. The wing airfoil was approximated as an HQ 1.0/12
airfoil, and its profile shape is plotted in Figure 3.6 using airfoil data provided by
Quabeck [34]. Both the horizontal and vertical stabilizers were estimated as NACA
0012 and 0009 series airfoils at the root respectively.

3.4.2 Aircraft Aerodynamic Data

Using the geometric model presented in Figure 3.5, the Aerodynamic module of py-
ACDT was used to generate aircraft aerodynamic data for the Cularis for use in the
point-mass aircraft model. The drag profile of the aircraft was calculated from the
geometric model, at different flow conditions, and at a known aircraft center of grav-
ity location. Parasite drag was calculated using the interaction between the individual
components within the overall aircraft configuration and considering viscous sepa-
ration effects, while the skin friction drag was modeled using the Sommer & Short
formulation [33, 35]. Induced drag was calculated using a semi-empirical approach
based on a Leading-Edge-Suction Method as described by Raymer [36]. The drag
polar of the aircraft varied little with operating altitude and is shown in Figure 3.7 for
an altitude of 1000 ft. The drag polar was calculated using a quadratic polar of the
form [37]:

CD =CD0 +KCL
2 (3.7)
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3.4. Characterization of the Aircraft Aerodynamics

Figure 3.5: Geometric Representation of the Cularis D-5223 Glider

where CD is the drag coefficient, CD0 is the parasitic drag coefficient, K is the induced
drag coefficient, and CL is the lift coefficient. Since the aircraft drag polar varied little
with operating altitude, a single polar was generated for the aircraft and is detailed in
Table 3.3.
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Figure 3.6: HQ 1.0/12 Airfoil

Table 3.3: Aerodynamic Data for the Point-Mass Model of the Cularis D-5223 Glider

Symbol Description Value Units
b Wing Span 8.54 ft
S Wing Reference Area 4.57 ft2

W Aircraft Take-off Weight 4.81 lbf
CL0 Lift Coefficient at α0 0.261 -
CLα Lift Curve Slope 5.865 -

(CL)max Maximum Lift Coefficient 1.674 -
CD0 Parasitic Drag Coefficient 0.0223 -( L
D

)
max Maximum Lift-to-Drag Ratio 23.09 -

K Induced Drag Coefficient 0.021 -
e Oswald’s Efficiency Factor 0.95 -
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3.4. Characterization of the Aircraft Aerodynamics

Figure 3.7: Drag Polar for the Cularis D-5223 Glider at an Altitude of h = 1000 ft
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3.5. Aircraft Gliding Flight Characteristics

3.5 Aircraft Gliding Flight Characteristics

In order to validate the results from the optimal trajectories, the gliding flight char-
acteristics of the aircraft must be investigated. As such, analytic expressions for the
minimum glide angle, sink rate, turning radius, and pertinent gliding flight velocities
are presented. To evaluate the gliding flight characteristics of the Cularis, a Gliding
Flight class was created in pyACDT and is shown in Listing A.2. The class was ini-
tialized with a point-mass model of the aircraft, and could output the minimum sink
angle, vertical velocity, and turn radius for a given velocity, bank and climb angle.
Additionally, the pertinent gliding flight velocities could also be generated for a given
altitude and bank angle.

3.5.1 Minimum Glide Angle

For an aircraft flying at a constant velocity, V̇ = 0 and at a constant climb angle,
γ̇2 = 0 the performance equations of motion for a point-mass aircraft model that are
detailed in Equation 3.4 can be further reduced to the following:

D =−mgsinγ2 (3.8)

L =
mgcosγ2

cosγ1
(3.9)

Expressing Equations 3.8 and 3.9 in terms of a lift-to-drag ratio, we have:

CL

CD
=

L
D

=

mgcosγ2
cosγ1

−mgsinγ2
=
−cosγ2

cosγ1 sinγ2

sinγ2 =
−cosγ2
CL
CD

cosγ1
(3.10)

The minimum equilibrium glide angle is achieved at the highest aerodynamic effi-
ciency flying while flying straight and level, γ1 = 0 and can be calculated as:

tan(γ2)min =
−1( L

D

)
max

(3.11)

For the Cularis aircraft in level flight,
( L

D

)
max = 23.09 and the minimum glide angle

is given as:

(γ2)min =−0.043rad (3.12)

The minimum equilibrium glide angle will be used as the initial starting condition
for the climb angle in the optimization problem formulation.
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3.5. Aircraft Gliding Flight Characteristics

3.5.2 Minimum Sink Rate

The vertical velocity of an aircraft is given as [37]:

ḣ =V sinγ2 (3.13)

where h = −z and represents the aircraft altitude, ḣ is the vertical velocity, and the
velocity, V is calculated for a given air density, ρ as:

V =

[
Lcosγ2
1
2 ρSCL

] 1
2

=

[
mgcosγ2

1
2 ρSCL cosγ1

] 1
2

(3.14)

Substituting Equations 3.10 and 3.14 into 3.13, the following expression is obtained
for the vertical velocity of a gliding aircraft:

ḣ =

[
mgcosγ2

1
2 ρSCL cosγ1

] 1
2
[
−cosγ2
CL
CD

cosγ1

]

ḣ = −
(

W
S

) 1
2
(

2
ρ

) 1
2
(

cosγ2

CL cosγ1

) 1
2
(

cosγ2
CL
CD

cosγ1

)

Expressing the the vertical velocity of the aircraft in terms of general aircraft design
characteristics (i.e. wing loading, W/S where W = mg):

ḣ =−
(

W
S

) 1
2
(

2
ρ

) 1
2

CD

C
3
2
L

sec
3
2 γ1 cos

3
2 γ2 (3.15)

Using this expression, the vertical velocity profile as a function of airspeed can be
generated for the Cularis aircraft and is shown for a representative operational alti-
tude of h = 1000 ft (γ1 = 0) in Figure 3.8. It can be observed that for a minimum
sink rate condition, the aircraft would need to fly at an airspeed of approximately
V = 22.5 ft/s.

3.5.3 Aircraft Turning Radius

The flight path for an aircraft in turning flight is shown in Figure 3.9. The angular
velocity, or turn rate along a curved flight path is determined as follows [37]:

V cosγ2 = R
dγ3

dt
= Rγ̇3⇒ γ̇3 =

V cosγ2

R
(3.16)
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3.5. Aircraft Gliding Flight Characteristics

Figure 3.8: Vertical Velocity as a Function of Airspeed for the Cularis D-5223 Glider
at an Altitude of h = 1000 ft

Using the reduced equation of motion defined in Equation 3.4 and rearranging for
the turn rate, γ̇3 results in:

γ̇3 =
Lsinγ1

mV cosγ2
(3.17)

Substituting Equation 3.16 into 3.17 and solving for the turn radius, R yields:

V cosγ2

R
=

Lsinγ1

mV cosγ2

R =
mV 2 cos2 γ2

Lsinγ1

R =
W
g

(
V 2 cos2 γ2

Lsinγ1

)
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3.5. Aircraft Gliding Flight Characteristics

Using the following expression for the lift [37]:

L =
1
2

ρV 2SCL (3.18)

the expression for the turn radius becomes:

R =

(
W
S

)(
2

ρg

)(
cscγ1

CL

)
cos2

γ2 (3.19)

Figure 3.9: An Aircraft in Turning Flight

For a given aircraft, it can be observed that the turn radius is a function of the lift
coefficient and correspondingly the airspeed, the commanded angle of bank, and the
aircraft climb angle. This expression will be used further in the analysis phase and
the development of a control strategy when trying to predict the optimal angle of
bank to fly for a given thermal strength.

3.5.4 Gliding Flight Velocities

The pertinent velocities associated with gliding flight were developed by Anderson
for an aircraft flying in level flight [37]. For the case where the aircraft is in turning
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3.5. Aircraft Gliding Flight Characteristics

flight where L 6= W , the aircraft’s load factor must be considered. As such, the stall
speed, Vstall can be calculated as follows:

Vstall =

√(
2
ρ

)(
W
S

)
1

(CL)max
secγ1 (3.20)

In gliding flight, the minimum drag condition corresponds to the speed to fly to obtain
the maximum glide range. When adjusted for turning flight, the maximum glide
range speed, V(L/D)max is calculated as [37]:

V(L/D)max =

√(
2
ρ

)(
W
S

)√
K

CD0
secγ1 (3.21)

To achieve the minimum sink rate, the ratio of (C3/2
L /CD) is a maximum and cor-

responds to the minimum power required condition. The resulting minimum sink
speed, V

(C3/2
L /CD)max

adjusted for bank angle is determined from [37]:

V
(C3/2

L /CD)max
=

√(
2
ρ

)(
W
S

)√
K

3CD0
secγ1 (3.22)

The gliding flight velocities of the Cularis D-5223 aircraft for various altitudes
in level flight are shown in Table 3.4. It is interesting to note that the stall speed of
the aircraft is greater than the speed to fly for a minimum sink rate condition. As
such, the Cularis will not be capable of operating at that condition due to the stall
limitation.

Table 3.4: Pertinent Glide Velocities for Various Altitudes

Altitude Vstall V(L/D)max V
(C3/2

L /CD)max
Units

Sea Level 22.98 29.31 22.27 ft/s
500 ft 23.15 29.52 22.43 ft/s
1000 ft 23.32 29.74 22.60 ft/s
1500 ft 23.50 29.96 22.76 ft/s
2000 ft 23.67 30.18 22.93 ft/s

As a summary, a point-mass model was presented for the Cularis D-5223 aircraft
that will be subsequently used during the generation of optimal trajectories. In addi-
tion, the flight dynamic characteristics of the aircraft were obtained using a geometric
model and analytical prediction methods.
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4 Thermal Models

To determine the optimal thermal soaring trajectories, thermal models need to be de-
veloped to provide the wind force contributions that will be used in the point-mass
model equations of motion. In this chapter, a brief overview of the conceptual ther-
mal models and the associated atmospheric conditions conducive to thermal soaring
are detailed. A development of analytical and heuristic thermal representations based
on the conceptual models are also presented. For the subsequent analysis, it is as-
sumed that thermal detection has occurred, its center location is known, and wind
shear effects are not considered.

4.1 Conceptual Thermal Models

The FAA defined a thermal as a rising mass of buoyant air and listed it as the most
common updraft used by glider pilots in soaring flight [2]. Thermal updrafts are
generated due to solar surface heating, which results in localized increased ground
temperatures. Consequently, a thermal gradient is created and heats the surrounding
air mass. As the density of the heated air is decreased, the air mass is forced upward.

Two conceptual models have been developed to characterize the overall complex-
ity of a thermal updraft. The chimney or column model was defined as a continuous
column of rising air that extended from the ground surface right up to the mixing-
layer maximum altitude [38]. An illustration of the chimney model is shown in
Figure 4.1 while the development of its typical life cycle is provided in Figure 4.2.

The second conceptual model was defined as a bubble or toroidal model. This
model was described as an individual rising thermal segment that resembled a vortex
ring [2]. Unlike the chimney model, bubble thermals were initially formed on the
surface of the Earth when heated areas were smaller. Additionally, they were char-
acterized with having rising air in its core and descending air on the boundaries of
the bubble. Figure 4.3 provides a detailed sketch of the bubble thermal model. Re-
gardless of the thermal type, the air in the middle of the thermal rises faster than the
air at its outer radius, where typically descent air is present. Additionally, a certain
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4.2. Mathematical Thermal Models

Figure 4.1: A Column or Chimney Thermal Model [2]

Figure 4.2: Typical Life Cycle of a Thermal with Cumulus Cloud [2]

level of atmospheric thermal instability is required for the development of thermals
and their resulting vertical motion. Given the two conceptual thermal types that can
develop in the atmosphere, analytical expressions can now be developed to model
their behaviour.

4.2 Mathematical Thermal Models

To represent chimney type thermals, basic thermal models were developed as math-
ematical variations of a 3-dimensional trapezoidal shape. The simplest model is
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4.2. Mathematical Thermal Models

Figure 4.3: Bubble Model of a Thermal [2]

known as a conical trunk, and was defined by the following analytic expression [38]:

Wh(r) =


Whmax, r < r1,

Whmax
r2−r
r2−r1

, r ∈ [r1,r2],

0 otherwise.

(4.1)

where r is the distance from the thermal center, Whmax is the maximum updraft veloc-
ity (or thermal core updraft speed), r1 and r2 are the inner and outer thermal radii. A
graphical representation of this model is shown in Figure 4.4. In this model, the up-
draft velocity decreased linearly from the inner to the outer thermal radius and there
was no vertical velocity component outside the outer radius. A contour plot and a
thermal updraft speed profile at an altitude of h = 500 ft for this model are shown in
Figures 4.5(a) and 4.5(b) respectively.

An alternative mathematical representation of a thermal updraft is the 2-dimen-
sional Gaussian profile. In this model, the center of the thermal was also taken as the
center of the Gaussian profile and is represented by [38]:

Wh(r) =Whmax ·e−(r/RT )
2

(4.2)

where RT is the thermal radius. The updraft velocity was scaled to be at a maximum
in the thermal core and decreased exponentially towards at the outer radius. Simi-
lar to the conical updraft model, the 2-dimensional Gaussian model did not include
any exterior downdraft velocity. A contour plot and a thermal updraft speed profile
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4.2. Mathematical Thermal Models

Figure 4.4: Graphical Representation of the 3D Trapezoidal Thermal Model

at an altitude of h = 500 ft for this model are shown in Figures 4.6(a) and 4.6(b)
respectively.

Gedeon developed an extension to the Gaussian model to incorporate a downdraft
velocity that would be present outside the thermal radius. The thermal strength in this
model is defined as [38]:

Wh(r) =Whmax ·e−(r/RT )
2 · [1− (r/RT )

2] (4.3)

A contour plot and a thermal updraft speed profile at an altitude of h = 500 ft for this
model is shown in Figures 4.7(a) and 4.7(b) respectively.

Each of the aforementioned mathematical models were easy to implement and re-
quired minimal computational effort; however, they did not have a direct dependency
on altitude for calculating updraft strength. As such, a maximum updraft velocity,
Whmax for each altitude must be included as an additional component of the model in
order to account for these effects. Even though these models were not directly used
to determine the wind force contribution, the state-of-the-art thermal models were
largely based on their formulation and the notion of a trapezoidal updraft distribu-
tion.
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4.2. Mathematical Thermal Models

(a) Plot of Constant Contour Lines of the Thermal Updraft Speeds, Wh in ft/s

(b) Thermal Updraft Speed Profile at an Altitude of h = 500 ft

Figure 4.5: 3D Trapezoidal Thermal Model
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4.2. Mathematical Thermal Models

(a) Plot of Constant Contour Lines of the Thermal Updraft Speeds, Wh in ft/s

(b) Thermal Updraft Speed Profile at an Altitude of h = 500 ft

Figure 4.6: Gaussian Thermal Model
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4.2. Mathematical Thermal Models

(a) Plot of Constant Contour Lines of the Thermal Updraft Speeds, Wh in ft/s

(b) Thermal Updraft Speed Profile at an Altitude of h = 500 ft

Figure 4.7: Gedeon Thermal Model
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4.3 Chimney Thermal Model

In contrast to the mathematical approaches, Allen [39] used an experimental method
in Desert Rock, Nevada to develop a the current state-of-the-art chimney or column
thermal model that was based on surface and altitude measurements. The measured
data was used to create a statistical representation of the convective velocity scale, w∗

and the convective mixing-layer thickness, hi. The results of this statistical analysis
are shown in Table 4.1 as seasonal variations of updraft strength and altitude. This
model and all the corresponding constants were developed in SI units and will be
presented as such.

Using the scaling parameters from Table 4.1, and the height, h, the average up-
draft velocity, w̄ is calculated as [39]:

w̄ = w∗
(

h
hi

) 1
3
(

1−1.1
h
hi

)
(4.4)

while the updraft outer radius, r2 and inner radius, r1 are determined from [39]:

r2 = max

(
10, 0.102

(
h
hi

) 1
3
(

1−0.25
h
hi

)
hi

)
(4.5)

r1

r2
=

{
0.0011r2 +0.14, r2 < 600 m

0.8, otherwise.
(4.6)

Similar to the pure mathematical representations, it was assumed that the vertical
velocity profile followed a revolved trapezoid updraft distribution. Additionally and
for a given r1/r2 ratio, shape constants were used to modify the velocity profile to
provide a bell-shaped distribution to model the revolved trapezoidal shape and are
detailed in Table 4.2.
Using the shape constants from Table 4.2, the updraft velocity, Wh at a particular
radial distance from the thermal center, r, is given as [39]:

Wh = wpeak

 1

1+
∣∣∣k1

r
r2
+ k3

∣∣∣k2
+ k4

r
r2

+wd

 (4.7)

where the peak value of the updraft velocity, wpeak is given as:

wpeak =
3w̄
(
r3

2− r2
2r1
)

r3
2− r3

1
(4.8)
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4.3. Chimney Thermal Model

Table 4.2: Shape Constants for a Bell-Shaped Vertical Velocity Distribution Devel-
oped Experimentally for use in SI System of Units [39]

r1/r2 k1 k2 k3 k4

0.14 1.5352 2.5826 -0.0113 0.0008
0.25 1.5265 3.6054 -0.0176 0.0005
0.36 1.4866 4.8354 -0.0320 0.0001
0.47 1.2042 7.7904 0.0848 0.0001
0.58 0.8816 13.972 0.3404 0.0001
0.69 0.7067 23.994 0.5689 0.0002
0.80 0.6189 42.797 0.7157 0.0001

The downdraft velocity, wd was included to simulate a toroidal-like downward ve-
locity profile that was said to be present on the outer edge of the updraft [39]:

wl =


−π

6 sin
(

πr
r2

)
, r1 < r < 2r2

0, otherwise.

(4.9)

wd =


2.5wl

(
h
hi
−0.5

)
, 0.5 < h

hi
< 0.9

0, otherwise.

(4.10)

A plot showing constant contour lines of the thermal updraft speeds, Wh as a
function of aircraft radial distance and altitude is shown in Figure 4.8, while the
code used to generate the model is contained in Listing B.1. Additionally, thermal
updraft speed profiles for multiple altitude slices are shown in Figure 4.9. It was
observed that a discontinuity was present slightly above h = 1000 ft, which added
a significant non-linearity to the gradients around this location. This thermal model
was predominately used to generate the wind force contributions during trajectory
optimization.

The equations of motion required an acceleration component to characterize the
wind force. As such, a sensitivity analysis method was performed in order to evaluate
the partial derivatives at any location within the thermal. These sensitivities were
estimated using the Complex Step method. In this technique, the following expression
was used to estimate a particular sensitivity for a given imaginary step size, i∆h [40]:

∇ f (x) =
ℑ[ f (x+ i∆h)]

∆h
(4.11)
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4.4. Bubble Thermal Model

Figure 4.8: Plot of Constant Contour Lines of the Thermal Updraft Speeds, Wh in ft/s
for the Chimney Thermal Model

The Complex Step method provides sensitivity information with machine accuracy as
it is not affected by step-size selection that causes subtractive cancellation errors [40].

4.4 Bubble Thermal Model

Lawrance [21] presented a toroidal thermal model, where the hot air mass rose up in
a bubble-like structure and was disconnected from the ground. In this model, down-
drafts were constrained to the outer thermal rim and the flow-field was 3-dimensional,
continuous, but not mass conservative. The updraft profile for the bubble thermal
model is given as [38]:

Wh =



wcore, dH = 0,

cos(1+ πh
kR )

2
Rwcore
πdH

sin
(

πdH
R

)
, dH ∈ (0,2R],

0, otherwise.

(4.12)
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4.4. Bubble Thermal Model

Wx =−Wh
h

(dH −R)k2
x

dH
(4.13)

Wy =−Wh
h

(dH −R)k2
y

dH
(4.14)

where dH =
√

x2 + y2, wcore is the bubble core updraft speed, R is the radial distance
that limits the updraft area, x, y, and z are the positions relative to the thermal center,
and k is the bubble eccentricity factor that is a function of bubble height and thermal
radius. A plot showing constant contour lines of the thermal updraft speeds, Wh as
a function of aircraft radial distance and altitude is shown in Figure 4.10, while the
code used to generate the model is contained in Listing B.2. Additionally, thermal
updraft speed profiles for multiple altitude slices are shown in Figure 4.11. This ther-
mal model was also used to generate the wind force contributions during trajectory
optimization to permit a comparison of the trajectories for different thermal types.

Figure 4.10: Plot of Constant Contour Lines of the Thermal Updraft Speeds, Wh in
ft/s for the Lawrance Bubble Model

Unlike the previous thermal model, the trigonometric functions in the updraft es-
timation presents numerical difficulties in estimating the sensitivities using Complex
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4.4. Bubble Thermal Model

Step. As such, the sensitivity analysis was performed using a Central-Difference ap-
proximation to evaluate the partial derivatives at any location for a given step size,
∆h. The Central-Difference approximation can be expressed as [40]:

∇ f (x) =
f (x+∆h)− f (x−∆h)

2∆h
+O(∆ 2

h ) (4.15)

where O(∆ 2
h ) is the truncation error. This sensitivity approximation provided higher

truncation error accuracy as compared to a Forward Difference method, but was at
the expense of twice the number of function evaluations.

In summary, two state-of-the-art thermal models were developed to provide the
wind force contributions and sensitivities that will be used in the point-mass model
equations of motion for subsequent thermal soaring trajectory generation. For these
models, it was assumed that the thermal core or center location is known, and wind
shear effects were not considered.
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5 Optimal Control Problem

In this chapter, the generalized optimal control problem is presented and is further
developed specifically for the autonomous thermal soaring case. The trajectories are
obtained by optimizing the aircraft’s instantaneous or final energy height along the
flight path and also at the terminal time. An energy approach is taken for the de-
velopment of the cost or objective function used during optimization. The optimiza-
tion problem is solved numerically using a direct collocation method using nonlinear
programming, and this technique is presented herein. Additionally, the previously
developed generalized aircraft equations of motion are restructured in cylindrical co-
ordinates to improve the numerical performance during optimization. Finally, the
full optimization problem definition is presented, including the dynamic and path
constraints and the boundary conditions.

5.1 Generalized Optimal Control Problem

The generalized optimal control problem is defined as optimizing a continuous-time
cost functional, J defined as [41, 42]:

J = Φ [x(t0), t0,x(t f ), t f ]+
∫ t f

t0
L [x(t),u(t), t]dt (5.1)

where Φ are the boundary conditions at both t0 and t f , while L is the Lagrangian that
defines the dynamic performance index. The above cost-functional is minimized with
respect to the control inputs, u(t) to obtain an optimal path or trajectory subject to the
dynamic constraints of the system that are defined by a set of Ordinary Differential
Equations (ODEs) and represented in the following form as the state equations:

ẋ(t) = f [x(t),u(t), t] (5.2)

where x(t) ∈ ℜn are the state variables, u(t) ∈ ℜm are the control inputs, and t ∈
[t0, t f ] is the time and is defined as the independent variable. Additionally, the path
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5.2. Method to Solve the Optimal Control Problem

constraints must also be satisfied along the trajectory and can either be represented
as equality or inequality constraints such that:

C[x(t),u(t), t]≤ 0 (5.3)

5.2 Method to Solve the Optimal Control Problem

The techniques used to solve the optimal control problem are either classified as
indirect methods or direct methods. The indirect method is an analytic method that
uses the calculus of variations to determine the first order optimality conditions and
are typically derived using the augmented Hamiltonian, H so as to transform the
optimal control problem into an unconstrained optimization process and is defined
as [41]:

H (x,λ,µ,u, t) = L +λTf −µTC (5.4)

where λ(t) ∈ℜn is the co-states for the continuous differential equation constraints
and µ(t) ∈ℜC is the Lagrange multiplier associated with the path constraint. Given
the complexity of the dynamics of thermal soaring flight, there are a large number of
design variables and constraints, and as such the optimal control problem becomes
extremely difficult to solve. Alternatively, for this research we use a direct colloca-
tion using nonlinear programming approach [41, 42], which is a direct method that
relies on a numerical approach that involves discretizing the states and controls for
a continuous trajectory. This discretizational approach transcribes the optimal con-
trol problem defined in Equation 5.1 into a nonlinear programming problem. This
method is a state and control parameterization approach where a fixed time interval
[t0, t f ] is divided into N sub-intervals or collocation points:

t0 < t1 < t2 < .. . < tk−1 < tk < .. . < tN = t f (5.5)

In order to ensure continuity of each state across the sub-intervals, the following
compatibility constraint must be enforced [41]:

x(t−k ) = x(t+k ), k = 2,3, . . . ,k−1 (5.6)

Additionally, the derivatives of the state must also be matched to ensure continuity.
At each collocation point, the dynamics are written as defect constraints, ζk to ensure
that the matching criteria are met and so that they can be solved simultaneously. A
trapezoidal method will be used to estimate the solution to the ODEs for a given
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5.3. Optimal Control Problem Example

interval size hk, which is a second-order numerical approximation technique of the
form [42]:

ζk = yk+1−yk−
hk

2
[fk+1 +fk] = 0 (5.7)

For the collocation method, the objective is to find a trajectory that ensures that all of
the defect constraints are zero. The optimal control problem can now be reformulated
as the following non-linear programming problem:

minimize
∫ tk

t0
L [x(tk),u(tk), tk]dt

with respect to xk, uk, k = 1,2, . . . ,Ncoll

subject to ζk = yk+1−yk−
hk

2
[fk+1 +fk] = 0

C[x(tk),u(tk), tk]≤ 0

Φ [x(t0), t0,x(tN), tN ] = 0

(5.8)

A gradient-based method will be used to solve the nonlinear programming prob-
lem. The problem will be solved using pyOpt, which is an object-oriented framework
developed for formulating and efficiently solving nonlinear constrained optimization
problems [43]. One of the optimization algorithms that was integrated into the frame-
work was SNOPT, which was a Sparse Nonlinear Optimizer that was particularly
useful for solving large-scale constrained problems with smooth objective functions
and constraints. The algorithm consisted of a Sequential Quadratic Programming
(SQP) algorithm that used a smooth augmented Lagrangian merit function, and ap-
proximated the Hessian of the Lagrangian using a quasi-Newton method. It also
made explicit provision for infeasibility in the original problem and in the quadratic
programming sub-problems.

5.3 Optimal Control Problem Example

Consider the following optimal control problem, which is defined as the Breakwell
problem and has an analytical solution for comparison and validation with the numer-
ically generated results [44]. The problem is defined as minimize the cost functional:

J =
∫ t f

0
u(t)2 dt (5.9)

subject to the dynamic constraints:

ẋ = v

v̇ = u
(5.10)
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5.3. Optimal Control Problem Example

the state dependent constraint:

x(t)≤ l (5.11)

where l = 0.1, t f = 1, and subject to the boundary conditions that are given as:

x(0) = 0

v(0) = 1

x(t f ) = 0

v(t f ) =−1

(5.12)

The analytical solution of the problem, which is only valid for 0 ≤ l ≤ 1/6 was
given as [44]:

u(t) =


− 2

3l

(
1− t

3l

)
, 0≤ t < 3l

0, 3l ≤ t < 1−3l
− 2

3l

(
1− 1−t

3l

)
, 1−3l ≤ t ≤ 1

(5.13)

x(t) =


l
(

1−
(
1− t

3l

)3
)
, 0≤ t < 3l

l, 3l ≤ t < 1−3l

l
(

1−
(
1− 1−t

3l

)3
)
, 1−3l ≤ t ≤ 1

(5.14)

v(t) =


(
1− t

3l

)2
, 0≤ t < 3l

0, 3l ≤ t < 1−3l
−
(
1− 1−t

3l

)2
, 1−3l ≤ t ≤ 1

(5.15)

λx(t) =


2

9l2 , 0≤ t < 3l
0, 3l ≤ t < 1−3l

− 2
9l2 , 1−3l ≤ t ≤ 1

(5.16)

λv(t) =


2
3l

(
1− t

3l

)
, 0≤ t < 3l

0, 3l ≤ t < 1−3l
− 2

3l

(
1− 1−t

3l

)
, 1−3l ≤ t ≤ 1

(5.17)

where λx(t) and λv(t) are the co-states. The optimal value of the objective function
was given as J = 4/(9l) = 4.444̄. The optimal control problem was approached
using the direct collocation method using nonlinear programming and was solved for
N = 100 collocation points using pyOpt. The numerical results shown in Figures
5.2 and 5.4 demonstrate the capability of the method to find a solution with a high
degree of accuracy as compared to the analytic solution shown graphically in Figures
5.1 and 5.3.
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5.3. Optimal Control Problem Example

Figure 5.1: Plot of the States for the Analytic Solution to the Breakwell Problem

Figure 5.2: Plot of the States for the Numerical Solution to the Breakwell Problem
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5.3. Optimal Control Problem Example

Figure 5.3: Plot of the Controls for the Analytic Solution to the Breakwell Problem

Figure 5.4: Plot of the Controls for the Numerical Solution to the Breakwell Problem
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5.4 Objective Function Development

The objective of thermal soaring flight is to extract as much energy as possible out of
a given thermal updraft in order to increase the potential energy state of the aircraft
and as a result gain altitude. As such, an energy approach is taken to develop an
objective function for use in determining optimal thermal soaring trajectories. The
total energy state of an aircraft can be represented by the sum of its potential and
kinetic energy, which take the form of altitude, h and airspeed, V respectively [30]:

E = PE +KE = mgh+
1
2

mV 2 (5.18)

Given that the energy loss due to control actuation is significantly less than the energy
that is required to overcome aerodynamic and gravitational forces associated with
gliding flight, it is assumed that the internally stored energy of the system is neglected
and therefore is not considered in the objective function formulation. The energy
height is defined as the altitude an aircraft could attain if it converted all of its kinetic
energy into potential energy assuming that no losses would occur. More specifically,
it can be represented as a normalized quantity with respect to the aircraft weight, mg
and is defined as the Energy Height, Eh [30]:

Eh =
E

mg
= h+

V 2

2g
(5.19)

The primary objective of thermal soaring is to maximize thermal energy extrac-
tion, which is directly related to achieving the highest aircraft energy height. As such,
the optimization problem can be formulated as maximizing the energy height of an
aircraft at the end of a fixed time period, tN = t f and with respect to the aircraft’s
angle of attack α , and bank angle γ1:

maximize Eh(t f ) = h+
V 2

2g
with respect to xk, uk = [α,γ]

T , k = 1,2, . . . ,Ncoll

subject to ζk = yk+1−yk−
hk

2
[fk+1 +fk] = 0

C[x(tk),u(tk), tk]≤ 0

Φ [x(t0), t0,x(tN), tN ] = 0

(5.20)

52



5.5. System Dynamics

Alternatively, the following formulation represents an alternative optimization prob-
lem where the instantaneous energy height is maximized throughout the complete
flight trajectory:

minimize
∫ t f

t0
Eh dt =

∫ t f

t0
h+

V 2

2g
dt

with respect to xk, uk = [α,γ]
T , k = 1,2, . . . ,Ncoll

subject to ζk = yk+1−yk−
hk

2
[fk+1 +fk] = 0

C[x(tk),u(tk), tk]≤ 0

Φ [x(t0), t0,x(tN), tN ] = 0

(5.21)

5.5 System Dynamics

In order to evaluate and optimize the continual change of the aircraft’s energy state
within a trajectory, it is necessary to establish the full system dynamics to be used
in the optimization problem. Furthermore, the development of the system dynamics
will identify both the state and control vectors. To fully characterize the system, both
the aircraft point-mass model equations of motion previously developed in Chapter
3 and the kinematic expressions must be considered.

5.5.1 Kinematic Equations of Motion

The kinematic equations of motion related the motion of the aircraft with respect to
the Earth axes. The kinematic equations of motion augmented with wind component
velocities are defined in the Earth axes using the following rotational transformation:

ẋ
ẏ
ż


e

=

cosγ2 cosγ3 −sinγ3 sinγ2 cosγ3
cosγ2 sinγ3 cosγ3 sinγ2 sinγ3
−sinγ2 0 cosγ2

V
0
0


v

+

Vw,x

Vw,y

Vw,z


e

(5.22)

Performing the rotations results in the following kinematic equations of motion in
Cartesian coordinates:

ẋ = [V ]v cosγ2 cosγ3 +[Vw,x]e (5.23)

ẏ = [V ]v cosγ2 sinγ3 +[Vw,y]e (5.24)

ż = −[V ]v sinγ2 +[Vw,z]e (5.25)
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5.5. System Dynamics

5.5.2 Equations of Motion Restructured in Cylindrical Coordinates

Previous heuristic and analytic strategies have identified that the most efficient and
effective methods to extract energy from a thermal involves centering and circling
around the thermal core [2,4,9–11,13]. As such, these trajectories are cyclic in nature
and can cause computational issues when trying to solve them numerically using the
standard equations of motion in Cartesian coordinates leading to the generation of
non-converged sub-optimal results that do not reflect a realistic flight trajectory. As
such, the kinematic equations of motion were restructured in cylindrical coordinates
as shown in Figure 5.5 and represented by the following coordinate transformation:

x = r cosθth (5.26)

y = r sinθth (5.27)

Figure 5.5: Cylindrical Coordinates Definition

It is assumed that the location of the thermal core on the Earth’s surface corresponds
to the origin of the cylindrical coordinate axes.

