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Abstract

Recent advancements in deep learning techniques have opened new possi-
bilities for designing solutions for autonomous cyber operations. Teams of
intelligent agents in computer network defence roles may reveal promising
avenues to safeguard cyber and kinetic assets. The aim of this thesis is to
provide evidence to support or refute the applicability of cooperative MARL
to a range of tactical cyber defence tasks. In a simulated game environment,
agents are evaluated on their ability to jointly mitigate attacker activity in
a host-based defence scenario. The complex and interrelated effects of game
design elements on the performance of learning systems are explored. The
results demonstrate the adaptability of MARL systems to learn in the context
of various game objectives and network sizes while being sufficiently robust to
perform in large, dynamic problem spaces.
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Résumé

Les récents progrès des techniques d’apprentissage en profondeur ont ouvert
de nombreuses nouvelles possibilités dans le domaine des cyber opérations.
Des groupes d’agents autonomes et intelligents chargés de défendre un réseau
informatique pourraient ouvrir de nouvelles voies pour protéger les actifs cy-
ber et cinétiques. L’objectif de cette thèse est de démontrer l’applicabilité
de l’Apprentissage par Renforcement Multi-Agent (ARMA) coopératif à une
gamme de tâches tactiques en cyberdéfense. Dans un environnement de jeu
simulé, les agents sont évalués selon leur capacité d’atténuer conjointement
l’activité des menances provoquées par un attaquant dans un scénario visant
la défense de l’hôte. Les effets des différents paramètres du jeu sur la per-
formance des systèmes d’apprentissage sont complexes et interdépendants et
seront explorés. Les résultats démontrent l’adaptabilité des systèmes ARMA
à apprendre dans un contexte de divers tailles de réseau et d’objectifs de jeu
tout en étant suffisamment robustes pour les espaces de problèmes qui soient
grands et dynamiques.
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Résumé iv
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1 Introduction

Within the field of cybersecurity, there is an ever-growing number of com-
plex problems requiring proportionally complex solutions. Demand for highly
skilled and experienced cybersecurity professionals in roles such as penetra-
tion testing, digital forensics, cyber threat hunting, and incident response
is increasing. Meanwhile, machine learning and deep learning have risen as
dominant technologies in the space of complex problem-solving. The emerg-
ing field of autonomous cyber operations has sought to harness the potential
of Reinforcement Learning (RL), deep learning, and multi-agent systems to
model the complexity of the cyber battlespace.

Autonomous Cyber Operations (ACO) utilizes a computer network envi-
ronment in which two opposing agents or teams of agents compete to realize
their goals of either attack or defence using only information from within the
network environment. For attacker agents, the goal is to penetrate the net-
work to access or deny access to some high-value element. For defender agents,
the goal is to prevent attacker activity on the network. By modelling this en-
vironment as a game with specified actions, states, and rewards, autonomous
RL agents can learn to optimize the decision-making process without a prior
understanding of the game mechanics. Moreover, multiple learning agents can
share individual information to cooperate toward common goals.

This research presents the design of cooperative Multi-Agent Reinforce-
ment Learning (MARL) systems to learn tactical decision-making for cyber de-
fence. It identifies key advancements in the rapidly developing field of MARL
game design and leverages these approaches to evaluate their applicability to
cyber defence scenarios.

1.1 Motivation

A cyber defence analyst will typically employ a chain of decisions leading
them from the first discovery of a threat to incident response or actions to
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1.1. Motivation

mitigate it. Human experts are the best tool available for performing this
chain of decision-making. However, human ability in cyber defence tasks faces
the challenges of, among others, attention allocation, cognitive load, lack of
measurable impact, and reaction time [1]. RL has the potential to overcome
these limitations if systems can be trained to perform decision-making tasks
to a sufficiently high level. Perhaps a more near-term objective is machine-
assisted decision-making for cyber defence, in which algorithms can provide
tactical suggestions that may not have been obvious to human analysts.

It is unrealistic for current RL algorithms to learn tactical decision-making
from scratch in real-world scenarios. Enterprise networks play an essential role
in business operations and are not conducive to training iterative learning
programs or experimenting with cyber threats. Moreover, modern networks
contain massive complexity, and running RL experiments using real hardware
is prohibitively expensive. Instead, a simulated environment can be used for
RL systems to learn tactics from abstracted network information. Such an
environment does not require learning agents to parse directly from raw data
but instead to access host-based information akin to what a human analyst
may have, such as running sessions, processes, and open ports. The agent
could then decide to perform further analysis and take defensive actions. Given
a suspected intrusion, the RL agent could reboot hosts, reset services, or create
decoys. An RL agent can only learn to perform actions if it has an indication
of its goals. In the case of a cyber attack on a network, minimizing attacker
activity, such as attacker observation time, hosts infected, or files tampered
with, is the objective.

A significant challenge RL systems face in cyber defence is learning to take
actions using a large, dynamic input space. One promising advancement in the
field of RL is the use of multiple autonomous agents working collaboratively
to solve complex problems, referred to as cooperative MARL. The coopera-
tive MARL approach allows for the division of large action and observation
spaces, thus reducing the dimensionality of the problem space. Moreover, it
allows for the division of complex tasks into decentralized, independent agents,
thus enabling more robust learned policies. This research utilizes cooperative
MARL to perform tactical-level decision-making in a host-based cyber defence
simulation.

Exploration of various design strategies in the learning system and the
game environment can provide novel insights into how cooperative MARL may
be employed in a tactical cyber defence setting. This research is motivated by
the potential for state-of-the-art methods to learn collaborative cyber defence
tactics in progressively more realistic scenarios.

2



1.2. Statement of Deficiency

1.2 Statement of Deficiency

Recently, many novel algorithms emerging within the field of deep cooperative
MARL have demonstrated increasingly performant skill adoption and compe-
tence at a variety of tasks. Work that has sought to leverage cooperative
MARL in a cyber context has predominantly focused on a specific implemen-
tation of the offensive or defensive arsenal, such as autonomous penetration
testing or anomaly detection. Studies into the more general problem of au-
tonomous tactical decision-making for cyber defence have seen success using
single-agent RL games. No empirical study currently exists investigating the
merits of cooperative MARL as a solution to the tactical enterprise network
defence problem.

1.3 Aim

The aim of this research is to demonstrate the applicability of cooperative
MARL for tactical-level decision-making in cyber defence. The success of
this aim is contingent on the provision of empirical evidence to support or
refute the applicability of this approach to a range of tactical cyber defence
tasks. Applicability in this context is the ability of a MARL system to learn
to perform a variety of tasks that inform its potential utility in cyber defence.

This experimentation evaluates the ability of cooperative MARL to de-
velop a set of decentralized control policies that can collectively defend a
simulated network. To assess applicability, game design parameters will be
varied based on two factors: adaptability and complexity. Applicable MARL
systems must show the ability to learn many types of tasks from scratch. Like-
wise, complex tasks are necessary to show the potential transferability of these
results to more realistic settings. A MARL game implementation is presented
that enables agents to learn from simulated host-based monitoring data and
to take tactical-level actions to prevent and mitigate malicious activity.

This research is concerned with the evaluation of current state-of-the-art
MARL techniques in a cyber defence simulation by investigating game design
elements. It does not introduce novel algorithm design or cyber defence tac-
tics, techniques, and procedures (TTP). Instead, it provides an analysis of
game design applied to a cyber defence context for training MARL systems.
MARL systems do not have any a priori knowledge of the environment. They
must learn to make decisions from only the actions, observations, and rewards
provided by the game environment. Additionally, all learning is conducted
online in simulation and in the presence of a heuristic attacker agent. The

3



1.4. Summary of Results

product of this research is a MARL system capable of learning various chal-
lenging cyber defence scenarios to inform the future design of training games
for autonomous cyber operations.

1.4 Summary of Results

The cooperative MARL systems used in this evaluation outperformed a heuris-
tic defender at multi-agent tactical cyber defence in a range of network sizes
and against multiple attacker types. A centralized learning method showed im-
proved performance and greater robustness against complexity than a system
of independent agents. The behaviour of MARL systems had a low sensitiv-
ity to changing observations, suggesting that a less sparse input space could
benefit learning.

1.5 Organization

The remainder of this thesis is organized as follows. Chapter 2 discusses the
background of RL, cooperative MARL, and autonomous cyber defence. Chap-
ter 3 reviews related work in autonomous and multi-agent applications for cy-
ber defence and advancements in cooperative MARL. Chapter 4 describes the
methodology for evaluating the selected MARL systems. Chapter 5 presents
the results and discussion of the experimentation. Chapter 6 outlines this
work’s contributions and suggests future work, and Chapter 7 concludes.
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2 Background

This chapter presents the foundational concepts of RL, deep learning, MARL,
and autonomous cyber defence as they relate to the research objective. For
a learning system to provide utility in tactical cyber defence, it must be able
to interpret its environment and derive a logical chain of decisions. RL se-
lectively reinforces patterns of behaviour that maximize its expected reward
each episode. This research intersects two main fields of study: reinforce-
ment learning and computer network security. Specifically, it investigates
cooperative multi-agent deep reinforcement learning methods as a solution to
tactical-level decision-making for autonomous cyber defence games. RL is a
branch of machine learning occupied with the problem of sequential decision-
making. The learner, an autonomous agent, takes sequential actions given
inputs from its environment. The environment provides an observation and
possible actions to the agent, and after the agent takes an action, it provides
a reward and a new observation. The reward may take any scalar value and
allows the agent to evaluate its behaviour. The agent’s goal, therefore, is to
choose actions that maximize its cumulative reward, referred to as return. RL
games can be used to model cybersecurity problems for autonomous learning.
This research applies the RL framework to a set of multi-agent tactical cyber
defence tasks.

This chapter is broken down into the following sections: Section 2.1 presents
the foundational concepts for RL used in this research. Section 2.2 explores
the use of deep learning to augment RL capability. Section 2.3 describes par-
tial observability in the environment. Section 2.4 presents the challenge of
stochasticity. Section 2.5 describes progressive advancements in value-based
cooperative MARL. Section 2.6 discusses the challenge of autonomous cyber
defence, and Section 2.7 provides a summary.
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2.1. The RL Framework

Figure 2.1: RL agent-environment framework.

2.1 The RL Framework

Figure 2.1 illustrates the agent taking action at causing the environment
to step to the next state st+1 based on a transition probability p, where
p(st+1|st, at) is the transition function. The environment generates two out-
puts from the state transition: the reward r(s, a) as a function of the state
and action at time t − 1, and the observation o(s) as a function of the state
at time t. The observation may be the entire state or specific information de-
termined by the observation function. In either case, the agent will interpret
the observation ot as the state st. This framework is formally a Markov Deci-
sion Process (MDP) and serves as a foundation for designing and evaluating
learning1. A game generalizes the MDP and refers to an environment with a
consistent set of rules in which one or more agents interact.

An agent’s policy π(a|o) is a mapping of actions to the observation space.
The policy, therefore, determines a series of actions for an agent to take. A
deterministic policy maps a single action to each state. Hence, an agent follow-
ing a deterministic policy will always take a given action a for a corresponding
observation o. A stochastic policy maps an action probability over the obser-
vation space. An agent following a stochastic policy will have a set chance of
taking action a for a given observation o.

RL tasks have one or more optimal policies π∗ that maximize return when
acted upon by an agent. An agent can learn to solve a problem by adjusting its
policy based on its received rewards until its policy converges to the optimal
policy. An optimal policy is determined when no change in policy will cause
an improvement to the agent’s return [2]. In complex practical applications,
discovering an optimal policy is often difficult, and it suffices to converge on a

1In the case where the observation does not include the entire state information, the
framework is typically referred to as a Partially-Observable MDP (POMDP).
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2.1. The RL Framework

Figure 2.2: Overview of RL algorithm methods.

functional policy that may not be optimal. When evaluating learning system
performance, agents act in accordance with a static learned policy.

Agents will select actions at each timestep for a fixed period, referred to
as an episode of play. A game can be played over multiple episodes, each
consisting of a series of turns. Upon completion of each episode, the game
is reset. There are many possible approaches to optimizing RL tasks using
this framework, this research examines methods that are model-free, value-
based, off-policy, and use online learning [2]. Each of these terms is discussed
and contrasted to alternative approaches in this section; see Figure 2.2 for an
overview of RL algorithm methods.

2.1.1 Model-Free Learning

To learn what series of actions will produce favourable results, an agent must
explore the environment, receive rewards, and update its understanding. This
process occurs iteratively, allowing the agent to refine its knowledge over many
steps and episodes of play. An RL algorithm is a process in which an agent or a
set of agents develop a policy representation and evaluate the policy’s utility,
referred to as control and prediction, respectively. In model-free learning,
agents learn directly from experience with the environment. Agents learn to
optimize their behaviour to complete a task by taking actions and observing
how they impact rewards.

Conversely, in model-based learning, the agent’s task is to approximate a
model of the game mechanics with which to derive a policy. Model-based learn-
ing typically requires less interaction with the environment and is often more
sample-efficient than model-free methods. The end-state of both types of RL
is to approximate the optimal policy. Model-based learning approaches this

7



2.1. The RL Framework

Figure 2.3: Comparison of Model-Free and Model-Based learning steps.

objective indirectly through model learning, depicted in Figure 2.3. Model-
based methods are generally more complex in implementation than model-free
approaches, owing to an indirect method of policy optimization [2]. A popular
example of model-based learning is the Monte-Carlo Tree Search used to great
success in the game of Go [3]. This method performs look-ahead searches to
plan its series of future actions. Model-based learning may have benefits in cy-
ber defence applications where training data is limited [4]. However, the gains
in sample efficiency are less relevant for a simulated environment that can
generate millions of samples at a relatively low computational cost. Research
into model-based methods is left for future work.

Model-free algorithms have seen widespread adoption across a range of
cybersecurity applications and in cooperative MARL, and are discussed in
Chapter 3. These methods do not specifically address enterprise network
defence using MARL. Due to promising results in model-free learning and
the availability of training data from simulation, it is best suited for this
experimentation of cooperative MARL for tactical cyber defence.

2.1.2 Value-Based RL

Value-based RL methods derive their policy from a value function. An agent
will predict the value of states or state-action pairs using its value function and
decide on an action that will maximize its expected future return. The value

8



2.1. The RL Framework

of state s under policy π is the expected sum of discounted future rewards r,
formally:

Vπ(s) = Eπ[

∞∑
k=1

γkrt+k|st = s, π] (2.1)

Where the discount rate (γ ∈ (0, 1)) weights rewards less as the agent looks
to further k states. This value function, adapted from the Bellman Equation
[5], can be extended to a definition of the value of taking an action given an
observation, the Q-value:

Qπ(o, a) = Eπ[

∞∑
k=1

γkrt+k|ot = o, at = a, π] (2.2)

A value function based on the observed state (V (o)) or based on state-
action pairs (Q(o, a)) can be used for value-based RL prediction. The action-
value function, also referred to as the Q-function, is necessary to compute a
policy in model-free learning [2]. The algorithms discussed in this work use
Q-functions to represent value. A deterministic policy π is derived from the
Q-function by selecting the action with the highest Q-value at each observed
state:

π(o) = argmax
a∈A

Q(o, a) (2.3)

There exist one or more value functions that result in an optimal policy.
Therefore, the value-based learner’s objective is to discover an optimal action-
value function Q∗(o, a) from which to derive its policy. These concepts form
the central mechanism of Q-learning, an RL algorithm that provides much of
the foundation for modern methods [6]. A basic Q-learning agent will maintain
a table of Q-values for each state-action pair in the environment. In an MDP
framework, a Q-learning agent can approach the optimal set of Q-values Q∗

by iteratively improving its estimated Q-values using the equation:

Q(o, a) = α[r + γmax
at+1

Q(ot+1, at+1) + (1− α)Q(o, a)] (2.4)

where α ∈ (0, 1) is the learning rate. To compute the new Q-value, the
agent takes action at given its observation ot, and the environment returns the
next observation ot+1 and reward r. The agent then updates its Q-value for
the observation and action at time t by using the reward and the maximum
Q-value for its new observed state as inputs.
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2.1. The RL Framework

In contrast to value-based methods, policy optimization methods itera-
tively update a parameterized policy directly without intermediate value func-
tions. It is commonly updated using gradient ascent. Adapted from the REIN-
FORCE algorithm definition [7], using the derivation from OpenAI Spinning
Up [8], the update to the policy function J(π) can be written as:

∇θJ(π) = ∇θ log π(at|ot; θ)R(τ) (2.5)

Where θ represents the set of parameters for policy π and R(τ) is the cumu-
lative discounted reward over the historical trajectory τ from following policy
π. Policy optimization methods offer advantages in their ability to approxi-
mate optimal stochastic policies and to intrinsically learn exploration, which
are not possible using a standard value-based method as described here [2].
Policy optimization methods can suffer from high variance [9], although this
has been mitigated by clipping the output of the policy probability ratio, thus
restricting the gradient update to within a certain proximity [10]. Moreover,
policy-optimization methods can be more sample-efficient than value-based
methods. In the multi-agent setting, the class of policy-based, actor-critic
algorithms commonly demonstrate high performance, however, value-based
MARL algorithms such as QMIX [11] have shown comparable results [12].
Only value-based MARL methods are examined in this work. This allows
for direct comparison of Q-learning-based algorithms using fully-decentralized
and centralized learning architectures, discussed in greater detail in Section
2.5.

