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Abstract 
 

Modelling of Small-Unit Tactical Decision-Making in a Constructive Simulation 

 

The Canadian Forces, like most military organizations around the world, has increasingly turned 
to the use of Synthetic Environments, including serious games, to offset training and mission 

rehearsal costs in the face of shrinking budgets. As the shift to simulation-based training and 

experimentation continues, the complexity of the simulation scenarios grows and the realism of 
synthetic entities becomes a limiting factor for effective experimentation and training. While 

serious games provide unprecedented levels of graphical realism, the AI which controls the game 

entities has not kept pace. As a result, while serious games provide a framework within which to 

run training simulations, the lack of Human-Level AI means that in order to achieve training and 
replay value, these exercises are inherently manpower intensive. While Boyd, Ensley and Klein 

are major contributors to the field of human decision-making, their models are theoretical and are 

not easily implemented in a software architecture. We have developed a practical application to 
decision-making by merging those various theoretical models in order to demonstrate the 

competitive nature of warfare in the field, and thereby create more credible AI actors. To 

accomplish this, we have developed a software architecture using Soft Computing techniques to 
effectively model the time-competitive nature of Boyd’s Observe, Orient, Decide and Act 

(OODA) loop. This has allowed us to create a more realistic model of the dynamics associated 

with the tactical decision-making process of small-unit leaders in a synthetic environment. 

 

Résumé 
 

Modélisation de décisions tactiques pour escouades dans une simulation constructive 

 

Les Forces canadiennes, comme la plupart des organisations militaires du monde entier, se 
tournent de plus en plus vers l'utilisation d’environnements synthétiques, y compris de jeux 

sérieux, pour compenser les coûts de formation et de répétitions de mission face aux contractions 

budgétaires. Alors que la transition vers la formation et l’expérimentation basées sur la simulation 
se poursuit, la complexité des scénarios de simulation s’accroît et le réalisme des entités 

synthétiques devient un facteur limitant pour une expérimentation et une formation efficaces. 

Alors que les jeux sérieux fournissent des niveaux sans précédent de réalisme graphique, l'IA qui 
contrôle les entités de jeu n'a pas suivi le rythme. Par conséquent, alors que les jeux sérieux 

fournissent un cadre dans lequel des simulations de formation sont exécutées, le manque d'IA de 

niveau humain implique que, afin d'atteindre la formation et la valeur de reprise de jeu, ces 

exercices exigent intrinsèquement de la main-d'œuvre intensive. Bien que Boyd, Ensley et Klein 
sont les principaux contributeurs au domaine de la prise de décision humaine, leurs modèles sont 

théoriques et ne sont pas facilement implémentés dans une architecture logicielle. Nous avons 

créé une application pratique à la prise de décision en fusionnant ces différents modèles 
théoriques afin de démontrer la nature concurrentielle de la guerre dans un théâtre d’opérations, 

créant ainsi des acteurs IA plus crédible. Pour ce faire, nous avons développé une architecture 

logicielle utilisant des techniques de calcul souple afin de modéliser efficacement la nature 

compétitive temporelle de la boucle Observe, Oriente, Décide et Agir (OODA) de Boyd. Cela 
nous a permis de créer un modèle plus réaliste de la dynamique associée à la prise de décision 

tactique, dans un environnement synthétique. 
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1 Introduction 
 

1.1 Background 
 

1.1.1 Modelling and Simulation 

 

The Canadian Forces, like most military organizations around the world, has increasingly turned 
to the use of Synthetic Environments (SE) to offset training and mission rehearsal costs in the 

face of shrinking budgets. Bassarab [1] states that, “During the last ten to fifteen years, the Land 

Force has witnessed a tremendous shift towards the use of specially developed simulation 
equipment to assist in training our personnel.” Similarly, Roman and Cyr [2] note that, “SEs will 

provide the Army with a powerful and resource efficient medium for the exploration of doctrinal 

alternatives, realistic training, support to operations, and experimentation into the applicability of 

leading-edge technologies.” Roman and Brown [3] note that the impressive levels of resolution 
offered by the latest in video game technology permit the emulation of real-world environments 

to such a degree that “... serious games have a role to play in military tactical training”—a finding 

echoed by Bruzzone et al [4].  The paper also provides several examples of trainees who had 
serious games included with regular training methods outperforming those who did not. 

 Simulation provides a training and experimentation capability that is either time-consuming 

and expensive to duplicate in the real world, or cannot be duplicated (i.e., testing systems that are 
not yet in service). As the shift to simulation-based training and experimentation continues, the 

complexity of the simulation scenarios grows and the realism of synthetic entities becomes a 

limiting factor for effective experimentation and training [5] [6]. The current workaround for the 

problem of lack of realism is to employ a team of human operators to manage synthetic 
entities [7], which can range from individual soldiers to formations of soldiers and/or vehicles. 

The human operator provides the knowledge and skills to ensure that synthetic entities perform in 

a realistic manner so the training can be effective or the experimental results valid. However, the 
availability of such a team—both in terms of numbers and individuals with the right skill-sets—

then becomes a constraint on the availability of training and experimentation, and a limitation on 

the complexity (i.e., number of synthetic entities) that can be employed in a scenario. In a recent 
exercise [8] there was a roughly one for one mapping between human operators and synthetic 

entities, which is typical. As a result, the lack of autonomous realistic synthetic entities forms an 

artificial limit on the provision of effective training and experimentation capabilities using 

simulation. There are three broad categories of simulation [9]. These are: 
 

 Live – Real people operating real systems, (e.g. a pilot flying a CF-188); 

 Virtual – Real people operating simulated systems. Virtual simulations inject a Human-

in-the-Loop into a central role to exercising motor control skills (e.g. a pilot flying a 

simulated CF-188); and 

 Constructive – Simulated people operating simulated systems. Humans provide input to 

such simulations, but are not involved in determining the outcomes. It is the area of 

constructive simulation that we are targeting for our work. 

 

 Categorizing a simulation as live, virtual, or constructive can be difficult, as there is often no 
clear division between these categories (e.g. most First-Person-Shooters (FPS) are a combination 

of Virtual and Constructive simulations) [9]. 



2 
 

 Computer Generated Forces (CGF), sometimes referred to as Semi-Automated Forces (SAF) 

are synthetic entities within a battlefield simulation that are controlled by a software system [10]. 
CGF provide opposing forces, neutral entities, as well as supplementary friendly forces, and are 

key components for Virtual and Constructive simulations. 

 Abdellaoui et al. [11] note that current CGFs are, “...predictable, non-adaptable, with a 

distinguishable behaviour, and are easily defeated by human crews, which substantially reduces 
the replay value of training scenarios.” As an example, if the first time a scenario is played, the 

player is ambushed by an enemy tank that is hidden behind a building, and the enemy tank always 

appears behind the same building in every run of the scenario, the player adapts, but from that 
point forward he is essentially learning the wrong lessons (negative learning). The current 

workaround to overcome this shortcoming is to use human operators to control critical 

entities [7]. As a result, Subject Matter Expert (SME) availability becomes a training bottleneck 
and an additional expense. Abdellaoui et al. conclude that to obtain realism while minimizing 

human intervention “...would require an AI capability that can overcome the current critical CGF 

shortcomings” [11]. 

 Around the late 1990s, early 2000s, researchers began to seek what George and Cardullo, in 
their paper “Application of neuro-fuzzy systems to behavioral representation in Computer 

Generated Forces” [12], referred to as “humanlike expertise in the military domain.” 

 While George and Cardullo were specifically interested in military simulations, the interest of 
researchers was not simply limited to this domain. In 2001, Laird and van Lent used the term 

“Human-Level Intelligence” in their paper “Human-Level AI’s Killer Application: Interactive 

Computer Games” [13]. They state that: “Although one of the fundamental goals of AI is to 
understand and develop intelligent systems that have all the capabilities of humans, there is little 

active research directly pursuing this goal. We propose that AI for interactive computer games is 

an emerging application area in which this goal of human-level AI can successfully be 

pursued” [13]. 
 They go on to state: “The thesis of this article is that interactive computer games are the killer 

application for human-level AI. They are the application that will need human-level AI. 

Moreover, they can provide the environments for research on the right kinds of problem that lead 
to the type of incremental and integrative research needed to achieve human-level AI” [13]. 

 In their conclusion, Laird and van Lent write: “One attractive aspect of working in computer 

games is that there is no need to attempt a “Manhattan Project” approach with a monolithic 

project that attempts to create human-level intelligence all at once. Computer games provide an 
environment for continual, steady advancement and a series of increasingly difficult 

challenges” [13]. 

 

1.1.2 Cognitive Modelling Approaches 

 

While there are a number of cognitive modelling approaches—ACT-R [14], SOAR [15], 

CoJACK [16], and PMFserv [17] to name a few—we will focus on one in particular by Jones et 
al. [18] as it was developed with Endsley, and it purports to fully support Endsley’s SA model, 

whereas other approaches, according to Jones et al., do not. While CoJACK claims that it 

implements both Boyd’s Observe, Orient, Decide and Act (OODA) loop and Endsley’s model of 
SA, we can find no evidence that it does either in anything but a superficial manner. 

 In support of Endsley et al.’s research [19] for the U.S. Army in determining SA 

requirements for the infantry platoon leader, follow-on research conducted by Jones et al. 

proposes the use of Fuzzy Cognitive Maps (FCM)—which they refer to as SA-FCM in their 
implementation—as a way of improving the representation of SA and developing a model that 
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replicates human cognition as it relates to SA [20]. In their paper, they state that while traditional 

modeling approaches are capable of representing Level 1 SA, an FCM can represent and help the 
human decision-maker understand the “so what” (Level 2 SA) and “now what” (Level 3 SA) of 

how the data impacts current and future situations, which are needed for effective decision-

making. The report, however, does not provide an explanation as to why traditional modelling 

approaches are limited to Level 1 SA and, in fact, earlier in the same document, they state that, 
“... there is a tendency when using them [other SA modelling techniques] to model SA (as 

defined by Endsley) with an emphasis on Level 1 SA (perception) over the other higher levels.” 

In an earlier paper, Jones et al. [18] note that other modelling approaches, “... generally do not 
include the comprehension (Level 2 SA) and projection (Level 3 SA) levels of situation 

awareness” thus their SA-FCM constitutes an advancement to cognitive modelling. 

