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Abstract

In the past two decades, unmanned aerial vehicles (UAVs) have demonstrated
their efficacy in supporting both military and civilian applications, where tasks
can be dull, dirty, dangerous, or simply too costly with conventional meth-
ods. Many of the applications contain tasks that can be executed in parallel,
thus can benefit in terms of effectiveness from deploying multi-UAVs working
together as a force multiplier. However, to do so requires autonomous coordi-
nation among the UAVs, similar to swarming behaviors seen in animals and
insects. This research looks at flocking with fixed-wing UAVs in the context of
a model-free reinforcement learning problem, structured as a Markov decision
process. The advantage of a model-free approach is that it can be applied to
different platforms without the plant and disturbance models, which implies
greater adaptability to changing environments and unforeseen situations. We
propose two learning approaches that enable the agents, modeled as small
fixed-wing UAVs, to learn control policies that facilitate flocking in a leader-
follower topology, while operating in a non-stationary stochastic environment.
The first approach is based on Peng’s Q(λ) with a variable learning parameter,
which learns through direct reinforcement learning. The second approach is
based on Sutton’s Dyna-Q where on-line learning, model learning, and plan-
ning are integrated to improve sample efficiency. Our approaches are com-
pared to existing works by evaluating the respective policies at maintaining
the desired flocking behavior according to a cost function. Simulation results
demonstrate that with the two proposed learning approaches, the agents are
able to learn policies that facilitate flocking with a single leader, more impor-
tantly, the agents are able to adapt their policies to non-stationary stochastic
environments.
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Résumé

Au cours des deux dernières décennies, les drones ont démontré leur efficacité
au soutien d’applications tant militaires que civiles, où les tâches sont sou-
vent ennuyeuses, dangereuses, ou tout simplement trop coûteuses avec des
méthodes classiques. La plupart des applications contiennent des tâches qui
peuvent être exécutées en parallèle. Ces tâches peuvent donc bénéficier d’un
gain d’efficacité par le déploiement de plusieurs drones travaillant ensembles
comme multiplicateur de force. Cependant, pour ce faire, il faut une co-
ordination autonome parmi les drones, semblable à la formation en volée
observée chez les animaux et les insectes. Cette recherche porte sur la for-
mation en volée de drones à voilure fixe dans le contexte d’un problème
d’apprentissage par renforcement sans modèle, structuré comme un proces-
sus de décision markovien. L’avantage d’une approche sans modèle est qu’elle
peut être appliquée à différentes plates-formes sans modèle environnemental,
ce qui implique une plus grande adaptabilité à l’évolution de l’environnement
et aux situations imprévues. Nous proposons deux méthodes d’apprentissage
qui permettent aux agents, modélisés comme des petits drones à voilure fixe,
d’apprendre les politiques de contrôle qui facilitent la formation en volée
dans une topologie meneur-suiveur, tout en fonctionnant dans un environ-
nement stochastique non stationnaire. L’algorithme dans la première approche
est basé sur la méthode d’apprentissage Q (λ) de Peng avec un paramètre
d’apprentissage variable. Le second algorithme est basé sur la méthode Dyna-
Q de Sutton où l’apprentissage en ligne, l’apprentissage du modèle, et la plani-
fication sont intégrés pour améliorer l’efficacité de l’utilisation des échantillons,
ce qui accélère le processus d’apprentissage. Nos approches sont comparées à
des œuvres existantes par l’évaluation des politiques respectives au maintien
de la formation en volée selon une fonction de coût. Les résultats des simula-
tions démontrent que pour les deux approches proposées, les agents ont appris
des politiques qui facilitent la formation en volée. De plus, les agents ont pu
adapter leurs politiques aux environnements stochastiques non stationnaires.
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Résumé iv

List of Tables vii

List of Figures viii

List of Symbols xi

List of Acronyms and Abbreviations xv

1 Introduction 1
1.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Markov Decision Process . . . . . . . . . . . . . . . . . 6
2.1.2 Value Functions . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Approaches to Solving RL Problems . . . . . . . . . . . 9

Dynamic Programming . . . . . . . . . . . . . . . . . . 10
Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . 11
Temporal Difference Learning . . . . . . . . . . . . . . . 11

2.1.4 Q-Learning, Q(λ) and Dyna-Q . . . . . . . . . . . . . . 13
2.1.5 Challenges of RL . . . . . . . . . . . . . . . . . . . . . . 16

v



Contents

2.2 Flocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Application of RL to Flocking . . . . . . . . . . . . . . . . . . . 20

2.3.1 Quintero’s Approach to Flocking . . . . . . . . . . . . . 21
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Problem Formulation 23
3.1 Flocking Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 State Representation . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Action Space . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 State Transition Model . . . . . . . . . . . . . . . . . . 26
3.2.4 Reward Scheme . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 RL Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Learning Approaches . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1 Q-Flocking . . . . . . . . . . . . . . . . . . . . . . . . . 32
Q-Flocking Algorithm . . . . . . . . . . . . . . . . . . . 33

3.4.2 Dyna-Q-Flocking . . . . . . . . . . . . . . . . . . . . . . 34
Model Learning . . . . . . . . . . . . . . . . . . . . . . . 34
Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Dyna-Q-Flocking Algorithm . . . . . . . . . . . . . . . . 37

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Simulation Process & Results 41
4.1 Simulation Process . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Experiment I . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 Experiment II . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Conclusion and Recommendations 70
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Recommendations for Future Work . . . . . . . . . . . . . . . . 72

Bibliography 73

vi



List of Tables

4.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 ΓAve of QDP policies in Exp. I . . . . . . . . . . . . . . . . . . . . 48
4.3 ΓAve of policies learned using Q-flocking in Exp. I after 1000 episodes 51
4.4 T-test results for Q-flocking in Exp. I . . . . . . . . . . . . . . . . 51
4.5 T-test results for Dyna-Q-flocking in Exp. I . . . . . . . . . . . . . 56
4.6 ΓAve of policies learned using Dyna-Q-flocking in Exp. I after 1000

episodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.7 ΓAve of QDP policies in Exp. II . . . . . . . . . . . . . . . . . . . . 61
4.8 ΓAve of policies learned using Q-flocking in Exp. II after 1000

episodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.9 T-test results for Q-flocking in Exp. II . . . . . . . . . . . . . . . . 64
4.10 ΓAve of policies learned using Dyna-Q-flocking in Exp. II after

1000 episodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.11 T-test results for Dyna-Q-flocking in Exp. II . . . . . . . . . . . . 65

vii



List of Figures

2.1 Interaction between the agent and the environment . . . . . . . . . 6
2.2 Policy map of a simple grid world . . . . . . . . . . . . . . . . . . . 7
2.3 Dyna architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Difference between Quintero’s DP approach and our RL approach 22

3.1 Top view of relationship between the leader & followers . . . . . . 24
3.2 Illustration of the action space (Roll command) . . . . . . . . . . . 26
3.3 Simulated roll trajectories of +15◦ change in roll setpoint . . . . . 28
3.4 Sample roll trajectory changing roll-angle setpoint from 15◦ to 30◦ 28
3.5 Collection of possible resulting UAV states z′. M1 represents the

state transition model with only stochasticity in roll and airspeed.
M2 represents the state transition model with stochasticity in roll
and airspeed, as well as non-zero means and variances forN (ηx,σ2x),
N (ηy,σ

2
y) and N (ηψ,σ2ψ). . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Cutout of the cost function for a subset of state-actions . . . . . . 30
3.7 Agent-Environment interaction of Q-flocking . . . . . . . . . . . . 34
3.8 Components used for model learning . . . . . . . . . . . . . . . . . 36
3.9 Agent-Environment interaction of Dyna-Q-Flocking . . . . . . . . 39

4.1 Flowchart of the simulation process . . . . . . . . . . . . . . . . . . 42
4.2 Simulated trajectories of two followers using a learned policy to

flock with the leader. . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Plot of a single set of leader and follower trajectory. Markers are

used to show relative positions of each UAV in time. . . . . . . . . 44
4.4 Policy evaluation and comparison . . . . . . . . . . . . . . . . . . . 45
4.5 Plot of ΓAve for DP-value iteration backups using the QDP ap-

proach in Exp. I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

viii



List of Figures

4.6 Exponential growth of decisions and transitions to consider as the
horizon increases. Stochasticity is trimmed by taking the empiri-
cal average of the values of each collection of the successor states
(shown in blue, green, and red). . . . . . . . . . . . . . . . . . . . . 49

4.7 Learning curves for Q-flocking in Exp. I . . . . . . . . . . . . . . . 50
4.8 Trajectory plot of two followers flocking with a single leader in

the environment defined by M1. One follower is using FQ(0.1)
(after convergence), and the other is using FDP (6). For comparison
purposes, the followers both started in the same state, and markers
are used to show the relative positions of each UAV in 10 second
increments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.9 Box plot of Γ for all Q-flocking policies in Exp. I . . . . . . . . . . 53
4.10 Empirical cumulative distribution function for Γ of FQ(var), FQ(0.8)

and FDP (6) in Exp. I . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.11 Learning curves for Dyna-Q-flocking in Exp. I . . . . . . . . . . . 54
4.12 Box plot of Γ for all Dyna-Q-flocking policies in Exp. I . . . . . . 55
4.13 Learning curve for Q-flocking and Dyna-Q-flocking in Exp. I . . . 57
4.14 Trajectory plot of two followers flocking with a single leader in the

environment defined by M2. One follower is using FQns(0.1) (after
convergence), and the other is using FDP (6). For comparison pur-
poses, the followers start int he same state, and markers are used
to show the relative positions of each UAV in 10 second increments. 59

4.15 Plot of ΓAve for every DP backup using the QDP approach in Exp.
II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.16 Learning curves for Q-flocking in Exp. II . . . . . . . . . . . . . . 60
4.17 Distribution of Γ for all Q-flocking policies in Exp. II . . . . . . . 62
4.18 Learning curves for Dyna-Q-flocking in Exp. II . . . . . . . . . . . 63
4.19 Distribution of Γ for all Dyna-Q-flocking policies in Exp. II . . . . 63
4.20 Learning curve for Q-flocking and Dyna-Q-flocking in Exp. II . . . 66
4.21 Trajectories of two followers using FQ(0.1) to flock with a single

leader in the environment defined by M1. Markers are shown in 10
second increments. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.22 Trajectories of two followers using FDQ(0.1) to flock with a single
leader in the environment defined by M1. Markers are shown in 10
second increments. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.23 Trajectories of two followers using FQns(0.1) to flock with a single
leader in the environment defined by M2. Markers are shown in 10
second increments. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

ix



List of Figures

4.24 Trajectories of two followers using FDQns(0.1) to flock with a single
leader in the environment defined by M2. Markers are shown in 10
second increments. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

x



List of Symbols

S a finite set of states

s state

A a finite set of actions

a action

P (s, a, s′) state transition probability function

R(s, a, s′) reward function

r reward

π(s, a) policy function for state s and action a

t time

T terminal time

γ discount rate

V (s) value function

Q(s, a) action value function or Q-value

α learning parameter or rate

λ trace decay parameter

xi



Problem Formulation

k discrete time steps

ξ UAV state or state of an agent

x planar x position

y planar y position

ψ heading

φ roll

S n-sphere

R real numbers

z system state

Z set of all system states

C set of roll commands

r roll command/action

X set of discretized values for x and y

Ψ set of discretized headings

U(r) roll action space

ηx, ηy, ηψ disturbance terms in UAV kinematic model

Z integers

P (z′|z, r) state transition probability function

N normal distribution

xii
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1 Introduction

Humans are curious beings. From the moment of birth, we are constantly
exploring the environment around us, attempting to grasp the cause and effects
of our actions. While we most often learn through supervised learning in
schools and by our parents, we also have an innate nature to learn through
association, demonstrations, and imitations. On the other hand, when faced
with novel situations, we tend to learn through trial and error. These different
ways of learning gives us insight on how to design intelligent machines that
are capable of learning and adapting to their surroundings.

In robotics, we are faced with the challenge of developing accurate mod-
els of the environment so that we can design suitable controllers or policies.
More often than not, these models are either unknown, non-linear, complex,
or changing during operation. For this reason, we are interested in construct-
ing machines that do not require a model to learn, and/or can construct their
own models using information extracted from their interactions with the en-
vironment.

Reinforcement learning (RL) is a general class of machine learning that
allows an agent to learn how to behave without a model of the environment.
Learning is accomplished through interacting with the environment in the
form of actions and rewards. Through trial-and-error, the agent learns the
best action to take in order to maximize long-term rewards. This is different
from other forms of learning. For example, in supervised learning the agent
is presented with training data, such as input and output pairs that describe
the correct outputs for the corresponding inputs. This is similar to having
the answer key or an approximate solution to the problem. Another exam-
ple is imitation learning, where the agent learns by observing a trainer that
demonstrates the correct strategy. In both supervised and imitation learning,
the agent is provided with relevant a priori knowledge or even a solution to
the problem at hand. Rather than being instructed on what to do and told
whether the act was right or wrong, RL methods rely on the rewards to assess
its previous actions.

1



The aim of this research is to investigate the application of RL algorithms
to flocking with fixed-wing unmanned aerial vehicles (UAVs) in a stochastic
environment. Flocking is a swarming behavior exhibited by a group of birds
foraging or in-flight, which can be emulated using rules for separation, align-
ment and cohesion [1]. This model has been widely adopted in the fields of
computer generated animations [2, 3], mobile sensor networks [4, 5], control
theory, and robotics [6–9]. Furthermore, the growth of UAV applications in
both military and civilian domains [10, 11] has resulted in extensive research
on the application of flocking to cooperative multi-UAV systems [12–16].

Specific to RL, flocking has been successfully demonstrated in simulation,
where particle-based agents use Q-learning [17] to learn how to flock [18] and
avoid predators [19]. More recently, La et al. [4,20] developed a hybrid system
that combines a low level flocking controller with a high level RL module.
The learning module determines safe spaces to navigate to, so that network
topology and connectivity can be maintained while avoiding predators. Even
though these works have incorporated RL methods in their approaches, there
are two issues that have not been addressed. The first issue is learning in
non-stationary stochastic environments, where the mean and variance of state
transitions change over time. In these environments, the learned policies will
change with the environment and do not necessarily converge to a single solu-
tion. The second issue is that the approaches thus far employ particle based
agents, which are only applicable for omni-directional robots or rotary UAVs.
In comparison to rotary aircrafts, fixed-wings have superiority over range, en-
durance, and payload capacity, but require a different approach to control in
order to account for the non-holonomic constraints due to the dynamics of the
aircrafts. So far, there has been no published results on the application of RL
to flocking with fixed-wing UAVs in non-stationary stochastic environments.

