
 

RENEWAL THEORY: 

SIMPLE AND ELEGANT DERIVATIONS 

 

THEORIE DU RENOUVELLEMENT:             

DERIVATIONS SIMPLES ET ELEGANTS 

 

 

A Thesis Submitted 

 

to the Division of Graduate Studies of the Royal Military College of Canada 

 

by 

 

 

 

Brent David Fisher, MBA, B.Sc., rmc 

Sub-Lieutenant 

 

 

 

In Partial Fulfillment of the Requirements for the Degree of 

 

Master of Science 

 

 

 

 

 

 

 

May 2014 

 

© Copyright by B.D. Fisher 2014 

This thesis may be used within the Department of National Defence 

but copyright for open publication remains the property of the author. 



ii 

 

ROYAL MILITARY COLLEGE OF CANADA 

COLLÈGE MILITAIRE ROYAL DU CANADA 

 

DIVISION OF GRADUATE STUDIES AND RESEARCH 

DIVISION DES ÉTUDES SUPÉRIEURES ET DE LA RECHERCHE 

 

 

This is to certify that the thesis prepared by / Ceci certifie que la thèse rédigée par 

 

BRENT DAVID FISHER 

 

entitled / intitulée 

 

RENEWAL THEORY: SIMPLE AND ELEGANT DERIVATIONS 

 

complies with the Royal Military College of Canada regulations and that it meets the 

accepted standards of the Graduate School with respect to quality, and, in the case of a 

doctoral thesis, originality, / satisfait aux règlements du Collège militaire royal du Canada 

et qu'elle respecte les normes acceptées par la Faculté des études supérieures quant à la 

qualité et, dans le cas d'une thèse de doctorat, l'originalité, 

 

for the degree of / pour le diplôme de 

 

MASTER OF SCIENCE 

 

Signed by the final examining committee: / 

Signé par les membres du comité examinateur de la soutenance de these 

 

__________________________, Chair / Président 

 

__________________________, External Examiner / Examinateur externe 

 

__________________________, Main Supervisor / Directeur de thèse principal 

 

____________________________________________________ 

 

Approved by the Head of Department: / 

Approuvé par le Directeur du Département: ______________ Date: ________ 

 

 

To the Librarian: This thesis is not to be regarded as classified. / 

Au Bibliothécaire : Cette thèse n'est pas considérée comme à publication restreinte. 

 

 

____________________________________________ 

Main Supervisor / Directeur de thèse principal 



iii 

 

ACKNOWLEDGEMENTS 
 

 I am truly fortunate to have had an opportunity to complete a second graduate 

degree by this point in my life, and I owe a great deal of thanks to Dr. Mohan Chaudhry 

for encouraging me to undertake this course of study.  I have appreciated his guidance 

and mentorship throughout the completion of this thesis, and the commitment that he 

displays to his graduate students is inspirational. 

 Dr. Alain Gosselin was also instrumental in my completion of this program.  

Working on a degree as a part-time part-distance student while employed with the  

Royal Canadian Navy certainly presented new challenges to overcome, but as Head of the 

Department of Mathematics and Computer Science he certainly punched above his 

weight to assist me in resolving all administrative issues. 

 As a past graduate of this Department, I have had my education in mathematics 

influenced by the majority of the faculty.  Although there are too many names to list, 

there have been several professors – Dr. Bill Hurley, Dr. Jack Brimburg, Dr. Bob 

Johnson, Dr. Lucien Haddad, and Dr. Yawei Liang – who have each taught me on more 

than one occasion, and have thus had an even more profound impact on the experience 

that has contributed to this thesis.  I look forward to employing this knowledge in the 

academic and professional opportunities that await me.  

 

 

 

 

 



iv 

 

ABSTRACT 
 

Fisher, Brent David, M.Sc. Royal Military College of Canada, May 2014, Renewal 

Theory: Simple and Elegant Derivations.  Supervised by Dr. M.L. Chaudhry. 

 

 

 This thesis comprises two principal areas of research: new derivations of 

asymptotic results in renewal theory and the computation of the distribution for the 

number of renewals with bulk arrivals. 

 A simple and elegant solution to determine the asymptotic results for the renewal 

density as well as for the first and second moments of the number of renewals for the 

discrete-time renewal process is presented.  Using generating functions, the difficult-to-

determine constant term in the second moment is also addressed.  A similar process using 

Laplace transforms (LTs) is likewise employed to determine analogous results in 

continuous time.  Further, the solution is extended to determine the asymptotic results for 

the first and second moments of the number of bulk renewals as well.   

 The distribution of the number of renewals for both single and bulk arrivals in 

continuous time is calculated using an algorithm employed through MAPLE.  These 

numerical results are acquired by considering rational as well as non-rational LTs and 

Padé-approximated LTs for the distributions of inter-renewal times.  The asymptotic 

results derived in the first part of this thesis then help to validate the accuracy of these 

numerical results.  

 

 

 

Keywords: Renewal theory, Asymptotic results, Numerical results, Bulk arrivals, 

Generating functions, Laplace transforms 
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RÉSUMÉ 
 

Fisher, Brent David, M.Sc. Collège militaire royal du Canada, mai 2014, Théorie de 

renouvellement: dérivations simples et élégantes.  Dirigé par Dr. M.L. Chaudhry. 

 

            Cette thèse comprend deux domaines de recherche principaux: de nouvelles 

dérivations de résultats asymptotiques pour la théorie du renouvellement, et le calcul de la 

distribution pour le nombre de renouvellements pour les arrivées en groupes. 

            Une solution simple et élégante pour déterminer les résultats asymptotiques pour 

la densité de renouvellement ainsi que pour les premiers et deuxièmes moments du 

nombre de renouvellements pour le processus de renouvellement en temps discret est 

présentée. En utilisant des fonctions génératrices, le terme constant qui est difficile à 

déterminer pour le second moment est également résolu.  Un processus similaire utilisant 

les transformations de Laplace (LTs) est également utilisé pour déterminer des résultats 

similaires en temps continu.  De plus, la solution est poursuivie afin de déterminer les 

résultats asymptotiques pour les premiers et deuxièmes moments du nombre de 

renouvellements en groupes. 

            La distribution du nombre de renouvellements pour les arrivées simples et en 

groupes en temps continu est calculée en utilisant un algorithme fait avec MAPLE. Ces 

résultats numériques sont acquis en considérant les LTs rationnelles et non-rationnelles 

ainsi que les LTs de Padé pour les distributions des intervalles de  renouvellement.  Les 

résultats asymptotiques dérivés dans la première partie de cette thèse aident ensuite à 

valider le calcul d’incertitude de ces résultats numériques. 

   

Mots-clés: Théorie de renouvellement, résultats asymptotiques, résultats numériques, 

arrivées en groupes, fonctions génératrices, transformations de Laplace 
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1 INTRODUCTION 

 

1.1 Problem Description 
 

 

 Renewal theory has been of interest for several decades due to a wide variety of 

applications in business and engineering, and although many well-known theoretical 

results have been available for quite some time, limitations in computing power have 

prevented further advances in the field.  Certain theoretical results, including the use of 

constant terms in the various moments of asymptotic results, are incomplete or have 

complex derivations that have not been succinctly articulated for new students of the 

field.  The traditional lack of computing power has likewise limited the availability of 

numerical results in renewal theory.  Acquiring the distributions for the number of 

renewals based on common probability distributions for both renewal time and group size 

could assist in finding new applications of renewal theory in modern society. 

 

1.2 Thesis Objectives 
 

The goals of this thesis are three-fold:  

1. To derive simple and elegant asymptotic results in both discrete and continuous 

time, including the difficult-to-determine constant terms of the second moments; 

2. To complete similar derivations for the bulk renewal process in continuous time; 

3. To compute numerical results for both single and bulk renewal processes in 

continuous time for a variety of distributions. 
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2 LITERATURE REVIEW 
 

 

 The theory of renewal processes and renewal theorems plays a fundamental role in 

many areas such as failure and replacement of equipment, risk-based asset management 

models, and queues.  Rackwitz (2001) and van Noortwijk (2003) discuss some of these 

applications throughout their respective works. 

 In a recent study, van der Weide et al. (2007) give asymptotic results for the first 

and second moments for the number of renewals.  They provide a constant term in the 

second moment and state that it is not clear from Feller (1949) as to how to obtain the 

constant term using generating functions (g.f.s).  The same arguments apply to the results 

presented in Feller (1968).  Hunter (1983) likewise uses g.f.s to estimate the moments of 

the asymptotic results in renewal theory.  In this regard, the derivations of results 

presented in both Feller (1949) and Hunter (1983) are such that the complexity of the 

procedure involved increases while proceeding from the density function to higher order 

moments.  This is expected to a certain degree, but the derivation of the second moment, 

for example, is such that the constant term is not explicitly stated.  Brown (2008) provides 

explicit formulae for the moments of all orders of the number of renewals in discrete 

time, but this is done using difficult combinatorial methods. 

 Cox (1962) and Feller (1968) are among the most prominent of the various 

authors who discuss the theoretical aspects of renewal theory throughout their works, and 

their ideas are repeated through other publications such as Heyman and Sobel (1982), 

Tijms (2003) and Beichelt (2006).  With that being said, there remains a deficiency in 

attempts to apply these results in practice.  Historically, the computation of numerical 

results has been limited by the availability of computing power, but the emergence of 
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powerful modelling software such as MAPLE has facilitated the use of algorithms to 

compute these results.  Abate and Whitt’s (2006) paper is a culmination of several earlier 

works providing reviews on the numerical inversion of both g.f.s and Laplace transforms 

(LTs). 

 Chaudhry and Templeton (1983) discuss basic renewal theory in the context of 

queueing theory.  Although the majority of their work concerns bulk queues and queueing 

systems, all essential elements of renewal theory in continuous time are presented.  The 

notations used throughout this thesis most closely reflect those used throughout their 

work, although certain elements have been changed in the interest of clarity for readers 

unfamiliar with the field of study.   

 Parzen (1962) likewise includes a succinct discussion of the continuous time 

renewal process, but since his work is primarily focussed on stochastic processes, he 

includes discussions on other basic topics such as probability distribution types and 

Markov chains.  Kohlas (1982) assumes a similar approach in his work, but he is one of 

the few notable authors to include descriptions of renewal theory in both discrete and 

continuous time.  Further, the work of Karlin and Taylor (1975) amplifies their basic 

description of renewal theory with several additional theorems.  

 In a recent paper by Chaudhry, Yang, and Ong (2013), LTs are employed to 

calculate the distribution function, mean, and variance of the number of renewals in a 

continuous-time renewal process.  In part an extension of some of the results presented in 

Chaudhry (1995), their work is limited to distributions that have a rational LT or can be 

approximated as rational, and it is assumed that all renewals are single arrivals.  Despite 

these limitations, in many ways the authors build upon previous results by Baxter et al. 

(1982), who use a generalized cubic splining algorithm to evaluate convolution integrals 
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for various probability distribution functions.  The work by Baxter et al. (1982) is still 

significant since it provides a variety of numerical results for distributions such as 

gamma, truncated normal, and inverse Gaussian, each evaluated at time values of 

1.25t  with which to compare in the case of single arrivals. 

 The speaking notes from a presentation to the University of Melbourne by 

Fackrell (2004) provide information on matrix-exponential distributions, which are 

another class of distributions of interest in renewal theory.  Further, an Honours 

Mathematics Senior Project by the author of this thesis (Fisher, 2010) describes several 

distributions of interest, as well as details describing how the Padé approximation can be 

used to find the distribution of renewals assuming single arrivals. 
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3 RENEWAL THEORY BASICS 
 

 Refer to Appendix A for descriptions of elementary concepts in probability 

theory, including the generating function, Laplace transform, inversion of Laplace 

transforms, the Padé method, and asymptotic theory. 

 Renewal theory is a notion in probability theory concerned with the number of 

random, or stochastic, events that occur prior to a specific time.  These events can be 

indicative of real-life occurrences such as equipment failure or replacement, arrivals or 

departures in queues, as well as monetary gains or losses, and they are typically called 

renewals within this field of study.  For example, consider the inventory of a particular 

item at a store: The length of time that passes between purchases cannot be known with 

certainty, so both the number of sales that are made as well as the number of items to be 

restocked are examples of random processes.   

