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ABSTRACT

Fisher, Brent David, M.Sc. Royal Military College of Canada, May 2014, Renewal
Theory: Simple and Elegant Derivations. Supervised by Dr. M.L. Chaudhry.

This thesis comprises two principal areas of research: new derivations of
asymptotic results in renewal theory and the computation of the distribution for the
number of renewals with bulk arrivals.

A simple and elegant solution to determine the asymptotic results for the renewal
density as well as for the first and second moments of the number of renewals for the
discrete-time renewal process is presented. Using generating functions, the difficult-to-
determine constant term in the second moment is also addressed. A similar process using
Laplace transforms (LTs) is likewise employed to determine analogous results in
continuous time. Further, the solution is extended to determine the asymptotic results for
the first and second moments of the number of bulk renewals as well.

The distribution of the number of renewals for both single and bulk arrivals in
continuous time is calculated using an algorithm employed through MAPLE. These
numerical results are acquired by considering rational as well as non-rational LTs and
Padé-approximated LTs for the distributions of inter-renewal times. The asymptotic
results derived in the first part of this thesis then help to validate the accuracy of these

numerical results.

Keywords: Renewal theory, Asymptotic results, Numerical results, Bulk arrivals,
Generating functions, Laplace transforms



RESUME

Fisher, Brent David, M.Sc. College militaire royal du Canada, mai 2014, Théorie de
renouvellement: dérivations simples et élégantes. Dirigé par Dr. M.L. Chaudhry.

Cette thése comprend deux domaines de recherche principaux: de nouvelles
dérivations de résultats asymptotiques pour la théorie du renouvellement, et le calcul de la
distribution pour le nombre de renouvellements pour les arrivées en groupes.

Une solution simple et élégante pour déeterminer les résultats asymptotiques pour
la densité de renouvellement ainsi que pour les premiers et deuxiémes moments du
nombre de renouvellements pour le processus de renouvellement en temps discret est
présentée. En utilisant des fonctions génératrices, le terme constant qui est difficile a
déterminer pour le second moment est également résolu. Un processus similaire utilisant
les transformations de Laplace (LTs) est également utilisé pour déterminer des résultats
similaires en temps continu. De plus, la solution est poursuivie afin de déterminer les
résultats asymptotiques pour les premiers et deuxiémes moments du nombre de
renouvellements en groupes.

La distribution du nombre de renouvellements pour les arrivées simples et en
groupes en temps continu est calculée en utilisant un algorithme fait avec MAPLE. Ces
résultats numériques sont acquis en considérant les LTs rationnelles et non-rationnelles
ainsi que les LTs de Padé pour les distributions des intervalles de renouvellement. Les
résultats asymptotiques dérives dans la premiére partie de cette thése aident ensuite a

valider le calcul d’incertitude de ces résultats numériques.

Mots-clés: Théorie de renouvellement, résultats asymptotiques, résultats numériques,
arrivées en groupes, fonctions génératrices, transformations de Laplace
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1 INTRODUCTION

1.1 Problem Description

Renewal theory has been of interest for several decades due to a wide variety of
applications in business and engineering, and although many well-known theoretical
results have been available for quite some time, limitations in computing power have
prevented further advances in the field. Certain theoretical results, including the use of
constant terms in the various moments of asymptotic results, are incomplete or have
complex derivations that have not been succinctly articulated for new students of the
field. The traditional lack of computing power has likewise limited the availability of
numerical results in renewal theory. Acquiring the distributions for the number of
renewals based on common probability distributions for both renewal time and group size

could assist in finding new applications of renewal theory in modern society.

1.2 Thesis Objectives

The goals of this thesis are three-fold:
1. To derive simple and elegant asymptotic results in both discrete and continuous
time, including the difficult-to-determine constant terms of the second moments;
2. To complete similar derivations for the bulk renewal process in continuous time;
3. To compute numerical results for both single and bulk renewal processes in

continuous time for a variety of distributions.



2 LITERATURE REVIEW

The theory of renewal processes and renewal theorems plays a fundamental role in
many areas such as failure and replacement of equipment, risk-based asset management
models, and queues. Rackwitz (2001) and van Noortwijk (2003) discuss some of these
applications throughout their respective works.

In a recent study, van der Weide et al. (2007) give asymptotic results for the first
and second moments for the number of renewals. They provide a constant term in the
second moment and state that it is not clear from Feller (1949) as to how to obtain the
constant term using generating functions (g.f.s). The same arguments apply to the results
presented in Feller (1968). Hunter (1983) likewise uses g.f.s to estimate the moments of
the asymptotic results in renewal theory. In this regard, the derivations of results
presented in both Feller (1949) and Hunter (1983) are such that the complexity of the
procedure involved increases while proceeding from the density function to higher order
moments. This is expected to a certain degree, but the derivation of the second moment,
for example, is such that the constant term is not explicitly stated. Brown (2008) provides
explicit formulae for the moments of all orders of the number of renewals in discrete
time, but this is done using difficult combinatorial methods.

Cox (1962) and Feller (1968) are among the most prominent of the various
authors who discuss the theoretical aspects of renewal theory throughout their works, and
their ideas are repeated through other publications such as Heyman and Sobel (1982),
Tijms (2003) and Beichelt (2006). With that being said, there remains a deficiency in
attempts to apply these results in practice. Historically, the computation of numerical

results has been limited by the availability of computing power, but the emergence of



powerful modelling software such as MAPLE has facilitated the use of algorithms to
compute these results. Abate and Whitt’s (2006) paper is a culmination of several earlier
works providing reviews on the numerical inversion of both g.f.s and Laplace transforms
(LTs).

Chaudhry and Templeton (1983) discuss basic renewal theory in the context of
queueing theory. Although the majority of their work concerns bulk queues and queueing
systems, all essential elements of renewal theory in continuous time are presented. The
notations used throughout this thesis most closely reflect those used throughout their
work, although certain elements have been changed in the interest of clarity for readers
unfamiliar with the field of study.

Parzen (1962) likewise includes a succinct discussion of the continuous time
renewal process, but since his work is primarily focussed on stochastic processes, he
includes discussions on other basic topics such as probability distribution types and
Markov chains. Kohlas (1982) assumes a similar approach in his work, but he is one of
the few notable authors to include descriptions of renewal theory in both discrete and
continuous time. Further, the work of Karlin and Taylor (1975) amplifies their basic
description of renewal theory with several additional theorems.

In a recent paper by Chaudhry, Yang, and Ong (2013), LTs are employed to
calculate the distribution function, mean, and variance of the number of renewals in a
continuous-time renewal process. In part an extension of some of the results presented in
Chaudhry (1995), their work is limited to distributions that have a rational LT or can be
approximated as rational, and it is assumed that all renewals are single arrivals. Despite
these limitations, in many ways the authors build upon previous results by Baxter et al.

(1982), who use a generalized cubic splining algorithm to evaluate convolution integrals



for various probability distribution functions. The work by Baxter et al. (1982) is still
significant since it provides a variety of numerical results for distributions such as
gamma, truncated normal, and inverse Gaussian, each evaluated at time values of

t <1.25 with which to compare in the case of single arrivals.

The speaking notes from a presentation to the University of Melbourne by
Fackrell (2004) provide information on matrix-exponential distributions, which are
another class of distributions of interest in renewal theory. Further, an Honours
Mathematics Senior Project by the author of this thesis (Fisher, 2010) describes several
distributions of interest, as well as details describing how the Padé approximation can be

used to find the distribution of renewals assuming single arrivals.



3 RENEWAL THEORY BASICS

Refer to Appendix A for descriptions of elementary concepts in probability
theory, including the generating function, Laplace transform, inversion of Laplace
transforms, the Padé method, and asymptotic theory.

Renewal theory is a notion in probability theory concerned with the number of
random, or stochastic, events that occur prior to a specific time. These events can be
indicative of real-life occurrences such as equipment failure or replacement, arrivals or
departures in queues, as well as monetary gains or losses, and they are typically called
renewals within this field of study. For example, consider the inventory of a particular
item at a store: The length of time that passes between purchases cannot be known with
certainty, so both the number of sales that are made as well as the number of items to be
restocked are examples of random processes.

Mathematically, this situation can be modelled by random variables (r.v.s) that are
based on probabilistic laws. Stochastic processes model the change of a system and its
corresponding values over time, whereas counting processes are a type of stochastic
process since they count the total number of stochastic events that have occurred up to a
specific time. A renewal process is a type of counting process, and can be modelled in
either discrete or continuous time, depending on whether time is modelled as progressing
finitely or infinitesimally. The term recurrent process is used interchangeably with

renewal process throughout the literature (Chaudhry and Templeton, 1983).



3.1 Discrete Renewal Theory

A renewal process is a process {N,, n >1} for which the state space belongs to a
denumerable set {0, 1, 2, .. .}. N, can count the number of renewals within a time period
(0,n], and the intervals between renewals are called the renewal periods. Renewals occur
at instants of time sj,s3,s5, . . ., and renewal intervals Ti =s; —s;_;, 1 =1, 2,3, ...
sy = 0, are independent identically distributed random variables (i.i.d.r.v.s) distributed as

T with common probability mass function (p.m.f.)

fo=P(T =k), k=1, f =0,
g.f.

f(z):isz",|z|£1,
k=1

and mean
u=f '(1):Zkfk < o0,
k=1

In discrete time, the following notations are used to describe common statistical

measures:
a=f"1<wo, n=123
and
o’ =E[T*]-E’[T].
A renewal process is periodic if there is an integer d >1such that f_ =0 except
when k =d, 2d,3d,...such that renewals can take place in intervals that are multiples of

d. Asaresult, f, #0at k=d,2d,3d,...,and the greatest integer d is the period of the



renewal process. A non-periodic renewal process has a period of 1 and is called

aperiodic.

The renewal equation is defined as m,=f +> m_ f, n=123_ . where

=1 :
m, = P(renewal at time n) with m; = f; and my = 0 (implying no renewal at time 0). This
IS an important notion in renewal theory since the left-hand side (LHS) illustrates the
probability of a renewal taking place at time n while the right-hand side (RHS) illustrates
that this is either a first renewal occurring at time n or a renewal occurring at time j > 1

with probability fj and a subsequent renewal at time (n - j) with probabilitym, _;.

The waiting time until the k™ renewal is given by the partial sum
k
W, =>T, W,=0.
=1

Waiting time is used to derive the distribution of N, and its moments due to the following

expression for n>0, k>0:

Consequently,

py, (K)=P(N, =k)=P(N, >2k)-P(N, >k +1)

= P(\Nk < n) - P(\Nk+l < n)
=Fy, (M)-F,_ (n).

By employing the use of g.f.s on p, (k), it follows that

3 . " 2)-f" f"(2)(1-f(z
;P(NHZK)Z _ (Z)l_Z (Z): ():E_Z ()),n20,|z|<1,



where f(z) is the g.f. of f_and f"(z) is g.f. of the n" convolution of f(z). The
coefficients of z" provide the probabilities p, (k) that compose the distribution of N, .

The mean value of the discrete-time renewal process N, is referred to as the
renewal function, and is defined as M, =E[N;]. A great portion of renewal theory is
concerned with properties of the renewal function, and it is for this reason that its

asymptotic results (see Appendix A.4) are of such interest.

3.2 Continuous Renewal Theory

In continuous time, a renewal process is a process {N(t), t >0} for which the state
space belongs to a denumerable set {0, 1, 2, . . .} and for which the inter-renewal times
s;i —si_y,1=1,23, ..., s; = 0, between successive renewal groups are positive i.i.d.r.v.s.
N(t) can count the number of renewal groups within a time period (0,t], and the intervals
between renewal groups are called the renewal periods.

Renewals occur at instants of time s;,s5,s3, . . ., and renewal intervals T; = s; —

si_1, 1=1,2,3, ... areiidrv.s distributed as T with common probability density

function (p.d.f) f(t)=limP(t<T <t+at)/At, f(0)=0, LT f(s):J‘:f(t)e*S‘dt,szo,

and mean yz—f'(0)<oo. In continuous time, the following notations are used to
describe common statistical measures:

U, =E[T"]<o, n=12,3
and

o® =E[T?]-E[T] <.



In addition,
My = 4.

It is often possible that only the renewal intervals T, Ts... are i.i.d.r.v.s,
particularly when the observation of a system commences after the process has been
operating previously. The period prior to the first renewal, denoted by T, is commonly
referred to as a residual lifetime. A renewal process with the characteristic that

f,(t) = f(t), whereby the period prior to the first renewal is uniquely distributed

compared to all other periods, is considered to be delayed.
The renewal equation is defined as m(t) = f(t)+j;m(t—y)f(y)dy, where f (t) is

the common density of T’s. Specifically, m(t) = renewal density at time t. For details, see
Chaudhry and Templeton (1983).

The waiting time until the n™ renewal is given by the partial sum
W(nm=>T, W,=0.
=1

Waiting time is used to derive the distribution of N(t) and its moments due to the
equivalency of the following expression for t>0, n>0:
N(t)<n<W(n) >t
Let F,(t) =P(W(n)<t), F,(t) =1. It follows that
Ft=F"(t),n=012,..,
which is the n-fold convolution of F(t)with itself as described in Chaudhry and

Templeton (1983).
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Also note that
Pn(t) = Fn (t) - Fn+1(t)l t> 0, n =01
and let f(s)and P, (s)be the LST of F(t) and P,(t), respectively. By taking the LST on

both sides of the equation, it follows that
B.(s) = f(5)- F"(s) = F"(5) (L~ F ().

Since P, (s) = J': e *dP (t), the desired result is obtained:

Pn(t) = L_l{r)”T(s):|: Lllf (S)<1_ f(s))], n201 S >O,

S

where inversion provides the probabilities P, (t) that compose the distribution of N(t).

Note that a very similar notation is employed in Chaudhry, Yang, and Ong (2013), and
for further details on the inversion, see Appendix A.3.

The mean value of the continuous-time renewal process N(t) is referred to as the
renewal function. The renewal density is the first derivative of the renewal function, but
these are defined in Section 5.1 and 5.2, respectively. A great portion of renewal theory

is concerned with properties of the renewal function, and it is for this reason that its
asymptotic results (see Appendix A.4) are of such great interest. Let M(t)=E[N(t)]
and m(t) =M (t).

It is important to note two key distinctions between the notation used in discrete
time and continuous time: Whereas in discrete time n is used to describe the time, in
continuous time the symbol t is used instead. Likewise, when counting the number of

renewals in discrete time, the symbol k is employed, whereas n is used in continuous

time.
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3.3 Bulk Renewal Theory in Continuous Time

In order to limit the focus of this thesis, as well as to provide other graduate
students with adequate research opportunities in renewal theory, all work regarding bulk
arrivals has been restricted to continuous time.

Although modelled by pre-determined distributions, renewals are generally
assumed to occur as single events. It is simple to conceptualize a single piece of
equipment failing or one new customer arriving in a store at a time. These events are
examples of a single-arrival renewal process, and are said to have renewal events of a
group size or batch size of one. In both renewal theory and the real world, events with a
group size greater than one can occur as well. For example, a bus full of tourists can
cause multiple customers to arrive at a location such as a restaurant or an amusement park
at the same time. Just as the frequency of renewal events can be modelled using
probability distributions, so can the group size of these renewals. Bulk renewal theory is
required to model either of these examples, and this has a direct impact on the distribution
of the total number of renewals and its corresponding moments.

