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Abstract

In this thesis, we construct a real analytic function space, called the decaying
polynomial space, on the non-negative real axis. This space has multiple linear
structures and favorable properties useful for approximations of continuous
functions vanishing at infinity. We introduce the weak norms and metrics on
the space so member functions can be weakly measured on the non-compact
interval [0,∞). Then we develop three kinds of approximation methods –
the asymptotic series expansion with variants, the Laplace transform moment
matching, and the interpolation, all of which are based on the new space. We
prove the weak uniform convergence for all the approximation methods and
give an illustrative example of each method.
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Résumé

Dans cette thèse, nous construisons un véritable espace de fonction analy-
tique, appelé l’espace polynôme décroissant, sur l’axe réel non négatif. Cet
espace a une structure linéaire et d’autre propriétés favorables utiles pour ap-
proxime des fonctions continu et zero à l’infini. Nous introduisons les normes et
les mesures faibles sur l’espace pour ces fonctions qui peuvent être faiblement
mesurées sur la intervalle non-compact [0,∞). Ensuite, nous développons trois
types de méthodes d’approximation – le développement en série asymptotique
avec des variantes, transformée de Laplace a moment égal, et l’interpolation,
qui sont toutes basées sur le nouvel espace. Nous prouvons la convergence
faible uniforme pour toutes les méthodes d’approximation et incluans des ex-
emple illustratif pour chaque méthode.
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List of Tables vii
List of Figures viii
1. Introduction 1
1.1. Overview 1
1.2. Organizations 13
2. Preliminaries 14
2.1. Continuous functions 14
2.2. Normed vector spaces 23
2.3. Normed continuous function spaces on Ω 29
2.4. Bounded linear operators on normed spaces 33
2.5. Infinite function series 34
2.6. Laplace transforms 49
3. Theory of P λn (Ω) Spaces 52
3.1. Polynomial spaces Pn(Ω) 52
3.2. The exponential decaying function e−λt 54
3.3. Decaying polynomial spaces P λn (Ω) 55
3.4. Algebraic properties of P λn (Ω) 56
3.5. Five representations of P λn (Ω) functions 63
3.6. Topological properties of P λn (Ω) 65
3.7. Isomorphisms for P λn (Ω) 70
3.8. Subspace structures and expansions of P λn (Ω) 71
4. Approximations in P λn (Ω) spaces 74
4.1. The General Theory of Approximations in P λn (Ω) Spaces 74
4.2. Method I: asymptotic/Taylor series expansion in P λn (Ω) 80
4.3. Method II: Laplace transform moment matching in P λn (Ω) 126
4.4. Method III: interpolations in P λn (Ω) 141
5. Conclusions 154
References 155



vii

List of Tables

1 The five positive roots from method of matching definite integrals and
the corresponding WMSE’s on [0, 3]. 88

2 Method Ia multiple approximation experiments: the optimal λ values,
WMAE’s and WMSE’s on [0, 3] for n = 10, 20, 30, and 40. 92

3 Method Ia multiple approximation experiments by critically damped
approximation functions: the critical values λ∗ and the approximate
time spans for n = 10, 50, 100, 500, and 1000. 100

4 Method Ib multiple approximation experiments: the optimal λ values,
WMAE’s and WMSE’s on [0, 6] for n = 10, 20, 30, 40, and 50. 112

5 Method Ic multiple approximation experiments: the n,m values,
optimal λ values, WMAE’s and WMSE’s on [0, 6] for n = 4, 10, 20, 30,
and 40, resulting in m = 27, 49, 86, 123, and 159, correspondingly. 124

6 The eleven positive roots by matching the initial values and the
corresponding WMSE’s on [0, 8]. 134

7 Method II multiple approximation experiments: the optimal λ values,
WMAE’s and WMSE’s on [0, 8] for n = 10, 15, 20, 25, 30, 35, and 40. 137

8 Newton’s central difference table of h(t) 146

9 Method III multiple interpolation experiments: the optimal λ values,
WMAE’s and WMSE’s on [0, 8] for n = 10, 15, 20, 25, 30, 35, and 40. 152



viii

List of Figures

1 Method Ia overall approximations on [0, 6] (n = 10): Left – the overall
graphs of the approximation function g10(t) (blue line) and the target
function f(t) (red line); Right – the overall graphs of G10(t) (blue
line) and F (t) (red line), the integration functions of g10(t) and f(t),
respectively. 90

2 Method Ia approximations on the main interval [0, 3] (n = 10):
Top-left – g10(t) (blue line) and f(t) (red line) almost coincide with
each other; Top-right – the absolute error function |e10(t)| of the
approximation error function e10(t) = f(t) − g10(t); Bottom-left –
G10(t) (blue line) and F (t) (red line) almost coincide with each other;
Bottom-right – the absolute error function |F (t)−G10(t)|. 91

3 Method Ia multiple approximation experiments: The graphs of the
absolute error functions |en(t)| on the main interval [0, 3] for n = 10
(top-left), n = 20 (top-right), n = 30 (bottom-left), and n = 40
(bottom-right). 93

4 Method Ia overall approximation: the critically damped approximation
function g10(t) (blue line) and the target function f(t) (red line) on
[0, 6]. 97

5 Method Ia approximation by the critically damped function on
the main interval [0, 1] (n = 10): Left – the critically damped
approximation function g10(t) (blue line) and the target function f(t)
(red line) almost coincide with each other; Right – the absolute error
function |e10(t)| = |f(t)− g10(t)|. 98

6 Method Ia critically damped approximation experiment: the
target function f(t) (red line) and its approximation functions
(matching up to 11-th derivatives of f(t) at the origin): the absolute
underdamped, critically damped, and overdamped approximation
functions |g11(t; 3.4055)| (green line), g10(t; 3.9055) (blue line), and
g11(t; 6.9055) (azure line) on [0, 6]. 99

7 Method Ia multiple experiments by critically damped approximation
functions g10(t) (blue line), g50(t) (green line), g100(t) (azure line),
g500(t) (purple line), g1000(t) (bluegreen line), and the target function
f(t) (red line) on [0, 6]. 101

8 Method Ib overall approximations on [0, 30] (n = 10): Left – the
overall graphs of the approximation function g10(t) (blue line) and the
target function f(t) (red line); Right – the overall graphs of G10(t)
(blue line) and F (t) (red line), the integration functions of g10(t) and
f(t), respectively. 110



ix

9 Method Ib approximations on the main interval [0, 6] (n = 10):
Top-left – g10(t) (blue line) and f(t) (red line) almost coincide with
each other; Top-right – the absolute error function |e10(t)| of the
approximation error function e10(t) = f(t) − g10(t); Bottom-left –
G10(t) (blue line) and F (t) (red line) almost coincide with each other;
Bottom-right – the absolute error function |F (t)−G10(t)|. 111

10 Method Ib multiple approximation experiments: The graphs of the
absolute error functions |en(t)| on the main interval [0, 6] for n = 20
(top-left), n = 30 (top-right), n = 40 (bottom-left), and n = 50
(bottom-right). 113

11 Method Ic overall approximations on [0, 18] (n = 4,m = 27): the final
approximation function g27(t) (blue line), the target function f(t) (red
line), and the first critically damped approximation function g4(t)
(green line). 122

12 Method Ic approximation on the main interval [0, 6] (n = 4,m = 27):
Left – the final approximation function g27(t) (blue line), the target
function f(t) (red line), and the first critically damped approximation
function g4(t) (green line); Right – the absolute error function |e27(t)|
of the approximation error function e27(t) = f(t)− g27(t). 123

13 Method Ic multiple approximation experiments: The graphs of
the absolute error functions |em(t)| on the main interval [0, 6] for
the approximation function gm(t) with (n,m) = (10, 49) (top-left),
(n,m) = (20, 86) (top-right), (n,m) = (30, 123) (bottom-left), and
(n,m) = (40, 159) (bottom-right). 125

14 Method II overall approximations on [0, 16] (n = 10): Left – the
overall graphs of the approximation function g10(t) (blue line) and the
target function f(t) (red line); Right – the overall graphs of G10(t)
(blue line) and F (t) (red line), the integration functions of g10(t) and
f(t), respectively. 135

15 Method II approximations on the main interval [0, 8] (n = 10):
Top-left – g10(t) (blue line) and f(t) (red line) almost coincide with
each other; Top-right – the absolute error function |e10(t)| of the
approximation error function e10(t) = f(t) − g10(t); Bottom-left –
G10(t) (blue line) and F (t) (red line) almost coincide with each other;
Bottom-right – the absolute error function |F (t)−G10(t)|. 136

16 Method II multiple approximation experiments: the absolute error
functions |en(t)| on [0, 8] for n = 15 and 20 (top), n = 25 and 30
(middle), and n = 35 and 40 (bottom). 138

17 Method III overall approximations on [0, 32] (n = 10): Left – the
overall graphs of the approximation function g10(t) (blue line) and the



x

target function f(t) (red line); Right – the overall graphs of G10(t)
(blue line) and F (t) (red line), the integration functions of g10(t) and
f(t), respectively. 150

18 Method III approximations on the main interval [0, 8] (n = 10):
Top-left – g10(t) (blue line) and f(t) (red line) almost coincide with
each other; Top-right – the absolute error function |e10(t)| of the
approximation error function e10(t) = f(t) − g10(t); Bottom-left –
G10(t) (blue line) and F (t) (red line) almost coincide with each other;
Bottom-right – the absolute error function |F (t)−G10(t)|. 151

19 Method III multiple interpolation experiments: the absolute error
functions |en(t)| on [0, 8] for n = 15 and 20 (top), n = 25 and 30
(middle), and n = 35 and 40 (bottom). 153



1

1. Introduction

1.1. Overview.

1.1.1. Motivation. I began my study of queueing theories by investigating the
basic model, the M/M/1 queue, where the involved random variables have
exponentially distributed probability densities. It was then natural to investi-
gate more general queueing models, e.g. the GI/G/1 queue, where the involved
random variables have arbitrary probability density functions. In some cases,
where the involved probability density functions have rational Laplace trans-
forms, the GI/G/1 queue can be solved exactly. Otherwise, one has to pursue
approximate solutions [9] [13] [18].

The idea is that a GI/G/1 queue can be solved approximately if the in-
volved probability density functions can be approximated by other functions
with rational Laplace transforms. Thus, the problem becomes approximating
continuous probability density functions on [0,∞).

Initially, we intended to use the Padé method (Henri Padé, 1863-1953) to
find the approximate probability density functions with rational Laplace trans-
forms. The method matches the moments of a probability density function to
those of the approximation function [10]. However, we found in our numerical
experiments the curve of the Padé approximation function does not always re-
semble the original probability density function. In some cases, the two curves
are “roughly close” but inadequately so. In other cases, the two curves are
totally different. To use the Padé method, one has to randomly try different
parameters in hopes of finding an acceptable approximation function.

In order to find out why the Padé method behaves unsatisfactorily and to
explore other alternative methods, we have studied the evolution of probability
distribution function approximations in queueing or other stochastic models.
Botta et al. made a good review of the early development of distribution
approximation methods [4] [5]. For the recent approaches on approximations
by phase-type distributions, see [2] [11].

In 1909, a Danish engineer Agner Erlang (1878-1929) first investigated the
telephone network congestion problem. Not only did he introduce the expo-
nential distribution in his famous M/M/1 queue analysis, but he also created
the concept of successive stages (or phases) to analyze the general queueing
models. According to Erlang’s theory of stages, any random variable can be
expressed as a sum of independent and identically exponentially distributed
fundamental random variables or the stages, and the random variable is said
to have an Erlang distribution which is the convolution of the exponential dis-
tributions. The concept of phases is useful both in theoretical analysis and in
practical models.
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The early researchers were interested in the following two problems on prob-
ability distributions. One problem is to generalize the exponential distribu-
tion using the concept of phases. Credit goes to Jensen, Smith, and Cox as
the generalizations were successful and that gave rise to an exponential fam-
ily of classes of distributions [4] [5]. Researchers also looked at the Laplace
transforms of the probability density functions in the exponential family, since
many problems involving stochastic processes can be easily solved in Laplace
transforms. The other problem is to approximate any continuous distribution
function on [0,∞) by some classes of distributions in the exponential family.
Cox and Neuts made significant contributions on both problems theoretically
and practically.

Based on the concept of stages, Cox developed a model of multiple stages
of various rate parameters [3] [7]. In fact, this model was a special Markov
process (Andrey Markov, 1856-1922). Loosely speaking, a Markov process is a
stochastic process whose future states depend only on the present states and
not on the past states. The Cox model implicitly has the Markov properties.
In addition, all distribution functions of Cox models have rational Laplace
transforms. Cox noticed this and considered all the distribution functions with
rational Laplace transforms, possibly having complex poles, as an important
class. He claimed the class was closed and dense in all continuous distribution
functions on [0,∞), and suggested it be used to approximate any distribution
functions.

Also based on Markov process, Neuts developed another model to represent
what he called phase-type distributions, which were more general than the
distributions of Cox models [14]. In his model, Neuts used a phase-type dis-
tribution to describe the random transient time until absorption in a Markov
process. He introduced the matrix representation for the phase-type distri-
butions, so he could study the properties of a phase-type distribution by its
Markov transition matrix. Neuts’ methods were called the matrix analytic or
matrix geometric methods. He claimed the class of phase-type distributions
was closed and dense in all distribution functions, and suggested it be used to
approximate any distribution functions. Currently, matrix-analytic methods
are the mainstream methods to approximate distribution functions in the fields
of queueing and other stochastic process researches. For the fundamentals and
the recent development of the methods, see [11].

Both Coxian distributions and phase-type distributions have rational Laplace
transforms, and are more general than the Erlang distributions. The distribu-
tion function approximation methods using the Cox model or the phase-type
model can be done in the time domain or in the transformed domain. In
these approximation methods, certain properties or statistics, e.g. the func-
tion values at certain points or the moments, of the original functions are
used to estimate a set of parameters of the approximation distribution in the



3

time domain or the transformed domain. However, it should be noted an ap-
proximation method could directly use function values or moments without
assuming any models.

In the theoretical analysis aspect, Schassberger showed any distribution
function on [0,∞) could be approximated weakly in the Lévy metric sense
by a sequence of mixed Erlang distributions, and showed the class of mixed
Erlang distributions was dense in all distribution functions [18].

Botta et al. characterized the class of generalized hyperexponential distri-
bution functions and showed its weak convergence and closure property [4] [5].
The difference between the hyperexponential distributions and the generalized
hyperexponential distributions is that the former allow only positive coeffi-
cients and the latter allow both positive and negative coefficients. Botta et al.
noted and claimed the added freedom had made the generalized hyperexponen-
tial distributions to approximate any distribution defined on [0,∞) as close as
desired in the weak Lévy metric sense. They also investigated the set inclusion
relations between many different types of distributions in the exponential fam-
ily, and pointed out the generalized hyperexponential distributions were not
in the phase-type class. They noted that although the phase-type class was
computationally advantageous, its representation was not unique and there
was no easy way to determine if a given distribution was in the phase-type
class.

Since computers were introduced to solving queueing problems, many re-
searches have focused on the numerical algorithms for computing the approx-
imation functions, in particular the phase-type approximation distributions,
rather than the theoretical analysis. Bux and Herzog developed a distribution
function approximation method based on the Cox model with the uniform rate
parameter or the mixed Erlang model [6]. The method used a set of measured
data and the lower order moments to estimate the parameters of the Cox model
such that the difference between the original and the approximation distribu-
tions was minimized. Its procedure began with a low number of phases for
the parameter estimations by a linear optimization algorithm called simplex
algorithm. Then the results were compared with the prescribed absolute error
tolerance, and if the test failed, the number of phases was increased by one
and the above procedure was repeated. The great idea behind this approxima-
tion method is a sequence of numerical statistical empirical algorithms, each
of which tests a hypothesis from observations until the prescribed accuracy is
reached.

Asmussen et al. demonstrated a numerical algorithm of approximating
or curve-fitting any density functions by phase-type distributions [2]. The
method is based on the maximum likelyhood estimation with expectation-
maximization algorithm (MLE-EM), where the MLE is a method which maxi-
mizes the log-likelyhood function of a parameter from a sample of independent
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identically distributed observations and the EM is a two-step recursive algo-
rithm for the MLE. Asmussen et al. stated the convergence of the method
was not easily proved and the method generally needed about 1000 to 10000
iterations for reasonable fits. The MLE-EM method can also be used for
approximating long-tail or heavy-tail distributions such as the Weibull dis-
tribution and the Pareto distribution, which are common for internet traffic
modeling and analysis [8]. The MLE-EM method is still active within the re-
search communities. For the recent development of the numerical phase-type
approximation methods, see [11] [15] [20].

Distribution approximations can be done in the transformed domain. The
main idea of approximating Laplace transforms is to match the moments of
the original and the approximation distributions. There are some techniques
on matching only the first three moments [12] [16]. But our main interest con-
cerns matching the moments of any order with rational approximation Laplace
transforms. Series expansions and continued fractions are two important ra-
tional Laplace transform approximation methods [1]. But the Padé method is
more general. Harris and Marchal discussed the Padé method in approximat-
ing Laplace transforms and stated the Padé method might converge slowly as
the number of matching moments increased [10]. However, it was likely the
distributions generated by inverting the Padé approximation rational Laplace
transforms might not converge at all and there was no proofs of convergences
of the approximation Laplace transforms. In this respect, one could assume
there existed a sub-sequence of the Padé inverted distributions converging to
the original distribution. To fix this problem, Harris and Marchal suggested
matching the original and the approximation Laplace transforms at some pre-
scribed points along the negative real line on the complex plane. They also
noticed the approximation density functions might have negative values and
suggested using translation and scaling techniques to remedy it.

Another idea is to use the empirical approximation Laplace transform from
a set of points of the original distribution in the moment matching. This
is equivalent to using a step approximation distribution to form an empiri-
cal Laplace transform, and then using the Padé method to approximate the
empirical Laplace transform [10] [19].

Not many researchers discuss convergence issues of the rational Laplace
transform approximation methods. The above Laplace transform approxi-
mation methods do not guarantee convergences. In addition, these methods
are essentially solving some systems of equations and may be numerically ill-
conditioned, computationally inefficient, or simply ineffective.

The academic precedents and the existing theories and methods for distri-
bution function approximations have made fruitful achievements and continue
to provide ideas, models, and inspirations as well as lessons and failures for
future improvements. Many existing approximation methods use a probability
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mixture model of one or many particular classes of distributions in the ex-
ponential family to approximate arbitrary distribution functions. A finite (or
countably infinite) mixture distribution is a convex combination of a collection
of other distributions, where all the weighting factors are non-negative and sum
to one. These conditions impose such a strong restriction on the approxima-
tion function class, causing the class lacking useful mathematical structures,
that the approximation problems can only be solved by optimization methods.
This makes it difficult to discuss the convergence, in particular the uniform
convergence, in these existing distribution approximation methods.

For example, the Cox model and the phase-type distributions are generally
finite mixture distributions, and there is a major drawback to use them as the
approximation function classes. Although the convex combination generalizes
the distributions and guarantees the mixture is a distribution function, it im-
poses a strong restriction on the approximation distribution function class,
limiting the ways of convergences and undermining the conditions for uni-
form convergences. The classical mathematical analysis provides many useful
tools for function approximations, and the series expansion is one of the most
known. Because many existing approximation methods are based on the mixed
distribution models, they could not take advantage of the powerful classical
series expansion method. As a result, the approximation problems become
optimization problems and may only be solved numerically and iteratively.

One idea to improve the mixture distribution model is that the independent
member functions to be mixed should be in the same class in the exponential
family and have some relations to each other. Then, we could choose this
particular class of distributions as the approximation class and take advantage
of the useful relations between the independent member functions. Another
idea is to remove the convex combination restriction. This implies a mix-
ture function might not be a distribution function any more. However, such
treatments result in a function space, a much simple mathematical structure
where members are linear combinations and not convex combinations. In addi-
tion, norms and topologies on the space can be defined and there are infinitely
many ways of convergences. From the view point of the classical mathematical
analysis and the functional analysis, normed function spaces are ideal classes
for function approximation problems. Finally, we may define a collection of
“nearly-distribution functions” as some small neighborhood of a center distri-
bution function in the space, whose members may assume negative values on
some “insignificant” intervals, have a nearly-unity integral on [0,∞), or have
other non-distribution properties and so on.

Fortunately, the above particular function class does exist in the exponen-
tial family of distributions. Take the mixed Erlang model for example. If we
remove the restriction of the convex combination and consider all the Erlang
terms of the increasing orders as a basis, we have an approximation function
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space. In fact, our function space theory in this thesis is developed indepen-
dently of the mixed Erlang model. But in retrospect, our theory could be
generalized from the mixed Erlang model. Because we have a much broader
view of function approximation problems, we set our objective to approximate
any continuous functions on [0,∞), where the distribution function approxi-
mation problems are only special cases. The weak convergence proofs on mixed
Erlang distributions by Schassberger or by Botta et al. are clearly the view of
function spaces [18] [4]; and Bux and Herzog’s simplex optimization method to
find the coefficients of the mixed Erlang distributions can be easily explained
as uniform convergences in a function space [6].

In this thesis, we think approximating a probability density function, or
more generally a continuous function, on [0,∞) is a fundamental mathematical
problem, which could be resolved in a simple and elegant way. The difficulty
of this problem lies in the underlying domain of the functions being non-
compact sets, or unbounded intervals, on which there is, to our knowledge,
no well established general theory for function approximations. Solving this
fundamental problem will have a profound influence not only on queueing
or other stochastic process researches but also on other areas such as signal
processing, differential/integral equations, and numerical calculations.

1.1.2. Functions and operations. We shall first examine some basic analytic
properties of continuous functions and the operations on them, since they
are the main subjects of our approximation problem and are important to
understanding general approximation theories.

Continuous functions are abstracted from the real world to describe how
things change. In science, engineering, and applied mathematics, a continuous
function may be used to describe the motion of a planet, the temperature
fluctuation at a weather station, the voltage variation of an electronic signal,
or simply a geometric curve. The theory behind continuity is the concept of
limit, which is the foundation of calculus and mathematical analysis.

Operations on a continuous function affect its continuity: even simple op-
erations such as addition may give unexpected results. For example, adding
infinitely many continuous functions may result in a discontinuous function.
Complicated operations including differentiation, integration, and convolution
must be performed in some restricted and controllable way to achieve expected
results.

There have already been a great many function approximation theories and
methods developed over human history which correctly used the analytic prop-
erties of continuous functions and operations. Historically, function approxi-
mations began as some simple formulas, interpolation methods, or series ex-
pansions in the view of calculus or real and complex analysis. Since then, it has
evolved into an abstract approximation function space theory in the modern
view of functional analysis. By revisiting these existing approximation theories
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and methods and combining the early and the modern views of function ap-
proximations, we are set to build a new theory for our function approximation
problem.

1.1.3. Reviews of existing approximation theories and methods. It is important
to review the existing function approximation theories and methods before
building a new one. This review has two purposes. The first purpose is to
analyze why the existing methods fail for our approximation problem. The
second is to learn the structures and ideas in those methods and apply the
good ones in a new approximation method.

There are roughly two views of existing approximation methods - the early
view and the modern view.

The early view on function approximations is mainly a formula-type method,
in which one can directly use the expression of a function to find its approxi-
mation. This includes polynomial interpolations, trigonometric interpolations,
and Taylor series expansions, or even Fourier series expansions. Polynomial
interpolations can be further classified as global lower/higher order interpola-
tions and local piecewise interpolations, e.g. the spline interpolation. These
approximation methods cannot be directly used for our approximation prob-
lem mainly because they are generally valid only on compact domains and not
effective on non-compact ones. There are other specific reasons for the failure
of these methods, some of which will be discussed in later chapters.

In the early view, approximation can also be done in transformed domains.
For example, the Fourier series expansion method is equivalent to approxi-
mating a continuous spectral function by a discrete function in the frequency
domain, which is the weak convergence under certain conditions. But the
corresponding convergence theory has not been well established for Laplace
transformations, in spite of general theories of complex function approxima-
tions in complex analysis. The question is how the convergence of Laplace
transforms in the complex domain relates to the convergence of inverse func-
tions in the real domain, and it has not been well addressed in some of the
existing approximation methods. Lacking strict proofs for convergence is the
main reason for the failure of some practical rational Laplace transform ap-
proximation methods, including the Padé method.

The modern view of function approximations is based on the theory of ab-
stract function spaces. An abstract function space is a collection of functions
where the “distance” between any two member functions is defined. Then the
approximation to a function can be viewed as finding a sequence of functions
in the space converging to it. This is geometrically similar to a sequence of
points converging to a limit point in Euclidean spaces. What is different is the
convergence of a function sequence takes various forms and should be treated
carefully. Only the so-called uniform convergence resembles the point conver-
gence in Euclidean spaces. In general, a convergent sequence in a function
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space may or may not have a limit in the space. In a complete space or a
Banach space (Stefan Banach, 1892-1945), every convergent sequence has a
limit. Thus, in order to use a function space for function approximations, one
must prove it is complete.

The underlying domain of an abstract function space determines the defi-
nition of “distance” for the space and so has a great influence on the space
based approximation methods. For example, the “distance” for a space may be
defined as an integral over the underlying domain. In this case, the “distance”
usually exists as a definite integral if functions in the space are continuous and
the underlying domain is compact. If the underlying domain is non-compact,
the “distance” is an improper integral over an unbounded interval and may
not exist, or diverge.

In addition, the correct classification of functions in an abstract function
space and the correct use of operations on the space are both important to a
space based approximation theory.

Next, we shall review some of the existing approximation methods. We shall
study the structures, properties, and function classifications in these methods
and discuss their potentials to be used in a new approximation theory. Some
of them can be directly used in the new approximation theory while others
may need modifications.

Polynomial interpolations are successful approximation methods for contin-
uous functions on closed intervals. There are also many practical algorithms
to simplify the involved calculations, e.g. the Newton interpolation method
(Issac Newton, 1643-1727) and the Lagrange interpolation method (Joseph-
Louis Lagrange, 1736-1813). The weakness of polynomial interpolation meth-
ods is higher order polynomial interpolations may be oscillating and unstable
– the well-known Runge’s phenomenon (Carl Runge, 1856-1927). This is why
lower order piecewise interpolations, such as the spline interpolation, are being
used extensively. If the distribution of the interpolation nodes are carefully ar-
ranged, e.g. the Chebyshev distribution (Pafnuty Chebyshev, 1821-1894), then
the uniform convergence for higher order interpolations can be achieved and
the Runge’s phenomenon can be avoided.

Applying abstract function space theories on polynomial interpolations on
compact intervals gives a more general perspective on function approximations.
By the Weierstrass approximation theorem (Karl Weierstrass, 1815-1897), any
continuous function on a compact interval can be approximated by some poly-
nomial at any prescribed precision. There are many proofs for the Weierstrass
approximation theorem. A constructive proof by Bernstein (Sergei Bernstein,
1880-1968) has often been referred to. Bernstein polynomials can be perfectly
described by the theories of abstract polynomial function spaces. This im-
plies the Weierstrass approximation theorem has successfully expanded the
polynomial approximation theory.
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Another familiar early approximation method is the Taylor series expansion
(Brook Taylor, 1685-1731). If a continuous function can be expanded into
a power series about some center, then the partial sums of the series, which
are polynomials, can be considered as approximation functions on some neigh-
borhood of the expansion center. Thus, the Taylor series expansion is a local
approximation method and the approximation is only valid inside a local inter-
val where the Taylor series converges. If the convergence interval has a finite
radius, the Taylor series expansion method cannot be extended on unbounded
domains such as [0,∞).

The Fourier series expansion (Joseph Fourier, 1768-1830) is an important
approximation method. It is successful in approximating continuous functions
on closed intervals. More remarkably, it has profoundly changed the view of
function space based approximation methods by introducing orthogonality to
the space. Orthogonality is not defined in all spaces, but if it is in a space,
the computation for the coefficients of the space’s member functions may be
greatly simplified.

Generally speaking, orthogonality comes from inner products. This implies
if a space has orthogonality then it must be an inner product space, where
“angles” between vectors are defined. In this case, a set of infinitely many
orthogonal vectors can be used to form an orthogonal basis for the space. If
the space is also complete, it becomes a Hilbert space (David Hilbert, 1862-
1943). A finite Hilbert space is isomorphic to an Euclidean space. A function
approximation in a Hilbert space is just a projection onto one of its subspaces.

Applying the Hilbert space theory to polynomial spaces enriches the theo-
ries and methods of polynomial approximations. Apart from the Fourier se-
ries spaces, orthogonal polynomial spaces are the most commonly used dense
subsets of Hilbert spaces and there are various ways to construct orthogonal
polynomial bases for a polynomial space. However, the orthogonal polynomial
spaces suffer the same issue as other polynomial spaces on the unbounded do-
mains. In addition, an approximation method does not necessarily depend on
orthogonality.

Finally, we shall say a few words about iterative approximation methods.
Generally, iterative approximation methods are numerical calculation tech-
niques based on the Banach or the Hilbert space fixed point theory. The suc-
cess of such methods relies on the conditions for uniform convergence. Similar
to the series form solution of a differential equation, the solution of an iterative
approximation method often gives finitely many terms of a convergent infinite
series, which are often polynomials, and has no closed form expressions for the
entire domain. This implies that the method is a local approximation method
and the resulting series may have a finite radius of convergence. Thus, one
should not expect the resulting approximation polynomial converges on the
entire domain such as [0,∞).



10

1.1.4. A new function space and new approximation methods. In this thesis,
we introduce a new function space for approximations, where the abstract
function space theory is applied to the early approximation methods for the
following two purposes. One purpose is to deal with the issue of non-compact
domains. The other is to correctly build an approximation function class.
This implies the member functions in the new function space are restricted
with some prescribed properties so the new approximation method can take
advantage of them.

Before we start to develop our new approximation theory, it is helpful to
look at the basic definition of function approximations. Generally and intu-
itively, a function approximation problem may be described as “matching” an
original function by another simple function such that the two functions are
sufficiently “close”. This definition does not imply a specific method to find the
approximation function, nor does it specify what “close” means and leaves its
definition for later researchers. By this primitive definition of approximations,
we can usually tell if an approximation method is effective or not.

The above general approximation definition does raise a serious question:
what is a good approximation? Sometimes an approximation satisfies the
above definition but we do not think it to be a good one. For example, the
piecewise linear or the spline interpolation is a simple and effective method
to approximate a continuous function on a closed interval, and the resulting
approximation function may be “smooth” enough for theoretical or practical
uses and the approximation error converges to zero uniformly. However, by
another objective criteria, we do not think such an approximation function is
“good” enough for our approximation problem. In our extreme opinion, only
a continuous function, which has a simple analytic expression on the entire
domain and has infinitely many derivatives at any point, can be considered as
a good approximation function. It is this criteria we believe accurately defines
the essence of a good approximation.

To develop an approximation theory in which one can measure how “close”
two functions are, we must introduce a new function space and define the
distance between its members; this new space must be a normed function
space.

Our approximation criteria implies the approximation functions in the new
space must be analytic functions, which are infinitely differentiable. In ad-
dition, by choosing a particular class of analytic functions, we can define a
“distance” for the space such that it always exists for any two member func-
tions.

While we were developing the new function approximation theory, we found
it makes more sense to construct not one fixed function space but a family of
infinitely many function spaces for our approximation problem. This is not
obvious at first sight, but as we progress, we will demonstrate this new idea
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is flexible and powerful in calculating member functions in the space, which is
important in function approximations. Thus, instead of using a fixed function
space, we introduce a family of function spaces controlled by a non-negative
real parameter λ.

To develop an approximation method, we shall introduce some linear struc-
tures for the new function space. A linear structure means a basis of the
space, and a space may have multiple linear structures. By analyzing the ap-
proximation problem into different linear structures, we are able to solve the
problem from multiple perspectives. This implies we can have multiple solu-
tions to an approximation problem by matching different linear structures. In
fact, we have already successfully developed a few new space based approxi-
mation methods – the asymptotic (or Taylor) series expansion with variants,
the Laplace transform moment matching, and the interpolation, in this thesis.
By the theory of linear operators on function spaces, there is a linear mapping
between every two linear structures. So the solutions from these approxima-
tion methods are all “equivalent” in some senses. However, the error pattern
from each approximation method is unique and distinctive.

Finally, we introduce the concept of weak norms for the new function space
in order to develop an approximation theory of convergence in weak norm on
unbounded intervals. Suppose we wish to approximate a probability density
function on [0,∞). There exists a point T such that the probability on [0, T ] is
0.95 and that on [T,∞) is 0.05. Clearly, the approximation to the probability
density function on [0, T ] is more meaningful than on [T,∞). This does not
mean the tail of the approximation function can be arbitrary. On the contrary,
we wish to approximate the probability density function by a function with
similar tail properties such as the boundedness with similar bounds and the
tendency to zero at infinity.

To implement the convergence in weak norm, we only need to partition the
underlying domain [0,∞) into two intervals: the main interval [0, T ] and the
tail interval [T,∞). The weak norm of the function space on [0,∞) can be
defined as the usual norm on the main interval [0, T ], a compact interval. Thus,
we can apply existing techniques in the new approximation method which is
convergent on [0, T ] in the sense of weak norm.

In summary, in this thesis, we shall develop a new theory and methods to
approximate any bounded continuous vanishing at infinity functions on [0,∞).
We shall construct an approximation function space, where every member func-
tion is continuous, bounded, integral-convergent, and vanishing at infinity on
[0,∞), and the usual norm for each member function on [0,∞) is always well-
defined. In order to address the problem the usual norm may diverge for some
original functions on the unbounded interval [0,∞), we shall arbitrarily select
a compact interval [0, T ], T > 0, where the main part of the original function is
defined, and define the weak norm on it for both the original functions and the
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approximation functions. This can certainly be done because [0, T ] is compact.
Thus, we can discuss the uniform convergence on [0, T ] instead of on [0,∞).
In addition, by choosing some particular values for the parameter(s) of the
approximation functions, we can make the approximation functions “nicely”
bounded on the unbounded tail interval [T,∞).

1.1.5. The future research: other applications of the new function space beyond
function approximations. Although the goal to build a new function space was
initially for function approximations, we found the new space has many nice
fundamental properties such that it can be useful in areas beyond function
approximations. One idea is to study the operations on the new space. This
will give new meanings to some old mathematical theories and methods.

Our new function space is useful where Laplace transforms are involved.
In practical areas of probability and stochastic processes, signal processing
and control, and numerical computations, rational Laplace transforms, which
are meromorphic functions, play an important role in performing complicated
operations such as convolutions. The new function space provides an algebraic
way of computing convolutions or deconvolutions, since all the functions in the
space have rational Laplace transforms. It is well-known the Laplace transform
of a convolution of two functions is the product of their Laplace transforms.
It follows that a convolution of two functions with rational Laplace transforms
is also a rational Laplace transform.

In addition, since a Laplace transformation and its inverse transformation
are linear operations, they can be represented by matrices in the new function
space, which is commonly known in the theory of linear operators on function
spaces. This idea of matrix representations for transformations may simplify
the process of computing the transforms or the inverse transforms.

The new function space theory can help to approximately solve ordinary dif-
ferential or integral equations. Problems in science and engineering often lead
to ordinary differential equations with constant coefficients. Laplace transfor-
mation is usually used for solving such ordinary differential equations. If the
operation can be represented by a rational Laplace transform, then the solution
is also a rational Laplace transform. If the involved functions in the differen-
tial equation do not have rational Laplace transforms, or not even Laplace
transforms, we can always find their approximations with rational Laplace
transforms and solve the equation approximately. The argument is also true
for integral equations as well.