In light of this, we intend to adopt the flocking framework proposed by
Quintero et al. [14], and reformulate it in the context of a model-free RL
task. Conveniently, the underlying Markov decision process (MDP) in [14]
lends itself to RL, and the control policy generated using Quintero’s approach
provides a good benchmark, since the policies were field tested on small fixed-
wing UAVs flocking and performing target tracking. In contrast to [14], which
determines an optimal control policy off-line by assuming a priori knowledge
of the system in the form of a model, we are relaxing the assumption of a priori
knowledge of the model. Nevertheless, if the same model is used to simulate
on-line learning, then we would expect the learned policies to be comparable
to the policy generating using Quintero’s approach.

2



1.1. Thesis Statement

1.1 Thesis Statement

Using Q-learning based algorithms, Peng’s Q-(λ) [21] with a variable learning
rate and Dyna-Q [22], agents modeled as small fixed-wing UAVs will learn
a policy for flocking in a leader follower topology within a non-stationary
stochastic environment.

1.2 Motivation

In the past two decades, UAVs have demonstrated their efficacy in supporting
both military and civilian applications, where tasks can be dull, dirty, danger-
ous, or simply too costly with conventional methods. Examples include the
use of UAVs for intelligence, surveillance, and reconnaissance [23], search and
rescue, mining operations [24], and agriculture [25, 26]. Many of these appli-
cations contain tasks that are parallel in nature, thus can benefit from coop-
eration in terms of effectiveness [27]. Cooperative multi-UAV systems offer
synergy [28], shorter task completion time (through parallelism) [27], greater
spatial coverage, reduction in cost (through smaller, simpler, and cheaper
robots), and increased robustness (through redundancy) [6]. One of the fun-
damental challenges of multi-UAV systems is to coordinate teams of UAVs
to achieve a group objective or behavior [29], more importantly, to do this
autonomously. Flocking, with its simplistic yet effective framework, has been
widely adopted as the coordination scheme in multi-UAV systems.

Although there has been extensive research carried out on flocking in the
fields of control theory and robotics [8], one of the underlying assumptions
with traditional control systems is the availability of an accurate model of
the plant [30]. Often, these models are either unknown, non-linear, com-
plex, or changing during operation, thus hindering traditional analytical ap-
proaches [31]. As an alternative, machine learning techniques are being ex-
plored to provide robotic systems with tools to learn through interacting with
the environment. In particular, RL allows the design of intelligent robots that
can learn without models, thus making robots more versatile and adaptable
to dynamic environments.

By taking an RL approach to flocking, we are investigating the feasibility of
designing intelligent agents that can learn to flock. In addition, we are explor-
ing the adaptive behavior of the agents, modeled as small fixed-wing UAVs,
operating in non-stationary stochastic environments. Such methods could find
use in coordinating teams of robots in dynamic environments, where the model
may be unknown or incomplete.

3



1.3. Contributions

1.3 Contributions

The contributions of this thesis are:
• a model-free RL approach to simulated flocking with small fixed-wing

UAVs in a non-stationary stochastic environment by applying Peng’s
Q(λ) [21] with a variable learning rate. The UAVs are assumed to be
flocking in a leader-follower topology.
• a Dyna-Q approach to simulated flocking with small fixed-wing UAVs in

a non-stationary stochastic environment, where the UAVs are assumed
to be flocking in a leader-follower topology.
• a comparison of our approaches to Quintero’s dynamic programming

approach, herein known as the QDP approach. The comparison is based
on the performances of the respective policies at maintaining the desired
flocking behavior according to a cost function in the same environment.

1.4 Organization

This thesis is organized as follows. Chapter 2 provides a brief survey of rein-
forcement learning, including its theory and challenges. In addition, we look
at various methods and applications of flocking, and end with providing some
background on QDP. Subsequently, in Chapter 3, the flocking problem is
defined in the context of RL, along with the notation to be used through-
out the document. The chapter also introduces and discusses the proposed
Q(λ) and Dyna-Q(λ) algorithms for solving the flocking problem. In Chapter
4, the simulation process, evaluation procedure, and simulation results are
presented. Finally, conclusions and future work are presented in Chapter 5.
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2 Background

In this chapter, we present an overview of RL, flocking, and the application
of RL to flocking. We start in Section 2.1 with a brief introduction to RL
including formal definitions of a Markov decision process, methods of solv-
ing RL problems, and challenges of RL. A short literature review on flocking
is presented in Section 2.2, which leads up to Section 2.3, where the applica-
tion of RL to flocking is discussed. In particular, we provide the necessary
background on Quintero et al.’s work in [14] to differentiate our approach from
theirs.

2.1 Reinforcement Learning

A critical requirement in developing control algorithms is a plant model for
the system to be controlled. Often, these models are either unknown, non-
linear, and/or complex, thus hindering traditional analytical approaches [31].
As an alternative, machine learning techniques can provide robotic systems
with the tools to learn control policies without a priori knowledge of the plant.
In particular, RL is a general class of machine learning algorithms that aims at
enabling an agent to learn how to behave in an incompletely known environ-
ment. Interactions with the environment involve the agent selecting actions
that trigger a transition from one state to another, and observing the conse-
quences in the form of rewards and punishments. The agent learns to asso-
ciate the states, actions, and rewards through trial-and-error, and constructs
a strategy that maximizes the expected long-term rewards. This is different
from other forms of learning, such as supervised learning, where the agent is
presented with training data, or imitation learning, where the agent learns by
observing demonstrations of the correct strategy. In both supervised and im-
itation learning, the agent is provided with useful a priori knowledge. Rather
than being instructed on what to do, and told whether the act was right or
wrong, RL methods rely on the reinforcement signal to assess its previous
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Figure 2.1: Interaction between the agent and the environment

actions.

2.1.1 Markov Decision Process

Classical RL problems assume a finite MDP that is commonly defined by a
tuple (S,A, P (s, a, s′), R(s, a, s′)) [32], where

• S is a finite set of states,
• A is a finite set of actions,
• P (s, a, s′) is the state transition probability function or model that de-

fines the probability of observing the next state s′ ∈ S after executing
action a ∈ A in state s ∈ S, and
• R(s, a, s′) is the reward function that specifies the reward after executing

action a ∈ A in state s ∈ S and resulting in the next state s′ ∈ S.

The RL interaction is illustrated in Figure 2.1. At each time step, the agent
in state s ∈ S chooses an action a ∈ A. As a consequence of that action, the
agent moves to a new state s′ ∈ S with probability P (s, a, s′), and receives
a reward r ∈ R(s, a, s′). Through iterations of this cycle, the agent learns a
strategy, formally known as a policy π(s, a), that specifies which action to take
in each of the states, such that future rewards are maximized. For example,
Figure 2.2 shows what a policy map looks like for a simple 2-D grid world,
where the aim is to travel from the starting grid to the goal with the least
amount of steps. The arrows indicate the corresponding actions that should
be taken in each of the grids. To learn a policy, the agent would try different
actions in each grid, and remember the rewards received with each action
taken in each state. A common approach to decide which actions to take is
to select the ones that result in the highest return (i.e., sum of rewards from
start to finish).
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Figure 2.2: Policy map of a simple grid world

Returns are defined as the sum of the future rewards at time step t, and
can be written mathematically as [32]

Returnt = rt+1 + rt+2 + ...+ rT =
T∑
k=0

rt+k+1 , (2.1)

where T is the terminal time, and ri ∈ R(s, a, s′) represents the rewards re-
ceived at time step i. The reward model in Equation 2.1 is used in applications
that have a finite horizon such as plays of games [32]. In cases where the task
is continuous (i.e., infinite horizon), future rewards are defined as [32]

Returnt = rt+1 + γrt+2 + γ2rt+3 + ... =

∞∑
k=0

γkrt+k+1 , (2.2)

where the discount parameter γ is stipulated by 0 ≤ γ ≤ 1. Discounting fu-
ture rewards can be seen as a mathematical approach to bounding the infinite
sum [33], or the economic notion of time value of money; a reward received
now is worth more than one received later. A lower γ value implies a myopic
agent that is only concerned with maximizing immediate rewards, which can
potentially lead to poor performances if long-term rewards matter [34]. Con-
versely, as γ approaches 1, future rewards are weighted more strongly, thus
the agent becomes farsighted.

In the context of a MDP, the states must contain all the information that
an agent needs to make a decision. An approach to represent the return for
each state is through value functions.
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2.1.2 Value Functions

Value functions represent an estimation of how good it is for the agent to
be in a certain state, or how good it is for the agent to take an action in a
certain state. The measurement of how good a state or state-action is can
be determined by the future rewards that are expected from that state, or
from taking an action from that state, respectively. Formally, the state-value
function for policy π(s, a), assuming a discounted infinite horizon, is given
by [35]

V π(s) = Eπ {Returnt|st = s}

= Eπ

{ ∞∑
k=0

γkrt+k+1 | st = s

}

= Eπ

{
rt+1 +

∞∑
k=1

γkrt+k+1 | st = s

}

= Eπ

{
rt+1 + γ

∞∑
k=0

γkrt+k+2 | st = s

}
, (2.3)

where t is any time step, and Eπ denotes the expected value given that the
agent follows policy π. Expressed in terms of the Bellman equation (Bellman
1957) Equation 2.3 becomes [35]

V π(s) =
∑
a∈A

π(s, a)
∑
s′∈S

P ass′

(
Rass′ + γEπ

{ ∞∑
k=0

γkrt+k+2 | st = s

})
=
∑
a∈A

π(s, a)
∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γV π(s′)

)
, (2.4)

where

∑
a∈A

π(s, a) = 1 ∀s ∈ S; and∑
s∈S

P (s, a, s′) = 1 ∀s ∈ S, ∀a ∈ A .

According to Equation 2.4, the expected value of the current state is defined in
terms of the immediate reward determined by R(s, a, s′), and the discounted
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future returns of possible next states γV π(s′), weighted by the respective tran-
sition probabilities P (s, a, s′), and the probability distribution over the agent’s
actions π(s, a). If the agent was to follow an optimal policy π∗, Equation 2.4
becomes

V ∗(s) = max
a∈A

∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γV ∗(s′)

)
, (2.5)

where the optimal state-value function V ∗(s) is now the Bellman optimality
equation.

Likewise, the action-value function Qπ(s, a) under policy π(s, a) can be
expressed as

Qπ(s, a) = Eπ

{ ∞∑
k=0

γkrt+k | st = s, at = a

}
, (2.6)

and its Bellman equation as

Qπ(s, a) =
∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γQπ(s′, a′)

)
. (2.7)

Lastly, the action-value function according to the Bellman’s Principal of
Optimality is defined as [32]

Q∗(s, a) =
∑
s′∈S

P (s, a, s′)

(
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

)
, (2.8)

where Q∗(s, a) is the optimal action-value function.
The Bellman equation of V π(s) (as well as Qπ(s, a)) reveals the recursive

relationship between the value of the current state V π(s) and the value of the
successor states V π(s′). This relationship divides the optimization problem
into smaller sub-problems, and provides the means of solving it using algo-
rithms categorized as dynamic programming (DP), Monte Carlo (MC) and
temporal-difference (TD) learning [34].

2.1.3 Approaches to Solving RL Problems

The three main categories of algorithms used in solving RL problems are DP, MC
and TD learning [31].
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Dynamic Programming

DP algorithms are known as model based approaches, because they require
a model of the transition probabilities P (s, a, s′) and the reward function
R(s, a, s′) to calculate the value function. However, the models do not neces-
sarily have to be provided beforehand; they may be learned from data [34].
The two common DP methods include policy iteration and value iteration.

Policy iteration comprises of two sub-processes, policy evaluation and pol-
icy improvement. The former evaluates policies by sweeping through and
updating every state using [32]

Vk+1(s) =
∑
a∈A

π(s, a)
∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γVk(s

′)
)

, (2.9)

where k denotes the iteration number within policy evaluation. Each iteration
of policy evaluation relies on the state-values estimated from the previous iter-
ation. Consequently, evaluation ceases when Vk+1(s) = Vk(s) (i.e., converge in
the limit) or when |Vk+1(s)−Vk(s)| is sufficiently small. The former condition
states that the true state-values under the current policy have been found,
while the latter condition means that the state-values are sufficiently close to
their true values. Since convergence occurs in the limit, the second condition
is used in practice as a stopping criterion [32].

Once the stopping criterion has been met, policy improvement greedily
selects the best action in every state with respect to the latest state-values
using [32]

π′(s) = arg max
a

∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γV (s′)

)
. (2.10)

where π′(s) is the new policy. Note that π(s) implies deterministic actions,
while π(s, a) is a conditional probability, in which case the better actions
would be assigned higher probabilities of being selected.

Policy iteration terminates when the new policy is equivalent to the pre-
vious policy, otherwise, the new policy is applied to a new round of policy
evaluation.

In contrast to policy iteration, value iteration performs policy improve-
ment after one iteration of policy evaluation. This allows the policy to quickly
improve without going through several protracted iterations of policy evalu-
ation in between policy improvements [32]. The update operation of value
iteration is defined as
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Vk+1(s) = max
a

∑
s′∈S

P (s, a, s′)
(
R(s, a, s′) + γVk(s

′)
)

, (2.11)

for all s ∈ S. Policy improvement is carried out by taking the maximum over
all actions, so that once |Vk+1(s) − Vk(s)| for all s ∈ S are sufficiently small,
a deterministic policy can be extracted based on Equation 2.10.

Monte Carlo

Similar to DP methods, MC methods compute the same value functions, and
utilize concepts from policy evaluation and policy improvement. The main dif-
ference between the two is the way experiences or samples are gathered. Recall
that DP methods are model-based, thus relies on the state transition model to
generate successor states. MC methods on the other hand do not require the
state transition model; the agent does not assume complete knowledge of the
environment, and therefore MC methods are known as model-free approaches.

