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Abstract

The radar cross-section (RCS) is a key parameter used to determine whether
or not an airborne target will be detected by a radar at a given range. The
accurate measurement of the RCS is of particular importance for the detec-
tion of miniature unmanned aerial vehicles (UAV) because the radar return
strength is low. Although the UAV’s RCS may be determined statically in an
anechoic chamber, it may be advantageous to measure it whilst the target is in
motion due to the greater resemblance with an operational environment. How-
ever, the dynamic measurement of RCS adds complexity to the measurement
system because of the requirement to track the UAV in-flight. Furthermore,
vibrations and moving parts modulate the return echo, which implies that the
RCS can only be characterized statistically.

This work describes the design of the Dynamic RCS Measurement System
used to measure the RCS of UAVs flying indoors. The results of measure-
ments of a test UAV and comparison with static measurements show that
the Dynamic RCS Measurement System is a viable option to investigate how
dynamic effects affect the RCS of a flying UAV and to compute probabilities
of detection.
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Résumé

La surface équivalente radar (SER) est un paramètre important pour déterminer
si une cible va être détectée par un radar à une certaine portée. La SER
est particulièrement importante pour la détection de petits drones, car la
puissance du retour radar est faible. La SER peut être déterminée statique-
ment dans une chambre anéchöıque. Il peut néanmoins être avantageux de la
mesurer lorsque la cible est mobile en raison de la plus grande ressemblance
avec un environnement opérationnel. Cependant, mesurer dynamiquement la
SER ajoute de la complexité au système de mesure en raison de la nécessité
de traquer le drone en vol. De plus, les vibrations et pièces mobiles du drone
modulent le retour radar. Ceci implique que la SER peut seulement être
caractérisée statistiquement.

Ce travail décrit le système de mesure de la SER dynamique qui est utilisé
pour mesurer la SER de drones volant à l’intérieur. Les résultats obtenus
en testant le système montrent qu’il est une option viable pour déterminer
l’impact des effets dynamiques sur la SER d’un drone en vol et pour calculer
des probabilités de détection.
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1 Introduction

1.1 Background

Recent years have seen a rise in the use of unmanned aerial vehicles (UAV).
They can be used for a multitude of civilian applications, including meteorol-
ogy studies, disaster relief, agricultural monitoring, and surveillance [2]. In
a military environment, a UAV may carry any type of light payload, from a
jammer to an explosive device, or may be used for reconnaissance [2].

Until recently, military organizations were primarily concerned with de-
tecting fixed-wing drones which have a radar cross section (RCS) comparable
to a manned vehicle. However, mini-UAVs are increasingly used to pene-
trate sensitive areas. Two examples are a ParrotTM AR.Drone landing a few
feet from the German Chancellor at a campaign event in 2013 and a DJI
PhantomTM quadcopter crashing on the White House lawn in 2015 [3].

The first step to counteract the mini-UAV threat is detection. Two ex-
amples of anti-UAV systems are the Falcon Shield from Selex ESTM and the
new counter-UAV system from AirbusTM Defense and Space that both use
radar detectors. However, because of their small radar cross-section (RCS)
and their ability to fly very low into the radar clutter, UAVs are difficult to
detect [4].

The probability of detecting a UAV at a given range is dependent on
the accurate knowledge of its in-flight RCS [5]. Curves of the probability of
detection versus the range may be used to select the radar configuration that
optimizes the probability of detection [6]. Conversely, these curves may be
used by a UAV operator to select an optimal route to avoid detection by an
enemy radar.

1



1.2. Problem Statement

1.2 Problem Statement

A current methodology to determine the RCS of a UAV is to measure the radar
return statically in a controlled environment such as an anechoic chamber.
Similarly, computer simulations may be used. However, UAVs are often built
using non-metallic parts, making simulating the RCS very costly in time and
computer memory [7]. Both methods, static measurement and simulations,
determine the RCS of the UAV statically, while it is at rest. The results may
not be representative of operational conditions due to airframe vibrations,
distortion and the rotation of engine parts [8].

The use of the static RCS to determine the probability of detection of a
UAV may result in inaccurate results [9]. Unfortunately, the measurement of
the in-flight RCS of a UAV requires tracking the target while it is airborne [6].
The added complexity of this method may prohibit its use. However, consid-
ering the low RCS of miniature UAVs, knowledge of the dynamic RCS may
be necessary to accurately determine the probability of detection and increase
the detection range to acceptable levels through optimal radar configuration.

1.3 Thesis Statement

The dynamic RCS of a mini-UAV may be significantly different than its static
RCS. The objective of this research is to build a system capable of measuring
the dynamic RCS of small UAVs and to use the system to measure the RCS
of the ParrotTM AR.Drone. The statistically characterized dynamic RCS will
be compared to measured and simulated static RCS values.

1.4 Methodology

As described in [9], the preferred way to obtain RCS measurements from a
target is in its operational environment. In the case of a UAV, this implies
measuring its RCS while it is flying. This requirement adds considerable
complexity to the measurement system because it also implies that the radar
must track the target simultaneously while measuring its RCS. Furthermore,
a mechanism must be in place to associate the measured RCS with the illu-
minated target aspect angle. To overcome both problems, a combination of
available radar technology and infrared tracking equipment will be used.

The first step of this thesis is to statically measure the RCS of AR.Drone
using conventional methods. Electromagnetic simulations and measurements
within an anechoic chamber will be used to determine the UAV’s RCS.

2



1.5. Thesis Outline

The second step is to design and build a new Dynamic RCS Measure-
ment System. The system will merge the LabVoltTM Radar Training System
(LVRTS) and the OptitrackTM Tracking Tool Infrared System using MatlabTM

scripts to measure dynamically the RCS of the ParrotTM AR.Drone UAV. The
infrared system will be used to track the UAV in-flight and determine the il-
lumination angle. The dynamic system will be validated by taking static
measurements of a stationary target that will be supported by a custom-made
low-RCS pylon. The results will then be compared with the RCS obtained
using conventional methods.

The third step of this thesis is the statistical analysis of the dynamic RCS
measurements of the UAV. Various statistical methods will be used to reduce
the data sets to useful results.

The final step is the comparison of the dynamically obtained RCS with
the static measurements. The data sets will be compared and conclusions will
be made as to the equivalence of both methods.

1.5 Thesis Outline

Chapter 2 provides an introduction to RCS. It presents the definition of the
RCS and how it is measured or simulated in a static environment. It discusses
how the RCS is modeled statistically with the use of a probability density
function (PDF). Then, it highlights the methodology used for dynamic mea-
surements. Finally, it shows how the RCS is used to compute the probability
that a target is detected by a radar as a function of range.

Chapter 3 describes the methods used to compute and measure the static
RCS of the AR.Drone using computer simulations and anechoic chamber mea-
surements. Results are presented and both methods are compared.

Chapter 4 presents the proposed Dynamic RCS Measurement System which
is used to dynamically measure the RCS of small UAVs in a laboratory envi-
ronment. Static measurements are taken and compared to anechoic chamber
measurements to validate the design.

Chapter 5 presents the configuration and calibration of the Dynamic RCS
Measurement System. Results obtained for a dynamic measurement campaign
of the AR.Drone are presented. Multiple statistical methods are used and
compared to obtain a PDF for the UAV and to compute its probabilities
of detection. Comparisons are also made between the static and dynamic
measurements.

Chapter 6 offers the conclusion of the thesis and presents areas of further
research in the dynamic measurement of a small UAV RCS.
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2 Literature Survey

2.1 Radar Cross-Section Definition

The RCS (σ) is a measure of the electromagnetic (EM) reflective strength of
a target. It can be thought of as the hypothetical area in square meters of
an isotropic radiator that would produce the same echo power at the radar as
the target [10]. It is defined as:

σ = lim
R→∞

4πR2 |
−→
E scat|2

|−→E inc|2
(2.1)

where
−→
E inc is the incident electric field evaluated at the target,

−→
E scat is the

scattered field evaluated at the radar and R is the range. The fact that the
range tends towards infinity implies that the incident and reflected waves must
be plane waves. However, a common approximation is to place the target in
the far field of the antenna, and vice versa [11]. Conceptually, the RCS is the
product of the geometrical cross section, the reflectivity, and directivity of the
target [12]. The RCS is a function of many factors including the target’s aspect
angle with respect to the incident wave, the frequency and the polarization.

If the radar transmitter and receiver are collocated, the RCS is called
monostatic, otherwise it is bistatic. The RCS is a key component of the
monostatic radar range equation:

Rmax = 4

√
PtG2λ2σ

Pmin(4π)3
(2.2)

where Rmax is the maximum detection range, Pt is the transmitted power, G
is the antenna gain, λ is the free-space wavelength and Pmin is the minimum
power detectable in the receiver [13]. The equation shows that the maximum
detection range is proportional to the fourth root of the RCS. As such, a
sixteen-fold increase of the RCS is necessary to double the detection range.
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2.2. RCS Simulation

2.2 RCS Simulation

A cost effective way to determine a target’s static RCS is to use numerical
methods embedded in simulation software [11]. The RCS is considered static
because the target is stationary, including its propellers and engine parts. Nu-
merical methods that solve Maxwell’s equations are called full-wave methods.
They are the preferred choice because they give an exact solution for the elec-
tric and magnetic fields. However, because of the high computational cost of
solving the equations, approximative methods have been developed in tandem.
This section will provide an overview of the different approaches used in this
thesis.

2.2.1 Full-Wave Method

The Finite Element Method (FEM) is a full-wave method that discretizes the
target space, including surrounding air, into a set of tetrahedrons. The un-
known quantities are the electric fields within each element. These fields are
approximated using a local function that, when substituted in the differential
form of Maxwell’s equations, transforms them into a linear matrix equation.
Because the resulting matrix is sparse, it can be solved using an efficient sparse
matrix solver. Reference [7] describes the technique and its implementation
into a commercially licensed computational electromagnetic (CEM) software
called HFSSTM. The main drawback of FEM is the need to model the sur-
rounding air. Because it is not possible to model an infinite quantity of air,
the target space must be terminated with an Absorbing Boundary Condition
(ABC). The complexity of the ABC will influence the final result. For ex-
ample, HFSSTM allows the user to choose between a first order ABC and
the Perfectly Matched Layer (PML). The choice of ABC is influenced by the
geometry of the target and has an impact on the computational load and
quality of the simulated RCS results. FEM is very robust and allows for the
simulation of complex dielectric materials [7].

2.2.2 High Frequency Asymptotic Methods

High-frequency asymptotic methods may be used when the incident wave-
length is at least 3 times smaller than the target dimensions [13]. These
methods do not compute exact solutions to Maxwell’s Equations, but are
based on approximations to reduce the computational loads. Although full-
wave methods are preferable, they are usually not feasible for complex targets,
hence the need for asymptotic methods.

5



2.3. Static RCS Measurements

Physical Optics (PO) is a current-based asymptotic method used to evalu-
ate the scattered fields for a perfectly conductive target. PO approximates the
currents at each surface mesh with those present when the surface is flat at the
point of incidence [10]. Furthermore, each mesh is treated in isolation. The
scattered fields are calculated using surface integration and Green’s free space
function. PO is most accurate for incident angles smaller than 30 degrees for a
perfectly conductive target [1]. Figure 2.1 shows the vertically polarized (VV)
RCS at 8 GHz versus the yaw angle of the POFACETsTM model helicopter
simulated using the free physical optics Software [14].

Figure 2.1: RCS versus yaw angle of a helicopter

2.3 Static RCS Measurements

Simulation allows the estimation of a target’s RCS efficiently and at low cost.
However, measurements are necessary to validate the results or to obtain
more realistic values that account for model simplifications and manufacturing
imperfections.

A common way of measuring the RCS statically is to mount the target
on a low-RCS pylon and rotate it with respect to an illuminating radar, as
shown in Figure 2.2. Returns are measured and the RCS is computed for
each aspect angle. To mitigate unwanted reflections from the background,
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2.3. Static RCS Measurements

Figure 2.2: Compact range anechoic chamber configuration for RCS measure-
ments [1]

measurements are often taken in an anechoic chamber. However, background
subtraction techniques may also be used instead, as described in [15]. The
RCS is considered static because the target is not in flight, which makes the
RCS deterministic.

Reference [16] describes the measurement concept when using the HP8510
Network Analyzer. With the HP8510 configured in swept frequency mode, the
transmit antenna is connected to port 1 and the receive antenna is connected to
port 2. For every frequency increment, a reading of the transmission coefficient
(s21) is made. Averaging is used for every frequency to increase the signal-to-
noise ratio (SNR). Because amplitude and phase are measured, it is possible
to take the Inverse Discrete Fourier Transform to obtain the time-domain
signal. Time-gating may then be used to remove clutter. A wider frequency
bandwidth corresponds to a shorter illuminating pulse, improving the range
resolution.

Despite the use of an anechoic chamber, unwanted residual reflections still
exist and must be removed by calibrating the equipment. A common way
to subtract the undesirable reflections is to measure the anechoic chamber
without the target and then to subtract the result from the measurements
using a vector subtraction [16].

To calibrate the chamber, the return from a reference object such as a
perfect electrical conductor (PEC) sphere of known RCS is measured and the
resulting transmission coefficient (s21) is associated with the theoretical RCS
value. The use of an anechoic chamber with precise calibration allows high
precision RCS measurements to be made of small targets with a network ana-
lyzer. As an example, a styrofoam column with a 3 inch radius was measured
30 dB above the noise floor between 0.6 and 4.6 GHz [16].
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2.4. Statistical Modeling of Static RCS

2.3.1 Inverse Synthetic Aperture Radar Imaging

Measurements using a vector analyzer within an anechoic room may also be
used to generate a 2-dimensional inverse synthetic aperture radar (ISAR)
image of the target. An inverse Fourier transform converts the measured
frequency-domain signal into the time domain. The target is then rotated and
the process is repeated. Once all time-domain signals have been acquired, a
spatial Fourier transform is used to produce a high-resolution image [17].