 Aside from the fact that their implementation, which makes use of a simple, non-dynamic, 
planning-oriented scenario for validation, could easily fall prey to fuzzy logic’s greatest 

weakness—combinatorial rule explosion—we believe that it only has, at best, utility for offline 

mission planning and is, therefore, unsuitable for the real-time approach that we present in 

Section 4. 
 Therefore, our research did not reveal any software architecture developments that could be 

used to create credible synthetic forces that can react to the environment, provide situational 

awareness or incorporate the uncertainty induced by the fog of war. One of the aims of our work 
was to research the state of the art in time-competitive decision-making models in order to 

simulate credible autonomous agents. From this research we have chosen the methods and models 

to develop a scalable architecture that can support these agents. 
 

1.2 Problem Statement 
 
Current CGF are predictable and non-adaptable, typically because their behaviour is scripted. The 

net result of this is that training scenarios lack replay value. The workaround to this problem is to 

employ human operators to control critical entities. The availability of these SMEs, however, then 
becomes a bottleneck and an extra expense for training. 

 

1.3 Objective 
 

As a first step toward solving the problem stated in section 1.1, our objective is to create an AI 

model that will reduce the considerable manpower requirements for running military simulations, 

to make CGF that respond appropriately to military tactics. 
 We have used state of the art models in situation awareness and decision making to create a 

more realistic decision model for AI decision making. By setting our software architecture on this 

more realistic model and by using soft computing to elaborate its behaviour, we can generate and 
validate credible synthetic forces. 
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1.4 Thesis Contributions 
 

Our research shows that Boyd, Ensley and Klein are major contributors to the field of human 

decision-making. They have developed theoretical models which, however, have not yet been 

implemented in any kind of software architecture. Our thesis’ first contribution is that we have 
developed a practical application to decision-making by merging those various theoretical models 

in order to demonstrate the time-competitive nature of warfare on the modern battlefield. 

 Based on his observations on air combat between MiG-15s and F-86s in the Korean War, 
former United States Air Force Colonel John Boyd developed a time-competitive decision-

making model that is now commonly referred to as the OODA (Observe, Orient, Decide, and 

Act) loop. According to Boyd’s theory, the key to victory is to be able to create situations 

wherein one can make appropriate decisions more quickly than one's opponent [21] [22] [23]. 
 While useful in terms of illustrating the time-competitive nature of the decision-making 

cycle, Boyd’s model alone is not sufficiently detailed to allow for the creation of a software 

architecture that supports this cycle.  
 Endsley’s [24] model, for its part, describes the stages of Situation Awareness (Perception, 

Comprehension and Projection) which maps to Boyd’s concepts of Observe and Orient.  In a 

similar manner, Klein’s [25] Recognition Primed Decision-Making model develops a naturalistic 
theory on how humans make decisions. The models of Endsley and Klein, however, are stand-

alone models; therefore, our second contribution is that through our analysis, we have selected the 

strengths of each model and integrated them within the framework of the OODA loop, thereby 

providing a much better representation of the decision-making cycle. We must note, however, 
that the addition of Endsley’s and Klein’s models still did not allow us to fully represent the 

intent of Boyd’s work. 

 What sets Boyd’s work apart from other models is the human dimension—how humans react 
to change, and the stress that it brings—and how the human brain processes information under 

these conditions. Based on Boyd’s model, each leader’s OODA loop will continue until one side 

possesses a decisive advantage and emerges victorious. What is not accounted for in this 
description, however, is how we model this “mental lag”. Boyd’s model accounts implicitly for 

the differences between the abilities of the opposing commanders, but not how they must be 

modelled in order to depict an engagement between an expert and a novice decision-maker, or 

between two experts who possess varying degrees of expertise. While both Endsley and Klein 
discuss the importance of various environmental and individual factors in situation awareness and 

decision-making, they do not articulate how these factors would be accounted for in their 

respective models. Therefore, our third contribution was to introduce the cognitive Transition 
Model of Bridges [26] which allows us to model the effects of change on individual decision 

makers. 

 Another element which we must consider that complicates the development of a software 

model is the difficulties associated with decision-making in a synthetic environment, which is 
where our software model must work. Synthetic environments pose a unique challenge in that 

they provide a discrete representation of environmental change, which is not how humans 

perceive an essentially continuous world [27]. Similarly, synthetic actors do not ‘see’ in the same 
manner as humans [27], and this must also be accounted for in a model for a human decision-

making architecture. 

 The fourth and final contribution of this thesis was to develop a software model using Soft 
Computing (SC) techniques [28]—specifically a fuzzy-neuro system—in order to effectively 

model the time-competitive nature of Boyd’s OODA loop. We have demonstrated that by 

representing the interaction between opposing, or competitive, OODA loops, we have developed 
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a more realistic model of the dynamics associated with the tactical decision-making process of 

small-unit leaders in a Constructive Simulation. 
 

1.5 Conclusion 
 
While modern video games provide unprecedented levels of graphical realism, the AI which 

controls the game entities has not kept pace. As a result, while these games provide a framework 

within which to run training simulations, the lack of what Laird and van Lent describe as Human-
Level AI[13] means that in order to achieve training and replay value, these exercises are 

inherently manpower intensive. 

 The remainder of this dissertation is divided as follows: Chapter 2 will provide an in-depth 

look at the Boyd Cycle, followed by a detailed examination of Endsley’s model of Situation 
Awareness and Klein’s decision-making model. Chapter 3 will look at the specific SC methods 

that we have used in implementing the architecture. In Chapter 4, we will provide an overview of 

our software architecture. Chapter 5 will lay out the primary components and distributed nature of 
our software model. Chapter 6 will discuss the behavioural models that form the core of the 

CDMM. Chapter 7 will review the scenarios that we used to validate our model, and Section 8 

will provide conclusions and proposals for future work. 
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2 Decision-Making 
 

2.1 The Boyd Cycle 
 

In the mid-1970s, former United States Air Force Colonel John Boyd began studying and writing 

about conflict and warfare. Based on his experience during the Korean War, he proposed a 
decision-making model to try to explain the success of the F-86 fighter pilots over their MiG-15 

opponents. Despite the fact that the MiG-15 was considered an overall superior plane, with a 

higher ceiling, tighter turn radius and higher maximum speed, the kill ratio was 10:1 in favour of 
the F-86. While some of this advantage could be explained by superior US pilot training, it could 

not, Boyd believed, explain the entire difference since the North Korean pilots often achieved 

numerical superiority during air-to-air combat [22]. 

 Boyd believed that other factors were at play, ones that offered the F-86 a decisive advantage 
in combat. The advantages that the F-86 had over the MiG-15, he believed, were its canopy 

design, which afforded the F-86 pilot better visibility and, because it used fully hydraulic 

controls, compared to the MiG-15’s hydraulic-assist controls, its ability to transition more quickly 
between manoeuvres. These advantages permitted the American pilot to observe more and, as a 

result, orient himself more quickly to the changing situation and maneuver the aircraft in 

response. He hypothesized that the F-86 gained a time advantage with each new action and with 

each change in action the MiG-15's reaction was increasingly inappropriate which eventually 
resulted in the F-86 obtaining a good firing position [23]. 

 Boyd proposed that conflict can be seen as time-competitive Observation-Orientation-

Decision-Action (OODA) cycles. Each party to a conflict begins by observing. He observes 
himself, his physical surroundings and his enemy. On the basis of his observations, he orients, 

meaning he makes a mental image of his situation. He then makes a decision and acts on it. 

Because he assumes that his action has changed the situation, he observes again, and starts the 
process anew. This version of Boyd’s decision-making model (Figure 2-1) is referred to as either 

the Boyd Cycle or the OODA loop, and it forms a connection between information and 

action [22]. 

 

 
 

Figure 2-1: Simplified or “Rapid” OODA Loop [23] 
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 In the John Boyd Roundtable [23], Osinga refers to this version of the Boyd Cycle as the 

rapid OODA loop and argues that, while it is the popular interpretation of Boyd’s work, this view 
is too narrow an interpretation of the general OODA loop (Figure 2-2). 

 

 
 

Figure 2-2: The General OODA Loop [22] 

 

 The Boyd Cycle has gained widespread acceptance, and has been expanded outside of tactical 

fighter combat to include business applications [23] and is even used in robot soccer [29]. That 
said, as Osinga notes, many interpretations of Boyd’s work are, at best, incomplete or 

oversimplified and, at worst, wrong [22]. The Orient step presented in [29], for example, is often 

seen as simply a physical orientation, rather than the cognitive orientation proposed by Boyd. 
This is also frequently seen in books [30] and websites that purport to use the OODA loop in 

support of training for law enforcement agencies. Many who support the concept of the OODA 

loop focus exclusively on the speed of the decision-making cycle and speak of “getting inside” 

the opponent’s OODA loop in the same way that a plane with a tighter turning radius could “turn 
inside” that of its opponent. While this is not incorrect, it is incomplete. 

 Lind’s explanation summarized the popular understanding of the OODA loop: “In any 

conflict, the actors who can consistently and effectively cycle through the OODA loop faster, 
who can maintain a higher tempo of operations, gains an ever-increasing advantage with each 

cycle affording tactical initiative. The slower actor falls further and further behind in his actions 

and becomes increasingly unable to cope with the deteriorating situation. With each cycle the 
slower actor’s actions become less relevant to the true situation, and become increasingly 

ineffective. This is the OODA loop in its simplest form” [31]. 

 Osinga [22] notes that the UK military doctrine description of the doctrinally preferred 

method of war fighting, the maneuvrist approach, is pure Boyd (and fully in line with the US 
Marines doctrine) and provides a deeper understanding: 

 

The maneuvrist approach to operations is one in which shattering the enemy’s overall 
cohesion and will to fight, rather than his materiel is paramount [...] significant features are 

momentum and tempo, which in combination lead to shock and surprise. Emphasis is on the 

defeat and disruption of the enemy—by taking the initiative, and applying constant and 
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unacceptable pressure at the times and places the enemy least expects—rather than 

attempting to seize and hold ground for its own sake. It calls for an attitude of mind in which 
doing the unexpected and seeking originality is combined with ruthless determination to 

succeed. A key characteristic of the maneuvrist approach is to attack the enemy commander’s 

decision process by attempting to get inside his decision making cycle. This involves 

presenting him with the need to make decisions at a faster rate than he can cope with, so that 
he takes increasingly inappropriate action or none at all, thereby paralyzing his capability to 

react. Clearly any degradation of the overall command system which can be achieved by 

physical or other means will hasten the onset of paralysis. 
 