The new function space and the new approximation methods can be used in
numerical calculations. Evaluating a function at any point or calculating its
integral over any interval can be done in the new function space approximately
with an explicit analytical expression. This is of great advantage over some
existing numeric methods, which only provide a numerical result at a point
and do not provide the approximate expressions on the entire domain.
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1.2. Organizations. In Chapter 2, we discuss the preliminary mathematical
definitions and theorems on continuous functions, normed vector spaces, in-
finite series, and Laplace transforms, and in particular on asymptotic series
expansions and the associated convergence issues. We include these generally
accepted mathematical theories in this almost self-contained monograph not
only for the purposes of definitions and notations but also as the necessary
parts of a rigorous theory of a new function space and new approximation
methods.

In Chapter 3, we introduce the decaying polynomial space P λn (Ω). We dis-
cuss some of its elementary algebraic and topological properties, the isomor-
phism between the new space and the polynomial space or the Euclidean space,
its subspace structures, and the linear operations on the new space.

In Chapter 4, we discuss a new function approximation theory based on
P λn (Ω) spaces and develop three kinds of approximation methods and their
variants. Each approximation method depends on a particular linear structure
of P λn (Ω) and has a unique error pattern. Examples are given to demonstrate
these new approximation methods.

Chapter 5 concludes the theory of P λn (Ω) spaces and the new function ap-
proximation methods.
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2. Preliminaries

This chapter contains the preliminary definitions, notations, propositions,
and theorems used throughout this monograph. The monograph is almost
self-contained. We give proofs of the propositions and theorems important to
our new theory, but may exclude them for some generally accepted theorems.
For references, see [17] [21].

In this section and throughout the monograph, we use R, C, and N for real,
complex, and natural numbers, respectively. Unless otherwise specified, we
always denote Ω = [0,∞) the non-negative real axis and assume all functions
we will approximate are real-valued continuous functions defined or supported
on the domain Ω.

2.1. Continuous functions.

2.1.1. Limits of a function. Let A ⊂ R be a subset and c ∈ R be an accumu-
lation point of A. A real-valued function f : A → R is said to have a finite
limit L as t approaches c, denoted by

lim
t→c

f(t) = L,

if for every ε > 0, there exists a δ > 0 such that for all 0 < |t− c| < δ, t ∈ A,
we have

|f(t)− L| < ε.

Note in the above definition, c need not be in A and f(t) need not be defined
at t = c.

We say f(t) approaches positive infinity as t approaches c, denoted by

lim
t→c

f(t) =∞,

if for every M > 0, there exists a δ > 0 such that for all 0 < |t − c| < δ, we
have

f(t) > M.

Similarly, we can define

lim
t→c

f(t) = −∞.

It is convenient to define the one-sided limit of f(t) at c. The left limit of
f(t) at c is denoted as

lim
t→c−

f(t) = L

if t approaches c and t < c. Similarly, we can write

lim
t→c+

f(t) = L

if t approaches c and t > c.
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Consider a function f(t) on R. f(t) has a limit L at infinity, denoted by

lim
t→∞

f(t) = L,

if for every ε > 0, there is a T > 0 such that whenever t > T , we have

|f(t)− L| < ε.

Similarly, we can define
lim

t→−∞
f(t) = L.

2.1.2. Continuous functions. Let f(t) be a real-valued function defined on an
interval I ⊂ R. Then f is continuous at an interior point c ∈ I, if for every
ε-neighborhood V of f(c), there exists a δ-neighborhood U of c, contained in
I, such that f(U) ⊆ V .

If f is continuous at every point in I, f is said to be continuous on I, which
implies

f(c) = lim
t→c

f(t) = lim
t→c+

f(t) = lim
t→c−

f(t)

for every interior point c ∈ I. If c is a boundary point of I, then the corre-
sponding one-sided limit of f at c must equal to f(c).

If f is not continuous at a point c ∈ R, f is said to be discontinuous at c or
has a singularity at c, which may be classified as one of the following cases:

(1) limt→c f(t) = ±∞;
(2) if f has a limit at c but it does not equal to the function value f(c),

then f is said to have a removable discontinuous point at c;
(3) if f has both left limit and right limit at c and they are different, f is

said to have a jump at c; or
(4) if f has neither left limit nor right limit at c, then f is said to have an

essential discontinuous point at c.

A continuous function f on an interval I ⊆ R is said to be monotonically
increasing if f(t2) ≥ f(t1) whenever t2 ≥ t1, t1, t2 ∈ I. f is said to be
monotonically decreasing if f(t2) ≤ f(t1) whenever t2 ≥ t1, t1, t2 ∈ I.

2.1.3. Boundedness. A function f is bounded on an interval I ⊆ R, if there is
a number M > 0 such that |f(t)| ≤ M for every t ∈ I. M is then called a
bound for f on I.

Proposition 2.1. Assume f and g are bounded on I. Then the following
properties are true:

(1) f + g is bounded; and
(2) αf , α ∈ R, is bounded.

Proof. By hypothesis, f and g are bounded on I. Then there exist M1,M2 > 0
such that

|f(t)| ≤M1 and |g(t)| ≤M2
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for all t ∈ I. It follows that

|f(t) + g(t)| ≤ |f(t)|+ |g(t)| ≤M1 +M2.

Thus, f + g is bounded and the property (1) is proved. It also follows that

|αf(t)| = |α||f(t)| ≤ |α|M1.

Thus, αf is bounded and the property (2) is proved. �

2.1.4. Compact sets. A set K is compact if every sequence in K has a subse-
quence converging to a limit in K. An equivalent definition of compact set is
that a set K is compact if every open cover of K has a finite subcover. For
example, in R, the closed interval [0, 1] is compact but an open interval (0, 1)
is not.

Proposition 2.2. A set K ⊂ R is compact if and only if it is closed and
bounded.

Proof. Let K be compact. Then every sequence in K has a subsequence con-
verging to a limit in K. This implies K is closed. Assume K is not bounded.
Then there exists a divergent sequence {xi}i∈N in K. For any M > 0, there
is at least one xj for some j ∈ N such that |xj | > M . Consider an open cover
{(−i, i)}i∈N. Clearly,

K ⊂ ∪i∈N(−i, i).
For any finite subcover

∪Ni=1(−ni, ni), n1, n2, · · · , nN ∈ R,

set M = max(n1, n2, · · · , nN ). The fact there exists an xj such that |xj | > M
implies K is not covered by the subcover. This contradicts the compactness
of K. Thus K is bounded.

Conversely, let K be closed and bounded. Clearly, every sequence in K
is bounded since K is bounded. By the Bolzano-Weierstrass theorem, each
bounded sequence has a convergent subsequence. Since K is closed, the limit
of the subsequence is in K. Thus K is compact. �

Proposition 2.3. Let K be a compact set and f : K → R be a continuous
function. Then f(K) is compact. In other words, f is bounded and attains its
maximum/minimum on K.

Proof. (First proof). Let {yn}n∈N be a sequence in f(K), not necessarily
convergent. By continuity of f , there is a sequence {xn}n∈N such that xn ∈ K
and yn = f(xn) for all n. Since K is compact, {xn} has a subsequence {xni}i∈N
converging to a limit x ∈ K. Set y = f(x). By continuity of f , the subsequence
of {yn} converges to y, i.e.

lim
i→∞

yni = y.
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Since y ∈ f(K), f(K) is compact. This also implies f(K) is bounded and f
attains its maximum/minimum for some x ∈ K. �

Proof. (Second proof). Let ∪n∈NVn be an open cover for f(K). Since f is
continuous, for each open set Vn for f(K), there is an open set Un of K such
that f(Un) ⊆ Vn. Then there is an open cover ∪n∈NUn ⊃ K. Since K is
compact, there is a finite subcover Un1 ∪Un2 ∪ · · · ∪UnN ⊃ K. For every point
x ∈ K, x ∈ Uni for some i, 1 ≤ i ≤ N . Set y = f(x). Then y ∈ f(Uni) implies
y ∈ Vni . Thus Vn1 ∪ Vn2 ∪ · · · ∪ VnN ⊃ f(K) and f(K) is compact. �

2.1.5. Vanishing at infinity. Let f be a continuous function on Ω. Then f is
said to vanish at infinity, denoted by

lim
t→∞

f(t) = 0,

if for every ε > 0, there exists a T > 0 such that whenever t > T , we have

|f(t)− 0| < ε.

Proposition 2.4. (Tail boundedness). If a continuous function f on Ω van-
ishes at infinity, then for any ε > 0 there is a compact set K ⊂ Ω such that
|f | < ε on Ω\K, the complement of K in Ω.

Proof. By our definition of vanishing at infinity, for every ε > 0, there is a
T > 0 such that whenever t > T , we have

|f(t)− 0| < ε.

Let K = [0, T ]. Then |f(t)| < ε on Ω\K. �

Proposition 2.5. (Global boundedness). A continuous function f which van-
ishes at infinity is bounded on Ω.

Proof. This follows from Propositions 2.3 and 2.4. We can also prove it by
contradiction. Assume f is unbounded on Ω. Since f vanishes at infinity, then
for any ε > 0, there exists a number b ∈ Ω such that |f(t)| < ε for t > b. Let
a = 0. Then f is unbounded on [a, b]. Let t be such that a < t < b. Then f(t) is
unbounded on either [a, t] or [t, b]. Let the closed interval where f is unbounded
be [a1, b1]. Then f is unbounded on [a1, b1]. Repeat this process and we obtain
a sequence of intervals [an, bn], n = 1, 2, · · · , with [an, bn] ⊂ [an−1, bn−1], on
which f is unbounded. Thus there is a unique number ξ ∈ [an, bn] for all
n = 1, 2, · · · , such that |f(ξ)| is greater than any given number. This implies
that

lim
t→ξ
|f(t)| =∞

and f(t) has a singularity at t = ξ. This is a contradiction, since f(t) is
continuous at ξ. Thus, f is bounded on Ω. �
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Proposition 2.6. Let f and g vanish at infinity on Ω. Then the following
properties are true:

(1) f + g vanishes at infinity;
(2) αf , α ∈ R, vanishes at infinity; and
(3) fg vanishes at infinity.

Proof. We shall repeatedly use Proposition 2.4, the tail boundedness, in the
proof.

Let ε > 0. By hypothesis, f and g on Ω vanish at infinity. Then there is a
compact set K1 ⊂ Ω such that |f | < ε

2 on Ω\K1 and a compact set K2 ⊂ Ω
such that |g| < ε

2 on Ω\K2. Then

|f + g| ≤ |f |+ |g| < ε

2
+
ε

2
= ε

on Ω\K1∪K2. Thus, f + g vanishes at infinity and the property (1) is proved.
Let α ∈ R. By hypothesis, f on Ω vanishes at infinity. Then there is a

compact set K ⊂ Ω such that |f | < ε
|α| on Ω\K. Then

|αf | ≤ |α||f | < |α| ε
|α|

= ε

on Ω\K. Thus, αf vanishes at infinity and the property (2) is proved.
Let M > 0. By hypothesis, f and g on Ω vanish at infinity, Then there is a

compact set K1 ⊂ Ω such that |f | < M on Ω\K1 and a compact set K2 ⊂ Ω
such that |g| < ε

M on Ω\K2. Then

|fg| ≤ |f ||g| < ε

M
M = ε

on Ω\K1∪K2. Thus, fg vanishes at infinity and the property (3) is proved. �

2.1.6. Integration. Let A ⊂ R. A function f : A → R is Lebesgue measurable,
or measurable, if for any c real, the set

{t ∈ A | f(t) > c}
is measurable. Since we only concerns continuous function on intervals in this
thesis and intervals are measurable, we shall not discuss more general cases for
measurable sets. A continuous function is measurable.

Let f be a measurable function on an interval I ⊂ R. Then f is said to be
integrable or Riemann integrable on I, if the Riemann integral∫

I
f(t)dt <∞.

Riemann integrable implies Lebesgue integrable. If the integrand f is continu-
ous, then both its Riemann integral and Lebesgue integral exist and are equal.

The integral of a continuous function on a closed interval is called a definite
integral.
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For a continuous integrand, an improper integral of the first kind is the limit
of a definite integral over an interval whose upper or lower end-point tends
to infinity. If this limit is finite, the improper integral exists or converges.
Otherwise, it diverges. In particular, let f be a continuous function on Ω.
Then f is said to be integral-convergent on Ω, denoted by∫ ∞

0
f(τ)dτ = lim

T→∞

∫ T

0
f(τ)dτ = L

for some finite L, if for any ε > 0, there exists a T > 0 such that whenever
t > T , we have ∣∣∣∣∫ t

0
f(τ)dτ − L

∣∣∣∣ =

∣∣∣∣∫ ∞
t

f(τ)dτ

∣∣∣∣ < ε.

f is said to be integral-divergent on Ω if it is not integral-convergent.
Integral-convergent continuous functions on Ω are very common in the fields

of applied mathematics, science, and engineering. For example, a continuous
probability density function on Ω is integral-convergent.

If the integrand of an integral on a closed interval is unbounded and tends to
positive or negative infinity at a point in the interval, then the integral is said
to be an improper integral of the second kind. This kind of improper integral
is not our main subject for this monograph.

Proposition 2.7. Let f and g be integral-convergent on Ω. Then the following
properties are true:

(1) f + g is integral-convergent on Ω; and
(2) αf , α ∈ R, is integral-convergent on Ω.

Proof. By hypothesis, f and g on Ω are integral-convergent on Ω. Then∫ ∞
0

f(τ)dτ = L1 and

∫ ∞
0

g(τ)dτ = L2

for some finite L1 and L2. It follows that∫ ∞
0

f(τ) + g(τ)dτ =

∫ ∞
0

f(τ)dτ +

∫ ∞
0

g(τ)dτ = L1 + L2.

Thus, f+g is integral-convergent and the property (1) is proved. It also follows
that ∫ ∞

0
αf(τ)dτ = α

∫ ∞
0

f(τ)dτ = αL1.

Thus, αf is integral-convergent and the property (2) is proved. �

Proposition 2.8. (Cauchy convergence criterion for improper integrals). A
continuous function f is integral-convergent on Ω if and only if for any ε > 0,
there exists a T > 0 such that whenever t1, t2 > T , we have∣∣∣∣∫ t2

t1

f(τ)dτ

∣∣∣∣ < ε.
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Proof. Let f be integral-convergent on Ω and∫ ∞
0

f(τ)dτ = L

for some finite L. Then for any ε > 0, there exists a T > 0 such that whenever
t > T , we have ∣∣∣∣∫ t

0
f(τ)dτ − L

∣∣∣∣ < ε

2
.

Thus, ∣∣∣∣∫ t2

t1

f(τ)dτ

∣∣∣∣ =

∣∣∣∣∫ t2

0
f(τ)dτ −

∫ t1

0
f(τ)dτ

∣∣∣∣
=

∣∣∣∣(∫ t2

0
f(τ)dτ − L

)
−
(∫ t1

0
f(τ)dτ − L

)∣∣∣∣
≤

∣∣∣∣(∫ t2

0
f(τ)dτ − L

)∣∣∣∣+

∣∣∣∣(∫ t1

0
f(τ)dτ − L

)∣∣∣∣
<

ε

2
+
ε

2
= ε.

The proof for the converse statement is omitted.
�

Proposition 2.9. An integral-convergent continuous function f on Ω is bounded.

Proof. By contradiction. Let f be continuous and integral-convergent on Ω.
By Proposition 2.8, for any ε > 0, there exists a T > 0 such that whenever
t1, t2 > T , we have ∣∣∣∣∫ t2

t1

f(τ)dτ

∣∣∣∣ < ε.

Clearly, f is bounded on [0, T ]. Without loss of generality, assume f is pos-
itively unbounded at infinity on [T,∞). Then there exists an S such that
whenever t > S, we have f(t) > 1. Let t1 > max(T, S) and t2 = t1 + ε. Then∣∣∣∣∫ t2

t1

f(τ)dτ

∣∣∣∣ > (t2 − t1) = ε.

This is a contradiction. Thus, f is bounded on [T,∞) and consequently on
Ω. �

Proposition 2.10. Let f be continuous and integral-convergent on Ω. If f
has a limit at infinity, then f vanishes at infinity.

Proof. By contradiction. Without loss of generality, we assume

lim
t→∞

f(t) = l > 0.
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Then for any sufficiently small ε > 0, there exists a T > 0 such that whenever
t > T , we have

0 < l − ε < f(t) < l + ε.

Since f is integral-convergent, by Proposition 2.8, there exists an S such that
whenever t1, t2 > S, we have ∣∣∣∣∫ t2

t1

f(t)dt

∣∣∣∣ < l − ε.

Let t1 > max(T, S) and t2 = t1 + 1. Then∣∣∣∣∫ t2

t1

f(t)dt

∣∣∣∣ > ∣∣∣∣∫ t2

t1

l − εdt
∣∣∣∣ = l − ε.

This is a contradiction. Therefore, l cannot be positive. Similarly, l cannot be
negative. It follows that l = 0 and f vanishes at infinity. �

Proposition 2.11. If |f | is integral-convergent on Ω, then f is also integral-
convergent on Ω.

Proof. By hypothesis, |f | is integral-convergent on Ω. Then for any ε > 0,
there exists a T > 0 such that whenever t > T , we have∣∣∣∣∫ ∞

t
|f(τ)|dτ

∣∣∣∣ < ε.

It follows that ∣∣∣∣∫ ∞
t

f(τ)dτ

∣∣∣∣ ≤ ∣∣∣∣∫ ∞
t
|f(τ)|dτ

∣∣∣∣ < ε

and f is integral-convergent on Ω. �

If |f | is integral-convergent on Ω, then f is said to be absolutely integral-
convergent on Ω. The converse of Proposition 2.11 is not always true.

Proposition 2.12. Let f be absolutely integral-convergent and g continuous
and bounded on Ω. Then fg is also absolutely integral-convergent on Ω.

Proof. The hypothesis g is continuous and bounded implies |g| ≤M for some
M > 0 on Ω. By hypothesis f is absolutely integral-convergent on Ω, so for
any ε > 0, there exists a T > 0 such that whenever t > T , we have∫ ∞

t
|f(τ)|dτ < ε

M
.
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It follows that ∣∣∣∣∫ ∞
t
|f(τ)g(τ)|dτ

∣∣∣∣ ≤ ∫ ∞
t
|f(τ)||g(τ)|dτ

≤
∫ ∞
t
|f(τ)|Mdτ

<
ε

M
M = ε

Thus, fg is absolutely integral-convergent. �

Let f be continous on Ω. Then f is said to be n-th moment integral-
convergent, n ∈ N, if ∣∣∣∣∫ ∞

0
τnf(τ)dτ

∣∣∣∣ = L

for some finite L.
Let f and g be two measurable functions on R. Then f is said to be

Riemann-Stieltjes integrable with respect to g on an interval I ⊆ R if∫
I
f(t)dg(t) = L

for some finite L. This is equivalent to∫
I
f(t)g′(t)dt = L,

if g is differentiable on any open subsets of R containing I. The Riemann-
Stieltjes integration is a generalization of the usual integration and is useful in
function transformations.

2.1.7. Analytic and transcendental functions. Let f be a real-valued function
on an interval I ⊆ R. Then f is analytic at a point c ∈ I if f can be represented
as a power series

f(t) =
∞∑
n=0

an(t− c)n, a0, a1, · · · ∈ R,

in some ε-neighborhood of c contained in I. If f is analytic at every point in
I, then f is said to be analytic on I. If f is analytic at all points in I except b,
then b is called a singular point of f in I. Real analytic functions are special
cases of complex analytic functions. Analytic functions are strongly related to
infinite function series, which will be discussed in detail in section 2.5.

An algebraic function is a function which can be expressed in the form of a
finite sequence of algebraic operations. For example, polynomial and rational
functions are algebraic. A transcendental function is an analytic function that
does not satisfy a polynomial equation. Examples of transcendental functions
are: et, sin(x), and Bessel functions. Transcendental functions are infinitely
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differentiable, and may be generated from indefinite integrals of algebraic func-
tions.

A bounded transcendental function is a transcendental function which is
bounded. Based on their limit at infinity, bounded transcendental functions
can be classified into three categories:

(1) no limit at infinity, e.g. sin(x);
(2) a non-zero finite limit at infinity, e.g. 1− e−t; or
(3) vanishing at infinity, e.g. e−t.

2.2. Normed vector spaces.

2.2.1. Linear vector spaces. An additive group, or an Abelian group, is a set X
with an operation + satisfying the following axioms:

(1) x+ y ∈ X, if x, y ∈ X;
(2) x+ y = y + x, x, y ∈ X;
(3) x+ (y + z) = (x+ y) + z, x, y, z ∈ X;
(4) −x ∈ X; and
(5) 0 ∈ X.

A linear vector space over a field F (the field R of real numbers or the field C
of complex numbers) is an additive group X with an operation × : F×X → X
satisfying the following axioms:

(1) α(x+ y) = αx+ αy, α ∈ F, x, y ∈ X;
(2) (α+ β)x = αx+ βx, α, β ∈ F, x ∈ X;
(3) α(βx) = (αβ)x, α, β ∈ F, x ∈ X; and
(4) 1x = x, x ∈ X.

A linear vector space is denoted by (X,F, (+,×)), or simply by X.
A linear vector space is often simply called a vector space or a linear space.

The elements of a vector space are called vectors or points. The elements
of the associated field are called scalars. A linear vector space is a set of
points equipped with a linear structure and is closed under addition and scalar
multiplication.

Let X be a vector space over a field F. If x, y, · · · , z ∈ X and α, β, · · · , γ ∈ F,
then the sum αx+ βy + · · ·+ γz is called a linear combination of x, y, · · · , z,
which is also an element in X. This follows from the axioms of a vector space.

Let X be a vector space. Let B = {x, y, · · · , z} of distinct vectors and
B ⊆ X. Then B is said to be linearly dependent if there exists a set of scalars
α, β, · · · , γ, not all zeros, such that αx + βy + · · · + γz = 0. B is said to be
linearly independent if B is not linearly dependent.

Let B be linearly independent. If every vector in X can be uniquely repre-
sented by a linear combination of vectors in B, then X is said to be spanned
by B, or a span of B, denoted by spanB, and B is called a basis of X.
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Let B be a basis of a vector space X. The cardinality of B is called the
dimension of X, denoted by dimX. Thus, a vector space is finite-dimensional
if dimX is finite, countably infinite-dimensional if dimX = ℵ0, the cardinality
of the natural number, or uncountably infinite-dimensional if dimX = c, the
cardinality of the continuum.

Let X be a vector space. A subset X1 ⊆ X is called a linear subspace or a
subspace in X if and only if X1 itself is a vector space and dimX1 ≤ dimX.

Proposition 2.13. Let B be a basis of X. Let B1 be any non-trivial subset
of B of finite or countably infinite size. Let X1 = spanB1. Then B1 contains
linearly independent vectors, and X1 is a subspace of X.

Proof. Trivial. �

X is called a linear superspace, or a superspace to X1, if X1 is a subspace of
X. Clearly, dimX ≥ dimX1. A superspace Xn, n ∈ N, may be constructed
in the following way. Let B1 = {x1} be a set of one vector and be the basis
of X1. Let x2 /∈ B1 be a new vector such that B2 = {x2} ∪ B1 is linearly
independent. Let X2 = spanB2. Then X2 is a superspace of X1. Repeat the
above process in finitely many steps. Then there is a vector space Xn such
that Xn is a superspace to every Xk, k ≤ n, k ∈ N. Clearly, dimXn = n. In
addition, it is obvious that Xm is a superspace of Xn if and only if m ≥ n,
m,n ∈ N.

Let X and Y be two vector spaces. A mapping T : X → Y is said to be a
linear operator on X into Y if it satisfies the following conditions:

(1) T (x1 + x2) = Tx1 + Tx2, x1, x2 ∈ X; and
(2) T (αx) = αTx, x ∈ X,α ∈ F.

The domain of T , denoted by D(T ), is the set of x ∈ X, on which T is defined.
The range of T , denoted by R(T ), is the set of y ∈ Y such that y = Tx for
every x ∈ X. A linear operator is also called a linear transformation, a linear
mapping, or a linear function. In particular, if Y is a field F, a linear operator
is also called a linear functional.

Let T and S be two linear operators on X into Y . Define the sum of T and
S and the scalar multiplication of T as

(1) (T + S)x = Tx+ Sx, x ∈ X; and
(2) (αT )x = α(Tx), x ∈ X, α ∈ F,

respectively. All linear operators from X to Y form a vector space, called a
linear operator space.

Let X, Y , and Z be vector spaces and T : X → Y and S : Y → Z be two
linear operators. Then the composite operator ST is a linear operator from X
to Z formed by the product of operators S and T such that (ST )x = S(Tx).

Let T be a linear operator on X to X. Let the symbol T 2 represents the
operator TT and inductively Tn for Tn−1T or TTn−1. An operator I : X → X
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is called an identity operator if Ix = x, for all x ∈ X. An operator O is called
a zero operator if Ox = 0, the zero vector in X, for all x ∈ X. Thus, the
following is a valid expression of a linear operator:

P (T ) = α0I + α1T + · · ·+ αnT
n,

where αi ∈ F, i = 0, 1, · · · , n.
Two vector spaces X and Y over the same field F are said to be isomorphic

if there exists a one-to-one operator T that maps every vector of X onto a
vector of Y . This definition also implies there exists an inverse operator T−1

mapping Y onto X.
Let X and Y be two subspaces of a vector space Z and X ∩ Y = {0}. If

each z ∈ Z can be written uniquely as z = x + y, where x ∈ X and y ∈ Y ,
then Z is said to be a direct sum of X and Y , denoted by Z = X ⊕ Y . The
idea of a direct sum is to expand a vector space to a higher dimensional vector
space.

2.2.2. Metric spaces. Let X be a non-empty set. A metric or distance on X
is a non-negative function ρ : X ×X → [0,∞) such that for every x, y, and z
in X and α real,

(1) ρ(x, y) ≥ 0, and ρ(x, y) = 0 iff x = y;
(2) ρ(x, y) = ρ(y, x); and
(3) ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

The set X together with the metric ρ, denoted by a couple (X, ρ), or simply
by X, is called a metric space.

In a metric space, the metric measures how close one element is to another.
The smaller the metric value, the closer the two elements. If the metric value
is zero, the two elements are said to be equal in the metric sense.

In the above metric definition, if ρ(x, y) = 0 does not imply x = y, then ρ
is called a pseudometric on X and (X, ρ) is called a pseudometric space.

In a metric space (X, ρ), the diameter of a subset U of X is defined as

diamU = sup {ρ(x, y) | x, y ∈ U} .
Thus, if U ⊆ V , then diamU ≤ diamV . If diamU < M , M > 0, then U is
said to be bounded.

Let (X, ρ) be a metric space and r > 0. For a point x ∈ X, the set of points
of X, denoted by

Nr(x) = N(x, r) = {y ∈ X | ρ(x, y) < r},
is called an open ball, or an open neighborhood, centered at x with a radius r. In
R with Euclidean distance, an open ball Nr(x) is an open interval (x−r, x+r).

In a metric space (X, ρ), a subset U of X is said to be open if, for each point
x ∈ U , there exists an r > 0 such that Nr(x) ⊂ U . A subset U of X is said to
be closed if the complement of U in X is open.
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Open set is a concept of topological space, generalizing the idea of an open
interval in R and is fundamental to such concepts as limit, convergence, and
continuity.

A family τ of subsets of a non-empty set X is called a topology on X if

(1) X,φ ∈ τ ;
(2) if A,B ∈ τ , then A ∩B ∈ τ ; and
(3) if Aα ∈ τ , α ∈ I, an index set, then ∪α∈IAα ∈ τ .

The pair (X, τ), or simply τ , denotes a topological space, whose members are
called open sets .

Proposition 2.14. Let (X, ρ) be a metric space. Then the collection of usual
open sets defined by the metric ρ forms a topology τ on X. This topology is
also called a topology induced by the metric ρ, or a metric topology.

Proof. We shall prove the members of τ satisfy the axioms of topology.

(1) Both X and φ are open sets by definition. Thus, X,φ ∈ τ .
(2) Let A,B ∈ τ . Then A and B are open. For every x ∈ A ∩ B, we

have x ∈ A and x ∈ B. By definition of open sets, there exist an
Nr1(x) ⊂ A and an Nr2(x) ⊂ B. Let r = min(r1, r2). Then Nr(x) ⊂ A
and Nr(x) ⊂ B implies Nr(x) ⊂ A ∩ B. Thus A ∩ B is open, i.e.
A ∩B ∈ τ .

(3) Let Aα ∈ τ , α ∈ I, an index set. Then Aα are open. For every
x ∈ ∪α∈IAα, x ∈ Aα for some α ∈ I. Then there exists an Nr(x) ⊂
Aα ⊂ ∪α∈IAα. It implies that ∪α∈IAα is open, i.e. ∪α∈IAα ∈ τ .

Therefore, τ is indeed a topology (induced by ρ) on X and (X, τ) is a topo-
logical space. Clearly, every metric induces a topology on a metric space. �

Let X be a topological space and x, y distinct elements of X. If there
always exist neighborhoods Nε1(x) and Nε2(y) for some ε1, ε2 > 0 such that
Nε1(x) ∩ Nε2(y) = φ, then X is called a Hausdorff space. This definition
implies that any two distinct elements can be separated in a Hausdorff space.
Since any two distinct elements in a metric space can be separated by open
sets, a metric space is a Hausdorff space. We have already implicitly used this
separation property in the above proofs.

Let (X, τ1) and (X, τ2) be two topological spaces. If τ1 ⊆ τ2, then τ2 is
stronger than τ1, and τ1 is weaker than τ2.

Let (X, ρ) be a metric space. A sequence {xn} in X is said to converge to
a limit point x if

lim
n→∞

ρ(xn, x) = 0.

Note x may not be in X. A sequence {xn} in X is called a Cauchy sequence if

lim
m,n→∞

ρ(xm, xn) = 0.
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Proposition 2.15. Every convergent sequence in a metric space is Cauchy.

Proof. Let (X, ρ) be a metric space. Consider a sequence {xn} in X converging
to an x ∈ X. Then for every ε > 0, there exists an N ∈ N such that

ρ(xm, x) <
ε

2
and ρ(xn, x) <

ε

2
,

whenever m,n > N . Thus,

ρ(xm, xn) ≤ ρ(xn, x) + ρ(xm, x) <
ε

2
+
ε

2
= ε,

whenever m,n > N . Therefore,

lim
m,n→∞

ρ(xm, xn) = 0,

i.e. {xn} is Cauchy. �

A Cauchy sequence in a metric space may converge to a point not in the
space. Consider a metric space (X, ρ(x, y) = |x − y|) with X = (0, 1]. A
convergent sequence { 1

n} in X, which is Cauchy, converges to 0 /∈ X. Thus,
not every Cauchy sequence in a metric space is convergent to a point in the
space.

A metric space X is complete if every Cauchy sequence in X converges to a
limit point that is also in X. For example, the set of rational numbers Q is not
complete but the set of real numbers R is, if both sets are equipped with the
metric ρ(x, y) = |x− y|. Furthermore, the set of complex numbers C equipped
with the modulus metric | · | is a complete metric space. The proofs of the
above statements are trivial.

If a metric space is not complete, it can be extended into a larger metric
space by adding all the limit points of its Cauchy sequences. Then the new
metric space is complete. This process is called the completion of a metric
space.

Let (X1, ρ1) and (X2, ρ2) be two metric spaces. Then a function f : X1 → X2

is said to be uniformly continuous if for every ε > 0, there exists a δ > 0 such
that for every x, y ∈ X1 with ρ1(x, y) < δ, we have ρ2(f(x), f(y)) < ε.

In particular, a function f : I → R, where I is an interval, is uniformly
continuous if for every ε > 0, there exists a δ > 0 such that for every t1, t2 ∈ I,
whenever |t1 − t2| < δ, we have |f(t1)− f(t2)| < ε.

2.2.3. Normed vector spaces. A norm on a vector space (or a metric space) X
is a functional ‖ · ‖ : X → [0,∞) satisfying, for all x, y ∈ X and α real, the
following properties:

(1) ‖x‖ ≥ 0, ‖x‖ = 0 iff x = 0; (Positivity)
(2) ‖αx‖ = |α|‖x‖; (Homogeneity) and
(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖. (The triangle inequality)



28

A vector space X equipped with a norm ‖·‖ is called a normed vector space,
or a normed space, denoted by (X, ‖·‖), or simply by X, if the norm is implied.
A vector space X may be equipped with different norms, resulting in different
normed spaces.

A normed space is also a metric space and a topological space.

Proposition 2.16. Every norm on X induces a metric and therefore induces
a topology on X.

Proof. Let (X, ‖ ·‖) be a normed space and x, y ∈ X. Define ρ(x, y) = ‖x−y‖.
Clearly, ρ satisfies all the axioms of a metric. Thus ρ is a metric induced by
the norm ‖ · ‖ and (X, ρ) is a metric space. By Proposition 2.14, ρ induces a
metric topology on X. �

Proposition 2.17. A norm is uniformly continuous.

Proof. Let X be a vector space and consider a norm ‖ · ‖ : X → [0,∞). By
Proposition 2.16, the norm ‖ · ‖ induces a metric ρ(x, y) = ‖x− y‖ on X. For
every x, y ∈ X, by the triangle inequality in the definition of norm,

‖x‖ = ‖(x− y) + y‖ ≤ ‖y‖+ ‖x− y‖

and

‖y‖ = ‖(y − x) + x‖ ≤ ‖x‖+ ‖y − x‖.

This implies

‖x‖ − ‖y‖ ≤ ‖x− y‖

and

‖y‖ − ‖x‖ ≤ ‖y − x‖.

That is

|‖x‖ − ‖y‖| ≤ ‖x− y‖.

Thus, for every ε > 0, there is a δ = ε such that whenever ρ(x, y) = ‖x−y‖ < δ,
|‖x‖ − ‖y‖| < ε. It follows from the definition of uniform continuity that ‖ · ‖
is uniformly continuous. �

Let X be a vector space equipped with two norms ‖ · ‖a and ‖ · ‖b. Then
‖ · ‖a and ‖ · ‖b on X are equivalent if for each x ∈ X there exist some real α
and β such that

α‖x‖b ≤ ‖x‖a ≤ β‖x‖b.

In this monograph, we use a generic norm symbol ‖ · ‖ for a normed space
unless a specific norm needs to be emphasized.

Furthermore, a complete normed space is called a Banach space.
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2.2.4. Convergence in weak norm. In a normed space, a norm and its induced
metric are called the strong norm and the strong metric, respectively. There
are many other ways to define “weak” norms and metrics for the space.

Let X be a normed space. A functional ‖ · ‖w : X → [0,∞), different from
the usual norm inducing the topology and satisfying the norm axioms, is called
a weak norm, if for every convergent sequence {xn} in X converging to a point
x ∈ X in the usual norm, we have

lim
n→∞

‖xn‖w = ‖x‖w.

The functional ρw(x, y) = ‖x − y‖w is called a weak metric induced by this
weak norm ‖ · ‖w, if

lim
n→∞

‖xn − x‖w = 0.

In this case, {xn} is said to converge in weak norm to x.

2.3. Normed continuous function spaces on Ω. This section discusses
various continuous function spaces.

2.3.1. The continuous function space C(a, b). Let C(a, b) be the set of all real-
valued continuous functions on I = [a, b]. Define the essential norm ‖ · ‖∞ :
C(a, b)→ [0,∞) as

‖x‖∞ = sup
t∈I
|x(t)| = max

t∈I
|x(t)|.