Assume that groups arrive at times s;, s,, s, ..., With X; being the size of the i"

group and N(t) being the number of groups arriving during the time interval (0,t]. As

such, the total number of renewals is
N ()
Y(t)=) X,
i=1
Let the probability generating function (p.g.f.) of Y(t) be

P&J)=E[z“°]:E{zZ%%“}
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Assuming that X;’s are i.i.d.r.v.s distributed as X with p.g.f. Py(z) and the first two

moments of X are finite, P(z,t) can be rewritten as

P(z,t) = E{E[zz‘:ﬂ)xi N (t)ﬂ

:ie{zwxi |N(t)=n}P(N(t)=”)

n=0

8

=> (P (2)" R (1).

>
o

The model can be reduced to the single-arrival renewal process if P, (z) =z, where Y(t)
becomes N(t) and P(z,t) =" P, (t)z".
By taking the LT of P(z,t), the following compound distribution is obtained:
P(z,5) = jo“’ P(z,t)e "t
'f:{i(Px 2))'P, (t)}estdt

(P(2))" [/ P (e dt

where P (s)=["P,(t)e *dt,n=02,... is the LT of P,(t). Assuming that the inter-
renewal times of the process {N(t), t > 0} are i.i.d.r.v.s with distribution function F; (t)
and Laplace-Stieltjes transform (LST) f(s) = .[:e*“d F, (t), it can be shown that (see, for
example, Cox (1962))

. f”(s)(l— f(s)),

S

SO

where P, (s)and f (s) are the LSTs of P, (t) and f (t), respectively. It then follows that
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P29 =3 (FR.@)

_1-f(9)
s—sf(s)P,(2)

Although this p.g.f. could be inverted to determine the distribution of the number of
renewals for bulk arrivals, the complexity of the equations makes this process quite

cumbersome. Instead, by first calculating the Pn(t) from the single arrival case and
expanding P(z,t) as a Taylor’s series, it is then possible to collect the coefficients of 2"

and quickly determine numerical results for various values of t.
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4 ASYMPTOTIC RESULTS IN THE DISCRETE-TIME RENEWAL
PROCESS

A simple and elegant solution to determining the asymptotic results for the
renewal density as well as for the first and second moments of the number of renewals for
the discrete time renewal process is presented. Using g.f.s, the difficult-to-determine
constant term, as stated in Van der Weide et al. (2007), the second moment is also
addressed.

The Tauberian theorem as indicated in Cox (1962) for the continuous time
renewal case is employed to expand the g.f. of the probability of a renewal at time n, of
the renewal function and of the first and second moments. This quickly leads to the final
asymptotic results for the probability of a renewal at time n as well as for both the first
and second moments. Some easy steps could have been avoided, but are included here for

the sake of clarity.
4.1 Renewal Density

The use of the term renewal density form_ is employed from continuous time

renewal theory. Since the renewal time is at least one unit and assuming that limm,

n—oo

exists, it can be shown that limm, =1/, u<o:

n—o0

Proof: The renewal equation defined as m, = f, +Zmn_j f,,n=123... hasg.f.
j=1

X . F(2)
m(z)_kzﬂlmkz Tt (1)
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Since my are probabilities, 0<m, <1, and m(z) is at least convergent in |z]<1. Now,

assuming f(1) = 1 (the recurrent case), u<oo (used in finding C ), and using the

Tauberian theorem (since lim(1—z)m(z) =1/u as shown below), the intuitively obvious
-1

relation

C—l
m(z) = 2 +0(), (2

where C_, is a constant derived below and O(1) indicates a function of (1— z)bounded as
z—1", is obtained. This follows from Eg. (1), since qu](l—z)m(z)zil/,u is derived

from multiplying Eq. (2) by (1—2z) and taking the limitas z —»1". The result is based on
the assumption that O(1) near z =1 leads too(1) as n —oo. This assumption is similar to

the one used in continuous-time renewal theory results such as in Cox (1962). It should
also be noted that in all asymptotic expressions for the renewal density, first moment, and
second moment, it is implied that n — oo.

There are several ways of determining lim m,. For one such method, see Kohlas
—0

(1982). The existence of the limit can also be obtained using a theorem in Karlin and

Taylor (1975). From Eq. (1) and (2), it follows that
C,= !LT (1-z)m(z)=1/ p.
4.2 First Moment

It follows from both Feller (1949) and Hunter (1983) that given the number of

renewals N, in (0,n], the g.f. for the mean number of renewals M =E[N.] is



N n_ f(2) _ Mm(2)
M(Z)_Z;M”Z "0t -2) |z| <1.
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Assuming that the renewal event is aperiodic recurrent with g < o and o< oo, it can be

shown that

2 2
M ZEJ{%}FO(&

Proof:
. . ) 1 .
Since Ilrp(l—z) M (z) ==, M(2) can be written as
7' MU

C C

M(z) = (1_*;)2 + (1_*12) +0(2).

Proceeding as in the case of the renewal density, it follows that
M, =(n+1)C_,+C_, +o(1).
Now

C,=lim(1-2)’M(2) =1/ 4,

-1

and

z 71"

(1-2) (1-2)(1- f(z))
_Wa) W 8
2f°Q) 2u°

Substituting these constant values into the preceding equation, it follows that

M, 0, a22 —1+l +0().
2p 7

By substitutingd, = o+ ,uz — U, the desired result is obtained:

C, =lim (1-z)!|v| (z)- C. ] = Iim{l_z_(]/ﬂ)(l_ f(z))}l
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2 2
M, =ﬂ+(ff_ﬂz+ﬂ]+o(1),
7 2u
This matches with the results in Feller (1968) and Hunter (1983). It can also be shown to
match the result in van der Weide et al. (2007). In addition, it easily leads to the well-

known result limM, /n=1/u.

4.3 Second Moment

An identical approach is taken for solving for the asymptotic results for the second
moment. Given that the number of renewals in (0,n] is N, it follows from Feller (1968)

and Hunter (1983) that

f(z)+ f2(2) _M (2)(1+ f(2))
(1-2)(1-f(2))  1-f(

M (2)=) EIN:] -

Using the same arguments as before, it can be shown that

2 2 2 _ N
imM®@ =limE[N?] > 4n[ 20 L 1\ [36  Si=2p 1790 3 )
n— n—o0 n /J ﬂ ﬂ /U 2# 3/1 6/,[ 2/«1

or,as N — oo,

2 2 2
Mlﬁz’:n—+n(20 +i—£J+{3ﬂ2 +3/Jz_2’t%+1_9ﬂ2 —2i+1]+0(1)-
7

2#4 3/13 6/12
Proof:
Since Iirp(l—z)sM(z)(z):Z/,uz, proceeding as in the case of the first moment and

assuming that 4, i, and g, <o, M (z) can be written as

Cs + C, + C. +0(1)
(-2 (-2 (1-2) ’

M®(z) =
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and thus

M@ :(%jca +(n+1)C, +C +0(). ®)

Now,

C,= lim(l—z)3 M @ (z) ~lim (1—2) (f (Z)+2 f (Z))
71 71 (1_ f(Z))

=2/(1'@) =2/4,
B )|y Cs || A-D(FP@+ @) 2
-t wrir-glap ot

- nm{”z(lﬂ)z(fz(zn f(2))-2(1- f(z))z}
1 (1-2)(1- f (@)’

-1

_3u’+2a,

3

U

and

C =Iim(1—z){M(2)(z)— C, G, }:"m{fz(mf(z)_ 2 _2a2+3ﬂ2}

oo (1—2)3 (1—2)2 -1 (1—f(2))2 /Jz(l—Z)z u3(1—z)

| 0= (H @)+ 1) -26(1- £(2)) (22, +307) (1-2) (1= ()
w(1-2) (-t @)

-1

B 9a22 —9,uza2 —4ua,

+1.
6’

After substituting the values of C ,,C ,,and C _,into Eq. (3) it follows that
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_i(n+2)!+(232—3,U2)(n+1)+9a22—9/12612—4,ua3

MP = +1+0(1
" u® 2In! 1 6" @
2 2
:n—2+ n(%+2—%—§j+(%+2—a§—§+ 9a24 = 9a22 - 4a’°; +1j+0(1)
H U ow) \woowop 6yt but bu
3(#2—2ﬂ2ﬂ +#2)_2,uz—2,u —3u°
2 2 4 3
=n—2+n(2i3+i2—lj+ 2H H +0(1),
H Hoou U _3(/12—,u)_2(/13—3,u2+2/,l)+1
2 3u°

where a; = E[(T —2)(T ~1)T]=E[T°]-3E[T ]+ 2E[T] = 4, =311, + 241,

a, =E[(T-)T]=E[T?]-E[T]= 1, — ., and 1= L.

This implies that as n— oo,

2 2 2
Mé2):n_+n(zi+i_l]+[3ﬂ2 +3ﬂz—2ﬂ3+1—9ﬂ2_Zi+1J+o(l). 4
Y7,

e @woowt op) 24t 38 6u°

The first two terms on the RHS of Eq. (4) are identical to the first two terms presented in
Hunter (1983), but now there is an expression including the constant terms. For an

expression entirely in terms of ordinary moments, refer to van der Weide et al. (2007).

As in the case of the first moment, lim M® /n? =1/ 1%, as expected.
—o0

4.3 Conclusion

The techniques illustrated in this chapter provide a shorter and simpler alternative
to determining several asymptotic results in discrete-time renewal theory. By first
expressing m(z), M(z), and M®(2) in a particular form, the desired asymptotic results are
easily derived. Further, if the first renewal period has a different distribution than the
other renewal periods, then the renewal density as well as the first and second moments

can be dealt with along similar lines.
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A paper based on this result has been published in the journal Statistics and
Probability Letters (Chaudhry and Fisher, 2012). It has already influenced new research

by other graduate students studying renewal theory (Chaudhry and Kim, 2013).
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5 ASYMPTOTIC RESULTS IN THE CONTINUOUS-TIME
RENEWAL PROCESS

As in discrete time, an elegant solution to determining the asymptotic results for
the renewal density as well as for the first and second moments of the number of renewals
in continuous time has been derived. The purpose of this chapter is not only to give the
asymptotic results for the second moment with a constant term using LTs, but also to give
an elegant derivation of the asymptotic results for the renewal density as well as for both
the first and second moments using LTs in continuous time.

The method requires inversion on the LT of the probability of a renewal at time t
of the renewal function and of the second moment (see Appendix A.3). This quickly
leads to the final asymptotic results for the probability of a renewal at time t as well as for
both the first and second moments. Some easy steps could have been avoided, but are

included for the sake of clarity.
5.1 Renewal Density

The limit of the renewal density can be expressed as !im m(t) =1/ u, 1<y <oo:
Proof:

The renewal equation, defined as m(t) = f (t) +J'; m(t—y) f (y)dy, has LT

~ I _ 1?(S)
m(s)= jo e 'm(t) dt _—(1_ f(s))' (5)
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Assuming f (1) = 1 (the persistent recurrent case), u <o (used in finding C_,),and using
the Tauberian theorem (since Iirgjs-m(S):]/y as shown below), from Eg. (5) an

intuitively obvious relation is derived:

m(s) = %+0(1), (6)

where O(2) indicates a function of s bounded as s — 0. This is based on the assumption
that O(1) near s =0leads too(1) ast — oo. For details, see Cox (1962). As in the case of

discrete time, it should also be noted that in all asymptotic expressions for the renewal
density, first moment, and second moment, it is implied that t — .

From the inversion of Eq. (6), it follows that
m(t)=C , +0o(d),
where o(1) indicates a function of t tending to zero as t — oo.

C_,is then derived as follows:

C_=Ilims-M(s)=1/ u.

s—>0~

5.2 First Moment

Given the number of renewals, N(t), in (0,t), from Eqg. (5) the LT for the mean

number of renewals M (t) = E[N(t)] is

7 [t _ f(S)
M(s)_j0 e M(t)dt——s(l_ f(s))’

where it is assumed that the first two moments of f (t) are finite. Assuming that i <o and

o < o, it can be shown that
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2

M(t):l+(02_2ﬂ j+o(1),
Iz 24

where o(1) >0 as t— oo.

Proof:

Since Islrrg M (s) =0, M (s) has a pole of order 2 at s = 0, and M (s) can be written as

I\7I(s):2+&+0(1).
s s

2

By inverting this function as in the case of the renewal density, it follows that
M(t)=t-C,+C_,+0(D). 7
Now
C., =lims*Ni(s)=1/
and

. ~ C_
C,= LILTJ S|:|V| (S)—s—f}

| F(s)us—1+f(s)
=lim —
=0 (1— f(s)) us
= (0" —p* - )21
By substituting the values of C_,andC_, into Eq. (7) it follows that

2 2

M) =L +Z =4 o).
y7i 2

2

As expected, this easily leads to the well-known result !im M(t)/t=1/u.
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5.3 Second Moment

An identical approach is taken for deriving the asymptotic results for the second

moment. Given that the number of renewals in (0,t) is N(t), it follows that

f(s)( f(s) +1)

M@(s)= [ e*M@@)dt=[ e*E[N®()]dt= .
(s)= |, e M@ )dt = [ e “EIN® )] ct o)

It can then be shown that

2 2 4 2
M‘z)(t)=t—2+[zi—lJt+3a _2 30 +1+0(2).
Y7, H

Proof:
Since Islrrg s*M@(s)=0, M@(s) has a pole of order 3 at s =0.

Proceeding as in the case of the first moment,

M(Z’(S)=C—j+c—‘zz+£+0(l),
$ s? s

where

C,= ISILTJ SN @ (s) =lim s°f (S)( f(s) +1)

. 2 = 2/1”2 ;
30 (1— f(s))

szlims{l\ﬂ‘”(s)—c—j}ﬂim Sf(s)(f(s):l)_ 2
o SR (1— f(s)) su

_ ﬂZSZf(S)(f(S)+1~)—2(21— f(9))
0 /JZS(].— f (s))

_ 2(c” + p?)-3u°
3 1

U
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and

C_1=|Ims[ 2)(s) C—}
f

B 64" — -y, +90" +9u°c?
6.

As in the case of the first moment and the renewal density, from inversion of the LT it

follows that

M @(t) = C*3+t C,+C_+0o(), (8)

and after substituting the values of C ,,C ,,and C ,into Eq. (8), the desired result is

obtained:

+1+o(1)

20" 1jt+304 21, 30

t’
M(z)(t)—— [_3__
o\ o) 2ut 3y 2#

As in the case of the first moment, !im M@ (t)/t? =1/ * , as expected.