 Mathematically, this situation can be modelled by random variables (r.v.s) that are 

based on probabilistic laws.  Stochastic processes model the change of a system and its 

corresponding values over time, whereas counting processes are a type of stochastic 

process since they count the total number of stochastic events that have occurred up to a 

specific time.  A renewal process is a type of counting process, and can be modelled in 

either discrete or continuous time, depending on whether time is modelled as progressing 

finitely or infinitesimally.  The term recurrent process is used interchangeably with 

renewal process throughout the literature (Chaudhry and Templeton, 1983).   
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3.1 Discrete Renewal Theory 
 

 A renewal process is a process {Nn, n ≥1} for which the state space belongs to a 

denumerable set {0, 1, 2, . . .}.  Nn can count the number of renewals within a time period 

(0,n], and the intervals between renewals are called the renewal periods.  Renewals occur 

at instants of time 𝑠1
′ , 𝑠2

′ , 𝑠3
′ , . . ., and renewal intervals Ti = 𝑠𝑖

′ − 𝑠𝑖−1
′ , i = 1, 2, 3, . . . 

𝑠0
′ = 0, are independent identically distributed random variables (i.i.d.r.v.s) distributed as 

T with common probability mass function (p.m.f.) 

  0, 1, 0,kf P T k k f     

g.f. 

1

( ) , 1,k

k

k

f z f z z




   

and mean 

1

'(1) .k

k

f kf




     

In discrete time, the following notations are used to describe common statistical 

measures:  

( ) (1) , 1,2,3n

na f n    

and 

2 2 2[ ] [ ].E T E T  
 

  A renewal process is periodic if there is an integer 1d  such that 0kf   except 

when ,2 ,3 ,k d d d such that renewals can take place in intervals that are multiples of 

d.  As a result, 0kf  at ,2 ,3 , ,k d d d and the greatest integer d is the period of the 
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renewal process.  A non-periodic renewal process has a period of 1 and is called 

aperiodic. 

 The renewal equation is defined as 
1

, 1,2,3,
n

n n n j j

j

m f m f n



   where                    

mn = P(renewal at time n) with m1 = f1 and m0 = 0 (implying no renewal at time 0).  This 

is an important notion in renewal theory since the left-hand side (LHS) illustrates the 

probability of a renewal taking place at time n while the right-hand side (RHS) illustrates 

that this is either a first renewal occurring at time n or a renewal occurring at time j ≥ 1 

with probability fj and a subsequent renewal at time (n - j) with probability .n jm    

 The waiting time until the k
th

 renewal is given by the partial sum 

0

1

, 0.
k

k r

r

W T W


   

Waiting time is used to derive the distribution of Nn and its moments due to the following 

expression for 0, 0 :n k    

.n kN k W n    

Consequently, 

1

1

( ) ( ) ( ) ( 1)

( ) ( )

( ) ( ).

n

k k

N n n n

k k

W W

p k P N k P N k P N k

P W n P W n

F n F n




      

   

 

 

By employing the use of g.f.s on ( ),
nNp k it follows that 

 
 1

0

( ) 1 ( )( ) ( )
, 0, 1,

1 1

nn n
k

n

k

f z f zf z f z
P N k z n z

z z






    

 
  



8 

 

 

where ( )f z is the g.f. of 
kf  and ( )nf z is g.f. of the n

th 
convolution of ( ).f z  The 

coefficients of nz provide the probabilities ( )
nNp k that compose the distribution of .nN  

 The mean value of the discrete-time renewal process Nn is referred to as the 

renewal function, and is defined as Mn  E[Nn].  A great portion of renewal theory is 

concerned with properties of the renewal function, and it is for this reason that its 

asymptotic results (see Appendix A.4) are of such interest. 

 

3.2 Continuous Renewal Theory 
 

 

 In continuous time, a renewal process is a process {N(t), t ≥0} for which the state 

space belongs to a denumerable set {0, 1, 2, . . .} and for which the inter-renewal times 

𝑠𝑖
′ − 𝑠𝑖−1

′ , i = 1,2,3, . . ., 𝑠0
′ = 0, between successive renewal groups are positive i.i.d.r.v.s.  

N(t) can count the number of renewal groups within a time period (0,t], and the intervals 

between renewal groups are called the renewal periods.   

 Renewals occur at instants of time 𝑠1
′ , 𝑠2

′ , 𝑠3
′ , . . ., and renewal intervals Ti = 𝑠𝑖

′ −

𝑠𝑖−1
′ , i = 1, 2, 3, . . . are i.i.d.r.v.s distributed as T with common probability density 

function (p.d.f.)  
0

( ) lim , (0) 0,
t

f t P t T t t t f
 

     
 
LT

0
( ) ( ) , 0,stf s f t e dt s


 

and mean 
'(0) .f   

  

In continuous time, the following notations are used to 

describe common statistical measures: 

 

[ ] , 1,2,3n

n E T n     

and 

2 2 2[ ] [ ] .E T E T     
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 In addition,  

1 .   

 It is often possible that only the renewal intervals T2, T3,… are i.i.d.r.v.s, 

particularly when the observation of a system commences after the process has been 

operating previously.  The period prior to the first renewal, denoted by T1, is commonly 

referred to as a residual lifetime.  A renewal process with the characteristic that 

1( ) ( ),f t f t  whereby the period prior to the first renewal is uniquely distributed 

compared to all other periods, is considered to be delayed.
 

 
The renewal equation is defined as 

0
( ) ( ) ( ) ( ) ,

t

m t f t m t y f y dy   where f (t) is 

the common density of T’s.  Specifically, m(t) = renewal density at time t.  For details, see 

Chaudhry and Templeton (1983). 

 The waiting time until the n
th

 renewal is given by the partial sum 

0

1

( ) , 0.
n

r

r

W n T W


   

Waiting time is used to derive the distribution of N(t) and its moments due to the 

equivalency of the following expression for 0, 0 :t n    

( ) ( )N t n W n t    

Let 
0( ) (W( ) ), ( ) 1.nF t P n t F t    It follows that 

*( ) ( ), 0,1,2,...,n

nF t F t n   

which is the 𝑛-fold convolution of ( )F t with itself as described in Chaudhry and 

Templeton (1983). 
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Also note that 

1( ) ( ) ( ), 0, 0,n n nP t F t F t t n     

and let ( )f s and ( )np s be the LST of ( )F t  and ( ),nP t  respectively.  By taking the LST on 

both sides of the equation, it follows that   

 1( ) ( ) ( ) ( ) 1 ( ) .n n n

np s f s f s f s f s     

Since 
0

( ) ( ),st

n np s e dP t


  the desired result is obtained: 

 
1 1

( ) 1 ( )( )
( ) , 0, 0,

n

n
n

f s f sp s
P t L L n s

s s

 
           
   

where inversion provides the probabilities ( )nP t that compose the distribution of ( ).N t  

Note that a very similar notation is employed in Chaudhry, Yang, and Ong (2013), and 

for further details on the inversion, see Appendix A.3. 

 The mean value of the continuous-time renewal process N(t) is referred to as the 

renewal function.  The renewal density is the first derivative of the renewal function, but 

these are defined in Section 5.1 and 5.2, respectively.  A great portion of renewal theory 

is concerned with properties of the renewal function, and it is for this reason that its 

asymptotic results (see Appendix A.4) are of such great interest.  Let ( ) [ ( )]M t E N t   

and ( ) '( ).m t M t    

 It is important to note two key distinctions between the notation used in discrete 

time and continuous time: Whereas in discrete time n is used to describe the time, in 

continuous time the symbol t is used instead.  Likewise, when counting the number of 

renewals in discrete time, the symbol k is employed, whereas n is used in continuous 

time. 
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3.3 Bulk Renewal Theory in Continuous Time 
 

 In order to limit the focus of this thesis, as well as to provide other graduate 

students with adequate research opportunities in renewal theory, all work regarding bulk 

arrivals has been restricted to continuous time. 

 Although modelled by pre-determined distributions, renewals are generally 

assumed to occur as single events.  It is simple to conceptualize a single piece of 

equipment failing or one new customer arriving in a store at a time.  These events are 

examples of a single-arrival renewal process, and are said to have renewal events of a 

group size or batch size of one.  In both renewal theory and the real world, events with a 

group size greater than one can occur as well.  For example, a bus full of tourists can 

cause multiple customers to arrive at a location such as a restaurant or an amusement park 

at the same time.  Just as the frequency of renewal events can be modelled using 

probability distributions, so can the group size of these renewals.  Bulk renewal theory is 

required to model either of these examples, and this has a direct impact on the distribution 

of the total number of renewals and its corresponding moments. 

 Assume that groups arrive at times 𝑠1
′ , 𝑠2

′ , 𝑠3
′ , . . ., with Xi being the size of the i

th
 

group and N(t) being the number of groups arriving during the time interval (0, ].t  As 

such, the total number of renewals is  

( )

1

( ) .
N t

i

i

Y t X


  

Let the probability generating function (p.g.f.) of Y(t) be  

( )

1( )( , ) .
N t

ii
XY tP z t E z E z 

       
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Assuming that Xi’s are i.i.d.r.v.s distributed as X with p.g.f. 𝑃𝑋(𝑧) and the first two 

moments of X are finite, ( , )P z t can be rewritten as 

 

 

( )

1

( )

1

0

0

( , ) | ( )

| ( ) ( )

( ) ( ).

N t

ii

N t

ii

X

X

n

n

X n

n

P z t E E z N t

E z N t n P N t n

P z P t













       

   
  







 

The model can be reduced to the single-arrival renewal process if ( ) ,XP z z where Y(t) 

becomes N(t) and
0

( , ) ( ) .n

nn
P z t P t z




   

 By taking the LT of ( , ),P z t the following compound distribution is obtained: 

 

 

 

0

0
0

0
0

0

( , ) ( , )

( ) ( )

( ) ( )

( ) ( ),

st

n st

X n

n

n st

X n

n

n

X n

n

P z s P z t e dt

P z P t e dt

P z P t e dt

P z P s









 










 
  

 









 



 

where 
0

( ) ( ) , 0,1,2,st

n nP s P t e dt n


  is the LT of ( ).nP t  Assuming that the inter-

renewal times of the process {N(t), t ≥ 0} are i.i.d.r.v.s with distribution function ( )TF t  

and Laplace-Stieltjes transform (LST) 
0

( ) ( ),st

Tf s e dF t


  it can be shown that (see, for 

example, Cox (1962)) 

 ( ) 1 ( )
( ) ,

n

n

f s f s
P s

s


  

where ( )nP s and ( )f s are the LSTs of ( )nP t and ( ),f t respectively.  It then follows that 
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 
0

1 ( )
( , ) ( ) ( )

1 ( )
.

( ) ( )

n

X

n

X

f s
P z s f s P z

s

f s

s sf s P z














 

Although this p.g.f. could be inverted to determine the distribution of the number of 

renewals for bulk arrivals, the complexity of the equations makes this process quite 

cumbersome.  Instead, by first calculating the Pn(t) from the single arrival case and 

expanding ( , )P z t
 as a Taylor’s series, it is then possible to collect the coefficients of z

n
 

and quickly determine numerical results for various values of t.   
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4 ASYMPTOTIC RESULTS IN THE DISCRETE-TIME RENEWAL 
PROCESS 

  

 A simple and elegant solution to determining the asymptotic results for the 

renewal density as well as for the first and second moments of the number of renewals for 

the discrete time renewal process is presented.  Using g.f.s, the difficult-to-determine 

constant term, as stated in Van der Weide et al. (2007), the second moment is also 

addressed. 

 The Tauberian theorem as indicated in Cox (1962) for the continuous time 

renewal case is employed to expand the g.f. of the probability of a renewal at time n, of 

the renewal function and of the first and second moments.  This quickly leads to the final 

asymptotic results for the probability of a renewal at time n as well as for both the first 

and second moments. Some easy steps could have been avoided, but are included here for 

the sake of clarity.   

 

4.1 Renewal Density 
 

 

 The use of the term renewal density for
nm is employed from continuous time 

renewal theory.  Since the renewal time is at least one unit and assuming that lim n
n

m


exists, it can be shown that lim 1 , :n
n

m  


    

Proof: The renewal equation defined as 
1

, 1,2,3,
n

n n n j j

j

m f m f n



    has g.f. 