It follows from Proposition 2.3 that the definition of ‖ · ‖∞ is valid and can be
used for other normed continuous function spaces as well.

Proposition 2.18. (C(a, b), ‖ · ‖∞) is a normed vector space.

Proof. Firstly, it is obvious the set of continuous functions are closed under
addition and scalar multiplication. Thus, C(a, b) is a vector space. It is left to
prove ‖ · ‖∞ satisfies the axioms of a norm.

(1) For any x ∈ C(a, b), if ‖x‖∞ = 0, then supt∈[a,b] |x(t)| = 0. This implies

x(t) = 0 for all t ∈ [a, b].
(2) For any x ∈ C(a, b),

‖αx‖∞ = sup
t∈[a,b]

|αx(t)|

= |α| sup
t∈[a,b]

|x(t)| = |α|‖x(t)‖∞.

(3) For any x, y ∈ C(a, b),

‖x+ y‖∞ = sup
t∈[a,b]

|x(t) + y(t)|

≤ sup
t∈[a,b]

|x(t)|+ sup
t∈[a,b]

|y(t)|

= ‖x(t)‖∞ + ‖y(t)‖∞.
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Thus, ‖ · ‖∞ is a norm. It follows that (C(a, b), ‖ · ‖∞) is a normed vector
space. �

Moreover, define a functional ρ : C(a, b)× C(a, b)→ [0,∞) as

ρ(x, y) = ‖x− y‖∞ = sup
t∈[a,b]

|x(t)− y(t)| = max
t∈[a,b]

|x(t)− y(t)|.

Clearly, ρ is a metric function induced by the norm ‖·‖∞, and thus (C(a, b), ρ)
is a metric space.

Unlike C(a, b), C(Ω) is only a vector space. It is neither a normed space
nor a metric space with respect to the essential norm defined above. It is
technically possible to define a norm so that C(Ω) is a normed space. But
under the usual norm, C(Ω) is only a vector space and not a normed space.

2.3.2. The bounded continuous function space B(Ω). Let B(Ω) be the class of
all bounded continuous functions on Ω equipped with the essential norm ‖·‖∞.
The definition of the essential norm ‖ ·‖∞ is valid since every function in B(Ω)
is bounded and has a maximum.

Proposition 2.19. (B(Ω), ‖ · ‖∞) is a normed vector space and B(Ω) is a
proper subspace of C(Ω).

Proof. It follows directly from Proposition 2.1 that the properties (1) and (2)
of bounded continuous functions on Ω satisfy the vector space axioms. In
addition, the zero function is in B(Ω). Therefore, B(Ω) is a vector space.

Moreover, both B(Ω) and C(Ω) contain bounded continuous functions but
C(Ω) also contains unbounded ones. It follows that B(Ω) is a proper subspace
of C(Ω).

The statement (B(Ω), ‖ · ‖∞) is a normed space follows a similar proof to
the one for (C(a, b), ‖ · ‖∞). �

2.3.3. The continuous vanishing at infinity function space V (Ω). Let V (Ω) be
the class of all continuous vanishing at infinity functions on Ω equipped with
the essential norm ‖·‖∞. It follows from Proposition 2.5 the definition of ‖·‖∞
is valid.

Proposition 2.20. (V (Ω), ‖ · ‖∞) is a normed vector space and V (Ω) is a
proper subspace of B(Ω).

Proof. It follows directly from Proposition 2.6 that the properties (1) and (2) of
continuous vanishing at infinity functions on Ω satisfy the vector space axioms.
In addition, the zero function is in V (Ω). Therefore, V (Ω) is a vector space.

By Proposition 2.5, all continuous vanishing at infinity functions on Ω are
bounded. But there are other bounded functions which do not vanish at infin-
ity. Thus, V (Ω) is a proper subspace of B(Ω) and consequently of C(Ω).

The statement (V (Ω), ‖ · ‖∞) is a normed space follows a similar proof to
the one for (C(a, b), ‖ · ‖∞). �
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2.3.4. The continuous integral-convergent function space D(Ω). Let D(Ω) be
the class of all continuous integral-convergent functions on Ω equipped with
the essential norm ‖·‖∞. It follows from Proposition 2.9 the definition of ‖·‖∞
is valid.

Proposition 2.21. (D(Ω), ‖ · ‖∞) is a normed vector space and D(Ω) is a
proper subspace of V (Ω).

Proof. It follows directly from Proposition 2.7 that the properties (1) and (2) of
continuous integral-convergent functions on Ω satisfy the vector space axioms.
In addition, the zero function is in D(Ω). Therefore, D(Ω) is a vector space.

By Proposition 2.10, all continuous integral-convergent functions on Ω van-
ish at infinity. There are other vanishing at infinity functions which are
integral-divergent. Thus, D(Ω) is a proper subspace of V (Ω). Clearly, D(Ω)
is also a proper subspace of B(Ω) and C(Ω).

The statement (D(Ω), ‖ · ‖∞) is a normed space follows a similar proof to
the one for (C(a, b), ‖ · ‖∞). �

2.3.5. The restricted function space V (I) of V (Ω). Let I = [0, T ] ⊆ Ω, T > 0,
be the restricted underlying domain. Then the restricted bounded continuous
vanishing at infinity function space V (I) of V (Ω) is defined as

V (I) = {g(t), t ∈ I | g(t) = f(t), for t ∈ I, f(t) ∈ V (Ω)} .

Proposition 2.22. (V (I), ‖ · ‖∞) is a normed space.

Proof. Trivial due to isomorphism. �

2.3.6. Other norms. Norms other than the essential norm (or the sup norm)
‖ · ‖∞ may be defined for a subspace of D(Ω). For example, the L1 norm is

‖f‖1 =

∫ ∞
0
|f(t)| dt,

or the L2 norm is

‖f‖2 =

[∫ ∞
0

(f(t))2 dt

] 1
2

,

if the corresponding improper integral converges. Clearly, the L1 or the L2

norm is not well-defined for D(Ω), V (Ω), or B(Ω).

Proposition 2.23. Assume norms ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ are well-defined for
some subspace of D(Ω). Then they are topologically equivalent.

Proof. Omitted. �
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2.3.7. Weak norms and weak metrics for V (Ω). Consider a closed interval
I = [0, T ] ⊆ Ω, T > 0. For every f ∈ V (Ω), define the weak essential norm as

‖f(t)‖w∞ = max
t∈[0,T ]

|f(t)| .

Then (V (I), ‖ · ‖w∞) is a weak normed vector space. The corresponding weak
metric induced by ‖ · ‖w∞ is defined as

ρw(f, g) = ‖f(t)− g(t)‖w∞ = max
t∈[0,T ]

|f(t)− g(t)| ,

for every f, g ∈ V (Ω). The definitions of weak norm and weak metric can be
viewed as restricting the usual norm and metric to the compact interval [0, T ].
In addition, the above weak norms and weak metrics may be defined for B(Ω)
or C(Ω).

Proposition 2.24. In the above definitions for V (Ω), the weak metric ρw is
weaker than the usual metric ρ.

Proof. Firstly, we will show that ρ implies ρw. Consider a sequence in V (Ω)
converging to the zero function in the usual metric. Then we can find a subse-
quence {fn} in V (Ω) converging to the zero function in the usual metric. This
implies

lim
n→∞

‖fn(t)− 0‖ = 0,

or
lim
n→∞

max
t∈[0,∞)

|fn(t)| = 0,

which is

lim
n→∞

max

(
max
t∈[0,T ]

|fn(t)|, max
t∈[T,∞)

|fn(t)|
)

= 0.

For every n ∈ N, we have

0 ≤ max
t∈[0,T ]

|fn(t)| ≤ max
t∈Ω
|fn(t)|.

By Proposition 2.27 sequence comparison test, we have

lim
n→∞

max
t∈[0,T ]

|fn(t)| = 0,

which is
lim
n→∞

‖fn(t)‖w = 0.

Conversely, consider the sequence

fn(t) =
n∑
k=0

(−t)ke−t, n = 0, 1, · · ·

converging to e−t

1+t on [0, r], r < 1. But fn(t) does not converge on Ω. This

means the convergence in ‖ · ‖w or ρw does not imply the convergence in ‖ · ‖
or ρ.
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Therefore, ‖ · ‖w and ρw are weaker than ‖ · ‖ and ρ, respectively. �

Similarly, we can define the weak L1 norm and metric (‖ · ‖w1 and ρw1 ) or
the weak L2 norm and metric (‖ · ‖w2 and ρw2 ) for V (Ω), B(Ω), or C(Ω), since
continuous functions on a closed interval are integrable.

2.4. Bounded linear operators on normed spaces. The theory of linear
operators on normed spaces is important for studying and developing function
approximation methods, in particular iterative ones. For example, a linear
operator satisfying certain conditions becomes a contraction operator and, by
the Banach’s fixed point theorem, one can approximate the exact solution to
a differential equation iteratively by a convergent function sequence. However,
the above iterative approximation is only a local approximation method and
fails if the contraction condition is not satisfied. Although the theory of op-
erators on P λn (Ω) is less important to our new approximation theory, it is one
of the main topics in future research. In this section, we only introduce some
basic concepts of linear operators and will not discuss the general theory of
operators.

Let (X, ‖·‖X) and (Y, ‖·‖Y ) be two normed spaces with the induced metrics
ρX and ρY , respectively. An operator A : X → Y is linear if

(1) A(αx) = αA(x); and
(2) A(x1 + x2) = A(x1) +A(x2),

for all x, x1, x2 ∈ X and α ∈ R. We shall use the term operators and linear
operators synonymously from here on out.

An operator A : X → Y is continuous at a point x0 ∈ X if for every ε-
neighborhood V of Ax0 ∈ Y , there exists a δ-neighborhood U of x0 ∈ X such
that for every point x ∈ U , Ax ∈ V , i.e.

ρY (A(x), A(x0)) < ε,

whenever
ρX(x, x0) < δ.

If δ is independent of x0, A is said to be uniformly continuous.
A continuous operator A : X → Y is said to be Lipschitz continuous (Rudolf

Lipschitz, 1832-1903) if there exists a constant C > 0 such that

ρY (A(x), A(x0)) ≤ CρX(x, x0)

for all x, x0 ∈ X.

Proposition 2.25. Every Lipschitz continuous operator is uniformly contin-
uous.

Proof. Let A : X → Y be continuous at x0 ∈ X. Then for any ε > 0, there
exists a δ > 0 such that whenever

ρX(x, x0) < δ,
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we have
ρY (A(x), A(x0)) < ε.

Since A is Lipschitz continuous, there exists a constant C > 0 such that

ρY (A(x), A(x0)) ≤ CρX(x, x0),

for all x, x0 ∈ X. Let δ = ε
C . Then whenever

ρX(x, x0) < δ =
ε

C
,

we have
ρY (A(x), A(x0)) < Cδ = C

ε

C
= ε.

This implies the choice of δ is independent of x, x0 ∈ X. Thus, A is uniformly
continuous. �

An operator A : X → Y is bounded if there exists an M > 0 such that for
every x ∈ X

‖Ax‖Y ≤M‖x‖X , for all x ∈ X.
Let A : X → Y be a bounded operator. The norm of A is defined as

‖A‖ = inf{M | ‖Ax‖Y ≤M‖x‖X , for all x ∈ X},
or equivalently as

‖A‖ = sup
x∈X

‖Ax‖Y
‖x‖X

, x 6= 0.

Let all the bounded linear operators from X to Y form a set denoted by
L(X,Y ). Let the norm of any operator in L(X,Y ) be defined as above. Then
(L(X,Y ), ‖ · ‖) is a vector space in its own right. The proof is omitted.

Let A ∈ L(X,Y ) and B ∈ L(Y, Z). Then there is an operator BA ∈ L(X,Z)
such that BA(x) = B(A(x)) for all x ∈ X. BA is called the composite operator
of A and B. Let A ∈ L(X,X). Denote A2 = AA, A3 = AAA, etc. Then
a0 + a1A + · · · + anA

n, for ai ∈ R, i = 0, 1, · · · , n, is a valid operator in
L(X,X). In some cases, there may exist operator power series.

2.5. Infinite function series.

2.5.1. Infinite number series. A set of numbers {u0, u1, · · · }, of countably
many elements, is called an infinite number sequence or a sequence in a metric
space R or C. A sequence is also denoted by {un, n = 0, 1, · · · }, {un}∞n=0, {un},
or simply by un.

Let {un} be a sequence and L a number. If for any ε > 0, there is an index
N such that whenever n > N , we have

|un − L| < ε,

then {un} is said to converge to the limit L, denoted by

lim
n→∞

un = L or un → L, as n→∞.
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A sequence is said to be divergent if it is not convergent.
Let {un} be a sequence. An infinite number series, or a series, associated

with {un}, is called a formal sum

∞∑
n=0

un = u0 + u1 + · · ·

or simply
∑
un. Define the partial sums of the series

∑
un as

sn =
n∑
k=0

uk, n = 0, 1, · · · .

Then {sn} is a sequence of partial sums. If {sn} is convergent to a limit L, then
the series

∑
un is said to be convergent to the limit L. If {sn} is divergent,

then
∑
un is said to be divergent.

For example, a geometric series is a series
∑∞

n=0 un such that un+1

un
= r <∞

for all n ∈ N. If |r| < 1, then

lim
n→∞

n∑
k=0

uk = lim
n→∞

u0(1− rn)

1− r
=

u0

1− r

and the series is convergent. If |r| ≥ 1, the series is divergent.

Proposition 2.26. If
∑
un converges, then

lim
n→∞

un = lim
n→∞

|un| = 0.

Proof. Assume
∑
un converges to L. Since un = sn − sn−1. It follows that

lim
n→∞

un = lim
n→∞

sn − lim
n→∞

sn−1 = L− L = 0.

This implies for any ε > 0, there is an index N such that whenever n > N ,
we have

||un| − 0| = |un − 0| < ε.

Thus,

lim
n→∞

|un| = 0.

�

Note limn→∞ un = 0 is only a necessary and not a sufficient condition for∑
un to be convergent. The converse statement is not always true: the har-

monic series
∑ 1

n diverges.
A series

∑
un is said to converge absolutely if

∑
|un| converges. The series∑

un is said to converge conditionally if it is convergent but not absolutely
convergent. Informally speaking, if a series converges absolutely, then its terms
are commutative and associative.

The following propositions are useful in series convergence tests.
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Proposition 2.27. (Comparison test). Consider two positive series
∑
un and∑

vn such that

0 ≤ un ≤ vn.
If
∑
vn converges, then

∑
un converges absolutely. If

∑
un diverges, then∑

vn diverges.

Proof. Omitted. A bounded monotonically increasing sequence converges to a
limit. �

Proposition 2.28. (Ratio test). Consider a series
∑
un. Assume

r = lim
n→∞

∣∣∣∣un+1

un

∣∣∣∣
exists. Then

∑
un converges if 0 ≤ r < 1, and diverges if r > 1.

Proof. The hypothesis implies there exists a t, r < t < 1, such that for N ∈ N
sufficiently large ∣∣∣∣un+1

un

∣∣∣∣ < t,

or

|un| < |uN |tn−N ,
for all n = N + 1, N + 2, · · · . Since t < 1, we have

∞∑
n=N+1

|un| < |uN |
∞∑

n=N+1

tn−N =
|uN |t
1− t

.

Thus,
∑∞

n=0 |un| converges, and
∑∞

n=0 un converges absolutely for r < 1.
Let 1 < t < r. The statement about divergence can be proved similarly. �

Proposition 2.29. (Root test). Consider a series
∑
un. Assume

r = lim
n→∞

sup |un|
1
n

exists. Then
∑
un converges if 0 ≤ r < 1, and diverges if r > 1.

Proof. The hypothesis implies there exists a t, r < t < 1, such that for N ∈ N
sufficiently large

|un|
1
n < t,

or

|un| < tn,

for all n = N+1, N+2, · · · . Clearly,
∑∞

n=N+1 t
n, t < 1, is convergent, and so is∑∞

n=N+1 |un|. Thus,
∑∞

n=0 |un| converges, and
∑∞

n=0 un converges absolutely.
Let 1 < t < r. The statement about divergence can be proved similarly. �
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Let
∑∞

n=0 an and
∑∞

n=0 bn be two convergent series and α real. Then the
sum of the two series is defined as

∞∑
n=0

an +

∞∑
n=0

bn =

∞∑
n=0

(an + bn)

and the scalar multiplication as

α

∞∑
n=0

an =

∞∑
n=0

αan.

Clearly,
∑

(an + bn) and
∑
αan are convergent. Thus, convergent series have

a linear structure.
Let

∑∞
n=0 an and

∑∞
n=0 bn be two convergent series. The Cauchy product of

the two series is defined as( ∞∑
n=0

an

)
·

( ∞∑
n=0

bn

)
=
∞∑
n=0

cn,

where

cn =
n∑
k=0

akbn−k, n = 0, 1, · · · .

Clearly, {cn} is the discrete convolution of {an} and {bn}. The following
proposition discusses when a Cauchy product converges.

Theorem 2.30. If
∑∞

n=0 an = A and
∑∞

n=0 bn = B absolutely, then their
Cauchy product converges to AB absolutely.

Proof. By hypothesis both series converge absolutely. Assume

∞∑
n=0

|an| = A∗ and

∞∑
n=0

|bn| = B∗.

Define
∞∑
n=0

cn =

( ∞∑
n=0

an

)
·

( ∞∑
n=0

bn

)
,

where

cn =
n∑
k=0

akbn−k, n = 0, 1, · · · .

The table below shows all the product terms aibj , i, j = 0, 1, · · · .
By the triangle inequality,

∞∑
n=0

|cn| ≤
∞∑
n=0

n∑
k=0

|akbn−k|.
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a0b0 a0b1 a0b2 a0b3 · · ·

a1b0 a1b1 a1b2 a1b3 · · ·

a2b0 a2b1 a2b2 a2b3 · · ·

a3b0 a3b1 a3b2 a3b3 · · ·

...
...

...
...

. . .

Let

un =
n∑
i=0

n∑
j=0

|aibj | =

(
n∑
i=0

|ai|

)
·

 n∑
j=0

|bj |

 .

Clearly,

un ≤
2n∑
k=0

|ck| ≤ u2n.

Then

lim
n→∞

un ≤ lim
n→∞

2n∑
k=0

|ck| ≤ lim
n→∞

u2n.

Thus,

lim
n→∞

n∑
k=0

|ck| = lim
n→∞

2n∑
k=0

|ck| = lim
n→∞

un = A∗B∗.

This implies
∑n

k=0 ck converges absolutely.
Therefore, by commutative and associative properties of absolute conver-

gence,

lim
n→∞

n∑
k=0

ck = lim
n→∞

n∑
i=0

n∑
j=0

aibj =

(
n∑
i=0

ai

)
·

 n∑
j=0

bj

 = AB.

�

There is a further generalization of this theorem by Mertens.

Theorem 2.31. (Mertens’ theorem). If
∑∞

n=0 an = A absolutely and
∑∞

n=0 bn =
B conditionally, then their Cauchy product converges to AB.

Proof. Omitted. �
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2.5.2. Infinite function series. The concept of a function sequence is similar
to that of a number sequence. If each term of a sequence is a function in a
real variable t on a set A ⊆ R, i.e.

{u0(t), u1(t), · · · }, t ∈ A ⊆ R,

then the sequence is called an infinite function sequence, a function sequence,
or simply a sequence on A, denoted by {un(t), t ∈ A}∞n=0, {un(t)}∞n=0, {un(t)},
or simply un(t), if the underlying domain is implied.

Correspondingly, an infinite function series, also called a function series
or simply a series, associated with the function sequence {un(t)} is a formal
expression

∞∑
k=0

uk(t), t ∈ A.

For each t ∈ A, the function series
∑∞

k=0 uk(t) is a number series. If this
number series converges to a finite limit, then

∑∞
k=0 uk(t) is said to be con-

vergent at t. Otherwise, the function series is divergent at t. The above
convergence is called pointwise convergence, because it only concerns the con-
vergence of a function series at a single point. Generally, a function series is
convergent at some points and divergent at others.

Let I ⊆ A be the set of all points at which function series
∑∞

k=0 uk(t) is
convergent. Then I is called the region of convergence (or the interval of
convergence) of the function series. Assume I is an interval. Then there exists
a function s : I → R such that for every t ∈ I

s(t) =
∞∑
k=0

uk(t).

The function s(t) is called the limit function of the function series. It is clear
s(t) has domain I ⊆ A and has no definition on A\I. Define the partial sums
of the function series restricted to I as

sn(t) =
n∑
k=0

uk(t), n = 0, 1, · · · , t ∈ I.

Then

s(t) = lim
n→∞

sn(t), t ∈ I.

Although pointwise convergence is a simple notion of convergence for a func-
tion sequence or series, it does not consider the overall convergence of a function
series on its domain, nor does it describe the intrinsic properties of the limit
function.

Another notion of convergence for a function sequence or series is uniform
convergence. Uniform convergence considers the overall convergence of a func-
tion series on an interval. It is an important concept in functional analysis, in
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that treating a uniformly convergent sequence of functions in a function space
is very similar to treating a convergent sequence of points in an Euclidean
space.

A function series
∑∞

k=0 uk(t) is said to uniformly converge to a limit function
s(t) on an interval I if for every ε > 0, there exists an N ∈ N such that for all
t ∈ I and all n > N , we have∣∣∣∣∣

n∑
k=0

uk(t)− s(t)

∣∣∣∣∣ < ε.

This implies

lim
n→∞

sup
t∈I

∣∣∣∣∣
n∑
k=0

uk(t)− s(t)

∣∣∣∣∣ = 0.

Uniform convergence implies pointwise convergence. The converse is not
always true. For example, the function sequence {tn} converges on [0, 1] point-
wise but not uniformly.

In addition, linear operations preserve uniform convergence.

2.5.3. Power series. A power series in a real variable t on R is a particular
function series of the form

∞∑
k=0

ak(t− t0)k,

where the coefficients ak are real and t0 is called the center of the series. A
convergent power series is also called a Taylor series. A Taylor series centered
at the origin is called a MacLaurin series and is denoted by

∞∑
k=0

akt
k.

Any power series can be made into a MacLaurin series by translating the inde-
pendent variable. In the following sections, we describe and prove propositions
and theorems about power series in the form of MacLaurin series for the sake
of simplicity.

Let
∑∞

k=0 akt
k and

∑∞
k=0 bkt

k be two power series and α real. Then the sum
of the two power series is defined as

∞∑
k=0

akt
k +

∞∑
k=0

bkt
k =

∞∑
k=0

(ak + bk)t
k,

and the scalar multiplication as

α
∞∑
k=0

akt
k =

∞∑
k=0

αakt
k.

Thus, power series have a linear structure.
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Let the partial sums of the power series
∑∞

k=0 akt
k be

sn(t) =
n∑
k=0

akt
k, n = 0, 1, · · · .

Then sn(t) is a polynomial of degree n on R. Define formally the limit function
of the power series as

s(t) = lim
n→∞

sn(t) = lim
n→∞

n∑
k=0

akt
k.

Since
∑∞

k=0 akt
k may converge at some real values of t and diverge at others,

there exists a convergence region for the power series. Clearly, s(t) is only
defined on the convergence region.

It can be shown by the following Abel’s theorems (Niels Abel, 1802-1829)
the convergence region for a power series is an interval (or a disk for a complex
power series).

Theorem 2.32. (Abel’s convergence theorem). If the power series
∑∞

k=0 akt
k

converges at t = r, then it converges at any point −|r| < t < |r| absolutely.

Proof. We show this by the Weierstrauss M-test. For any fixed number t such
that |t| < |r|, the power series

∑∞
k=0 akt

k is a number series and

∣∣∣aktk∣∣∣ < ∣∣∣akrk∣∣∣
for all k ∈ N.

By hypothesis,
∑∞

k=0 akt
k converges at t = |r|. Then we have

lim
k→∞

∣∣∣akrk∣∣∣ = 0.

This implies for any given M > 0, there exists an n ∈ N such that

∣∣∣akrk∣∣∣ < M

for all k > n.
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Thus, ∣∣∣∣∣
∞∑

k=n+1

akt
k

∣∣∣∣∣ ≤
∞∑

k=n+1

∣∣∣aktk∣∣∣
=

∞∑
k=n+1

∣∣∣akrk∣∣∣ ∣∣∣∣ tkrk
∣∣∣∣

<
∞∑

k=n+1

M

∣∣∣∣ tr
∣∣∣∣k

=
M |r|
|r| − |t|

∣∣∣∣ tr
∣∣∣∣n+1

.

As n tends to infinity,
∣∣∑∞

k=n+1 akt
k
∣∣ tends to zero. Thus,

∑∞
k=0 akt

k con-
verges at t absolutely for all t such that |t| < |r|. �

Theorem 2.33. (Abel’s divergent theorem). If the power series
∑∞

k=0 akt
k

diverges at t = r, then it diverges at any point t such that |t| > |r|.

Proof. By contradiction. Assume the power series
∑∞

k=0 akt
k converges at a

particular t, |t| > |r|. By Theorem (2.32), it converges at t = r absolutely.
This contradicts the hypothesis the power series diverges at t = r. Therefore,∑∞

k=0 akt
k diverges at any t such that |t| > |r|. �

Theorem 2.34. (Abel’s theorem on radius of convergence). Suppose the power
series

∑∞
k=0 akt

k does not converge for some real values of t. Then there is an

R > 0 such that
∑∞

k=0 akt
k converges on (−R,R) and diverges on (−∞,−R)∪

(R,+∞). R is called the radius of convergence.

Proof. By hypothesis, we can find two points a1 and b1 such that the power
series

∑∞
k=0 akt

k converges at a1 and diverges at b1. Then by Theorem (2.32),
|a1| < |b1|. Let a = |a1|, b = |b1|, and n = 1. Then repeatedly do the following
steps:

(1) choose a number p such that a < p < b and test its convergence.
(2) if the power series converges at p, set an+1 = a = p and bn+1 = b; if it

diverges at p, set an+1 = a and bn+1 = b = p.
(3) increase n by one and return to (1).

The interval sequence formed by two sequences {an} and {bn} has the property

[|a1|, |b1|] ⊃ [a2, b2] ⊃ · · · ⊃ [an, bn] ⊃ · · ·
for all n ∈ N. By the completeness of R, there is a unique positive number

R ∈ ∩n∈N[an, bn]

such that the power series converges on (−R,R) and diverges on (−∞,−R)∪
(R,+∞). �
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For example, the power series
∑∞

k=0 t
k converges to the limit function 1

1−t
on (−1, 1) with a radius of convergence R = 1.

If
∑∞

k=0 akt
k has a radius of convergence R = 0, the series converges only

at the center t = 0 and diverges elsewhere. If R = ∞, the series converges
everywhere. For example,

∑∞
k=0 k!tk only converges at t = 0 and diverges at

any t 6= 0, while
∑∞

k=0
1
k! t

k converges to et at any t ∈ R.

Theorem 2.35. (Cauchy-Hadamard’s formula). Consider a power series∑
ant

n. Let
1

R
= lim sup

n→∞
|an|

1
n .

Then R is the radius of convergence of the power series.

Proof. Let t be fixed and consider the number series
∑
|antn|. Using root test

and by hypothesis, we have

lim sup
n→∞

|antn|
1
n = |t| lim sup

n→∞
|an|

1
n =

|t|
R
.

For any 0 ≤ |t| < R, |t|R < 1 and by root test
∑
|antn| converges and

∑
ant

n

converges absolutely. For any |t| > R, |t|R > 1 and by root test
∑
|antn| diverges

and
∑
ant

n also diverges or else there is a contradiction. Thus, R is the radius
of convergence of the power series

∑
ant

n. �

Proposition 2.36. A power series converges pointwise and absolutely on its
convergence interval.

Proof. Trivial. The proof is similar to the one for Theorem 2.32. �

Proposition 2.37. A power series converges uniformly on its convergence
interval (or on any closed interval inside its convergence interval).

Proof. Assume the power series
∑∞

k=0 akt
k converges to f(t) on the conver-

gence interval (−R,R). Consider any closed interval [A, T ] such that −R <
A < T < R. Let

r = max(|A|, |T |).
Since r ∈ (−R,R), the number series

∑∞
k=0 akr

k converges absolutely, i.e.∑∞
k=0 |akrk| converges. This implies for any given ε > 0,

∞∑
k=n+1

∣∣∣akrk∣∣∣ < ε

for n sufficiently large.
Furthermore, for every t ∈ [A, T ],∣∣∣aktk∣∣∣ ≤ ∣∣∣akrk∣∣∣
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for all k > n, k ∈ N. It follows that∣∣∣∣∣
∞∑

k=n+1

akt
k

∣∣∣∣∣ ≤
∞∑

k=n+1

∣∣∣aktk∣∣∣ ≤ ∞∑
k=n+1

∣∣∣akrk∣∣∣ .
This implies

max
t∈[A,T ]

∣∣∣∣∣
∞∑

k=n+1

akt
k

∣∣∣∣∣ ≤
∞∑

k=n+1

∣∣∣akrk∣∣∣ ,
which tends to zero independently of t as n tends to infinity. Thus, the power
series

∑∞
k=0 akt

k converges uniformly on [A, T ] or on (−R,R). �

Proposition 2.38. The limit function of a power series is continuous on its
convergence interval.

Proof. Consider

s(t) = lim
n→∞

sn(t) = lim
n→∞

n∑
k=0

akt
k

on the convergence interval I. Then for any ε > 0, there exists an N ∈ N such
that whenever n > N , we have

|s(t)− sn(t)| < ε

3

for all t ∈ I due to uniform convergence.
Let t0, t ∈ I. By continuity, there exists a δ > 0 such that when

|t− t0| < δ,

we have

|sn(t)− sn(t0)| < ε

3
.

Thus, when n > N and |t− t0| < δ, we have

|s(t)− s(t0)| = |s(t)− sn(t) + sn(t)− sn(t0) + sn(t0)− s(t0)|
≤ |s(t)− sn(t)|+ |sn(t)− sn(t0)|+ |sn(t0)− s(t0)|

<
ε

3
+
ε

3
+
ε

3
= ε.

Thus, s(t) is continuous at t0. Since t0 is arbitrary, s(t) is continuous on I. �

In general, the above proposition is true only if each term of the series
is continuous and the convergence is uniform. Under uniform convergence,
operations such as differentiation or integration can be performed term by
term for a power series on the convergence interval.
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2.5.4. The Taylor series expansion. The converse of a power series converging
problem is to expand a function into a power series, the so-called Taylor series
expansion problem, which may be summarized into the following questions:
Given a continuous function on some domain, is there a power series converging
to it on the domain? If such power series exists, is it unique? These questions
are partially answered by the following Taylor expansion theorem.

Theorem 2.39. (Taylor series expansion and uniform convergence theorem.)
Let f(t) be a real-valued continuous function on R and infinitely differentiable
at t0. Then f can be uniquely expanded into a power series about t0 as

(2.1)
∞∑
n=0

f (n)(t0)

n!
(t− t0)n,

which converges to f(t) uniformly on the convergence interval (t0 −R, t0 +R)
for some R > 0.

Proof. Omitted. �

In the above theorem, the power series (2.1) is called a Taylor series, where
t0 is the expansion center, R is the radius of convergence, and f is said to be
analytic at t0.

Let t0 = 0 and the domain of f(t) be Ω. Then (2.1) is a MacLaurin series

f(t) =
∞∑
k=0

akt
k, t ∈ [0, R),

where the coefficients are

ak =
f (k)(0)

k!
, k = 0, 1, · · · .

The above MacLaurin series can also be written as the sum of a polynomial of
degree n and a remainder series as

f(t) =

n∑
k=0

akt
k +

∞∑
k=n+1

akt
k

= pn(t) + rn(t), t ∈ [0, R),

where the partial sum

pn(t) =

n∑
k=0

akt
k

is called the Taylor polynomial and the power series

rn(t) =
∞∑

k=n+1

akt
k
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is the remainder series. For every t ∈ [0, R), the remainder series rn(t) has a
representation of the Peno form

rn(t) = O(tn+1),

or of the Lagrange form,

rn(t) =
f (n+1)(ξ)

(n+ 1)!
tn+1, ξ ∈ [0, t),

or of the Cauchy integral form,

rn(t) =

∫ t

0

f (n+1)(τ)

n!
(t− τ)ndτ,

respectively. These representations of rn(t) can be used in various situations
to estimate the approximation error of pn(t) to f(t) at any t ∈ [0, R).

An analytic function f(t) on domain Ω can be expanded into a MacLaurin
series in one of the following three cases:

(1) at t = 0 only, when R = 0;
(2) on [0, R), when 0 < R <∞; or
(3) on Ω, when R =∞.

If R <∞, f(t) cannot be expanded as a MacLaurin series on (R,∞).

2.5.5. Divergent series. Divergent number series are series that do not con-
verge. Long before Newton (1643-1727) and Leibniz (1646-1716), and as early
as Archimedes (287-212 BC), mathematicians began to use series without dis-
cussing their convergence. It was Cauchy (1789-1857) and Abel (1802-1829)
who introduced the concept of convergence of series, and people started to use
only the convergent series and forbid the divergent ones. In the late 1900s,
Poincaré (1854-1912) re-discovered that although a divergent series does not
have an infinite sum, it may still be operated on as a convergent series.

A formal number series is a number series regardless of its convergence.
We may want to associate a formal number series with a number called the
infinite sum of the series. This number is equal to the limit of its partial
sums if the series is convergent. Otherwise, we assume its existence without
actually calculating its value. In some situations, the infinite sum of a divergent
series may be calculated by a technique called “telescoping”. This implies the
common operations are valid for divergent series as well as for convergent ones.

A divergent function series is a function series which does not converge at
some or all of its points. Consider a real continuous function on Ω expanded
as a power series about the origin with a finite radius of convergence 0 <
R < ∞. Then, by Theorems 2.34, the domain Ω is divided into two regions:
the convergence region [0, R) and the divergence region (R,∞). If we use the
expression of the power series on (R,∞) as a formal power series regardless of
its convergence, then we have a divergent power series on (R,∞).
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The divergent power series generated from the Taylor series expansions is
interesting. Such a divergent series always has a convergent sibling. Together,
they form a formal power series, which can be analyzed as a whole on its
domain regardless of its convergence.

It is confusing that a power series in one expression on Ω can have two
contradictory properties: convergent inside some interval (disk) and divergent
outside. This phenomenon may be explained by the theory of analytic conti-
nuity.

Let
∑∞

k=0 akt
k and

∑∞
k=0 bkt

k be two formal power series on Ω and α ∈ R.
Define addition, scalar multiplication, and series multiplication as

∞∑
k=0

akt
k +

∞∑
k=0

bkt
k =

∞∑
k=0

(ak + bk)t
k,

α
∞∑
k=0

akt
k =

∞∑
k=0

(αak)t
k,

and ( ∞∑
k=0

akt
k

)( ∞∑
k=0

bkt
k

)
=

∞∑
k=0

 k∑
j=0

ajbk−j

 tk,

respectively. Then the set of all formal power series on Ω is a commutative
ring with addition, scalar multiplication, and series multiplication operations
(The proof is trivial). Obviously, the real numbers 0 and 1 are the additive
and multiplicative identity of the ring. Convergence is only a property of an
element of the ring and should not affect the operations within the ring.