5.4 Conclusion

The techniques illustrated in this chapter provide a shorter and simpler alternative

to determining several asymptotic results for single arrivals in continuous-time renewal
theory. By first expressing m(s), M(s), and M@ (s) in a particular form, the desired

asymptotic results are easily derived. Further, if the first renewal period has a different
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distribution than the other renewal periods, then the renewal density as well as the first

and second moments can be dealt with along similar lines.
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6 ASYMPTOTIC RESULTS FOR THE BULK RENEWAL PROCESS
IN CONTINUOUS TIME

The purpose of this chapter is to give an elegant derivation of the asymptotic
results for the first and second moments of the bulk-arrival renewal process using LTs.
Inversion on the LT of the probability of a renewal at time t of the renewal function and
of the second moment quickly leads to the final asymptotic results for the probability of a
renewal at time t as well as for both the first and second moments. Some easy steps could

have been avoided, but are included here for the sake of clarity.

6.1 Renewal Density

As defined in Chaudhry and Templeton (1983), the renewal density, m(t), is the
derivative of the renewal function, M(t). This does not change in the case of bulk

arrivals.
6.2 First Moment
The LT for the mean number of renewals M (t) = E[Y (t)] is

M(s):i i
dz\ s—sf(s)P, (2)

BERIO) :
s(1-F(9) s

z=1

Remark: By substituting P, (z) =z with P, (1) =1, it follows that

7 [P 4t _ fN(S)
M(s)=] e E[N(t)]dt——s(l_ "@)

which is the LT for the mean number of renewals for the single-arrival renewal process.
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By assuming that the renewal event is recurrent with i < o0, o< 0, and P, (1) < oo, it can
be shown that

M (t) =wt+ P, (1)(0-2 _;uzj+0(l),
H 2

where o(1) >0 as t— oo.

Proof:
Following Cox’s (1962) work on the single-arrival renewal process, M (s)can be re-

written as

M(S):%+%+O(l).

Inverting this LT as in the case of the renewal density, it follows that
M()=t-C,+C  +0(D). 9)
Now
C, =lims*M (s)=P, (1)/x,
and
C,- Liggs[m (s —%}

i P, (2f~(s)+ 2f s))
s—0 (f I(S))

=P (1, —2p4%) [ 244%.
By substituting the values of C_jand C_, as well as ., = o2 + z2into Eq. (9), it follows

that
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M- p (1)(—"2‘5‘2}0(1).
H 2

As expected, this easily leads to the well-known result !imM(t)/t:PX'(l)/y, which

gives the arrival rate for the bulk-arrival renewal process. Also, for the single-arrival

renewal process, M(t) matches with the known results in Cox (1962).

6.3 Second Moment

The same approach is taken when solving for the asymptotic results for the second

moment. Using the fact that P"(z,s) is the LT of

E[N(t)(N(t)—l)]L:l: E[Nz(t)]L:l— E[N(t)]lzzl,

it follows that

S n F(S) c " = ' 2
P'(z,5)=————|(1- f(s)) Py ) +2F (s) (P, (@) |,
e ) SO AR HOICAN

where P, (1) = E[X?]-E[X].
Consequently,

M @ (s) = j E[Y?(t) ]e dt

O [ P +2f(s)(P, @ L RO
s(1-T(9) [( @)@+ 276 ())} s(1- 7))

i 2f(5)(P, @)’ Pl

s(1—f“(s)) P+ (1- f(s)) @)

By substituting P, (z)=z and the corresponding values P, (1)=1andP, (1)=0 for the

single arrival case, it follows that



f(s)( f”(s)+1)

M@ (s)=[ e E[N2()]dt= .
(s) =] e “EIN*@®)]dt o)

In the general case, it is possible to illustrate that

30

(P (?)2 . P (0 -2(P, ) +P; M) ) 202 (P,0) | %P (1) LR _RO

M@ (t) =~ t+
7 7 7 24

2(RO) (RO SARO) 3RO) R o)
3u° 2u’ i 2 2 '

Proof:
Proceeding as in the case of the first moment, the LT M @ (s) can be re-written as

c,,c

M(Z)(s):c—j+ 2+ L4+ 0(D),
S S S
where
C,=limsM®(s) ~lim—22 B _op:1)/7,
- ~2(f(s))

. ~ C.
C_, =lim s? {M @(s) —S—;}

s—0 6( f ,(S))4
_HRW-4 (R O) + 4R W)+ 2u(P D)

3

u

_ ,im{ﬁ( £(5)) P @—24(F9)) (P, +6(F ) P, @ +12F () F (9P, 0

and

2
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C_1=Iims{l\7|(2>(s)_c_53_&}
S

s—0 32

127 (s)P; W( ) -48F'6)(F')) (R@) +36F5)(F(8)) (P ) +
12P, ) F(8)(F5)) ~16F"(9)(F(9)) (R W) - 24P, ) (F9)) +

" _48(?'(5))5(PX' ) -24P, ()

0 24(f(s))

34, 1°P; (1)~ 611°P; (1) — A psyta” (P ) + 941, (P (1))

. 2 . . 2 .
~12u1,1% (P (V) +3p,1° P (D +1244* (P (1))~ 6P ()
6. '

As in the case of the first moment, from the inversion of the LT it follows that

t*.C,

M @ (t) :TH-QZ +C_ +0(), (10)

and after substituting the values of C_,C_,,and C_,as well as u, =c”° + 4’ into Eq. (10)

the desired result is obtained:

MO @) — (P, & ) | BO-2(RO) +RiO) 207 (Pé ), TP, azsz'z(l) i 2(1)
y

H H 2u

_(P0) @' (RO) FRO) BO) P, .,
34 2u" s 2 2 '

As in the case of the first moment, IimM‘Z)(t)/tZ:(PX' (1))2 / 1% as expected.
tox

M@(t) can likewise be modified to match the results in Cox (1962) for the variance of
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the number of renewals in single-arrival renewal theory. In the latter case, if considering

2 4 2
single arrivals, M(Z)(t)—[M(t)]2 leads to &L 429 20" 24 +%+o(1),a result given

3 4

0tk 3yl

in Heyman and Sobel (1982).
6.4 Conclusion

The techniques illustrated in this chapter provide a shorter and simpler alternative
to determining several asymptotic results for the bulk renewal process. By first
expressing M (s)and M ®(s)in a particular form, the desired asymptotic results are
easily derived. Further, if the first renewal period has a different distribution than the
other renewal periods, then the first and second moments can be dealt with along similar
lines. These results for bulk arrivals form part of a paper entitled “Computing the

distribution for the number of renewals with bulk arrivals” that has been accepted by

INFORMS Journal on Computing (Fisher and Chaudhry, 2014).
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7 NUMERICAL RESULTS

A common interest of renewal theory is to determine the distribution or moments
of the number of renewals during a specific time interval. There have been few recent
contributions regarding new techniques for determining numerical results for the
distribution of the number of renewals as well as the mean and variance, with the
aforementioned paper by Chaudhry, Yang, and Ong (2013) being an exception. It is
much more useful to be able to compute the distribution of the number of renewals than
to derive information from the mean and variance.

There are several methods for the numerical inversion of generating functions and
Laplace transforms. Appendix A.3 illustrates an inversion method when dealing with
rational functions or functions that can be approximated using the Padé method. Six
different distributions for renewal time are considered in the following sub-chapters. The
exponential, mixed generalized Erlang, matrix exponential, gamma, truncated normal,
and inverse Gaussian distributions are each used to produce numerical results in
continuous time for both single and bulk arrival renewal theory. In the case of the latter,
models where the group sizes follow both Poisson or 1-3-5 distributions are considered.
Appendix B describes important characteristics of each of these distribution classes.

The Tables presented throughout the following sub-chapters illustrate the first five
values of P, (t), the probability that n renewals will have occurred by time t, as well as the
mean and variance, each for various values of t. The values of t were selected in part
based on previous computations that have been presented in the literature (Chaudhry,

Yang & Ong, 2013). Although the results of this work were used to ensure accuracy of

the MAPLE algorithm for the cases of single arrivals, an additional comparison between
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numerical and analytical results for the mean and variance, as well as a verification that
Zn P (t) =1were used in validating the accuracy of the distribution in the case of both
single and bulk arrivals.

To account for the bulk arrivals, the following modified equations for the mean

and variance of the number of renewals, henceforth referred to as paa and oaa,

respectively, were used:

E[Y(®)] ZnP (t) = Llr(s)'—%(ﬂ

s(1- f(9))
and
X 1 2 ’ |
VIYO)= X 0-E o)=L (1f-(:)< ))[ Y % P(l)] L {%H

Note that the analytic results for the mean and variance of the distributions can be
determined using other methods such as those described in Cox (1962).
A sample copy of the code and printout from MAPLE for this algorithm is found

in Appendix C.

7.1 Single Arrivals

1. Mixed Generalized Erlang Distribution

f(t) follows the Mixed Generalized Erlang distribution with p.d.f.

K it N k 1 j )
f(t ————,and LT f(s)=) c;|——| ,wh ~c.=1. F
(t)= Z; G (s) ,Z_;‘ JLHJ where > .c; rom

considering the case where the parameters are C, =C,=0.25, ¢, =0.5and 1=1 the
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numerical values for P, (t), the mean, and the variance for various values of t are

determined. These results are presented in Table 1.

Table 1: P,(t) for the Mixed Generalized Erlang distribution with ¢;=c¢5=0.25,¢;; = 0.5, and A =1

t Po(t) Pl(t) Pz(t) PS(t) P4(t) E K num L AnA 02 NUM 02 ANA
0.5 0.9000 0.0939 0.0058 0.0002 0.0000 - 0.1063 0.1063 0.1082 0.1082
1.0 0.8433 0.1400 0.0154 0.0012 0.0001 - 0.1748 0.1748 0.1835 0.1835
2.0 0.7720 0.1896 0.0333 0.0046 0.0005 - 0.2723 0.2723  0.2996 0.2996
3.0 0.7130 0.2262 0.0503 0.0090 0.0013 - 0.3601 0.3601 0.4052 0.4052
5.0 0.5969 0.2894 0.0876 0.0210 0.0043 - 0.5493 0.5493 0.6196 0.6196
10.0 0.2355 0.4254 0.2238 0.0822 0.0247 e 1.2632 1.2632 1.1001 1.1001

2. Matrix Exponential Distribution

f(t) follows a Matrix Exponential distribution (non-phase-type) with p.d.f.

4r° +1
(s+1)((s+1)*+47x°)

. The

1 ~
f(t)=(1+4—7T2j(1—cos(27zt))e_t, such that the LT is f(s)=

numerical values for P,(t), the mean, and the variance for various values of t are

presented in Table 2.

Table 2: P,(t) for the non-phase-type Matrix Exponential distribution f(t)= (1+1/4n?)(1-cos(2xt))e”

t Po(t) Pl(t) Pz(t) P3(t) P4(t) Ce K num H ANA 02 NUM 02 ANA
0.5 0.6373 0.3464 0.0162 0.0002 0.0000 - 0.3793 0.3793 0.2688 0.2688
1.0 0.3679 0.3915 0.2154 0.0242 0.0009 - 0.8988 0.8988 0.6785 0.6785
2.0 0.1353 0.2881 0.3035 0.1693 0.0832 e 1.8411 1.8411 1.5077 1.5077
3.0 0.0498 0.1590 0.2475 0.2322 0.1779 e 2.7919 2.7919  2.3400 2.3400
5.0 0.0067 0.0359 0.0919 0.1523 0.1963 e 46971 4.6973 3.9918 3.9929

3. Gamma Distribution

a—le—t/ﬂ

m, the LT

When f(t) follows the Gamma distribution, given by p.d.f. f(t) =

IS f(S)——a,where o and B are the shape and scale parameters, respectively.
S
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From setting the parameters « =0.55 and £ =1, the Padé approximation function [4/5],

where [4/5] denotes a numerator of degree 4 and a denominator of degree 5 in f (s),is
given by

F(s)= 1+1.977785+1.27938s" +0.29852s” +0.01804s"
1+2.52778s + 2.24340s” +0.81724s* +0.105565" +0.00232s°

For details regarding Padé approximation, refer to Appendix A.3. Further, the P,(t),

mean, and variance for various values of t are then determined and are presented along

with the mean and variance from Baxter et al. (1982) in Table 3.

Table 3: Py(t) for the Gamma distribution with o= 0.55 and g =1

t Po(t) Pl(t) Pz(t) P3(t) P4(t) Ce K num L ANA (52 NUM (52 ANA
0.1 0.6871 0.2385 0.0602 0.0119 0.0019 - 0.4040 0.4040 0.4623 0.4623
0.4 0.4071 0.3088 0.1677 0.0743 0.0283 - 1.0545 1.0545 1.3970 1.3970
1.25 0.1291 0.1951 0.2050 0.1730 0.1249 - 2.6650 2.6663 4.0370  4.0486

4. Truncated Normal Distribution

When f(t) follows the Truncated Normal Distribution, given by p.d.f.

1

Ao\ 2r

e 29 here a=1-®(£),with ®O(=)being the standard normal

f(t)=
distribution function.  From setting the parameters x#=0 and o =1 the Padé

approximation [5/6] of f~(S) is given by

~ 1+40.77075+0.3130s’ +0.0704s° +0.0089s* +0.0005s
1+1.5686s +1.06455 +0.4015s* +0.0891s* +0.0111s° +0.0006s°

f(s)
The Pn(t), mean, and variance for various values of t are then determined and are

presented along with the mean and variance from Baxter et al. (1982) in Table 4.
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Table 4: P,(t) for the Truncated Normal distribution with p =0 and 6 = 1

t Po(t) Pl(t) Pz(t) P3(t) P4(t) Cs K num L ANA 02 NUM 52 ANA
0.15 0.8807 0.1121 0.0068 0.0003 0.0000 - 0.1267 0.1267 0.1261 0.1261
0.45 0.6527 0.2849 0.0548 0.0068 0.0006 - 0.4178 0.4178 0.4023 0.4023
1.0 0.3173 0.4118 0.1978 0.0583 0.0124 - 1.0443 1.0443 0.8995 0.8997
1.25 0.2113 0.4003 0.2567 0.0981 0.0268 o 1.3507 1.3507 1.0997 1.1006

5. Inverse Gaussian Distribution

f(t) follows the Inverse Gaussian Distribution, given by p.d.f.
/1 a2 /9,2 ~ _fir
f(t):’/z_te’e Mt i LT f(S):eqj(1 25/7). From setting the parameters
b2

2 ~
1=0.75 and A =0.5625, where ¢ = 4 and y = % the LT becomes f (s) =707
7

and the Padé approximation [4/7] of f(s) is given by

f(s)= 1+4.95755 +8.7086s° + 6.32865° +1.5707s"
1+5.70755 +12.3330s” +12.5594s” + 6.1046s* +1.2729s° +0.0928s° +0.0038s"

TheP,(t), mean, and variance for various values of t are then determined and are

presented along with the mean and variance from Baxter et al. (1982) in Table 5.

Table 5: Py(t) for the Inverse Gaussian distribution with p = 0.75 and A = 0.5625

t PO(t) Pl(t) PZ(t) P3(t) P4(t) e K num L AanA (52 NUM 52 ANA
0.25 0.7445 0.2442 0.0112 0.0001 0.0000 e 0.2669 0.2669 0.2188 0.2188
0.70 0.3390 0.4042 0.2062 0.0457 0.0046 e 0.9736 0.9736 0.7732 0.7732
1.25 0.1623 0.2869 0.2867 0.1762 0.0683 e 1.7635 1.7635 1.5294 1.5294

6. Poisson (Exponential) Distribution

f(t) follows the exponential distribution with p.d.f. f(t)=Ae*and LT

- A
f(s) :m,where the parameter 1/ A is equal to both the mean and standard deviation.