 As discussed in Section 1.4, we have developed a multi-stage architecture to model the time-

competitive nature of Boyd’s OODA loop. In the next two sections we will show how we 
decomposed the OODA loop further in order to facilitate the development of our decision-making 

architecture. 

 

2.2 Observe and Orient 
 

According to Boyd, decision-making occurs in a recurring cycle of Observe-Orient-Decide-Act. 
An entity (whether an individual or an organization) that can process this cycle quickly, 

observing and reacting to unfolding events more rapidly than an opponent, can thereby "get 

inside" the opponent's decision cycle and gain the advantage [21].  

 Boyd developed the concept of the OODA loop to explain how to direct one's energies to 
defeat an adversary and survive. Boyd emphasized that "the loop" is actually a set of interacting 

loops that are to be kept in continuous operation during combat. He also indicated that the phase 

of the battle has an important bearing on the ideal allocation of one's energies [21] [22]. 
 Figure 2-2 shows that all decisions are based on observations of the evolving situation, 

tempered with implicit filtering of the problem being addressed. These observations are the raw 

information on which decisions and actions are based. The observed information must be 
processed to orient it for further making a decision. In notes from his talk “Organic Design for 

Command and Control”, Boyd said: The second ‘O’, orientation—as the repository of our genetic 

heritage, cultural tradition, and previous experiences—is the most important part of the OODA 

loop since it shapes the way we observe, the way we decide, the way we act [21]. 
 The first two steps of the OODA loop, Observe and Orient bear a strong similarity to 

Endsley’s definition of Situation Awareness (SA). Although numerous definitions of SA have 

been proposed, Endsley's formal definition [24], “the perception of elements in the environment 
within a volume of time and space, the comprehension of their meaning, and the projection of 

their status in the near future,” is the most widely used as it is applicable across multiple 

domains [32]. More informally, it is often stated as simply “knowing what’s going on” [32]. 

Endsley’s three levels of SA—Perception, Comprehension and Projection—are depicted in 
Figure 2-3. 
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Figure 2-3: Endsley's model of situation awareness [24] 

 

 Perception, or Level 1 SA, involves the processes of monitoring, cue detection, and simple 

recognition, which lead to an awareness of multiple situational elements (objects, events, people, 
systems, environmental factors) and their current states (locations, conditions, modes, 

actions) [24]. It is important to make the distinction here between perception and knowledge or 

fact. Bratman [33], who developed the Belief-Desire-Intention (BDI) model, deliberately chose 
the term belief, rather than knowledge, in recognition of the fact that what an agent believes may 

not necessarily be true, and that it may change in the future. 

 Comprehension is the next step in SA formation and involves a synthesis of disjointed 
Level 1 SA elements through the processes of pattern recognition, interpretation, and evaluation. 

Level 2 SA requires integrating this information to understand how it will impact upon the 

individual's goals and objectives. This includes developing a comprehensive picture of the world, 

or of that portion of the world of concern to the individual [24]. 
 Projection is the third and highest level of SA, which involves the ability to project the future 

actions of the elements in the environment. Level 3 SA is achieved through knowledge of the 

status and dynamics of the elements and comprehension of the situation (Levels 1 and 2), and 
then extrapolating this information forward in time to determine how it will affect future states of 

the operational environment [24]. 

 Endsley's model of SA illustrates several variables that can influence the development and 

maintenance of SA, including individual, task, and environmental factors. For example, 
individuals vary in their ability to acquire SA; thus, simply providing the same system and 

training will not ensure similar SA across different individuals. Endsley’s model shows how SA 

“provides the primary basis for subsequent decision making and performance in the operation of 
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complex, dynamic systems” [34]. Although alone it cannot guarantee successful decision making, 

SA does support the necessary input processes (e.g. cue recognition, situation assessment, 
prediction) upon which good decisions are based [35]. 

 SA also involves both a temporal and a spatial component. Time is an important concept in 

SA, as SA is a dynamic construct, changing at a tempo dictated by the actions of individuals, task 

characteristics, and the surrounding environment. As new inputs enter the system, the individual 
incorporates them into this mental representation, making changes as necessary in plans and 

actions in order to achieve the desired goals. SA also involves spatial knowledge about the 

activities and events occurring in a specific location of interest to the individual. Thus, the 
concept of SA includes perception, comprehension, and projection of situational information, as 

well as temporal and spatial components [34]. 

 Roman and Chapman [36] put Endsley’s work into a military context in the following 
manner: To perceive the situation at the first level, the commander must have accurate static and 

dynamic data on all forces and environmental elements that can potentially affect operations. This 

would be termed Blue (friendly), Red (enemy), White (neutral) or Brown (environmental) 

situation awareness in current doctrine. When these disparate elements of Level 1 situation 
awareness are assembled and patterns emerge, the commander forms a holistic picture of the 

environment and comprehends the significance of the various objects and events, thus achieving 

Level 2 situation awareness. This Level 2 awareness is enhanced into Level 3 awareness through 
the combination of the holistic picture with the dynamic (movement or activity) information 

related to the object. 

 Strater et al. [37] note that infantry platoon leaders operate in a complex environment 
requiring that they attend to multiple information sources, prioritize among competing and 

sometimes conflicting goals, and make rapid decisions, all under highly stressful conditions 

where the loss of life, either their own or others’, is a constant threat. To complicate the matter, 

platoon leaders are often relatively inexperienced officers, with minimal service time, training 
and experience to draw on. In this environment, superior SA provides tremendous advantages to 

those with the ability to acquire it and the experience to use it. Endsley et al. [19] reinforce the 

importance of the concepts of ability and experience when they state that intangible human skills, 
such as tactical competence, problem-solving abilities, and the capacity to make decisions under 

the pressures of time and high risk are mitigating factors and are also heavily affected by the state 

of SA. We will explore how these concepts fit into our decision-making model in Section 4. 

 Endsley et al. [19] provide a more complete overview of the challenges of SA in infantry 
platoon operations, where she concludes that achieving high levels of SA in the highly complex 

and dynamic environment of combat is not easy. Many stressors act to degrade the platoon 

leader’s SA, or to prevent him from gaining a high level of SA to begin with. Time pressure and 
the rapid tempo of operations can significantly challenge platoon leaders who often must struggle 

to maintain an up-to-date awareness of a rapidly changing reality. The conditions for gathering 

and assimilating information may rapidly deteriorate during combat operations.  
 Endsley goes on to note that fatigue brought on by heavy physical exertion, lack of sleep and 

night-time operations also degrade the platoon leader’s ability to detect and process information 

vital to good SA. Poor environmental conditions, including noise, fog, weather, and smoke can 

directly obscure critical information. Stress and anxiety associated with warfare and the inherent 
uncertainty and confusion can all act to reduce SA. Periods of significant task underload or task 

overload can also lead to SA problems [19]. 

 The factors that shape SA also can be greatly influenced by the enemy, who can alter the 
tempo of the battle and dramatically affect the conditions under which a battle is fought. Thus, 

infantry operations frequently must be conducted under the challenges of a number of factors, 
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some naturally occurring, some task or enemy induced, that can all act to seriously degrade 

SA [19]. 
 While not stated explicitly, we can again see elements of Boyd’s competitive OODA loop 

emerge in Endsley’s model, and in her description of rapid tempo, quickly changing 

circumstances, and of how enemy actions can degrade our own SA. 

 Returning to the competitive nature of Boyd’s model, we can see that it is impossible to fully 
understand the situation that one is facing. Perceptions may, or may not, be true and, unless it is 

expressly stated, intent must be inferred. Given that opponents are attempting to disguise their 

actions from one another in order to create false perceptions which, in turn, could lead to 
incorrect conclusions (i.e. deny to them SA), both sides must operate in a climate of uncertainty. 

 Lind states: “Leaders have always faced a complex environment of imperfect knowledge, 

uncertainty and ambiguity in battle” [31]. Boyd [38] states that uncertainty is a fundamental and 
irresolvable characteristic of our lives, no matter how good our observations and theories for 

explanation are. 

 Once a leader has a mental picture of what he believes is going on—and this distinction is 

important, given the degree of uncertainty in his environment—he must make a decision and act 
on it, thereby closing the decision-making loop. 

 

2.3 Decide 
 

We can see from Figure 2-2 that, in addition to the feedback loop from Act back to Observe 

(which closes the OODA loop) there is an intermediate loop from Decide back to Observe. This 
is due to the fact that cognitive decision-making takes time, and this is exacerbated by the many 

battlefield conditions described by Endsley [19]. Therefore, with each iteration through the loop, 

the decision-maker must determine if he has enough information to make a decision. If the 
answer is no, then he returns to the Observe step and continues. 

 While Endsley’s model, depicted in Figure 2-3, contains both “Decisions” and “Performance 

of Actions” steps, they are not discussed in her work. Therefore, for information on how 
individuals make decisions, we must look beyond Endsely’s model. 

 In a whitepaper on Realism in Cognition and Emotion, members of the AOS Group [16] 

noted that many factors contribute to the decision-making process, including: 

 

 Situation Awareness – the appreciation of those aspects of the current situation that are 

relevant to the question at hand. 

 Predictive Capability – the ability of the agent to foresee the consequences of actions and 

the likely actions/reactions of other entities that are part of the scenario. 

 Response Repertoire – the known action sequences for dealing with the current situation 

(skill set). 

 Personal Preference – preferred methods of dealing with the current situation, often based 

on experience of previous successes and failures. 

 Cognitive Effectiveness – the current state of the underlying cognitive architecture, 

affecting capabilities such as ability to recall facts, hold intermediate results in working 

memory, and stay focused on the problem. 

 Affective State – the emotional factors that can influence a decision; for example, a high-
level of fear can predispose a person to make an irrational decision. 
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 Prior to the emergence of the Naturalistic Decision Making (NDM) model in 1989, research 

in the field of human decision-making focused on optimal ways of making decisions, defined as 
choices among alternatives, in well-structured settings that could be carefully controlled [25]. 