The cross-range resolution ∆Rcross−range in meters is given by:

∆Rcross−range =
λ

2∆φisar
(2.3)

where ∆φisar is the total variation of the target yaw angle in radians and λ
is the wavelength in meters that corresponds to the middle frequency of the
network analyzer frequency sweep [17].

The range resolution ∆Rrange in meters is given by:

∆Rrange =
1.95c

2∆f
(2.4)

where c is the speed of light in m/s and ∆f is the frequency sweep width of
the network analyzer in Hz [18].

Although the rotation of the UAV implies that the image coordinate sys-
tem is spherical, for small rotation angles ∆φisar, the small angle approxima-
tion may be used to form the image directly in Cartesian coordinates [19].

2.4 Statistical Modeling of Static RCS

The RCS of a static target is a deterministic function that varies significantly
with polarization, frequency and aspect angle. As can be seen from Figure 2.1,
the RCS as a function of aspect angle is a complicated function with a large
dynamic range. Furthermore, an operational radar does not know the exact
orientation of the target. Therefore the RCS is often treated as a random
variable in radar range calculations. The RCS histogram may be calculated
by counting the number of occurrences of each RCS value in the RCS func-
tion. Figure 2.3 shows the RCS histogram for the RCS function of Figure 2.1.
A probability density function (PDF) may then fitted to the histogram. An-
other approach is to use Maximum Likelihood Estimation (MLE) techniques.
Notwithstanding the approach to determine the PDF, the curve of Figure 2.1
can be simply represented by a set of PDF parameters (usually one or two,
depending on the type of PDF).
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2.4. Statistical Modeling of Static RCS

Figure 2.3: RCS distribution of helicopter

Radar returns are often coherently integrated to increase the signal strength
and minimize noise. However, the RCS PDF alone does not give an indica-
tion of how long returns may be integrated. The Auto Correlation Function
(ACF) provides that information. The combination of a PDF and ACF gives
the target fluctuation model [13].

2.4.1 The Probability Density Function of Fluctuating
Targets

To model complex targets, it is convenient to fit a PDF over the RCS distribu-
tion, thereby reducing the number of data points and easing further compu-
tations. Many PDFs may be considered for this, all of which are only defined
for positive RCS (σ > 0). A commonly used PDF is the Gamma PDF given
by:

p(σ; a, b) =
e

−σ
b σa−1

baΓ(a)
(2.5)

where σ is the RCS, a and b are free parameters and Γ is the Gamma func-
tion [13].
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2.4. Statistical Modeling of Static RCS

The Lognormal PDF is often used to represent the RCS of stealthy tar-
gets [20]. The PDF is given by:

p(σRCS ;µ, σ) =
1

σRCSσ
√

2π
e−

(lnσRCS−µ)2

2σ2 (2.6)

where σRCS is the RCS, µ is the location and σ is the scale. The symbol
σRCS is used solely in this equation to help distinguish the RCS from the
scale parameter. RCS measurements around the nose area of a F-4 Phantom
show that its RCS is best represented by the Lognormal PDF [9].

The Weibull PDF is also sometimes used to model targets [13]. The PDF
is given by:

p(σ;λ, k) =
k

λ
(
σ

λ
)k−1e−(σ/λ)

k
(2.7)

where λ is the scale and k is the shape parameter.
The Gamma, Lognormal and Weibull PDF have two free parameters.

Other PDFs like the Exponential only have a single parameter. The Ex-
ponential PDF is given by:

p(σ;β) =
1

β
e
−σ
β (2.8)

where β is the mean of the PDF [13]. The exponential PDF is used in the
Swerling Target Models [13].

Figure 2.4 shows the Gamma, Lognormal and Weibull PDFs with a mean
of 4 and a variance of 2.

Figure 2.4: PDF examples with same mean and variance
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2.4. Statistical Modeling of Static RCS

Selection of Best-Fitting PDF

Different PDFs may be used to statistically characterize the RCS of a target.
The likelihood function determines how well the data fits a PDF with given
parameters [21]. By maximizing the likelihood function, the most likely PDF
to have yielded the measurements may be selected. The likelihood function is
given by:

L(θp) =
n∏
i=1

p(σi; θp) (2.9)

where n is the number of measurements, σi are the measured RCS values that
we are seeking a PDF for and θp are the PDF parameters (for example, σ and
µ for a lognormal PDF).

The likelihood function should be computed for many different PDF type
(lognormal, Weibull, etc.). However, relying solely on the likelihood function
will usually result in the selection of the PDF with the most independent
parameters. To avoid over-fitting, the Akaike Information Criterion (AIC)
introduces a cost for each additional parameter used and is given by:

AIC = −2 lnL(θ̂) + 2q (2.10)

where L(θ̂) is the maximal value of the likelihood function and q is the number
of independent parameters [21]. To determine the most likely PDF for an RCS
distribution, we start by selecting the parameters of each desired type of PDF
(Gamma, Weibull, etc) by maximizing their respective likelihood function, and
then we compute the AIC for each PDF type. The PDF with the minimal
AIC score is the selected PDF.

For example, fitting different types of PDF on the RCS of the helicopter
of Figure 2.1 results in selecting a lognormal PDF with parameters µ of 0.437
and σ of 1.76. Table 2.1 lists the computed AIC values.

Table 2.1: PDF Fitting of the Helicopter Model

PDF Type AIC
Lognormal 1750

Gamma 1982
Weibull 1854

Exponential 2383
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2.4. Statistical Modeling of Static RCS

In this scenario, the cost of each additional parameter is low when com-
pared to the AIC score. However, the results of Section 5.3.1 will show AIC
scores more closely spaced for the AR.Drone.

Accuracy of Fit

The AIC score allows to choose a PDF and its parameters, but it is based on
a single number that does not provide an indication of how well the selected
PDF fits the data, just which one is best among a pre-selected list of candidate
PDFs. A quantile-quantile plot may be used to graphically judge how well the
data actually fits. Figure 2.5 plots the measured quantiles versus the quantiles
of the fitted lognormal for the POFACETsTM helicopter. For a perfect match,
the markers should be exactly aligned with the straight line. Despite being
the most likely PDF, the data fits the model well only for the smaller quantiles
and the correlation degrades for the higher quantiles. Thus, a low AIC score
doesn’t necessarily imply a good fit.

Figure 2.5: QQ plot of POFACETsTM helicopter

Sensitivity of Fit

The QQ plot allows one to visually determine how well the measurements
fit the selected PDF, but it does not give an indication of how sensitive the
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2.4. Statistical Modeling of Static RCS

parameter selection is. The likelihood ratio test (LRT) allows one to determine
a 95% confidence interval of the parameters of θp using the inequation:

−2 ln
L(θp)

L(θ̂p)
< χ2

(0.95;q) (2.11)

where L(θp) is the likelihood of the PDF with parameter vector θp (which

are swept), L(θ̂p) is the maximum likelihood estimate, q is the number of free
parameters of the PDF and χ2

(0.95;q) is the 95% percentile of the chi-square

distribution with q degrees of freedom [22]. If the PDF has a single parameter,
the inequation describes a curve, and if the PDF has two parameters, it defines
an area.

Figure 2.6 shows the LRT curve for the POFACETsTM helicopter. Because
the 95% percentile of the chi-square distribution with two degrees of freedom
is 5.991, the 95% confident confidence interval of the lognormal parameters is
an oval with µ between 0.2 and 0.65 and σ between 1.63 and 1.93.

The sensitivity of fit is important because it allows to determine confidence
intervals on the PDF parameters selection. If the interval is too wide, the
uncertainty will propagate to any value computed using the RCS PDF.

Figure 2.6: Likelihood ratio test of POFACETsTM helicopter for the lognormal
PDF
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2.4. Statistical Modeling of Static RCS

2.4.2 The Auto Correlation Function

Notes on Coherent Integration

Because the radar return power from a target diminishes as a function of the
fourth square root of the range, the SNR in the radar receiver tends to be
low. To increase the SNR, it is common to integrate (average) radar return
samples [13]. If the integration occurs before detection, it is called coherent
integration.

The fundamental principle of coherent integration is that the average noise
voltage will tend toward zero but the target echoes will add up constructively
to form a stronger echo. Figure 2.7 shows a possible integration strategy. A
range gate is defined as a complex sample of the radar return. Although the
number of pulses and range gates are arbitrarily set to three in the figure,
the concepts extend to different numbers. For a high range resolution RCS
measurement radar, the final value of Figure 2.7 would be the uncalibrated
RCS estimation of the target when it spans multiple range bins.

Figure 2.7: Coherent Integration

Coherent integration only works if the target echoes add coherently. This
only happens if the return phase does not change considerably while pulses are
integrated. However, the PDF of the RCS, alone, does not give any indication
of how fast the RCS phase changes over time as the UAV moves.

An Approximation to the ACF

Although the PDF allows one to estimate the probability that the target ex-
hibits a certain RCS value at a given sample, it must be complemented by the
Auto Correlation Function (ACF) to determine how many pulses the radar
can integrate coherently. The maximum integration time is called the Coher-
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2.5. Dynamic Radar Cross-Section Measurements

ent Pulse Interval (CPI) [13]. Decorrelation of the RCS may be induced by
changes in range, aspect angle and frequency. Although the CPI varies drasti-
cally from target-to-target, reference [13] shows the computation to determine
the change in aspect angle or frequency required to decorrelate the returns of
a uniform line of scatterers. It is assumed that the decorrelation angle cor-
responds to the first zero of the autocorrelation function. The decorrelation
angle, in radians, is given by:

∆φdecor =
λ

2Lscat
(2.12)

where Lscat is the length of the scatterers line array in meters.
Using this equation as a first order approximation, the POFACETsTM

helicopter with a length of 6 m has a decorrelation angle of 0.0025 rad at
10 GHz. Conversely, the time required for the helicopter echoes to become
decorrelated is the amount of time it takes for the aspect angle to change by
∆φdecor [13]. For the same helicopter flying at 100 km/h perpendicular to the
radar at a range of 1 km, pulses can be integrated for 90 milliseconds. This
time lapse allows significant integration at medium and high pulse repetition
frequencies (above 10 kHz) and increases with range.

The PDF and ACF are combined to form the target fluctuation model.
Both functions are necessary to compute the static probabilities of detection.
The computation of probabilities of detection will be discussed in Section 2.6.
The ACF will only be used in this thesis to ensure that the RCS is constant
during the integration time of the measurement radar.

2.5 Dynamic Radar Cross-Section Measurements

A moving or hovering target will suffer from vibration and deformation. The
Doppler effects and modulation caused by rotating propellers or engine parts
will occur as well. Because of these variations, the UAV’s RCS will not be
deterministic for a given aspect angle: it is random and will vary depending
on the flight profile, shape, position of the propellers, etc [9]. During the
static RCS measurement process, the target was only allowed to move in
three degrees of freedom (yaw, pitch, roll). Dynamic RCS measurements are
taken while the target is also moving in the x,y and z directions or hovering.
Detection theory predicts the probabilities of detection of any target most
accurately when dynamic RCS values are used for the calculation [9]. Using
static RCS values will result in inaccurate probability of detection, especially
for very high and very low signal to noise ratios [9].
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2.5. Dynamic Radar Cross-Section Measurements

Dynamic RCS measurements are made on a range with a radar tracking
the target as it moves [9]. The radar is initially calibrated with the return of
an object of known RCS σcal that is usually towed or dropped. The calibrated
dynamic RCS of the target σtarget is given by:

σtarget =
Ptargetσcal

Pcal

(
Rtarget
Rcal

)4

(2.13)

where Ptarget and Pcal are the power received when measuring the target and
calibration object and Rtarget and Rcal are the ranges. This is a comparative
method of calibration.

After calibration, the target maintains a flight profile while recording its
exact location and attitude using on-board electronics. On the ground, the
radar records the amplitude and time of each returned pulse. Finally, both
data sets are merged together to determine the RCS versus aspect angle.

Dynamic RCS measurement campaigns generate a substantial amount of
data that needs to be processed. The most common approach is to sort the
data in aspect yaw and pitch bins [9]. After enough RCS values have been
measured for a bin, it is possible to estimate the PDF of that bin. Reference [9]
suggests at least 100 measurements must be taken by bin, but does not justify
that number. This PDF will be used to calculate the probability of a radar
detecting the target at that aspect angle. This is different from the static RCS
where a single PDF is computed for the UAV. If the target is to maintain
a given trajectory that spans multiple aspect angle bins, the data can be
grouped together with surrounding bins to determine a combined PDF. A
practical example is the calculation of an air vehicle penetration range. For
that purpose, bins from the aspect angles around the nose are used to generate
the PDF.