                                                
1

( )
( ) .

1 ( )

k

k

k

f z
m z m z

f z





 


                                                  (1) 
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Since mk are probabilities, 0 1,km   and m(z) is at least convergent in 1.z    Now, 

assuming  f(1) = 1 (the recurrent case),    (used in finding 1),C  
and using the 

Tauberian theorem (since 
1

lim(1 ) ( ) 1
z

z m z 


 
 
as shown below), the intuitively obvious 

relation  

                                               1( ) (1),
(1 )

C
m z O

z

 
                         

(2)

 

where 1C  
is a constant derived below and (1)O indicates a function of (1 )z bounded as 

1 ,z   is obtained.  This follows from Eq. (1), since  
1

lim 1 ( ) 1
z

z m z 


   is derived 

from multiplying Eq. (2) by (1 )z  and taking the limit as 1 .z    The result is based on 

the assumption that (1)O near 1z   leads to (1)o as .n   This assumption is similar to 

the one used in continuous-time renewal theory results such as in Cox (1962).  It should 

also be noted that in all asymptotic expressions for the renewal density, first moment, and 

second moment, it is implied that .n  

 There are several ways of determining lim .k
k

m


 For one such method, see Kohlas 

(1982).  The existence of the limit can also be obtained using a theorem in Karlin and 

Taylor (1975).  From Eq. (1) and (2), it follows that  

 1
1

lim 1 ( ) 1 .
z

C z m z 



    

 

4.2 First Moment 
 

 It follows from both Feller (1949) and Hunter (1983) that given the number of 

renewals Nn in (0,n], the g.f. for the mean number of renewals [ ]n nM E N  is  
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    1

( ) ( )
( ) , 1.

1 1 ( ) 1

n

n

n

f z m z
M z M z z

z f z z





   
  

  

Assuming that the renewal event is aperiodic recurrent with µ < ∞ and  < ∞, it can be 

shown that  

2 2

2
(1).

2
n

n
M o

  

 

  
   

 
 

Proof: 

Since 
2

1

1
lim(1 ) ( ) , ( )
z

z M z M z


   can be written as  

 2 1

2
( ) 1 .

(1 ) (1 )

C C
M z O

z z

   
 

 

Proceeding as in the case of the renewal density, it follows that 

  2 11 (1).nM n C C o      

Now  

 
1

2

2 lim 1 ( ) 1/ ,
z

C z M z 



    

and 

 
 

  

  

 

2
1

2

2

1
2

1

1 1 1 ( )
lim 1 ( ) lim 1

1 1 ( )1

1 ''(1)
1 1.

2 '(1) 2

z z

z f zC
C z M z

z f zz

f a

f







 




 

     
       

     

   

 

Substituting these constant values into the preceding equation, it follows that 

2

2

1
1 (1).

2
n

an
M o

  

 
     

 
 

By substituting
2 2

2 ,a       the desired result is obtained: 
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2 2

2
(1).

2
n

n
M o

  

 

  
   

 
 

This matches with the results in Feller (1968) and Hunter (1983).  It can also be shown to 

match the result in van der Weide et al. (2007).  In addition, it easily leads to the well-

known result lim 1 .n
n

M n 


  

 
4.3 Second Moment 

 

 An identical approach is taken for solving for the asymptotic results for the second 

moment.  Given that the number of renewals in (0,n] is Nn, it follows from Feller (1968) 

and Hunter (1983) that  

  

 2
(2) 2

2
1

( ) 1 ( )( ) ( )
( ) [ ] .

1 ( )1 1 ( )

n

n

n

M z f zf z f z
M z E N z

f zz f z






  

 
  

Using the same arguments as before, it can be shown that 

22 2
(2) 2 2 32 2

2 3 2 4 3 2

3 23 1 92 1 1 3
lim lim [ ] 1 ,

2 3 6 2nn
n n

n
M E N n

  

        

    
           

   
 

or, as ,n  

22 2
(2) 2 32 2

2 3 2 4 3 2

3 23 1 92 1 1 3
1 (1).

2 3 6 2
n

n
M n o

  

       

    
           

   
 

Proof: 

Since 
3 (2) 2

1
lim(1 ) ( ) 2 ,
z

z M z 


  proceeding as in the case of the first moment and 

assuming that 2 3, , ,and     
(2) ( )M z can be written as 

 (2) 3 2 1

3 2
( ) 1 ,

(1 ) (1 ) (1 )

C C C
M z O

z z z

     
  
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and thus 

                                    (2)

3 2 1

( 2)!
1 (1).

2! !
n

n
M C n C C o

n
  

 
     
 

                  (3) 

Now, 

 
   

 

 

2 2

3 (2)

3 2

2

1 1

2

1 ( ) ( )
lim 1 ( ) lim

1 ( )

2 '(1) 2 ,

z z

z f z f z
C z M z

f z

f 

 
 

 
  



 

 

 
 

  
   

     

  

2

2 (2) 3
2 3 2 2

2 22 2

22

2

2

3

1 1

1

1 ( ) ( ) 2
lim 1 ( ) lim

11 1 ( )

1 ( ) ( ) 2 1 ( )
lim

1 1 ( )

3 2
,

z z

z

z f z f zC
C z M z

zz f z

z f z f z f z

z f z

a











 






 



    
      

      

    
 
  
 

 


 

and 

 
         

         

   

22
(2) 3 2 2

1 3 2 2 2 32

2 2 23 2 2

2

2 23

2 2

2 2 3

4

1 1

1

2 3( ) ( ) 2
lim 1 ( ) lim

11 1 1 ( ) 1

1 ( ) ( ) 2 1 ( ) 2 3 1 1 ( )
lim

1 1 ( )

9 9 4
1.

6

z z

z

C C af z f z
C z M z

zz z f z z

z f z f z f z a z f z

z f z

a a a





  



 



 



 


 



   
         

         

        
 
  
 

 
 

 

After substituting the values of 1 2, ,C C  and 3C into Eq. (3) it follows that 
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    

 

 

2 2 2
2(2) 2 2 3

2 3 4

22

32 2 2 2

2 2 3 2 3 4 2 3

2 2
2 2 2

2 2 4 3

2 3 2

2 3 2

2

2 3 12 ! 9 9 42
1 (1)

2! ! 6

42 2 9 93 3 2 3
1 (1)

6 6 6

3 2 2 2 3

2 1 1 2

3 2 3

2

n

a nn a a a
M o

n

aa a a an
n o

n
n

  

  

         

      

  

       



   
    

  
             

   

   


 
     

   
 

 
3

(1),
2

1
3

o




 
 
 

 
  
 

 

where
3 2

3 3 2 1[( 2)( 1) ] [ ] 3 [ ] 2 [ ] 3 2 ,a E T T T E T E T E T           
 

2

2 2 1[( 1) ] [ ] [ ] ,a E T T E T E T        and 1.   

This implies that as ,n  

        
22 2

(2) 2 32 2

2 3 2 4 3 2

3 23 1 92 1 1 3
1 (1).

2 3 6 2
n

n
M n o

  

       

    
           

   
       (4) 

The first two terms on the RHS of Eq. (4) are identical to the first two terms presented in 

Hunter (1983), but now there is an expression including the constant terms.  For an 

expression entirely in terms of ordinary moments, refer to van der Weide et al. (2007).  

As in the case of the first moment,
(2) 2 2lim 1 ,n

n
M n 


 as expected. 

 

4.3 Conclusion 
 

 The techniques illustrated in this chapter provide a shorter and simpler alternative 

to determining several asymptotic results in discrete-time renewal theory.  By first 

expressing m(z), M(z), and M
(2)

(z) in a particular form, the desired asymptotic results are 

easily derived.  Further, if the first renewal period has a different distribution than the 

other renewal periods, then the renewal density as well as the first and second moments 

can be dealt with along similar lines.   
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 A paper based on this result has been published in the journal Statistics and 

Probability Letters (Chaudhry and Fisher, 2012).  It has already influenced new research 

by other graduate students studying renewal theory (Chaudhry and Kim, 2013). 
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5 ASYMPTOTIC RESULTS IN THE CONTINUOUS-TIME 
RENEWAL PROCESS 

 

 

 As in discrete time, an elegant solution to determining the asymptotic results for 

the renewal density as well as for the first and second moments of the number of renewals 

in continuous time has been derived.  The purpose of this chapter is not only to give the 

asymptotic results for the second moment with a constant term using LTs, but also to give 

an elegant derivation of the asymptotic results for the renewal density as well as for both 

the first and second moments using LTs in continuous time. 

 The method requires inversion on the LT of the probability of a renewal at time t 

of the renewal function and of the second moment (see Appendix A.3).  This quickly 

leads to the final asymptotic results for the probability of a renewal at time t as well as for 

both the first and second moments. Some easy steps could have been avoided, but are 

included for the sake of clarity. 

 

5.1 Renewal Density 
 

 

The limit of the renewal density can be expressed as lim ( ) 1 , 1 :
t

m t  


    

Proof:  

The renewal equation, defined as 
0

( ) ( ) ( ) ( ) ,
t

m t f t m t y f y dy   has LT 

                                    
 0

( )
( ) ( ) .

1 ( )

st f s
m s e m t dt

f s


 


                                       (5)  
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Assuming  f (1) = 1 (the persistent recurrent case),   (used in finding 1),C and using 

the Tauberian theorem (since 
0

lim ( ) 1
s

s m s 

 

 
as shown below), from Eq. (5) an 

intuitively obvious relation is derived: 

                                               1( ) (1),
C

m s O
s

                                                      (6) 

where (1)O indicates a function of s bounded as 0.s 

 

 This is based on the assumption 

that (1)O near 0s  leads to (1)o as .t   For details, see Cox (1962).  As in the case of 

discrete time, it should also be noted that in all asymptotic expressions for the renewal 

density, first moment, and second moment, it is implied that .t   

From the inversion of Eq. (6), it follows that  

1( ) (1),m t C o   

where (1)o indicates a function of t tending to zero as .t    

1C is then derived as follows: 

1
0

lim ( ) 1 .
s

C s m s 



    

 

5.2 First Moment 
 

 

 Given the number of renewals, N(t), in (0,t), from Eq. (5) the LT for the mean 

number of renewals ( ) [ ( )]M t E N t  is 

 
 0

( )
( ) ( ) ,

1 ( )

st f s
M s e M t dt

s f s


 


   

where it is assumed that the first two moments of f (t) are finite.  Assuming that µ < ∞ and 

σ < ∞, it can be shown that  
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2 2

2
( ) (1),

2

t
M t o

 

 

 
   

 
 

where (1) 0 as .o t   

Proof: 

Since 
3

0
lim ( ) 0,
s

s M s


  ( )M s has a pole of order 2 at s = 0, and ( )M s can be written as 

2 1

2
( ) (1).

C C
M s O

s s

     

By inverting this function as in the case of the renewal density, it follows that 

    2 1( ) (1).M t t C C o                             (7) 

Now 

2

2
0

lim ( ) 1 ,
s

C s M s 


   

and 

     

 

2
1 20

0

2 2 2

lim ( )

( ) 1 ( )
lim

1 ( )

( ) 2 .

s

s

C
C s M s

s

f s s f s

f s s





   








 
  

 

  
 
 
 

  

  

By substituting the values of 1 2andC C  into Eq. (7) it follows that 

2 2

2
( ) (1).

2

t
M t o

 

 


    

As expected, this easily leads to the well-known result lim ( ) 1 .
t

M t t 


  
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5.3 Second Moment 
 

 

 An identical approach is taken for deriving the asymptotic results for the second 

moment.  Given that the number of renewals in (0,t) is N(t), it follows that  

 

 
(2) (2) (2)

20 0

( ) ( ) 1
( ) ( ) [ ( )] .

1 ( )

st st
f s f s

M s e M t dt e E N t dt
s f s

 
 


  


   

It can then be shown that 

2 2 4 2
(2) 3

2 3 4 3 2

22 1 3 3
( ) 1 (1).

2 3 2

t
M t t o

  

     

 
        

 
 

Proof: 

Since 
4 (2) (2)

0
lim ( ) 0, ( )
s

s M s M s


  has a pole of order 3 at s =0. 