Change in Aircraft Radial Position with Time

Taking the time derivative of x and y and equating them to the corresponding kine-
matic expressions derived in Cartesian coordinates yields:
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5.5. System Dynamics

ẋ = ṙ cosθth− r sinθthθ̇th = [V ]v cosγ2 cosγ3 +[Vw,x]e (5.28)

ẏ = ṙ sinθth + r cosθthθ̇th = [V ]v cosγ2 sinγ3 +[Vw,y]e (5.29)

Solving and equating each expression for the aircraft’s radial location, r:

r =
−[V ]v cosγ2 cosγ3− [Vw,x]e + ṙ cosθth

sinθthθ̇th
=

[V ]v cosγ2 sinγ3 +[Vw,y]e− ṙ sinθth

cosθthθ̇th

For the above expression, it is only true for the conditions when θ̇th 6= 0. When
θ̇th = 0, the flight condition is defined as the aircraft tracking directly towards or
away from the center of the thermal core. As such, this formulation assumes that
the thermal has been detected, the soaring mode has been engaged, the aircraft is
in turning flight and actively engaged in centering the thermal core. Expanding the
above result and solving the expression for ṙ yields:

ṙ
(
sin2

θth + cos2
θth
)
= [V ]v cosγ2 cosγ3 cosθth+[V ]v cosγ2 sinγ3 sinθth+[Vw,x]e cosθth+[Vw,y]e sinθth

Using the following trigonometric identities:

sin2
θth + cos2

θth = 1

cos(γ3−θth) = cosγ3 cosθth + sinγ3 sinθth

the expression for ṙ reduces to:

ṙ = [V ]v cosγ2 cos(γ3−θth)+ [Vw,x]e cosθth +[Vw,y]e sinθth (5.30)

Using the coordinate transformations to obtain a radial component for the wind
speed:

[Vw,x]e = [Vw,r]e cosθth

[Vw,y]e = [Vw,r]e sinθth

a concise form of the expression for ṙ is obtained:

ṙ = [V ]v cosγ2 cos(γ3−θth)+ [Vw,r]e (5.31)
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Change in Aircraft Angular Position with Time

Recall the time derivative expression obtained above for x and y:

ẋ = ṙ cosθth− r sinθthθ̇th

ẏ = ṙ sinθth + r cosθthθ̇th

Multiplying the time derivative of x by sinθth, and the time derivative of y by cosθth
results in:

ẋsinθth = ṙ sinθth cosθth− r sin2
θthθ̇th (5.32)

ẏcosθth = ṙ sinθth cosθth + r cos2
θthθ̇th (5.33)

Subtracting the resulting time derivative of x by the time derivative of y yields:

ẏcosθth− ẋsinθth = r cos2
θthθ̇th + r sin2

θthθ̇th = rθ̇th

Solving for θ̇th:

θ̇th =
ẏcosθth− ẋsinθth

r
(5.34)

Replacing ẋ and ẏ with the corresponding kinematic expressions derived in Cartesian
coordinates, the expression for θ̇th is expanded to:

θ̇th =
[V ]v cosγ2 sinγ3 cosθth +[Vw,y]e cosθth− [V ]v cosγ2 cosγ3 cosθth− [Vw,x]e cosθth

r

Using the following trigonometric identity:

sin(γ3−θth) = sinγ3 cosθth− cosγ3 sinθth

and the previously defined coordinate transformations to obtain a radial component
for the wind speed, a concise form of the expression for θ̇th is obtained:

θ̇th =
[V ]v

r
cosγ2 sin(γ3−θth) (5.35)
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Figure 5.6: Aircraft Tangential Tracking Angle Definition

Change in Aircraft Tangential Tracking Angle with Time

A new variable, ε is introduced that represents the aircraft tangential tracking angle
and is shown in Figure 5.6 and is defined as:

ε = γ3−θth (5.36)

It follows that the time derivative of the aircraft tangential tracking angle is given as:

ε̇ = γ̇3− θ̇th (5.37)

Recall the expression for the rate of change in aircraft track, γ̇3 that was previously
derived in Chapter 3:

γ̇3 =
Lsinγ1−m[V̇w,x]e sinγ3 +m[V̇w,y]e cosγ3

m[V ]v cosγ2
(5.38)

Substituting the expressions for γ̇3 and θ̇th results in the following equation for the
change in aircraft tangential tracking angle with time:

ε̇ =
Lsinγ1−m[V̇w,x]e sinγ3 +m[V̇w,y]e cosγ3

m[V ]v cosγ2
− [V ]v

r
cosγ2 sin(γ3−θth) (5.39)
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5.6 Optimization Problem Definition

The autonomous soaring optimal control problem is defined as being a multi-variable
constrained optimization problem and is defined as:

maximize Eh = h+
V 2

2g
with respect to x= (V,γ2,r,θth,z,ε)T u= (α,γ1)

T

subject to the defect constraints, ζk that are defined by the following set of ODEs:

V̇ =−D
m
−gsinγ2 +[V̇w,x]e cosγ2 cosγ3 +[V̇w,y]e cosγ2 sinγ3− [V̇w,z]e sinγ2 (5.40)

γ̇2 =
Lcosγ1−mgcosγ2 +m[V̇w,x]e sinγ2 cosγ3 +m[V̇w,y]e sinγ2 sinγ3 +m[V̇w,z]e cosγ2

m[V ]v
(5.41)

ṙ = [V ]v cosγ2 cos(γ3−θth)+ [Vw,r]e (5.42)

θ̇th =
[V ]v

r
cosγ2 sin(γ3−θth) (5.43)

ż =−[V ]v sinγ2 +[Vw,z]e (5.44)

ε̇ =
Lsinγ1−m[V̇w,x]e sinγ3 +m[V̇w,y]e cosγ3

m[V ]v cosγ2
− [V ]v

r
cosγ2 sin(γ3−θth) (5.45)

The initial flight conditions are defined as:

V (t0) =V0, r(t0) = r0, γ2(t0) = γ20
θth(t0) = θth0, z(t0) = z0, ε(t0) = ε0

}
(5.46)

The path constraints, C are represented as inequalities and are shown in Table 5.1,
while the boundary conditions, Φ for the states and controls are detailed in Table 5.2.
The constraints and boundary conditions represent either aerodynamic, structural, or
control limitations of the Cularis aircraft that were either outlined in the flight manual
or were generated in Chapter 3 during the characterization.
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Table 5.1: Definition of the Path Constraints

Minimum Control Speed, Vmc g1(x)≥Vmc = 1.1Vstall
Maximum Operating Speed, Vmo g2(x)≤Vmo

Minimum Load Factor, nmin g3(x)≥ nmin =−1.5
Maximum Load Factor, nmax g4(x)≤ nmax = 4.5
Maximum Lift Coefficient, CLmax g5(x)≤CLmax = 1.674
Maximum Pitch Rate, γ̇2max g6(x)≤ γ̇2max =

π

12
Maximum Roll Rate, γ̇1max g7(x)≤ γ̇1max =

π

6

Table 5.2: Definition of the Boundary Conditions for the States and Controls

Lower Bound State or Control Variable Upper Bound
Vstall V Vmo
−π

2 γ2
π

2
25 ft r 1000 ft

0.0 rad θth ∞ rad
50 ft z 9000 ft

0.2 rad ε 1.8 rad
−π

10 α
π

10
−π

3 γ1
π

3

Using the point-mass model of the aircraft that was described in Chapter 3, the ther-
mal models that were presented in Chapter 4, and the optimal control problem formu-
lation detailed above, optimal trajectories can be generated for various case studies
and will be presented in the succeeding chapter.
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In this chapter, optimal flight trajectories are presented for a small autonomous air-
craft, operating in multiple thermal profiles of varying strengths using the optimal
control problem formulation developed in Chapter 5, the point-mass model of the
Cularis D-5223 aircraft that was described in Chapter 3, and the thermal models that
were presented in Chapter 4. These trajectories are compared to derived analytic
expressions for gliding flight, and a thermal centering strategy for controller devel-
opment is presented.

6.1 Case Studies Definition

Optimal soaring trajectories are generated and evaluated by varying the following
five objectives within the problem formulation:

i. Variations of the objective function (Instantaneous Energy or Energy at t f ).
ii. Thermal type.

iii. Thermal strength.
iv. Initial starting conditions.
v. Effect of the allowable aircraft tangential tracking angle, ε range.

Trajectories are first shown for the chimney thermal model described in Section 4.3,
and then followed by the bubble thermal model detailed in Section 4.4 for the ther-
mal strength conditions outlined in Table 6.1. For each simulation case, the aircraft is
positioned to fly tangential to the thermal core at the initial flight conditions detailed
in Table 6.2 and the various starting positions defined in Table 6.3. Apart from the
analysis of the trajectories at different starting conditions, all simulations are gener-
ated for start position 4 as outlined in Table 6.2. Results are presented for N = 200
collocation points and for a fixed time interval of t = 120 s. The specified collo-
cation leads to an optimization problem with 1,600 design variables (6 states and 2
controls for N = 200 collocation points) and 2,600 constraints, and as such 4,160,00
constraint gradients and 1,600 objective gradients are required. The feasibility and
optimality tolerance levels defining the convergence criteria for all cases was selected
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6.2. Optimal Trajectories for the Chimney Thermal Model

as υ = 1.0e−5. To improve computational efficiency, the optimal trajectories were
solved using a Beowulf cluster using either 48 or 60 processors to enable parallel
gradient calculations. The computer code used to generate the optimal trajectories
for both the chimney and bubble thermal models are contained in Listings B.3 and
B.4 respectively.

Table 6.1: Definition of the Thermal Strength Cases

Chimney Thermal Model
Month Index w∗max [ft/s] hi [ft]

0 11.8 5,906
3 18.1 7,808
6 20.7 12,999
9 15.0 10,778

Bubble Thermal Model
wcore [ft/s] Bubble Height, ht [ft] Updraft Area Limit, R [ft]

7.5 1500 500
10.0 2000 750
12.5 2500 1000

Table 6.2: Initial Aircraft Flight Conditions

Description Parameter Value Units
Airspeed V VL/Dmax = 29.5 ft/s
Climb Angle γ2 (γ2)min =−0.043 rad
Angle of Attack α 0.0 rad
Bank Angle γ1 0.0 rad
Tangential Tracking Angle ε π/2 rad

6.2 Optimal Trajectories for the Chimney Thermal Model

6.2.1 Effect of Thermal Strength and Initial Starting Position

Using the chimney thermal model described in Section 4.3, optimal trajectories for
varying thermal strengths were generated and are shown in Figure 6.1. Time his-
tories of the states and controls for each trajectory are provided in Figures 6.2 and
6.3 respectively. Following the initial turn towards and the capture of the thermal,
the trajectories were smooth and both the states and controls achieved steady-state
conditions and thermal centering occurred within 20 seconds.
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6.2. Optimal Trajectories for the Chimney Thermal Model

Table 6.3: Initial Aircraft Starting Location

Location Radial Position, r [ft] Angular Position, θth [rad] Altitude, h [ft]
1 100 0.0 300
2 100 0.0 500
3 100 0.0 700
4 150 0.0 300
5 150 0.0 500
6 150 0.0 700
7 300 0.0 300
8 300 0.0 500
9 300 0.0 700

Following a slight acceleration that was initiated to quickly enter the thermal to
avoid energy losses in the downdraft, the airspeed was reduced and remained al-
most constant throughout the climb. It was observed that the commanded airspeed
was minimally effected by the thermal strength, and was driven by the flight altitude
and the aerodynamic characteristics to obtain a minimum sink rate condition. Ad-
ditionally, the flight path angle was also constant and was found to be independent
of thermal strength upon thermal centering. Once centered, the aircraft settled at a
value of γ2min = −0.049 rad [−2.8◦], which was a slightly steeper trajectory then
when flying at the minimum glide angle of γ2 = −0.043 rad [−2.5◦]. A high angle
of attack was generated in an attempt to reach the (C3/2

L /CD) aerodynamic condition
required for the minimum sink rate; however, due to the stall speed being greater than
the minimum sink airspeed, an angle of attack of α ≈ 0.18 rad [10.5◦] was selected
to obtain the minimum control speed. A comparison of the optimization results to
the analytic predictions for airspeed at varying thermal strengths is shown in Figures
6.4, 6.5, 6.6, and 6.7. Following the initial transient conditions, the airspeed was re-
duced to the minimum control speed, Vmc and flew at that speed throughout the climb
phase of the trajectory. Given that the minimum sink rate speed, V

(C3/2
L /CD)max

was
less than the stall speed, it was not possible for the aircraft to fly at that speed due to
the constraint of the minimum control speed.

For lower thermal strength conditions, the aircraft performed tighter turns to take
more advantage of the higher updraft strengths in the thermal core and made more
complete circular passes around the core. As such, angle of bank command was
a function of thermal strength. Once centered, an angle of bank of no more than
γ1 = 5π/36 [25◦] was commanded, and it was decreased linearly at a rate of 4.36e−4

rad/s [0.025◦/s] during the climb. Following the initial capture, the aircraft flew a
circular flight path that was tangential to the thermal core, i.e. ε = π/2 [90◦].
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6.2. Optimal Trajectories for the Chimney Thermal Model

The resulting objective function value, or maximized energy height, the computa-
tional effort required to solve the trajectories, and the overall optimization efficiency
are presented in Table 6.4. The increase in energy height due to thermal soaring for
varying thermal strengths ranged from 721.8 to 1158.5 ft. Due to the large scale of
the optimization problem, it took an average of 5.40 hrs and 1715 function evalua-
tions to solve for the optimal trajectory.

Three dimensional plots of the optimal trajectories for varying initial starting lo-
cations are shown in Figure 6.8. The thermal strength was consistent for all starting
locations and a month index = 6, or the month of July was selected for the analy-
sis. Akin to the analysis for varying thermal strengths, a summary of the objective
function values obtained and computational requirements is presented in Table 6.4.
The increase in energy height due to thermal soaring for different initial starting loca-
tions ranged from 1077.8 to 1259.2 ft. It was observed that for an increasing starting
radius, less energy extraction occurred and that effect was slightly reduced with in-
creasing altitude starting points. Conversely, for an increasing starting altitude, more
energy extraction occurred. However, the flight trajectories were consistent regard-
less of the starting condition and the states and controls behaviour was similar to
what was observed in the previous case.

6.2.2 Effect of Variations in the Objective Function

As detailed in Chapter 5, the optimal control problem was also formulated for the
following two representations of the objective function:

maximize Eh(t f )

with respect to x= (V,γ2,r,θth,z,ε)T u= (α,γ1)
T (6.1)

maximize
∫ t f

t0
Eh dt

with respect to x= (V,γ2,r,θth,z,ε)T u= (α,γ1)
T

(6.2)

Optimal trajectories showing the effect of the variations in the objective function for
three different starting positions are shown in Figure 6.9. The thermal strength was
consistent for all starting locations and again was selected as month index = 6 from
Table 6.4. It can be observed that the variation in the formulation of the objective
function has little to no effect on the trajectory and the overall energy extraction. As
such, all further trajectories will be solved by maximizing energy at the terminal time
vice using the instantaneous energy approach.
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6.2. Optimal Trajectories for the Chimney Thermal Model

6.2.3 Effect of Aircraft Tangential Tracking Angle Range

The effect of aircraft tangential tracking angle range was investigated for the follow-
ing three cases:

π

10
≤ ε ≤ 9π

10
,

π

4
≤ ε ≤ 3π

4
, and

2π

5
≤ ε ≤ 3π

5
.

Optimal trajectories showing the effect of the aircraft tangential tracking angle range
for the same initial starting point are shown in Figure 6.10. Additionally, traces of
aircraft radial distance to the thermal core and tangential tracking angle as they vary
with time are shown in Figure 6.11. The initial capture of the thermal varied greatly
with a change in the allowable tangential tracking angle range, in that the initial
turn towards the thermal was much sharper. However, the steady-state conditions
for the aircraft radial distance and tracking angle when the aircraft was centered on
the thermal were identical as shown in the time histories. Additionally, the soaring
trajectories and final energy heights were consistent and as such a nominal range
of π

4 ≤ ε ≤ 3π

4 was selected and used throughout the remaining analysis to provide
an increased flexibility when calculating optimal captures while at the same time
ensuring a smooth initial trajectory.

6.2.4 Energy Analysis of the Optimal Trajectories

The following energy analysis of the optimal trajectories was performed for the case
where the effect of the varying thermal strengths was conducted and detailed in Sec-
tion 6.2.1. Traces of energy height, Eh, the time rate of change of energy height, Ėh,
and the double time derivative of energy height, Ëh as the varied with time are shown
in Figure 6.12. It was observed that the energy height increases at a constant rate
throughout the climb once the aircraft is centered on the thermal. Furthermore, a key
indication that the aircraft is fully centered on the thermal core is the condition when
Ëh→ 0. Recall from Chapter 5 the expression for energy height:

Eh = h+
V 2

2g
(6.3)

Taking the first and second time derivatives we have:
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6.2. Optimal Trajectories for the Chimney Thermal Model

(a) Aircraft Tangential Tracking Angle

(b) Aircraft Radial Distance to Thermal Core

Figure 6.11: Time History of the Effect of Tangential Tracking Angle Range
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6.2. Optimal Trajectories for the Chimney Thermal Model

Ėh = ḣ+
VV̇
g

(6.4)

Ëh = ḧ+
V̇ 2

g
+

VV̈
g

(6.5)

From Equation 6.5, an understanding of the time derivatives of vertical speed and
airspeed is required. As such, plots were generated to show the change in airspeed
and vertical speed rates and acceleration with time and are shown in Figures 6.13 and
6.14 respectively. Given that Ëh, ḧ, V̇ , and V̈ all approach zero when the aircraft was
centered on a thermal, the above first and second time derivatives of energy height
reduce to:

Ėh = ḣ (6.6)

Ëh =
V̇ 2

g
= 0⇒ V̇ = 0 (6.7)

Replacing V̇ with the previously derived equation of motion and assuming contribu-
tions from only the vertical wind component, we have:

V̇ =−D
m
−gsinγ2− [V̇w,z]e sinγ2 = 0

Solving the expression for the climb angle yields:

sinγ2 =
−D

W +m[V̇w,z]e
(6.8)

Since the weight of the aircraft is fixed, V̇ = 0 and the angle of attack does not vary
with time during the centered thermal climb, the climb angle is a function of the
thermal vertical velocity acceleration, aircraft weight and aerodynamic characteris-
tics. The thermal updraft strength and acceleration were also plotted at each aircraft
position along the trajectory and are shown in Figure 6.15. Since the contribution of
the thermal acceleration was shown to be small for all trajectories (0.2-0.5 ft/s2) as
compared to the aircraft weight, W , it will have a negligible effect on the selection of
the climb angle. As such, the climb angle required for an optimal centered thermal
climb is a function of the particular aircraft’s aerodynamic and weight characteristics
and would remain constant within the climb.
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(a) Vertical Speed

(b) Rate of Change of Vertical Speed

Figure 6.13: Time History Analysis of Vertical Speed Rates and Acceleration
Changes
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(a) Airspeed Acceleration

(b) Rate of Change of Airspeed Acceleration

Figure 6.14: Time History Analysis of Airspeed Rates and Acceleration Changes
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(a) Thermal Strength

(b) Thermal Acceleration

Figure 6.15: Time History Analysis of Thermal Strength and Acceleration
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6.3 Optimal Trajectories for the Bubble Thermal Model

6.3.1 Effect of Thermal Strength on the Trajectories

Using the bubble thermal model detailed in Section 4.4, optimal trajectories for vary-
ing thermal strengths were generated and are shown in Figure 6.16. These trajectories
were generated to confirm the results obtained for the chimney model in an attempt
to develop a controller that can be applied to multiple thermal types. Time histo-
ries of the states and controls for each trajectory are provided in Figures 6.17 and
6.18 respectively. Similar to the results obtained for the chimney model, the aircraft
centered on the thermal after approximately 20 seconds of flight time.

Following the initial transient conditions required to steer the aircraft for thermal
centering, the states and controls were analyzed for their behaviour and were sim-
ilar to the results obtained for the chimney model. However, the turns performed
by the aircraft were significantly tighter and as a result higher sink rates were gen-
erated and less energy was extracted. Additionally and upon thermal centering, the
aircraft flew a circular flight path that was tangential to the thermal core. Once the
aircraft entered the bubble core, angle of bank commands were reduced to less than
γ1 = π/6 rad [30◦] and the aircraft radial distances from the thermal core were more
consistent with the previous results obtained for the other thermal model. Towards
the end of the trajectory, the steady-state conditions for both the states and controls
were commensurate with those obtained with the chimney model. The airspeed was
slowly reduced to the minimum control speed, Vmc while the flight path angle was
also reduced and settled at a value of γ2 =−0.044 rad [−2.5◦].

The resulting objective function value, or maximized energy height, the computa-
tional effort required to solve the trajectories, and the overall optimization efficiency
are presented in Table 6.5. The increase in energy height due to thermal soaring for
varying thermal strengths ranged from 208.4 to 387.8 ft. It took over double the
amount of time to solve for the optimal trajectories using the bubble thermal model
as compared to the chimney model.

6.3.2 Effect of Initial Starting Location on the Trajectories

Three dimensional plots of the optimal trajectories for varying initial starting loca-
tions are shown in Figure 6.19. The thermal strength was consistent for all starting
locations and a core updraft velocity of wcore = 7.5 ft/s was selected for the analysis.
A summary of the objective function values obtained and computational require-
ments is presented in Table 6.5. Given the fact that the bubble thermal model did
not permit the bubble to detach from the ground and rise with time, the trajectories
obtained were dissimilar for the varying initial starting locations. Depending on the
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(a)

(b)

Figure 6.16: Optimal Trajectories for Varying Thermal Strengths - Bubble Thermal
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height of the initial starting point as compared to the bubble core, the aircraft either
ascended or descended to take advantage of the updraft strength contained within the
core. As such, the value obtained for the energy height at the terminal time were
similar and within 70 ft for all starting locations.

6.3.3 Energy Analysis of the Optimal Trajectories

Recall that for the trajectories obtained for the chimney thermal model, Ëh, ḧ, V̇ , and
V̈ , all approached zero when the aircraft was centered on a thermal. Additionally, a
reduced expressed for the first and second time derivatives of energy height was ob-
tained and stated in Equation 6.7. As such, a similar energy analysis was performed
on the optimal trajectories to confirm that similar results were obtained for a bubble
thermal type. Traces of energy height, Eh, the time rate of change of energy height,
Ėh, and double time derivative of energy height, Ëh as the varied with time are shown
in Figure 6.20. It was observed that the energy height increased with time throughout
the climb once the aircraft was centered on the thermal. In addition, a positive rate of
energy was present throughout the trajectory but decreased with time at a non-linear
rate. Furthermore, Ëh→ 0, which confirmed that it was indeed fully centered on the
thermal core.

To complete the analysis, traces of the change in airspeed and vertical speed rates
and acceleration with time were generated and are shown in Figures 6.21 and 6.22
respectively. Consistent with results previously obtained ḧ, V̇ , and V̈ all approached
zero when the aircraft was centered on a thermal.
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(a) R = 100 ft

(b) R = 150 ft

Figure 6.19: Optimal Trajectories for Varying Initial Starting Locations - Bubble
Thermal
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(a) Vertical Speed

(b) Rate of Change of Vertical Speed

Figure 6.21: Plots of Vertical Speed Rates and Acceleration Changes - Bubble Ther-
mal
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(a) Airspeed Acceleration

(b) Rate of Change of Airspeed Acceleration

Figure 6.22: Plots of Airspeed Rates and Acceleration Changes - Bubble Thermal
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6.4 Optimal Control Strategy for Thermal Soaring

Given the results and analysis conducted on the optimal trajectories that were gener-
ated for autonomous thermal soaring, an optimal control strategy is formulated and
presented herein. For either hardware-in-the-loop simulation or actual test flights, the
following assumptions made during the optimization problem no longer hold true:

i. The location of the thermal updraft is not known and as such a method to detect
thermal activity is required.

ii. The location of the thermal center is not easily determined, so any centering
strategies must not rely on having knowledge of the thermal center location.

iii. Thermal activity is inherently characterized by atmospheric thermal instability
and the conditions can change rapidly.

For thermal detection, it is recommended that a method to determine or measure
the time rate of change of energy height, Ėh be developed. Recall from Section 6.2.4,
the expression for Ėh was given as:

Ėh = ḣ+
VV̇
g

A complicated method to determine Ėh would be to measure the individual variables
directly, differentiate and filter the signals, and combine them to get a value of the
instantaneous Ėh. This approach would require the information from various sensors
that are normally installed on glider aircraft (airspeed indicator, altimeter, and var-
iometer); however, time lags in sensing and processing would adversely affect the
centering results. Another method would be to develop a sensor that measures Ėh di-
rectly. The concept of a simple total energy sensor was initially proposed and tested
by Nicks [45] with good results, and as such a prototype was constructed for its use
on the Cularis aircraft. Similar to the approach used by Allen [9], it is proposed that
a minimum threshold value of Ėh be used as a switching criteria from a searching to
a soaring mode.

The following observations were made from the results and analysis conducted
on the optimal trajectories:

i. For thermal centering to occur, Ëh→ 0.
ii. The climb angle is directly related to the condition where Ëh = 0 and can be

calculated using the relationship established in Equation 6.8 for a given aircraft
weight, wing geometry, and flight condition.

iii. For aircraft where the stall speed is greater than the minimum sink rate speed,
the aircraft should fly at the minimum control airspeed and the angle of attack
should be commanded to reflect this condition. Otherwise and consistent with

92



6.4. Optimal Control Strategy for Thermal Soaring

gliding flight theory, the aircraft should fly at a speed for minimum sink rate but
adjusted using the derivation shown below.

Recall the following equations of motion that were previously detailed in the
optimization problem formulation in Section 5.6. Considering only the vertical com-
ponent of the thermal updraft yields:

V̇ =−D
m
−gsinγ2− [V̇w,z]e sinγ2

γ̇2 =
Lcosγ1−mgcosγ2 +m[V̇w,z]e cosγ2

m[V ]v

Expressing the equations of motion again in terms of a lift-to-drag ratio, we have:

CL

CD
=

L
D

=

−mgcosγ2+m[V̇w,z]e cosγ2
cosγ1

−mgsinγ2−m[V̇w,z]e sinγ2

Solving the expression for the climb angle:

sinγ2 =
(−W +m[V̇w,z]e)cosγ2

CL
CD

(−W −m[V̇w,z]e)cosγ1
(6.9)

As previously seen in Section 3.5, the vertical velocity of an aircraft was given
as [37]:

ḣ =V sinγ2 (6.10)

where the velocity, V was calculated as:

V =

[
W cosγ2

1
2 ρSCL cosγ1

] 1
2

(6.11)

Using the result from Equation 6.9, the following expression is obtained for the ver-
tical velocity of a gliding aircraft:

ḣ =

[
W cosγ2

1
2 ρSCL cosγ1

] 1
2 [

(m[V̇w,z]e−W )cosγ2

(m[V̇w,z]e +W )cosγ1

][
−1
CL
CD

]

ḣ = −
(

W
S

) 1
2
(

2
ρ

) 1
2
(

cosγ2

CL cosγ1

) 1
2
[
(m[V̇w,z]e−W )

(m[V̇w,z]e +W )

](
cosγ2

cosγ1

)(
CD

CL

)
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ḣ =−
(

W
S

) 1
2
(

2
ρ

) 1
2

CD

C
3
2
L

sec
3
2 γ1 cos

3
2 γ2

[
(m[V̇w,z]e−W )

(m[V̇w,z]e +W )

]
(6.12)

It can be observed that the minimum sink rate velocity is adjusted based on the ther-
mal updraft acceleration term, [V̇w,z]e. As was shown in Figure 6.15(b), the thermal
updraft acceleration varied between 0.2 to 0.5 ft/s2. When combining the thermal
updraft acceleration term with the aircraft mass (0.149 slug) and the aircraft weight
(4.81 lbf), it will scale the vertical velocity of the aircraft by the following factor:

−0.988 <
m[V̇w,z]e−W
m[V̇w,z]e +W

<−0.969

Furthermore, this contribution will increase the speed-to-fly for the minimum sink
rate condition by 1.2 to 3.2%.

One of the aspects of the centering strategy that was not clearly apparent, was
the specific relationship between the optimal angle of bank command that was re-
quired for a particular thermal strength. Qualitatively, it was shown that the aircraft
radial distance to the thermal core varied between 45 and 75 ft with the larger radii
observed for updrafts with higher thermal strengths. A graphical approach was de-
vised by Cone [46] to determine an optimum combination of the lift coefficient, CL

and angle of bank, γ1 such that the sink rate would be a minimum at each radius of
turn. Furthermore, this approach used the analytical expressions that were previously
developed for the turn radius and vertical velocity of a gliding aircraft in Equations
3.19 and 3.15. The resulting graph for the Cularis D-5223 aircraft is shown in Figure
6.23. The optimum point was defined as where lift coefficient was a maximum for
a particular turn radius. For a turn radius between 40 to 100 ft, the optimal angle of
bank range is between π/9 to 5π/36 rad [20 to 25◦] and matches the results obtained
in the optimization results.

Once thermal detection has occurred (i.e. a threshold value of Ėh is detected),
the following centering strategy is proposed for controller development based on the
aforementioned observations:

i. Using the results that were presented in Figure 6.23, schedule the angle of bank
for a given thermal strength based on a measurement of Ėh,

ii. Perform and maintain a right hand turn based on the angle of bank schedule and
slow the aircraft to the minimum control speed,

iii. If a continual increase in the measurement of Ėh is obtained, reduce the turn
slightly but not less than γ1 = π/6 rad [20◦], else

iv. If a downdraft is encountered, perform the 270◦ correction method described in
Section 2.2,
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Figure 6.23: Angle of Bank versus CL for a given Radial Distance

v. Once a continuous positive measurement of Ėh is obtained either initially or
following the correction method, the controller must achieve a flight condition
where Ëh = 0,

vi. Use a higher order flight control system (i.e. autopilot) to implement the desired
flight condition, and

vii. Feedback should be performed as an input to the elevator and/or aileron to ensure
the aircraft is continually trimmed and achieves the desired flight condition.

Furthermore, an inner loop flight control system based on classical aircraft control
techniques should be in place to correct for the undesirable dynamics present in the
raw aircraft which were previously discussed in Chapter 3.

In summary, this chapter presents the optimal flight trajectories for a small au-
tonomous aircraft, operating in multiple thermal profiles of varying strengths using
the optimal control problem formulation developed in Chapter 5. It was shown that
a key condition for thermal centering was when Ëh → 0. Another key observation,
was that the stall speed of the Cularis D-5223 aircraft was greater than the predicted
minimum sink rate speed. As such, the aircraft flew at the minimum control airspeed
throughout the soaring climb. It is recommended that a further investigation be con-
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6.4. Optimal Control Strategy for Thermal Soaring

ducted for other glider aircraft to determine if they are also stall limited. Finally,
an optimal control strategy was presented for efficient thermal centering and soar-
ing flight. However, further research should be performed to determine an analytic
expression to predict the angle of bank to command for a given aircraft and thermal
strength. Additionally, a controller should be developed to implement the thermal
centering strategy and verify its validity through simulation, hardware-in-the-loop
testing, and experimental flight tests.
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7 Target Localization

In this chapter, the autonomous soaring optimal control problem is extended for si-
multaneous optimization of thermal energy extraction and target localization using an
Electro-Optical (EO) camera that is fixed at the aircraft’s center of gravity. Optimal
trajectories are generated for various target locations relative to the thermal center,
and the problem is further constrained to ensure that a minimum digital spatial reso-
lution is achieved along the full trajectory.

7.1 Camera Optics

The digital spatial resolution of an image is a function of the camera focal length,
individual Charge-Coupled Device (CCD) detector size, and the distance the camera
is located from the object. A visual representation of this relationship is shown in
Figure 7.1 while the effect of the change in viewing angle is shown in Figure 7.2. It
follows that the relationship is determined simply by equating the equivalent ratios
that are defined as pixel area G to altitude h and focal length f to individual CCD
detector size d, namely [47]:

G
h
=

d
f
⇒ G = h

(
d
f

)
(7.1)

When accounting for the effect of the change in the viewing angle, the effective pixel
size, G′ projected on the ground is given as:

G′ =
G

cosθv
(7.2)

The viewing angle, θv can be expressed in terms of the aircraft altitude, h and the line
of sight vector, dlos as follows:

cosθv =
h
dlos

(7.3)
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Figure 7.1: Digital Spatial Resolution

Figure 7.2: Viewing Angle Effect on the Digital Spatial Resolution
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where the line of sight vector is the vector denoting the line of sight between the
camera and the projected point on the ground and is determined from:

dlos =
√
(xcam− xtgt)2 +(ycam− ytgt)2 +(zcam− ztgt)2 (7.4)

where xcam, ycam, and zcam are the camera coordinate positions with respect to the
aircraft’s center of gravity, and xtgt , ytgt , and ztgt are the target coordinate positions
with respect to the origin of the fixed frame in the Earth’s axis system.

The digital spatial resolution of an image, Sres was defined as a measure of the
ratio between the image resolution and the individual CCD element size [47]:

Sres =
d
G

=
f
h
=

cosθv

dlos
f (7.5)

To formulate the digital spatial resolution of an image expression into a useful form
for an objective function for its use in optimization, the following normalization is
performed:

Sres =
d
G

=
cosθv

dlos
f
(

f/dlos +1
f/dlos +1

)
Sres =

( f/dlos +1)cosθv

1+ f/dlos

Given that the focal length is much less than the line of sight vector (i.e. f � dlos),
the expression for digital spatial resolution of an image reduces to:

Sres =
cosθv

1+dlos/ f
(7.6)

For a given optimal viewing angle, θopt the expression for digital spatial resolution
becomes:

Sres =
cos(θv−θopt)

1+dlos/ f
, Sres ∈ [0,1] (7.7)

Finally, the overall digital spatial resolution throughout a flight trajectory can be con-
sidered as a probability distribution of individual digital spatial resolution elements,
Sresi and is represented as follows:

Sres = 1−∏
i
(1−Sresi) (7.8)
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7.2. Camera Reference Axis

7.2 Camera Reference Axis

In order to determine the camera viewing angle and the line of sight vector, a new axis
system is developed and is shown in Figure 7.3. Given that the camera is installed
on the aircraft, it will be represented as an extension to the aircraft body axis system
and is assigned rotational components κ and τ about the y and z body axes respec-
tively, and a translational component (xcam,ycam,zcam). The rotational components
were added to simply create an arbitrary field of view on the ground by moving the
line of sight vector within a small envelope. Similar to the previously defined aircraft
reference frames, the camera axis system will also follow right-hand rule methodol-
ogy to define its orientation and the origin will be located at the center of gravity of
the aircraft. For target localization, the most important piece of information besides
the target location is knowing where the camera is looking in the Earth axis system.
This point will be represented by the intersection between the end of the line of sight
vector and the Earth’s surface.