2.1.3 Off-Policy Learning

An agent that always chooses the highest Q-value is said to act greedily.
While an agent is learning a policy, greedy behaviour tends to reinforce a
bias towards previously seen state-action pairs with known good outcomes
rather than exploring unseen state-action pairs in search of greater rewards.
A common strategy to encourage exploration is to set a probability ϵ that an
agent will randomly select an action rather than taking the action with the
highest expected reward, known as the ϵ-greedy strategy. An ϵ-greedy agent is
an example of off-policy learning since the learned target policy approximates
the optimal policy but is different from the behaviour policy that the agent
follows. More generally, off-policy learning characterizes a method in which
the data used by an agent to make decisions is not identical to the data used
to evaluate a policy or value function [2].

Off-policy algorithms commonly learn from sampling experience replay
[13] in randomly sampled batches. Experience replay often consists of the
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action, observation, and Q-value. Using replay can improve sample efficiency
by exposing the agent to more learning samples without generating them
through actions. However, random sampling from historical data without
accounting for the changing policy induces bias [14]. The target value function
is typically averaged over the behaviour policy state distribution to avoid bias
toward any particular state-action pairs. Prioritizing specific replay samples
based on the magnitude of the error it produced when encountered (i.e., the
Temporal Difference (TD) error) has also been used to improve learning for
off-policy methods [15].

In complex environments, on-policy learning solely from direct interaction
is problematic due to a lack of generalizability. Learning off-policy from past
experience is an effective strategy to generalize a value function to a large or
highly stochastic state space. Scalability of the problem space is critical in the
design of realistic tactical cyber defence games. Off-policy learning has clear
advantages over on-policy learning in more complex environments.

2.1.4 Online Learning

Online learning is the general case in which an agent interacts with a dynamic
environment that generates state transitions in an episode of play. Conversely,
offline learning refers to an RL agent interacting with a limited dataset of state
information. In the offline environment, an agent risks overfitting its policy
representation to the dataset. Moreover, finite samples also induce bias since
the learner approximates its policy representation based on available data,
which does not provide a complete model of the MDP [16]. The constraints
of offline learning can be avoided by using a simulated environment that can
generate infinite samples. Many real cyber applications cannot be accurately
modelled using simulation. Instead, offline datasets pulled from real settings
can be used to train or evaluate RL systems. The representational capacity
of current RL methods is a limiting factor in learning from complex environ-
ments. The intent of this research is to train RL systems to take high-level
tactical actions. Therefore, an abstract simulation is better suited to the
objective than training from offline data.

2.1.5 Function Approximation

Function approximation iteratively improves a policy representation using a
parameterized function, rather than by storing individual data points, such as
Q-values for each visited state. As the size of the environment’s state space
increases to accommodate more complex problems, tabular methods such as
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Q-learning become ineffective due to a lack of generalization and time required
for learning [2]. Tabular methods are limited by the number of states they
can explore. Since it is unreasonable to rigorously explore large state spaces,
agents must rely on information derived from a subset of the state space since
predictions are made from individual state encounters. As the size of the state
space increases, it becomes less likely that predictions from tabular methods
will generalize. In contrast to predicting discrete Q-values, value functions
can be parameterized so that a single approximation is relevant to the entire
space of Q-values. The parameters θ of the value function can be optimized
by iteratively minimizing the loss function L(θ). Building on the iterative
Q-update from Equation 2.4, the loss function can, for example, use the mean
squared error to optimize θ [17]:

L(θt) = [r + γmax
at+1

Q(st+1, at+1; θt−1)−Q(st, at; θt)]
2 (2.6)

Using a parameterized Q-function Q(s, a; θ) allows for each sample to in-
fluence the entire function, improving the efficiency and generalizability of the
learning algorithm. In practice, using a single function approximator for learn-
ing a value function tends to be unstable due to correlations between Q-values
and the optimization target r+γQ(st+1, at+1) [17]. Mitigating techniques are
discussed in Section 2.2.

2.2 Deep Learning

Deep Learning (DL) enables the representation of complex non-linear func-
tions through a composition of layered interconnected nodes, an artificial Neu-
ral Network (NN). DL uses NNs with at least one hidden layer, a layer of nodes
that is neither the input nor output. In a basic feed-forward fully-connected
NN, a set of scalar inputs passes into the first layer of nodes. Each node
computes a weighted sum of its inputs that is then outputted through an ac-
tivation function producing a non-linear representation at each layer [18]. A
forward pass of a data sample through the NN produces an abstraction of the
raw input’s features. To train a NN, the weights of the nodes are commonly
updated by a backpropagation method using gradient descent. Backpropaga-
tion is commonly a recursive update function that uses the gradient of the
previous layer of nodes to modify the weights at each node. The network
can learn features of the input data through iterative forward and backward
passes, prediction and adjustment, respectively. Intuitively, DL is well suited
for function approximation in RL problems due to its representational capac-
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ity. There are, however, some challenges faced by deep RL methods that must
be considered.

Many machine learning and DL methods assume that data is Indepen-
dent and Identically Distributed (I.I.D.) and stationary. I.I.D. characterizes
independent training samples and training and testing data with identical dis-
tributions. Independent and identically distributed data allows the training
error to accurately represent the expected error in testing [19]. However, the
data for training and testing RL systems are generated during play due to the
agent’s actions. The data are not independent since the rewards are commonly
delayed until some game objective is met. As a result, samples are temporally
correlated as it is typically the sequence of observed states that corresponds to
a particular reward. The data in RL environments tend not to be identically
distributed since the agent explores the state space unevenly. Moreover, data
in RL environments are typically non-stationary due to a stochastic transition
function, discussed further in Section 2.4.

There are many methods to overcome the instability fundamental to non-
linear function approximation in deep RL, characterized in part by non-I.I.D.
and non-stationary data. One prominent work that mitigated these challenges
is Deep Q-Networks (DQN), which proposed using an experience replay buffer
and a secondary NN to improve stability through off-policy learning [17]. The
experience replay buffer allows for data to be randomly sampled from history
while the secondary network stores a copy of the NN parameters for training,
breaking some of the correlation between samples. Experience replay has the
effect of alleviating some of the challenges of non-stationary and non-I.I.D.
data.

2.3 Partial Observability

Many real-world problems cannot be realistically modelled by providing the
agent with complete state information. A central challenge in cyber defence
is the classification of threats based on incomplete information. Entire state
visibility would give the defender a complete picture of the attacker’s status
in the environment, eliminating the threat identification aspect of the task.
This aspect of the game is essential to consider in RL applicability to tactical
cyber defence. Problems can be modelled as partially observable in which the
observation provided by the environment is a function of the state. Partial
observability adds more variability in the observation space, adding more noise
than complete observability. In this case, agents must condition on their
action-observation history rather than just the last viewed observation [20],
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[21]. In a cyber defence setting, the learner could be required to identify
samples of data over time that correspond to patterns of malicious activity.
Understanding how actions influence these patterns and the task outcome is
a key capability that RL provides to autonomous cyber defence.

One method of conditioning a deep RL system on its history is the use
of a recurrent neural network (RNN) to capture historical trajectories [22].
RNNs use a looping structure to pass outputs back through hidden layers.
An RNN receives input data as a temporal sequence, passing a copy of the
weights at the current time t back into the hidden layer, influencing the next
input at t+ 1. This allows the model to condition on its history, represented
in the recurrent activations in the network. RNNs allow RL models to learn
long-term dependencies between data samples which is useful for accurate
predictions in partially observable environments [23].

2.4 Stochasticity

Stochasticity refers to the characteristic of an environment to produce non-
deterministic outcomes. In a network setting, there is normally some level of
uncertainty that a particular action will have a particular effect. Sometimes
packets are dropped, or code does not execute correctly or at the precise time.
As the vast majority of real-world tasks involve some element of stochasticity,
a realistic RL environment will often model this using a stochastic transition
function. Stochastic policies, in which action probabilities are mapped to
states, can be used in this case to approximate an optimal policy. Optimizing
a policy in a stochastic environment is generally more difficult, as predictions
are not guaranteed.

2.5 Multi-Agent Reinforcement Learning

The cooperative multi-agent game builds upon the MDP defined previously
by allowing multiple agents to take actions and receive rewards simultane-
ously within a single timestep [24], [25]. Although each agent, denoted by
i, receives individual observations oi from the environment, a joint reward
r is determined based on the state and actions of all agents. Agents collec-
tively seek to optimize the joint reward. Figure 2.4 provides a cooperative
MARL revision of Figure 2.1. The game’s global state depends on the vector
of actions at = {ai=1

t , ..., ai=n
t } containing n agents. At each timestep, the

environment will output a joint reward as a scalar and an observation vector
ot+1 = {oi=1

t+1, ..., o
i=n
t+1} that includes individual observations for each agent.
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Figure 2.4: Multi-Agent RL Agent-Environment Framework.

Simultaneous actions in a cooperative MARL setting allow for greater ex-
ploration. Cooperative MARL also has the advantage of dividing large tasks
into manageable goals, thus handling greater task complexity. However, chal-
lenges exist in cooperative MARL that are critical to the design of performant
solutions. The game’s current state depends on the joint actions of all agents
since the action vector is an input to the transition function. The joint reward
and individual observations agents receive depend on the new state. There-
fore, an agent’s actions can affect other agents’ observations, depending on the
observation function. If two agents interact the same game element, such as a
host machine, the actions of one agent on the element influence the observa-
tions of the other. Since both agents are learning and updating their policies,
this interaction creates multi-agent-non-stationarity in the environment; the
optimal policy is a moving target. In a single-agent game, the fixed proba-
bility of a stochastic transition function can be incorporated into the learned
policy, for example, with the use of a replay buffer in DQN (see Section 2.2).
However, in the multi-agent case, actions of “external agents” affect observa-
tions in a way that cannot be explained by changes in the observing agent’s
policy [26]. It can therefore be challenging for an agent to learn a stable policy
when the actions of its peers are silently affecting its reward and observations.
As a result, agents tend to exhibit high variance due to inaccuracy in their
estimates. The remainder of this section discusses value-based algorithm de-
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sign for decentralizing control while highlighting the challenges of cooperative
MARL.

2.5.1 Independent Q-Learning

A naive approach to multi-agent systems in terms of cooperation is to decen-
tralize prediction and control, referred to as independent learning. This ap-
proach employs self-contained RL agents that act out separate policies based
on independent observations while seeking to maximize a joint reward. Inde-
pendent learning does not force any cooperation or account for communication
between agents. Independent Q-Learning (IQL) is a fully-decentralized value-
based MARL algorithm that uses independent DQN [17] agents. Each agent
is responsible for learning a policy from their individual observations. Agents
perform learning updates using a batch of experience history oi = {oi1, ..., oim}
for a batch of m samples, minimizing the loss of their Q-functions. IQL
ignores the non-stationarity problem completely but has performed well at
simple tasks [27]. A decentralized approach allows for greater scalability, with
the advantage of smaller input-output spaces for each agent, at the cost of
high variance due to the non-stationary game. The input-output space refers
to the number of inputs to an agent, the size of the observation space, added
to the number of outputs, the size of the action space.

2.5.2 Centralized Training with Decentralized Execution

A hybrid structural approach is Centralized Training with Decentralized Ex-
ecution (CTDE) [26]. A CTDE architecture is compared to independent
learning in Figure 2.5. With CTDE, semi-independent agents follow sepa-
rate policies and receive updates periodically from a central learner. The
central learner trains on information from all agents and provides a learning
update, allowing each agent’s policy to condition on the policies of their peers,
mitigating the non-stationarity problem. Using a central learner encourages
greater cooperation as agents can learn complementary policies directly.

The addition of a central learner introduces the credit assignment problem.
Credit assignment refers to agents learning to reinforce certain behaviours that
result directly from their individual effect on the joint task. Without credit
assignment, the joint reward can reinforce good behaviour in one agent while
incentivizing poor performance in another. The poorer performer, sometimes
referred to as a “lazy agent,” will be discouraged from exploring for better
rewards. A naive CTDE approach that provides a single policy update for all
agents based on joint training information will suffer from lazy agents since
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Figure 2.5: Fully-Decentralized Learning and CTDE.

it does not differentiate between agents. A solution to the credit assignment
problem is value-decomposition which allows a joint reward to be factored into
multiple policy representations [28].

2.5.3 Value-Decomposition

Value-Decomposition Networks (VDN) is a CTDE approach that performs
Q-function learning centrally before providing separate policy updates to the
agents. As shown in Figure 2.5, individual Q-functions are learned from sep-
arate observations and are summed together into a joint Q-function (Qtotal).
VDN assumes that Qtotal can be additively decomposed into individual Q-
functions. As a result, distinct functions Q̂i(oi, ai) for each agent i are simul-
taneously produced at each training iteration. From Equation 2.1, the joint
Q-function of the set of observations and actions is:
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Qπ
total(o,a) = Eπ[

∞∑
k=1

γkrt+k|ot = o,at = a, π]

:=
∞∑
k=1

Q̂i
π(o,a)

(2.7)

Where s and a are a vectors such that o = {oi=1, ..., oi=n} and a =
{ai=1, ..., ai=n} for n agents. As with IQL, Qi(oi, ai) is calculated first from
each agent’s independent inputs. Then the Q-functions are combined into
Qtotal from which a learning update is produced. The Qtotal update is the
same as the individual Q-function update but uses the batched history of
all agents. Qtotal is then decomposed into individual Q̂-functions through
backpropagation to be used as the new decentralized action-value functions.
Through this process, each individual function is conditioned on the complete
observable state of the team of agents, addressing the non-stationarity prob-
lem. Credit assignment is also addressed via the decomposition of Qtotal as the
joint reward is an input to this function. Therefore the reward is represented
implicitly in the Q̂-function of each agent.

The primary limitation of VDN is that it relies on simple additive decom-
position to perform complete factorization. Therefore, its joint Q-function
can only represent linear functions. Rashid et. al proposed QMIX to improve
the representational complexity of the joint value function using a mixing
architecture [11].

2.5.4 QMIX

QMIX leverages the advantages of VDN in efficiency, multi-agent condition-
ing, and credit assignment while improving upon the representational com-
plexity of its Q-functions by introducing a mixing architecture. QMIX, like
VDN, utilizes independent DQN-style agents that act according to their re-
spective policies and are trained centrally. As opposed to VDN’s summation
of Q-functions to generate Qtotal, QMIX employs a NN, referred to as a mix-
ing network, to construct Qtotal from individual action-value functions. The
weights of the mixing network are controlled by the output of hypernetworks:
single-layer NNs that take the entire observation space as inputs. QMIX en-
forces a monotonicity constraint such that ∂Qtotal

∂Qi ≥ 0 for each i agent. This
constraint allows for QMIX to decompose the central Q-function into non-
linear Q̂-functions. QMIX has greater representational capacity than VDN
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which can only represent linear decomposed functions, though the monotonic-
ity constraint limits its range of possible Q̂-function outputs. Despite this,
Hu et al. demonstrate that QMIX often outperforms algorithms with more
relaxed monotonicity criteria, if the MARL system can interpret the game
objective as purely cooperative [29].

2.6 Autonomous Cyber Defence

This chapter has discussed foundational concepts in RL, deep learning, and
cooperative MARL. Autonomous Cyber Operations (ACO) is discussed to jus-
tify framing this problem using MARL. ACO is concerned with the decision-
making models of attacker and defender agents acting autonomously within a
computer network environment [30]. The goal with the design of both agents
and environment is two-fold: first, agents must be trainable on a variety of net-
work topologies, and second, the task, and therefore the environment, should
represent as much realism as possible.

RL is a natural approach for ACO due to the ability of agents to adapt via
interaction with the environment. In contrast to supervised learning meth-
ods, which typically require static, pre-established training data, online RL
is dynamic. It allows agents to learn not only to make predictions but to
take actions and to understand the effect of those actions on the environ-
ment over time. The RL approach, therefore, is more relevant to the problem
space. A drawback to RL is that it requires large amounts of data to sample.
Many thousands or millions of iterations are often required to learn reasonable
policies. As a result, complex environments are often hindered by extensive
computational resources and clock-time. By simulating ACO, RL systems can
be trained over many iterations in an abstraction of the underlying computer
network environment. Simulation requires less compute than the alternative
emulated approach while still offering enough complexity to challenge current
state-of-the-art designs.

Tactical decisions in cyber defence are typically not derived from raw data.
Instead, many tools exist to assist an analyst with finding and mitigating
threats. ACO does not seek to replace tools that are successful in the field,
such as anomaly-based intrusion detection. It instead aims to build a tactical-
level decision-making framework to integrate with existing technologies. In
this research, the decision space is modelled as a simulation on top of a tool-
based abstraction of the network state. An RL simulation for ACO must
model the elements of the environment to the level of detail that will allow the
agent to learn tactical-level action chains when presented with a series of alerts
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about the underlying network status. A multi-agent framework further allows
for the decentralization of the decision-making processes while maintaining an
input-output space that is constrained to a level that can be learned effectively
by current RL methods.

