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“It’s a magical world, Hobbes, ol’ buddy. . . let’s go exploring!”
-Calvin and Hobbes, by Bill Watterson
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Abstract

This thesis presents a novel robotic mechanism based on the structural concept
of Tensegrity. Winch-driven cables are used to actuate the mechanism in such
a way that it experiences only translational motion of its end-effector. This
behaviour, and the reduction of the mechanism’s inertia due to the use of
cables, could be beneficial for certain industrial operations.

A comprehensive study was conducted to investigate the behaviour of the
proposed tensegrity mechanism. Kinematic analysis was performed to explore
the relationship between actuator and end-effector coordinates, kinematic sin-
gularities, reachable workspace volume, and mechanical interferences between
internal components. Models of the mechanism were derived to verify that
tension is maintained within all cables for both static and dynamic cases.
These models were used to determine external forces or accelerations that the
mechanism can attain without losing cable tension, and thus controllability.
Stiffness was also investigated, as it relates to the accuracy of the end-effector’s
position.

Additionally, the construction of a functional prototype is outlined. The
design challenges faced when manufacturing this proof-of-concept are exam-
ined and a discussion of the chosen design approaches is included. Recommen-
dations are made for future experimental work to evaluate the mechanism
performance and validate the theoretical work of this thesis. The finished
prototype may act as a platform for further development.
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Résumé

Dans cette thèse, un mécanisme robotique novateur qui est développé à partir
du concept de tenségrité est présenté. Le mécanisme est actionné à partir de
câbles dont les longueurs sont modifiées par des treuils de manière à obtenir un
mouvement en translation de sa plate-forme mobile. Ce type de mouvement,
combiné avec une réduction de l’inertie du mécanisme en raison de l’utilisation
de câbles, font du mécanisme un candidat intéressant pour certaines applica-
tions industrielles.

Une étude approfondie du mécanisme de tenségrité proposé est présentée.
D’une part, une analyse cinématique permet d’établir le lien entre les longueurs
des câbles et la position de la plate-forme mobile, d’identifier les singularités
du mécanisme, de calculer les limites de son espace atteignable et de déceler
l’existence d’interférences entre ses composants mécaniques. D’autre part, des
modèles statique et dynamique du mécanisme permettent de vérifier les condi-
tions nécessaires pour que ses câbles demeurent tendus pendant son opération.
Ces modèles sont également utilisés pour calculer les forces externes pou-
vant être supportées par le mécanisme ou encore les accélérations qu’il peut
exécuter lors de ses mouvements tout en gardant ses câbles tendus. Une anal-
yse de la raideur du mécanisme est présentée de manière à évaluer l’exactitude
avec laquelle la plate-forme mobile peut être positionnée dans son espace at-
teignable.

Finalement, la conception et la fabrication d’un prototype fonctionnel
du mécanisme sont décrites. Les défis rencontrés pendant la fabrication du
prototype sont expliqués et les décisions de conception sont justifiées. Cer-
taines recommandations sont faites concernant des travaux futurs visant à
mieux évaluer la performance du mécanisme et la validité de certains résultats
théoriques obtenus dans cette thèse. Le prototype, pour sa part, est apte à
être utilisé comme point de départ pour des recherches plus approfondies dans
le domaine des mécanismes de tenségrité.
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List of Tables ix

List of Figures xi

List of Symbols and Acronyms xiii

1 Introduction 1
1.1 Robotic Manipulator Background . . . . . . . . . . . . . . . . . 1

1.1.1 Serial Manipulators . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Parallel Manipulators . . . . . . . . . . . . . . . . . . . 2
1.1.3 Cable-Driven Parallel Manipulators . . . . . . . . . . . 3

1.2 Tensegrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Motivation and Scope of Thesis . . . . . . . . . . . . . . . . . . 8

2 Development of a Tensegrity Mechanism 11
2.1 Definition of Tensegrity . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Tensegrity Architecture . . . . . . . . . . . . . . . . . . 11
2.1.2 Tensegrity Configurations . . . . . . . . . . . . . . . . . 13
2.1.3 Structural Analysis of Tensegrities . . . . . . . . . . . . 14

2.2 Architecture Selection . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Tensegrity Prisms . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 The Reinforced Triangular Prism . . . . . . . . . . . . . 19

vi



Contents

2.3 Adaptation to Mechanism . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Mechanism Definition . . . . . . . . . . . . . . . . . . . 21
2.3.2 Actuation Scheme . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Application of Prestress . . . . . . . . . . . . . . . . . . 23

3 Kinematic Analysis 27
3.1 Position-Level Kinematics . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Numerical Solution to the Direct Kinematic Problem . . 30
3.1.2 Analytical Solution to the Direct Kinematic Problem . . 33
3.1.3 Analytical Solution to the Inverse Kinematic Problem . 34

3.2 Mechanism Jacobians and Singularity Analysis . . . . . . . . . 35
3.3 Mechanical Interference Between Components . . . . . . . . . . 37

3.3.1 Interference Checking Method . . . . . . . . . . . . . . . 39
3.3.2 Generating the Set of Interference Free Poses . . . . . . 42

3.4 Kinematic Workspace Boundaries . . . . . . . . . . . . . . . . . 44

4 Static Analysis 49
4.1 Wrench and Matrix Analysis Techniques . . . . . . . . . . . . . 49
4.2 Force Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Available Wrench Set . . . . . . . . . . . . . . . . . . . 54
4.2.2 Hyperplane Shifting Method . . . . . . . . . . . . . . . 56
4.2.3 Characterizing the Available Wrench Set . . . . . . . . . 58
4.2.4 Static Workspace Visualization . . . . . . . . . . . . . . 62

4.3 Mechanism Stiffness . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.1 Derivation of the Stiffness Matrix . . . . . . . . . . . . . 69
4.3.2 Stiffness Indices . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.3 Stiffness Mapping . . . . . . . . . . . . . . . . . . . . . 74

5 Dynamic Analysis 79
5.1 Development of the Dynamic Model . . . . . . . . . . . . . . . 79
5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.1 Acceleration Limits . . . . . . . . . . . . . . . . . . . . . 87
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Physical Implementation and Prototyping 91
6.1 Issues with Physical Implementation . . . . . . . . . . . . . . . 92
6.2 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.1 Spring Linkage . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.2 Cable Winch . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Control and Calibration . . . . . . . . . . . . . . . . . . . . . . 102

vii



Contents

6.4 Discussion and Recommendations . . . . . . . . . . . . . . . . . 105

7 Summary and Conclusions 109
7.1 Contributions of Thesis . . . . . . . . . . . . . . . . . . . . . . 109

7.1.1 Chapter Summaries . . . . . . . . . . . . . . . . . . . . 110
7.2 Recommendations for Future Work . . . . . . . . . . . . . . . . 111
7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Bibliography 114

Appendices 122

A Analysis of the Spring Linkages 123
A.1 Kinematic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.2 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

viii



List of Tables

2.1 Naming convention used for mechanism nodes . . . . . . . . . . . . 22
2.2 Actuated pairs of cables . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Physical parameters of the constructed prototype mechanism. . . . 60

6.1 Parameters of the custom designed torsion springs. . . . . . . . . . 98

ix



List of Algorithms

3.1 Search algorithm for detecting interference free boundaries. . . 43

x



List of Figures

1.1 Comparison of a serial manipulator and a parallel manipulator. . . 3
1.2 Comparison of a Gough-Stewart platform and CDPM. . . . . . . . 4
1.3 Tensegrity sculptures by artist Kenneth Snelson. . . . . . . . . . . 6
1.4 Deployable tensegrity mast prototype developed at UCSD. . . . . 8
1.5 Example applications of the 3-strut prism tensegrity. . . . . . . . . 9

2.1 Model of the truncated tetrahedron tensegrity in equilibrium. . . . 13
2.2 Inextensible mechanisms of kinematically indeterminate structures. 16
2.3 Structures from the family of tensegrity prisms. . . . . . . . . . . . 17
2.4 Twist angle (γ) of the triangular prism. . . . . . . . . . . . . . . . 18
2.5 Nodal definitions of the reinforced triangular prism tensegrity. . . . 19
2.6 Concept models of the triangular prism tensegrity mechanism. . . 22
2.7 Parallelogram formed by A2B3B2A3. . . . . . . . . . . . . . . . . . 24
2.8 Illustration of the proposed compression spring linkage. . . . . . . 25

3.1 Vector resresentation of the mechanism with reference frames. . . . 29
3.2 Assembly modes of the torsion spring linkages. . . . . . . . . . . . 38
3.3 Vector notation used for interference calculations. . . . . . . . . . . 40
3.4 Definition of interference directions. . . . . . . . . . . . . . . . . . 41
3.5 Maximum theoretical workspace boundary. . . . . . . . . . . . . . 45
3.6 Three dimensional representation of the interference free workspace. 46
3.7 Horizontal slices of the interference free workspace boundaries. . . 47
3.8 Fraction of the reachable workspace that is interference free. . . . . 48

4.1 Internal and external forces that act on the ith torsion spring linkage. 51
4.2 Example of a two dimensional zonotope formed by Minkowski sum. 56
4.3 Example of a 2D cable mechanism and its available wrench set. . . 57
4.4 Multiple viewing angles of the force-only zonotope. . . . . . . . . . 61
4.5 Force-only zonotopes at various mechanism poses. . . . . . . . . . 63
4.6 Force capabilities for standing mechanism. . . . . . . . . . . . . . . 64

xi



List of Figures

4.7 Force capabilities for hanging mechanism. . . . . . . . . . . . . . . 65
4.8 Force capabilities when ignoring gravity. . . . . . . . . . . . . . . . 66
4.9 Static workspace boundary derived using the wrench equation. . . 68
4.10 Static workspace boundary for varying cable tension limits. . . . . 69
4.11 Cartesian stiffness mapped on horizontal plane at z = 0.15 m. . . . 74
4.12 Cartesian stiffness mapped on horizontal plane at z = 0.4 m. . . . 75
4.13 Cartesian stiffness mapped on the xz-plane. . . . . . . . . . . . . . 75
4.14 Condition mapping of the Cartesian stiffness matrix. . . . . . . . . 76
4.15 Rotational stiffness mapped on a horizontal plane at z = 0.15 m. . 77
4.16 Condition mapping of the rotational stiffness matrix. . . . . . . . . 78

5.1 Simplified representation for dynamic simulation. . . . . . . . . . . 82
5.2 Computed cable tensions for deployment and retraction. . . . . . . 85
5.3 Computed cable tensions for a horizontal, circular trajectory. . . . 86
5.4 Computed cable tensions for helical trajectory. . . . . . . . . . . . 87
5.5 Computed minimum cable tensions for reciprocating x trajectories. 89
5.6 Computed minimum cable tensions for reciprocating y trajectories. 89

6.1 An alternative split spring design. . . . . . . . . . . . . . . . . . . 93
6.2 Photograph of the constructed prototype. . . . . . . . . . . . . . . 94
6.3 CAD drawing of the spring linkage. . . . . . . . . . . . . . . . . . . 95
6.4 Photographs of the torsion spring linkage components. . . . . . . . 96
6.5 Schematic of the custom torsion springs. . . . . . . . . . . . . . . . 98
6.6 The concentric multi-link spherical joint design. . . . . . . . . . . . 99
6.7 Photograph of the translating winch assembly. . . . . . . . . . . . 100
6.8 Photograph of the winch-side of the mechanism base. . . . . . . . 101
6.9 Hardware used to implement the prototype controller. . . . . . . . 102
6.10 Flow diagram of the controller designed for the prototype. . . . . . 104
6.11 3D-printed end-effector homing device. . . . . . . . . . . . . . . . . 105
6.12 Long exposure of example end-effector trajectory. . . . . . . . . . . 106
6.13 Designs for routing cables to reduce friction. . . . . . . . . . . . . . 107

A.1 Definitions of the spring linkage leg angles. . . . . . . . . . . . . . 124
A.2 Vector definitions for the spring linkage . . . . . . . . . . . . . . . 126
A.3 Free body diagrams of the proximal and distal links. . . . . . . . . 127

xii



List of Symbols and
Acronyms

Ai, Bi, Ci The ith node of the mechanism’s base, end-effector or torsion
spring joint, respectively.

A, B Equilibrium and compatibility matrices1 of a pin-jointed
structure.

ai, bi, ci Vectors2 locating nodes Ai, Bi, and Ci respectively.
D Dimension of the space being considered (i.e., 2 for planar, 3

for spatial).
Db Degrees-of-freedom of a rigid body (i.e., 3 for planar, 6 for

spatial).
Di Number of degrees-of-freedom allowed by a mechanical joint.
d Vector containing the nodal displacements of a pin-jointed

structure.
e Vector containing the elongations of all components in a pin-

jointed structure.
e1i, e2i Unit vectors defining the two axes of the universal joints

found at the base of the i-th spring linkage.
f Force vector.
g, g Magnitude and direction of gravity (9.81 ms−2).
i, j, k Unit vectors along global axes X, Y and Z, respectively.
I Inertia tensor.
1n×n Identity matrix, n× n.
J The overall Jacobian matrix of the mechanism.
Jρ, Jx The partial Jacobian matrices.
K Stiffness matrix.

1All matrices are denoted by uppercase bold-faced characters.
2All vectors are denoted by lowercase bold-faced characters.

xiii



List of Symbols and Acronyms

li Length of the i-th virtual spring, defined as the distance be-
tween nodes Ai and Bi.

l0 Rest length of the virtual compression spring linkages.
M Degree of static indeterminacy of a structure.
M Mobility of a mechanism.
Nb Number of bars or components in a pin-jointed structure.
NI Number of infinitesimal mechanisms.
Nj Number of joints in a pin-jointed structure.
Nk Number of kinematic constraints in a pin-jointed structure.
nij Unit vector describing the direction of a component between

nodes i and j.
O Origin of the global coordinate frame.
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1 Introduction

Robotic manipulators have become commonplace in nearly all aspects of mod-
ern manufacturing. The primary reason for this widespread adoption is their
ability to perform repetitive tasks at speeds and accuracies unachievable by
humans. Humans are, in this case, a poor standard for comparison and there
are strong motivations (e.g., economic) for further increasing the accelerations
that manipulators can achieve. While evolutionary changes to existing designs
of manipulators can gradually increase the acceleration limits, at some point
more revolutionary changes must be attempted. Applying the structural con-
cept of tensegrity to the field of robotics is one possible approach.

1.1 Robotic Manipulator Background

The term robot has been used to describe a large number of diverse applica-
tions. To some, the word robot brings to mind humanoid automatons from
science fiction movies. Others are reminded of mobile robots such as those
used by NASA for space exploration. In the context of this thesis, the only
robots that will be referred to are robotic manipulators, used widely in indus-
try to machine, assemble and package consumer goods. These manipulators
are usually composed of rigid links connected by joints, some of which are
actuated.

An extensive review of the history and development of early robotic ma-
nipulators is not necessary for the understanding of this thesis. The subject is
already covered in many robotics textbooks, for example those by Tsai [1] or
Angeles [2], and will be omitted here. Instead, a brief overview of the current
state of the art of high-speed manipulators will be presented.

1.1.1 Serial Manipulators

Most robotic manipulators in use today may be categorized as rigid link ma-
nipulators. Rigid link manipulators are usually further categorized into two

1



1.1. Robotic Manipulator Background

primary architectures: serial and parallel. Serial manipulators, as shown in
Figure 1.1a, are the more widely adopted architecture in industry. They are
composed of a series of rigid links that are connected by fully actuated joints.
The actuators are able to position subsequent links in the open kinematic
chain, with the goal of locating and sometimes orienting the final link, known
as the end-effector. Serial manipulators often appear anthropomorphic since
they can be similar in function to human limbs.

Serial manipulators are well established due to their large reachable work-
space, i.e., the area or volume in which they can position or orient their
end-effector. Additionally, simpler analysis of their kinematics and dynamics
makes the task of mechanical design easier. However, the high-speed perfor-
mance of serial manipulators has inherent limitations. The naive approach
to improve the dynamic abilities of a serial manipulator would be to reduce
its mass, and thus inertia, while increasing the force or torque output of the
actuators. Unfortunately, these are conflicting objectives; stronger actuators
are generally more massive and, due to the serial architecture, will contribute
to the inertia of the overall manipulator. In most applications, more massive
actuators also require larger, stiffer links to prevent the manipulator from be-
coming undesirably flexible. The serial architecture also reduces the overall
stiffness of the manipulator at the end-effector, since it is the summation of
the stiffness of all included joints and links. Multi-objective optimization to
improve high-speed performance is possible but it remains difficult to substan-
tially increase the achievable accelerations of existing designs.

1.1.2 Parallel Manipulators

The second category of rigid link manipulators is parallel manipulators. Rather
than an open kinematic chain, this type of manipulator includes multiple se-
ries of links that create closed kinematic chains, as shown in Figure 1.1b and
Figure 1.2a. Not all joints need be actuated in a closed kinematic chain to
completely define its configuration. This allows a degree of choice when select-
ing which joints are actuated. As such, the joints closest to or located on the
stationary base are typically chosen, significantly reducing the contribution
of the actuators to the manipulator’s inertia. Without needing to support
heavy actuators, the links of parallel manipulators may be much less massive
than their serial counter-parts. The stiffness, and thus accuracy, of parallel
manipulators is higher than serial architectures. This is due to the increased
number of serial connections to the end-effector and the reduced number of in-
dividual joints and links in the linkages, which eliminates the cascading effect
that serial chains have on stiffness. Adding redundant linkages, i.e., more than

2



1.1. Robotic Manipulator Background

(a) (b)

Figure 1.1: Comparison of (a) the FANUC 430 serial manipulator and (b)
the Adept Quattro parallel manipulator. Vector images created by the author
using royalty-free CAD models obtained from GrabCAD.com [3].

needed to fully define the position of the end-effector, has been used to achieve
higher accelerations [4]. Further gains have been found by using pantograph
linkages to effectively magnify the forces generated by actuators [5].

Improvements to dynamic performance come at the cost of much more
complicated analysis and design. Parallel manipulators tend to have relatively
small, irregularly shaped workspaces due to the increased number of kinematic
constraints introduced by the additional kinematic chains. This has to some
extent limited the adoption of parallel manipulators to specialized tasks, such
as pick-and-place operations in food or packaging industries, where a large
workspace is not necessary.

1.1.3 Cable-Driven Parallel Manipulators

More recent research has been shifting to cable-driven parallel manipula-
tors (CDPM). Early examples include the Landsberger mechanism [6], NIST
Robocrane [7] and the Falcon [8]. Many are based loosely off of the Gough-
Stewart parallel platform, shown in Figure 1.2a, essentially being a platform
that is positioned and oriented in space by several linear actuators. Instead
of heavy linear actuators, CDPMs use winch-actuated cables. In most cases,

3



1.1. Robotic Manipulator Background

End-effector

Actuated leg

Actuated cable

(a)
(b)

Figure 1.2: A comparison of (a) the 6-DoF Gough-Stewart platform and (b)
a 6-DoF cable-driven parallel manipulator. Images adapted from Bruckmann
et al. [12].

certainly those in small-scale manufacturing, the cable mass can be neglected,
eliminating nearly all of the inertia of the manipulator aside from that of
the end-effector, its payload, and the rotational inertia of its winches. Since
nearly any length of cable may be reeled onto a winch, CDPMs can also be
built to extremely large scales. Large-scale applications already include a ca-
ble suspended camera used to film sporting events [9], deployable cranes for
the construction of solar farms [10] and proposed deployable search and rescue
robots [11].

Cable actuation does however introduce a new constraint to the manip-
ulator; cable tension must be maintained. Two approaches may be used to
supply cable tension. In the case of suspended CDPMs, the weight of the
end-effector and payload platform pulls on the cables. Alternatively, some
CDPMs may introduce at least one redundant cable to pull antagonistically
against the others and maintain tension. A drawback of this approach is that
the cables will always surround the end-effector. In such cases CDPMs are
more difficult to implement due to their required footprint and the likelihood
of cables interfering with each other or other objects in a workspace. Hy-
brid manipulators, comprising of both actuated cables and rigid links, have
also been proposed. These benefit from high-speed actuation due to the low

4



1.2. Tensegrity

mass cables while maintaining large unobstructed workspaces by using other
methods of supplying tension to the cables, e.g., applying prestress using gas
compression springs [13–15].

1.2 Tensegrity

1.2.1 Structures

American architect Buckminster Fuller was the first to coin the term tenseg-
rity, as a compounding of the words tension and integrity. He used the word to
describe a class of lightweight structures composed of axially loaded compres-
sion members held together by tension cables to form “islands of compression
in a sea of tension” [16]. He was not, however, the first person to build such
structures. Kenneth Snelson, an artist and early student of Fuller, has made
numerous claims that he was the original inventor. In his book on tenseg-
rity, Motro [17] gives a good account of the dispute between the two based
on his correspondence with Snelson. Despite the competing claims, similar
structures can be traced as far back as 1921 with the sculpture “A Study in
Motion” by the Russian Constructionist artist Karl Ioganson [18].

It could be argued that while Snelson did create the earlier tensegrity
sculptures, Fuller was the first proponent of their practical applications. In
his 1962 patent [16], Fuller described a large number of applications, mainly
related to architecture, which benefited from tensegrity’s high strength-to-
weight ratio and easy deployment. Snelson, on the other hand, focused almost
entirely on the aesthetic properties of tensegrities. He built his sculptures
using heuristic approaches rather than using calculations and often expressed
his doubt in how practical any scientific or engineering study of the concept
was [19]. However, he did concede in his own patent on “continuous tension,
discontinuous compression structures” [20] that possible benefits of tensegrity
structures exist in mass-critical applications such as aircraft structures.

The sculptural work of Snelson, such as the examples in Figure 1.3, illus-
trates the diversity of potential topologies quite well. Tensegrity structures
can contain essentially an unlimited number of compressive elements so long
as a network of tension cables is still present to hold them together in static
equilibrium. This freedom allows for a wide spectrum of architectures, from
minimal two or three strut tensegrities to very large repeating structures.
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(a) (b)

Figure 1.3: The varying complexity of tensegrity sculptures, as demonstrated
by (a) the X-Piece (1948) and (b) the Double Star (1959), two sculptures by
artist Kenneth Snelson. Photographs are from Snelson’s online portfolio [21].

1.2.2 Mechanisms

The lengths of individual elements within tensegrity structures can be strategi-
cally actuated. Variations in these lengths can be controlled to cause desirable
changes to the structures’ geometry, leading to their possible use as mecha-
nisms. In this context, a mechanism is a system of moving parts that can
be controlled to generate desirable motions, although not all mechanisms are
necessarily used as robotic manipulators. Mechanisms are generally less ver-
satile than manipulators and designed to perform very specific and limited
tasks. They are often found as components and sub-systems within devices,
e.g., the read/write head within a disk drive. Coincidentally there exists a disk
drive design with two read/write heads that is based on a planar tensegrity
mechanism [22]. Tensegrity mechanisms are similar in many ways to parallel
mechanisms and have many potential benefits.