A linear transformation on a formal power series does not affect the con-
vergence of the series after the transformation. It transforms the convergent
part of a formal power series into the convergent part of a new series and
the divergent part into the divergent part of the new one. However, a linear
transformation will change the rate of convergence or divergence of the series
before and after the transformation. This implies, by using a transformation,
we can control the convergence or divergence behavior of a series.

2.5.6. Asymptotic series expansions. An asymptotic series expansion is to ex-
pand a function into a formal function series. For example, if we expand a
function into a formal power series regardless of its convergence, then we have
an asymptotic power series expansion.

One of the most important concepts in the theory of asymptotic series ex-
pansions is the order of a function in the neighborhood of an expansion point.
Order can be used to describe the relative rates of two functions approaching
their common limit. Below is a set of rigorous notations about order.
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Let γ(t) and φ(t) be two real-valued continuous functions on Ω. In the
neighborhood of t = t0, t0 ∈ Ω, possibly going to∞, the order notation O (big
O) is defined as

γ(t) = O(φ(t)), t→ t0,

if

lim
t→t0

∣∣∣∣γ(t)

φ(t)

∣∣∣∣ <∞.
This reads γ(t) is in the order of or at most the order of φ(t) as t tends to t0.

The order notation O (little O) is defined as

γ(t) = O(φ(t)), t→ t0

if

lim
t→t0

∣∣∣∣γ(t)

φ(t)

∣∣∣∣ = 0.

This reads γ(t) has the order of infinitesimal to φ(t) as t tends to t0.
The equivalent order notation ∼ is defined as

γ(t) ∼ φ(t), t→ t0,

if

lim
t→t0

∣∣∣∣γ(t)

φ(t)

∣∣∣∣ = 1.

This reads γ(t) has the same order of φ(t) as t tends to t0.
The order notations O, O, and ∼ simplify the description of relative rates

of functions approaching a limit.

Proposition 2.40. For each n ∈ N,

tn+1 = O(tn), t→ 0.

Proof.

lim
t→0

∣∣∣∣ tn+1

tn

∣∣∣∣ = lim
t→0

t = 0,

which is
tn+1 = O(tn), t→ 0.

�

Proposition 2.41. For each n ∈ N and every λ > 0,

tn+1e−λt = O(tne−λt), t→ 0.

Proof.

lim
t→0

∣∣∣∣ tn+1e−λt

tne−λt

∣∣∣∣ = lim
t→0

t = 0,

which is
tn+1e−λt = O(tne−λt), t→ 0.

�
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A function series

φ0(t) + φ1(t) + φ2(t) + · · ·
is said to be an asymptotic series expansion for a real-valued function f(t)
about a point t = t0 if

f(t)− (φ0(t) + φ1(t) + · · ·+ φn(t)) = O(φn+1(t)), t→ t0,

for each n ∈ N and all t in some neighborhood of t0, where

φm(t) = O(φn(t)), t→ t0,

for all m > n, m,n ∈ N. The asymptotic series expansion can also be written
as

f(t) ∼ φ0(t) + φ1(t) + φ2(t) + · · · , t→ t0.

It follows from Proposition 2.40 that a power series expansion about t = t0
is a particular asymptotic series expansion. Thus, we may write

f(t) ∼ a0 + a1(t− t0) + a2(t− t0)2 + · · · , t→ t0,

f(t) ∼ a0 + a1(t− t0) + · · ·+ an(t− t0)n + O((t− t0)n), t→ t0,

or

f(t) ∼ a0 + a1(t− t0) + · · ·+ an(t− t0)n +O((t− t0)n+1), t→ t0.

By Proposition 2.41,

f(t) ∼ a0e
−λt + a1(t− t0)e−λt + a2(t− t0)2e−λt + · · · , t→ t0,

is a valid asymptotic series expansion for every λ > 0. In fact, it is a family of
asymptotic series expansions with a parameter λ.

In summary, a function can be asymptotically expanded into a formal func-
tion series in a half-convergent half-divergent form on its domain. Asymptotic
series expansions may be used as a method to partially approximate a function
on some interval.

2.6. Laplace transforms. The Laplace transformation is an integral trans-
formation which maps a real-valued function in the time domain into a complex
function in the frequency domain. It is extensively used in the fields of applied
mathematics, science, and engineering where convolutions are involved. In
general, convolutions can be very difficult to calculate. However, according to
the convolution theorem, it may be easy to convolve two time domain functions
in the complex frequency domain as a multiplication and then to transform the
result back to the time domain. In particular, if both time domain functions
in a convolution have rational Laplace transforms, then their convolution in
the frequency domain is also rational, which can be easily inverted back to the
time domain. This property makes Laplace transformation a powerful tool for
solving linear ordinary differential or integral equations. Laplace transforma-
tions can also be used to describe the superposition relation between the input
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and the output of a linear time-invariant system, because superpositions imply
convolutions.

Let f(t) be a real-valued continuous function on Ω. If the improper integral∫ ∞
0

f(t)e−stdt

exists for some real s, then f(t) is said to have a Laplace transform, denoted
by

f̄(s) = L {f(t)} =

∫ ∞
0

f(t)e−stdt,

and f̄(s) is said to converge at s. The set of all s at which f̄(s) converges is
called its region of convergence (ROC).

Theorem 2.42. (Laplace transform existence theorem). Let f(t) be a contin-
uous function on Ω. If f(t) satisfies

|f(t)| ≤ KeDt,

for some K > 0 and D > 0, then f̄(s) exists and converges on Re(s) > D.
This condition is equivalent to

f(t) = O(eDt), t→∞.

Proof. Let s be real. Consider the improper integral∫ ∞
0

f(t)e−stdt ≤
∫ ∞

0
|f(t)|e−stdt

≤ K

∫ ∞
0

e−(s−D)tdt.

Clearly, the last integral exists if s > D. Extending s into the complex domain,
the ROCs of f̄(s) is Re(s) > D. �

Let α be real. Consider f(t) and g(t) such that both L {f(t)} and L {g(t)}
converge on ROC Ef and Eg, respectively. Then the following properties are
true:

(1) L {f(t) + g(t)} = L {f(t)}+ L {g(t)} on ROC Ef ∩ Eg;
(2) L {αf(t)} = αL {f(t)} on ROC Ef .

This implies the Laplace transformation is linear.

Proposition 2.43. The Laplace transformation is one-to-one for continuous
functions on Ω.

Proof. Omitted. �
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The inverse Laplace transform of f̄(s) is a real-valued function f(t) on Ω
such that L {f(t)} = f̄(s). It is a one-to-one mapping from a complex function
space to a real function space defined by a complex contour integral

f(t) = L −1
{
f̄(s)

}
=

1

2πi

∮
Γ
f̄(s)estds,

where Γ is a contour path large enough to include all the poles of f̄(s) in the
complex plane. This contour integral is called the Bromwich integral (Thomas
Bromwich, 1875-1929). In the case f̄(s) has singularities only on the left half
complex plane, the Bromwich integral can be computed by the residue theorem.
In particular, if f̄(s) is a meromorphic function (or a rational function) of s, the
method of partial fractions can be used to find f(t). In reality, only a handful
of closed-form Laplace transforms have simple inverse functions, which are
tabulated.

Let f̄(s) be a rational Laplace transform that does not have a pole at the
origin. Then f̄(s) is analytic at the origin. In addition, f̄(s) has the following
properties:

(1) L

{∫ t

0
f(τ)dτ

}
=
f̄(s)

s
.

(2) L {f ′(t)} = sf̄(s)− f(0+).
(3) lim

t→0+
f(t) = lim

s→∞
sf̄(s) (initial value theorem).

(4) lim
t→∞

f(t) = lim
s→0

sf̄(s) (final value theorem).

The proofs are trivial.

Proposition 2.44. Let f(t) be continuous, bounded, and vanishing at infinity
on Ω, and let f̄(s) = L {f(t)} converges. Then

lim
s→0

sf̄(s) = 0.

Proof. By the property (4) above, we have

lim
s→0

sf̄(s) = lim
t→∞

f(t) = 0.

�

Let XLT be the set of all the time domain functions on Ω whose Laplace
transforms exist. Then XLT is a function space. In XLT , those functions
whose Laplace transforms are rational form a subspace XRLT . Many useful
time domain functions, such as polynomials, exponential functions, sine and
cosine functions, are contained in XRLT . The proofs of above statements are
obvious. In the next chapter, we shall construct a new function space P λn (Ω),
whose Laplace transform is a subspace of XRLT and XLT , and build a new
function approximation theory based on it.
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3. Theory of P λn (Ω) Spaces

In this chapter, we shall introduce a new function space P λn (Ω) in order to
develop a new method for approximating functions on unbounded intervals.
We begin by investigating the polynomial space.

3.1. Polynomial spaces Pn(Ω). Let Pn(Ω), n ∈ N, be the set of all polyno-
mials of degree up to n on Ω.

Proposition 3.1. Pn(Ω) is a vector space.

Proof. Let f, g ∈ Pn(Ω). Then f and g can be written as

f(t) =

n∑
k=0

akt
k and g(t) =

n∑
k=0

bkt
k, t ∈ Ω.

Let α be real. It is obvious that αf ∈ Pn(Ω) and f + g ∈ Pn(Ω), i.e. Pn(Ω) is
closed under addition and scalar multiplication. In addition, Pn(Ω) contains
the zero function. It follows that Pn(Ω) is a vector space. �

Proposition 3.2. Pn(Ω) is a subspace of C(Ω) for all n ∈ N.

Proof. Every function in Pn(Ω) is continuous and thus is in C(Ω). On the
other hand, transcendental functions on Ω are continuous but are not in Pn(Ω).
Thus, Pn(Ω) is a proper subset of C(Ω). It follows from Proposition 3.1 that
Pn(Ω) is a subspace of C(Ω). �

Note B = {t0, t1, t2, · · · , tn} is a set of linearly independent functions on Ω,
and so B is a natural basis of Pn(Ω). Thus, Pn(Ω) = spanB and dimPn(Ω) =
n+ 1. The maximal degree of a polynomial in Pn(Ω) is n.

Proposition 3.3. Let f ∈ Pn(Ω), n ≥ 1, be a non-constant function. Then f
is unbounded.

Proof. By contradiction. Consider

f(t) =
n∑
k=0

ckt
k,

where the ck are real and cn 6= 0. Assume f(t) is bounded by M > 0, i.e.
|f(t)| < M . Then, for all t ∈ Ω, t > 0, we have∣∣∣∣∣

n∑
k=0

ckt
k

∣∣∣∣∣ < M,

or ∣∣∣c0

tn
+

c1

tn−1
+ · · ·+ cn

∣∣∣ < M

|tn|
.
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Taking the limit on both sides, we have

lim
t→∞
|cn| < 0,

a contradiction. Thus, f(t) is unbounded. �

It follows immediately that Pn(Ω) is not a subset of B(Ω).

Proposition 3.4. Let f ∈ Pn(Ω) be a non-zero function. Then f is integral-
divergent on Ω.

Proof. Let f ∈ Pn(Ω) be a non-zero function. Clearly, if f is a constant
function, then it is integral-divergent on Ω. If f is a non-constant polynomial,
then f is unbounded on Ω. It is necessary for a continuous function on Ω
to be integral-convergent if it is bounded and vanishing at infinity. Thus, by
Proposition 2.10, f is integral-divergent. �

It follows immediately that Pn(Ω) is not a subset of D(Ω) or V (Ω).

Proposition 3.5. Pk(Ω) is a subspace of Pn(Ω) if and only if 0 ≤ k ≤
n, k, n ∈ N.

Proof. Since Pk(Ω) = span{1, t, · · · , tk} and Pn(Ω) = span{1, t, · · · , tn}, the
proof is trivial. �

This subspace structure can be compared to that of the Euclidean space
Rn, the space of vectors in n-tuples of real numbers, the principle of which is
similar.

Proposition 3.6. The usual L1, L2, and L∞ norms are not defined for Pn(Ω).

Proof. Consider a non-constant f ∈ Pn(Ω). Since f is unbounded on Ω, the
sup norm ‖ · ‖∞ is unbounded. Since f is integral-divergent on Ω, the norm
‖·‖1 is divergent. Since f2 is also a polynomial, it follows that the norm ‖·‖2 is
divergent. Thus, Pn(Ω) is neither a normed space nor a metric space induced
by a usual norm. �

The above statements should not be confused with the case of the polynomial
spaces on a closed interval [a, b], 0 ≤ a ≤ b <∞, denoted by Pn(a, b), which is
a normed space. For example, the sup norm for Pn(a, b) can be defined as

‖f‖∞ = sup
t∈[a,b]

|f(t)|

for every f ∈ Pn(a, b). Then (Pn(a, b), ‖ · ‖∞) is a normed space or a metric
space induced by the norm. Similarly, (Pn(a, b), ‖ · ‖1) and (Pn(a, b), ‖ · ‖2) are
also normed spaces or metric spaces.

(Pn(a, b), ‖ · ‖∞) is useful for function approximations on [a, b] by polynomi-
als.
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Theorem 3.7. (Stone-Weierstrass approximation theorem). Any continuous
real-valued function f on a closed interval [a, b] can be approximated by poly-
nomials. That is for every ε > 0, there exists a polynomial p such that for all
t ∈ [a, b], we have

|f(t)− p(t)| < ε.

Proof. Omitted. There are many proofs of this theorem. For example, Bern-
stein has given a constructive proof using the so-called Bernstein polynomi-
als. �

3.2. The exponential decaying function e−λt. The exponential decaying
function, or decaying function, on Ω, denoted by e−λt, λ > 0, is an important
real-valued function. It is a solution to a first order differential equation

df

dt
= −λf, f(0) = 1,

i.e. it is a basis function of the solution function space of the above differential
equation. The normalized decaying function is

λe−λt =
1

τ
e−

t
τ ,

where τ = 1
λ is called the time constant of the function, and its integral on Ω

is unity.
A decaying function e−λt is characterized by its decaying parameter λ or its

time constant τ . The function is positive and bounded on Ω. At t = 0, it
reaches its maximum value. Then, it decreases monotonically as t gets large
and vanishes at infinity. This means for any sufficiently small ε > 0, we can
find a T such that e−λT = ε and when t > T , e−λt is strictly less than ε. In
addition, e−λt has the following properties.

Proposition 3.8. For any p(t) ∈ Pn(Ω), n ∈ N, and λ > 0, we have

lim
t→∞

p(t)e−λt = 0.

Proof. By induction. Firstly,

lim
t→∞

1

eλt
= 0.

Assume for any k ∈ N,

lim
t→∞

tk

eλt
= 0.

Then, by L’Hopital’s rule,

lim
t→∞

tk+1

eλt
=
k + 1

λ
lim
t→∞

tk

eλt
= 0.

Since p(t) is a linear combination of basis functions, p(t)e−λt vanishes at infin-
ity. Consequently, the proposition is proved. �
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3.3. Decaying polynomial spaces P λn (Ω). Now, we formally introduce a
new finite dimensional function space on Ω. The new space is spanned by a
finite basis with a non-negative real decaying parameter λ. It actually rep-
resents a continuum family of function spaces. Moreover, the new space is
naturally isomorphic to the polynomial space or the Euclidean space.

A decaying polynomial is a function of the form p(t)e−λt on Ω, where p(t)
is a polynomial and λ > 0. A decaying polynomial is not a polynomial but a
transcendental function.

A decaying polynomial space of degree n ≥ 0, n ∈ N, denoted by P λn (Ω), is
a collection of decaying polynomials on Ω of the form p(t)e−λt, where p(t) ∈
Pn(Ω) and λ > 0.

Theorem 3.9. P λn (Ω) is a vector space.

Proof. Let f, g ∈ P λn (Ω). Then f and g can be represented by f(t) = p(t)e−λt

and g(t) = q(t)e−λt for some p(t), q(t) ∈ Pn(Ω). It is obvious

f(t) + g(t) = (p(t) + q(t)) e−λt ∈ P λn (Ω),

and

αf(t) = αp(t)e−λt ∈ P λn (Ω), α ∈ R.
Thus, P λn (Ω) is closed under addition and scalar multiplication. In addition,
the zero function is in P λn (Ω). Therefore, P λn (Ω) is a vector space. �

For example, the function (2 + 3t+ 4t2)e−2.5t on Ω is in P λn (Ω) with n = 2
and λ = 2.5, or P 2.5

2 (Ω).
We can also express P λn (Ω) as

P λn (Ω) =

{
n∑
k=0

ckt
ke−λt

∣∣∣∣∣ c0, c1, · · · , cn ∈ R, t ∈ Ω

}
for every λ > 0 and each n ≥ 0, n ∈ N.

Define the natural basis functions of P λn (Ω) as

φk(t) = tke−λt, k = 0, 1, · · · , n.

Then a natural basis of P λn (Ω) is

Bn = {e−λt, te−λt, · · · , tne−λt},

and

P λn (Ω) = spanBn.

The (n + 1)-tuples (c0, c1, · · · , cn) are called the coefficients, components, or
coordinates of a function in P λn (Ω) with regard to the natural basis Bn. Clearly,

dimP λn (Ω) = n+ 1.
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Define the time constant τ of P λn (Ω) as

τ =
1

λ
.

The time span of a basis function tke−λt is the length of the time span interval
defined as[

k − 0.5

λ
,
k + 0.5

λ

]
= [(k − 0.5)τ, (k + 0.5)τ ] , k = 1, 2, · · · , n.

The time span of e−λt is 0.5τ , and that of the zero function is 0. Thus, the
maximum time span of a function in P λn (Ω) of degree n is

n+ 0.5

λ
= (n+ 0.5)τ,

or approximately
n

λ
= nτ,

when n is large.

3.4. Algebraic properties of P λn (Ω).

Proposition 3.10. For every λ > 0, let

f(t) = (c0 + c1t+ · · ·+ cnt
n) e−λt

on Ω. Then
f(0) = c0.

Proof. Trivial. �

Proposition 3.11. Let f(t) = p(t)e−λt, λ > 0, t ∈ R. Then f(t) and p(t)
have the same zeros.

Proof. Firstly, e−λt is positive on R. For each zero t = t0 of f(t), we have
p(t0)e−λt0 = 0. Dividing both sides by e−λt0 , we have p(t0) = 0. Conversely,
for each zero t = t0 of p(t), we have p(t0) = 0. Multiplying both sides by e−λt0 ,
we have p(t0)e−λt0 = 0, i.e. f(t0) = 0. Note the proposition is true whether
p(t) is a polynomial or not. �

Proposition 3.12. Let f(t) ∈ P λn (Ω), λ > 0. If f(t) has m zeros on Ω, then
m ≤ n.

Proof. Consider f(t) = p(t)e−λt ∈ P λn (Ω). Then, by Proposition 3.11, f(t) and
p(t) have the same number of zeros. Since p(t) is a polynomial of degree up to
n, it has at most n zeros on Ω. By hypothesis, f(t) has m zeros on Ω. Clearly,
m ≤ n. �

Proposition 3.13. Each natural basis function tke−λt, k = 0, 1, · · · , n, of
P λn (Ω) is positive on Ω.
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Proof. It follows from that both tk and e−λt, k = 0, 1, · · · , n, are positive on
Ω. �

Proposition 3.14. Consider the natural basis functions φk(t) = tke−λt, k =
0, 1, · · · , n, of P λn (Ω). For each k, φk(t) has a maximum value at t = k

λ and is

monotonically increasing on [0, kλ ] and monotonically decreasing on [ kλ ,∞).

Proof. The case for k = 0 is trivial. For each k = 1, 2, · · · , n, setting φ′k(t) = 0
and solving the equation

(tke−λt)′ = (k − λt)tk−1e−λt = 0,

we have a critical point

t =
k

λ
.

Evaluating (
tke−λt

)′′∣∣∣∣
t= k

λ

= −k
k−1

λk−2
e−k < 0,

we conclude φk(t) has a maximum value at t = k
λ .

When 0 ≤ t < k
λ ,

φ′k(t) = (k − λt)tk−1e−λt > 0

and φk(t) is monotonically increasing on [0, kλ ]. Similarly, when t > k
λ ,

φ′k(t) = (k − λt)tk−1e−λt < 0

and φk(t) is monotonically decreasing on [ kλ ,∞). �

Proposition 3.15. Each natural basis function of P λn (Ω) is bounded.

Proof. This follows from Proposition 3.14 but can also be proved as follows.
Consider the natural basis functions φk(t) = tke−λt, k = 0, 1, · · · , n, of P λn (Ω).
By Proposition 3.8, for each k, we have

lim
t→∞

φk(t) = lim
t→∞

tke−λt = 0.

By proposition 2.4, for any ε > 0, there exists a compact set [0, T ] ⊂ Ω, T > 0,
such that φk(t) < ε on Ω\[0, T ], i.e. φk(t) is bounded on [T,∞). Since φk(t) is
continuous on the closed interval [0, T ], φk(t) is bounded on [0, T ]. Therefore,
φk(t) is bounded on Ω, a special case of the global boundedness in Proposition
2.5. �

Proposition 3.16. Every function in P λn (Ω) is bounded, i.e. P λn (Ω) ⊂ B(Ω).

Proof. By Proposition 3.15, each natural basis function φk(t) of P λn (Ω) is
bounded on Ω. Then, by the linear properties of the bounded functions,
every linear combination of φk(t), k = 0, 1, · · · , n, is bounded on Ω. Thus,
P λn (Ω) ⊆ B(Ω). Obviously, P λn (Ω) ⊂ B(Ω). �
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Proposition 3.17. Each natural basis function in P λn (Ω) vanishes at infinity.

Proof. By Proposition 3.8, for each k = 0, 1, · · · , n, we have

lim
t→∞

tke−λt = 0.

�

Proposition 3.18. Every function in P λn (Ω) vanishes at infinity.

Proof. This is a direct result of Proposition 3.8. Another proof is based on
linear properties of the continuous vanishing at infinity functions. Proposition
3.17 implies each basis function φk(t), k = 0, 1, · · · , n, of P λn (Ω) vanishes at
infinity. It follows that every linear combination of φk(t) vanishes at infinity.
Thus, P λn (Ω) ⊆ V (Ω). Obviously, P λn (Ω) ⊂ V (Ω). �

Proposition 3.19. Let

f(t) = p(t)e−λt =

n∑
k=0

ckt
ke−λt.

For t > 1 sufficiently large, |f(t)| is in the same order as |cntne−λt|.

Proof. Firstly,

|p(t)| = |p(t)− cntn + cnt
n|

≤

∣∣∣∣∣
n−1∑
k=0

ckt
k

∣∣∣∣∣+ |cntn|.

For t > 1 sufficiently large,

lim
t→∞

∣∣∣∑n−1
k=0 ckt

k
∣∣∣

|cntn|
= 0.

Therefore,
lim
t→∞
|p(t)| = |cntn|,

or
p(t) = cnt

n + O(tn), t→∞.
This implies f(t) is in the same order as cnt

ne−λt for large t. �

Proposition 3.20. For any function f(t) ∈ P λn (Ω), there exists a T such
that |f(t)| is bounded, decreasing monotonically, and vanishing at infinity on
[T,∞).

Proof. We begin by finding all the critical points of a function f(t) = pn(t)e−λt ∈
P λn (Ω). Setting the first derivative of f(t) to 0, we have

f ′(t) =
[
pn(t)e−λt

]′
=
(
p′n(t)− λpn(t)

)
e−λt = 0.
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This implies

p′n(t)− λpn(t) = 0.

This is an equation involving a polynomial of degree up to n and there are n
real or complex roots. Let T be the largest positive real root (critical point)
or zero (boundary point). Since f(t) is bounded and vanishes at infinity on Ω,
we have |f(t)| < |f(T )| for all t > T . �

Proposition 3.21. Each basis function φk(t) = tke−λt, k = 0, 1, · · · , n, of
P λn (Ω) is absolutely integral-convergent, i.e.∫ ∞

0
|φk(t)|dt =

k!

λk+1
<∞

for all k = 0, 1, · · · , n.

Proof. By induction. Firstly,∫ ∞
0
|t0e−λt|dt =

1

λ
.

Assume ∫ ∞
0
|φk(t)|dt =

k!

λk
<∞.

Then ∫ ∞
0
|φk+1(t)|dt =

∫ ∞
0

tk+1e−λtdt

= − 1

λ

∫ ∞
0

tk+1de−λt

= − 1

λ
tk+1e−λt

∣∣∣∣∞
0

+
1

λ

∫ ∞
0

e−λtdtk+1

=
(k + 1)!

λk+1
<∞.

This concludes ∫ ∞
0
|φk(t)|dt =

∫ ∞
0

tke−λtdt =
k!

λk+1

for all k = 0, 1, · · · , n. �

Proposition 3.22. Every function in P λn (Ω) is absolutely integral-convergent.

Proof. Denote f(t) ∈ P λn (Ω) as

f(t) =

n∑
k=0

ckt
ke−λt.
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It follows from Proposition 3.21 that∫ ∞
0
|f(t)|dt ≤

∫ ∞
0

n∑
k=0

|ck|tke−λtdt

=

n∑
k=0

|ck|
∫ ∞

0
tke−λtdt

=

n∑
k=0

|ck|
k!

λk+1
<∞.

�

Proposition 3.23. Each basis function φk(t) = tke−λt, k = 0, 1, · · · , n, of
P λn (Ω) is analytic (or has a power series) about the origin. In fact, φk(t) is
analytic about any point in Ω with an infinite radius of convergence.

Proof. Firstly,

e−λt = 1− λt+
λ2

2!
t2 + · · ·

with an infinite radius of convergence. Next, for each k = 1, 2, · · · , n,

tke−λt = tk
(

1− λt+
λ2

2!
t2 + · · ·

)
= 0 + 0t+ · · ·+ 0tk−1 + tk − λtk+1 +

λ2

2!
tk+2 + · · · ,

also with an infinite radius of convergence.
Similarly, we can show that φk(t) is analytic about any point in Ω. �

Proposition 3.24. Every function in P λn (Ω) is analytic (or has a power se-
ries) about the origin or about any point in Ω with an infinite radius of con-
vergence.

Proof. By Proposition 3.23, each basis function is analytic about the origin. It
follows that every linear combination of the basis is analytic about the origin
with an infinite radius of convergence. Similarly, the proposition is also true
when the analytic center is any point in Ω. �

Proposition 3.25. Each natural basis function φk(t) = tke−λt, k = 0, 1, · · · , n,
of P λn (Ω) has the following asymptotic properties:

(1) φk+1(t) = O(φk(t)), t→ 0; and
(2) φk(t) = O(φk+1(t)), t→∞.

Proof. For each k = 0, 1, · · · , n− 1, we have

lim
t→0

∣∣∣∣φk+1(t)

φk(t)

∣∣∣∣ = lim
t→0

∣∣∣∣ tk+1e−λt

tke−λt

∣∣∣∣ = lim
t→0
|t| = 0,
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and

lim
t→∞

∣∣∣∣ φk(t)φk+1(t)

∣∣∣∣ = lim
t→∞

∣∣∣∣ tke−λttk+1e−λt

∣∣∣∣ = lim
t→∞

1

|t|
= 0.

It follows that
φk+1(t) = O(φk(t)), t→ 0,

and
φk(t) = O(φk+1(t)), t→∞.

�

The asymptotic structure of P λn (Ω) is inherited from, and thus is very simi-
lar to, that of Pn(Ω). This is due to the existence of an isomorphism between
Pn(Ω) and P λn (Ω), which implies a linear continuous transformation between
the two spaces mapping unbounded functions to the ones bounded and van-
ishing at infinity.

Proposition 3.26. Each natural basis function tke−λt, k = 0, 1, · · · , n, of
P λn (Ω) has a rational Laplace transform as

φ̄k(s) = L
{
tke−λt

}
=

k!

(s+ λ)k+1
.

Proof. By induction. Firstly,

L
{
e−λt

}
=

∫ ∞
0

e−λte−stdt =
1

s+ λ
.

Assume for each k = 0, 1, · · · , n− 1,

L
{
tke−λt

}
=

k!

(s+ λ)k+1
.

Then

L
{
tk+1e−λt

}
=

∫ ∞
0

tk+1e−λte−stdt

=
−1

s+ λ

∫ ∞
0

tk+1de−(s+λ)t

=
−1

s+ λ
tk+1e−(s+λ)t

∣∣∣∣∞
0

+
k + 1

s+ λ

∫ ∞
0

tke−(s+λ)tdt

=
(k + 1)!

(s+ λ)k+2
.

�

Proposition 3.27. Every function f(t) ∈ P λn (Ω) has a rational Laplace trans-
form with an expression

L {f(t)} =
N(s)

(s+ λ)n+1
,
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where N(s) is a polynomial of degree up to n. The converse is also true.

Proof. By Proposition 3.26, each basis function in P λn (Ω) has a Laplace trans-
form

L {tke−λt} =
k!

(s+ λ)k+1
, 0 ≤ k ≤ n.

Write f(t) ∈ P λn (Ω) as

f(t) =

n∑
k=0

ckt
ke−λt, ck ∈ R.

Then

L {f(t)} =

n∑
k=0

ckL
{
tke−λt

}
=

n∑
k=0

ckk!

(s+ λ)k+1

=

∑n
k=0 ckk!(s+ λ)n−k

(s+ λ)n+1

=
N(s)

(s+ λ)n+1
,

where N(s) =
∑n

k=0 ckk!(s+ λ)n−k is a polynomial of degree up to n.

The converse is also true since N(s)
(s+λ)n+1 can be inverted by partial fractions.

�

Proposition 3.28. Each basis function’s Laplace transform φ̄k(s), k = 0, 1, · · · ,
n− 1, of P λn (Ω) has the following property:

φ̄k+1(s) = − d

ds
φ̄k(s).

Proof. By Proposition 3.26,

φ̄k(s) = L
{
tke−λt

}
=

k!

(s+ λ)k+1
.

Then

− d

ds
φ̄k(s) = − d

ds

k!

(s+ λ)k+1
=

(k + 1)k!

(s+ λ)k+2
=

(k + 1)!

(s+ λ)k+2
= φ̄k+1(s).

�

Proposition 3.29. Each basis function φk(t) = tke−λt, k = 0, 1, · · · , n−1, of
P λn (Ω) has the following derivative property:

φk(t) =
1

k + 1

(
d

dt
+ λ

)
φk+1(t).
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Proof.

d

dt
φk+1(t) =

d

dt
tk+1e−λt

= −λtk+1e−λt + (k + 1)tke−λt

= −λφk+1(t) + (k + 1)φk(t).

Re-organizing the above equation proves the proposition. �

Proposition 3.30. Each basis function’s Laplace transform φ̄k(s), k = 0, 1, · · · ,
n, of P λn (Ω) has a power series about the origin with the radius of convergence
λ.

Proof. Clearly, by Proposition 3.26, each basis function’s Laplace transform

φ̄k(s) =
k!

(s+ λ)k+1

can be expanded as a power series about the origin with a radius of convergence
λ. �

Proposition 3.31. Every function in P λn (Ω) has a Laplace transform which
can be expanded as a power series about the origin with a radius of convergence
λ.

Proof. This follows directly from Proposition 3.27 or from Proposition 3.30
and the linear properties of Laplace transformations. �

3.5. Five representations of P λn (Ω) functions. Each g(t) ∈ P λn (Ω) has the
following five representations:

(1) The standard form

g(t) =
n∑
k=0

ckt
ke−λt

=
n∑
k=0

ckφk(t), c0, c1, · · · , cn ∈ R,

where φk(t) = tke−λt, k = 0, 1, · · · , n, are the basis functions of P λn (Ω).
Thus, g(t) is a linear combination of φk(t). Sometimes, it is convenient
to write

g(t) =
n∑
k=0

c′k
k!
tke−λt,

where c′k = ckk!, k = 0, 1, · · · , n.
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(2) The product form

g(t) =

(
n∑
k=0

ckt
k

)
e−λt

= p(t)e−λt,

where

p(t) =
n∑
k=0

ckt
k, c0, c1, · · · , cn ∈ R,

is a polynomial of degree up to n.
(3) The power series or the Taylor’s series form

g(t) =

∞∑
k=0

akt
k, a0, a1, · · · ∈ R,

with an infinite radius of convergence.
(4) The Laplace transform standard form

ḡ(s) = L {g(t)} =
n∑
k=0

ck
k!

(s+ λ)k+1

=
N(s)

(s+ λ)n+1
, c0, c1, · · · , cn ∈ R,

where

N(s) =
n∑
k=0

ckk!(s+ λ)n−k =
n∑
k=0

dks
k, d0, d1, · · · , dn ∈ R,

is a polynomial of degree up to n. Thus, ḡ(s) is rational.
(5) The Laplace transform series form (moment form)

ḡ(s) = L {g(t)} =
∞∑
k=0

bks
k, b0, b1, · · · ∈ R,

=

∞∑
k=0

(−1)k
Mk

k!
sk,

where M0,M1, · · · are moments of g(t), the expansion center is the
origin, and the radius of convergence is λ.

The five forms of g(t) ∈ P λn (Ω) are equivalent and equally useful in function
approximations. There is a linear transformation between any two of the five
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forms, which can be represented by simple algebraic operations such as matrix
multiplications.

3.6. Topological properties of P λn (Ω). We shall define norms for P λn (Ω) so
we can discuss topological concepts such as distance, limit, and convergence
for the space.

Let f(t) ∈ P λn (Ω). Define the L1 norm, the L2 norm, and the L∞ norm (the
essential norm or the sup norm) for P λn (Ω) as

‖f‖1 =

∫ ∞
0
|f(t)| dt,

‖f‖2 =

[∫ ∞
0

f2(t)dt

] 1
2

,

and
‖f‖∞ = sup

t∈Ω
|f(t)|,

respectively.
We shall show the above norms are well-defined. Obviously, ‖ · ‖1 and ‖ · ‖∞

are norms by the absolute convergence property in Proposition 3.22 and by
the boundedness in Proposition 3.16 with the corresponding triangle inequality,
respectively. To show ‖ · ‖2 is a norm, we have the following propositions.

Proposition 3.32. Let f(t), g(t) ∈ P λn (Ω). Then∫ ∞
0

f(t)g(t)dt,

∫ ∞
0

f2(t)dt, and

∫ ∞
0

g2(t)dt

converge.

Proof. Let

f(t) = p(t)e−λt and g(t) = q(t)e−λt,

where p(t) and q(t) are polynomials of degree up to n. Then

f(t)g(t) = p(t)q(t)e−2λt

is a function in P 2λ
2n . By Proposition 3.22,∫ ∞

0
f(t)g(t)dt

is convergent.
It follows immediately that

∫∞
0 f2(t)dt and

∫∞
0 g2(t)dt are also convergent.

�

Proposition 3.33. Let f(t), g(t) ∈ P λn (Ω). Then(∫ ∞
0

f2(t)dt

) 1
2
(∫ ∞

0
g2(t)dt

) 1
2

≥
∫ ∞

0
f(t)g(t)dt.
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Proof. For any X ∈ R,

(f(t)X + g(t))2 = f2(t)X2 + 2f(t)g(t)X + g2(t) ≥ 0.

Then, by Proposition 3.32, we can write

X2

∫ ∞
0

f2(t)dt+X

∫ ∞
0

2f(t)g(t)dt+

∫ ∞
0

g2(t)dt ≥ 0.

This implies(∫ ∞
0

2f(t)g(t)dt

)2

− 4

(∫ ∞
0

f2(t)dt

)(∫ ∞
0

g2(t)dt

)
≤ 0,

which is ∣∣∣∣∫ ∞
0

f(t)g(t)dt

∣∣∣∣ ≤ (∫ ∞
0

f2(t)dt

) 1
2
(∫ ∞

0
g2(t)dt

) 1
2

.