Here, Y(t) follows the compound Poisson process. From considering the case where the
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parameter A = 0.5,the numerical values for P, (t), the mean, and the variance for various

values of t are determined. These results are presented in Table 6.

Table 6: P,(t) for the Exponential distribution with A = 0.5

t Po(t) Pl(t) Pz(t) PS(t) P4(t) E K num L AnA 02 NUM 02 ANA
0.5 0.7788 0.1947 0.0243 0.0020 0.0001 - 0.2500 0.2500 0.2500 0.2500
1.0 0.6065 0.3033 0.0758 0.0126 0.0016 - 0.5000 0.5000 0.5000 0.5000
2.0 0.3679 0.3679 0.1839 0.0613 0.0153 - 1.0000 1.0000 1.0000 1.0000
3.0 0.2231 0.3347 0.2510 0.1255 0.0471 - 1.5000 1.5000 1.5000 1.5000
5.0 0.0821 0.2052 0.2565 0.2138 0.1336 - 2.5000 2.5000 2.5000 2.5000
10.0 0.0067 0.0337 0.0842 0.1404 0.1755 o 5.0000 5.0000 5.0000 5.0000

The numerical results for the exponential distribution can be likewise obtained

1

————, a result from
s—-A(1-z2)

from first inverting the expression  P(Z,8)=

P(z,5) = 1-f(9)

=——————— where P,(z)=1z for the case of single arrivals. Next, expand
s—sf(s)P(2)

the expression as a Taylor’s series and collect the coefficients of z" to determine the

values for P, (t).
7.2 Bulk Arrivals

Now assume that N (t) renewals can occur in groups of size X;, such that the total

N(t)

number of renewals is Y(t)=ZXi. By using the P,(t) from the single arrival case,
i=1

expanding p.g.f.F’(Z,t)=Z(F’X (2))"P,(t) as a Taylor’s series, and then collecting the
n=0

coefficients of z", the distribution of the number of renewals in the bulk process is

obtained for various values of t. These P(Y ()= n) probabilities, henceforth referred to
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as P (t) for simplicity, can likewise be used to obtain the mean and variance for the

various values of t.

7.3

Poisson with p.g.f. P, (z) =26 “®*",z <1. Let x=0.5 such that P, (z) = ze

Poisson Group Size

The following results were obtained by assuming that the group size distribution is

—0.5+0.5z

This distribution was presented in Brown (2008) and was used to determine the following

results:

Table 7: P,(t) for the Mixed Generalized Erlang distribution with ¢c;=c5=0.25, ¢;p = 0.5, and A =1

t PO(t) Pl(t) PZ(t) P3(t) P4(t) 1 num 1 ana ¢’ NUM c’ ANA
0.5 0.9000 0.0570 0.0306 0.0093 0.0023 0.1594 0.1594 0.2965  0.2965
1.0 0.8433 0.0849 0.0481 0.0165 0.0050 0.2621 0.2621 0.5002  0.5002
2.0 0.7720 0.1150 0.0697 0.0276 0.0101 0.4084 0.4084 0.8103 0.8103
3.0 0.7130 0.1372 0.0871 0.0377 0.0153 0.5402 0.5402 1.0916  1.0917
5.0 0.5969 0.1755 0.1200 0.0589 0.0274 0.8238 0.8239 1.6680 1.6688
10.0 0.2355 0.2580 0.2113 0.1329 0.0774 1.8937 1.8948 3.0954  3.1069

Table 8: P,(t) for the non-phase-type Matrix Exponential distribution f(t)= (1+1/4n?)(1-cos(2xt))e”

t PO(t) Pl(t) PZ(t) P3(t) P4(t) K num K ana (52 NUM (52 ANA
0.5 0.6373 0.2101 0.1110 0.0323 0.0074 0.5689 0.5689 0.7945  0.7945
1.0 0.3679 0.2375 0.1980 0.1143 0.0528 1.3482 1.3482 1.9760 1.9761
2.0 0.1353 0.1747 0.1990 0.1713 0.1274 2.7608 2.7616 4.3055  4.3128
3.0 0.0498 0.0964 0.1392 0.1549 0.1493 41639 4.1879 6.5080 6.6609

Table 9: Py(t) for the Gamma distribution with a = 0.55 and =1

t PO(t) Pl(t) PZ(t) P3(t) P4(t) K num K ana (52 NUM (52 ANA
0.1 0.6871 0.1447 0.0945 0.0429 0.0183 0.6059 0.6059 1.2418 1.2420
0.4 0.4071 0.1873 0.1554 0.1017 0.0634 15790 15817 3.6382 3.6706
125 01291 0.1183 0.1346 0.1288 0.1150 3.8295 3.9994 9.0965 10.4426




Table 10: Py(t) for the Truncated Normal distribution withp=0and 6 =1

40

2 2
t PO(t) Pl(t) Pz(t) PS(t) P4(t) K num H AnA G num O ANA
0.15 0.8807 0.0680 0.0365 0.0111 0.0028 0.1900 0.1900 0.3471 0.3471
0.45 0.6527 0.1728 0.1066 0.0433 0.0161 0.6267 0.6267 1.1141 1.1141
1.0 0.3173 0.2498 0.1977 0.1170 0.0628 1.5662 15664 25446  2.5464
1.25 0.2113 0.2428 0.2158 0.1467 0.0887 2.0254 2.0260 3.1452  3.1518
Table 11: P,(t) for the Inverse Gaussian distribution with p = 0.75 and A = 0.5625
t PO(t) Pl(t) Pz(t) PS(t) P4(t) K num L AnA 02 NUM (52 ANA
0.25 0.7445 0.1481 0.0782 0.0226 0.0052 0.4003 0.4003 0.6257 0.6257
0.70 0.3390 0.2452 0.1984 0.1167 0.0590 1.4603 1.4603 2.2265 2.2266
1.25 0.1623 0.1740 0.1925 0.1665 0.1246 2.6414 2.6452 4.2987  4.3229
Table 12: P,(t) for the Exponential distribution with & = 0.5
t PO(t) Pl(t) PZ(t) P3(t) P4(t) K num L AnA 02 NUM 02 ANA
0.5 0.7788 0.1181 0.0680 0.0242 0.0076 0.3750 0.3750 0.6875 0.6875
1.0 0.6065 0.1839 0.1199 0.0537 0.0222 0.7500 0.7500 1.3750 1.3750
2.0 0.3679 0.2231 0.1792 0.1092 0.0611 1.5000 15000 2.7500 2.7500
3.0 0.2231 0.2030 0.1938 0.1457 0.0988 2.2500 2.2500 4.1250 4.1250
5.0 0.0821 0.1245 0.1566 0.1576 0.1394 3.7500 3.7500 6.8750 6.8750
10.0 0.0067 0.0204 0.0412 0.0649 0.0866 7.5000 7.5000 13.750 13.750
7.4 1-3-5 Group Size

The following results were obtained by assuming that the group size distribution

has a p.g.f. P, (z)=0.52+0.42° +0.12°. This suggests that the group size can be either 1,

3, or 5 with 50%, 40%, and 10% probabilities, respectively. This distribution was

presented in Chaudhry, Samanta, and Pacheco (2012) and was used to determine the

following results:

Table 13: P,(t) for the Mixed Generalized Erlang distribution with ¢; = ¢5=0.25, ¢c;g=0.5, and A =1

t PO(t) Pl(t) PZ(t) P3(t) P4(t) I num L AanA 02 NUM 02 ANA
0.5 0.9000 0.0470 0.0014 0.0376 0.0023 0.2338 0.2338 0.7104 0.7106
1.0 0.8433 0.0700 0.0038 0.0561 0.0062 0.3844 0.3845 1.1941 1.1955
2.0 0.7720 0.0948 0.0083 0.0764 0.0133 0.5983 0.5990 1.9198 1.9295
3.0 0.7130 0.1131 0.0126 0.0916 0.0202 0.7903 0.7923 2.5683 2.5949
5.0 0.5969 0.1447 0.0219 0.1184 0.0353 1.2011 1.2084 3.8718 3.9657
10.0 0.2355 0.2127 0.0559 0.1804 0.0911 2.7218 2.7790 6.9687 7.5479
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Table 14: P(t) for non-phase-type Matrix Exponential distribution f(t)= (1+1/47°)(1-cos(2nt))e™

t Po(t) Pl(t) Pz(t) Ps(t) P4(t) Hnumv  HoaAna 02 NUM 02 ANA
0.5 0.8194 0.1243 0.0434 0.0105 0.0020 0.2528 0.2528 0.3723  0.3723
1.0 0.6290 0.2165 0.1019 0.0369 0.0146 0.5992 0.5992 0.9008  0.9008
2.0 0.3926 0.2688 0.1743 0.0922 0.0430 12274 12274 18974  1.8974
3.0 0.2442 0.2505 0.2064 0.1385 0.0812 1.8611 1.8613 2.8997  2.9013

Table 15: P(t) for the Gamma distribution with a = 0.55 and =1

t Po(t) Pl(t) Pz(t) PS(t) P4(t) K num K ana 02 NUM 02 ANA
0.1 0.6871 0.1193 0.0151 0.0969 0.0242 0.8858 0.8887 2.9100 2.9483
0.4 0.4071 0.1544 0.0419 0.1328 0.0689 22314 23199 7.6063  8.6176

1.25 0.1291 0.0976 0.0513 0.0997 0.0898 45014 5.8659 14.3037 24.2881
Table 16: P,(t) for the Truncated Normal distribution with p =0 and 6 =1
t PO(t) Pl(t) Pz(t) P3(t) P4(t) Wnumv — H aAnA (52 NUM (52 ANA
0.15 0.9402 0.0409 0.0145 0.0036 0.0007 0.0845 0.0845 0.1476  0.1476
045 0.8144 0.1188 0.0474 0.0143 0.0038 0.2785 0.2785 0.4573  0.4573
1.0 0.5897 0.2288 0.1126 0.0448 0.0161 0.6962 0.6962 1.0917  1.0960
1.25 04998 0.2595 0.1403 0.0619 0.0246 0.9003 0.9005 1.3891  1.3896
Table 17: P,(t) for the Inverse Gaussian distribution with p=0.75 and A = 0.5625
t PO(t) Pl(t) Pz(t) P3(t) P4(t) Wnumv M aAnA (52 NUM (52 ANA
0.25 0.7445 0.1221 0.0028 0.0977 0.0045 0.5871 0.5871 1.5286  1.5286
0.70 0.3390 0.2021 0.0515 0.1674 0.0828 2.1363 2.1418 53976  5.4560
1.25 0.1623 0.1435 0.0717 0.1368 0.1189 3.7480 3.8796 9.4947  10.506
Table 18: P, (t) for the Exponential distribution with L= 0.5

t Po(t) Pl(t) Pz(t) P3(t) P4(t) Hnumv M oaAnA 02 NUM 02 ANA
0.5 0.7788 0.0974 0.0061 0.0781 0.0097 0.5500 0.5500 1.6500 1.6500
1.0 0.6065 0.1516 0.0190 0.1229 0.0304 1.1000 1.1000 3.3000  3.3000
2.0 0.3679 0.1839 0.0460 0.1548 0.0745 2.2000 2.2000 6.6000  6.6000
3.0 0.2231 0.1673 0.0628 0.1496 0.1034 3.3000 3.3000 9.9000  9.9000
5.0 0.0821 0.1026 0.0641 0.1088 0.1110 55000 5.5000 16.500  16.500

10.0 0.0067 0.0168 0.0211 0.0310 0.0447 10.996 11.000 32.923  33.000
7.5 Program Validation

Although the use of software such as MAPLE enabled the successful

programming of an algorithm to invert the required LTs and then produce the numerical
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results, in the case of bulk arrivals the distributions could only be calculated with an
extremely high degree of accuracy for relatively small values of t. Certain distributions,
such as the exponential, mixed generalized Erlang, and matrix exponential, have
properties that enabled accurate computations over greater ranges of t, but in general,
each of the trials was limited by the availability of computational power and the ability to
collect a finite number of coefficients from the p.g.f.s using a crude, semi-manual coding
procedure. Nevertheless, in each of the trials the asymptotic results derived in Chapter 5
for the case of single arrivals and in Chapter 6 for the cases of bulk arrivals were
employed to illustrate that the computed distributions had first and second moments that
matched the asymptotic results for higher values of t.

The plot function was used in each MAPLE program iteration to illustrate the
degree of precision of the data sets. Program validation was based on a comparison of the

analytical, asymptotic, and numerical results for the first and second moments of each
distribution. As a result of the limitation of calculating a finite number of Pn(t) values, the

numerical results for greater values of t begin to diverge from the analytical and
asymptotic results. A compromise was made between achieving a high degree of
precision and limiting the programming and computational time, so this verification was
particularly important to confirm the validity of the results within an acceptable range of t
values.

A comparison of Figure 1 and Figure 2 suggests that higher precision for a greater
range of t is achieved from using the 1-3-5 group size distribution versus the Poisson
group size distribution for arrival times based on the matrix exponential distribution. In

both cases, however, high precision was achieved at t = 3, a relatively high value in the
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context of renewal theory. This is further evidenced by the convergence of the analytic
and asymptotic results at a value of approximately t = 1.5. A secondary method of
program validation included the summation of all calculated P, (t) values to verify how

closely they approached the expected value of 1. These methods are evident in the

sample MAPLE printout in Appendix C.

E[Y ()]

Figure 1: Comparison of the analytical (red), asymptotic (blue), and numerical
(green) results for the first moment for the matrix exponential distribution with
Poisson arrivals.
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E[Y ()]
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Figure 2: Comparison of the analytical (red), asymptotic (blue), and numerical
(green) results for the first moment for the matrix exponential distribution with 1-3-
5 arrivals.
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8 HIGHER ORDER MOMENTS

Chapters 4 — 6 illustrate the development of a new derivation for some asymptotic
results in renewal theory. In discrete time, these results are based on using generating
functions to model the first and second moments, whereas in continuous time, Laplace
transforms are used. This chapter presents the development of the g.f.s and LTs for the
first five moments, illustrating that similar derivations for higher order moments can be
achieved along similar lines, provided similar assumptions hold true. The discrete time
moments match the results published by Brown (2008), but they are derived using a much
simpler procedure. This approach is employed to derive similar results in continuous

time.

8.1 Discrete Time

Consider the definition of the renewal function:

M =E[N,]
=E[E[N; |T =K]]

n

=Y E[@+N, )'IP(T =K).

k=0
Its corresponding g.f. is:
M©(z) = ZM(I)Z
n=0
© |
> Z[ jE[N L JP(T =k)z"
n=0 k=0 j=0
© o o |
=> P(Tzk)ZWZZZ( ]E[N ]2
m=0 k=0 n=k k=0 j=1

M (')(z)—ﬁ le{ jM D(2) f (2).