Policy evaluation is carried out by the agent interacting with the environ-
ment to gather sample sequences of states, actions, and rewards. Sampling
occurs in episodes, where in each episode the agent starts in different initial
states (i.e., exploring starts) and moves through the state space according to
a given policy. As the agent moves through the state space, the visited states
and actions carried out are stored in memory, along with the corresponding
rewards received. At the end of the episode, for each state that was visited,
the rewards collected subsequent to visiting the state are averaged and as-
signed to the state-action pair as its action-value Q(s, a). Once the stopping
criterion (e.g., |Qk+1(s, a) − Qk(s, a)| for all s ∈ S are sufficiently small) has
been met, policy improvement can be used to greedily select the best action
to take in every state with respect to the latest action-values, thus forming a
new policy:

π′(s) = arg max
a

Q(s, a) (2.12)

for all s ∈ S.

Temporal Difference Learning

Learning by temporal differences TD [36] consists of ideas that are similar
to DP and MC [32]. TD methods learn directly from experiences (i.e., model
free), update state-values as soon as it is visited based in part on previous
estimates of the state-value, and only “take into account the sampled successor
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states rather than the complete distribution over successor states” [34]. The
idea behind TD learning is that rather than waiting till the end of an episode
to performs updates, an agent should learn on the go by updating the value
of a state as soon as it is visited. By doing so, the agent is able to adjust its
strategy incrementally to adapt to changes in the environment.

The most basic form of TD learning is TD(0), where the feedback (i.e., re-
ward) used is from an one state transition of the underlying Markov Chain [37].
If the feedback is from multiple transitions similar to that of MC, then the
algorithm is called TD(λ). The value function in TD(0) is updated using

V ′(s)← V (s) + α[r + γV (s′)− V (s)] , (2.13)

where 0 < α ≤ 1 is the learning parameter or rate, r ∈ R(s, a, s′) is the reward
received, V (s) is the value of the current state, and V (s′) is the value of the
next state. To put TD(0) into perspective, imagine an agent takes an action
a that triggers a transition from s to s′, and receives a reward R(s, a, s′). For
the agent to learn from this experience, it has to first recall from its memory
the values for the states s and s′. Then the agent can execute Equation 2.13
using the state-values and reward to determine a new estimate of the value of
s. In layman terms, TD learning updates state-values (or action-values) by

NewEstimate = OldEstimate+ StepSize[Target−OldEstimate] ,

where R(s, a, s′)+γV (s′) is the target, V (s) is the old estimate of s, and V ′(s)
is the new estimate of s. Target − OldEstimate is known as the TD error,
and is weighted by a step-size known as the learning parameter or rate. This
parameter describes the impact of the TD error on the current estimate. To
ensure convergence of the state-values or action-values with probability one,
the learning parameter must satisfy the following conditions [32]:

∞∑
k=1

αk(a) =∞
∞∑
k=1

α2
k(a) <∞ (2.14)

The first condition ensures that the learning parameter is large enough
to overcome initial conditions and random noise, and the second condition
ensures that the parameter becomes small enough to assure convergence [32].
However, in non-stationary environments we want the agent to be constantly
learning and adapting to the changes. This means that the estimates of the
state-values should continue to change in response to the latest rewards. For
that reason, the second condition is rarely used in applications where continu-
ous learning is necessary, typically in response to non-stationary environments
(e.g., robots moving in the real world).
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In scenarios where the reward received are due to a series of transitions,
the agent should remember which states have been visited and which actions
were taken. For example, in the game of chess, a series of plays or states in the
game may be required to set up for the capture of an opponent’s piece. Upon
receiving the reward for the capture, the agent may want to assign credit to
the specific sets of states that made the capture possible. The general TD(λ)
algorithm provides the means of assigning credit to previously visited states
(similar to MC) through the use of eligibility traces. The update rule is defined
as

V (s) = V (s) + α(r + γV (s′)− V (s))e(s) , (2.15)

where e(s) represents the eligibility trace of a given state. The lambda in TD(λ)
represents the trace decay parameter used in eligibility traces, which is defined
as

e(s) =
t∑

k=1

(λγ)t−kδs,sk , where δs,sk =

{
1 if s = sk
0 otherwise

, (2.16)

where t is the current time step.
The eligibility of a state s determines how much of the reward should be

assigned to that state, which according to Equation 2.16 is dependent on the
recency and frequency of the state visit. If λ = 0, then eligibility traces are not
used, and TD(λ) becomes the special case of TD(0). Although implementing
eligibility traces creates additional complexity and computation, they offer
several advantages such as faster learning, accounting for delayed rewards,
and learning in non-Markovian environments [32].

For control applications, it is often more practical to learn the action-value
function rather than the state-values functions. The latter requires a one-step
look-ahead search to find the appropriate action to take, while an action-value
function allows the agent to determine the greedy action by simply taking the
argument of the maximum of Q(s, a).

2.1.4 Q-Learning, Q(λ) and Dyna-Q

Q-learning (Watkins,1989) is one of the most important breakthroughs in RL,
and widely used TD algorithms [31]. Rather than estimate the state-values,
Q-learning estimates the action-values Q(s, a), which are known as Q-values.
Q-values are most commonly stored in a tabular format, where they can be
updated using the algorithm:

Q(s, a)← Q(s, a) + α[R(s, a, s′) + γmax
a

Q(s′, a′)−Q(s, a)] . (2.17)
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By taking the maximum Q-value of the next state, the algorithm becomes
exploration insensitive under the assumption that each state-action pair is
visited an infinite number of times, and that the learning parameter α is
decreased appropriately over time [38]. Exploration insensitive means that
the agent can act sub-optimally in favor of exploration (i.e., off-policy), and
still be in pursuit of learning the optimal action-values. This is particularly
useful in non-stationary environments where exploration is constantly required
to detect changes, but the optimal action values still have to be learned.

Unlike supervised learning, RL agents must explore their environment to
acquire information about the rewards and the behavior of the system. This
problem becomes a balancing act between playing it safe by taking known
actions with known rewards, or being adventurous by taking actions randomly,
which may lead to higher rewards or undesirable states such as falling off a
cliff or crashing. There are several exploration methods available.

The simplest method is to take only the actions with the highest expected
return. This is known as the greedy policy. The drawback to being greedy is
that the agent becomes stuck in what it thinks is the optimal policy, where in
fact it is only sub-optimal.

To avoid being trapped in a sub-optimal policy, the agent has to explore
other options even if the other options have a lower expected return. This
method is known as ε-greedy, where the agent takes a greedy action with
a probability of 1 − ε, and a random action with probability ε. This strat-
egy is simple and works well if exploration is required continuously, but it
becomes inefficient once the optimal values have been found in a stationary
environment; the agent would be exploring for no reason, and would not be
maximizing its returns. One solution is to decrease ε as time goes on, but this
will only work for learning in a stationary environment.

A more complex method to exploration is the softmax method, which
selects an action probabilistically according to

Pr(a|s) =
eQ(s,a)/T∑

ai∈A e
Q(s,ai)/T

, (2.18)

where T is a positive temperature parameter. Higher temperatures means
all actions are nearly equi-probable, while lower temperatures means actions
with higher values have greater chances of being selected. By tuning the tem-
perature parameter at different stages of learning, we can control the amount
of exploration, as well as directing it by selecting actions that seem more
promising.
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In handling delayed rewards, Watkins [17] and Peng [21] have each pro-
posed methods of incorporating eligibility traces to Q-learning. Watkins’s
version of Q(λ) resets the traces if an exploratory or non-greedy action is
taken. The reason for resetting the traces is that the experience from a non-
greedy action cannot be used to evaluate a greedy policy. This makes sense in
theory, however, if exploration occurs too often such as during early stages of
learning or learning in a non-stationary environment, then much of the benefit
of eligibility traces is lost [21]. For this reason, Peng proposed an alternative
that makes no distinction between exploratory and greedy actions, but the up-
dates are slightly more complex. The first update is the same as the one-step
Q-learning:

Q(st, at)← Q(st, at) + αδ1 , (2.19)

where

δ1 ← R(st, at, st+1) + γ max
at+1∈A

Q(st+1, at+1)−Q(st, at) , (2.20)

The second update is for eligible state-action pairs, and is defined for all s, a
as

Q(s, a)← Q(s, a) + αδ2Tr(s, a) , (2.21)

where

δ2 ← R(st, at, st+1) + γ max
at+1∈A

Q(st+1, at+1)−max
at∈A

Q(st, at) , (2.22)

and

Tr(s, a) =

{
γλTr(s, a) + 1 if s = st, and a = at;
γλTr(s, a) otherwise.

(2.23)

The time subscript t is used here to differentiate between the current state st,
the next state st+1, and for all states s.

When greedy actions are taken, the temporal error in Equation 2.22 re-
mains on-policy, meaning that the values used are according to the greedy
policy being followed. On the other hand, if an exploratory (non-greedy) ac-
tion is taken, the value of R(s, a, s′) + γmaxa′∈AQ(s′, a′) becomes off-policy,
while the value of maxa∈AQ(s, a) remains on-policy. The convergence of this
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Figure 2.3: Dyna architecture

hybrid approach has yet to be proven, but studies have shown that Peng’s
Q(λ) performs better than Watkins’s Q(λ) empirically [32].

The simplicity of Q-learning has made it one of the most popular RL
algorithms. But to learn the optimal policy on-line, Q-learning requires a sig-
nificant amount of experiences, especially if the state and/or action spaces are
large. One way of improving sample efficiency is to learn a model that mimics
the one-step input-output behavior of the environment using real experiences,
and then to use this model to improve the policy through planning. Planning
in this context refers to generating simulated experiences using the model,
which can then be used to update Q-values. This approach of combining Q-
learning, model learning, and planning is known as Dyna-Q [22]. As shown in
Figure 2.3 both real and simulated experiences are used to update a Q-table.

2.1.5 Challenges of RL

Although the UAV agents in this thesis are simulated, the long term goal is
to design algorithms that will enable them to learn and survive in the real
world. To this end, we must understand the challenges of RL, and discover
ways of overcoming them. Kormushev et al. (2013) [39] and Kober (2013) [34]
have highlighted the main issues when solving real world problems in robotics.
These include what Kober calls them the “Curse of Dimensionality” (Bellman,
1957), the curse of real-world samples, the curse of under-modeling and model
uncertainty, and the curse of goal specification. Furthermore, specific to multi-
robot systems, there are the design issues of specifying good multi-agent goals
and coordination requirements [40]. In this section, we will touch on some of
the main issues listed above, along with strategies to reduce the impact, or to
solve them.
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The “Curse of Dimensionality” was coined by Bellman (1957) [41] to de-
scribe the explosion of the state and action space in complex tasks. As a
result, it becomes difficult or rather computationally expensive to sample or
update every state; a requirement to ensure global optimality [34]. This is
especially true in robotic systems where they operate in continuous states and
actions, and possess several degrees of freedom. Strategies for managing large
state spaces include hierarchical learning, task decomposition, and generaliza-
tion. Hierarchical learning methods involve dividing the learning process into
layers, and task decomposition is to shift complexity to a lower layer of func-
tionality. Generalization uses methods such as function approximations and
macro-actions that allow for compactness and transferable knowledge between
states and actions that are similar [31, 33]. Furthermore, the use of policy-
search has become a well established approach to avoid working in large state
spaces. Policy-search involves searching directly in the policy-space (i.e., pa-
rameterization of all the possible policies), thus the dimensions are drastically
reduced. However, the difficulty in policy-search lies in policy representation
of the RL problem. See [39] for more details on policy-search and its chal-
lenges.

The curse of real-world samples refers to issues that arises when interact-
ing with the physical world. The first issue is that environmental conditions
are always changing, which causes robot dynamics to change. As a result,
the learning process may not converge within accepted deviations [34]. In ad-
dition, environmental conditions in which a robot was learning in can rarely
be reproduced exactly. This makes benchmarking algorithms rather difficult.
The second issue of real-world samples is that robots must gather samples
while maintaining certain levels of safety, and at the bare minimum be non-
destructive [42]. The third issue is sensor data that are noisy, delayed and
partial, a reality that algorithms must account for in gathering real-world
samples. All of these issues depend on sample efficient algorithms that are
able to learn from a small number of trials, thereby limiting expensive real-
world samples [34]. Strategies for creating sample efficient algorithms typically
require a model of the environment, whether it is through transfer learning
or constructed with real-world samples. Transfer learning involves taking any
form of knowledge and incomplete model about the task or even similar tasks,
and using that to bootstrap the learning process. The concept of constructing
a model using real-world samples while learning on-line was popularized by
Sutton’s Dyna architecture, discussed in the previous section (Dyna-Q).

The curse of under-modeling and model uncertainty addresses the short-
falls of robots that rely on transferred policies that were learned through
simulations, which are used to offset the cost of real-world interaction. The

17



2.1. Reinforcement Learning

problem with simulations is that they are only as good as the underlying
models. Small model errors will most likely lead to diverging results in the
real world. For that reason, there are very few research that have success-
fully demonstrated real robots maintaining a high level of performance using
simulated policies [34].

The curse of goal specification points out the difficulty in designing the
reward function (i.e., reward shaping [43]) so that the desired behavior can be
learned. In some scenarios, it may be sufficient to assign rewards upon task
completion (e.g., winning a match, or finishing a maze), however, for tasks
that have long completion times or are continuous for an indefinite amount
of time, intermediate rewards should be used to assist in the learning process
(e.g., penalties for taking extra moves to avoid longer paths).

In addition to the challenges discussed above, multi-agent reinforcement
learning (MARL) naturally encounters design issues of incorporating multi-
ple rewards and enabling cooperative learning. According to Busoniu et al.
(2010) these algorithms are a fusion of temporal-difference learning (espe-
cially Q-learning), game theory, and more general direct policy search tech-
niques [40]. Examples include optimal joint-action values, Team Q-learning
(Littman, 2001) [44], and Distributed Q-learning (Lauer, 2000) [45]. In short,
research in this area aims at combining experiences from multiple agents in
an effective manner, with respect to policy convergence and optimality.

The inherent challenges of RL make the application of it to robotics rather
difficult, and as a result, the “naive application of RL techniques to robotics
is likely to be doomed to failure” [34]. Key principles that stem from years
of RL research can be leveraged for success. These principles include effective
representations, approximate models, and using prior knowledge [31,34].

The notion behind effective representation is to represent the state space,
action space and value functions efficiently. Examples of state and action
space representation include splitting dimensions into regions, meta-actions
(i.e., actions that are composed of a sequence of movements), and relational
representations. Examples for value function representation include value-
function approximation, generalizing to neighboring cells, and Gaussian pro-
cess regression.