2.7 Summary

The field of RL stretches back into game theory fundamentals while reaching
the cutting edge in deep learning techniques. This chapter framed the cy-
ber defence problem within the RL setting and focused on model-free, value-
based, cooperative multi-agent learning solutions. Function approximation
using deep learning has emerged as the dominant technique for learning poli-
cies and value functions. In cooperative MARL, significant advancements have
been made in the design of CTDE systems. How these approaches may gen-
eralize to a range of specific decision-making applications remains to be seen.
A systematic evaluation of game design elements in this work demonstrates
their applicability for use in tactical cyber defence.
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3 Related Work

This chapter investigates how research into autonomous cybersecurity, multi-
agent systems, and deep MARL could inform the design of cooperative MARL
solutions to learn cyber defence tactics. To this end, experimental environ-
ments are compared qualitatively based on game complexity and task rele-
vance. Game complexity can be assessed in terms of the number and variety
of actions, observations, and rewards an agent may encounter via its interac-
tion with the environment. Complexity in the computer network environment
refers to the scale and variability of network segments, devices, protocols,
applications, and services. Task relevance is explained by the similarity of
learnable behaviour to cyber defence operations. For example, agents that
must learn to interpret host process connections and can misinform their at-
tacker are more relevant to the target task than agents that only receive a
compromised or uncompromised signal for a host and can only perform a re-
image action. Complexity and task relevance provide greater realism to the
game, allowing for a more robust assessment of MARL applicability to cyber
defence tasks.

RL for specific cybersecurity tasks has been studied in the context of DDoS
protection [31], anomaly-based intrusion detection [32], and penetration test-
ing [33], [34], among other specific use cases [4]. These works demonstrate the
utility of RL system research for cybersecurity, however, they have limited
application to the more general problem of tactical-level decision-making for
cyber defence. A tactical defender should be able to detect and disrupt at-
tacker activity at multiple possible phases of the attacker kill chain. Specific
use cases are generally too narrow in scope to demonstrate utility at manag-
ing defensive sensors and actuators. Furthermore, tactical decision making for
ACO should involve an element of action selection, in which acting on some
object to the exclusion of another. For example, taking an action to gather
additional information about a host comes at the cost of the lost opportunity
to affect the state of a different host. Designing a game with tactical ac-
tion selection tradeoffs requires actions with parameters for different targets.
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Although penetration testing methods provide targeted actions, their applica-
tion to cyber defence is limited due to the differences in objectives from cyber
defence games.

A game that provides defenders complete observability of attacker actions
has limited utility in cyber defence applications. Complete observability re-
moves a core element of cyber defence: detecting and attributing malicious
activity. In a realistic scenario, threats can often be mitigated if an attacker
is detected before they can complete their objective. The challenge for the
tactical defender, then, is to detect malicious activity by using information
about its environment that would be reasonably available in a real cyber de-
fence scenario. As such, this chapter primarily discusses partially-observable
environments.

The development of more capacitive and powerful algorithms is a central
driver for solving increasingly complex RL problems. Progress has rapidly
improved due to the integration of deep learning methods into RL algorithm
design, one primary force being the work of Mnih et al. in DQN [17]. DQN
dramatically improves upon the classic Q-learning algorithm, using deep neu-
ral networks and experience replay with random sampling. DQN unlocked
the ability for autonomous agents to learn expert-level strategy in complex
environments, demonstrated through near-optimal performance at a range of
Atari video games. Significant advancements have since been made in the
capabilities of RL systems, notably in the ability to outperform professional
players at challenging games such as Go [3], the real-time strategy game, Star-
Craft II [35], and the racing simulation game, Gran Turismo Sport [36]. These
milestones in machine learning research motivate the use of RL methods for
complex cybersecurity tasks. It remains to be discovered how MARL could
influence the future of autonomous cyber defence using techniques fostered by
state-of-the-art learning algorithms.

This chapter is broken down into the following sections: Section 3.1 dis-
cusses the uses of RL for autonomous cyber defence. Section 3.2 presents the
state-of-the-art in cyber defence environments for training RL agents. Section
3.3 explores how MAS can be used in a cyber defence setting. Section 3.4
discusses the use of MARL for intrusion detection and response. Section 3.5
contrasts pertinent approaches to value-based cooperative MARL, and Section
3.6 summarizes.
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3.1 RL for Autonomous Cyber Defence

Autonomous cyber defence is concerned with protecting computer networks
by selecting actions at a tactical level. Decision-making for cyber defence
tactics can be carried out by rule-based expert systems using heuristics to
react to state changes by taking actions (e.g., [37]). However, RL provides a
richer capability and adaptability due to self-learned behaviours, particularly
in high-dimensional state spaces [14].

The complexity of game environments is a limitation to current research
in RL game design for autonomous cyber defence. Much of the work that uses
RL algorithms to perform tactical cyber defence tasks relies on highly abstract
representations of the underlying computer network. As a result, tasks are
necessarily simplified, restricting the possible policies available to an agent.
Computer network attack and defence game environments commonly use a
graph representation. In the graph-network framework, each node represents
a host machine, and links represent the possible connections an attacker may
use to move through a network. The host is either in a healthy state or the
attacker has compromised it (e.g., [38]).

Hu et al. present a partially-observable graph-network environment and a
model-based RL algorithm that approximates the underlying game model via
an estimate of the transition probabilities [39]. It applies a Q-learning-based
algorithm to approximate an optimal policy from the model. The defender
agent’s action space consists of a “detect” and a “re-image” action, each re-
quiring a specified network host as the target. Using network links, a simulated
attacker penetrates the network of ten hosts by performing an exploit to com-
promise each host it encounters. The reward received by the defender includes
a cost based on the NIST Common Vulnerability Scoring System [40] score of
the exploits used on each host. This work is limited in its representation of
the network, each host having a binary “compromised” or “uncompromised”
state. Moreover, this approach uses a tabular learning algorithm, which limits
the scalability of action and observation spaces compared to function approx-
imation methods. For a game design to have demonstrable task relevance, it
requires a greater level of detail in terms of the action and observation spaces,
likely necessitating more complex algorithms using deep learning.

Dutta et al. present a model-free RL defender that learns to modify the
threshold of detection (i.e., false-positive and false-negative rate) of simulated
anomaly-based intrusion detection sensors in a graph-network environment
of 200 hosts [41]. Assigning resources to improve the accuracy of sensors
has an associated cost that the defender must balance against the potential
for detecting malicious activity on a given network host. This work uses a
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hybrid solver in which an RL agent selects actions while a hand-specified
heuristic model adapts the action space based on received rewards. If the
defender has sufficient confidence of a host compromise, it will take an action
to re-image the host. A heuristic attacker begins with a single compromised
host and exploits up to one host per turn, propagating across neighbouring
nodes. No simulated vulnerabilities exist, and all compromises have the same
penalty for the defender at each turn. The RL defender agent optimizes its
policy using the Proximal Policy Optimization (PPO) algorithm [10]. This
task is significantly more complex than the previous example, and the system
leverages a more advanced algorithm design. Moreover, the task involves the
management of attention in the form of a limited detection resource that must
be shared among multiple hosts. Prioritization of the purview of defensive
resources across many network hosts depending on the perceived attacker
behaviour is central to the task relevance of tactical decision-making. However,
the system also relies on a heuristic to restrict the action space. It is not
evident how much of a performance improvement the heuristic model provides
over a purely RL approach.

Cyber defence games that exclusively use deep RL have also shown to be
successful at protecting a graph-network [42], [43]. Han et al. demonstrate
DDQN [44] and A3C [45] defender agents capable of optimally minimizing
the propagation of an attacker on a network of up to 100 hosts [43]. This
work has imperfect detection. In ten percent of cases, the environment will
return a false-negative rather than correctly alerting the agent of attacker
presence. Imperfect detection adds a layer of uncertainty to the task, pro-
viding greater realism. The defender can migrate hosts between subnets and
isolate/reconnect hosts suspected of compromise. The defender receives penal-
ties for each turn that hosts are disconnected from the network and for host
compromise. By including migration actions, defenders can proactively pre-
serve network assets if the source of the attack is not obvious.

The graph-network games discussed demonstrate the scalability of a single
RL agent to defend a relatively large set of hosts. Prioritizing certain assets
over others is central to the utility of a tactical defender. However, the tactical
policies are limited if the defender can only react to a binary (compromised or
healthy) observation signal with a minimal set of actions (e.g., re-image, mi-
grate). This game design does not allow RL agents to learn detailed, relevant
policies for defender action selection and attention. As such, it is difficult to
infer the potential applicability of these approaches to real cyber operations.

Charpentier et al. frame the game of cyber defence between an attacker
and defender as a competition for control of a single host [46]. A heuristic
attacker agent performs scans and exploits with varying costs and chances of
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success. Upon successfully finding a vulnerability with a scan, the attacker can
use a corresponding exploit before finally attempting to escalate its privileges.
For example, some running services can be exploited using code injection.
An attacker would need to scan for this specific vulnerability and perform the
exploit. If successful, it will seek out options to escalate privileges on the host.
The reward provided at each turn is proportional to the severity of the attack.
Meanwhile, a DQN-based defender attempts to deceive the attacker while
accessing incomplete information about the attacker’s actions. The defender
will choose from eight possible strategies, from generating a honeypot process
to changing IP addresses or port numbers. Additionally, costs are associated
with each agent’s actions, and there is a risk that they could fail. This design
improves upon the level of task relevance from the previously discussed work
by including real host characteristics such as vulnerable processes and more
tactical options for the defender. However, since the action space includes
only a single host, it is difficult to extrapolate the results of this simulation to
a tactical network defence setting.

In this section, the selected works have suggested a variety of design el-
ements that can be used to develop a tactical cyber defence game that is
complex and relevant to the setting. These works aim not to produce a learn-
ing system that can be deployed on a real network but to aid in developing an
understanding of how RL game design can influence an automated defender’s
role and capability. Many of these works tend to favour network scale at the
expense of detailed observations and actions. The exception being Charp-
entier et al., which minimizes network scale but utilizes more detailed host
simulation. An environment enabling aspects from both would have greater
applicability to real network operations.

3.2 Cyber Defence Environments

A challenge in the development of autonomous cyber defence research is the di-
versity of game environments. Environments are often specifically built for the
evaluation of a particular learning system. This diversity presents a challenge
for the development of adaptable, intelligent tactical defender agents. More-
over, many RL research environments for cyber defence use limited graph-
networks and a simple set of agent actions. Some research groups have sought
to overcome these challenges by creating general, configurable, and detailed
environments for training RL-based attacker and defender agents in repeatable
experiments.

Molina-Markham et al. present a cyber defence environment (FARLAND)
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that can be evaluated on emulated hardware [47]. FARLAND includes a net-
work topology in which hosts have static and dynamic characteristics, such
as OS version and running processes, respectively. Additionally, these hosts
contain services and users that generate network traffic, providing a quality of
service metric to the defender and likewise an opportunity for the attacker to
obfuscate its connections to hosts. The defender agent receives health moni-
toring information from the hosts relating to network traffic volume and new
processes and files, among other elements. From these observations, the de-
fender can choose to isolate a compromised host, migrate or replicate services,
or deceive the attacker by creating decoy services. Meanwhile, a heuristic
attacker will attempt to gain access to network hosts by scanning for open
services and applying specific exploits to vulnerable services or network con-
figurations. On a network of ten hosts, APEX-DQN [48] and PPO [10] de-
fender agents learned to defend a high-value server for 100 in-game steps. A
drawback to the FARLAND environment is that it is currently closed-source.

The primary alternative to FARLAND is the open-source CybORG envi-
ronment [30]. It provides many of the same features, including a configurable
network topology, detailed simulated host-based elements, and a large ac-
tion space for attacker and defender agents. Although initially released as
a single-agent, tactical defender training environment, CybORG is in active
development and version 3 includes a MARL drone-based game with network-
ing elements. To the best of our knowledge, this version is the first published
project for cooperative MARL for tactical cyber defence. However, the sce-
nario deviates significantly from previous releases and is not concerned with
the enterprise defence of hosts with multiple users, processes, and vulnera-
bilities. Rather, CybORG 3 contains mobile hosts with a single vulnerable
pathway that can be exploited by two teams of agents, red and blue. Cy-
bORG 3 improves upon its previous releases by incorporating multi-agent
cooperation, network traffic simulation, and dynamic network configuration.
However, it lacks the simulated host elements that support the applicability
of this environment to enterprise cyber defence settings. CybORG could be
adapted into a MARL environment for enterprise cyber defence, retaining the
host simulation from previous versions.

The potentially massive observation and action spaces are a pertinent
limitation to advanced environments such as FARLAND and CybORG. One
means for handling complexity is the introduction of expert systems to sim-
plify the defending agent’s observation space (e.g., [41]). The CybORG team
released an open challenge [49] accepting RL defender models trained on the
CybORG 2 environment (the enterprise defence version) with the help of a
hand-specified observation module. This module simplifies the defender’s ob-
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servations, saving the state (healthy, scanned, or exploited) of each host in
memory. Without this module, the CybORG defender receives over 11 000
unique observation elements on a network of thirteen hosts. The results of this
challenge found that PPO methods could effectively mitigate attacker activity,
limiting attacker movement onto higher-valued hosts. The observation mod-
ule in the CybORG 2 challenge abstracts the complex environment so that
the actions the agent selects are based on a simplified understanding of the
underlying state. A decentralized defender system would not realistically have
this input and instead be required to evaluate the state of its host data and
coordinate with other security devices to make decisions. CybORG could be
extended to allow for the recognition of raw sensor data rather than through
a game-specific filter, supporting a more task-relevant observation space.

Emulated cyber game frameworks can provide autonomous agents with
actual virtual machines and command line tools (e.g., [47], [50]), providing
a greater level of realism to the learning scenario. A drawback of emulated
environments is their computational cost relative to simulated environments.
In an emulated environment, experimentation requires more clock-time and
the game design elements are more rigid. However, emulated environments
provide an important link to real network TTPs. This research focuses solely
on training MARL systems in simulation, leaving emulation for future work.

3.3 Multi-Agent Systems for Cyber Defence

The works discussed in the previous sections primarily employ a single learn-
ing agent to take actions in a network environment. Central to the design
of any RL-based cyber defence game is the agent-environment interaction,
characterized by observations, possible actions, and rewards. In a cooperative
multi-agent system, agent-agent interaction must also be considered. The fol-
lowing works provide relevant insight into multi-agent considerations for cyber
defence games but are not specifically MARL implementations1.

Communication between defender agents has been shown to improve their
ability to protect a simulated network from DDoS attacks [51]. The simu-
lation places defender teams on different subnets monitoring network traffic.
The attacker generates traffic in an attempt to overwhelm network hosts,
and the defending teams must adaptively apply filters to drop offending net-
work packets at their respective firewalls. Defender agents are programmed

1To the best of our knowledge, the only cooperative MARL implementation for tactical
cyber defence (aside from the one presented in this work) is CybORG version 3, available
at https://github.com/cage-challenge/cage-challenge-3.
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to communicate filter configurations or packet data between teams to improve
reaction time and effectiveness. The experimentation found that teams that
used communication performed better than those that did not, particularly in
the case of shareable filter configurations. This work is limited to heuristic de-
cision agents and a specific DDoS protection case. However, it demonstrates
how cooperative agents in a cyber defence setting can benefit from sharing
tactical information.

Liu et al. propose a multi-agent online learning system using an evolu-
tionary game framework to adopt better strategies based on outcomes [52]. It
considers fully-decentralized agents that can elect to share information among
themselves. Although actions are selected based on the learned expected value
of future states, the value function is hand-specified, unlike in RL systems
in which value functions are derived from experience. This work provides
a framework for independent agents to learn to share features that will as-
sist their teammates, thus extending teammate observation spaces. Learning
communication is a developing area in cooperative MARL [53] that could be
advantageous in large decentralized network defence applications. Although
agents learning from shared experience is an aspect of this research, explicitly
learning communication between agents is left for future work.

3.4 MARL for Intrusion Detection and Response

Multi-agent systems provide important details regarding the design of au-
tonomous cyber defence systems where applications of MARL systems are
limited. However, there are MARL-specific considerations that are unique
to the problem space, such as non-stationarity and credit assignment, dis-
cussed in Section 2.5. This section examines how cooperative MARL has been
applied to intrusion detection and response scenarios with considerations of
cross-applicability into tactical cyber defence.

MARL systems have been shown to perform anomaly-based intrusion de-
tection when framed as a classification task [54], [55]. The work of [54] pro-
poses a design for multiple agents to collectively alert of intrusions in a sim-
ulated network environment based on separate observation spaces containing
unique sets of network features. Features may include, for example, the con-
nection destination of packets or the number of ACK packets received. A
hierarchical distribution of agents is used in which two agents positioned at
network traffic sensors send signals to a decision agent, which performs the
classification. A joint reward corresponding to the correctness of the classi-
fication is returned to the learning system at each timestep. A hierarchical

28



3.5. Value-Based Cooperative MARL

structuring of RL agents reduces the policy space of each agent, potentially
allowing for more complex behaviours without exceeding the representational
capacity of the system. Although the detection of threats plays a central
role in cyber defence, the tactical challenge must also include an element of
management or threat response.

MARL systems have been compared to traditional machine learning and
deep learning classifiers at an anomaly-based intrusion detection task using
an offline dataset [55]. It showed to have improved accuracy and precision
over the comparative approaches. This approach employs a set of DDQN
[44] “minor” agents that each receive a subset of the feature space, which
they use to classify samples as anomalous or normal. Likewise, a “major”
agent with identical architecture performs the same task while using the entire
feature space. With sufficient consensus among the minor agents, they may
overturn the default action selected by the single major agent. Although
offline training is commonly used to train machine learning-powered intrusion
detection systems, it presents significant constraints to exploration due to a
limited set of samples [14]. The possibilities for agent-learned behaviour are
constrained by the information contained within the dataset.