Ith

As a result, the appropriate g.f. can be derived for the first I moments:

1=1:

M®(z2) = th M@ (2) f(2)
1-z

_ f(2) .
1-2)(1-f(2))’

1=2:

M@ (z) = ng 2M () () +MP(2) T (2)

_ @+
1-2)(1-f(2))"

1=3:

M@ (z2) = g +3MP(2) f(2)+3M @ (2) T (2) +M P (2) f (2)

_f@+4f2 @)+ °(@).
1-2)(1-f(2))’

| =4:

M@ (z) = ¥+4M D) fF(2)+6MP(2) f () +4M O () f () +M D (2) T (2)

_ f(z)+11f2(z)+11f3(z)+-f4(z)_and
1-2)(1-f(2))" ’
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|=5:;

M®(z) = g+5M D) f(2) +10M @ (2) T (2) +10M @ (2) f (2) +5M W (2) T (2) + M O (2) T (2)

_ f(2)+261%(2)+661°(2) +26f*(2) + F°(2)
1-2)(1-f(2))

8.2 Continuous Time

A similar approach can be taken to determine the LTs for higher moments in

Ith

continuous time. The LT for the I moment is as follows:

M <'>(s)=@+Z“lmmm(5)f(s).

th
|

As a result, the appropriate LT can be derived for the first I moments:

1=1:

M @ (s) :@+ M O (s) f (s)

IO
_s@—f@»’

1=2:

M @ (s) = @+2|\7I @D (s)f (s)+M P (s)f(s)

)+ 9.
s(1-f(s))
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1=3:

M@ (s) = @wm D(s)f(s)+3M P (s) () + MO (s) f(s)

f(s)+4f (s)+ f* (s).
5(1- f(s))

| =4:

M@ (s) = i ) +4M @ (s) f(s)+6M @ (s) f (s) +4M O (s) f (5) + M “ () f (s)

_ f(9)+11%(s) +12°(s) + F* .,
5(1- f(s))

|=5:

M O (s) = E+5|\7| @ (s) f (s)+10M @ (s) f (s) +10M © (5) f () +5M @ (s) f (5) + M © (5) f (5)

f(s)+26f (s)+66f3(s)+26f*(s)+ f° (8)
(1 f(s))
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9 CONCLUSION

9.1 Future Extensions

Some of the results presented in this thesis have already inspired further graduate
work in renewal theory, particularly in discrete time, but there are several other areas of
consideration where more time and study could provide additional contributions to the
field. Chapter 8 presents the development of generating functions and Laplace transforms
for higher order moments in discrete time and continuous time, respectively. The
algorithm used in deriving the results presented in Chapters 4 — 6 could likewise be
applied to produce explicit results for each of the corresponding higher order moments.
Since the literature had previously failed to provide a constant term for the second
moment in single arrival renewal theory, deriving such precise results of the higher
moments could prove most useful.

The development of numerical results in bulk renewal theory was another
important contribution of this thesis, but the MAPLE program that was created to provide
the results could certainly be improved. The latest version of this program does use Padé
approximation when the LT of a distribution is not rational, but it does require the
function to be of closed form. There are countless other distributions with varying
characteristics that could have been included, but in the interest of practicality, six
renewal time distributions and two bulk group size distributions were selected for this

course of study.
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The numerical results in bulk renewal theory are also limited by the value of t that
is used. This is a result of the requirement to collect coefficients from the Taylor series
expansion of the generating function for the distribution of group size using a semi-
manual procedure and the very strong effect that increasing precision had on execution
times. Due to a limited amount of time available to complete this research, there was a
practical limitation for the number of coefficients that could be collected, and this lead to
an important decision of creating a MAPLE code including only 13 such coefficients.
With this program, a single iteration of a particular renewal time and group size
distribution had execution times ranging between 11.5 - 26 minutes, although the
computing resources available at the time were admittedly limited to an outdated Acer
Aspire 5920G notebook with an Intel Core 2 Duo processor. Expanding the MAPLE
program past 13 coefficients to produce precise results for a greater range of t would have
required further coding time and considerably greater execution time. As a result, it was
decided that the final code yielded sufficient results to make a useful contribution to the
field, particularly when supported by the asymptotic values resulting from these new and

elegant derivations.

9.2 Summary

Several new results in renewal theory have been presented in this thesis. Simple
and elegant solutions for the asymptotic results for the first and second moments have
been derived in both discrete and continuous time. In the latter case, the derivations were
taken several steps further to provide similar results that account for bulk arrivals.
Further, MAPLE was used in order to produce accurate numerical results in both single

arrival and bulk arrival renewal theory in continuous time. These results have led to
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either the publication or submission of separate academic papers in journals related to the

field, as well as to the continuation of research by other graduate students.

9.3 Thesis Contributions

The following is a list of contributions that are presented in this thesis:

e A new derivation for the asymptotic results of the first and second moments,
including constant terms, in discrete time renewal theory

e A new derivation for the asymptotic results of the first and second moments,
including constant terms, in continuous time renewal theory

e A new derivation for the asymptotic results of the first and second moments,
including constant terms, in continuous time bulk renewal theory

e A MAPLE program producing numerical results in both single arrival and bulk
renewal theory for a variety of renewal time and group size distributions

e A new derivation for the generating functions of higher order moments in discrete
time for future research

e A new derivation for the Laplace transforms of higher order moments in

continuous time for future research
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APPENDIX A ELEMENTARY CONCEPTS

All definitions and descriptions assume the use of lattice random variables (r.v.s),
which has all values that are integer multiples of a number. Mathematically, if X is a
lattice r.v., then P(X =x)=0if x=nd, d >0, and n=0,1,2,...

The descriptions of elementary concepts, unless otherwise noted, are based off the

work of Chaudhry and Templeton (1983).
A.1 Generating Function

The generating function (g.f.) is a power series, typically expressed in closed
form, that encodes information about a sequence of numbers. If a sequence of numbers
composes a probability distribution function, then the corresponding g.f. is called a
probability generating function (p.g.f.). Both g.f.s and p.g.f.s have been compared with a
bag that allows a user to carry multiple pieces of information regarding a specific
sequence while only dealing with one piece (Polya, 1954, and Chaudhry and Templeton,
1983).

Let X be a nonnegative lattice r.v. assuming integral values 0, 1, 2, ..., such that
P(X'=n)=p,(n). The sequence of probabilities {p,(n), n>0}is proper if Py (n)>0
and Z:’:O p, (n)=1. It is generally assumed that all probability distributions are proper.

The p.g.f. of the random variable X is defined by Chaudhry and Templeton (1983) as

follows:

P (D)= Py (M7 =E(2")
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P, (z)is an analytic function of z, a complex variable, and as a result the theory of analytic
functions can be used to obtained results concerning { Py (n)}. PX (2)is absolutely

convergent for |z| <1 since Py (1) =1.

The mean and variance of a probability distribution are easy to derive from a p.g.f.

as illustrated by the following properties:
m, =E(X)=2_" np,(n)=P®(),
where

P(r)(1)=¥ , r=12.3,...
YA

Further, since

o0

E(X(X-1)=>_" n(h-1)py(n)=P?(Q),

the variance ” is given by
X
2

o’ =PP1)+ PP 1) (P (1))

Higher order moments may be obtained similarly.

A.2 Laplace Transform

The Laplace transform (LT) is employed in a very similar manner as the
generating function. LTs provide a bag to collect random variables just as p.g.f.s provide
a bag to collect integer valued r.v.s. As such, LTs are used in continuous time renewal

theory whereas p.g.f.s are used when working in discrete time.
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Assuming f (t) is a probability density function (p.d.f.) of a non-negative r.v. T,
then the LT (5 is defined as
f(s)=E[e™]= j:oe*st f (t)dt.
f(0)=1 and f(s) is an analytic function in the half-place, Re(S) > S,, where S, <0, since

o< f (S) <1 for all s>0. This characteristic justifies several of the important derivations
made using LTs.
Since the LT is a moment generating function, the moments of the distribution

f (t) can be easily obtained by the alternate form:

rar r

As a result, the first moment, or mean, is
E[T]=-1'(s)

and the second moment is E[T* | = f "(s) such that the variance is

o2 =T -(f©).

There is a more general form of the LT, called the Laplace-Stieltjes transform (LST),

defined as
f(s)= j:oe-stdFT (t).

It can be advantageous to use the LST since it is even more closely related to the p.g.f.

than the LT. In fact, these latter two only differ by the change in variable z=e"".
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A.3 Inversion of Laplace Transforms and the Padé Method

If f(5)is the LT of f(t), then f (t)is the inverse LT of f(S). The inversion of

LTs is required to derive both the asymptotic results in renewal theory as well as the

distribution of the number of renewals. The inverse of f(s) is defined as
f(t)= iIame“ f(s)ds
27 va-io ’

where the contour is any vertical line s = a so f(S) has no singularities on, or to the right of

it (Abate and Whitt, 1995). This type of integration is not always easily accomplished,

even with powerful computing software such as MAPLE.

~

f(s) should be rational in order to be easily inverted. Many common distributions

A

are not rational, however, so a rational function f (S)is used to approximate f(s). As

illustrated in Chaudhry, Yang, and Ong (2013), a useful method of rational approximation

is the Padé method, where f (5) can be expanded as
3 c n 1 n
f(s)=> (-D)"=M,s".

n=0 n!

In this expression, M, = [ “x"dF () Is the n™ moment of the inter-renewal time. As a
0

result, a rational approximation function can be expressed as

K@) _ Xpobis”
D(s) Zﬁzoans”

f*(s)

where Ni(s)and D(s)are polynomials of degree K and L, respectively, with

undetermined coefficients bn and d,,such that the first K + L moments of f~(S) are equal to
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those of f*(s). It is from these moments that the Padé approximation notation [K / L]
originates. The Padé method requires high numerical precision in computations since the

coefficients bn and @, are uniquely determined once 4, is set to 0, K and L are selected

through trial and error, and the process of equating the moments and formulating the
simultaneous equations is completed. For details, see Harris and Marchal (1998) or

Baker Jr. and Graves-Morris (1996).
The primary goal of inversion in this thesis is to determine values for P,(t), the

probability of n renewals occurring between [0,t). Since the Padé method can be used to

approximate any non-rational function as rational, the Partial Fraction method of
inversion can be used for the inversion of all closed-form probability distributions of
interest.

By assuming that

and considering the expression

Bu(S) fr(s)(1-f(9))

s s ’

the following rational function is derived:

p,(5) _ N"(9)[ B()-N(s) |
s sD™(s) ' (A1)

It is assumed that the equation D(S)=0 has k distinct roots S,S,,...,S,,and since

f(0)=1, N(s)and D(S) have identical constant terms,
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D™(s)=(s-5,)" " (s-5,)""...(s—s,)"".

Eq. (A.1) can be expressed in partial fractions as

pn (s) ii

j=1i=1 (S S)

where the constant coefficient A ; Is given by

A -1 d“‘”[ﬁn(S)(s-s-)iJ
M- nrds'Tt s Vo

i

Consequently, the final inversion can be written as

n+1

=35 At

=1 i=1

The case where D(S) =0 has repeated roots can be dealt with similarly.

A.4 Asymptotic Theory

Asymptotic results in renewal theory are concerned with the behaviour of a
function as t tends to infinity. These are often called limiting distributions, and they were
the focus of attention throughout Chapters 4 — 6. Asymptotic distributions are related to
the notion of an asymptotic function, whereby a curve approaches a constant value, or
asymptote, but never actually reaches it.

Clearly, for larger values of t, portions of a function concerning t will have a
greater effect on a solution than constant terms, thus explaining why limiting distributions
are of such great interest. Figure 1 and Figure 2 in Chapter 7 illustrate how the behaviour
of distribution functions in renewal theory are not correlated with the limiting

distributions for small values of t, but as t increases the two values begin to converge.
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Asymptotic results are often easier to manipulate and to use, as illustrated by the

Elementary Renewal Theorem:

M—(t)%last—mo,

t H
o 1
where the renewal process m(t)goes to infinity at an average rate of — (Chaudhry and
U

Templeton, 1983).
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APPENDIX B PROBABILITY DISTRIBUTIONS

A probability density function (p.d.f.) is assumed to be zero for negative values of

x or tin discrete time and continuous time, respectively.
B.1 Poisson

The Poisson distribution is among the most common of discrete probability
distributions. It provides the probability of a number of independent events occurring in
an interval of time based on an average rate of occurrence. Parzen (1962) argues that
events are said “to occur randomly in time if they are occurring in accord with a Poisson

process” (p. 15). The p.d.f. of the Poisson distribution is

f(x):e‘M“—l, x=0,1...
x!

with mean 4 and variance A.
The probability generating function (p.g.f.) of the Poisson distribution is
P, (2) =7,
In continuous time, the Poisson distribution is also related with the exponential

distribution, with p.d.f.
f(t)=1e", t>0

and Laplace Transform (LT)

The Poisson distribution is used as the group size distribution in this thesis, whereas the

exponential distribution is used for the renewal time distribution.
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B.2 Binomial

The binomial distribution is another common discrete probability distribution. It
provides the probability of a number of events occurring from a set number of
independent trials or attempts, based on the probability of a success or failure each time.

The p.d.f. of the binomial distribution is

m
f(x):(xjpxq”“x, x=0,1,...,m
with mean np and variance NPQ, where n=1,2,...and 0< p,q<1, p+q=1.

The p.g.f. of the binomial distribution is

P.(2)=(pz+q)".
The binomial distribution in its general form cannot be used as a p.g.f. for group size for
computing the distribution of the number of renewals. This is an important point to
consider since it is a common distribution that would appear ideal for use as a group size.
With that being said, it would be quite simple to restructure the p.g.f. for a specific
example of a binomially distributed group size into an appropriate form. For example, for

a binomial distribution where p = 0. 5, ¢ = 0. 5, and m = 2, the p.g.f. would be

P, (z)=0.25+0.52 +0.252°,

B.3 Mixed Generalized Erlang

The Erlang distribution is used in continuous time and is an extension of the
exponential distribution. Whereas the number of events that can incur in a time interval
are modelled by an exponential distribution, the waiting times between a number of

occurrences of an event are modelled by the Erlang distribution. As such, the Erlang
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distribution is the sum of independent events having an exponential distribution. The

p.d.f. of the Erlang distribution is

iktk—le—lt

= (k —1)!

, t>0

with shape parameter k, mean % and variance % where k =1,2,...and 4>0.

The LT of the Erlang distribution is

f(s) :(ﬁj .

The Mixed Generalized Erlang distribution differs from the more general Erlang
distribution since different sets of occurrence are given greater priority over others
through the use of weighting coefficients. The p.d.f. of the Mixed Generalized Erlang

distribution is

k 2ititeg A
fty=Sc 2
JZ_; (-

where Zizlcj =1. Asaresult, the LT of the Mixed Generalized Erlang distribution is
. k 27
f(s)=)c.|—|.
) ,Z;‘ ‘LHJ
The Mixed Generalized Erlang distribution is used solely for the renewal time distribution

in this thesis.
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B.4 Matrix Exponential

Although it does not have a simple probabilistic interpretation, the matrix
exponential distribution is a specific class of exponential distributions that is versatile,

dense, and algorithmically tractable (Fackrell, 2004). Its p.d.f. is
f(t) = Bem,
where M is a state space Matrix M ={0,1,..., p} of a continuous-time Markov chain. Its
LT is
f(s)=p(sl =M) "'m+ f(0).
As there are no restrictions on parameters s, M, or m, other than that they correspond to

a distribution, there are a wide variety of applications for matrix exponential distributions
in fields such as queueing theory, telecommunications, control risk, and insurance risk
(Fackrell, 2004). The matrix exponential distribution is used solely for the renewal time

distribution in this thesis.