Simulating using approximate models, and bootstrapping with prior knowl-
edge can dramatically help speed up and guide the learning process. More
often then not, simulations of the task can be carried out using approximate
transition dynamics. Subsequently, the simulated results can be used to jump-
start the online learning process. Examples of where prior knowledge can come
from include transferring policies from similar tasks, decomposing tasks into
basic components to create building blocks, and demonstration followed by
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imitation. In essence, use what we know to speed up the learning process.
These key principles embody countless years of RL research in discovering

ingenious approaches to solving some of the major challenges of RL. However,
applying RL techniques in the domain of robotics is not yet a straightforward
undertaking, and many questions still remain open [34].

2.2 Flocking

In 1987, Reynolds [1] published an article on computer modeling of coordinate
animal motion, in which he established the three basic rules to simulated
flocking, now known as separation, alignment, and cohesion:

• Separation: steer to avoid collisions with nearby flockmates
• Alignment: steer towards the average heading of nearby flockmates
• Cohesion: steer to the center of nearby flockmates

Inspiration from Reynolds along with advancements in robotics have led
to extensive research on the design, modeling, and analysis of flocking in the
fields of robotics, control theory, and statistical physics [8].

In control theory, distributed control laws, supported with analytical proofs
and simulated results demonstrate the feasibility of simulated flocking. Tanner
et al. (2003) [46,47] proposed a stable control law that exhibits asymptotically
stable flocking behavior in free space, based on the bearing, range, and ve-
locity of neighboring robots. The proposed control law includes an attraction
or repulsion term that is dependent on local distance, and an alignment term
that is dependent on the local velocity. Olfati-Saber (2006) [16] presented
several flocking algorithms, some of which consider flocking in free space with
a virtual leader (i.e., objective), in the presence of obstacles, and with split-
ting/rejoining capabilities. The algorithms consist of a gradient-based attrac-
tion or repulsion term and a velocity matching term. La and Sheng (2011) [9]
improved on Olfati-Saber’s work by considering cluttered environments and
noisy measurements, along with algorithms for target tracking. Moshtagh and
Jadbabaie (2007) [48] proposed a control algorithm for non-holonomic vehicles
that minimizes a misalignment potential, which results in velocity alignment.
Provided that the underlying proximity graph is connected, a flocking behav-
ior could be maintained.

Specific to ground robots, Mataric (1994) [49], Hayes and Dormiani-Tababaei
(2002) [50], and Campo et al (2006) [51] have all experimented with wheeled
robots, performing various forms of flocking using different hardware solutions
for communication and networking in controlled indoor environments. Turgut
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et al. (2008) [8] identified the main assumptions made in previous studies
of self-flocking behaviors, which include that individuals can sense the range
to the center of their neighbors, that there is at least one range reading per
neighbor, and the need for designated leader or the use of a common goal. The
authors removed these assumptions and successfully demonstrated their free-
flocking algorithm on wheeled mobile robots, with complete on-board sensing.

In the domain of aerial vehicles, Welsby et al. (2001) flew three motorized
blimp-like objects in an indoor environment to demonstrate flocking in three
dimensions [52]. Hauert et al. (2011) deployed ten small fixed-wing UAVs out-
doors to study the trade-off between communication range and flight dynam-
ics. Their system performs like a flock, but separation for collision avoidance
is maintained by each UAV flying at different altitudes [53]. More recently,
Quintero et al. (2013) [14] experimented with flocking in a leader-follower
topology, where the problem of determining the follower’s policy is setup as a
stochastic optimal control problem solved using DP. In addition to the novel
algorithm, the policy generated was successfully tested on small fixed-wing
UAVs flocking together to perform the task of target tracking. Vasarhelyi
et al. (2014) implemented their flocking algorithm from [54], and created
the first decentralized multi-copter flock that performed stable autonomous
outdoor flight with up to ten agents [12].

In line with the intention of this research and the natural progression of
flocking, it is a logical step to consider the design of intelligent agents by
leveraging concepts of machine learning, thus enabling agents to learn and
adapt to novel situations.

2.3 Application of RL to Flocking

The application of RL to flocking was first simulated by Tomimasu et al.
(2005), where particle-based agents use Q-learning and potential forces to
learn to flock [18]. Soon after, Morihiro et al. (2006) used the same ap-
proach to simulate particle-based agents learning to avoid predators while
flocking [19]. More recently, La et al. (2013, 2015) published several works on
the design of a hybrid system for cooperative flocking and learning to avoid
predators [4, 20]. The system consists of a low level controller that facilitates
flocking with particle-based agents and a high level RL module that learns
how to avoid the predator while maintaining network connectivity. Coop-
erative learning is achieved through sharing Q-values, which expedites the
learning process and results in a higher global reward.

A common theme in the application of RL to flocking is that the agents
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are modeled as particles that maneuver by summing different velocity vectors
that are based on distance and heading relative to other agents, as well as
other vector forces generated to enable network connectivity and consensus.
However, control solutions for particle based agents are only applicable to
omni-directional robots and rotary based aircrafts. In comparison to rotary
aircrafts, fixed-wings have superiority over range, endurance, and payload
capacity, but requires a different approach to control in order to account for
the non-holonomic constraints caused by the dynamics of the aircrafts. So
far, there has been no published results on combining RL to flocking-with
fixed-wing UAVs. Nonetheless, in [14], Quintero et al. proposed an approach
to flocking with small fixed-wing UAVs, which could be reformulated in the
context of RL.

2.3.1 Quintero’s Approach to Flocking

In [14], Quintero et al. proposed a stochastic optimal flocking problem to
which the optimal control policy facilitates flocking with fixed-wing UAVs in
a leader-follower topology. The problem was setup as a MDP where the states
were defined by the relative position of the follower to the leader, the actions
were defined by discrete roll commands, and the state-transition function was
defined by a stochastic discrete-time UAV kinematic model. The cost to the
stochastic optimal control problem is a function of the distance and heading
with respect to the leader. DP is used to minimize the cost criterion in a
receding horizon fashion by performing value-iteration. The value function
(i.e., value of each state) is updated on every execution of value-iteration.
Each sweep through the state space is known as a backup, thus backing-up
100 times is equivalent to considering what the impact of the current action
has on 100 times steps into the future. After a desired number of backups
have been executed, the control policy is extracted from the value function
by selecting and storing the action with the lowest cost for every state. The
policy essentially specifies which roll action to take in a given state. In flight,
the policy remains static and is used as a lookup table for action selection.

The issue with a static policy is that if the environment changes then the
policy would become sub-optimal, or in the worst case, fail to provide proper
control. For this reason, in this thesis we will reformulate Quintero’s flocking
problem into an RL problem, and use learning methods to create adaptive
agents that can modify their policies as they interact with the environment in
a simulated on-line setting.

For comparative purposes, we will also generate policies according to the QDP
method. The policies generated using QDP provides a good benchmark, be-
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Figure 2.4: Difference between Quintero’s DP approach and our RL approach

cause the approach calculates an optimal control policy, given that a stochastic
model is available. If the same model is used to simulate on-line learning, then
we would expect the resulting policy to be comparable to the policy generated
using QDP. The difference between the QDP approach and our RL approach
is illustrated in Figure 2.4. With RL we are simulating on-line learning, while
with the QDP approach, we are performing off-line calculations to obtain a
policy.

2.4 Summary

In this chapter, we presented an overview of RL including the definitions of
a Markov decision process, methods of solving RL problems, and challenges
of RL. Furthermore, we provided a brief review on flocking in terms of control
and robotics. Finally, we looked at the application of RL to flocking, where
we provided a short description of the QDP approach which forms the basis
of our research. In the next chapter, we will formulate the stochastic optimal
flocking problem in terms of an RL problem.
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3 Problem Formulation

In this chapter, we formulate flocking as a model-free RL problem in the form
of an MDP that is nearly identical to the one proposed in [14]. Furthermore,
we define the two proposed learning approaches along with their respective
algorithms. For consistency and ease of comparison, the notation used fol-
lows [14] and [32]. We start by introducing the flocking scenario followed by
defining the components of the MDP, and finally, we present the two learning
approaches.

3.1 Flocking Scenario

In our flocking scenario, the leader and the followers, also known as agents,
are modeled as small fixed-wing UAVs flying at a constant average speed and
fixed altitude. The leader has its own set of mission dependent control policy
(e.g., target tracking, mapping, etc.), while the followers are to flock with
the leader and minimize the overall cost, which is a function of distance and
heading relative to the leader. To illustrate this idea, Figure 3.1 shows the
leader centered on an annulus, and the followers positioned within the shaded
region where the cost is low. If the followers move too far or too close to the
leader, their respective costs will increase.

The agents maneuver by selecting a roll angle setpoint, which is regulated
by an autopilot and is updated once every second (i.e., 1 second zero order
hold (ZOH)). This implies that the simulation is run in discrete time-steps
denoted by k. Collision avoidance between the agents is de-conflicted by
operating at different altitudes, thus the same control policy can be used
for each of the followers. Consequently, the objective is for the followers
to learn a policy that flocks with the leader, while minimizing costs, and
without knowledge of the state transition model. In solving this RL problem,
the followers will learn a strategy that describes the best roll angle setpoint for
a given state. When each follower adheres to the same strategy, the aggregate

23



3.2. Markov Decision Process

Figure 3.1: Top view of relationship between the leader & followers

behavior emulates flocking in a leader-follower topology.

3.2 Markov Decision Process

In the following subsections, we will present each component of the underlying
Markov decision process to the RL problem.

3.2.1 State Representation

The individual agents are represented using a four state UAV model defined
as ξ := (x, y, ψ, φ), where (x, y) ∈ R2 is the planar position, ψ ∈ S1 is the
heading, and φ ∈ S1 is the roll angle [14]; S1 (i.e., n-sphere where n = 1)
represents the (n + 1)-dimensional Euclidean space, which in this case is a
circle. The kinematic model used to simulate the transitions of the UAVs will
be presented in section 3.2.3. For the purpose of flocking in a leader-follower
topology, we are only concerned with the relative dynamics between the leader
and the follower. Hence their respective UAV states ξl and ξf are combined
to construct the system state space as z := [z1, z2, z3, z4, z5, z6]

> ∈ Z, where
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3.2. Markov Decision Process

Z := R2 × [−π, π)× S1 × S1 × C [14]; C is defined as

C := {0◦,±15◦,±30◦} . (3.1)

Similar to [14], the planar position of the follower relative to the leader repre-
sented by the pair (z1, z2) is defined as[

z1
z2

]
=

[
cosψl sinψl
− sinψl cosψl

] [
xf − xl
yf − yl

]
. (3.2)

In addition, the remaining sub-states (z3, z4, z5, z6) shown in (3.3) represent
the difference in the heading between the leader and follower, the follower’s
roll state, the leader’s roll state, and the leader’s roll command, respectively.

(z3, z4, z5, z6) := (ψf − ψl, φf , φl, rl) (3.3)

In the simulation, we assume that the leader’s roll command is deter-
mined randomly, thereby introducing additional stochasticity to the problem.
Although in practice, the leader’s roll command would be mission dependent
(e.g., target tracking, mapping). Moreover, we assume that the leader’s state
and roll command are broadcast through a wireless communication channel
to the followers.

Lastly, the system state space is discretized as Z = X2 × Ψ × C3, where
X = {−150,−145, ..., 150}, and Ψ = {0◦, 15◦, ..., 345◦}. For clarity, X divides
the planar surface into a 61 by 61 grid space, Ψ divides a circle that is centered
on the leader into pie shaped sections each with a subtended angle of 15◦, and
C defines the discretized roll angle states.

3.2.2 Action Space

The fixed-wing agents maneuver by selecting their respective roll command
r ∈ C, and holding them for one second or until the next command is selected.
In order to mitigate any adverse effects on the mission caused by sharp changes
in the roll, the next roll command is defined as r′ ∈ U(r) [14] where

U(r) := {r, r ± 15◦} ∩ C . (3.4)

The illustration on the top of Figure 3.2 depicts the five roll-angle states that
the agents can be in, and the illustration on the bottom depicts the options for
the next roll command; the agent can maintain current roll-angle or change
by as much as ±15◦. From a systems point of view, limiting the action space
in our scenario helps alleviate the curse of dimensionality [41] at the cost of
maneuverability.
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Figure 3.2: Illustration of the action space (Roll command)

3.2.3 State Transition Model

UAV kinematics are most accurately captured by a six degrees of freedom
(DoF) aircraft model. However, by assuming our agents fly at a constant alti-
tude and velocity, as well as with inertially coordinated turns, we can simplify
the model down to four DoF. A coordinated turn is where the bank angle is
set so that the centrifugal force acting on the aircraft is equal and opposite to
the horizontal component of the lift acting in the radial direction [55]. This
flight condition is commonly used in manned flights for passenger comfort. To
make up for the loss of unmodelled dynamics and account for environmental
disturbances, stochasticity is introduced in the roll, airspeed, and each of the
sub-states of the model.

We adopt the continuous-time UAV kinematic model from [14], and include
additional terms () in the first three states to represent disturbances that cause
the xy-planar position and heading of the UAVs to change. By applying an one
second ZOH to the roll command r, we create the discrete-time model, where
the time steps are indexed by k ∈ Z≥0. This stochastic model generates state
transitions for the individual agents, which are then combined using (3.2)
and (3.3) to construct the system state transition model P (z′|z, rf ). The
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continuous-time model is defined as

ξ̇ =
d

dt


x
y
ψ
φ

 =


s cosψ + ηx
s sinψ + ηy

− (αg/s) tanφ+ ηψ
f(φ, r)

 , (3.5)

where αg is the acceleration due to gravity, and s is the nominal airspeed of the
UAVs. The airspeed is drawn from a normal distribution N (s,σ2), and held
constant for the duration of the ZOH. In addition, the disturbance terms are
drawn from normal distributions N (ηx,σ2x), N (ηy,σ

2
y), and N (ηψ,σ2ψ), respec-

tively. Lastly, the function f(φ, r) defines the roll dynamics, which is sampled
from a collection of stochastic second order roll trajectories.