No literature was found regarding how the bins should be combined for a
full-UAV PDF, especially considering that bins may have different numbers
of measurements within them. Furthermore, no literature was found on the
recommended width of the bins. However, it is common practice for RCS
specialists to average contiguous static RCS values to reduce the data set to
a few meaningful results. For example, RCS measurements between 0 and 10
degrees in yaw may be averaged to give a single RCS value. Angle width of 1
to 10 degrees are typically used [23]. This practice is similar to the grouping
in bins during dynamic measurements, and as such, a bin width of ten degrees
will be used during this thesis.
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2.5.1 Dealing with Below Detection Limit Measurements

A problem encountered in the dynamic measurement of RCS is that the equip-
ment may not be sensitive enough to measure the RCS of the target for all
possible ranges. For aspect angles with very low RCS or at great ranges, mea-
surement noise or clutter may mask the target return. Such a condition is
called left-censoring and is the result of a low signal-to-clutter and noise ratio
(SCNR). A possible way to deal with the issue is to store left-censored val-
ues. Left-censoring implies that some measurements are saved as equal or less
than a limit. For example, one might know that a specific RCS measurement
is lower than 10 dBsm, but not know the precise value. As a result, sample
statistics (mean, variance, percentiles) are not defined. This technique will be
used later in Chapter 5.

To determine the PDF within a bin that contains censored measurements,
equation (2.9) must be modified to account for censorship. The likelihood
function becomes:

L(θp) =
n∏
i=1

F (σi; θp)
1−δip(σi; θp)

δi (2.14)

where θp is the vector of parameters of the PDF, n is the number of measure-
ments, F (σi; θp) and p(σi; θp) are the cumulative distribution function (CDF)
and PDF and δi is 0 for a censored measurement, and 1 otherwise [22]. In the
case of a censored measurement, the value of the CDF is maximized because
the RCS is known to be less than the measured RCS. When the measurement
is not censored, the PDF is maximized as in Equation (2.9). The maximum
likelihood estimate can then be used to select a PDF based on the Akaike
Information Criterion of Equation (2.10).

Once a PDF is selected, it may be useful to determine its mean to plot
it against the yaw aspect angle. Whereas the static RCS was deterministic,
the dynamic RCS is a random variable and a confidence interval of the mean
may be computed. Computing confidence intervals for censored data requires
different techniques than for uncensored data because the sample mean and
variances are not defined in the traditional sense. El-Shaarawi derived an
approximation to the confidence interval of the lognormal mean in [24]. The
95% confidence upper bound is approximately:

η < η̂ exp (1.96
√
V ar(µ̂) + 2σ̂Cov(µ̂, σ̂) + V ar(σ̂)σ̂2) (2.15)

where η is the true mean of the population, η̂ is the mean of the PDF and
µ̂ and σ̂ are the scale and location parameters of the lognormal PDF fitted
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using the maximum likelihood method. El-Shaarawi conducted simulated ex-
periments in [24] showing the confidence interval to give intuitive results: the
interval narrows as the number of measurement increases and the proportion
of censored measurements diminishes. Only the lognormal case is investigated
because the results of Section 5.3.1 will show that the RCS of the AR.Drone
is well modeled by a lognormal PDF.

2.6 Calculation of Probability of Detection

Once the most likely PDF representing the RCS of the target has been selected,
it may be used to compute the probability of a specific radar detecting that
target at a given range in white noise. The generic method is described in [25]
and is summarized below.

The probability of detecting (PoD) a target depends on the amount of
energy reflected back towards the receiver, on the amount of noise in the
receiver and on the probability of false alarm that can be tolerated. The first
step is to find the probability of detection as a function of the average SNR
x̄.

The probability of detection is given by:

PoD(x̄) =

∫ ∞
0

Q(
√

2x,
√
−2 ln(PFA))p(x; x̄)dx (2.16)

where Q is the Marcum Q function, PFA is the probability of false alarm and
p(x; x̄) is the conditional PDF of the received signal power in the receiver that
depends on x̄ [25]. The PDF p(x; x̄) is based on the PDF of the target’s RCS,
but at different SNRs. For a lognormal target model, the integration must
be done numerically [25]. Figure 2.8 shows the probability of detecting the
POFACETsTM helicopter based on a fitted lognormal PDF.

Once PoD(x̄) is found, the detection range can be found by converting
the average SNR x̄ to a range using the radar range equation. To do so, the
noise power in the receiver must be known, along with all parameters of the
radar range equation. The range is given by:

R = 4

√
PtG2λ2σmean
x̄Pnoise(4π)3

(2.17)

where Pnoise is the power of the noise and σmean is the mean of the RCS PDF
of the target [12]. Figure 2.9 shows the POFACETsTM helicopter probability
of detection versus the range for a transmitted power of 1 W, a gain of 27 dB,
a wavelength of 0.0375 m and a noise power of 3 µW.
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Figure 2.8: Probability of detection (PoD) of POFACETsTM helicopter versus
average SNR

Figure 2.9: Probability of detection of POFACETsTM helicopter versus range
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2.7. Summary

The probability of detection is an operationally-relevant radar performance
metric that can be used to optimize the radar configuration. Different prob-
ability of detection curves may be traced for various radar frequencies and
polarization, and the configuration that increases the detection range for a
given probability of detection is chosen.

2.7 Summary

A review of various RCS measurement methods was provided. Computer
simulations may be performed by using full-wave or high-frequency asymptotic
methods. Although full-wave methods are preferred as they compute an exact
solution to Maxwell’s equations, high-frequency asymptotic methods may be
necessary to reduce the simulation time and memory requirements. Anechoic
chamber measurements may be required to obtain more realistic RCS values
or to validate simulation results.

Dynamic RCS measurements are taken in a range while the target is in
motion. The radar return and positional data are merged together to compute
the RCS of the target against the illumination angle and compensate for range
attenuation. The advantage of dynamic measurement is that target vibrations,
deformations and moving parts are accounted for, making the results more
operationally relevant.

Notwithstanding how the RCS data was obtained, statistical characteriza-
tion allows to compute the target RCS PDF. In turn, the PDF can be used
to compute probabilities of detection of the target by a known radar.
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3 Conventional Static RCS
Measurement Techniques

This chapter presents the results obtained by simulating and measuring the
static RCS of the AR.Drone using conventional methods. Section 3.1 describes
the physical dimensions and properties of the UAV, Section 3.2 shows the
results from computer simulations, and Section 3.3 describes the measurement
setup in the Royal Military College of Canada (RMCC) Anechoic Chamber
and presents the results.

3.1 The Parrot AR.Drone

The AR.Drone [26] is a quadcopter built by ParrotTM and is shown in Fig-
ure 3.1. It is chosen as a test drone due to its low retail price that makes
it a popular choice amongst hobbyists: the quadcopter that crashed at the
German Chancellor’s feet in 2013 was an AR.Drone [3].

Figure 3.1: The ParrotTM AR.Drone
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3.1. The Parrot AR.Drone

Figure 3.2 shows a computer model of the AR.Drone acquired from [27]
and defines the yaw and pitch angles that will be used to present the results.
The drone has a length L of 51.7 centimeter (cm) and a width W of 45.1 cm.
The front-facing camera, propellers and internal circuitry are protected by a
foam case. The drone movement is controlled via WiFi using the AR.Freeflight
application installed on a mobile device [26].

Figure 3.2: The ParrotTM AR.Drone axis definition

The AR.Drone used during the measurement campaigns has a modified
power system. The original battery is replaced by a Rotor RC Extreme Power
battery [28]. Due to the different sizes, the Rotor RC battery is placed on
top of the AR.Drone battery compartment as shown in Figure 3.3. The new
battery is secured using straps. Of importance is that the exact positioning
of the battery and its wires will vary during flight time, and between battery
replacements. Depending on the charge and overall condition (“health”) of
the battery, flight time averages five minutes.
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3.2. Computer Simulations

Figure 3.3: The AR.Drone modified battery holder (foam removed for illus-
tration purposes)

3.2 Computer Simulations

The simulation of the AR.Drone required a 3D model of the UAV. The model
was acquired from the GrabCADTM website (see ref [27]). The Electromag-
netic Simulation Software HFSSTM was used to perform the simulation [29].

The model from [27] is too detailed to run using the HFSS Finite-Element
solver (see Section 2.2). The simulation failed after filling the computer’s 16
gigabytes of random access memory. In order to simplify the simulation, parts
of the model were removed. Figure 3.4 shows what was left of the drone after
this simplification. The exterior shell of the AR.Drone was modeled by using
polystyrene and the front-facing camera was replaced by a PEC plate. The
engines were modeled using PEC as well and the electronics (circuit board,
wiring, etc) were simplified by using a PEC polyhedron. Finally, the pro-
pellers, gears, screws, styrofoam casings and plastic parts were all removed
from the model because their contribution to the RCS was assumed to be
negligible when compared to the modeled parts. The validity of this assump-
tion will be investigated in Section 3.3 by measuring the RCS in an anechoic
chamber.

The simulation was run using the HFSS physical optics solver (see Sec-
tion 2.2) instead of the FEM solver and the results are shown in Figure 3.5 for
a pitch angle (θ) of 90 degrees and an angular resolution ∆φres of 1 degree.
The RCS of the UAV varies significantly between −15 dBsm and −46 dBsm
depending on the yaw angle. The simulation required a peak volatile memory
allocation of 4.51 GB and 7 hours to complete.
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Figure 3.4: Simplified AR.Drone model

Figure 3.5: Static RCS simulation at 8 GHz VV
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3.3 Anechoic Chamber Measurements

The RMCC’s anechoic chamber was used to perform static RCS measure-
ments in the frequency domain. The measurement methodology was based on
Section 2.3. The transmit and receive antennas were placed 5.08 m from the
target pedestal. The angular offset between the center of the pedestal and each
antenna is 1.58 degrees, which is small enough to make the quasi-monostatic
approximation [11]. The AgilentTM Performance Network Analyzer PNA-X
N5244A was used to measure the continuous wave (CW) stepped frequency
signal. The transmitter swept from 5 to 11 GHz and a stepped frequency
sweep was selected, with a dwell time of 1 µs to allow for the local oscillator
to settle. To reduce the noise power, the IF bandwidth was set to 10 kHz.
With an averaging factor of 256 and by taking 401 measurements per sweep,
the single sweep time was maintained below 13 seconds, thereby reaching a
compromise between measurement time and sensitivity.

The calibration was performed using the built-in RCS calibration routine.
A 12-inch diameter metallic sphere was used as a calibration object, and the
results were verified using a 8-inch sphere. Figure 3.6 shows the theoretical
RCS of the 8-inch diameter sphere versus the measurements. The difference
between both RCS curves may be explained by multi-path effects between
the sphere and the pedestal. Diffraction at the edge of the RMCC anechoic
chamber pedestal was observed in [11] and the error levels are consistent with
the error observed in Figure 3.6, with a maximum error of less than 1 dB at
a level of -15 dBsm.

Figure 3.6: Anechoic chamber calibration verification using an 8-inch diameter
sphere
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The AR.Drone was then placed on the target pedestal and its RCS is
measured against the yaw angle φ. Because of the UAV’s assumed symmetry
about the x axis, φ was only varied from 0 to 180 degrees. This symmetry
will be used for the remainder of this thesis. Measurements at different pitch
angles θ were taken by increasing the height of the target pedestal. Each set of
measurements with a constant pitch angle θ is referred to as a slice. Figure 3.7
shows the VV RCS versus the yaw aspect angle for pitch angles θ of 90, 89.4
and 88.8 degrees. These angles were chosen because the target pedestal can
only be raised by increments of 5.5 cm.

Figure 3.7: Static VV RCS measurements at 8 GHz

The impact of the number of slices measured can best be illustrated by
computing its effect on the selected PDF. Figure 3.8 shows the PDF fitted
on the RCS measurements for the single broadside (θ = 90 deg) slice and
the amalgamation of the three slices at 8 GHz. Even if the pitch angle may
have a significant impact on the RCS for a given yaw angle, the effect of the
amalgamation of these three slices is very small on the PDF when compared
with the single broadside slice. This may be explained by the fact that the
number of sharp nulls and peaks is very consistent for the various pitch angles
close to 90 degrees, even if they appear at different yaw angles. Based on
these results, only the broadside slice will be measured or computed for the
remainder of this thesis.
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Figure 3.8: Impact of pitch angle illumination on PDF

3.3.1 Comparison with the Simulated RCS

The measured RCS shown in Figure 3.7 is different than the simulated RCS in
Figure 3.5. The difference may be explained by: the use of a high-frequency
asymptotic method in simulation, the simplification of the AR.Drone model to
reduce simulation time and memory usage, and the uncertainty of the material
parameters used for the different UAV parts.

The fitted PDFs for simulated and measured RCS at 8 GHz using a VV
polarization are shown in Figure 3.9. The overall marked difference between
both PDFs may be quantified by the 3 dB difference between their mean.

Figure 3.9: Simulated and measured RCS PDFs
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Based on the results of Figure 3.9, measurements are considered superior to
simulated results and will be used for the reminder of this thesis. Nevertheless,
simulation may provide an acceptable estimate of the RCS depending on the
application.

3.3.2 Notes on Angular Sampling Resolution

A factor affecting the accuracy of static RCS measurements is the yaw angular
resolution. To determine its impact on the AR.Drone, the RCS (amplitude
and phase) for yaw angles between 0 and 70 degrees is measured at a resolution
∆φres of 0.1 degree.

Figure 3.10 shows the frequency domain of the RCS angular signal at
8 GHz. As shown on the graph, the strength of the normalized FFT is −15.93
dB at −0.5 deg−1 and −16.91 dB at 0.5 deg−1. Therefore, by selecting an
angular resolution of one degree, which results in a Nyquist frequency of 0.5
deg−1, aliasing should not affect the data significantly. An angular resolu-
tion of 1/6th of a degree would almost remove aliasing completely,but would
increase the measurement time to an impractical duration. Based on those
results, an angular resolution ∆φres of 1 degree is used for this thesis when
taking static measurements.