As long as loads are applied to their nodes, elements within a tensegrity
will remain axially loaded and will not experience bending moments. Without
needing to resist bending, the tensegrity components can be much thinner and
lighter without adversely affecting the strength of the structure as a whole.
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This greatly reduces the mass and inertia of moving parts, potentially allowing
high accelerations to be achieved during operation or the use of smaller (and
cheaper) actuators. Stationary actuators, further reducing the inertia of the
mechanism, can carry out the actuation of the structures’ cables.

It has been observed that some tensegrity assemblies can be erected from
a collapsed state by pulling on as few as one slack cable [23]. This creates the
possibility of simple deployment, since manipulating tension within members
can allow the entire structure to erect or collapse itself. Finally, tensegrity
mechanisms that incorporate actuated cables generally do not require the
complete surrounding of their end-effector by wires to be stable, unlike many
cable-driven mechanisms. The lack of interference with cables could extend
their workspace and simplify their practical implementation.

Research into the concept of tensegrity is not a recent occurrence but
its application to the fields of mechanisms and robotics only began in the
late 1990s. Early research considered controllable tensegrity smart structures,
i.e., structures that could be actively actuated to reduce vibrations or have
variable geometry [24]. Focus shifted to simpler tensegrity structures that
could be made to generate much larger displacements [25]. These adaptive
structures revealed many of the benefits that tensegrity mechanisms can po-
tentially provide and opened the door to further development.

Tensegrity’s high strength-to-weight ratio has generated interest in its use
for aerospace applications. Emphasis has been placed on self-deploying tenseg-
rity systems [26–28]. Deployable tensegrities could potentially be used as an-
tennae masts on satellites [29]. Such designs could be packaged very compactly
during launch and then deployed once in orbit. Most of these tensegrity masts
are based on the simplest forms of tensegrity structures, the family of n-strut
prisms [30]. Figure 1.4 shows a prototype tensegrity mast and illustrates how
gradually applying tension to the structure’s cables results in its erection.

Mechanisms with higher mobility, i.e., more degrees of freedom, have also
been investigated. Control issues become more important when tensegrity is
applied to higher speed manipulation applications. So too does the problem
of path generation [32]. A large variety of tensegrity manipulators have been
proposed. Sultan et al. suggested the use of a tensegrity mechanism as a
flight simulator [33], similar to existing simulators based on the Gough-Stewart
platform. Arsenault and Gosselin investigated both planar and spatial uses of
tensegrity [34,35], as well as modular mechanisms that could allow repeating
tensegrity modules to be assembled into a quasi-serial manipulator [36, 37].
Tensegrity-like mechanisms have also been proposed; parallel manipulators
developed to have self-stressing abilities similar to tensegrities [38].

Most recently, tensegrity has been applied to mobile robots. Generally,
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Figure 1.4: A deployable tensegrity mast prototype from the Skelton Struc-
tural Systems and Control lab at UCSD. Image adapted from Pinaud et
al. [31]

these mechanisms are actuated to generate artificial gait or undulation for
locomotion. Paul et al. used evolutionary algorithms (i.e., genetic algorithms)
to generate a gait pattern to create the tensegrity mechanism shown in Fig-
ure 1.5a that can walk on the ends of its compressive members [39,40]. Rieffel
explored similarities between biological systems (in this case caterpillars) and
tensegrity mobile robots, using modular tensegrities to create an undulating
motion to crawl [41]. In yet another example of generating a mobile robot
from tensegrity, Shibata et al. designed a rolling tensegrity robot [42]. Mirats-
Tur looked into using the minimal 3-strut prism to create rolling motion,
simulating the mobile version of the mechanism to explore its dynamics [43].
He also built a preliminary prototype, shown in Figure 1.5b, with length ac-
tuated compression members and a stationary base to investigate physical
implementation of the mechanism. The issue of where to locate the actua-
tors, controllers and power supplies within a mobile tensegrity composed of
nothing but cables and rods has yet to be addressed, limiting any real-world
applications.

1.3 Motivation and Scope of Thesis

This thesis aims to demonstrate that tensegrity mechanisms are a feasible
alternative to rigid link or cable-driven parallel manipulators. While adapting
tensegrity structures into robotic manipulators has already been done, it has
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(a) (b)

Figure 1.5: Example applications of the 3-strut prism tensegrity: (a) a
tensegrity based mobile robot and (b) a stationary base tensegrity mechanism.
Images adapted from Paul et al. [39] and Mirats Tur et al. [43], respectively.

only achieved a limited degree of success. Existing tensegrity mechanisms
commonly suffer from several issues:

1. Limited (i.e., single) degrees of freedom appropriate for some applica-
tions, such as deployable mast-like space antennae, but undesirable from
a manipulation standpoint.

2. Unrestrained degrees of freedom exist due to the extensive use of passive
spring elements.

3. Complex actuation schemes that result in coupled translational and ro-
tational movement of their end-effectors.

4. Theoretically possible designs that are difficult, if not impossible, to
implement physically due to mechanical interferences.

To address these problems, a mechanism based on a known tensegrity ar-
chitecture with a novel actuation scheme is presented. This mechanism will be
shown to exhibit spatial, translational-only motion of its end-effector, making
it well suited to manufacturing applications such as pick-and-place operations.
Analysis of the mechanism’s kinematics, statics, stiffness and dynamics is per-
formed to gain a thorough understanding of its behaviour as well as to evaluate
its feasibility as a practical robotic manipulator. The investigation is primar-
ily performed using existing techniques that are common to the analysis of
parallel manipulators and CDPMs by adapting them for use with tensegrity

9



1.3. Motivation and Scope of Thesis

mechanisms. Additionally, potential solutions to the challenges that are faced
when attempting to translate tensegrity mechanisms from theory into reality
are discussed. Some of these potential solutions are used to design and manu-
facture a prototype that will serve as a physical proof-of-concept and be used
in future research.
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2 Development of a Tensegrity
Mechanism

The following chapter presents an expanded definition of tensegrity. Struc-
tural concepts such as self-stress and kinematic indeterminacy are explained,
since they differentiate tensegrity architectures from the broader category of
cable structures. A review of the mathematical tools used to analyze tenseg-
rity structures is presented. Several existing tensegrity architectures are intro-
duced, including the family of regular polygon prism tensegrities. Finally, this
chapter describes the process of selecting a specific architecture, the reinforced
triangular prism, and adapting it into the novel mechanism that will be the
focus of the remainder of this thesis.

2.1 Definition of Tensegrity

Tensegrity has already been introduced as an assembly of compressive and
tensile components. This basic description does not adequately describe all of
the properties of this kind of cable structure. Additionally, the analysis in sub-
sequent chapters relies on a thorough understanding of several key principles
of tensegrity.

2.1.1 Tensegrity Architecture

To begin, the distinction between a tensegrity architecture and a tensegrity
configuration must be made. Tensegrity architecture refers to a structural
set of compression components and their specific connectivity via a network
of tension components. However, not all combinations of compressive and
tensile elements can form a stable tensegrity configuration, nor are all config-
urations of tensegrity architectures stable. To elaborate on this distinction,
the following definition of tensegrity by Robert Skelton is provided:
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In the absence of external forces, let a set of rigid bodies in a spe-
cific configuration have torqueless connections. . . Then this config-
uration forms a tensegrity configuration if the given configuration
can be stabilized by some set of internal tensile members, i.e., con-
nected between the rigid bodies. The configuration is not a tenseg-
rity configuration if no tensile members are required and/or no set
of tensile members exist to stabilize the configuration. [22]

Skelton’s definition describes tensegrity as being similar to a pin-jointed
cable structure. It differentiates between a cable structure and a tensegrity,
mainly by suggesting that tensegrity structures must have the ability to be
self-stressing, i.e., they can reach static equilibrium without requiring external
reaction forces. This ability must be achieved via internal changes to the
amount of tension within a tensegrity’s cables.

There are generally two types of components within tensegrity architec-
tures: cables, which can only resist tension and struts, which must remain
under compression. Some authors [44] also consider a third type of element,
bars, that can support both tensile and compressive loads but must keep a
constant length. Regardless of their type, each component must experience
only uniaxial loading and not bending.

There is also some disagreement in literature with regards to the connec-
tion of compression elements. Some authors argue that the original definitions
of tensegrity by Buckminster Fuller [16] and Kenneth Snelson [20] should be
adhered to. This would require fully discontinuous compression within a struc-
ture for it to be considered a proper tensegrity. Most authors dispute this ap-
proach as being too restrictive and don’t differentiate so long as the original
pin-jointed assembly is followed, i.e., loading is still axial. Indeed there are
many existing examples of structures and mechanisms that are claimed to be
tensegrity systems yet possess joints between multiple compression elements.
To address this issue, the Skelton Structural Systems and Control Lab intro-
duced the following classification scheme, which has become widely adopted
within the field:

A class k tensegrity Structure is a stable equilibrium of axially
loaded elements, with a maximum of k compressive members con-
nected at the node(s). [45]

The classification distinguishes tensegrities by the maximum number of com-
pressive members that share a common joint, although the members still can-
not be rigidly attached to one another or transmit bending moments.
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2.1. Definition of Tensegrity

(a) (b)

Figure 2.1: Model of the truncated tetrahedron tensegrity. In (a) the model’s
formation configuration is a regular geometric shape while in (b) a physical
model is shown in a deformed static equilibrium, i.e., its tensegrity configura-
tion.

2.1.2 Tensegrity Configurations

To achieve a stable tensegrity configuration the components of a tensegrity
architecture must be in static equilibrium. The connectivity of the compo-
nents in tensegrity architectures is commonly based on regular polyhedra that
possess geometric symmetries. However, after settling into their tensegrity
configurations, these architectures are sometimes distorted. As an example,
a tensegrity constructed from a truncated tetrahedron is shown in its assem-
bly configuration in Figure 2.1a. A physical model of the same architecture
that has reached static equilibrium is shown in Figure 2.1b. It becomes clear
from the photograph that the positions of the tensegrity’s nodes are no longer
located at the corners of an easily described solid. This deformation is due
partly to inaccuracies of the construction (e.g., elastics having different stiff-
ness or struts having different lengths) but is also caused by the structure’s
components shifting to minimize the potential energy of the system.

The process of finding stable configurations of tensegrity architectures has
been of significant interest in literature. Referred to as form-finding, the
problem is generally approached in one of two ways: kinematically or stati-
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cally. Kinematically, the problem can be solved by finding minimal compatible
lengths of some or all of the tensile members while holding the lengths of the
compressive members constant. Conversely, the length of some, or all, of the
compressive members can be maximized while holding the tensile members to
constant lengths. This can be visualized as pulling cables, or extending struts,
until the structure erects itself, a useful property that has been exploited to de-
velop deployable structures [26]. The statics approach to the problem is solved
by finding the static equilibrium configurations of predetermined assemblies,
i.e., with specified component lengths. Several extensive reviews of the most
common form-finding methods have been written and are recommended for
further reference [46–48].

Equilibrium configurations can be calculated analytically for simpler tenseg-
rity structures. However, analytical solutions become difficult, if not impos-
sible, for complex architectures that contain larger quantities of components.
Recent literature has focused on numerical form-finding methods for use with
complex tensegrities. These are primarily computationally expensive methods,
such as a Monte Carlo “shotgun” approach [49] and genetic algorithms [50],
although some newer methods also focus on reformulating the problem of form-
finding to make it more suitable for automatic generation and solving [47].

2.1.3 Structural Analysis of Tensegrities

To investigate the structural properties of tensegrities, it is helpful to treat
them as pin-jointed structures similar to trusses. Despite their similarities,
some conventional methods of analyzing pin-jointed structures are not ap-
plicable in the case of tensegrity structures [24]. For example, Maxwell’s
well-known rule to verify whether or not a structure is statically determinate
does not adequately take into account some properties of structures that are
both statically and kinematically indeterminate,such as tensegrities [51]. The
standard form of Maxwell’s rule is as follows:

Nb +Nk −DNj =M (2.1)

where Nb is the number of components in the structure, Nk is the number of
kinematic constraints imposed, D is the dimension of the space being consid-
ered (D = 2 for planar structures, D = 3 for spatial ones), Nj is the number
of joints and M is the degree of static indeterminacy.

Pellegrino and Calladine have addressed the limitations of the conventional
Maxwell’s rule [51–53]. They begin by deriving the following system of linear
equations to describe the nodal equilibrium of a pin-jointed structure:

At = f (2.2)
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The vector t is comprised of the Nb internal forces, where tension is consid-
ered to be positive and compression negative. These internal forces are related
linearly to the net external forces applied at each node by the (DNj) × Nb

equilibrium matrix A, which is constructed based on the geometry and con-
figuration of the structure. The vector f is comprised of the nodal forces in
all D directions, and at all Nj nodes.

The virtual work principle may be used to develop a similar relationship
between nodal displacements and changes in component lengths. Assuming
quasi-static conditions, the work done by a set of nodal forces along very
small displacements, δd, is equal to the work done by the internal tension
along compatible component elongations, δe. More precisely, the following
expression must be true:

fTδd = tTδe (2.3)

The nodal equilibrium relationship from Equation 2.2 can be substituted into
this relationship for f to yield the following:

(At)Tδd = tTδe (2.4)

tTATδd− tTδe = 0 (2.5)

tT
(
ATδd− δe

)
= 0 (2.6)

Ignoring the trivial solution where there are no internal forces (i.e., t = 0), the
expression inside the brackets must be equal to zero. Therefore the following
linear relationship is defined:

ATδd = δe (2.7)

Bδd = δe (2.8)

which introduces the compatibility matrix B, equal to AT, and demonstrates
the duality of the equilibrium matrix.

The properties of these matrices are useful in further describing the be-
haviour of tensegrity structures. Static indeterminacy can be described math-
ematically by considering the null space of the equilibrium matrix A. If A is
rank deficient, there exists a non-trivial solution, i.e., t0 6= 0, to the equation
At0 = 0. This corresponds physically to a combination of internal component
forces that do not result in any net change of forces at the structure’s nodes
and thus can be applied while maintaining equilibrium. This is the definition
of self-stress and is an important requirement of tensegrity systems.

Similarly, kinematic indeterminacy can be demonstrated by finding the
null space of the compatibility matrix B. In this case, if there exists a non-
trivial solution, i.e., d0 6= 0, to Bd0 = 0 the structure is kinematically inde-
terminate. Physically, such a solution would represent certain modes of nodal
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(a) (b)

Figure 2.2: Example inextensible mechanisms of kinematically indetermi-
nate structures. The infinitesimal mechanism in (b) has been exaggerated to
improve clarity.

displacements that can occur without any changes to the component lengths.
Rigid body motion of the whole structure will be included in these modes but
may be removed through the addition of proper kinematic constraints. The
remaining modes of displacements are defined as inextensible mechanisms.
These mechanisms can be finite, such as the free rotation of the links within
an unactuated four bar assembly like that shown in Figure 2.2a. They can also
be infinitesimal, such as the infinitesimal motions that will be experienced by
the assembly shown in Figure 2.2b. Infinitesimal displacements are typically
resisted by the geometric stiffness of a structure and the original configuration,
although not rigid, is stable.

Pellegrino and Calladine introduce two parameters to summarize the above
work. First is the quantity of prestress states, or equivalently the degree of
static indeterminacy. Using the rank of the equilibrium matrix this is defined
as:

sS = Nb − rank(A) (2.9)

where sS is the number of prestress states. The number of inextensible mech-
anisms is defined as:

NI = DNj − rank(A)−Nk (2.10)

where NI is the number of inextensible mechanisms. Equations 2.9 and 2.10
are then combined to form an extended Maxwell’s rule:

sS −NI = Nb −DNj +Nk (2.11)
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(a) (b) (c)

Figure 2.3: A selection of structures from the family of tensegrity prisms:
the (a) triangular prism, (b) square prism and (c) hexagonal prism. All three
are shown in their respective tensegrity configurations.

which becomes the basis of verifying an important requirement of tensegrity;
tensegrities must be self-stressing and therefore must have sS ≥ 1.

2.2 Architecture Selection

There are a considerable number of tensegrity architectures to choose from
when developing a mechanism. Several authors [23, 54, 55] have developed
extensive catalogues of tensegrity structures and their respective tensegrity
configurations. These architectures have generally been arrived at through
trial and error approaches or through the exploration of polyhedra geometries.
When generating a mechanism from tensegrity structures it is generally desired
to have a limited number of cables and struts. Not only will this reduce the
mass of the mechanism, it also allows for potential actuation schemes to be
observed more clearly. The simplest and most extensively researched form of
tensegrity structure is the family of tensegrity prisms.

2.2.1 Tensegrity Prisms

Tensegrity prisms are formed by two regular n-sided polygon faces connected
by n compressive struts and n cables. A small selection of these structures is
shown in Figure 2.3.

Due in part to their simple geometry, analytical solutions have been derived
for the equilibrium configuration of any regular tensegrity prism [56,57]. The
configurations result in the two polygonal faces remaining parallel to each
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γ = π/6

Figure 2.4: Twist angle (γ) of the triangular prism when in tensegrity con-
figuration.

other but rotating slightly about their geometric centres. The angle of this
rotation, γ, is dependent only on the number of sides, ε, of the prism’s faces
as follows:

γ =
π

2
− π

ε
(2.12)

This relationship was determined using a force-density form-finding method
and is valid so long as the upper or lower polygons are similar to each other
and both are regular, i.e., all sides have equal length and all internal angles
are equal. The twist angle of the triangular tensegrity prism is shown in
Figure 2.4.

All architectures in this family suffer from similar infinitesimal mechanisms
(kinematic indeterminacy). This infinitesimal mechanism manifests itself as
a screw-like motion of one polygon face with respect to the other. Specifi-
cally, the triangular prism tensegrity’s infinitesimal mechanism is a rotation
about and translation along an axis that is normal to the triangular faces and
located at their centroids. Performing a structural analysis of the triangu-
lar prism using the methods described in Section 2.1.3 yields the quantities
sS = NI = 1. These calculated values confirm that there exists a single
inextensible mechanism and the result agrees with values reported by both
Motro [17] and Oppenheim [24]. The exact nature of the inextensible mecha-
nism may be confirmed by calculating the displacement vector that spans the
null space of the compatibility matrix B.
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Figure 2.5: The reinforced triangular prism tensegrity structure with nodal
definitions.

2.2.2 The Reinforced Triangular Prism

Due to its simpler architecture the triangular prism has already been used
as the basis for numerous robot applications. However, the presence of an
infinitesimal mechanism is undesirable when adapting the structure into a
robotic mechanism. To solve this issue, Knight introduced reinforced versions
of tensegrity prisms [27]. Redundant cables are added, as shown in Figure 2.5,
resulting in four connections per node instead of the original three. Knight
defined and used a quality index of geometric stability to demonstrate that a
reinforced 3-strut prism is in stable equilibrium at a twist angle of γ = π/3.
At this angle the geometry of a reinforced triangular prism becomes that of a
regular antiprism, i.e., the two triangular faces are parallel, mirror images of
each other.

The reinforced variant has several interesting improvements over its non-
reinforced counterpart and may be explained using the structural analysis
techniques discussed earlier. First, unit vectors nij are defined along each
of the structure’s components, where i is the originating node and j is the
terminating node, as numbered in Figure 2.5. These unit vectors are used to
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generate the equilibrium matrix A as follows:

A =



n12 n13 n14 n15 n16

n21 n23 n24 n25 n26

n31 n32 n34 n35 n36

n41 n42 n43 n45 n46

n51 n52 n53 n54 n56

n61 n62 n63 n64 n65


(2.13)

where the elements of the matrix that contain zeros have been omitted. It
should be noted that nij = −nji.The corresponding vector of component
tensions becomes:

t = [t12, t13, t14, t15, t16, t23, t24, t25, t26, t34, t35, t36, t45, t46, t56]
T (2.14)

where tij is the internal force between the i and j nodes, with tension being
considered positive. The vector of externally applied nodal forces is:

f = [f1x, f1y, f1z, . . . , f6x, f6y, f6z]
T (2.15)

where the net force at each node i is represented by three Cartesian compo-
nents fix, fiy, and fiz.

As formulated, the analysis still considers rigid body motions. Sufficient
kinematic constraints (i.e., Nk = 6) must be introduced to prevent the 3
translations and 3 rotations of the entire structure that are possible in D = 3
dimensional space. Fixing the displacements of node 1 in all three Cartesian
directions (i.e., x, y and z) removes the three translational degrees of freedom.
Fixing node 2 in the y and z directions removes two more rotational degrees
of freedom and restricting node 3 from moving in the z direction removes the
final free rotation of the structure. Removing the corresponding rows of the
equilibrium matrix (i.e., rows 1–3, 5, 6 and 9) and nodal force vector enforces
the six kinematic constraints. The matrix A now has 12 rows and 15 columns.

The elements of the unit vectors nij are populated based on the tensegrity
configuration of the reinforced prism and substituted into Equation 2.13. From
examination it is found that the rank of A will remain equal to 12, so long as
the end-effector and base triangles are not coplanar. Using Equation 2.9 the
number of states of self-stress is found to be:

sS = Nb − rank(A) = 15− 12 = 3 (2.16)

This reveals that the reinforced triangular prism has 3 states of self-stress
instead of the single state of the plain triangular prism. As such, more com-
ponents will need to be prestressed for the structure to be stable. Using
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Equation 2.10, the number of infinitesimal mechanisms is found to be:

NI = DNj − rank(A)−Nk = 3 · 6− 12− 6 = 0 (2.17)

This shows that the infinitesimal mechanism found in the triangular prism
has been eliminated via the addition of the extra cables.

2.3 Adaptation to Mechanism

So far in this work the tensegrity concept has only been treated as a struc-
tural concept. Generating a useful mechanism from the chosen architecture
amounts to finding a strategic actuation scheme to control the geometry of
the structure. Large elongations of a tensegrity’s components are possible and
could generate useful movement of a point or a rigid body in the structure
that is defined as the mechanism’s end-effector. The process of adapting the
reinforced-triangular prism tensegrity into a mechanism will now be discussed.

2.3.1 Mechanism Definition

As shown in Figure 2.5, the reinforced-triangular prism tensegrity is comprised
of three compressive members and twelve tensile members. To conform more
closely to the notation used in robot manipulator analysis, the numbered node
system will be redefined as shown in Table 2.1.

The tensile members between the bottom three nodes (Ai, i = 1, 2, 3) are
considered to have constant lengths and be perfectly inextensible. This as-
sumption, along with the kinematic constraints introduced to eliminate rigid
body motions of the entire system, will effectively fix these nodes to the mech-
anism’s base. As such, the three tensile members connecting these nodes are
no longer of interest and may now be ignored. Applying the same assump-
tions to the tensile members between the three top nodes (Bi) fixes them with
respect to each other. Both the top and bottom sets of nodes will form con-
gruent equilateral triangles, defined by the radius, rb, of their circumscribed
circles.