Kahneman, Slovic and Tversky [39] demonstrated that people did not adhere to the principles of 

optimal performance. Instead, respondents relied on heuristics as opposed to algorithmic 

strategies even when these strategies generated systematic deviations from optimal judgments as 
defined by the laws of probability, the axioms of expected utility theory, and Bayesian 

statistics [39]. In other words, people do not generate alternative options and compare them on 

the same set of evaluation dimensions. They do not generate probability and utility estimates for 
different courses of action and elaborate these into decision trees. In fact, even when they do 

compare options, they rarely employ systematic evaluation techniques [25]. 

 NDM researchers sought to discover how people were able to make tough decisions under 
difficult conditions such as limited time, uncertainty, high stakes, vague goals, and unstable 

conditions. Klein postulates in his Recognition-Primed Decision (RPD) model that people use 

their experience in the form of a repertoire of patterns, and that the patterns highlight the most 

relevant cues, provide expectancies, identify plausible goals and suggest typical types of reactions 
in that type of situation [40]. 

 However, there is more to the RPD model than pattern matching. How can a person evaluate 

an option without comparing it with others? Klein found that the fireground commanders that he 
studied evaluated a course of action by using mental simulation to imagine how it would play out 

within the context of the current situation. If it would work, then the commanders could initiate 

the action. If it almost worked, they could try to adapt it or else consider other actions that were 
somewhat less typical, continuing until they found an option that felt comfortable. This process 

exemplifies Herbert Simon’s (1957) notion of “satisficing” – looking for the first workable option 

rather than trying to find the best possible option. Because fires grow exponentially, the faster the 

commanders could react, the easier their job. Therefore, the RPD model is a blend of intuition 
and analysis. The pattern matching is the intuitive part, and the mental simulation is the 

conscious, deliberate, and analytical part. 

 This blend corresponds to the System 1 (fast and unconscious) / System 2 (slow and 
deliberate) account of cognition put forward by Kahneman [41] and Epstein [42]. Evertsz et 

al. [27] refer to these concepts as pre-cognitive and cognitive, and Grossman [43] refers to them 

as the midbrain and forebrain. Grossman takes the position that the expression, “to be scared out 

of your mind” is actually a literal expression and represents a mental state that he refers to as 
Condition Black, where the midbrain takes over. Harland [44] refers to these as Emotional and 

Cognitive centres, and states that the brain’s emotional centres actually receive signals before 

they reach the cognitive centres of the brain. The emotional centres will process input more 
quickly and typically trigger emotional responses, such as fear. He notes, however, that following 

this response by the midbrain, the stimuli are still transported to the cognitive centres where they 

will be processed more logically. 
 Klein found that a purely intuitive strategy, relying only on pattern matching, would be too 

risky because sometimes the pattern matching would generate flawed options. A completely 

deliberative and analytical strategy, however, would be too slow, as the fires would be out of 

control by the time the commander finished deliberating [25]. Klein’s RPD model is shown in 
Figure 2-4. 
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Figure 2-4: Model of recognition-primed decision making [25] 

 

 Here, we can see a very close parallel between Klein’s NDM model, RPD, and the time-
competitive tactical environment of a small-unit leader. In this way, Klein’s decision-making 

model appears to be a natural fit with Endsley’s SA model. Where Boyd’s model describes the 

“what”, these models describe the “how”. 
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2.4 Act 
 

While the “decision” step in the Boyd loop is the core of leadership, the execution of the chosen 

“action” is the core of a well-trained force. One of the hallmarks of military training is the 

emphasis on what could simply be called immediate-action (or battle) drills.  
 Infantry battle drills describe how platoons and sections (squads in US terminology) apply 

fire and maneuver to commonly encountered situations. They require leaders to make decisions 

rapidly and to issue brief oral orders quickly. In this manner, battle drills resemble software 
design patterns in that they represent general solutions to commonly occurring problems, with the 

details of the solution being adapted to the specific problem. 

 The Canadian Army’s Tactical Aide Memoire states: “the aim of drills is to permit a Battle 

Group (BG) and a sub-unit under pressure of time to react quickly in a coordinated manner by 
executing one or more standard rehearsed manoeuvres. Use of drills reduces greatly the need for 

detailed orders, and it is the removal of this portion of the decision-action cycle that saves time 

and frees the commander’s mind to think ahead. In short, drills help increase the tempo of 
operations.” 

 The US Army field manual, FM 25-101, defines a battle drill as “a collective action rapidly 

executed without applying a deliberate decision-making process.” 
 As the overarching goal of this research is to model the time-competitive decision-making 

that Boyd referred to, the supporting architecture of this thesis must support the complete 

decision-making cycle. The primary focus of this research, however, has been centred on decision 

making. Battle drills, therefore, provide a convenient, pre-made, set of “decisions” that can be 
made (selected), as well as the steps required to implement the action, thus completing the OODA 

loop. 

 

2.5 Conclusion 
 

In this chapter we provided an overview of the time-competitive decision-making model 
proposed by Boyd that forms the basis of our model and architecture. We have decomposed 

Boyd’s model in order to more intuitively map the steps to a software architecture, and then 

examined each of the decomposed steps (Observe-Orient, Decide, and Act) in more detail. We 
then examined Endsley’s work on Situation Awareness to better understand the complexities 

involved in SA, followed by Klein’s Recognition-Primed Decision model. 

 While the models of Endsley and Klein are considerably more detailed than Boyd’s high-

level OODA loop, they are still theoretical. More specifically, they are descriptive rather than 
prescriptive in nature and thus are still too high-level to be implemented directly in a software 

model. 

 Our approach was to take these high-level concepts and break them down further into discrete 
steps that can be modelled in a software architecture. In the next chapter, we discuss our use of a 

Hybrid Intelligent System and demonstrate how this approach is well suited to decomposing the 

models of Endsley and Klein, and how it maps well to the architecture that we will present in 
Chapter 4. 
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3 Hybrid Intelligent Systems 
 

In this chapter we discuss AI technologies and develop our argument for our choice of tools, 
methods and design in support of our thesis. Given the number of AI technologies available, it 

can be challenging to select which approach(es) will work best for a given problem. As Marvin 

Minsky [45] writes: 

 
Many students like to ask, “Is it better to represent knowledge with Neural Nets, Logical 

Deduction, Semantic Networks, Frames, Scripts, Rule-Based Systems or Natural Language?”  

My teaching method is to try to get them to ask a different kind of question.  “First decide 
what kinds of reasoning might be best for each different kind of problem – and then find out 

which combination of representations might work well in each case.” 

[...]  My opinion is that we can make versatile AI machines only by using several different 

kinds of representations in the same system!  This is because no single method works well for 
all problems; each is good for certain tasks, but not for others.  Also, different kinds of 

problems need different kinds of reasoning. 

 
 This need for a combination of different intelligent technologies, whose individual strengths 

offset each other’s weakness(es), has led to the emergence of hybrid intelligent systems [12] [46]. 

As we noted in Chapter 1, synthetic environments are comprised of models of physical entities, 
environmental factors, in addition to human models, and that the human models are not as 

sophisticated as the other two. This is, in part, due to the fact that human behavior represents 

highly complex nonlinear and adaptable systems. While conventional approaches using state 

machines and expert systems have been applied to CGF, the results in some cases have been 
synthetic force portrayals that are not totally autonomous, are unrealistic and do not support the 

full requirements that militaries have for analysis and training [12]. 

 

3.1 Soft Computing 
 

A new mathematical approach, known as Soft Computing (SC), shows promise in dealing with 
the inherent complexity of modeling human behavior. SC is a discipline that is comprised of a 

combination of several distinct mathematical techniques: Fuzzy Logic (FL), Artificial Neural 

Networks (ANN) and Probabilistic Reasoning (PR), which includes genetic algorithms, chaos 
theory, belief nets and learning theory. 

 SC differs from conventional computing in that, unlike hard computing, it is tolerant of 

imprecision, uncertainty and partial truth. In effect, the role model for soft computing is the 

human mind [28]. SC is not, however, an uncoordinated combination of FL, ANN and PR; it is a 
partnership in which each method contributes, usually at different organizational levels, thereby 

creating a hybrid system. From this perspective, the contributions of FL, NN and PR are 

complementary rather than competitive [12] [28].  
 In traditional, or “hard” computing the primary factors are precision, certainty and rigor. 

Zadeh [28] writes, “... the point of departure in soft computing is the thesis that precision and 

certainty carry a cost and that computation, reasoning, and decision making should exploit—
wherever possible—the tolerance for imprecision and uncertainty.” He goes on to say, “... in 

raising the banner of ‘Exploit the tolerance for imprecision and uncertainty,’ soft computing uses 

the human mind as a role model and, at the same time, aims at a formalization of the cognitive 

processes humans employ so effectively in the performance of daily tasks.” In other words, soft 
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computing is capable of operating with uncertain, imprecise and incomplete information in a 

manner that reflects human thinking. A case in point would the human tendency to represent data 
with words, rather than numbers. 

 Zadeh [47] [48] notes that, while words are inherently less precise than numbers, the offset to 

this is that the cost of precision is high. Words can be used when there is a tolerance for 

imprecision. Likewise, soft computing exploits the tolerance for uncertainty and imprecision to 
achieve greater tractability and robustness, and lower the cost of solutions. 

 Intelligent systems such as CGF must possess humanlike expertise in the military domain. 

Like a human or a group of humans in a military organization, they must be able to adapt to 
change in a highly dynamic synthetic environment. This must be done within the constraints of 

doctrine, tactics, experience and performance of military systems. It therefore seems reasonable 

that it would be advantageous to use several mathematical techniques together to form a hybrid 
system that leverages off the advantages of various modeling techniques. 

 We noted in Chapter 2 that the environment in which a small-unit leader must make decisions 

in is replete with the factors that soft computing aims to address. Our research will show that soft 

computing provides both a good solution for the problem space that we are dealing with and a 
very flexible approach to further decomposing the models of Endsley and Klein into workable 

software solutions. 

 

3.2 Neuro-Fuzzy Systems 
 

Our approach was the use of a neuro-fuzzy system, which applies a combination of an Artificial 
Neural Network (ANN) and a Fuzzy Inference System (FIS) [12] [49]. This hybrid technique 

uses the power of artificial neural networks to classify patterns in data and adapt that 

classification with highly dynamic environments. ANN’s have been employed in several 
applications ranging from target recognition to financial forecasting. They are particularly 

powerful in clustering the solution space, thereby identifying important features, an attribute that 

we will develop further in Chapter 4. Fuzzy logic is based on the idea that sets are not crisp but 
are fuzzy, and these can be modeled in linguistic human terms such as large, small and 

medium [50]. In fuzzy systems, rules can be formulated that use these linguistic expressions and 

apply them to the human behavioral problem. The combination of ANN and fuzzy sets offers a 

powerful method to model human behavior, as their roles are complementary, rather than 
competitive [12] [28]. 