Figure 3.10: Frequency domain of 8 GHz RCS measurement signal in anechoic
chamber
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3.3.3 Inverse SAR Imaging

The static measurements in the anechoic chamber may be used to generate
a two-dimensional ISAR image. Section 2.3.1 describes the image formation
process. The ISAR images will be used to determine the minimum range
to satisfy the far-field requirement in Section 5.1.3. Furthermore, they will
provide some insight as to the scattering mechanisms.

To validate the image formation algorithm of Section 2.3.1, a cylindrical
and a semi-circular target are placed on the foam pedestal of the anechoic
chamber, as shown in Figure 3.11. The 30-cm ruler is shown to better illustrate
the distances on the image and is removed during measurements. Both targets
are separated by 20 cm in range and 25 cm in cross-range.

Figure 3.11: Test case ISAR setup

The targets are rotated by 21 degrees to give a cross-range resolution of 5
cm. The anechoic chamber transmitter sweeps from 5 GHz to 11 GHz for a
range resolution of 4.88 cm. Figure 3.12 shows the inverse SAR radar image.
Both targets are clearly visible and separated by the correct distance.

The AR.Drone is placed on the target pedestal with the camera facing the
anechoic chamber transmitter (φ = 0). The same rotation is applied as for the
test case, resulting in the radar image of Figure 3.13. Clearly visible on the
image are the four engines, the camera and the body of the AR.Drone. The
most reflective part of the drone is the body with a peak distributed RCS of
−23.5 dBsm, followed by the camera at −26 dBsm. The return of the engines
is 5 dB below the return of the body. As such, most of the return is confined
within 10 cm in yaw.
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Figure 3.12: Test case ISAR image

Figure 3.13: ISAR image of the front of the AR.Drone
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The AR.Drone is then rotated 90 degrees so that its broadside faces the
transmitter (φ = 90 deg). Figure 3.14 shows the resulting radar image. Most
of the radar return is confined within twenty cm in yaw. The front engines
are barely discernible on the image because their RCS is very small at that
specific aspect angle. To confirm this result, the RCS of the front left engine is
measured in isolation in the anechoic chamber after having been removed from
the AR.Drone. Its RCS is measured at −27 dBsm when facing the radar in the
same position as in Figure 3.13 and −33 dBsm when it is in the same position
as Figure 3.14. The results are therefore consistent with the ISAR images.
Both ISAR images will be used in Chapter 5 to determine the minimum range
between the radar and the drone to satisfy the far-field requirement.

Figure 3.14: ISAR image of the side of the AR.Drone
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3.4 Summary

Conventional methods may be used to determine the static RCS of a target.
The first method, computer simulation, provides an approximation of the
RCS for which the accuracy depends on the accuracy of the model and the
chosen numerical method. The geometry and materials must be modeled with
great care. By using high-frequency asymptotic methods and by reducing
the complexity of the model, a first-order approximation of the RCS of the
AR.Drone is obtained (Figure 3.5).

The second method investigated consists in measuring the RCS of the
AR.Drone in an anechoic chamber. The results of Figure 3.7 differ from the
simulated RCS and both methods yield different PDF. Given the choice, one
should always choose measurement over simulation given that simulations re-
quire significant simplifications to accommodate computer speed and memory
limitations. Finally, ISAR imaging was used to investigate the scattering
mechanisms of the UAV. The results of Figure 3.13 and 3.14 show that the
most reflective part of the AR.Drone is its core.
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4 The Dynamic RCS
Measurement System

Conventional RCS Measurement techniques measure the target RCS while
it is at rest. Although the results are precise and repeatable, there are no
guarantees that they accurately represent the RCS of the target in flight.
To determine the RCS of a drone in an operational environment, it must be
measured dynamically.

Measuring the dynamic RCS requires some way of tracking the target
whilst its RCS is being measured by the radar. Furthermore, the target at-
titude (aspect) must also be known so that the RCS is recorded against the
illumination angles φ and θ. A radar and a positioning system are therefore
necessary.

Typical dynamic measurement ranges are located outdoors due to the need
for sufficient space to fly the target. However, in the case of mini-UAVs,
indoor ranges are much more convenient. Power is readily available for the
equipment, drones may be flown indoors without being affected by winds, and
high frequency radars are small enough to fit within a room. For these reasons,
the indoor range was chosen for the Dynamic RCS Measurement System.
Unfortunately, indoor ranges cannot benefit from the global positioning system
(GPS) to determine the UAV position and on on-board electronic to determine
its attitude so different technology must be used.

The chosen approach to measure the dynamic RCS leverages systems that
are already available in the Department of Electrical and Computer Engi-
neering. Two independent systems will be integrated, namely the LabVoltTM

Radar Training System (LVRTS) [30] and the OptitrackTM infrared camera
tracking system [31].

This chapter provides a general description of the Dynamic RCS Measure-
ment System and its components. Whether the system is capable of measur-
ing the RCS of the AR.Drone accurately and precisely depends on the UAV’s
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physical and dynamic characteristics and on the system’s configuration. This
analysis is reserved for Chapter 5.

4.1 System Overview

A UAV is flown by an operator and optically tracked by the OptitrackTM

Tracking Tools camera system, allowing for the determination of the UAV’s
physical location, pitch, yaw and roll. The position and attitude of the UAV
are streamed in near real-time to the Radar Processor MatlabTM program
through a network connection. At the same time, the UAV is illuminated by
a modified LabVoltTM Radar Training System. The radar antennas are steered
using a MatlabTM program called Turret Controller. The Turret Controller
interacts with a custom-built turret. The radar return pulses are captured
from the radar using an oscilloscope, integrated (Figure 2.7) and sent to the
Radar Processor via a network connection. The return pulse strength is then
recorded and the RCS is computed. The RCS and positional information are
then merged by the Radar Processor, allowing to associate the RCS with the
illumination angles. The results are then saved for later statistical processing.

Figure 4.1 graphically shows the interactions of the different system compo-
nents. All components in yellow are custom-designed and built. Components
in white are configured appropriately.

Figure 4.1: Conceptual design of the Dynamic RCS Measurement System
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4.2 The OptitrackTM Tracking Tools System

The OptitrackTM System provides real-time position and orientation of the
UAV. It is composed of 24 ceiling-mounted infrared cameras arranged in a
rectangle as per the floor plan of Figure 4.2. The cameras are connected via
USB to a computer running the OptitrackTM Tracking Tools software [31].
The software determines the orientation and position of the UAV every 10
milliseconds and streams it in near real-time on the Ethernet network via the
Natnet protocol [31].

Figure 4.2: Floor plan of the Dynamic RCS Measurement System

Before data collection, three motion capture markers are placed on the
UAV in a non-symmetrical fashion. The markers are detected and tracked
by the software. The non-symmetry is required to ensure that the yaw, pitch
and roll angles are uniquely defined. The operator then groups markers to-
gether via Tracking Tools software to form a trackable: the UAV. Figure 4.3
presents a screenshot of the Tracking Tools software with two trackables: the
antenna turret in brown and UAV in green. The antenna turret is represented
solely for the reader’s situational awareness and is not necessary during system
operation.
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Figure 4.3: Tracking Tools Software

Tracking ToolsTM converts the trackable into a rigid body. The position
and orientation of the rigid body are determined and streamed via the pro-
prietary Natnet protocol. The information streamed includes the rigid body
position (x, y, z) and the quaternions (qx, qy, qz, qw). New positional data
is generated by the system 100 times per second with a averaged latency of
8 ms. The information is accurate within 1 cm in position and 1 degree in
orientation.

Placing markers on the UAV implies that its RCS will be slightly modi-
fied. Each marker is a sphere with a diameter of 11 mm. Assuming a worst
case scenario where the marker is perfectly conducting, its analytical RCS is
−34.78 dBsm (3.3 cm2) at 8 GHz. The Dynamic RCS Measurement System
is therefore restricted to measuring UAVs that have an RCS greater than that
value. Considering that the markers are made of plastic and not metal, this
threshold is very conservative.

4.3 The Radar System

The LabVoltTM Radar Training System (LVRTS) is used as the system’s radar.
Its transmitter is configured to output a 5 nanosecond pulse with a pulse
repetition frequency of 288 Hz. The range trace length is selected as 7.2 m
and the carrier frequency may be selected between 8 and 10 GHz as desired
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by the operator. The coherent receiver performs time expansion [30] and the
2-channel (I and Q) received signals are sampled by a Tektronix DPO4104
oscilloscope [32]. The exact oscilloscope configuration depends on the target
and is described in Section 5.1 for the AR.Drone.

The LVRTS peak transmitter output power is typically 0.5 dBm [30].
To increase the signal-to-noise ratio, the Mini-CircuitTM ZVE-3W-183+ high
power amplifier [33] is placed between the transmitter and antenna; thereby
increasing the peak transmitted power to 35.5 dBm [33]. Considering the duty
factor of the LVRTS and the size of the transmitting antenna, the power den-
sity at the antenna aperture is 1.36 W/m2, well below the limit of 10 W/m2

set in Health Canada Safety Code 6 [34].

Figure 4.4: LabVoltTM Radar Training System

4.4 The Custom Antenna Turret

At the core of the antenna turret is the Quanser motion testbed [28]. The
turret has an azimuthal range of motion of 190 degrees, allowing it to see
the whole flight area. Its elevation range is between −45 and 45 degrees.
The testbed’s servomotors are controlled by two Agilent Function Generators,
Model 33210A [35], connected to the measurement system’s Ethernet network.
Each waveform generator controls either the yaw or pitch of the turret using
pulse width modulated (PWM) signals. The turret includes two EMCO Model
3160-07 horn antennas [36] in a quasi-monostatic arrangement and a webcam
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connected via USB to the Turret Controller. The antennas and webcam are
mounted on a custom-designed 3D-printed structure placed on the platform
of the HiQ Motion Testbed. A Vizatek model MPS-3005L [37] provide DC
power for the turret servos. A picture of the turret is shown in Figure 4.5.

Figure 4.5: Custom antenna turret

The antenna pattern beamwidths are measured using a six-inch diameter
calibration sphere. The six-inch sphere is chosen over a 12-inch diameter
sphere to ease the far field requirement and over a 3-inch diameter sphere to
increase the SNR. The sphere is static but the turret is rotated one degree at
a time in azimuth and elevation. The results are shown in Figure 4.6. The
-1 dB power beamwidths are 7 degrees in pitch and 12 degrees in yaw. The
elevation pattern is less smooth than the azimuth pattern; which may be due
to reflection from the ceiling. Although the multi-path reflection from the
floor is removed by placing microwave absorber (see Section 4.5), it was not
possible to place absorber on the ceiling due to mechanical difficulties. The
suitability of the antenna patterns depends on the target size and is discussed
in Chapter 5 for the AR.Drone.
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Figure 4.6: Power antenna patterns

4.5 Floor Absorber

The impact of radiated energy bouncing off of the floor and illuminating the
UAV is investigated. Figure 4.7 shows the geometry of the target and radar
antenna. As in [38], assume that the monostatic RCS of the direct path and
the bistatic RCS of the indirect path are the same. Furthermore, from the
EMCO 3060-7 antenna specifications, an antenna pattern loss of 10 dB for
the indirect path is defined. The analytical RCS is expected to be [38]:

σ = σ0|1 + UΓ exp(jβ(I −D))|4 (4.1)

where σ0 is the monostatic RCS, U is the antenna pattern loss at the angle
towards the floor, Γ is the ground reflection coefficient, β is the wavenumber,
and D and I are the direct and indirect path length respectively. Using this
equation, the normalized (σ0 = 1) measured RCS as a function of the target
height is plotted, as shown in Figure 4.8 (without absorber curve).

Based on these results, it is imperative to remove the ground bounce to
avoid such a high variation of the measured RCS as a function of the UAV
height. To do so, the ground must be covered with absorbing material. How-
ever, because the UAV maintains a low altitude during measurements, its
flight stability is affected by changes in the shape of the floor, a phenomenon
known as ground effect [39]. Since the UAV may fly over the absorbing ma-
terial, it is not possible to use wedged absorber. Therefore, the AN-77 flat
absorber [40] is used. Based on the specifications of the AN-77 absorber, a
20 dB reduction off the signal strength reflected on the ground is expected,
resulting in the normalized measured RCS of Figure 4.8 (with absorber curve).
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Figure 4.7: Typical ground bounce geometry

Figure 4.8: Normalized measured RCS
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A variation of 0.015 dBsm based on the UAV height is deemed acceptable
for the dynamic RCS measurement system.

4.6 The Turret Controller

The custom antenna turret is controlled using a Matlab program called Turret
Controller running on a laboratory computer. The system allows for either
an operator to track the UAV with a joystick while relying on the webcam
image, or for the turret to track the UAV automatically with the help of the
OptitrackTM data. Figure 4.9 shows the automatic tracking block diagram.
The algorithm is an open-loop controller that requires the operator to initially
center the turret on the target, allowing the controller to determine a set of
reference duty factors (DFs) against current azimuth and elevation angles. As
the target moves, azimuth and elevation offsets are determined and new DFs
are computed. The specifications of the Motion Testbed servomotors state
that a 0.0286 change in the duty factor of the PWM input of the servos is
required to change the turret orientation by one degree [41]. However, visual
inspection of tracking data shows that the turret tends to under-estimate the
required shift to track the UAV at this value. A value of 0.0295 visually
reduces the tracking error. The effect of tracking errors on the measured RCS
is investigated in Section 5.2.6.

The maximum change in duty factor is capped at a value determined by
the operator. This restriction is necessary to reduce vibrations in the turret
and the impact of possible errors in the OptitrackTM data.