Furthermore, the joints that attach the end-effector members to the rest
of the members are considered perfectly spherical, i.e., they will not transmit
any torques. In this case the three tensile components connecting the Bi nodes
may be replaced with a single rigid plate. Substituting a plate for the tensile
components does not violate the definition of tensegrity; the assembly will still
be a class-1 tensegrity structure. Three compressive members remain, joining
nodes A1B1, A2B2 and A3B3, along with six tensile members, joining nodes
A1B2, A1B3, A2B1, A2B3, A3B1 and A3B2.
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Figure 2.6: The (a) simplified kinematic geometry and (b) conceptual CAD
model of the reinforced triangular prism tensegrity mechanism.

2.3.2 Actuation Scheme

The lengths of the tensile members joining the base and end-effector of the
mechanism will be actuated. Winch-actuated cables are used to benefit from a
large range of motion and the use of stationary actuators that will reduce the
inertia of the system. Cables can be flexible enough to act as joints themselves,
eliminating the need to place multiple mechanical joints concentrically at all
of the nodes. Based on their flexibility, the six cables between the end-effector
and base triangles will be treated as universal-prismatic-spherical (U-P-S)
linkages, as shown in Figure 2.6a. Each cable will be terminated where it is
attached to the end-effector, routed through the centre of the base nodes and
actuated by a motorized winch below the base.

The well-known Chebyshev-Grübler-Kutzbach mobility formula [58] may
be applied to the simplified kinematic geometry of the mechanism to produce

Table 2.1: Naming convention used for mechanism nodes

Structure Node Number 1 2 3 4 5 6

Mechanism Node Name A1 A2 A3 B1 B2 B3
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the following result:

M = 6(Nb −Nj − 1) +

Nj∑
i=1

Di = 6(14− 18− 1) + 36 = 6 (2.18)

where M is the mobility of the mechanism and Di is the total degrees-of-
freedom allowed by the i-th joint (i.e., 1 for prismatic or revolute joints, 2 for
universal and 3 for spherical). With six degrees of mobility and no infinitesimal
mechanisms, the pose of the end-effector of the reinforced triangular prism will
be fully controlled by actuating the length of the six cables. This result does
however require the cables to remain taut and not experience sag so that they
may be treated as prismatic actuators.

The development of the mechanism’s architecture is based on the desire
to reduce the inertia of the moving parts, to simplify actuation, and to gen-
erate pure translational motion of the end-effector. To this effect, one may
observe the occurrence of the three parallelograms, A1A2B1B2, A2A3B2B3,
and A3A1B3B1, formed by the mechanism’s elements and demonstrated in
Figure 2.7. The arrangement of these parallelograms presents an opportunity
to ensure that the movement of the end-effector triangle is only translational.
If the cables remain taut and are actuated in the pairs shown in Table 2.2,
the end-effector will be forced to remain parallel to the ground. Length ac-
tuation of the cables could be achieved by using a single motorized winch
to drive each pair of cables (total of three winches), further simplifying the
mechanism’s architecture.

2.3.3 Application of Prestress

In addition to its novel actuation scheme, this mechanism differs from existing
tensegrity mechanisms based on the reinforced triangular prism [34,35] in the
way it is prestressed. Equation 2.16 shows that the structure has three states
of self-stress, which could be applied by replacing some components with force
elements.

Table 2.2: Actuated pairs of cables

Length Cable Pair

ρ1 A2B3, A3B2

ρ2 A1B3, A3B1

ρ3 A1B2, A2B1
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Figure 2.7: Location of the parallelogram A2B3B2A3 with respect to the
rest of the mechanism.

Any subset of three components could be used if their associated columns
in the equilibrium matrix are linearly independent (see Equation 2.13). The
tension components are a poor selection since replacing them with springs
or force actuating them would conflict with the chosen actuation scheme.
Alternatively, the three compression members, which are linearly independent
so long as the end-effector and base do not become coplanar, will be replaced
with compression springs. This particular architecture is beneficial for its
ability to automatically find tensegrity configurations since, given a set of fixed
cable lengths, it will naturally deform to a stable configuration to minimize
its potential energy.

Attempting to physically implement this mechanism is difficult due to
the mechanical interference of the compressive elements at their respective
midpoints. This interference occurs for the same reason that the end-effector
remains in translation, i.e., the existence of parallelograms in the architecture.
As seen in Figure 2.7 the compression components lie on the diagonals of the
parallelograms, which will always intersect each other. To overcome this issue,
each compression component is replaced with a non-interfering spring linkage,
shown in Figure 2.8. The linkage design incorporates two rigid links of length
l0/2 that are connected to each other via a revolute joint at node Ci. A
torsion spring is located at this revolute joint and applies a torque between
the upper and lower links, acting to fully extend the two rigid links. As a
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Figure 2.8: Illustration of the proposed compression spring linkage.

result, the linkage will act as a “virtual” compression spring, albeit with a
nonlinear force-deflection relationship.

Each spring linkage is attached to the base with a universal joint, which
must be designed while considering the issue of mechanical interference be-
tween linkages. The first axis of the universal joint, e1i, is defined to be
orthogonal to both the line OAi and the vertical z-axis:

e1i =
k× ai
||k× ai||

(2.19)

where ai is a vector locating the base node with respect to the centre of the
base triangle. Meanwhile, the second joint axis e2i is parallel to the axis of
the torsion spring revolute joint:

e2i =
ui × e1i
||ui × e1i||

(2.20)

where ui is a unit vector describing the direction of the line segment between
nodes Bi and Ai. This choice of joint axes constrains each set of links to act
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2.3. Adaptation to Mechanism

only within a plane, referred to as the linkage’s plane-of-action, which always
has its normal vector parallel to e2i. The reasoning behind this selection of
joint axes is two-fold. The universal joint will prevent any rotation of the
linkage along the AiBi axis, simplifying the kinematics of the mechanism. It
will also resist the moment that is generated about that axis by the offset
weight of the links and torsion spring.

The deflection of the torsion spring joint is described using the half angle,
θi, between the two links, defined as:

θi = arcsin

(
li
l0

)
(2.21)

where the length l0 can be chosen to reduce interferences between links and
the actuated cables. The design theoretically allows the virtual spring to
achieve a full range of motion, li ∈ [0, l0], potentially maximizing the size
of the mechanism’s workspace. Mechanical interferences between cables and
links is investigated in greater depth in Chapter 3.
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3 Kinematic Analysis

In this chapter the movement of the reinforced triangular tensegrity mecha-
nism is analyzed. The translational motion of the mechanism will be confirmed
by minimizing its potential energy. This optimization is constrained by the
actuated cable lengths and must be solved using numeric methods. More con-
venient analytical solutions to the position and velocity-level kinematics are
presented based on several assumptions made about the mechanism’s geome-
try and the cable tensions. The occurrence of singularities and their impact
on the mechanism’s kinematics are discussed briefly. A simple and efficient
method of checking for mechanical interference between the mechanism’s com-
ponents is presented. Finally, the kinematic boundaries of the mechanism’s
workspace are summarized and presented.

3.1 Position-Level Kinematics

The direct kinematic problem (DKP) is the task of calculating the pose of the
mechanism, defined as the position and orientation of the end-effector triangle,
when provided with a set of known actuated cable lengths. Solving the DKP
of this particular mechanism is directly analogous to the task of tensegrity
form-finding. Similar to the static form-finding methods discussed in Section
2.1.2, it is possible to minimize the potential energy within the mechanism to
determine its equilibrium configuration.

This optimization problem is subject to the constraints imposed by the six
actuated cables. The cables will technically pose inequality constraints since
they cannot exceed their actuated lengths but may become slack, i.e., ρ ∈
[0, ρmax]. However, only configurations where tension is maintained and the
mechanism is fully defined by the length of its cables are of interest. Equality
constraints are therefore used instead. The exercise of confirming that cable
tension is maintained is left to Chapter 4.

A reduced set of generalized coordinates must be chosen to fully describe
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3.1. Position-Level Kinematics

the configuration of the mechanism. The base nodes, Ai, where i = 1, 2, 3,
are already completely kinematically constrained and do not contribute any
degrees of freedom to the mechanism. Additionally, the end-effector nodes,
Bi, are all considered to be located on a rigid body. Thus the configuration
of the mechanism and the lengths of all of its components can be completely
defined using only the position and orientation of the end-effector. The global
reference frame, XY Z, used to describe the motion of the mechanism is shown
in Figure 3.1. It is located at point O, the centroid of the base triangle, with
the X axis aligned with the line between nodes A1 and A2, the Y axis passing
through node A3, and the Z axis normal to the plane formed by nodes A1A2A3.
Within this reference frame, the Ai nodes are located by the following vectors:

a1 =
rb
2

−√3
−1
0

 a2 =
rb
2

√3
−1
0

 a3 =
rb
2

0
1
0

 (3.1)

where rb is the radius of the circle circumscribed by the base and end-effector
triangles, e.g., the distance ||OAi||. The base and end-effector triangles must
both be congruent and equilateral and therefore share the same value of rb.
This radius may be used as a scaling factor to alter the size of the mechanism.

The centroid of the mechanism’s end-effector triangle, P , is located in
the XY Z frame by the position vector p = [x, y, z]T. A body-fixed reference
frame, X ′Y ′Z ′, is attached to the end-effector at point P and is initially
aligned with frame XY Z as shown in Figure 3.1. Within the X ′Y ′Z ′ frame,
the three nodes of the end-effector, Bi, are located by the following vectors:

b′1 =
rb
2

√3
1
0

 b′2 =
rb
2

−√3
1
0

 b′3 =
rb
2

 0
−1
0

 (3.2)

There is not yet any proof that the end-effector body will experience trans-
lational motion and, as such its orientation must be taken into consideration.
While numerous methods of representing orientation exist, the end-effector
orientation can be conveniently represented using Euler angles in this case.
Euler angles are a set of three successive rotations about predefined axes that
represent the orientation of an object with respect to a fixed reference frame.
If the end-effector remains in translation as speculated, the actual values of
these angles are not of interest since they should all be found to equal zero.
Therefore an arbitrary Euler convention may be selected, so long as consecu-
tive axes of rotation are orthogonal. In this case the angles ϕ, χ, and ψ will
be used to represent rotations about the body-fixed X ′, Y ′, and Z ′ axes, re-
spectively. These rotations are represented by the following rotation matrices:
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Figure 3.1: A vector representation of the mechanism, displaying the refer-
ence frames used and the unit vectors that describe direction of its compo-
nents.

Qϕ =

1 0 0
0 cϕ −sϕ
0 sϕ cϕ

 Qχ =

 cχ 0 sχ
0 1 0
−sχ 0 cχ

 Qψ =

cψ −sψ 0
sψ cψ 0
0 0 1


where the shorthand sϕ, cϕ, etc. have been used in place of sin(ϕ), cos(ϕ),
etc. for brevity. The individual matrices are post-multiplied:

Q = QϕQχQψ (3.3)

which generates the overall rotation matrix Q that describes the orientation
of the end-effector.

The position of the end-effector nodes that are currently located in the
body-fixed frame can now be expressed in the global reference frame by the
vectors bi as follows:

bi = p + Qb′i, i = 1, 2, 3 (3.4)

where b′i is the vector locating the end-effector nodes with respect to the
centre of mass. The configuration of the mechanism is thus fully defined by
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3.1. Position-Level Kinematics

the three end-effector position coordinates along with the three Euler angles.
These variables will be combined into the following vector x for simplicity:

x = [x, y, z, ϕ, χ, ψ]T (3.5)

3.1.1 Numerical Solution to the Direct Kinematic Problem

The mechanism’s DKP may now be solved using constrained optimization.
The objective function to be minimized is defined as the potential energy of
the system and is constrained by the actuated cable lengths. Only the energy
contained within the three torsion spring linkages will be considered; the effect
of external forces and gravity will be considered later in Chapter 4.

The length of each virtual spring, li, can be found using a vector loop
closure approach:

−liui = p + Qb′i − ai (3.6)

l2i��
�*1

uT
i ui =

(
p + Qb′i − ai

)T (
p + Qb′i − ai

)
li =

√(
p + Qb′i − ai

)T (
p + Qb′i − ai

)
i = 1, 2, 3 (3.7)

where ui is a unit vector directed along the ith virtual spring axis, as shown
in Figure 2.8 and Figure 3.1. The deflection angle, θi, of each torsion spring
has already been derived in Equation 2.21. Assuming that the springs behave
linearly and are at rest when θi = θ0 = π/2 (i.e., when the legs are fully
extended), the potential energy within each torsion spring is equal to:

Ui =
1

2
κ(2θi − π)2 (3.8)

where κ is the torsional stiffness and is assumed to be the same for all of the
springs. Equations 2.21, 3.7 and 3.8 can be combined to give an expression
for the total potential energy, U , of the system:

U =
1

2
κ

3∑
i=1

2 arcsin


√(

p + Qb′i − ai
)T (

p + Qb′i − ai
)

l0

− π
2

(3.9)

A vector loop closure approach may also be used to generate the kinematic
constraints posed by the six cables. If the cables are actuated in the pairs
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3.1. Position-Level Kinematics

shown in Table 2.2, the six constraint functions φj , j = 1, . . . , 6 are:

φ1 = (p + Qb′3 − a2)
T(p + Qb′3 − a2)− ρ21 = 0 (3.10)

φ2 = (p + Qb′2 − a3)
T(p + Qb′2 − a3)− ρ21 = 0 (3.11)

φ3 = (p + Qb′3 − a1)
T(p + Qb′3 − a1)− ρ22 = 0 (3.12)

φ4 = (p + Qb′1 − a3)
T(p + Qb′1 − a3)− ρ22 = 0 (3.13)

φ5 = (p + Qb′2 − a1)
T(p + Qb′2 − a1)− ρ23 = 0 (3.14)

φ6 = (p + Qb′1 − a2)
T(p + Qb′1 − a2)− ρ23 = 0 (3.15)

where ρi are the actuated cable lengths. Finally, the optimization problem
may be formally posed:

minimize
x

U(x)

subject to φj(x) = 0; j = 1, . . . , 6

The field of optimization offers many approaches to solving problems that
are subject to multiple constraints. If the cable constraints were represented
by inequality constraints, as originally suggested, penalty function, barrier
function or gradient free methods could be used to perform the optimiza-
tion [59]. However, since the cable constraints are being treated as equalities,
it is possible to use a Lagrangian multiplier method instead.

To satisfy equality constraints, a constrained extrema (minimum or max-
imum) must be located on the point, line, plane, surface, etc., defined by the
constraint functions. Furthermore, if a compatible extrema exists, it must
be in a level set of the objective function that is tangent to the constraint
functions [59]. In other words, the gradient of the objective function will be
parallel to the gradient of the constraint function at an extrema, although
they are not necessarily of equal magnitude. This can also be written as:

∇xf(x) = λ∇xg(x) (3.16)

where ∇x is the gradient operator with respect to x, f(x) is an arbitrary
objective function, g(x) is a constraint function, and λ is known as a La-
grange multiplier. A unique multiplier for each of the constraint functions is
introduced and used to create the Lagrangian function L, where:

L = f(x)−
∑

λg(x) (3.17)

The goal is now to locate a stationary point, i.e., a point where all partial
derivatives of the Lagrangian function are zero that still satisfies all of the
constraint functions.
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3.1. Position-Level Kinematics

In the case of minimizing the potential energy of the tensegrity mechanism,
the Lagrangian function is:

L = U(x)−
6∑
j=1

λjφj(x) (3.18)

The functions partial derivative with respect to x must satisfy ∇xL = 0 and
the constraint equations (Equations 3.10-3.15) must also be satisfied. The
constraint equations can be included together or derived from the Lagrangian
function by taking the partial derivative with respect to the vector of La-
grangian multipliers, λ. The resulting twelve multivariate equations may be
written more concisely as:

h(x∗) =

{
∇xL
∇λL

}
(3.19)

where
x∗ = [x, y, z, ϕ, χ, ψ, λ1, . . . , λ6] (3.20)

As there are twelve unknown variables (the six elements of the mechanism’s
configuration variable x and the six Lagrangian multipliers) the system of
equations should be solvable. However, the resulting equations are highly
non-linear and arriving at an analytical solution is not possible. Instead the
well known numerical Newton-Raphson method will be used.

The Newton-Raphson method is based on a first order Taylor series ex-
pansion of a function [59]:

h(x∗o + ∆x∗) ≈ h(x∗o) + ∆x∗Γ(x∗0) (3.21)

where an initial guess x∗o is required to begin an iterative search for a solution
where the value of the function to be solved is zero. The matrix Γ is the
partial derivative of function h with respect to the vector x∗, i.e., :

Γ(x∗0) =
∂h

∂x∗

∣∣∣∣
x∗=x∗

o

(3.22)

It can be used to calculate the magnitude and direction of each iterative step
toward the potential solution as follows:

ho + Γ(x∗o)∆x∗ = 0

Γ(x∗o)∆x∗ = −ho

∆x∗ = −Γ(x∗o)
−1ho (3.23)
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where h0 = h(x∗0) is the function evaluated at x∗ = x∗0. Using Equation 3.23
successive estimates are obtained by calculating ∆x∗ and adding it to the
current estimate. This process is repeated until the change in x∗ is sufficiently
small (i.e., ||∆x∗|| ≤ εtol) and the solution is considered to have converged.

When applying numerical methods there is always a possibility that the so-
lution will not converge. To assist with convergence, a continuation approach
as described by Arsenault and Gosselin [35] or Tsai [1] is used. The approach
divides the DKP into multiple sub-problems, i.e., calculating the mechanism’s
configuration from several intermediate sets of inputs. These intermediate
sets of inputs are formed by discretizing a vector between an input set that is
known to produce a certain mechanism configuration and the original input
set that is in question. The Newton-Raphson algorithm is still applied to each
of these sub-problems, with the calculated configuration of each set being used
as the initial guess of the next sub-problem. Finer discretization improves the
solution stability by avoiding extremely large iteration steps that may arise
from steep gradients.

An analytically derived version of Equation 3.19 and its Jacobian matrix
were imported into a Matlab (The MathWorks, Inc., Natick, MA, USA)
script and a function was written to perform the iterative Newton-Raphson
procedure. The procedure converged to solutions quickly (within 10 iterations
per sub-problem) for an example mechanism defined by rb = 1 and using a
convergence tolerance of εtol = 0.001. The fast convergence is likely due
to the quadratic nature of the potential energy function. The exercise was
repeated for numerous sets of inputs and in all of those tested, the three
Euler angles were found to be approximately zero. This indicates that the
end-effector rotation remains roughly constant and suggests that equilibrium
configurations of the mechanism will result in translational behaviour when
cable tension is maintained.

3.1.2 Analytical Solution to the Direct Kinematic Problem

Conducting a numerical optimization every time the DKP needs to be solved
is computationally inefficient, especially if it can be shown that the cables are
always in tension, or at least remain taut in a well defined subset of the reach-
able workspace. Instead, a second analysis of the mechanism, assuming taut
cables, is performed to obtain analytical solutions that are faster to compute.
The satisfying conditions of this assumption will be verified later in Chapter 4.

The presence of the parallelograms discussed in Section 2.3.2, prevents
any rotation of the end-effector when all cables are taut. If the end-effector
orientation is constant, the rotation matrix Q is equal to the 3 × 3 identity
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matrix and it is observed that bi = −ai. Additionally, the sum of any two of
the ai vectors is equal to the negative of the third, e.g., a1 + a2 = −a3. Using
either Equations 3.10, 3.12, 3.14 or Equations 3.11, 3.13, 3.15, the constraints
imposed by the actuator lengths are found to be:

ρ2i = (p + ai)
T(p + ai), i = 1, 2, 3 (3.24)

where it is recognized that Equation 3.24 is an expression for three spheres
of radii ρi centred at −ai. Therefore, solving for p is analogous to finding
the intersection of those spheres. Expanding Equation 3.24 leads to a general
expression for the length of cable i in terms of components of the unknown
position vector p and the components of the known vectors ai as follows:

ρ2i = pTp + 2pTai + ai
Tai = x2 + y2 + z2 + 2xaix + 2yaiy + a2ix + a2iy (3.25)

Expanding and solving Equation 3.25 for x, y, and z yields:

x =

√
3(ρ22 − ρ21)

6rb
(3.26)

y =
(2ρ23 − ρ22 − ρ21)

6rb
(3.27)

z = ±

√
ρ21ρ

2
2 + ρ22ρ

2
3 + ρ23ρ

2
1 − ρ41 − ρ42 − ρ43 + 3r2b (ρ

2
1 + ρ22 + ρ23 − 3r2b )

3rb
(3.28)

which is the analytical solution to the DKP.
Despite the existence of two solutions to the DKP for every set of inputs

ρ, one of the solutions corresponds to a configuration above the XY plane
and the other corresponds to the mirrored configuration below the XY plane.
Only one of these configurations would be possible for a physical model of the
mechanism to achieve without a collision occurring between the base and end-
effector. Therefore any solution with a negative z value may simply be ignored
making the solution to the DKP effectively a one-to-one mapping between the
actuator space and Cartesian space.

3.1.3 Analytical Solution to the Inverse Kinematic Problem

The inverse kinematic problem (IKP) is the task of calculating the cable
lengths, ρ, required to achieve a given position of the mechanism’s end-effector,
p. Similar to other parallel mechanisms, the process of solving the IKP for
this mechanism is relatively straightforward. Given the position of the end-
effector platform and assuming zero rotation of the end-effector, the location
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of points Bi are known and the same vector loops used in the DKP can be
used to determine the lengths of each cable pair. Taking the square root of
Equation 3.24 gives

ρi =
√

(p + ai)T(p + ai), i = 1, 2, 3 (3.29)

which is the solution to the IKP.

3.2 Mechanism Jacobians and Singularity Analysis

Continuing with the assumption of maintained cable tension, the velocity-
level kinematics are now addressed. The goal is to describe the relationships
that exist between the joint velocities, i.e., the rates of change of the cable
lengths, and the Cartesian velocity of the end-effector. Knowledge of these
relationships is essential when planning paths that the end-effector will take to
travel between two or more desired poses. The time derivative of Equation 3.24
leads to:

ρiρ̇i = (p + ai)
Tṗ, i = 1, 2, 3 (3.30)

The resulting velocity equations may be expanded and written in matrix form
as: ρ1 0 0

0 ρ2 0
0 0 ρ3

ρ̇1ρ̇2
ρ̇3

 =

(p + a1)
T

(p + a2)
T

(p + a3)
T

ẋẏ
ż

 (3.31)

Jρρ̇ = Jxṗ (3.32)

where Jρ and Jx are the Jacobian matrices of the mechanism. The overall
Jacobian of the mechanism is:

J =
∂p

∂ρ
= J−1x Jρ (3.33)

but it is easier to derive the two separate Jacobians, as is often the case for
parallel mechanisms. These matrices describe the linear relation between the
actuator velocities ρ̇ and the end-effector velocities ṗ. Furthermore, the time
derivative of Equation 3.32 can be taken to determine the relationship between
joint accelerations and the end-effector Cartesian acceleration.ρ̇1 0 0

0 ρ̇2 0
0 0 ρ̇3

ρ̇1ρ̇2
ρ̇3

+

ρ1 0 0
0 ρ2 0
0 0 ρ3

ρ̈1ρ̈2
ρ̈3

 =

ṗT

ṗT

ṗT

ẋẏ
ż

+

(p + a1)
T

(p + a2)
T

(p + a3)
T

ẍÿ
z̈


(3.34)

J̇ρρ̇+ Jρρ̈ = J̇xṗ + Jxp̈ (3.35)
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It is important to remember that these results neglect any angular velocities
or accelerations of the end-effector that may be generated if the cables go slack
or are not perfectly rigid.