To generate the trajectories, we simulate the initial condition response of
the roll dynamics using a second-order system, where the undamped natural
frequency ωn and damping ratio ζ are selected based on the autopilot parame-
ters of a small UAV [56]. For each roll command (increase by 15◦, decrease by
15◦, and maintain current roll), we collect the corresponding reference track-
ing error trajectories denoted as {êi(τ)}, {ěi(τ)} and {ei(τ)}, where τ ∈ [0, 1],
i ∈ {1, ..., 1000}, and the accents indicate the respective roll commands that
the error trajectories correspond to [14]. For example, a roll command to
increase the roll angle by 15◦ would draw a sample from {êi(τ)}. Figure 3.3
shows the collection of error trajectories for an increase of 15◦ in the roll angle
setpoint. With the collection of error trajectories, the sample roll trajectories
φi(τ, r) are generated according to

φi(τ, r) = ei(τ) + r . (3.6)

Figure 3.4 depicts a sampled roll trajectory transitioning from 15◦ to 30◦.
In total, there are five sources of randomness that can be modified in the

stochastic kinematic model: ηx, ηy, ηψ, the airspeed, and roll trajectory. With
these sources of randomness, different models can be created to generate dif-
ferent set of successor states z′. Figure 3.5 illustrates the possible successor
states for each roll command, where the agent is initially positioned at the
origin (x = 0, y = 0) and facing the +x direction. M1 represents a set of suc-
cessor states generated with only stochasticity in the roll and airspeed, while
M2 represents a set state transition model with stochasticity in the roll and
airspeed, as well as non-zero means and variances for N (ηx,σ2x), N (ηy,σ

2
y), and

N (ηψ,σ2ψ). Both models are stochastic in the sense that the exact successor
states are non-deterministic, but it is the transition from one model to the
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Figure 3.3: Simulated roll trajectories of +15◦ change in roll setpoint

Figure 3.4: Sample roll trajectory changing roll-angle setpoint from 15◦ to 30◦

28



3.2. Markov Decision Process

Figure 3.5: Collection of possible resulting UAV states z′. M1 represents
the state transition model with only stochasticity in roll and airspeed. M2
represents the state transition model with stochasticity in roll and airspeed, as
well as non-zero means and variances for N (ηx,σ2x), N (ηy,σ

2
y) and N (ηψ,σ2ψ).

other that creates the perception of the non-stationary environment that is
referred to throughout this document.

3.2.4 Reward Scheme

To facilitate flocking, the reward function is represented as a cost function
from [14], defined as

g(z) = max

{
d,

b1|z3|
π(1 + βd)

}
, (3.7)

where
d = max {b1 − ρ, 0, ρ− b2} , (3.8)

and β is a tuning parameter that modifies the impact of d. The parameters
b1 and b2 define the inner and outer radius of an annulus Λ centered on the
leader, shown in Figure 3.1, and given by

Λ = {(z1, z2) ∈ R2 : b1 ≤ ρ ≤ b2} , (3.9)
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Figure 3.6: Cutout of the cost function for a subset of state-actions

where

ρ :=
√
z21 + z22 . (3.10)

The first argument in the maximization function of (3.7) governs the separa-
tion and cohesion rules of flocking, and the second argument assigns a cost
to the absolute difference of the heading angles, thus reinforces the alignment
rule. Figure 3.6 shows the cost plot relative to the leader who is centered at
(0,0), As shown, the cost increases when the follower is near or far away from
the leader. This is consistent with Figure 3.1 where the ring shaped region
around the leader incurs the lowest cost.

3.3 RL Objective

With the elements of the MDP defined, it becomes clear that the RL problem is
to learn the optimal control policy F ∗k : Z → C, k ∈ {0, ...,∞} that minimizes

J(z[0]) = E

[ ∞∑
k=0

g(z[k])|z[0]

]
, ∀ z[0] ∈ Z , (3.11)
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where E[.] denotes expectation, and z[k] refers to z(t) at discrete time in-
stances [14]. This minimization can be solved using DP to perform value
iteration [14], provided that the model is a priori knowledge. In the context
of RL, we assume that the learning agents do not have the model, and must
employ a model-free approach, in this case Q-learning. The idea behind Q-
learning is to incrementally estimate the value Q∗(s, a) of a state-action pair
(s, a), thereby assigning a value to the expected long-term reward that can
be obtained by taking action a in state s. Taking into account of the reward
being a cost, and replacing the standard notations with ours, Q∗(z, r) can be
determined by solving the Bellman [41] equation

Q∗(z, r) =
∑
z′

P (z′|z, r)
(
g(z′) + γmin

r′
Q∗(z′, r′)

)
,

where P (z′|z, r) represents the state transition probability (i.e., from z to z′

due to action r), and 0 ≤ γ ≤ 1 is the discount factor. Subsequently, the
optimal control policy can be determined by

F ∗(z) = arg min
r
Q∗(z, r) .

In model-free RL problems, P (z′|z, r) is unknown, and the only form of
feedback is through rewards or punishments (e.g., cost). Hence, as the agent
interacts with the environment Q∗(z, r) is incrementally estimated using

Q′(z, r)← Q(z, r) + α[g(z) + γmin
r′

Q(z′, r′)−Q(z, r)] ,

where 0 < α ≤ 1 is the learning parameter. Ultimately, the goal is to find
Q∗(z, r), however, if Q∗(z, r) is unknown in the sense that no closed form
solution is available, then the next best solution is one that converges and
provides a “good” policy, which may be sub-optimal. The alternative is to
compare policies and to utilize the one the performs best, according to some
benchmark.

3.4 Learning Approaches

The algorithms used in our learning approaches are based on Watkins’ Q-
learning with Peng’s version of eligibility traces (i.e., Q(λ)) and Sutton’s Dyna
architecture [32]. The first approach, known as Q-flocking, applies Peng’s
Q(λ) with a variable learning rate to simulate learning through direct RL.
The second approach, known as Dyna-Q-flocking, augments Q-flocking with
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model learning and planning to simulate learning through indirect RL. In
both approaches, the Q-values are stored in tabular format.

3.4.1 Q-Flocking

Q-flocking utilizes Peng’s Q(λ) to update the Q-table. As discussed in Chap-
ter 2, Q(λ) consists of two updates. The first update is an one-step update,
defined using the new notation as

Qk+1(zk, rk) = Qt(zk, rk) + αδ , (3.12)

where

δ = g(zk+1) + γmin
rk+1

Q(zk+1, rk+1)−Q(zk, rk) . (3.13)

The second update is based on the activity traces [21] (i.e., eligibility traces [32])
and is defined for all (z, r) pairs as

Qk+1(z, r) = Qk(z, r) + αδ′Tr(z, r) , (3.14)

where

δ′ = g(zk+1) + γmin
rk+1

Q(zk+1, rk+1)−min
rk

Q(zk, rk) , (3.15)

and

Tr(z, r) =

{
γλTr(z, r) + 1 if z = zk, and r = rk;
γλTr(z, r) otherwise.

(3.16)

The discrete time subscript k is used here to differentiate between the current
state sk, the next state sk+1, and for all states s. The number of state-action
pairs that need to be updated at each time step grows linearly with time, and
in the worst case could encompass the entire state-action space [21]. In con-
sideration of keeping the updating process at a manageable level, a five-step
backup is used. This means that the previous five state-action pairs are re-
membered and assigned with the current TD error as shown in Equation 3.15.

According to Sutton and Barto (1998) [32], to ensure convergence with
probability of one, the learning parameter must satisfy the following condi-
tions:

∞∑
k=1

αk(r) =∞
∞∑
k=1

α2
k(r) <∞ (3.17)
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However, in a non-stationary environment it is desirable to have the estimated
Q-values continue to vary in response to the most recent feedback, hence the
second condition does not hold true [32]. When operating in non-stationary
environments, it is common to use a fixed learning parameter, or adaptive
strategies that determine the optimal size based on some meta-stepsize pa-
rameter [57]. The difficulty in tuning the learning parameter is that a high
rate is needed for faster convergence, but it also increases the chances of di-
vergence [57]. Without diving into the intricacies of determining an optimal
learning parameter, we consider a rather simple method defined as

α(δ) = max

(
min

(
1,

(
|δ|
%

)p)
, ς

)
, (3.18)

where % ∈ R>0 and p ∈ R≥1 are tuning parameters, ς sets a lower bound,
and δ is the temporal difference error (TD-error) defined by Equation 3.13. In
essence, if there is a large difference between the feedback and what the learner
already knows, then the difference (i.e., TD-error) is weighted more by using a
larger α. Similarly, if the difference is small, then the estimated Q-values are
most likely converging, or significant changes have yet been propagated (i.e.,
exploration issue), therefore the α should be relatively small. For practical
purposes, the lower bound ς ensures that α does not become too small (i.e.,
learning becomes slow) and that α 6= 0. The values for the parameters in
Equation 3.18 are specified in Chapter 4.

Q-Flocking Algorithm

Figure 3.7 illustrates the interaction between the followers and the environ-
ment under the Q-flocking approach. The blocks highlighted in blue represent
the real environment, such that given the current state of an agent and the
its action as inputs, the environment would generate a state transition, and
output the successor state. In addition, the blocks highlighted in orange rep-
resent the on-line learning processes occurring within the agent. Algorithm 1
shows the Q-flocking algorithm in episodic procedural form. For brevity, the
following steps outline the follower’s routine within each episode:

1. Receive the leader’s state and combine it with own state to create a
system state.

2. Select an action based on the ε-greedy method which is to explore or
lookup the Q-table using the system state to find the greedy action.

3. Execute the action selected and observe the change in own state.
4. Receive the leader’s state and combine it with own state to create a new

system state.
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Figure 3.7: Agent-Environment interaction of Q-flocking

5. Calculate the cost using the new system state.
6. Update the Q-table table with the one-step update and the eligibility

trace update.
7. Update the eligibility traces.
8. Go to step 2 and repeat until the end of the episode.

3.4.2 Dyna-Q-Flocking

Dyna-Q-flocking integrates model learning, planning, and Q-flocking, so that
real experiences can be reused to expedite the learning process. The speed up
is achieved by using the planner to generate simulate experiences to update
the Q-table, in between real experiences. The advantage of model learning
is that only a small number of on-line followers are required to gather state-
transition experiences, and the advantage of using a planner is that the number
of simulated learners can be scaled up with minimal cost (e.g., computation
time).

Model Learning

In order to learn a model of the environment, we use the input and output
states of the UAV kinematic model (i.e., environment) for both the leader and
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Algorithm 1 Q-Flocking

initialize Q(z, r) ∀ z ∈ Z, r ∈ C, γ, ε, Tsim, terminal conditions

repeat(for each episode)
** Start On-Line Learning **
initialize z0 ← (ξf , ξl) randomly
while (boundmin ≤ ρ ≤ boundmax || k ≤ Tsim) do

choose rk,l ∈ U(rk−1,l) randomly
rk,f = arg minrQ(zk, r) or ε-greedy
(ξk+1,f , ξk+1,l)← Sim Real UAV(ξk,f ,rk,f ,ξk,l,rk,l)
zk+1 ← Create System State (ξk+1,f , ξk+1,l, rk,l)
δk = g(zk+1) + γminrf Qk(zk+1, rf )−Q(zk, rk,f )
δ′k = g(zk+1) + γminrf Qk(zk+1, rf )−minrf Qk(zk, rf )
α← Equation (3.18)
for each state-action pair do

Tr(z, r) = γλTr(z, r)
Qk+1(z, r)← Qk(z, r) + αTr(z, r)δ′

end for
Qk+1(zk, rk,f )← Qk(zk, rk,f ) + αδ
Tr(zk, rk,f ) = Tr(zk, rk,f ) + 1

zk ← zk+1; k ← k + 1; ρ =
√
z21 + z22

end while
** End On-Line Learning **

until desired number of episodes

followers to construct internal models, denoted as Min,l and Min,f respectively.
As shown in the top left illustration of Figure 3.8, for each pair of input state
ξ := (x, y, ψ, φ) and output state ξ′ := (x′, y′, ψ′, φ′) from here on known as
a sample, we calculate the planar translation, and the change in heading and
roll, all relative to the input state using:[

xm,j
ym,j

]
:=

[
cosψ sinψ
− sinψ cosψ

] [
x′ − x
y′ − y

]
, (3.19)

ψm,j := ψ′ − ψ , (3.20)

φm,j := φ′ . (3.21)
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Figure 3.8: Components used for model learning

where m denotes internal model, and j indicates which sub-model the sample
belongs to. For each sample, the resulting ξm,j := (xm,j , ym,j , ψm,j , φm,j) is
combined with previous samples from the same sub-model by using a cumu-
lative weighted average. Each sub-model denoted as Ξj , is given by

Ξj,k :=
1

2(k−1)
(ξm,j,1 +

k∑
h=2

2(h−2)ξm,j,h) , (3.22)

where j denotes the sub-model number, k represents the current time step,
and all of the sub-models are initialized with zeros at k = 0. The use of k to
represent the current time step implies learning in a continuous manner such
that k would keep incrementing until the end of the simulation. However, in a
episodic setting, the model learned in one episode would simply carry over to
the next episode, similar to how the Q-table would be carried over in between
episodes of learning.

As previously defined in Subsection 3.2.2, there are five roll states (C :=
{0◦,±15◦,±30◦}), and for each roll state, there are either two or three roll
actions r′ available to select, which is stipulated by r′ ∈ U(r) where
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U(r) := {r, r ± 15◦} ∩ C .

The roll states and roll actions shown in the bottom illustration of Figure 3.8
depict 13 different transitions (e.g.,−15◦ to −30◦) each requiring a sub-model
to capture the transition. Furthermore, to account for directional disturbances
(e.g., headwind or tailwind), the heading of the UAV has to be considered.
For this reason, the heading ψm ∈ S1 is discretized into 10 pie-shaped sections,
each with a subtended angle of 36◦ (see top right illustration of Figure 3.8).
Hence in total, there are 130 sub-models (i.e. 13 transitions per discretized
heading) to learn in order to construct an internal model Min for the agents.

Planning

Planning involves simulating experiences using an internal model of the envi-
ronment to update the Q-table. Conveniently, planning relies on the same pro-
cesses as on-line learning, differing only in the source of their experience [32].
Generating state transitions using the internal model is accomplished by re-
versing the model learning process. Given a UAV state ξp := (xp, yp, ψp, φp)
(p for planner), and a roll action r, the successor UAV state is defined as
ξ′p := (x′p, y

′
p, ψ

′
p, φ
′
p), where[
x′p
y′p

]
:=

[
cosψp − sinψp
sinψp cosψp

] [
xm,j
ym,j

]
+

[
xp
yp

]
, (3.23)

ψ′p := ψm,j + ψp , (3.24)

φ′p := φm,j . (3.25)

The roll action r, heading ψp, and roll state φp are used to lookup the corre-
sponding sub-model Ξj containing ξm,j := (xm,j , ym,j , ψm,j , φm,j). Once the
leader and follower states have been calculated using the internal model, a
system state can then be created, and the remaining processes are carried out
identical to on-line learning.