 Neuro-fuzzy systems can be broken down into two broad categories: heterogeneous and 

homogeneous [51]. We chose to use a heterogeneous system, where the FIS and ANN work as 
complementary components. The FIS accepts perceptions from the simulation engine and 

generates a high-level comprehension of the situation. The FIS then feeds the results to the 

Project step in order to project our current comprehension into the near future, and then generate 

the leader’s SA of the current situation. 
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3.2.1 Fuzzy Logic 

 

Fuzzy logic is a superset of conventional (Boolean) logic that has been extended to handle the 
concept of partial truth values. As its name suggests, it is the logic underlying modes of reasoning 

which are approximate rather than exact. FL is based on the concept of fuzzy sets, and provides a 

means for representing uncertainty [47] [50]. While probability theory is the primary tool for 
analyzing uncertainty, it assumes that uncertainty is a random process. However, uncertainty is 

not always random, and fuzzy set theory can be used to model the kind of uncertainty associated 

with imprecision, and lack of information [50]. This was an important point in our selection of FL 

in our model, as the small-unit leader will rarely have complete and/or timely information 
available in order to make decisions. 

 Fuzzy concepts are represented using fuzzy variables, fuzzy sets and fuzzy values. A fuzzy 

variable is used to describe a general fuzzy concept. It consists of a name (for example, air 
temperature), its units (such as Degrees C), a range (for example, from 0 to 100) which is often 

referred to as the universe of discourse, and a set of fuzzy terms that can be used to describe 

specific fuzzy concepts for this variable. The fuzzy terms are defined using a term name such as 
cold or hot, together with a fuzzy set that identifies the degree of membership of the term over the 

range of the fuzzy variable. The fuzzy variable terms along with a set of system or user supplied 

fuzzy modifiers (like very or slightly), sometimes referred to as hedges, and the operators and, or 

and not provide the basis for a simple grammar that allows one to write fuzzy linguistic 
expressions to describe fuzzy concepts in a natural language format, rather than mathematically. 

The logic of a FIS is encoded in fuzzy rules [52]. 

 More specifically, fuzzy sets can be interpreted as membership functions μx that associate 
with each element x of the universe of discourse U, a number µx(x) in the interval [0,1] depending 

on the exclusion or the inclusion of the element in the fuzzy set. Therefore, a fuzzy set is 

constructed as a set of ordered pair of element x and its degree of membership µx(x). The degree 

of membership specifies how strongly an element belongs to a set, and the shape of the 
Membership Functions (MF) are determined by the system designer, based on the kind and 

quantity of uncertainty present [53]. 

 In general, a FIS consists of three basic processes: fuzzification; fuzzy inference, using a 
fuzzy rule base and an inference engine; and defuzzification. Fuzzification maps the crisp inputs 

into fuzzy sets, which are subsequently used as inputs to the inference process. Fuzzification 

typically involves converting the crisp value to either a singleton or a fuzzy set. In the case of a 

singleton, the crisp point     is mapped into a fuzzy set X, where µx(xi) = 1 for xi = x and 

µx(xi) = 0 for xi ≠ x. In the case of a non-singleton fuzzifier, the point    is mapped into a 

fuzzy set X, where μx achieves maximum value at xi = x and decreases while moving away from 

xi = x. Non-singleton fuzzification is useful in cases where the input data to the FIS is imprecise, 
due to factors such as measurement noise [53]. 

 A fuzzy system is represented by a set of linguistic statements based on expert knowledge 

which is usually in the form of “if/then” rules. The collection of these rules forms a rule base 
which provides a linguistic approach to modeling systems in a human-like manner. Fuzzy 

reasoning or a fuzzy algorithm is developed to implement fuzzy implication relations. Four 

commonly used types of fuzzy reasoning are [53] [54] [55]: 

 
1) Mamdani – This approach is considered the most intuitive to use and thus has widespread 

acceptance due to its ease in capturing and describing expert knowledge. It is not as 

computationally efficient as TSK or Tsukamoto, however, due the defuzzification 
process; 
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2) TSK (Takagi-Sugeno-Kang, sometimes referred to simply as Sugeno) – TSK replaces the 

consequent portion of the model with an equation, thereby producing a crisp output 
which does not require defuzzification. Rather, the output is the weighted average of the 

consequents. This makes TSK models well suited to complex, high-dimensional 

problems; 

3) Tsukamoto – In this model, the consequent of each fuzzy rule is represented by a fuzzy 
set in a manner similar to Mamdani. There is a requirement, however, that the consequent 

fuzzy sets have monotonic MFs. The output of each rule is then defined as a crisp value 

corresponding to the rule’s firing strength, and the overall output is taken as the weighted 
average of each rule’s output; and 

4) Larsen – The Larsen model is similar to the Mamdani approach, but uses the max-

product method where the consequent of a rule is scaled with the degree of fulfillment of 
that rule. Aggregation of the output fuzzy sets is the same as for Mamdani. 

 

 FL’s Achilles heel is the risk of combinatorial rule explosion [56] [57] [58]. A typical system, 

with n input variables, and S states per variable, will require S
n
 rules. Therefore, a system with 

five input variables, each with five states, would require over three thousand rules, which is 

clearly impractical to implement. Combs and Andrews [56] introduced a technique, referred to as 

the Combs method, which replaces multi-antecedent rules with an interconnection of single 
antecedent rules, thereby eliminating the rule explosion that is associated with multi-antecedent 

rules. The Combs method is based on the propositional logic equivalence shown in Equation 1: 

 

                              (1) 

 

 This approach, however, has its detractors [57] [58] who raise questions regarding the 

method’s validity. Both note that while this equivalence is easily proven in Boolean logic, it does 
not strictly hold to be true under the generalized modus ponens used by FL. For Combs’ method 

to be valid in a FL system, the predicates p and q must be independent. Combs acknowledges in 

his reply to Mendel and Liang [57] that one cannot, based on his theorem alone, convert an 

intersection-based set of rules directly to a union-based set of rules. Rather, the system needs to 
be designed from the ground up using, to the greatest extent possible, a union-based rule set. 

Combs also notes in his reply that, in the case of dependent predicates, the use of multi-

antecedent rules is unavoidable. Mendel and Liang [57] go on to state that while many variations 
of intersection-based FL systems have been shown to be universal approximators, it still has not 

been proven that the same is true for union-based systems. 

 Since we require our model to work in real time, we chose to use Combs’ approach to reduce 
the number of rules required in our FIS, thereby greatly decreasing the computational load. For 

similar reasons, we chose to use the TSK method of fuzzy reasoning for its computational 

efficiency. 
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3.2.2 Artificial Neural Networks 

 

Despite their widespread use in academic AI, the use of ANNs in modern game AI is quite rare. 
The black box nature of ANNs makes them difficult to debug, and due to the still relatively small 

amount of CPU time that a game’s AI gets, the approach is not well suited to online learning. 

Charles and McGlinchey [49] believe, however, that progress has been limited largely due to a 
lack of understanding among game developers of the range of methods available. They note that 

there are many neural algorithms that have a comparatively low computational cost, such as some 

Hebbian learning methods, topology-preserving maps, radial basis networks and Vector 

Quantisation (VQ), that would make ANNs suitable for use in computer games. 
 Learning mechanisms for ANNs may be either offline or online. For offline learning, the 

ANN is trained during the development process only. With online learning, however, the ANN 

continues to learn even when the end product is being used. The implementation of online 
learning is much more difficult because it is a real-time process and many of the commonly used 

algorithms for learning are not considered suitable [49]. An additional problem is the possibility 

that the ANN learns the wrong lessons and behaves incorrectly from that point forward. As this 
occurs in the final product, the developer has no control over this happening [46]. 

 There are three categories of learning for ANNs: supervised, unsupervised and reinforcement 

learning. With supervised learning—sometimes referred to as learning with a teacher—the 

network is provided with both input data and the correct answer. The input data is typically 
propagated forward through the network until activation reaches the output neurons. The answer 

that the network has calculated is compared with the desired result. If the answers agree, there is 

no need to make changes to the network. If, however, the answer which the network is giving is 
different from the desired answer, then the weights are adjusted to ensure that the network is 

more likely to give the correct answer in the future if it is presented with the same (or similar) 

input data. This type of learning allows an ANN, once trained, to generalize when presented with 

new or incomplete data [46] [49] [59]. 
 With unsupervised learning there is no external teacher and learning is generally based only 

on information that is local to each neuron. This is also often referred to as self-organization, in 

the sense that the network self-organises in response to the data presented and detects the 
emergent collective properties within the data. As a result, unsupervised learning is often used in 

an exploratory manner. Unlike supervised learning, the correct answers are not known before 

training begins [46] [49] [59]. 
 The third form of neural learning is known as reinforcement learning. This learning relates to 

maximizing a numerical reward signal through a trial-and-error approach. In order to learn, the 

network is not told which actions to take but instead must discover which actions yield the most 

reward by trying them. If an action has been successful, the weights of the ANN are altered to 
reinforce that behaviour. Otherwise that action is discouraged in the modification of the weights. 

Reinforcement learning is different from supervised learning in that with supervised methods, 

learning is from examples provided by some knowledgeable external supervisor. The advantage 
of reinforcement learning is that with interactive sorts of problems it is quite often unrealistic to 

expect to be able to provide examples of desired behaviour that are both correct and 

representative for all scenarios which an agent may encounter [46] [49] [59]. 
 In the next sub-section, we will introduce a form of unsupervised learning, known as 

Kohonen Self-Organizing Maps, and discuss our rational for its choice as the Projection portion 

of our model. 
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3.2.3 Self-Organizing Maps [60] 

 

Our choice for a neural network—one that has a reasonably low computation cost—is Kohonen’s 
topology-preserving map. Kohonen formulated the principle of topographic map formation [60], 

which states that the spatial location of an output neuron in the topographic map corresponds to a 

particular feature of the input pattern. Kohonen’s approach, which he calls a Self-Organizing Map 
(SOM), uses competitive unsupervised learning, where neurons compete among themselves to be 

activated. While in other ANN architectures more than one output neuron can be active at the 

same time, there is only one “winner-takes-all” neuron in a SOM [46]. 