MARL agents have been shown to learn to defend a network against a
DDoS attack by selectively throttling network traffic [56]. In a simulated net-
work game, a group of 1000 agents was trained to restrict traffic flows on their
assigned network routers. The agents were shown to keep the total load on a
central server within its operating range while maximizing the flow of legiti-
mate traffic. This work demonstrated a significant improvement when using
difference rewards to mitigate the credit assignment problem by comparing the
observed reward to a counterfactual [57]. Credit assignment may significantly
impact the performance of cooperative MARL for tactical cyber defence, par-
ticularly in large-scale settings. Similar to previous MARL works discussed,
the observation spaces are restricted to a single aspect of the network, and
the action space involves increasing or decreasing a certain parameter. MARL
can decentralize control of systems for cyber defence, handling very large in-
put spaces. This suggests that cooperative MARL could be an effective tool
for managing complexity in tactical-decision making for cyber defence tasks.

3.5 Value-Based Cooperative MARL

Despite the small amount of published literature in cooperative multi-agent
cyber defence, the field of general algorithm design for cooperative MARL is
rapidly expanding. This research seeks to bridge the gap between the capa-
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bility of MARL designed for general games and tactical cyber defence simu-
lation. This section provides an overview of value-based cooperative MARL
algorithms commonly applied to research environments.

Experimentation on RL systems typically utilizes a baseline environment
to provide a performance benchmark between algorithm designs. One of the
most commonly used cooperative MARL environments is the StarCraft Multi-
Agent Challenge (SMAC) [58]. SMAC provides a variety of scenarios ranging
from easy to very hard in which virtual units learn to defeat each other in
a battle video game. A comparative study of cooperative MARL algorithms
across a variety of environments, including SMAC, showed that CTDE meth-
ods are among the highest performing [12]. However, it remains an open
question how these results may translate to a tactical cyber defence game.
Moreover, centralized or decentralized models may have a performance edge
when faced with different opponent attack strategies, network topologies or
observation spaces.

The underlying principle of value-based RL is the use of a value function
to represent the expected return from a series of game states or state-action
pairs. Many value-based methods are based on the principles of Q-learning [6],
which is discussed in greater detail in Section 2.1. The RL methods explored in
this work perform value function approximation using deep neural networks.

A simple decentralized approach to learning in a multi-agent setting is IQL,
in which multiple Q-learning agents take actions simultaneously in a network
to achieve a joint goal [59]. IQL has been demonstrated to learn to play
simple games despite the non-stationarity of multiple agents interacting with
the environment simultaneously [60], [28]. However, IQL does not perform
as strongly as many state-of-the-art cooperative MARL algorithms across a
variety of tasks, often due in part to the non-stationarity problem [12]. Based
on its performance in other environments, IQL methods may struggle to learn
in complex cyber defence scenarios.

QMIX is a CTDE value-decomposition algorithm that employs a mixing
architecture of NNs to generate a joint Q-function [11]. Each agent uses a
decentralized Q-function that is trained centrally. QMIX extends the poten-
tial for value-based methods by improving the representational capacity of the
central Q-function using a trainable system of networks. See Section 2.5.4 for
additional discussion of the QMIX architecture. In practice, QMIX has out-
performed state-of-the-art value-based and policy-based methods at a range
of tasks [12], [58]. Most notably, QMIX has been shown, with the help of
specific implementation tricks, to discover optimal or near-optimal policies on
all SMAC [58] scenarios [29].

SMAC tasks are assumed to have transferability for general tactical-level
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decision-making as a result of agents needing to direct attention and action
in a coordinated way toward individual enemies in order to achieve success.
The cyber defence problem is modelled similarly, using actions to selectively
monitor or affect host characteristics. Due to the high potential for perfor-
mance on cooperative tasks, QMIX may be well suited for autonomous cyber
defence.

3.6 Summary

This chapter examined two main critiques of existing game design approaches:
(1) Many cyber defence game environments are greatly abstracted from actual
networks or involve optimizing a specific task. These approaches offer limited
task relevance to tactical cyber defence. (2) learning systems in tactical cyber
defence research rarely employ cutting-edge techniques, including multi-agent
methods, to expand the scope and complexity of the solvable problem space.
A sophisticated, partially-observable environment such as CybORG or FAR-
LAND allows for the design of complex, relevant tasks.
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4 Methodology

This chapter describes the research methodology for the evaluation of state-
of-the-art MARL algorithms in diverse scenarios. It provides a framework
from which to uncover promising game designs that demonstrate cooperative
MARL system adaptability and ability to handle complexity. Evaluation is
divided into two phases: the first phase exposes MARL systems to three
attacker strategies and three network sizes. The second phase explores the
effect of environmental complexity on the learning ability of MARL systems
through the addition of noise sources, the use of an additional action, and an
increased area of responsibility. Each phase relates to one of the applicability
criteria in this work, adaptability and complexity, respectively. CyMARL
(Cyber-MARL), the simulated cyber defence game environment for training
and evaluating cooperative MARL presented in this work, allows agents to
learn from host-based monitoring data to take tactical-level actions to prevent
and mitigate malicious activity.

A learning system is a cooperative deep MARL design consisting of an
architecture of neural networks and algorithmic structures. A learning model
is a specific instance of the learning system that can be trained to perform
a specific task; its objective in a game. This use of model is separate from
its use to discuss model-based learning in Section 2.1.1. A game is an entire
system, including the learning model and simulated environment. The game
elements include, for example, the attacker’s behaviour, the simulated net-
work architecture, and the actions available to the defender. A scenario is a
set of specific game elements. The terms defender and attacker are used to
represent each of these forces’ roles within the game. The defender refers to
the behaviour exhibited by the learning system, composed of multiple agents.

The outcome of the evaluation is ultimately to provide evidence to support
or refute the applicability of the selected cooperative MARL approaches for
the task of tactical cyber defence decision-making. Applicability refers to the
capacity for a particular learning system to scale to more realistic problems.
For example, a system with a high level of applicability generates a policy
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that identifies anomalous behaviour and carries out a logical chain of decision-
making to mitigate the threat across a variety of game designs. MARL systems
are exposed to a variety of game design elements and sources of complexity
within the environment to depict the ability of particular architectures to
learn cyber defence tasks. A complete guarantee of applicability to real cyber
defence is not possible within the scope of the simulated environment or in
the number of trials. Instead, arguments for the applicability and limitations
of MARL approaches are presented based on the experimental evidence.

To validate the objective of applicability, learner and environment param-
eters are evaluated based on the learning ability of MARL systems. Learning
ability is quantified by the mean return of a policy relative to a benchmark.
The benchmark in Phase 1 is a heuristic multi-agent defender. In Phase 2, the
parameters of one scenario type are varied, so performance is benchmarked
against the original scores of each MARL architecture.

This work assumes that there is transferability of performance gains be-
tween the CyMARL environment, other game environments, and more real-
istic applications. This assumption is based on the evidence of performance
transfer between different learning tasks for cooperative MARL (e.g., [12])
and between simulated and emulated cyber tasks (e.g., [47], [50]). The trans-
fer of learning ability from an abstracted simulation to emulation and real
network environments is assumed to be possible given an appropriately sized
input-output space. That is, the representations of tactical elements in the
simulation are sufficiently precise for performance gains to transfer to more
realistic environments. The applicability of MARL systems is therefore corre-
lated with their learning ability in complex environments.

This chapter is broken down into the following sections: Section 4.1 in-
troduces CyMARL, the simulated cyber defence environment. Section 4.2
discusses the evaluation criteria of cooperative MARL methods. Section 4.3
explores the game design elements to be varied as part of the evaluation. Sec-
tion 4.4 presents the two phases of the evaluation using the framework and
game design elements discussed in this chapter, and Section 4.5 summarizes.

4.1 CyMARL: Cyber Defence Environment

Game design, including elements such as observations, actions, rewards, net-
work topology, and game mechanics, define the cyber defence task the learning
system will attempt to optimize. To demonstrate applicability, the game en-
vironment must support a variety of game design elements to evaluate tactical
cyber defence decision-making by cooperative MARL learners. The simulated
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environment presented in this section allows for extensible, repeatable exper-
imentation of MARL for host-based cyber defence tasks.

Cyber Operations Research Gym (CybORG) is a framework that pro-
vides a simulated cyber operations environment for training and evaluating
RL agents [30]. CybORG simulates information technology systems related to
network security that a cyber professional may use in network defence or pen-
etration testing. CyMARL adapts the CybORG simulation project to create
a multi-agent host-based monitoring game for training tactical cyber defence.
CyMARL includes a PyMARL1 environment similar to SMAC [58], allowing
for integration with the tens of open-source cooperative MARL algorithms
built on the PyMARL framework.

Host-based monitoring systems are a common and effective tool for cyber
defence, particularly in situations where an attacker has made an initial breach
and is attempting to gain Command and Control (C2) channels within a
network. An agent that can effectively learn to perform tactical cyber defence
decision-making has the potential to provide host-based alerting and suggested
decision chains to a human cyber analyst. By excluding network traffic from
the simulation, the feature space of the MARL system can be constrained to
manageable levels. The results of a host-based game could inform the design
of more complex games, including network traffic elements. A host-based
monitoring system may use many attributes of computer systems that are not
simulated in this game environment. However, the intent of this game design is
to train an agent to react appropriately to some abstraction of the underlying
state of the network hosts. There are few limitations to the possibilities of
RL in this field. With sufficiently advanced design, the pattern recognition
potential of deep learning could enable extremely precise, efficient targeting
and mitigation of threats that may not be obvious to humans or traditional
tools.

4.1.1 Simulated Network

The core function of the simulated environment is to maintain and update
the true state of the game: a dictionary of all hosts, processes, and artifacts
within the network. Hosts, representing machines on the network, typically
contain system information, running processes, relevant files, running sessions,
and network interfaces. Each of these elements has various parameters stored

1PyMARL is an open-source MARL research project that allows algorithms to be built
from existing deep RL components such as NN agents and trainers. It is included as part
of the SMAC environment and paper [58]. The repository for PyMARL can be found at
https://github.com/oxwhirl/pymarl.
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in a hierarchical dictionary object. The true state is modified by the actions
of the defender learning agents, the scripted attacker agent, and, optionally,
heuristic grey users. Grey users are neutral actors in the scenario that take
actions such as connecting between hosts or scanning for IP addresses. Such
actions may be interpreted by the observing defender agent as malicious and
therefore create false positives.

Each scenario has an operational subnet that contains an operational
server and a defender server, shown in Figure 4.1. Each scenario also con-
tains a user subnet in which the attacker has compromised an initial host
(User0) at the start of the game. The attacker’s session on User0 cannot be
removed, and the defender server cannot be compromised. This allows for the
infinite play to be separated into episodes with a fixed number of turns. In
this experimentation, thirty-turn episodes are used based on the parameter
from CAGE Challenge 2 [49].

At the start of an episode of play, the IP space for the network is ran-
domly generated. Each host is assigned to a pre-defined subnet and given
an IP address as well as appropriate networking information to other hosts
on its subnet. Specific hosts are provided with routing information of other
subnets; the attacker must exploit these hosts to penetrate into other sub-
nets. Connections between hosts are not explicitly simulated. Instead, agents
use a directory of remote sessions to execute actions on. Services are run on
hosts, and they can be exploited by the attacker from a remote host, so long
as the attacker has appropriate routing information (i.e., IP address and port
number) and an applicable exploit.

Hosts can be Linux or Windows, which affects which processes, file system,
and vulnerabilities they have. Hosts are divided into up to three subnets: User,
Enterprise, and Operational. Each host has an importance score based on the
subnet. Hosts on the “user” subnet have a value of 0.1, on the “enterprise”
subnet, a value of 1, and on the “operational” subnet, a value of 10.

Hosts also store information about users and active sessions. When the
attacker exploits a host, it generates a reverse TCP shell as a C2 channel.
The appearance of new sessions is one of the key indicators that a defender
agent can use to attribute host compromise. Some types of exploits or data
tampering create files stored on hosts. Identifying file creation is another
method a defender agent can use to detect possible attacker actions.

Simulated data structures are encoded into observation vectors for training
and evaluation with RL agents. The data-structure-based host simulation
allows host-monitoring observations and actions to be computed without the
overhead of simulated data flows. This method allows for an efficient training
process in terms of clock-time for the simulation and the learning system. A
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description of the network environment elements can be found in Appendix
A.

4.1.2 Heuristic Attacker

The heuristic attacker follows a static policy. It begins each episode with an
initial foothold on a user host and moves between hosts by scanning for and
exploiting vulnerable services. Figure 4.1 presents a simple network diagram
showing attacker actions. The attacker is rewarded at each timestep equal to
the sum of the importance scores of all currently compromised hosts, though
reward does not modify its behaviour. The attacker can move laterally to a
target host if one of its sessions’ hosts has visibility of the target host through
its network interface. The attacker will choose hosts to exploit as it follows
the steps in Algorithm 1. The selected exploit is determined based on the port
number and a fixed probability, discussed in Appendix A.

Figure 4.1: Simple network diagram with attacker actions and targets.

A real-world attacker is not always solely motivated to establish commu-
nication channels on a network, although this is often critical in the success
of advanced persistent threats. Attackers may be motivated to modify data
within a computer network or deny users the ability to use IT infrastructure.
These principles are captured within the definitions of integrity and availabil-
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ity, respectively. A generic attack scenario in which the attacker attempts to
control as many hosts as possible fits the principle of confidentiality. These
three principles of cybersecurity provide variation to the attacker’s behaviour
and thus the task of the defender, allowing for an evaluation of learning adapt-
ability.

Algorithm 1 Attacker heuristic behaviour.

for subnet in network do
known ip addresses← DiscoverRemoteHosts

end for
for ip address in known ip addresses do

scanned ip addresses, known ports← DiscoverNetworkServices
end for
for ip address in scanned ip addresses do

exploited ip addresses← Exploit ▷ Exploit type is based on port
number and probability, see Appendix A.
end for
for ip address in exploited ip addresses do

ip address← ScoringAction ▷ Take scoring action if applicable.
end for
for ip address in exploited ip addresses do

ip address← PrivilegeEscalate
end for

Attacker Goals The attacker’s behaviour is differentiated by its goal, which
can be confidentiality, integrity, or availability. In each case, the attacker takes
different actions upon establishing a session on a host, though the heuristic
for lateral movement is the same across all scenarios. In the confidentiality
scenario, the attacker’s intent is to spy on privileged information within the
network but not take actions to modify it directly. The confidentiality attacker
receives rewards for each host to which it is connected at each timestep. The
integrity attacker seeks to tamper with files stored on a host. At each timestep
that this modified data exists, rewards are provided to the attacker based
on the importance score of the host. The availability attacker will spawn a
Denial of Service (DoS) malware process that represents a consumption of
CPU cycles, affecting user availability. Similarly, at each timestep in which
the malware process is running, the attacker receives rewards equivalent to
the importance score of the host. The attacker’s reward is used to train the
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defending system on whether the defender’s series of actions is effective at
mitigating this activity.

The attacker goals are designed to assess the adaptability of the defender
system to learn to defend against variations in threat type on a network.
Although the attacker’s behaviour is a simplification of these attack patterns,
the difference in objective affects how the threat appears to the defender and
which actions it should take. The cumulative reward for each strategy serves
to model the risk to the network while malicious artifacts exist on network
hosts. As the number of timesteps increases, there is a greater probability that
the attacker will have collected privileged information or disrupted normal
processes on the network. Likewise, the severity of the risk is proportional to
the importance of the host, which is based on the value of its subnet.

Attacker Actions The attacker will choose from a set of parameterized,
discrete actions at each timestep. The parameters allow the attacker to choose
targeting information such as an IP address, session, process, and port, as
shown in Table 4.1. Beginning with its initial foothold on the user subnet, the
attacker’s only valid action is to perform a scan for IP addresses of connected
hosts. It will save the list of discovered hosts and select one at random to scan
for open ports. With a target IP address and port number, the attacker can
choose from a set of exploits with a probability of successfully spawning a shell,
gaining the attacker greater information on a compromised host, including
connections to other hosts that can be hijacked. Attacker exploits are based
on the vulnerable service, they are listed and decribed in Appendix A. The
attacker’s actions follow a hierarchy: it must first discover a host, then a
port, before attempting to move laterally on the network using an exploit.
Escalating session privilege requires the existence of a session created via an
exploit. The attacker’s possible actions at each step are based on the saved
information it has gathered.

Similar to performing exploits, the action to escalate privileges is successful
based on a fixed probability for all hosts. The scenario assumes that privilege
escalation vulnerabilities are related to the image of the host system and are
common among all hosts of a given OS. Escalating privileges does not provide
points, but it immediately obfuscates the attacker’s session, removing it from
the defender agents’ observations. A file is left on the host as a result of the
privilege escalation action providing the defender with a clue that malicious
activity has occurred on a host. The heuristic attacker will attempt to gain a
session on each host within the network before escalating its privilege.

In the integrity and availability scenarios, an additional scoring action is
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required to realize the attacker’s goal. Scoring actions can be taken once a
session is established on a victim host using the exploit action. The tamper
action is taken by the integrity attacker to simulate the modification of impor-
tant files. The files will appear to the defender agent monitoring the subnet.
However, the defender can only distinguish between legitimate and tampered
files using a targeted analyze action (see Section 4.1.3). The deny action
is taken by the availability attacker to simulate the creation of a DoS pro-
cess. This does not affect the defender’s ability to monitor the victim host.
However, the attacker receives rewards over time for each active DoS process.