Figure 7.3: Camera Axis System

The Earth-to-Body transformation can be represented as a basic set of homoge-
neous transformations as follows [30, 48]:

He
b = Transx,y,zRotz,ψRoty,θ Rotx,φ (7.9)

where,
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Transx,y,z =


1 0 0 xac

0 1 0 yac

0 0 1 zac

0 0 0 1

 , Rotz,ψ =


cosψ −sinψ 0 0
sinψ cosψ 0 0

0 0 1 0
0 0 0 1



Roty,θ =


cosθ 0 sinθ 0

0 1 0 0
−sinθ 0 cosθ 0

0 0 0 1

 , Rotx,φ =


1 0 0 0
0 cosφ −sinφ 0
0 sinφ cosφ 0
0 0 0 1


Similarly, the Body-to-Camera transformation can be represented as follows:

Hb
c = Transx,y,zRotz,τRoty,κ (7.10)

where,

Transx,y,z =


1 0 0 xcam

0 1 0 ycam

0 0 1 zcam

0 0 0 1

 , Rotz,τ =


cosτ −sinτ 0 0
sinτ cosτ 0 0

0 0 1 0
0 0 0 1



Roty,κ =


cosκ 0 sinκ 0

0 1 0 0
−sinκ 0 cosκ 0

0 0 0 1


The overall transformation from Earth-to-Camera is the product of the two individual
transformations:

He
c = He

bHb
c (7.11)

In order to use the overall homogeneous transformation matrix to determine the
point on the ground the camera is looking, consider the most general homogeneous
transformation form [48]:

H0
1 =


nx sx ax dx

ny sy ay dy

nz sz az dz

0 0 0 1
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where n = [nx,ny,nz]
T , s = [sx,sy,sz]

T , a = [ax,ay,az]
T represents the direction of x1,

y2, and z3 expression in the o0x0y0z0 frame. Additionally, d = [dx,dy,dz]
T represents

the vector from the origin o0 to the origin of o1.
Given that there is no rotation about the xb axis and it is assumed that the camera

is located at the aircraft center of gravity, the location of the coordinates of the line
of sight vector are solved by:

xlos = dx +∆x

ylos = dy +∆y

where,

∆x =−dz tanζ , tanζ =
nx

nz

∆y =−dz tanη , tanη =
ny

nz

where ζ and η are intermediate angles used to determine ∆x and ∆y, and correspond-
ingly the location of the line of sight vector on the Earth’s surface with respect to its
origin. To ensure the accuracy of the formulation, numerous Field of View (FOV)
plots were generated for a number of aircraft attitudes for the Cularis D-5223 and
are shown in Figure 7.4. In each FOV plot, the aircraft (red dot) is flying tangential
to the target (blue square) located at [0,0] heading due East at an altitude of 150 ft
AGL. The camera rotations used to define the field of view on the Earth’s surface
were limited to:

−π

2
≤ κ ≤−π

5
,

−π ≤ τ ≤ π

7.3 Target Localization Optimization Case Studies

7.3.1 Problem Formulation

The target localization optimal control problem can be defined in a variety of different
manners. Given that a gradient-based optimizer is used to solve for the trajectories, it
is imperative to formulate the objective function to be convex so as to ensure conver-
gence and to avoid numerical difficulties during optimization. Consider the following
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visibility error function that describes the distance between the target location and the
end of the line of sight vector:

er f (x) = µ((xtgt − xlos)
2 +(ytgt − ylos)

2) (7.12)

where µ is a constant used to increase the convexity of the function. Additionally,
recall the energy approach objective function formulation used for the generation of
previous trajectories:

Eh(x) = h+
V 2

2g
(7.13)

For simultaneous target localization and energy extraction, the problem can be de-
fined as either a single or multi-objective constrained optimization problem, and was
formulated for the subsequent cases as follows:

Case Study 1 - Maximize Energy and Minimize Visibility Error Function

minimize
∫ t f

t0
−Eh(x)dt +

∫ t f

t0
er f (x)dt

with respect to x= (V,γ2,r,θth,z,ε)T u= (α,γ1,κ,τ)
T

(7.14)

Case Study 2 - Minimize Visibility Error Function

minimize
∫ t f

t0
er f (x)dt

with respect to x= (V,γ2,r,θth,z,ε)T u= (α,γ1,κ,τ)
T

(7.15)

Case Study 3 - Minimize the Ratio of the Error Function to Energy Extraction

minimize
∫ t f

t0 er f (x)dt∫ t f
t0 Eh(x)dt

with respect to x= (V,γ2,r,θth,z,ε)T u= (α,γ1,κ,τ)
T

(7.16)

Case Study 4 - Maximize a Weighted Energy and See-Ability Function

maximize KEh

∫ t f

t0
Eh(x)dt +KS

∫ t f

t0
S(x)dt

with respect to x= (V,γ2,r,θth,z,ε)T u= (α,γ1,κ,τ)
T

(7.17)

Case Study 5 - Maximize Energy and use See-Ability as a Constraint

maximize
∫ t f

t0
Eh(x)dt

with respect to x= (V,γ2,r,θth,z,ε)T u= (α,γ1,κ,τ)
T

(7.18)
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Numerical difficulties were encountered for the first two problem formulations
because of the design space becoming non-convex, due to the requirement of simul-
taneously optimizing two conflicting objective functions. As a result, the optimizer
terminated early with numerical difficulties and optimal trajectories were not gener-
ated. The formulation of the final two case studies generated optimal trajectories but
yielded trivial results. The see-ability formulation developed in Equation 7.7 as an
optimization objective will force the aircraft to fly directly on top of the target at the
minimum altitude constraint. As an example, Figure 7.5 shows a optimal trajectory
for Case Study 4 that was weighted equally for see-ability and energy extraction.
Using see-ability as a constraint produced optimal trajectories that were identical to
those obtained for maximizing energy height.

Figure 7.5: Optimal Trajectory for See-Ability Formulation

The only formulation that produced practically useable results was for Case
Study 3. In addition to the previously defined path constraints,C and boundary con-
ditions, Φ found in Tables 5.1 and 5.2, additional requirements are outlined in Table
7.1. Results are presented for the chimney thermal model described in Section 4.3, N
= 120 collocation points and for a fixed time interval of t = 120 s. Optimal trajectories
will be generated for varying target locations, which will be specified with respect
to the thermal center and are detailed in Table 7.2. For each target location, the air-
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7.3. Target Localization Optimization Case Studies

craft is positioned to fly tangential to the thermal core at the initial flight conditions
detailed in Table 6.2. The initial position of the camera will be fixed facing forward
with a depression angle of κ0 =−π/3. The feasibility and optimality tolerance levels
defining the convergence criteria for all cases was selected as υ = 1.0e−5.

Table 7.1: Definition of the Additional Path Constraints and Boundary Conditions

Camera Focal Length, f 0.138 [ft]
Individual CCD Element Size, d 1.64e−5 [ft]
Effective Pixel Resolution, G 1.64 [ft]
Length of Line of Sight Vector , (dlos)max g8(x)≤ dlosmax = 13,780 [ft]
Camera Azimuth Rotation Angle Range, τ −π ≤ τ ≤ π

Camera Elevation Rotation Angle Range, κ −π

2 ≤ κ ≤−π

5

Table 7.2: Target Locations

Case xtgt [ft] ytgt [ft]
1 0.0 0.0
2 100.0 100.0
3 300.0 300.0
4 500.0 500.0

7.3.2 Optimal Trajectory Results

Using the chimney thermal model described in Section 4.3 with a thermal center
located at [xt = 0.0,yt = 0.0], optimal trajectories for varying target locations were
generated and are shown in Figures 7.6(a), 7.7(a), 7.8(a), and 7.9(a). The thermal
strength was consistent for all target locations and a month index = 6, or the month
of July was selected for the analysis (see Table 6.1). Additionally, the location of the
line of sight vector (blue dots) as compared to the target location (magenta dot) for
each collocation point is shown in Figures 7.6(b), 7.7(b), 7.8(b), and 7.9(b).

For each target location, the aircraft was able to use the thermal energy to perform
a soaring climb and at the same time made an attempt to position itself to observe the
target. The trajectories were not as smooth as those obtained for the thermal soaring
climb; however and due to the conflicting objectives, the aircraft remained centered
on the thermal core for the climb portion of the trajectory and extended further away
from the core to better observe the target, which resulted in a trajectory that was
oval in shape as shown in Figure 7.10. Additionally, the trajectories were extended
towards the target location in an area with less thermal activity, at which time the
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aircraft decelerated to maximize time on target. Upon reaching the target or an area
with little to no thermal activity, the aircraft turned back and accelerated toward the
thermal core to extract energy. The velocity profile and aircraft radial distance from
the thermal center outlining the cyclic behaviour throughout the trajectory for various
target locations is shown in Figure 7.11. The resulting objective function value, the
computational effort required to solve the trajectories, and the overall optimization
efficiency are presented in Table 7.3.

In this chapter, the autonomous soaring optimal control problem was extended
for simultaneous optimization of thermal energy extraction and target localization
for various target locations relative to the thermal center. For each target location,
the aircraft was able to use the thermal energy to perform a soaring climb and at the
same time made an attempt to position itself to observe the target. Despite obtaining
somewhat predictable results, the objective function needs additional refinement to
reduce the complexity of the optimization problem and increase its convexity. Addi-
tionally, the camera field of view also requires some further tuning to avoid numerical
discontinuities that could arise in certain flight conditions during optimization.
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7.3. Target Localization Optimization Case Studies

(a) Velocity Profile

(b) Aircraft Radial Distance from Thermal Core

Figure 7.11: Time History of Airspeed and Radial Distance for Target Localization
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8 Conclusions and
Recommendations

The main objective of this thesis was to determine optimal flight trajectories for au-
tonomous thermal soaring aircraft in an operating environment with a thermal of a
known size and strength. This final chapter will provide concluding remarks, areas
for improvement, and will also provide recommendations for future areas of research
on this topic.

8.1 Conclusions

This thesis dissertation focused primarily on thermal centering strategies and achiev-
ing energy efficient climb rates within a chimney thermal that had been previously
detected. The development of these strategies was approached numerically using tra-
jectory optimization as the framework while employing energy methods to analyze
aircraft performance and to define the objective function. To solve the autonomous
soaring optimal control problem, the equations of motion were restructured in cylin-
drical coordinates and were augmented with wind component forces. A direct col-
location with nonlinear programming approach for trajectory optimization was used
to solve the autonomous thermal soaring optimal control problem. Additionally, a
gradient-based optimizer that employed a Sequential Quadratic Programming (SQP)
algorithm was used to solve the aforementioned nonlinear programming problem.

As a test case, a point-mass model of the Cularis D-5223 aircraft was developed
as the primary test vehicle to be used in determining the optimal soaring trajecto-
ries. Additionally, a rigid-body model of the aircraft was created to understand the
aerodynamic and dynamic characteristics of the raw aircraft and to ensure that it was
fully controllable and could be trimmed.

Modeling the updraft strength was an additional component that was required to
complete the formulation of the optimization problem. Using the conceptual notions
of the structure of thermals, analytical and heuristic thermal representations were
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developed to be used in the optimization formulation. The output of these developed
thermal models were the wind force contributions that were used in the equations of
motion to fully characterize the dynamic motion of the aircraft.

Optimal trajectories were generated and evaluated by varying the objective func-
tion, the thermal type and strength, and the initial starting locations of the aircraft. It
was shown that the resulting optimal trajectories matched the predictive analytic ap-
proaches. As such, a strategy for thermal centering control was presented that could
be implemented in real-time on Small Unmanned Aerial Vehicles (SUAVs). More
specifically, it was observed that the commanded airspeed was minimally effected
by the thermal strength, and was driven by the flight altitude and the aerodynamic
characteristics of the aircraft to obtain a minimum sink rate condition. For the spe-
cific case of the Cularis aircraft, the stall speed was greater than that of the airspeed
required for the minimum sink condition, and as such the minimal control speed
constraint was active throughout most of the trajectory.

A key indication that the aircraft was fully centered on the thermal core was
the condition where the specific energy acceleration approached zero. It was shown
that the climb angle was directly related to the condition where Ës = 0 and could be
calculated using a relationship that was presented for a given aircraft weight, wing
geometry, and flight condition.

One of the aspects of the centering strategy that was not clearly apparent, was
the specific relationship between the optimal angle of bank command that was re-
quired for a particular thermal strength. Qualitatively, it was shown that the aircraft
radial distance to the thermal core varied between 45 and 75 ft with the larger radii
observed for updrafts with higher thermal strengths. A graphical approach based on
the analytical expressions was implemented to determine an optimum combination
of the lift coefficient, CL and angle of bank, γ1 such that the sink rate would be a
minimum at each radius of turn. For a turn radius between 40 to 100 ft, the optimal
angle of bank range was between π/9 to 5π/36 rad [20 to 25circ] and matched the
values obtained in the optimization results.

As an application, optimal flight trajectories were presented that maximized ther-
mal energy extraction whilst providing persistent aerial surveillance coverage for a
variety of thermal and target locations. Multiple formulations of the optimization
problem were developed and considered both single and multi-objective constrained
objective functions. For most of the formulations, either numerical difficulties were
encountered and solutions did not converge, or trivial flight trajectories were pro-
duced. Expressing the objective function as a ratio of the target localization error
function to the energy extracted produced converged and meaningful trajectories.

Optimal trajectories were generated for various target locations relative to the
thermal center ensuring that a minimum digital spatial resolution was achieved along
the full trajectory. A full development of the camera optics, and the homogeneous
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transformations that were required to determine the camera viewing angle and the
line of sight vector were also presented. For each target location, the aircraft was
able to use the thermal energy to perform a soaring climb and at the same time made
an attempt to position itself to observe the target. For simultaneous thermal soar-
ing and persistent surveillance, the objective function needs additional refinement to
reduce the complexity of the optimization problem and increase its convexity. Addi-
tionally, the camera field of view also requires some further tuning to avoid numerical
discontinuities that could arise in certain flight conditions during optimization.

8.2 Recommendations for Future Work

Throughout the research, a number of potential areas for further advancement were
identified and if implemented would contribute to the overall objective of opera-
tional autonomous thermal soaring flight. The thermal models should be refined to
incorporate cross-wind components to investigate the skewing effects on the vertical
updraft profile and correspondingly the optimal trajectory. Additionally, a more re-
alistic model of the bubble thermal is required to better reflect its true atmospheric
behaviour such that provisions are included to permit the bubble to detach from the
Earth’s surface, rise, and mix with other atmospheric layers.

Given that a thermal centering strategy was presented with the aim of achiev-
ing energy efficient climb rates, a controller should be developed to implement the
strategy and verify its validity in a simulated environment. This work should also be
extended to conduct hardware-in-the-loop testing using the avionics of the Cularis
aircraft with the ultimate goal of performing flight tests. Additional refinement of the
centering strategy is also required, in that an analytic prediction must be derived to
predict the angle of bank to command for a given aircraft and thermal strength. Fur-
thermore, it is also recommended that a further investigation be conducted for other
glider aircraft to determine if they are also stall limited and are not permitted to fly at
the minimum sink condition.

The final recommendation for future areas of research is in the field of path plan-
ning. In this investigation, optimal flight trajectories were generated that simultane-
ously maximized thermal energy extraction whilst providing persistent aerial surveil-
lance coverage. It might be more prudent to take a phased approach of first maximiz-
ing energy and followed by observing a target to determine the optimal trajectories.
Additionally, it should also be considered to redefine the mission strategy in that mul-
tiple cooperative SUAVs could be employed in the aforementioned phased approach
to provide full enemy and target coverage. This problem could be further extended
to investigate and solve for the trajectories using multiple thermal updraft of varying
strength in a fixed operational zone with surveillance target reassignment.

117



Bibliography

[1] M. Denny. Dynamic soaring: Aerodynamics for albatrosses. European Journal
of Physics, 30:75–84, 2009.

[2] FAA. Glider flying handbook. Flight Manual Handbook FAA-H-8083-13, U.S.
Department of Transportation, 2003.

[3] Frank Irving. The Paths of Soaring Flight. Imperial College Press, Imperial
College, London, 1999.

[4] H. Reichmann. Cross-Country Soaring: A Handbook for Performance and
Competition Soaring. Thomson Publications, 1978.

[5] Z. Akos, M. Nagy, and T. Vicsek. Comparing bird and human soaring strategies.
PNAS - Proceedings of the National Academy of Sciences, 105(11):4139–4143,
March 2008.

[6] K. Cheng and J.W. Langelaan. Guided exploration for coordinated autonomous
soaring flight. In AIAA Guidance, Navigation, and Control Conference, num-
ber AIAA 2014-0969, National Habor, Maryland, United States, January 13-17
2014.

[7] N. Lawrance and S. Sukkarieh. Autonomous exploration of a wind field with
a gliding aircraft. Journal of Guidance Control and Dynamics, 34(3):719–733,
May-June 2011.

[8] K. Andersson, I. Kaminer, K.D. Jones, V. Dobrokhodov, and D.J. Lee. Cooper-
ating uavs using thermal lift to extend endurance. In AIAA Infotech Aerospace
Conference, number AIAA 2009-2043, Seattle, Washington, April 2009.

[9] M.J. Allen. Autonomous soaring for improved endurance of a small uninhab-
ited air vehicle. In 43rd AIAA Aerospace Sciences Meeting and Exhibit, number
AIAA 2005-1025, Reno, NV, January 10-13 2005.

[10] M.J. Allen. Guidance and control of an autonomous soaring uav. Technical
Memorandum NASA / TM-2007-214611, NASA Dryden Flight Research Cen-
ter, February 2007.

118



Bibliography

[11] M.J. Allen and V. Lin. Guidance and control of an autonomous soaring vehicle
with flight test results. In 45th AIAA Aerospace Sciences Meeting and Exhibit,
number AIAA 2007-867, Reno, Nevada, January 8 - 11 2007.

[12] K. Andersson, I. Kaminer, and V. Dobrokhodov. Thermal centering control
for autonomous soaring: Stability analysis and flight test results. Journal of
Guidance Control and Dynamics, 35(3):963 – 975, May - June 2012.

[13] K. Andersson and I. Kaminer. On stability of a thermal centering controller.
In AIAA Guidance, Navigation, and Control Conference, number AIAA 2009-
6114, Chicago, Illinois, August 10 - 13 2009.

[14] N. Akhtar, A.K. Cooke, and J.F. Whidborne. Positioning algorithm for au-
tonomous thermal soaring. Journal of Aircraft, 49(2):472 – 482, March - April
2012.

[15] D.J. Edwards. Implementation details and flight test results of an autonomous
soaring controller. In AIAA Guidance, Navigation and Control Conference and
Exhibit, number AIAA 2008-7244, Honolulu, Hawaii, August 18 - 21 2008.

[16] S.C. Daugherty and J.W Langelaan. Improving autonomous soaring via energy
state estimation and extremum seeking control. In AIAA Guidance, Navigation,
and Control Conference, number AIAA 2014-0260, National Harbor, Mary-
land, United States, January 13-17 2014.

[17] I.D. Cowling, Willcox. S., Y. Patel, P. Smith, and M. Roberts. Increasing per-
sistence of uavs and mavs through thermal soaring. The Aeronautical Journal,
113(1145):479–489, July 2009.

[18] Y. Liu, S. Longo, and E. Kerrigan. Nonlinear predictive control of autonomous
soaring uavs using 3dof models. In European Control Conference, pages 1365–
1370, Zurich, Switzerland, July 17-19 2013.

[19] N.E. Kahveci, P.A. Ioannou, and D. Mirmirani. Adaptive lq control with anti-
windup augmentation to optimize uav performance in autonomous soaring ap-
plications. IEEE Transactions On Control Systems Technology, 16(4):691–707,
2008.

[20] N. Lawrance and S. Sukkarieh. Path planning for autonomous soaring flight
in dynamic wind fields. In IEEE International Conference on Robotics and
Automation, Shanghai, China, May 9-13 2011.

[21] N.R.J. Lawrance and S. Sukkarieh. Wind energy based path planning for a
small gliding unmanned aerial vehicle. In AIAA Guidance, Navigation, and
Control Conference, number AIAA 2009-6112, Chicago, Illinois, August 10 -
13 2009.

119



Bibliography

[22] A. Chakrabarty and J. Langelaan. Energy-based long-range path planning for
soaring-capable unmanned aerial vehicles. Journal of Guidance Control and
Dynamics, 4(4):1002 – 1015, July - August 2011.

[23] A. Chakrabarty and J.W. Langelaan. Energy maps for long-range path plan-
ning for small-and micro-uavs. In AIAA Guidance, Navigation, and Control
Conference, number AIAA 2009-6113, Chicago, Illinois, August 10 - 13 2009.

[24] J.W. Langelaan. Tree-based trajectory planning to exploit atmospheric energy.
In American Control Conference, number ThA16.2, Seattle, Washington, June
11-13 2008.

[25] N.E. Kahveci and P.A. Ioannou. Genetic algorithms for shortest path routing
of autonomous gliders. In AIAA Guidance, Navigation and Control Conference
and Exhibit, Honolulu, Hawaii, August 18 - 21 2008.

[26] W. Guo, Y.J. Zhao, and B. Capozzi. Optimal unmanned aerial vehicle flights for
seeability and endurance in winds. Journal of Aircraft, 48(1):305–314, January-
February 2011.

[27] J. Nguyen, N. Lawrance, R. Fitch, and S. Sukkarieh. Energy-constrained mo-
tion planning for information gathering with autonomous aerial soaring. In
IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe,
Germany, May 6-10 2013.

[28] D. Makovkin and J.W. Langelaan. Optimal persistent surveillance using co-
ordinated soaring. In AIAA Guidance, Navigation, and Control Conference,
number AIAA 2014-0261, National Habor, Maryland, United States, January
13-17 2014.

[29] S.S. Ponda, R.M. Kolacinski, and E. Frazzoli. Trajectory optimization for tar-
get localization using small unmanned aerial vehicles. In AIAA Guidance, Nav-
igation, and Control Conference, number AIAA 2009-6015, Chicago, Illinois,
August 10-13 2009.

[30] M.E. Eshelby. Aircraft Performance: Theory and Practice. American Institute
of Aeronautics and Astronautics, Inc., 2000.

[31] Anym. Cularis: Building Instructions. Multiplex Modellsport GmbH & Co.
KG, 1 edition, 2007.

[32] Multiplex. RR Cularis. http://www.multiplex-rc.de/en/home.html,
June 2014.

[33] R. Perez and J.R.R.A. Martins. pyACDT: An object-oriented framework
for aircraft design modelling and multidisciplinary optimization. In 12th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victo-
ria, BC, September 2008. AIAA.

120

http://www.multiplex-rc.de/en/home.html


Bibliography

[34] H. Quabeck. HQ Original Profile. http://www.hq-modellflug.de/

koordinatenframe.htm, July 2014.

[35] F. White. Viscous Flow. McGraw Hill, New York, NY, 1974.

[36] D.P. Raymer. Aircraft Design: A Conceptual Approach. AIAA Education Se-
ries. American Institute of Aeronautics and Astronautics, 3rd edition, 1999.

[37] J.D. Anderson. Aircraft Performance and Design. WCB McGraw-Hill, 1999.

[38] R. Bencatel, J. Tasso de Sousa, and A. Girard. Atmospheric flow field models
applicable for aircraft endurance extension. Progress in Aerospace Sciences,
61:01–25, August 2013.

[39] M.J. Allen. Updraft model for development of autonomous soaring uninhabited
air vehicles. In 44th AIAA Aerospace Sciences Meeting and Exhibit, number
AIAA 2006-1510, Reno, NV, January 9-12 2006.

[40] A.J. Keane and P.B. Nair. Computational Approaches for Aerospace Design.
John Wiley & Sons, Ltd., 2005.

[41] A.V. Rao. A survey of numerical methods for optimal control. In AAS/AIAA
Astrodynamics Specialist Conference, number AAS 09-334, Pittsburgh, Penn-
sylvania, August 10-13 2009.

[42] J.T. Betts. Practical Methods for Optimal Control Using Nonlinear Program-
ming. Society for Industrial and Applied Mathematics, 2001.

[43] R. Perez, P. Jansen, and J. Martins. pyOpt: A python-based object-oriented
framework for nonlinear constrained optimization. Structural and Multidisci-
plinary Optimization, 45:101–118, May 2011.

[44] A.E. Bryson and Y.-C. Ho. Applied Optimal Control, Optimization, Estimation,
and Control. John Wiley & Sons, Ltd., 1975.

[45] O.W. Nicks. A simple total energy sensor. Technical Memorandum NASA TM
X-73928, NASA Langley Research Center, March 1976.

[46] C.D. Cone. The design of sailplanes for optimum thermal soaring performance.
Technical Note TN D-2052, NASA Langley Research Center, January 1964.

[47] W.G. Rees. Physical Principles of Remote Sensing. Cambridge University
Press, 2001.

[48] M.W. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and Control.
John Wiley & Sons, Ltd., 2006.

[49] R.C. Nelson. Flight Stability and Automatic Control. McGraw Hill, 2 edition,
1998.

121

http://www.hq-modellflug.de/koordinatenframe.htm
http://www.hq-modellflug.de/koordinatenframe.htm


Bibliography

[50] D.E. Hoak. The USAF stability and control DATCOM. Technical Report TR-
83-3048, Air Force Wright Aeronautical Laboratories, October 1960 (Revised
1978).

[51] J. Roskam. Airplane Design - Part V: Component Weight Estimation. Design,
Analysis and Research Corporation, 2003.

[52] R.L. Williams and D.A. Lawrence. Linear State-Space Control Systems. John
Wiley & Sons, Ltd., 2007.

122



Appendices

123



A Characterization of the Aircraft
Flight Dynamics

To complete the characterization of the Cularis D-5223 aircraft, an evaluation must
be conducted on its stability and control characteristics and its dynamic response to a
variety of perturbations. Additionally, to validate the assumptions made in the deriva-
tion of the point-mass model, it must be shown that the aircraft is fully controllable
and can be trimmed.

A.1 Rigid Body Equations of Motion

To determine the flight dynamic characteristics of an aircraft, the aircraft must be
treated as a rigid body vice a point-mass model. As such, rigid body equations of
motion must be derived for both the longitudinal and lateral-directional cases. Un-
like the point-mass model, the rigid body or flight dynamics equations of motion
are developed in the wind axis system with respect to the body axes that is related
by the aircraft’s angle of attack, α . Newton’s second law was used to derive these
equations, which states that the summation of all external forces acting on a body
is equal to the time rate of change of the momentum of the body in a fixed inertial
reference frame [49]. Additionally, Small-Disturbance Theory was used to linearize
the equations of motion about a trimmed flight condition. The forces and moments
acting on an aircraft in the body axes are shown in Figure A.1. The full derivation
of the rigid body equations of motion can be obtained from Reference [49], while a
summary of the small-disturbance longitudinal and lateral-directional state equations
are shown in Tables A.1 and A.2 respectively.

A.2 Dimensionless Stability and Control Coefficients

The stability coefficients are predicted using an analytic approach described in the
USAF Stability and Control DATCOM [50]. The stability coefficients for the Cularis
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A.2. Dimensionless Stability and Control Coefficients

Figure A.1: Forces and Moments Acting on an Aircraft in the Body Axes [49]

Table A.1: Linearized Small-Disturbance Longitudinal Rigid Body State Equa-
tions [49]

(
d
dt −Xu

)
∆u−Xw∆w+(gcosθ0)∆θ = Xδe

∆δe +XδT
∆δT

−Zu∆u+
[
(1−Zẇ)

d
dt −Zw

]
∆w−

[
(u0 +Zq)

d
dt −gsinθ0

]
∆θ = Zδe

∆δe +ZδT
∆δT

−Mu∆u−
(

Mẇ
d
dt +Mw

)
∆w+

(
d2

dt2 −Mq
d
dt

)
∆θ = Mδe

∆δe +MδT
∆δT

Table A.2: Linearized Small-Disturbance Lateral-Directional Rigid Body State
Equations [49]

(
d
dt −Yv

)
∆v−Yp∆ p+(u0−Yr)∆r− (gcosθ0)∆φ = Yδr

∆δr

−Lv∆v+
(

d
dt −Lp

)
∆ p−

(
Iyz
Ixx

d
dt +Lr

)
∆r = Lδa

∆δa +Lδr
∆δr

−Nv∆v−
(

Ixz
Izz

d
dt +Np

)
∆ p+

(
d
dt −Nr

)
∆r = Nδa

∆δa +Nδr
∆δr
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A.3. Dimensional Stability and Control Derivatives

aircraft at a Mach number of M = 0.05 are presented for the state, control and rate
coefficients in Tables A.3, A.4, and A.5 respectively. Minimal change was observed
in the stability coefficients over the operating altitudes and for a given lift coeffi-
cient, CL. Additionally, the aircraft moment of inertia matrix was estimated using
Roskam’s Class I method that assumed a radius of gyration could be identified for
the aircraft [51]. The non-dimensional radius gyration for the Cularis is given as:

R̄x,y,z, =

R̄x

R̄y

R̄z

=

0.248
0.377
0.402

 (A.1)

and the resulting inertia matrix is estimated as:

I =

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

=

0.167 0.000 0.005
0.000 0.087 0.000
0.005 0.000 0.238

slugft2 (A.2)

A.3 Dimensional Stability and Control Derivatives

In order to evaluate the flight dynamic characteristics of an aircraft, the non-dimen-
sional coefficients need to be converted into a dimensional form. An analytic ap-
proach defined by Nelson [49] was used to perform this conversion, which is sum-
marized for the longitudinal and lateral-directional derivatives in Tables A.6 and A.7
respectively. Additionally, the analytic approach could also be used to provide an
approximation of the stability and control characteristics of the aircraft around a de-
fined trim condition. The source code demonstrating this functionality is contained
in Listing A.3 and it was developed as a Dynamics class to be used as part of the
pyACDT framework [33].

Once dimensionalized, the derivatives are assembled in a linear state-space rep-
resentation using the general form [52]:

∆ ẋ= A∆x+B∆u (A.3)

where ∆x is the change of state vector about trim, ∆u is the change of input vector
from trim, A is the evolution matrix, and B is the input matrix. For the longitudinal set
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A.3. Dimensional Stability and Control Derivatives

Table A.4: Dimensionless Control Coefficients

Longitudinal CL CLδe CDδe Cmδe
1000 ft 0.3500 0.6726 0.0000 -2.7618
2000 ft 0.3500 0.6726 0.0000 -2.7618
1000 ft 0.6500 0.6726 0.0000 -2.7618
2000 ft 0.6500 0.6726 0.0000 -2.7618
1000 ft 0.9500 0.6726 0.0000 -2.7618
2000 ft 0.9500 0.6726 0.0000 -2.7618
Lateral Cyδa Clδa Cnδa Cyδ r Clδ r Cnδ r
1000 ft 0.0000 0.2341 0.0023 0.1601 0.0112 -0.0423
2000 ft 0.0000 0.2341 0.0026 0.1601 0.0108 -0.0424
1000 ft 0.0000 0.2341 0.0049 0.1601 0.0086 -0.0429
2000 ft 0.0000 0.2341 0.0049 0.1601 0.0086 -0.0429
1000 ft 0.0000 0.2341 0.0071 0.1601 0.0064 -0.0433
2000 ft 0.0000 0.2341 0.0071 0.1601 0.0064 -0.0433

Table A.5: Dimensionless State Rate Coefficients

Longitudinal CL CLα̇ CDα̇ Cmα̇

1000 ft 0.3500 1.0709 0.0000 -4.3977
2000 ft 0.3500 1.0709 0.0000 -4.3977
1000 ft 0.6500 1.0709 0.0000 -4.3977
2000 ft 0.6500 1.0709 0.0000 -4.3977
1000 ft 0.9500 1.0709 0.0000 -4.3977
2000 ft 0.9500 1.0709 0.0000 -4.3977

Table A.6: Summary of Longitudinal Derivatives [49]

Xu =
−(CDu+CD0)QS

mV Xw = −(CDα−CL0)QS
mV

Zu =
−(CLu+2CL0)QS

mV Xδe =
CxδeQS

m
Zw = −(CLα+CD0)QS

mV Zẇ =−Czα̇
c̄w
2V

QS
mV

Zα =V Zw Zα̇ =V Zẇ

Zq =−Czq
c̄w
2V

QS
m Zδe =−Czδe

QS
m

Mu =Cmu
QSc̄w
V Iyy

Mw =Cmα
QSc̄w
V Iyy

Mẇ =Cmα̇
c̄w
2V

QSc̄w
V Iyy

Mα =V Mw Mα̇ =V Mẇ

Mq =Cmq
c̄w
2V

QSc̄w
Iyy

Mδe =Cmδe
QSc̄w

Iyy
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A.4. Longitudinal Flight Dynamics

Table A.7: Summary of Lateral-Directional Derivatives [49]

Yβ =
QSCyβ

m Nβ =
QSbCnβ

Izz
Lβ =

QSbCl β

Ixx

Yp =
QSbCy p

2mV Np =
QSb2Cn p

2IxxV
Lp =

QSb2Cl p
2IxxV

Yr =
QSbCyr

2mV Nr =
QSb2Cnr

2IxxV
Lr =

QSb2Cl r
2IxxV

Yδa =
QSCyδa

m Yδr =
QSCyδr

m
Nδa =

QSbCnδa
Izz

Nδr =
QSbCnδr

Izz

Lδa =
QSbCl δa

Ixx
Lδr =

QSbCl δr
Ixx

of linearized equations about the trim condition detailed in Table A.1, the state-space
representation for an aircraft in gliding flight (i.e. ∆δT = 0) is given as [49]:

∆ u̇
∆ ẇ
∆ q̇
∆θ̇

 =


Xu Xw 0 −g
Zu Zw u0 0

Mu +MẇZu Mw +MẇZw Mq +Mẇu0 0
0 0 1 0




∆u
∆w
∆q
∆θ


+


Xδe

Zδe

Mδe
+MẇZδe

0

[∆δe
] (A.4)

while the state-space representation for the lateral-directional set of linearized equa-
tions about the trim condition defined in Table A.2 is given as [49]:

∆β̇

∆ ṗ
∆ ṙ
∆φ̇

=


Yβ

u0

Yp
u0

−
(

1− Yr
u0

)
gcosθ

u0

Lβ Lp Lr 0
Nβ Np Nr 0
0 1 0 0




∆β

∆ p
∆r
∆φ

+


0 Yδr
V

Lδa
Lδr

Nδa
Nδr

0 0

[∆δa
∆δr

]
(A.5)

A.4 Longitudinal Flight Dynamics

Using the non-dimensional coefficients outlined in Tables A.3 and A.4, theA andB
matrices for the state-space representation of the longitudinal flight dynamics of the
unaugmented Cularis aircraft is given as:

Along =


−0.139 1.031 0.000 −32.200
−2.935 −11.608 55.630 0.000
0.125 −4.031 −9.449 0.000
0.000 0.000 1.000 0.000

 (A.6)
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A.5. Lateral-Directional Flight Dynamics

Blong =


0.000
−73.600
−286.039

0.000

 (A.7)

The longitudinal flight dynamic system is defined as fully controllable and observ-
able. The eigenvalues, damping ratio, and undamped natural frequency for the short
period mode are calculated as:

λsp =−10.531±14.996i

ζsp = 0.299 ωnsp = 15.843 rad/s

The short period response is characterized as being stable and underdamped with a
period of 0.4s. The eigenvalues, damping ratio, and natural frequency for the phugoid
mode are:

λl p =−0.067±1.127i

ζl p = 0.053 ωnl p = 1.303 rad/s

The phugoid has a period 4.8s, where its long term dynamic response would be highly
oscillatory and marginally stable.