The Jacobians also give insight into the mechanism behaviour. From lin-
ear algebra it is known that square matrices are not always invertible, and
thus the system of linear equations they represent does not always possess
a unique solution. A singular matrix is rank deficient and by definition will
always have a determinant of zero. Poses that result in a singular Jacobian
matrix can affect the mechanism’s mobility and have a negative impact on its
performance.

Singularities are typically categorized into three types [60]:
Type I Occur when det Jρ = 0. Therefore the null space of Jρ is not empty

and there exist non-zero joint velocities that cause no Cartesian velocities
of the end-effector. There will also exist some configurations that lead
to reduced mechanism mobility where certain end-effector velocities are
impossible to generate, regardless of the supplied actuator velocities.

Type II Occur when det Jx = 0. In this case the null space of Jx is not
empty and there exist non-zero Cartesian velocities that do not require
any corresponding joint velocities. As such, there exist configurations
of increased mobility, where certain end-effector movements can occur,
even when the actuators are locked.

Type III Occur when a parameter that defines the architecture of the mech-
anism allows both of the Jacobian matrices to simultaneously become
singular. In this type of singularity the mechanism will demonstrate a
combination of the behaviours typical to Type I and II.

Due to the duality of the Jacobians (see the virtual work explanation of the
duality of the structural assembly matrix in Section 2.1.3) there are also poses
in which no actuator forces, i.e., cable tensions, exist that allow the end-
effector to resist or exert certain forces and moments. It becomes essential
to identify these singular poses and prevent the mechanism from entering or
passing through any of them for the mechanism to operate in a determinable
manner.

The location of the tensegrity mechanism’s singularities may be found by
examining the determinants of the Jacobian matrices:

det Jρ = ρ1ρ2ρ3 (3.36)

det Jx = −
√

3

2
rbz (3.37)

From Equation 3.36 it can be seen that the determinant of Jρ will become zero
when one, or more, of the actuator lengths equals zero. The upper limit placed
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on the actuator lengths is usually considered to also be a form of singularity.
However, due to the use of winch actuated cables, practically any length of
cable can be achieved so this condition is ignored. From Equation 3.37 it can
be seen that the determinant of Jx will become zero if the z–component of
the position vector p is zero. Another singularity can occur if rb = 0, causing
Jx to always be singular. This case is trivial because it would correspond to
the end-effector and base triangles being points. In this situation all of the
mechanism’s components would be coincident, which is physically not possible
and undesirable from a practical standpoint so the case may be ignored.

It should be noted that the only poses where ρi = 0 occur when z = 0.
Therefore the XY -plane is the only singularity surface in the simplified kine-
matic model (i.e., the model shown in Figure 2.6a where cables are assumed
taut). If allowed to reach the XY -plane, the spatial mechanism would degen-
erate into a planar mechanism and lose the ability to exert forces in the Z
direction. It would also no longer be able to generate velocities in the Z di-
rection. In practise, mechanical interferences would prevent a physical model
of the mechanism from reaching this plane, eliminating the occurrence of the
singularities.

While not included in the kinematic analysis, the torsion spring linkages
could be considered to impose singularities on the mechanism. Each linkage is
constrained to act in a plane, as shown in Section 2.3.3, and therefore resembles
a two-link planar serial mechanism. Although the joints are all passive, this
“serial mechanism” will still reach singularities if fully extended (li = l0) or
fully compressed (li = 0). When fully extended the torsion spring will no
longer exert a force along its virtual length (i.e., along line AiBi). Moreover,
fully extended spring linkages impose additional kinematic constraints on the
mechanism, reducing the distance from the base that the end-effector can
extend to. Physical limitations of the range of motion in the joints of the
spring linkages would generally prevent these conditions from occurring.

3.3 Mechanical Interference Between Components

The possibility of mechanical interferences between the mechanism’s com-
ponents has already been mentioned. The torsion spring linkages applying
prestress to the mechanism are designed specifically to avoid the constant in-
terference that would be experienced by linear spring elements. However, the
design is not without its own faults. Interference between the cables and the
linkages are possible as they fold outwards and must share the same space.
Some similar mechanisms [61] allow cable interferences to occur by compen-

37



3.3. Mechanical Interference Between Components
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Figure 3.2: Assembly modes of the first torsion spring linkage and the cables
(A3B2 if left-folding, A2B3 if right) that can potentially cause interference.

sating with redundant actuation but this adds complexity to their control.
Instead mechanical interferences will be avoided and the constraints that this
may place on the mechanism’s movement will ideally be limited.

The location of the torsion spring joints must first be determined to gain
a better idea of where the cables and linkages might interfere. The node Ci
will be defined as the centre of each torsion spring. Therefore the proximal
link of the spring linkages will be the line segment CiAi, and the distal link
will be BiCi. Recalling the definitions of the universal joint axes e1i and e2i
defined in Section 2.3.3 allows the vector that locates node Ci to be found as:

ci = ai −
1

2
liui ±

1

2
l0 cos θi

(
ui × e2i
||ui × e2i||

)
(3.38)

where the sign ambiguity of the last term reveals that the mechanism has
multiple assembly modes. Each spring linkage can be assembled to fold in
one of two directions, as shown in Figure 3.2. Due to axial symmetry in
the mechanism, the two assembly modes where all linkages fold in the same
direction are equivalent, albeit reversed. For simplicity all of the linkages
will be considered to fold to the left, i.e., the last term in Equation 3.38 is
considered to always be positive.

38



3.3. Mechanical Interference Between Components

The assembly mode dictates which cables and links are at risk of po-
tentially interfering. From visual inspection it can be seen that each spring
linkages’ distal and proximal links can only come into contact with a single ca-
ble. For example, Figure 3.2 highlights the cable that can potentially interfere
with the links of the first (i = 1) linkage, depending on the assembly mode
(i.e., right or left folding). The other cables are either on the side opposite
from the direction that the linkage folds or share attachment nodes. Those
cables sharing an attachment node will be routed through the joints located
at these nodes (to be discussed in Chapter 6) and won’t otherwise mechan-
ically interfere with the linkages. Therefore, of the six cables present in the
mechanism only three need be considered, and each can only interfere with a
single linkage.

3.3.1 Interference Checking Method

Checking for mechanical interferences in parallel mechanisms has been widely
addressed in literature. This is especially true for cable driven parallel mecha-
nisms due to the large number of cables that must surround their end-effector
and be present within the mechanism’s workspace. Methods of quickly check-
ing for interferences have been developed both for online determination and for
generating sets of interference free configurations. The following approach is
based on the one that Masory and Wang [62] developed for the Stewart-Gough
platform, although it has since been adapted for use with CDPMs [63,64].

The approach considers two skew line segments, arbitrarily defined here
as P1Q1 and P2Q2 and shown in Figure 3.3. The direction of each segment
is represented by a unit vector nk, k = 1, 2, and their starting points, Pk,
are separated by the vector d. It can be shown that the minimum distance
between these two line segments must be along their shared normal, nr, defined
as:

nr =
(n1 × n2)

||(n1 × n2)||
(3.39)

The closest point on each line segment is considered to occur at Rk, which is
located at a distance of ck from point Pk. The minimum distance between the
line segments, i.e., the distance between points R1 and R2, is represented as
r. This allows the formation of the following vector loop equation:

c1n1 + rnr − c2n2 − d = 0 (3.40)

or, alternatively, the vector equation may be rewritten as the following system
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Figure 3.3: Vector notation used for calculating minimum distance between
two arbitrary skew lines P1Q1 and P2Q2.

of equations: [
n1 n2 nr

]  c1
−c2
r

 =
[
d
]

(3.41)

which is solvable, so long as n1 and n2 are not parallel. If the line segments
were parallel there would be no unique minimum distance between the two
lines.

Mechanical interference will occur if the sum of the radii of both the cable
and the linkage in question exceeds the absolute value of the minimum distance
between them. In most practical applications the diameter of the cables may
be considered negligible. The geometry of the linkage will depend on the
desired scale of the mechanism and the need to resist bending under the load
of the torsion springs. For now they will be also be considered to have a
negligible diameter. Additionally, the spring linkages are considered to always
fold to the left, as shown in Figure 2.6b. As such, the only interferences that
need be considered are those between the distal and proximal links of each
spring linkage and the cable that passes between them, i.e., linkage 1 with
cable B2A3, linkage 2 with cable B3A1, and linkage 3 with cable B1A2.

It is important to note that although solving Equation 3.41 yields the
minimum distance between the two lines, it may not necessarily yield the
minimum distance between the line segments. More concisely, point Rk may
not lie between points Pk and Qk on one or both of the lines in question.
To consider only the line segments, the condition ck ∈ [0, lk], where lk is the
length of each segment, must be enforced when solving Equation 3.41. Several
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Figure 3.4: Definition of interference directions and their relation to the sign
of r.

cases can occur (i.e., Rk can lie on both, one, or none of the respective line
segments) and Equation 3.41 may need to be solved multiple times.

However, the mechanism’s architecture and the chosen assembly mode
allow a much simpler approach to be utilized. In the field of computer graphics,
ray tracing is the exercise of determining whether or not digital “rays” of
light intersect with an object in space. Object surfaces are often created
using a tessellation of triangles, and if a ray intersects a triangle, that triangle
is considered to be illuminated. The three sides of each triangle may be
represented by vectors and the cross product method described earlier in this
section may be used to calculate the value of r.

The difference, in this case, is that only the sign of r is of concern. If a
ray passes through the triangle and the vectors describing the edges of the
triangles are arranged tip-to-tail, as shown in Figure 3.4, then the sign of r, as
calculated for each edge vector, will be the same. This can also be interpreted
as the common normal vectors of the ray and the triangle edge all pointing
toward or away from the ray vector. Furthermore, a common convention is
used so that the vectors describing the sides of all triangles are connected in
the same direction. As such, if all r values are positive for a given triangle and
ray, the triangle’s edge vectors pass around the ray in a clockwise direction,
as shown in Figure 3.4.

This simplified approach may be applied to the tensegrity mechanism by
considering the triangles made by nodes Ai, Bi, and Ci. Due to the geometry
of the mechanism, for each cable and linkage that can potentially interfere,
the cable must pass within this triangle. The vectors that represent the cable,
distal, and proximal links are defined such that all r > 0 in an initial “home”
position of p = [0, 0, rb]

T. Subsequent poses can be checked for interferences
by ensuring r > 0 still holds. The only limitation of this approach is that
there could potentially be mechanism poses where this condition is met, but
that are unreachable without passing through poses that cause interferences.
This issue is addressed in the following section by using an iterative search
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3.3. Mechanical Interference Between Components

procedure.

3.3.2 Generating the Set of Interference Free Poses

The approach described in Section 3.3.1 is useful for checking individual poses
of the mechanism but must be extended in order to define the set of all inter-
ference free poses. A possible method of generating this set would be to use an
interval analysis technique. Interval analysis employs a special arithmetic to
handle equations that contain variables with finite ranges of allowable values
(i.e., intervals) instead of single values. Solutions provided by such arithmetic
are also in the form of intervals and they encompass the entire range of all
possible evaluations of an equation for all possible values in the input intervals.
A full explanation of interval arithmetic is not within the scope of this thesis
but is available in literature [65]. Such a method would generate a guaranteed
set of poses that do not allow interferences.

In the case of interference checking, a three-dimensional interval or “box”
representing the Cartesian space that will be investigated is generated. Us-
ing this box, the vectors defining each spring linkage segment and cable are
derived (these too will be intervals) and then checked for interference. For
every pose within the box to be interference free, every value in the result-
ing intervals must satisfy the interference conditions. A bisection algorithm,
previously used in literature to generate workspace representations for cable
driven parallel mechanisms [66–68], would then be used to refine the boxes
checked for interference and yield a closer representation of the workspace
volume.

However, the dependency problem discussed by Gouttefarde and Mer-
let [68] prevents effective use of interval analysis for this particular mechanism.
The dependency problem is most easily explained by considering an interval
as a variable with an amount of uncertainty, e.g., x± ε. Generally, when more
operations are performed on such a variable, especially operations such as ex-
ponents, the error in the result will become larger. This corresponds to an
interval with expanded range because it must encompass all possible solutions.
There are a large number of cross products and vector normalization opera-
tions that are performed to locate the nodes Ci and to check for interference
between the cables and linkage segments. As such it becomes difficult to use
the interval bisection method mentioned above because even small boxes will
not fully satisfy the conditions of being interference free.

Although not ideal, the numeric approach detailed in Algorithm 3.1 is used
to generate the boundaries of the mechanism’s interference-free workspace.
Cylindrical coordinates (z, θ, and d) are used to generate candidate poses that
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3.3. Mechanical Interference Between Components

are checked for interferences. For each pose, the inverse kinematics are solved
to find vectors describing the linkage segments and cables. The minimum
distances of separation between applicable links and cables are checked to
verify that no interferences have occurred. Line search methods are then used
to continue evaluating the candidate poses in the current direction until a pose
is found that causes interferences.

Algorithm 3.1 yields a discrete set of points along the boundary surface
of the mechanism’s interference free workspace. This method is appropriate
for gaining a rough estimation of the workspace, but is dependent on the
resolution used to discretize the search space. However, regardless of the
degree of resolution refinement, there is no guarantee that any points other
than those actually checked are within the workspace. Unlike the interval
analysis techniques discussed earlier, this method must be treated as a best-
case estimate, since points outside of the workspace may be inadvertently
included.

for z ∈ [0, zmax] do
for θ ∈ [0, 2π) do

d← 0
while d ≤ dmax do

x← d sin θ
y ← d cos θ
if IsPoseInterferenceFree(x, y, z) 6= True then

break
else

d← d+ dincrement

end if
StoreBoundaryPose(x, y, z)

end while
end for

end for

Algorithm 3.1: Numerical search algorithm for detecting the boundaries of
the interference free workspace using cylindrical coordinates
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3.4. Kinematic Workspace Boundaries

3.4 Kinematic Workspace Boundaries

A mechanism’s workspace refers to the set of poses it can achieve. This set
is typically dependent on the mechanism geometry and the constraints that
limit the motion of its joints and actuators. Only the kinematic constraints
will be considered in this section. Other boundaries to the workspace that
result from constraints such as maintaining cable tension will be discussed
later in Chapter 4. The sources of the kinematic workspace boundaries may
be summarized as follows:

Cables
The cables could theoretically limit the workspace since they must have
a maximum achievable length, ρmax. However, the actuated winches can
wind large quantities of cable onto reels. In practical applications, the
winch systems can thus be designed to yield a maximum cable length
that will not restrict the workspace because the later will be more limited
by other components.

Spring linkages
The virtual length of the spring linkage will also have minimum and
maximum (lmin and lmax) values to which it can compress or extend.
Ideally, the virtual spring length would achieve the range of [0, l0] but this
is not realistic due to the mechanical limitations that will be present in
its universal, revolute and spherical joints. Recalling that bi = −ai if the
mechanism end-effector maintains a constant orientation, Equation 3.7
can be rewritten as:

l2i = (p− 2ai)
T (p− 2ai) (3.42)

which, similar to Equation 3.24, also describes a set of spherical bound-
aries. The workspace, based only on linkage constraints, would be the
intersection of these three spheres, each having a radius of lmax and cen-
tred at 2ai. An example of this volume for a mechanism with lmax = 4 is
shown in Figure 3.5, normalized to a base radius of rb = 1. In the likely
event that lmin 6= 0 there will be another three spheres also centred at
2ai with radii of lmin. For example, the loss of workspace volume due
to a lower limit of lmin = 1

2rb is shown in Figure 3.5. The workspace
volume will then be reduced by subtracting the union of the volumes
contained within the three smaller spheres from the intersection of the
larger three.

Singularities
As shown in Section 3.2 the entire XY plane is a singularity surface.
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Figure 3.5: The maximum achievable workspace volume of the mechanism
with l0 ∈ [12 , 4]rb. The results are normalized to the mechanism base radius
rb = 1.

This constrains the continuous workspace volume of the mechanism to
be either fully above or below the horizontal plane, since the mechanism
should not pass through this boundary during operation. The volume
above and below will be mirror opposites of each other so only one,
chosen to be the positive half, needs to be considered.

Mechanical Interferences
Mechanical interferences have already been shown to occur between
cables and the spring linkages and may further limit the kinematic
workspace. Unlike the previous boundaries, there are no simple geo-
metric descriptions available to describe where these interferences occur.
Instead, these boundaries need to be determined numerically using the
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Figure 3.6: Three dimensional representation of the interference free
workspace (shown in black) and the maximum reachable workspace (shown
in red). The results are normalized to the mechanism radius, rb = 1, for the
case where l0 = 4rb.

approach described in Section 3.3. The entire interference free workspace
is shown as a three dimensional volume in Figure 3.6 for a normalized
example mechanism defined by l0 = 4rb. Figure 3.7 also depicts the
interference free workspace for the same example mechanism, this time
using horizontal slices of the volume at various heights. For these pa-
rameters, mechanical interferences are shown to occur entirely inside the
volume previously defined by the spring linkage constraints and therefore
create a new boundary surface.

Interferences generally occur when the spring linkages approach full
extension. Kinematically, the mechanism may be defined by only two
parameters: its base radius and the spring rest length. Since increasing
the base radius simply scales the entire mechanism, the interference
surfaces will depend only on the ratio between the free length of the
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Figure 3.8: Volume fraction of the maximum reachable workspace that is
interference free for various spring linkage rest lengths.

spring linkages and the base radius, i.e., l0/rb. Increasing this ratio
should reduce the possibility of interferences because the linkages will
remain folded outwards, away from the centre of the mechanism. To
confirm this, the volume of the interference free workspace was estimated
using a numerical approach for various normalized spring lengths. For
comparison, the maximum workspace volume was calculated for each
case using the analytical expression for the volume of a three sphere
intersection derived by Gibson and Scheraga [69]. This assumes that
each linkage has a full range of li ∈ [0, lmax].

The fraction of the maximum workspace volume also contained within
the interference free workspace is shown in Figure 3.8. As expected, the
volume ratio gradually approaches unity. However, increasing the spring
lengths will become detrimental to the goal of maximizing workspace
volume. Eventually the mass of such linkages will become impractical
and shorter linkages should be chosen that reach a compromise between
mass and workspace volume.
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4 Static Analysis

In Chapter 3, the tensegrity mechanism was demonstrated to experience only
translational motion of its end-effector. This observation was made under the
assumption that cable tension is maintained and all components are perfectly
rigid. To verify that the cables remain taut, and that the mechanism will be
able to support both its own weight and other external forces, an investigation
into the internal forces of the mechanism must be undertaken. This chapter
explores the mechanism’s internal forces under static or pseudo static con-
ditions where inertial effects are neglected. Wrench based analysis tools are
introduced to calculate the cable tensions and a method of quantifying the set
of external forces that can be generated by the mechanism is presented. The
stiffness of the loaded end-effector is also investigated using techniques that
are adapted from the analysis of parallel and cable-driven manipulators.

4.1 Wrench and Matrix Analysis Techniques

The primary goal of the static analysis is to calculate the tension in each ac-
tuated cable in an equilibrium pose. While the forces within the mechanism’s
joints and linkages may be of interest from a mechanical design perspective,
this chapter is only concerned with the overall forces that the mechanism’s
components exert on the end-effector. Both the cables and spring linkages
are attached to the end-effector using spherical joints and therefore do not
directly transmit any moments. However, since the attachment points of the
components (bi) are offset from the centre of mass, there will still be resul-
tant moments generated. Once the direction and magnitude of the compres-
sive forces exerted by the spring linkages are known, along with any external
or gravitational loads, a force and moment balance about the mechanism’s
end-effector may be completed to calculate cable tensions.

The simplest representation of the spring linkages is to treat them as “vir-
tual” compression springs, as mentioned in Section 2.3.3. This approach as-
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4.1. Wrench and Matrix Analysis Techniques

sumes that each linkage exerts a compressive force fi along the line passing
through nodes Ai and Bi. The magnitude of the compressive force will always
be negative (due to the force sign convention used in this thesis) and will have
a non-linear relationship with the virtual length of each linkage.

Assuming that the torsion spring behaves linearly and is at rest when it is
fully extended (i.e., θi = θ0 = π/2) it will generate a torque equal to:

τi = κ(2θi − π) (4.1)

where κ is the torsion spring constant and all three springs are considered to
be identical. Taking a moment balance about the axis of the torsion spring’s
revolute joint, as shown in Figure 2.8, the magnitude of the force exerted by
the spring is found to be:

fi =
2τi

l0 cos θi
(4.2)

Substituting Equation 4.1 and θi = arcsin(li/l0) into Equation 4.2 yields the
following expanded equation:

fi =
2κ
[
2 arcsin

(
li
l0

)
− π

]
l0

√
1−

(
li
l0

)2 (4.3)

In this equation it is recalled that the virtual length of each spring li is simply
the distance between points Ai and Bi. Equation 4.3 leads to the spring force
vector being defined as f i = fiui.

The virtual spring approach ignores the mass of the links in each spring
linkage. In an ideal case, the torsion springs would be significantly stiff so
that the forces that act on each linkage due to gravity could be considered
negligible. However, mechanical and material constraints on the design of
torsion springs, along with the counterproductive increase in mass that is
inherent of larger springs, will limit the possible stiffness of the torsion spring.
The mass of the links must therefore be considered and will alter the direction
and magnitude of the spring force f i based on the mechanism pose.

An analysis of each linkage in a given pose is possible due to the design
of their universal joints. The full analysis is omitted here for brevity (see
Appendix A) but the mass-dependent force that is exerted by each spring
linkage is found to be:

f i =

 (udi × e2i)
T)

[(udi + upi)× e1i]
T

[(udi + upi)× e2i]
T

−1  2
l0
τi − (12mdg × udi)

Te2i
−(g × e1i)

T[(12mp +ms +md)upi + 1
2mdudi]

−(g × e2i)
T[(12mp +ms +md)upi + 1

2mdudi]


(4.4)
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Figure 4.1: Internal and external forces that act on the ith torsion spring
linkage.

where g is the gravity vector. The masses of the spring joint, and the proximal
and distal links are ms, mp and md, respectively. The unit vectors e1i and e2i
represent the axes of the universal joint at Ai and, as shown in Figure 4.1, upi

and udi are unit vectors aligned with the proximal and distal links.
The consideration of gravity introduces the choice of orienting the mech-

anism such that its end-effector is above or below its mechanical base. In
applications like pick-and-place, a robotic manipulator is typically chosen to
be oriented above its workspace with its end-effector below, allowing it to
freely manipulate objects on conveyor belts or workbenches. For the tenseg-
rity mechanism specifically, this orientation will have the added benefit that
the mechanism’s weight will tend to pull on cables, thus potentially increasing
prestress. Equation 4.4 clearly shows that the spring force is gravity depen-
dent, and the weight of the linkages may add to the force that acts on the
end-effector. This force is also pose dependent, so it is likely that the shape
of the static workspace will be determined by the mass of the linkages. The
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4.1. Wrench and Matrix Analysis Techniques

effect of gravity and component mass on the volume of the static workspace
will be discussed later in this chapter.