 Each node in a SOM contains a weight vector of the same dimension as the input vectors. 
When a new feature vector is presented to the network, every node is examined to determine 

which node’s weight vector most closely corresponds to the input vector. Although there are a 

number of ways to compare the distance that each node is from the input vector, Euclidean 
distance is frequently used for its low computation cost. The weight vector of the winning node—

often referred to as the Best Matching Unit (BMU)—is then adjusted as shown in Equation 2. 

 
  W(t+1) = W(t) + L(t)(V(t) – W(t)) (2) 

 

 In Equation 2, t represents the time-step and L is a small variable called the learning rate. 

Therefore, the new weight of the node is equal to its current weight, plus a percentage of the 
difference between the current weight and the input vector. The learning rate decays over time, 

typically in an exponential fashion, so that the network will converge. 

 Once the weight of the BMU is adjusted, a secondary search is conducted of all nodes to find 
which ones are within a pre-defined distance of the BMU, called the BMU’s neighbourhood. 

Nodes within the neighbourhood have their weight vectors adjusted in the same manner as was 

done for the BMU, but the impact of the weight delta is further reduced based on the distance of 

the node from the BMU. Equation 3 illustrates the overall equation for calculating the new weight 
of the node. 

 

  W(t+1) = W(t) + Ɵ(t)L(t)(V(t) – W(t)) (3) 
 

 The symbol theta in Equation 3 represents the amount of influence a node’s distance has on 

its learning, and has a value of 1 for the BMU. In the same manner as the learning rate, the size of 
the neighbourhood and the learning distance both decay over time. 

 The SOM encompasses a number of characteristics which bear similarities to the way in 

which the human brain is thought to work. It accomplishes this by grouping neurons, via the 

learning process, which specialize in the identification of certain types of patterns. A SOM also 
provides a way of representing multidimensional input data in much lower dimensions in the 

output space, thereby providing a form of data compression. As will be discussed in the next 

section, the ability to pattern-match, combined with the ability to compress the many SA-related 
factors down to the primary decision-making criteria, was of great benefit in our model. 
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3.3 Conclusion 
 

In this chapter, we have motivated the use of a hybrid intelligent system for our architecture by 

demonstrating how, by combining different AI techniques, we were better able to reproduce how 

humans make decisions. While a single method could produce some results, they would be partial 
at best, and not sufficient to meet the requirements of our thesis. 

 As noted in Sections 2.2 and 2.3, the variability in the types of uncertainty in the environment 

of small-unit leaders, combined with variations in experience, cognitive (SA) and decision-
making abilities, makes for truly unscriptable opponents. This reinforces the requirement for the 

type of robust and tractable architecture that SC provides. 

 We then presented a heterogeneous fuzzy-neuro system as the approach that is best suited to 

the types of problems faced by small-unit leaders in combat. In the next section we will present 
our architecture, and elaborate on how it addresses the specific needs of Boyd’s time-competitive 

decision-making loop. 
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4 Approach and Architectural Design and Elaboration 
 

4.1 Introduction 
 

The insight provided by Boyd, Endsley and Klein shows us that any architecture that attempts to 

implement a competitive decision-making model must account for both cognition and intuition. 
 As noted in Section 2, the quality of information in NDM environments is usually 

ambiguous, and past experience and the ability to interpret information are vitally important. 

Thus the adequacy of classical decision theory to explain decision-making in an NDM 
environment is unsuitable for our problem. 

 

4.2 Model Characteristics 
 

As we discussed in Section 2, an architecture that is based on Boyd’s OODA model can be 

decomposed into sub-models, based on the work of Endsley and Klein. This new model, which is 

the subject of this thesis and is henceforth referred to as the Competitive Decision-Making Model 
(CDMM), incorporates Endsley’s model for Situation Awareness, as it provides a good fit to 

expand Boyd’s Observe and Orient steps. Klein’s RPD model is an equally good fit for the 

Decide step, and for the Act component, we confined ourselves to the use of a set of pre-made 
battle drills. However, as we also discussed in Section 2, the models proposed by Boyd, Endsley 

and Klein are largely theoretical models. The following discussion, therefore, describes how we 

elaborated these theoretical models into our own CDMM, which we then used as the foundation 
for our own software architecture. 

 

4.2.1 Expanded Boyd Model 

 
By integrating Endsley’s and Klein’s models into Boyd’s, the steps of our expanded decision-

making model become: 

 Sensory cues are sent from the simulation engine to the Perception state in the CDMM. 

 Perceive – Level 1 SA Elements (SAE) are generated by the Perception state in response 

to the cues received from the simulation engine. 

 Comprehend – A Fuzzy-Neuro System combines the various SAEs that represent an 

understanding of the meaning of interrelated cues and forwards the output to the 
Projection state. 

 Project – The past and current outputs of Comprehension are used to project our current 

understanding into the near future in order to predict how these elements will impact the 

current situation. These projections are then forwarded to the Decision state. 

 Decide – Determine if the current situation is recognizable and, if it is, what course of 

action best corresponds to it, and then mentally simulate the Course of Action (COA) to 

ensure that it is, in fact, suitable. 

 Act – Select the appropriate set of pre-defined actions. 

 
 This expanded Boyd model is shown in Figure 4-1 
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Figure 4-1: Expanded Boyd Model 

 

 Lipshitz [61], in his study on NDM-related research noted that all nine of the theories that he 
reviewed included an element of situation assessment, and that expert decision makers are able to 

perform situation assessment more quickly and accurately than novices. It is believed that this 

superiority in situation assessment skills accounts for much of the ability of experts to make rapid 
decisions and contributes to their decision-making accuracy. As Klein [25] notes, cue 

recognition/significance gives expert decision-makers an advantage because they can recognize 

cues more quickly and completely than novices, and they recognize patterns of cues better than 

novices. They can also detect important features of a stimulus more readily than novices so that 
they can detect the underlying structure of a problem. Here we can see that the Comprehension 

and Projection steps in Endsley’s model for situation awareness allow us finer grained control in 

representing the relevance and potential impact of an actor’s observations/perceptions. This, in 
turn, allows for better separation of individuals in their decision-making ability. 

 

4.2.2 The Human Element 

 
Thus far we have been able to map Endsley’s and Klein’s work to Boyd’s model, thereby 

providing finer granularity in the steps that must be taken in the decision-making process. These 

two models alone, however, do not allow us to fully represent the intent of Boyd’s work. What 

sets Boyd’s work apart from other models is the human dimension—how humans react to change, 
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and the stress that it brings—and how the human brain processes information under these 

conditions. 
 Therefore, based purely on the steps of our expanded Boyd model introduced in 

Section 4.2.1, we can see that our expanded model does not account for the System 1 (fast and 

unconscious) and System 2 (slow and deliberate) levels of cognition described in Chapter 2. 

 The concept of pre-cognitive processing complicates our model, as we must also account for 
behaviour which has the effect of ‘short-circuiting’ our decision-making process. Militaries 

around the world repeatedly train for such “act without having to think” responses in order to 

have their soldiers react instinctively in the face of danger. In fact, battle drills are exactly that. 
While, according to Harland, the functioning of these separate processing centres in the brain 

remains largely speculative, it is clear that, regardless of how the mechanic actually works, fear 

clouds judgement, and at some point, individuals will cease to behave rationally [44]. 
 

4.2.3 Accounting for Change 

 

The last factor that needs to be accounted for in our model is the effect(s) caused by change; 
specifically the effect in the mind of the opposing decision-maker. In Sections 2.1and 2.2 we 

discussed the importance of acting quickly in the decision-making cycle in order to change the 

environment that the opposing decision-maker is using to formulate his own decisions. This, in 

turn, makes his current assessment increasingly less valid. Based on Boyd’s work, this circle 
(loop) will continue until one side possesses a decisive advantage and emerges victorious. What 

is not accounted for in this description is how we model this “mental lag”. Neither are the 

differences between the abilities of the opposing commanders discussed, but they must be 
modelled if we wish to depict an engagement between an expert and a novice decision-maker, or 

between two experts who possess varying degrees of expertise. 

 We have established that we need to model the effects of change, but not how. Bridges [26], 

in his Transition Model makes an interesting distinction between ‘change’ and ‘transition’. 
According to Bridges, change is situational and happens without people transitioning, while 

transition is psychological and is a three-phase process (Ending, Neutral and Beginning) where 

people gradually accept the details of the new situation. It is equally insightful to examine the 
emotions associated with these three phases: 

 

 Ending, triggered by events or stimuli, leads to shock, denial, disorientation and self-

doubt; 

 The Neutral phase is the unknown area, and typical emotions are Confusion, Lack of 

Focus, and Fear/Anxiety; and 

 The Beginning is acceptance of the new situation, and in Bridges model often leads to 

feelings of renewed energy and commitment. That said, depending on the new situation, 

it could just as easily lead to uncertainty and fear—the emotions that Boyd’s model 

attempts to generate—if the recipient of the new situation is not the one that initiated the 
change. 

 

 Bridges goes on to state that change can be “Wanted” or “Unwanted”, and “Expected” or 
“Unexpected”, to various degrees. Bridges’ model, therefore, provides us with another model 

element that can be incorporated into our architecture to allow us to model the most critical 

element of the OODA loop, the speed of the loop, by modelling how change affects the decision-
maker’s mental state. 
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4.2.4 Tactical Decision-Making 

 
The U.S. Field Manual 3-21.8 (Infantry Platoon and Squad) [62] describes tactical decision-

making as a process of the leader collecting information, employing a decision-making process, 

and giving an order to subordinates.  
 The specific “Actions on Contact” are as follows: 

 

 Deploy and Report; 

 Evaluate and Develop the Situation; 

 Choose a COA; and 

 Execute the COA 

 

 It should come as no surprise that these steps mirror the OODA loop so closely. As we have 
mentioned previously, there is nothing particularly novel in the concept of Observe, Orient, 

Decide and Act in decision-making. Rather, it is the competitive nature of Boyd’s loop that is 

novel, as the focus is not just on decision-making, but on the speed of decision-making. This 
requires acquiring situation awareness faster than one’s adversary and acting decisively, thereby 

creating the effects described by Bridges in his transition model. 