Proceeding as in the case of the first moment, 

(2) 3 2 1

3 2
( ) (1),

C C C
M s O

s s s

       

where 

 

 

2

3 (2) 2

3 20 0

( ) ( ) 1
lim ( ) lim 2 ,

1 ( )
s s

s f s f s
C s M s

f s


 


  


 

 

 

   

 

2 (2) 3
2 23 20 0

2
2 2

20 2

2 2 2

3

( ) ( ) 1 2
lim ( ) lim

1 ( )

( ) ( ) 1 2 1 ( )
lim

1 ( )

2( ) 3
,

s s

s

s f s f sC
C s M s

s sf s

s f s f s f s

s f s







  






 



              

   
 
 

  

 

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and 

 

 

(2) 3 2
1 3 20

2

2

2 2 2 3 20

4 4 2 2

3

4

lim ( )

( ) ( ) 1 3 22
lim

1 ( )

6 4 9 9
.

6

s

s

C C
C s M s

s s

f s f s a

s sf s



 

     



 






 
   

 

     
   

   


 

As in the case of the first moment and the renewal density, from inversion of the LT it 

follows that  

                                        
2

(2) 3
2 1( ) (1),

2

t C
M t t C C o

 


               (8) 

and after substituting the values of 1 2, ,C C  and 3C into Eq. (8), the desired result is 

obtained: 

2 2 4 2
(2) 3

2 3 4 3 2

22 1 3 3
( ) 1 (1).

2 3 2

t
M t t o

  

     

 
        

 
 

As in the case of the first moment,
(2) 2 2lim ( ) 1 ,

t
M t t 


 as expected. 

 

5.4 Conclusion 
 

 

 The techniques illustrated in this chapter provide a shorter and simpler alternative 

to determining several asymptotic results for single arrivals in continuous-time renewal 

theory.  By first expressing ( ),m s ( ),M s  and (2) ( )M s  in a particular form, the desired 

asymptotic results are easily derived.  Further, if the first renewal period has a different 
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distribution than the other renewal periods, then the renewal density as well as the first 

and second moments can be dealt with along similar lines.   
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6 ASYMPTOTIC RESULTS FOR THE BULK RENEWAL PROCESS 
IN CONTINUOUS TIME 

 

 

 The purpose of this chapter is to give an elegant derivation of the asymptotic 

results for the first and second moments of the bulk-arrival renewal process using LTs.  

Inversion on the LT of the probability of a renewal at time t of the renewal function and 

of the second moment quickly leads to the final asymptotic results for the probability of a 

renewal at time t as well as for both the first and second moments. Some easy steps could 

have been avoided, but are included here for the sake of clarity. 

 

6.1 Renewal Density 
 

 

 As defined in Chaudhry and Templeton (1983), the renewal density, m(t), is the 

derivative of the renewal function, M(t).  This does not change in the case of bulk 

arrivals. 

 

6.2 First Moment 
 

 

The LT for the mean number of renewals ( ) [ ( )]M t E Y t  is 

 

1

'

1 ( )
( )

( ) ( )

( )
(1).

1 ( )

|
z

X

X

d f s
M s

dz s sf s P z

f s
P

s f s



 
  

 




 

Remark: By substituting ( )XP z z
 
with 

' (1) 1,XP  it follows that 

 
 0

( )
( ) [ ( )] ,

1 ( )

st f s
M s e E N t dt

s f s


 


  

which is the LT for the mean number of renewals for the single-arrival renewal process. 
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By assuming that the renewal event is recurrent with µ < ∞,  < ∞, and 
' (1)XP < ∞, it can 

be shown that 

' 2 2
'

2

(1)
( ) (1) (1),

2

X
X

P
M t t P o

 

 

 
   

 
 

where (1) 0 as .o t   

Proof: 

Following Cox’s (1962) work on the single-arrival renewal process, ( )M s can be re-

written as 

2 1

2
( ) (1).

C C
M s O

s s

     

Inverting this LT as in the case of the renewal density, it follows that 

    2 1( ) (1).M t t C C o                                           (9) 

Now 

2 '

2
0

lim ( ) (1) ,X
s

C s M s P 


   

and 

 

 

2
1 20

'

20

' 2 2

2

lim ( )

2 ( ) ''( )
lim

'( )

( 2 ) 2 .

s

X

s

X

C
C s M s

s

P f s f s

f s

P   








 
  

 

 
 
 
  

 

 

By substituting the values of 1C and 
2C
 as well as 2 2

2    into Eq. (9), it follows 

that 
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' 2 2
'

2

(1)
( ) (1) (1).

2

X
X

P
M t t P o

 

 

 
   

 
 

As expected, this easily leads to the well-known result
'lim ( ) (1)X

t
M t t P 


 , which 

gives the arrival rate for the bulk-arrival renewal process. Also, for the single-arrival 

renewal process, M(t) matches with the known results in Cox (1962).  

 

6.3 Second Moment 
 

 

 The same approach is taken when solving for the asymptotic results for the second 

moment.  Using the fact that ''( , )P z s is the LT of  

   2

1 1 1
( ) ( ) 1 ( ) ( ) ,| | |

z z z
E N t N t E N t E N t

  
         

it follows that 

 
   

2
'' '

2

( )
''( , ) 1 ( ) (1) 2 ( ) (1) ,

1 ( )
X X

f s
P z s f s P f s P

s f s

   
  

 

where 
'' 2(1) [ ] [ ].XP E X E X   

Consequently, 

 
   

 

 
 

 

(2) 2

0

'
2

'' '

2

2
'

'' '

( ) ( )

(1) ( )( )
1 ( ) (1) 2 ( ) (1)

1 ( )1 ( )

2 ( ) (1)( )
(1) (1) .

1 ( ) 1 ( )

st

X
X X

X

X X

M s E Y t e dt

P f sf s
f s P f s P

s f ss f s

f s Pf s
P P

s f s f s


   

    
   

 
   
  
 



 

By substituting ( )XP z z  and the corresponding values 
' ''(1) 1 and (1) 0X XP P   for the 

single arrival case, it follows that 
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 

 
(2) 2

20

( ) ( ) 1
( ) [ ( )] .

1 ( )

st
f s f s

M s e E N t dt
s f s





 


  

In the general case, it is possible to illustrate that 

     

       

2 2 2
' '' ' ' 2 ' 2 '' 2 ' '

(2) 2

2 3 2 2

2 2 2 2
' 4 ' 2 ' ' ''

3

3 4 2

(1) (1) 2 (1) (1) 2 (1) (1) (1) (1)
( )

2 2 2

2 (1) 3 (1) (1) 3 (1) (1)
(1).

3 2 2 2

X X X X X X X X

X X X X X

P P P P P P P P
M t t t

P P P P P
o

  

    

  

  

  
      
 
 

     

 

Proof: 

Proceeding as in the case of the first moment, the LT 
(2) ( )M s can be re-written as 

(2) 3 2 1

3 2
( ) (1),

C C C
M s O

s s s

       

where 

 

'
3 (2) ' 2

3 20 0

4 (1)
lim ( ) lim 2 (1) ,

2 '( )

X
X

s s

P
C s M s P

f s


 
    

       

 

   

2 (2) 3
2 30

3 3 32
'' ' ' ' '

40

2 2
2 '' 2 ' 2 ' '

2

3

lim ( )

6 '( ) (1) 24 '( ) (1) 6 '( ) (1) 12 ''( ) ( ) (1)
lim

6 '( )

(1) 4 (1) (1) 2 (1)
,

s

X X X X

s

X X X X

C
C s M s

s

f s P f s P f s P f s f s P

f s

P P P P    










 
  

 

   
 
 
  

  


 

and 
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         

       

   

(2) 3 2
1 3 20

3 3 22 2
'' ' '

3 2 52
' ' ''

5 2
'

0

lim ( )

12 ''( ) (1) '( ) 48 ''( ) '( ) (1) 36 '( ) ''( ) (1)

12 (1) ''( ) '( ) 16 '''( ) '( ) (1) 24 (1) '( )

48 '( ) (1) 2

lim

s

X X X

X Y X

X

s

C C
C s M s

s s

f s P f s f s f s P f s f s P

P f s f s f s f s P P f s

f s P

 






 
   

 

  

  




 

 

   

   

5
'

5

2 2
2 '' 4 '' 4 ' '

2 3 2

2 2
2 ' 2 ' 4 ' 4 '

2 2

4

4 (1) '( )

24 '( )

3 (1) 6 (1) 4 (1) 9 (1)

12 (1) 3 (1) 12 (1) 6 (1)
.

6

X

X X X X

X X X X

P f s

f s

P P P P

P P P P

     

     



  
  
  
  
  
  
  
 
 
 
 
 
 
  

   
 
 
     

 

As in the case of the first moment, from the inversion of the LT it follows that  

                                        
2

(2) 3
2 1( ) (1),

2

t C
M t t C C o

 


        (10) 

and after substituting the values of 1 2, ,C C  and 3C as well as 
2 2

2    into Eq. (10) 

the desired result is obtained:  

     

       

2 2 2
' '' ' ' 2 ' 2 '' 2 ' '

(2) 2

2 3 2 2

2 2 2 2
' 4 ' 2 ' ' ''

3

3 4 2

(1) (1) 2 (1) (1) 2 (1) (1) (1) (1)
( )

2 2 2

2 (1) 3 (1) (1) 3 (1) (1)
(1).

3 2 2 2

X X X X X X X X

X X X X X

P P P P P P P P
M t t t

P P P P P
o

  

    

  

  

  
      
 
 

     

 

 As in the case of the first moment,  
2

(2) 2 ' 2lim ( ) (1)X
t

M t t P 


 as expected.  

(2) ( )M t  can likewise be modified to match the results in Cox (1962) for the variance of 
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the number of renewals in single-arrival renewal theory.  In the latter case, if considering 

single arrivals,  
2(2) ( ) ( )M t M t  leads to 

2 4 2

3

3 4 2 3

25 2 3
(1),

4 3 4

t
o

  

   
     a result given 

in Heyman and Sobel (1982). 

 

6.4 Conclusion 
 

 

 The techniques illustrated in this chapter provide a shorter and simpler alternative 

to determining several asymptotic results for the bulk renewal process.  By first 

expressing ( )M s and
(2) ( )M s in a particular form, the desired asymptotic results are 

easily derived.  Further, if the first renewal period has a different distribution than the 

other renewal periods, then the first and second moments can be dealt with along similar 

lines.  These results for bulk arrivals form part of a paper entitled “Computing the 

distribution for the number of renewals with bulk arrivals” that has been accepted by 

INFORMS Journal on Computing (Fisher and Chaudhry, 2014).  
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7 NUMERICAL RESULTS 
 

 A common interest of renewal theory is to determine the distribution or moments 

of the number of renewals during a specific time interval.  There have been few recent 

contributions regarding new techniques for determining numerical results for the 

distribution of the number of renewals as well as the mean and variance, with the 

aforementioned paper by Chaudhry, Yang, and Ong (2013) being an exception.  It is 

much more useful to be able to compute the distribution of the number of renewals than 

to derive information from the mean and variance. 

 There are several methods for the numerical inversion of generating functions and 

Laplace transforms.  Appendix A.3 illustrates an inversion method when dealing with 

rational functions or functions that can be approximated using the Padé method.  Six 

different distributions for renewal time are considered in the following sub-chapters.  The 

exponential, mixed generalized Erlang, matrix exponential, gamma, truncated normal, 

and inverse Gaussian distributions are each used to produce numerical results in 

continuous time for both single and bulk arrival renewal theory.  In the case of the latter, 

models where the group sizes follow both Poisson or 1-3-5 distributions are considered.  

Appendix B describes important characteristics of each of these distribution classes. 

 The Tables presented throughout the following sub-chapters illustrate the first five 

values of ( ),nP t the probability that n renewals will have occurred by time t, as well as the 

mean and variance, each for various values of t.  The values of t were selected in part 

based on previous computations that have been presented in the literature (Chaudhry, 

Yang & Ong, 2013).  Although the results of this work were used to ensure accuracy of 

the MAPLE algorithm for the cases of single arrivals, an additional comparison between 
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numerical and analytical results for the mean and variance, as well as a verification that

( ) 1nn
P t  were used in validating the accuracy of the distribution in the case of both 

single and bulk arrivals. 