B.5 Gamma

The gamma distribution is also used in continuous time, and provides the waiting
time required to observe a set number of occurrences of a specified event. It isa common
two-parameter distribution, with p.d.f.

3 ta*le*t/ﬁ

pT(a)

f(t) , t>0,
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1
where @ >0 is the o™ occurrence of an event under consideration, E >0 is the mean rate
at which events occur, and I'(«) is the gamma function, defined as (a) = | e 't*dt.
(o]

a and ﬂ are commonly referred to as the shape and scale parameters, respectively. The

mean is aﬁ and variance is aﬂz. The LT of the gamma distribution is

- 1
f =——
=) 1+ fs)’

The gamma distribution is used solely for the renewal time distribution in this thesis.
B.6 Truncated Normal

The normal distribution is perhaps the most practical of all distributions, as a great
deal of natural phenomena closely follow it. A perfectly symmetrical distribution, the
normal distribution is shaped like a bell, with the mean, median, and mode of the

distribution all occurring at the centre. Its p.d.f. is

)= e,
o2

where ¢ > 0 is the mean and o”>0 is the variance.

The truncated normal distribution is very similar to the normal distribution except

that its value can be bounded. This p.d.f. is

1 2t
f(t)=———e /2 {50
ao2r
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where a—1-a (=), with @() being the standard normal distribution function. The

truncated normal distribution requires Padé approximation and is used solely for the

renewal time distribution in this thesis.

B.7 Inverse Gaussian

The inverse Gaussian, or Wald distribution, is another two-parameter distribution

used in continuous time. Its p.d.f. is

A 2/5 2
f t) = _e—ﬂ(t—y) /2# t1 t> O,
® \I 27t°
3

where x> 0 is the mean and A>0 is the shape parameter. Its variance is % and as

A — 0, the inverse Gaussian distribution takes on the shape of the normal distribution.

2

A
The inverse Gaussian distribution can also be expressed in terms of ¢ =— and ¥ = %
U
its shape and scale parameters, respectively. These parameters are used in the most
common expression of the LT of the distribution, which is

F(s) =77,

The inverse Gaussian distribution is used solely for the renewal time distribution in this

thesis.
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APPENDIX C SAMPLE MAPLE PRINTOUT

The following is a printout of the algorithm programmed in MAPLE to produce

the numerical results presented in Chapter 7:

>
# NUMERICAL RESULTS IN RENEWAL THEORY
CALCULATOR - SINGLE AND BULK ARRIVALS

# BRENT FISHER - BASED ON PRIOR RESEARCH BY
XIAOFENG YANG

# ROYAL MILITARY COLLEGE OF CANADA, 2012-2013

# RENEWAL DISTRIBUTION : GAMMA
#  PADE METHOD: [4-5]
# GROUP SIZE DISTRIBUTION : SAMANTA

> restart,

with
with
with
with

inttrans) :
LinearAlgebra) :
numapprox)
Statistics) :

—_—~—~

> #PRECISION PARAMETERS Digits = 200,

> # NUMBER OF RENEWALS - USED IN DETERMINING Pn ®)'s

NN := 13;

> # GROUP SIZE PARAMETERS - USED FOR BULK ARRIVALS

> #assume number of renewals inside each group follow the distribution
studied by Samanta:

> PxZ:=05z4042 + 0.125; # test with single arrival pgf #PxZ =z

d d d
> = S B .
1z PxZ, 1z [ 1z PxZ),

dPxl] = simplify[subs[z= 1, % PxZ]j;

ddPxl = simpliﬁ/[subs[z= 1, d (i PxZ) ] );
dz \ dz

> #RENEWAL DISTRIBUTION: f{t)



> #we will work on GAMMA DISTRIBUTION function defined below as

ftorig:
>
alfa == 0.55;
Halfa—1)
torig :—= ———exp( -1);
Jrorig T (al) p(-1)

t

Ftorig == Jﬁom’gdt;
0
20
meantest = convert[ J t-ftorig dt, ﬂoat];
0

0
sigmatest == secondmoment — meantestz;

20
secondmoment = convert[ J 7 -ftorig dt,ﬂoat];

> plot( frorig,t=0.1.3);

> plot(Ftorig,t=0..10);

> #we need up to Nth moments
> N:=32;

>

M = Vector (N);
column
forifrom 1toNdo

Ml[i] == evalf[J, ti_lftorigdt];
0
end do;

unassign('i');
. (_1)1_1'5‘1_1.
thf'_l_)—(i—l)! ;

tmpvector = Vector,, (N, tmpf);

# Fs:=tmpvector.M;

Fsl == 0;

unassign('i');

forifrom 1 to Ndo

FsI = Fsl + tmpvector; M

end do;

> Fs := pade(FS],S, [43 5])a
t

> ft == invlaplace(Fs,s,t); Ft == Jﬁdt;
0
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plot([ ft,ftorig],t=0.4);
plot([ ft,frorig],t=0..2);
plot([ ft,ftorig],t=0.0.2);

plot([ fi, ftorig],t=3..5);
plot([ Ft, Ftorig],t=0.2);
plot([ Ft, Ftorig],t =0.01 ..0.2);

> taylor(Fs,s,20);

>
#SINGLE ARRIVAL ANALYTIC RESULTS - MEAN AND VARIANCE:
> sENs = S — simplify(sENs);
s-(1—Fs)’ P ’
> SENt = invlaplace(sENs, s, t);
> §VNsl := L—i_FSZ); simplify(sVNsl);
s-(1 = Fs)
> sVNtl == inviaplace(sVNsl,s,1);
> sVNt = sVNtl - sENt*;
> simplify(sVNt);
>
> evalf (subs(t=10,sENt));
> evalf(subs(t=0.5,sVNt));
>
n- [e—
> spns = M; simplify(spns);
> spnt = inviaplace(spns, s, t);
> # PREPARE pns FOR LOOP
n. —_—
> spns = M; simplify(spns);
>

# CALCULATE Pn(t)'s FOR SINGLE ARRIVAL CASE:

Spnstmp = spns,

for | from O to NN do

spnstmp = subs(n=1,spns) :
pnt[l] = invlaplace(spnstmp, s, t);
#pntvalue:=subs(n=1,t =4, pnt) :
#sxx[1] = evalf (pntvalue);

end do;

> M1:=-subs(s=0, diff(Fs, s));
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M2:=subs(s=0, diff(diff(Fs, s),s))/2;

>u:=Mil;

usquare := M1"2;

sigmasquare :=M2*2 - usquare;

> smt := t/u + (sigmasquare - usquare)/2/usquare;
> unassign(q);

>

# NUMERICAL MEAN

SMENt = 0,

for g to NN do

SMENt == sMENt + pnt[q]-q
end do

# GRAPHICAL COMPARISON OF ANALYTIC (sENt),
ASYMPTOTIC (smt), AND NUMERICAL (sMENt) RESULTS

plot([smt,sENt],t=0.2);
plot([smt, sENt],t=0..5);
plot([smt, sENt],t=0..20);

plot([smt, sENt, sMENt],t=0.2);
plot([smt, sENt, sMENt],t=0..5);
plot([smt, sENt, sMENt],t=0..10);
plot([smt, sENt, sMENt],t=0.20);
plot([smt, sENt, sMENt], t = 0..30);

2

VVVVVVVVVYV

# NUMERICAL RESULTS FOR SINGLE ARRIVALS - VARIOUS
VALUES OF t



steval == 0.1;

for cfrom 0 to NN do

sxx[c] = evalf (subs(t=steval,pnt[c]));
end do;

unassign(');

NN
sxxsum = stx[j];
j=0
NN
sxxmean = Zj~sxx[j];
=0
evalf (subs(t = steval, sENt) );
NN

sxxvar = ij-sxx[ 1 - sxxmean’;
j=0
evalf (subs(t = steval,sVNt));

steval = 0.15;

for ¢ from 0 to NN do

sxx[c] = evalf(subs(t=steval,pnt[c]));
end do;

unassign('j');

NN
sxxsum = z.vxx[j];
j=0
NN
sxxmean = Zj~sxx[j];
j=0
evalf (subs(t = steval, sENt));

NN
N2 . 2,
sxxvar = -sxx[ j] - sxxmean”;
=

J
evalf (subs(t = steval,sVNt));
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steval = 0.25;

for cfrom 0 to NN do

sxx[c] = evalf (subs(t=steval,pnt[c]));
end do;

unassign(');

NN
sxxsum = stx[j];
j=0
NN
sxxmean = Zj~sxx[j];
=0
evalf (subs(t = steval, sENt) );
NN

sxxvar = ij-sxx[ 1 - sxxmean’;
j=0
evalf (subs(t = steval,sVNt));

steval = 0.4,

for c from 0 to NN do

sxx[c] = evalf(subs(t=steval,pnt[c]));
end do;

unassign('j');

NN
sxxsum = z.vxx[j];
j=0
NN
sxxmean = Zj~sxx[j];
j=0
evalf (subs(t = steval, sENt));

NN
N2 . 2,
sxxvar = -sxx[ j] - sxxmean”;
=

J
evalf (subs(t = steval,sVNt));
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steval = 0.45;

for cfrom 0 to NN do

sxx[c] = evalf (subs(t=steval,pnt[c]));
end do;

unassign(');

NN
sxxsum = stx[j];
j=0
NN
sxxmean = Zj~sxx[j];
=0
evalf (subs(t = steval, sENt) );
NN

sxxvar = ij-sxx[ 1 - sxxmean’;
j=0
evalf (subs(t = steval,sVNt));

steval = 0.5;

for c from 0 to NN do

sxx[c] = evalf(subs(t=steval,pnt[c]));
end do;

unassign('j');

NN
sxxsum = z.vxx[j];
j=0
NN
sxxmean = Zj~sxx[j];
j=0
evalf (subs(t = steval, sENt));

NN
N2 . 2,
sxxvar = -sxx[ j] - sxxmean”;
=

J
evalf (subs(t = steval,sVNt));

74



steval == 0.6;

for cfrom 0 to NN do

sxx[c] = evalf (subs(t=steval,pnt[c]));
end do;

unassign(');

NN
sxxsum = stx[j];
j=0
NN
sxxmean = Zj~sxx[j];
=0
evalf (subs(t = steval, sENt) );
NN

sxxvar = ij-sxx[ 1 - sxxmean’;
j=0
evalf (subs(t = steval,sVNt));

steval = 0.7,

for c from 0 to NN do

sxx[c] = evalf(subs(t=steval,pnt[c]));
end do;

unassign('j');

NN
sxxsum = z.vxx[j];
j=0
NN
sxxmean = Zj~sxx[j];
j=0
evalf (subs(t = steval, sENt));

NN
N2 . 2,
sxxvar = -sxx[ j] - sxxmean”;
=

J
evalf (subs(t = steval,sVNt));
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steval = 0.75;

for cfrom 0 to NN do

sxx[c] = evalf (subs(t=steval,pnt[c]));
end do;

unassign(');

NN
sxxsum = stx[j];
j=0
NN
sxxmean = Zj~sxx[j];
=0
evalf (subs(t = steval, sENt) );
NN

sxxvar = ij-sxx[ 1 - sxxmean’;
j=0
evalf (subs(t = steval,sVNt));

steval == 1;

for c from 0 to NN do

sxx[c] = evalf(subs(t=steval,pnt[c]));
end do;

unassign('j');

NN
sxxsum = z.vxx[j];
j=0
NN
sxxmean = Zj~sxx[j];
j=0
evalf (subs(t = steval, sENt));

NN
N2 . 2,
sxxvar = -sxx[ j] - sxxmean”;
=

J
evalf (subs(t = steval,sVNt));
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steval = 1.25;

for cfrom 0 to NN do

sxx[c] = evalf (subs(t=steval,pnt[c]));
end do;

unassign(');

NN
sxxsum = stx[j];
j=0
NN
sxxmean = Zj~sxx[j];
=0
evalf (subs(t = steval, sENt) );
NN

sxxvar = ij-sxx[ 1 - sxxmean’;
j=0
evalf (subs(t = steval,sVNt));

steval == 2;

for c from 0 to NN do

sxx[c] = evalf(subs(t=steval,pnt[c]));
end do;

unassign('j');

NN
sxxsum = z.vxx[j];
j=0
NN
sxxmean = Zj~sxx[j];
j=0
evalf (subs(t = steval, sENt));

NN
N2 . 2,
sxxvar = -sxx[ j] - sxxmean”;
=

J
evalf (subs(t = steval,sVNt));
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steval == 5;

for cfrom 0 to NN do

sxx[c] = evalf (subs(t=steval,pnt[c]));
end do;

unassign(');

NN
sxxsum = stx[j];
j=0
NN
sxxmean = Zj~sxx[j];
=0
evalf (subs(t = steval, sENt) );

NN

sxxvar = ij-sxx[ 1 - sxxmean’;
j=0

evalf (subs(t = steval,sVNt));

steval = 10,

for c from 0 to NN do

sxx[c] = evalf (subs(t = steval,pnt[c]));
end do;

unassign('j');

NN
sxxsum = ZSxx[j];
=0

NN
sxxmean = Zj'sxx[j];
j=0
evalf (subs(t = steval, sENt));
NN
sxxvar = ij-sxx[ jl- sxxmean’;
=0

J
evalf (subs(t = steval,sVNt));
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steval == 20;
for cfrom 0 to NN do
sxx[c] = evalf (subs(t= steval,pnt[c]));
end do;
unassign(');
NN
sxxsum = stx[j];
=0
NN
sxxmean = Zj-sxx[j];
=0
evalf (subs(t = steval, sENt));
NN

sxxvar = ij-sxx[ i1 - sxxmean’;
=0
evalf (subs(t = steval,sVNt));

# BULK ARRIVALS:
# ANALYTIC RESULTS - MEAN AND VARIANCE:
ENs := s'(lF+Fs)‘dPXI; simplify(ENs);
ENt := inviaplace(ENs,s, t);
Fs 2-Fs-(dPx1)?