 The “Choose a COA” step states that, in general, the following options are open to the leader: 
 

 Assault/Attack 

 Support by Fire for another unit 

 Break Contact 

 Defend 

 Bypass enemy position 

 

 It goes on to state that the listed COAs are relative to the effectiveness of fire and strength of 

the enemy position, and are listed in order of preference. Each of the above, except for the Bypass 
option, has one or more battle drills associated with it. Therefore, once the COA is chosen 

(Decide), the appropriate battle drill can be invoked (Act). As the “Bypass Enemy Position” 

option does not involve combat, it was not considered in this work. 
 

4.2.5 Simulation Engine 

 

In order to visualize and test our model, we require a synthetic environment in which our 
decision-makings must operate. While the intent was to make the CDMM as engine-agnostic as 

possible, there are some things that a simulation engine is optimized to do, such as ray tracing and 

obstacle avoidance, and we have availed ourselves of these optimizations whenever possible. 
 Decision-making in a synthetic environment presents a number of problems. As noted by 

Evertsz et al. [27], synthetic environments provide a discrete representation of environmental 

change, which is not how humans perceive an essentially continuous world. Similarly, synthetic 

actors do not ‘see’ in the same manner as humans, and this must also be accounted for in a model 
that attempts to model human decision-making. 
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4.3 Basic Model Architecture 
 

Based on the preceding discussion on the required model characteristics, we can formulate a 

high-level CDMM architecture as shown in Figure 4-2. 

 

 
 

Figure 4-2: High-Level Competitive Decision-Making Model 
 

 In Figure 4-2, we see a high-level implementation of both the pre-cognitive and cognitive 

processes. Table 4-1 provides an example of a pre-cognitive event, where the SAE, upon 
activating, immediately triggers an Act response. Note that this example does not take into 

account existing stress, and the rule check has been, for clarity, kept at a high level. However, the 

firing of this event will generate new stress. The effects of the SAE, regardless of whether or not 
a pre-cognitive event has been triggered, will carry forward to the Comprehension step (e.g. the 

effects of being “Under Fire”). The effects of enemy fire will be covered in more detail in our 

discussion of our combat model, in Section 6.2. 
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Table 4-1: Cues and L1 SA Elements 

 
Cue Level 1 SA Element Act Response 

Muzzle flash(s) 

Weapon firing sounds 

Under Fire 

=> Trigger Trained response (if 

 available) or  

 Emotional response 

if (!InContact && !UnderCover) 

    => ReactToContact 

else 

    => ReturnFire 

 

4.4 Implementation 
 

We have already noted that the environment that a small-unit leader must operate in is 

challenging and that there will be varying degrees of uncertainty associated with the information 

that is available. In fact, it is this uncertainty, and the accumulation of stress, that affect the 
decision-making speed and accuracy of a leader. Our implementation, therefore, must account for 

these factors. In the next chapter, we will provide a detailed description of the architecture that we 

have developed to model this challenging environment. 
 

4.5 Conclusion 
 
In this section we demonstrated how Boyd’s model can be decomposed and integrated into those 

of Endsley and Klein in order to define the steps of a more comprehensive decision-making 

model. To these steps we added what we felt was a critical component of Boyd’s model, but is 
not accounted for in either of the models of Endsley or Klein—the human element—by 

introducing pre-cognitive events and the effects of change on human decision-makers. We then 

evolved these steps into the basic outline of our software architecture. 
 In the next chapter, we will examine the major components our model’s architecture and the 

communications protocol used to bind them. 
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5 CDMM Architecture 
 

5.1 Overview 
 

The model that we have created is a distributed application composed of two main components. 

The first is the simulation engine, which will simulate the battlefield conditions where we wish to 
test our decision-making model. The second is our CDMM where we model the cognitive 

decision-making behaviour. The two processes communicate via TCP sockets using JSON 

(JavaScript Object Notation) messages in a remote procedure call (RPC) protocol. 
 JSON is a lightweight data-interchange format that is easy for humans to read and write, and 

easy for machines to parse and generate [63]. It is used to transmit data objects consisting of 

attribute-value pairs. 

 

5.2 Unreal Engine 3 
 

In 2009, Epic Games released the Unreal Development Kit (UDK), free for non-commercial use. 
The UDK is comprised of the complete Unreal Engine 3, minus the C++ source code. All of the 

tools available in the commercial version of Unreal Engine 3 are available in the UDK, including 

all of the UnrealScript source code. UnrealScript is the Unreal Engine’s scripting language, and is 
quite powerful. It is statically/strongly-typed, object-oriented language very similar to Java. The 

language was designed from the beginning to provide features which, in the view of Epic Games, 

facilitated the development of games. Therefore, it supports states at the language level, and is 
heavily event/animation driven. 

 While the C++ source code is not available in the UDK, its functionality is exposed via the 

UnrealScript classes. UnrealScript is quite slow compared to C++, and care must be taken so as to 

not bog down the system with computationally long functions. The time-sensitive operations 
exposed via UnrealScript are backed by native C++ code. End users, however, cannot create this 

wrapper functionality. At best, users can create C++ dynamically linked libraries (DLL) and call 

functions in them from UnrealScript. In our application, the cognitive processing is offloaded 
from the CPU-intensive simulation engine to the CDMM component. By running the CDMM in a 

distributed environment, we are free to make our models for cognitive behaviour as complex as 

required without affecting the frame rate of the simulation. 
 If communications speed becomes a priority in follow-on use of the CDMM, then the two 

processes can simply be run on the same computer. This is because, while TCP communications 

over a network are substantially slower than native function calls, when the two processes are run 

on the same computer (i.e. the server is using a loopback address like 127.0.0.1), the outgoing 
packets need only travel down the OSI stack to the Transport Layer, where they are then sent to 

the receiving process, resulting in extremely fast communications. 

 Given that the cognitive processing timing requirements are substantially slower than the 
simulation engine’s requirement to maintain a frame rate of at least 30 frames per second to 

create the illusion of continuous movement, the network TCP speed loss is inconsequential, 

particularly if the two processes are run on the same computer. 
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5.3 UE3 Organization 
 

The class diagram shown in Figure 5-1 portrays the basic types of leaders and groups of 

combatants that one could reasonably expect to find in a small-unit engagement.  

 
Figure 5-1: Combat Groups Class Diagram 

 
 The diagram depicts how groups of combatants are organized, and the various levels of 

leaders that lead these groups. The classes derived from Character, which is an abstract base 

class, are represented as avatars in the simulation. 

 The corresponding UE3 Character classes are shown in Figure 5-2. You will note that in the 
following sections that all of our classes are prefixed with “Dm” (Decision Making) to 

differentiate them from those classes belonging to UE3. 
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Figure 5-2: Character Classes 

 

 We can see from Figure 5-2 that our DmCharacter class is derived from UE3’s Pawn class, 

which is a generalized class for avatars that is controlled by some form of artificial intelligence. 

The Pawn class, itself an abstract base class, contains functionality for dealing with 3D models 
(Mesh), animation, collision, damage, physics, weapons and sound. 

 UE3 provides the Controller base class specifically to control pawns. In this way, the pawn is 

analogous to the physical form of the avatar, and the controller represents its brain. The 
Controller class has two derived classes, PlayerController and AIController, where 

PlayerController handles input from a player and translates those commands into action in the 

controlled pawn. The AIController is the base class for AI controlled pawns, and it is from this 
class that our decision-making controllers are derived. These classes are shown in Figure 5-3. 
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Figure 5-3: Controller Classes 

 

 From Figure 5-3 we can see that our base controller class for all avatars is DmAIController, 

and from it the leader controllers are derived. DmAIController contains all of the physical state-
based functionality that handles DmCharacter actions (e.g. moving, crouching, shooting). 

DmLeaderController, and its derived classes have a counterpart leader class in the CDMM, and it 

acts as a bridge class between the DmAIControllers and the cognitive states in the CDMM. As 
such, it contains the logic necessary to establish a TCP socket connection to its counterpart in the 

CDMM, and to pass information, including start-up administrative information and in-simulation 

observations. Administrative information includes the leader and group attributes, and scenario-
related a priori information, which is set by the scenario designer in the UDK editor, 

 In Figure 5-4 we see the base class DmGroup and its derived classes. Within our model, the 

Group classes are responsible for spawning (creating in simulation) the appropriate 

DmCharacters and providing references to these individual characters back to the group’s 
controlling leader. Groups have no counterpart in the CDMM. 
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Figure 5-4: Groups Class Diagram 

 

5.4 CDMM 
 
The cognitive side of the simulation, the CDMM, is written in the C# programming language and 

is divided into modules (a single class, or a group of classes) that correspond to our expanded 

Boyd model, discussed in section 4.2.1. In this manner, the existing cognitive models can be 

replaced with more detailed ones if one wished to test a particular behaviour. 
 

5.5 CDMM Organization 
 

Figure 5-5 provides us with a basic overview of the main classes on both sides of the simulation, 

and how they interconnect. 
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Figure 5-5: General Class Overview 
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Starting on the UE3 side, we see that the UE3 engine (abstracted here as a single class) creates 

the DmGame class that provides rules for how to initialize the simulation, including creating the 
DmPlayerController which, in turn, creates a game camera and a DmPlayerInput class. These last 

three classes permit us to view our simulation and to move the camera to whichever vantage point 

we desire. 

 The UE3 engine also creates the game map, which then creates all of the entities in the map at 
game start. In Figure 5-5 we can see that this entails a ScenarioData object, as well as a 

DmRifleman. The DmRifleman object creates the appropriate AIController. The DmFireTeam 

creates each of the soldiers that make up the team and relays this information to the unit’s leader, 
the initial DmRifleman. 

 Once created, the DmLeaderController instantiates a DmTcpClient and connects to the 

LeadersServer in the CDMM. The LeadersServer instantiates the appropriate leader and passes to 
it a reference to the TCP socket connection. Once instantiated, the Leader will query its 

DmLeaderController counterpart for information on leader and group attributes, all of which were 

set by the scenario designer in the UDK editor. After this exchange of administrative information, 

the CDMM Leader creates its Perception state and passes responsibility to it for listening for 
messages from its counterpart DmLeaderController in the simulation engine. 

 In a similar manner, once DmGame is instantiated, it creates a DmTcpClient and connects to 

the SimEngineServer and passes game-relevant information (e.g. map scale, time of day, weather 
conditions etc.). 