A.5 Lateral-Directional Flight Dynamics

Using the non-dimensional coefficients outlined in Tables A.3 and A.4, theA andB
matrices for the state-space representation of the lateral-directional flight dynamics
of the unaugmented Cularis aircraft is given as:

Alat,dir =


−0.579 −0.003 −0.975 0.577
−52.047 −42.902 14.699 0.000
31.654 −4.237 −1.806 0.000
0.000 1.000 0.000 0.000

 (A.8)

Blat,dir =


0.000 0.315

195.382 6.613
3.274 −25.148
0.000 0.000

 (A.9)
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A.5. Lateral-Directional Flight Dynamics

The lateral-direction flight dynamic system is defined as fully controllable and ob-
servable. The eigenvalues for both the spiral and roll modes are calculated as:

λspiral = 0.128

λroll =−41.518

The spiral mode is unstable, while the roll mode is stable. The eigenvalues, damping
ratio, and natural frequency for the Dutch-Roll mode are:

λDR =−1.947±6.049i

ζDR = 0.211 ωnDR = 5.648 rad/s

The Dutch-Roll mode has a period 1.1s, and its long term dynamic response would
be oscillatory and stable.

Most of the dynamic modes were found to be stable and would converge when
disturbed from trim. However, it is recommended that a stability augmentation sys-
tem should be designed and implemented to dampen out undesirable disturbances
and improve the flying qualities in all axes.
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Listing A.1: Model of the Aircraft Geometry
#!/usr/bin/env python

’’’

Multiplex Cularis D-5223

Developers:

-----------

- Major Thomas R. Connerty (TC)

History

-------

v. 1.0 - Initial Creation (TC, 2013)

’’’

__version__ = ’$Revision: $’

’’’

To Do:

-

’’’

# ==========================================================================

# Standard Python modules

# ==========================================================================

import os , sys

# ==========================================================================

# External Python modules

# ==========================================================================

import numpy

# ==========================================================================

# Extension modules

# ==========================================================================

sys . path . append ( os . path . abspath ( ’../../../..’ ) )
sys . path . append ( os . path . abspath ( ’../../../../pyACDT/Aerodynamics’ ) )
sys . path . append ( os . path . abspath ( ’../../../../pyACDT/Atmosphere/pyAtmos’ ) )
sys . path . append ( os . path . abspath
( ’../../../../pyACDT/Atmosphere/pyAtmos/pyICAO’ ) )
sys . path . append ( os . path . abspath ( ’../../../../pyACDT/Fuel’ ) )
sys . path . append ( os . path . abspath ( ’../../../../pyACDT/Geometry’ ) )
sys . path . append ( os . path . abspath ( ’../../../../pyACDT/Payload’ ) )
sys . path . append ( os . path . abspath ( ’../../../../pyACDT/Propulsion’ ) )
sys . path . append ( os . path . abspath ( ’../../../../pyACDT/Systems’ ) )
sys . path . append ( os . path . abspath ( ’../../../../pyACDT/Tools/Interpolation’ ) )
sys . path . append ( os . path . abspath ( ’../../../../pyACDT/Tools/Search’ ) )
sys . path . append ( os . path . abspath
( ’../../../../pyACDT/Visualization/pySciPlot/’ ) )

from pyGeometry_aircraft import Aircraft

from pyGeometry_bodysurface import BodySurface

from pyGeometry_liftingsurface import LiftingSurface

from pyGeometry_liftingsurface import LiftingSegment

from pyGeometry_wingtip import Wingtip
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# ==========================================================================

# Aircraft Geometric Model

# ==========================================================================

input = {
’Name’ : ’Cularis D-5223 - scale 1:1 <ft>’ ,
’_components’ :{

0 : BodySurface ({
’Name’ : ’’ ,
’Group’ : ’Fuselage’ ,
’Type’ : ’Closed’ ,
’xLoc’ : 0 . 0 , ’yLoc’ : 0 . 0 , ’zLoc’ : 0 . 0 ,
’xRot’ : 0 . 0 , ’yRot’ : 0 . 0 , ’zRot’ : 0 . 0 ,
’_components’ :{

0 :{ ’Name’ : ’Section 0’ , ’Length’ : 0 . 8 2 2 9 , ’fwd_Radius’ : 0 . 0 0 0 0 0 ,
’fwd_Ratio’ : 1 . 0 0 0 , ’fwd_rShape’ : 1 . 0 , ’fwd_lShape’ : 1 . 2 ,
’fwd_vOffset’ : 0 . 0 , ’aft_Radius’ : 0 . 2 0 1 8 9 , ’aft_Ratio’ : 1 . 2 6 5 ,
’aft_lShape’ : 1 . 0 , ’aft_rShape’ : 1 . 0 , ’aft_vOffset’ : 0 .000000} ,
1 :{ ’Name’ : ’Section 1’ , ’Length’ : 3 . 0 2 0 8 , ’fwd_Radius’ : 0 . 2 0 1 8 9 ,
’fwd_Ratio’ : 1 . 2 3 5 , ’fwd_rShape’ : 1 . 0 , ’fwd_lShape’ : 1 . 0 ,
’fwd_vOffset’ : 0 . 0 , ’aft_Radius’ : 0 . 0 6 2 7 2 , ’aft_Ratio’ : 1 . 1 8 2 ,
’aft_lShape’ : 1 . 4 , ’aft_rShape’ : 0 . 8 , ’aft_vOffset’ : 0 . 0 0 0 0 0 0 ,
’dySlope’ : 0 . 4 , ’dzSlope’ : 0 . 3 5}

} ,
} ) ,

1 : LiftingSurface ({
’Name’ : ’’ ,
’Group’ : ’Wing’ ,
’Symmetry’ : True ,
’xrLE’ : 1 . 1 2 5 , ’yrLE’ : 0 . 0 , ’zrLE’ : 0 . 0 8 3 3 ,
’xRot’ : 0 . 0 , ’yRot’ : 0 . 0 , ’zRot’ : 0 . 0 ,
’_components’ :{

0 : LiftingSegment ({’Name’ : ’Segment 1’ , ’Type’ : ’external’ ,
’Area’ : 1 . 3 0 5 1 2 , ’Span’ : 2 . 0 2 0 8 3 3 3 , ’Taper’ : 0 . 8 7 8 8 ,
’SweepLE’ : 2 . 3 6 , ’Dihedral’ : 2 . 5 , ’xc_offset’ : 0 . 0 ,
’root_Incidence’ : 5 . 0 , ’root_Thickness’ : 0 . 1 2 ,
’root_Airfoil_type’ : ’datafile’ ,
’root_Airfoil_ID’ : ’HQ_1_0_12.dat’ , ’tip_Incidence’ : 4 . 0 ,
’tip_Thickness’ : 0 . 1 2 , ’tip_Airfoil_type’ : ’datafile’ ,
’tip_Airfoil_ID’ : ’HQ_1_0_12.dat’ ,

’_components’ :{
0 :{ ’Name’ : ’TE Flap’ , ’Group’ : ’TE Flap’ ,
’Type’ : ’Plain’ , ’Deflection’ : 0 . 0 ,
’sym_Deflection’ : True ,
’max_Deflection’ : + 3 . 6 1 2 , ’min_Deflection’ : −4.818 ,
’inboard_Station’ : 0 . 1 5 5 , ’outboard_Station’ : 1 . 0 0 ,
’inboard_fwd_Station’ : 0 . 7 1 8 7 5 ,
’inboard_aft_Station’ : 1 . 0 0 ,
’outboard_fwd_Station’ : 0 . 7 5 8 6 2 ,
’outboard_aft_Station’ : 1 . 0 0}} ,

} ) ,
1 : LiftingSegment ({’Name’ : ’Segment 2’ , ’Type’ : ’external’ ,
’Area’ : 0 . 8 7 8 8 5 , ’Span’ : 1 . 7 3 9 5 8 3 3 , ’Taper’ : 0 . 6 7 2 4 ,
’SweepLE’ : 6 . 5 3 , ’Dihedral’ : 2 . 5 , ’xc_offset’ : 0 . 0 ,
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’root_Incidence’ : 4 . 0 , ’root_Thickness’ : 0 . 1 2 ,
’root_Airfoil_type’ : ’datafile’ ,
’root_Airfoil_ID’ : ’HQ_1_0_12.dat’ , ’tip_Incidence’ : 3 . 0 ,
’tip_Thickness’ : 0 . 1 2 , ’tip_Airfoil_type’ : ’datafile’ ,
’tip_Airfoil_ID’ : ’HQ_1_0_12.dat’ ,

’_components’ :{
0 :{ ’Name’ : ’Aileron’ , ’Group’ : ’Aileron’ ,
’Type’ : ’Plain’ , ’Deflection’ : 0 . 0 ,
’sym_Deflection’ : False ,
’max_Deflection’ : + 3 1 . 6 6 4 , ’min_Deflection’ :−15.217 ,
’inboard_Station’ : 0 . 0 0 0 , ’outboard_Station’ : 1 . 0 0 ,
’inboard_fwd_Station’ : 0 . 7 5 8 6 2 ,
’inboard_aft_Station’ : 1 . 0 0 ,
’outboard_fwd_Station’ : 0 . 7 6 9 2 3 ,
’outboard_aft_Station’ : 1 . 0 0}} ,

} ) ,
2 : Wingtip ({’Type’ : ’wingtip’ , ’shape’ : 1 . 0 , ’bias’ : 1 . 0 ,
’scale’ : 1 . 2 5 , ’location’ : 1 . 0 , ’curvature’ : 1 . 0 } )

} ,
} ) ,

2 : LiftingSurface ({
’Name’ : ’Horizontal Stabilizer’ ,
’Group’ : ’Horizontal Tail’ ,
’Symmetry’ : True ,
’xrLE’ : 3 . 5 2 0 8 , ’yrLE’ : 0 . 0 , ’zrLE’ : 0 . 1 9 7 9 ,
’xRot’ : 0 . 0 , ’yRot’ : 0 . 0 , ’zRot’ : 0 . 0 ,
’_components’ :{

0 :{ ’Name’ : ’’ , ’Type’ : ’external’ , ’Area’ : 0 . 3 0 5 5 6 ,
’Span’ : 0 . 9 1 6 6 7 , ’Taper’ : 0 . 6 0 0 , ’SweepLE’ : 6 . 4 8 , ’Dihedral’ : 0 . 0 ,
’xc_offset’ : 0 . 0 , ’root_Incidence’ : 0 . 0 , ’root_Thickness’ : 0 . 1 2 ,
’root_Airfoil_type’ : ’naca4’ , ’root_Airfoil_ID’ : ’00xx’ ,
’tip_Incidence’ : 0 . 0 , ’tip_Thickness’ : 0 . 0 9 ,
’tip_Airfoil_type’ : ’naca4’ , ’tip_Airfoil_ID’ : ’00xx’ ,

’_components’ :{
0 :{ ’Name’ : ’Elevator’ , ’Group’ : ’Elevator’ ,
’Deflection’ : 0 . 0 , ’sym_Deflection’ : True ,
’max_Deflection’ : + 1 4 . 1 8 ,
’min_Deflection’ :−14 .18 ,’inboard_Station’ : 0 . 0 0 ,
’outboard_Station’ : 1 . 0 0 , ’inboard_fwd_Station’ : 0 . 0 ,
’inboard_aft_Station’ : 1 . 0 ,
’outboard_fwd_Station’ : 0 . 0 ,
’outboard_aft_Station’ : 1 . 0}

} ,
} ,
1 : Wingtip ({’Type’ : ’wingtip’ , ’shape’ : 1 . 0 , ’bias’ : 0 . 5 ,
’scale’ : 0 . 3 3 , ’location’ : 1 . 0 , ’curvature’ : 1 . 0 } )

} ,
} ) ,

3 : LiftingSurface ({
’Name’ : ’Vertical Stabilizer’ ,
’Group’ : ’Vertical Tail’ ,
’Symmetry’ : False ,
’xrLE’ : 3 . 2 5 , ’yrLE’ : 0 . 0 , ’zrLE’ :−0.06771 ,
’xRot’ : 0 . 0 , ’yRot’ : 0 . 0 , ’zRot’ : 0 . 0 ,
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’_components’ :{
0 : LiftingSegment ({’Name’ : ’’ , ’Type’ : ’external’ ,
’Area’ : 0 . 5 0 9 1 1 , ’Span’ : 0 . 9 5 8 3 3 , ’Taper’ : 0 . 3 4 2 1 ,
’SweepLE’ : 2 8 . 5 2 , ’Dihedral’ : 9 0 . 0 , ’xc_offset’ : 0 . 0 ,
’root_Incidence’ : 0 . 0 , ’root_Thickness’ : 0 . 0 9 ,
’root_Airfoil_type’ : ’naca4’ , ’root_Airfoil_ID’ : ’00xx’ ,
’tip_Incidence’ : 0 . 0 , ’tip_Thickness’ : 0 . 1 6 ,
’tip_Airfoil_type’ : ’naca4’ , ’tip_Airfoil_ID’ : ’00xx’ ,

’_components’ :{
0 :{ ’Name’ : ’Rudder’ , ’Group’ : ’Rudder’ ,
’Deflection’ : 0 . 0 , ’sym_Deflection’ : True ,
’max_Deflection’ : + 2 4 . 2 6 , ’min_Deflection’ :−24 .26 ,
’inboard_Station’ : 0 . 0 0 , ’outboard_Station’ : 1 . 0 0 ,
’inboard_fwd_Station’ : 0 . 6 8 4 2 1 ,
’inboard_aft_Station’ : 1 . 0 ,
’outboard_fwd_Station’ : 0 . 5 ,
’outboard_aft_Station’ : 1 . 0 , } ,

} ,
} ) ,
1 : Wingtip ({’Type’ : ’wingtip’ , ’shape’ : 1 . 0 , ’bias’ : 0 . 5 ,
’scale’ : 0 . 3 0 7 7 , ’location’ : 1 . 0 , ’curvature’ : 1 . 0 } )

} ,
} ) ,

} ,
}
ac = Aircraft ( input )

#===========================================================================

#

#===========================================================================

if __name__ == ’__main__’ :

#ac.plotPlanform()

fig = ac . plotSurface ( )
#ac[1].Equivalent_Surface.plotSurface(fig)

#ac.writeDAT(’Cularis_D5223’)

Listing A.2: Gliding Module within pyACDT
#!/usr/local/bin/python

’’’

pyGliding_gliding

Analytic Prediction of Gliding Flight Characteristics for an Aircraft

Copyright (c) 2004-2014 by pyACDT Developers

All rights reserved.

Revision: 1.0 $Date: 02/04/2014 21:00$

References:

-----------

Developers:

-----------
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- Major Thomas R. Connerty (TC)

History:

--------

v. 1.0 - Initial Creation in Python (TC, 2014)

’’’

__version__ = ’$Revision: $’

’’’

To Do:

-

’’’

# ==========================================================================

# Standard Python modules

# ==========================================================================

import os , math , sys , time

import pdb # pdb.set_trace()

# ==========================================================================

# External Python modules

# ==========================================================================

import numpy

# ==========================================================================

# Extension modules

# ==========================================================================

sys . path . append ( os . path . abspath ( ’..’ ) )
sys . path . append ( os . path . abspath ( ’../Trajectory_Optimization’ ) )

from pyAtmosphere_US1976 import atmosphere

from pyGliding_object import glidingObject

# ==========================================================================

# Misc Definitions

# ==========================================================================

# ==========================================================================

# Define the Function to Determine Gliding Flight Characteristics of Cularis

# ==========================================================================

class GlidingFlight ( glidingObject ) :

def __init__ ( self , aircraft ,∗ args , ∗∗kwargs ) :

’’’

Gliding Model Class Initialization

*Arguments:*

- aircraft -> DICTIONARY: Define the Aircraft Parameters
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Documentation last updated: Apr 16, 2014 - Thomas R. Connerty

’’’

#

name = ’Gliding Flight Class’

def_opts = {}

# Initialize Abstract Class

glidingObject . __init__ ( self , name , def_opts , ∗args , ∗∗kwargs )

#

self . b = aircraft [ ’b’ ]
self . S = aircraft [ ’S’ ]
self . AR = ( self . b ∗∗ 2 . 0 ) / self . S
self . W = aircraft [ ’W’ ]
self . CLo = aircraft [ ’CLo’ ]
self . CLa = aircraft [ ’CLa’ ]
self . CLmax = aircraft [ ’CLmax’ ]
self . e = aircraft [ ’e’ ]
self . CDo = aircraft [ ’CDo’ ]
self . K = 1 . 0 / ( math . pi ∗ self . e ∗ self . AR )
self . LDmax = math . sqrt ( 1 / ( 4 . 0 ∗ self . CDo ∗ self . K ) )
self . n_max = aircraft [ ’n_max’ ]
self . n_min = aircraft [ ’n_min’ ]
self . Vmo = aircraft [ ’Vmo’ ]

def __call__ ( self , altitude = 0 . 0 , V= 0 . 0 , gamma_1 = 0 . 0 , gamma_2 = 0 . 0 ,
∗args , ∗∗kwargs ) :

’’’

Gliding Flight Class (Calling Routine)

**Keyword Arguments:**

- altitude -> FLOAT: Aircraft Altitude (ft), *Default* = 0.0

- V -> FLOAT: Aircraft True Airspeed (ft/s), *Default* = 0.0

- gamma_1 -> FLOAT: Aircraft Bank Angle (rad), *Default* = 0.0

- gamma_2 -> FLOAT: Aircraft Climb Angle (rad), *Default* = 0.0

*Outputs:*

- data -> DICTIONARY: Outputs the Gliding Flight Characteristics

Documentation last updated: Apr 16, 2014 - Thomas R. Connerty

’’’

# ==================================================================

# Calculate the Atmospheric and Aerodynamic Characteristics

# ==================================================================

# Atmospheric Conditions

conditions = atmosphere ( altitude , ’ENG’ )
rho = conditions [ ’Density’ ]
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# Acceleration due to Gravity ft/s ** 2.0

g = 32 .174

# Lift-to-Drag Ratio for Minimum Sink Dimensionless

LDmax_minSink = 0 . 2 5 ∗ ( ( 3 . 0 / ( self . K ∗ \
( self . CDo ∗∗ ( 1 . 0 / 3 . 0 ) ) ) ) ∗∗ 0 . 7 5 )
self . LDmax_minSink = LDmax_minSink

# Determine the Best Glide Angle rad

theta_min = −math . atan ( 1 . 0 / self . LDmax )

# Calculate the Lift Coefficient Dimensionless

CL = ( self . W / self . S ) ∗ ( 2 . 0 / rho ) ∗ ( 1 . 0 / \
( math . cos ( gamma_1 ) ∗ ( V ∗∗ 2 . 0 ) ) )

# Calculate the Drag Coefficient Dimensionless

CD = self . CDo + self . K ∗ ( CL ∗∗ 2 . 0 )

# Calculate the Angle of Attack rad

alpha = ( CL − self . CLo ) / self . CLa

# ==================================================================

# Calculate the Aircraft Sink Rate and Flight Radius

# ==================================================================

# Calculate the Aircraft Sink Rate ft/s

h_dot = −((self . W / self . S ) ∗∗ 0 . 5 ) ∗ ( ( 2 . 0 / rho ) ∗∗ 0 . 5 ) ∗ \
( ( 1 . 0 / math . cos ( gamma_1 ) ) ∗∗ 1 . 5 ) ∗ ( CD / ( CL ∗∗ 1 . 5 ) ) ∗ \
( ( math . cos ( gamma_2 ) ) ∗∗ 1 . 5 )

if gamma_1 == 0 . 0 :

# Calculate the Radius to Fly in the Thermal

R = ( self . W / self . S ) ∗ ( 2 . 0 / ( rho ∗ g ) ) ∗ ( 1 . 0 / CL ) ∗ \
( ( math . cos ( gamma_2 ) ) ∗∗ 2 . 0 )

else :

# Calculate the Radius to Fly in the Thermal

R = ( self . W / self . S ) ∗ ( 2 . 0 / ( rho ∗ g ) ) ∗ ( 1 . 0 / \
( math . sin ( gamma_1 ) ∗ CL ) ) ∗ ( ( math . cos ( gamma_2 ) ) ∗∗ 2 . 0 )

#end

data = {’LDmax_minSink’ : LDmax_minSink , ’theta_min’ : theta_min ,
’CL’ : CL , ’CD’ : CD , ’alpha’ : alpha , ’h_dot’ : h_dot , ’R’ : R}

return data

def getVelocities ( self , altitude = 0 . 0 , gamma_1 = 0 . 0 , ∗args , ∗∗kwargs ) :

’’’

Computes Velocities of the Aircraft

**Keyword Arguments:**

- altitude -> FLOAT: Aircraft Altitude (ft), *Default* = 0.0
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- gamma_1 -> FLOAT: Aircraft Bank Angle (rad), *Default* = 0.0

*Outputs:*

- velocities -> DICTIONARY: Outputs the various

Velocities for Gliding Flight

Documentation last updated: Apr 16, 2014 - Thomas R. Connerty

’’’

# Atmospheric Conditions

conditions = atmosphere ( altitude , ’ENG’ )
rho = conditions [ ’Density’ ]

# Calculate the Stall Speed ft/s

Vstall = math . sqrt ( ( 2 . 0 / rho ) ∗ ( self . W / self . S ) ∗ \
( 1 . 0 / self . CLmax ) ∗ ( 1 . 0 / math . cos ( gamma_1 ) ) )

# Determine the Best Glide Speed ft/s

Vmd = math . sqrt ( ( 2 . 0 / rho ) ∗ ( self . W / self . S ) ∗ \
( math . sqrt ( self . K / self . CDo ) ) ∗ ( 1 . 0 / math . cos ( gamma_1 ) ) )

# Speed to Fly for Minimum Sink Rate ft/s

V_minSink = math . sqrt ( ( 2 . 0 / rho ) ∗ ( self . W / self . S ) ∗ \
( math . sqrt ( self . K / ( 3 . 0 ∗ self . CDo ) ) ) ∗ ( 1 . 0 / math . cos ( gamma_1 ) ) )

velocities = {’Vstall’ : Vstall , ’Vmd’ : Vmd ,
’V_minSink’ : V_minSink}

return velocities

Listing A.3: Dynamics Module within pyACDT
#!/usr/local/bin/python

’’’

pyDynamics_dynamics

Holds the pyACDT Flight Dynamics Analysis Class.

Copyright (c) 2004-2013 by pyACDT Developers

All rights reserved.

Revision: 1.1 $Date: 04/11/2011 21:00$

References:

-----------

- B. Etkin and L.D. Reid. Dynamics of Flight: Stability and Control,

Third Edition. John Wiley & Sons, Inc., 1996.

- R.C. Nelson. Flight Stability and Automatic Control, Second Edition.

The McGraw-Hill Companies, 1998.

- L.V. Schmidt. Introduction to Aircraft Flight Dynamics. American

Institute of Aeronautics and Astronautics, Inc., 1998.

Developers:

-----------

- Dr. Ruben E. Perez (RP)

- Major Thomas R. Connerty (TC)
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- Mr. Peter W. Jansen (PJ)

History:

--------

v. 1.0 - Initial Creation in Matlab (RP, 2004)

v. 1.1 - Initial Code Migration to Python (TC, 2013)

’’’

__version__ = ’$Revision: $’

’’’

To Do:

- Create more abstract FDM and expand to other models like BEM based

’’’

# ==========================================================================

# Standard Python modules

# ==========================================================================

import os , math , sys

import pdb

# ==========================================================================

# External Python modules

# ==========================================================================

import matplotlib . pyplot as plt

import numpy

# ==========================================================================

# Extension modules

# ==========================================================================

sys . path . append ( os . path . abspath ( ’../’ ) )
sys . path . append ( os . path . abspath ( ’../pyInertia’ ) )
sys . path . append ( os . path . abspath ( ’../Atmosphere/pyAtmos’ ) )
sys . path . append ( os . path . abspath ( ’../Atmosphere/pyAtmos/pyICAO’ ) )
sys . path . append ( os . path . abspath ( ’../Aerodynamics’ ) )
sys . path . append ( os . path . abspath ( ’../Payload’ ) )
sys . path . append ( os . path . abspath ( ’../Geometry’ ) )
sys . path . append ( os . path . abspath ( ’../Fuel’ ) )
sys . path . append ( os . path . abspath ( ’../Tools/Interpolation’ ) )
sys . path . append ( os . path . abspath ( ’../Tools/Search’ ) )
sys . path . append ( os . path . abspath ( ’../Weights/pyInertia’ ) )
sys . path . append ( os . path . abspath ( ’../Weights/pyWeight’ ) )

from pyAero_flow import Flow

from pyAero_reference import Reference

from pyAero_solver import AeroSolver

from pyDynamics_object import DynObject

from pyFuel_fuel import Fuel

from pyGeometry_aircraft import Aircraft

from pyGeometry_bodysurface import BodySurface

from pyGeometry_liftingsurface import LiftingSurface

from pyGeometry_system import System

from pyInertia_model import InertiaModel

from pyPayload_lumped import Lumped

from pyPayload_payload import Payload
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from pyWeight_model import WeightModel

# ==========================================================================

# Misc Definitions

# ==========================================================================

# ==========================================================================

# FDM Class

# ==========================================================================

class FDM ( DynObject ) :

’’’

Flight Dynamics Model Class

’’’

def __init__ ( self , aircraft=None , aero=None , flow=None , fuel=None ,
ref=None , inertia=None , payload=None , weight=None , CL=None ,
∗args , ∗∗kwargs ) :

’’’

Flight Dynamics Model Class Initialization

**Keyword Arguments:**

- aircraft -> OBJECT: Aircraft Geometry Object, *Default* = None

- aero -> OBJECT: Aerodynamic Solver Method, *Default* = None

- flow -> OBJECT: Aerodynamics Flow Object

- ref -> OBJECT: Aerodynamics Reference Object, *Default* = None

- inertia -> OBJECT: Aircraft Inertia Model, *Default* = None

- weight -> FLOAT: Aircraft Weight, *Default* = None

- CL -> FLOAT: Lift Coefficient, *Default* = None

Documentation last updated: Nov 07, 2013 - Thomas R. Connerty

’’’

# Input Checks

if ( aircraft != None ) :
if not isinstance ( aircraft , Aircraft ) :

raise TypeError

( "Dynamic: aircraft input is not a valid object instance\n" )
#end

#end

if ( aero != None ) :
if not isinstance ( aero , dict ) :

if not isinstance ( aero , AeroSolver ) :
raise TypeError

( "Dynamic: aero input is not a valid object instance\n" )
#end

#end

#end

if ( flow != None ) :
if not isinstance ( flow , Flow ) :

raise TypeError
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( "Dynamic: flow input is not a valid object instance\n" )
#end

#end

if ( inertia != None ) :
if not isinstance ( inertia , InertiaModel ) :

raise TypeError

( "Dynamic: inertia input is not a valid object instance\n" )
#end

#end

if ( ref != None ) :
if not isinstance ( ref , Reference ) :

raise TypeError

( "Dynamic: ref input is not a valid object instance\n" )
#end

#end

#

name = ’Flight Dynamics Model’

def_opts = {}

# Initialize Abstract Class

DynObject . __init__ ( self , name , def_opts , ∗args , ∗∗kwargs )

#

self . aircraft = aircraft

self . aero = aero

self . fuel = fuel

self . flow = flow

self . inertia = inertia

self . payload = payload

self . ref = ref

self . weight = weight

self . CL = CL

if self . aircraft != None and self . aero != None and \
self . inertia != None and self . ref != None and self . weight != None :

self . __call__ ( )
#end

def __call__ ( self , aircraft=None , aero=None , flow=None , fuel=None ,
inertia=None , payload=None , ref=None , weight=None , CL=None ,
∗args , ∗∗kwargs ) :

’’’

Calculate Flight Dynamics Model (Calling Routine)

**Keyword Arguments:**

- aircraft -> OBJECT: Aircraft Geometry Object, *Default* = None

- aero -> OBJECT: Aerodynamic Solver Method, *Default* = None

- flow -> OBJECT: Aerodynamics Flow Object

- ref -> OBJECT: Aerodynamics Reference Object, *Default* = None

- inertia -> OBJECT: Aircraft Inertia Model, *Default* = None
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- weight -> FLOAT: Aircraft Weight, *Default* = None

- CL -> FLOAT: Lift Coefficient, *Default* = None

Documentation last updated: Nov 07, 2013 - Thomas R. Connerty

’’’

# Inputs Check

if ( aircraft != None ) :
if not isinstance ( aircraft , Aircraft ) :

raise TypeError

( "Dynamic: aircraft input is not a valid object instance\n" )
#end

self . aircraft = aircraft

else :
aircraft = self . aircraft

#end

if ( aero != None ) :
if not isinstance ( aero , dict ) :

if not isinstance ( aero , AeroSolver ) :
raise TypeError ( "Dynamic: aeroSolver input is not \

a valid object instance\n" )
#end

#end

self . aero = aero

else :
aero = self . aero

#end

if ( inertia != None ) :
if not isinstance ( inertia , InertiaModel ) :

raise TypeError

( "Dynamic: inertia input is not a valid object instance\n" )
#end

self . inertia = inertia

else :
inertia = self . inertia

#end

if ( ref != None ) :
if not isinstance ( ref , Reference ) :

raise TypeError

( "Dynamic: ref input is not a valid object instance\n" )
#end

self . ref = ref

else :
ref = self . ref

#end

if ( CL != None ) :
self . CL = CL

else :
CL = self . CL

#end

# ==================================================================
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# Define Constants

# ==================================================================

# General Constants

g = 3 2 . 2
self . g = g

# Aircraft Geometric Parameters

S = ref . sref
b = ref . bref
MAC_w = ref . cref

# Aircraft Weight and Inertia Parameters

W = weight

m = W / g

inertiaPara = inertia ( aircraft , payload , fuel , W )

Ixx = inertiaPara [ ’Ixx’ ]
Iyy = inertiaPara [ ’Iyy’ ]
Izz = inertiaPara [ ’Izz’ ]
Ixy = inertiaPara [ ’Ixy’ ]
Iyx = inertiaPara [ ’Iyx’ ]
Ixz = inertiaPara [ ’Ixz’ ]
Izx = inertiaPara [ ’Izx’ ]
Iyz = inertiaPara [ ’Iyz’ ]
Izy = inertiaPara [ ’Izy’ ]

print inertiaPara

# Aircraft Flight Condition

V = flow . mach ∗ flow . data . sound_speed
self . V = V

alpha = flow . alpha ∗ math . pi / 180 .0
gamma = 0 . 0 ∗ math . pi / 180 .0
theta = alpha + gamma

rho = flow . data . density
q = 0 . 5 ∗ rho ∗ ( V ∗∗ 2)

# ==================================================================

# Non-Dimensional Stability Derivatives

# ==================================================================

if not isinstance ( aero , dict ) :
stabder = aero . getDerivatives ( flow , ’all’ ,

aircraft , ref , CL=self . CL )
else :

stabder = aero

#end

# Longitudinal Stability Coefficients

CL = stabder [ ’CL’ ]
CLa = stabder [ ’CLa’ ]
CLu = stabder [ ’CLu’ ]
CD = stabder [ ’CD’ ]
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CDa = stabder [ ’CDa’ ]
CDu = stabder [ ’CDu’ ]
CDq = stabder [ ’CDq’ ]
Cma = stabder [ ’Cma’ ]
Cmu = stabder [ ’Cmu’ ]
Cma_dot = stabder [ ’Cmad’ ]
Cmq = stabder [ ’Cmq’ ]
Cmde = stabder [ ’Cmde’ ]
Cxa = −(CDa − CL )
Cxu = −(CDu + 2 . 0 ∗ CD )
Cxde = −stabder [ ’CDde’ ]
Cza_dot = −stabder [ ’CLad’ ]
Cza = −(CLa + CD )
Czq = −stabder [ ’CLq’ ]
Czu = −(CLu + 2 . 0 ∗ CL )
Czde = −stabder [ ’CLde’ ]

# Lateral Directional Stability Coefficients

Cyb = stabder [ ’Cyb’ ]
Cyp = stabder [ ’Cyp’ ]
Cyr = stabder [ ’Cyr’ ]
Cyda = stabder [ ’Cyda’ ]
Cydr = stabder [ ’Cydr’ ]
Clb = stabder [ ’Clb’ ]
Clp = stabder [ ’Clp’ ]
Clr = stabder [ ’Clr’ ]
Clda = stabder [ ’Clda’ ]
Cldr = stabder [ ’Cldr’ ]
Cnb = stabder [ ’Cnb’ ]
Cnp = stabder [ ’Cnp’ ]
Cnr = stabder [ ’Cnr’ ]
Cnda = stabder [ ’Cnda’ ]
Cndr = stabder [ ’Cndr’ ]

# ==================================================================

# Dimensional Stability Derivatives (Nelson)

# ==================================================================

# Longitudinal Derivatives

self . Xu = ( q ∗ S ∗ Cxu ) / ( m ∗ V )
self . Xw = ( q ∗ S ∗ Cxa ) / ( m ∗ V )
self . Zu = ( q ∗ S ∗ Czu ) / ( m ∗ V )
self . Zw = ( q ∗ S ∗ Cza ) / ( m ∗ V )
self . Zw_dot = ( q ∗ S ∗ ( MAC_w / ( 2 . 0 ∗ V ) ) ∗ Cza_dot ) / ( m ∗ V )
self . Za = V ∗ self . Zw_dot
self . Za_dot = V ∗ self . Zw_dot
self . Zq = ( q ∗ S ∗ ( MAC_w / ( 2 . 0 ∗ V ) ) ∗ Czq ) / m

self . Zde = ( q ∗ S ∗ Czde ) / m

self . Mu = ( q ∗ S ∗ MAC_w ∗ Cmu ) / ( V ∗ Iyy )
self . Mw = ( q ∗ S ∗ MAC_w ∗ Cma ) / ( V ∗ Iyy )
self . Mw_dot = ( q ∗ S ∗ MAC_w ∗ ( MAC_w / ( 2 . 0 ∗ V ) ) ∗ Cma_dot ) / \
( V ∗ Iyy )
self . Ma = V ∗ self . Mw
self . Ma_dot = V ∗ self . Mw_dot
self . Mq = ( q ∗ S ∗ MAC_w ∗ ( MAC_w / ( 2 . 0 ∗ V ) ) ∗ Cmq ) / Iyy

self . Xde = ( q ∗ S ∗ Cxde ) / m
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self . Mde = ( q ∗ S ∗ MAC_w ∗ Cmde ) / Iyy