   To account for the bulk arrivals, the following modified equations for the mean 

and variance of the number of renewals, henceforth referred to as μANA and σ
2

ANA, 

respectively, were used: 

 
 

'
1

0

( ) (1)
( ) ( )

1 ( )

X
n

n

f s P
E Y t nP t L

s f s






 
  
 
 

  

and 

   
 

 
   

2
2

' '
2 2 1 '' ' 1

0

2 ( ) (1) ( ) (1)( )
( ) ( ) ( ) (1) (1) .

1 ( ) 1 ( ) 1 ( )

X X
n X X

n

f s P f s Pf s
V Y t n P t E Y t L P P L

s f s f s s f s


 



                
       

    



Note that the analytic results for the mean and variance of the distributions can be 

determined using other methods such as those described in Cox (1962). 

A sample copy of the code and printout from MAPLE for this algorithm is found 

in Appendix C. 

 

7.1 Single Arrivals 
 

1. Mixed Generalized Erlang Distribution 

 f(t) follows the Mixed Generalized Erlang distribution with p.d.f. 

1

1

( ) ,
( 1)!

j j tk

j

j

t e
f t c

j

  






 and LT 
1

( ) ,

jk

j

j

f s c
s





 
   
 where 

1
1.

k

jj
c


  From 

considering the case where the parameters are 1 5 0.25,c c   10 0.5,c  and 1,  the 
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numerical values for ( ),nP t  the mean, and the variance for various values of t are 

determined.  These results are presented in Table 1. 

Table 1: Pn(t) for the Mixed Generalized Erlang distribution with c1 = c5 = 0.25, c10 = 0.5, and λ = 1 

t P0(t) P1(t) P2(t) P3(t) P4(t) . . . μ NUM μ ANA σ
2 

NUM σ
2 

ANA 
0.5 0.9000 0.0939 0.0058 0.0002 0.0000 . . . 0.1063 0.1063 0.1082 0.1082 

1.0 0.8433 0.1400 0.0154 0.0012 0.0001 . . . 0.1748 0.1748 0.1835 0.1835 

2.0 0.7720 0.1896 0.0333 0.0046 0.0005 . . . 0.2723 0.2723 0.2996 0.2996 

3.0 0.7130 0.2262 0.0503 0.0090 0.0013 . . . 0.3601 0.3601 0.4052 0.4052 

5.0 0.5969 0.2894 0.0876 0.0210 0.0043 . . . 0.5493 0.5493 0.6196 0.6196 

10.0 0.2355 0.4254 0.2238 0.0822 0.0247 . . .  1.2632 1.2632 1.1001 1.1001 

 

2. Matrix Exponential Distribution 

 f(t) follows a Matrix Exponential distribution (non-phase-type) with p.d.f.

  2

1
( ) 1 1 cos 2 ,

4

tf t t e


 
   
 

 such that the LT is 
 

2

2 2

4 1
( ) .

( 1) ( 1) 4
f s

s s








  
 The 

numerical values for ( ),nP t  the mean, and the variance for various values of t are 

presented in Table 2. 

Table 2: Pn(t) for the non-phase-type Matrix Exponential distribution f(t)= (1+1/4π
2
)(1-cos(2πt))e

-t

 
 

t P0(t) P1(t) P2(t) P3(t) P4(t) . . . μ NUM μ ANA σ
2 

NUM σ
2 

ANA 
0.5 0.6373 0.3464 0.0162 0.0002 0.0000 . . . 0.3793 0.3793 0.2688 0.2688 

1.0 0.3679 0.3915 0.2154 0.0242 0.0009 . . . 0.8988 0.8988 0.6785 0.6785 

2.0 0.1353 0.2881 0.3035 0.1693 0.0832 . . . 1.8411 1.8411 1.5077 1.5077 

3.0 0.0498 0.1590 0.2475 0.2322 0.1779 . . . 2.7919 2.7919 2.3400 2.3400 

5.0 0.0067 0.0359 0.0919 0.1523 0.1963 . . . 4.6971 4.6973 3.9918 3.9929 

 

3. Gamma Distribution 

 When f(t) follows the Gamma distribution, given by p.d.f.

1

( ) ,
( )

tt e
f t

 

 

 




 the LT 

is 
 

1
( ) ,

1
f s

s






where   and   are the shape and scale parameters, respectively.  
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From setting the parameters 0.55   and 1,   the Padé approximation function [4/5], 

where [4/5] denotes a numerator of degree 4 and a denominator of degree 5 in ( ),f s is 

given by 

2 3 4

2 3 4 5

1 1.97778 1.27938 0.29852 0.01804
( ) .

1 2.52778 2.24340 0.81724 0.10556 0.00232

s s s s
f s

s s s s s

   


      

For details regarding Padé approximation, refer to Appendix A.3.  Further, the ( ),nP t  

mean, and variance for various values of t are then determined and are presented along 

with the mean and variance from Baxter et al. (1982) in Table 3. 

Table 3: Pn(t) for the Gamma distribution with α = 0.55 and β = 1 

t P0(t) P1(t) P2(t) P3(t) P4(t) . . . μ NUM μ ANA σ
2 

NUM σ
2 

ANA 
0.1 0.6871 0.2385 0.0602 0.0119 0.0019 . . . 0.4040 0.4040 0.4623 0.4623 

0.4 0.4071 0.3088 0.1677 0.0743 0.0283 . . . 1.0545 1.0545 1.3970 1.3970 

1.25 0.1291 0.1951 0.2050 0.1730 0.1249 . . . 2.6650 2.6663 4.0370 4.0486 

 

4. Truncated Normal Distribution  

 When f(t) follows the Truncated Normal Distribution, given by p.d.f.

2 2( ) 21
( ) ,

2

tf t e
a

 

 

   where 1 ( ),a





  with ( )






 being the standard normal 

distribution function.  From setting the parameters 0   and 1,  the Padé 

approximation [5/6] of ( )f s is given by 

2 3 4 5

2 3 4 5 6

1 0.7707 0.3130 0.0704 0.0089 0.0005
( ) .

1 1.5686 1.0645 0.4015 0.0891 0.0111 0.0006

s s s s s
f s

s s s s s s

    


     
 

The ( ),nP t  mean, and variance for various values of t are then determined and are 

presented along with the mean and variance from Baxter et al. (1982) in Table 4. 
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Table 4: Pn(t) for the Truncated Normal distribution with μ = 0 and σ = 1 

t P0(t) P1(t) P2(t) P3(t) P4(t) . . . μ NUM μ ANA σ
2 

NUM σ
2 

ANA 
0.15 0.8807 0.1121 0.0068 0.0003 0.0000 . . . 0.1267 0.1267 0.1261 0.1261 

0.45 0.6527 0.2849 0.0548 0.0068 0.0006 . . . 0.4178 0.4178 0.4023 0.4023 

1.0 0.3173 0.4118 0.1978 0.0583 0.0124 . . . 1.0443 1.0443 0.8995 0.8997 

1.25 0.2113 0.4003 0.2567 0.0981 0.0268 . . . 1.3507 1.3507 1.0997 1.1006 

 

5. Inverse Gaussian Distribution  

 f(t) follows the Inverse Gaussian Distribution, given by p.d.f.

2 2( ) 2

3
( ) ,

2

t tf t e
t

  



   with LT 
 1 1 2

( ) .
s

f s e
  

  From setting the parameters 

0.75   and 0.5625,   where 





 and 
2

,





 the LT becomes
0.75 0.75 1 2( ) sf s e  

and the Padé approximation [4/7] of ( )f s is given by 

2 3 4

2 3 4 5 6 7

1 4.9575 8.7086 6.3286 1.5707
( ) .

1 5.7075 12.3330 12.5594 6.1046 1.2729 0.0928 0.0038

s s s s
f s

s s s s s s s

   


      
 

The ( ),nP t  mean, and variance for various values of t are then determined and are 

presented along with the mean and variance from Baxter et al. (1982) in Table 5. 

Table 5: Pn(t) for the Inverse Gaussian distribution with μ = 0.75 and λ = 0.5625 

t P0(t) P1(t) P2(t) P3(t) P4(t) . . . μ NUM μ ANA σ
2 

NUM σ
2 

ANA 
0.25 0.7445 0.2442 0.0112 0.0001 0.0000 . . . 0.2669 0.2669 0.2188 0.2188 

0.70 0.3390 0.4042 0.2062 0.0457 0.0046 . . . 0.9736 0.9736 0.7732 0.7732 

1.25 0.1623 0.2869 0.2867 0.1762 0.0683 . . . 1.7635 1.7635 1.5294 1.5294 

 

6. Poisson (Exponential) Distribution 

 f(t) follows the exponential distribution with p.d.f. ( ) tf t e   and LT 

( ) ,f s
s







where the parameter 1/   is equal to both the mean and standard deviation.  

Here, Y( )t follows the compound Poisson process.  From considering the case where the 
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parameter 0.5,  the numerical values for ( ),nP t  the mean, and the variance for various 

values of t are determined.  These results are presented in Table 6. 

Table 6: Pn(t) for the Exponential distribution with λ = 0.5 

t P0(t) P1(t) P2(t) P3(t) P4(t) . . . μ NUM μ ANA σ
2 

NUM σ
2 

ANA 
0.5 0.7788 0.1947 0.0243 0.0020 0.0001 . . . 0.2500 0.2500 0.2500 0.2500 

1.0 0.6065 0.3033 0.0758 0.0126 0.0016 . . . 0.5000 0.5000 0.5000 0.5000 

2.0 0.3679 0.3679 0.1839 0.0613 0.0153 . . . 1.0000 1.0000 1.0000 1.0000 

3.0 0.2231 0.3347 0.2510 0.1255 0.0471 . . . 1.5000 1.5000 1.5000 1.5000 

5.0 0.0821 0.2052 0.2565 0.2138 0.1336 . . . 2.5000 2.5000 2.5000 2.5000 

10.0 0.0067 0.0337 0.0842 0.1404 0.1755 . . .  5.0000 5.0000 5.0000 5.0000 

 

 The numerical results for the exponential distribution can be likewise obtained 

from first inverting the expression 
1

( , ) ,
(1 )

p z s
s z


 

 a result from 

1 ( )
( , ) ,

( ) ( )X

f s
P z s

s sf s P z





where ( )XP z z for the case of single arrivals.  Next, expand 

the expression as a Taylor’s series and collect the coefficients of z
n
 to determine the 

values for ( ).nP t
 

7.2 Bulk Arrivals 
 

 Now assume that ( )N t renewals can occur in groups of size ,iX  such that the total 

number of renewals is 

( )

1

( ) .
N t

i

i

Y t X



 

By using the Pn(t) from the single arrival case, 

expanding p.g.f.  
0

( , ) ( ) ( )
n

X n

n

P z t P z P t




 as a Taylor’s series, and then collecting the 

coefficients of z
n
, the distribution of the number of renewals in

 

the bulk process is 

obtained for various values of t.  These  ( )P Y t n
 
probabilities, henceforth referred to 
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as ( )nP t for simplicity, can likewise be used to obtain the mean and variance for the 

various values of t. 