Table 4.1: Attacker actions and their parameters.

Action Parameters

DiscoverNetworkSystems Session Subnet
DiscoverHostServices Session IP Address
Exploit Session IP Address Port Exploit Name
Privilege Escalate Session IP Address Exploit Name
Tamper1 Session IP Address
Deny1 Session IP Address

1tamper and deny scoring actions are exclusive to their respective scenario
types, integrity and availability.

4.1.3 Multi-Agent Defender

Within the simulation, a defender server runs a controller process for each
RL agent executing commands using its active sessions on connected hosts.
Each agent has exclusive access to its designated simulated controller. Figure
4.2 illustrates the agent-environment interaction from the point of view of the
defender. Agents are external to the network as they are the representations
of the MARL decision-making policies.

Defender Goals The defender’s goal is to minimize the harm caused by
the attacker. Harm is quantified by the attacker’s rewards. The defender
cannot receive positive rewards. Rewards are either a result of the attacker’s
actions or a defender’s invalid actions. The MARL agents seek to minimize
the success of the attacker by jointly maximizing their cumulative reward.
Rewards, and by extension, the importance of protecting a host, are scaled
based on the value of the subnet. This reward signal incentivizes proactive
protection of lower-valued subnets to avoid harsh penalties incurred if the
attacker penetrates into higher-valued subnets.
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Figure 4.2: Agent-environment interaction with multiple defender agents.

Defender Actions To mitigate attacker activity, the defender selects ac-
tions to monitor, remove suspicious processes or files, restore hosts, or gather
file information. RL defender agents must choose to take the monitor action
to receive observation information from all hosts within its area of responsi-
bility. As with the attacker, each action has parameters that allow the agent
to choose targeting information such as an IP address, session, process, and
port, as presented in Table 4.2.

monitor checks all hosts within an agent’s vision for new processes added
to a suspicious process list. The action returns an observation containing
an encoded listing of network information, running processes, sessions, and
system information. An agent can also choose to remove suspected malicious
processes from a specific host. All new processes are pre-identified using the
monitor action. As a more aggressive action, an agent can re-image a host
using restore. This action restores a host to its original state at the start
of the game. It is the only way to remove an attacker that has escalated
its privilege on a host. It will also remove any malicious processes or files.
However, the restore action has an associated penalty that scales with the
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importance score of the target host (e.g., -0.1 for a user host or -10 for an
operational host).

The three actions, monitor, remove, and restore, are available to the
defender for all scenarios. In the integrity scenario, agents have two additional
actions to manage the specific threat type. Agents can take an analyze

action to determine security characteristics of files on a host, allowing it to
identify any malicious files. To remove the discovered files, the data repair,
is required. In the availability scenario, the remove action can be used to
target DoS processes and simulated TCP sessions. In more advanced trials,
the misinform action is introduced, and the defender’s area of responsibility is
modified. misinform generates a service on a host that can be misinterpreted
by an attacker as vulnerable.

Table 4.2: Defender actions and their parameters.

Action Parameters

Monitor None
Remove Session (to execute from) IP Address PID
Restore Session IP Address
Analyze1 Session IP Address
Data Repair1 Session IP Address
Misinform2 Session IP Address Service to create

1Exclusive to the integrity scenario. 2Action added as part of advanced trials
(see Section 4.4).

A defender agent may choose to perform any action on any of its connected
hosts. However, some actions are invalid. For example, a remove action on a
host without an attacker process will fail, resulting in a invalid action. Taking
an invalid action has a penalty equal to the importance score of the host’s
subnet that serves to reinforce the avoidance of these actions. The game is
designed to allow the defender to receive information about certain activities
that may be malicious, such as the establishment of new sessions on a host, by
selecting the monitor action whenever a specific response is not required. The
intuition behind this mechanism is that a human cyber operator will typically
focus their attention on monitoring to maintain a general picture of events
on the network from their detection tools. Given details about the environe-
ment, an analyst may select a specific tool and target for either analysis or
mitigation of a suspected threat. The high-level actions of the defender in
this game represent the choices in attention that a defender would need to
take to understand or act against the threat. The tactical decision-making
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Figure 4.3: Observation and action space of a defender agent.

competency of agents can then be inferred from their ability to minimize the
impact of the attack.

Defender Observations The defender’s observations consist of a set of
host attributes that could be available to a host-based monitoring system,
listed in Table 4.3. The observation space is a fixed vector containing an
encoding of host attributes for all hosts to which an agent is connected. Within
each observation, the status of each host is encoded into a feature vector as
illustrated in Figure 4.3. Feature vectors contain a floating point value for each
simulated element of a host. All host vectors are concatenated before being
sent to the simulated controller for each agent. The information contained
within the vector includes static attributes such as IP address and hostname
and dynamic attributes such as running processes, connections, and running
sessions. For example, a trained defender agent may suspect attacker activity
by noting that a new session has been created by a previously zeroed segment
of its observation space containing encoded information. The fixed observation
space integrates with existing MARL training libraries such as PyMARL [58].
A detailed description of action and observation in CyMARL can be found in
Appendix A. A limitation of fixed observation spaces is poor generalizability
of trained models to new tasks. However, this does not limit an evaluation
of the adaptability of MARL architectures that are trained from scratch for
each task.

Each agent is responsible for a subnet within the network. Network defence
in real applications is commonly divided by subnet to segregate security access
levels. Consequently, the compromise of an RL agent does not expose or
compromise agents in other subnets, enabling greater security of the learning
system within the game.
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Table 4.3: Defender observation features of a network host.

Category Feature
Networking Interface IP address, Subnet
Running Processes PID, User
Sessions PID, User
System Information OS Version, Hostname
Users Users, Groups, Passwords if known

4.1.4 Optimal Score

A score of zero infers that the attacker did not take any successful scoring
actions over thirty turns of play. The attacker has the first-move advantage,
as is common in real operations. In the confidentiality scenarios, the first
attacker action that the defender can observe is an exploit. It will therefore
reliably accept some loss in the first turn that the attacker moves onto one
of its neighbouring hosts. Although the defender could get lucky with the
removal of the right host, this risks an invalid action with the same penalty.
A non-zero score is expected in most confidentiality games, even with optimal
defender play. In the other two scenarios, integrity and availabilty, the attacker
performs two actions to begin accumulating rewards. It is possible, therefore,
for an intelligent defender to break the attacker’s connection to a host before it
can tamper with files or spawn malicious processes. If this is done every time
and no invalid actions are selected, the defender could hypothetically score
zero in the integrity and availability scenario types. Moreover, the deception
scenario, which allows the defender to use the misinform action, provides
opportunities for the defender to guess at the possible hosts that an attacker
may randomly select. Thus the defenders can improve the probability of
detecting the attacker without exposing hosts.

4.2 Evaluation Design

This section describes a framework to evaluate the learning ability of MARL
systems across a range of tactical cyber defence tasks. Models begin with
randomized policies for each agent. Through iterative episodes of interaction,
the system learns to optimize its policy in the game by seeking to minimize
the rewards that the attacker accrues.

For each experiment, two algorithms are evaluated: IQL and QMIX, im-
plementing fully-decentralized and CTDE architectures, respectively. Agents

43



4.2. Evaluation Design

do not directly share information with each other, but in the case of QMIX, a
joint policy representation is learned centrally before being decomposed into
separate behaviour policies. The architecture of cooperative MARL systems
has been shown to significantly affect the learning ability of models at a range
of tasks [11], [12]. As such, a comparison of centralized and decentralized
training allows for direct observation of the effect of centralized learning for
MARL in a cyber defence setting.

Learning ability is the capacity of an RL model to generate a policy from
its initial randomized state. A trained model that achieves a high return at
a task has a higher learning ability than a lower-performing model given the
same training opportunity. The design of this experimentation relies on the
assumption that the applicability of a learning system is correlated to its learn-
ing ability across a range of cyber defence tasks. Learning ability is evaluated
using the relative mean performance of a model compared to a benchmark
at a given task. Tasks are differentiated by the inclusion or modification of
various design elements. Each design element is tested independently as a
trial for each architecture type.

4.2.1 Learning System Training

Agents update their Q-function based on the joint reward, observations, and
actions. Since the defender cannot gain positive rewards, its objective is to
minimize the negative rewards it accrues in an episode by preventing the
attacker from realizing its goals.

IQL is equivalent to training independent DQN agents to learn to take si-
multaneous actions to maximize their joint reward. Each IQL agent performs
a prediction of its expected reward from local experience using a Q-function.
By updating its Q-function based on new experience and acting on its policy
representation, each IQL agent is a self-contained learner-actor. The foun-
dational difference between QMIX and IQL is that QMIX performs learning
updates centrally. Each agent will generate a separate Q-function based on
its local observations and joint reward, but the weights of the Q-function NNs
are sent to a centralized learner, which performs a joint policy update.

4.2.2 Evaluation Metrics

Since the task of an RL system is to maximize its return, the mean return
of a system is a direct indication of how well it has learned to perform its
intended task. The mean return is the average of the defender system’s return
over multiple episodes of play. Return is provided by the environment based
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on the reward function of the game. Each experiment has a unique set of
parameters affecting the optimal policy, hence the optimal score. To measure
performance, a model’s mean return is compared against a benchmark for
the specific task using percentage difference. This benchmark is a heuristic
defender model for each scenario in Phase 1, and the original performance of
each architecture in Phase 2. Since the optimal return varies between tasks,
a heuristic model provides a base value for learning system performance.

Mean return is a common metric for evaluating trained model performance
and convergence in cooperative MARL (e.g., [11], [12], [28], [58]). In many
cases, novel algorithm designs are benchmarked against established environ-
ments to compare their performance to current state-of-the-art approaches
[11], [29]. Likewise, the difficulty of MARL tasks can be quantified using the
mean return of models trained using existing algorithms, such as MADDPG
[26], IQL, and QMIX. Works such as SMAC [58] provide a benchmark envi-
ronment for these comparisons. This research is concerned with evaluating the
performance of state-of-the-art cooperative MARL architectures when faced
with a novel environment.

An alternative evaluation metric is an agent’s Q-function which outputs
an agent’s estimated return for following its policy from a given state. The
Q-function provides an agent-defined value of its current policy. There are
three primary drawbacks to using the Q-function as an evaluation metric:
First the Q-function is an internal estimate of expected performance rather
than observed performance. Second, in independent multi-agent learning,
each agent utilizes an independent Q-function. The average of these functions
does not necessarily indicate the system’s overall performance. And third, the
heuristic defender benchmark does not produce an equivalent value metric
with which to compare. Q-value distribution is sometimes used as a metric
for learning stability. However, it suffers from the same drawbacks as the
Q-function discussed previously. Instead, the standard deviation of the mean
return can provide a metric for the stability and convergence of the learning
model over time.

Two evaluation outputs are used to analyze learning ability: evaluation
score and training performance. The evaluation score for a model is its av-
erage performance, measured in mean return, over 1000 steps of play using a
trained, static policy. The training performance of a model refers to the mean
return of the model taken at 10 000 timestep intervals over its training run2.
All evaluation outputs are specific to the experiment and must therefore be

2Averaging over 1000 timesteps for evaluation and 10 000 timesteps for training are
standard in the literature (e.g., [17], [58]).
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compared to relevant benchmarks. Training performance curves provide an
overview of model learning speed and performance relative to other architec-
tures and benchmarks.

All models were trained to one million timesteps. Learning speed is an
implicit evaluation criterion to mitigate the impracticality of long training
times. Although there may be greater performance gains outside of the bounds
of the training time for the model, this evaluation will discuss the behaviour of
the model from its initial state to one million steps, inferring expected future
behaviour.

4.2.3 Heuristic Defender Benchmark

In Phase 1, a heuristic defender is used as the benchmark. This rule-based
multi-agent defender model can detect suspected malicious activity and restore
hosts. Its agent-environment interface mirrors the MARL defender system for
each scenario, controlling agents with the same action spaces and limited
observations. The heuristic issues one action to each agent at each timestep.

The heuristic defender’s design assumes it has access to a tailored expert
system that provides a precise signal of malicious process creation. The de-
fender’s action at each step is to monitor until it receives this signal, at which
point it will always restore the target host. This design is based upon a hy-
pothetical script that reacts to the signal of a signature-based detection tool
that reveals targets based on a ruleset. The MARL systems do not assume
that this signal is available and instead rely on the features produced directly
from the host simulation.

Fewer constraints on data preprocessing allow for a potentially richer set
of behaviours that cannot be otherwise achieved due to preconceptions about
the meaning of inputs. In the heuristic defender model, or in the CybORG
2 observation module discussed in Section 3.2, elements of the simulation are
aggregated and labelled before being sent to the decision-making model. These
observations provide specific context, derived by hand, that allow models to
infer which actions to take. By providing raw data without context, learning
agents have the opportunity to develop more nuanced relationships between
observations and actions that may not be obvious to the human designer.
Bypassing the feature discovery required by the MARL systems gives the
heuristic defender an advantage, but this is mediated by its unsophisticated
behaviour. In testing, the heuristic defender model performed well relative to
MARL models, particularly on larger networks where MARL systems have a
greater observation space to manage.
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4.3 Game Design Elements

Game design elements define the learning task and thus enable the evaluation
of MARL systems at a range of tasks. Elements are selected based on three
outcomes: (1) to expose MARL systems to a range of scenarios that may be
encountered in a real setting, enabling an assessment of the adaptability of
model performance across tasks, (2) to increase the complexity of the tasks
by adding realism, and (3) to increase its scope of possible behaviours, by
increasing the action space of the defender system. MARL models are also
tuned to establish hyperparameter values to improve the potential for success
at their tasks.

4.3.1 Scenario

Variation of the scenario is designed to challenge MARL systems in terms
of their scalability by introducing larger network topologies and in terms of
adaptability by varying the attacker’s objective. In a cyber setting, post-
breach attack vectors and goals are many and varied. Therefore, a MARL
approach to tactical cyber defence should demonstrate competence when deal-
ing with a range of threat types. CyMARL includes three network sizes and
three attacker behaviours (scenario types). Each combination allows for nine
scenarios to train and evaluate each MARL defender system.

Network Size Three network sizes vary the task complexity, as shown in
Table 4.4. Adding more hosts and subnets exponentially increases the size of
the observation and action space of the agents, thus adding more dimensional-
ity to optimizing over policy space. The small scenario is designed to have the
minimum feature space while requiring the attacker to move between hosts
and subnets to achieve higher rewards. The network has a single server on
the operational network (disregarding the defender server, which cannot be
compromised or monitored) and three user hosts that the attacker can infect.
The medium-sized scenarios increase the number of hosts on the operational
and user subnets. The large scenarios introduce the enterprise subnet. All
network sizes are depicted in Figure 4.4. The large scenarios do not have
direct routing between the user subnet and the operational subnet. Instead,
the attacker must pivot through a specific enterprise network host with the
operational subnet’s routing information. With three subnets in this scenario,
the defender system is also charged with managing three agents. The network
sizes are based on the sizes evaluated in similar single-agent RL work into
autonomous cyber defence (e.g., [30], [47]).
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Figure 4.4: Network diagram of small, medium, and large sized networks in
CyMARL. In the large scenario, the enterprise subnet divides the user and
operational subnets; the attacker must move between each subnet in order.

Table 4.4: Network sizes by defender agents.

Small Medium Large

Number of hosts1 5 10 13
Number of subnets 2 2 3
Number of agents 2 2 3

1Each network contains an initial foothold host (User0) and a defender server
which cannot be affected by attacker and defender actions.

Attacker Behaviour The attacker must perform its scoring action to be-
gin collecting points on a given host. In the confidentiality scenario, rewards
are provided to the attacker for maintaining active sessions on hosts, gener-
ated as part of the exploit action. In the integrity and availability scenarios,
the attacker must establish a session before it can perform its scoring action,
tamper or deny, respectively. As outlined in Table 4.5, in response to the at-
tacker’s tamper action, defender agents are given additional actions to combat
the specific threat, analyze and data repair. The remove action will remove
DoS processes and attacker sessions if they exist on the target host.
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Table 4.5: Scoring versus defensive action for each scenario.

Confidentiality Integrity Availability

Red Scoring Action Exploit Tamper Deny
Blue Defensive Action Remove Analyze, Data Repair Remove

Given the limitations of the simulation, and the possible policies of attack-
ers and defenders, these three scenarios neglect many TTPs that an attacker
may use in a real-life scenario to realize its goals. However, this work is a
first step towards understanding how a MARL architecture may learn distinct
tactical cyber defence policies in the face of different threat types.

4.3.2 Hyperparameters

The intent of hyperparameter tuning in this experimentation is to maximize
the potential performance of MARL models at specific tasks. The hyperpa-
rameter values chosen were based on initial trials with the environment and
the findings in Hu et al. and Hessel et al. that evaluated the effect of RL im-
plementation designs in QMIX and DQN, respectively [29], [61]. These works
specifically aim to derive the best-performing architectures using implemen-
tation tricks. Moreover, Hu et. al demonstrates a near-perfect win rate using
QMIX on the most challenging tasks in SMAC, and the implementation is
open source [29]. Based on the assumption that learning ability will transfer
between tasks, this experimentation assumes a degree of transferability be-
tween the “hard” SMAC [58] tasks and the scenarios presented in CyMARL.

The use of recurrent neural networks is assumed to outperform the alterna-
tive fully-connected NN. This assumption is supported by initial testing in the
CyMARL environment. Since the environment is partially-observable, there
is a strong intuition that the use of RNNs will benefit learning, expanded on
in Section 2.3.