# Lateral Directional Derivatives

self . Yb = ( q ∗ S ∗ Cyb ) / m

self . Yp = ( q ∗ S ∗ b ∗ Cyp ) / ( 2 . 0 ∗ m ∗ V )
self . Yr = ( q ∗ S ∗ b ∗ Cyr ) / ( 2 . 0 ∗ m ∗ V )
self . Yda = ( q ∗ S ∗ Cyda ) / m

self . Ydr = ( q ∗ S ∗ Cydr ) / m

self . Lb = ( q ∗ S ∗ b ∗ Clb ) / Ixx

self . Lp = ( q ∗ S ∗ ( b ∗∗ 2 . 0 ) ∗ Clp ) / ( 2 . 0 ∗ Ixx ∗ V )
self . Lr = ( q ∗ S ∗ ( b ∗∗ 2 . 0 ) ∗ Clr ) / ( 2 . 0 ∗ Ixx ∗ V )
self . Lda = ( q ∗ S ∗ b ∗ Clda ) / Ixx

self . Ldr = ( q ∗ S ∗ b ∗ Cldr ) / Ixx

self . Nb = ( q ∗ S ∗ b ∗ Cnb ) / Izz

self . Np = ( q ∗ S ∗ ( b ∗∗ 2 . 0 ) ∗ Cnp ) / ( 2 . 0 ∗ Izz ∗ V )
self . Nr = ( q ∗ S ∗ ( b ∗∗ 2 . 0 ) ∗ Cnr ) / ( 2 . 0 ∗ Izz ∗ V )
self . Nda = ( q ∗ S ∗ b ∗ Cnda ) / Izz

self . Ndr = ( q ∗ S ∗ b ∗ Cndr ) / Izz

# ==================================================================

# State Space Representation

# Dimensional Stability Derivatives (Nelson)

# ==================================================================

# Definition of the System Dynamics Matrix, A

A = numpy . array ( [ [ self . Xu , self . Xw , 0 , −self . g , 0 , 0 , 0 , 0 ] ,
[ self . Zu , self . Zw , self . V , 0 , 0 , 0 , 0 , 0 ] ,
[ self . Mu + ( self . Mw_dot ∗ self . Zu ) , self . Mw +
( self . Mw_dot ∗ self . Zw ) , self . Mq + ( self . Mw_dot ∗ self . V ) ,
0 , 0 , 0 , 0 , 0 ] ,
[ 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 , ( self . Yb / self . V ) ,
( self . Yp / self . V ) , −(1.0 − ( self . Yr / self . V ) ) ,
( g ∗ math . cos ( theta ) ) / self . V ] , [ 0 , 0 , 0 , 0 , self . Lb , self . Lp ,
self . Lr , 0 ] , [ 0 , 0 , 0 , 0 , self . Nb , self . Np , self . Nr , 0 ] ,
[ 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ] ] )

self . A = A

print ’A=’ , A

# Definition of the Input Matrix, B

B = numpy . array ( [ [ self . Xde , 0 , 0 ] , [ self . Zde , 0 , 0 ] , [ self . Mde + \
( self . Mw_dot ∗ self . Zde ) , 0 , 0 ] , [ 0 , 0 , 0 ] , [ 0 , 0 ,
( self . Ydr / self . V ) ] , [ 0 , self . Lda , self . Ldr ] , [ 0 , self . Nda ,
self . Ndr ] , [ 0 , 0 , 0 ] ] )

self . B = B

print ’B=’ , B

# Definition of the Output Matrix, C

C = numpy . eye ( 8 )
self . C = C

print ’C=’ , C

# Definition of the Direct Transmission Matrix, D

D = numpy . zeros ( ( 8 , 3 ) )
self . D = D
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print ’D=’ , D

# Definition of States, Inputs and Outputs

self . states = [ ’u’ , ’w’ , ’q’ , ’theta’ , ’beta’ , ’p’ , ’r’ , ’phi’ ] ;
self . inputs = [ ’de’ , ’da’ , ’dr’ ]
self . outputs = [ ’u_dot’ , ’w_dot’ , ’q_dot’ , ’theta_dot’ , ’beta_dot’ ,

’p_dot’ , ’r_dot’ , ’phi_dot’ ]

def getEig ( self , eigType=None ) :

’’’

Computes the Eigenvalues of the Aircraft Dynamics

**Arguments:**

**Keyword Arguments:**

- eigType -> STR: Eigenvalue Type (All, Long, LatDir),

*Default* = None

Documentation last updated: Nov 06, 2013 - Thomas R. Connerty

’’’

# Calculate Eigenvalues

if eigType == None or eigType == ’All’ :
self . eig = numpy . linalg . eigvals ( self . A )

elif eigType == ’Long’ :
self . eig = numpy . linalg . eigvals ( self . A [ 0 : 4 , 0 : 4 ] )

elif eigType == ’LatDir’ :
self . eig = numpy . linalg . eigvals ( self . A [ 4 : , 4 : ] )

#end

print ’eig:’ , self . eig

def getRoots ( self , modeType=None , stabAxis=None ) :

’’’

Computes the Damping Ratio and Natural Frequency

**Arguments:**

**Keyword Arguments:**

- modType -> STR: Mode Type (All, sp, p, dr), *Default* = None

- stabAxis -> STR: Stability Axis (All, Long, LatDir),

*Default* = None

Documentation last updated: Nov 13, 2013 - Thomas R. Connerty

’’’

# Calculate Damping Ratio and Natural Frequency for All Mode Types

if modeType == None or modeType == ’All’ :
if stabAxis == None or stabAxis == ’All’ :
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wn_p = math . sqrt ((−self . Zu ∗ self . g ) / self . V )
zeta_p = −self . Xu / ( 2 . 0 ∗ wn_p )
wn_sp = math . sqrt ( ( ( self . Za ∗ self . Mq ) / self . V ) − self . Ma )
zeta_sp = −(self . Mq + self . Ma_dot + \

( self . Za / self . V ) ) / ( 2 . 0 ∗ wn_sp )
wn_dr = math . sqrt ( ( ( self . Yb ∗ self . Nr ) − \

( self . Nb ∗ self . Yr ) + ( self . V ∗ self . Nb ) ) / self . V )
zeta_dr = −((self . Yb + ( self . V ∗ self . Nr ) ) / self . V ) / \

( 2 . 0 ∗ wn_dr )

print ’wn_p:’ , wn_p

print ’zeta_p:’ , zeta_p

print ’wn_sp:’ , wn_sp

print ’zeta_sp:’ , zeta_sp

print ’wn_dr:’ , wn_dr

print ’zeta_dr:’ , zeta_dr

elif stabAxis == ’Long’ :

wn_p = math . sqrt ((−self . Zu ∗ self . g ) / self . V )
zeta_p = −self . Xu / ( 2 . 0 ∗ wn_p )
wn_sp = math . sqrt ( ( ( self . Za ∗ self . Mq ) / self . V ) − self . Ma )
zeta_sp = −(self . Mq + self . Ma_dot + ( self . Za / self . V ) ) / \

( 2 . 0 ∗ wn_sp )

print ’wn_p:’ , wn_p

print ’zeta_p:’ , zeta_p

print ’wn_sp:’ , wn_sp

print ’zeta_sp:’ , zeta_sp

elif stabAxis == ’LatDir’ :

wn_dr = math . sqrt ( ( ( self . Yb ∗ self . Nr ) − \
( self . Nb ∗ self . Yr ) + ( self . V ∗ self . Nb ) ) / self . V )

zeta_dr = −((self . Yb + ( self . V ∗ self . Nr ) ) / self . V ) / \
( 2 . 0 ∗ wn_dr )

print ’wn_dr:’ , wn_dr

print ’zeta_dr:’ , zeta_dr

#end

# Calculate the Short Period Approximations

# Longitudinal Case

elif modeType == ’sp’ :
if stabAxis == None or stabAxis == ’All’ or \
stabAxis == ’LatDir’ :

raise TypeError

( "Dynamic: stabAxis input is not a valid axis for \

modeType\n" )

elif stabAxis == ’Long’ :

wn_sp = math . sqrt ( ( ( self . Za ∗ self . Mq ) / self . V ) − \
self . Ma )
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zeta_sp = −(self . Mq + self . Ma_dot + ( self . Za / self . V ) ) / \
( 2 . 0 ∗ wn_sp )

print ’wn_sp:’ , wn_sp

print ’zeta_sp:’ , zeta_sp

#end

# Calculate the Long Period (Phugoid) Approximations

# Longitudinal Case

elif modeType == ’p’ :
if stabAxis == None or stabAxis == ’All’ or \
stabAxis == ’LatDir’ :

raise TypeError

( "Dynamic: stabAxis input is not a valid axis for \

modeType\n" )

elif stabAxis == ’Long’ :
wn_p = math . sqrt ((−self . Zu ∗ self . g ) / self . V )
zeta_p = −self . Xu / ( 2 . 0 ∗ wn_p )

print ’wn_p:’ , wn_p

print ’zeta_p:’ , zeta_p

#end

# Calculate the Dutch-Roll Appoximation

# Lateral Directional Case

elif modeType == ’dr’ :
if stabAxis == None or stabAxis == ’All’ or \
stabAxis == ’Long’ :

raise TypeError

( "Dynamic: stabAxis input is not a valid axis for \

modeType\n" )

elif stabAxis == ’LatDir’ :

wn_dr = math . sqrt ( ( ( self . Yb ∗ self . Nr ) − \
( self . Nb ∗ self . Yr ) + ( self . V ∗ self . Nb ) ) / self . V )

zeta_dr = −((self . Yb + ( self . V ∗ self . Nr ) ) / self . V ) / \
( 2 . 0 ∗ wn_dr )

print ’wn_dr:’ , wn_dr

print ’zeta_dr:’ , zeta_dr

#end

#end

#===========================================================================

#

#===========================================================================

if __name__ == ’__main__’ :

print ’Testing ...’
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#

fdm = FDM ( )
fdm . ListAttributes ( )
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B Computer Source Code

B.1 Thermal Models

Listing B.1: Allen Chimney Thermal Model
#!/usr/local/bin/python

’’’

pyThermal_Allen

Holds the NASA Thermal Model Class

Copyright (c) 2004-2014 by pyACDT Developers

All rights reserved.

Revision: 1.0 $Date: 06/01/2014 21:00$

References:

-----------

- M.J. Allen, "Updraft Model for Development of Autonomous Soaring

Uninhabited Air Vehicles," 44th AIAA Aerospace Sciences Meeting and

Exhibit, Reno, Nevada, January 2006.

Developers:

-----------

- Major Thomas R. Connerty (TC)

History:

--------

v. 1.0 - Initial Creation in Python (TC, 2013)

’’’

__version__ = ’$Revision: $’

’’’

To Do:

-

’’’

# ==========================================================================

# Standard Python modules

# ==========================================================================

import os , cmath , sys , time
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import pdb # pdb.set_trace()

# ==========================================================================

# External Python modules

# ==========================================================================

import numpy

import random

# ==========================================================================

# Extension modules

# ==========================================================================

from pyThermal_object import thermalObject

# ==========================================================================

# Misc Definitions

# ==========================================================================

def cabs ( x ) :

’’’

Returns absolute value of a complex number

’’’

if isinstance (x , complex ) :
if ( x . real < 0 ) :

cabsx = −x
else :

cabsx = x

#end

else :
cabsx = abs ( x )

#end

return complex ( cabsx )

# ==========================================================================

# NASA Thermal Model Class

# ==========================================================================

class thermalAllen ( thermalObject ) :

’’’

NASA Thermal Model Class

’’’

def __init__ ( self , seed =12345 .6 ,∗ args , ∗∗kwargs ) :

’’’

Thermal Model Class Initialization

**Keyword Arguments:**

- seed -> FLOAT: Define a seed for the Random Number Generator,

*Default* = 12345.6
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*Outputs:*

- W_h -> FLOAT: Updraft verticle velocity (m/s)

Documentation last updated: Jan 6, 2014 - Thomas R. Connerty

’’’

#

name = ’Allen Thermal Model’

def_opts = {}

# Initialize Abstract Class

thermalObject . __init__ ( self , name , def_opts , ∗args , ∗∗kwargs )

#

self . seed = seed

if self . seed == None :
self . seed = time . time ( )

#end

random . seed ( self . seed )

def __call__ ( self , r= 0 . 0 , h_ac = 0 . 0 , theta = 0 . 0 , L=5280 .0 ,W=5280 .0 ,
month_index=None ,∗ args , ∗∗kwargs ) :

’’’

Generate Thermal Model (Calling Routine)

**Keyword Arguments:**

- r -> FLOAT: Aircraft Radial Distance from Thermal Center (ft),

*Default* = 0.0

- h_ac -> FLOAT: Aircraft height above the ground (ft),

*Default* = 0.0

- theta -> FLOAT: Aircraft Angular position (rad),

*Default* = 0.0

- L -> FLOAT: Length of the Test Area (ft), *Default* = 5280.0

- W -> FLOAT: Width of the Test Area (ft), *Default* = 5280.0

- month_index -> INTEGER: Define the Month, *Default* = 0.0

*Outputs:*

- W_h -> FLOAT: Updraft verticle velocity (ft/s)

Documentation last updated: Jan 06, 2014 - Thomas R. Connerty

’’’

# Convert Inputs to SI Units (ft to m)

r = 0 .3048 ∗ r

h_ac = 0 .3048 ∗ h_ac

L = 0 .3048 ∗ L

W = 0 .3048 ∗ W

#
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self . r = r

self . h_ac = h_ac

self . theta = theta

self . L = L

self . W = W

# ==================================================================

# Define the Month of the Year

# ==================================================================

random . seed ( self . seed )

if month_index == None :
self . month_index = random . randint ( 0 , 1 1 )

else :
self . month_index = month_index

#end

# ==================================================================

# Shape Constants for Bell-Shaped Vertical Velocity Distribution

# ==================================================================

r1r2shape = numpy . array ( [ [ 0 . 1 4 ] , [ 0 . 2 5 ] , [ 0 . 3 6 ] , [ 0 . 4 7 ] , [ 0 . 5 8 ] ,
[ 0 . 6 9 ] , [ 0 . 8 0 ] ] )

Kshape = numpy . array ( [ [ 1 . 5 3 5 2 , 2 . 5 8 2 6 , −0 . 0 1 1 3 , 0 . 0 0 0 8 ] , [ 1 . 5 2 6 5 ,
3 . 6 0 5 4 , −0 . 0 1 7 6 , 0 . 0 0 0 5 ] , [ 1 . 4 8 6 6 , 4 . 8 3 5 4 , −0 . 0 3 2 0 , 0 . 0 0 0 1 ] , [ 1 . 2 0 4 2 ,
7 . 7 9 0 4 , 0 . 0 8 4 8 , 0 . 0 0 0 1 ] , [ 0 . 8 8 1 6 , 1 3 . 9 7 2 , 0 . 3 4 0 4 , 0 . 0 0 0 1 ] ,
[ 0 . 7 0 6 7 , 2 3 . 9 9 4 , 0 . 5 6 8 9 , 0 . 0 0 0 2 ] , [ 0 . 6 1 8 9 , 4 2 . 7 9 7 , 0 . 7 1 5 7 , 0 . 0 0 0 1 ] ] )

# ==================================================================

# Monthly Convective Scaling Points

# ==================================================================

convScale = numpy . array ( [ [ 1 . 1 4 , 3 . 5 9 , 5 0 4 . 0 , 1 8 0 0 . 0 ] , [ 1 . 4 8 , 3 . 9 7 ,
6 6 6 . 0 , 1 9 7 0 . 0 ] , [ 1 . 6 4 , 4 . 8 9 , 8 5 1 . 0 , 3 9 0 0 . 0 ] , [ 1 . 9 7 , 5 . 5 3 , 1 2 1 3 . 0 , 2 3 8 0 . 0 ] ,
[ 2 . 5 3 , 5 . 4 9 , 1 8 8 7 . 0 , 3 8 3 3 . 0 ] , [ 2 . 3 8 , 5 . 5 1 , 1 7 2 8 . 0 , 4 0 2 7 . 0 ] , [ 2 . 6 9 , 6 . 3 0 ,
1 9 7 5 . 0 , 3 9 6 2 . 0 ] , [ 2 . 4 4 , 5 . 6 4 , 1 7 5 5 . 0 , 4 9 4 0 . 0 ] , [ 2 . 2 5 , 5 . 9 7 , 1 3 8 2 . 0 ,
2 4 6 0 . 0 ] , [ 1 . 7 9 , 4 . 5 7 , 8 9 3 . 0 , 3 2 8 5 . 0 ] , [ 1 . 3 1 , 4 . 5 5 , 6 2 7 . 0 , 1 7 8 3 . 0 ] , [ 1 . 2 6 ,
4 . 1 1 , 4 4 1 . 0 , 1 6 8 0 . 0 ] ] )

w_star = convScale [ self . month_index , 1 ]
hi = convScale [ self . month_index , 3 ]

# Calculates the Updraft Size

r_bar = 0 .102 ∗ ( ( self . h_ac / hi ) ∗∗ ( 1 . 0 / 3 . 0 ) ) ∗ ( 1 . 0 − \
( 0 . 2 5 ∗ ( self . h_ac / hi ) ) ) ∗ hi

# Calculates the Average Updraft Velocity (m/s)

w_bar = w_star ∗ ( ( self . h_ac / hi ) ∗∗ ( 1 . 0 / 3 . 0 ) ) ∗ ( 1 . 0 − \
( 1 . 1 ∗ ( self . h_ac / hi ) ) )

# ==================================================================

# Generate the Location of Updraft in the Test Area

# ==================================================================
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x_t = 0 . 0
y_t = 0 . 0

#

self . x_t = x_t

self . y_t = y_t

# ==================================================================

# Determine the Aircraft Position in Relation to the Thermal Centre

# ==================================================================

x_ac = ( self . x_t + ( self . r . real ∗ cmath . sin ( self . theta ) ) ) . real
y_ac = ( self . y_t + ( self . r . real ∗ cmath . cos ( self . theta ) ) ) . real

#

self . x_ac = x_ac

self . y_ac = y_ac

# ==================================================================

# Define the Perturbation Gains for each Updraft

# ==================================================================

wgain = random . random ( )

if wgain < 0 . 5 :
wgain = 0 . 5

#end

rgain = random . random ( )

if rgain < 0 . 5 :
rgain = 0 . 5

#end

# =================================================================

# Calculate the Average Updraft Size

# =================================================================

# Apply the Random Perturbation Gain to the Updraft

# Outer Radius, m

r2 = r_bar ∗ rgain

# Apply the Random Perturbation Gain to the Average

# Updraft Velocity, m/s

wt = w_bar ∗ wgain

# Limit Small Updrafts to 20m in Diameter

if complex ( r2 ) . real < 1 0 . 0 :
r2 = 1 0 . 0 # ft

#end

if complex ( r2 ) . real < 6 0 0 . 0 :
r1r2 = 0 .0011 ∗ r2 + 0 . 1 4

else :
r1r2 = 0 . 8
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#end

# Calculate the Updraft Core Radius (m)

r1 = r1r2 ∗ r2

# =================================================================

# Calculate the Updraft Velocity

# =================================================================

# Calculate the Peak Updraft Velocity (m/s)

w_peak = 3 . 0 ∗ wt ∗ ( ( r2 ∗∗ 3 . 0 ) − ( ( r2 ∗∗ 2 . 0 ) ∗ r1 ) ) / \
( ( r2 ∗∗ 3 . 0 ) − ( r1 ∗∗ 3 . 0 ) )

rr2 = self . r / r2

# Determine the Shape of the Thermal

if complex ( self . h_ac ) . real < hi :
if complex ( r1r2 ) . real < 0 . 5 ∗ ( r1r2shape [ 0 ] + r1r2shape [ 1 ] ) :

k1 = Kshape [ 0 , 0 ]
k2 = Kshape [ 0 , 1 ]
k3 = Kshape [ 0 , 2 ]
k4 = Kshape [ 0 , 3 ]

elif complex ( r1r2 ) . real < 0 . 5 ∗ ( r1r2shape [ 1 ] + r1r2shape [ 2 ] ) :
k1 = Kshape [ 1 , 0 ]
k2 = Kshape [ 1 , 1 ]
k3 = Kshape [ 1 , 2 ]
k4 = Kshape [ 1 , 3 ]

elif complex ( r1r2 ) . real < 0 . 5 ∗ ( r1r2shape [ 2 ] + r1r2shape [ 3 ] ) :
k1 = Kshape [ 2 , 0 ]
k2 = Kshape [ 2 , 1 ]
k3 = Kshape [ 2 , 2 ]
k4 = Kshape [ 2 , 3 ]

elif complex ( r1r2 ) . real < 0 . 5 ∗ ( r1r2shape [ 3 ] + r1r2shape [ 4 ] ) :
k1 = Kshape [ 3 , 0 ]
k2 = Kshape [ 3 , 1 ]
k3 = Kshape [ 3 , 2 ]
k4 = Kshape [ 3 , 3 ]

elif complex ( r1r2 ) . real < 0 . 5 ∗ ( r1r2shape [ 4 ] + r1r2shape [ 5 ] ) :
k1 = Kshape [ 4 , 0 ]
k2 = Kshape [ 4 , 1 ]
k3 = Kshape [ 4 , 2 ]
k4 = Kshape [ 4 , 3 ]

elif complex ( r1r2 ) . real < 0 . 5 ∗ ( r1r2shape [ 5 ] + r1r2shape [ 6 ] ) :
k1 = Kshape [ 5 , 0 ]
k2 = Kshape [ 5 , 1 ]
k3 = Kshape [ 5 , 2 ]
k4 = Kshape [ 5 , 3 ]

else :
k1 = Kshape [ 6 , 0 ]
k2 = Kshape [ 6 , 1 ]
k3 = Kshape [ 6 , 2 ]
k4 = Kshape [ 6 , 3 ]

#end

# Calculate the Smooth Vertical Velocity Distribution

ws = ( 1 . 0 / (1 + ( cabs ( ( k1 ∗ rr2 ) + k3 ) ∗∗ k2 ) ) ) + ( k4 ∗ rr2 )
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# Ensure no Negative Updraft Velocities

if complex ( ws ) . real < 0 . 0 :
ws = complex ( 0 . 0 , 0 . 0 )

#end

else :
ws = complex ( 0 . 0 , 0 . 0 )

#end

# =================================================================

# Calculate the Downdraft Velocity at the Edge of the Updraft

# =================================================================

# Calculate the Intermediate Variable in Downdraft Velocity (m/s)

if ( complex ( self . r ) . real > complex ( r1 ) . real ) and \
( ( complex ( rr2 ) . real ) < 2 . 0 ) :

wl = −(cmath . pi / 6 . 0 ) ∗ cmath . sin ( cmath . pi ∗ rr2 )

else :
wl = complex ( 0 . 0 , 0 . 0 )

#end

# Calculate the Downdraft Velocity (m/s)

if ( complex ( self . h_ac / hi ) . real > 0 . 5 ) and \
( complex ( self . h_ac / hi ) . real < 0 . 9 ) :

wd = 2 . 5 ∗ wl ∗ ( ( self . h_ac / hi ) − 0 . 5 )

else :
wd = complex ( 0 . 0 , 0 . 0 )

#end

# Downdraft Velocity Ratio

if wl == 0 . 0 :
s_wd = 0 . 0

else :
s_wd = wd / wl

#end

# Scale the Updraft to the Actual Velocity (m/s)

w2 = ( ws ∗ w_peak ) + ( wd ∗ wt )

# =================================================================

# Calculate the Environmental Sink Velocity

# =================================================================

# Total Area taken up by Thermals (m**2.0)

A_thermal = cmath . pi ∗ ( r2 ∗∗ 2 . 0 )

# Total Area of the Test Location (m**2.0)

A = self . L ∗ self . W

if complex ( A_thermal ) . real > A :
raise ValueError , ’Area of Test Location is too Small’

#end
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# Environmental Sink Velocity (m/s)

we = −(w_bar ∗ A_thermal ∗ s_wd ) / ( A − A_thermal )

# Ensure no Positive Sink Velocities

if complex ( we ) . real > 0 :
we = complex ( 0 . 0 , 0 . 0 )

#end

# Stretch the Updraft to Blend with Sink at Edges (m/s)

if complex ( self . r ) . real > complex ( r1 ) . real :
W_h = w2 ∗ (1 − ( we / w_peak ) ) + we

else :
W_h = w2

#end

#

self . W_h = W_h

# Convert Outputs to English Units (m/s to ft/s, m to ft)

self . W_h = 3 .28084 ∗ self . W_h
self . x_t = 3 .28084 ∗ self . x_t
self . y_t = 3 .28084 ∗ self . y_t
self . x_ac = 3 .28084 ∗ self . x_ac
self . y_ac = 3 .28084 ∗ self . y_ac

data = {’Updraft_Velocity’ : self . W_h , ’Thermal_Center_x’ : self . x_t ,
’Thermal_Center_y’ : self . y_t , ’AC_Location_x’ : self . x_ac ,
’AC_Location_y’ : self . y_ac}

return data

def getDerivatives ( self , r= 0 . 0 , h_ac = 0 . 0 , month_index=None ,
h=1e−20 , ∗args , ∗∗kwargs ) :

’’’

Computes the Wind Derivatives of the Thermal Model

**Keyword Arguments:**

- r -> FLOAT: Aircraft Radial Distance from Thermal Center (ft),

*Default* = 0.0

- h_ac -> FLOAT: Aircraft height above the ground (ft),

*Default* = 0.0

- month_index -> INTEGER: Define the Month, *Default* = 0.0

- h -> FLOAT: Step Size for Complex Step Method, *Default* = 1e-20

Documentation last updated: Jan 17, 2014 - Thomas R. Connerty

’’’

# Convert Inputs to SI Units (ft to m)

r = 0 .3048 ∗ r

h_ac = 0 .3048 ∗ h_ac

# =================================================================
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# Gradient Calculation - Change in Updraft Velocity with Radius

# =================================================================

drt = self . __call__ ( complex (r , h ) , h_ac ,
self . month_index ) [ ’Updraft_Velocity’ ]

dWh_dr = drt . imag / h

#

self . dWh_dr = dWh_dr

# =================================================================

# Gradient Calculation -

# Change in Updraft Velocity with Angular Position

# =================================================================

dWh_dtheta = 0 . 0

#

self . dWh_dtheta = dWh_dtheta

# =================================================================

# Gradient Calculation - Change in Updraft Velocity with Height

# =================================================================

dht = self . __call__ (r , complex ( h_ac , h ) ,
self . month_index ) [ ’Updraft_Velocity’ ]

dWh_dh = dht . imag / h

#

self . dWh_dh = dWh_dh

# Convert Outputs to English Units (m/s**2.0 to ft/s**2.0)

self . dWh_dr = 3 .28084 ∗ self . dWh_dr
self . dWh_dtheta = 3 .28084 ∗ self . dWh_dtheta
self . dWh_dh = 3 .28084 ∗ self . dWh_dh

gradients = {’dWh_dr’ : self . dWh_dr , ’dWh_dtheta’ : self . dWh_dtheta ,
’dWh_dh’ : self . dWh_dh}

return gradients

#=========================================================================

#

#=========================================================================

if __name__ == ’__main__’ :

print ’Testing ...’

#

allen = thermalAllen ( )
allen . ListAttributes ( )

Listing B.2: Lawrance Bubble Model
#!/usr/local/bin/python

’’’
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pyThermal_lawrance

Holds the Lawrance Bubble Thermal Model Class

Copyright (c) 2004-2014 by pyACDT Developers

All rights reserved.

Revision: 1.0 $Date: 22/01/2014 21:00$

References:

-----------

- N.R. Lawrance and S. Sukkarieh, "Wind Energy Based Path Planning for

a Small Gliding Unmanned Aerial Vehicle," AIAA Guidance, Navigation,

and Control Conference, Chicago, Illinois, 2009.

Developers:

-----------

- Major Thomas R. Connerty (TC)

History:

--------

v. 1.0 - Initial Creation in Python (TC, 2013)

’’’

__version__ = ’$Revision: $’

’’’

To Do:

-

’’’

# =========================================================================

# Standard Python modules

# =========================================================================

import os , math , sys , time

import pdb # pdb.set_trace()

# =========================================================================

# External Python modules

# =========================================================================

import numpy

import random

# =========================================================================

# Extension modules

# =========================================================================

from pyThermal_object import thermalObject

# =========================================================================

# Misc Definitions

# =========================================================================

# =========================================================================

# Lawrance Bubble Thermal Model Class
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# =========================================================================

class thermalLawrance ( thermalObject ) :

’’’

Lawrance Bubble Thermal Model Class

’’’

def __init__ ( self , seed =12345 .6 ,∗ args , ∗∗kwargs ) :

’’’

Thermal Model Class Initialization

**Keyword Arguments:**

- seed -> FLOAT: Define a seed for the Random Number Generator,

*Default* = 12345.6

*Outputs:*

- wx -> FLOAT: x component of the flow field velocity (ft/s)

- wy -> FLOAT: y component of the flow field velocity (ft/s)

- wz -> FLOAT: z component of the flow field velocity (ft/s)

Documentation last updated: Jan 22, 2014 - Thomas R. Connerty

’’’

#

name = "Lawrance Bubble Thermal Model"

def_opts = {}

# Initialize Abstract Class

thermalObject . __init__ ( self , name , def_opts , ∗args , ∗∗kwargs )

#

self . seed = seed

if self . seed == None :
self . seed = time . time ( )

#end

random . seed ( self . seed )

def __call__ ( self , r= 0 . 0 , z_ac = 0 . 0 , R= 0 . 0 , w_core = 0 . 0 , z_t = 0 . 0 , theta = 0 . 0 ,
L=5280 .0 ,W=5280 .0 ,∗ args , ∗∗kwargs ) :

’’’

Generate Thermal Model (Calling Routine)

**Keyword Arguments:**

- r -> FLOAT: Aircraft Radial Distance from Thermal Center (ft),

*Default* = 0.0

- z_ac -> FLOAT: Aircraft height above the ground (ft),

*Default* = 0.0

- R -> FLOAT: Distance that Limits the Updraft Area (ft),
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*Default* = 0.0

- w_core -> FLOAT: Updraft velocity at center of thermal (ft/s),

*Default* = 0.0

- z_t -> FLOAT: Height of the thermal bubble (ft), *Default* = 0.0

- theta -> FLOAT: Aircraft Angular position (rad), *Default* = 0.0

- L -> FLOAT: Length of the Test Area (ft), *Default* = 1000.0

- W -> FLOAT: Width of the Test Area (ft), *Default* = 1000.0

*Outputs:*

- wx -> FLOAT: x component of the flow field velocity (ft/s)

- wy -> FLOAT: y component of the flow field velocity (ft/s)

- wz -> FLOAT: z component of the flow field velocity (ft/s)

Documentation last updated: Jan 22, 2014 - Thomas R. Connerty

’’’

#

self . r = r

self . z_ac = z_ac

self . R = R

self . w_core = w_core

self . z_t = z_t

self . theta = theta

self . L = L

self . W = W

# =================================================================

# Generate the Location of Updraft in the Test Area

# =================================================================

x_t = 0 . 0
y_t = 0 . 0

#

self . x_t = x_t

self . y_t = y_t

# Compute the Area of the Test Area, (ft**2)

A = self . L ∗ self . W

# =================================================================

# Determine the Aircraft Position in Relation to the Thermal Centre

# =================================================================

x_ac = ( self . x_t + ( self . r . real ∗ math . sin ( self . theta ) ) ) . real
y_ac = ( self . y_t + ( self . r . real ∗ math . cos ( self . theta ) ) ) . real

#

self . x_ac = x_ac

self . y_ac = y_ac

# =================================================================

# Calculate the Distance of the Aircraft to the Updraft, ft

# =================================================================
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xd = abs ( self . x_ac − self . x_t )
yd = abs ( self . y_ac − self . y_t )
zd = abs ( self . z_ac − ( self . z_t / 2 . 0 ) )

# Distance of the Aircraft to the Thermal Center, ft

dh = self . r

# =================================================================

# Calculate the Thermal Flow Field, ft/s

# =================================================================

# Calculate the Bubble Eccentricity Factor

k = self . z_t / ( 2 . 0 ∗ self . R )

# Calculate the z Component of the Flow Field Velocity, (ft/s)

if dh == 0 . 0 :
wz = self . w_core

elif dh > 0 . 0 and dh < ( 2 . 0 ∗ self . R ) :
wz = ( ( math . cos ( 1 . 0 + ( ( math . pi ∗ zd ) / ( k ∗ self . R ) ) ) ∗ \
( self . R ∗ w_core ) ) / ( 2 . 0 ∗ math . pi ∗ dh ) ) ∗ \
math . sin ( ( math . pi ∗ dh ) / self . R )

else :
wz = 0 . 0

#end

# Calculate the x Component of the Flow Field Velocity, (ft/s)

wx = −wz ∗ ( zd / ( ( dh − self . R ) ∗ ( k ∗∗ 2 . 0 ) ) ) ∗ ( xd / dh )

# Calculate the y Component of the Flow Field Velocity, (ft/s)

wy = −wz ∗ ( zd / ( ( dh − self . R ) ∗ ( k ∗∗ 2 . 0 ) ) ) ∗ ( yd / dh )

# Calculate the r Component of the Flow Field Velocity, (ft/s)

wr = math . sqrt ( ( wx ∗∗ 2 . 0 ) + ( wy ∗∗ 2 . 0 ) )

#

self . W_h = wz

self . W_r = wr

data = {’Updraft_Velocity’ : self . W_h , ’x_Velocity_Component’ : wy ,
’x_Velocity_Component’ : wy , ’Updraft_Radial_Velocity’ : self . W_r ,
’Thermal_Center_x’ : self . x_t , ’Thermal_Center_y’ : self . y_t ,
’AC_Location_x’ : self . x_ac , ’AC_Location_y’ : self . y_ac}

return data

def getDerivatives ( self , r= 0 . 0 , z_ac = 0 . 0 , R= 0 . 0 , w_core = 0 . 0 , z_t = 0 . 0 ,
theta = 0 . 0 , h=1e−06 , ∗args , ∗∗kwargs ) :

’’’

Computes the Wind Derivatives of the Thermal Model

**Keyword Arguments:**

- r -> FLOAT: Aircraft Radial Distance from Thermal Center (ft),
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*Default* = 0.0

- z_ac -> FLOAT: Aircraft height above the ground (ft),

*Default* = 0.0

- R -> FLOAT: Distance that Limits the Updraft Area (ft),

*Default* = 0.0

- w_core -> FLOAT: Updraft velocity at center of thermal (ft/s),

*Default* = 0.0

- z_t -> FLOAT: Height of the thermal bubble (ft), *Default* = 0.0

- theta -> FLOAT: Aircraft Angular position (rad), *Default* = 0.0

- h -> FLOAT: Step Size for Complex Step Method, *Default* = 1e-20

Documentation last updated: Jan 22, 2014 - Thomas R. Connerty

’’’

# =================================================================

# Gradient Calculation - Change in Updraft Velocity with Radius

# =================================================================

fx = self . __call__ (r , z_ac , R , w_core , z_t , theta ) [ ’Updraft_Velocity’ ]
fxh = self . __call__ ( ( r+h ) , z_ac , R , w_core , z_t ,

theta ) [ ’Updraft_Velocity’ ]
dWh_dr = ( fxh − fx ) / h

#

self . dWh_dr = dWh_dr

# =================================================================

# Gradient Calculation -

# Change in Updraft Velocity with Angular Position

# =================================================================

dWh_dtheta = 0 . 0

#

self . dWh_dtheta = dWh_dtheta

# =================================================================

# Gradient Calculation - Change in Updraft Velocity with Height

# =================================================================

fx = self . __call__ (r , z_ac , R , w_core , z_t , theta ) [ ’Updraft_Velocity’ ]
fxh = self . __call__ (r , ( z_ac+h ) , R , w_core , z_t ,

theta ) [ ’Updraft_Velocity’ ]
dWh_dh = ( fxh − fx ) / h

#

self . dWh_dh = dWh_dh

# =================================================================

# Gradient Calculation -

# Change in Updraft Radial Velocity with Radius

# =================================================================

fx = self . __call__ (r , z_ac , R , w_core , z_t ,
theta ) [ ’Updraft_Radial_Velocity’ ]

fxh = self . __call__ ( ( r+h ) , z_ac , R , w_core , z_t ,
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theta ) [ ’Updraft_Radial_Velocity’ ]
dWr_dr = ( fxh − fx ) / h

#

self . dWr_dr = dWr_dr

# =================================================================

# Gradient Calculation -

# Change in Updraft Radial Velocity with Angular Position

# =================================================================

dWr_dtheta = 0 . 0

#

self . dWr_dtheta = dWr_dtheta

# =================================================================

# Gradient Calculation -

# Change in Updraft Radial Velocity with Height

# =================================================================

fx = self . __call__ (r , z_ac , R , w_core , z_t ,
theta ) [ ’Updraft_Radial_Velocity’ ]

fxh = self . __call__ (r , ( z_ac+h ) , R , w_core , z_t ,
theta ) [ ’Updraft_Radial_Velocity’ ]

dWr_dh = ( fxh − fx ) / h

#

self . dWr_dh = dWr_dh

gradients = {’dWh_dr’ : self . dWh_dr , ’dWh_dtheta’ : self . dWh_dtheta ,
’dWh_dh’ : self . dWh_dh , ’dWr_dr’ : self . dWr_dr ,
’dWr_dtheta’ : self . dWr_dtheta , ’dWr_dh’ : self . dWr_dh}

return gradients

#==========================================================================

#

#==========================================================================

if __name__ == ’__main__’ :

print ’Testing ...’