The forces applied to the end-effector by the cables are easier to represent.
The mass of the cables will be negligible at the scale that the mechanism is
likely to be built and cable sagging may be ignored. Therefore the tensile
force tj within each cable will be applied in the direction of the unit vector
vj (as defined in Figure 3.1) that represents its longitudinal axis. The force
balance on the end-effector centre of mass is:

6∑
j=1

tjvj +
3∑
i=1

f i +meg + f ext = 0 (4.5)

where me is the mass of the end-effector and f ext is the sum of all externally
applied forces that act on the end-effector’s centre of mass. The total moment
applied about the centre of mass is:

6∑
j=1

(b∗ × tjvj) +
3∑
i=1

(bi × f i) + next = 0 (4.6)

where b∗ is the vector representing the appropriate attachment point of the
jth cable (refer to Table 2.2 for the connections), bi is the attachment point
of the ith spring, and next is any externally applied moment.

For convenience, a wrench-based notation will be adopted. A wrench,
w ∈ R6, is a vector that combines both a force and a moment, i.e., w =
[fT,nT]T, and simplifies the representation of the balance equations. Addi-
tionally, there exists a linear relationship between the individual cable tensions
and the overall wrench they apply to the end-effector. As such, the sum of
their contributions may be re-written using the 6×6 wrench matrix W defined
as:

W =

[
v1 v2 v3 v4 v5 v6

b3 × v1 b3 × v2 b2 × v3 b2 × v4 b1 × v5 b1 × v6

]
(4.7)

where in translation bi = −ai. When combined with the total wrench exerted
by all three springs, ws, the following wrench balance equation can be written:

Wt + ws + wext = 0 (4.8)

where wext represents all externally applied wrenches.
This concise notation allows for the cable tensions to be computed so long

as the wrench matrix W is invertible, i.e., as long as the determinant of W
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is non-zero. For an equilibrium pose of the mechanism, the wrench matrix
can be expressed in terms of the end-effector Cartesian coordinates and the
compatible cable lengths. The determinant of the wrench matrix can then be
simplified as:

det(W) =
81
√

3

4

(
z3r6b
ρ21ρ

2
2ρ

2
3

)
(4.9)

which shows that the matrix becomes singular when z = 0 or becomes un-
defined if ρi = 0. Both of these conditions can only occur if the end-effector
becomes coincident with the xy-plane. This singularity result is analogous to
those discussed in Section 3.2. The wrench matrix and the mechanism’s Jaco-
bian share some of the same singularities, which is consistent with the theory
of virtual work. As previously mentioned, in practice the xy-plane would be
unreachable due to the mechanical constraints of the mechanism. Therefore
the cable tensions can be calculated in any practically reachable pose.

The boundaries to the static workspace are then defined by the following
set of inequalities:

t = −W−1 (ws + wext) > 0 (4.10)

which ensures that tension within all cables remains positive. Verifying that
Equation 4.10 is satisfied is an effective method of checking the state of the
mechanism in a single pose but requires exact knowledge of externally applied
forces and moments.

4.2 Force Capabilities

A method of quantifying the load capabilities of the mechanism, rather than
just checking individual poses, would be useful in the evaluation and opti-
mization of the mechanism design. Additionally, in practice there will exist
an upper limit to the cable tensions that can be generated by the mechanism’s
winch actuators. Generating the set of allowable external wrenches that can
be resisted while tension is constrained to a feasible range of positive values
is the goal of this section.

The problem of defining the set of poses in which the robot can support
a set of applied wrenches has been addressed frequently in the study of ca-
ble driven parallel mechanisms. One approach, the wrench closure workspace
(WCW) [70], is defined as the set of poses that can support any externally
applied wrench while maintaining positive tension, i.e., t ∈ [0,∞]. Realisti-
cally, there will limits to the range of tensions, as well as the applied wrenches.
Alternatively the wrench feasible workspace (WFW) [68, 71] defines a set of
poses that support a given required set of wrenches based on a finite range
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of cable tensions. However, both of these methods are better suited for fully-
constrained CDPMs with antagonistic cable actuation supplying prestress,
rather than gravity or springs.

The tensegrity mechanism is similar to suspended cable mechanisms; it
uses prestress to keep cables taut instead of antagonistic cable actuation.
Without antagonistic cables the mechanism’s WCW is an empty set. Ad-
ditionally, the set of required wrenches is unknown at this time in the mecha-
nism’s development but are required for calculating the WFW. Instead, it is
more informative to try to characterize the wrenches that the mechanism can
generate over its workspace. Fortunately, a method of geometrically develop-
ing the Available Wrench Set (AWS) introduced by Bouchard et al. [66] does
just that.

4.2.1 Available Wrench Set

The available wrench set is the set of all external wrenches that can be gen-
erated by the end-effector of a mechanism. To begin, wext = wg − we is
substituted into Equation 4.8 so that it can be rewritten as:

we = Wt + ws + wg (4.11)

where we is now treated as the total wrench that can be exerted by the end-
effector, rather than resisted by it. The wg term is included to represent the
weight of the end-effector.

Vectors of minimum tension, t, and maximum tension, t, are defined as:

t = [t1, t2, t3, t4, t5, t6]
T , t =

[
t1, t2, t3, t4, t5, t6

]T
(4.12)

based on a specified range of allowable cable tensions. As such, any valid cable
tension vector must be in that range, i.e., t ∈ [t, t]. This vector inequality is
interpreted as meaning each individual element of vector t satisfies tj ≤ tj ≤
tj . Using this tension constraint and Equation 4.11, the available wrench set
A is defined as:

A =
{

we ∈ R6
∣∣ we = Wt + ws + wg, t ∈ [ t, t ]

}
(4.13)

which is set notation for “all six dimensional wrenches we that satisfy Equa-
tion 4.11 and have tensions between the minimum and maximum values”.

Borrowing from the approach used by Bouchard et al. [66], a new param-
eter, α, is introduced:

αj =
tj − tj

∆tj
(4.14)
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where ∆tj = tj − tj . Cable tension tj is constrained to be between tj and tj
so it may be observed that the parameter αj must remain between 0 and 1.
This allows the set from Equation 4.13 to be rewritten as:

A =
{

we ∈ R6
∣∣∣we =

∑
(wjαj∆tj) + Wt + ws + wg, αj ∈ [0, 1]

}
(4.15)

where wj is the jth column of matrix W. Bouchard et al. made the observa-
tion that in this form A shares the definition of a zonotope.

A zonotope is a set of points in space formed by the combinatorial addition
of a set of vectors in that space, known as a Minkowski sum. To better
understand this concept, consider the following set of two dimensional vectors:

Z =

{
α1

[
0
1

]
+ α2

[
0.5
0.5

]
+ α3

[
0.5
0

]
, αk ∈ [0, 1]

}
, k = 1, 2, 3

which has some similarities to the set in Equation 4.15. The Minkowski sum
of the generator vectors can be seen graphically in Figure 4.2a. Every point
contained within set Z may be written as a sum of the generator vectors, each
multiplied by a different coefficient αk. Points that are full combinations of
the generator vectors are labelled with their indices. For example, the point
(1,1,1) indicates that the coefficients are α1, α2, α3 = 1, 1, 1 and the point is
the full sum of all three vectors. A convex hull of all of these points, shown
by the bold lines in Figure 4.2a, forms a polygon that fully encloses the set.
This is the definition of a two dimensional zonotope. In general, a zonotope
can be formed from generator vectors in any dimension, so the concept can
be extended, forming a convex polyhedron in R3 and a convex polytope in Rn
for n > 3.

In the case of the available wrench set, the generator vectors are the
columns of the wrench matrix, scaled by the respective ∆tj . This makes
every point within the formed zonotope a valid wrench that can be exerted
by the mechanism. The other terms in Equation 4.15, i.e., Wt, ws, and wg,
translate the zonotope but do not affect its shape. In the case of the tenseg-
rity mechanism, where the wrenches being considered are in R6, the zonotope
becomes difficult to visualize but is still generated in the same manner.

As a simpler, more easily visualized example, consider the mechanism in
Figure 4.3a. It consists of a point mass “end-effector”, actuated by two cables
and a linear spring to supply prestress. For a given pose, the generator vectors
are unit vectors aligned with the cables, scaled by the range of allowable
tensions. The zonotope is found in the same way as in Figure 4.2a, with the
exception that the spring force and the minimum cable tensions cause the
whole zonotope to translate, seen in Figure 4.3b. In this simplified case, the

55



4.2. Force Capabilities

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

y

(1,0,0)

(0,0,0)

(0,1,0)

(0,0,1)

(1,0,1)

(0,1,1)

(1,1,1)(1,1,0)

(a)

ni

−nidai

dbi

(b)

Figure 4.2: Example of a two dimensional zonotope formed by Minkowski
sum.

shaded area in the figure represents all of the forces the mechanism can exert.
For instance, it can be seen that the mechanism can apply a relatively large
upwards force. This makes sense because this is the general direction the
cables are pulling. However, a downwards force of similar magnitude would
likely be outside of the shaded region. Again, this makes sense since the
spring only applies a finite prestress and cable tension can only be lowered to
a certain point before going slack.

Using a convex hull to define the zonotope is a straightforward approach
but has some disadvantages. Methods of deriving a convex hull, such as the
well-known Quick Hull algorithm [72], are iterative and can take an unpre-
dictable amount of time to run, especially for higher dimensions. In response,
Bouchard et al. [66] formulated an alternative method of representation termed
the hyperplane shifting method.

4.2.2 Hyperplane Shifting Method

A hyperplane is the higher dimensional equivalent of a plane and divides a
space in half, with all points lying above or below it. If all points in a set are
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Figure 4.3: Example of a 2D cable mechanism (a) and its available wrench
set (b).

located on one side of a hyperplane, that hyperplane is said to support the
set [66]. Furthermore, a convex polytope may be represented using a number
of supporting hyperplanes that fully enclose all points in the set [73]. The ith
supporting hyperplane is defined using a normal vector ni and a scalar value
di. The normal vector is directed ”above” the hyperplane, i.e., its direction is
toward the outside of the zonotope that it supports. The scalar di represents
how far the hyperplane is shifted, i.e., translated, from the origin and is cal-
culated by projecting a point, known to lie anywhere on the hyperplane, onto
that hyperplane’s normal vector.

For a point, or in this case the available wrench we, to be supported by a
hyperplane the following inequality must be satisfied:

nT
i we ≤ di (4.16)

where the contributions from the springs ws, the end-effector weight wg and
the minimum tension Wt terms in Equation 4.15 cause a shift of the zonotope
and are accounted for in the values of di. Gouttefarde and Krut [74] provided a
mathematical proof of this approach as well an improved method of calculating
the normal vectors requiring fewer computations. Regardless of the method
used to calculate the normal vectors, the available wrench set may be written
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as a set of linear inequalities:

Nwe ≤ d (4.17)

where N is a matrix such that its ith row is equal to nT
i and d is a vector

whose ith element is di. The inequalities describe linear bounds on a space in
a manner similar to constrained optimization in linear programming. By pro-
jecting any external wrench onto the hyperplane norms, it can be determined
if all constraints (cable tensions) are satisfied and whether the wrench can be
generated by the mechanism.

The hyperplane shifting method provides an efficient way of checking if the
mechanism can support an external wrench while maintaining cable tensions.
Quantifying the size of the available wrench set in a meaningful way is not as
easy, since it is highly likely that the set is not symmetric about the origin or
about its own centre. Calculating the volume of the available wrench set also
introduces obscure units and yields little practical information. Alternatively,
there are ways of utilizing the properties of zonotopes to quantify the load
capabilities of the mechanism over its workspace, as well as deriving the static
boundaries of this workspace.

4.2.3 Characterizing the Available Wrench Set

Several authors [4,75] have quantified the size of a zonotope by calculating the
maximum radius of a hypersphere (i.e., a sphere in an arbitrary dimension)
centred at the origin that is contained within the zonotope. Physically this
radius will represent the maximum magnitude of a wrench that can be applied
to the end-effector in an arbitrary direction. The largest hypersphere will be
tangent to the hyperplane nearest the origin because zonotopes are convex.
The surface of the hypersphere where it becomes tangent to the hyperplane
is orthogonal to the hyperplane normal and the radius of the hypersphere is
therefore equal to the corresponding di. The nearest plane will have the small-
est corresponding di and therefore the maximum arbitrary wrench magnitude
will simply be:

||we|| ≤ min
i
di (4.18)

While useful, this characterization suffers from inconsistent units. In the
case of the tensegrity mechanism, the wrench vector will include both force
and moment units, which causes the magnitude of the wrench to be physically
meaningless. A matrix partitioning technique is introduced here to separate
the force components of the wrench vector from the moments and derive a
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meaningful index for evaluating the load capabilities of the mechanism. The
N matrix is partitioned into four submatrices:

N =

[
Naa Nab

Nba Nbb

]
(4.19)

and the vector d is split into two parts:

d =

[
da
db

]
(4.20)

The maximum arbitrary wrench is partitioned into its force f e and moment
ne components:

we =

[
f e
ne

]
(4.21)

so that the inequality in Equation 4.17 can be rewritten as:

Naaf e + Nabne ≤ da (4.22)

Nbaf e + Nbbne ≤ db (4.23)

There will be an even number of supporting hyperplanes and each will have
a parallel pair due to the nature of zonotopes [73]. These parallel pairs will
share a normal vector, although with opposite signs, and represent opposite
faces of the zonotope. The normal vectors can be sorted when constructing
the matrix N such that Naa = −Nba and Nab = −Nbb. It is important to
note that the distance each hyperplane pair is shifted will not necessarily be
equal, i.e., da 6= db.

An assumption must now be made about the nature of the loads being
applied to the mechanism. The primary application proposed for the tenseg-
rity mechanism is pick-and-place operations. Assuming that the objects being
manipulated by the mechanism are located in close proximity to the centre of
mass of the end-effector, they will not generate substantial moments. When
combined with the knowledge that the mechanism will be operating in trans-
lational motion only, the net external wrench applied will be considered neg-
ligible, i.e., ne ≈ 0. Equation 4.22 and Equation 4.23 can then be combined
as follows: [

Naa

−Naa

]
f e ≤

[
da
db

]
(4.24)

The rows of Naa must be re-normalized so that they are of unit length. The
values of da and db must also be divided by the magnitude of the rows of
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Table 4.1: Physical parameters of the constructed prototype mechanism.

Parameter

Name Symbol Value Unit

Base triangle radius rb 0.2034 m

Spring leg rest length l0 0.8636 m

Torsion spring stiffness κ 4.74 N ·m · rad−1

Cable stiffness kcable 24.742 kN ·m−1

Torsion spring joint mass ms 0.186 kg

Lower leg segment mass mp 0.399 kg

Upper leg segment mass md 0.168 kg

End-effector mass me 0.823 kg

Naa to still satisfy the linear inequality. The force-only zonotope is therefore
described as:

N′f e ≤ d′ (4.25)

where N′ and d′ are the adjusted versions of the matrix and vectors found
in Equation 4.24. All elements in the reduced zonotope have force units.
The maximum magnitude of an arbitrary force that can be supported by the
mechanism while satisfying tension requirements corresponds to the value of
smallest positive element in d′.

Reducing the dimension of the zonotope to R3 has the additional benefit
that the available wrench set can now be visualized. Figure 4.4 shows the
three primary views and an isometric view of the available wrench set at
pose p = [0, 0, rb]

T. This force-only zonotope was generated by limiting cable
tension to t ∈ [1, 20] N and using the mechanism parameters listed in Table 4.1.
These parameters are found from the constructed prototype that is described
in Chapter 6. For this case gravity was ignored.

Figure 4.4 also shows the sphere that represents the maximum force that
can be applied in any arbitrary direction which, as earlier described, lies tan-
gent to the side of the zonotope closest to the origin. In this particular pose
the sphere’s radius is approximately 15.2 N. It can be clearly seen that while
this is the maximum force that can be exerted in any arbitrary direction, the
mechanism is still capable of exerting much larger forces in certain directions,
e.g., vertically along the z axis. The major axis of the available wrench set,
defined as the direction of the maximum available wrench, depends highly on
the pose of the mechanism. For example, when centred above the origin, the
mechanism’s symmetry leads to a symmetric polygon with the major axis be-
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Figure 4.4: Multiple viewing angles of the force-only zonotope representing
the available wrench set at p = [0, 0, rb]

T while neglecting gravity.
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ing vertical but in other poses, as shown in Figure 4.5, the AWS starts tilting
in other directions. The shape of the AWS remains similar but the major
axis tends to be roughly parallel to a line drawn between the centre of the
mechanism’s base and end-effector. This makes sense since this is the general
direction in which the cables and springs act. While knowledge of the major
axis may be useful when designing for specific applications, the maximum ar-
bitrary wrench magnitude, rf , is of more interest in this general examination
of the mechanism.

4.2.4 Static Workspace Visualization

To investigate the force capabilities of the mechanism over its workspace, a
grid of kinematically feasible poses was generated. For each pose the available
wrench set was developed, based again on the prototype parameters and this
time limiting tension to t ∈ [1, 20] N. Then the AWS was reduced to three
dimensions so that the maximum arbitrary force, rf , could be calculated.
This procedure was repeated for three cases. The first case considered the
mechanism to be “standing”, i.e., the end-effector is always located above the
base, causing its weight to tend to reduce prestress and lower tension. The
next case considered the mechanism to be “hanging”, i.e., the end-effector
is always located below the base and its weight tends to increase prestress
and tension. In the third case gravity was ignored, assuming that the spring
stiffness of the legs provide enough prestress that their weights are negligible.
The results from all three cases are shown in Figures 4.6-4.8.

The figures to the left display the contours of rf at several heights over
the workspace of the mechanism. This reveals the relative strength of the
mechanism in any given pose. In general, it can be observed that closer to the
centre of the static workspace the mechanism exhibits larger force capabilities
than toward the outer boundaries. This makes sense because in these central
poses the spring legs will be more compressed and increase the prestress of
the mechanism. The spring legs will also be positioned in a more symmetric
manner and therefore apply forces of similar magnitudes. For the mechanism
to move away from centre, at least one of the spring legs must start compress-
ing or extending more than the others. As such, the spring forces will tend to
decrease the further a pose is from the Z-axis. The magnitude of the spring
forces will also become increasingly dissimilar. While this allows the mecha-
nism to exert larger forces in certain directions, the overall set of wrenches or
forces available to it in any arbitrary direction will decrease.

The figures also include a visualization of the volume defined by rf = 0.
Each volume defines one possibility of a static workspace with, in this case, the
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Figure 4.5: Characteristic force-only zonotopes and their corresponding
mechanism poses. Based on parameters in Table 4.1. All forces are in New-
tons.
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(a) Contour slices of rf

(b) Surface formed by rf = 0

Figure 4.6: Force capabilities over the static workspace when the mechanism
is standing (weight tends to decrease cable tension).

64



4.2. Force Capabilities

(a) Contour slices of rf

(b) Surface formed by rf = 0

Figure 4.7: Force capabilities over the static workspace when the mechanism
is hanging (gravity tends to increase tension).
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(a) Contour slices of rf

(b) Surface formed by rf = 0

Figure 4.8: Force capabilities over the static workspace when gravity is
ignored.
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requirement that the mechanism need only support itself and no load. This is
where the effect of gravity on the shape and size of the static workspace may
be seen most clearly. Figure 4.6 shows that when the mechanism is “standing”
the overall size of the workspace is reduced substantially. This is due to the
weight of the spring legs and end-effector, which are not negligible for the
designed prototype, and which tend to decrease cable tension.

The weight of the spring legs also introduces an interesting distortion to
the contours of rf . When looking at the top views of Figures 4.6b and 4.7b a
clockwise twist of the workspace boundary can be observed. This is due the
offset mass of the spring legs and their assembly mode, i.e., the direction that
they fold. It is therefore not present in the case that does not consider gravity.

When the mechanism is instead considered to be hanging, or when gravity
is neglected, the static workspace is much larger in size. As predicted, the
weight of the spring legs act to increase prestress if the mechanism’s base is
located above its workspace. The volume also begins to show some of the
features of the theoretical boundaries of the kinematic workspace boundaries
in Chapter 3, i.e., the pyramid-like shape and the voids that appear centred
around the mechanism’s base nodes.

The results can be validated by using Equation 4.10 to independently
derive the static workspace boundaries. By assuming no external forces or
moments the set of poses that satisfy this equation while keeping cable ten-
sion within the allowable limits is analogous to the boundary formed by the
zonotope method when rf approaches zero. For example, Figure 4.9 shows
the computed workspace boundary for the case where gravity is ignored based
on the wrench equation instead of AWS. The cable tensions were calculated
for a number of poses and tension limits were enforced by rejecting all poses
where the vector inequality t ≤ t ≤ t was not satisfied. The resulting volume
appears very similar to Figure 4.8b, ignoring the difference in resolution of
the grids used.

The tension data generated allows us to investigate the effect that the
upper and lower tension limits have on the workpace volume. Figure 4.10
shows the workspace volume for different tension ranges. From these plots it
can be seen that increasing the upper tension limit tends to expand the static
boundary and push it toward the kinematic boundaries. Increasing the lower
tension limit tends to shrink the bottom portion of the workspace boundary.
For example, setting t ∈ [10, 15] N causes the workspace to detach from the
base plane and become a rounded shape. This is not unlike the plot of the
workspace when prestress is decreased by the weight of the spring legs.

In summary, the static workspace has been shown to exist and therefore
contains the subset of poses for which the translational motion assumption is
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Figure 4.9: Views of the static workspace boundary (t ∈ [1, 20], we = 0, no
gravity) derived using the wrench equation based method.

valid. Calculating cable tensions directly or generating the available wrench
set both offer insight into the force capabilities of the mechanism throughout
its workspace. These methods also help us understand the impact of several
design factors, e.g., tension limits, mechanism weight, and the direction of
gravity.

4.3 Mechanism Stiffness

Stiffness is the relationship between forces applied at the end-effector and any
resulting displacements of the mechanism away from the commanded pose. In
typical tasks, such as attempting to closely follow trajectories and manipulate
objects, the positional accuracy is very important and thus a high stiffness is
desired. Other applications may require the inverse to be true. Compliance
(the inverse of stiffness) could be desired so that if a mechanism comes in
contact with an object it will deflect rather than apply damaging forces, or so
compensation methods may be applied to reduce positional inaccuracies. Re-
gardless, stiffness is an important tool for the designer to use when optimizing
mechanism architecture, choosing materials or selecting actuators.