�

Proposition 3.34. (Cauchy-Bunyakovsky-Schwarz inequality). Let f(t), g(t) ∈
P λn (Ω). Then

‖f‖2 + ‖g‖2 ≥ ‖f + g‖2.

Proof.

(‖f‖2 + ‖g‖2)2

=

((∫ ∞
0

f2(t)dt

) 1
2

+

(∫ ∞
0

g2(t)dt

) 1
2

)2

=

∫ ∞
0

f2(t)dt+ 2

(∫ ∞
0

f2(t)dt

) 1
2
(∫ ∞

0
g2(t)dt

) 1
2

+

∫ ∞
0

g2(t)dt

≥
∫ ∞

0
f2(t)dt+ 2

∫ ∞
0

f(t)g(t)dt+

∫ ∞
0

g2(t)dt

=

∫ ∞
0

f2(t) + 2f(t)g(t) + g2(t)dt

= ‖f + g‖22,
where the inequality follows from Proposition 3.33.

Thus,

‖f‖2 + ‖g‖2 ≥ ‖f + g‖2
and ‖ · ‖2 satisfies the triangle inequality. It follows that ‖ · ‖2 is a norm. �

Let p > 1. We may generalize the L2 norm to the Lp norm for P λn (Ω) as

‖f‖p =

(∫ ∞
0
|f(t)|p dt

) 1
p

.
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The proof of the existence of the Lp norm needs the Minkowski inequality
(Hermann Minkowski, 1864-1909) and the Hölder’s inequality (Otto Hölder,
1859-1937). Then (P λn (Ω), ‖ · ‖p) is a subspace of the Lp(Ω) space. This will
be left for future research.

Each norm on P λn (Ω) induces a topology on P λn (Ω). The above three norms
induce three normed topologies on P λn (Ω). By Proposition 2.23, the three
topologies are equivalent. In this monograph, we use a generic norm notation
‖·‖ for P λn (Ω) unless a specific norm is involved. Thus, (P λn (Ω), ‖·‖), or simply
P λn (Ω), is a normed space.

For any two functions f, g ∈ P λn (Ω), we define the three metric functions
induced by the indicated norms as

ρ1(f, g) = ‖f − g‖1 =

∫ ∞
0
|f(t)− g(t)| dt,

ρ2(f, g) = ‖f − g‖2 =

[∫ ∞
0

(f(t)− g(t))2 dt

] 1
2

,

and

ρ∞(f, g) = ‖f − g‖∞ = sup
t∈[0,∞)

|f(t)− g(t)|.

In this monograph, we use a generic metric (distance or error) function
ρ(·, ·) : P λn (Ω)× P λn (Ω)→ [0,∞) defined as

ρ(f, g) = ‖f − g‖.

Then (P λn (Ω), ρ) is a metric space. By ρ, we usually mean the essential metric
ρ∞, which implies the uniform convergence in the space.

Let an open ball in P λn (Ω) be the set of all functions in P λn (Ω) having a
distance to a center function f ∈ P λn (Ω) less than a radius r > 0, denoted by

Br(f) =
{
g ∈ P λn (Ω) | ‖g − f‖ < r

}
.

The corresponding closed ball and sphere are defined as

B̄r(f) =
{
g ∈ P λn (Ω) | ‖g − f‖ ≤ r

}
and

Sr(f) =
{
g ∈ P λn (Ω) | ‖g − f‖ = r

}
,

respectively.
Using the concept of open balls, we can define open sets, closed sets, and

an induced topology for P λn (Ω).
A function sequence {fm} in P λn (Ω) is said to converge to a limit function

f ∈ P λn (Ω), denoted by

lim
m→∞

fm(t) = f(t),
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if and only if for every ε > 0, there exists an N ∈ N such that

‖fm − f‖ < ε, for all m > N,

or

fm ∈ Bε(f), for all m > N.

The convergence defined above is the uniform convergence. In some cases,
we may use the L1- or the L2-convergence in P λn (Ω), which is topologically
equivalent to the uniform convergence.

Proposition 3.35. Let

fm(t) =

n∑
k=0

ck,mt
ke−λt

and

f(t) =

n∑
k=0

ckt
ke−λt

be functions in P λn (Ω). Then

lim
m→∞

fm(t) = f(t)

if and only if

lim
m→∞

ck,m = ck, k = 0, 1, · · · , n.

Proof. Let

Mk =
∥∥∥tke−λt∥∥∥ = max

t∈Ω

∣∣∣tke−λt∣∣∣ , k = 0, 1, · · · , n.

For any ε > 0, if

lim
m→∞

ck,m = ck,

for k = 0, 1, · · · , n, then there is an N0 ∈ N such that when m > N0,

|c0,m − c0| <
ε

n+ 1

1

M0
.

It follows there is an Nk ∈ N such that when m > Nk,

|ck,m − ck| <
ε

n+ 1

1

Mk

for k = 1, 2, · · · , n.
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Thus, whenever m > max(N0, N1, · · · , Nn), we have∥∥∥∥∥
n∑
k=0

(ck,m − ck)tke−λt
∥∥∥∥∥ ≤

n∑
k=0

|ck,m − c0|
∥∥∥tke−λt∥∥∥

≤
n∑
k=0

ε

n+ 1

1

Mk
Mk

= ε.

Therefore,
lim
m→∞

fm(t) = f(t).

The proof for the converse statement is omitted. �

A function sequence {fm} in P λn (Ω) is said to be a Cauchy sequence if, for
any ε > 0, there exists an N ∈ N such that whenever m, k > N , we have

‖fm − fk‖ < ε.

Proposition 3.36. Every Cauchy sequence in P λn (Ω) converges to a limit in
P λn (Ω).

Proof. Consider a Cauchy sequence fm ∈ P λn . Then for any ε > 0, there is an
N ∈ N such that whenever m, k > N , we have

‖fm − fk‖ < ε.

Let KN = {fN+1, fN+2, · · · }. Then diamKN < ε and KN is bounded. Thus,
there is a closed (or compact) set KN , the closure of KN , such that

diamKN = diamKN < ε.

Consider the sequence of numbers {εi = ε
2i
, i = 0, 1, · · · } converging to 0.

Then there is a sequence of compact sets {KNi , i = 0, 1, · · · } such that

KNi+1 ⊂ KNi

and
diamKNi <

ε

2i
,

for i = 0, 1, · · · , which is
lim
i→∞

diamKNi = 0.

This implies there exists a point

f ∈ ∩∞i=0KNi .

Clearly, when m > N , we have

‖fm − f‖ < ε.

Thus, the Cauchy sequence {fm} converges to f in P λn (Ω). �

Proposition 3.37. P λn (Ω) is complete and is a Banach space.
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Proof. By Proposition 3.36, every Cauchy sequence in P λn (Ω) converges to a
limit in the space. It follows that P λn (Ω) is complete and is a Banach space. �

3.7. Isomorphisms for P λn (Ω). Let T : Pn(Ω)→ P λn (Ω) be a transformation
which maps each p ∈ Pn(Ω) to an f ∈ P λn (Ω) for every fixed λ > 0 as

f(t) = T {p(t)} = p(t)e−λt, t ∈ Ω.

Proposition 3.38. T is an isomorphism from Pn(Ω) to P λn (Ω).

Proof. Clearly, T is surjective (or onto) since for every element f ∈ P λn (Ω),
there exists an element p ∈ Pn(Ω) such that f(t) = p(t)e−λt, t ∈ Ω. T is
also injective (one-to-one) since T (p1) = T (p2) implies p1 = p2. Thus, T is
bijective. Therefore, T is an isomorphism. �

Proposition 3.39. The above transformation T has the following properties:

(1) T maps the zero element in Pn(Ω) to the zero element in P λn (Ω).
(2) T maps the natural basis in Pn(Ω) to the natural basis in P λn (Ω).

Proof. Trivial. �

Proposition 3.40. For each fixed n ∈ N and any λ1, λ2 ≥ 0, P λ1n (Ω) is
isomorphic to P λ2n (Ω).

Proof. For each fixed n ∈ N and any λ1, λ2 > 0, Proposition 3.38 implies that
both P λ1n (Ω) and P λ2n (Ω) are isomorphic to Pn(Ω). It follows that P λ1n (Ω) is
isomorphic to P λ2n (Ω). �

Proposition 3.41. P λn (Ω) is isomorphic to Rn+1.

Proof. For every vector ~a = [a0, a1, · · · , an]T ∈ Rn+1, there exists a continuous
mapping A defined as

f(t) = A(~a) =

(
n∑
k=0

akt
k

)
e−λt,

which maps ~a ∈ Rn+1 to f(t) ∈ P λn (Ω). Conversely, for every f(t) ∈ P λn ,
there exists a continuous mapping which extracts the coefficients of f(t) and
forms a vector in Rn+1. Thus, A is bijective or one-to-one. Therefore, A is an
isomorphism between the two spaces. �

The isomorphism between any two of P λn (Ω), Pn(Ω), and Rn+1 is a linear,
one-to-one, and invertible transformation. Therefore, the topological proper-
ties of the three spaces are equivalent. It may allow us to convert a difficult
mathematical problem from one space to another, where the problem may be
easily solved, and to convert the solution back to the original space.
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3.8. Subspace structures and expansions of P λn (Ω).

Proposition 3.42. For every λ > 0, P λn (Ω) is a subspace of P λm(Ω) if and
only if 0 ≤ n ≤ m, n,m ∈ N.

Proof. It is trivial to show the natural basis of P λn (Ω) is a subset of that of
P λm(Ω) for 0 ≤ n ≤ m. Thus, P λn (Ω) is a subspace of P λm(Ω). �

It follows that for any λ > 0

P λ0 (Ω) ⊂ P λ1 (Ω) ⊂ · · · ⊂ P λn (Ω) ⊂ · · · .
Clearly, this is a countable family of partially ordered spaces {Pk(Ω)}∞k=0. Let

B = {e−λt, te−λt, t2e−λt, · · · } on Ω and denote

P λ∞(Ω) =

∞⋃
n=0

P λn (Ω) = spanB.

Then, for any λ > 0 and n ∈ N,

P λn (Ω) ⊂ P λ∞(Ω).

It also follows from Proposition 3.42 that for any λ > 0, by adding more
basis functions, we can expand P λn (Ω) to P λm(Ω) for 0 ≤ n ≤ m.

Denote

P λm\n(Ω) = span {tn+1e−λt, tn+2e−λt, · · · , tme−λt}.
Clearly,

dimP λm\n(Ω) = m− n.
If fm\n(t) ∈ P λm\n(Ω), then fm\n(t) is also in P λm(Ω).

It is obvious that for any λ > 0, we have

P λn (Ω)⊕ P λm\n(Ω) = P λm(Ω).

Let n ∈ N be fixed and λ > 0 vary as a parameter. Then P λn (Ω) denotes a
continuum family of spaces, or a set of parametric spaces with a parameter λ.
This is called the parametrization of P λn (Ω).

When λ tends to 0, we have

lim
λ→0

P λn (Ω) = Pn(Ω).

When λ tends to infinity, pn(t)e−λt tends to a discontinuous function at the
origin. From this, we define a generalized Dirac delta function space as

P∞n (Ω) = lim
λ→∞

P λn (Ω).

Then P∞n (Ω) contains all the generalized Dirac delta functions of degree up
to n with finite magnitudes and various shapes. The underlying domain Ω of
P∞n (Ω) shrinks to the support [0, 0+]. We will leave the analysis of P∞n (Ω) for
future research.
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Let n ∈ N and pn(t) ∈ Pn(Ω) be fixed. Then pn(t)e−λt is a family of
parametric continuous functions in λ, each of which belongs to a particular
P λn (Ω) space. pn(t)e−λt can also be viewed as the function pn(t) going through
a continuous shape changing (or an attenuation) as λ increases from 0 to the
current value.

We can expand P λn (Ω) spaces by direct sums. Let

P λ1n1
(Ω) = span {tke−λ1t}n1

k=0

and

P λ2n2
(Ω) = span {tke−λ2t}n2

k=0.

Then the direct sum of P λ1n1
(Ω) and P λ2n2

(Ω) is

P λ1n1
(Ω)⊕ P λ2n2

(Ω) = span {tke−λ1t}n1
k=0 ∪ {t

je−λ2t}n2
j=0.

Thus, the natural basis of the above direct sum is the union of the two bases

{tke−λ1t}n1
k=0 ∪ {t

je−λ2t}n2
j=0

and the dimension of the new space is

dimP λ1n1
(Ω)⊕ P λ2n2

(Ω) = n1 + n2 + 2.

In general, for any finite N , we have

N⊕
i=1

P λini (Ω) = P λ1n1
(Ω)

⊕
P λ2n2

(Ω)
⊕
· · ·
⊕

P λNnN (Ω),

with the basis

∪Ni=1{tke−λit}
ni
k=0

and the dimension

dim

N⊕
i=1

P λini (Ω) =

N∑
i=1

ni +N.

This is a class of functions whose Laplace transforms are meromorphic func-
tions with real poles.

Let c be a constant representing a constant function on Ω. The set c⊕P λn (Ω)
denotes a linear manifold of translation c, which is a non-empty set satisfying
the following property: for every function f(t) ∈ c ⊕ P λn (Ω), there exists a
function g(t) ∈ P λn (Ω) such that f(t) = g(t) + c. The definition of the linear
manifold implies the space P λn (Ω) is translated by c units.

In addition, we may define

dim c⊕ P λn (Ω) = dimP λn (Ω) = n+ 1.

Proposition 3.43. Let f(t) ∈ c⊕ P λn (Ω). Then

lim
t→∞

f(t) = c.
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Proof. Let f(t) = g(t) + c ∈ c⊕ P λn (Ω) such that g(t) ∈ P λn (Ω). Then

lim
t→∞

f(t) = lim
t→∞

g(t) + lim
t→∞

c = c,

since
lim
t→∞

g(t) = 0.

�

Proposition 3.44. For each fixed c, c⊕ P λn (Ω) is isomorphic to P λn (Ω).

Proof. This is trivial, since translation is one-to-one. �

A linear manifold c⊕ P λn (Ω) with variable c can be viewed as the set of the
indefinite integral on the space P λn (Ω). Another view of a manifold is that
P λn (Ω) is homogeneous and c⊕P λn (Ω) is non-homogeneous. We shall leave the
analysis of c⊕ P λn (Ω) for future research.
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4. Approximations in P λn (Ω) spaces

This section discusses one of the most important applications of P λn (Ω)
spaces: function approximations. A modern view of function approximation is
to create an approximation function space with some desirable properties and
then to choose a function in the space which is “close” to the target function.
In this view, there is only one function space to choose the approximation
function from. However, in our new approximation theory, we search for the
approximation function from a continuum family of function spaces.

In this section, we shall first discuss the general theory of approximations
to a special class of target functions and then develop three specific kinds of
P λn (Ω) based approximation methods with illustrative examples.

4.1. The General Theory of Approximations in P λn (Ω) Spaces.

4.1.1. Target functions. Initially, we aim to approximate a class of continuous
probability density functions defined on Ω, which are continuous, bounded,
non-negative, and integral-convergent. After a careful study of the above
properties, we conclude a more general class of target functions should be
considered. This new target function class can be formed, by omitting the
non-negativity and integral-convergence requirements of the former class and
adding the vanishing at infinity, as

CB0 (Ω) =
{
f ∈ C(Ω) ∩B(Ω)

∣∣∣ lim
t→∞

f(t) = 0
}
.

In fact, CB0 (Ω) is V (Ω) and the boundedness in the definition is not necessary.
In addition, this definition may be further generalized to allow any finite limit
at infinity.

Proposition 4.1. Every continuous integral-convergent function on Ω belongs
to CB0 (Ω).

Proof. By Proposition 2.10, every continuous integral-convergent function on
Ω vanishes at infinity and therefore belongs to CB0 (Ω). �

It follows immediately that CB0 (Ω) contains all the continuous probability
density functions on Ω. In addition, not all vanishing at infinity functions
are integral-convergent, e.g. 1

1+t . Thus, CB0 (Ω) also contains some integral-
divergent functions, e.g. some rational functions, which are useful. The new
approximation theory is mainly developed for “smooth”, infinitely differen-
tiable, or transcendental functions. It may also be used for approximations to
piecewise continuous or even discontinuous functions on Ω.
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4.1.2. Notations and conventions. In order to better describe P λn (Ω) space
approximation theories and methods, we shall use the following notations and
conventions throughout this chapter.

We always denote f(t) ∈ CB0 (Ω) as the target function and may assume
f(t) is non-negative on Ω without loss of generality. We consider P λn (Ω) as the
approximation function space and denote the approximation function g(t) or
gn(t) in P λn (Ω) as

g(t) = gn(t) = c0e
−λt + c1te

−λt + · · ·+ cnt
ne−λt

= (c0 + c1t+ · · ·+ cnt
n) e−λt

= pn(t)e−λt,

where

pn(t) =
n∑
k=0

ckt
k

is a polynomial in t of degree up to n, and λ > 0 is the decaying parameter. In
this standard form, gn(t) can be viewed either as the product of the polynomial
pn(t) and the exponential decaying function e−λt or as a linear combination of
basis functions tke−λt, k = 0, 1, · · · , n.

We sometimes use g(t;λ) or gn(t;λ) to emphasize the approximation func-
tion has an undetermined parameter λ or to express a particular approximation
function for a particular value of λ. In many situations, we treat λ as a con-
stant to avoid taking partial derivatives of a double variable function g(t;λ).
This allows us to talk about the Taylor series or the Laplace transforms of
g(t;λ) in a simple way.

Technically, an approximation problem is solved if a unique function gn(t;λ)
on Ω is found, i.e. the degree n, the coefficients ck, and the decaying param-
eter λ of gn(t;λ) are all solved for. The degree n can be arbitrarily chosen
in advance and is usually set to 10 ∼ 20 for many practical approximation
problems. Sometimes, the parity of n, even or odd, may be considered by a
particular approximation method. The shape coefficients ck, k = 0, 1, · · · , n,
determine the curve shape of the approximation function. So we name each
of our approximation methods by the way the shape coefficients are solved.
The decaying parameter λ also affects the curve shape of the approximation
function but not in the same manner as the shape coefficients. It can be deter-
mined by imposing an additional condition or restriction of various kinds on
gn(t;λ). If the restriction results in multiple values for λ, we choose the one
that minimizes the approximation error.

On obtaining the final approximation function gn(t), we shall calculate its
integration function

Gn(t) =

∫ t

0
gn(τ)dτ
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and compare it with the target integration function

F (t) =

∫ t

0
f(τ)dτ.

4.1.3. Main interval and tail interval. One of the key ideas in P λn (Ω) space ap-
proximation theory is to partition the domain Ω of the target function. Gen-
erally in an approximation problem, the approximation function is required
to be “close” to the target function on the entire domain. Such problems
become difficult when the domain is an unbounded interval such as Ω, and
currently there seems to be no effective resolution for them. The difficulty is
mainly because there is no easy way to define a usual norm on a non-compact
interval for generic functions without worrying about convergence. For exam-
ple, can we properly define a norm for a polynomial, which is unbounded and
integral-divergent, on Ω?

On the other hand, it may not be necessary to approximate a target function
in CB0 (Ω) on the entire domain Ω because by vanishing at infinity, the function
value is too small to be useful as the independent variable gets sufficiently large.
This implies a single uniform error (or maximum error) may not properly
measure the approximation error for the tail of the function.

A reasonable treatment is to split the approximation problem into two parts
and deal with each part individually. This can be done by partitioning the
entire domain Ω into a compact interval and an unbounded interval. We
can use existing methods for the approximation on the compact interval to
achieve good approximation properties such as uniform convergence. For the
approximation on the unbounded interval, we reduce the problem and only
require the approximation function to be bounded and vanishing at infinity on
the interval.

The principle of partitioning Ω is based on the tail boundedness property
of the target function space. By Proposition 2.4, for any f(t) ∈ CB0 (Ω) and
ε > 0, there exists a T such that |f(t)| is bounded by ε on [T,∞). Thus,
we can partition Ω into the main interval [0, T ] and the tail interval [T,∞),
where T is the partition point or the cut-off point. The new approximation
method is to find an approximation function g(t) that is “close” to f(t) on
[0, T ] and is bounded by ε (or maybe a little larger) and vanishing at infinity on
[T,∞). Fortunately, the boundedness and vanishing at infinity are the intrinsic
properties of the approximation function space P λn (Ω). Thus, we only need to
control the maximum value of the approximation function on [T,∞). Although
T can be chosen arbitrarily, it should be chosen so the target function has its
major, dominant, and essential aspect on the main interval and its secondary,
insignificant, and trivial aspect on the tail interval. For example, a probability
density function on Ω can be partitioned so that its tail probability is less than
5%.
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4.1.4. From Pn(Ω) to P λn (Ω). Before we introduce P λn (Ω) based approximation
methods, let us digress to discuss why polynomials are not appropriate for
approximations to continuous probability density functions on Ω. In fact, our
new approximation method is motivated by, and is an improvement of, the
former.

Polynomials have many good properties. They are simple, continuous,
bounded on any closed intervals, and related to power series as partial sums.
By Theorem 3.7 (Stone-Weierstrass approximation theorem), polynomials can
approximate any continuous function on any closed or compact intervals. It is
natural to attempt to use polynomials to approximate continuous probability
density functions.

However, polynomials are unbounded at infinity and their integrals on Ω are
divergent. These fundamental disadvantages make it impossible to approxi-
mate any function about infinity. For example, in a polynomial interpolation
problem, the approximation polynomial may only approximate the target func-
tion inside the interpolation interval and will not do so elsewhere.

A polynomial may be attenuated by another polynomial so that the resulting
function may approach zero at infinity. The collection of such functions is a
small subset of rational functions. But rational functions are integral-divergent
even if they vanish at infinity on Ω. It is concluded the set of rational functions
is also not a good approximation function space for our problem.

By Proposition 3.8, any polynomial of finite degree can be attenuated by an
exponential decaying function to vanish at infinity. This property leads to the
introduction of the decaying polynomial space P λn (Ω). By Propositions 3.16,
3.18, and 3.22, all functions in P λn (Ω) are bounded, vanishing at infinity, and
integral-convergent. By choosing particular values of the shape coefficients and
the decaying parameter of a decaying polynomial function, we can control the
bound of the function on the tail interval. All these desirable properties make
P λn (Ω) an ideal approximation function space to CB0 (Ω) functions.

4.1.5. Three kinds of approximation methods in P λn (Ω). In this chapter, we
shall discuss three kinds of constructive approximation methods to our ap-
proximation problem. They are method I, asymptotic (or Taylor, power) series
expansion, in Section 4.2, method II, Laplace transform moment matching, in
Section 4.3, and method III, interpolation, in Section 4.4.

These three methods apply to different situations but they share a common
process for finding the final approximation function. This is not surprising
since they are all based on linear structures of P λn (Ω) spaces. Each method
sets up a specific system of equations to solve for the shape coefficients of the
approximation function according to a specific linear structure of the space.
This process of finding the shape coefficients itself implies the existence of the
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approximation function. Which method to use depends on how the approxi-
mation problem is linearized.

The process of each method can be described in two steps. In the first
step, we assume λ is a fixed number and set up a system of n + 1 equations
by imposing n+ 1 independent conditions on the approximation function. In
method I, initial or boundary conditions from the power series expansion of
the target function are used to construct the system of equations; in method
II, the Laplace transform power series coefficients of the target function are
used; and in method III, the interpolation nodes are used to set up the system
of equations. By solving the system of equations in each method, we obtain
the shape coefficients and the corresponding approximation function gn(t;λ).
Now, gn(t;λ) is a function of λ. Let λ vary. We obtain a one-parameter family
of approximation functions.

The second step is to determine the optimal value for λ in gn(t;λ) so that
the approximation error on the main interval is somewhat minimum. This step
is an optimization problem and varies from one method to another. When λ
changes continuously, both the basis functions of P λn (Ω) and the shape co-
efficients are also changing continuously. Thus, the curve shape of gn(t;λ) is
continuously going through deformation while still maintaining the restrictions
set for the approximation function in the first step. Imposing an additional
condition on gn(t;λ), we can find the optimal value(s) for λ and then the final
approximation function.

It should be noted that various characteristics of the target function can
be used to determine λ, e.g. the target function value at a specific point, the
definite integral or the curve length of the target function on the main interval.
The validity of these methods is based on the idea these characteristics of the
target function have been preserved under uniform convergence. We do not
intend to prove this general statement. But if the characteristic is a linear
operator, e.g. a definite integral, then we are confident it is preserved by
uniform convergence. By varying λ, we can either match the characteristics of
the target and the approximation functions or make them very close.

4.1.6. Error analysis. Error patterns are like “fingerprints” of the approxima-
tion methods. Each approximation method has a unique error pattern reflect-
ing the nature of its mathematical principle. By observing the error pattern,
we can learn not only how large it is but also what approximation method
generated it.

In our new approximation methods, we only consider the approximation
error function on the main interval, which corresponds to and gives more in-
formation than the weak error or the weak metric induced by the weak norm.
Let gn(t;λ) be an approximation function to f(t). Then the approximation
error function is

en(t) = en(t;λ) = f(t)− gn(t;λ)



79

and the absolute error function is

|en(t)| = |f(t)− gn(t;λ)|.
There are two major types of main interval errors, the asymptotic type error

and the Chebyshev type error, in our approximation methods. Each type error
reflects the nature of each approximation method applied. Asymptotic type
errors appear in method I, where there is no error at the expansion center
and the absolute error function is monotonically increasing as the independent
variable gets further away from the expansion center inside its convergence
interval. This clearly shows asymptotic series expansion is somewhat a lo-
cal approximation method. Chebyshev type errors appear in method II and
III, where the error function oscillates in finite times on the main interval.
The name Chebyshev type error is in memory of the Russian mathematician
Pafnuty Chebyshev (1821-1894), who first introduced the concept of distribu-
tion of interpolation nodes (or Chebyshev nodes) in order to achieve uniform
approximation in polynomial interpolation problems. In method II, due to
the global property of moment integrals, the approximation error is somewhat
uniformly distributed on the main interval and is distinctive from the asymp-
totic type error. Because method III forces the approximation error to zero
at interpolation nodes, the resulting error also shows bounded oscillation pat-
terns. However, the error in method III also has an asymptotic pattern. The
magnitude of the error oscillation around the interpolation center is very small
but increases dramatically near both end-points of the interpolation interval.
Thus, the error pattern in method III is in fact a mixture of the asymptotic
type and the Chebyshev type.

Besides studying graphs of approximation error functions, we sometimes
use a single number to measure the approximation error. We define the weak
maximum absolute error (WMAE) on [0, T ] as

WMAE[0,T ] = ‖en(t)‖w∞,[0,T ] = max
t∈[0,T ]

|f(t)− gn(t)|

and the weak mean square error (WMSE) on [0, T ] as

WMSE[0,T ] = ‖en(t)‖w2,[0,T ] =

∫
[0,T ]

(f(t)− gn(t))2 dt.

It should be pointed out that studying error functions or using weak mea-
sures on the main interval must be accompanied by checking the boundedness
of an approximation function on the tail interval.
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4.2. Method I: asymptotic/Taylor series expansion in P λn (Ω). The first
approximation method (method I) is the asymptotic series expansion in P λn (Ω)
spaces. The idea is to use initial or boundary conditions, the derivatives of the
target function at the origin or other points, to construct an approximation
function in P λn (Ω) which is “close” to the target function. The method is
motivated by the polynomial approximation method from the power series (or
Taylor series) expansion of the target function, which fails in approximation
of CB0 (Ω) functions.

Since method I needs higher order derivatives of the target function at the
origin or other points, we assume the target function is analytic on Ω. We shall
mainly approximate two types of analytic functions on Ω: the finite-radius-
convergent and the infinite-radius-convergent analytic functions, according to
their power series expansion about the origin. We further assume a finite-
radius-convergent function has its largest singularity in the negative real axis,
i.e. a finite-radius-convergent function has a half-convergent half-divergent
power series about the origin. To effectively approximate each type of target
function, we introduce some variants (Ia, Ib, and Ic) to the asymptotic series
expansion method.

4.2.1. Method Ia: asymptotic series expansion about the origin. Let the target
function f(t) ∈ CB0 (Ω) be analytic on Ω. Assume f(t) has its largest singularity
at t = −R, R > 0. Then the power series expansion of f(t) about the origin
converges on interval [0, R). Let [0, T ], T > 0, be the main interval. We wish
to find a function g(t) = gn(t;λ) ∈ P λn (Ω) for some λ > 0 satisfying n + 1
initial conditions of f(t) at the origin, i.e.

g(0) = f(0), g′(0) = f ′(0), · · · , g(n)(0) = f (n)(0).

Then we shall call g(t) an approximation function to f(t) if the approximation
error is sufficiently small on [0, T ] and g(t) is satisfactorily bounded on [T,∞).

Equivalently, the above initial conditions can be rephrased in the form of
power series or Taylor series expansion. Let f(t) be expanded into a power
series about the origin as

f(t) =

∞∑
k=0

akt
k =

∞∑
k=0

f (k)(0)

k!
tk, t ∈ [0, R),

and g(t) be expanded into a power series about the origin as

g(t) =

∞∑
k=0

a′kt
k, t ∈ Ω

(This is a property of P λn (Ω)). Then the initial conditions are

(4.1) a′k = ak, k = 0, 1, · · · , n.
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We shall show such a g(t) exists.
First, we cannot directly use power series expansion as an approximation

method because the power series of f(t) about the origin is only convergent
on [0, R) and divergent on [R,∞). In order to treat such half-convergent half-
divergent series, we introduce the concept of asymptotic series expansion. Let
us expand f(t) asymptotically into a power series about the origin with respect
to a basis {tk}∞k=0 as

f(t) ∼
∞∑
k=0

akt
k, t→ 0.

Then this asymptotic power series coincides with the MacLaurin series of f(t)
on [0, R). An asymptotic power series is only a formal power series and is still
divergent on [R,∞). However, this allows us to treat a power series, regardless
of its convergence, as if it has a “limit function” on Ω. Thus, an asymptotic
series may be operated on the same way as a convergent series or a usual real
function on Ω.

Now let us expand f(t) asymptotically into another series about the origin
on Ω with respect to a basis {tke−λt}∞k=0 satisfying the initial conditions (4.1).
Then we may write

(4.2) f(t) ∼
∞∑
k=0

ckt
ke−λt, t→ 0,

where ck, k = 0, 1, · · · , are undetermined real coefficients. The main difference
between the asymptotic power series and the new asymptotic series is the basis
for the former is unbounded while for the latter it is bounded and vanishing
at infinity. This can be easily shown by Propositions 3.15 and 3.17. Although
the new asymptotic series is still divergent outside its convergence interval, we
impose a strong restriction there so its partial sums are bounded and vanishing
at infinity.

Define the n-th partial sum of the new asymptotic series as

(4.3) gn(t) =
n∑
k=0

ckt
ke−λt,

which can also be written as

gn(t) = pn(t)e−λt,

where

pn(t) =

n∑
k=0

ckt
k.

The coefficients ck of the new asymptotic series in (4.2) satisfying the initial
conditions (4.1) are in fact the coefficients of a Cauchy product defined as
follows.
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For any λ > 0,

eλt =
∞∑
k=0

λk

k!
tk

absolutely on R. Define the Cauchy product

(4.4)

( ∞∑
k=0

f (k)(0)

k!
tk

)( ∞∑
k=0

λk

k!
tk

)
=
∞∑
k=0

ckt
k,

where the coefficient sequence

ck =

k∑
i=0

f (i)(0)

i!

λk−i

(k − i)!

=
k∑
i=0

ai
λk−i

(k − i)!
, k = 0, 1, · · · ,

is the convolution of the coefficients of the two factor series.

Theorem 4.2. For every λ > 0, the Cauchy product in (4.4) converges to
f(t)eλt absolutely for every t ∈ [0, R).

Proof. By Proposition 2.36, the power series
∑∞

k=0
f (k)(0)
k! tk converges to f(t)

absolutely for every t ∈ [0, R) and
∑∞

k=0
λk

k! t
k converges to eλt absolutely for

every t ∈ Ω. Then, by Theorem 2.30, the Cauchy product in (4.4) converges
to f(t)eλt absolutely for every t ∈ [0, R). �

The above theorem implies

f(t)eλt =

∞∑
k=0

ckt
k, t ∈ [0, R).

Multiplying e−λt on both sides, we have

(4.5) f(t) =

( ∞∑
k=0

ckt
k

)
e−λt =

∞∑
k=0

ckt
ke−λt, t ∈ [0, R),

absolutely.
If f(t) is infinite-radius-convergent about the origin (R = ∞), then Equa-

tion (4.5) holds for every t ∈ Ω. If f(t) is finite-radius-convergent about the
origin (R < ∞), then (4.5) holds only for t ∈ [0, R) and the function series∑∞

k=0 ckt
ke−λt does not converge to f(t) on [R,∞).

The above process may be viewed as a transformation from one asymptotic
series to another, which is equivalent to an infinite-dimensional matrix which
transforms the coefficients of one series into those of another. This transfor-
mation is not linear in nature. However, the transformation between the n-th
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partial sums of the two series is linear for each n ∈ N. Thus, the method of
undetermined coefficients can be used in the following derivations.

Theorem 4.3. (Existence theorem for method Ia). Let f(t) be expanded
asymptotically into a series in (4.2). Then, for every λ > 0 and n ∈ N,
the partial sum gn(t) in (4.3) of the above asymptotic series satisfies the initial
conditions (4.1).

Proof. (Constructive proof). Let λ > 0 and n ∈ N fixed. Let
∑n

k=0 akt
k and∑n

k=0 a
′
kt
k be the partial sums of the power series expansions about the origin

of f(t) and gn(t), respectively. Consider pn(t) =
∑n

k=0 ckt
k. Then, the first

n+ 1 coefficients ck are related to the ak by the following equations:

c0 = a0,

c1 = a0λ+ a1,

c2 = a0
λ2

2!
+ a1λ+ a2,

...

cn = a0
λn

n!
+ a1

λn−1

(n− 1)!
+ · · ·+ an−1λ+ an,

with the general row equation as

ck =
k∑
i=0

ai
λk−i

(k − i)!
, k = 0, 1, · · · , n,

or in the matrix form as
c0

c1

c2
...
cn

 =



1 0 0 · · · 0
λ 1 0 · · · 0
λ2

2!
λ 1 · · · 0

...
...

...
...

...
λn

n!

λn−1

(n− 1)!

λn−2

(n− 2)!
· · · 1




a0

a1

a2
...
an

 .

The coefficients a′k can be calculated from the ck by

a′0 = c0,

a′1 = c0(−λ) + c1,

a′2 = c0
(−λ)2

2!
+ c1(−λ) + c2,

· · ·

a′n = c0
(−λ)n

n!
+ · · ·+ cn−1(−λ) + cn,
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with the general term as

a′k =
n∑
i=0

ck
(−λ)k−i

(k − i)!
, k = 0, 1, · · · , n,

or in the matrix form as
a′0
a′1
a′2
...
a′n

 =



1 0 0 · · · 0
(−λ) 1 0 · · · 0
(−λ)2

2!
(−λ) 1 · · · 0

...
...

...
...

...
(−λ)n

n!

(−λ)n−1

(n− 1)!

(−λ)n−2

(n− 2)!
· · · 1




c0

c1

c2
...
cn

 .