Dyna-Q-Flocking Algorithm

Figure 3.9 illustrates the interaction between the followers and the environ-
ment under the Dyna-Q-flocking approach. The only differences to Q-flocking
are the modeling and planning blocks, which are highlighted in green. The
Dyna-Q-flocking algorithm is shown in episodic procedural form in Algo-
rithm 2.
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Algorithm 2 Dyna-Q-Flocking

initialize Q(z, r) ∀ z ∈ Z, r ∈ C, γ, ε, Tsim, terminal conditions

repeat(for each episode)
**Start On-line Learning**
initialize z0 ← (ξf , ξl) randomly
while (boundmin ≤ ρ ≤ boundmax || k ≤ Tsim) do

choose rk,l ∈ U(rk−1,l) randomly
rk,f = arg minrQ(zk, r) or ε-greedy
(ξk+1,f , ξk+1,l)← Sim Real UAV(ξk,f ,rk,f ,ξk,l,rk,l)
Ξ← Update Min(ξk+1,f , ξk+1,l, ξk,f ,rk,f ,ξk,l,rk,l)
zk+1 ← Create System State (ξk+1,f , ξk+1,l, rk,l)
δk = g(zk+1) + γminrf Qk(zk+1, rf )−Q(zk, rk,f )
δ′k = g(zk+1) + γminrf Qk(zk+1, rf )−minrf Qk(zk, rf )
α← Equation (3.18)
for each state-action pair do

Tr(z, r) = γλTr(z, r)
Qk+1(z, r)← Qk(z, r) + αTr(z, r)δ′

end for
Qk+1(zk, rk,f )← Qk(zk, rk,f ) + αδ
Tr(zk, rk,f ) = Tr(zk, rk,f ) + 1

zk ← zk+1; k ← k + 1; ρ =
√
z21 + z22

end while
**End On-line Learning**
**Start Planner**
initialize zp,0 ← (ξp,f , ξp,l) randomly; reset k
while (boundmin ≤ ρp ≤ boundmax || k ≤ Tsim) do

choose rk,l ∈ U(rk−1,l) randomly
rk,f = arg minrQ(zk, r) or ε-greedy
(ξk+1,f , ξk+1,l)← Sim UAV with Min(ξk,f ,rk,f ,ξk,l,rk,l)
zk+1 ← Create System State (ξk+1,f , ξk+1,l, rk,l)
... Same as On-line Learning

end while
**End Planner**

until desired number of episodes
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Figure 3.9: Agent-Environment interaction of Dyna-Q-Flocking

3.5 Summary

In this chapter, we formulated flocking as a model-free RL problem by defining
the four components of the underlying MDP. The state space contains all
the possible states to the problem, with each system state containing the
information needed for a follower to select the next action. This information
includes the relative position and heading of the followers with respect to the
leader, the roll angles of the leader and follower, along with the leader’s roll
command. The action space is the roll angle commands that are available
for the followers to select from. Each successive roll command can only be
changed by ±15◦, and is bounded by ±30◦. The state-transition function is
defined by a four DoF stochastic kinematic model of a small-fixed wing UAVs,
and the reward function is defined as a cost function that considers the relative
distance and heading to the leader. With the MDP defined, it is apparent that
the RL objective is for the followers to learn a policy that minimizes the cost
function, which in turn will facilitate flocking in a leader-follower topology. To
enable the followers to learn, we proposed two learning approaches, Q-flocking
and Dyna-Q-flocking. Q-flocking is based on Peng’s Q(λ) augmented with a
variable learning rate, while Dyna-Q-flocking combines Q-flocking with model
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learning and planning to improve sample efficiency.
We simulated Q-flocking and Dyna-Q-flocking based on the RL problem

formulated in this chapter. In the next chapter, we will present the simulation
process and results, along with the evaluation procedure we used.
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4 Simulation Process & Results

This chapter presents the process for simulating the RL problem defined in
Chapter 3, the procedure for evaluating the learned policies, and the experi-
mental results for Q-flocking and Dyna-Q-flocking.

4.1 Simulation Process

The aim of the simulation was to create an on-line episodic environment based
on the RL problem defined in Chapter 3. In the simulation, multiple followers
are simultaneously learning how to flock with a single leader, and are sharing
the same Q-table. As shown by the flowchart in Figure 4.1, each episode begins
with the initialization of random states and roll commands for all of the agents.
Then the agents are simulated with the stochastic UAV kinematic model using
the initial conditions. The kinematic model outputs successor states, which
are used to create individual system states by combining each of the follower’s
state, the leader’s state, and the leader’s roll command. The system states are
then used by the followers to calculate costs (Equation 3.7) when updating the
Q-table, and to lookup the Q-table for the best action to take. The followers
select their actions according to the ε− greedy method, and the leader selects
its actions randomly. Once the actions have been determined, the process
repeats itself until the end of the episode. The duration of each episode is
limited to 30 time-steps, with each step representing one second wall-clock
time. In addition, at each time-step a perimeter condition forces the followers
to stop updating the Q-table when they are outside of X2. This is to ensure
that the value of the boundary states are not affected by followers wandering
outside the perimeter.

The orange process and decision blocks shown in Figure 4.1 highlight the
mechanisms within the learning agents (i.e., followers). In the same figure,
the two green process blocks, model learning and planning, are specific to
Dyna-Q-flocking. Model learning is shown as a sequential process within on-
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4.1. Simulation Process

Figure 4.1: Flowchart of the simulation process

line learning, while planning occurs after on-line learning. In theory, model
learning and planning can either run in the background or in parallel to on-line
learning using multiple threads. Figure 4.2 provides a visualization of how the
followers would physically flock with the leader.
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Figure 4.2: Simulated trajectories of two followers using a learned policy to
flock with the leader.

4.2 Evaluation Procedure

Evaluation of the policies occur both during the learning process as the policies
evolve, and at the very end when the policies converge. In both cases, the
evaluation procedure is the same. To evaluate a policy, we simulate a follower
using that policy to flock with a single leader over 1000 random trajectories to
measure the costs incurred. The duration of each trajectory is 120 time-steps,
and a single trajectory is denoted as Υn, with the subscript n indicating the
trajectory number. The cost of each trajectory is averaged over the entire
run (i.e., 120 time-steps), and at each time-step the cost is calculated using
Equation 3.7. Figure 4.3 depicts a single run of a random trajectory for
a leader and follower pair, where the leader’s actions are random, and the
follower looks up the best action to take according to a learned policy. The
same set of random trajectories are used to assess all of the policies, and the
collection of Υ1 to Υ1000 for each policy is denoted as Γ, where Γ(F ) denotes
the collection or set of average costs incurred by using policy F . The average
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Figure 4.3: Plot of a single set of leader and follower trajectory. Markers are
used to show relative positions of each UAV in time.

of Γ denoted as ΓAve is given as

ΓAve =
1

1000

1000∑
n=1

Υn (4.1)

With the learning approaches, the policies are evaluated at the beginning
of every episode to capture the evolution of the policies, which is reflected in
the convergence of ΓAve over time. On the other hand, with the QDP approach
every backup of value iteration generates a new policy, which is then evaluated.
The learned policies using Q-flocking are denoted as FQ(α), where α indicates
the learning parameter used. Similarly, the learned policies using Dyna-Q-
flocking are denoted as FDQ(α). Policies generate using the QDP approach
are denoted as FDP ($), where $ ∈ R>0 indicates the number of backups.

To compare the policies, the mean and the standard deviation of Γ for each
policy are computed after 1000 episodes, or in the case of QDP, the policy
with the lowest ΓAve is used. In addition, t-tests are performed on Γ to assess
the statistical significance of the average cost data. The t-test results indicate
which policy performs better with a level of statistical confidence.

Figure 4.4 illustrates the overall policy evaluation and comparison process,
where for example, six resulting policies are evaluated based on the same 1000
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Figure 4.4: Policy evaluation and comparison

random trajectories. Subsequently, the resulting Γ data sets are compared
against each other using paired t-tests.

4.3 Simulation Results

In this research we conducted two sets of experiments, where we simulated
Q-flocking and Dyna-Q-flocking, and compared the resulting policies to ones
generated using the QDP approach. The difference between the two exper-
iments lies in the parameters used to define the stochastic UAV kinematic
model. In Experiment I (Exp. I), the model denoted as M1 accounts for
stochasticity in the roll angle dynamics and the airspeed, while in Experiment
II (Exp. II), additional disturbances (non-symmetrical) were introduced to
the model denoted as M2 by setting ηx, ηy, ηψ and their respective standard
deviations to non zero values. The followers in Exp. II are bootstrapped with
the learned policies from Exp. I to simulate the perception of a non-stationary
stochastic environment.

The first sub-table in Table 4.1 contains the general parameters that were
used in the simulations, which include (from left to right) the discount rate,
the decay rate, the inner and out radius of the annulus, the tuning parameter
for the cost function, gravity, nominal airspeed, and the standard deviation
of the airspeed. The second sub-table contains the disturbance parameters
for the kinematic models used in each of the experiments, and the learning
parameters that were experimented with. The third sub-table indicates the
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Table 4.1: Simulation Parameters

General Parameters

γ λ b1 b2 β αg s σs
Values 0.8 0.9 40 65 0.05 9.8 10 0.8

Disturbance Parameters Learning Parameters

ηx, ηy ηφ σx, σy, σφ α: Static α: (%, p, ς)

Experiment I 0 0 0 0.1, 0.8 (120, 3, 0.005)
Experiment II 5 0.1π 0.01 0.1, 0.8 (120, 3, 0.005)

Number of Learning Agents

On-Line (i) Planner (ip)

Q-flocking 50,000 N/A
Dyna-Q-flocking 5 50,000; 200,000

number of learning agents (i.e. followers) that were used in simulation for the
different learning approaches. To expedite the learning process when using the
Q-flocking approach, 50,000 followers were employed simultaneously to learn
and update the massive Q-table (i.e., 61 × 61 × 24 × 5 × 5 × 3 × 3). While
in Dyna-Q-flocking, 50,000 followers were used in the planner and five were
used in on-line learning (and model learning). Furthermore, to demonstrate
the advantage of scaling with the planner, we also experimented with 200,000
followers in the planner, which was the maximum number of followers the
planner could simulate without exceeding the computational time constraint
of 25 seconds. This time constraint is a soft limit set on the planner to ensure
that its runtime does not exceed 30 seconds, which is equivalent to 30 time-
steps of on-line learning. By limiting the runtime of the planner, we are staying
true to the possibility of running the planner in the background or in parallel
to on-line learning.

4.3.1 Experiment I

The aim of Exp. I was to demonstrate the feasibility of using Q-flocking and
Dyna-Q-flocking to learn how to flock in a stochastic environment defined by
the model M1. The experiment was divided into two parts. In part one,
FDP policies were generated according to the QDP approach and using the
kinematic model M1. This involved performing value-iteration (using DP)
to propagate values through the state-action space. Each sweep through the
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Figure 4.5: Plot of ΓAve for DP-value iteration backups using the QDP ap-
proach in Exp. I

state-action space is known as a backup, and a total of 100 policies were
generated over the course of backing up 100 times.

According to Figure 4.5, the policy generated after the sixth backup FDP (6)
incurred the lowest cost, and as the number of backups increased the average
cost converged to approximately 4.7 (see Table 4.2). From the perspective of a
model-based approach, the trend in Figure 4.5 suggests that the ideal planning
horizon with the model M1 is six backups, and that it becomes impractical
to consider what the impact of the current action has beyond six time-steps
into the future. Interestingly, the dip in the ΓAve shown in Figure 4.5 is
counterintuitive in the sense that as the number of DP backups increase, the
solution should gradually improve and converge. Upon closer examination of
the QDP approach, it became clear that by taking the empirical average of
the values of the successor states [14], the stochasticity between each succes-
sive run of value-iteration was trimmed. Consequently, this causes a biased
representation of the expected values, as well as the state-transitions.

To help illustrate the effects of taking the empirical average of the values of
the successor states, Figure 4.6 depicts the exponential growth of decisions to
consider and the increase in stochasticity as the horizon increases (i.e., number
of DP backups increases). Based on this figure, the transition from K = 0 to
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K = 1 generated three collections of potential successor states shown in blue,
green, and red. To properly capture the stochasticity in the stat-transitions
as the horizon increase, the transition from K = 1 to K = 2 should generate
three collections of successor states for every single point within the collections
at K = 1. This approach though would be computationally expensive as the
horizon increases. For example, if there are 1000 samples in each collection
of successor state, then from K = 0 to K = 1 there would be 3000 samples
(1000 for each action). Subsequently, from K = 1 to K = 2 there would
be three million successor state samples (i.e., 3000 × 1000). This expansion
of the samples should continue on with each successive backup, which makes
the problem computationally expensive, and for this reason, averaging the
samples is a more practical approach. However, by averaging the values of
the successor states at each backup, the simulated (i.e., stochastic kinematic
model) state-transition probability becomes a biased representation. As a
result, some of the randomness in the overall problem are unaccounted. In
spite of this, since FDP (6) incurred the lowest cost, its policy and Γ (i.e., 1000
average cost data set) were used as the benchmark in Exp. I.

Table 4.2: ΓAve of QDP policies in Exp. I

FDP µ σ
1 7.314 3.750
2 4.301 2.415
3 4.129 2.269
4 4.006 2.205
5 3.960 2.124
6 3.936 2.106
7 3.938 2.143
8 4.024 2.296
9 4.025 2.235
10 4.062 2.283
...

...
...

100 4.756 2.574

In part two of Exp. I, we simulated Q-flocking and Dyna-Q-flocking with
the parameters specified in Table 4.1. During the learning process, the policies
were evaluated at every episode, and after 1000 episodes the learned policies
against FDP (6). In the following sub-subsections, the results from simulating
Q-flocking and Dyna-Q-flocking are presented and compared against FDP (6).

48



4.3. Simulation Results

Figure 4.6: Exponential growth of decisions and transitions to consider as the
horizon increases. Stochasticity is trimmed by taking the empirical average of
the values of each collection of the successor states (shown in blue, green, and
red).