 

7.3 Poisson Group Size 
 

 The following results were obtained by assuming that the group size distribution is 

Poisson with p.g.f.
(1 )( ) , 1.z

XP z ze z    Let 0.5   such that 
0.5 0.5( ) .z

XP z ze   

This distribution was presented in Brown (2008) and was used to determine the following 

results:  

Table 7: Pn(t) for the Mixed Generalized Erlang distribution with c1 = c5 = 0.25, c10 = 0.5, and λ = 1 

t P0(t) P1(t) P2(t) P3(t) P4(t) . . . μ NUM μ ANA σ
2 

NUM σ
2 

ANA 
0.5 0.9000 0.0570 0.0306 0.0093 0.0023 . . . 0.1594 0.1594 0.2965 0.2965 

1.0 0.8433 0.0849 0.0481 0.0165 0.0050 . . . 0.2621 0.2621 0.5002 0.5002 

2.0 0.7720 0.1150 0.0697 0.0276 0.0101 . . . 0.4084 0.4084 0.8103 0.8103 

3.0 0.7130 0.1372 0.0871 0.0377 0.0153 . . . 0.5402 0.5402 1.0916 1.0917 

5.0 0.5969 0.1755 0.1200 0.0589 0.0274 . . . 0.8238 0.8239 1.6680 1.6688 

10.0 0.2355 0.2580 0.2113 0.1329 0.0774 . . . 1.8937 1.8948 3.0954 3.1069 

 

 
Table 8: Pn(t) for the non-phase-type Matrix Exponential distribution f(t)= (1+1/4π

2
)(1-cos(2πt))e

-t

  

t P0(t) P1(t) P2(t) P3(t) P4(t) . . . μ NUM μ ANA σ
2 

NUM σ
2 

ANA 
0.5 0.6373 0.2101 0.1110 0.0323 0.0074 . . . 0.5689 0.5689 0.7945 0.7945 

1.0 0.3679 0.2375 0.1980 0.1143 0.0528 . . . 1.3482 1.3482 1.9760 1.9761 

2.0 0.1353 0.1747 0.1990 0.1713 0.1274 . . . 2.7608 2.7616 4.3055 4.3128 

3.0 0.0498 0.0964 0.1392 0.1549 0.1493 . . . 4.1639 4.1879 6.5080 6.6609 

 

 
Table 9: Pn(t) for the Gamma distribution with α = 0.55 and β = 1 

t P0(t) P1(t) P2(t) P3(t) P4(t) . . . μ NUM μ ANA σ
2 

NUM σ
2 

ANA 
0.1 0.6871 0.1447 0.0945 0.0429 0.0183 . . . 0.6059 0.6059 1.2418 1.2420 

0.4 0.4071 0.1873 0.1554 0.1017 0.0634 . . . 1.5790 1.5817 3.6382 3.6706 

1.25 0.1291 0.1183 0.1346 0.1288 0.1150 . . . 3.8295 3.9994 9.0965 10.4426 
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Table 10: Pn(t) for the Truncated Normal distribution with μ = 0 and σ = 1 

t P0(t) P1(t) P2(t) P3(t) P4(t) . . . μ NUM μ ANA σ
2 

NUM σ
2 

ANA 
0.15 0.8807 0.0680 0.0365 0.0111 0.0028 . . . 0.1900 0.1900 0.3471 0.3471 

0.45 0.6527 0.1728 0.1066 0.0433 0.0161 . . . 0.6267 0.6267 1.1141 1.1141 

1.0 0.3173 0.2498 0.1977 0.1170 0.0628 . . . 1.5662 1.5664 2.5446 2.5464 

1.25 0.2113 0.2428 0.2158 0.1467 0.0887 . . . 2.0254 2.0260 3.1452 3.1518 

 

 

Table 11: Pn(t) for the Inverse Gaussian distribution with μ = 0.75 and λ = 0.5625 

t P0(t) P1(t) P2(t) P3(t) P4(t) . . . μ NUM μ ANA σ
2 

NUM σ
2 

ANA 
0.25 0.7445 0.1481 0.0782 0.0226 0.0052 . . . 0.4003 0.4003 0.6257 0.6257 

0.70 0.3390 0.2452 0.1984 0.1167 0.0590 . . . 1.4603 1.4603 2.2265 2.2266 

1.25 0.1623 0.1740 0.1925 0.1665 0.1246 . . . 2.6414 2.6452 4.2987 4.3229 

 

 
Table 12: Pn(t) for the Exponential distribution with λ = 0.5 

t P0(t) P1(t) P2(t) P3(t) P4(t) . . . μ NUM μ ANA σ
2 

NUM σ
2 

ANA 
0.5 0.7788 0.1181 0.0680 0.0242 0.0076 . . . 0.3750 0.3750 0.6875 0.6875 

1.0 0.6065 0.1839 0.1199 0.0537 0.0222 . . . 0.7500 0.7500 1.3750 1.3750 

2.0 0.3679 0.2231 0.1792 0.1092 0.0611 . . . 1.5000 1.5000 2.7500 2.7500 

3.0 0.2231 0.2030 0.1938 0.1457 0.0988 . . . 2.2500 2.2500 4.1250 4.1250 

5.0 0.0821 0.1245 0.1566 0.1576 0.1394 . . . 3.7500 3.7500 6.8750 6.8750 

10.0 0.0067 0.0204 0.0412 0.0649 0.0866 . . .  7.5000 7.5000 13.750 13.750 

 

7.4 1-3-5 Group Size 
 

 The following results were obtained by assuming that the group size distribution 

has a p.g.f. 
3 5( ) 0.5 0.4 0.1 .XP z z z z    This suggests that the group size can be either 1, 

3, or 5 with 50%, 40%, and 10% probabilities, respectively.  This distribution was 

presented in Chaudhry, Samanta, and Pacheco (2012) and was used to determine the 

following results:  

 

Table 13: Pn(t) for the Mixed Generalized Erlang distribution with c1 = c5 = 0.25, c10 = 0.5, and λ = 1 

t P0(t) P1(t) P2(t) P3(t) P4(t) . . . μ NUM μ ANA σ
2 

NUM σ
2 

ANA 
0.5 0.9000 0.0470 0.0014 0.0376 0.0023 . . . 0.2338 0.2338 0.7104 0.7106 

1.0 0.8433 0.0700 0.0038 0.0561 0.0062 . . . 0.3844 0.3845 1.1941 1.1955 

2.0 0.7720 0.0948 0.0083 0.0764 0.0133 . . . 0.5983 0.5990 1.9198 1.9295 

3.0 0.7130 0.1131 0.0126 0.0916 0.0202 . . . 0.7903 0.7923 2.5683 2.5949 

5.0 0.5969 0.1447 0.0219 0.1184 0.0353 . . . 1.2011 1.2084 3.8718 3.9657 

10.0 0.2355 0.2127 0.0559 0.1804 0.0911 . . .  2.7218 2.7790 6.9687 7.5479 
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Table 14: Pn(t) for non-phase-type Matrix Exponential distribution f(t)= (1+1/4π
2
)(1-cos(2πt))e

-t

  

t P0(t) P1(t) P2(t) P3(t) P4(t) . . . μ NUM μ ANA σ
2 

NUM σ
2 

ANA 
0.5 0.8194 0.1243 0.0434 0.0105 0.0020 . . . 0.2528 0.2528 0.3723 0.3723 

1.0 0.6290 0.2165 0.1019 0.0369 0.0146 . . . 0.5992 0.5992 0.9008 0.9008 

2.0 0.3926 0.2688 0.1743 0.0922 0.0430 . . . 1.2274 1.2274 1.8974 1.8974 

3.0 0.2442 0.2505 0.2064 0.1385 0.0812 . . . 1.8611 1.8613 2.8997 2.9013 

 

 
Table 15: Pn(t) for the Gamma distribution with α = 0.55 and β = 1 

t P0(t) P1(t) P2(t) P3(t) P4(t) . . . μ NUM μ ANA σ
2 

NUM σ
2 

ANA 
0.1 0.6871 0.1193 0.0151 0.0969 0.0242 . . . 0.8858 0.8887 2.9100 2.9483 

0.4 0.4071 0.1544 0.0419 0.1328 0.0689 . . . 2.2314 2.3199 7.6063 8.6176 

1.25 0.1291 0.0976 0.0513 0.0997 0.0898 . . . 4.5014 5.8659 14.3037 24.2881 

 

 
Table 16: Pn(t) for the Truncated Normal distribution with μ = 0 and σ = 1 

t P0(t) P1(t) P2(t) P3(t) P4(t) . . . μ NUM μ ANA σ
2 

NUM σ
2 

ANA 
0.15 0.9402 0.0409 0.0145 0.0036 0.0007 . . . 0.0845 0.0845 0.1476 0.1476 

0.45 0.8144 0.1188 0.0474 0.0143 0.0038 . . . 0.2785 0.2785 0.4573 0.4573 

1.0 0.5897 0.2288 0.1126 0.0448 0.0161 . . . 0.6962 0.6962 1.0917 1.0960 

1.25 0.4998 0.2595 0.1403 0.0619 0.0246 . . . 0.9003 0.9005 1.3891 1.3896 

 

 
Table 17: Pn(t) for the Inverse Gaussian distribution with μ = 0.75 and λ = 0.5625 

t P0(t) P1(t) P2(t) P3(t) P4(t) . . . μ NUM μ ANA σ
2 

NUM σ
2 

ANA 
0.25 0.7445 0.1221 0.0028 0.0977 0.0045 . . . 0.5871 0.5871 1.5286 1.5286 

0.70 0.3390 0.2021 0.0515 0.1674 0.0828 . . . 2.1363 2.1418 5.3976 5.4560 

1.25 0.1623 0.1435 0.0717 0.1368 0.1189 . . . 3.7480 3.8796 9.4947 10.506 

 

 
Table 18: Pn(t) for the Exponential distribution with λ = 0.5 

t P0(t) P1(t) P2(t) P3(t) P4(t) . . . μ NUM μ ANA σ
2 

NUM σ
2 

ANA 
0.5 0.7788 0.0974 0.0061 0.0781 0.0097 . . . 0.5500 0.5500 1.6500 1.6500 

1.0 0.6065 0.1516 0.0190 0.1229 0.0304 . . . 1.1000 1.1000 3.3000 3.3000 

2.0 0.3679 0.1839 0.0460 0.1548 0.0745 . . . 2.2000 2.2000 6.6000 6.6000 

3.0 0.2231 0.1673 0.0628 0.1496 0.1034 . . . 3.3000 3.3000 9.9000 9.9000 

5.0 0.0821 0.1026 0.0641 0.1088 0.1110 . . . 5.5000 5.5000 16.500 16.500 

10.0 0.0067 0.0168 0.0211 0.0310 0.0447 . . .  10.996 11.000 32.923 33.000 

           

 

7.5 Program Validation 

 

 Although the use of software such as MAPLE enabled the successful 

programming of an algorithm to invert the required LTs and then produce the numerical 
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results, in the case of bulk arrivals the distributions could only be calculated with an 

extremely high degree of accuracy for relatively small values of t.  Certain distributions, 

such as the exponential, mixed generalized Erlang, and matrix exponential, have 

properties that enabled accurate computations over greater ranges of t, but in general, 

each of the trials was limited by the availability of computational power and the ability to 

collect a finite number of coefficients from the p.g.f.s using a crude, semi-manual coding 

procedure.  Nevertheless, in each of the trials the asymptotic results derived in Chapter 5 

for the case of single arrivals and in Chapter 6 for the cases of bulk arrivals were 

employed to illustrate that the computed distributions had first and second moments that 

matched the asymptotic results for higher values of t.  

 The plot function was used in each MAPLE program iteration to illustrate the 

degree of precision of the data sets.  Program validation was based on a comparison of the 

analytical, asymptotic, and numerical results for the first and second moments of each 

distribution.  As a result of the limitation of calculating a finite number of ( )nP t values, the 

numerical results for greater values of t begin to diverge from the analytical and 

asymptotic results.  A compromise was made between achieving a high degree of 

precision and limiting the programming and computational time, so this verification was 

particularly important to confirm the validity of the results within an acceptable range of t 

values.     

 A comparison of Figure 1 and Figure 2 suggests that higher precision for a greater 

range of t is achieved from using the 1-3-5 group size distribution versus the Poisson 

group size distribution for arrival times based on the matrix exponential distribution.  In 

both cases, however, high precision was achieved at t = 3, a relatively high value in the 
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context of renewal theory.  This is further evidenced by the convergence of the analytic 

and asymptotic results at a value of approximately t = 1.5.  A secondary method of 

program validation included the summation of all calculated ( )nP t values to verify how 

closely they approached the expected value of 1.  These methods are evident in the 

sample MAPLE printout in Appendix C.   

 

 

Figure 1: Comparison of the analytical (red), asymptotic (blue), and numerical 

(green) results for the first moment for the matrix exponential distribution with 

Poisson arrivals. 

 ( )E Y t
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Figure 2: Comparison of the analytical (red), asymptotic (blue), and numerical 

(green) results for the first moment for the matrix exponential distribution with 1-3-

5 arrivals. 
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8 HIGHER ORDER MOMENTS 
 

  

 Chapters 4 – 6 illustrate the development of a new derivation for some asymptotic 

results in renewal theory.  In discrete time, these results are based on using generating 

functions to model the first and second moments, whereas in continuous time, Laplace 

transforms are used.  This chapter presents the development of the g.f.s and LTs for the 

first five moments, illustrating that similar derivations for higher order moments can be 

achieved along similar lines, provided similar assumptions hold true.  The discrete time 

moments match the results published by Brown (2008), but they are derived using a much 

simpler procedure.  This approach is employed to derive similar results in continuous 

time. 