A coordination message is sent to the Radar Processor in order to take
measurements only when the turret is centered on the target. The Turret
Controller updates the turret position every 100 ms. It is up to the operator
to select a radar integration time lower than this value so that the turret does
not move during the integration time (see Section 5.1.2 for the AR.Drone).
The Turret Controller communicates via Ethernet with the waveform function
generators and the Radar Processor by using the Matlab Instrument Control
Toolbox [42].
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Figure 4.9: Automatic tracking algorithm
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4.7 The Radar Processor

The Radar Processor is a MatlabTM program with a custom-designed graph-
ical user interface that collects the data from the radar and OptitrackTM

systems and saves it for later processing. More precisely, the Radar Processor
saves the target attitude, the radar range, the optical range (distance between
the target and radar as measured by the OptitrackTM system) and the mea-
sured RCS. A screen-shot of the user interface is shown in Figure 4.10. The
measurement algorithm is shown in Figure 4.11.

Figure 4.10: Layout of the Radar Processor graphical user interface

The Radar Processor allows the operator to specify limits on the UAV
height, range and speed. Radar returns for situations falling outside of those
limits are ignored. This is useful for avoiding regions of heavy clutter, but also
ensures the radar integration time does not violate the UAV’s ACF as given
by Equation (2.12). Another advantage is that it speeds up the measurement
campaign. As shown in Figure 4.11, the Radar Processor performs those
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checks before downloading the radar return, which is the longest operation
performed in the measurement cycle. It is more efficient to perform these
checks during the data acquisition than in post-processing.

Figure 4.11: RCS measurement sequence
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4.7.1 Background Subtraction

In a controlled environment like an anechoic chamber, unwanted reflections
from the walls, floor and ceiling are removed by covering them with radio ab-
sorbent material (RAM). The laboratory space of Figure 4.2 is an uncontrolled
environment because it is not completely covered by RAM, and unwanted re-
flections from the room clutter will induce an error on the measured RCS if
they are not properly accounted for. A possible way to deal with unwanted
reflections is to save the radar return of the empty room and to perform a
vector subtraction with the radar return obtained with the target present.

The Radar Processor is capable of removing unwanted reflections from the
room by using a background subtraction technique. The radar returns of the
empty room for any user-defined turret orientations are saved in memory and
a vector subtraction is performed on the radar returns measured when the
target is present. For turret orientations falling in between saved empty room
traces, the nearest neighbour and bilinear interpolation techniques may be
used to determine the unwanted reflections to subtract to the measured radar
return.

Background subtraction is not a perfect technique as it is not effective
against multi-path returns [23]. The radar pulse incident on the target may
bounce on it and then on the room clutter or vice-versa, before returning
towards the radar receiver. These unwanted multi-path reflections are not
removed by background subtraction because they did not occur when the
target was not present. Furthermore, the presence of the target modifies
the back-wall illumination [23]. Nevertheless, these changes to the empty-
room radar return usually appear later in range than the target due to the
increased travel distance of multi-path reflections. The pulse length used by
the Dynamic RCS Measurement System and the size of the laboratory space
allow to reduce the impact of multi-path reflections on the measured RCS
by time-gating the return. The Dynamic RCS Measurement System time-
gating is implemented during target detection and is explained in the following
section.

4.7.2 Detection and RCS Measurement

The output of a time-domain RCS measurement depends on the pulse width.
Two cases are typically considered in the literature: when the target is much
smaller than the pulse width and when it is much bigger than the pulse width.

When the target is much longer than the pulse width, the target is never
fully illuminated by the incident wave and a steady state (continuous-wave)
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approximation is not possible. However, the improved range resolution per-
mits the identification of different scattering centers and mechanisms, and the
processing of radar images of the target. Figure 4.12 shows the time-domain
return of an 8-inch diameter sphere from a radar with a 0.325 ns pulse width
measured inside the RMCC anechoic chamber. The x-axis is converted from
time to distance by using pulse delay ranging [12]. The radar return is split
into a specular and creeping waves, as expected from the theory [13].

Figure 4.12: Measured radar return of 8-inch sphere (0.325 ns pulse)

Typical military search radars have a pulse width in the micro-seconds
range [43], making potential targets much smaller than the pulse width. Fig-
ure 4.13 shows the time-domain return of a 6-inch diameter sphere when il-
luminated by a radar with a 5 nanoseconds pulse. Because the pulse width
is significantly longer than the target length, the returned power stabilizes
at a constant value once the target is fully illuminated and induced currents
reach steady state, making a continuous-wave approximation possible. To
compute the RCS, the returned signal is sampled once the target is fully illu-
minated [44]. The smaller the object is when compared with the pulse width,
the smaller the transient response will be when compared with the constant
plateau. Operational radars have no way of knowing when a target is fully il-
luminated, but because the transient response is significantly shorter than the
steady-state, it is usually assumed that measurements are consistently taken
during steady-state.
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Figure 4.13: Measured radar return of 6-inch sphere (5 ns pulse)

The LVRTS’s pulse width may be adjusted between 1 and 5 nanoseconds.
However, because of the expected small RCS of UAVs, a 5 nanoseconds pulse
is necessary to increase the SNR to acceptable levels. The 5 nanosecond pulse
width does not allow sufficient range resolution to identify scattering centers
or to build radar images. Neither is the pulse long enough to ensure that the
UAV is fully illuminated: induced currents will still be in a transient mode.
As such, the Dynamic RCS Measurement System unfortunately falls between
both categories of time-domain analysis.

Because radars aimed at detecting mini-UAVs require a good range reso-
lution, a relaxation of the continuous-wave (steady-state) requirement of RCS
measurements is made, and the transient response is not disregarded. The
Dynamic RCS Measurement System performs a cross-correlation of a square
pulse and the returned power signal obtained by adding the squares of the
in-phase (I) and quadrature (Q) channels of the receiver. The square pulse
has a length of:

Lpulse = 0.75 + Ltarget (4.2)

where Lpulse is the correlation pulse length in meters and Ltarget is the max-
imum dimension of the UAV in meters. The value 0.75 is obtained by com-
puting the pulse length of a 5 pulse and dividing by two because of the pulse
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delay ranging. The maximum of the correlation is the raw RCS value. The
calibrated RCS value is obtained using Equation (2.13). This measurement
scheme has the advantage of providing a good measure of how much energy
is truly returned towards the radar for typical operational environments.

RCS Measurement Example

An example of detection and RCS measurement is shown. The raw RCS value
measured by the Dynamic RCS Measurement System is computed using:

σ = max[rect ∗ pr] (4.3)

where pr is the received power, rect is a rectangular pulse of length given by
Equation (4.2) and “∗” is the cross-correlation operand. The received power
pr is given by:

pr = I2 +Q2 (4.4)

where I and Q are the in-phase and quadrature-phase channels, respectively.
Suppose the radar receives the return shown in Figure 4.14 when measuring

the RCS of a target.

Figure 4.14: Received power versus range

Because the expected maximum target size is 0.15 m, Equation (4.2) is
used to determine that the rectangular pulse rect, shown in Figure 4.15, has
a length of 0.9 m.
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Figure 4.15: Square pulse used for RCS measurement convolution

Figure 4.16 shows the result when performing the cross-correlation of both
signals, pr and rect. The measured uncalibrated (raw) RCS is the maximum
of the curve, in this case 4.242 m2 at a range of 2.907 m. Equation (2.13) may
then be used to obtain the calibrated RCS.

Figure 4.16: Measured RCS versus range
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4.8 The Statistical Analyzer

The Statistical Analyzer is a custom-written MatlabTM program used by the
operator to perform a statistical analysis of the RCS data collected by the
Radar Processor. The program has a graphical user interface and most sta-
tistical parameters are user-selected.

4.8.1 Intra-Bin PDF

The first task of the Statistical Analyzer is to determine a PDF to accurately
represent the data within a user-defined aspect angle bin. To do so, the script
fits an optimal Lognormal, Exponential, Weibull and Gamma PDF to the data
by maximizing the likelihood function as described in Section 2.4.1. Then the
scripts selects the PDF with the minimal AIC using equation (2.10).

The parameters, mean, variance and percentiles of the selected PDF are
then provided to the user. Because the data is left-censored, the sample
statistics (mean, variance, percentiles) of the raw data cannot be provided.

To graphically show the goodness-of-fit of the PDF with respect to the
raw data, a quantile-quantile (QQ) plot is shown using the Michael-Shucany
method [45] with a constant of 3/8, yielding a graphic similar to Figure 2.5.
The QQ plot allows the operator to determine how well empirical quantiles
correspond to expected quantiles of the fitted PDF. The goodness-of-fit is
especially important when making statistical predictions of the UAV’s RCS.
For example, a probability of detection that relies on the occurrence of high
RCS values requires a good estimation of the tail, which is difficult when
fitting data to a heavy-tailed PDF like the lognormal because the tail might
be under-sampled.

As described in Section 2.5.1, RCS measurements may be left-censored. If
the radar range and the optical range disagree by more than some user-defined
threshold, the Statistical Analyzer considers that clutter has been measured
instead of the UAV. In this case, the measured RCS value fed to the PDF
fitting algorithm is less than the RCS of the detected clutter. The Matlab
scripts used to determine the maximum likelihood parameters of the PDF
based on censored measurements can be found at reference [46].

4.8.2 Full UAV PDF

Once a PDF is selected for every user-defined bin, a PDF to represent the
whole UAV is sought. Four methods are investigated and presented within
this thesis. As mentionned in Section 2.5, no literature was found on this
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topic. Results of the four methods will be presented in Section 5.3 when
measuring the AR.Drone.

The Single Bin Method

The first method consists of approximating that all measurements were spread
uniformly around the target, which is equivalent to considering that all aspect
angles of the UAV are grouped in a single bin. A PDF is fitted over all
measurements as was the case for the intra bin PDF. The advantage of this
method is a simplified statistical analysis. The disadvantage is that the RCS
from some aspect angles may have been measured more often, resulting in
the skewing of the final result. To determine how well the selected PDF fits
the measurement, the Michael-Shucany method of QQ plotting is used [45].
Confidence intervals for the PDF parameters may be computed using the
likelihood ratio test (see Section 2.4.1).

A PDF of Bins’ Median, Mean or Mode

To remove the skewing of the full-UAV PDF towards the RCS of the bins
observed the most, the second method selects the median, mean or mode of
the intra-bin PDF as the bin’s representative. All the representative values
are then grouped together and a PDF is fitted over the dataset. This method
has the advantage of simplicity, yet the variance of the final PDF will be
reduced due to the averaging within each bin. This will artificially lower the
probability of detection for low SNRs.

If the bin’s representative is the mean and the intra-bin PDF is lognormal,
a 95% confidence interval on the means can be obtained by using El-Shaarawi
normal approximation of Equation (2.15).

A PDF for the Average of Lognormal Random Variables

If we can approximate that the PDF within each bin is lognormal, refer-
ence [47] shows that the sum of their underlying random variable may be
approximated by using a lognormal PDF with good results. This method
may be adapted to model the average of lognormal random variables instead
of the sum and thus provide a PDF for the full UAV.

Let Xi be the lognormal random variable that represents the RCS in the ith

bin. Define the random variable Y that represents the RCS of the overall UAV.
The location and scale parameters µfull uav and σfull uav of the lognormal PDF
of Y are sought. The approach is based on [47] with slight modifications of
the nomenclature. For clarity purposes, the RCS is represented by the letter
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y in the following derivation and the hat operator (ˆ) is used to specify an
estimator.

For k equiprobable bins, the random variable Y is defined as:

Y (y) =
k∑
i=1

1

k
Xi(y;µbini , σbini) (4.5)

where µbini andσbini are the location and scale of the lognormal random vari-
able Xi modeling the RCS of the ith bin.

The random variables Y may be approximated by a lognormal random
variable Ŷ by matching the Moment Generating Functions (MGF) of both
sides of equation (4.5). We are seeking the values of µfull uav and σfull uav
that minimize the error ε given by:

ε(y) = Ŷ (y;µfull uav, σfull uav)−
k∑
i=1

1

k
Xi(y;µbini , σbini) (4.6)

The MGF is given by:

ψ(s) =

∞∫
0

exp(−sy)p(y)dy (4.7)

Replacing p(σ) with the definition of the lognormal PDF, we obtain:

ψ(s) =

∞∫
0

exp(−sy)
1

σY
√

2πy
exp−(ln(y)− µY )2

2σY
dy (4.8)

where µY and σY are the location and scale of the underlying lognormal PDF.
We perform the change of variable given by:

z =
ln(y)− µY√

2σY
(4.9)

and use the Gauss-Hermitte integration to obtain the MGF of the left-hand
side of Equation (4.5):

ψ̂(s) =
N∑
n=1

wn√
π

exp(−s exp(
√

2σY an + µY ) (4.10)

where an and wn are the Gauss-Hermitte abscissas and weights for the order
N .
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Because the Xi are statistically independent, the MGF of the right-hand
side of equation (4.5) is the product of the MGF of the operands. We obtain:

ψ̂(s;µfull uav, σfull uav) =
k∏
i=1

ψ̂i(s;µi, σbini) (4.11)

where ψ̂ is defined in equation (4.10), σbini is the scale of the ith bin lognormal
RV and µi is given by:

µi = µbini + ln(1/k) (4.12)

where µbini is the location of the ith bin lognormal RV.
In order to solve for µfull uav and σfull uav in (4.11), two values of s are cho-

sen and a system of two equations with two unknowns,µfull uav and σfull uav,
is obtained. The choice of the values of s is discussed in [47], with the au-
thors suggesting values of 0.001 and 0.005 to better approximate the head of
the CDF (low RCS values) and 1 and 0.2 for the tail of the CDF (high RCS
values).