Thus, the a′k are related to the ak by


a′0
a′1
a′2
...
a′n

 =



1 0 · · · 0
(−λ) 1 · · · 0
(−λ)2

2!
(−λ) · · · 0

...
...

...
...

(−λ)n

n!

(−λ)n−1

(n− 1)!
· · · 1





1 0 · · · 0
λ 1 · · · 0
λ2

2!
λ · · · 0

...
...

...
...

λn

n!

λn−1

(n− 1)!
· · · 1




a0

a1

a2
...
an

,

which is 
a′0
a′1
a′2
...
a′n

 =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1




a0

a1

a2
...
an

 .

This implies a′k = ak, k = 0, 1, · · · , n. �

Theorem 4.4. (Uniform convergence theorem for method Ia). In the above
theorem, for every λ > 0, gn(t) converges to f(t) uniformly on [0, R).

Proof. By Theorem 4.2, for any λ > 0 and any closed interval [0, T ] ⊂ [0, R),
∞∑
k=0

ckt
k = f(t)eλt

absolutely for any t ∈ [0, T ]. It follows from Proposition 2.37 that
∑∞

k=0 ckt
k

converges to f(t)eλt uniformly on [0, T ]. This implies for any ε > 0, there
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exists an N ∈ N such that whenever n > N ,∣∣∣∣∣f(t)eλt −
n∑
k=0

ckt
k

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

ckt
k

∣∣∣∣∣ < ε

for all t ∈ [0, T ]. It follows that for all t ∈ [0, T ] when n > N ,∣∣∣∣∣
(
f(t)eλt −

n∑
k=0

ckt
k

)
e−λt

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

ckt
k

∣∣∣∣∣ ∣∣∣e−λt∣∣∣ < ε,

since
∣∣e−λt∣∣ ≤ 1. Therefore,∣∣∣∣∣f(t)−

n∑
k=0

ckt
ke−λt

∣∣∣∣∣ < ε,

and

lim
n→∞

gn(t;λ) = lim
n→∞

n∑
k=0

ckt
ke−λt = f(t)

uniformly on [0, T ]. �

It follows that for any fixed n ∈ N, there is a family of functions gn(t;λ)
in P λn (Ω) with a parameter λ > 0 satisfying the initial conditions (4.1), and
for every λ > 0, gn(t;λ) converges to f(t) uniformly on [0, R). It is obvious
gn(t;λ) is continuous, bounded, integral-convergent, and vanishing at infinity
on Ω.

The shape coefficients ck of gn(t;λ) are actually functions in λ and have the
following properties.

Proposition 4.5.

(4.6)
d

dλ
ck+1(λ) = ck(λ), k = 0, 1, · · · , n− 1.

Proof. For every k = 0, 1, · · · , n− 1, we have

d

dλ
ck+1(λ) =

d

dλ

(
a0

λk+1

(k + 1)!
+ a1

λk

k!
+ · · ·+ akλ+ ak+1

)
= a0

λk

k!
+ a1

λk−1

(k − 1)!
+ · · ·+ ak−1λ+ ak

= ck(λ).

�

Proposition 4.6.

(4.7) ck+1(λ) =

∫ λ

0
ck(α)dα+ ak+1, k = 0, 1, · · · , n− 1.
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Proof. For every k = 0, 1, · · · , n− 1, we have∫ λ

0
ck(α)dα+ ak+1

=

∫ λ

0

(
a0
αk

k!
+ a1

αk−1

(k − 1)!
+ · · ·+ ak

)
dα+ ak+1

=

(
a0

αk+1

(k + 1)!
+ a1

αk

k!
+ · · ·+ akα

)∣∣∣∣λ
0

+ ak+1

= ck+1(λ).

�

The above two propositions imply the coefficients ck of gn(t;λ) satisfying
initial conditions (4.1) are not independent. They are connected and restricted
by Equations (4.6) and (4.7). The expression of cn(λ) contains all the coeffi-
cients ck(λ), k = 0, 1, · · · , n− 1, and is another form of initial conditions.

For any fixed n and λ, define the approximation error function as

en(t;λ) = f(t)− gn(t;λ).

Proposition 4.7.
lim
t→0

en(t;λ) = 0.

Proof. Trivial, since the origin is the expansion center. �

Proposition 4.8.
en(t;λ) = O(tn+1), t→ 0.

Proof. By the initial conditions (4.1),

en(t;λ) =

∞∑
k=0

akt
k −

∞∑
k=0

a′kt
k

=

∞∑
k=n+1

(ak − a′k)tk

= O(tn+1), t→ 0.

�

It follows from Propositions 4.7 and 4.8 that |en(t)| has a funnel-like shape,
which starts with no error at the origin and increases as t increases on some
neighborhood of the origin.

It follows from Theorem 4.4 that if we choose T < R, then gn(t) converges
to f(t) uniformly on the main interval [0, T ] ⊂ [0, R). In particular, if f(t) is
infinite-radius-convergent on Ω, i.e. R =∞, then T can be any positive value.
This is the approximation method Ia.
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If f(t) is finite-radius-convergent on Ω and T > R, then the conditions for
uniform convergence do not hold and the approximation method Ia may not
be appropriate. In this case, we have to use the variants Ib and Ic of the
asymptotic series expansion method, which are discussed in Sections 4.2.2,
4.2.3, and 4.2.4.

Next, we shall determine the optimal value of λ and obtain the final ap-
proximation function. For many λ values, gn(t;λ) may not “look” like f(t) at
all, as can be demonstrated by numerical experiments. To find the optimal λ
value, we need to impose an additional condition on gn(t;λ), which may be
some simple property of f(t), such as its value at t = T , its definite integral or
curve length on [0, T ]. If the additional condition results in multiple values of
λ, we can always use the minimum mean square error criterion to choose the
optimal one. After checking the tail boundedness of gn(t;λ) with the optimal
λ value, we obtain the final approximation function.

In matching function values at t = T , we wish to solve

gn(T ;λ) = f(T ),

or
n∑
k=0

ck(λ)T k − f(T )eλT = 0.

The existence of λ such that the two functions match at t = T is generally
difficult to discuss. In future research, we shall give some general conditions
for the existence.

If the integration function of f(t) is important, we can find the optimal λ
by matching the definite integrals of f(t) and gn(t;λ) on [0, T ] as∫ T

0
f(t)dt =

∫ T

0
gn(t;λ)dt,

or ∫ T

0
en(t;λ)dt =

∫ T

0
f(t)− gn(t;λ)dt = 0.

The existence of such λ is also difficult to discuss. Practically, the equation
of matching the definite integrals may not have real solution(s). We can choose
some particular n to ensure there exists at least one positive real solution, or
we can change the condition to minimize the difference of the two definite
integrals.

Other additional conditions for optimal λ, such as matching the curve length
on [0, T ], can be dealt with similarly.

On obtaining the final approximation function gn(t;λ), we may calculate its
integration function as

Gn(t;λ) =

∫ t

0
gn(τ ;λ)dτ.
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By Proposition 3.22, Gn(t;λ) is finite for any t > 0 or t = ∞, and is thus
bounded.

Example 4.9. Asymptotic series expansion about the origin for infinite-radius-
convergent functions.

Consider an analytic target probability density function

f(t) =

√
2

√
π +
√

2
(1 + t)e−

t2

2 ,

whose definite integral on Ω is unity. f(t) is infinite-radius-convergent, since
it has a power series expansion about the origin as

f(t) = 0.4438 + 0.4438t− 0.2219t2 − 0.2219t3

+ 0.05547t4 + 0.05547t5 − 0.009246t6 − 0.009246t7

+ 0.001156t8 + 0.001156t9 − 0.0001156t10 + · · ·

with an infinite radius of convergence.
Let n = 10. By Proposition 4.3, there is a family of functions g10(t;λ)

denoted by Equation (4.3) such that the initial conditions (4.1) are satisfied.
Let T = 3 and [0, 3] the main interval. In this case, we will match the definite

integrals of f(t) and gn(t;λ) on [0, 3] to determine the optimal λ. Solving the
equation ∫ 3

0
g10(t;λ)dt =

∫ 3

0
f(t)dt,

we obtain five positive roots (after ignoring five negative roots), and list them
in Table 1 as well as the corresponding WMSE’s on [0, 3].

Table 1. The five positive roots from method of matching
definite integrals and the corresponding WMSE’s on [0, 3].

i λi WMSE[0,3]

1 0.7986 1.1036×10−3

2 1.7918 4.2496×10−5

3 2.8232 5.0442×10−6

4 3.9321 2.1646×10−6

5 5.2144 5.2434×10−6

Practically, apart from λ1, all other λi are acceptable. With λ4, the resulting
g10(t;λ4) has the minimum WMSE on [0, 3]. With λ5, the resulting g10(t;λ5)
is positive on Ω, which is a desirable property. Since the target function is
a probability density function, we choose the largest root λ5 = 5.2144 as the
optimal value.



89

Substituting λ5 into g10(t;λ), we obtain the final approximation function

g10(t) = (0.4438 + 2.7579t+ 8.1256t2

+ 15.1412t3 + 20.0392t4 + 20.0122t5

+ 15.6026t6 + 9.6637t7 + 4.7690t8

+ 1.8454t9 + 0.5294t10)e−5.2144t.

The corresponding WMAE on [0, 3] is 2.5630×10−3. In addition, g10(t) is
nicely bounded on [3,∞).

The integration function of g10(t) is

G10(t) = 1.0019− (1.0019 + 4.7804t+ 11.0845t2

+ 16.5579t3 + 17.7996t4 + 14.5550t5

+ 9.3140t6 + 4.7092t7 + 1.8615t8

+ 0.5486t9 + 0.1015t10)e−5.2144t.
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Figure 1 shows the approximation results on [0, 6], twice the length of the
main interval [0, 3], since we cannot plot the overall graph of f(t) on the un-
bounded interval Ω. The left figure shows the overall graphs of the approxima-
tion function g10(t) (blue line) and the target function f(t) (red line). The right
figure shows the overall graphs of G10(t) (blue line) and F (t) (red line), the
integration functions of g10(t) and f(t), respectively. In each figure, the graphs
of the target function and the approximation function almost completely co-
incide with each other and are indistinguishable. The right figure shows there
is a very small difference between the two asymptotes of G10(t) and F (t). In
addition, g10(t) is nicely bounded on [3,∞) and vanishes at infinity.

Figure 1. Method Ia overall approximations on [0, 6] (n = 10):
Left – the overall graphs of the approximation function g10(t)
(blue line) and the target function f(t) (red line); Right – the
overall graphs of G10(t) (blue line) and F (t) (red line), the
integration functions of g10(t) and f(t), respectively.
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Figure 2. Method Ia approximations on the main interval
[0, 3] (n = 10): Top-left – g10(t) (blue line) and f(t) (red
line) almost coincide with each other; Top-right – the abso-
lute error function |e10(t)| of the approximation error function
e10(t) = f(t)−g10(t); Bottom-left – G10(t) (blue line) and F (t)
(red line) almost coincide with each other; Bottom-right – the
absolute error function |F (t)−G10(t)|.



92

Figure 2 shows the approximation results on the main interval [0, 3]. The
top-left figure shows g10(t) (blue line) and f(t) (red line) almost coincide with
each other on [0, 3]. The top-right figure is the absolute error function |e10(t)|
of the approximation error function e10(t) = f(t) − g10(t). e10(t) is zero at
the origin and asymptotically increases as t increases on [0, 3]. Then e10(t)
crosses the t-axis at t = 2.1632 in [0, 3]. This point is the result of matching
the definite integrals of f(t) and g10(t) on [0, 3], i.e. the area under the curve
of |e10(t)| on [0, 2.1632] is equal to that on [2.1632, 3]. The bottom-left figure
shows the integration functions G10(t) (blue line) and F (t) (red line) almost
coincide with each other on [0, 3]. The bottom-right figure shows the absolute
error function |F (t)−G10(t)|. Clearly, G10(T ) = F (T ).

In order to demonstrate the uniform convergence on the main interval for
the approximation method Ia, we repeat the above approximation experiment
with n = 20, 30, and 40, and record the corresponding optimal λ values,
WMAE’s and WMSE’s on [0, 3] in Table 2. Figure 3 shows the graphs of the
absolute error functions |en(t)| on the main interval [0, 3] for n = 10, 20, 30,
and 40.

Table 2. Method Ia multiple approximation experiments: the
optimal λ values, WMAE’s and WMSE’s on [0, 3] for n = 10,
20, 30, and 40.

n λ WMAE[0,3] WMSE[0,3]
n
λ

10 5.2144 2.5630×10−3 5.2434×10−6 1.9
20 7.8416 1.4235×10−4 5.2073×10−9 2.6
30 9.8668 6.1359×10−6 4.5149×10−12 3.0
40 11.5772 1.8011×10−7 2.2966×10−15 3.5



93

Figure 3. Method Ia multiple approximation experiments:
The graphs of the absolute error functions |en(t)| on the main
interval [0, 3] for n = 10 (top-left), n = 20 (top-right), n = 30
(bottom-left), and n = 40 (bottom-right).
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4.2.2. Limitations of method Ia and critically damped functions. The approx-
imation method Ia has essential limitations for finite-radius-convergent target
functions. Suppose the radius of convergence of the target function power se-
ries expansion about the origin is R. Then we can only define the main interval
[0, T ] such that T < R to achieve the uniform convergence on [0, T ]. If T > R,
the approximation by the method Ia on [R, T ] is divergent and we cannot find
an appropriate combination of λ and n so the approximation error on [R, T ]
is sufficiently small.

The complete solutions to the above problem will be discussed in the ap-
proximation methods Ib and Ic. In this section, we shall introduce the concept
of critically damped approximation functions in P λn (Ω) spaces to the method
Ia and investigate its tendency as n increases.

Consider the approximation problem in Section 4.2.1 that the target func-
tion f(t) ∈ CB0 (Ω) is analytic and has its largest singularity at t = −R, R > 0.
Let T = R and [0, R] the main interval. Then, by Proposition 4.3, we can
find a family of functions gn(t;λ) in P λn (Ω) denoted by (4.3) with a parameter
λ > 0 such that the n + 1 initial conditions (4.1) are satisfied. The family
represents all the possible trajectories of gn(t;λ) tending to zero as t tends to
infinity on [R,∞).

Let λ vary. We shall investigate the tail behavior of gn(t;λ) on the tail
interval [T,∞). Since gn(t;λ) vanishes at infinity, its tail behavior is similar to
a finite energy damping physical system, whose amplitude, which is a function
of time, is returning to its steady state zero.

We shall introduce the concept of critically damping for the above physical
system with a continuous parameter controlling the damping. The system is
said to be overdamped, if its amplitude decreases monotonically and vanishes
at infinity on [T,∞) for some T > 0; The system is said to be underdamped, if
its amplitude crosses the t-axis at least once and vanishes at infinity on [T,∞).
Suppose the system assumes all the possible overdamped and underdamped
states continuously. Then there exists a critically damped amplitude function
that decreases slower than all the overdamped functions but does not oscillate
or cross the t-axis. In other words, a critically damped amplitude function
separates the overdamped and underdamped states.

A function gn(t;λ) in a decaying polynomial space P λn (Ω) may be used to
describe the above physical system, where t represents time and λ controls the
damping. Assume gn(t;λ) is positive at t = T on [T,∞). For a given λ > 0,
gn(t;λ) is said to be overdamped, if it decreases monotonically and vanishes
at infinity on [T,∞); it is underdamped, if it crosses the t-axis at least once
and vanishes at infinity on [T,∞); and it is critically damped, if it decreases
slower than all other overdamped functions but does not oscillate or cross the
t-axis. Denote the critical value of λ as λ∗.
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By Proposition 3.19, the tail behavior of gn(t;λ) on the tail interval [T,∞)
is mostly affected by its last term cnt

ne−λt. In particular, cnt
ne−λt affects the

function crossing the t-axis and the tail decaying rate. Thus, we may find the
critical value λ∗ for gn(t;λ) by minimizing |cn(λ)|.

The degree n for gn(t;λ) may affect the above minimization process. It is
obvious by Proposition 3.11 and the theory of polynomials that a function
gn(t;λ) with n even may not be able to cross the t-axis once in R, but with n
odd, it will definitely cross the t-axis at least once in R, although the crossing
point may not be in Ω. In this respect, the parity of n also affects how λ∗ is
found.

Let n be odd. If cn(λ) = 0 has a positive real root λ∗, then

gn(t;λ∗) =

n−1∑
k=0

ckt
ke−λ

∗t + 0 · tne−λ∗t = gn−1(t;λ∗).

Since its n-th term has a coefficient zero and has no contribution to the function
value, gn(t;λ∗) is actually in P λn−1(Ω) and may be considered as the projection
of a function of degree n onto a function of degree n−1. Although we are unable
to discuss the existence of λ∗ in general, Proposition 4.10 in the following shows
that such λ∗ may exist under certain conditions.

If n is even, then cn(λ) = 0 may not have a positive real root. In this case,
however, we may still find the critical value λ∗ by minimizing the absolute
value |cn(λ)|. By Proposition 4.5,

c′n(λ) = cn−1(λ).

Thus, the positive λ value such that |cn(λ)| is minimum is a positive real root
of cn−1(λ) = 0, where n− 1 is odd.

Proposition 4.10. (Conditions for the existence of the critical value of λ).
Let f(t) =

∑∞
k=0 akt

k with the ak having alternating signs. Then we can always
find a real λ such that

cn(λ) =

n∑
k=0

ak
λn−k

(n− k)!
= 0

for some n ∈ N. The proposition is also true if the ak have random signs.

Proof. Without loss of generality, assume a0 > 0. For every n ∈ N,

lim
λ→0

cn(λ) = an

and

lim
λ→∞

cn(λ) = lim
λ→∞

a0
λn

n!
+ O(λn−1) =∞.

By hypothesis the ak have alternating or random signs, we can always find an
n such that a0 and an have different signs. Therefore, there must be at least
one λ > 0 such that cn(λ) = 0. �
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In this section, we are interested in a particular critically damped approxi-
mation function in P λn+1(Ω) defined as

(4.8) gn(t;λ∗) = gn+1(t;λ∗) =
n∑
k=0

ckt
ke−λ

∗t + 0 · tn+1e−λ
∗t

such that the n + 2 initial conditions are satisfied. Define the approximation
error function as

en(t;λ∗) = f(t)− gn(t;λ∗).

Proposition 4.11.

en(t;λ∗) = O
(
tn+2

)
, t→ 0.

Proof. This is trivial, since the zero to (n+ 1)-st terms of the power series of
f(t) and gn(t) are matching. �

en(t;λ∗) has a funnel-like shape on its convergence interval [0, R) with no
error at the origin and the maximum error at t → R−. Overall, en(t;λ∗) has
a spindle shape on Ω which does not cross the t-axis other than at the origin
or at infinity.

Example 4.12. Asymptotic series expansion critically damped approximations
to finite-radius-convergent analytic functions.

Consider a target function

f(t) =
1

1 + t
,

which has a geometric power series about the origin as

f(t) =
∞∑
k=0

(−1)ktk

with a convergence interval [0, 1). Clearly, the ak are alternating with a0 > 0
and f(t) is positive on Ω.

Let n = 10 (even). Solving the equation c11(λ) = 0, we have the critical
value λ∗ = 3.9055. Substituting λ∗ = 3.9055 into g10(t;λ∗) in (4.8), we obtain
the critically damped approximation function

g10(t) = (1.0000 + 2.9055t+ 4.7208t2

+ 5.2072t3 + 4.4862t4 + 3.0852t5

+ 1.8431t6 + 0.9065t7 + 0.4358t8

+ 0.1467t9 + 0.0808t10)e−3.9055t

such that the n + 2 = 12 initial conditions are satisfied. In addition, the
coefficients ck, k = 0, 1, · · · , 10, are all positive.
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We cannot arbitrarily choose the main interval, since the convergence inter-
val is [0, 1). The largest possible main interval is [0, T ] for some T close to 1 or
simply for T = 1. Then we can only approximate f(t) on [0, 1]. For g10(t;λ∗ =
3.9055), we have WMAE = 3.7385 × 10−4 and WMSE = 8.0427 × 10−9 on
[0, 1].

Figure 4 shows the overall graphs of the critically damped approximation
function g10(t) (blue line) and the target function f(t) (red line) on [0, 6],
which is six times the length of the main interval [0, 1], since we cannot plot
the overall graph of f(t) on the unbounded interval Ω.

Figure 5 shows the approximation by the critically damped function on the
main interval [0, 1]. The left figure shows the critically damped function g10(t)
(blue line) and the target function f(t) (red line) almost coincide with each
other and are indistinguishable on [0, 1]. The right figure shows the absolute
error function |e10(t)| = |f(t)− g10(t)| on [0, 1], which has a funnel-like shape
with no error at the origin and the maximum error at the right end-point
T = 1.

Figure 4. Method Ia overall approximation: the critically
damped approximation function g10(t) (blue line) and the tar-
get function f(t) (red line) on [0, 6].
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Figure 5. Method Ia approximation by the critically damped
function on the main interval [0, 1] (n = 10): Left – the criti-
cally damped approximation function g10(t) (blue line) and the
target function f(t) (red line) almost coincide with each other;
Right – the absolute error function |e10(t)| = |f(t)− g10(t)|.
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If we set λ = 3.4055 or λ = 6.9055 in gn+1(t;λ) ∈ P λn+1(Ω) in (4.8), we obtain
the underdamped or the overdamped approximation function, g11(t; 3.4055)
or g11(t; 6.9055), respectively. Note the coefficients for the tn+1e−λt terms in
g11(t; 3.4055) and g11(t; 6.9055) are not zeros, and the two approximation func-
tions match up to 11-th derivatives of f(t) at the origin. Figure 6 shows the
graphs of the target function f(t) (red line), the absolute underdamped, criti-
cally damped, and overdamped approximation functions |g11(t; 3.4055)| (green
line), g10(t; 3.9055) (blue line), and g11(t; 6.9055) (azure line) on [0, 6]. Clearly,
for sufficiently large t, e.g. t > 4, The overdamped approximation function
g11(t; 6.9055) vanishes faster than the critically damped function g10(t; 3.9055),
which vanishes faster than the absolute underdamped function g11(t; 3.4055),
as t approaches infinity.

Figure 6. Method Ia critically damped approximation experi-
ment: the target function f(t) (red line) and its approximation
functions (matching up to 11-th derivatives of f(t) at the ori-
gin): the absolute underdamped, critically damped, and over-
damped approximation functions |g11(t; 3.4055)| (green line),
g10(t; 3.9055) (blue line), and g11(t; 6.9055) (azure line) on [0, 6].
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We repeat the above approximation experiment for n = 50, 100, 500, and
1000, and obtain the corresponding critically damped approximation functions
g50(t), g100(t), g500(t), and g1000(t). We calculate the approximate time span
for each approximation function in Table 3. It is interesting the time span of
each approximation function slowly expands as n increases. Figure 7 shows
the graphs of g10(t), g50(t), g100(t), g500(t), g1000(t), and f(t). Clearly, the
approximation to f(t) by critically damped functions is uniformly convergent
on the convergence interval [0, 1). Although each function approximates f(t)
well outside [0, 1] but within its time span, it does poorly for any sufficiently
large t outside its time span.

Table 3. Method Ia multiple approximation experiments by
critically damped approximation functions: the critical values
λ∗ and the approximate time spans for n = 10, 50, 100, 500,
and 1000.

n λ∗ n
λ∗

10 3.9055 2.56
50 15.179 3.29
100 29.170 3.43
500 140.72 3.55
1000 280.03 3.57
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Figure 7. Method Ia multiple experiments by critically
damped approximation functions g10(t) (blue line), g50(t)
(green line), g100(t) (azure line), g500(t) (purple line), g1000(t)
(bluegreen line), and the target function f(t) (red line) on [0, 6].
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4.2.3. Method Ib: asymptotic series expansion about an arbitrary point. In
this section, we shall develop the approximation method Ib, asymptotic se-
ries expansion about an arbitrary center, to address the problem of a target
function being finite-radius-convergent about the origin and the main interval
right end-point being outside the convergence interval. The idea is to expand
the target function into a power series about another center such that the new
convergence interval completely contains the main interval.

Without loss of generality, assume f(t) is analytic with a finite radius of
convergence on Ω and has its largest singularity at t = −R. Let the main
interval be [0, T ] and T > 0 the second expansion center. Then f(t) can be
expanded into a power series about t = T with the radius of convergence
T + R. This implies the second convergence interval (−R, 2T + R) ⊇ [0, T ].
Thus, the second asymptotic series is not half-convergent half-divergent but
rather convergent on [0, T ].

Let λ > 0 and n ∈ N fixed. The new approximation problem is to find
a function g(t) = gn(t) ∈ P λn (Ω) which satisfies the boundary conditions at
t = T , i.e. g(t) matches f(t) up to the n-th derivatives at t = T , denoted by

g(T ) = f(T ), g′(T ) = f ′(T ), · · · , g(n)(T ) = f (n)(T ).

Then we shall call g(t) an approximation to f(t) if it is sufficiently “close” to
the latter on [0, T ] and is satisfactorily bounded on [T,∞).

Equivalently, the above boundary conditions can be rephrased in the form
of power series expansion. Expand f(t) into a power series about t = T as

f(t) =
∞∑
k=0

f (k)(T )

k!
(t− T )k(4.9)

=
∞∑
k=0

dk(t− T )k, t ∈ (−R, 2T +R),

where

dk =
f (k)(T )

k!
, k = 0, 1, · · · .

Consider the power series expansion of g(t) about t = T as

g(t) =
∞∑
k=0

d′k(t− T )k

on Ω (infinite radius of convergence). Then the boundary conditions are

(4.10) d′k = dk, k = 0, 1, · · · , n.

We shall show such a g(t) exists and uniformly converges to f(t) on [0, T ] ⊂
(−R, 2T +R).
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By Theorem 2.32, the power series in (4.9) converges absolutely on (−R, 2T+
R). And for every λ > 0,

eλ(t−T ) =
∞∑
k=0

λk

k!
(t− T )k

absolutely on R. Define a Cauchy product

(4.11)

( ∞∑
k=0

dk(t− T )k

)( ∞∑
k=0

λk

k!
(t− T )k

)
=
∞∑
k=0

bk(t− T )k,

where

bk =
k∑
i=0

di
λk−i

(k − i)!

=

k∑
i=0

f (i)(T )

i!

λk−i

(k − i)!
, k = 0, 1, · · · .

By Theorem 2.30,
∑∞

k=0 bk(t−T )k converges to f(t)eλ(t−T ) absolutely for every
t ∈ (−R, 2T +R).

Since
∑∞

k=0 bk(t−T )k is half-convergent half-divergent on Ω, we consider it
as an asymptotic series expansion about t = T . Let

gn(t) =

n∑
k=0

bk(t− T )ke−λ(t−T )(4.12)

=

n∑
k=0

ckt
ke−λt

= pn(t)e−λt,

where the ck can be calculated from the bk and

(4.13) pn(t) =

n∑
k=0

ckt
k =

n∑
k=0

bk(t− T )keλT .

Then for every λ > 0, we can write

(4.14) f(t) ∼ lim
n→∞

gn(t;λ), t→ T.

Theorem 4.13. (Existence theorem for method Ib). Expand f(t) asymptot-
ically into a series about t = T as in (4.14). Then for every λ > 0 and
n ∈ N, the partial sum gn(t) in (4.12) of the new asymptotic series satisfies
the boundary conditions in (4.10).



104

Proof. (Constructive proof). For every fixed λ > 0, consider the asymp-
totic power series f(t) =

∑∞
k=0 dk(t − T )k in (4.9) and the Cauchy product∑∞

k=0 bk(t − T )k in (4.11). The coefficients bk and dk, k = 0, 1, · · · , n, are
related by the following equations:

b0 = d0,

b1 = d0λ+ d1,

b2 = d0
λ2

2!
+ d1λ+ d2,

...

bn = d0
λn

n!
+ d1

λn−1

(n− 1)!
+ · · ·+ dn−1λ+ dn,

with the general row equation as

bk =

k∑
i=0

di
λk−i

(k − i)!
, k = 0, 1, · · · , n,

or in the matrix form as


b0
b1
b2
...
bn

 =



1 0 0 · · · 0
λ 1 0 · · · 0
λ2

2!
λ 1 · · · 0

...
...

...
...

...
λn

n!

λn−1

(n− 1)!

λn−2

(n− 2)!
· · · 1




d0

d1

d2
...
dn

 .

Let this matrix be B; then B is (n+ 1)× (n+ 1).
Next, rewrite pn(t) in (4.13) as

pn(t) =

(
n∑
k=0

c′kt
k

)
eλT .
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Then the c′k can be obtained from the bk as

c′0 = b0

(
0
0

)
+ b1

(
1
0

)
(−T ) + · · · + bn

(
n
0

)
(−T )n,

... =
...

c′n−2 = bn−2

(
n− 2
n− 2

)
+ bn−1

(
n− 1
n− 2

)
(−T ) + bn

(
n

n− 2

)
(−T )2,

c′n−1 = bn−1

(
n− 1
n− 1

)
+ bn

(
n

n− 1

)
(−T ),

c′n = bn

(
n
n

)
,

with the general term as

c′k =
n∑
i=k

bi

(
i
k

)
(−T )i−k, k = 0, 1, · · · , n,

or in the matrix form as


c′0
...

c′n−2

c′n−1

c′n

 =



(
0
0

) (
1
0

)
(−T )

(
2
0

)
(−T )2 · · ·

(
n
0

)
(−T )n

...
...

... · · ·
...

0 · · ·
(
n− 2
n− 2

) (
n− 1
n− 2

)
(−T )

(
n

n− 2

)
(−T )2

0 · · · 0

(
n− 1
n− 1

) (
n

n− 1

)
(−T )

0 · · · 0 0

(
n
n

)




b0
...

bn−2

bn−1

bn

.

Let the above matrix be A; then A is (n+ 1)× (n+ 1). For n = 4, we have

A =


1 −T T 2 −T 3 T 4

0 1 −2T 3T 2 −4T 3

0 0 1 −3T 6T 2

0 0 0 1 −4T
0 0 0 0 1

 .
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Thus, the dk are transformed into the c′k by the matrix AB in λ and T . For
n = 4, we have

AB =


1 −T T 2 −T 3 T 4

0 1 −2T 3T 2 −4T 3

0 0 1 −3T 6T 2

0 0 0 1 −4T
0 0 0 0 1




1 0 0 0 0
λ 1 0 0 0
λ2

2! λ 1 0 0
λ3

3!
λ2

2! λ 1 0
λ4

4!
λ3

3!
λ2

2! λ 1

,

or 
c′0
c′1
c′2
c′3
c′4

 =


1 −T T 2 −T 3 T 4

0 1 −2T 3T 2 −4T 3

0 0 1 −3T 6T 2

0 0 0 1 −4T
0 0 0 0 1




1 0 0 0 0
λ 1 0 0 0
λ2

2! λ 1 0 0
λ3

3!
λ2

2! λ 1 0
λ4

4!
λ3

3!
λ2

2! λ 1



d0

d1

d2

d3

d4

 .

Note that AB 6= BA and the matrix multiplication does not commute.
Clearly, both A and B are triangular and invertible. Thus, we conclude

gn(t) =
n∑
k=0

pn(t)e−λt =
n∑
k=0

(
c′ke

λT
)
tke−λt

is in P λn (Ω) and satisfies the boundary conditions (4.10). �

Theorem 4.14. (Uniform convergence theorem for method Ib). In the above
theorem, for every λ > 0, gn(t) converges to f(t) uniformly on [0, T ] ⊂
(−R, 2T +R).

Proof. Let λ > 0 be fixed. Since the Cauchy product
∑∞

k=0 bk(t − T )k in
(4.11) converges absolutely for every t ∈ (−R, 2T +R), by Proposition 2.37, it

converges to f(t)eλ(t−T ) uniformly on (−R, 2T +R).
Then for any ε > 0, there exists an N ∈ N such that whenever n > N , we

have ∣∣∣∣∣f(t)eλ(t−T ) −
n∑
k=0

bk(t− T )k

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

bk(t− T )k

∣∣∣∣∣ < ε

for all t ∈ (−R, 2T +R). It follows that for all t ∈ (−R, 2T +R) when n > N∣∣∣∣∣
(
f(t)eλ(t−T ) −

n∑
k=0

bk(t− T )k

)
e−λ(t−T )

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

bk(t− T )k

∣∣∣∣∣ ∣∣∣e−λ(t−T )
∣∣∣ < ε,
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since
∣∣e−λ(t−T )

∣∣ ≤ 1. Therefore,∣∣∣∣∣f(t)−
n∑
k=0

bk(t− T )ke−λ(t−T )

∣∣∣∣∣ < ε,

and

lim
n→∞

gn(t;λ) = lim
n→∞

n∑
k=0

bk(t− T )ke−λ(t−T ) = f(t)

uniformly on (−R, 2T +R) ⊃ [0, T ]. �

For any fixed n ∈ N, there is a family of approximation functions gn(t;λ)
with a parameter λ > 0 satisfying the boundary conditions (4.10), and for every
λ > 0, gn(t;λ) converges to f(t) uniformly on [0, 2T+R). It is obvious for every
λ > 0, gn(t;λ) obtained above is continuous, bounded, integral-convergent, and
vanishing at infinity on Ω. In addition, gn(t;λ) has the following properties.

Proposition 4.15. For every λ > 0,

gn(T ;λ) = f(T ).

Proof.

gn(T ;λ) =
n∑
k=0

bk(t− T )ke−λ(t−T )

∣∣∣∣∣
t=T

= b0

= f(T ).

�

Proposition 4.16. For every λ > 0,

d

dλ
bk(λ) = bk−1(λ), k = 1, 2, · · · , n.

Proof. By definition,

bk(λ) =

k∑
i=0

di
λk−i

(k − i)!
.
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Then

d

dλ
bk(λ) =

d

dλ

(
k−1∑
i=0

di
λk−i

(k − i)!
+ dk

)

=
k−1∑
i=0

di
(k − i)λk−i−1

(k − i)!

=

k−1∑
i=0

di
λk−1−i

(k − 1− i)!

= bk−1(λ).

�

Next, we shall find the optimal λ and the final approximation function.
There are various methods to find the optimal λ, e.g. by matching the definite
integrals on the main interval, which has been discussed in method Ia.

Another obvious method to obtain the optimal λ is by matching the function
values at the origin, i.e. to solve the equation

gn(0;λ) = f(0),

which is

c0(λ) = f(0).

Since c0(λ) is a polynomial in λ of degree up to n, the above equation may
have multiple roots. We shall choose the optimal value of λ for which the
corresponding WMSE is minimum.

For every λ > 0 and n ∈ N, define the approximation error function as

en(t;λ) = f(t)− gn(t;λ).

Proposition 4.17.

lim
t→T

en(t;λ) = 0.

Proof. This is the direct result of Proposition 4.15. �

Similarly to method Ia, the approximation error function en(t;λ) in method
Ib has a funnel-like shape on [0, T ]. It has no error at t = T and increases as
t decreases. The error is forced to zero at the origin if we match the function
values at the origin. In this case, the maximum error occurs somewhere near
t = 1

λ .