A one-factor-at-a-time technique was used for each trial to vary a single
hyperparameter from the baseline in [29]. This technique is limited by its
robustness, as relationships can exist between hyperparameter values that
lead to better outcomes. However, it has a significant speed advantage over
other tuning approaches, such as grid search, allowing for a fast search over a
larger range of values. This approach was taken because a grid search is later
carried out before the values are finalized for Phase 1 and because it allowed
for a greater breadth of search that would otherwise not be possible within
the scope of this experimentation.
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It is important to identify the differences in optimization strategy between
SMAC and CyMARL, as the two environments have significant differences.
Eight hyperparameters were evaluated in initial testing:
1) Batch size: The number of samples used from experience replay for one

learning update.
2) Buffer size: The size of the sliding window buffer that stores experience

replay samples.
3) Learning rate: Weighs the magnitude of learning updates.
4) Number of rollouts: The number of parallel environments that a learner

samples from.
5) Orthogonal initialization gain: Establishes the initial weights of the

agents’ linear NN layers with a semi-orthogonal matrix by a factor of the
gain value.

6) RNN hidden layer dimension: The number of nodes (the width) of the
hidden layer in each agent’s RNN.

7) Target update interval: The frequency at which the target network is
updated from the primary network. Two-network architecture is adapted
from DQN [17].

8) TD(λ): Value of λ, the trace-decay parameter, weights the effect of eligi-
bility traces by applying less discounting to expected future rewards.
Once the baseline is established, three hyperparameters are used to tune

the two MARL architectures for each of the nine scenarios using a grid search:
batch size, buffer size, and learning rate. These parameters were selected
based on their ability to affect performance in initial testing and their effect
across tasks presented in [29]. Parameters that, when varied, caused a greater
evaluation performance without severe negative changes in performance were
preferred.

4.3.3 Noise

Noise refers to stochastic variance in the input to the RL system. In the case
of a cyber defence game, noise can be any observation that is not relevant to
achieving the defender’s goal. Real settings are assumed to have significantly
more noise than in simulation. Therefore, the addition of realistic noise sources
allows for a closer approximation of real applications. The two sources used
in this experimentation are modifying the reliability of the detection sensor
and the addition of grey users.

Imperfect Detection A major challenge confronting intrusion detection
and host-based security tools is detecting false positives. The enormous vol-
ume of data these systems receive compared to the few actual malicious events
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makes correctly determining the malicious activity difficult and a major driver
in the development of these expert systems. Cyber defence sensors are typ-
ically designed to accept higher levels of false-positives if they can reduce
the probability of harmful false-negatives. A realistic cyber defence scenario
should contain sensors that are not entirely reliable, allowing some false alerts.
Inaccurate alerting, in the mislabeling of positive and negative samples, intro-
duces noise into the system that can affect the accuracy of a learning system.
In simulation, defender agents can be withheld observation information at a
fixed probability. A probability of correct detections allows for tuning of this
parameter to determine how noise from imperfect detection affects the MARL
system.

Grey Users Grey users are heurisitic models that randomly perform actions
in the network. With the addition of grey user actions such as port scanning
and process spawning, there is a risk that grey activity may be interpreted as
attacker activity, thus leading to false positives. In a realistic network setting,
the vast majority of activity is conducted by benign actors. Although the scale
of grey users in this experimentation is significantly less than what could be
considered average, the actions of just one grey user may significantly affect
the MARL system’s ability to discern malicious from benign activity.

4.3.4 Defender Capabilities

Defender capability can be extended with the addition of actions, representing
tactical options for the defender in the second phase of evaluation. The addi-
tion of the deception action allows the defender system to take more proactive
tactics when presented with a threat. Furthermore, by providing defender
agents with visibility over the entire network environment, they may leverage
greater collaboration.

Deception Deception actions allow a simulated defender to stand up a de-
coy process that appears vulnerable from the attacker’s perspective. The
attacker may choose to exploit this process which will always fail. The exploit
action can alert the defender of the threat without compromising the target
host. By deceiving the attacker, the defender system has learned about the
attacker’s position as a result of the exploit. Moreover, this wastes one of the
attacker’s thirty turns in the episode. If the defender is frequently successful
at deceiving the attacker through an episode of play, it could be an effective
tactic to slow the attacker’s movement toward higher-value hosts. However,
the reward is typically delayed when experimenting with this action using

51



4.4. Evaluation Process

RL. A defender may set up a decoy that the attacker will not see for a few
timesteps or even at all. Learning from delayed reward presents a significant
challenge, but through doing so, agents can be significantly more effective at
network defence.

Defender Area of Responsibility The final element of the experimenta-
tion will examine how changing the observation and action space affects learn-
ing in the two approaches. Because the game sets each agent on a segregated
subnet, their options for cooperative action are constrained. A re-framing of
the defence game, giving all agents visibility and the ability to act over the en-
tire network, may lead to improved learning of decentralized policies. It may,
however, exceed the capacity of the MARL systems to parse relevant features
due to the curse of dimensionality. Comparing a full visibility approach to the
original subnet-separated agents provides insight into MARL systems’ ability
to scale.

4.4 Evaluation Process

This experimentation comprises two phases: the first phase of evaluation as-
sesses the viability of two cooperative MARL architectures at performing nine
host-based tactical cyber defence tasks. The second phase builds upon these
results by introducing new game design elements: noise, a deception action,
and an increased area of responsibility, to improve the game’s applicability
to real applications. The intent of this experimentation is not to assess the
generalizability of trained models across different scenarios. Rather, specific
models will be trained at a variety of tasks to determine how game design
elements affect performance. If learning systems that exceed the benchmark
performance are limited to simple scenarios, the applicability of the approach
would appear to be low. Conversely, learning systems capable of high perfor-
mance in a large set of game scenarios suggest higher applicability.

Training and evaluation of learning models are performed over a series of
trials, each evaluating performance with a particular game design element. As
shown in Figure 4.5, each architecture is compared for each experimental trial.
Each trial compares the effect of a single design element to the benchmark in
terms of mean return. The evaluation scores and training performance curves
are used to compare model performance for each trial. Results of training and
evaluation runs are measured from the mean of five randomized training seeds
to provide more representative results.
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Figure 4.5: The evaluation loop.

4.4.1 Initial Conditions

It is impractical to perform extensive hyperparameter tuning for each sce-
nario and MARL architecture included in this experimentation. Training is
constrained by scope and computational resources available. The intent of
this experimentation is to be reasonably repeatable, for example, for valida-
tion of new scenarios or simulations. The confidentiality-medium scenario was
used to establish the baseline for the experimental trials. The medium-sized
network provides the greatest probability of representing the median values,
minimizing the skew that hyperparameters may have toward a particular sce-
nario. The confidentiality scenarios consist of the core gameplay upon which
the other two scenarios build.

4.4.2 Phase 1 Trials

The first phase of trials evaluates the learning ability of each MARL architec-
ture across nine scenarios. The scenarios consist of the three attacker be-
haviours: confidentiality, integrity, and availability, for each network size:
small, medium, and large. Three hyperparameters are tuned using a grid
search. The evaluation scores and the training curves of IQL and QMIX
are compared. An assessment of MARL system adaptability and its ability
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to scale to more complex environments can then be supported based on the
performance of learning models relative to the benchmark.

4.4.3 Phase 2 Trials

This phase adds complexity to the most promising game configurations from
the previous phase to provide a more robust assessment of MARL system
adaptability. For each trial, models are trained in the presence of one game
design element and compared to a benchmark policy generated in Phase 1.
The objective is to demonstrate how these elements affect learning ability.
Each trial relates to one of the design elements discussed in Section 4.3:

1) Grey users
2) Detection noise
3) Deception action
4) Defender area of responsibility

The introduction of complexity from these design elements revealed specific
advantages for RL decision-making. By providing a greater range of states
and actions to the learning system, there are more opportunities to expand
upon the range of applicability of MARL approaches. Moreover, models have
greater potential to develop more sophisticated behaviours tailored to their
objective, thus showing greater promise for specific, realistic applications.

4.5 Summary

A tactical cyber defender must be capable of recognizing specific patterns
within their purview and be capable of protecting, mitigating, and recover-
ing cyber assets through a series of actions. Cooperative MARL may show
evidence for such decision-making. The learning ability of two value-based
methods is compared across a range of host-based defence tasks to provide
an assessment of the applicability of cooperative MARL to cyber defence op-
erations. By varying game design elements, this research seeks to establish
a range of applicable tasks in which the evaluated MARL approaches show
the potential to learn effective tactics. The framework presented in this chap-
ter provides a set of tactical-level scenarios for multi-agent defender systems.
The provision of trained policies at the range of scenarios demonstrates their
adaptability and ability to handle complexity in a cyber defence context.
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This chapter presents the findings of the two phases of evaluation. First, two
cooperative MARL architectures, IQL and QMIX, were trained on nine host-
based network defence scenarios. The second phase evaluated MARL systems
in scenarios with sources of increased complexity. The learning ability of a
MARL system is quantified by the actual performance of a trained model,
the evaluation score. From the results of both phases of experimentation, the
capabilities and limitations of MARL systems in this game are discussed in
terms of learning adaptability and game complexity. These results are limited
by a small sample size of trials investigating a particular game design element.
In a limited number of trials, this experimentation sought primarily to evaluate
individual parameters that may point to utility in real network settings.

This chapter is broken into the following sections: Section 5.1 discusses
the experimental setup, Section 5.2 presents the initial conditions, Section 5.3
presents the results of the first phase of trials, Section 5.4 presents the results
of the second phase of trials, Section 5.5 discusses the findings and points to
trends in network size, scenario type, noise, and MARL architecture. Section
5.6 summarizes.

5.1 Experimental Setup

MARL systems are trained for one million timesteps. A timestep is repre-
sented in the game as a turn in which each agent takes one action. The
outputs of training are the training results and a saved model. The training
results include a variety of metrics collected at 10 000 timestep intervals. The
saved model contains all of the parameters of the learning model, effectively
a saved policy. Each trained model is evaluated over 1000 timesteps of play
without learning. The evaluation score is the average of the mean return
of five evaluation runs using separately trained static policies for each trial.
Evaluation scores are compared using percent difference, calculated by sub-
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tracting the smaller score from the larger score and then dividing the result
by the smaller score. The variance of models is expressed in the standard
deviation of the mean score. Standard deviation is calculated as the square
root of the variance of the mean return of the evaluation runs. When variance
is compared between results, the Coefficient of Variation (CV) is used. CV is
calculated from the standard deviation divided by the mean return, expressed
as a percentage.

Action masking is not used on the action space by default, so agents must
learn which actions are invalid based on the context of their observations.
Actions are parameterized with information that allows agents to specify the
type and target of their actions. The PyMARL framework does not natively
support parameterized actions, so the action space of each agent is parsed
as a vector with a single element for each possible combination of action
parameters.

Trial data were collected using the PyMARL [58] command line interface.
This work used the algorithms from Hu et al. ’s implementation, PyMARL2,
which builds additional capability into some of the MARL algorithms in the
original project [29]. PyMARL saves training and evaluation data for each run
within a trial to JSON-formatted output, from which the relevant information
is read into CSV format for analysis and plotting. Trials were run on Windows
10 using a batch script to run sequential experiments.

5.1.1 Limitations

Where robust evidence was required, evaluation scores were calculated from
five separately trained policies. The objective of this technique is to reduce
the impact of variance between runs skewing the final values, which can be
severe in some RL settings. Due to computational constraints, this technique
was used to validate final results and not for every experiment run. For exam-
ple, it was not feasible within the scope of this experimentation to train five
randomized seeds for each grid search combination. Rather the grid search
was run for a single iteration for each combination of hyperparameter val-
ues. The best-performing models were then validated using five randomized
training seeds. This approach does not account for “unlucky” runs in which
hyperparameter values may have performed better if taken from an average,
however, this is an acceptable tradeoff in limiting computation time.

In some cases, one million training steps was insufficient to observe model
convergence to a policy. However, one million timesteps of training over five
seeds can show how quickly and how well models learn in this setting given
changing conditions. The findings of this experimentation provide evidence to
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suggest performance potential within the training period rather than to find
the performance limit of these methods.

Three hyperparameters, batch size, buffer size, and learning rate, were
varied as part of the grid search in Phase 1 of this evaluation, a total of eight
values. This is less tuning than what is commonly performed for MARL grid
searches in the literature. The grid search is not intended to be a robust
assessment of hyperparameter values. Instead, it is meant to provide models
with an improved representation of their actual potential. To mitigate the
relatively small tuning set, a larger set of hyperparameters were varied using
one-factor-at-a-time to establish the initial conditions.

5.1.2 Benchmarks

Phase 1 uses the evaluation score of a heuristic defender model as a bench-
mark of performance for each scenario. The heuristic defenders are designed
to simulate the performance of a basic defence policy. In the confidentiality
scenarios, this policy monitors all hosts within each agent’s subnet, and re-
stores hosts that provide an alert. The restore action was chosen because it
scored higher in testing than using combinations of other actions. The heuris-
tic defender will always take the monitor action until it observes the presence
of one or many new sessions on its hosts, a which point it will respond. In the
availability scenario, detection occurs due to a DoS process being created, not
an attacker session. The availability defender will restore on detection. In the
integrity scenarios, the heuristic defender will attempt to remove malware on
a host that it has discovered to have a tampered file with a 50% probability
and restore otherwise. To achieve the resulting behaviour, the heuristic de-
fender models uses specific information from the true state of the game rather
than through an observation signal, as is the case with the MARL systems.
Since using monitor to detect and restore to re-image affected hosts takes
two turns, the attacker has the opportunity to stay one step ahead if it con-
tinues to exploit new hosts. Although the heuristic defender has perfect game
information, its policy is restrictive enough to allow the attacker opportunities
to overcome its defences.

5.2 Initial Conditions

Eight hyperparameters for each architecture were trained against the Cy-
MARL confidentially-medium scenario using a one-factor-at-a-time method.
Table 5.1 presents the best-performing hyperparameter values in terms of
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mean return. The values that produced the highest mean return for each hy-
perparameter for each architecture were used as the initial configurations for
the experimentation.

Table 5.1: Selected hyperparameter values for each architecture from initial
tuning at the confidentiality-medium scenario.

Trial Values Initial Setup
IQL QMIX

Batch size 64, 128, 256 256 128
Buffer size 5000, 10000, 20000 10000 10000
Learning rate 0.001, 0.002 0.0005 0.001
Number of rollouts 4, 8, 16 8 8
Orthogonal initialization gain 0.01, 0.02, 0.04 0.02 0.01
RNN hidden layer dimension 64, 128, 256 64 64
Target update interval 100, 200, 400 200 200
TD(λ) 0.0, 0.2, 0.6, 0.9 0 0.9

5.3 Phase 1

The first phase of trials evaluated the learning ability of each MARL architec-
ture in nine scenarios. After training for one million timesteps, the policies of
each model were evaluated in terms of mean return for each scenario. There
is no clear preference of an architecture for a certain set of hyperparame-
ters across the scenarios, nor is there a strong correlation between the size
of the network and the magnitude of the best hyperparameter values. IQL
and QMIX observed a respective 3.24% and 12.35% increase in score as a
result of hyperparameter tuning, averaged over all scenarios. The selected
hyperparameter values for each scenario are provided in Appendix B.

Figure 5.1 presents the training performance curve of each model for the
nine scenarios1. The curves for IQL in red and QMIX in blue are the mean
return over the five randomized seeds, calculated from the previous 10 000
training steps. The learning curve shows the change in performance via iter-
atively policy updates for one million timesteps beginning from a randomized
initial state at timestep zero. The shaded area of each curve is the standard

1Re-scaled learning curves separated by network size can be found in Appendix B.

58



5.3. Phase 1

Figure 5.1: Learning curve of IQL and QMIX in each Phase 1 scenario. The
shaded area represents the standard deviation.
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deviation of the average training return. The dashed line is the mean heuristic
defender score for each scenario.

In most scenarios, the learning curves closely fit (within one standard de-
viation of) the heuristic score after a period of improvement. The small sce-
narios exhibited the greatest difference in score between the learning systems
and the heuristic. The small scenarios also exhibit the greatest variance in
both architectures. In the confidentiality-small and integrity-small scenarios,
IQL is observed to lose performance after a period of improvement. Figure
5.2 shows each MARL model’s evaluation score and standard deviation in the
nine scenarios. Figure 5.3 groups the evaluation scores together by average
over network size and scenario type.

Figure 5.2: Evaluation score of IQL, QMIX, and heuristic defender in each
Phase 1 scenario. Bars represent the standard deviation.

In Table 5.2, the evaluation score of each learning model is listed against
the score of the benchmark heuristic for each scenario. IQL and QMIX each
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(a) Mean evaluation score of each network size.

(b) Mean evaluation score of each scenario type.

Figure 5.3: Evaluation score of IQL, QMIX, and heuristic defender in each
Phase 1 scenario grouped by network size in Subfigure 5.3a and by scenario
type in Subfigure 5.3b. Bars represent the standard deviation.
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generated policies that outperformed the heuristic at seven and eight sce-
narios, respectively. QMIX outperformed IQL in every scenario except for
integrity-medium. QMIX had a 16.86% greater evaluation score than IQL on
average. IQL exhibited high variance in the small scenarios and significantly
lower scores than QMIX in the case of integrity-small and availability-small.
Averaging over only the medium and large scenarios, QMIX outperformed IQL
by 5.83%. The average CV of QMIX in the medium and large scenarios was
16.95% compared to the IQL CV of 14.23%. Despite the high variance of IQL
in the small scenarios, both architectures observed the greatest performance
improvement over the heuristic defender in the small scenarios.