VNsl = ————— | ddPx] + ———————

ST S (1= Fy) * (1 — Fs)
simplify(VNsl);
VNt1 = invlaplace(VNsl,s,t);
VNt == VNt - ENZ;

simplify (VNt);

+ dle];

evalf (subs(t =10, ENt));
evalf (subs(t=0.5,VNt));

# PREPARE pns FOR LOOP

#FIND COEFFICIENTS FOR USE IN BULK PGF
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PXZ1 :

z0100 :
z0101 :

z0102 :

z0103 :

z0104 :
z0105 :
z0106 :
z0107 :
z0108 :
z0109 :
z0110 :
z0111 :
z0112 :
z0113 :

>

taylor(PxZ, z, 14)
coeff (PXZ1,z,0)
coeff (PXZ1,z,1)
coeff (PXZ1,z,2);
coeff (PXZ1,z,3),;
coeff (PXZ1,z 4);
)
)
)
)
)

>

>

coeff (PXZ1,z,5);
coeff (PXZ1,z,6);
coeff (PXZ1,z,7
coeff (PXZ1, z, 8
coeff (PXZ1,z,9);

coeff (PXZ1,z,10);
coeff (PXZ1,z,11);
coeff (PXZ1,z,12);

coeff (PXZ1,2,13);

>

i

i

e JSa By S s it 4

PXZ2 = taylor(PxZ?, z, 14);

20200 :
z0201 :
70202 :
z0203 :
20204 :
20205 :
20206 :
z0207 -
20208 :
20209 :
z0210 :
z0211 :
z0212 :
z0213 :

(
coeff (PXZ2,z,0);
= coeff (PXZ2,z,1);
coeff (PXZ2,z,2);
coeff (PXZ2,z,3)
coeff (PXZ2,z,4)

)

)

coeff (PXZ2,z,5
coeff (PXZ2,z,6
coeff (PXZ2,z,17);
= coeff(PXZ2,z,8);
coeff (PXZ2,2z,9);
coeff (PXZ2,z,10);
coeff (PXZ2,z,11);
coeff (PXZ2,z,12);
coeff (PXZ2,z,13);

>
>
>
>

PXZ3 = taylor(PxZ3,Z, 14);

z30 ==
z31 ==

coeff (PXZ3,z,0);
coeff (PXZ3,z,1);

732 = coeff(PXZ3,z,2);

z33 ==
z34 =
z35 ==

coeff (PXZ3,z,3);
coeff (PXZ3,z,4);
coeff (PXZ3,z,5);

236 = coeff(PXZ3,z,6);

z37 ==
238 =
z39 ==

coeff (PXZ3,z,7);
coeff (PXZ3, z, 8);
coeff(PXZ3,z,9);

2310 = coeff (PXZ3,z,10);

z311 ==

coeff (PXZ3,z,11);

z312 = coeff (PXZ3,z,12);
z313 = coeff (PXZ3,z,13);
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PX74 = taylor(PxZ4, z, 14);

z40 = coeff(PXZ4,z,0);
z41 = coeff(PXZ4,z,1);
742 = coeff (PXZ4,z,2);
z43 = coeff (PXZ4, z, 3);
z44 = coeff (PXZ4,z,4);
z45 = coeff(PXZ4, z, 5);
246 = coeff (PXZ4,z, 6);
z47 = coeff(PXZ4,z,7);
248 = coeff (PXZ4, z, 8);
z49 = coeff(PXZ4,z,9);

z410 = coeff (PXZ4, z,10);
z411 = coeff (PXZ4,z,11),
z412 = coeff (PXZ4,z,12);
z413 = coeff (PXZ4,2z,13);

PXZ5 = taylor(PxZ’, z, 14);

z50 := coeff (PXZ5,z,0);
z51 = coeff (PXZ5,z,1);
752 = coeff (PXZ5,z,2);
z53 := coeff (PXZ5,z,3);
z54 := coeff (PXZ5,z,4);
z55 = coeff(PXZ5,z,5);
256 := coeff(PXZ5,z,6);
z57 = coeff (PXZ5,z,7);
z58 = coeff (PXZ5,z, 8);
z59 == coeff (PXZ5,z,9);

z510 = coeff (PXZ5,z,10);
z511 = coeff (PXZ5,z2,11);
z512 = coeff (PXZ5,z,12);
z513 == coeff (PXZ5,2,13);

PX76 = taylor(PxZé, z, 14);
260 := coeff (PXZ6,z,0);
z61 = coeff (PXZ6,z,1);
762 = coeff (PXZ6,z,2);
z63 = coeff (PXZ6,z,3);
z64 = coeff (PXZ6,z,4);
z65 = coeff (PXZ6,z,5);
266 = coeff (PXZ6,z, 6);
267 = coeff (PXZ6,z,7);
268 = coeff (PXZ6,z,8);
269 = coeff (PXZ6,z,9);
2610 = coeff (PXZ6, z, 10);
z611 = coeff (PXZ6,z,11);
2612 = coeff (PXZ6,z,12);
2613 = coeff (PXZ6, z, 13);
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PXZ7 = taylor(PxZ’, z, 14);
270 : COQﬁ(PXZ7; Z, 0)’
Z71 = COeff(PXZ7, Zs 1);

772 = coeff (PXZ7,z,2);
273 = coeff (PXZ7,z,3);
z74 = coeff (PXZ7,z,4);
z75 = coeff (PXZ7,z,5);
276 := coeff(PXZ7,z,6);
277 = coeff (PXZ7,z,7);
z78 = coeff (PXZ7,z, 8);
279 = coeff(PXZ7,z,9);

2710 = coeff (PXZ7,z, 10);
2711 = coeff (PXZ7,2,11);
2712 = coeff (PXZ7,z,12);
2713 = coeff (PXZ7, 2 13);

PXZ8 = taylor(PxZS, z,14);
280 := coeff (PXZ8,z,0);
281 = coeff (PXZ8,z,1);
782 = coeff (PXZ8,z,2);
283 = coeff(PXZ8,z,3);
284 := coeff (PXZ8,z,4);
z85 = coeff (PXZ8,z, 5);
286 = coeff (PXZ8, z, 6);
287 = coeff (PXZ8,z,7);
z88 = coeff (PXZ8, z, 8);
289 = coeff(PXZ8,z,9);
2810 = coeff (PXZ8, z, 10);
z811 = coeff (PXZ8,z, 11);
2812 := coeff (PXZ8, 2, 12);
z813 = coeff (PXZ8, z, 13);

PXZ9 = taylor(PxZ’, 2, 14);
290 := coeff (PXZ9,z,0);

291 = coeff (PXZ9,z,1);

792 = coeff (PXZ9,z,2);
293 := coeff (PXZ9,23)
294 := coeff (PXZ9, z, 4)
295 = coeff (PXZ9,z,5)
296 = coeff (PXZ9, 2, 6)
297 := coeff (PXZ9,z,7);
298 = coeff (PXZ9, z, 8);

299 = coeff (PXZ9,z,9);

2910 = coeff (PXZ9, z,10);
2911 = coeff (PXZ9,z,11);
2912 := coeff (PXZ9,2,12);
2913 = coeff (PXZ9, z,13);

>
>
>
>
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PXZ10 := taylor(PleO, z, 14);
z100 = coeff (PXZ10,z,0);
z101 = coeff (PXZ10,z,1);
z102 = coeff (PXZ10,z,2);
z103 = coeff (PXZ10,z,3
z104 = coeff (PXZ10, z, 4
z105 = coeff (PXZ10,z,5
z106 = coeff (PXZ10, z, 6
z107 = coeff (PXZ10,z,7);
z108 = coeff (PXZ10, z,8);
z109 = coeff (PXZ10,z,9),
21010 = coeff (PXZ10,z,10);
z1011 = coeff (PXZ10,z,11);
z1012 = coeff (PXZ10,2z,12);
z1013 = coeff (PXZ10,2z,13) ;

)
)
)
)

PXZ11 = taylor(PxZ", 2, 14);
zI110 = coeff (PXZ11,z,0);
zI11 = coeff (PXZ11,z,1);
z112 == coeff (PXZ11,z,2);
zI113 = coeff (PXZ11,z,3);
zI114 = coeff (PXZ11,z,4);
zI115 = coeff (PXZ11,z,5);
z116 = coeff (PXZ11,z,6);
z117 = coeff (PXZ11,z,7);
zI118 = coeff (PXZ11, z,8);
zI119 = coeff (PXZ11,z,9);
zI1110 = coeff (PXZ11,z,10);
zI1111 = coeff (PXZ11,z,11);
zI1112 = coeff (PXZ11,2z,12);
zI1113 = coeff (PXZ11,2z,13);

PXZ12 = taylor( PxZ'?, z, 14);
2120 = coeff (PXZ12,z,0);
z121 = coeff (PXZ12,z,1)
z122 = coeff (PXZ12,z,2);
coeff (PXZ12,z,3)
)
)
)

>
>

z123 == ;
z124 == coeff (PXZ12, z, 4),
z125 = coeff (PXZ12,z,5);
z126 = coeff (PXZ12,z,6);

z127 == coeff (PXZ12,z,7);
2128 = coeff (PXZ12, z,8);
z129 = coeff (PXZ12,z,9);
z1210 = coeff (PXZ12,z,10);
z1211 == coeff (PXZ12,z,11),
z1212 = coeff (PXZ12,2z,12);
z1213 = coeff (PXZ12,z,13);



PXZ13 = taylor(Ple3,z 14);
z130 = coeff (PXZ13,2z,0);
z131 = coeff (PXZ13,z,1);
z132 == coeff (PXZ13,z,2);
z133 = coeff (PXZ13,z,3);
z134 = coeff (PXZ13,z,4);,
z135 == coeff (PXZ13,z5);
z136 = coeff (PXZ13,z,6);
z137 = coeff (PXZ13,2,7);
z138 = coeff (PXZ13,z,8);

z139 := coeff (PXZ13,z,9),

21310 = coeff (PXZ13, 2, 10);
z1311 = coeff (PXZ13,z2,11);
z1312 = coeff (PXZ13,z,12);
z1313 == coeff (PXZ13,2,13);

>
>
>
>

# CREATE EQUATIONS FOR DETERMINING Pn(t)'s FOR BULK

ARRIVALS - USE SINGLE ARRIVAL Pn(t)'s AND
COEFFICIENTS OF 7" FROM SERIES EXPANSION

bpnt[ 0] = simplify(pnt[0] + z0100pnt[ 1] + 20200 pnt[2 ]
+z30pnt[3] + z40pnt[4] + z50pnt[ 5] + z60 pnt[ 6]
+ z70pnt[7] + z80pnt[8] 4+ z90pnt[9] + z100 pnt[ 10]
+zI110pnt[11] +zI120 pnt[12] + 2130 pnt[13]);

bpnt[ 1] = simplify(z0101 pnt[ 1] + 20201 pnt[2] + z31 pnt[ 3]
+ z41pnt[4] + z51 pnt[ 5] + z61 pnt[ 6] + z71 pnt[ 7]
+ z81pnt[8] + 291 -pnt[9] + z101 pnt[10] + z111 pnt[11]
+ 2121 pne[12] + z131 pnt[ 13]);

bpnt[2] = simplify(z0102 pnt[ 1] + 20202 pnt[2] + z32 pnt[ 3]
+ z42pnt[4] + z52pnt[ 5] + z62 pnt[ 6] + z72 pnt[ 7]
+z82pnt[8] +z92pnt[9] + 2102 pnt[10] + z112pnt[11]
+z122pnt[12] + z132 pnt[ 13]);

bpnt[3] = simplify(z0103 pnt[ 1] + 20203 pnt[2] + z33 pnt[ 3]
+ z43pnt[4] + 253 pnt[ 5] + z63-pnt[ 6] + z73pnt[ 7] + 283
-pnt[8] +z93pnt[9] + z103 pnt[10] + z113-pnt[11]
+z123pnt[12] + z133 pnt[ 13]);

bpnt[4] = simplify(z0104 pnt[ 1] + 20204 pnt[2] + z34 pnt[ 3]
+ z44pnt[ 4] + z54 pnt[ 5] + z64pnt[ 6] + z74 pnt[ 7]
+ z84pnt[8] + z94pnt[9] + z104 pnt[10] + z114pnt[11]
+z124pnt[12] + z134 pnt[ 13]);

bpnt[5] = simplify(z0105 pnt[ 1] + z0205 pnt[2] + z35 pnt[ 3]
+ z45pnt[4] + z55pnt[ 5] 4+ z65pnt[ 6] + z75 pnt[ 7]
+ z85pnt[8] + z95pnt[9] + z105pnt[10] +z115pnt[11]
+zI125pnt[12] + zI135 pnt[ 13]);
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bpnt[ 6] = simplify(z0106 pnt[ 1] + z0206 pnt[2] + z36 pnt[ 3]
+ z46pnt[4] + z56 pnt[ 5] + z66 pnt[ 6] + z76 pnt[ 7]
+ z86pnt[8] + z96 pnt[9] + z106 pnt[10] +zI116 pnt[11]
+z126 pnt[12] + z136 pnt[ 13]);

bpnt[ 7] = simplify(z0107 pnt[ 1] + 20207 pnt[2] + z37 pnt[ 3]
+ z47pnt[4] + z57 pnt[ 5] + 267 pnt[ 6] + z77 pnt[ 7]
+ z87pnt[8] + z97pnt[9] + z107 pnt[10] + z117-pnt[11]
+z127pnt[12] + 2137 pnt[ 13]);

bpnt[ 8] = simplify(z0108 pnt[ 1] + z0208 pnt[2] + z38 pnt[ 3]
+ z48pnt[4] + z58 pnt[ 5] + z68 pnt[ 6] + z78 pnt[ 7]
+ z88pnt[8] + z98pnt[9] + z108 pnt[10] + z118pnt[11]
+z128pnt[12] + z138 pnt[ 13]);

bpnt[9] = simplify(z0109pnt[ 1] + z0209pnt[2] + z39 pnt[ 3]
+ z49pnt[4] + z59pnt[5] + 269 pnt[ 6] + z79pnt[ 7]
+ z89pnt[8] + z99pnt[9] + z109pnt[10] + z119pnt[11]
+zI129pnt[12] 4+ z139 pnt[13]);

bpnt[10] == simplify(z0110pnt[ 1] + z0210pnt[2] + z310 pnt[ 3]
+z410pnt[4] + z510pnt[5] + z610-pnt[ 6] + z710 pnt[ 7]
+z810pnt[8] +z910pnt[9] + z1010pnt[10] +z1110pnt[11]
+z1210pnt[12] + z1310pnt[13]);

bpnt[ 11] == simplify(z0111 pnt[ 1] + z0211 pnt[2] + 2311 pnt[ 3]
+z411pnt[4] +z511-pnt[5] + 2611 -pnt[6] + 2711 pnt[ 7]
+ 2811 pnt[8] +z911 pnt[9] + z1011pnt[10] +zI1111pnt[11]
+ 21211 pnt[12] + 21311 pnt[13]);

bpnt[12] == simplify(z0112pnt[ 1] + 20212 pnt[2] + z312 pnt[ 3]
+z412pnt[4] + z512-pnt[5] + z612-pnt[6] + 2712 pnt[7]
+2812-pnt[8] +z912pnt[9] + z1012pnt[ 10] + z1112pnt[11]
+zI1212pnt[12] + z1312 pnt[13]);

bpnt[13] = simplify(z0113 pnt[ 1] + z0213 pnt[2] + 2313 pnt[ 3]
+z413pnt[4] 4+ 2513 -pnt[ 5] + z613-pnt[ 6] + z713 pnt[ 7]
+ 2813 -pnt[ 8] + 2913 pnt[9] + z1013pnt[10] + z1113pnt[11]
+21213pne[12] + 21313 pne[ 13]);

# NUMERICAL RESULTS FOR BULK RENEWALS - VARIOUS
VALUES OF t

#NN counter for bulk Pn(t) calculations
NN = 13
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teval == 0.1;
for1from 0 to NN do

xx[[] == evalf (subs( t = teval, bpnt[[]));

end do;
unassign('i');