In the case of tensegrity or cable-driven mechanisms the stiffness becomes
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Figure 4.10: Views of the static workspace boundary (we = 0, no gravity)
for various allowable ranges of cable tension.

more significant because their elements, i.e., cables, are typically much more
elastic than those of rigid link manipulators. Furthermore, in the case of the
tensegrity mechanism being investigated, the rotational stiffness is of interest
since it will determine how well the assumption of translational motion holds.
This section provides a method of calculating the stiffness of the mechanism
and mapping it over the workspace.

4.3.1 Derivation of the Stiffness Matrix

Applied wrenches (i.e., forces and moments) are related linearly to deflections
(i.e., translational and rotational) by the stiffness matrix, K, of the mecha-
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nism. Numerous methods of deriving this matrix exist. In this thesis a method
by Huang et al. [76] will be used.

To start, if energy is to be conserved (ignoring frictional losses) then the
work done by an external wrench w to cause an infinitesimal displacement dx
of the end-effector must be equal to the work done by the actuators forces t∗

to change the actuator lengths dq. Therefore:

wTdx = t∗Tdq (4.26)

where the spring legs will be considered actuators, such that t∗ includes both
the cable tensions and the compressive forces:

t∗ = [t1, t2, . . . , f1, f2, f3]
T (4.27)

and dq will include small changes in the cable lengths and the virtual spring
lengths:

dq = [dρ23, dρ13, dρ12, dρ32, dρ31, dρ21, dl1, dl2, dl3]
T (4.28)

where dρij is the change in length in the cable between nodes i and j, and dli
is the change in the virtual length of the ith spring leg.

From the kinematic definition of the mechanism the relationship between
the end-effector displacement and the change in cable and spring lengths is:

dx =
∂x

∂q
dq = W−T

K dq (4.29)

which, when substituted into Equation 4.26, gives:

wTW−T
K dq = t∗Tdq

wTW−T
K = t∗T

W−1
K w = t∗

w = WKt∗ (4.30)

It is important to note that the wrench matrix WK differs from the wrench
matrix in the equation w = Wt because it includes columns that account for
the forces of the spring legs:

WK =

[
W

u1 u2 u3

b1 × u1 b2 × u2 b3 × u3

]
(4.31)

The end goal of this exercise is to get the overall end-effector stiffness, Kp,
which is defined as:

Kp =
dw

dx
(4.32)
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Taking the differential form of Equation 4.30 as follows:

dw = dWKt∗ + WKdt
∗ (4.33)

and substituting in the definition of the overall stiffness matrix yields the
following expression:

Kpdx = dWKt∗ + WKdt
∗ (4.34)

This result shows that the overall stiffness matrix is the sum of two other
matrices.

The first term, dWKt∗, can be interpreted as containing the geometric
stiffness, i.e., the apparent stiffness caused by small changes in the mecha-
nism’s pose due to the internal forces in its components. Expanding it as a
partial differential gives:

dWKt∗ =
∑
i

∂WK

∂xi
t∗dxi (4.35)

from which we define the geometric stiffness matrix, Kg, as:

Kg =

[
∂WK

∂x1
t∗,

∂WK

∂x2
t∗, . . .

]
(4.36)

so that the term can be rewritten as:

dWKt∗ = Kgdx (4.37)

The second term requires us to define the joint stiffness, Kq, as:

Kq =
dt∗

dq
= diag(k1, k2, . . . , ks1, ks2, ks3) (4.38)

where ki is the stiffness of the ith cable:

ki =
EA

li
(4.39)

with E being the elastic modulus of the cable material and A being it’s cross-
sectional area. The effective stiffness of the virtual springs, ks,i, is found by
differentiating Equation 4.3 as follows:

ksi =
dfi
dli

=
4κ

l20

[
1−

(
li
l0

)2] +
2κ
[
2 arcsin

(
li
l0

)
− π

]
l30

[
1−

(
li
l0

)2] 3
2

(4.40)
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Applying these definitions of the overall, joint and geometric stiffness ma-
trices, Equation 4.33 is now:

Kpdx = Kgdx + WKKqW
T
Kdx (4.41)

This means that the overall stiffness matrix can be extracted as:

Kp = Kg + WKKqW
T
K (4.42)

The analytical forms of the matrix WK , the joint stiffness Kq, and the force
vector t∗ are readily available and, with the assistance of Maplesoft Maple,
the geometric stiffness terms in Equation 4.36 were also derived. Calculation
of the overall stiffness matrix is then done numerically.

Another method of deriving the stiffness matrix, by Svinin et al. [77],
was considered. Their method uses vector mechanics to arrive at a more
detailed analytical derivation of the stiffness matrix for generalized Gough-
Stewart platforms, which gives more insight into the individual contributions
of a mechanism’s elements. In the end the Svinin method was implemented
primarily to verify the numerical results calculated using the CCT derivation.
In all test cases the two methods were in agreement and the difference between
the elements of the calculated stiffness matrices were on the order of 0.01%.
This can be attributed to numerical error and therefore shows that the two
methods support each other.

4.3.2 Stiffness Indices

It is difficult to make conclusions about the mechanism stiffness simply from
the numerical stiffness matrix. Instead it is more helpful to extract a numer-
ical index to gain a more intuitive impression of the stiffness. For example,
knowing the minimum or maximum stiffness in a given direction is far more
useful.

Since the mechanism stiffness considers both translational and rotational
displacements the derived stiffness matrix suffers from non-homogeneous units.
This problem is similar to the issue with quantifying the available wrench set,
which includes both forces and moments. The solution is to partition the
stiffness matrix so that rotational and translational stiffness can be separated.
For example, matrix Kp can be partitioned as:

Kp =

[
Kxx Kxθ

Kθx Kθθ

]
(4.43)
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where the sub-matrices are then used to re-write the stiffness equation as:

df = Kxxdx + Kxθdθ (4.44)

dn = Kθxdx + Kθθdθ (4.45)

Assuming that no moments are applied (dn = 0), these equations can be
rearranged to yield:

df = (Kxx −KxθK−1θθKθx)dx (4.46)

which gives the relationship between an infinitesimal force, df , applied to the
end-effector and the resulting translational displacement, dx. By assuming
no forces are applied (df = 0), the same procedure can be used to isolate the
rotational stiffness as:

dn = (Kθθ −KθxK−1xxKxθ)dθ (4.47)

where dn is an infinitesimal moment and dθ is the resulting rotation. The
same partitioning procedure can be repeated to isolate the stiffness in any
subset of the coordinates. The stiffness can be extracted in a single Cartesian
direction, about a single axis of rotation, or in certain planes (e.g., the xy
plane). The stiffness in arbitrary directions can also be extracted [78] from
the stiffness matrix, so long as it has homogeneous units.

Instead of calculating directional stiffness, it is also useful to calculate
the overall minimum or maximum stiffness. So long as the stiffness matrix
has consistent units, its minimum and maximum eigenvalues (λmin and λmax)
correspond to the minimum and maximum stiffness values, respectively. The
matrix’s eigenvectors therefore represent the direction in which these values
occur. From this the condition number, η, of the stiffness matrix is defined
as:

η =
kmin

kmax
=
λmin

λmax
(4.48)

where kmin and kmax are the magnitudes of the stiffness in the minimum
and maximum directions. By definition, the condition number has a range
of 0 ≤ η ≤ 1 and gives a measure of how uniform the stiffness is in different
directions. Without knowledge of the application, a condition number close to
1 may be desirable to keep stiffness roughly uniform in all directions. Keep in
mind that even though it may be desirable to have a condition number closer
to 1, lower condition numbers do not necessarily suggest anything about the
absolute values of the minimum and maximum stiffness, only their relative
values.
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Figure 4.11: Stiffness in the direction of the three Cartesian axes, mapped
on a horizontal plane at z = 0.15 m.

4.3.3 Stiffness Mapping

Using these single value indices to visualized the stiffness over the mechanism’s
workspace is referred to as mapping [79]. In this section several stiffness maps
are generated and discussed. All of the stiffness calculations are based on the
mechanism parameters from the prototype, listed in Table 4.1.

To start, the stiffness in the three Cartesian axes directions will be ex-
plored. Assuming translational motion of the end-effector, the stiffness in
Cartesian space will end up affecting nearly all manipulation tasks that the
tensegrity mechanism performs. After calculating and partitioning the stiff-
ness matrix, each directional stiffness was mapped over horizontal slices of the
mechanism’s workspace at heights of z = 0.15 and z = 0.4 m, as shown in in
Figures 4.11 and 4.12.

The stiffness is generally higher toward the origin. This result mirrors
the force capability results and makes sense since the mechanism has higher
prestress in the centre of its workspace than at its boundaries. There are
also slight asymmetries in mappings of the x and y directions. This is due to
the triangular construction of the mechanism’s base. However, the horizontal
stiffnesses are axis-symmetric, i.e., the plots will repeat themselves if generated
for directions that are rotated 120◦ from each other.

Throughout most of the maps the stiffness in the z-direction is higher
than in the xy-plane. It becomes increasingly larger than the other two di-
rections at greater heights, e.g., comparing the kz map in Figure 4.11 to that
in Figure 4.12. Most of the mechanism’s elements (i.e., cables and springs)
are aligned in a direction that is close to vertical. This means that their con-
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Figure 4.12: Stiffness in the direction of the three Cartesian axes, mapped
on a horizontal plane at z = 0.4 m.
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Figure 4.13: Stiffness in the x and z directions, mapped on the xz-plane
through the origin.

tributions to the overall stiffness will be projected more on the z-axis rather
than in the xy plane. This becomes increasingly true at higher elevations and
explains why the highest value of kz mapped at z = 0.4 m is nearly an order
of magnitude larger than highest values of kx or ky.

Figure 4.13 shows the mapping of kx and kz onto the vertical xz-plane.
These plots support the reasoning that the average orientation of the mech-
anism’s elements has the greatest influence on the stiffest directions. The kz
mapping shows that stiffness in the z-direction is fairly constant with height,
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Figure 4.14: Condition number of the Kxy stiffness matrix, mapped on a
horizontal plane at z = 0.15 m.

until reaching the top boundary of the workspace. The slight decrease at the
top makes sense since the cables and spring legs can never all become com-
pletely vertical and eventually the spring leg contribution decreases. The kx
stiffness remains high at lower elevations and at positions further away from
the z-axis.

The condition number of the full Cartesian stiffness matrix will be rela-
tively low. This is because the vertical stiffness tends to be much higher than
the horizontal stiffness, as observed in the Cartesian stiffness maps. However,
the condition number of the planar stiffness matrix Kxy may be of more in-
terest. As shown in Figure 4.14 the condition number was mapped across a
horizontal plane.

For the most part, the condition number remains above ≈ 0.55, confirming
that the stiffness in the xy plane is relatively uniform. The exception to this
are the three areas where the condition number drops below ≈ 0.3, which are
centred roughly around the location of the mechanism’s base nodes, marked on
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Figure 4.15: Rotational stiffness about the z-axis and minimum rotational
stiffness out of the horizontal plane (i.e., Kφχ), mapped on a horizontal plane
at z = 0.15 m.

the mapping by crosses. The co-location may be explained by the orientation
of the mechanism’s cables when the end-effector is positioned over one of these
nodes.

Consider a plane formed by the two cables that terminate at any given
node. As the xy coordinates of the end-effector approach the location of this
node, the cable plane will become closer to being parallel to the z-axis. The
cables in the plane and their matching pairs will all act in this plane. However,
the two other cables will be close to perpendicular to this plane, suggesting
that in-plane stiffness may be very different from the out of plane stiffness.

In addition to the Cartesian stiffness, the rotational stiffness of the mech-
anism is also of interest. Most importantly it can show how likely the end-
effector is to remain in translation only when subjected to small external
moments. As a reminder, the rotation angles φ, χ, ψ are defined around the
body-fixed axes X ′, Y ′, and Z ′, respectively. This means that the angles φ
and χ represent rotation of the end-effector away from being parallel with the
base. The angle ψ represents a twisting of the end-effector with respect to the
base. The rotational stiffness, in both out of plane rotations and twisting, is
shown in Figure 4.15.

Both rotational stiffness maps are symmetric and higher toward the origin.
The kφχ stiffness being plotted is actually the minimum out of plane stiffness.
While the stiffness in the individual angular directions may be less symmetric,
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Figure 4.16: Condition number of the Kφχ (rotational) stiffness matrix,
mapped on a horizontal plane at z = 0.15 m.

they do not hold much significance on their own. From the maps it appears
that the end-effector is unlikely to leave translational motion as a result of
small moments, especially if most of its used workspace is closer to the z-axis.

The condition number of the out of plane stiffness was mapped in Fig-
ure 4.16. It exhibits a similar appearance to the condition mapping of the
Cartesian planar stiffness but shows that the rotational stiffness is, in gen-
eral, much less uniform. There are again areas of much lower uniformity, but
this time they are located midway between the base nodes, marked as white
crosses.

The stiffness results suggest that the prototype mechanism is fully capable
of resisting small external moments. These could arise from offset or irregular
payloads and end-of-arm tooling. The indices and mapping also provide op-
timization tools. In the future these could prove invaluable when attempting
to customize the mechanism to specific applications.
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5 Dynamic Analysis

The previous chapter described the conditions required to maintain tension
under static loading. This chapter will consider the dynamics of the mecha-
nism and the influence that it has on the cable tensions during movement. A
dynamic model of the mechanism is derived and used to verify that cables re-
main in tension while following end-effector trajectories. Several trajectories
were generated to be representative of typical manipulator motions. Addi-
tionally, a series of reciprocating linear trajectories were created to test the
acceleration limits of the mechanism. The speed of these motions was incre-
mentally increased until tension was lost during a simulation. The results
are compared and discussed. Additionally, the potential incorporation of the
dynamic model into the control algorithm is examined.

5.1 Development of the Dynamic Model

In Chapter 3, the direct kinematic problem was solved using a constrained
optimization process. The constraints posed by the actuated cables were rep-
resented in Equations 3.10-3.15 as holonomic functions of the form φ(x, t) = 0
where x was defined in Equation 3.5. These constraint functions imply that
the cables will constrain the mechanism regardless of their tension, which is
not incorrect. However, for the purposes of this thesis we are only interested in
positions or trajectories that maintain positive tension in all cables so that the
mechanism remains fully actuated and controllable. As such, the constraints
will continue to be used as defined with the understanding that the dynamic
model ceases to be valid as soon as any cable loses tension.

With this assumption, the mechanism can be interpreted as a Stewart-
Gough platform with massless prismatic actuators and three redundant, pas-
sive limbs (i.e., the spring linkages). The cable lengths are still actuated in
pairs, but will be considered independent for the derivation of the model.
There are many examples throughout literature of deriving dynamic models
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5.1. Development of the Dynamic Model

for the Stewart-Gough platform [80–82]. A Lagrangian approach is used in
this thesis for ease of derivation. The approach will derive the energies of the
end-effector and each spring leg separately and then combine them without
needing to consider reaction forces between bodies.

First, the kinetic and potential energy of the end-effector platform are
derived. The end-effector is represented as a rigid disc of radius rb, with
uniform density and a mass of me. The coordinates selected to describe the
end-effector are the same used throughout this thesis: the Cartesian coordi-
nates of the centre of mass p = [x, y, z]T and the three Euler angles ϕ, χ, ψ
about the body fixed reference frame. As a reminder, the matrix Q is calcu-
lated from these Euler angles, using an XY Z convention, and describes the
rotation of a vector expressed in the X ′Y ′Z ′ reference frame into the corre-
sponding vector in the global reference frame X,Y, Z. The kinetic energy of
the end-effector is therefore:

Te =
1

2
meṗ

Tṗ +
1

2
ω′Te I′eω

′
e (5.1)

where ω′e is the angular velocity and I′e the inertia tensor of the end-effector,
both expressed in the body fixed reference frame as denoted by the prime, ′,
symbol.

The angular velocity can be calculated in the fixed reference frame from
the time derivatives of the rotation angles as:

ωe =
[
eϕ Qϕeχ QϕQχeψ

] ϕ̇χ̇
ψ̇


=

1 0 sχ
0 cϕ −cχsϕ
0 sϕ cχcϕ

ϕ̇χ̇
ψ̇

 (5.2)

where, for example, eϕ, eχ, and eψ are the rotation axes of the respective Euler
angles. To find the angular velocity with respect to the body fixed reference
frame it is rotated by QT:

ω′e = QTωe (5.3)

The inertia tensor for the thin disc end-effector about its centre of mass is
defined as:

I′e = mer
2
b

1
4 0 0
0 1

4 0
0 0 1

2

 (5.4)
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which is already in the body fixed frame. Finally, the potential energy of the
end-effector is:

Ue = meg
Tp (5.5)

where g = [0, 0, g] is the gravity vector.
Next, the kinetic and potential energy of the spring linkages and the springs

themselves is derived. The pose of each leg is fully defined based on the
location of the end-effector node to which it is connected. This is due to the
selected directions of the joint axes, as discussed in Section 2.3.3. However,
to assist with the energy derivations, three angles are introduced: αi, βi, and
θi, as shown in Figure 5.1. These angles can be calculated given that p + Qb′i
is known (a detailed derivation of the angles can be found in Appendix A).
The time derivatives can also be calculated by recognizing that the velocity
of node Bi is:

ḃ = ṗ + ωe ×Qb′i (5.6)

Each link is treated as slender rod of length l0/2 and has its centre of mass
at its midpoint. The mass of the proximal link is mp and the mass of the
distal link is md. One end of the proximal link is located at the base node Ai
while the other end locates node Ci. In Chapter 2 Ci was also defined as the
location of the torsion spring joint. In the global reference frame this node is
located by the vector ci and can be calculated using only the angles αi and
βi. The distal link is then connected to this node and the end-effector. The
angle between the proximal and distal links is 2θi.

Given ci, the locations of the centres of mass of the proximal, cpi, and
distal, cdi, links are defined as:

c′pi =
ci + ai

2
(5.7)

c′di =
ci + p + Qbi

2
(5.8)

Using the definitions of α̇i, β̇i, θ̇i, the angular velocities in the body fixed ref-
erence frames can be found as:

ω′pi =
[
cβiα̇i β̇i sβiα̇i

]T
(5.9)

ω′di =
[
−c(βi + 2θi)α̇i β̇i + 2θ̇i −s(βi + 2θi)α̇i

]T
(5.10)
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Figure 5.1: Simplified spring linkage representation used for dynamic simu-
lation.

Using these results, the velocities of node Ci and the centres of mass of the
proximal and distal links can be found as:

ċi = ωpi × (ci − ai) (5.11)

ċpi =
1

2
ċi (5.12)

ċdi = ċi + ωdi ×
1

2
(p + Qb′i − ci) (5.13)

where the angular velocities of the links, ωpi and ωdi, are now with respect
to the global reference frame. The torsion spring joints are considered point
masses, located at ci, and each having a mass of ms. The kinetic energy of
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all three legs is then:

Tl =
3∑
i=1

(
1

2
mpċ

T
piċpi +

1

2
mdċ

T
diċdi +

1

2
msċ

T
i ċi

)
+

3∑
i=1

(
1

2
ω′Tpi I

′
pω
′
pi +

1

2
ω′Tdi I

′
dω
′
di

)
(5.14)

where the inertia tensors Ip and Id are defined in the body fixed reference
frames as:

I′p =
mpl

2
0

48

1 0 0
0 1 0
0 0 0

 , I′d =
mdl

2
0

48

1 0 0
0 1 0
0 0 0

 (5.15)

with the longitudinal axes of each link being directed along the body fixed Z
axes. The potential energy of the legs is:

Ul =
3∑
i=1

(
mpg

Tcpi +mdg
Tcdi +msg

Tci
)

(5.16)

The torsion springs will be treated as undamped, linear torsion springs with
rotational stiffness of κ. The deflection of the spring is equal to π−2θi, making
the contribution of the spring joints to the potential energy equal to:

Us =
3∑
i=1

1

2
κ(π − 2θi)

2 (5.17)

The Lagrangian derivation describes the motion of the mechanism with
the following set of differential equations:

d

dt

∂T

∂ẋ
− ∂T

∂x
+
∂U

∂x
= wx (5.18)

where T and U are the total kinetic and potential energy of the mechanism:

T = Te + Tl (5.19)

U = Ue + Ul + Us (5.20)

and x is the vector of coordinates defined in Equation 3.5. The term wx is the
generalized force that accounts for the cable tensions and any external forces:

wx = Wt−we (5.21)

83



5.2. Simulation Results

where W is the wrench matrix derived in Equation 4.7. To consider rotation
of the end-effector, each bi term in Equation 4.7 is replaced with Qb′i. Ex-
panding Equation 5.18 and collecting terms allows the equations of motion to
be written in their final form:

M(x)ẍ + V(x, ẋ) + G(x) = Wt−we (5.22)

5.2 Simulation Results

The inverse dynamic problem is defined as calculating the actuator forces
(i.e., cable tensions) from the dynamic model when an end-effector trajectory
is provided. If the first and second time derivatives of a trajectory x(t) are
known, solving this problem becomes trivial:

t = W−1 [Mẍ + V(x, ẋ) + G(x) + we] (5.23)

so long as the mechanism isn’t in a singularity, i.e., the inverse W−1 exists.
While there is no specific task or application planned for the mechanism,
several sample trajectories will be used as examples of end-effector motion.
In each case the orientation of the end-effector will be kept constant and no
external wrenches will be considered, i.e., we = 0. The parameters values
that are used were collected from the constructed prototype and are listed
in Table 4.1. The mechanism is considered to be in the hanging orientation,
which is reflected in the value of the gravity vector g. The results for each
trajectory were verified against a model of the mechanism that was created in
Matlab/SimMechanics, which is a multi-body dynamic simulation engine.

The first trajectory represents deployment of the end-effector. As men-
tioned in earlier chapters, one benefit of the tensegrity mechanism is that it
can be nearly folded flat by retracting the end-effector. This would make it
easier to transport. The deployment trajectory is a sinusoidal motion along
the vertical axis, starting from rest:

x(t) = y(t) = 0, z(t) = z0 +
H

2

[
1− cos

(
2π

t

T

)]
(5.24)

where H is the peak-to-peak amplitude of the motion, T is the period of the
motion, and z0 is the minimum height. The minimum height z0 is chosen to be
greater than zero because the XY plane is a known singularity, which would
cause numerical difficulties with the model. Simulation results for H = 0.4 m,
T = 2 s, and z0 = 0.1 m, are shown in Figure 5.2.
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Figure 5.2: The trajectory (a) that is representative of deployment and
retraction of the end-effector and the calculated cable tensions (b) required to
generate it.

Next, a circular trajectory will be used to represent general movement
of the mechanism in a horizontal plane. The trajectory has the end-effector
tracing out a circle with constant height as follows:

x(t) = Rcos

[
π − πcos

(
π
t

T

)]
,

y(t) = Rsin

[
π − πcos

(
π
t

T

)]
,

z(t) = z0 (5.25)

where R is the radius of the circle, which is centred about the Z axis. The
nested cosine functions are included so that the velocity of the trajectory at
time 0 is zero, i.e., the mechanism starts from rest. Simulation results for
R = 0.1 m, T = 1 s, and z0 = 0.2 m, are shown in Figure 5.3.