Table 5.2: Evaluation Score by scenario ‘+/-’ the standard deviation of five
randomized training seeds. The highest score for each scenario is given in bold
font.

Scenario IQL QMIX Heuristic

Confidentiality
Small -223.12 ±42.46 -221.47 ±7.25 -225.13 ±11.02
Medium -75.78 ±11.4 -74.27 ±12.38 -79.5 ±37.85
Large -42.07 ±4.86 -40.64 ±6.56 -44.92 ±24.35

Integrity
Small -119.34 ±15.54 -37.01 ±13.09 -117.18 ±62.99
Medium -14.35 ±3.23 -15.58 ±3.9 -14.91 ±13.3
Large -12.56 ±1.58 -11.16 ±1.62 -12.21 ±6.06

Availability
Small -57.16 ±53.54 -30.75 ±4.62 -196.96 ±15.32
Medium -38.52 ±6.62 -32.53 ±6.21 -38.8 ±27.39
Large -24.65 ±1.9 -21.77 ±2.53 -24.96 ±10.19

The integrity scenarios posed the greatest challenge to IQL, scoring slightly
below the heuristic on average (-1.33%), whereas QMIX performed well (+55.82%).
Both architectures scored similarly in the confidentiality and availability sce-
narios. The learning systems scored on average 3.11% and 64.93% greater
than the heuristic defender at the confidentiality and availability scenarios,
respectively.

5.4 Phase 2

The confidentiality-large scenario was selected as the benchmark score for
the investigation of the Phase 2 game elements on the MARL systems. The
confidentiality scenario type uses a simpler attacker behaviour and defender
action space, and the larger network size is more desirable for evaluating
the scalability of the MARL systems. The intent of the second phase of
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trials is to evaluate how the MARL systems respond to different sources of
complexity relating to realistic aspects of cyber defence. This phase does not
perform a robust assessment by taking all models to their failure point but
rather points to trends in learning ability under different conditions. The
ability of MARL systems to maintain levels of performance under adverse
conditions, or to show improvement under beneficial conditions, is key to
supporting their applicability to the network defence setting. This phase of
trials consists of three parts. First, MARL models are evaluated in settings
with increased noise using two design elements: inaccurate sensors and grey
agents. Second, an additional action, misinform, is added to the defender’s
action space. Finally, agent action and observation spaces are modified to
increase their scope of responsibility within the network. Evaluation scores
in these trials are compared to scores from the original confidentiality-large
scenario.

Noise Noise challenges an agent’s ability to learn from the effect of envi-
ronmental changes, such as the attacker’s actions and the effect of defender
actions in the game. This set of trials used two sources of noise: inaccu-
rate sensors and the presence of grey users taking actions on the network.
The inaccurate sensor scenario decreased each defender agent’s probability of
being alerted of attacker activities. In the default scenario, monitor action
always reports process creation on a host accurately. The noise scenarios cut
the probability of accurate alerting from the monitor action to 50% and to
25%. The defender agents still have visibility of their hosts’ processes; only
the alerting via the monitor action is disrupted. Figure 5.4 shows the mean
return of each architecture when its monitor action is 50% and 25% effective,
compared to 100% effectiveness in the original scenario.

Reducing sensor accuracy had only a small effect on the ability of both
MARL architectures to learn a policy similar to the benchmark scenario. No-
tably, in the 50% scenario, the effect on the QMIX evaluation score was neg-
ligible (-0.14%), whereas IQL lost 3.27% from the benchmark. Reducing the
alerting accuracy of monitor to 25% followed a similar trend. QMIX scored
0.94% lower than the benchmark, and IQL scored 6.93% lower.

The second design element relating to game noise was the use of grey users
to confuse the defender. These agents take actions similar to an attacker, such
as performing scans and establishing connections with other hosts. A scenario
with a single grey agent and with five grey agents were trialled to evaluate
their effect on learning ability. The mean returns of these scenarios are shown
in Figure 5.5.
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Figure 5.4: Evaluation score and standard deviation of IQL and QMIX at 50%
and 25% alert accuracy. Dashed lines indicate the original confidentiality-large
scores for each architecture.

Similarly to unreliable sensors, the addition of grey agents does not signifi-
cantly impact the final policies of the MARL models. Surprisingly, the models
performed better in the presence of five agents than with one. As with the
other noise source, IQL was more negatively affected by this trial, though only
slightly, with a 4.30% lower than benchmark evaluation score compared with
the QMIX loss of 3.86% in the single grey agent scenario. Table 5.3 shows
the IQL and QMIX evaluation scores and standard deviation at each scenario
averaged over five randomized seeds.

The greatest effect of the noise scenarios was an average reduction of 4.02%
of both MARL systems in the 25%-accuracy scenario. The noise scenarios did
not significantly affect the variance of the models compared with the original
scenario.

Defender Capability The next experiment evaluated the ability of MARL
systems to learn to use a deception action in addition to standard actions.
The misinform action allows an agent to create a decoy process to mislead an
attacker to attempt to exploit the perceived vulnerable process. Exploiting
a decoy does not provide the attacker with visibility of the host system or
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Figure 5.5: Evaluation score and standard deviation of IQL and QMIX in the
presence of one and five grey agents.

Table 5.3: Evaluation Score by noise trial ‘+/-’ the standard deviation of five
randomized training seeds.

Scenario IQL QMIX

Confidentiality-Large (benchmark) -42.07 ±4.86 -40.64 ±6.56
One grey user -43.96 ±5.22 -42.27 ±6.58
Five grey users -42.24 ±6.76 -41.34 ±6.61

50% sensor accuracy -43.49 ±4.82 -40.70 ±5.78
25% sensor accuracy -44.43 ±5.42 -41.74 ±5.09

rewards. The evaluation score and standard deviation of models using this
action are compared with the benchmark in Figure 5.6 and Table 5.4

The use of the misinform action had a negligible effect on IQL performance
relative to the benchmark (-0.54%). Conversely, the new action allowed QMIX
to make a significant improvement of 18.39% over the benchmark score. The
effect on the standard deviation of IQL and QMIX was an increase of 10.12%,
and a decrease of 0.63%, respectively.
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Figure 5.6: Evaluation score and standard deviation of IQL and QMIX when
provided with the misinform action.

Table 5.4: Evaluation Score of misinform trial ‘+/-’ the standard deviation
of five randomized training seeds.

Scenario IQL QMIX

Confidentiality-Large (benchmark) -42.07 ±4.86 -40.64 ±6.56
misinform action -42.29 ±5.92 -33.16 ±6.52

Agent-Environment Interaction The final trials in this phase remove the
subnet constraints to assess the learning ability of MARL agents with a larger
state and action space. The first scenario changes the original framework by
allowing all three agents access to observations and actions across all subnets.
The second scenario uses the same complete visibility task but employs two
agents instead of three. The final scenario utilizes two heterogeneous agents
with observability of the entire network. Heterogeneous agents in this game
are differentiated by their action spaces. Rather than identical agents with
the same policy space as seen up to this point, heterogeneous agents must
learn to use different actions. Both agents can use the monitor action as it is
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fundamental to collecting information about the network, but each agent has
access to only one other action, either remove or restore. The evaluation
scores of each scenario are compared to the benchmark scenario in Figure
5.7 and Table 5.5. Each scenario except for the benchmark allows MARL
models to observe the entire network and target any host with its actions.
The complete visibility scenario adapts the three agents from confidentiality
large whereas the two-agent scenario and the heterogeneous scenario each use
two agents.

IQL and QMIX exhibited improved performance in the “complete visibil-
ity” scenario, an average increase of 20.81% on average. The two-agent sce-
nario scored above the benchmark by 26.63%, and the heterogeneous agents
scored above the benchmark by 30.71%.

Figure 5.7: Evaluation score and standard deviation of IQL and QMIX in a
complete network visibility scenario with three agents, two agents, and two
agents with a heterogeneous action space.
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Table 5.5: Evaluation Score by agent responsibility trial ‘+/-’ the standard
deviation of five randomized training seeds.

Scenario IQL QMIX

Confidentiality-Large (benchmark) -42.07 ±4.86 -40.64 ±6.56
Complete visibility of network (3 Agents) -33.65 ±3.76 -31.84 ±1.93
Complete visibility of network (2 Agents) -31.67 ±1.92 -29.01 ±1.94

CV with heterogeneous action space -29.31 ±2.12 -28.00 ±2.25

5.5 Discussion

The design of this experimentation opted for an exploration of game design
elements. The advantage of this approach is that, with a limited number of tri-
als, many game design effects can be observed thus providing a more rounded
assessment of MARL applicability. However, it is limited by a small sample
size of trials from which to draw relationships. For example, the effect of an
increased network size, without increasing the number of agents, is observed
in three samples for each algorithm; between the small and medium scenarios
of each type. The effect of noisy sensors and grey agents are observed in two
samples each for each algorithm. The sample size brings the difficulty of at-
tributing results to specific game elements or learning patterns. The intent of
this work is not to present correlations that generalize the effects of specific
game design parameters on learning ability. Instead, this experimentation
demonstrated how game design, particularly in how the reward and observa-
tion signals are shaped, significantly affects the learning ability and, therefore,
the applicability of learners to autonomous cyber defence.

This section discusses the effects of network size and scenario type on
MARL learning ability before discussing the observed differences between the
two architectures. This discussion provides a depiction of MARL system be-
haviour in this game by linking observed performance to game design elements
and to related work in cooperative MARL.

5.5.1 Network Size

Network size had the greatest effect on model outcomes. In the small scenarios,
each agent was responsible for three and two hosts on the user and operational
subnets, respectively. In the medium scenarios, the input-output size of the
observation space and action space was increased to five hosts occupying each
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subnet. In the large scenarios, the observation space and action space were not
increased because the addition of hosts comes with a new subnet, enterprise,
with an added defender agent.

When the input-output size was increased, MARL model performance
decreased relative to the heuristic benchmark, depicted in Figure 5.3a. On
average, MARL systems maintained their performance advantage over the
heuristic between medium and large scenarios. Increasing input-output space
negatively affected learning, whereas the addition of an agent did not have a
significant effect on relative performance.

Game Design There is a distinct difference between the learning curves
in the small scenarios and those of the medium and large scenarios. MARL
models trained at medium and large scenarios followed a common period of
policy improvement, typically under 200 000 timesteps, followed by conver-
gence to a suboptimal policy, as seen in Figure 5.1. In the small scenarios,
MARL systems exhibited significantly more variance, particularly in the case
of IQL.

Larger scenarios offer more choices for an attacker. The attacker will ran-
domly choose which host to exploit, so more hosts leads to greater stochastic-
ity in the game environment. This is a defensive benefit since it decreases the
probability that the attacker will choose the optimal path. With an attacker
taking more actions in the user subnet, the defender has more opportunities
to intercept or mitigate the attacker’s activities. In a larger network scenario,
over many episodes of play, MARL systems will have more consistent training
stimulus for the early removal of an attacker. The large scenarios have the
additional benefit of an intermediary enterprise subnet. Since the penalty for
attacker activity in the enterprise network is not as severe as in the opera-
tional subnet, the defender scores higher in a large scenario than in a medium
scenario for an attacker following the same heuristic.

Given that medium and large scenarios have the same model input-output
space and the learning curves follow similar patterns across all scenario types,
the higher average score observed in the large scenarios can be accounted for
by the lower subnet importance score of hosts in the enterprise subnet. An
experiment was run to validate this claim changing the importance score of
hosts in the enterprise subnet to equal to those of the operational subnet
in the confidentiality-large scenario. The trained policies of IQL and QMIX
performed 83.99% worse on average in with the increased importance score of
the enterprise subnet than in the benchmark scenario.
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Input-Output Space and Score As the size of the network increases, the
ability of the attacker to achieve its objective is negatively affected. Corre-
spondingly, the heuristic defender model and both MARL architectures were
observed to have an improvement in score between each level of network size,
as shown in Table 5.6. The change in score between the medium and large-
sized scenarios was similar for IQL and QMIX. When comparing the average
MARL system change to the heuristic defender, the small to medium change
differed by 85.49% between the average learning system and the heuristic
defender. Conversely, the medium to large change differed by 4.13%. This
suggests that the additional subnet and agent in the large scenario do not
significantly affect how the MARL models learned.

Table 5.6: Average change in Evaluation Score between network sizes, in
absolute value and percentage difference.

Network size change IQL QMIX Heuristic

Small to Medium 90.33 (+67.81%) 55.62 (+57.69%) 135.35 (+75.3%)
Medium to Large 16.45 (+38.37%) 16.28 (+39.9%) 17.04 (+40.33%)

Increasing the input-output space can reduce performance as a result of
the curse of dimensionality as models may derive less effective patterns from
their observations. However, this reasoning is not supported by later exper-
imentation. MARL systems were observed to improve performance in the
presence of complete network visibility; a significant increase in input-output
space size. Moreover, they were observed to be resistant to noisy observations.
These findings suggest that the MARL systems trained in this game had a low
sensitivity to their observations. MARL models were likely relying primarily
on the reward signal to learn policies. This game reveals opportunities for
MARL scalability since the increased network size, hence input-output space,
was not observed to negatively affect learning ability at this scale.

5.5.2 Scenario Type

The availability and integrity scenario types employ an attacker that must
perform an additional action upon establishing a session to score points. The
attacker in these scenario types is therefore slower and will tend to score less
in a fixed-timestep game. A validation experiment was run in which no de-
fenders were played against the attackers in each Phase 1 scenario. In these
trials, the score is higher in the integrity and availability scenarios than in
the confidentiality scenarios, 55.74% and 24.93% higher, respectively. This
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score difference is likewise represented in the average scores of the MARL sys-
tems: 69.00%2 and 67.19% greater in the integrity and availability scenarios,
respectively, than in the confidentiality scenarios (see Table 5.2).

The integrity scenario type requires the use of incident response actions
to remove attacker presence, analyze and data repair. Since the standard
remove action is only effective for attacker sessions and DoS processes, these
additional actions allow the defender to detect and remove malicious files
without needing to use the costly restore action. The optimal tactical policy
in the integrity scenarios is to detect and remove all attacker sessions before
the option to score becomes available. Assuming that the defender does not
act optimally and the attacker is occasionally able to perform the scenario
scoring action, the best policy involves a combination of proactive and reac-
tive responses to the threat. The heuristic defender only acts reactively to
attacker scoring using the data repair or restore actions to remove the at-
tacker’s scoring artifacts. To understand how MARL-derived policies deviated
from those of the heuristic defender models, action selections were collected
from a sample of trained policies over 1000 timesteps. This experiment re-
vealed that both IQL and QMIX strongly preferred acting proactively with
the remove action to kill attacker sessions in all scenarios. Further analysis
of action selection is tangential to the methodology set out in this work. An
investigation of policy selection for cyber defence decision-making is left for
future work. The remove action prevents the attacker from proliferating, but
it will not remove tampered files, which continue to generate negative rewards
in the integrity scenarios. Although MARL-generated policies outperformed
the heuristic model, it is expected that greater gains are possible if a defender
learns to balance the use of proactive and reactive tactics depending on its
circumstances.

5.5.3 Architecture

The evaluation score of QMIX is within one standard deviation of IQL in
eight of nine Phase 1 scenarios and all Phase 2 scenarios. Moreover, the
training curves followed a similar pattern in the medium and large scenarios.
These findings suggest that QMIX was learning similarly to IQL. Despite this,
QMIX consistently outperformed IQL by a small margin, only conceding the
top score in one scenario, integrity-medium.

2The average MARL system score difference between the integrity and confidentiality
scenarios is skewed by the poor performance of IQL at the integrity-small scenario. If this
outlier is excluded from the mean, the percent difference is 83.93%.
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The multi-agent host-monitoring game presented does not require explicit
coordination for a defender team to be successful. Moreover, the segregation
of agents into subnets limits their ability to influence the state of other agents.
However, the findings of the second phase of evaluation suggest that it is not
just the design of the scenario, but also the observations that may limit the ef-
fectiveness of CTDE as compared to independent learning. In Phase 2, agents
exhibited low sensitivity to changes in their observation spaces. The CTDE
advantages of multi-agent coordination and mitigation of the non-stationarity
problem are severely limited if agents struggle to derive utility from their ob-
servations. A sparse observation space may hinder agents’ ability to derive
useful information from their inputs. In turn, QMIX’s central learning up-
dates may have done little to condition agents on the policies of their peers.
The effect of non-stationarity should be greater in a scenario like complete vis-
ibility where agents’ actions influence the same elements in the environment.
Due to the relatively similar performance between the two architectures, it is
likely that QMIX did not learn to leverage multi-agent coordination.

QMIX was more resistant than IQL to noisy observations, and it was able
to learn to leverage the misinform action, which IQL failed to do. This dis-
crepancy can be explained as a result of QMIX learning from the batched
experience of all agents rather than solely from independent experience. Al-
though the observations in this game are expected to have a small impact
on learning, QMIX also trains on each agent’s actions over the sampled his-
tory. The performance advantage of QMIX is dampened by its limitation of
scalability as compared to IQL. QMIX requires that Q-functions are learned
centrally, thus limiting the number of possible agents since the central learner
will eventually create a bottleneck. IQL does not require any central learning,
therefore, the number of agents in a game does not pose a constraint.