NN
xxsum = Zxx[i],
i=0

NN
xxmean = Zixx[i];
i=0
evalf (subs(t = teval, ENt));
NN
o 2 . 2.
xxvar ‘= ) i~ -xx[i] - xxmean”;
i=0

evalf (subs(t = teval, VNt));

teval := 0.15;
for 1 from 0 to NN do
xx[1] := evalf (subs( t = teval, bpnt[[]));
end do;
unassign('i');

NN
xxsum = Zxx[i];

i=0

NN

xxmean = Zi-xx[i];
i=
evalf (subs(t = teval, ENt));

(=

2
xxvar = Zl XX - XxXxmean

evalf(subs(t = teval, VNt));
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teval == 0.25;
for1from 0 to NN do

xx[[] == evalf (subs( t = teval, bpnt[[]));

end do;
unassign('i');

NN
xxsum = Zxx[i],
i=0

NN
xxmean = Zixx[i];
i=0
evalf (subs(t = teval, ENt));
NN
o 2 . 2.
xxvar ‘= ) i~ -xx[i] - xxmean”;
i=0

evalf (subs(t = teval, VNt));

teval := 0.4;
for 1 from O to NN do

xx[1] := evalf (subs( t = teval, bpnt[[]));

end do;
unassign('i');

xxsum ‘= Zxx[i];

i=0

xxmean = Zi-xx[i];
i=
evalf (subs(t = teval, ENt));

(=

2
xxvar = Zl XX - XxXxmean

evalf(subs(t = teval, VNt));
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teval == 0.45;
for1from 0 to NN do

xx[[] == evalf (subs( t = teval, bpnt[[]));

end do;
unassign('i');

NN
xxsum = Zxx[i],
i=0

NN
xxmean = Zixx[i];
i=0
evalf (subs(t = teval, ENt));
NN
o 2 . 2.
xxvar ‘= ) i~ -xx[i] - xxmean”;
i=0

evalf (subs(t = teval, VNt));

teval := 0.5;
for 1 from O to NN do

xx[1] := evalf (subs( t = teval, bpnt[[]));

end do;
unassign('i');

xxsum ‘= Zxx[i];

i=0

xxmean = Zi-xx[i];
i=
evalf (subs(t = teval, ENt));

(=

2
xxvar = Zl XX - XxXxmean

evalf(subs(t = teval, VNt));
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teval == 0.6;
for1from 0 to NN do

xx[[] == evalf (subs( t = teval, bpnt[[]));

end do;
unassign('i');

NN
xxsum = Zxx[i],
i=0

NN
xxmean = Zixx[i];
i=0
evalf (subs(t = teval, ENt));
NN
o 2 . 2.
xxvar ‘= ) i~ -xx[i] - xxmean”;
i=0

evalf (subs(t = teval, VNt));

teval := 0.7,
for 1 from O to NN do

xx[1] := evalf (subs( t = teval, bpnt[[]));

end do;
unassign('i');

xxsum ‘= Zxx[i];

i=0

xxmean = Zi-xx[i];
i=
evalf (subs(t = teval, ENt));

(=

2
xxvar = Zl XX - XxXxmean

evalf(subs(t = teval, VNt));
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teval == 0.75;

for 1 from 0 to NN do

xx[[] == evalf (subs( t = teval, bpnt[[]));
end do;

unassign('i');

NN
xxsum = Zxx[i];
i=0

NN

xxmean = Zixx[i];

i=0
evalf (subs(t = teval, ENt));

—_

2 . 2.
i“-xx[i] - xxmean”;

i=0
evalf (subs(t =

Mz

xxvar =

teval, VNt) );

teval == 1;
for 1 from O to NN do
xx[1] == evalf (subs( t = teval, bpnt[[]));
end do;
unassign('i');

NN
xxsum = Zxx[i];
i=0

NN
Xxmean = Zi‘xx[i];
i=0
evalf (subs(t = teval, ENt));
NN
o 2 . 2.
xxvar ‘= ) i~ -xx[i] - xxmean";
=0

evalf (subs(t = teval, VNt));
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teval == 1.25;
for1from 0 to NN do

xx[[] == evalf (subs( t = teval, bpnt[[]));

end do;
unassign('i');

NN
xxsum = Zxx[i],
i=0

NN
xxmean = Zixx[i];
i=0
evalf (subs(t = teval, ENt));
NN
o 2 . 2.
xxvar ‘= ) i~ -xx[i] - xxmean”;
i=0

evalf (subs(t = teval, VNt));

teval := 2;
for 1 from O to NN do

xx[1] := evalf (subs( t = teval, bpnt[[]));

end do;
unassign('i');

xxsum ‘= Zxx[i];

i=0

xxmean = Zi-xx[i];
i=
evalf (subs(t = teval, ENt));

(=

2
xxvar = Zl XX - XxXxmean

evalf(subs(t = teval, VNt));
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teval == 3;
for1from 0 to NN do

xx[[] == evalf (subs( t = teval, bpnt[[]));

end do;
unassign('i');

NN
xxsum = Zxx[i],
i=0

NN
xxmean = Zixx[i];
i=0
evalf (subs(t = teval, ENt));
NN
o 2 . 2.
xxvar ‘= ) i~ -xx[i] - xxmean”;
i=0

evalf (subs(t = teval, VNt));

teval :=5;
for 1 from O to NN do

xx[1] := evalf (subs( t = teval, bpnt[[]));

end do;
unassign('i');

xxsum ‘= Zxx[i];

i=0

xxmean = Zi-xx[i];
i=
evalf (subs(t = teval, ENt));

(=

2
xxvar = Zl XX - XxXxmean

evalf(subs(t = teval, VNt));
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teval := 10;
for1from 0 to NN do

xx[[] == evalf (subs( t = teval, bpnt[[]));

end do;
unassign('i');

NN
xxsum = Zxx[i],
i=0

NN
xxmean = Zixx[i];
i=0
evalf (subs(t = teval, ENt));
NN
o 2 . 2.
xxvar ‘= ) i~ -xx[i] - xxmean”;
i=0

evalf (subs(t = teval, VNt));

teval := 20;
for 1 from O to NN do

xx[1] := evalf (subs( t = teval, bpnt[[]));

end do;
unassign('i');

xxsum ‘= Zxx[i];

i=0

xxmean = Zi-xx[i];
i=
evalf (subs(t = teval, ENt));

(=

2
xxvar = Zl XX - XxXxmean

evalf(subs(t = teval, VNt));
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teval == 50;

for 1 from O to NN do

xx[[] == evalf (subs( t = teval, bpnt[1]));
end do;

unassign('i');

NN
xxsum = Zxx[i];
i=0
NN
xxmean = Zi-xx[i];
i=0
evalf (subs(t = teval, ENt) ),
NN
xxvar = Ziz xx[i] - xxmean’;
i=0
evalf (subs(t = teval, VNt));

interface(displayprecision = 6);

Fs;
# ASYMPTOTIC MOMENTS AND PARAMETERS
2 2
M= LEELL | gpy | S I,
mu 2“
dPx1;

20
meantest := convert[J t-ftorig dt, ﬂoat];
0

0
sigmatest == secondmoment — meantestz;

20
secondmoment = convert{J 7 -ftorig dt,ﬂoatj;

20
thirdmoment = convert[f £ -ftorig dt,ﬂoat];
0

mu = Subs(s= O,—i Fs);
ds

. d d 2
= sub, =0, — | —F: .
sigma := su s(s 0, s ( s s)j w

> #FIRST MOMENT

2 2
o APXI +dpx1.[g}
mu

# SECOND MOMENT
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\%

2 2 2 2 2
: —2- + dP 2-0 -dPx1
Mt = dPx1”-t ddPx1 — 2-dPx1 dPx1 o X

2 1 3
un un un
Gz-ddPx] " (52~dPx1 _dPxl 2-thirdmoment-dPx 1>
2-u2 2-u2 2 3-u3
4 2 2 2 2
3-6 -dPxl G -dPxl 3dPx1 ddPx1
N
2-u 38
# NUMERICAL MEAN
MENt == (;
for w from 1 to NN do
MENt == MENt + bpnt[w]-w;
end do;

# GRAPHICAL COMPARISON OF ANALYTIC (ENy),
ASYMPTOTIC (Mt), AND NUMERICAL (MENt) RESULTS

plot(Mt, t=0..2);
plot([ENt, Mt], t=0..2);
plot([ ENt,Mt],t=0.20);

plot([ Mt, ENt, MENt], t
plot([ Mt, ENt, MENt), t
plot([ Mt, ENt, MENt], t 10);

plot([ Mt, ENt, MENt],t=0..20);

# ASYMPTOTIC NUMERICAL RESULTS - FIRST AND SECOND
MOMENTS - VARIOUS VALUES OF t

);

0.1
05
0.

ti=2;
2 2
) +dpx,.[%}
mu ZM
2 2 2 2 2
. _. 2-0 -dPxl
v AL [ ddPxl = 2-dPst” +dPxl 26" dPy
W i u
2 2
o -ddPx1 n G -dPxl _ dPxl 2-thirdmoment-dPx 1>
2.uz 2'!~l2 2 3“3
3.6%dPxl*? o -dPxI>  3dpxl®  ddPxl
i 7 > T, T
2. u
ASYVARIANCE = M2t — M?,
t:=75;

2 2
ap e APEIC +dpx,.[u];
mu
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2.2 _ 5. 2 L2 2
M2t = dPx1”-t I ddPx1 — 2-dPx1” + dPxI " 2-6 -dPxl y

2 1 3
u u W
Gz-ddPx] " (52~dPx1 _ dPxl1 _ 2-thirdm0ment-dPx12
2-u2 2-u2 2 3-u3
3.6 -dPxI? o -dPxI*  3dPxl®  ddPxl
N
2w u

ASYVARIANCE = M2t — Mtz;

t = 20;
2 2
Mt = M_ﬁ_d}bﬂ. S —u :
mu 2~},L2
2 2 2 2 2
. 2. 2-6"-dPxI
pize e APE [ ddPsl = 2-dPsl’ 4 dPxl | 20"dPsl” ) |
W i W
62~ddPx1 " (52~dPx1 _ dPxl 2-thirdmoment-dPx1*
2-u2 2-u2 2 3-u3
4 2 2 2 2
3-c -dPxI LS -dPx1 " 3dPxI”  ddPxl
4 2 ) 7’
2:u m
ASYVARIANCE := M2t — Mtz;
t == 40;
2 2
o APXI +dpx1.[%}
mu 2M
dPxI*-£ ddPxl — 2-dPx* + dPx]  2-G>-dPxI?
M2t == > + N + 3 -t
u u u
2 2
o -ddPxl " G -dPxI _ dPxl 2-thirdmoment-dPx 1>
2-u2 2-;.12 2 3-u3
36 dPel’ | o"dPxl’ | 3dPxP  ddPxl
4 2 > 7
2-n u

ASYVARIANCE = M2t — Mtz;

> #END OF PROGRAM
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BRENT DAVID FISHER

Born 4 August 1988 in Kingston, ON

Contact Information:
1001-327 Maitland St., Victoria, BC, V9A 7G7
fisher24712@gmail.com

POST SECONDARY EDUCATION

May 2012 — Present Royal Military College of Canada
e Completing Masters of Science in Mathematics as a part-time student
e Concentrating on stochastic processes and renewal theory
e Thesis entitled “Renewal Theory: Simple and Elegant Derivations”

September 2010 — May 2012 Royal Military College of Canada
e Received a Masters in Business Administration while on a scholarship from Defence
Research and Development Canada
e Program of study concentrated on management science
¢ Finished top of graduating class with a program academic average of 91 percent
e Successfully defended thesis entitled “A Decision Support Tool for Adopting Non
Strategic Projects in the Royal Canadian Navy”

September 2006 — May 2010 Royal Military College of Canada
e Received an Honours Bachelor of Science in Mathematics (minor in Physics) with first
class distinction
¢ Finished top of graduating class with a final-year academic average of 96 percent
e Simultaneously received an undergraduate diploma from the Canadian Operational
Research Society

WORK EXPERIENCE

June 2006 — Present Member of the Canadian Forces Regular Force
as a Maritime Surface and Sub-surface Officer
e Graduated from the Naval Officer Training Centre as top student
o Completed five-month posting as an Exchange Officer with the Armada de Chile
e Currently a Bridge Watch-keeper Under Training with HMCS WINNIPEG

June 2011 — August 2011 Research Assistant at the Naval Postgraduate
School Operations Research Center
o Created a preliminary decision support tool to optimize the scheduling of Explosive
Ordnance Disposal pre-deployment training for the U.S. Navy
o Remotely coordinated with senior naval officers and civilian officials to implement the
model’s formulation in a timely yet accurate manner
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May 2011 — May 2012 Volleyball Tendency Software Developer
o Developed software to track and summarize various opponent tendencies in volleyball
e Used by the Canadian National University team at the 26™ Summer Universiade in China
e Advanced version leased to the RMC and local Pegasus Volleyball programs at no cost

May 2010 — September 2010 Research Assistant in the RMC Department of
Business Administration
e Conducted support and lead research resulting in the publication of two articles in 2012
and the presentation of one other at the Defence and Security Economics Workshop 2010

OTHER EXPERIENCE

January 2008 — August 2012 Volunteer with the RMC Club of Canada
o Performed secretarial duties for the Board of Directors
o Assisted staff in promotional programs to improve club membership
e Published numerous human interest articles for alumni newsletters
e Escorted several WWII veterans at various events

September 2006 — May 2010 Student Leader at the Royal Military College
e Accepted responsibility for the well-being of seventy-five officer cadet peers as Cadet
Squadron Leader
e Led and supervised projects relating to the training and discipline of more than 1000
officer cadet peers as Deputy Cadet Wing Training Officer
e Trained, mentored, and evaluated the initial progress of seven First Year officer cadets as
a Cadet Section Commander

PRIZES AND AWARDS

e Chief of the Maritime Staff Award for graduating as top candidate in MARS training in
the Royal Canadian Navy (2013)

e Canadian Forces Logistics Branch Medal of Academic Excellence for graduating as top
student in the RMC MBA program (2012)

e Governor General’s Gold Medal Finalist for achieving the highest overall academic
average in any program of study at the masters degree level (2012)

Rhodes Scholarship Finalist in Ontario (2010)

e Sword of Honour for attaining the highest standard of proficiency among the graduating
students across all components of the RMC course of study (2010)

e Governor General’s Silver Medal for achieving the highest overall academic average in
the Fourth Year of study (2010)

e Victor Van Der Smissen-Ridout Memorial Award for having been voted as the top
graduate morally, intellectually, and physically by the student body (2010)

e General Douglas MacArthur Leadership Award for demonstrating the highest potential
based on the credo Duty-Honour-Country and potential for future service in the
profession of arms (2010)

e Canadian Operational Research Society Diploma for undergraduate work (2010)

e Canadian Interuniversity Sport Academic All-Canadian in volleyball (2007 — 2011)

e Public Service Commission Second Language Certification for achieving advanced
standing (C) in reading, writing, and oral communication examinations