Finally, a helical path is used to observe the cable tensions during move-
ment in all three axes at once. The trajectory is described using the parametric
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Figure 5.3: A horizontal, circular trajectory (a) and the calculated cable
tensions (b) required to generate it.

variables:

a(t) = 0.1R+R

[
1− cos

(
4π

t

T

)]
(5.26)

b(t) = 5π

[
1− cos

(
π
t

T

)]
(5.27)

such that the end-effector path is:

x(t) = a(t)cos(b(t)),

y(t) = a(t)sin(b(t)),

z(t) = z0 +
H

2

[
1− cos

(
2π

t

T

)]
(5.28)

The trajectory begins at rest on the Z axis. The end-effector then follows a
helix with variable radius that increases with height until the maximum height
is reached. The trajectory then retraces itself back to the initial position.
Simulation results for the case of R = 0.1 m, T = 10 s, and z0 = 0.1 m, are
shown in Figure 5.4.
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Figure 5.4: A three dimensional helical trajectory (a) and the calculated
cable tensions (b) required to generate it.

5.2.1 Acceleration Limits

To test the linear acceleration capabilities of the mechanism, the following
rectilinear trajectory is defined:

s(t) =
L

2

[
1− cos

(
2π

t

T

)]
(5.29)

where L is the peak-to-peak amplitude of the motion and s(t) describes a mo-
tion that can be applied in any desired direction. The second time derivative
of Equation 5.29 gives the acceleration of this trajectory as:

s̈(t) =
2π2L

T 2
cos

(
2π

t

T

)
(5.30)

It can be seen that the acceleration will be maximized whenever the cosine
term is equal to ±1, which occurs at the beginning (t = 0), middle (t = T/2),
and end (t = T ) of the motion. The maximum magnitude of the acceleration
at these times is therefore:

s̈max =
2π2L

T 2
(5.31)
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Simulations of the rectilinear trajectory were repeated for increasing speeds
(i.e., decreasing period of motion) until the minimum cable tension became
negative. The acceleration calculated from the fastest valid trajectory is
then considered representative of the maximum possible acceleration. Equa-
tion 5.29 was used to create two trajectories, one in the x and the other in the
y direction, with L = 0.15 m and z0 = 0.35 m. The results are shown in Fig-
ure 5.5 and Figure 5.6. The discontinuities observed in some of the minimum
tension plots is due to a changeover between which cable is experiencing the
lowest cable tension at that point of the trajectory.

The displayed results have been normalized by their periods, which are
marked in-line. From the plots it is found that the minimum tension is lost
in the x direction at T ≈ 0.57 s and at T ≈ 0.52 s in the y direction. Using
Equation 5.31 the maximum accelerations are calculated to be 9.11 m · s−2 and
10.95 m · s−2 in the x and y directions respectively. It should be noted that
trajectories starting at different initial positions will not necessarily achieve
the same accelerations. The initial value of the static component of the cable
tensions varies through the workspace, as shown in Chapter 4. However, it
was also shown that the static cable tensions are generally higher toward the z
axis and therefore the trajectories used here will generate some of the highest
accelerations the mechanism is capable of.

5.3 Discussion

In the results gathered from all of the example trajectories, the cable pairs do
not share the same tension. This is for the same reason that the static tensions
vary within cable pairs: the offset mass of the spring linkages. Depending
on the assembly mode, the inertia of the spring linkages during motion will
generate a net moment about the end-effector, which must be resisted by the
cable tensions.

The direction of the motion also affects the cable tensions. Since the cables
are unidirectional force elements, the only way they can generate acceleration
of the end-effector away from the base is by rapidly reducing their tension.
This explains the decrease in the minimum cable tension at peak acceleration
during the increasingly fast trajectories shown in Figures 5.5 and 5.6. The
inertial effects on the cable tension eventually have a greater influence than
the tension that resists the spring leg forces. During high rates of deceleration
the opposite is true. Cable tensions tend to be higher while the end-effector
is decelerating, i.e., accelerating toward the base, since they must resist the
change in the momentum of the mechanism’s components.
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Figure 5.5: Computed minimum cable tensions for reciprocating linear tra-
jectories in the x-direction of increasing speed.
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Figure 5.6: Computed minimum cable tensions for reciprocating linear tra-
jectories in the y-direction of increasing speed.
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5.3. Discussion

The model used could have been derived using the cable lengths as the
generalized coordinates of the Lagrangian equations. The trajectories would
be provided in terms of cable lengths and the cable tensions would directly
correspond to the generalized forces, without the need for a conversion using
the wrench matrix W. However, it was much simpler to derive the energy
terms using Cartesian coordinates. The model can still be converted from its
current form by using the Jacobian matrix of the mechanism to transform it
into the joint space. This presents an issue though, since the lengths of the
cables are not independent coordinates because they are actuated in pairs.
The winches that actuate the cables cannot control their individual tensions
but instead can only resist the torque generated by the sum of their tensions,
i.e., τi ∝ (tij + tji).

This thesis is only interested in a fully defined and controllable mechanism.
If the mechanism were actuated using only three generalized forces, i.e., the
winch torques, the system would actually be underactuated (three torques
can’t independently control six coupled tensions). There is no direct feedback
of the end-effector position or orientation, so it is undesirable to allow any
cable tension to be lost. Should the mechanism lose tension, there would be
no way to know the state to which it would recover or return. Furthermore,
the translational behaviour of the end-effector could not be guaranteed. The
cables must therefore be length actuated so that the dynamics are sufficiently
constrained.

There is no need for a solution to the forward dynamics of the mechanism if
the winches are position controlled. On the other hand, the inverse dynamics
could be used to improve the performance of the winch motor controller.
Given the model, a known trajectory can be used to anticipate the inertia
of the system and its influence on the cable tensions. The sum of the cable
tensions can be considered a disturbance force that can be compensated for
and rejected by the winch controllers. This would lead to greater positional
accuracy of the cable lengths.
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6 Physical Implementation and
Prototyping

This chapter describes the process of designing a fully functional robot from
the proposed tensegrity architecture. There are several motivations behind
fabricating a physical prototype. The prototype will act as a proof-of-concept
for both the reinforced triangular prism mechanism and tensegrity-based robots
in general. Few examples of constructed tensegrity robots exist in the reviewed
literature and the author is not aware of any current real-world applications
of this class of mechanism. As such, the prototype is a novel development in
the field of robotics and will also prove useful in the future for experimental
purposes.

The primary objective during construction was to design the mechanical
components of the robot in such a way that they replicate the theoretical
architecture as closely as possible. Remaining faithful to the simplified mech-
anism representation ensures that the analysis presented earlier in this thesis
remains applicable to the final robot. Likewise, designing the actuation sys-
tem to use the minimum number of motorized winches, i.e., three, will ensure
cable pairs are constrained to be equal in length, a crucial assumption used
in the theoretical developments. The robot was also designed with simplicity
in mind to reduce the manufacturing costs.

The remainder of this chapter will identify the specific issues with phys-
ically implementing this architecture, and more general problems with con-
structing tensegrity robots. The solutions to some of the design challenges are
described in detail and design choices are explained. The actuation, control
and calibration systems of the prototype are developed and the mechanism
performance is discussed. Recommendations are made regarding the future
use and possible improvement of the developed prototype.
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6.1. Issues with Physical Implementation

6.1 Issues with Physical Implementation

By definition, tensegrity structures, and the mechanisms that are derived from
them, must be pin-jointed. These joints will generally have multiple compo-
nents connected to them. This causes the most difficulty when implement-
ing a tensegrity-based robot; consideration of the physical space occupied by
the struts and joints is critical. Connecting multiple rigid bodies at the same
point while maintaining full rotational freedom and supporting reaction forces
is problematic, and increases the opportunity for mechanical interferences to
occur.

Interference between components of the tensegrity mechanism can also oc-
cur away from the joints. As already discussed in Chapter 2, the compressive
struts of the reinforced triangular prism tensegrity will inherently intersect
with one another. The torsion spring linkage introduced in Section 2.3.3
solved this. Alternatively, a split spring design such as the one shown in
Figure 6.1 could also be used to eliminate interferences. Gas springs, like
those used by Behzadipour et al. [83], could provide a much higher prestress
but the greater number of components may reduce the reachable workspace
of the mechanism enough to negate any increase to the static workspace. An
optimization could be run to reach a balance between mechanical interference
and static workspace for the split spring design, but this is outside the scope
of this thesis.

Another issue of the pin-jointed architecture is that the actuated cables
must also connect to the same nodes as the compressive components. Further-
more, the cables must be routed through some of these joints, since it is not
practical for their lengths to be driven by winches within the joints or along
the cables themselves. The cables must instead be routed to remotely located
winches.

Each cable pair needs to be actuated by the same winch to keep the ca-
ble lengths equal. It is desirable to maintain a stationary reel-in point so that
there is a linear relationship between the winch motor angle and the change in
cable length. This will assist with the development of a control algorithm and
simplify solving the inverse kinematics of the mechanism. The cables must
be wound on a drum, preferably using level winding to avoid overlapping or
tangling, which will help to maintain the previously mentioned linear relation-
ship and reduce wear of the cables. The winches will need to be driven by
motors with adequate torque output and some form of feedback, e.g., rotary
encoding, will be required for control.

Maintaining cable tension and sufficient prestress is essential to the per-
formance of the physical mechanism. The chosen torsion springs must provide
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6.2. Design Overview

Figure 6.1: The split spring design, an alternative method of applying pre-
stress to the mechanism using gas springs.

the largest torque possible over as large an operating range as possible. How-
ever, there is an upper limit to the size, and therefore mass, of the torsion
spring before its weight begins to counter any increase in prestress. Finally,
friction will be present throughout the system, e.g., the joint bearing resis-
tance, cable contact, or within the winches. This will have a negative impact
on cable tensions and must be minimized.

6.2 Design Overview

The fully assembled prototype is pictured in Figure 6.2. A support frame was
built so that the mechanism could hang and the weight of most of its compo-
nents contribute positively to the cable tensions. All stationary components
are mounted to a plywood sheet, which acts as the mechanism’s base. The de-
sign consists of four sub-assemblies: the end-effector, spring linkages, routing
pulleys, and winches.

The end-effector is an aluminum plate with three square tubes arranged
at 120◦ from each other. The distal joints of the spring linkages are attached to
the ends of the tubes such that their centres are a distance rb = 203.4 mm (8.0 inch)
from the centre of the end-effector. The spring linkages are joined to the end-
effector on one end and attached to the base at the other end via joints that are
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6.2. Design Overview

Figure 6.2: Photograph of the constructed prototype.

effectively universal. When fully extended, the spring linkages have a length
of l0 = 863.6 mm (34.0 inch). Small diameter steel cables are also attached to
the end-effector and are routed through the base to the opposite side where
the winches are mounted. The cables pass over pulleys before being wound
on the winch drums.

The spring linkage and cable winch assemblies are the more complex parts
of the prototype and as such the thought process behind their design is elab-
orated further in the following two sections. Most physical parameters of the
prototype (e.g., masses and component dimensions) have already been listed
in Table 4.1.
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6.2. Design Overview

Distal Joint

(spherical)

Spring Joint

(revolute)

Proximal Joint

(universal)
Ceramic Eyelets

Figure 6.3: CAD drawing of the spring linkage, highlighting its primary
components.

6.2.1 Spring Linkage

While functionally identical to the simplified model in Section 2.3.3, the spring
linkage shown in Figure 6.3 may not appear to be familiar at first sight. As
highlighted, the linkage still has a spherical-revolute-universal joint configura-
tion; the joints are simply implemented in slightly unconventional ways. The
reasoning behind this was to allow the cables to pass through the centres of
each joint.

The distal end of the linkage must attach to the end-effector via a spherical
joint. Each spherical joint must let two cables terminate at the centre of
rotation, while still allowing the distal link three rotational degrees of freedom.
A secondary goal of the joint design was to maximize its range of motion, so
that it does not limit the mechanism workspace significantly. It was assumed
that the flexibility of the cables was sufficient to provide them with their
required degrees of freedom, and no concentric mechanical joints were needed.

The joint was implemented using a threaded rod end (i.e., ball and socket
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6.2. Design Overview

(a) Distal Spherical Joint (b) Ceramic Eyelets

(c) Torsion Spring Joint (d) Pantograph Linkage

Figure 6.4: Photographs of the torsion spring linkage components.

joint), as shown in Figure 6.4a. Using crimps, the cables were tied to the
bolt that holds the ball of the rod end to the end-effector. While the cable
termination points were not at the exact centre of the joint, the slight deviation
is considered negligible with regards to the scale of the prototype.

Further down the spring linkage is the torsion spring joint. This must
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6.2. Design Overview

be a passive revolute joint with torsion springs that apply a torque between
the distal and proximal links. As with the rest of the linkage joints, range
of motion is very important to consider so the mechanism workspace is not
restricted. The spring joint must also be able to resist moments outside of the
plane formed by the proximal and distal linkages (i.e., aside from that applied
by the torsion springs) while maintaining a minimal weight and volume.

The chosen design, shown in Figure 6.4c, consists of a bracket mounted
to the proximal link and a second connector that is attached to the distal
link. The distal connector rotates freely about a shaft that spans across the
proximal bracket. The connector is located at the midpoint of the shaft and
is restricted from sliding along the shaft’s axis by c-clips. Two torsion springs
are placed symmetrically over the shaft, with one on each side of the distal
connector. The legs of the torsion springs are held to the bracket and connector
so that any rotational displacement of the joint results in spring deflection,
and therefore a generated torque.

The torsion springs used in the revolute joint are also critical to the overall
design of the prototype. It is desirable to maximize the stiffness of the springs
used to increase the prestress in the mechanism. This optimization will be
constrained by the weight of the spring, as well as manufacturing limitations.
The standard material used by spring manufacturers is ASTM A288 music
wire, which is a high tension steel that is only available in certain standard
wire diameters. With some assistance from the manufacturer, a custom spring
was designed to meet the requirements of the project. The final manufactured
springs are described in Figure 6.5.

Using the values shown in the Table 6.1, the rotational stiffness is calcu-
lated to be:

κ =
Ed4

10.8N(D − d)
= 14.95 N ·m/turn = 2.38 N ·m · rad−1 (6.1)

and may be considered linear over the operational range of the springs. This
operating range is between 0-130◦ of deflection, where the stress within the
springs will not exceed the material yield strength.

The final component is a base node joint to provide the spring linkage
with two rotational degrees of freedom, as defined in Section 2.3.3. Typically,
a standard off-the-shelf universal joint could be used to satisfy the mobility
requirements of this component. However, in this particular case, challenges
arise from the need to have the spring linkage and two cables meet at the joint’s
centre of rotation. The problem is not unique to the tensegrity architecture
but some available solutions, such as using multiple concentric joints [84, 85],
would be difficult to adapt so that the cables can still be actuated.
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6.2. Design Overview

d

D

l

Figure 6.5: Schematic of the custom torsion springs.

Parameter Value

Max Deflection 180◦

Coil Diameter (D) 28.78 mm (1.133 inch)
Wire Diameter (d) 3.43 mm (0.135 inch)

Leg Length (l) 50.8 mm (2.0 inch)
Number of Coils (N) 7

Material ASTM A288 Music Wire
Elastic Modulus (E) 207 GPa (30× 106 lbf · inch−2)

Table 6.1: Parameters of the custom designed torsion springs.
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6.2. Design Overview

Figure 6.6: The concentric multi-link spherical joint design. Image adapted
from Hamlin et al. [86].

One existing approach that would work is Hamlin et al.’s concentric multi-
link spherical joint [86], shown in Figure 6.6. This is a modified pantograph
linkage designed to constrain its two outer-most links (labelled as “leafs” in
the diagram) to rotate about a remote centre of rotation, i.e., one that is not
actually located on the links. The other two rotational axes of the joint are
hinges attached to the two leafs, only one of which is required for the current
application. The links are curved to compensate for the offset of these hinges,
allowing all axes of rotation to intersect at the same point, thus creating a
spherical joint.

The linkage was altered slightly for use in the tensegrity prototype. As
shown in Figure 6.4d, all of the links are straight. In this implementation there
is no offset between the centre-line of the lower leaf and its axis of rotation
(i.e., L3 = 0 in Figure 6.6), so there is no need for curved links. Each pivot
within the linkage is created using a metal dowel and nylon bushing. While
this does increase the mass of the overall spring linkage, the majority of the
mass is closer to the base of the mechanism. Additionally, the desire to stay
true to the theoretical mechanism architecture and allow the cables to pass
directly through the base nodes was deemed more important than minimizing
the mass of components. Ceramic eyelets are mounted at the effective centre
of rotation and allow the cables to pass from the mechanism-side of the base
to the winch-side.
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6.2. Design Overview

Figure 6.7: Photograph of the translating winch assembly.

6.2.2 Cable Winch

The cable winches were designed to enforce a linear relationship between the
change in motor angle, ∆θ, and the change in cable length, ∆ρ. Winches typ-
ically do not have a fixed cable reel-in point or level winding, both of which
cause non-linearities. In the case of the tensegrity prototype, this means the
length of cable between the winches and the base nodes (i.e., ceramic eyelets)
would vary depending on how much cable has been wound up. Eliminating
these non-linearities with intelligent hardware design would simplify the in-
verse kinematics of the prototype. Each winch must also actuate two cables
at the same time.

The chosen design, shown in Figure 6.7, is similar to several existing
winches [75, 87, 88] used to actuate CDPMs. Each cable passes over a pul-
ley and is wound on the winch drum at a constant reel-in point. The drum is
driven by a servomotor via a spindle, i.e., the three smooth shafts in Figure 6.7.
The drum remains free to translate along the spindle shafts on oil-impregnated
bronze bushings. The drum also rotates around a fixed threaded shaft. As
such, when the spindle causes the drum to rotate, the drum translates at
a rate equal to the shaft thread pitch of 0.787 thread/mm (20 thread/inch).
The grooves on the drum have a matching thread so that both cables are level
wound, enforcing ∆θ ∝ ∆ρ.

The motors were already available, so were not selected specifically for
this application. A 3.5:1 gear ratio is used to magnify the output torque
of the motors, resulting in a maximum continuous torque of approximately
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6.2. Design Overview

Figure 6.8: Photograph of the winch-side of the base, with one cable pair
highlighted to illustrate how cables are routed.

1.48 N ·m (13.1 lbf · inch) and a peak output of 2.97 N ·m (26.3 lbf · inch), when
considering the current limitations of the motor driver circuit. The winch
drum radius is 25.4 mm (1.0 inch) so the total tension that each winch can
exert on its cable pair is approximately 30 N (6.74 lbf) during continuous op-
eration and 60 N (13.49 lbf) for brief durations.

Steel cables of diameter 0.397 mm (1/64 inch) were chosen, with a break-
ing strength of 222.4 N (50 lbf). The cables had a 7x7 strand construction,
which makes them more flexible than single strand cables. Each cable passes
over two pulleys, as shown in Figure 6.8; one pulley is on the winch and one
is on the opposite side of the base from the ceramic eyelets. The pulleys are
mounted on ball bearings to reduce frictional losses that would reduce cable
tension. On the mechanism side of the base, the cables pass through the ce-
ramic eyelets, shown in Figure 6.4b. The material was chosen for its hardness
so that the steel cables could not cut them. A slight offset exists between the
actual node locations and the locations of the eyelets, but on the scale of the
prototype the distance is considered negligible.
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Figure 6.9: Hardware used to implement the prototype controller.

6.3 Control and Calibration

The control hardware configuration is shown in Figure 6.9. The position of
the end-effector is controlled by directly actuating the length of the three ca-
ble pairs via winches. Each winch assembly is driven by a Pittman 14207
brushed 24 VDC servomotor and fitted with a 4000 count-per-revolution in-
cremental encoder for position feedback. Power to the motors is supplied by
Advanced Motion Controls (AMC) 25A8 brushed type servo amplifiers that
are controlled by a PC DAC card. Matlab xPC Target software was used to
program the controller and, as shown in Figure 6.9, two computers are used
in this setup: the host PC and the target PC.

The target PC runs a real time operating system, which performs data ac-
quisition, executes control calculations, and generates command output while
guaranteeing a minimum execution frequency. A National Instruments (NI)
PCI-6602 counter timer card provides feedback of the motor angles by de-
coding the signal received from the incremental encoders. A NI PCI-6713
digital-to-analog converter outputs a ±5 VDC signal that is used to command
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6.3. Control and Calibration

the amplifier gains. Each amplifier supplies its respective motor with a 24
VDC pulse-width-modulated (PWM) signal. The output duty cycle of the
PWM signal is proportional to the input to the amplifier by a gain that is set
manually by a potentiometer. The host PC runs Matlab/Simulink and pro-
vides a user interface to the controller. While the control algorithm shown in
Figure 6.10 is uploaded and executed on the target PC, the host PC remains
connected and allows parameters, e.g., controller gains, to be modified on the
fly.

Two control modes are made available: set point control, which moves the
end-effector to a specified position p, and trajectory control, which follows pre-
generated position trajectories, p(t). Both modes supply the controller with
Cartesian coordinates of the robot end-effector. These coordinates are then
converted into the required cable lengths, ρt(t), using the analytical inverse
kinematic solution from Chapter 3, which assumes only translational motion
of the end-effector.

Conversion from cable lengths to motor commands presents some minor
complications. Due to the use of relative encoders (as opposed to absolute)
the control system must be provided with the initial cable lengths, ρ0 of the
end-effector after each system reboot. Therefore the controller is really only
controlling the change in cable lengths, not the actual length of the cables.
Once the relative change in cable length is calculated the motor angles, θ(t)
are found by diving by the radius of the winch drum, rw and multiplying by
the winch gear ratio Gr. The commanded motor angles are then fed into a
PID controller with negative feedback of the measured motor angles, θm(t).

A homing device was designed, as shown in Figure 6.11, to hold the mech-
anism in a known configuration while the controller is started. The base part
has three dowels protruding from it and is mounted at a known point on the
prototype’s support frame. A second part, with three holes of the same size
and spacing as the three dowels, is attached to the end-effector. When the two
parts of the device mate, the prototype’s spring linkages apply enough force
to hold the mechanism position and orientation constant. The only accommo-
dation that must be made for this solution is that all commanded trajectories
must begin by travelling vertically to disengage the homing device. The initial
cable lengths in the home pose must be subtracted from those calculated using
the IKP to acquire the relative cable length changes.

The controller was first developed in Matlab Simulink strictly as a posi-
tion controller for a model of one of the winches. The winch model was based
on the ideal model of a DC brushed motor and included the inertia of the
shaft, gears, and drum. Initial PID gains were calculated automatically using
the Matlab/Simulink Control System Toolbox. When applied to a physi-
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6.4. Discussion and Recommendations

Figure 6.11: Homing device used to hold the tensegrity prototype in an
initial configuration.

cal winch with no load attached, the controller performed poorly, presumably
due to modelling inaccuracies. Better results were achieved by manually tun-
ing the controller gains using the Ziegler-Nichols [89] tuning method. The
derived gains were then applied to all three winches without observing any
performance issues.