8.1 Discrete Time 

 Consider the definition of the renewal function: 
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Its corresponding g.f. is: 
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As a result, the appropriate g.f. can be derived for the first l
th

 moments: 

 l = 1: 

 
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l = 5: 
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8.2 Continuous Time 

 A similar approach can be taken to determine the LTs for higher moments in 

continuous time.  The LT for the l
th 

moment is as follows: 
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As a result, the appropriate LT can be derived for the first l
th

 moments: 
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9 CONCLUSION 
 

 

9.1  Future Extensions 
 

 

 Some of the results presented in this thesis have already inspired further graduate 

work in renewal theory, particularly in discrete time, but there are several other areas of 

consideration where more time and study could provide additional contributions to the 

field.  Chapter 8 presents the development of generating functions and Laplace transforms 

for higher order moments in discrete time and continuous time, respectively.  The 

algorithm used in deriving the results presented in Chapters 4 – 6 could likewise be 

applied to produce explicit results for each of the corresponding higher order moments.  

Since the literature had previously failed to provide a constant term for the second 

moment in single arrival renewal theory, deriving such precise results of the higher 

moments could prove most useful. 

 The development of numerical results in bulk renewal theory was another 

important contribution of this thesis, but the MAPLE program that was created to provide 

the results could certainly be improved.  The latest version of this program does use Padé 

approximation when the LT of a distribution is not rational, but it does require the 

function to be of closed form.  There are countless other distributions with varying 

characteristics that could have been included, but in the interest of practicality, six 

renewal time distributions and two bulk group size distributions were selected for this 

course of study. 
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 The numerical results in bulk renewal theory are also limited by the value of t that 

is used.  This is a result of the requirement to collect coefficients from the Taylor series 

expansion of the generating function for the distribution of group size using a semi-

manual procedure and the very strong effect that increasing precision had on execution 

times.  Due to a limited amount of time available to complete this research, there was a 

practical limitation for the number of coefficients that could be collected, and this lead to 

an important decision of creating a MAPLE code including only 13 such coefficients.  

With this program, a single iteration of a particular renewal time and group size 

distribution had execution times ranging between 11.5 - 26 minutes, although the 

computing resources available at the time were admittedly limited to an outdated Acer 

Aspire 5920G notebook with an Intel Core 2 Duo processor.  Expanding the MAPLE 

program past 13 coefficients to produce precise results for a greater range of t would have 

required further coding time and considerably greater execution time.  As a result, it was 

decided that the final code yielded sufficient results to make a useful contribution to the 

field, particularly when supported by the asymptotic values resulting from these new and 

elegant derivations.   

 

9.2  Summary 
 

 

 Several new results in renewal theory have been presented in this thesis.  Simple 

and elegant solutions for the asymptotic results for the first and second moments have 

been derived in both discrete and continuous time.  In the latter case, the derivations were 

taken several steps further to provide similar results that account for bulk arrivals.  

Further, MAPLE was used in order to produce accurate numerical results in both single 

arrival and bulk arrival renewal theory in continuous time.  These results have led to 
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either the publication or submission of separate academic papers in journals related to the 

field, as well as to the continuation of research by other graduate students. 

9.3  Thesis Contributions 
 

 

The following is a list of contributions that are presented in this thesis: 

 A new derivation for the asymptotic results of the first and second moments, 

including constant terms, in discrete time renewal theory 

 A new derivation for the asymptotic results of the first and second moments, 

including constant terms, in continuous time renewal theory 

 A new derivation for the asymptotic results of the first and second moments, 

including constant terms, in continuous time bulk renewal theory 

 A MAPLE program producing numerical results in both single arrival and bulk 

renewal theory for a variety of renewal time and group size distributions 

 A new derivation for the generating functions of higher order moments in discrete 

time for future research 

 A new derivation for the Laplace transforms of higher order moments in 

continuous time for future research 

 

 

 

 

 

 



52 

 

 

REFERENCES 

Abate, J., Whitt, W., 2006. A Unified Framework for Numerically Inverting Laplace 

 Transforms. INFORMS Journal on Computing. 18(4), 408-421. 

Abate, J., Whitt, W., 1995. Numerical inversion of Laplace transforms of probability 

 distributions.  ORSA Journal on Computing. 7, 36-43. 

Baker Jr., G.A., Graves-Morris, P., 1996. Padé Approximants Second Edition 

 (Encyclopedia of Mathematics and its Applications), Cambridge University Press. 

Baxter, L.A., Scheuer, E.M., McConalogue, D.J., Blischke, W.R., 1982. On the 

 Tabulation of the Renewal Function.  Technometrics. 24, 151-156. 

Beichelt, F.E., 2006. Stochastic Processes in Science, Engineering, and Finance. 

 Chapman & Hall, Boca Raton.  

Brown, G.W., 2008. Higher order moments of renewal processes and Eulerian 

 polynomials, Statistics and Probability Letters. 78, 3008-3013. 

Chaudhry, M.L., Templeton, J.G.C., 1983. A first course in bulk queues. John Wiley & 

 Sons, New York. 

Chaudhry, M.L. 1995. On computations of the mean and variance of the number of 

 renewals: A unified approach. The Journal of the Operations Research Society. 

 46, 1352-1364. 

Chaudhry, M.L., Fisher, B., 2012. Simple and elegant derivations for some asymptotic 

 results in the discrete-time renewal process.  Statistics and Probability Letters. 

 83(1), 315-319. 



53 

 

 

Chaudhry, M.L., Samanta, S.K., Pacheco, A., 2012.  Analytically explicit results for the 

 GI/C-MSP/1/∞ queueing system using roots.  Probability in the Engineering and 

 Informational  Sciences. 26, 221-244. 

Chaudhry, M.L., Yang, X., Ong, B., 2013.  Computing the Distribution Function of the 

 Number of Renewals.  American Journal of Operations Research. 3(3), 380-386. 

Chaudhry, M.L., Kim, J., 2013.  Asymptotic Results for the First and Second Moments of 

 Discrete-Time Bulk-Renewal Process.  Journal of Mathematics and System 

 Science (accepted Dec 2013). 

Cox, D.R., 1962. Renewal Theory. Spottiswoode Ballantyne & Co Ltd, London. 

Fackrell, M., 2004. Characterization of Matrix-exponential distributions.  Department of 

 Mathematics and Statistics.  Accessed 25 November, 2012.  

 http://www.or.ms.unimelb.edu.au/Talk_Slides_2004/talk_ORSUM_2004_PDF.pdf.   

Feller, W., 1949. Fluctuation theory of recurrent events. Transactions of the American 

Mathematical Society. 67, 98-119. 

Feller, W., 1968. An Introduction to Probability Theory and its Applications Volume 1. 

 John Wiley & Sons, New York. 

Fisher, B., Chaudhry, M.L., 2014. Computing the distribution for the number of renewals 

 with bulk arrivals. INFORMS Journal on Computing (accepted Mar 2014). 

Fisher, B., 2010. Computation Techniques for Finding Distributions and Performance  

 Measures for the Qu,eueing System GI/G/1. Honours Mathematics Senior Project, 

 Royal Military College of Canada, Kingston, ON. 

Harris, C.M., Marchal, W.G., 1998. Distribution estimation using Laplace transform. 

 INFORMS Journal on Computing. 10, 448-458. 

Heyman, D.P., Sobel, M.J., 1982. Stochastic Models in Operations Research Volume 1:  

http://www.or.ms.unimelb.edu.au/Talk_Slides_2004/talk_ORSUM_2004_PDF.pdf


54 

 

 

Stochastic Processes and Operating Characteristics, McGraw-Hill Book 

Company, New York. 

Hunter, J., 1983. Mathematical Techniques of Applied Probability Volume 1: Discrete 

 Time Models: Basic Theory. Academic Press, New York. 

Karlin, S., Taylor, H.M., 1975. A First Course in Stochastic Processes, second ed. 

 Academic Press, New York. 

Kohlas, J., 1982. Stochastic methods of operations research. Cambridge University Press,  

 Cambridge. 

Parzen, E., 1962. Stochastic Processes. Holden-Day, Inc, San Francisco. 

Polya, G., 1954. Mathematics and Plausible Reasoning, Vol. 1: Induction and Analogy in 

 Mathematics. Princeton University Press, Princeton. 

Rackwitz, R., 2001 Optimizing systematically renewed structures. Reliability 

 Engineering and System Safety. 73, 269-279. 

Tijms, H., 2003. A First Course in Stochastic Models, Wiley, New York. 

Van der Weide, J.A.M., Pandey, M.D., Noortwijk, J.M., 2007. A conceptual 

 interpretation of the renewal theorem with applications, in: Aven, T., Vinnem, 

 J.E. (Eds.), Risk, Reliability and Societal Safety. Taylor & Francis Group, 

 London, pp. 477-484. 

Van Noortwijk, J.M., 2003. Explicit formulas for the variance of discounted life-cycle 

 cost. Reliability Engineering and System Safety. 80, 185-195. 



55 

 

 

APPENDIX A ELEMENTARY CONCEPTS 

 All definitions and descriptions assume the use of lattice random variables (r.v.s), 

which has all values that are integer multiples of a number.  Mathematically, if X is a 

lattice r.v., then ( ) 0 if , 0, and 0,1,2,P X x x nd d n       

 The descriptions of elementary concepts, unless otherwise noted, are based off the 

work of Chaudhry and Templeton (1983).   

 

A.1 Generating Function 
 

 

 The generating function (g.f.) is a power series, typically expressed in closed 

form, that encodes information about a sequence of numbers.  If a sequence of numbers 

composes a probability distribution function, then the corresponding g.f. is called a 

probability generating function (p.g.f.).  Both g.f.s and p.g.f.s have been compared with a 

bag that allows a user to carry multiple pieces of information regarding a specific 

sequence while only dealing with one piece (Polya, 1954, and Chaudhry and Templeton, 

1983). 

 Let X be a nonnegative lattice r.v. assuming integral values 0, 1, 2, ..., such that  

( ) ( ).XP X n p n    The sequence of probabilities  ( ), 0Xp n n  is proper if ( ) 0Xp n 

and 
0

( ) 1.Xn
p n




  It is generally assumed that all probability distributions are proper.  

The p.g.f. of the random variable X is defined by Chaudhry and Templeton (1983) as 

follows: 

0

( ) ( ) ( ).n X

X X

n

P z p n z E z




   
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( )XP z is an analytic function of z, a complex variable, and as a result the theory of analytic 

functions  can be used to obtained results concerning  ( ) .Xp n  ( )XP z is absolutely 

convergent for 1z   since (1) 1.XP    

 The mean and variance of a probability distribution are easy to derive from a p.g.f. 

as illustrated by the following properties: 

(1)

0
( ) ( ) (1),X Xn

m E X np n P



    

where 

 

( )

1

( )
(1) , 1,2,3,

r
r

r

z

d P z
P r

dz


   

Further, since 

  (2)

0
( 1) ( 1) ( ) (1),Xn

E X X n n p n P



     

the variance
2

X
  is given by 

 
2

2 (2) (1) (1)(1) (1) (1) .
X

P P P     

Higher order moments may be obtained similarly. 

 

A.2 Laplace Transform 
 

 

 The Laplace transform (LT) is employed in a very similar manner as the 

generating function.  LTs provide a bag to collect random variables just as p.g.f.s provide 

a bag to collect integer valued r.v.s.  As such, LTs are used in continuous time renewal 

theory whereas p.g.f.s are used when working in discrete time. 
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 Assuming ( )f t  is a probability density function (p.d.f.) of a non-negative r.v. T, 

then the LT ( )f s is defined as 

0
( ) ( ) .st st

t
f s E e e f t dt


 


      

(0) 1f   and ( )f s  is an analytic function in the half-place, 0Re( ) ,s s where 0 0,s  since 

0 ( ) 1f s  for all 0.s   This characteristic justifies several of the important derivations 

made using LTs. 

 Since the LT is a moment generating function, the moments of the distribution

( )f t can be easily obtained by the alternate form: 

0

( 1)
( ) .