Generating Points based on Bins’ PDF (Monte Carlo)

The fourth method consists of using Matlab to generate an equal number of
values for all bins by using the computed intra-bin PDFs. A full-UAV PDF is
fitted on the combination of all generated values. Because each bin now has
the same number of values, bins that initially had more measurements are not
favored. However, this method relies on Matlab’s ability to generate random
points based on each intra-bins PDF.

4.9 RCS Measurement System Validation

This section aims to validate the system’s detection and measurement of the
RCS by comparing static measurements with the results obtained in the ane-
choic chamber. To do so, a modification is made to the Dynamic RCS Mea-
surement System to take static measurements.

4.9.1 Modified Dynamic RCS Measurement System

In order to take static measurements using the Dynamic RCS Measurement
System, the UAV is placed on a custom-made target stand that rotates in yaw
by increments of one degree. The rotation is controlled via a Motion Testbed,
just like the custom antenna turret. Figure 4.17 shows the AR.Drone on the
custom-made target pedestal. The Motion Testbed is slightly visible between
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the absorber and the UAV. Vectorial background subtraction is used to remove
the contribution of the target stand and background.

Figure 4.17: AR.Drone on custom-made target pedestal

Table 4.1 shows the parameters of the lognormal PDFs fitted on the static
measurements using the Modified Dynamic RCS Measurement System and
the anechoic chamber. Due to the assumed symmetry of the AR.Drone, mea-
surements were only taken at yaw angles φ between 0 and 180 degrees.

Table 4.1: Static VV measurement campaign results

LVRTS Anechoic
Frequency [GHz] µ σ µ σ

8 −4.62 0.85 −5.17 1.39
8.5 −4.57 0.94 −4.74 1.33
9 −4.64 0.89 −4.61 1.26
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4.9.2 Comparison Between Static Modified Dynamic RCS
Measurement System and Anechoic Chamber Results

Figure 4.18 shows the static RCS versus yaw angle of the AR.Drone using
both measurement methods at 8.5 GHz using a vertical polarization.

Figure 4.18: Static RCS measurements at 8.5 GHz

The results show good agreement between the curves with a mean differ-
ence of 0.8 dB and a linear correlation coefficient of 0.6. This implies that
the Dynamic RCS Measurement System is capable of accurately measuring
RCS. The sharp nulls measured in the anechoic chamber are not visible when
using the modified Dynamic RCS Measurement System due to the presence
of more thermal noise and the smaller dynamic range. The impact of the lack
of sharp and deep nulls on the LVRTS curve is discussed in Section 5.4. Fur-
thermore, the weight of the AR.Drone makes the Motion Testbed tilt slightly
depending on the yaw angle, which in turn modifies the pitch angle. Finally,
the measurements in the anechoic chamber were taken in the continuous-wave
frequency domain whereas the UAV was illuminated by a pulse when using
the Dynamic RCS Measurement System and never reached the steady-state
as described in Section 4.7.2.
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4.10 Summary

The Dynamic RCS Measurement System was designed to merge real-time
positional data of the UAV with its radar return. The OptitrackTM infrared
camera tracking system is used to track the UAV and the LabVoltTM Radar
Training System to measure the RCS. MatlabTM was chosen to interface both
systems and save the results.

The measurements are then statistically characterized using MatlabTM to
compute a single full-UAV PDF of the RCS. Four methods may be used to
compute the PDF and their differences will be investigated in the next chapter.

To validate the system, static measurements were taken using a modified
Dynamic RCS Measurement System and compared with anechoic chamber
measurements. The results from both methods show good correlation and
the differences may be explained by the greater sensitivity of the anechoic
chamber, variations of the pitch angle and the different RCS measurement
methodology. Overall, the Dynamic RCS Measurement System seems appro-
priate to measure the RCS of mini-UAVs.
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5 Dynamic RCS Measurements

This chapter presents a measurement campaign aimed at dynamically measur-
ing the RCS of the ParrotTM AR.Drone using the Dynamic RCS Measurement
System described in Chapter 4. Sections 5.1 and 5.2 present the configuration
and calibration of the measurement system, whereas Section 5.3 presents the
results. Finally, static and dynamic results are compared in Section 5.4.

5.1 System Configuration

The Dynamic RCS Measurement System has been designed and built such
that the operator has control over many system parameters related to data
collection and analysis. Different targets, environments and the desired pre-
cision lead to different configurations. This section describes how the system
was configured to measure the dynamic RCS of the AR.Drone in particular
and explains the rationale behind the decisions.

5.1.1 Radar Settings

To ease the detection of the UAV’s radar return, the pulse width is maxi-
mized to 5 nanoseconds. The range span is also maximized to 7.2 m so that
the UAV is never out-of-range within the room. With this range span, the
range resolution is 0.7 cm. The PRF was set to the highest value available
from the LVRTS, 288 Hz, because a high PRF has the effect of speeding up
measurement campaigns, reducing the coordination error between the optical
system and the radar and improving the SNR for a given radar integration
time. Table 5.1 summarizes the configuration of the radar.
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Table 5.1: Radar configuration

Pulse Width 5 ns
PRF 288 Hz

Frequency 8-10 GHz
Range Span 7.2 m

5.1.2 Tektronix DPO4104 Oscilloscope

The DPO4104 oscilloscope is set to a sampling rate of 2.5 megasamples per
second and a record length of ten thousand samples, allowing the visualization
of the full range span on a single trigger event. At this sampling rate, the range
bin length is 0.83 mm. The radar I and Q channels are sampled in channels
1 and 2 respectively. Channel 3 samples the radar PRF clock and triggers on
a rising edge. Channels 1 and 2 are AC coupled to remove any DC bias from
the radar whereas channel 3 is DC coupled.

5.1.3 Radar Processor

UAV Range and Altitude

The minimum range is driven by the custom antenna turret beamwidth and
far-field requirements.

With a beamwidth of 12 degrees in yaw and a maximum cross-range dimen-
sion of 0.68 m (the diagonal of the AR.Drone), the minimum range should be
3.25 m for the UAV to be fully within the −1 dB bandwidth of the custom an-
tenna turret. However, the extremities of the AR.Drone are mostly composed
of air, styrofoam and parts of the plastic propeller. A finite-element simula-
tion (see Section 2.2) was performed to determine the RCS of the 20-cm long
propeller using the model of Figure 5.1. The ABC used for the simulation
is a PML. Figure 5.2 shows the propeller’s RCS against the yaw angle at 8
GHz using a VV polarization. The RCS is, at most, −39 dBsm. Even if
the contribution of the four propellers were added in phase at that maximum
value, the RCS would be no higher than −33 dBsm. This simulation implies
that the maximum dimension of the UAV can be approximated by removing
the propellers. The maximum dimension of the AR.Drone then becomes 36
cm (the distance between diagonally-positioned propeller engine). Because of
these results, the minimum range could be reduced to 1.7 m.
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Figure 5.1: Computer model of the AR.Drone propeller

Figure 5.2: Simulated static RCS of the AR.Drone propeller at 8 GHz

Far field requirements state that the UAV must be in the far-field of the
transmitter and that the receiver must be in the far field of the UAV. The far
field distance df in meters is given by:

df =
2D2

λ
(5.1)

where D is the maximum cross-range dimension of the antenna or target [11].
With a width of 0.076 m, the far-field distance of the transmitting antenna

is 0.35 m at 9 GHz. However, with a UAV width of 0.36 m, the far field distance
from the UAV is 7.77 m. Nonetheless, the ISAR images from Section 3.3.3
may be used to reduce the far-field distance. Radar images from the front
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and broadside of the AR.Drone (see Figures 3.13 and 3.14) show that the
most reflective parts of the UAV are within 20 cm in cross-range. As such,
the minimum far-field distance becomes 2.4 m. Based on these results, a
minimum range of 2.5 m is selected.

The maximum range is determined by visual inspection of the room clutter.
By moving the turret manually, it was determined that significant side-wall
clutter appears at a range of 5 m, making it the maximum allowable range of
the UAV.

To minimize the clutter return from the floor and ceiling, radar returns
are not processed if the UAV altitude is not between 0.5 and 2.5 m.

UAV Dynamics

To determine the maximum allowable UAV velocity given the chosen radar
integration time of 55.6 ms, the approximate AR.Drone ACF is computed.
The longest dimension of the drone is 0.68 m. By using equation (2.12) at 9
GHz, a decorrelation angle of 0.0245 radians (1.4 degrees) is obtained. For a
drone flying at a constant speed perpendicular to the line of sight of the radar,
the maximum change of aspect angle will occur when the target is closest to
the radar. Using a minimum distance of 2.5 m, a cross-range distance of
0.06 m is computed. This amounts to a maximum allowable UAV speed of
1.08 m/s. Figure 5.3 highlights the geometry behind this result. In order to
account for concurrent variations in yaw, the maximum speed is limited to 0.3
m/s.

Figure 5.3: Decorrelation calculation
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Detection

Detection is performed as explained in Section 4.7. The length of the correla-
tion pulse is 1.43 m, as given by Equation (4.2) with the maximum dimension
of 0.68 m of the AR.Drone. If the radar and optics range differ by more than
0.4 m, the RCS is saved as a censored measurement. This value represents
a compromise between accounting for timing errors between the optical and
radar systems and obtaining the highest possible amount of uncensored data
for post processing.

5.1.4 Turret Controller

The Turret Controller is set to track the UAV automatically using the OptitrackTM

data, without input from the operator.

5.2 Calibration

In addition to configuring the system appropriately, various sub-systems of the
Dynamic RCS Measurement System must be calibrated to ensure consistent
results. This section provides the necessary details and procedures related to
calibration.

5.2.1 I/Q Balancing

The LVRTS is a coherent radar and, as such, requires precise calibration of its
I and Q channel gain to ensure that they match precisely. Mismatched I and
Q gains would result in the measured RCS becoming a function of the range.
A way of calibrating the channel gain is to move a target and adjust the gain
in each channel so that the measured RCS is constant notwithstanding the
range to target. However, moving the target would imply that other sources of
errors, such as tracking errors, may become an issue. To remove those errors,
I/Q balancing is performed by electronically delaying the radar return signal
using the Colby Instruments CPDL100a Programmable Delay Line [48]. The
schematics of the modified system is shown in Figure 5.4.

Figure 5.4: Schematic of modified system for I/Q calibration
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Delays between 0 and 160 ps are used and the I/Q ratio is adjusted to
obtain the smallest variance in the measured RCS. Figure 5.5 shows the RCS
of a six-inch sphere as a function of the delay after I/Q balancing. The result
has a maximum variation of less than 1 dB.

Figure 5.5: RCS versus delay of a 6-inch sphere at 8 GHz

The variations in the measured RCS may be explained by the gain variation
of the CPLD100 versus the delay. Measurement of the transmission coefficient
s21 of the CPLD100 versus the delay reveals that the gain varies by 1 dB
depending on the delay. The remaining variations of the sphere’s RCS may be
attributed to thermal noise and a slight variation in the room return depending
on the delay.

Section 5.2.6 will further examine the impact of I/Q balancing on the
measured RCS of a six-inch diameter sphere.

5.2.2 Custom Antenna Turret Boresight Calibration

Boresight calibration is necessary to ensure that the UAV is tracked at the
maximum of the antenna pattern. As discussed in Section 4.4, the boresight
calibration is not overly sensitive due to the −1 dB beamwidth being seven
degrees in elevation and twelve degrees in azimuth. However, when detecting
objects of small RCS like the AR.Drone in a cluttered environment, maximiz-
ing the turret gain increases the SNR.

The boresight calibration is performed by manually scanning the turret in
elevation and azimuth and measuring the power return of a six-inch sphere.
The turret is aligned with the sphere by seeking the turret position of maxi-
mum return. Once the custom antenna turret is aligned with the sphere, the
sphere is removed and replaced by the UAV and the Turret Controller begins
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tracking the drone as discussed in Section 4.6. Figure 5.6 shows the Turret
Controller during boresight calibration.

Figure 5.6: Turret boresight calibration

5.2.3 Power Calibration

To calibrate the power levels measured by the radar, an object of known RCS
(for example a six-inch metallic sphere) is measured first, and the UAV’s RCS
is calculated based on this known value using Equation (2.13). Background
subtraction is used to remove the return of the pedestal and the room.

To determine the accuracy of the power calibration, the RCS of a 3-inch
diameter metallic sphere is measured. The analytical RCS of the 3-inch sphere
is 0.0042 square meters (−23.8 dBsm) at 8 GHz. An RCS of 0.0044 square
meters (−24.5 dBsm) is measured using the Dynamic RCS Measurement Sys-
tem. This result confirms that the power calibration is acceptable given the
error of 2 square cm (−37 dBsm). This 5% error is acceptable given the RCS
of the AR.Drone measured in the anechoic chamber. As shown in Figure 3.7,
the expected RCS of the AR.Drone is roughly between −12 and −25 dBsm,
with only 8 measurements falling below −25 dBsm. The −37 dBsm error is
16 times smaller than that threshold.
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5.2.4 Radar Range Trace Calibration Using Optitrack Data

The LVRTS does not provide the absolute range associated with each radar
return sample. In order to build a radar range axis, it is necessary to use the
OptitrackTM System. The same process is used as for the power calibration.
Infrared markers are placed on the six-inch sphere and background subtrac-
tion allow to accurately determine the location of the sphere on the radar
trace. This location is then correlated with the range measured using the
OptitrackTM data. Because the oscilloscope provides the time of each sam-
ples, other bins’ range may be computed. Building an accurate radar range
axis is necessary to determine if the measured RCS of the in-flight UAV is
censored.