#

lawrance = thermalLawrance ( )
lawrance . ListAttributes ( )
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B.2 Trajectory Optimization

Listing B.3: Trajectory Optimization Problem Formulation - Chimney Model
#!/usr/local/bin/python

’’’

Cularis_D_5223_thermalClimb

Trajectory Optimization Problem (in Cylindrical Coordinates)

Copyright (c) 2004-2014 by pyACDT Developers

All rights reserved.

Revision: 1.0 $Date: 26/02/2014 21:00$

References:

-----------

Developers:

-----------

- Major Thomas R. Connerty (TC)

History:

--------

v. 1.0 - Initial Creation in Python (TC, 2014)

’’’

__version__ = ’$Revision: $’

’’’

To Do:

-

’’’

# ==========================================================================

# Standard Python modules

# ==========================================================================

import os , math , sys , time

import pdb

# ==========================================================================

# External Python modules

# ==========================================================================

import mpi4py

from mpi4py import MPI

import numpy

import random

comm=MPI . COMM_WORLD

# ==========================================================================

# Extension modules

# ==========================================================================
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sys . path . append ( os . path . abspath ( ’..’ ) )
sys . path . append ( os . path . abspath ( ’../../../..’ ) )
sys . path . append ( os . path . abspath ( ’../pyThermal’ ) )
sys . path . append ( os . path . abspath ( ’../../../../pyACDT/Optimization/pyDTO’ ) )
sys . path . append ( os . path . abspath ( ’../../../../pyACDT/Optimization/pyOpt’ ) )
sys . path . append ( os . path . abspath

( ’../../../../pyACDT/Optimization/pyOpt/pySNOPT’ ) )

from pyAtmosphere_US1976 import atmosphere

from pyDCNLP import DCNLP

from pyDTO_controls import Controls

from pyDTO_parameters import Parameters

from pyDTO_knots import Knots

from pyDTO_problem import Phase , Trajectory
from pyDTO_states import States

from pySNOPT import SNOPT

from pyThermal_allen import thermalAllen

# ==========================================================================

# Misc Definitions

# ==========================================================================

inf = 1e20 # define a value for infinity

# ==========================================================================

# Define the Aircraft Characteristics

# ==========================================================================

# Misc Constants and Definitions

acID = ’D-5223’

costID = ’ratio_Err_Eh’

g = 32 .174 # Acceleration due to Gravity ft/s ** 2.0

rho0 = 0.0023769 # Density at Sea Level Conditions slug/ft ** 3.0

# Cularis D-5223

if acID == ’D-5223’ :
b = 8 .536 # Wing Span ft

S = 4 .574 # Wing Reference Area ft ** 2.0

AR = ( b ∗∗ 2 . 0 ) / S # Wing Aspect Ratio Dimensionless

W = 4 .807 # Aircraft Weight lbf

m = W / g # Aircraft Mass lbm

CLo = 0 .261 # Coefficient Lift at Zero Alpha Dimensionless

CLa = 5 .865 # Lift Curve Slope /rad

CLmax = 1 .674 # Maximum Coefficient of Lift Dimensionless

LDmax = 23 .09 # Maximum L/D Ratio Dimensionless

CDo = 0 .0223 # Parasitic Drag Coefficient Dimensionless

n_max = 2 . 0 # Maximum g Limit Dimensionless

n_min = −1.5 # Minimum g Limit Dimensionless

Vmo = 7 3 . 0 # Maximum Operating Speed ft/s

# Stall Speed (Sea Level) ft/s

Vstall = math . sqrt ( ( 2 . 0 ∗ W ) / ( rho0 ∗ S ∗ CLmax ) )
# Induced Drag Coefficient Dimensionless

K = 1 . 0 / ( 4 . 0 ∗ CDo ∗ ( LDmax ∗∗ 2 . 0 ) )
# Best Glide Speed ft/s

Vmd = math . sqrt ( ( 2 . 0 ∗ W ) / ( rho0 ∗ S ) ∗ math . sqrt ( K / CDo ) )
# Best Glide Angle rad
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theta_min = −math . atan ( 1 . 0 / LDmax )
# Maximum Pitch Rate

gamma_2_dot_max = math . pi / 1 2 . 0
# Maximum Roll Rate

gamma_1_dot_max = math . pi / 6 . 0

# ASW-20

elif acID == ’ASW-20’ :
b = 4 9 . 3 # Wing Span ft

S = 112 .6 # Wing Reference Area ft ** 2.0

AR = ( b ∗∗ 2 . 0 ) / S # Wing Aspect Ratio Dimensionless

W = 759 .0 # Aircraft Weight lbf

m = W / g # Aircraft Mass lbm

CLo = 0 . 6 9 # Coefficient Lift at Zero Alpha Dimensionless

CLa = 4 . 9 0 # Lift Curve Slope /rad

CLmax = 1 . 3 5 # Maximum Coefficient of Lift Dimensionless

LDmax = 38 .77 # Maximum L/D Ratio Dimensionless

CDo = 0 .00924 # Parasitic Drag Coefficient Dimensionless

n_max = 4 . 0 # Maximum g Limit Dimensionless

n_min = −1.5 # Minimum g Limit Dimensionless

Vmo = 164 .0 # Maximum Operating Speed ft/s

# Stall Speed (Sea Level) ft/s

Vstall = math . sqrt ( ( 2 . 0 ∗ W ) / ( rho0 ∗ S ∗ CLmax ) )
# Induced Drag Coefficient Dimensionless

K = 1 . 0 / ( 4 . 0 ∗ CDo ∗ ( LDmax ∗∗ 2 . 0 ) )
# Best Glide Speed ft/s

Vmd = math . sqrt ( ( 2 . 0 ∗ W ) / ( rho0 ∗ S ) ∗ math . sqrt ( K / CDo ) )
# Best Glide Angle rad

theta_min = −math . atan ( 1 . 0 / LDmax )
# Maximum Pitch Rate

gamma_2_dot_max = math . pi / 1 2 . 0
# Maximum Roll Rate

gamma_1_dot_max = math . pi / 6 . 0

if costID == ’intEh_Err’ or costID == ’intErr’ or costID == ’ratio_Err_Eh’ :
# Define Target Location

x_tgt = 300 .0
y_tgt = 300 .0

# Camera Focal Length (mm)

focal = 4 . 2
# Convert Focal Length from mm to m

focal = focal ∗ 1 . 0 e−03
# Define the CCD Element Size (m)

CCD_unit = 5 . 0 e−06
# Define the Desired Pixel Resolution

pixel_res = 0 . 5
# Define the Maximum Line of Site Distance for Desired Resolution

d_los_max = ( focal ∗ pixel_res ) / CCD_unit

# Define the Camera Location

xcam = 0 . 0
ycam = 0 . 0
zcam = 0 . 0

#end
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if costID == ’seeability’ or costID == ’seeability_constraint’ :
# Define Target Location

x_tgt = 0 . 0
y_tgt = 0 . 0
z_tgt = 0 . 0

# Optimal Viewing Angle (rad)

theta_opt = math . pi / 4 . 0
# Camera Focal Length (mm)

focal = 1 2 . 5
# Convert Focal Length from mm to ft

focal = focal ∗ 0 .00328084

# Define a Scaling Factor

mu = 1 . 0 e04
# Define the CCD Element Size (m)

CCD_unit = 5 . 0 e−06
# Define the Desired Pixel Resolution (m)

pixel_res = 0 . 2 5
# Define Minimum Seeability Ratio

S_min = mu ∗ ( CCD_unit / pixel_res )

# Instanciate Thermal Class

allen = thermalAllen ( seed =1 234 5 .6 )

# ==========================================================================

# Define the Cost Function

# ==========================================================================

def topt_cst (t , x , u , p ,∗ args ,∗∗ kwargs ) :

’’’

Definition of the Cost Function

Inputs

t -> current time

x -> current state vector

u -> current control vector

p -> parameter vector

Output

f -> cost of current trajectory

’’’

# State Vector Definition

V = x [ : , 0 ]
gamma_2 = x [ : , 1 ]
r = x [ : , 2 ]
theta = x [ : , 3 ]
z = x [ : , 4 ]
epsilon = x [ : , 5 ]

# Control Vector Definition

alpha = u [ : , 0 ]
gamma_1 = u [ : , 1 ]
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if costID == ’intEh_Err’ or costID == ’intErr’ \
or costID == ’ratio_Err_Eh’ :

kappa = u [ : , 2 ]
tau = u [ : , 3 ]

#end

if costID == ’Eh’ :

# Maximize Specific Energy Height

f = −(−z [−1]) − ( ( V [−1] ∗∗ 2 . 0 ) / ( 2 . 0 ∗ g ) )

elif costID == ’intEh’ :

# Maximize Instantaneous Specific Energy Height

Eh = numpy . zeros ( len ( t ) )

for i in xrange ( len ( t ) ) :
Eh [ i ] = −(−z [ i ] ) − ( ( V [ i ] ∗∗ 2 . 0 ) / ( 2 . 0 ∗ g ) )

#end

f = numpy . trapz ( Eh , t )

elif costID == ’intEh_Err’ :

mu = 1 0 . 0
Eh = numpy . zeros ( len ( t ) )
Err = numpy . zeros ( len ( t ) )

for i in xrange ( len ( t ) ) :

# Define the Aircraft Location

xac = r [ i ] ∗ numpy . cos ( theta [ i ] )
yac = r [ i ] ∗ numpy . sin ( theta [ i ] )
zac = z [ i ]

# Define the Camera Pointer Location

H_be = numpy . array ( [ [ ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . cos ( alpha [ i ]+ gamma_2 [ i ] ) ) , − ( numpy . sin ( theta [ i ]+
epsilon [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) + ( numpy . cos ( theta [ i ]+
epsilon [ i ] ) ) ∗ ( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗
( numpy . sin ( gamma_1 [ i ] ) ) , ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( gamma_1 [ i ] ) ) + ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , xac ] ,
[ ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) , ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . cos ( gamma_1 [ i ] ) ) + ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) ,
−(numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) +
( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . sin ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , yac ] ,
[−numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) , ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) , ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , zac ] ,
[ 0 . , 0 . , 0 . , 1 . ] ] )

H_bc = numpy . array ( [ [ ( numpy . cos ( tau [ i ] ) ) ∗
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( numpy . cos ( kappa [ i ] ) ) , − numpy . sin ( tau [ i ] ) , ( numpy . cos ( tau [ i ] ) ) ∗
( numpy . sin ( kappa [ i ] ) ) , xcam ] , [ ( numpy . sin ( tau [ i ] ) ) ∗
( numpy . cos ( kappa [ i ] ) ) , numpy . cos ( tau [ i ] ) , ( numpy . sin ( tau [ i ] ) ) ∗
( numpy . sin ( kappa [ i ] ) ) , ycam ] ,
[−numpy . sin ( kappa [ i ] ) , 0 , numpy . cos ( kappa [ i ] ) , zcam ] ,
[ 0 . , 0 . , 0 . , 1 . ] ] )

H_ce = numpy . dot ( H_be , H_bc )

zeta = numpy . arctan ( H_ce [ 0 , 0 ] / H_ce [ 2 , 0 ] )
eta = numpy . arctan ( H_ce [ 1 , 0 ] / H_ce [ 2 , 0 ] )

deltaX = −H_ce [ 2 , 3 ] ∗ numpy . tan ( zeta )
deltaY = −H_ce [ 2 , 3 ] ∗ numpy . tan ( eta )

xlos = H_ce [ 0 , 3 ] + deltaX

ylos = H_ce [ 1 , 3 ] + deltaY

# Maximize Instantaneous Specific Energy Height

Eh [ i ] = −(−z [ i ] ) − ( ( V [ i ] ∗∗ 2 . 0 ) / ( 2 . 0 ∗ g ) )

# Minimize the Distance Between Camera Pointer and

# Target Location

Err [ i ] = mu ∗ ( ( ( x_tgt − xlos ) ∗∗ 2 . 0 ) +
( ( y_tgt − ylos ) ∗∗ 2 . 0 ) )

#end

f = numpy . trapz ( Eh , t ) + numpy . trapz ( Err , t )

elif costID == ’intErr’ :

mu = 1 0 . 0
Err = numpy . zeros ( len ( t ) )

for i in xrange ( len ( t ) ) :

# Define the Aircraft Location

xac = r [ i ] ∗ numpy . cos ( theta [ i ] )
yac = r [ i ] ∗ numpy . sin ( theta [ i ] )
zac = z [ i ]

# Define the Camera Pointer Location

H_be = numpy . array ( [ [ ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . cos ( alpha [ i ]+ gamma_2 [ i ] ) ) , − ( numpy . sin ( theta [ i ]+
epsilon [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) + ( numpy . cos ( theta [ i ]+
epsilon [ i ] ) ) ∗ ( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗
( numpy . sin ( gamma_1 [ i ] ) ) , ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( gamma_1 [ i ] ) ) + ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , xac ] ,
[ ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) , ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . cos ( gamma_1 [ i ] ) ) + ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) ,
−(numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) +
( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . sin ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , yac ] ,
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[−numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) , ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) , ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , zac ] ,
[ 0 , 0 , 0 , 1 ] ] )

H_bc = numpy . array ( [ [ ( numpy . cos ( tau [ i ] ) ) ∗
( numpy . cos ( kappa [ i ] ) ) , − numpy . sin ( tau [ i ] ) , ( numpy . cos ( tau [ i ] ) ) ∗
( numpy . sin ( kappa [ i ] ) ) , xcam ] , [ ( numpy . sin ( tau [ i ] ) ) ∗
( numpy . cos ( kappa [ i ] ) ) , numpy . cos ( tau [ i ] ) , ( numpy . sin ( tau [ i ] ) ) ∗
( numpy . sin ( kappa [ i ] ) ) , ycam ] ,
[−numpy . sin ( kappa [ i ] ) , 0 , numpy . cos ( kappa [ i ] ) , zcam ] ,
[ 0 , 0 , 0 , 1 ] ] )

H_ce = numpy . dot ( H_be , H_bc )

zeta = numpy . arctan ( H_ce [ 0 , 0 ] / H_ce [ 2 , 0 ] )
eta = numpy . arctan ( H_ce [ 1 , 0 ] / H_ce [ 2 , 0 ] )

deltaX = −H_ce [ 2 , 3 ] ∗ numpy . tan ( zeta )
deltaY = −H_ce [ 2 , 3 ] ∗ numpy . tan ( eta )

xlos = H_ce [ 0 , 3 ] + deltaX

ylos = H_ce [ 1 , 3 ] + deltaY

# Minimize the Distance Between Camera Pointer and

# Target Location

Err [ i ] = mu ∗ ( ( ( x_tgt − xlos ) ∗∗ 2 . 0 ) +
( ( y_tgt − ylos ) ∗∗ 2 . 0 ) )

#end

f = numpy . trapz ( Err , t )

elif costID == ’ratio_Err_Eh’ :

Eh = numpy . zeros ( len ( t ) )
Err = numpy . zeros ( len ( t ) )
r_Err_Eh = numpy . zeros ( len ( t ) )

for i in xrange ( len ( t ) ) :

# Define the Aircraft Location

xac = r [ i ] ∗ numpy . cos ( theta [ i ] )
yac = r [ i ] ∗ numpy . sin ( theta [ i ] )
zac = z [ i ]

# Define the Camera Pointer Location

H_be = numpy . array ( [ [ ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . cos ( alpha [ i ]+ gamma_2 [ i ] ) ) , − ( numpy . sin ( theta [ i ]+
epsilon [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) + ( numpy . cos ( theta [ i ]+
epsilon [ i ] ) ) ∗ ( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗
( numpy . sin ( gamma_1 [ i ] ) ) , ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( gamma_1 [ i ] ) ) + ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , xac ] ,
[ ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) , ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . cos ( gamma_1 [ i ] ) ) + ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗

172



B.2. Trajectory Optimization

( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) ,
−(numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) +
( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . sin ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , yac ] ,
[−numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) , ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) , ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , zac ] ,
[ 0 . , 0 . , 0 . , 1 . ] ] )

H_bc = numpy . array ( [ [ ( numpy . cos ( tau [ i ] ) ) ∗
( numpy . cos ( kappa [ i ] ) ) , − numpy . sin ( tau [ i ] ) , ( numpy . cos ( tau [ i ] ) ) ∗
( numpy . sin ( kappa [ i ] ) ) , xcam ] , [ ( numpy . sin ( tau [ i ] ) ) ∗
( numpy . cos ( kappa [ i ] ) ) , numpy . cos ( tau [ i ] ) , ( numpy . sin ( tau [ i ] ) ) ∗
( numpy . sin ( kappa [ i ] ) ) , ycam ] ,
[−numpy . sin ( kappa [ i ] ) , 0 , numpy . cos ( kappa [ i ] ) , zcam ] ,
[ 0 . , 0 . , 0 . , 1 . ] ] )

H_ce = numpy . dot ( H_be , H_bc )

zeta = numpy . arctan ( H_ce [ 0 , 0 ] / H_ce [ 2 , 0 ] )
eta = numpy . arctan ( H_ce [ 1 , 0 ] / H_ce [ 2 , 0 ] )

deltaX = −H_ce [ 2 , 3 ] ∗ numpy . tan ( zeta )
deltaY = −H_ce [ 2 , 3 ] ∗ numpy . tan ( eta )

xlos = H_ce [ 0 , 3 ] + deltaX

ylos = H_ce [ 1 , 3 ] + deltaY

# Define Instantaneous Specific Energy Height

Eh [ i ] = −z [ i ] + ( ( V [ i ] ∗∗ 2 . 0 ) / ( 2 . 0 ∗ g ) )

# Define the Distance Between Camera Pointer and

# Target Location

Err [ i ] = ( ( x_tgt − xlos ) ∗∗ 2 . 0 ) + \
( ( y_tgt − ylos ) ∗∗ 2 . 0 )

# Minimize the Distance Between Camera Pointer and

# Target Location While Maximizing the Specific Energy Height

r_Err_Eh [ i ] = Err [ i ] / Eh [ i ]
#end

f = numpy . trapz ( r_Err_Eh , t )

elif costID == ’seeability’ :

K_Sa = 0 . 5
K_Eh = 0 . 5

Eh = numpy . zeros ( len ( t ) )
S = numpy . zeros ( len ( t ) )
# Define the Scaling Factor

mu1 = 1 . 0 e03
mu2 = 1 . 0 e−03

for i in xrange ( len ( t ) ) :
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# Define the Aircraft Location

xac = r [ i ] ∗ numpy . cos ( theta [ i ] )
yac = r [ i ] ∗ numpy . sin ( theta [ i ] )

# Define the Viewing Angle and Distance

dlos = math . sqrt ( ( xac − x_tgt )∗∗2 . 0 + ( yac − y_tgt )∗∗2 . 0 +
(−z [ i ] − z_tgt )∗∗ 2 . 0 )
theta_v = numpy . arccos(−z [ i ] / dlos )

# Maximize Seeability

S [ i ] = mu1 ∗ ( numpy . cos ( theta_v − theta_opt ) /
( 1 . 0 + ( dlos / focal ) ) )

# Maximize Instantaneous Specific Energy Height

Eh [ i ] = mu2 ∗ (−(−z [ i ] ) − ( ( V [ i ] ∗∗ 2 . 0 ) / ( 2 . 0 ∗ g ) ) )

f = ( K_Sa ∗ numpy . trapz (S , t ) ) + ( K_Eh ∗ numpy . trapz ( Eh , t ) )
#end

elif costID == ’seeability_constraint’ :

# Maximize Instantaneous Specific Energy Height

Eh = numpy . zeros ( len ( t ) )

for i in xrange ( len ( t ) ) :
Eh [ i ] = −(−z [ i ] ) − ( ( V [ i ] ∗∗ 2 . 0 ) / ( 2 . 0 ∗ g ) )

#end

f = numpy . trapz ( Eh , t )

fail = 0

return f , fail

# ==========================================================================

# Define the System Dynamics

# ==========================================================================

def topt_dyn (t , x , u , p ,∗ args ,∗∗ kwargs ) :

’’’

Definition of the System Dynamics

Inputs

t -> current time

x -> current state vector

u -> current control vector

p -> parameter vector

Output

xdot -> equations of motion

’’’

# State Vector Definition

V = x [ : , 0 ]
gamma_2 = x [ : , 1 ]
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r = x [ : , 2 ]
theta = x [ : , 3 ]
z = x [ : , 4 ]
epsilon = x [ : , 5 ]

# Control Vector Definition

alpha = u [ : , 0 ]
gamma_1 = u [ : , 1 ]

if costID == ’intEh_Err’ or costID == ’intErr’ or \
costID == ’ratio_Err_Eh’ :

kappa = u [ : , 2 ]
tau = u [ : , 3 ]

#end

xdot = numpy . zeros ( ( len ( t ) , 6 ) )

for i in xrange ( len ( t ) ) :

# Atmospheric Conditions

conditions = atmosphere(−z [ i ] , ’ENG’ )
rho = conditions [ ’Density’ ]

# Aerodynamic Characteristics

CL = CLo + ( CLa ∗ alpha [ i ] )
L = 0 . 5 ∗ rho ∗ ( V [ i ] ∗∗ 2 . 0 ) ∗ S ∗ CL

CD = CDo + K ∗ CL ∗∗ 2 . 0
D = 0 . 5 ∗ rho ∗ ( V [ i ] ∗∗ 2 . 0 ) ∗ S ∗ CD

# Updraft Strength and Derivatives

data = allen ( r=r [ i ] , h_ac=−z [ i ] , theta=theta [ i ] , L=5280 .0 ,W=5280 .0 ,
month_index=6)

gradient = allen . getDerivatives ( r=r [ i ] , h_ac=−z [ i ] ,
month_index=6 , h=1e−20)

# Updraft Strength

W_z = −data [ ’Updraft_Velocity’ ] . real
W_r = 0 . 0

# Updraft Partial Derivatives (Cylindrical Coordinates)

dWz_dr = −gradient [ ’dWh_dr’ ]
dWz_dtheta = −gradient [ ’dWh_dtheta’ ]
dWz_dz = −gradient [ ’dWh_dh’ ]

r_dot = ( V [ i ] ∗ math . cos ( gamma_2 [ i ] ) ∗
math . cos ( epsilon [ i ] ) ) + W_r

theta_dot = ( V [ i ] ∗ math . cos ( gamma_2 [ i ] ) ∗
math . sin ( epsilon [ i ] ) ) / r [ i ]

z_dot = −V [ i ] ∗ math . sin ( gamma_2 [ i ] ) + W_z

# Total Wind Derivatives

W_z_dot = ( dWz_dr ∗ r_dot ) + ( dWz_dtheta ∗ theta_dot ) + \
( dWz_dz ∗ z_dot )

# Total Wind Accelerations (Cartesian Coordinates)
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Wx_v_dot = −W_z_dot ∗ math . sin ( gamma_2 [ i ] )
Wy_v_dot = 0 . 0
Wz_v_dot = W_z_dot ∗ math . cos ( gamma_2 [ i ] )

# Define the Equations of Motion

xdot [i , 0 ] = (−D − ( m ∗ g ∗ math . sin ( gamma_2 [ i ] ) ) +
( m ∗ Wx_v_dot ) ) / m

xdot [i , 1 ] = ( ( L ∗ math . cos ( gamma_1 [ i ] ) ) − ( m ∗ g ∗
math . cos ( gamma_2 [ i ] ) ) + ( m ∗ Wz_v_dot ) ) / ( m ∗ V [ i ] )

xdot [i , 2 ] = r_dot

xdot [i , 3 ] = theta_dot

xdot [i , 4 ] = z_dot

xdot [i , 5 ] = ( ( ( L ∗ math . sin ( gamma_1 [ i ] ) ) + ( m ∗ Wy_v_dot ) ) / \
( m ∗ V [ i ] ∗ math . cos ( gamma_2 [ i ] ) ) ) − theta_dot

# Temporary Check for NaN and inf value

for j in xrange ( 6 ) :
if abs ( xdot [i , j ] ) > inf :

#pdb.set_trace()

fail = 1
break

elif isinstance ( xdot [ i ] , complex ) :
#pdb.set_trace()

fail = 1
break

elif int ( xdot [i , j ]+10000) == 0 :
#pdb.set_trace()

fail = 1
break

#end

#end

#end

fail = 0

return xdot , fail

# ==========================================================================

# Define the Contraints

# ==========================================================================

def topt_con (t , x , u , p ,∗ args ,∗∗ kwargs ) :

’’’

Definition of the System Constraints

Inputs

t -> current time

x -> current state vector

u -> current control vector

p -> parameter vector

Output

ge -> equality constraints

gi -> inequality constraints

’’’
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# State Vector Definition

V = x [ : , 0 ]
gamma_2 = x [ : , 1 ]
r = x [ : , 2 ]
theta = x [ : , 3 ]
z = x [ : , 4 ]
epsilon = x [ : , 5 ]

# Control Vector Definition

alpha = u [ : , 0 ]
gamma_1 = u [ : , 1 ]

if costID == ’intEh_Err’ or costID == ’intErr’ or \
costID == ’ratio_Err_Eh’ :

kappa = u [ : , 2 ]
tau = u [ : , 3 ]

#end

# Define the Equality Constraints (Initial Conditions)

ge = [ ]

ge . append ( V [ 0 ] − V_0 )
ge . append ( gamma_2 [ 0 ] − gamma_2_0 )
ge . append ( r [ 0 ] − r_0 )
ge . append ( theta [ 0 ] − theta_0 )
ge . append ( z_0 − z [ 0 ] )
ge . append ( epsilon [ 0 ] − epsilon_0 )
ge . append ( alpha [ 0 ] − alpha_0 )
ge . append ( gamma_1 [ 0 ] − gamma_1_0 )

if costID == ’intEh_Err’ or costID == ’intErr’ or \
costID == ’ratio_Err_Eh’ :

ge . append ( kappa [ 0 ] − kappa_0 )
ge . append ( tau [ 0 ] − tau_0 )

#end

# Define the Inequality Constraints

gi = numpy . array ( [ ] )

# Atmospheric Conditions

sigma = numpy . zeros ( len ( t ) )

for i in xrange ( len ( t ) ) :
conditions = atmosphere(−z [ i ] , ’ENG’ )
sigma [ i ] = conditions [ ’Relative_Dens’ ]

#end

# Calculate the Load Factor

n = 1 . 0 / numpy . cos ( gamma_1 )

# Minimum Control Speed

Vmc = ( 1 . 1 ∗ Vstall ∗ ( n ∗∗ 0 . 5 ) ) / ( sigma ∗∗ 0 . 5 )
gi = numpy . concatenate ( ( gi , Vmc − V ) )

# Maximum Operating Speed
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Vne = Vmo / ( sigma ∗∗ 0 . 5 )
gi = numpy . concatenate ( ( gi , V − Vne ) )

# Maximum Load Factor

gi = numpy . concatenate ( ( gi , n − n_max ) )

# Minimum Load Factor

gi = numpy . concatenate ( ( gi , n_min − n ) )

# Maximum Lift Coefficient

CL = CLo + ( CLa ∗ alpha )
gi = numpy . concatenate ( ( gi , CL − CLmax ) )

# Maximum Pitch Rate

gamma_2_dot = ( gamma_2 [ 1 : len ( t ) ] − gamma_2 [ 0 : ( len ( t ) −1) ] ) / \
( t [ 1 : len ( t ) ] − t [ 0 : ( len ( t ) −1) ] )

gi = numpy . concatenate ( ( gi , abs ( gamma_2_dot ) − gamma_2_dot_max ) )

# Maximum Roll Rate

gamma_1_dot = ( gamma_1 [ 1 : len ( t ) ] − gamma_1 [ 0 : ( len ( t ) −1) ] ) / \
( t [ 1 : len ( t ) ] − t [ 0 : ( len ( t ) −1) ] )

gi = numpy . concatenate ( ( gi , abs ( gamma_1_dot ) − gamma_1_dot_max ) )

# Maximum LOS Vector

if costID == ’intEh_Err’ or costID == ’intErr’ or \
costID == ’ratio_Err_Eh’ :

dlos = numpy . zeros ( len ( t ) )

for i in xrange ( len ( t ) ) :

# Define the Aircraft Location

xac = r [ i ] ∗ numpy . cos ( theta [ i ] )
yac = r [ i ] ∗ numpy . sin ( theta [ i ] )
zac = z [ i ]

# Define the Camera Pointer Location

H_be = numpy . array ( [ [ ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . cos ( alpha [ i ]+ gamma_2 [ i ] ) ) , − ( numpy . sin ( theta [ i ]+
epsilon [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) + ( numpy . cos ( theta [ i ]+
epsilon [ i ] ) ) ∗ ( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗
( numpy . sin ( gamma_1 [ i ] ) ) , ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( gamma_1 [ i ] ) ) + ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , xac ] ,
[ ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) , ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . cos ( gamma_1 [ i ] ) ) + ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) ,
−(numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) +
( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . sin ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , yac ] ,
[−numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) , ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) , ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , zac ] ,
[ 0 . , 0 . , 0 . , 1 . ] ] )
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H_bc = numpy . array ( [ [ ( numpy . cos ( tau [ i ] ) ) ∗ ( numpy . cos ( kappa [ i ] ) ) ,
−numpy . sin ( tau [ i ] ) , ( numpy . cos ( tau [ i ] ) ) ∗
( numpy . sin ( kappa [ i ] ) ) , xcam ] ,
[ ( numpy . sin ( tau [ i ] ) ) ∗ ( numpy . cos ( kappa [ i ] ) ) , numpy . cos ( tau [ i ] ) ,
( numpy . sin ( tau [ i ] ) ) ∗ ( numpy . sin ( kappa [ i ] ) ) , ycam ] ,
[−numpy . sin ( kappa [ i ] ) , 0 , numpy . cos ( kappa [ i ] ) , zcam ] ,
[ 0 . , 0 . , 0 . , 1 . ] ] )

H_ce = numpy . dot ( H_be , H_bc )

zeta = numpy . arctan ( H_ce [ 0 , 0 ] / H_ce [ 2 , 0 ] )
eta = numpy . arctan ( H_ce [ 1 , 0 ] / H_ce [ 2 , 0 ] )

deltaX = −H_ce [ 2 , 3 ] ∗ numpy . tan ( zeta )
deltaY = −H_ce [ 2 , 3 ] ∗ numpy . tan ( eta )

xlos = H_ce [ 0 , 3 ] + deltaX

ylos = H_ce [ 1 , 3 ] + deltaY

dlos [ i ] = ( deltaX ∗∗2 .0 + deltaY ∗∗2 .0 + (−H_ce [ 2 , 3 ] )∗∗ 2 . 0 )∗∗ 0 . 5
#end

gi = numpy . concatenate ( ( gi , dlos − d_los_max ) )
#end

# Seeability Defined as a Constraint (Minimum Resolution)

if costID == ’seeability_constraint’ :

# Define a Scaling Factor

mu = 1 . 0 e04

S = numpy . zeros ( len ( t ) )

for i in xrange ( len ( t ) ) :

# Define the Aircraft Location

xac = r [ i ] ∗ numpy . cos ( theta [ i ] )
yac = r [ i ] ∗ numpy . sin ( theta [ i ] )

# Define the Viewing Angle and Distance

dlos = math . sqrt ( ( xac − x_tgt )∗∗2 . 0 + ( yac − y_tgt )∗∗2 . 0 + \
(−z [ i ] − z_tgt )∗∗ 2 . 0 )

theta_v = numpy . arccos(−z [ i ] / dlos )

# Maximize Seeability

S [ i ] = mu ∗ ( numpy . cos ( theta_v − theta_opt ) / ( 1 . 0 +
( dlos / focal ) ) )

#end

gi = numpy . concatenate ( ( gi , S_min − S ) )
#end

fail = 0

return ge , gi , fail
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# ==========================================================================

# Trajectory Optimization Problem Definition

# ==========================================================================

# Define the Number of Collocation Points

N = 120

traj = Trajectory ( ’Thermal Climb Problem - Cularis’ )
traj . addPhase ( ’Phase 1’ ,N , topt_cst , topt_dyn , topt_con , colType=’Trapezoidal’ )

traj [ 0 ] . setKnots ( start = [ 0 . 0 , 1 2 0 . 0 ] )