Example 4.18. Asymptotic series expansion about an arbitrary point for
finite-radius-convergent analytic functions.
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Let the target function be f(t) = 1
1+t , same as in Example 4.12. Let T = 6

and the main interval [0, 6]. Method Ia fails because f(t) is finite-radius-
convergent about the origin and is convergent only on [0, 1), which does not
contain the main interval [0, 6]. Let n = 10. Expand f(t) asymptotically into
a power series about t = T as

f(t) ∼ 0.1429− 2.0408× 10−2(t− 6) + 2.9155× 10−3(t− 6)2

− 4.1649× 10−4(t− 6)3 + 5.9499× 10−5(t− 6)4

− 8.4999× 10−6(t− 6)5 + 1.2143× 10−6(t− 6)6

− 1.7347× 10−7(t− 6)7 + 2.4781× 10−8(t− 6)8

− 3.5401× 10−9(t− 6)9 + 5.0573× 10−10(t− 6)10

+ O((t− 6)11), t→ 6,

on convergence interval (−1, 13) ⊃ [0, 6]. By Theorem 4.13, there is a family
of functions g10(t;λ) in (4.12) satisfying the boundary conditions (4.10).

We match the function values at the origin to find the optimal λ. Solving
equation c0(λ) = f(0) and choosing the root with the minimum WMSE on
[0, 6], we obtain the optimal λ = 0.6410, and the final approximation function
is

g10(t) = (1.0000− 0.2585t+ 0.2837t2 − 9.3431× 10−2t3

+ 2.9525× 10−2t4 − 5.8604× 10−3t5 + 8.9427× 10−4t6

− 9.2713× 10−5t7 + 6.7291× 10−6t8 − 2.9374× 10−7t9

+ 6.6410× 10−9t10)e−0.6410t.

The corresponding WMSE is 6.8538×10−5 and WMAE is 1.1014×10−2 on
[0, 6].

The integration function of g10(t) is

G10(t) = 3.2190− (3.2190 + 1.0635t+ 0.4701t2

+ 5.8898× 10−3t3 + 2.4302× 10−2t4 − 2.7894× 10−3t5

+ 6.7872× 10−4t6 − 6.5597× 10−5t7 + 6.3328× 10−6t8

− 2.9661× 10−7t9 + 1.0360× 10−8t10)e−0.6410t.
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Figure 8 shows the overall approximation results on [0, 30], which is five
times the length of the main interval [0, 6]. The left figure shows the overall
graphs of the approximation function g10(t) (blue line) and the target function
f(t) (red line). The right figure shows the overall graphs of G10(t) (blue line)
and F (t) (red line), the integration functions of g10(t) and f(t), respectively. In
each figure, the graphs of the target function and the approximation function
almost coincide with each other and are indistinguishable on [0, 6]. In addition,
g10(t) is nicely bounded on [6,∞) and vanishes at infinity, and G10(t) grows
slowly on [6,∞) and approaches a horizontal asymptote y = 3.2190 as t tends
to infinity. Notice that F (t) does not approach any horizontal asymptote
because f(t) is integral-divergent on Ω.

Figure 8. Method Ib overall approximations on [0, 30] (n =
10): Left – the overall graphs of the approximation function
g10(t) (blue line) and the target function f(t) (red line); Right
– the overall graphs of G10(t) (blue line) and F (t) (red line),
the integration functions of g10(t) and f(t), respectively.
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Figure 9. Method Ib approximations on the main interval
[0, 6] (n = 10): Top-left – g10(t) (blue line) and f(t) (red
line) almost coincide with each other; Top-right – the abso-
lute error function |e10(t)| of the approximation error function
e10(t) = f(t)−g10(t); Bottom-left – G10(t) (blue line) and F (t)
(red line) almost coincide with each other; Bottom-right – the
absolute error function |F (t)−G10(t)|.
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Figure 9 shows the approximation results on the main interval [0, 6]. The
top-left figure shows g10(t) (blue line) and f(t) (red line) almost coincide with
each other on [0, 6]. The top-right figure is the absolute error function |e10(t)|
of the approximation error function e10(t) = f(t)− g10(t). |e10(t)| starts with
no error at t = T and asymptotically increases as t decreases to zero. Since
we match the function values at the origin, e10(t) also crosses the t-axis at the
origin inside [0, 6]. The bottom-left figure shows G10(t) (blue line) and F (t)
(red line) almost coincide with each other on [0, 6]. The bottom-right figure
shows the absolute error function |F (t)−G10(t)|.

In order to demonstrate the uniform convergence on the main interval for
the approximation method Ib, we repeat the above approximation experiment
with n = 20, 30, 40, and 50, and record the corresponding optimal λ values,
WMAE’s and WMSE’s on [0, 6] in Table 4. Figure 10 shows the graphs of the
absolute error functions |en(t)| for n = 20, 30, 40, and 50.

Table 4. Method Ib multiple approximation experiments: the
optimal λ values, WMAE’s and WMSE’s on [0, 6] for n = 10,
20, 30, 40, and 50.

n λ WMAE[0,6] WMSE[0,6]
n
λ

10 0.6410 1.1014×10−2 6.8538×10−5 15.6
20 1.0395 9.6703×10−4 3.1602×10−7 19.2
30 1.4396 1.0026×10−4 2.4424×10−9 20.8
40 1.8398 1.1274×10−5 2.4173×10−11 21.7
50 2.2397 1.3308×10−6 2.7703×10−13 22.3
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Figure 10. Method Ib multiple approximation experiments:
The graphs of the absolute error functions |en(t)| on the main
interval [0, 6] for n = 20 (top-left), n = 30 (top-right), n = 40
(bottom-left), and n = 50 (bottom-right).
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4.2.4. Method Ic: double asymptotic series expansions. In this section, we shall
develop the approximation method Ic, double asymptotic series expansions, as
another solution to approximate finite-radius-convergent analytic functions.
The method can be described in the following steps. First, we asymptotically
expand the target function about the origin and obtain the left or first approx-
imation function. The difference function between the target function and the
left approximation function is also obtained. Next, we asymptotically expand
the difference function about the right end-point of the main interval and ob-
tain the right or second approximation function. Finally, we merge the left
and right approximation functions to form the final approximation function.

Without loss of generality, we assume f(t) is finite-radius-convergent ana-
lytic on Ω, and has its largest singularity at t = −R, R > 0. Let the main
interval be [0, T ] and T > R the second expansion center. We wish to find a
function gm(t;λ) ∈ P λm(Ω) for some m and λ such that gm(t;λ) matches up to
the n-th derivatives of f(t) at the origin for some n < m and also matches or
approximates the (n + 1)-st to m-th derivatives at t = T . Then we shall call
gm(t;λ) an approximation to f(t) if it is sufficiently “close” to the latter on
[0, T ] and is nicely bounded on [T,∞).

By Theorem 4.10, we can find a critical λ and a critically damped function
gn(t;λ) ∈ P λn (Ω) such that the n + 1 initial conditions are satisfied. Denote
gn(t;λ) the first or left approximation function.

Let
rn(t) = f(t)− gn(t;λ)

and an integer
m = [λ(2T +R)]− 1.

Expand rn(t) asymptotically as a power series about t = T as

(4.15) rn(t) ∼
m∑
k=0

dk(t− T )k +O
(
(t− T )m+1

)
, t→ T

on convergence interval (−R, 2T +R) ⊃ [0, T ].

Theorem 4.19. (Existence theorem for the second approximation function).
In the above problem, for the critical λ and m, there exists a function in P λm(Ω)
which matches up to the m-th derivatives of rn(t) at t = T .

Proof. (Constructive proof). For the critical λ and m = [λ(2T +R)]− 1 ∈ N,
Theorem 4.13 implies there exists a function in P λm(Ω) matching up to the
m-th derivatives of rn(t) at t = T . The following constructive proof will reveal
more details.

Rewrite the partial sum in Equation (4.15) in ascending order of t as
m∑
k=0

dk(t− T )k =

m∑
k=0

bkt
k.



115

The bk can be obtained from the dk as

b0 = d0

(
0
0

)
+ d1

(
1
0

)
(−T ) + · · · + dm

(
m
0

)
(−T )m,

... =
...

bm−2 = dm−2

(
m− 2
m− 2

)
+ dm−1

(
m− 1
m− 2

)
(−T ) + dm

(
m

m− 2

)
(−T )2,

bm−1 = dm−1

(
m− 1
m− 1

)
+ dm

(
m

m− 1

)
(−T ),

bm = dm

(
m
m

)
,

with the general term as

bk =
m∑
i=k

di

(
i
k

)
(−T )i−k, k = 0, 1, · · · ,m,

or in the matrix form as


b0
...

bm−2

bm−1

bm

 =



(
0
0

) (
1
0

)
(−T )

(
2
0

)
(−T )2 · · ·

(
m
0

)
(−T )m

...
...

... · · ·
...

0 · · ·
(
m− 2
m− 2

) (
m− 1
m− 2

)
(−T )

(
m

m− 2

)
(−T )2

0 · · · 0

(
m− 1
m− 1

) (
m

m− 1

)
(−T )

0 · · · 0 0

(
m
m

)




d0
...

dm−2

dm−1

dm

.

Let this matrix be A; then A is (m+ 1)× (m+ 1). For m = 4, we have

A =


1 −T T 2 −T 3 T 4

0 1 −2T 3T 2 −4T 3

0 0 1 −3T 6T 2

0 0 0 1 −4T
0 0 0 0 1

 .
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Next, consider the m-th partial sum of the Cauchy product( ∞∑
k=0

bkt
k

)( ∞∑
k=0

λk

k!
tk

)
=

( ∞∑
k=0

c′kt
k

)
.

Then the c′k can be calculated from the bk as

c′0 = b0

c′1 = b0λ+ b1

c′2 = b0
λ2

2!
+ b1λ+ b2

... =
...

c′m = b0
λm

m!
+ b1

λm−1

(m− 1)!
+ · · ·+ bm−1λ+ bm,

with the general term as

c′k = b0
λk

k!
+ b1

λk−1

(k − 1)!
+ · · ·+ bk−1λ+ bk, k = 0, 1, · · · ,m,

or in the matrix form as


c′0
c′1
c′2
...
c′m

 =



1 0 0 · · · 0
λ 1 0 · · · 0
λ2

2!
λ 1 · · · 0

...
...

...
...

...
λm

m!

λm−1

(m− 1)!

λm−2

(m− 2)!
· · · 1




b0
b1
b2
...
bm

,

where λ is the critical value in the first critically damped approximation func-
tion gn(t;λ). Let this matrix be B; then B is (m+ 1)× (m+ 1).

Thus, the dk are transformed into the c′k by matrix BA. For m = 4, we
have

BA =


1 0 0 0 0
λ 1 0 0 0
λ2

2! λ 1 0 0
λ3

3!
λ2

2! λ 1 0
λ4

4!
λ3

3!
λ2

2! λ 1




1 −T T 2 −T 3 T 4

0 1 −2T 3T 2 −4T 3

0 0 1 −3T 6T 2

0 0 0 1 −4T
0 0 0 0 1

,
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where λ and T are known, and
c′0
c′1
c′2
c′3
c′4

 =


1 0 0 0 0
λ 1 0 0 0
λ2

2! λ 1 0 0
λ3

3!
λ2

2! λ 1 0
λ4

4!
λ3

3!
λ2

2! λ 1




1 −T T 2 −T 3 T 4

0 1 −2T 3T 2 −4T 3

0 0 1 −3T 6T 2

0 0 0 1 −4T
0 0 0 0 1



d0

d1

d2

d3

d4

 .

Let

sm(t) =

m∑
k=0

c′kt
ke−λt.

Clearly sm(t) ∈ P λm(Ω). Expand sm(t) asymptotically into a power series about
t = T as

sm(t) =
m∑
k=0

d′k(t− T )k +O
(
(t− T )m+1

)
, t→ T.

It is easily verified the vector [d′0 d
′
1 · · · d′m]T can be obtained from [c′0 c

′
1 · · · c′m]T

by left-multiplication withA−1B−1, or from [d0 d1 · · · dm]T by left-multiplication
with A−1B−1BA = I, an identity matrix, which implies

d′k = dk, k = 0, 1, · · · ,m,

i.e. sm(t) matches up to the m-th derivatives of rn(t) at t = T .
Since the zero to n-th terms of rn(t) are zeros,

rn(t) ∼ O
(
tn+1

)
, t→ 0.

The fact the approximation function sm(t) matches up to the m-th order
derivatives at t = T implies sm(t) should be in a space of dimension m − n.
We can simply drop the zero to n-th terms of sm(t) and obtain the second or
right approximation function

(4.16) gm\n(t) = gm\n(t;λ) =
m∑

k=n+1

c′kt
ke−λt.

This results in an approximation error function

n∑
k=0

c′kt
ke−λt,

which uniformly converges to the limit function

0 = 0 + 0t+ · · ·+ 0tn

on [0, T ].
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Thus, the matrix B above is actually (m−n)× (m+ 1) and the general row
equation can be rewritten as

c′k = b0
λk

k!
+ b1

λk−1

(k − 1)!
+ · · ·+ bk−1λ+ bk, k = n+ 1, n+ 2, · · · ,m.

In conclusion, for the critical value of λ and n, gm\n(t) matches or approxi-
mates the (n+ 1)-st to m-th derivatives of rn(t) at t = T . �

Theorem 4.20. (Merging and uniform convergence theorem for method Ic).
In the above problem, for the critical value of λ and n < m, let

(4.17) gm(t) = gm(t;λ) = gn(t;λ) + gm\n(t;λ).

Then gm(t) converges to f(t) on [0, T ] uniformly.

Proof. For the critical value of λ, as n tends to infinity, m = [λ(2T+R)]−1 also
tends to infinity. By Theorem 4.14, as both n,m tend to infinities, gm\n(t;λ)
converges to rn(t), i.e.

lim
n,m→∞

gm\n(t;λ) = rn(t)

on (−R, 2T +R) uniformly.
For every t ∈ (−R, 2T +R), we have

|f(t)− gm(t)| =
∣∣f(t)−

(
gn(t) + gm\n(t)

)∣∣
=

∣∣(f(t)− gn(t))− gm\n(t)
∣∣

=
∣∣rn(t)− gm\n(t)

∣∣ .
It follows that, as both n,m tend to infinities, gm(t) converges to f(t), i.e.

lim
n,m→∞

gm(t) = f(t)

on (−R, 2T +R) ⊃ [0, T ] uniformly. �

In the above problem, for the critical value of λ and n,m, define the ap-
proximation error function as

em(t) = em(t;λ) = f(t)− gm(t;λ).

Proposition 4.21. em(t) has two asymptotic series expansion centers, the
origin and t = T .

Proof. Trivial. Since gn(t) and gm\n(t) are the partial sums of two asymptotic
series centered at the origin and t = T , respectively, the approximation error
function em(t) has two asymptotic series expansion centers. �

Proposition 4.22. |em(t)| has a maximum value at a point near either n
λ or

n+1
λ on [0, T ].
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Proof. There are basically two cases of the approximation error function em(t)
in the above problem. The first case is the error function has different signs
on [0, nλ ] and on [n+1

λ , T ]. Then, by continuity, it must cross the t-axis between
n
λ and n+1

λ , and the maximum absolute error occurs near either point because
of the asymptotically increasing properties.

The second case is the error function has the same sign on both intervals.
Thus, by continuity and the asymptotically increasing properties, the maxi-
mum absolute error occurs between the above two points. �

It follows that |em(t)| has two types of curve shapes on the main interval
[0, T ], a bell (spindle) shape or an M-shape, which may be affected by the
parities of n and m.

Theorem 4.23. (Degree extension or time span expansion theorem). In the
above problem, for the critical λ, the first critically damped approximation
function gn(t;λ) can be extended to the final approximation function gm(t;λ)
with the maximum degree

m = [λ(2T +R)]− 1

such that the main interval [0, T ] and the time span interval of gm(t;λ) are
completely contained inside the convergence interval (−R, 2T +R).

Proof. Trivial. Approximately,

m

λ
=

[λ(2T +R)]− 1

λ
< 2T +R

implies

[0,
m

λ
] ⊂ [0, 2T +R).

�

Example 4.24. Double asymptotic series expansions for finite-radius-convergent
analytic functions.

Let the target function be f(t) = 1
1+t , same as in Example 4.12 and 4.18.

We apply method Ic to this approximation problem.
Let n = 4, T = 6, and the main interval [0, 6]. By Theorem 4.10, we have a

critical λ = 2.1806 and a critically damped first approximation function

g4(t) = (1 + 1.1806t+ 1.1969t2 + 0.5312t3 + 0.4109t4)e−2.1806t

satisfying n+ 2 = 6 initial conditions.
The first approximation function only converges to f(t) on [0, 1) and the

approximation cannot be improved by increasing n. We pursue the second
approximation function which matches the boundary conditions at t = 6.

The remainder function is

r4(t) = f(t)− g4(t).
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By Theorem 4.23, we set

m = [λ(2T +R)]− 1 = 27.

Then we shall find the second approximation function satisfying the m−n = 23
boundary conditions for r4(t) at t = 6.

We expand r4(t) asymptotically into a power series about t = 6 and obtain

r4(t) ∼ 0.1414− 1.8132× 10−2(t− 6) + 1.1964× 10−3(t− 6)2

+ 4.0715× 10−4(t− 6)3 − 2.1661× 10−4(t− 6)4

+ 5.7970× 10−5(t− 6)5 − 9.6748× 10−6(t− 6)6

+ 6.4686× 10−7(t− 6)7 + 1.7758× 10−7(t− 6)8

− 7.4803× 10−8(t− 6)9 + 1.5216× 10−8(t− 6)10

− 1.8761× 10−9(t− 6)11 + 6.8582× 10−11(t− 6)12

+ 3.1373× 10−11(t− 6)13 − 9.5462× 10−12(t− 6)14

+ 1.6239× 10−12(t− 6)15 − 1.8446× 10−13(t− 6)16

+ 1.0382× 10−14(t− 6)17 + 1.1749× 10−15(t− 6)18

− 4.6418× 10−16(t− 6)19 + 8.4969× 10−17(t− 6)20

− 1.1276× 10−17(t− 6)21 + 1.1340× 10−18(t− 6)22

− 7.4490× 10−20(t− 6)23 − 7.3244× 10−22(t− 6)24

+ 1.2424× 10−21(t− 6)25 − 2.5887× 10−22(t− 6)26

+ 3.8874× 10−23(t− 6)27 +O
(
(t− 6)28

)
, t→ 6.

By Theorem 4.19, the coefficients {c′k}27
k=5 of g27\4(t;λ) in (4.16) are ob-

tained, and we have

g27\4(t) = (8.6935× 10−2t5 + 4.0355× 10−2t6 + 1.0132× 10−2t7

+ 2.4110× 10−3t8 + 5.6881× 10−4t9 + 1.1416× 10−4t10

+ 2.0226× 10−5t11 + 3.4645× 10−6t12 + 5.6053× 10−7t13

+ 8.1200× 10−8t14 + 1.0834× 10−8t15 + 1.4143× 10−9t16

+ 1.7826× 10−10t17 + 2.0439× 10−11t18 + 2.1364× 10−12t19

+ 2.2095× 10−13t20 + 2.3477× 10−14t21 + 2.3345× 10−15t22

+ 1.9716× 10−16t23 + 1.4959× 10−17t24 + 1.3207× 10−18t25

+ 1.4031× 10−19t26 + 1.2530× 10−20t27)e−2.1806t.
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By Theorem 4.20, we have the final approximation function g27(t) as

g27(t) = g4(t) + g27\4(t)

= (1 + 1.1806t+ 1.1969t2 + 0.5312t3 + 0.4109t4

+ 8.6935× 10−2t5 + 4.0355× 10−2t6 + 1.0132× 10−2t7

+ 2.4110× 10−3t8 + 5.6881× 10−4t9 + 1.1416× 10−4t10

+ 2.0226× 10−5t11 + 3.4645× 10−6t12 + 5.6053× 10−7t13

+ 8.1200× 10−8t14 + 1.0834× 10−8t15 + 1.4143× 10−9t16

+ 1.7826× 10−10t17 + 2.0439× 10−11t18 + 2.1364× 10−12t19

+ 2.2095× 10−13t20 + 2.3477× 10−14t21 + 2.3345× 10−15t22

+ 1.9716× 10−16t23 + 1.4959× 10−17t24 + 1.3207× 10−18t25

+ 1.4031× 10−19t26 + 1.2530× 10−20t27)e−2.1806t.

The corresponding WMAE on [0, 6] is 7.8239×10−3, occurring at t = 1.8463,
between 4

λ and 5
λ . The corresponding WMSE on [0, 6] is 9.6544×10−5.

In addition, the integration function of g27(t) is

G27(t) = 2.6729− (2.6729 + 4.8286t+ 4.6744t2 + 2.9987t3

+ 1.5019t4 + 0.5729t5 + 0.1937t6 + 5.4577× 10−2t7

+ 1.3610× 10−2t8 + 3.0296× 10−3t9 + 6.0376× 10−4t10

+ 1.0931× 10−4t11 + 1.8178× 10−5t12 + 2.7827× 10−6t13

+ 3.9338× 10−7t14 + 5.1774× 10−8t15 + 6.3791× 10−9t16

+ 7.3507× 10−10t17 + 7.9146× 10−11t18 + 8.0078× 10−12t19

+ 7.6627× 10−13t20 + 6.9047× 10−14t21 + 5.7767× 10−15t22

+ 4.4618× 10−16t23 + 3.2325× 10−17t24 + 2.2211× 10−18t25

+ 1.3549× 10−19t26 + 5.7460× 10−21t27)e−2.1806t.
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Figure 11 shows the approximation results on [0, 18], which is three times
the length of the main interval [0, 6]. There are three function graphs in the
figure: the final approximation function g27(t) (blue line), the target function
f(t) (red line), and the first critically damped approximation function g4(t)
(green line). The graphs of g27(t) and f(t) almost coincide with each other
and are indistinguishable on [0, 6]. In addition, g27(t) is nicely bounded on
[6,∞) and vanishes at infinity.

Figure 11. Method Ic overall approximations on [0, 18] (n =
4,m = 27): the final approximation function g27(t) (blue
line), the target function f(t) (red line), and the first critically
damped approximation function g4(t) (green line).
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Figure 12 shows the approximation results on the main interval [0, 6]. The
left figure shows the final approximation function g27(t) (blue line) and the
target function f(t) (red line) almost coincide with each other on [0, 6]. It also
shows the first critically damped approximation function g4(t) (green line) only
approximates f(t) on [0, 1] and fails to do so on [1, 6]. The right figure is the
absolute error function |e27(t)| of the approximation error function e27(t) =
f(t) − g27(t). e27(t) has no error at the origin and asymptotically increases
as t increases about the origin. It also has a very small error at t = T and
asymptotically increases as t decreases about t = T . The error reaches its
maximum at t = 1.8463, between 4

λ and 5
λ .

Figure 12. Method Ic approximation on the main interval
[0, 6] (n = 4,m = 27): Left – the final approximation func-
tion g27(t) (blue line), the target function f(t) (red line), and
the first critically damped approximation function g4(t) (green
line); Right – the absolute error function |e27(t)| of the approx-
imation error function e27(t) = f(t)− g27(t).
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In order to demonstrate the uniform convergence on the main interval for the
approximation method Ic, we repeat the above approximation experiment with
n = 10, 20, 30, and 40, resulting in m = 49, 86, 123, and 159, correspondingly.
We record the corresponding n,m values, optimal λ values, WMAE’s and
WMSE’s on [0, 6] in Table 5. Figure 13 shows the graphs of the absolute error
functions |em(t)| for m = 49, 86, 123, and 159.

Table 5. Method Ic multiple approximation experiments: the
n,m values, optimal λ values, WMAE’s and WMSE’s on [0, 6]
for n = 4, 10, 20, 30, and 40, resulting in m = 27, 49, 86, 123,
and 159, correspondingly.

n λ m WMAE[0,6] WMSE[0,6]
n
λ

m
λ

4 2.1806 27 7.8239×10−3 9.6544×10−5 1.83 12.38
10 3.9055 49 3.3427×10−3 1.5479×10−5 2.56 12.55
20 6.7431 86 1.9936×10−3 4.5702×10−6 2.97 12.75
30 9.5626 123 1.4217×10−3 2.0130×10−6 3.14 12.86
40 12.3733 159 1.1130×10−3 1.1034×10−6 3.23 12.85
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Figure 13. Method Ic multiple approximation experiments:
The graphs of the absolute error functions |em(t)| on the
main interval [0, 6] for the approximation function gm(t) with
(n,m) = (10, 49) (top-left), (n,m) = (20, 86) (top-right),
(n,m) = (30, 123) (bottom-left), and (n,m) = (40, 159)
(bottom-right).
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4.3. Method II: Laplace transform moment matching in P λn (Ω). In as-
ymptotic series expansion approximation methods Ia, Ib, and Ic, local proper-
ties, the derivatives, of the target function are used to find the approximation
function. In this section, we shall develop a new method which uses global
properties, namely the moment integrals, of the target function to find the
approximation function.

In physics, a moment is a quantitative measure describing the distribution
of discrete or continuous mass points. The term n-th moment, represented
by some integral, is generalized in statistics to describe the distribution of
a probability density function about some center. We name our approxima-
tion method II as moment matching in the general sense. This way when
the method is used to approximate a probability density function, the term
moment can be interpreted in its original meaning in statistics.

Moments can also be obtained from the power series expansion of a func-
tion’s Laplace transform about the origin. Thus, matching the moments is
equivalent to matching the power series coefficients of a Laplace transform.

Let f(t) ∈ CB0 (Ω) be a target probability density function. Then

f(t) ≥ 0 and

∫ ∞
0

f(t) = 1.

The k-th moment of f(t) is defined as

Mk =

∫ ∞
0

tkf(t)dt, k = 0, 1, · · · ,

if the improper integral is convergent, and f(t) is said to be the k-th moment-
integral-convergent on Ω. Otherwise, f(t) is the k-th moment-integral-divergent.

Assume f(t) is moment-integral-convergent on Ω for all orders. Then its
Laplace transform f̄(s) exists and has a power series expansion about the
origin as

f̄(s) = L {f(t)} =
∞∑
k=0

bks
k =

∞∑
k=0

(−1)k
Mk

k!
sk,

where

bk = (−1)k
Mk

k!
, k = 0, 1, · · · ,

with some positive radius of convergence.
In the moment matching approximation method, we need to find a function

g(t) = gn(t;λ) ∈ P λn (Ω), for some λ > 0, whose moments match those of the
target function f(t) up to the n-th order. Assume such g(t) is found and let

ḡ(s) = ḡn(s) = L {g(t)}.
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By Proposition 3.31, expand ḡ(s) into a power series about the origin as

ḡ(s) =
∞∑
k=0

b′ks
k.

Then moment matching is equivalent to matching the power series coefficients
of ḡ(s) with those of f̄(s), i.e.

(4.18) b′k = bk, k = 0, 1, · · · , n.

In fact, ḡ(s) is found before g(t): we shall invert ḡ(s) to get g(t). Generally,
one needs to perform a complex contour integration to invert a Laplace trans-
form. However, when the Laplace transform is rational or meromorphic, the
computation of contour integration can be simplified as partial fractions by
the residue theorem. In P λn (Ω) spaces, inverting a Laplace transform is even
simpler. Since both Laplace transformation and inverse Laplace transforma-
tion are linear and one-to-one operations, they can be represented by matrices
between function spaces. This means a matrix can represent the mapping be-
tween the coefficients of power series expansion of ḡ(s) about the origin and
the coefficients of g(t) in the standard form. This seamlessly integrates Laplace
transform inversion into method II.

Theorem 4.25. (Existence theorem for method II). Let f(t) and f̄(s) be de-
fined above. For every λ > 0 and n ∈ N, there exists a function gn(t;λ) ∈
P λn (Ω) such that the moments of gn(t;λ) match those of f(t) up to the n-th
order.

Proof. (Constructive proof). Let λ > 0 and n fixed. Consider a function
gn(t;λ) ∈ P λn (Ω), denoted by

gn(t;λ) =
n∑
k=0

ckt
ke−λt,

whose Laplace transform ḡ(s) = ḡn(s) = L {gn(t;λ)} is written as

ḡn(s) =

n∑
k=0

ckk!

(s+ λ)k+1
(4.19)

=

n∑
k=0

c′k
(s+ λ)k+1

(4.20)

=

∑n
k=0 dks

k

(s+ λ)n+1
(4.21)

=

∞∑
k=0

b′ks
k,(4.22)
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where the c′k and dk are intermediate variables in order to simplify the calcu-
lations. In addition, by hypothesis,

f̄(s) =

∞∑
k=0

bks
k.

We will show there exists a ḡ(s) such that bk = b′k, k = 0, 1, · · · , n. The
theorem is proved if we can constructively find the ck of gn(t;λ) from the bk
of f̄(s) and show the transformation is one-to-one or invertible. However, it is
difficult to directly write the relation from the bk to the ck. We will instead
derive the relation indirectly from Equation (4.22) to (4.21), and finally to
Equation (4.20) or (4.19). Clearly, the last two equations are equivalent, so we
only need to derive the c′k from the bk. We will also show this transformation
is simply the multiplication of two invertible matrices and is one-to-one.

Firstly, by matching the moments up to the n-th order, we can calculate the
dk from the bk by multiplying out( ∞∑

k=0

bks
k

)
(s+ λ)n+1

and associating the like power terms up to the n-th order. This can be de-
scribed by the following system of equations:

d0 = b0

(
n+ 1

0

)
λn+1,

d1 = b0

(
n+ 1

1

)
λn + b1

(
n+ 1

0

)
λn+1,

d2 = b0

(
n+ 1

2

)
λn−1 + b1

(
n+ 1

1

)
λn + b2

(
n+ 1

0

)
λn+1,

... =
...

dn = b0

(
n+ 1
n

)
λ1 + b1

(
n+ 1
n− 1

)
λ2 + · · · + bn

(
n+ 1

0

)
λn+1,

with the general row equation as

dk =

k∑
i=0

bi

(
n+ 1
k − i

)
λn+1−k+i, k = 0, 1, · · · , n,
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or in the matrix form as


d0
d1
d2
...
dn

 =



(
n+ 1

0

)
λn+1 0 0 · · · 0(

n+ 1
1

)
λn

(
n+ 1

0

)
λn+1 0 · · · 0(

n+ 1
2

)
λn−1

(
n+ 1

1

)
λn

(
n+ 1

0

)
λn+1 · · · 0

...
...

... · · ·
...(

n+ 1
n

)
λ1

(
n+ 1
n− 1

)
λ2

(
n+ 1
n− 2

)
λ3 · · ·

(
n+ 1

0

)
λn+1




b0
b1
b2
...
bn

.

Let the above matrix be A; then A is (n + 1) × (n + 1) and is a matrix in λ.
For n = 4, we have

A =


λ5 0 0 0 0
5λ4 λ5 0 0 0
10λ3 5λ4 λ5 0 0
10λ2 10λ3 5λ4 λ5 0
5λ 10λ2 10λ3 5λ4 λ5

 .

Next, we shall calculate the c′k from the dk. Simplifying Equation (4.20) in
common denominator and equating the like terms of the resulting numerator
with those in (4.21), we derive the dk from the c′k in the matrix form as


d0
d1
d2
...
dn

 =



(
n
0

)
λn

(
n− 1

0

)
λn−1

(
n− 2

0

)
λn−2 · · ·

(
1
0

)
λ1

(
0
0

)
λ0(

n
1

)
λn−1

(
n− 1

1

)
λn−2

(
n− 2

1

)
λn−3 · · ·

(
1
1

)
λ0 0(

n
2

)
λn−2

(
n− 1

2

)
λn−3

(
n− 2

2

)
λn−4 · · · 0 0

...
...

... · · ·
...

...(
n

n− 1

)
λ1

(
n− 1
n− 1

)
λ0 0 · · · 0 0(

n
n

)
λ0 0 0 · · · 0 0




c′0
c′1
c′2
...
c′n

.
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Let this matrix be B; then B is (n+1)×(n+1) and is invertible since |B| = 1.
Obtaining B−1, we can calculate the c′k from the dk as


c′0
c′1
c′2
...
c′n

 =



0 · · · 0 0

(
n
0

)
(−λ)0

0 · · · 0

(
n− 1

0

)
(−λ)0

(
n
1

)
(−λ)1

0 · · ·
(
n− 2

0

)
(−λ)0

(
n− 1

1

)
(−λ)1

(
n
2

)
(−λ)2

... · · ·
...

...
...(

0
0

)
(−λ)0 · · ·

(
n− 2
n− 2

)
(−λ)n−2

(
n− 1
n− 1

)
(−λ)n−1

(
n
n

)
(−λ)n




d0
d1
d2
...
dn

.

For n = 4, B and B−1 are

B =


λ4 λ3 λ2 λ 1
4λ3 3λ2 2λ 1 0
6λ2 3λ 1 0 0
4λ 1 0 0 0
1 0 0 0 0

 and B−1 =


0 0 0 0 1
0 0 0 1 −4λ
0 0 1 −3λ 6λ2

0 1 −2λ 3λ2 −4λ3

1 −λ λ2 −λ3 λ4

,

respectively.
Now, we can transform the bk into the c′k using matrix B−1A. For n = 4,

this gives

B−1A =


5λ 10λ2 10λ3 5λ4 λ5

−10λ2 −30λ3 −35λ4 −19λ5 −4λ6

10λ3 35λ4 46λ5 27λ6 6λ7

−5λ4 −19λ5 −27λ6 −17λ7 −4λ8

λ5 4λ6 6λ7 4λ8 λ9


and 

c′0
c′1
c′2
c′3
c′4

 =


5λ 10λ2 10λ3 5λ4 λ5

−10λ2 −30λ3 −35λ4 −19λ5 −4λ6

10λ3 35λ4 46λ5 27λ6 6λ7

−5λ4 −19λ5 −27λ6 −17λ7 −4λ8

λ5 4λ6 6λ7 4λ8 λ9



b0
b1
b2
b3
b4

 .

The last step is to invert ḡn(s) to obtain

gn(t) = L −1 {ḡn(s)} =
n∑
k=0

c′k
k!
tke−λt.
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Since the above transformation from the bk to the c′k is a chain of one-to-one
mappings, it is obvious that gn(t) matches its moments to those of f(t) up to
the n-th order. �

It follows that for any fixed n ∈ N, there is a family of functions gn(t;λ) in
P λn (Ω) with a parameter λ > 0 matching the moments of f(t) up to the n-th
order. It is obvious gn(t;λ) is continuous, bounded, integral-convergent, and
vanishing at infinity on Ω. In addition, gn(t) has initial value

(4.23) lim
t→0+

gn(t) = lim
s→∞

sḡn(s) = c0 = c′0,

and final value

lim
t→∞

gn(t) = lim
s→0

sḡn(s) = 0,

i.e. it vanishes at infinity.

Theorem 4.26. (Uniform convergence theorem for method II). In the above
problem, for every λ > 0, the approximation function gn(t;λ) converges to f(t)
uniformly on Ω.

Proof. By hypothesis, both

f̄(s) =

∞∑
k=0

bks
k and ḡn(s) =

∞∑
k=0

b′ks
k

converge. Assume the radius of convergence for f̄(s) is R > 0. Then there
exists an r = min(R, λ) > 0 such that the two series converges absolutely for
any s ∈ N(0, r). Thus, for any ε > 0, there exist N1, N2 ∈ N such that when
n > N1 we have ∣∣∣∣∣

∞∑
k=n+1

bks
k

∣∣∣∣∣ ≤
∞∑

k=n+1

∣∣∣bksk∣∣∣ < ε

2
,

or when n > N2 we have∣∣∣∣∣
∞∑

k=n+1

b′ks
k

∣∣∣∣∣ ≤
∞∑

k=n+1

∣∣∣b′ksk∣∣∣ < ε

2
,

for any s ∈ N(0, r), respectively.
Let

N = max(N1, N2).