5.2.5 Room Background Subtraction

As mentioned in Section 4.7, background subtraction is performed by saving
range traces of the empty room against the duty factors (DF) of the azimuth
and elevation controller of the custom turret and then performing a vector
subtraction during the measurement campaign. Each set of DF represents a
turret pointing angle. However, the Motion Testbed has shown during exper-
imentation a slight slippage of the servos, which means that sending the same
duty factors to the turret at different times may result in a slightly different
turret orientation. This impedes the use of background subtraction during
in-flight measurements and forces the operator to only fly the UAV in areas
of low clutter within the room.

To fix this issue, a replacement of the Motion Testbed by a more pre-
cise radar-grade turret would be necessary. For the AR.Drone measurement
campaign, background subtraction was not used for in-flight measurements.

5.2.6 Calibration Validation

In order to ensure that the system is configured and calibrated correctly, a
variance test is performed. The six-inch sphere and its pedestal are man-
ually moved throughout the room and automatically tracked by the Turret
Controller. The RCS is measured for every position. This test determines
whether the automatic tracking is working correctly and verifies that the I
and Q channels are balanced. Figure 5.7 shows the measured RCS at 8 GHz
wih a VV polarization versus the range. Note that each measurement was
taken at a different turret pointing angle.

The maximum error is 29 cm2 (−25.7 dBsm), but the mean error is only
11.3 cm2 (−29.6 dBsm). Just as was the case for the power calibration, this
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error is deemed acceptable to proceed with the measurement campaign of the
AR.Drone due to the lower threshold of −25 dBsm that is expected. Further-
more, because statistical processing requires a high number of measurements,
the impact of the error is minimized.

Figure 5.7: Measured RCS of six-inch sphere versus range for random pointing
angles at 8 GHz

5.3 Results

The measurement campaign was performed at the Royal Military College of
Canada (RMCC) in the Fall of 2015. Measurements were taken at 8, 8.5, 9
and 9.5 GHz using VV polarization and at 8.5 GHz only using HH polariza-
tion. The measurement for each frequency and polarization took on average
half a day, including the calibration time. Because the AR.Drone is assumed
symmetrical, data was only collected for yaw angles φ between 0 and 180
degrees. This section highlights the results from the campaign.

5.3.1 Investigation of Full-UAV PDF Computation
Techniques

The various ways of computing the full-UAV PDF described in Section 4.8.2
are investigated by using the data set at 8 GHz with a VV polarization as
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an example. The data set contains 1455 measurements, of which 393 are
censored. The smallest uncensored measurement is −26 dBsm. However, the
amount of clutter varies widely depending on the turret position, as evidenced
by a censored −10 dBsm measurement.

Figure 5.8 shows the number of measurements per yaw angle. There are
more measurements between 80 and 90 degrees than at other angles, leading
to an expected bias of the PDF towards the RCS around broadside.

Figure 5.8: Measurement distribution for 8 GHz VV campaign

The Single Bin Method

By using the single bin method, the PDF with the smallest AIC is a lognormal
with a µ of −3.94 and σ of 0.69. The lognormal AIC is −5216 and the second
best fit, a Weibull distribution, has an AIC of −5084. The fitted lognormal
distribution represents the dynamically obtained RCS of the AR.Drone for
the specific flight pattern that was flown during measurements.

Figure 5.9 shows the QQ plot between the expected quantiles of the fitted
lognormal distribution and the measured quantiles. The PDF represents the
measurements well until the 99th percentile, with an error of 53 cm2 at that
percentile.
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Figure 5.9: QQ plot of 8 GHz VV measurements

A PDF of Bins’ Mean

Using yaw angle bins of ten degrees and no binning in pitch, the RCS mean
of the lognormal PDF fitted within every bin is plotted against the yaw angle
φ in Figure 5.10. The percentiles are those of the fitted PDF within each
bin and the 95% confidence interval is based on Equation (2.15). The RCS is
maximized at broadside (φ = 90 deg) with a mean of −13 dBsm and at the
front (φ = 0 deg) and tail (φ = 180 deg) of the UAV with means of −15 and
−14 dBsm, respectively.

In Figure 5.10, it was assumed that the intra-bin PDF is lognormal. How-
ever, only in 9 of the 18 yaw bins does the lognormal PDF minimizes the AIC.
Table 5.2 shows the PDF that minimizes the AIC within each bin and its AIC
score.

Despite the fact that the lognormal PDF is only chosen for 50% of bins,
its AIC score in the bins where it is not selected is typically close to the score
of the selected PDF, making the approximation acceptable.
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Figure 5.10: Fitted RCS versus yaw angle of 8 GHz VV measurements

Table 5.2: Intra-bin selected PDFs

Bin Selected PDF AIC AIC Difference With Lognormal
0-10 Weibull −336 7
10-20 Gamma −226 3
20-30 Lognormal −263 -
30-40 Lognormal −196 -
40-50 Lognormal −127 -
50-60 Gamma −201 1
60-70 Gamma −359 1
70-80 Lognormal −369 -
80-90 Gamma −418 3
90-100 Lognormal −217 -
100-110 Weibull −136 3
110-120 Gamma −364 4
120-130 Lognormal −417 -
130-140 Lognormal −332 -
140-150 Lognormal −199 -
150-160 Lognormal −317 -
160-170 Gamma −292 2
170-180 Gamma −348 1
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The mean from each bin of Figure 5.10 is used to generate a full-UAV PDF.
The fitted PDF is again best approximated by a lognormal with a µ of −3.76
and σ of 0.31. Based on these values, it is clear that the variance of the PDF
is smaller than the variance of the PDF computed with the single-bin method.
Furthermore, because a PDF is fitted to a small sample size (18 samples), the
standard error on the estimated parameters is increased. Figure 5.11 visually
shows the distribution of means in blue and the fitted PDF in red, highlighting
the effect of the small sample size.

Figure 5.11: Distribution of bins’ mean for 8 GHz VV measurements

A PDF for the Average of Lognormal Random Variables

The full-UAV RCS is computed using the average of lognormal random vari-
ables of Section 4.8.2. With a Hermitte Integration Order of 10 and using the
abscissa values of 0.001 and 0.005 to better approximate the head of the RCS
PDF, a lognormal PDF with a µ of −4 and a σ of 0.71 is obtained. These
fitted parameters are close to the parameters obtained using the single bin
method.

Generating Points based on Bins’ PDF (Monte Carlo)

The Monte Carlo analysis described in Section 4.8.2 is performed by generating
50000 points per bin based on a lognormal PDF fitted within every ten degree
yaw bin. The result is approximated as a lognormal PDF with µ of −3.94 and
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a σ of 0.66. The results are close to the single bin and average of lognormal
random variable methods.

Comparison of Full-UAV Methods

Table 5.3 shows the full-UAV parameters for the four different techniques and
Figure 5.12 shows the PDFs graphically.

Table 5.3: 8 GHz VV lognormal PDF parameters

Method µ σ
1. Single-bin -3.94 0.69

2. Bin’s Mean -3.76 0.31
3. Average of Lognormal PDFs -4 0.71

4. Monte Carlo -3.94 0.66

Figure 5.12: RCS PDFs for 8 GHz VV measurements
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With the exception of the PDF of bins’ mean, the remaining three methods
yield a very similar PDF. This result highlights the fact that the PDF of bins’
mean method should not be used to generate a full-UAV PDF, as it reduces
the variance significantly compared to the other methods. Furthermore, the
single-bin method should not be used as it does not account for the flight
trajectory during the measurement flight in the generation of a full-UAV PDF.
During this measurement campaign, the induced error on the full-UAV PDF
of the AR.Drone is reduced because the measurement distribution between
each bin of Figure 5.8 is fairly flat, which may not be the case for another
measurement flight. Furthermore, the AR.Drone is uniformly shaped, with
RCS variations due to aspect angle much lower than expected for different
UAVs, which reduces the impact of the flight pattern on the measured RCS.
As such, the average of lognormal PDFs and Monte Carlo are recommended
when computing a full-UAV PDF. However, the Monte Carlo method will
be used for the following analysis because it does not necessarily make the
assumption that the PDF within every bin is lognormal.

Notes on the Required Number of Measurements Per Bin

The results from the previous section assume that a sufficient number of mea-
surements were taken within each bin to fit a representative PDF. The min-
imum number of measurements within a bin in Figure 5.8 is 51 between 140
and 150 degrees in yaw.

Figure 5.13 shows the QQ plot of the fitted PDF within that bin. The
measurement quantiles are very close to the expected quantile, meaning that
the PDF represents the measurements well.

The QQ plot of Figure 5.13 allows one to determine if the selected PDF
fits the measurements well but does not reflect how sensitive the maximum
likelihood estimation of the PDF parameters is. The likelihood ratio test
described in Section 2.4.1 may be used to construct an approximate 95%
confidence interval on the parameters. Figure 5.14 shows a contour plot of the
test result for the data within the bin. The innermost circle represents the
boundaries of the 95% confidence interval because the 95th percentile of the
chi-square distribution with two degrees of freedom is 5.991. From Figure 5.14,
µ can vary between −4.4 and −4.08 and σ between 0.32 and 0.57. To tighten
the area, more samples would be required.
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Figure 5.13: QQ plot of measurements between 140-150 degree in yaw

Figure 5.14: Likelihood ratio test for the 140-150 degree yaw bin
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Figure 5.15: Likelihood ratio test for the single bin method

The confidence interval of the single-bin method is shown in Figure 5.15
with the innermost circle representing the boundaries of the 95% confidence
interval. From Figure 5.15, µ can vary between −3.98 and −3.89 and σ be-
tween 0.65 and 0.72. The confidence interval is much narrower due to the
increase in the number of measurements. Nevertheless, the single-bin method
should not be used because the fitted PDF models very accurately the RCS
of the UAV during the measurement flight, but poorly infers the RCS of the
drone during another flight due to the lack of aspect angle information.

5.3.2 RCS at Different Frequencies

The full-UAV PDF computed using the Monte Carlo Method for different fre-
quencies are shown in Figure 5.16 and their parameters are listed in Table 5.4.
The yaw bin width is 10 degrees and the number of Monte-Carlo generated
points per bin is 10000. Measurements were taken using a VV polarization.
The original 8.5 GHz data set contains 2588 measurements, of which 795 are
censored and the 9 GHz data set contains 1998 measurements, with 997 cen-
sored. Both data sets contain a minimum of 100 measurements per bin.

The 8.5 GHz PDF is the highest for RCS values below 0.01 m2. Between
RCS values of 0.01 and 0.041 m2, the 8 GHz PDF is highest, followed by the 9
GHz PDF above 0.041 m2. Based on the results, choosing the radar frequency
is not a trivial task.
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Figure 5.16: Monte-Carlo generated PDFs of VV measurements

Table 5.4: VV PDF parameters

Frequency (GHz) µ σ
8 −3.94 0.66

8.5 −4.16 1.01
9 −3.98 0.89

Probability of Detection for Different Frequencies

To determine the optimal radar frequency, the single-pulse probability of de-
tection given the RCS PDFs of Table 5.4 is computed using the method de-
scribed in Section 2.6. Of note, the resulting probabilities of detection are
based on different calibrations to account for radar parameters like the gain
that vary with frequency. The probability of detection curves of Figure 5.17
are obtained for a probability of false alarm of 10−8.

For ranges below 11.25 m, the highest probability of detection is obtained
at 8 GHz. However, the probability of detection is highest at 8.5 GHz beyond
11.25 m. The selection of the optimal frequency may be based on the needs
of the operator. An optimization strategy may be the highest range for a 90%
probability of detection for a single pulse. Based on this criteria, the selected
frequency would be 8 GHz.
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Similarly, binary integration may be factored. Figure 5.18 shows the prob-
ability of detection of a 3 of 8 receiver [13]. Based on the curves, the radar
should again be tuned at 8 GHz. The advantage of the binary integrator in
this scenario is the increase of the 90% detection range from 8.25 to 10.25 m.

Finally, an operator might be interested in the probability that a target
will be detected after N pulses. The cumulative probability of detection PoDc

is given by:
PoDc = 1− (1− PoD)N (5.2)

where PoD is te single-pulse probability of detection [12]. Figure 5.19 shows
the curves for a cumulative probability of detection of ten pulses. In this case,
the optimum frequency for a 90% probability of detection is 8.5 GHz, with a
detection range of 13 m. Although the full-UAV RCS PDF for the 8.5 GHz
measurements is more skewed towards the left than the PDF at 8 GHz, it
has a greater variance. This implies that at low SNRs (high ranges), the high
variance will increase the probability of detection because it is more likely that
a high RCS will be presented to the radar. This is evident from Figure 5.19
which shows the cumulative probability of detection for ten pulses. Even if
the 8.5 GHz detection range was on average lower for a single pulse than at 8
GHz, it is now the highest for most probabilities of detection.

Figure 5.17: Single pulse VV probability of detection
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Figure 5.18: Probability of detection for a 3 of 8 detector

Figure 5.19: Cumulative probability of detection for 10 pulses

These results show that precise knowledge of the RCS distribution is cru-
cial for computing the probabilities of detection for various radar configura-
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tions, and that results may sometimes appear counter-intuitive. For example,
tuning the radar at 8.5 GHz instead of 8 GHz leads to a 2 m decrease in the
single-pulse 90% probability of detection range, which corresponds to a 20%
reduction.