6.4 Discussion and Recommendations

Preliminary observations made while operating the tensegrity prototype were
encouraging. Most importantly, the end-effector was visually confirmed to
remain in translation. Additionally, paths that were theoretically valid were
followed without any unexpected loss of cable tension. There did not appear
to be any serious issues with respect to positional accuracy or vibrations.
This can be observed in Figure 6.12, where several LEDs attached to the end-
effector trace the relatively smooth path of a trajectory during a long exposure
photo. However, these demonstration trajectories did not attempt to push the
theoretical acceleration limits, for both the mechanism and the author’s own
safety.

The theoretical workspace boundaries were explored by slowly moving the
mechanism’s end-effector into positions where interferences or loss of tension
should occur. The boundaries were found to be approximately correct, with
any deviation likely due only to small modelling inaccuracies. It was interest-
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(a) Stationary (b) Moving

Figure 6.12: An example end-effector trajectory that has been traced using
LEDs and long exposure photography.

ing to observe that the mechanism did not collapse when a single cable lost
tension. Cable failure was not investigated within this thesis but the possibil-
ity of the mechanism being able to sustain the loss of tension in one cable is
a promising result.

There were some notable issues, mostly related to cable friction. While
not entirely unexpected, there was significant noise generated by the contact
between the steel cables and the ceramic eyelets used to route them through
the base of the prototype. This contact friction would presumably lead to
cable abrasion and have a detrimental effect on the useful lifetime of the
cables. From a strength-of-materials standpoint, the cables were designed to
safely withstand the maximum loads that can be exerted by the DC motors,
but fatiguing would certainly reduce this safety factor.

To reduce cable wear, the ceramic eyelets could be replaced by lubricated
cable sheaths, such as those used to route dérailleur and brake cables on bi-
cycles. Different cable coatings may also reduce friction and alternative wire
rope constructions could improve resistance to wear and tear. The cables
could also pass over rotating pulleys or bearings, instead of sliding over a
stationary surface. For example, Figure 6.13a shows a swivelling pulley that
could redirect a single cable. Another example is a bearing design proposed
by Billette [90] and shown in Figure 6.13b. Unfortunately, these alternatives
require more space than is available in the mechanism joints and would be dif-
ficult or impossible to place. Additionally, the solution shown in Figure 6.13a
would not have a constant takeoff point for the cable, which was a major
design consideration of the current prototype.

Other observed issues had more to do with design choices that are unique
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6.4. Discussion and Recommendations

(a) Swivel (b) Bearings

Figure 6.13: Possible designs for routing cables through a point to reduce
friction.

to this specific robot architecture. For example, the homing feature, described
in Section 6.3, works in theory, but in practise small errors in the initial posi-
tion or orientation of the end-effector may exist. These errors will be carried
on throughout operation and are not observable by the controller. Addition-
ally, the process of assembling the mechanism, especially stringing the cables,
is awkward. Any error in initial cable lengths will further contribute to on-
going position errors. Finally, there is also a high amount of potential energy
contained within the system when in the home configuration because interfer-
ences prevent the torsion spring linkages from fully extending. This may be
unavoidable with this particular design and raises some safety concerns.

The next step in evaluating the mechanical design is to gather quantita-
tive measurements, rather than relying purely on human observations. While
experimental testing was not within the scope of this thesis, there are several
ways the robot could be instrumented in the future.

A computer vision system is one possible measurement technique. It could
be used to track the movement of the end-effector, calculate positional er-
rors, and give a clearer measure of mechanism accuracy and repeatability.
This method would be unobtrusive since vision systems generally only re-
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6.4. Discussion and Recommendations

quire small markers to be attached to the tracked object. Similar data could
be estimated using an inertial measurement unit (e.g., a 6-axis accelerom-
eter/gyroscope). Orientation data could also be estimated to confirm the
translational behaviour of the end-effector.

Cable forces could be measured using load cells, verifying that the ca-
bles remain in tension and measuring the losses due to friction. These could
be placed in-line with the cables, possibly where they terminate at the end-
effector nodes, to directly measure cable tension. Tension could also be mea-
sured implicitly by measuring the winch torques. Tension could also be mea-
sured indirectly with a method similar to that used by Otis et al. [64] where
cables were passed over pulleys. The reaction forces were measured where the
pulleys were mounted, which were then used to calculate cable tension.

In summary, the tensegrity prototype was observed to behave in an ex-
pected manner. The positive qualitative results increase confidence that the
theoretical work of this thesis correctly describe the tensegrity architecture.
For further confirmation, quantitative methods must be applied. Future work
on the prototype should involve executing one or more of the experimental
assessments proposed above.

108



7 Summary and Conclusions

This thesis investigated the feasibility of applying the structural concept of
tensegrity to robotic manipulators. A robotic mechanism based on tenseg-
rity could inherit several benefits from the structure on which it is based.
For example, the high strength to weight ratio of tensegrity structures could
be beneficial to a derived mechanism’s dynamic performance. Examples of
tensegrity-based mechanisms have been previously presented in literature but
few prototypes of these designs have been constructed. The lack of functional
prototypes can often be attributed to complex actuation schemes and the diffi-
culty of physically constructing the proposed designs. As such, the mechanism
in this thesis was developed primarily to ensure ease of control, mechanical
design, and manufacture.

The mechanism relies on length controlled cable-winch pairs for actuation.
This actuation scheme is analogous in many ways to purely cable driven par-
allel mechanisms, which have received far more attention in recent research
literature than tensegrity mechanisms. The similarity with cable driven mech-
anisms allows some existing analysis tools and methods to be adapted for use
in this thesis. These tools are used throughout the thesis to determine the
kinematic behaviour of the mechanism, investigate its reachable workspace,
and to ensure the mechanism maintains tension in all of its cables under several
conditions and loads.

7.1 Contributions of Thesis

The primary contribution of this thesis was to develop a new actuation scheme
for a known tensegrity structural architecture to generate a novel 3-DoF trans-
lational mechanism. Before choosing an actuation scheme, the prestress re-
quirements of the tensegrity architecture had to be determined. This lead to
the knowledge that three of the structure’s elements needed to be prestressed,
thus the choice of three compressive spring legs was made. The types of joints
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used, i.e., universal at the base, revolute at the torsion spring, and spherical
at the end-effector, were chosen to supply sufficient mobility to the mecha-
nism’s end-effector. Furthermore, other elements of the tensegrity structure
were chosen to be rigid in order to create both a base and a rigid end-effector
for the mechanism. The orientation of the joint axes were determined by at-
tempting to simplify analysis, limit motion of the rigid links, and to avoid
mechanical interference between legs and cables. All of this work eventually
lead to the choice of paired actuation of the tensile elements, i.e., cables.

Through the development of this mechanism existing robotic analysis meth-
ods were applied to the tensegrity mechanism. An understanding of the kine-
matics, statics and dynamics was gained via this analysis. These demonstra-
tions could prove useful in any future work that examines the reinforced trian-
gular prism tensegrity mechanism or similar tensegrity mechanisms. Addition-
ally, the constructed prototype can serve as a design example. Its strengths
and weaknesses can assist with the mechanical design of future functional
tensegrity mechanisms and manipulators.

7.1.1 Chapter Summaries

The chapters within this thesis covered the following topics:

• Chapter 2 introduced the novel actuation and prestress scheme used by
the mechanism. Background information on the concept of tensegrity
was provided and a structural analysis was performed to confirm that
the proposed mechanism remains rigid and still fits the definition of
tensegrity.
• Chapter 3 presented analytical expressions for the mechanism position,

velocity and acceleration-level kinematics that are valid so long as ten-
sion is maintained in all cables. The Jacobians of the mechanism were
calculated and used to determine the conditions that lead to kinematic
singularities. An efficient method of checking for cable-linkage interfer-
ences was developed. Finally, the kinematic workspace of the mecha-
nism was visualized considering actuator limitations, singularities and
the avoidance of cable interferences.
• Chapter 4 verified that the cables remain in tension under static and

pseudo static cases, for at least a portion of the mechanism’s reachable
workspace. Static analysis of the mechanism was conducted to calculate
the forces within individual cables. Depending on the orientation of
the mechanism with respect to gravity, the actuated cable pairs do not
have equal tensions. This was found to be due to the mass of the spring
linkages, which cause asymmetric loading that is compensated for by the
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tension difference. A method of quantifying the magnitude of forces that
can be exerted or resisted by the mechanism, while maintaining tension
in all cables within finite bounds, was developed. This method was then
used to quantify the force exertion capabilities over the workspace and
to determine the boundaries of the static workspace.

Additionally, the stiffness matrix of the mechanism was derived us-
ing techniques borrowed from cable driven parallel mechanisms. The
resulting matrix, calculated numerically for various poses, was verified
against other approaches and found to match. A matrix partitioning
technique was used to separate translational DoF from rotational and
solve the unit non-homogeneity issue of the stiffness matrix. Mappings
of minimum and maximum stiffness in several directions, both rotational
and Cartesian, were generated and displayed.
• Chapter 5 described the derivation of a dynamic model using the La-

grangian formulation, based on a simplified representation of the mech-
anism. This model was used to calculate the resultant cable forces for
several generated trajectories to check if cable tension is maintained. It
is also used to calculate the maximum linear acceleration that can be
achieved without losing tension in several trial trajectories.
• Chapter 6 summarizes the obstacles involved in physically implement-

ing the mechanism and presents potential solutions to these challenges.
Details of the chosen design and why decisions were made with respect
to the design challenges are outlined. A brief description is given of the
physical mechanism, its actuation system, and the control hardware.
The prototype is reviewed qualitatively and its limitations and flaws are
identified. Future improvements with respect to the mechanical design
are proposed along with proposed experimental procedures for quantita-
tive evaluation and verification of the analytical work presented in this
thesis.

7.2 Recommendations for Future Work

A possible extension of this thesis is further work on control algorithm devel-
opment. The PID regulation of cable lengths, as applied to the constructed
prototype, performs well but ignores the mechanism’s dynamics. The dy-
namics of the system would become non-negligible if the mechanism were
commanded to follow a trajectory requiring higher accelerations. To compen-
sate for inertial effects, the dynamic model could be included in the control
algorithm. Despite its non-linearity, the dynamic model could be included via
feedback linearization.
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There are several issues preventing the integration of the dynamic model
in the controller. Firstly, there is no direct feedback of cable lengths. Cable
lengths are inferred from the angular positions of the winches but calculating
their lengths in this way is not valid if the cables become slack. Feedback
linearization is also typically used for torque control. Cable tension could be
measured in various ways, but in the case of the tensegrity mechanism the
cables are driven in pairs. Therefore the tensions are not independent, nor
are they necessarily identical. Controlling the mechanism using a reduced set
of inputs adds even more complexity.

The dynamic model itself would require further development before being
included in the controller. The issue lies with how the distance constraints
posed by the cables are not explicitly enforced. The model developed in Chap-
ter 5 assumes it is given a valid translation-only trajectory. This is appropri-
ate if all cables remain in tension, but the moment tension is lost the model
becomes invalid. Other methods of deriving the dynamic model of similar
tensegrity mechanisms exist [34]. These methods add constraints to the equa-
tions of motion. The resulting system of non-linear equations can then be
solved numerically at each time step while enforcing the velocity and acceler-
ation level kinematics to provide a constrained simulation. However, solving
equations numerically can take a indeterminate amount of time, creating yet
another issue to consider when trying to implement a real-time controller.

Further work should also focus on improving the design of the mechanism.
In addition to the changes already suggested in Section 6.4, the parameters
that define the mechanism, e.g., spring linkage length, could be optimized.
This thesis presents several performance indices, such as minimum cable ten-
sion, arbitrary force exertion, and stiffness. Each of these can be used to
quantify the mechanism’s performance throughout its workspace. Depending
on the intended application of the mechanism, one or more of these indices
could be used as objective functions. Relative weighting of the indices would
vary by application, based on how important each is perceived to be. The goal
of such an optimization could be, for example, to find parameters that result
in a mechanism that maintains a minimum stiffness in a certain direction for
every pose within a subsection of its workspace.

Finally, an evaluation of the constructed prototype’s performance should
be completed. This would require measurement and experimental validation
of the indices (i.e., stiffness, force capabilities, etc. ) developed in this thesis.
If the intended purpose of the mechanism is to be used for pick-and-place
tasks then the accuracy, repeatability, speed and workspace are all critical
to its performance. After generating experimental data the tensegrity mech-
anism’s performance can be compared to that of established pick-and-place
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manipulators such as SCARA type serial manipulators or delta-bot parallel
manipulators. This comparison may reveal further improvements that could
be made to the design of the mechanism and establish the feasibility of real-
world applications of tensegrity mechanisms.

7.3 Conclusion

This thesis has shown that the reinforced triangular prism tensegrity mecha-
nism could potentially be used for real-world applications, such as industrial
pick-and-place operations. The simplistic actuation scheme results in 3-DoF
translational motions and easily computable solutions to the forward and in-
verse kinematic problems. The mechanism’s reachable workspace is large and
well defined, even when factoring in cable-linkage interferences and loss of
cable tension. The ratio of the workspace volume to the base footprint is
also comparable to some rigid link parallel mechanisms that are already in
use. The mechanism’s workspace is not obstructed by cables and could be
mounted above a work cell, rather than completely surrounding it like most
CDPMs must.

However, the mechanism has several drawbacks. The application of pre-
stress to the mechanism is highly dependent on the stiffness of the selected
torsion springs. Realistic stiffness values limit both the load capability and
dynamic abilities of the mechanism. It is also difficult to scale the torsion
spring design, to the point that torsion springs cannot supply sufficient pre-
stress for a mechanism much larger or heavier than the constructed prototype.
Additionally, the bending stresses within the torsion spring coils will cause fa-
tiguing and the springs will eventually need to be replaced. Another critical
component, the actuated cables, would also require frequent maintenance due
to wear from friction and winding.

Despite these limitations there remain many opportunities for further
study and optimization of this particular mechanism. Future work may also
give rise to better methods of applying prestress, which would solve most of
the mechanism’s shortcomings. Finally, the adapted methods presented in
this thesis, along with the solutions to the issues of physically implement-
ing a tensegrity-based mechanism, could be applied to similar mechanisms in
related studies.
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A Analysis of the Spring
Linkages

A.1 Kinematic Analysis

The pose of each spring linkage is fully determinate if the location of the end-
point, i.e., node Bi, is known. This is thanks to the selected directions of the
universal joint axes that connect each spring linkage to the mechanism base.
The links are oriented using the three angles θi, αi, βi as shown in Figure A.1.
Given the position, p, and orientation, Q, of the end-effector the location of
Bi is:

bi = p + Qb′i (A.1)

from which the three angles and their time derivatives can be calculated.

Calculating θi, θ̇i:
Consider the right-angled triangle formed by points Ci, Bi, and the
midpoint of line AiBi. One of this triangle’s angles is equal to θi such
that:

sin(θi) =
li/2

l0/2
=
li
l0

(A.2)

The length li =
√

(bi − ai)T(bi − ai), which is then substituted into the
equation to give the following expression for θi:

θi = asin

(√
(bi − ai)T(bi − ai)

l0

)
(A.3)

Squaring Equation A.2 gives:

s2θi =
1

l20
(bi − ai)

T(bi − ai) (A.4)
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αi

βi
γi

π − 2θi

Zi

Zpi

Zdi

Bi

Ai

Ci

Xi

Yi

Ypi

Ydi

Figure A.1: Definitions of the spring linkage leg angles.

which can be differentiate with respect to time, yielding:

θ̇i =
1

sθicθil20
ḃ
T

(bi − ai) (A.5)

where ḃi = ṗ+ω×Qb′i and ω is the angular velocity of the end-effector
in the global reference frame.

Calculating αi, α̇i:
The first axis of rotation for the universal joint at Ai is:

e1i =
k× ai
||k× ai||

(A.6)

and the second axis is normal to the plane that contains both e1i and
(bi − ai):

e2i =
e1i × (bi − ai)

||e1i × (bi − ai)||
(A.7)

The angle between the unit vector k = [0, 0, 1]T and the second axis of
rotation is the complementary angle of αi. It can be found using the dot

124



A.2. Static Analysis

product of the two vectors:

(e1i × (bi − ai))
Tk = cos(π/2− αi)

√
(bi − ai)T(bi − ai)

= sin(αi)
√

(bi − ai)T(bi − ai) (A.8)

from which αi is found to be:

αi = asin

(
(e1i × (bi − ai))

Tk√
(bi − ai)T(bi − ai)

)
(A.9)

Squaring both sides of Equation A.8 and taking the time derivative
yields:

α̇i =
1

2sαicαi

(
(e1i × (bi − ai))

Tk(e1i × ḃi)
Tk

ḃ
T
i (bi − ai)

)
(A.10)

Calculating βi, β̇i:
From Figure A.1, the angle between the line AiBi and the first joint axis
is equal to:

γi = π/2 + βi − (π/2− θi) = βi + θi (A.11)

and can be found by taking the dot product:

(bi − ai)
Te1i = cos(βi + θi)

√
(bi − ai)T(bi − ai) (A.12)

which can be solved for βi as follows:

βi = −θi + acos

(
(bi − ai)

Te1i√
(bi − ai)T(bi − ai)

)
(A.13)

If Equation A.12 is squared and differentiated with respect to time, then
β̇i can be found as:

β̇i = −θ̇i −
1

2s(βi + θi)c(βi + θi)

(
(bi − ai)

Te1i(ḃ
T
i e1i)

(bi − ai)Tḃi

)
(A.14)

A.2 Static Analysis

The static force exerted by each spring linkage was found using a 3D vector
approach. Vector definitions are included in Figure A.2 as a reminder. The
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A

B

C

mp

ms

md

e2

up

ud

e1

k

τ

u

Figure A.2: Vector definitions for the spring linkage

unit vectors e1, e2 represent the first and second axes of the universal joint at
node B. The reaction forces fA, fB, fC and the reaction moments nA,nB,nC
are at nodes A,B,C, respectively. Unit vectors up and ud represent the
direction of the proximal and distal links. The mass of the links are mp and
md, and their centres of mass are at their midpoints. The mass of the spring
joint is treated as a point mass of ms at node C. The gravitational vector
is g = [0, 0,±9.81]T, depending on the orientation of the mechanism with
respect to its base.

Taking a force and moment balance about the proximal link, shown in
Figure A.3, at node A gives the following two equations:

fA + fC +mpg +msg = 0 (A.15)

nA + nC −
1

4
l0up ×mpg −

1

2
l0up ×msg −

1

2
l0up × fC = 0 (A.16)

Likewise, a force and moment balance of the distal link about node C yields
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mpg mdg

msg

nCfC

nB

fB

fA
-fC-nC

nA

L0/4

L0/4 L0/4

L0/4

Figure A.3: Free body diagrams of the proximal and distal links.

another two equations.

fB − fC +mdg = 0 (A.17)

nB − nC −
1

4
l0ud ×mdg −

1

2
l0ud × fB = 0 (A.18)

The joint at node B is spherical and will not transmit any moments, there-
fore nB = 0. Equations A.17 and A.18 are rearranged to find expressions for
fC and nC :

fC = fB +mdg (A.19)

nC = −1

4
l0ud ×mdg −

1

2
l0ud × fB (A.20)

and then substituted into Equation A.16 to find an expression for nA in terms
of only fB.

nA = −1

2
l0 [fB × (up + ud)]− 1

2
l0g ×

[(
1

2
mp +ms +md

)
up +

1

2
mdud

]
(A.21)

The deflection of the torsion spring is known from the inverse kinematics,
from which the torque, τ , exerted on the revolute joint at node C can be
calculated. The axis of this joint is e2, which gives the following:

nT
Ce2 = τ (A.22)
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Substituting Equation A.20 for nC and rearranging gives:

(ud × e2)
T fB =

2

l0
τ −

(
1

2
mdg × ud

)T

e2 (A.23)

Similarly, the universal joint at node A will not transmit moments along
its axes leading to the following two identities:

nT
Ae1 = 0 (A.24)

nT
Ae2 = 0 (A.25)

Equation A.21 is substituted in place of nA and the identities are rearranged
to give:

[(up + ud)× e1]
T fB = −(g × e1)

T

[(
1

2
mp +ms +md

)
up +

1

2
mdud

]
(A.26)

[(up + ud)× e2]
T fB = −(g × e2)

T

[(
1

2
mp +ms +md

)
up +

1

2
mdud

]
(A.27)

Equations A.23, A.26, and A.27 form a system of equations that can be
solved for the force exerted by each spring linkage f i = fBi, i = 1, 2, 3, so long
as the linkages are not in singular poses, i.e., fully extended or folded.

f i =

 (udi × e2i)
T)

[(udi + upi)× e1i]
T

[(udi + upi)× e2i]
T

−1  2
l0
τi − (12mdg × udi)

Te2i
−(g × e1i)

T[(12mp +ms +md)upi + 1
2mdudi]

−(g × e2i)
T[(12mp +ms +md)upi + 1

2mdudi]


(A.28)

128


	Title Page
	Acknowledgements
	Abstract
	Résumé
	List of Tables
	List of Figures
	List of Symbols and Acronyms
	Introduction
	Robotic Manipulator Background
	Serial Manipulators
	Parallel Manipulators
	Cable-Driven Parallel Manipulators

	Tensegrity
	Structures
	Mechanisms

	Motivation and Scope of Thesis

	Development of a Tensegrity Mechanism
	Definition of Tensegrity
	Tensegrity Architecture
	Tensegrity Configurations
	Structural Analysis of Tensegrities

	Architecture Selection
	Tensegrity Prisms
	The Reinforced Triangular Prism

	Adaptation to Mechanism
	Mechanism Definition
	Actuation Scheme
	Application of Prestress


	Kinematic Analysis
	Position-Level Kinematics
	Numerical Solution to the Direct Kinematic Problem
	Analytical Solution to the Direct Kinematic Problem
	Analytical Solution to the Inverse Kinematic Problem

	Mechanism Jacobians and Singularity Analysis
	Mechanical Interference Between Components
	Interference Checking Method
	Generating the Set of Interference Free Poses

	Kinematic Workspace Boundaries

	Static Analysis
	Wrench and Matrix Analysis Techniques
	Force Capabilities
	Available Wrench Set
	Hyperplane Shifting Method
	Characterizing the Available Wrench Set
	Static Workspace Visualization

	Mechanism Stiffness
	Derivation of the Stiffness Matrix
	Stiffness Indices
	Stiffness Mapping


	Dynamic Analysis
	Development of the Dynamic Model
	Simulation Results
	Acceleration Limits

	Discussion

	Physical Implementation and Prototyping
	Issues with Physical Implementation
	Design Overview
	Spring Linkage
	Cable Winch

	Control and Calibration
	Discussion and Recommendations

	Summary and Conclusions
	Contributions of Thesis
	Chapter Summaries

	Recommendations for Future Work
	Conclusion

	Bibliography
	Appendices
	Analysis of the Spring Linkages
	Kinematic Analysis
	Static Analysis