V_0 = Vmd

gamma_2_0 = −math . pi / 100 .0
r_0 = 150 .0
theta_0 = 0 . 0
z_0 = −300.0
epsilon_0 = math . pi / 2 . 0

traj [ 0 ] . setStates ( 6 ,\
names=[’V’ , ’gamma_2’ , ’r’ , ’theta’ , ’z’ , ’epsilon’ ] ,\
start=[V_0 , gamma_2_0 , r_0 , theta_0 , z_0 , epsilon_0 ] ,\
final=[V_0 , gamma_2_0 , r_0 , theta_0 , z_0 , epsilon_0 ] ,\
lower=[Vstall , −math . pi / 2 . 0 , 2 5 . 0 , 0 . 0 , −9000.0 , 0 .5∗ math . pi / 2 . 0 ] , \
upper=[Vmo , math . pi / 2 . 0 , 1 0 0 0 . 0 , inf , −50.0 , 1 .5∗ math . pi / 2 . 0 ] )

alpha_0 = theta_min

gamma_1_0 = 0 . 0

if costID == ’intEh_Err’ or costID == ’intErr’ or costID == ’ratio_Err_Eh’ :
kappa_0 = −math . pi / 3 . 0
tau_0 = 0 . 0

#end

if costID == ’Eh’ or costID ==’intEh’ or costID == ’seeability’ or \
costID == ’seeability_constraint’ :

traj [ 0 ] . setControls ( 2 ,\
names=[’alpha’ , ’gamma_1’ ] ,\
start=[alpha_0 , gamma_1_0 ] ,\
final=[alpha_0 , gamma_1_0 ] ,\
lower=[−math . pi / 1 0 . 0 , −math . pi / 4 . 0 ] , \
upper=[math . pi / 1 0 . 0 , math . pi / 4 . 0 ] )

elif costID == ’intEh_Err’ or costID == ’intErr’ or \
costID == ’ratio_Err_Eh’ :

traj [ 0 ] . setControls ( 4 ,\
names=[’alpha’ , ’gamma_1’ , ’kappa’ , ’tau’ ] ,\
start=[alpha_0 , gamma_1_0 , kappa_0 , tau_0 ] ,\
final=[alpha_0 , gamma_1_0 , kappa_0 , tau_0 ] ,\
lower=[−math . pi / 1 0 . 0 , −math . pi / 6 . 0 , −math . pi ∗ 1 . 0 / 2 . 0 , −math . pi ] ,\
upper=[math . pi / 1 0 . 0 , math . pi / 6 . 0 , −math . pi ∗ 1 . 0 / 5 . 0 , math . pi ] )

#end
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# ==========================================================================

# Solve the Trajectory Optimization Problem

# ==========================================================================

# Instanciate Optimizers

dcnlp = DCNLP ( )
snopt = SNOPT ( )

prntname = ’run_%s_%i_r%.1f_z%.1f_xtgt%.1f_ytgt%.1f_print.out’ \
%(acID , N , r_0 , z_0 , x_tgt , y_tgt )

snopt . setOption ( ’Print file’ , prntname )
summname = ’run_%s_%i_r%.1f_z%.1f_xtgt%.1f_ytgt%.1f_summary.out’ \

%(acID , N , r_0 , z_0 , x_tgt , y_tgt )
snopt . setOption ( ’Summary file’ , summname )
snopt . setOption ( ’Major iterations limit’ , 100000)
snopt . setOption ( ’Iterations limit’ , 1000000)
snopt . setOption ( ’Major feasibility tolerance’ , 1 . 0 e−5)
snopt . setOption ( ’Major optimality tolerance’ , 1 . 0 e−5)

t , x , u , p , f = dcnlp ( traj , snopt , opt_solve_opts=’sens_mode=’’pgc’’’ )

if ( comm . Get_rank ( ) = = 0 ) :

# States

V = x [ 0 ] [ : , 0 ]
gamma_2 = x [ 0 ] [ : , 1 ]
r = x [ 0 ] [ : , 2 ]
theta = x [ 0 ] [ : , 3 ]
z = x [ 0 ] [ : , 4 ]
epsilon = x [ 0 ] [ : , 5 ]

# Controls

alpha = u [ 0 ] [ : , 0 ]
gamma_1 = u [ 0 ] [ : , 1 ]

if costID == ’intEh_Err’ or costID == ’intErr’ or \
costID == ’ratio_Err_Eh’ :

kappa = u [ 0 ] [ : , 2 ]
tau = u [ 0 ] [ : , 3 ]

#end

# Cartesian Locations

x = r ∗ numpy . cos ( theta )
y = r ∗ numpy . sin ( theta )
theta_fd = gamma_2 + alpha

psi = epsilon + theta

# Aerodynamics

tmp = numpy . shape ( t )
SZ = tmp [ 1 ]
rho = numpy . zeros ( SZ )
CL = numpy . zeros ( SZ )

for i in xrange ( SZ ) :
conditions = atmosphere(−z [ i ] , ’ENG’ )
rho [ i ] = conditions [ ’Density’ ]
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CL [ i ] = CLo + CLa∗alpha [ i ]
#end

if costID == ’intEh_Err’ or costID == ’intErr’ or \
costID == ’ratio_Err_Eh’ :

xlos = numpy . zeros ( SZ )
ylos = numpy . zeros ( SZ )
dlos = numpy . zeros ( SZ )

for i in xrange ( SZ ) :

# Define the Aircraft Location

xac = r [ i ] ∗ numpy . cos ( theta [ i ] )
yac = r [ i ] ∗ numpy . sin ( theta [ i ] )
zac = z [ i ]

# Define the Camera Pointer Location

H_be = numpy . array ( [ [ ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . cos ( alpha [ i ]+ gamma_2 [ i ] ) ) , − ( numpy . sin ( theta [ i ]+
epsilon [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) + ( numpy . cos ( theta [ i ]+
epsilon [ i ] ) ) ∗ ( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗
( numpy . sin ( gamma_1 [ i ] ) ) , ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( gamma_1 [ i ] ) ) + ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , xac ] ,
[ ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) , ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . cos ( gamma_1 [ i ] ) ) + ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) ,
−(numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) +
( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . sin ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , yac ] ,
[−numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) , ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) , ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , zac ] ,
[ 0 . , 0 . , 0 . , 1 . ] ] )

H_bc = numpy . array ( [ [ ( numpy . cos ( tau [ i ] ) ) ∗ ( numpy . cos ( kappa [ i ] ) ) ,
−numpy . sin ( tau [ i ] ) , ( numpy . cos ( tau [ i ] ) ) ∗ ( numpy . sin ( kappa [ i ] ) ) ,
xcam ] , [ ( numpy . sin ( tau [ i ] ) ) ∗ ( numpy . cos ( kappa [ i ] ) ) ,
numpy . cos ( tau [ i ] ) , ( numpy . sin ( tau [ i ] ) ) ∗ ( numpy . sin ( kappa [ i ] ) ) ,
ycam ] , [−numpy . sin ( kappa [ i ] ) , 0 , numpy . cos ( kappa [ i ] ) , zcam ] ,
[ 0 . , 0 . , 0 . , 1 . ] ] )

H_ce = numpy . dot ( H_be , H_bc )

zeta = numpy . arctan ( H_ce [ 0 , 0 ] / H_ce [ 2 , 0 ] )
eta = numpy . arctan ( H_ce [ 1 , 0 ] / H_ce [ 2 , 0 ] )

deltaX = −H_ce [ 2 , 3 ] ∗ numpy . tan ( zeta )
deltaY = −H_ce [ 2 , 3 ] ∗ numpy . tan ( eta )

xlos [ i ] = H_ce [ 0 , 3 ] + deltaX

ylos [ i ] = H_ce [ 1 , 3 ] + deltaY

dlos [ i ] = ( deltaX ∗∗2 .0 + deltaY ∗∗2 .0 + (−H_ce [ 2 , 3 ] )∗∗ 2 . 0 )∗∗ 0 . 5
#end
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if costID == ’seeability’ :

dlos = numpy . zeros ( SZ )
theta_v = numpy . zeros ( SZ )
S = numpy . zeros ( SZ )
Eh = numpy . zeros ( SZ )

# Define the Scaling Factor

mu1 = 1 . 0 e03
mu2 = 1 . 0 e−03

for i in xrange ( SZ ) :

# Define the Aircraft Location

xac = r [ i ] ∗ numpy . cos ( theta [ i ] )
yac = r [ i ] ∗ numpy . sin ( theta [ i ] )

# Define the Viewing Angle and Distance

dlos [ i ] = math . sqrt ( ( xac − x_tgt )∗∗2 . 0 + ( yac − y_tgt )∗∗2 . 0 + \
(−z [ i ] − z_tgt )∗∗ 2 . 0 )

theta_v [ i ] = numpy . arccos(−z [ i ] / dlos [ i ] )

# Calculate the Seeability

S [ i ] = mu1 ∗ ( numpy . cos ( theta_v [ i ] − theta_opt ) / \
( 1 . 0 + ( dlos [ i ] / focal ) ) )

f1 = numpy . trapz (S , t )
Eh [ i ] = mu2 ∗ ((−z [ i ] ) + ( ( V [ i ] ∗∗ 2 . 0 ) / ( 2 . 0 ∗ g ) ) )
f2 = numpy . trapz ( Eh , t )

#end

#end

if costID == ’seeability_constraint’ :

dlos = numpy . zeros ( SZ )
theta_v = numpy . zeros ( SZ )
S = numpy . zeros ( SZ )

for i in xrange ( SZ ) :

# Define the Aircraft Location

xac = r [ i ] ∗ numpy . cos ( theta [ i ] )
yac = r [ i ] ∗ numpy . sin ( theta [ i ] )

# Define the Viewing Angle and Distance

dlos [ i ] = math . sqrt ( ( xac − x_tgt )∗∗2 . 0 + ( yac − y_tgt )∗∗2 . 0 + \
(−z [ i ] − z_tgt )∗∗ 2 . 0 )

theta_v [ i ] = numpy . arccos(−z [ i ] / dlos [ i ] )

# Calculate the Seeability

S [ i ] = ( numpy . cos ( theta_v [ i ] − theta_opt ) / ( 1 . 0 +
( dlos [ i ] / focal ) ) )

#end

#end

# Print Results
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textf = ’f = %f\n’ %(f )

textt = ’t = [%f’ %(t [ 0 ] [ 0 ] )
for i in xrange ( 1 , len ( t [ 0 ] ) ) :

textt+= ’,%f’%(t [ 0 ] [ i ] )
#end

textt += ’]\n’

textx = ’x = [%f’ %(x [ 0 ] )
for i in xrange ( 1 , len ( x ) ) :

textx+= ’,%f’%(x [ i ] )
#end

textx += ’]\n’

texty = ’y = [%f’ %(y [ 0 ] )
for i in xrange ( 1 , len ( y ) ) :

texty+= ’,%f’%(y [ i ] )
#end

texty += ’]\n’

texth = ’h = [%f’ %(−z [ 0 ] )
for i in xrange ( 1 , len ( z ) ) :

texth+= ’,%f’%(−z [ i ] )
#end

texth += ’]\n’

textr = ’r = [%f’ %(r [ 0 ] )
for i in xrange ( 1 , len ( r ) ) :

textr+= ’,%f’%(r [ i ] )
#end

textr += ’]\n’

textv = ’v = [%f’ %(V [ 0 ] )
for i in xrange ( 1 , len ( V ) ) :

textv+= ’,%f’%(V [ i ] )
#end

textv += ’]\n’

textswp = ’theta = [%f’ %(theta [ 0 ] )
for i in xrange ( 1 , len ( theta ) ) :

textswp+= ’,%f’%(theta [ i ] )
#end

textswp += ’]\n’

texttht = ’theta_fd = [%f’ %(theta_fd [ 0 ] )
for i in xrange ( 1 , len ( theta_fd ) ) :

texttht+= ’,%f’%(theta_fd [ i ] )
#end

texttht += ’]\n’

textpsi = ’psi = [%f’ %(psi [ 0 ] )
for i in xrange ( 1 , len ( psi ) ) :

textpsi+= ’,%f’%(psi [ i ] )
#end

textpsi += ’]\n’
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texteps = ’eps = [%f’ %(epsilon [ 0 ] )
for i in xrange ( 1 , len ( epsilon ) ) :

texteps+= ’,%f’%(epsilon [ i ] )
#end

texteps += ’]\n’

textgam = ’gamma_2 = [%f’ %(gamma_2 [ 0 ] )
for i in xrange ( 1 , len ( gamma_2 ) ) :

textgam+= ’,%f’%(gamma_2 [ i ] )
#end

textgam += ’]\n’

textalp = ’alp = [%f’ %(alpha [ 0 ] )
for i in xrange ( 1 , len ( alpha ) ) :

textalp+= ’,%f’%(alpha [ i ] )
#end

textalp += ’]\n’

textphi = ’gamma_1 = [%f’ %(gamma_1 [ 0 ] )
for i in xrange ( 1 , len ( gamma_1 ) ) :

textphi+= ’,%f’%(gamma_1 [ i ] )
#end

textphi += ’]\n’

textrho = ’rho = [%f’ %(rho [ 0 ] )
for i in xrange ( 1 , len ( rho ) ) :

textrho+= ’,%f’%(rho [ i ] )
#end

textrho += ’]\n’

textlft = ’lft = [%f’ %(CL [ 0 ] )
for i in xrange ( 1 , len ( CL ) ) :

textlft+= ’,%f’%(CL [ i ] )
#end

textlft += ’]\n’

if costID == ’intEh_Err’ or costID == ’intErr’ or \
costID == ’ratio_Err_Eh’ :

textxlos = ’xlos = [%f’ %(xlos [ 0 ] )
for i in xrange ( 1 , len ( xlos ) ) :

textxlos+= ’,%f’%(xlos [ i ] )
#end

textxlos += ’]\n’

textylos = ’ylos = [%f’ %(ylos [ 0 ] )
for i in xrange ( 1 , len ( ylos ) ) :

textylos+= ’,%f’%(ylos [ i ] )
#end

textylos += ’]\n’

textdlos = ’dlos = [%f’ %(dlos [ 0 ] )
for i in xrange ( 1 , len ( dlos ) ) :

textdlos+= ’,%f’%(dlos [ i ] )
#end

textdlos += ’]\n’
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textkap = ’kappa = [%f’ %(kappa [ 0 ] )
for i in xrange ( 1 , len ( kappa ) ) :

textkap+= ’,%f’%(kappa [ i ] )
#end

textkap += ’]\n’

texttau = ’tau = [%f’ %(tau [ 0 ] )
for i in xrange ( 1 , len ( tau ) ) :

texttau+= ’,%f’%(tau [ i ] )
#end

texttau += ’]\n’

#end

if costID == ’seeability’ :
textdlos = ’dlos = [%f’ %(dlos [ 0 ] )
for i in xrange ( 1 , len ( dlos ) ) :

textdlos+= ’,%f’%(dlos [ i ] )
#end

textdlos += ’]\n’

texttheta_v = ’theta_v = [%f’ %(theta_v [ 0 ] )
for i in xrange ( 1 , len ( theta_v ) ) :

texttheta_v+= ’,%f’%(theta_v [ i ] )
#end

texttheta_v += ’]\n’

textS = ’S = [%f’ %(S [ 0 ] )
for i in xrange ( 1 , len ( S ) ) :

textS+= ’,%f’%(S [ i ] )
#end

textS += ’]\n’

textEh = ’Eh = [%f’ %(Eh [ 0 ] )
for i in xrange ( 1 , len ( Eh ) ) :

textEh+= ’,%f’%(Eh [ i ] )
#end

textEh += ’]\n’

textf1 = ’f1 = %f\n’ %(f1 )
textf2 = ’f2 = %f\n’ %(f2 )

#end

if costID == ’seeability_constraint’ :
textdlos = ’dlos = [%f’ %(dlos [ 0 ] )
for i in xrange ( 1 , len ( dlos ) ) :

textdlos+= ’,%f’%(dlos [ i ] )
#end

textdlos += ’]\n’

texttheta_v = ’theta_v = [%f’ %(theta_v [ 0 ] )
for i in xrange ( 1 , len ( theta_v ) ) :

texttheta_v+= ’,%f’%(theta_v [ i ] )
#end

texttheta_v += ’]\n’

textS = ’S = [%f’ %(S [ 0 ] )
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for i in xrange ( 1 , len ( S ) ) :
textS+= ’,%f’%(S [ i ] )

#end

textS += ’]\n’

#end

filenam = ’run_%s_%i_r%.1f_z%.1f_xtgt%.1f_ytgt%.1f_post.out’ \
%(acID , N , r_0 , z_0 , x_tgt , y_tgt )

fileout = open ( filenam , ’w’ )
fileout . write ( textf )
fileout . write ( textt )
fileout . write ( textx )
fileout . write ( texty )
fileout . write ( texth )
fileout . write ( textr )
fileout . write ( textv )
fileout . write ( textswp )
fileout . write ( texttht )
fileout . write ( textpsi )
fileout . write ( texteps )
fileout . write ( textgam )
fileout . write ( textalp )
fileout . write ( textphi )
fileout . write ( textrho )
fileout . write ( textlft )

if costID == ’intEh_Err’ or costID == ’intErr’ or \
costID == ’ratio_Err_Eh’ :

fileout . write ( textxlos )
fileout . write ( textylos )
fileout . write ( textdlos )
fileout . write ( textkap )
fileout . write ( texttau )

#end

if costID == ’seeability’ :
fileout . write ( textdlos )
fileout . write ( texttheta_v )
fileout . write ( textS )
fileout . write ( textEh )
fileout . write ( textf1 )
fileout . write ( textf2 )

#end

if costID == ’seeability_constraint’ :
fileout . write ( textdlos )
fileout . write ( texttheta_v )
fileout . write ( textS )

#end

fileout . close ( )

Listing B.4: Trajectory Optimization Problem Formulation - Bubble Model
#!/usr/local/bin/python

’’’
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Cularis_D_5223_thermalClimb

Trajectory Optimization Problem (in Cylindrical Coordinates)

Copyright (c) 2004-2014 by pyACDT Developers

All rights reserved.

Revision: 1.0 $Date: 22/01/2014 21:00$

References:

-----------

Developers:

-----------

- Major Thomas R. Connerty (TC)

History:

--------

v. 1.0 - Initial Creation in Python (TC, 2014)

’’’

__version__ = ’$Revision: $’

’’’

To Do:

-

’’’

# ==========================================================================

# Standard Python modules

# ==========================================================================

import os , math , sys , time

import pdb # pdb.set_trace()

# ==========================================================================

# External Python modules

# ==========================================================================

import mpi4py

from mpi4py import MPI

import numpy

import random

comm=MPI . COMM_WORLD

# ==========================================================================

# Extension modules

# ==========================================================================

sys . path . append ( os . path . abspath ( ’..’ ) )
sys . path . append ( os . path . abspath ( ’../../../..’ ) )
sys . path . append ( os . path . abspath ( ’../pyThermal’ ) )
sys . path . append ( os . path . abspath ( ’../../../../pyACDT/Optimization/pyDTO’ ) )
sys . path . append ( os . path . abspath ( ’../../../../pyACDT/Optimization/pyOpt’ ) )
sys . path . append ( os . path . abspath
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( ’../../../../pyACDT/Optimization/pyOpt/pySNOPT’ ) )

from pyAtmosphere_US1976 import atmosphere

from pyDCNLP import DCNLP

from pyDTO_controls import Controls

from pyDTO_parameters import Parameters

from pyDTO_knots import Knots

from pyDTO_problem import Phase , Trajectory
from pyDTO_states import States

from pySNOPT import SNOPT

from pyThermal_lawrance import thermalLawrance

# ==========================================================================

# Misc Definitions

# ==========================================================================

inf = 1e20 # define a value for infinity

# ==========================================================================

# Define the Aircraft Characteristics

# ==========================================================================

# Misc Constants and Definitions

acID = ’D-5223’

costID = ’ratio_Err_Eh’

g = 32 .174 # Acceleration due to Gravity ft/s ** 2.0

rho0 = 0.0023769 # Density at Sea Level Conditions slug/ft ** 3.0

# Cularis D-5223

if acID == ’D-5223’ :
b = 8 .536 # Wing Span ft

S = 4 .574 # Wing Reference Area ft ** 2.0

AR = ( b ∗∗ 2 . 0 ) / S # Wing Aspect Ratio Dimensionless

W = 4 .807 # Aircraft Weight lbf

m = W / g # Aircraft Mass lbm

CLo = 0 .261 # Coefficient Lift at Zero Alpha Dimensionless

CLa = 5 .865 # Lift Curve Slope /rad

CLmax = 1 .674 # Maximum Coefficient of Lift Dimensionless

LDmax = 23 .09 # Maximum L/D Ratio Dimensionless

CDo = 0 .0223 # Parasitic Drag Coefficient Dimensionless

n_max = 2 . 0 # Maximum g Limit Dimensionless

n_min = −1.5 # Minimum g Limit Dimensionless

Vmo = 7 3 . 0 # Maximum Operating Speed ft/s

# Stall Speed (Sea Level) ft/s

Vstall = math . sqrt ( ( 2 . 0 ∗ W ) / ( rho0 ∗ S ∗ CLmax ) )
# Induced Drag Coefficient Dimensionless

K = 1 . 0 / ( 4 . 0 ∗ CDo ∗ ( LDmax ∗∗ 2 . 0 ) )
# Best Glide Speed ft/s

Vmd = math . sqrt ( ( 2 . 0 ∗ W ) / ( rho0 ∗ S ) ∗ math . sqrt ( K / CDo ) )
# Best Glide Angle rad

theta_min = −math . atan ( 1 . 0 / LDmax )
# Maximum Pitch Rate

gamma_2_dot_max = math . pi / 1 2 . 0
# Maximum Roll Rate

gamma_1_dot_max = math . pi / 6 . 0
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# ASW-20

elif acID == ’ASW-20’ :
b = 4 9 . 3 # Wing Span ft

S = 112 .6 # Wing Reference Area ft ** 2.0

AR = ( b ∗∗ 2 . 0 ) / S # Wing Aspect Ratio Dimensionless

W = 759 .0 # Aircraft Weight lbf

m = W / g # Aircraft Mass lbm

CLo = 0 . 6 9 # Coefficient Lift at Zero Alpha Dimensionless

CLa = 4 . 9 0 # Lift Curve Slope /rad

CLmax = 1 . 3 5 # Maximum Coefficient of Lift Dimensionless

LDmax = 36 .27 # Maximum L/D Ratio Dimensionless

CDo = 0 .00924 # Parasitic Drag Coefficient Dimensionless

n_max = 4 . 0 # Maximum g Limit Dimensionless

n_min = −1.5 # Minimum g Limit Dimensionless

Vmo = 164 .0 # Maximum Operating Speed ft/s

# Stall Speed (Sea Level) ft/s

Vstall = math . sqrt ( ( 2 . 0 ∗ W ) / ( rho0 ∗ S ∗ CLmax ) )
# Induced Drag Coefficient Dimensionless

K = 1 . 0 / ( 4 . 0 ∗ CDo ∗ ( LDmax ∗∗ 2 . 0 ) )
# Best Glide Speed ft/s

Vmd = math . sqrt ( ( 2 . 0 ∗ W ) / ( rho0 ∗ S ) ∗ math . sqrt ( K / CDo ) )
# Best Glide Angle rad

theta_min = −math . atan ( 1 . 0 / LDmax )
# Maximum Pitch Rate

gamma_2_dot_max = math . pi / 1 2 . 0
# Maximum Roll Rate

gamma_1_dot_max = math . pi / 6 . 0

if costID == ’intEh_Err’ or costID == ’intErr’ or costID == ’ratio_Err_Eh’ :
# Define Target Location

x_tgt = 300 .0
y_tgt = 300 .0

# Camera Focal Length (mm)

focal = 4 2 . 0
# Convert Focal Length from mm to m

focal = focal ∗ 1 . 0 e−03
# Define the CCD Element Size (m)

CCD_unit = 5 . 0 e−06
# Define the Desired Pixel Resolution

pixel_res = 0 . 5
# Define the Maximum Line of Site Distance for Desired Resolution

d_los_max = ( focal ∗ pixel_res ) / CCD_unit

# Define the Camera Location

xcam = 0 . 0
ycam = 0 . 0
zcam = 0 . 0

#end

if costID == ’seeability’ or costID == ’seeability_constraint’ :
# Define Target Location

x_tgt = 0 . 0
y_tgt = 0 . 0
z_tgt = 0 . 0
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# Optimal Viewing Angle (rad)

theta_opt = math . pi / 4 . 0
# Camera Focal Length (mm)

focal = 1 2 . 5
# Convert Focal Length from mm to ft

focal = focal ∗ 0 .00328084

# Define a Scaling Factor

mu = 1 . 0 e04
# Define the CCD Element Size (m)

CCD_unit = 5 . 0 e−06
# Define the Desired Pixel Resolution (m)

pixel_res = 0 . 2 5
# Define Minimum Seeability Ratio

S_min = mu ∗ ( CCD_unit / pixel_res )

# Instanciate Thermal Class

lawrance = thermalLawrance ( seed =1 234 5 .6 )

# Define Thermal Characteristics

R = 500 .0 # Distance that Limits the Updraft Area (ft)

w_core = 1 0 . 0 # Updraft velocity at center of thermal (ft/s)

z_t = 1500 .0 # Height of the thermal bubble (ft)

# ==========================================================================

# Define the Cost Function

# ==========================================================================

def topt_cst (t , x , u , p ,∗ args ,∗∗ kwargs ) :

’’’

Definition of the Cost Function

Inputs

t -> current time

x -> current state vector

u -> current control vector

p -> parameter vector

Output

f -> cost of current trajectory

’’’

# State Vector Definition

V = x [ : , 0 ]
gamma_2 = x [ : , 1 ]
r = x [ : , 2 ]
theta = x [ : , 3 ]
z = x [ : , 4 ]
epsilon = x [ : , 5 ]

# Control Vector Definition

alpha = u [ : , 0 ]
gamma_1 = u [ : , 1 ]

if costID == ’intEh_Err’ or costID == ’intErr’ or \
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costID == ’ratio_Err_Eh’ :
kappa = u [ : , 2 ]
tau = u [ : , 3 ]

#end

if costID == ’Eh’ :

# Maximize Specific Energy Height

f = −(−z [−1]) − ( ( V [−1] ∗∗ 2 . 0 ) / ( 2 . 0 ∗ g ) )

elif costID == ’intEh’ :

# Maximize Instantaneous Specific Energy Height

Eh = numpy . zeros ( len ( t ) )

for i in xrange ( len ( t ) ) :
Eh [ i ] = −(−z [ i ] ) − ( ( V [ i ] ∗∗ 2 . 0 ) / ( 2 . 0 ∗ g ) )

#end

f = numpy . trapz ( Eh , t )

elif costID == ’intEh_Err’ :

mu = 1 0 . 0
Eh = numpy . zeros ( len ( t ) )
Err = numpy . zeros ( len ( t ) )

for i in xrange ( len ( t ) ) :

# Define the Aircraft Location

xac = r [ i ] ∗ numpy . cos ( theta [ i ] )
yac = r [ i ] ∗ numpy . sin ( theta [ i ] )
zac = z [ i ]

# Define the Camera Pointer Location

H_be = numpy . array ( [ [ ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . cos ( alpha [ i ]+ gamma_2 [ i ] ) ) , − ( numpy . sin ( theta [ i ]+
epsilon [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) + ( numpy . cos ( theta [ i ]+
epsilon [ i ] ) ) ∗ ( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗
( numpy . sin ( gamma_1 [ i ] ) ) , ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( gamma_1 [ i ] ) ) + ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , xac ] ,
[ ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) , ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . cos ( gamma_1 [ i ] ) ) + ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) ,
−(numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) +
( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . sin ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , yac ] ,
[−numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) , ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) , ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , zac ] ,
[ 0 . , 0 . , 0 . , 1 . ] ] )

H_bc = numpy . array ( [ [ ( numpy . cos ( tau [ i ] ) ) ∗ ( numpy . cos ( kappa [ i ] ) ) ,
−numpy . sin ( tau [ i ] ) , ( numpy . cos ( tau [ i ] ) ) ∗ ( numpy . sin ( kappa [ i ] ) ) ,
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xcam ] , [ ( numpy . sin ( tau [ i ] ) ) ∗ ( numpy . cos ( kappa [ i ] ) ) ,
numpy . cos ( tau [ i ] ) , ( numpy . sin ( tau [ i ] ) ) ∗ ( numpy . sin ( kappa [ i ] ) ) ,
ycam ] , [−numpy . sin ( kappa [ i ] ) , 0 , numpy . cos ( kappa [ i ] ) , zcam ] ,
[ 0 . , 0 . , 0 . , 1 . ] ] )

H_ce = numpy . dot ( H_be , H_bc )

zeta = numpy . arctan ( H_ce [ 0 , 0 ] / H_ce [ 2 , 0 ] )
eta = numpy . arctan ( H_ce [ 1 , 0 ] / H_ce [ 2 , 0 ] )

deltaX = −H_ce [ 2 , 3 ] ∗ numpy . tan ( zeta )
deltaY = −H_ce [ 2 , 3 ] ∗ numpy . tan ( eta )

xlos = H_ce [ 0 , 3 ] + deltaX

ylos = H_ce [ 1 , 3 ] + deltaY

# Maximize Instantaneous Specific Energy Height

Eh [ i ] = −(−z [ i ] ) − ( ( V [ i ] ∗∗ 2 . 0 ) / ( 2 . 0 ∗ g ) )

# Minimize the Distance Between Camera Pointer and

# Target Location

Err [ i ] = mu ∗ ( ( ( x_tgt − xlos ) ∗∗ 2 . 0 ) +
( ( y_tgt − ylos ) ∗∗ 2 . 0 ) )

#end

f = numpy . trapz ( Eh , t ) + numpy . trapz ( Err , t )

elif costID == ’intErr’ :

mu = 1 0 . 0
Err = numpy . zeros ( len ( t ) )

for i in xrange ( len ( t ) ) :

# Define the Aircraft Location

xac = r [ i ] ∗ numpy . cos ( theta [ i ] )
yac = r [ i ] ∗ numpy . sin ( theta [ i ] )
zac = z [ i ]

# Define the Camera Pointer Location

H_be = numpy . array ( [ [ ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . cos ( alpha [ i ]+ gamma_2 [ i ] ) ) , − ( numpy . sin ( theta [ i ]+
epsilon [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) + ( numpy . cos ( theta [ i ]+
epsilon [ i ] ) ) ∗ ( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗
( numpy . sin ( gamma_1 [ i ] ) ) , ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( gamma_1 [ i ] ) ) + ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , xac ] ,
[ ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) , ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . cos ( gamma_1 [ i ] ) ) + ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) ,
−(numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) +
( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . sin ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , yac ] ,
[−numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) , ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) , ( numpy . cos ( alpha [ i ]+
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gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , zac ] ,
[ 0 , 0 , 0 , 1 ] ] )

H_bc = numpy . array ( [ [ ( numpy . cos ( tau [ i ] ) ) ∗ ( numpy . cos ( kappa [ i ] ) ) ,
−numpy . sin ( tau [ i ] ) , ( numpy . cos ( tau [ i ] ) ) ∗ ( numpy . sin ( kappa [ i ] ) ) ,
xcam ] , [ ( numpy . sin ( tau [ i ] ) ) ∗ ( numpy . cos ( kappa [ i ] ) ) ,
numpy . cos ( tau [ i ] ) , ( numpy . sin ( tau [ i ] ) ) ∗ ( numpy . sin ( kappa [ i ] ) ) ,
ycam ] , [−numpy . sin ( kappa [ i ] ) , 0 , numpy . cos ( kappa [ i ] ) , zcam ] ,
[ 0 , 0 , 0 , 1 ] ] )

H_ce = numpy . dot ( H_be , H_bc )

zeta = numpy . arctan ( H_ce [ 0 , 0 ] / H_ce [ 2 , 0 ] )
eta = numpy . arctan ( H_ce [ 1 , 0 ] / H_ce [ 2 , 0 ] )

deltaX = −H_ce [ 2 , 3 ] ∗ numpy . tan ( zeta )
deltaY = −H_ce [ 2 , 3 ] ∗ numpy . tan ( eta )

xlos = H_ce [ 0 , 3 ] + deltaX

ylos = H_ce [ 1 , 3 ] + deltaY

# Minimize the Distance Between Camera Pointer and

# Target Location

Err [ i ] = mu ∗ ( ( ( x_tgt − xlos ) ∗∗ 2 . 0 ) +
( ( y_tgt − ylos ) ∗∗ 2 . 0 ) )

#end

f = numpy . trapz ( Err , t )

elif costID == ’ratio_Err_Eh’ :

Eh = numpy . zeros ( len ( t ) )
Err = numpy . zeros ( len ( t ) )
r_Err_Eh = numpy . zeros ( len ( t ) )

for i in xrange ( len ( t ) ) :

# Define the Aircraft Location

xac = r [ i ] ∗ numpy . cos ( theta [ i ] )
yac = r [ i ] ∗ numpy . sin ( theta [ i ] )
zac = z [ i ]

# Define the Camera Pointer Location

H_be = numpy . array ( [ [ ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . cos ( alpha [ i ]+ gamma_2 [ i ] ) ) , − ( numpy . sin ( theta [ i ]+
epsilon [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) + ( numpy . cos ( theta [ i ]+
epsilon [ i ] ) ) ∗ ( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗
( numpy . sin ( gamma_1 [ i ] ) ) , ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( gamma_1 [ i ] ) ) + ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , xac ] ,
[ ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) , ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . cos ( gamma_1 [ i ] ) ) + ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) ,
−(numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) +
( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . sin ( alpha [ i ]+
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gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , yac ] ,
[−numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) , ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) , ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , zac ] ,
[ 0 . , 0 . , 0 . , 1 . ] ] )

H_bc = numpy . array ( [ [ ( numpy . cos ( tau [ i ] ) ) ∗ ( numpy . cos ( kappa [ i ] ) ) ,
−numpy . sin ( tau [ i ] ) , ( numpy . cos ( tau [ i ] ) ) ∗ ( numpy . sin ( kappa [ i ] ) ) ,
xcam ] , [ ( numpy . sin ( tau [ i ] ) ) ∗ ( numpy . cos ( kappa [ i ] ) ) ,
numpy . cos ( tau [ i ] ) , ( numpy . sin ( tau [ i ] ) ) ∗ ( numpy . sin ( kappa [ i ] ) ) ,
ycam ] , [−numpy . sin ( kappa [ i ] ) , 0 , numpy . cos ( kappa [ i ] ) , zcam ] ,
[ 0 . , 0 . , 0 . , 1 . ] ] )