Exp. I: Q-flocking

According to the learning curves shown in Figure 4.7, the followers were able
to learn to flock with the leader using Q-flocking. Furthermore, the learning
curves show that FQ(var) converged faster than FQ(0.1) during the initial
transitional phase, moreover, FQ(var) converged to a lower ΓAve compared
to FQ(0.8). This means that the proposed variable learning parameter offers
faster convergence due to a larger learning rate during the transitional phases,
as well as a lower convergence average cost due to a smaller learning rate as
the TD-error decreases over time. The convergence values the learned policies
are summarized in Table 4.3.

Figure 4.8 provides a visual comparison between two followers that utilize
different policies to flock with the same leader; one follower used FQ(0.1) and
the other used FDP (6). For comparison purposes, the followers started in the
same state, and markers are used to show the relative positions of each UAV
in 10 second increments. It is difficult to visually tell which follower incurs a
lower cost, so to compare the polices, we needed to analyze the distribution
of Γ for each policy.
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Figure 4.7: Learning curves for Q-flocking in Exp. I

According to the box plots shown in Figure 4.9, there are substantial
overlapping between the distributions of Γ for each of the learned policies and
FDP (6). For this reason, two-sample t-tests were performed on the data sets
in order to statistically compare the performance of the policies. The following
two sets of hypotheses denoted as H1 and H2, were considered for each of the
learned policies:

• H10 : The average cost incurred using FQ and FDP (6) are the same.
• H1A : The average cost incurred using FQ and FDP (6) are not the same.
• H20 : The average cost incurred using FQ is larger than FDP (6).
• H2A : The average cost incurred using FQ is smaller than FDP (6).

The subscript 0 represents the null hypothesis, while the subscriptA represents
the alternative.

The t-test results for Q-flocking are compiled in Table 4.4. The first column
lists the learned policies as a function of their respective learning parameters.
In the second column, the t-values pertaining to each policy are shown. The t-
values indicate the difference between the means of the two samples such that
the larger the t-value, the larger the difference between the means. The third
column shows the degrees of freedom, which relates to the number of values in
the data sets; more data means higher degrees of freedom, as well as a smaller
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Table 4.3: ΓAve of policies
learned using Q-flocking in
Exp. I after 1000 episodes

Method µ σ
FQ(0.1) 3.768 2.274
FQ(0.8) 6.436 2.957
FQ(var) 3.809 2.224
FDP (6) 3.936 2.106

Note: For FQ, the values were
sampled after 1000 episodes.
For FDP , the values were
sampled after the number of
backups as indicated.

sampling error. Both the t-value and degrees of freedom are used to determine
the significance of the test, commonly known as the p-value. In practice, p-
values smaller than 0.001 (i.e., the significance level) suggests very strong
evidence against the null hypothesis H0, and values smaller than 0.01 suggest
strong evidence. For completeness, the paired difference results including the
mean, the unpooled estimated standard deviation, and the confidence intervals
(i.e., 100× (1− 0.001)%) are also included in Table 4.4.

Table 4.4: T-test results for Q-flocking in Exp. I

H10

Paired Differences
99.9%

Confidence Interval
Policy T-values DoF Significance Mean Std. Dev. Lower Upper

FQ(0.1) -1.712 1998 0.087 -0.168 2.192 -0.491 0.155
FQ(0.8) 21.780 1998 1.529E-94 2.501 2.567 2.122 2.879
FQ(var) -1.309 1998 0.191 -0.127 2.165 -0.446 0.192

H20

Paired Differences
99.9%

Confidence Interval
Policy T-values DoF Significance Mean Std. Dev. Lower Upper

FQ(0.1) -1.712 1998 0.044 -0.168 2.192 -Inf -0.006
FQ(0.8) 21.780 1998 1.000 2.501 2.567 -Inf 2.690
FQ(var) -1.309 1998 0.095 -0.127 2.165 -Inf 0.033
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Figure 4.8: Trajectory plot of two followers flocking with a single leader in the
environment defined by M1. One follower is using FQ(0.1) (after convergence),
and the other is using FDP (6). For comparison purposes, the followers both
started in the same state, and markers are used to show the relative positions
of each UAV in 10 second increments.

According to the results of the H1 test shown in Table 4.4, the p-values
for FQ(0.1) and FQ(var) are both higher than 0.001, while the p-value for
FQ(0.8) is less than 0.001. This means that there are no significant differ-
ences between the distribution of Γ(FDP (6)), and the distribution of both
Γ(FQ(0.1)) and Γ(FQ(var)). In other words, FQ(0.1) and FQ(var) are both
comparable to FDP (6) in performance. Based on the results of the H2 test,
we can confirm that on average FQ(0.8) incurred higher costs in comparison
to FDP (6). Figure 4.10 illustrates the empirical cumulative distribution func-
tion for Γ(FQ(0.8)), Γ(FQ(var)), and Γ(FDP (6)). From this graph, we can see
that the average costs incurred by FQ(0.8) was higher than the average costs
incurred by FDP (6), while the average costs incurred by FQ(var) was lower
than FDP (6) in most parts of the graph, and higher near the tails.
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Figure 4.9: Box plot of Γ for all Q-flocking policies in Exp. I

Figure 4.10: Empirical cumulative distribution function for Γ of FQ(var),
FQ(0.8) and FDP (6) in Exp. I
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Figure 4.11: Learning curves for Dyna-Q-flocking in Exp. I

Exp. I: Dyna-Q-flocking

The learning curves for the policies learned through Dyna-Q-flocking are
shown in Figure 4.11. According to the learning curves, the followers were
able to learn how to flock with the leader using the Dyna-Q-flocking approach.
As shown by Figure 4.12, the distributions of Γ for the learned policies are
similar to Γ(FDP (6)). Using the same set of hypotheses as Q-flocking but
swapping FQ for FDQ, the t-test results shown in Table 4.5 reveal no signifi-
cant differences between the distribution of Γ(FDP (6)) and the distributions
of both Γ(FDQ(0.1)) and Γ(FDQ(var)). On the other hand, the distribution of
Γ(FDQ(0.8)) is for certain (p-value=1) larger than Γ(FDP (6)). These results
confirm that the policies FDQ(var) and FDQ(0.1) are comparable to FDP (6)
in performance, while FDQ(0.8) under-performs relative to FDP (6).

In order to compare Dyna-Q-flocking against Q-flocking, we used FQ(var)
as the benchmark because it produced the best compromise between the rate
of convergence and the lowest average cost incurred upon convergence. The
learning curves plotted in Figure 4.11 show that FDQ(0.8) and FDQ(var)
both converged slightly faster than FQ(var). However, between the two, only
FDQ(var) converged to an average cost that is near ΓAve(FQ(var)). Accord-
ing to Table 4.6, FDQ(0.1) and FDQ(var) converged to values that are within
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Figure 4.12: Box plot of Γ for all Dyna-Q-flocking policies in Exp. I

the vicinity of ΓAve(FQ(var)). Based on these results, Dyna-Q-flocking and
Q-flocking both augmented with the proposed variable learning parameter
offers comparable performances in terms of convergence rate and value. As
mentioned before, Q-flocking employs 50,000 followers on-line, while Dyna-
Q-flocking employs five followers on-line and 50,000 followers in the planner.
This difference makes Dyna-Q-flocking a more practical and realistic approach
in terms of hardware implementation, because it requires less agents operating
on-line.

To maximize the utility of the planner in Dyna-Q-flocking, we simulated
Dyna-Q-flocking with 200,000 followers in the planner, and compared the re-
sults to Q-flocking and Dyna-Q-flocking with 50,000 followers in the planner.
According to the learning curves shown in Figure 4.13, significant speed up
was achieved with four times the original number of followers in the planner.
As a side note, the Dyna-Q-flocking policies have the numbers 50 and 200
in their subscript to indicate the number of followers (multiplied by 1000)
learning in the planner. Using ΓAve(FDP (6)) as the cost benchmark, we can
see from Figure 4.13 that FDQ50(var) converged below the benchmark after
465 episodes, whereas FDQ200(var) converged below the benchmark after 225.
The improvement in the convergence rate due to scaling the number of agents
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Table 4.5: T-test results for Dyna-Q-flocking in Exp. I

H10

Paired Differences
99.9%

Confidence Interval
Policy T-values DoF Significance Mean Std. Dev. Lower Upper

FDQ(0.1) -2.425 1998 0.015 -0.224 2.065 -0.528 0.080
FDQ(0.8) 30.883 1998 1.508E-171 3.924 2.841 3.505 4.343
FDQ(var) -0.988 1998 0.323 -0.091 2.056 -0.394 0.212

H20

Paired Differences
99.9%

Confidence Interval
Policy T-values DoF Significance Mean Std. Dev. Lower Upper

FDQ(0.1) -2.425 1998 0.008 -0.224 2.065 -Inf -0.072
FDQ(0.8) 30.883 1998 1.000 3.924 2.841 -Inf 4.133
FDQ(var) -0.988 1998 0.162 -0.091 2.056 -Inf 0.060

Table 4.6: ΓAve of poli-
cies learned using Dyna-Q-
flocking in Exp. I after 1000
episodes

Method µ σ
FDQ(0.1) 3.712 2.023
FDQ(0.8) 7.860 3.422
FDQ(var) 3.663 2.068
FQ(var) 3.809 2.224
FDP (6) 3.936 2.106

Note: For FDQ, the values were
sampled after 1000 episodes.
For FDP , the values were sam-
pled after the number of back-
ups as indicated.

in the planner is one of the advantages of the Dyna architecture. The num-
ber of learning agents that can be simulated in the planner is limited by the
computational resources available to run the planner in the background or
in parallel to on-line learning. In comparing the performance between using
different numbers of learning agents in the planner, we have shown that once
an internal model of environment has been learned, the planner can be used
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4.3. Simulation Results

Figure 4.13: Learning curve for Q-flocking and Dyna-Q-flocking in Exp. I

as a force multiplier to expedite the learning process.

Exp. I: Summary

The results from Exp. I demonstrate that by using either Q-flocking or Dyna-
Q-flocking, the followers were able to learn policies that facilitate flocking with
a single leader, while operating in a simulated stochastic environment as de-
fined by M1. In addition, the t-test results confirmed that there are no signif-
icant differences between the costs incurred by FQ(0.1), FQ(var), FDQ50(0.1),
FDQ50(var), FDQ200(0.1), and FDQ200(var) in comparison to FDP (6). This
means that the learned policies mentioned have all converged to a near op-
timal policy, since according to the QDP approach, FDP (6) is the optimal
control policy (lowest cost) for an environment defined by M1. Consequently,
we have shown empirically that policies learned using Q-flocking and Dyna-Q-
flocking (along with low static α or the proposed variable α) can converge to
a near optimal policy provided that enough time is allotted for the policies to
converge. Lastly, the learning curves from Exp. I showed that in comparison
to static learning parameters, the proposed variable learning parameter offers
faster convergence during transitional phases without converging to policies
that incur a higher cost (e.g., policies that used α = 0.8).
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4.3.2 Experiment II

The aim of Exp. II was to demonstrate that with the learning approaches
the followers would be able to adapt their policies to the new environment
defined by the model M2. In addition, the learning agents in Exp. II were
bootstrapped with a learned policy (FQ(0.1)) from Exp. I. This transition
from M1 to M2 simulated the perception of a non-stationary environment.
In accordance with the QDP approach, which computes policies off-line, the
FDP policies from Exp. I remain unchanged in Exp. II even though the
environment has. Consequently, followers relying on FDP may incur a higher
cost in an environment that FDP was not optimize for. As a side note, the
notation for the policies learned in Exp. II include ns in their subscript to
differentiate them from the policies learned in Exp. I.

Similar to Exp. I, we simulated the learning approaches and tracked ΓAve
for each of the policies as they evolved over every episode. Likewise, we
evaluated the FDP policies in the new environment M2, where in addition to
stochasticity in the roll angle dynamics and the airspeed, we introduced non-
symmetrical noises into the model. The additional noises were used to simulate
disturbances such as constant winds, or mechanical damage that occurs mid-
flight, which may lead to weight and balance issues. Such disturbances can
alter the flight characteristics of the UAV, as depicted by the followers in
Figure 4.14. It should be noted that the additional disturbances were only
applied to the followers, since it made more sense to show that the leader
and follower would, in practice, experience different disturbances. This is the
reason why in Figure 4.14, the leader exhibits a smooth trajectory, while the
followers experience forces that pushes them in the positive x and y direction.
In the same figure, the follower in green is shown to have executed a series of
aggressive actions (at location: x=0, y=60) according to its policy FQns(0.1),
which facilitated better flocking with the leader compared to the follower in
blue.

As shown in Figure 4.15, the FDP policies generated between 40 to 60
backups seem to incur the lowest cost in the new environment. However, to
remain in line with the QDP approach, FDP (6) was once again used as the
benchmark in Exp. II. The mean and standard deviation of Γ(FDP (6)) are
shown in Table 4.7.

Exp. II: Q-flocking

According to the learning curves shown in Figure 4.16 and the convergence val-
ues compiled in Table 4.8, ΓAve(FQns(0.1)), ΓAve(FQns(0.8)) and ΓAve(FQns(var))
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Figure 4.14: Trajectory plot of two followers flocking with a single leader
in the environment defined by M2. One follower is using FQns(0.1) (after
convergence), and the other is using FDP (6). For comparison purposes, the
followers start int he same state, and markers are used to show the relative
positions of each UAV in 10 second increments.

all converged to a lower value than ΓAve(FDP (6)). This means that by us-
ing the Q-flocking approach, the followers were able to adapt their policies to
M2, and as a result, their policies incurred a lower average cost than FDP (6).
Furthermore, the learning curves in Figure 4.16 show the policy with the pro-
posed variable learning rate exhibiting faster convergence during the initial
readjustment phase.