!

r r r

r

s
f s

r






  

As a result, the first moment, or mean, is 

  '( )E T f s   

and the second moment is 2 ''( )E T f s    such that the variance is 

 
2

2 ''(0) '(0) .
T

f f    

There is a more general form of the LT, called the Laplace-Stieltjes transform (LST), 

defined as 

0
( ) ( ).st

T
t

f s e dF t





   

It can be advantageous to use the LST since it is even more closely related to the p.g.f. 

than the LT.  In fact, these latter two only differ by the change in variable .sz e  

 

 



58 

 

 

A.3 Inversion of Laplace Transforms and the Padé Method 
 

 

 If ( )f s is the LT of ( ),f t  then ( )f t is the inverse LT of ( ).f s   The inversion of 

LTs is required to derive both the asymptotic results in renewal theory as well as the 

distribution of the number of renewals.  The inverse of ( )f s is defined as 

1
( ) ( ) ,

2

a i
st

a i
f t e f s ds

i

 

 
   

where the contour is any vertical line s = a so ( )f s has no singularities on, or to the right of 

it (Abate and Whitt, 1995).  This type of integration is not always easily accomplished, 

even with powerful computing software such as MAPLE. 

 ( )f s should be rational in order to be easily inverted.  Many common distributions 

are not rational, however, so a rational function 
*ˆ ( )f s is used to approximate ( ).f s   As 

illustrated in Chaudhry, Yang, and Ong (2013), a useful method of rational approximation 

is the Padé method, where ( )f s can be expanded as 

0

1
( ) ( 1) .

!

n n

n

n

f s M s
n





   

In this expression,
0

( )n

nM x dF x


  is the n
th

 moment of the inter-renewal time.  As a 

result, a rational approximation function can be expressed as 

* 0

0

( )ˆ ( ) ,
( )

K n

nn

L n

nn

b sN s
f s

D s a s





 



 

where ( )N s and ( )D s are polynomials of degree K and L, respectively, with 

undetermined coefficients nb and ,na such that the first K + L moments of ( )f s are equal to 
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those of 
*ˆ ( ).f s  It is from these moments that the Padé approximation notation  /K L  

originates.  The Padé method requires high numerical precision in computations since the 

coefficients nb and na are uniquely determined once 0a is set to 0, K and L are selected 

through trial and error, and the process of equating the moments and formulating the 

simultaneous equations is completed.  For details, see Harris and Marchal (1998) or 

Baker Jr. and Graves-Morris (1996). 

 The primary goal of inversion in this thesis is to determine values for ( ),nP t the 

probability of n renewals occurring between [0, ).t  Since the Padé method can be used to 

approximate any non-rational function as rational, the Partial Fraction method of 

inversion can be used for the inversion of all closed-form probability distributions of 

interest. 

 By assuming that  

( )
( )

( )

N s
f s

D s
  

and considering the expression 

 ( ) 1 ( )( )
,

n

n
f s f sp s

s s


  

the following rational function is derived: 

                                               
1

( ) ( ) ( )( )
.

( )

n

n

n

N s D s N sp s

s sD s

  
                                       (A.1) 

It is assumed that the equation ( ) 0D s  has k distinct roots 1 2, , , ,ks s s and since 

(0) 1, ( )f N s and ( )D s have identical constant terms, 
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     
1 1 11

1 2( ) .
n n nn

kD s s s s s s s
        

Eq. (A.1) can be expressed in partial fractions as  

1
,

1 1

( )
,

( )

k n
j in

i
j i j

Ap s

s s s



 





 

where the constant coefficient ,j iA is given by 

 
( 1)

, 1

( )1
.

( 1)!
j

i
i

n
j i ji

s s

p sd
A s s

i ds s







 
      

Consequently, the final inversion can be written as 

1
, 1

1 1

( ) .
( 1)!

j

k n
s tj i i

n

j i

A
P t t e

i




 





 

The case where ( ) 0D s  has repeated roots can be dealt with similarly. 

 

A.4 Asymptotic Theory 
 

 

 Asymptotic results in renewal theory are concerned with the behaviour of a 

function as t tends to infinity.  These are often called limiting distributions, and they were 

the focus of attention throughout Chapters 4 – 6.  Asymptotic distributions are related to 

the notion of an asymptotic function, whereby a curve approaches a constant value, or 

asymptote, but never actually reaches it. 

 Clearly, for larger values of t, portions of a function concerning t will have a 

greater effect on a solution than constant terms, thus explaining why limiting distributions 

are of such great interest.  Figure 1 and Figure 2 in Chapter 7 illustrate how the behaviour 

of distribution functions in renewal theory are not correlated with the limiting 

distributions for small values of t, but as t increases the two values begin to converge.  
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Asymptotic results are often easier to manipulate and to use, as illustrated by the 

Elementary Renewal Theorem: 

( ) 1
as ,

M t
t

t 
 

 

where the renewal process ( )m t goes to infinity at an average rate of 
1


(Chaudhry and 

Templeton, 1983). 
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APPENDIX B PROBABILITY DISTRIBUTIONS 

 

 A probability density function (p.d.f.) is assumed to be zero for negative values of 

x or t in discrete time and continuous time, respectively. 

B.1 Poisson 
 

 

 The Poisson distribution is among the most common of discrete probability 

distributions.  It provides the probability of a number of independent events occurring in 

an interval of time based on an average rate of occurrence.  Parzen (1962) argues that 

events are said “to occur randomly in time if they are occurring in accord with a Poisson 

process” (p. 15).  The p.d.f. of the Poisson distribution is 

( ) , 0,1,
!

x

f x e x
x

  
 

with mean and variance .  

 The probability generating function (p.g.f.) of the Poisson distribution is  

(1 )( ) .z

XP z e    

In continuous time, the Poisson distribution is also related with the exponential 

distribution, with p.d.f. 

( ) , 0tf t e t  
 

and Laplace Transform (LT) 

( ) .f s
s






  

The Poisson distribution is used as the group size distribution in this thesis, whereas the 

exponential distribution is used for the renewal time distribution. 
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B.2 Binomial 
 

 

 The binomial distribution is another common discrete probability distribution.  It 

provides the probability of a number of events occurring from a set number of 

independent trials or attempts, based on the probability of a success or failure each time.  

The p.d.f. of the binomial distribution is 

( ) , 0,1, ,x m x
m

f x p q x m
x

 
  
 

 

with mean np and variance ,npq where 1,2,n  and 0 , 1, 1.p q p q     

The p.g.f. of the binomial distribution is 

 ( ) .
m

XP z pz q   

The binomial distribution in its general form cannot be used as a p.g.f. for group size for 

computing the distribution of the number of renewals.  This is an important point to 

consider since it is a common distribution that would appear ideal for use as a group size.  

With that being said, it would be quite simple to restructure the p.g.f. for a specific 

example of a binomially distributed group size into an appropriate form.  For example, for 

a binomial distribution where p = 0. 5, q = 0. 5, and m = 2, the p.g.f. would be 

2( ) 0.25 0.5 0.25 .XP z z z    

B.3 Mixed Generalized Erlang 
 

 

 The Erlang distribution is used in continuous time and is an extension of the 

exponential distribution.  Whereas the number of events that can incur in a time interval 

are modelled by an exponential distribution, the waiting times between a number of 

occurrences of an event are modelled by the Erlang distribution.  As such, the Erlang 
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distribution is the sum of independent events having an exponential distribution.  The 

p.d.f. of the Erlang distribution is 

1

( ) , 0
( 1)!

k k tt e
f t t

k

  

 
  

with shape parameter ,k mean ,
k


and variance 

2
,

k


 where 1,2,k  and 0.   

 The LT of the Erlang distribution is 

( ) .

k

f s
s





 
  

   

The Mixed Generalized Erlang distribution differs from the more general Erlang 

distribution since different sets of occurrence are given greater priority over others 

through the use of weighting coefficients.  The p.d.f. of the Mixed Generalized Erlang 

distribution is 

1

1

( ) ,
( 1)!

j j tk

j

j

t e
f t c

j

  







 

where 
1

1.
k

jj
c


   As a result, the LT of the Mixed Generalized Erlang distribution is 

1

( ) .

jk

j

j

f s c
s





 
   
  

The Mixed Generalized Erlang distribution is used solely for the renewal time distribution 

in this thesis. 
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B.4 Matrix Exponential 
 

 

 Although it does not have a simple probabilistic interpretation, the matrix 

exponential distribution is a specific class of exponential distributions that is versatile, 

dense, and algorithmically tractable (Fackrell, 2004). Its p.d.f. is 

( ) ,Mtf t e m
 

where M is a state space Matrix  0,1, ,M p of a continuous-time Markov chain.  Its 

LT is 

 
1

( ) (0).f s sI M m f


  

 

As there are no restrictions on parameters , , or ,M m other than that they correspond to 

a distribution, there are a wide variety of applications for matrix exponential distributions 

in fields such as queueing theory, telecommunications, control risk, and insurance risk 

(Fackrell, 2004).  The matrix exponential distribution is used solely for the renewal time 

distribution in this thesis. 

 

B.5 Gamma 
 

 

 The gamma distribution is also used in continuous time, and provides the waiting 

time required to observe a set number of occurrences of a specified event.  It is a common 

two-parameter distribution, with p.d.f. 

1

( ) , 0,
( )

tt e
f t t

 

 

 

 

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where 0  is the α
th

 occurrence of an event under consideration,
1

0

 is the mean rate 

at which events occur, and ( ) is the gamma function, defined as 1

0
( ) .te t dt


     

  and   are commonly referred to as the shape and scale parameters, respectively.  The 

mean is   and variance is 
2.  The LT of the gamma distribution is  

 

1
( ) .

1
f s

s






 

The gamma distribution is used solely for the renewal time distribution in this thesis. 

B.6 Truncated Normal 
 

 

 The normal distribution is perhaps the most practical of all distributions, as a great 

deal of natural phenomena closely follow it.  A perfectly symmetrical distribution, the 

normal distribution is shaped like a bell, with the mean, median, and mode of the 

distribution all occurring at the centre.  Its p.d.f. is  

2 2( ) 21
( ) , ,

2

tf t e t 

 

     

 

where μ > 0 is the mean and 
2 0  is the variance. 

 The truncated normal distribution is very similar to the normal distribution except 

that its value can be bounded.  This p.d.f. is  

2 2( ) 21
( ) , 0,

2

tf t e t
a

 

 

  
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where 1 ( ),a





  with ( )  being the standard normal distribution function.  The 

truncated normal distribution requires Padé approximation and is used solely for the 

renewal time distribution in this thesis. 

 

B.7 Inverse Gaussian 
 

 

 The inverse Gaussian, or Wald distribution, is another two-parameter distribution 

used in continuous time.  Its p.d.f. is 

2 2( ) 2

3
( ) , 0,

2

t tf t e t
t

  



    

where μ > 0 is the mean and 0  is the shape parameter. Its variance is 

3

,



and as 

0,  the inverse Gaussian distribution takes on the shape of the normal distribution.  

The inverse Gaussian distribution can also be expressed in terms of 





 and 

2

,







its shape and scale parameters, respectively.  These parameters are used in the most 

common expression of the LT of the distribution, which is 

 1 1 2
( ) .

s
f s e

  
  

The inverse Gaussian distribution is used solely for the renewal time distribution in this 

thesis. 
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APPENDIX C SAMPLE MAPLE PRINTOUT 

 The following is a printout of the algorithm programmed in MAPLE to produce 

the numerical results presented in Chapter 7: 

 
>  

>  
>  

>  

 
>  

>  
>  

>  

>  

>  

>  

>  
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>  

>  

>  
>  
>  

>  

>  

>  

>  

>  
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>  

>  

>  
>  

>  

>  

>  

>  

>  
>  
>  
>  
>  

>  

>  

>  

>  

>  

>  

> M1:=-subs(s=0, diff(Fs, s)); 
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M2:=subs(s=0, diff(diff(Fs, s),s))/2; 

> u := M1; 

usquare := M1^2; 

sigmasquare :=M2*2 - usquare; 

> smt := t/u + (sigmasquare - usquare)/2/usquare; 
>  
>  

>  
>  

>  
>  

>  
>  
>  

>  
>  
>  
>  

>  
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>  
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>  
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>  

>  
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>  

>  

>  

>  
>  
>  

>  
>  
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>  
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