H_ce = numpy . dot ( H_be , H_bc )

zeta = numpy . arctan ( H_ce [ 0 , 0 ] / H_ce [ 2 , 0 ] )
eta = numpy . arctan ( H_ce [ 1 , 0 ] / H_ce [ 2 , 0 ] )

deltaX = −H_ce [ 2 , 3 ] ∗ numpy . tan ( zeta )
deltaY = −H_ce [ 2 , 3 ] ∗ numpy . tan ( eta )

xlos = H_ce [ 0 , 3 ] + deltaX

ylos = H_ce [ 1 , 3 ] + deltaY

# Define Instantaneous Specific Energy Height

Eh [ i ] = −z [ i ] + ( ( V [ i ] ∗∗ 2 . 0 ) / ( 2 . 0 ∗ g ) )

# Define the Distance Between Camera Pointer and

# Target Location

Err [ i ] = ( ( x_tgt − xlos ) ∗∗ 2 . 0 ) + \
( ( y_tgt − ylos ) ∗∗ 2 . 0 )

# Minimize the Distance Between Camera Pointer and

# Target Location While Maximizing the Specific Energy Height

r_Err_Eh [ i ] = Err [ i ] / Eh [ i ]
#end

f = numpy . trapz ( r_Err_Eh , t )

elif costID == ’seeability’ :

K_Sa = 0 . 5
K_Eh = 0 . 5

Eh = numpy . zeros ( len ( t ) )
S = numpy . zeros ( len ( t ) )
# Define the Scaling Factor

mu1 = 1 . 0 e03
mu2 = 1 . 0 e−03

for i in xrange ( len ( t ) ) :

# Define the Aircraft Location

xac = r [ i ] ∗ numpy . cos ( theta [ i ] )
yac = r [ i ] ∗ numpy . sin ( theta [ i ] )
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# Define the Viewing Angle and Distance

dlos = math . sqrt ( ( xac − x_tgt )∗∗2 . 0 + ( yac − y_tgt )∗∗2 . 0 + \
(−z [ i ] − z_tgt )∗∗ 2 . 0 )

theta_v = numpy . arccos(−z [ i ] / dlos )

# Maximize Seeability

S [ i ] = mu1 ∗ ( numpy . cos ( theta_v − theta_opt ) / ( 1 . 0 +
( dlos / focal ) ) )

# Maximize Instantaneous Specific Energy Height

Eh [ i ] = mu2 ∗ (−(−z [ i ] ) − ( ( V [ i ] ∗∗ 2 . 0 ) / ( 2 . 0 ∗ g ) ) )

f = ( K_Sa ∗ numpy . trapz (S , t ) ) + ( K_Eh ∗ numpy . trapz ( Eh , t ) )
#end

elif costID == ’seeability_constraint’ :

# Maximize Instantaneous Specific Energy Height

Eh = numpy . zeros ( len ( t ) )

for i in xrange ( len ( t ) ) :
Eh [ i ] = −(−z [ i ] ) − ( ( V [ i ] ∗∗ 2 . 0 ) / ( 2 . 0 ∗ g ) )

#end

f = numpy . trapz ( Eh , t )

fail = 0

return f , fail

# ==========================================================================

# Define the System Dynamics

# ==========================================================================

def topt_dyn (t , x , u , p ,∗ args ,∗∗ kwargs ) :

’’’

Definition of the System Dynamics

Inputs

t -> current time

x -> current state vector

u -> current control vector

p -> parameter vector

Output

xdot -> equations of motion

’’’

# State Vector Definition

V = x [ : , 0 ]
gamma_2 = x [ : , 1 ]
r = x [ : , 2 ]
theta = x [ : , 3 ]
z = x [ : , 4 ]
epsilon = x [ : , 5 ]
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# Control Vector Definition

alpha = u [ : , 0 ]
gamma_1 = u [ : , 1 ]

if costID == ’intEh_Err’ or costID == ’intErr’ or \
costID == ’ratio_Err_Eh’ :

kappa = u [ : , 2 ]
tau = u [ : , 3 ]

#end

xdot = numpy . zeros ( ( len ( t ) , 6 ) )

for i in xrange ( len ( t ) ) :

# Atmospheric Conditions

conditions = atmosphere(−z [ i ] , ’ENG’ )
rho = conditions [ ’Density’ ]

# Aerodynamic Characteristics

CL = CLo + ( CLa ∗ alpha [ i ] )
L = 0 . 5 ∗ rho ∗ ( V [ i ] ∗∗ 2 . 0 ) ∗ S ∗ CL

CD = CDo + K ∗ CL ∗∗ 2 . 0
D = 0 . 5 ∗ rho ∗ ( V [ i ] ∗∗ 2 . 0 ) ∗ S ∗ CD

# Updraft Strength and Derivatives

data = lawrance ( r=r [ i ] , z_ac=−z [ i ] , R=R , w_core=w_core , z_t=z_t ,
theta=theta [ i ] , L=5280 .0 ,W= 5 2 8 0 . 0 )

gradient = lawrance . getDerivatives ( r=r [ i ] , z_ac=−z [ i ] , R=R ,
w_core=w_core , z_t=z_t , theta=theta [ i ] , h=1e−20)

# Updraft Strength

W_z = data [ ’Updraft_Velocity’ ]
W_r = data [ ’Updraft_Radial_Velocity’ ]

# Updraft Partial Derivatives (Cylindrical Coordinates)

dWz_dr = gradient [ ’dWh_dr’ ]
dWz_dtheta = gradient [ ’dWh_dtheta’ ]
dWz_dz = gradient [ ’dWh_dh’ ]
dWr_dr = gradient [ ’dWr_dr’ ]
dWr_dtheta = gradient [ ’dWr_dtheta’ ]
dWr_dh = gradient [ ’dWr_dh’ ]

r_dot = ( V [ i ] ∗ math . cos ( gamma_2 [ i ] ) ∗ \
math . cos ( epsilon [ i ] ) ) + W_r

theta_dot = ( V [ i ] ∗ math . cos ( gamma_2 [ i ] ) ∗ \
math . sin ( epsilon [ i ] ) ) / r [ i ]

z_dot = −V [ i ] ∗ math . sin ( gamma_2 [ i ] ) + W_z

# Total Wind Derivatives

W_z_dot = ( dWz_dr ∗ r_dot ) + ( dWz_dtheta ∗ theta_dot ) + \
( dWz_dz ∗ z_dot )

W_r_dot = ( dWr_dr ∗ r_dot ) + ( dWr_dtheta ∗ theta_dot ) + \
( dWr_dh ∗ z_dot )

W_x_dot = ( W_r_dot ∗ math . cos ( theta [ i ] ) ) − ( W_r ∗
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math . sin ( theta [ i ] ) ∗ theta_dot )
W_y_dot = ( W_r_dot ∗ math . sin ( theta [ i ] ) ) + ( W_r ∗

math . cos ( theta [ i ] ) ∗ theta_dot )

# Total Wind Accelerations (Cartesian Coordinates)

Wx_v_dot = ( W_x_dot ∗ math . cos ( gamma_2 [ i ] ) ∗ math . cos ( epsilon [ i ] +
theta [ i ] ) ) + ( W_y_dot ∗ math . cos ( gamma_2 [ i ] ) ∗
math . sin ( epsilon [ i ] + theta [ i ] ) ) − ( W_z_dot ∗
math . sin ( gamma_2 [ i ] ) )

Wy_v_dot = −(W_x_dot ∗ math . sin ( epsilon [ i ] + theta [ i ] ) ) + \
( W_y_dot ∗ math . cos ( epsilon [ i ] + theta [ i ] ) )

Wz_v_dot = ( W_x_dot ∗ math . sin ( gamma_2 [ i ] ) ∗ math . cos ( epsilon [ i ] +
theta [ i ] ) ) + ( W_y_dot ∗ math . sin ( gamma_2 [ i ] ) ∗
math . sin ( epsilon [ i ] + theta [ i ] ) ) + ( W_z_dot ∗
math . cos ( gamma_2 [ i ] ) )

# Define the Equations of Motion

xdot [i , 0 ] = (−D − ( m ∗ g ∗ math . sin ( gamma_2 [ i ] ) ) +
( m ∗ Wx_v_dot ) ) / m

xdot [i , 1 ] = ( ( L ∗ math . cos ( gamma_1 [ i ] ) ) − ( m ∗ g ∗
math . cos ( gamma_2 [ i ] ) ) + ( m ∗ Wz_v_dot ) ) / ( m ∗ V [ i ] )

xdot [i , 2 ] = r_dot

xdot [i , 3 ] = theta_dot

xdot [i , 4 ] = z_dot

xdot [i , 5 ] = ( ( ( L ∗ math . sin ( gamma_1 [ i ] ) ) + ( m ∗ Wy_v_dot ) ) /
( m ∗ V [ i ] ∗ math . cos ( gamma_2 [ i ] ) ) ) − theta_dot

# Temporary Check for NaN and inf value

for j in xrange ( 6 ) :
if abs ( xdot [i , j ] ) > inf :

#pdb.set_trace()

fail = 1
break

elif isinstance ( xdot [ i ] , complex ) :
#pdb.set_trace()

fail = 1
break

elif int ( xdot [i , j ]+10000) == 0 :
#pdb.set_trace()

fail = 1
break

#end

#end

#end

fail = 0

return xdot , fail

# ==========================================================================

# Define the Contraints

# ==========================================================================

def topt_con (t , x , u , p ,∗ args ,∗∗ kwargs ) :

’’’
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Definition of the System Constraints

Inputs

t -> current time

x -> current state vector

u -> current control vector

p -> parameter vector

Output

ge -> equality constraints

gi -> inequality constraints

’’’

# State Vector Definition

V = x [ : , 0 ]
gamma_2 = x [ : , 1 ]
r = x [ : , 2 ]
theta = x [ : , 3 ]
z = x [ : , 4 ]
epsilon = x [ : , 5 ]

# Control Vector Definition

alpha = u [ : , 0 ]
gamma_1 = u [ : , 1 ]

if costID == ’intEh_Err’ or costID == ’intErr’ or \
costID == ’ratio_Err_Eh’ :

kappa = u [ : , 2 ]
tau = u [ : , 3 ]

#end

# Define the Equality Constraints (Initial Conditions)

ge = [ ]

ge . append ( V [ 0 ] − V_0 )
ge . append ( gamma_2 [ 0 ] − gamma_2_0 )
ge . append ( r [ 0 ] − r_0 )
ge . append ( theta [ 0 ] − theta_0 )
ge . append ( z_0 − z [ 0 ] )
ge . append ( epsilon [ 0 ] − epsilon_0 )
ge . append ( alpha [ 0 ] − alpha_0 )
ge . append ( gamma_1 [ 0 ] − gamma_1_0 )

if costID == ’intEh_Err’ or costID == ’intErr’ or \
costID == ’ratio_Err_Eh’ :

ge . append ( kappa [ 0 ] − kappa_0 )
ge . append ( tau [ 0 ] − tau_0 )

#end

# Define the Inequality Constraints

gi = numpy . array ( [ ] )

# Atmospheric Conditions

sigma = numpy . zeros ( len ( t ) )

for i in xrange ( len ( t ) ) :
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conditions = atmosphere(−z [ i ] , ’ENG’ )
sigma [ i ] = conditions [ ’Relative_Dens’ ]

#end

# Calculate the Load Factor

n = 1 . 0 / numpy . cos ( gamma_1 )

# Minimum Control Speed

Vmc = ( 1 . 1 ∗ Vstall ∗ ( n ∗∗ 0 . 5 ) ) / ( sigma ∗∗ 0 . 5 )
gi = numpy . concatenate ( ( gi , Vmc − V ) )

# Maximum Operating Speed

Vne = Vmo / ( sigma ∗∗ 0 . 5 )
gi = numpy . concatenate ( ( gi , V − Vne ) )

# Maximum Load Factor

gi = numpy . concatenate ( ( gi , n − n_max ) )

# Minimum Load Factor

gi = numpy . concatenate ( ( gi , n_min − n ) )

# Maximum Lift Coefficient

CL = CLo + ( CLa ∗ alpha )
gi = numpy . concatenate ( ( gi , CL − CLmax ) )

# Maximum Pitch Rate

gamma_2_dot = ( gamma_2 [ 1 : len ( t ) ] − gamma_2 [ 0 : ( len ( t ) −1) ] ) / \
( t [ 1 : len ( t ) ] − t [ 0 : ( len ( t ) −1) ] )

gi = numpy . concatenate ( ( gi , abs ( gamma_2_dot ) − gamma_2_dot_max ) )

# Maximum Roll Rate

gamma_1_dot = ( gamma_1 [ 1 : len ( t ) ] − gamma_1 [ 0 : ( len ( t ) −1) ] ) / \
( t [ 1 : len ( t ) ] − t [ 0 : ( len ( t ) −1) ] )

gi = numpy . concatenate ( ( gi , abs ( gamma_1_dot ) − gamma_1_dot_max ) )

# Maximum LOS Vector

if costID == ’intEh_Err’ or costID == ’intErr’ or \
costID == ’ratio_Err_Eh’ :

dlos = numpy . zeros ( len ( t ) )

for i in xrange ( len ( t ) ) :

# Define the Aircraft Location

xac = r [ i ] ∗ numpy . cos ( theta [ i ] )
yac = r [ i ] ∗ numpy . sin ( theta [ i ] )
zac = z [ i ]

# Define the Camera Pointer Location

H_be = numpy . array ( [ [ ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . cos ( alpha [ i ]+ gamma_2 [ i ] ) ) , − ( numpy . sin ( theta [ i ]+
epsilon [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) + ( numpy . cos ( theta [ i ]+
epsilon [ i ] ) ) ∗ ( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗
( numpy . sin ( gamma_1 [ i ] ) ) , ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( gamma_1 [ i ] ) ) + ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , xac ] ,
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[ ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) , ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . cos ( gamma_1 [ i ] ) ) + ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) ,
−(numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) +
( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . sin ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , yac ] ,
[−numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) , ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) , ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , zac ] ,
[ 0 . , 0 . , 0 . , 1 . ] ] )

H_bc = numpy . array ( [ [ ( numpy . cos ( tau [ i ] ) ) ∗ ( numpy . cos ( kappa [ i ] ) ) ,
−numpy . sin ( tau [ i ] ) , ( numpy . cos ( tau [ i ] ) ) ∗ ( numpy . sin ( kappa [ i ] ) ) ,
xcam ] , [ ( numpy . sin ( tau [ i ] ) ) ∗ ( numpy . cos ( kappa [ i ] ) ) ,
numpy . cos ( tau [ i ] ) , ( numpy . sin ( tau [ i ] ) ) ∗ ( numpy . sin ( kappa [ i ] ) ) ,
ycam ] , [−numpy . sin ( kappa [ i ] ) , 0 , numpy . cos ( kappa [ i ] ) , zcam ] ,
[ 0 . , 0 . , 0 . , 1 . ] ] )

H_ce = numpy . dot ( H_be , H_bc )

zeta = numpy . arctan ( H_ce [ 0 , 0 ] / H_ce [ 2 , 0 ] )
eta = numpy . arctan ( H_ce [ 1 , 0 ] / H_ce [ 2 , 0 ] )

deltaX = −H_ce [ 2 , 3 ] ∗ numpy . tan ( zeta )
deltaY = −H_ce [ 2 , 3 ] ∗ numpy . tan ( eta )

xlos = H_ce [ 0 , 3 ] + deltaX

ylos = H_ce [ 1 , 3 ] + deltaY

dlos [ i ] = ( deltaX ∗∗2 .0 + deltaY ∗∗2 .0 + (−H_ce [ 2 , 3 ] )∗∗ 2 . 0 )∗∗ 0 . 5
#end

gi = numpy . concatenate ( ( gi , dlos − d_los_max ) )
#end

# Seeability Defined as a Constraint (Minimum Resolution)

if costID == ’seeability_constraint’ :

# Define a Scaling Factor

mu = 1 . 0 e04

S = numpy . zeros ( len ( t ) )

for i in xrange ( len ( t ) ) :

# Define the Aircraft Location

xac = r [ i ] ∗ numpy . cos ( theta [ i ] )
yac = r [ i ] ∗ numpy . sin ( theta [ i ] )

# Define the Viewing Angle and Distance

dlos = math . sqrt ( ( xac − x_tgt )∗∗2 . 0 + ( yac − y_tgt )∗∗2 . 0 + \
(−z [ i ] − z_tgt )∗∗ 2 . 0 )

theta_v = numpy . arccos(−z [ i ] / dlos )
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# Maximize Seeability

S [ i ] = mu ∗ ( numpy . cos ( theta_v − theta_opt ) / ( 1 . 0 +
( dlos / focal ) ) )

#end

gi = numpy . concatenate ( ( gi , S_min − S ) )
#end

fail = 0

return ge , gi , fail

# ==========================================================================

# Trajectory Optimization Problem Definition

# ==========================================================================

# Define the Number of Collocation Points

N = 120

traj = Trajectory ( ’Thermal Climb Problem - Cularis’ )
traj . addPhase ( ’Phase 1’ ,N , topt_cst , topt_dyn , topt_con , colType=’Trapezoidal’ )

traj [ 0 ] . setKnots ( start = [ 0 . 0 , 1 2 0 . 0 ] )

V_0 = Vmd

gamma_2_0 = −math . pi / 100 .0
r_0 = 150 .0
theta_0 = 0 . 0
z_0 = −300.0
epsilon_0 = math . pi / 2 . 0

traj [ 0 ] . setStates ( 6 ,\
names=[’V’ , ’gamma_2’ , ’r’ , ’theta’ , ’z’ , ’epsilon’ ] ,\
start=[V_0 , gamma_2_0 , r_0 , theta_0 , z_0 , epsilon_0 ] ,\
final=[V_0 , gamma_2_0 , r_0 , theta_0 , z_0 , epsilon_0 ] ,\
lower=[Vstall , −math . pi / 2 . 0 , 2 5 . 0 , 0 . 0 , −9000.0 , 0 .5∗ math . pi / 2 . 0 ] , \
upper=[Vmo , math . pi / 2 , 4 0 0 . 0 , inf , −50.0 , 1 .5∗ math . pi / 2 . 0 ] )

alpha_0 = theta_min

gamma_1_0 = 0 . 0

if costID == ’intEh_Err’ or costID == ’intErr’ or \
costID == ’ratio_Err_Eh’ :

kappa_0 = −math . pi ∗ 1 . 0 / 3 . 0
tau_0 = 0 . 0

#end

if costID == ’Eh’ or costID ==’intEh’ :

traj [ 0 ] . setControls ( 2 ,\
names=[’alpha’ , ’gamma_1’ ] ,\
start=[alpha_0 , gamma_1_0 ] ,\
final=[alpha_0 , gamma_1_0 ] ,\
lower=[−math . pi / 1 0 , −math . pi / 4 ] ,\
upper=[math . pi / 1 0 , math . pi / 4 ] )
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elif costID == ’intEh_Err’ or costID == ’intErr’ or \
costID == ’ratio_Err_Eh’ :

traj [ 0 ] . setControls ( 4 ,\
names=[’alpha’ , ’gamma_1’ , ’kappa’ , ’tau’ ] ,\
start=[alpha_0 , gamma_1_0 , kappa_0 , tau_0 ] ,\
final=[alpha_0 , gamma_1_0 , kappa_0 , tau_0 ] ,\
lower=[−math . pi / 1 0 . 0 , −math . pi / 4 . 0 , −math . pi ∗ 1 . 0 / 2 . 0 , −math . pi ] ,\
upper=[math . pi / 1 0 . 0 , math . pi / 4 . 0 , −math . pi ∗ 1 . 0 / 3 . 0 , math . pi ] )

#end

# ==========================================================================

# Solve the Trajectory Optimization Problem

# ==========================================================================

# Instanciate Optimizers

dcnlp = DCNLP ( )
snopt = SNOPT ( )

prntname = ’run_%s_%i_r%.1f_z%.1f_xtgt%.1f_ytgt%.1f_print.out’ \
%(acID , N , r_0 , z_0 , x_tgt , y_tgt )

snopt . setOption ( ’Print file’ , prntname )
summname = ’run_%s_%i_r%.1f_z%.1f_xtgt%.1f_ytgt%.1f_summary.out’ \

%(acID , N , r_0 , z_0 , x_tgt , y_tgt )
snopt . setOption ( ’Summary file’ , summname )
snopt . setOption ( ’Major iterations limit’ , 100000)
snopt . setOption ( ’Iterations limit’ , 1000000)
snopt . setOption ( ’Major feasibility tolerance’ , 1 . 0 e−5)
snopt . setOption ( ’Major optimality tolerance’ , 1 . 0 e−5)

t , x , u , p , f = dcnlp ( traj , snopt , opt_solve_opts=’sens_mode=’’pgc’’’ )

if ( comm . Get_rank ( ) = = 0 ) :

# States

V = x [ 0 ] [ : , 0 ]
gamma_2 = x [ 0 ] [ : , 1 ]
r = x [ 0 ] [ : , 2 ]
theta = x [ 0 ] [ : , 3 ]
z = x [ 0 ] [ : , 4 ]
epsilon = x [ 0 ] [ : , 5 ]

# Controls

alpha = u [ 0 ] [ : , 0 ]
gamma_1 = u [ 0 ] [ : , 1 ]

if costID == ’intEh_Err’ or costID == ’intErr’ or \
costID == ’ratio_Err_Eh’ :

kappa = u [ 0 ] [ : , 2 ]
tau = u [ 0 ] [ : , 3 ]

#end

# Cartesian Locations

x = r ∗ numpy . cos ( theta )
y = r ∗ numpy . sin ( theta )
theta_fd = gamma_2 + alpha
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psi = epsilon + theta

# Aerodynamics

tmp = numpy . shape ( t )
SZ = tmp [ 1 ]
rho = numpy . zeros ( SZ )
CL = numpy . zeros ( SZ )

for i in xrange ( SZ ) :
conditions = atmosphere(−z [ i ] , ’ENG’ )
rho [ i ] = conditions [ ’Density’ ]
CL [ i ] = CLo + CLa∗alpha [ i ]

#end

if costID == ’intEh_Err’ or costID == ’intErr’ or \
costID == ’ratio_Err_Eh’ :

xlos = numpy . zeros ( SZ )
ylos = numpy . zeros ( SZ )
dlos = numpy . zeros ( SZ )

for i in xrange ( SZ ) :

# Define the Aircraft Location

xac = r [ i ] ∗ numpy . cos ( theta [ i ] )
yac = r [ i ] ∗ numpy . sin ( theta [ i ] )
zac = z [ i ]

# Define the Camera Pointer Location

H_be = numpy . array ( [ [ ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . cos ( alpha [ i ]+ gamma_2 [ i ] ) ) , − ( numpy . sin ( theta [ i ]+
epsilon [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) + ( numpy . cos ( theta [ i ]+
epsilon [ i ] ) ) ∗ ( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗
( numpy . sin ( gamma_1 [ i ] ) ) , ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( gamma_1 [ i ] ) ) + ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , xac ] ,
[ ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) , ( numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . cos ( gamma_1 [ i ] ) ) + ( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗
( numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) ,
−(numpy . cos ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) +
( numpy . sin ( theta [ i ]+ epsilon [ i ] ) ) ∗ ( numpy . sin ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , yac ] ,
[−numpy . sin ( alpha [ i ]+ gamma_2 [ i ] ) , ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . sin ( gamma_1 [ i ] ) ) , ( numpy . cos ( alpha [ i ]+
gamma_2 [ i ] ) ) ∗ ( numpy . cos ( gamma_1 [ i ] ) ) , zac ] ,
[ 0 . , 0 . , 0 . , 1 . ] ] )

H_bc = numpy . array ( [ [ ( numpy . cos ( tau [ i ] ) ) ∗ ( numpy . cos ( kappa [ i ] ) ) ,
−numpy . sin ( tau [ i ] ) , ( numpy . cos ( tau [ i ] ) ) ∗ ( numpy . sin ( kappa [ i ] ) ) ,
xcam ] , [ ( numpy . sin ( tau [ i ] ) ) ∗ ( numpy . cos ( kappa [ i ] ) ) ,
numpy . cos ( tau [ i ] ) , ( numpy . sin ( tau [ i ] ) ) ∗ ( numpy . sin ( kappa [ i ] ) ) ,
ycam ] , [−numpy . sin ( kappa [ i ] ) , 0 , numpy . cos ( kappa [ i ] ) , zcam ] ,
[ 0 . , 0 . , 0 . , 1 . ] ] )

H_ce = numpy . dot ( H_be , H_bc )
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zeta = numpy . arctan ( H_ce [ 0 , 0 ] / H_ce [ 2 , 0 ] )
eta = numpy . arctan ( H_ce [ 1 , 0 ] / H_ce [ 2 , 0 ] )

deltaX = −H_ce [ 2 , 3 ] ∗ numpy . tan ( zeta )
deltaY = −H_ce [ 2 , 3 ] ∗ numpy . tan ( eta )

xlos [ i ] = H_ce [ 0 , 3 ] + deltaX

ylos [ i ] = H_ce [ 1 , 3 ] + deltaY

dlos [ i ] = ( deltaX ∗∗2 .0 + deltaY ∗∗2 .0 + (−H_ce [ 2 , 3 ] )∗∗ 2 . 0 )∗∗ 0 . 5
#end

if costID == ’seeability’ :

dlos = numpy . zeros ( SZ )
theta_v = numpy . zeros ( SZ )
S = numpy . zeros ( SZ )
Eh = numpy . zeros ( SZ )

# Define the Scaling Factor

mu1 = 1 . 0 e03
mu2 = 1 . 0 e−03

for i in xrange ( SZ ) :

# Define the Aircraft Location

xac = r [ i ] ∗ numpy . cos ( theta [ i ] )
yac = r [ i ] ∗ numpy . sin ( theta [ i ] )

# Define the Viewing Angle and Distance

dlos [ i ] = math . sqrt ( ( xac − x_tgt )∗∗2 . 0 + ( yac − y_tgt )∗∗2 . 0 + \
(−z [ i ] − z_tgt )∗∗ 2 . 0 )

theta_v [ i ] = numpy . arccos(−z [ i ] / dlos [ i ] )

# Calculate the Seeability

S [ i ] = mu1 ∗ ( numpy . cos ( theta_v [ i ] − theta_opt ) / ( 1 . 0 +
( dlos [ i ] / focal ) ) )

f1 = numpy . trapz (S , t )
Eh [ i ] = mu2 ∗ ((−z [ i ] ) + ( ( V [ i ] ∗∗ 2 . 0 ) / ( 2 . 0 ∗ g ) ) )
f2 = numpy . trapz ( Eh , t )

#end

#end

if costID == ’seeability_constraint’ :

dlos = numpy . zeros ( SZ )
theta_v = numpy . zeros ( SZ )
S = numpy . zeros ( SZ )

for i in xrange ( SZ ) :

# Define the Aircraft Location

xac = r [ i ] ∗ numpy . cos ( theta [ i ] )
yac = r [ i ] ∗ numpy . sin ( theta [ i ] )

# Define the Viewing Angle and Distance
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dlos [ i ] = math . sqrt ( ( xac − x_tgt )∗∗2 . 0 + ( yac − y_tgt )∗∗2 . 0 + \
(−z [ i ] − z_tgt )∗∗ 2 . 0 )

theta_v [ i ] = numpy . arccos(−z [ i ] / dlos [ i ] )

# Calculate the Seeability

S [ i ] = ( numpy . cos ( theta_v [ i ] − theta_opt ) / ( 1 . 0 +
( dlos [ i ] / focal ) ) )

#end

#end

# Print Results

textf = ’f = %f\n’ %(f )

textt = ’t = [%f’ %(t [ 0 ] [ 0 ] )
for i in xrange ( 1 , len ( t [ 0 ] ) ) :

textt+= ’,%f’%(t [ 0 ] [ i ] )
#end

textt += ’]\n’

textx = ’x = [%f’ %(x [ 0 ] )
for i in xrange ( 1 , len ( x ) ) :

textx+= ’,%f’%(x [ i ] )
#end

textx += ’]\n’

texty = ’y = [%f’ %(y [ 0 ] )
for i in xrange ( 1 , len ( y ) ) :

texty+= ’,%f’%(y [ i ] )
#end

texty += ’]\n’

texth = ’h = [%f’ %(−z [ 0 ] )
for i in xrange ( 1 , len ( z ) ) :

texth+= ’,%f’%(−z [ i ] )
#end

texth += ’]\n’

textr = ’r = [%f’ %(r [ 0 ] )
for i in xrange ( 1 , len ( r ) ) :

textr+= ’,%f’%(r [ i ] )
#end

textr += ’]\n’

textv = ’v = [%f’ %(V [ 0 ] )
for i in xrange ( 1 , len ( V ) ) :

textv+= ’,%f’%(V [ i ] )
#end

textv += ’]\n’

textswp = ’theta = [%f’ %(theta [ 0 ] )
for i in xrange ( 1 , len ( theta ) ) :

textswp+= ’,%f’%(theta [ i ] )
#end

textswp += ’]\n’

texttht = ’theta_fd = [%f’ %(theta_fd [ 0 ] )
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for i in xrange ( 1 , len ( theta_fd ) ) :
texttht+= ’,%f’%(theta_fd [ i ] )

#end

texttht += ’]\n’

textpsi = ’psi = [%f’ %(psi [ 0 ] )
for i in xrange ( 1 , len ( psi ) ) :

textpsi+= ’,%f’%(psi [ i ] )
#end

textpsi += ’]\n’

texteps = ’eps = [%f’ %(epsilon [ 0 ] )
for i in xrange ( 1 , len ( epsilon ) ) :

texteps+= ’,%f’%(epsilon [ i ] )
#end

texteps += ’]\n’

textgam = ’gamma_2 = [%f’ %(gamma_2 [ 0 ] )
for i in xrange ( 1 , len ( gamma_2 ) ) :

textgam+= ’,%f’%(gamma_2 [ i ] )
#end

textgam += ’]\n’

textalp = ’alp = [%f’ %(alpha [ 0 ] )
for i in xrange ( 1 , len ( alpha ) ) :

textalp+= ’,%f’%(alpha [ i ] )
#end

textalp += ’]\n’

textphi = ’gamma_1 = [%f’ %(gamma_1 [ 0 ] )
for i in xrange ( 1 , len ( gamma_1 ) ) :

textphi+= ’,%f’%(gamma_1 [ i ] )
#end

textphi += ’]\n’

textrho = ’rho = [%f’ %(rho [ 0 ] )
for i in xrange ( 1 , len ( rho ) ) :

textrho+= ’,%f’%(rho [ i ] )
#end

textrho += ’]\n’

textlft = ’lft = [%f’ %(CL [ 0 ] )
for i in xrange ( 1 , len ( CL ) ) :

textlft+= ’,%f’%(CL [ i ] )
#end

textlft += ’]\n’

if costID == ’intEh_Err’ or costID == ’intErr’ or \
costID == ’ratio_Err_Eh’ :

textxlos = ’xlos = [%f’ %(xlos [ 0 ] )
for i in xrange ( 1 , len ( xlos ) ) :

textxlos+= ’,%f’%(xlos [ i ] )
#end

textxlos += ’]\n’

textylos = ’ylos = [%f’ %(ylos [ 0 ] )
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for i in xrange ( 1 , len ( ylos ) ) :
textylos+= ’,%f’%(ylos [ i ] )

#end

textylos += ’]\n’

textdlos = ’dlos = [%f’ %(dlos [ 0 ] )
for i in xrange ( 1 , len ( dlos ) ) :

textdlos+= ’,%f’%(dlos [ i ] )
#end

textdlos += ’]\n’

textkap = ’kappa = [%f’ %(kappa [ 0 ] )
for i in xrange ( 1 , len ( kappa ) ) :

textkap+= ’,%f’%(kappa [ i ] )
#end

textkap += ’]\n’

texttau = ’tau = [%f’ %(tau [ 0 ] )
for i in xrange ( 1 , len ( tau ) ) :

texttau+= ’,%f’%(tau [ i ] )
#end

texttau += ’]\n’

#end

if costID == ’seeability’ :
textdlos = ’dlos = [%f’ %(dlos [ 0 ] )
for i in xrange ( 1 , len ( dlos ) ) :

textdlos+= ’,%f’%(dlos [ i ] )
#end

textdlos += ’]\n’

texttheta_v = ’theta_v = [%f’ %(theta_v [ 0 ] )
for i in xrange ( 1 , len ( theta_v ) ) :

texttheta_v+= ’,%f’%(theta_v [ i ] )
#end

texttheta_v += ’]\n’

textS = ’S = [%f’ %(S [ 0 ] )
for i in xrange ( 1 , len ( S ) ) :

textS+= ’,%f’%(S [ i ] )
#end

textS += ’]\n’

textEh = ’Eh = [%f’ %(Eh [ 0 ] )
for i in xrange ( 1 , len ( Eh ) ) :

textEh+= ’,%f’%(Eh [ i ] )
#end

textEh += ’]\n’

textf1 = ’f1 = %f\n’ %(f1 )
textf2 = ’f2 = %f\n’ %(f2 )

#end

if costID == ’seeability_constraint’ :
textdlos = ’dlos = [%f’ %(dlos [ 0 ] )
for i in xrange ( 1 , len ( dlos ) ) :
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textdlos+= ’,%f’%(dlos [ i ] )
#end

textdlos += ’]\n’

texttheta_v = ’theta_v = [%f’ %(theta_v [ 0 ] )
for i in xrange ( 1 , len ( theta_v ) ) :

texttheta_v+= ’,%f’%(theta_v [ i ] )
#end

texttheta_v += ’]\n’

textS = ’S = [%f’ %(S [ 0 ] )
for i in xrange ( 1 , len ( S ) ) :

textS+= ’,%f’%(S [ i ] )
#end

textS += ’]\n’

#end

filenam = ’run_%s_%i_r%.1f_z%.1f_xtgt%.1f_ytgt%.1f_post.out’ \
%(acID , N , r_0 , z_0 , x_tgt , y_tgt )

fileout = open ( filenam , ’w’ )
fileout . write ( textf )
fileout . write ( textt )
fileout . write ( textx )
fileout . write ( texty )
fileout . write ( texth )
fileout . write ( textr )
fileout . write ( textv )
fileout . write ( textswp )
fileout . write ( texttht )
fileout . write ( textpsi )
fileout . write ( texteps )
fileout . write ( textgam )
fileout . write ( textalp )
fileout . write ( textphi )
fileout . write ( textrho )
fileout . write ( textlft )

if costID == ’intEh_Err’ or costID == ’intErr’ or \
costID == ’ratio_Err_Eh’ :

fileout . write ( textxlos )
fileout . write ( textylos )
fileout . write ( textdlos )
fileout . write ( textkap )
fileout . write ( texttau )

#end

if costID == ’seeability’ :
fileout . write ( textdlos )
fileout . write ( texttheta_v )
fileout . write ( textS )
fileout . write ( textEh )
fileout . write ( textf1 )
fileout . write ( textf2 )

#end

if costID == ’seeability_constraint’ :
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fileout . write ( textdlos )
fileout . write ( texttheta_v )
fileout . write ( textS )

#end

fileout . close ( )
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