5.3.3 RCS at Different Polarizations

In addition to choosing a frequency, it is usually possible to vary the polariza-
tion of the radar to improve target detection. By rotating the antennas on the
custom turret, measurements were taken at 8.5 GHz using HH polarization.
The resulting PDF parameters are displayed in Table 5.5.

Table 5.5: Monte-Carlo generated 8.5 GHz PDF parameters

Pol µ σ Mean [dBsm] Var [dBsm2]
HH −4.55 0.90 −18.0 −35.03
VV −4.16 1.01 −15.9 −29.29

The full-UAV single-pulse probability of detection based on the Monte
Carlo method is shown in Figure 5.20. It shows the UAV is easier to detect
using a VV polarization.

Figure 5.20: Single-Pulse Probability of detection curves at 8.5 GHz
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The higher VV RCS seems counter-intuitive due to the longer horizontal
dimensions of the AR.Drone. To confirm the results, a ISAR image of the
front of the UAV is generated with measurements inside the RMCC anechoic
chamber and is shown in Figure 5.21. When compared with the VV results
of Figure 3.13, it is evident that the peak RCS is lower by examining and
comparing the color scales. Furthermore, the front of the UAV is the area of
highest RCS and the core reflects very little.

Figure 5.21: HH ISAR image of the front of the AR.Drone

The process is repeated for the side of the AR.Drone and shown in Fig-
ure 5.22. The overall shape of the return is similar to Figure 3.14 but the
strength is diminished and the cross-range dimension is longer.
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Figure 5.22: HH ISAR image of the side of the AR.Drone

Impact of Clutter on Polarization Selection

It is expected that a higher amount of radar clutter in the room will result in
an increase in the proportion of censored measurements during a campaign.
Therefore, a count of the number of censored measurements is used to deter-
mine the relative amount of clutter when using HH and VV polarizations. HH
measurements have 13.8% of censored data, versus 30.71% for VV. Therefore,
the amount of room clutter is considered higher when using VV polarization,
making HH polarization potentially a better choice to optimize target detec-
tion in that specific room. Depending on the operational environment, the
amount of clutter may play a significant impact on the polarization selection.
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5.3.4 Notes on the Repeatability of Results

To determine the repeatability of the results, two dynamic RCS measurement
campaigns are performed at 9.5 GHz for a VV polarization. Table 5.6 lists
the results of both measurement campaigns. The second campaign contains
more measurements, and the mean of the lognormal full-UAV PDF computed
using the Monte Carlo method is slightly smaller.

Table 5.6: 9.5 GHz VV measurement campaigns results

Campaign Number of Measurements µ σ
1 1709 −3.74 0.79
2 1877 −3.98 0.88

Figure 5.23 shows the QQ plot of both experimental data sets. Because
the QQ plot is for two experimental data sets, linear interpolation is used for
the quantiles of the second data set so that they can be plotted against the
quantiles of the first data set. The plot shows good correlation between the
expected and the experimental results, with the quantiles of the second data
set on average slightly lower than the first.

Figure 5.23: QQ plot of experimental data sets at 9.5 GHz VV

Figure 5.24 shows the probability of detection based on the fitted PDFs.
As expected from the QQ plot, the second campaign resulted in slightly lower

80



5.3. Results

detection probabilities for the different ranges investigated. The detection
range has a maximum difference of one meter for any given single-pulse prob-
ability of detection shown on the graph.

Figure 5.24: Probability of detection of 9.5 GHz VV data sets

The fact that results are not perfectly repeatable when dynamically mea-
suring a target’s RCS is often seen as a crippling shortcoming [6]. The use of
a full-UAV PDF mitigates the effect of the UAV trajectory on the computed
RCS PDF. However, other factors may explain the deficiencies in repeatabil-
ity:

• The radar transmitter and receiver gains may not be perfectly constant
during the measurement campaign;
• Different UAV velocities will lead to different radar integration losses;
• Engines and propellers movement modulates the return echo;
• Different UAV trajectories lead to different turret positions, affecting

the amount of clutter;
• Different UAV trajectories and aspects will lead to varying polarization

mismatches between the UAV and antenna polarization planes; and
• The exact placement of the battery within the UAV battery compart-

ment changes.

The advantage of the Dynamic RCS Measurement System is that it in-
cludes all of these effects for a given flight. Should one be interested in com-
puting the probability of detection of a UAV flying a specific trajectory, then
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the measurement flight should reproduce that trajectory of interest with the
best fidelity available.

5.4 Comparison Between Static and Dynamic
Results

The differences between the static and dynamic PDF statistics are now in-
vestigated. The static measurements used are those taken with a modified
Dynamic RCS Measurement System in Section 4.9. The dynamic PDF is
Monte-Carlo generated and uses the measurements of Section 5.3.2. All mea-
surements were taken using a VV polarization. Table 5.7 lists the mean in
dBsm and the variance in square dBsm of both measurement methods. It
shows that the static means and variances are consistently smaller than their
dynamic counterparts.

Table 5.7: Comparison of static and dynamic statistics

Freq [GHz] Static Mean Dyn Mean Static Var Dyn Var
8 −18.52 −16.14 −36.85 −34.79

8.5 −17.92 −15.83 −34.30 −29.16
9 −18.40 −15.55 −35.89 −30.27

Figure 5.25 and 5.26 show the QQ plot of the static versus dynamic quan-
tiles at 8 and 8.5 GHz. Both figures show that the quantiles of the static data
sets are consistently smaller than the dynamic quantiles, which implies that
both data sets are not drawn from the same random variable.

Figure 5.27 compares the mean of the dynamic PDF within each bin to that
of the static RCS at 8.5 GHz. Although the static RCS varies significantly
from the mean, it mostly stays within the 5th and 95th percentile of the
dynamic PDF of each bin.

The effect of the static measurement methodology is more evident on the
probability of detection curves. Figure 5.28 shows the probability of detec-
tion based on the PDFs of Table 4.1. The curves show lower probabilities
of detection when compared to Figure 5.17. The three static curves are very
similar, showing that a frequency change has less impact on the probabilities
of detection than in the dynamic case. For example, there is a 1 m difference
between the different frequencies for the 90% detection range in the dynamic
case, whereas there is only a 0.25 m in the static case.
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Figure 5.25: QQ plot of static versus dynamic of 8 GHz VV data sets

Figure 5.26: QQ plot of static versus dynamic of 8.5 GHz VV data sets

To highlight the differences between static and dynamic results, Figure 5.29
shows the curves for both methods at 8.5 GHz. The probabilities of detection
are always higher for dynamic measurements for the investigated ranges.
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Figure 5.27: Static and dynamic RCS versus yaw angle at 8.5 GHz VV

Figure 5.28: Single pulse VV static probability of detection

There are at least two reasons why the quantiles of the static RCS are
smaller than their dynamic counterparts. First, the fact that background
subtraction could not be used during the dynamic campaign resulted in a
higher amount of room clutter. Clutter at the same range as the UAV cannot
be removed through time-gating, which reduces the smallest RCS that can be
measured.

84



5.4. Comparison Between Static and Dynamic Results

Figure 5.29: 8.5 GHz VV single pulse probability of detection

Second, very small values of RCS occur less frequently in the dynamic case
than in the static case due to radar integration. From Figure 3.7, the very
low static RCS values occur during sharp nulls of the RCS versus yaw angle
curve. However, the Dynamic RCS Measurement System integrates returns
during 55.6 ms. Due to vibrations, it is unlikely that the UAV will maintain
the exact aspect angle of the nulls for that integration time. Furthermore, the
AR.Drone propellers perform a full rotation every 2.1 ms. Even considering
the propellers small RCS, the variation of the phase of their contribution
should increase the RCS during the integration time. Considering that sharp
and deep nulls are not observed dynamically, the reduced dynamic range of
the LVRTS when compared to the anechoic chamber (see Figure 4.18) is not
a cause for concern, and may even be beneficial.

5.4.1 Notes on The Preferred Measurement Method

Both static and dynamic RCS measurement methods have disadvantages. In
the case of static measurements, moving parts and deformations are not ac-
counted for. Therefore, the result is precise, with no guarantee of accuracy.
In the case of dynamic measurements, the tracking of the target and clutter
increase the number of error sources that corrupt the measurements. Despite
attempts to make the result less-dependent upon the flown trajectory with the
computation of a full-UAV PDF, vibrations and deformations depend on the
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trajectory. Therefore, the dynamically measured RCS may differ on a daily
basis. Nevertheless, much faith is placed on dynamic measurements because
they represent the real thing [6]. Despite their lack of precision, they are very
accurate for the exact same conditions as the measurement campaign.

To summarize, static measurements are very precise and error-free, how-
ever there are no guarantees that they ever represent the RCS of the target in
an operational environment. Dynamic measurements are imprecise and prone
to errors, but they are very accurate representation of the RCS during the
measurement flight.

The conversion of static to dynamic measurements has been the subject
of much studies [9], but no breakthrough could be found within the open
academic literature.

5.5 Summary

The Dynamic RCS Measurement System requires careful configuration and
calibration, as described in Sections 5.1 and 5.2. The configuration usually
represents a trade-off between system efficiency, accuracy and precision. For
example, far-field requirements were relaxed based on static ISAR imagery to
speed-up measurement and reduce the impact of clutter at higher ranges.

The measurement campaign allowed to compute the RCS PDF using vari-
ous methods and at different frequencies and polarization. Computing proba-
bilities of detection curves allows an operator to optimize the radar configura-
tion based on the requirements, whether it be highest detection probabilities
at short or long ranges.

The repeatability of measurements was investigated by performing two
measurement campaigns at 8.5 GHz using a VV polarization. It was shown
both campaigns yielded slightly different results. The differences may be ex-
plained by the known variations of the dynamic RCS due to changes in tra-
jectories and operating conditions.

Finally, static and dynamic measurements of the AR.Drone yield different
full-UAV PDFs. Both the mean and variance of the dynamic PDFs are greater
than their static counterparts. This results in an increased probability of
detection in the dynamic case, so that the AR.Drone is easier to detect than
the static measurements infer.
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6.1 Summary

As discussed in Chapter 2, measuring the RCS of a target may be done using a
variety of methods. Computer simulations can be used or measurements may
be taken within an anechoic chamber. The result of both methods is the RCS
of the target while it is at rest (static). To obtain more operationally relevant
data, the RCS of the target may be measured in a dynamic RCS range as
the target is flying. This has the advantage of accounting for vibration, de-
formation and moving parts of the target. However, measurement campaigns
become more complex because of the need to track the target in-flight and
because the RCS is no longer deterministic.

Conventional methods were used in Chapter 3 to determine the static
RCS of the AR.Drone. The results from anechoic chamber measurements and
computer simulation show that the RCS varies significantly with aspect angle.

Chapter 4 described the new Dynamic RCS Measurement System and
its components. The system uses OptitrackTM infrared positioning data to
track the UAV in-flight and to determine its orientation. The LabVoltTM

Radar Training System is used to illuminate the UAV and measure its RCS.
Post-flight statistical analysis permits the compute of the full-UAV PDF of
the RCS and the probabilities of detecting the UAV at certain ranges. The
measurement system is validated by comparing static measurements of the
UAV taken with the new system to the results of conventional methods of
Chapter 3.

The results of a dynamic RCS measurement campaign were presented in
Chapter 5. Various statistical ways of computing a representative RCS PDF
of the full UAV were shown. The effects of frequency and polarization were
investigated, and conclusions were drawn as to the repeatability of measure-
ments. Finally, the static and dynamic RCS measured using the Dynamic
RCS Measurement System were compared.
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6.2 Conclusions

A new indoor Dynamic RCS Measurement System was successfully designed
and implemented at RMCC. Based on a comparison of static measurements
taken within an anechoic chamber, it was proven that the new dynamic system
is capable of accurately measuring the RCS.

For the first time, the RCS of a drone was measured dynamically at RMCC,
resulting in probability of detection curves for various frequencies and polar-
izations. The results show that there is a difference between the drone static
and dynamic RCS, resulting in different probabilities of detection.

The aim of RCS measurement is typically to infer what the RCS of the
UAV will be in an operational environment. As such, dynamic measurements
are superior as they show a greater resemblance to an operational environment.
Nevertheless, the dynamic measurement process has more sources of errors due
to the requirement to track the target in-flight and the increased clutter in
the uncontrolled environment.

6.3 Contributions

The most important contributions of this work are:

• The design and implementation of a new Dynamic RCS Measurement
System;
• The simulation and measurement of the static RCS of the AR.Drone.
• The measurement of the dynamic RCS of the AR.Drone at various fre-

quencies and polarizations.
• The investigation of four techniques to compute a full-UAV PDF of the

RCS from dynamic measurements.
• The comparison of the static and dynamic RCS of the AR.Drone.

As a result of this work, RMCC now has the ability to dynamically mea-
sure the RCS of mini-drones in an uncontrolled environment. The result of
measurement campaigns may be used to infer the probabilities of detection of
the UAV by radars operating at the same frequency and polarization.

6.4 Future Work

Areas of this thesis warrant further work and research. A modification to the
Dynamic RCS Measurement System should be implemented to speed-up the
measurement so that more samples may be acquired. This would increase
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the confidence in the fitted PDFs parameters. Similarly, the computation of
confidence intervals for the probabilities of detection should be investigated.

The custom antenna turret motion testbed should be replaced with radar-
grade parts. This would allow the use of background subtraction techniques,
making for more precise and accurate dynamic measurements. If the replace-
ment of the motion testbed is not practical, measurements should be re-taken
by placing additional microwave absorber on the floor, ceiling and wall.

Finally, a closed-loop controller for the Turret Controller should be devel-
oped and its effect on the tracking error should be investigated.
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