5.6 Summary

Increasing network size had a negative effect on learning ability due to the
consequential increase in action and observation space. However, it also in-
sulated the higher-valued hosts from a randomly exploring attacker. The
defender scored higher at the integrity and availability scenarios in large part
due to the attacker needing to take two turns to perform its scoring action on a
host. Both MARL architectures performed similarly at the majority of tasks.
They exhibited this similar behaviour in the complete network visibility sce-
narios and were resistant to noise. Both approaches likely had low sensitivity
to changing observations, which may be due to a sparse observation signal.
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MARL models did not fail to learn even in extreme cases, still converging
to a reasonable policy. Although these systems outperformed the heuristic, the
information provided in the agents’ observations appeared to limit the learning
ability of both architecture types. More performant solutions to tactical cyber
defence problems are possible through further study and experimentation with
game design.

As a first exploration of cooperative MARL for the task of host-based en-
terprise network defence, this experimentation evaluated diverse game designs
to challenge the MARL systems in the context of a broad range of design ele-
ments. This work applied realism and technical challenge to demonstrate the
applicability of cooperative MARL approaches to the tactical cyber defence
setting. These results support the adaptability and complexity of cooperative
MARL systems in tactical-level decision-making for cyber defence.
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6 Contributions and Future
Work

This chapter discusses the contributions and limitations of this work as it re-
lates to the applicability of cooperative MARL to learn tactical-level decision-
making for cyber defence. The primary contribution of this work is a demon-
stration of how cooperative MARL can be used in a host-based monitoring
setting to learn diverse tasks. The simulation was designed to have many
states to more closely model realistic network defence settings. The results of
this work show that independent and CTDE value-based cooperative MARL
architectures can learn policies that outperform a basic heuristic model at this
game. Future gains in performance are expected to be possible both in terms
of the learning ability of MARL systems and in the realism of training games.
Future work in this area could provide greater confidence in the applicability
of this approach to learning cyber defence tactics. This chapter is broken into
three sections: Section 6.1 lists the main contributions of this work, Section
6.2 suggests future work in four promising areas, and Section 6.3 summarizes.

6.1 Contributions

This work makes the following contributions:

1. To the best of our knowledge, CyMARL is the first cooperative MARL
training environment for enterprise network defence tasks. It extends the
CybORG simulator with additional game types, actions, and network
topologies and it provides a PyMARL environment interface with which
it is possible to train tens of open-source algorithms.

2. This work compared the utility of cooperative MARL algorithms in a
tactical cyber defence context. It provided a comparison of independent
and centrally-learned policies for multi-agent enterprise network defence.
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3. This work demonstrated the adaptability of cooperative MARL methods
to learn to defend a network in a variety of scenarios without any a priori
knowledge of the game environment.

4. This work identified the need for more robust feature selection in com-
plex cyber defence RL games such as CyMARL and CybORG to enable
more effective learning of observations. Due to the large feature space
necessary to model the complexity of computer networks for RL, mean-
ingful information is sparse. This work suggests a variety of possible
solutions to improve learning opportunities in future experimentation.

6.2 Future Work

This work indicated the potential of MARL to learn decentralized policies
in varied host-based cyber defence settings. In particular, the performance
of IQL at these tasks suggests that this approach may scale well to larger
networks with more agents. The performance of MARL systems was limited
by their insensitivity to observations. It is likely that this behaviour is intrinsic
to the scenario design and therefore we may expect that IQL and QMIX can
achieve higher levels of performance given modifications to the game. To
overcome the limitations of the environment brought forward by this work,
and to advance the use of cooperative MARL for tactical cyber defence tasks,
the following topics for future work are discussed:

1. Techniques to approximate greater environmental realism, including the
use of generative programs to increase the sample size of experimenta-
tion,

2. Games offering more sophisticated and varied threat types,
3. Different MARL agent-environment interaction techniques to improve

learning ability, and
4. Leveraging promising techniques in machine learning, evolutionary learn-

ing, and game theory to improve the representational capacity of the
learning system.

Environment The simulated cyber defence game presented here provides
a base level of information that may be available from a host-monitoring ser-
vice. The use of simulated processes, files, and sessions allows for significantly
more detailed observations than graph-network abstractions commonly used
to frame the cyber defence task for RL systems. More complex simulations
are possible, including abstractions of network traffic (e.g., [47]). This may,
however, be at the expense of RL skill adoption.
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A suspected limitation of the performance of MARL models observed in
this work is the large, highly variable observation space. Dynamic allocation
of input features could be adopted to reduce the overall size of the observation
vector while mitigating the loss of useful information. Observation embedding
has been shown to reduce the dimensionality characteristic of multiple multi-
agent tasks [62].

Cyber defence operations have a large amount of variability, and the num-
ber and type of scenarios in this work provide only a small sampling of data
to support the use of MARL in this setting. Generative programs could be
used to train MARL models on a larger range of tasks. Generative tasks have
been adopted by the latest version of SMAC [63] and in the FARLAND cyber
defence environment [47]. The resulting data could provide stronger support
for correlations between scenario elements and training techniques.

A critical link to real cyber defence applications is the use of emulated
network artifacts and typologies. Emulation allows for improved task realism
for training RL systems. Specifically, the use of emulation can parameterize
the problem space with realistic actions and observations for simulated tasks,
and it can be used as a means to validate the performance of RL trained in
simulation.

Adversaries The heuristic attacker behaviour used in this work set a basic
policy that was sufficiently challenging to measure the skill adoption of MARL
systems in the presented scenarios. Just as there is potential for MARL sys-
tems to improve learning and for environments to adopt more complexity,
attackers can be modelled with more realism by behaving with a greater di-
versity of behaviours, more closely approximating real threats. For example,
attacker behaviour could be modelled using the CALDERA framework [64],
using real TTPs to penetrate a network to service a specific goal. Likewise, the
integration of real tooling into the defensive force could allow MARL defender
agents to develop realistic, useful policies.

Furthermore, competitive RL self-play may be investigated to provide even
more realism via an attacker that adapts to the defender agents’ strategies.
Self-play has been demonstrated to train attacker and defender agents in a
one-on-one network defence game [65], and teams of agents have learned to
compete in non-security games [66]. These techniques could be applied to
improve the capabilities of one or multiple attacker agents, thus allowing for
the training of more robust defender policies.

An advanced threat facing RL defender agents is adversarial attacks on
RL models. Adversarial RL attacks are particularly relevant to real network
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applicability since the tool providing the defensive policy must itself be secure
and reliable. In applications of RL for tactical computer network defence,
poisoning and evasion attacks have been leveraged by attackers to reduce the
ability of RL defender agents [43], [47]. Adversarial techniques have seen use
in MARL settings also [67]. These techniques could be implemented as part
of the threat model in a cyber defence game for robust MARL defenders.

Agent-Environment Interaction Complexity is necessary for developing
training environments that can provide better approximations of real cyber
defence settings and, consequently, more realistic learned behaviours. Beyond
the addition of the misinform action, agents may be given control of software-
defined networks enabling them to isolate, honeypot, or migrate hosts as seen
in [43], bolstering their capability.

Based on the findings in this work, a heterogeneous approach in which
agents take on different roles may benefit the handling of complexity and lever-
aging cooperation through the division of responsibility. Future environments
including network traffic simulation could employ agents responsible for host
data and network data to collaborate to identify and mitigate threats. Beyond
centralized learning used in QMIX, agents could learn to communicate with
each other about their local observations, asking for help or notifying each
other of important features and events. Notably, message-passing methods
for MARL can leverage the scalability of independent, decentralized learning
while also benefiting from coordination between agents [53].

Different architectures and algorithms should be evaluated to provide a
more robust assessment of the applicability of MARL systems. Methods
such as MAPPO [68] leverage the state-of-the-art performance seen in the
PPO algorithm in a CTDE architecture. The differences between value-based
methods and policy-optimization methods could be explored in the context of
multi-agent cyber defence. Other approaches to cooperative MARL include
using hierarchical role assignment [69] and model-based learning [70].

Advancements in MARL In this work, and in the game environments
that inspired it, MARL architectures are relied upon to perform start-to-end
feature processing and decision-making. This approach could be improved
by outsourcing feature processing to a separate data mining module. For
example, by using supervised learning in an anomaly detection role (e.g., [71]),
notable features or samples from the environment could be extracted before
being passed to RL agents for decision-making.
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6.3. Summary

Implementation techniques are critical in the design of performant MARL
architectures. Building on the success of QMIX, researchers have modified the
mixing network with an attention mechanism [72], a duplex duelling network
architecture [73], and a joint action weight [74], among others. Furthermore,
transformers have been used to perform value function decomposition for co-
operative MARL [75]. More advanced methods, such as transfer learning,
can iteratively train RL models at progressively more difficult scenarios to
reach higher levels of skill adoption [76]. League training has been used to
select for specific characteristics of trained models, thus fine-tuning their be-
haviour [35]. Each of these approaches has theoretical and empirical qualities
that could be evaluated in MARL cyber defence environments to optimize for
learning ability.

6.3 Summary

CyMARL provides a training environment and experimental results of the use
of cooperative MARL systems at host-based enterprise defence. Significant
advancements to model performance and game realism could be observed by
continuing to apply state-of-the-art advancements in MARL to this game set-
ting. Moreover, greater environmental realism is possible through emulation,
adversarial attack and advanced TTPs.
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7 Conclusion

Tactical decision-making in cyber defence contends with an expansive prob-
lem space necessitating expert knowledge and, in many cases, decentralization
of effort to provide essential coverage. The knowledge required is context-
dependent, thus the correct identification of patterns is indispensable. Re-
inforcement learning has been demonstrated to perform pattern recognition
and decision-making to an expert level. Applicable learning methods must be
adaptable to many scenarios and capable of extracting policies from large, dy-
namic inputs. This work demonstrates how cooperative MARL can be used
to learn decentralized behaviour policies for a variety of security games for
host-based network defence from scratch. To evaluate the adaptability and
ability to handle complexity of MARL methods, games were varied by at-
tacker behaviour, network size, amount of sensor noise, grey agent presence,
and agent area of responsibility. Fully-decentralized and CTDE approaches
were compared across the range of tasks.

From this experimentation, meaningful insights were derived with regard
to game design for multi-agent cyber defence tasks. Particularly, CTDE con-
sistently outperformed the fully-decentralized IQL method, but by a smaller
margin than is typical for collaborative and cooperative tasks. For this use
case, the possibility for greater training scalability with IQL may outweigh its
lower performance relative to QMIX. This work presented the initial evidence
for cooperative MARL as a tool applicable to the generation of decentralized,
tactical-level control policies in cyber defence. In the rapidly advancing field
of RL game design, there are many directions of future work to continue to
build this capability to handle greater realism, larger action spaces, and more
sophisticated tactics.
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A CyMARL Simulated
Environment Details

A.1 Scenario

The scenario in CybORG defines the network topology, which agents are play-
ing the game, including the heuristic attacker and defender models, and which
actions the agents can take. The variables in the scenario and their parameters
are:

1) Agent
a) Team (red, blue, or grey)

b) Internal. Whether the agent is controlled with RL or by a heuristic.

c) Heuristic model (as applicable)

d) Accessible subnets

e) Host vision. What information it has about each host at the start of the
game.

f) Starting sessions
(i) Artifacts (privileges, events, etc.)

(ii) Host connected to

(iii) User

g) Actions

h) Reward calculator. Six reward calculators are used in CyMARL, one
for each scenario type for each team (red and blue).

2) Host
a) Availability value. Indicates negative reward for attacker gaining root

access.

b) Confidentiality value. Indicates negative reward for attacker disrupting
operations.
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A.2. Action Space

c) Integrity value. Indicates negative reward for attacker tampering with
files.

d) Connected interfaces. Defines which subnets the host has access to.

e) Image. OS and system information. And configures the following sim-
ulation elements:
(i) Files

(ii) Local sessions

(iii) Running processes

(iv) Services

(v) Users and groups
3) Subnet

a) Access Control List

b) Listing of hosts by subnet

The attacker objectives are varied by scenario type, listed in Table A.1.
The number of hosts in each subnet is varied by network size, listed in Table
A.2.

Table A.1: Attacker objectives in each scenario type.

Scenario Type Goal Scoring (per turn)
Confidentialtiy Gain access to hosts for each host with an active attacker session
Integrity Tamper with filesystem for each host with tampered files
Availability Establish DoS processes for each host with an active DoS process

Table A.2: Number of hosts per subnet in each network size scenario.

Subnet Small Medium Large
User 3 5 5
Enterprise 0 0 3
Operational 2 5 5

A.2 Action Space

The actions that an agent can take in CyMARL are categorized into two types:
concrete actions and abstract actions. Concrete actions typically simulate a
single parameterized command that an agent may use to learn about or affect
the network. A pingsweep, portscan, specific exploit, or privilege escalation
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A.2. Action Space

are examples of concrete actions. These actions assume that basic vulnera-
bilities can be found and exploited with a similar level of knowledge as an
attacker using basic automated tools. Likewise, a defender’s concrete actions
may require the level of detail necessary for a user of cyber defence software
to find and isolate threats. A host may be vulnerable to a variety of exploits,
some of which may be tied to a running process or service. To use a concrete
exploit action the attacker identifies the target service or feature of the host
and its corresponding vulnerability.

Abstract actions are not necessarily linked directly to command line pa-
rameters but instead constitute a logical task. For example, an attacker’s
ExploitRemoteService action simply automates the process of trying an
exploit to and establishing a reverse TCP session if it is successful. A de-
fender’s remove action will kill a target process using the concrete action
stop process. If the process was benign, it is restarted.

The abstract actions for the baseline scenario are:
1) Attacker actions:

a) DiscoverRemoteSystems: run a pingsweep on target subnet to gather
IP addresses.

b) DiscoverNetworkServices: run a portscan on target host.

c) ExploitRemoteService: select and attempt an exploit based on open
ports on target host, and a set preference for using certain exploits,
quantified by the exploit weight value. If a host has multiple open
ports with corresponding exploits, the attacker will select one based
on its weighted probability. Available exploits are chose:
i. BlueKeep: if port 3389 is open. Weight: 1.

ii. EternalBlue: if port 139 is open. Weight: 2.

iii. FTPDirectoryTraversal: if port 21 is open. Weight: 7.

iv. HarakaRCE: if port 25 is open. Weight: 6.

v. HTTPRFI: if port 80 is open. Weight: 3.

vi. HTTPSRFI: if port 443 is open. Weight: 4.

vii. SQLInjection: if port 3390 and one of port 80 or port 443 are
open. Weight: 5.

viii. SSHBruteForce: if port 22 is open. Weight: 0.1.

d) PrivilegeEscalate: Create an administrator session for target OS on
target host. The session provides visibility of all host information and
it cannot be killed with the defender Remove action.

2) Defender actions:
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a) Analyse: Get file info on target host. Concrete actions DensityScout
will save a probability of malware of each file, SigCheck saves a flag
if a signature is present for each file.

b) Data Repair: Removes suspected malicious files on a host.

c) Misinform: Deploy a decoy process on target host.

d) Monitor: Detect new events and sessions on each host.

e) Remove: Kill processes detected with monitor on target host.

f) Restore: Restart target host, removes files and processes.

A.3 Observation Space

The defender’s observation space constitutes a list of agent observations since
each agent observes its area of responsibility separately. Observations are
generated from simulated host information and are only provided to agents
performing the monitor action. Observations are encoded into a floating point
vector before being outputted by the simulated environment observations con-
tain the following information for each host:

1) System information
2) Network Interface information
3) Processes
4) Files
5) Users
6) New network connection flag
7) New process creation flag

A.4 CyMARL implementation tasks

CyMARL extends the CybORG simulated environment to allow for multi-
agent training and evaluation using PyMARL. The following tasks were con-
ducted to achieve this implementation:
1) Extend CybORG, scenario, environment controller, and wrapper classes to

accept multiple RL agents.
2) Make a CybORG multi-agent gym environment based on SMAC for inter-

face with PyMARL.
3) Add seventeen scenarios and five actions to support experiments.
4) Extend the heuristic attacker and defender models to three behaviour types

with additional actions and unique reward calculators.
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B Supplementary Results

The best-performing hyperparameter values in each phase 1 scenario are pre-
sented in Table B.1.

Table B.1: Selected hyperparameter values from Phase 1 grid search by sce-
nario.

Scenario IQL QMIX

Batch size Buffer size Learning Rate Batch Size Buffer Size Learning Rate

Confidentiality
Small 256 20000 0.001 64 20000 0.002
Medium 64 5000 0.001 128 10000 0.002
Large 128 5000 0.002 128 10000 0.001

Integrity
Small 128 20000 0.002 128 10000 0.001
Medium 64 10000 0.002 256 20000 0.002
Large 256 10000 0.001 256 5000 0.001

Availability
Small 64 10000/20000 0.001/0.002 64 20000 0.002
Medium 64 5000 0.002 64 5000 0.001
Large 128 10000 0.001 64 5000 0.001

The training curves presented in Figure 5.1 are shown in Figure B.1 sep-
arated by network size and rescaled along the y-axis.
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(a) Training curves in small scenarios.

(b) Training curves in medium scenarios.

(c) Training curves in large scenarios.

Figure B.1: Learning curve of IQL and QMIX in each Phase 1 scenario sepa-
rated by network size. The shaded area represents the standard deviation.
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