To validate Γ for all the Q-flocking policies in Exp. II, statistical sig-
nificance testing was performed on Γ sampled after 1000 episodes using the
same hypotheses as proposed in Exp. I. According to the box plots shown
in Figure 4.17 and the t-test results compiled in Table 4.9, we can confirm
with statistically strong evidence (i.e., p < 0.001) that the distributions of
Γ(FQns(0.1)), Γ(FQns(0.8)), and Γ(FQns(var)) are significantly different from
ΓAve(FDP (6)), thus the learned policies must be different from FDP (6). In ad-
dition, there is significant evidence to confirm that all of the learned policies
have incurred average costs that are lower in comparison to FDP (6).
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Figure 4.15: Plot of ΓAve for every DP backup using the QDP approach in
Exp. II

Figure 4.16: Learning curves for Q-flocking in Exp. II

60



4.3. Simulation Results

Table 4.7: ΓAve of QDP policies in Exp. II

FDP µ σ
1 150.0215 109.7961
2 103.7355 65.70306
3 94.7476 57.12971
4 89.7643 52.08801
5 85.9242 50.9022
6 82.0628 50.31499
7 79.7461 50.20371
8 77.9961 49.65202
9 78.7133 49.96488
10 77.9444 49.5283
...

...
...

100 77.0047 50.1035

Table 4.8: ΓAve of policies
learned using Q-flocking in Exp.
II after 1000 episodes

Method µ σ
FQns(0.1) 43.730 35.541
FQns(0.8) 72.500 66.724
FQns(var) 44.223 32.170
FDP (6) 82.063 50.315

Note: For FQns, the values were
sampled after 1000 episodes. For
FDP , the values were sampled
after the number of backups as
indicated.

Exp. II: Dyna-Q-flocking

The learning curves for the policies learned through Dyna-Q-flocking are
shown in Figure 4.18. According to the learning curves, the followers were
able to adapt their policies to M2, but only FDQns(0.1) and FDQns(var) con-
verged to costs that were lower than ΓAve(FDP (6)) (see Table 4.10). The box
plots of Γ for the learned policies (see Figure 4.19) show that the distributions
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Figure 4.17: Distribution of Γ for all Q-flocking policies in Exp. II

of Γ(FDQns(0.1)) and Γ(FDQns(var)) are different from Γ(FDP (6)), however,
the distribution of Γ(FDQns(0.8)) has similar means and considerable overlap
with Γ(FDP (6)). Using the same set of hypotheses as Q-flocking by swap-
ping FQns for FDQns, the t-test results shown in Table 4.11 confirms that
FDQns(0.1) and FDQns(var) incurred lower average costs than FDP (6), while
FDQns(0.8) incurred higher average costs than FDP (6).

In terms of comparing the learning approaches, the learning curves in
Figure 4.18 show that FQns(var) converge slightly faster than FDQns(var)
and FDQns(0.1) in the first 200 episodes, after which the three policies seem
to converge at the same rate and to within the vicinity of the same value.
Based on this observation, there is no clear indication as to which learning
approach performs better when the simulation conditions are similar (e.g., in
Q-flocking 50,000 followers were simulated learning on-line versus in Dyna-Q-
flocking 50,000 followers were simulated in the planner). This is consistent
with the findings in Exp. I.

As mentioned before, the advantage of the Dyna architecture lies in the
ability to expedite the learning process through learning internal models and
scaling the number of learners with the planner. For this reason, we also simu-
lated Dyna-Q-flocking with 200,000 followers in the planner. Using ΓAve(FDP (6))
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Figure 4.18: Learning curves for Dyna-Q-flocking in Exp. II

Figure 4.19: Distribution of Γ for all Dyna-Q-flocking policies in Exp. II
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Table 4.9: T-test results for Q-flocking in Exp. II

H10

Paired Differences
99.9%

Confidence Interval
Policy T-values DoF Significance Mean Std. Dev. Lower Upper

FQns(0.1) -19.678 1998 6.165E-79 -38.333 43.559 -44.752 -31.913
FQns(0.8) -3.619 1998 3.037E-04 -9.563 59.092 -18.271 -0.854
FQns(var) -20.037 1998 1.577E-81 -37.840 42.228 -44.063 -31.616

H20

Paired Differences
99.9%

Confidence Interval
Policy T-values DoF Significance Mean Std. Dev. Lower Upper

FQns(0.1) -19.678 1998 3.082E-79 -38.333 43.559 -Inf -35.127
FQns(0.8) -3.619 1998 1.518E-04 -9.563 59.092 -Inf -5.214
FQns(var) -20.037 1998 7.887E-82 -37.840 42.228 -Inf -34.732

Table 4.10: ΓAve of policies
learned using Dyna-Q-flocking in
Exp. II after 1000 episodes

Method µ σ
FDQns(0.1) 42.607 28.190
FDQns(0.8) 95.097 73.270
FDQns(var) 43.398 28.000
FDP (6) 3.936 2.106

Note: For FDQns, the values were
sampled after 1000 episodes. For
FDP , the values were sampled after
the number of backups as indicated.

as the cost benchmark, there is a reduction of 125 episodes between FDQ50ns(0.1)
and FDQ200ns(0.1) as shown in Figure 4.20. Furthermore, in comparison to
FQns(0.1), FDQns200(0.1) reduced the number of episodes by nearly 200. These
improvements are consistent with the findings from Exp. I, thus attests to the
efficacy of integrating model learning and planning with on-line learning.
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Table 4.11: T-test results for Dyna-Q-flocking in Exp. II

H10

Paired Differences
99.9%

Confidence Interval
Policy T-values DoF Significance Mean Std. Dev. Lower Upper

FDQns(0.1) -21.633 1998 2.014E-93 -39.455 40.782 -45.466 -33.445
FDQns(0.8) 4.637 1998 3.755E-06 13.035 62.849 3.772 22.297
FDQns(var) -21.234 1998 2.159E-90 -38.664 40.716 -44.665 -32.664

H20

Paired Differences
99.9%

Confidence Interval
Policy T-values DoF Significance Mean Std. Dev. Lower Upper

FDQns(0.1) -21.633 1998 1.007E-93 -39.455 40.782 -Inf -36.454
FDQns(0.8) 4.637 1998 1.000E+00 13.035 62.849 -Inf 17.660
FDQns(var) -21.234 1998 1.079E-90 -38.664 40.716 -Inf -35.668

Exp. II: Summary

The results from Exp. II demonstrate the feasibility of using either Q-flocking
or Dyna-Q-flocking to enable the followers to adapt their policies to the
new environment (i.e., M2), hence validating the ability to adapt to a non-
stationary stochastic environment. Policies that were learned using α = 0.1
and α = var incurred lower average costs in comparison to FDP (6). Fur-
thermore, the results show that for Q-flocking the proposed variable learning
parameter offers faster convergence during readjustment phases without con-
verging to policies that incur a higher cost (e.g., policies that used α = 0.8).

4.4 Summary

In this chapter, we presented the simulation process, evaluation procedure,
and simulation results for Q-flocking and Dyna-Q-flocking. The simulations
occurred in an episodic format, such that in each episode multiple followers
were learning how to flock with a single leader by updating a shared Q-table
with estimates of the state-action values. Evaluation of the policies were based
on the average cost incurred by the follower that utilize the policies while
flocking with the leader over 1000 random but controlled trajectories. The
distributions of the average costs were compared by performing two sample
t-tests.

Two sets of experiments were conducted to simulate both Q-flocking and
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Figure 4.20: Learning curve for Q-flocking and Dyna-Q-flocking in Exp. II

Dyna-Q-flocking. The difference between the experiments was in the stochas-
tic kinematic model of the UAV. By changing the parameters within the kine-
matic model, we were able to simulate the perception of a non-stationary
stochastic environment.

Simulation results show that both learning approaches can be used to en-
able small fixed-wing UAVs to learn how to flock with a leader without a
priori knowledge of the environment (See Figure 4.21 and 4.22). In addi-
tion, the learned policies with low or variable learning parameters exhibited
comparable performance to the policy generated using the QDP approach.
Furthermore, the results show that learning provided the followers with the
means of adapting to new environments (See Figure 4.23 and 4.24 ) by con-
stantly exploring the environment, and readjusting their state-action values.
We were able to test the proposed variable learning parameter in both envi-
ronments, and show that Q-flocking combined with the variable learning rates
improves the speed of convergence, most notably during the initial learning
and readjustment phases of the learning process.

In comparison to Q-flocking, Dyna-Q-flocking eliminated the need for a
large number of on-line agents. Sample efficiency was improved through learn-
ing a model of the environment, and using the planner to generate simulated
experience, which were then used to update the Q-table. By removing the need
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4.4. Summary

Figure 4.21: Trajectories of two followers using FQ(0.1) to flock with a single
leader in the environment defined by M1. Markers are shown in 10 second
increments.

Figure 4.22: Trajectories of two followers using FDQ(0.1) to flock with a single
leader in the environment defined by M1. Markers are shown in 10 second
increments.
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Figure 4.23: Trajectories of two followers using FQns(0.1) to flock with a
single leader in the environment defined by M2. Markers are shown in 10
second increments.

Figure 4.24: Trajectories of two followers using FDQns(0.1) to flock with a
single leader in the environment defined by M2. Markers are shown in 10
second increments.
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4.4. Summary

of having to use 50,000 followers to learn on-line, and by scaling up the num-
ber of learners simulated in the planner, we have shown that Dyna-Q-flocking
is a better practical approach to the proposed flocking problem, however, sev-
eral assumptions still need to be addressed. These include an episodic setting
where agents can be reset if they moved out of bounds, lossless communi-
cation between the agents, and slow changing disturbances to accommodate
time factor of learning a policy (due to the size of state-space). Lastly, flocking
was only achievable because collision avoidance was de-conflicted by having
each UAV flying at different altitudes. These are some of the assumptions
that need to be resolved prior to hardware implementation.
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5 Conclusion and
Recommendations

5.1 Conclusion

The aim of this research was to apply RL to flocking so that agents modeled
as small fixed-wing UAV can learn how to flock in a simulated non-stationary
stochastic environment. We adopted the flocking framework from [14], and
formulated it in the context of an RL problem. The state space was defined
in terms of the relationship between a follower and the leader, and the action
space was defined by a set of discretized roll angle setpoints. In addition,
the state transitions were described by a four DoF stochastic UAV kinematic
model and the reinforcement was formed as a cost function that integrated
the rules of flocking. The objective was for the followers to learn the best roll
command to take in all the states.

To address the RL problem, we proposed two learning approaches, namely
Q-flocking and Dyna-Q-Flocking. The algorithm in the Q-flocking approach
is based on Peng’s Q(λ) augmented with a variable learning parameter, while
the algorithm in Dyna-Q-flocking is based on Sutton’s Dyna architecture and
Q(λ).

Two sets of simulation experiments were carried out in this research. The
aim of the first experiment was to learn a policy that facilitated flocking. In
the second experiment, the aim was to adapt the learned policy to a new en-
vironment. By changing the parameters within the kinematic model, we were
able to simulate different environments and create the perception of a non-
stationary stochastic environment. The simulations occurred in an episodic
format, such that in each episode the followers learned how to flock with a sin-
gle leader using the proposed learning algorithms. Evaluation of the learned
policies was done by comparing the average cost (in terms of the cost function)
incurred over a controlled set of 1000 random trajectories, where the follower
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would use the policies to flock with the leader. Statistical analysis was per-
formed on the average cost data sets from each policy in order to compare the
learning approaches to the QDP approach.

According to the simulation results, both learning approaches can be used
by small fixed-wing UAVs to learn how to flock with a leader in a simulated
non-stationary stochastic environment. Furthermore, the results show that
under the same simulation conditions, the policies learned with a low static
α or the proposed variable α exhibited comparable performance to the op-
timal control policy generated using the QDP approach. With the Dyna-Q
approach, we were able to reduce the number of on-line learners to a man-
ageable level, and scale up the number of learning agents in the planner, such
that the policies converged faster than using the Q-flocking approach.

Based on the experiments and results, we have demonstrated the feasibility
of learning how to flock using fixed-wing UAVs in a simulated environment.
However, several assumptions discussed at the end of Chapter 4 need to be
relaxed and resolved prior to hardware implementation.

5.2 Contributions

As UAVs become more and more prevalent in military and industrial ap-
plications, there is a drive towards cooperative multi-UAV systems in order
to benefit from economies of scale. For such systems to operate effectively,
individual agents will require more than preprogrammed rules and good con-
trollers; they will need tools for learning how to execute complex tasks and
learn to adapt to unfamiliar situations.

The integration of RL and flocking with fixed-wing UAVs in a simulated
non-stationary stochastic environment is a step towards developing intelligent
agents that can learn to flock in the physical world.

In summary, this thesis has contributed to the design of intelligent agents
by introducing an RL flocking framework for fixed-wing UAVs and in support
of this contribution:
• Adopted a stochastic optimal control problem from [14] and reformu-

lated it in the context of an RL problem.
• Formulated two learning approaches called Q-flocking and Dyna-Q-flocking.

The former is based on Peng’s Q(λ), and the latter is a combination of
Peng’s Q(λ) and Sutton’s Dyna architecture.
• Demonstrated in simulation a model-free RL approach to flocking with

small fixed-wing UAVs in a non-stationary stochastic environment by
applying Q-flocking.
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• Demonstrated in simulation a Dyna-Q approach to simulated flocking
with small fixed-wing UAVs in a non-stationary stochastic environment,
where the UAVs are assumed to be flocking in a leader-follower topology.
• A comparison study of each approach to Quintero’s DP approach.

5.3 Recommendations for Future Work

The following are ideas for future work:
1. Reducing state-space: To reduce the state-space, the first two sub-states

of the system state can be converted to polar coordinates. This will allow
discretization of the distance to the leader using less states. However,
the resolution of each state on the planar surface that is traveled on will
differ; the closer the follower is to the leader the higher the resolution,
and vice versa.

2. Improve Model Learning: Instead of averaging the samples to create a
model, a collection of the samples or at least a set of the most recent
samples should be stored. This will provide more realistic samples for
the planner to work with.

3. Parallel computation: Currently, on-line learning, model learning, and
planning are running sequentially. If each process runs on a separate
processor similar to what is proposed in [58], the planner would be able
to update more states and at a faster rate. More importantly, other
than reducing the state space, parallelization is the only way learning
can be fast enough to meet real-time constraints.

4. Policy Search: We have not looked into policy search methods of learn-
ing, but we suspect that with the symmetry of the problem in its current
formulation, policy search may be used to eliminate the large Q-table.

5. Collision avoidance: Collision avoidance is still an open issue that needs
to be resolved either at a lower level controller (see [4]), through the cost
function, or through additional states (not ideal).

6. Flock geometries: This was mentioned by Quintero, which is to induce
certain flock geometries through the cost function.
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[54] C. Virágh, G. Vásárhelyi, N. Tarcai, T. Szörényi, G. Somorjai, T. Ne-
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