Then, considering the moment matching conditions

b′k = bk, k = 0, 1, · · · , n,
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when n > N , we have∣∣ḡn(s)− f̄(s)
∣∣ =

∣∣∣∣∣ḡn(s)−
n∑
k=0

b′ks
k +

n∑
k=0

bks
k − f̄(s)

∣∣∣∣∣
≤

∣∣∣∣∣ḡn(s)−
n∑
k=0

b′ks
k

∣∣∣∣∣+

∣∣∣∣∣
n∑
k=0

bks
k − f̄(s)

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

k=n+1

bks
k

∣∣∣∣∣+

∣∣∣∣∣
∞∑

k=n+1

b′ks
k

∣∣∣∣∣
<

ε

2
+
ε

2
= ε

for any s ∈ N(0, r).
It follows immediately that there exists a δ > 0 such that

‖gn(t)− f(t)‖ < δ

on Ω, since the Laplace transform is a linear operator and linear operators on
vector spaces preserve continuity. Thus, gn(t) converges to f(t) on Ω uniformly.

�

Let n be fixed and λ vary. Then we have a family of approximation functions
gn(t;λ) matching the moments of f(t). Next, we shall find the final approx-
imation function such that it is sufficiently “close” to f(t). This is done by
imposing an additional condition on gn(t;λ) to find the optimal value of λ.

One method is to match the function value of gn(t;λ) at the origin to that
of f(t), i.e.

gn(0;λ) = f(0).

By Equation (4.23), we have

c′0(λ) = f(0).

This is a polynomial equation of degree (n + 1). Assume the equation has
positive real roots. Then we shall choose the one, for which the corresponding
WMSE on [0, T ] is minimum.

Note that in the above statements, it is generally difficult to show there
is at least one positive real root for the initial value equation. A necessary
condition for the existence of the positive roots is that the bk have alternating
or random signs. We shall leave this for future research. In addition, we shall
investigate other additional conditions for calculating the optimal λ.

For every λ > 0 and n fixed, define the approximation error function as

en(t;λ) = f(t)− gn(t;λ).

Example 4.27. Moment matching approximations.
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Let n = 10, T = 8, and [0, 8] the main interval. Consider a target probability
density function

f(t) =
t

32
e
− t2

2×32

with Laplace transform

f̄(s) = 1− 3.7599se4.5s2 2√
π

∫ ∞
2.1213s

e−x
2
dx

= 1.0000− 3.7599s+ 9.0000s2 − 16.9197s3

+ 27.0000s4 + 38.0694s5 + 48.6000s6 − 57.1041s7

+ 62.4857s8 − 64.2421s9 + 62.4857s10 + · · ·

=
10∑
k=0

bks
k +

∞∑
k=11

bks
k.

By Theorem 4.25, we have a family of functions in a parameter λ

g10(t;λ) =

10∑
k=0

c′k
k!
tke−λt,

where the c′k, k = 0, 1, · · · , 10, are transformed from the bk, k = 0, 1, · · · , 10,
and the ck are functions of λ.

By matching initial values, we have the equation

g10(0;λ) = f(0),

or

c′0(λ) = 0.

This is a polynomial equation in λ of degree n + 1 = 11. Table 6 lists all the
roots of this equation and the corresponding WMSE’s on [0, 8].

The root λ = 0.9398 is chosen as the optimal value as the corresponding
WMSE on [0, 8] is 4.0459×10−6 (minimum). Substituting λ = 0.9398 into
g10(t;λ), we have the final approximation function

g10(t) = (1.3894× 10−1t− 3.6275× 10−2t2 + 2.5367× 10−1t3

− 1.2748× 10−1t4 + 4.5828× 10−2t5 − 7.7082× 10−3t6

+ 6.4889× 10−4t7 − 2.8681× 10−5t8 + 6.3626× 10−7t9

− 5.5724× 10−9t10)e−0.9398t.

The corresponding WMAE on [0, 8] is 1.7865×10−3.
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Table 6. The eleven positive roots by matching the initial
values and the corresponding WMSE’s on [0, 8].

i λi WMSE[0,8]

1 0 1.4732×10−1

2 0.1257 2.4966×10−3

3 0.3002 1.4880×10−4

4 0.4985 1.9534×10−5

5 0.7126 5.9410×10−6

6 0.9398 4.0459×10−6

7 1.1802 6.2194×10−6

8 1.4358 2.2665×10−5

9 1.7117 2.1926×10−4

10 2.0187 7.3120×10−3

11 2.3861 1.6828

We also obtain the integration function of g10(t) as

G10(t) = 1.0000− (1.0000 + 9.3981× 10−1t+ 3.7215× 10−1t2

+ 1.2867× 10−1t3 − 3.3184× 10−2t4 + 1.9259× 10−2t5

− 4.6213× 10−3t6 + 4.8071× 10−4t7 − 2.4638× 10−5t8

+ 6.1392× 10−7t9 − 5.9293× 10−9t10)e−0.9398t.
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Figure 14 shows the approximation results on [0, 16], which is twice the
length of the main interval [0, 8]. The left figure shows the overall graphs
of the approximation function g10(t) (blue line) and the target function f(t)
(red line). The right figure shows the overall graphs of G10(t) (blue line) and
F (t) (red line), the integration functions of g10(t) and f(t), respectively. In
each figure, the graphs of the target function and the approximation function
almost coincide with each other and are indistinguishable. In addition, g10(t)
is nicely bounded on [8,∞) and vanishes at infinity.

Figure 14. Method II overall approximations on [0, 16] (n =
10): Left – the overall graphs of the approximation function
g10(t) (blue line) and the target function f(t) (red line); Right
– the overall graphs of G10(t) (blue line) and F (t) (red line),
the integration functions of g10(t) and f(t), respectively.
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Figure 15. Method II approximations on the main interval
[0, 8] (n = 10): Top-left – g10(t) (blue line) and f(t) (red line)
almost coincide with each other; Top-right – the absolute error
function |e10(t)| of the approximation error function e10(t) =
f(t)−g10(t); Bottom-left – G10(t) (blue line) and F (t) (red line)
almost coincide with each other; Bottom-right – the absolute
error function |F (t)−G10(t)|.

Figure 15 shows the approximation results on the main interval [0, 8]. The
top-left figure shows g10(t) (blue line) and f(t) (red line) almost coincide with
each other on [0, 8]. The top-right figure is the absolute error function |e10(t)|
of the approximation error function e10(t) = f(t) − g10(t). e10(t) oscillates
between positive and negative values on [0, 8] with not significantly different
peak magnitudes. The absolute error function |e10(t)| has a comb shape with
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the first few peaks having large magnitudes and the rest peaks with declining
magnitudes thereafter as t increases inside [0, 8]. The relatively flat peak mag-
nitudes and the oscillating patterns of e10(t) on [0, 8] are the characteristics of
the Chebyshev type error functions, which are distinctive from those of the as-
ymptotic type ones. The bottom-left figure shows G10(t) (blue line) and F (t)
(red line) almost coincide with each other on [0, 8]. The bottom-right figure
shows the absolute error function |F (t) − G10(t)| on [0, 8], which also has a
comb shape.

In order to demonstrate the uniform convergence on the main interval for
the approximation method II, we repeat the above approximation experiment
with n = 15, 20, 25, 30, 35, and 40, and record the corresponding optimal λ
values, WMAE’s and WMSE’s on [0, 8] in Table 7. Figure 16 shows the graphs
of the absolute error functions |en(t)| for n = 15, 20, 25, 30, 35, and 40. It can
be seen in Figure 16 that each approximation error function of method II is
oscillating with relatively flat peak magnitudes on the main interval, which is
the Chebyshev type error.

Table 7. Method II multiple approximation experiments: the
optimal λ values, WMAE’s and WMSE’s on [0, 8] for n = 10,
15, 20, 25, 30, 35, and 40.

n λ WMAE[0,8] WMSE[0,8]
n
λ

10 0.9398 1.7865×10−3 4.0459×10−6 10.6
15 1.0645 2.7988×10−4 8.5769×10−8 14.1
20 1.1786 4.4709×10−5 2.0241×10−9 17.0
25 1.2835 7.5856×10−6 5.0732×10−11 19.5
30 1.3809 1.2868×10−6 1.3234×10−12 21.7
35 1.4721 2.0804×10−7 3.5492×10−14 23.8
40 1.5582 3.6243×10−8 9.7155×10−16 25.7
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Figure 16. Method II multiple approximation experiments:
the absolute error functions |en(t)| on [0, 8] for n = 15 and 20
(top), n = 25 and 30 (middle), and n = 35 and 40 (bottom).
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4.3.1. Using approximate moments. The essence of the moment matching method
is the power series expansion of the target function’s Laplace transform. Whether
or not the Laplace transform itself exists as a closed form function is not im-
portant. However, this condition may not be satisfied in some situations, such
as

(1) the Laplace transform does not exist and some or all of its moments
cannot be calculated;

(2) the Laplace transform exists but is difficult to expand as a power series;
(3) the Laplace transform exists but some moments cannot be calculated

because the corresponding moment integral diverges; or
(4) the Laplace transform exists but its power series has only one point of

convergence and diverges everywhere else.

Even under all the above undesirable situations, the moment matching
method can still be applied. Since each moment of the target function is
just an improper integral, its value can be numerically approximated and cal-
culated. This is to say an improper integral can be approximated by a definite
integral on some closed interval containing the main interval [0, T ], which can
be calculated as a Riemann sum.

A partition of [0, T ] is a collection of closed sub-intervals [ti, ti+1], i =
0, 1, · · · , m− 1, such that:

(1) 0 = t0 < t1 < t2 < · · · < tm = T ; and
(2) the union ∪m−1

i=0 [ti, ti+1] equals [0, T ].

A step function f∗(t) of a target function f(t) on Ω is a piecewise function
whose value is constant on each sub-interval of [0, T ] and zero on [T,∞), i.e.

f∗(t) =

{
f(t∗i ) , t∗i ∈ [ti, ti+1), i = 0, 1, · · · ,m− 1,
0 , otherwise.

Then the k-th approximate moment of f(t) is

Mk =

∫ ∞
0

tkf∗(t)dt =

m−1∑
i=0

f(t∗i )

k + 1

(
tk+1
i+1 − t

k+1
i

)
, k = 0, 1, · · · .

This numerical approximate moment calculation method applies to every
target function in CB0 (Ω), which may or may not have a Laplace transform,
regardless of its integrability.

4.3.2. The Padé rational approximation method. Our moment matching ap-
proximation method belongs to a special class of rational Laplace transform
moment matching approximation methods. Rational or meromorphic Laplace
transforms are important complex functions with many nice and useful prop-
erties. For example, convolutions can be performed in rational Laplace trans-
forms as simple algebraic operations, and inverse rational Laplace transforms
can be efficiently done by the method of partial fractions. There are many ideas
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about approximating a Laplace transform by a rational complex function, and
the Padé method is one of the most commonly used.

In the Padé method, we can write the Laplace transform of the approxima-
tion function as

ḡ(s) =

∑m
k=0 bks

k

1 +
∑n

k=1 aks
k

=
b0 + b1s+ · · ·+ bms

m

1 + a1s+ a2s2 + · · ·+ bnsn
,

where the bk and ak are undetermined coefficients and can be solved for by
equating up to the (m+n+1)-st moments of ḡ(s) to those of f̄(s), the Laplace
transform of the target function f(t). In general, m and n can be chosen
arbitrarily. But for a target probability density function, or any function that
vanishes at infinity, it must be true that m < n. By inverting ḡ(s), we obtain
g(t) which approximates f(t).

In our numerical experiments using the Padé method, we found the method
may give a very poor approximation function g(t) in some occasions but fails
most of the time. Even in the rough sense, the approximation does not improve
as the number of matching moments increases, let alone uniformly converge.
For the same degree n of the denominators for the approximation Laplace
transforms, our moment matching method needs to solve a system of n + 1
equations, while the Padé method needs to solve a system of 2n equations,
nearly doubled. While the system of equations in our method will always result
in solutions, the system of equations in the Padé method may be ill-conditioned
and often results in extremely large or small numbers in the solutions. Thus,
numerical algorithms for calculating the Padé approximation function need
almost infinite precisions. Finally, the Padé method gives a unique approxi-
mation function while our method gives a family of approximation functions
with a control parameter and various means to impose additional conditions.

In conclusion, the Padé approximation function is poor and is neither uni-
formly convergent nor convergent. The Padé method is uncontrollable and
numerically inefficient.
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4.4. Method III: interpolations in P λn (Ω). The approximation method I
(asymptotic series expansion) or the method II (moment matching) requires
either higher order derivatives or higher order integrals of a target function,
which may be difficult or impossible to obtain. In this section, we shall develop
the approximation method III, the method of interpolation in P λn (Ω) spaces,
which is inspired by polynomial interpolations and is generally effective for
fitting any continuous (or discontinuous) function curves.

Interpolation is an old technique for function approximations. The basic
idea is to construct a continuous function from a set of data points or inter-
polation nodes of a target function on an interpolation interval containing the
interpolation nodes. One of the simplest interpolation methods is the poly-
nomial interpolation, whose error function is bounded and oscillating between
positive and negative values on the interpolation interval.

The polynomial interpolation approximation method suffers some major
drawbacks for our approximation problem. Firstly, the method is only valid
inside the interpolation interval. The extrapolation polynomial, the same ex-
pression as the interpolation polynomial but defined outside the interpolation
interval, is generally not a good approximation to a target function that is
bounded on Ω. In other words, an interpolation polynomial is unbounded at
infinity and cannot be used to approximate functions in CB0 (Ω). Moreover, an
interpolation approximation may even be poor inside the interpolation interval
for some target functions due to the Runge’s phenomenon.

In this section, we shall develop a new interpolation method, interpolation
in P λn (Ω), described as follows. Let y = f(t) ∈ CB0 (Ω) be a target function.
Consider a set of n + 1 distinct evaluating points 0 = t0 < t1 < · · · < tn = T
on the main interval (or the interpolation interval) [0, T ]. Let yi = f(ti), i =
0, 1, · · · , n. We wish to find a function g(t) passing through all the interpolation
nodes {(ti, yi)}ni=0, which is “close” to f(t) on [0, T ] and is nicely bounded on
[T,∞).

Theorem 4.28. (Interpolation existence theorem). In the above problem, for
every λ > 0, there exists a function gn(t;λ) ∈ P λn (Ω) passing through all the
interpolation nodes {(ti, yi)}ni=0.

Proof. (Constructive proof). For every λ > 0, consider a natural basis of
P λn (Ω) {ϕi(t) = tie−λt}ni=0. Let gn(t) ∈ P λn (Ω) be expressed as

gn(t) = c0ϕ0(t) + c1ϕ1(t) + · · ·+ cnϕn(t),

for some ci, i = 0, 1, · · · , n. It is left to prove there exist the ci such that

gn(ti) = yi, i = 0, 1, · · · , n,

in other words, gn(t) passes through the interpolation nodes {(ti, yi)}ni=0.
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Using the interpolation nodes, a system of equations is set up as
ϕ0(t0) ϕ1(t0) · · · ϕn(t0)
ϕ0(t1) ϕ1(t1) · · · ϕn(t1)

...
...

...
...

ϕ0(tn) ϕ1(tn) · · · ϕn(tn)



c0

c1
...
cn

 =


y0

y1
...
yn

 .

Since all ϕi are real-valued functions, the above coefficient matrix is a real-
entry matrix of size (n+ 1)× (n+ 1). In fact, this is a modified Vandermonde
matrix. To prove it, rewrite the above equations as

e−λt0 t0e
−λt0 · · · tn0e

−λt0

e−λt1 t1e
−λt1 · · · tn1e

−λt1

...
...

...
...

e−λtn tne
−λtn · · · tnne

−λtn



c0

c1
...
cn

 =


y0

y1
...
yn

 .

Since e−λti > 0, i = 0, 1, · · · , n, we divide each row by e−λti and get
1 t0 t20 · · · tn0
1 t1 t21 · · · tn1
...

...
...

...
...

1 tn t2n · · · tnn



c0

c1
...
cn

 =


y0e

λt0

y1e
λt1

...
yne

λtn

 .

The matrix on the left hand side is a Vandermonde matrix, whose determinant
can be calculated as

n∏
i,j=0,i≤j

(ti − tj).

Since all ti are pairwise distinct, i.e. ti 6= tj for i 6= j, the determinant is
non-zero and the Vandermonde matrix is invertible. By Cramer’s rule, the
coefficients are

c0 =

∣∣∣∣∣∣∣∣∣
y0e

λt0 t0 · · · tn0
y1e

λt1 t1 · · · tn1
...

...
...

...
yne

λtn tn · · · tnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 t0 · · · tn0
1 t1 · · · tn1
...

...
...

...
1 tn · · · tnn

∣∣∣∣∣∣∣∣∣

, · · · , cn =

∣∣∣∣∣∣∣∣∣
1 t0 · · · y0e

λt0

1 t1 · · · y1e
λt1

...
...

...
...

1 tn · · · yne
λtn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 t0 · · · tn0
1 t1 · · · tn1
...

...
...

...
1 tn · · · tnn

∣∣∣∣∣∣∣∣∣

.

Note the ci are functions of λ.
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Thus there exists a gn(t) ∈ P λn (Ω) passing through all the interpolation
nodes. �

For every λ > 0, write gn(t) in the above proof as

gn(t;λ) = (c0 + c1t+ · · ·+ cnt
n) e−λt

= pn(t)e−λt,

where

pn(t) = c0 + c1t+ · · ·+ cnt
n

is a polynomial in t of degree up to n with a parameter λ. Let

h(t) = f(t)eλt.

Then pn(t) may be viewed as a polynomial interpolation for h(t) with the
interpolation nodes {(ti, yieλti)}ni=0 on the interpolation interval. Notice the
interpolation coefficients for pn(t) are the same as those for gn(t) and the two
different interpolation problems are essentially equivalent. Clearly, this is due
to the isomorphism between Pn(Ω) and P λn (Ω).

Theorem 4.29. (Interpolation uniqueness theorem). In the above two inter-
polation problems, for every λ > 0, the interpolation functions pn(t;λ) and
gn(t;λ) are unique.

Proof. By contradiction. Assume qn(t;λ) 6= pn(t;λ) is another polynomial of
degree n which interpolates h(t) at ti, i = 0, 1, · · · , n, in Pn(Ω). Then the
error function rn(t;λ) = pn(t;λ)− qn(t;λ) has at least n+ 1 zeros on R. This
is contradictory since rn(t;λ) is at most of degree n. Thus, qn(t;λ) = pn(t;λ)
and pn(t;λ) is unique. It follows that gn(t;λ) is also unique. �

Practically, one can directly write pn(t;λ) by the Lagrange interpolation
formula for polynomials, i.e.

pn(t;λ) =
n∑
i=0

yie
λti

n∏
j=0,j 6=i

t− tj
ti − tj

=

n∑
i=0

yie
λti li(t),

where

li(t) =

n∏
j=0,j 6=i

t− tj
ti − tj

, i = 0, 1, · · · , n,
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are the usual Lagrange interpolation polynomial terms generated by the inter-
polation nodes. Thus,

gn(t;λ) =
n∑
i=0

yie
λti li(t)e

−λt

=
n∑
i=0

yi

e−λ(t−ti)
n∏

j=0,j 6=i

t− tj
ti − tj


=

n∑
i=0

yili,λ(t),(4.24)

where

li,λ(t) = e−λ(t−ti)
n∏

j=0,j 6=i

t− tj
ti − tj

, i = 0, 1 · · · , n,

are the Lagrange interpolation terms in P λn (Ω).
In order to analyze the error and convergence of the interpolation function

on the interpolation interval, we write gn(t;λ) in the Newton’s (the Stirling’s,
or the Bessel’s) central divided difference form.

Let λ > 0 and [0, T ] be the interpolation interval with equally spaced in-
terpolation nodes. We shall develop the Newton’s central divided difference
formula for h(t) about t0 = T

2 .
Assume f(t) is analytic on Ω, and its largest singularity is t = −R, R > 0.

Then h(t) = f(t)eλt is analytic about t0 on the convergence interval (−R, T +
R) ⊃ [0, T ]. Expand h(t) into a Taylor series about t0 as

h(t) =

n∑
k=0

h(k) (t0)

k!
(t− t0)k +

∞∑
k=n+1

h(k) (t0)

k!
(t− t0)k

= Tn(t) +Rn(t),

for some n ∈ N.
Without loss of generality, let n be even and δ = T

n . Denote the interpolation

nodes as {(ti, hi)} for i = −n
2 ,−

n−2
2 , · · · ,+n−2

2 ,+n
2 , where

ti = t0 + iδ

and

hi = h(ti).

Define the first order central differences as

∆hi = hi+1 − hi
and the second order ones as

∆2hi = ∆hi −∆hi−1
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for all possible index values. These slightly different definitions for the first and
the second order central differences are purely technical. To define the k-th
order central differences for h(t) for 0 ≤ k ≤ n, we use the following formula:

∆khi =

 ∆k−1hi+1 −∆k−1hi , if k is odd,

∆k−1hi −∆k−1hi−1 , if k is even,

where ∆0hi = hi and ∆1hi = ∆hi. This process stops when we lastly obtain
∆nh0.

Thus, we obtain a set of central differences ∆kh0, which approximate the
derivatives of h(t) at t0, i.e.

∆kh0 ' h(k)(t0)

for k = 0, 1, · · · , n. Table 8 is an example of a central difference table for h(t)
up to the sixth order. As n tends to infinity, δ tends to zero and the k-th order
central difference tends to the k-th order derivative of h(t) at t0, i.e.

lim
n→∞

∆kh0 = h(k)(t0)

for k = 0, 1, · · · , by the definition of derivatives.
The interpolation polynomial for h(t) in the Newton’s form can be written

as

pn(t) =
n∑
k=0

1

k!
∆kh0 (t− t0)k

on (−R, T +R).

Theorem 4.30. (Interpolation uniform convergence theorem). In the above
interpolation problems, for every λ > 0, pn(t) and gn(t) converge to h(t) and
f(t) uniformly on [0, T ], respectively.

Proof. Consider h(t) = Tn(t) + Rn(t), n ∈ N. Then, for every ε > 0, there
exists an N1 ∈ N such that whenever n > N1, we have

|h(t)− Tn(t)| = |Rn(t)| < ε

2
.

Consider the interpolation polynomial for h(t) in the Newton’s form as

pn(t) =

n∑
k=0

1

k!
∆kh0 (t− t0)k

on (−R, T +R). For m ∈ N sufficiently large, we have δ = T
m sufficiently small,

and there exists an N2 ∈ N such that whenever N2 < n < m, we have

|∆kh0 − h(k)(t0)| < ε

2
e−R−T/2
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Table 8. Newton’s central difference table of h(t)

ti hi ∆1hi ∆2hi ∆3hi ∆4hi ∆5hi ∆6hi

t−3 h−3

∆h−3

t−2 h−2 ∆2h−2

∆h−2 ∆3h−2

t−1 h−1 ∆2h−1 ∆4h−1

∆h−1 ∆3h−1 ∆5h−1

t0 h0 ∆2h0 ∆4h0 ∆6h0

∆h0 ∆3h0 ∆5h0

t1 h1 ∆2h1 ∆4h1

∆h1 ∆3h1

t2 h2 ∆2h2

∆h2

t3 h3

for k = 0, 1, · · · , n. Then

|pn(t)− Tn(t)| =

∣∣∣∣∣
n∑
k=0

1

k!

(
∆kh0 − h(k)(t0)

)
(t− t0)k

∣∣∣∣∣
≤

n∑
k=0

1

k!

∣∣∣(∆kh0 − h(k)(t0)
)∣∣∣ |t− t0|k

<
ε

2
e−R−T/2

n∑
k=0

1

k!
|t− t0|k

<
ε

2
e−R−T/2

n∑
k=0

1

k!

(
R+

T

2

)k
<

ε

2
e−R−T/2eR+T/2 =

ε

2
.

Thus, when n > max(N1, N2), we have

|h(t)− pn(t)| = |Tn(t)− pn(t) +Rn(t)|
≤ |Tn(t)− pn(t)|+ |Rn(t)|

<
ε

2
+
ε

2
= ε
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for every t ∈ (−R, T + R) ⊃ [0, T ]. This implies pn(t) converges to h(t)
uniformly on [0, T ].

It follows immediately that for any t ∈ [0, T ],

|f(t)− gn(t)| = |h(t)− pn(t)| e−λt < εe−λt < ε.

This implies gn(t) converges to f(t) uniformly on [0, T ]. �

Let n ∈ N be fixed and λ > 0 vary. Then gn(t;λ) represents a family of
interpolation functions in P λn (Ω) with a parameter λ passing through a set of
n + 1 interpolation nodes. In addition, for every λ > 0, gn(t;λ) converges to
f(t) uniformly on the interpolation interval. It is obvious gn(t;λ) is continuous,
bounded, integral-convergent, and vanishing at infinity on Ω.

For any fixed n and λ, define the interpolation error function as

en(t) = f(t)− gn(t;λ)

= rn(t)e−λt,

where

rn(t) = h(t)− pn(t)

on Ω.

Proposition 4.31. en(t) has at least n+ 1 zeros in [0, T ].

Proof. Let I = {0, 1, · · · , n}. For each i, j ∈ I, the Lagrange’s interpolation
term li,λ(tj) in P λn (Ω) has the following properties:

li,λ(tj) =

{
1 , i = j,
0 , otherwise.

Then

en(ti) = f(ti)− gn(ti) = 0, i ∈ I.
This implies en(t) has at least n+ 1 zeros in [0, T ]. �

The Runge’s phenomenon can be avoided when using interpolations in P λn (Ω).
It is well-known that higher order interpolation polynomials may have diver-
gent oscillating approximation errors around both end-points of the interpo-
lation interval, i.e. the Runge’s phenomenon. The reason for the Runge’s
phenomenon is the interpolation polynomial is approximating an analytic func-
tion outside its convergence interval. In the new interpolation method, since
a target function in CB0 (Ω) is assumed to have its largest singularity at t =
−R,R > 0, the interpolation interval [0, T ] is contained inside the convergence
interval. Thus, even when the interpolation nodes are arranged in equally
spaced manner, the convergence is uniform and the Runge’s phenomenon will
not occur.
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Next, we shall determine the optimal value of λ and obtain the final in-
terpolation approximation function. We shall match the definite integrals as
discussed earlier in method Ia in Section 4.2.1. Below is the detailed process.

Firstly, define the error of the two definite integrals as

ε(λ) =

∫ T

0
gn(t;λ)dt−

∫ T

0
f(t)dt.

We wish to find a value of λ such that ε2(λ) is minimum. This is equivalent
to solving the equation

(4.25)
d

dλ
ε2(λ) =

(∫ T

0
gn(t;λ)dt−

∫ T

0
f(t)dt

)
d

dλ

(∫ T

0
gn(t;λ)dt

)
= 0.

This is a transcendental equation and has only numerical solutions. If the
equation has positive real roots, then we will find the optimal value of λ for
which the corresponding WMSE on [0, T ] is minimum. Suppose we find the
optimal value of λ. Substituting it in gn(t;λ), we obtain the final approxi-
mation function. Note we have not strictly proved the existence of solutions
for the above equation for the general case, and will investigate this for future
research.

Example 4.32. Interpolations in P λn (Ω) spaces.

Consider again the finite-radius-convergent target function

f(t) =
1

1 + t
,

whose integration function is

F (t) =

∫ t

0
f(τ)dτ = ln(1 + t).

Let T = 8 and [0, 8] be the main interval as well as the interpolation interval.
Let n = 10 and consider n + 1 = 11 points equally spaced on [0, 8]. Then we
have a set of interpolation nodes {(0, 1), (4

5 ,
5
9), (8

5 ,
5
13), · · · , (8, 1

9)}.
By Theorem 4.28, we have a family of functions g10(t;λ) in Equation (4.24)

with a parameter λ passing through the above interpolation nodes. Let the
integration function of g10(t;λ) be

G10(t;λ) =

∫ t

0
g10(τ ;λ)dτ.

Define the difference of definite integrals of gn(t;λ) and f(t) on [0, 8] as

ε(λ) = G10(8;λ)− ln 9.

Solving Equation (4.25) numerically, we obtain the optimal λ = 0.9650 with
the corresponding WMSE being 5.8927×10−9 on [0, 8]. Substituting this value
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in g10(t;λ), we have the final approximation function

g10(t) = (1.0000− 3.0694× 10−2t+ 0.4625t2

− 0.2245× 10−2t3 + 0.1464t4 − 5.3939× 10−2t5

+ 1.5016× 10−2t6 − 2.7091× 10−3t7 + 3.2559× 10−4t8

− 2.2606× 10−5t9 + 7.6288× 10−7t10)e−0.9650t.

The corresponding WMAE is 1.4644×10−4 on [0, 8].
In addition, we obtain G10(t), the integration function of g10(t), as

G10(t) = 2.8540− (2.8540 + 1.7540t+ 0.8617t2

+ 0.1230t3 + 8.5788× 10−2t4 − 1.2726× 10−2t5

+ 6.9430× 10−3t6 − 1.1880× 10−3t7 + 1.9534× 10−4t8

− 1.5234× 10−5t9 + 7.9057× 10−7t10)e−0.9650t.
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Figure 17 shows the approximation results on [0, 32], which is four times the
length of the main interval [0, 8]. The left figure shows the overall graphs of
the approximation function g10(t) (blue line) and the target function f(t) (red
line). g10(t) and f(t) almost coincide with each other and are indistinguishable
on [0, 8]. In addition, g10(t) is nicely bounded on [8,∞) and vanishes at infinity.
The right figure shows the overall graphs of G10(t) (blue line) and F (t) (red
line), the integration functions of g10(t) and f(t), respectively. G10(t) and F (t)
almost coincide with each other and are indistinguishable on [0, 8]. G10(t) has
a horizontal asymptote y = 2.8540 but F (t) does not because it is integral-
divergent on Ω.

Figure 17. Method III overall approximations on [0, 32] (n =
10): Left – the overall graphs of the approximation function
g10(t) (blue line) and the target function f(t) (red line); Right
– the overall graphs of G10(t) (blue line) and F (t) (red line),
the integration functions of g10(t) and f(t), respectively.
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Figure 18. Method III approximations on the main interval
[0, 8] (n = 10): Top-left – g10(t) (blue line) and f(t) (red line)
almost coincide with each other; Top-right – the absolute error
function |e10(t)| of the approximation error function e10(t) =
f(t)−g10(t); Bottom-left – G10(t) (blue line) and F (t) (red line)
almost coincide with each other; Bottom-right – the absolute
error function |F (t)−G10(t)|.

Figure 18 shows the approximation results on the main interval [0, 8]. The
top-left figure shows g10(t) (blue line) and f(t) (red line) almost coincide with
each other on [0, 8]. The top-right figure is the absolute error function |e10(t)|
of the approximation error function e10(t) = f(t) − g10(t). e10(t) oscillates
between positive and negative values on [0, 8] and have 12 zeros. |e10(t)| has
a comb shape of 11 peaks. The first peak from the left has the maximum
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magnitude. Then, the peak magnitude decreases as the index goes to the right,
reaches its minimum at the eighth, and increases as the index goes further to
the right. The bottom-left figure shows G10(t) (blue line) and F (t) (red line)
almost coincide with each other on [0, 8]. The bottom-right figure shows the
absolute error function |F (t)−G10(t)|.

In order to demonstrate the uniform convergence on the main interval for
the approximation method III, we repeat the above interpolation experiment
with n = 15, 20, 25, 30, 35, and 40, and record the corresponding optimal λ
values, WMAE’s and WMSE’s on [0, 8] in Table 9. Figure 19 shows the graphs
of the absolute error functions |en(t)| for n = 15, 20, 25, 30, 35, and 40.

Table 9. Method III multiple interpolation experiments: the
optimal λ values, WMAE’s and WMSE’s on [0, 8] for n = 10,
15, 20, 25, 30, 35, and 40.

n λ WMAE[0,8] WMSE[0,8]
n
λ

10 0.9650 1.4644×10−4 5.8927×10−9 10.4
15 1.1306 1.3653×10−4 3.4860×10−9 13.3
20 1.5872 5.8006×10−7 3.7496×10−14 12.6
25 1.7532 1.0401×10−6 1.1576×10−13 14.3
30 2.2077 3.3063×10−9 7.3167×10−19 13.6
35 2.3738 8.8519×10−9 5.7797×10−18 14.7
40 2.8269 2.2280×10−11 2.3300×10−23 14.1
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Figure 19. Method III multiple interpolation experiments:
the absolute error functions |en(t)| on [0, 8] for n = 15 and
20 (top), n = 25 and 30 (middle), and n = 35 and 40 (bottom).
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5. Conclusions

The main objective of this thesis is to approximate the class of bounded
continuous vanishing at infinity functions on Ω, called CB0 (Ω). This problem
has not been properly addressed within the mathematical communities yet.

In order to solve the above approximation problem, we construct a decaying
polynomial space P λn (Ω) which incorporates various mathematical theories and
methods on continuous functions, normed vector spaces, infinite function se-
ries, and Laplace transforms. Every function in P λn (Ω) is continuous, analytic,
bounded, vanishing at infinity, and integral-convergent on Ω.

The new space P λn (Ω) is isomorphic to the polynomial space or the Euclidean
space, and has a similar nested subspace structure to the latter. There are var-
ious linear structures in P λn (Ω), and they can be transformed into each other.
A particular linear structure may be used to build a particular approximation
method in P λn (Ω).

We build a new theory of approximations to CB0 (Ω) functions based on
P λn (Ω) spaces. We first investigate the collective properties and characteristics
of CB0 (Ω). Then we linearize the target function according to various linear
structures of P λn (Ω), such as asymptotic series expansions, Laplace transform
moments, or interpolations. We also introduce the concept of convergence in
weak norm to deal with issues of non-compact domain and divergence.

The new approximation theories and methods effectively resolve the limita-
tions of some existing approximation methods in the following three perspec-
tives: (1) our asymptotic series expansion method can effectively give a global
approximation function while the Taylor series expansion method is restricted
locally by its finite convergence interval; (2) our Laplace transform moment
matching method is uniformly convergent in the weak norm sense while the
Padé method fails as an approximation method although it matches the mo-
ments; (3) our higher order interpolation method is uniformly convergent in
the weak norm sense while the higher order polynomial interpolation method
is unbounded at infinity and may suffer from the Runge’s phenomenon.

Using the concept of convergence in weak norm on P λn (Ω), we have the fol-
lowing conclusion about our new approximation theories and methods. Given
any bounded continuous vanishing at infinity function on Ω, we can arbitrar-
ily select a compact interval, a subset of Ω, such that the function can be
uniformly approximated on the compact interval by a decaying polynomial
function in P λn (Ω) and the approximation function is continuous, bounded,
integral-convergent, and vanishing at infinity on the complement of the com-
pact interval in Ω. The new approximation method may be modified to ap-
proximate other types of bounded continuous or even discontinuous functions
on Ω.
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In the future, we will explore linear operations on P λn (Ω) and their appli-
cations in solving differential, difference, or integral equations. This implies
the space may be useful to approximately describe physical systems, such as
vibration systems. In addition, we will use P λn (Ω) spaces in various numerical
calculations to provide global solutions for some problems which could only be
solved locally at the moment.

Lastly, we would like to state the Maple symbolic computing software pack-
age plays an important role in developing theories and approximation methods
of P λn (Ω) spaces. The software has been used in deriving mathematical expres-
sions, calculating numerical results, and plotting graphs.
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