 

5.6 Communications Protocol 
 

As mentioned previously, TCP sockets are used for communications between the simulation 

engine and the CDMM, and the communication protocol chosen was JSON. To implement a 
remote procedure call (RPC) mechanism, message maps were created in both the simulation 

engine and the CDMM. These mapped the JSON string for the method to be called with a 

delegate for the actual method. Every method that was subject to RPC received the JSON object 
as a parameter. In this way, if parameters needed to be passed between the two processes, a 

secondary JSON object could be added that contained the parameters. 

 

5.7 Conclusion 
 

In this chapter we discussed how our decision to create a distributed application, where the 

simulation engine and the CDMM operate as separate processes, allows us to offload the 
cognitive processing from the CPU-intensive simulation engine to the CDMM component. By 

running the CDMM in a distributed environment we are emulating the Façade design pattern in 

that each of the components communicates with an interface, without any understanding of the 
underlying code. In addition, by maintaining a separation of concerns, we are free to make our 

models for cognitive behaviour as complex as required without affecting the frame rate of the 

simulation. 
 We have provided high-level descriptions and class diagrams of Unreal Engine 3, our 

simulation engine, and the CDMM, and the communication protocol used to connect the two 

components. In the next chapter, we will decompose the CDMM into the individual behavioural 

components that make up the decision-making cycle. 
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6 Behaviour 
 

In this chapter, we will discuss the specifics of the Leader class, and the ancillary classes that 
make up the decision-making model. In Figure 6-1 we can see all of the decision-making classes, 

each of which is annotated with the area of responsibility (e.g. SAEs, Reservoirs, and Cognitive 

States). Note that Leader is subclassed with ForceCommander, of which, there is only one per 

side in our model. 
 The ForceCommander represents the highest ranking commander on each side that is in the 

simulation (i.e. the ForceCommander’s superior is not represented in the simulation). From 

Figure 6-1 we can see that, while the majority of the ancillary classes are represented in the 
Leader, the Comprehension, Projection and Decision states are only represented in the 

ForceCommander. This is due to the fact that, in our model, we have decided to limit the 

cognitive processes to only one level of leader and they reside with the ForceCommander in order 

to limit the model’s initial complexity. 
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Figure 6-1: CDMM Leader Class 

 

6.1 Troop Quality and Morale 
 

While not universal, references to troop quality [30] [64] frequently fall into one of four abstract 

categories: Untrained (or Green); Trained (or Regular); Veteran ; or Elite. Similarly, references to 
unit morale tend to be either: Low; Average; Good; or High. 

 Given its subjective nature, there is really no way to quantify these categories. While there 

are marksmanship standards for various armies, these are for qualification on a firing range and 
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not in actual combat. It was assumed that accuracy rates in combat would be substantially lower, 

so we selected an arbitrary range of skill levels, with a lower bound of 50% and an upper bound 
of 75%. We also wanted the difference between each level to be more pronounced at the lower 

levels (i.e. the difference between Level 1 and Level 2 would be greater than the difference 

between Levels 2 and 3). Given that it is extremely difficult to quantify troop quality, we believe 

that the subjective range we have chosen represents a reasonable cross-section of the range of 
troop qualities one might see on the battlefield. In our work, there are no super-soldiers. 

Therefore, we found that Equation 4 gave a reasonable approximation of the effect that we 

desired: 
  Skill(or Morale) = 50 + 18ln(Level) (4) 

 

Using Equation 4 provides us with approximate skill/morale values of: 0.50, 0.625, 0.7 and 0.75. 
We felt that this range gave us reasonable starting values that could be increased or decreased by 

certain stimuli within the simulation (e.g. initial fatigue, SAEs, and/or enemy action). 

 Table 6-1 provides a representative breakdown of common troop types as defined by our 4-

level system. The values range from poorly trained and motivated troops like the Afghan National 
Army (ANA) in its early days, to regular military units and various levels of Anti-Coalition Milita 

(ACM). 

 
Table 6-1: Troop Quality and Morale Ratings 

 

Skill Morale 

 Untrained 

(1) 

[0.50] 

Trained 

(2) 

[0.625] 

Veteran 

(3) 

[0.70] 

Elite 

(4) 

[0.75] 

Low 

(1) 

[0.50] 

Average 

(2) 

[0.625] 

Good 

(3) 

[0.70] 

High 

(4) 

[0.75] 

ANA X 
   

X 
   

Non-Cbt X 
    

X 
  

Regulars 
 

X 
   

X 
  

Veterans 
  

X 
   

X 
 

SOF 
  

X 
    

X 

Tier 1 
   

X 
   

X 

Local 

ACM 
X 

    
X 

  

Hardcore 

ACM 
X 

     
X 

 

Foreign 

Fighters  
X 

     
X 
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6.2 Combat Model 
 

A major consideration when attempting to simulate the effects of small unit engagements is the 

combat model that will be used. Looking at U.S. Field Manual 3-21.8, Infantry Platoon and 

Squad [62], we see that, from the leader’s perspective, in order to conduct an attack, he must 
answer the question: “Can the unit in contact suppress the enemy?” The following question: “Can 

the follow-on unit(s) manoeuvre?” is, unless cover is exceptionally good and the enemy’s 

position exceptionally bad, directly impacted by the degree of enemy suppression. 
 From U.S. Field Manual 23-14, Marksmanship Training, Section 5-4, Training for Combat 

Conditions, we note the following challenges of infantry combat: 

 Most engagements will be within 300 yards; 

 Enemy personnel are seldom visible except when assaulting; 

 Most combat fire must be directed at an area where the enemy has been detected or where 

he is suspected of being but cannot be seen.  Area targets consist of objects or outlines of 

men irregularly spaced along covered and concealed areas (ground folds, hedges, borders 
of woods); 

 Most combat targets can be detected by smoke, flash, dust, noise, or movement, but they 

are visible only for a moment; 

 Most combat targets have a low contrast outline and are obscured; and 

 Time-stressed fire in combat can be divided into three types:  

1) A single, fleeting target that must be engaged quickly, 
2) Distributed targets that must be engaged within the time they remain available, and  

3) A surprise target that must be engaged at once with instinctive, accurate fire.  

 
 We can see from these extracts from the U.S. Field Manuals that combat is imprecise and that 

suppression is the primary goal based on the simple expedient that suppressive fire against a 

fleeting enemy is typically the most that can be hoped for. Suppression, therefore, against an area 

target must be the primary goal of our combat model. 
 Kushnick and Duffy [65] conducted an extensive study on Vietnam veterans in order to 

quantify the effects of small arms fire on suppression. Their paper: “The Identification of 

Objective Relationships Between Small Arms Fire Characteristics And Effectiveness Of 
Suppressive Fire” notes that “An analysis of interviews with nearly 200 combat veterans led to 

the conclusion that combat soldiers perceive a personal danger radius outside of which a passing 

round is heard but is not perceived as dangerous or as producing suppression. These interviews 
indicate that the length of the danger radius varies with the individual soldier, the weapon 

employed against him, the volume of fire, and the general situation at the time he receives 

incoming fire.” They further note that: “...it is concluded that perceived dangerousness 

predominantly increases in a linear fashion with increases in perceived loudness of projectiles.” 
and that “...perceived dangerousness increases linearly, with increases in volume of fire.” 

 This result is interpreted as demonstrating that the perceived dangerousness of incoming fire 

decreases in a linear fashion with increases in the lateral miss distances of passing projectiles, and 
increases linearly with increasing volume of enemy fire. 

 It was the opinion of both the subjects and the DSL analysts who conducted the study that the 

basic stimulus that allowed the subjects to perceive and note the dangerousness of the events in 
the field experiment was produced by the projectile signatures and not by the characteristics of 

the muzzle blasts of the weapons themselves. Therefore, they attempted to relate projectile 

characteristics to the perceived dangerousness of each “weapon.” 



43 
 

 The obvious overt characteristic producing the perception of danger is the loudness of the 

signature of passing projectiles. They noted, however, that the sensation of loudness is a complex 
function, relating to both the physical parameters of the stimulus and the physiological apparatus 

of the ear. It was, therefore, considered too complex a function to derive on the basis of the data 

obtained in this study. However, they go on to note that the loudness phenomenon is in part based 

on kinetic energy. As a result, it was determined that the kinetic energy (K.E. = 0.5 MV
2
) of each 

projectile would suffice as a first approximation to predicting perceived dangerousness of a 

projectile. 

 Calculation of kinetic energy for any given projectile is a multistep process: 
 

  ARC = BC x MC x MV
0.045

 (5) 

 
  BV = MV x (1 – 3 x RCR x range / ARC)

(1 / RCR)
 (6) 

 

  BKE = BW x BV
2
 / 450380 (7) 

 
where: 

 

ARC = Adjusted Retardation Coefficient 
BC = Ballistic Constant 

MC = Mayewski Constant 

MV = Muzzle Velocity 
BV = Bullet Velocity (at a given range) 

RCR = Retardation Coefficient Rate 

BKE = Bullet Kinetic Energy 

BW = Bullet Weight (in grains) 
 

 Table 6-2 provides a breakdown, by weapon, of bullet kinetic energy for ranges of 0, 150 and 

300 yards. From this table, we can see that even at 300 yards, bullet kinetic energy is still quite a 
large number. We need, therefore, a method to scale this number to a reasonable level. 
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Table 6-2: Weapon Ballistic Data 

 Range Velocity Energy Scaled 

Weapon (Yards) (ft/sec) (ft-lb) Energy 

M4 0 2900 1158 0.290 

 
150 2450 826 0.207 

 
300 2052 580 0.145 

M249 0 3200 1410 0.353 

 
150 2723 1021 0.255 

 
300 2300 728 0.182 

M240 0 2750 2468 0.617 

 
150 2404 1887 0.472 

 
300 2091 1427 0.357 

AK47 0 2350 1520 0.380 

 
150 1939 1035 0.259 

 
300 1582 689 0.172 

PKM 0 2707 2408 0.602 

 
150 2365 1838 0.460 

 
300 2056 1388 0.347 

 

 If we look at values from the military simulation, America’s Army: Proving Grounds 

(AAPG), we see that the developers consider the amount of suppression per shot for the M4 
assault rifle to be 0.10, while for the M249 automatic rifle, the value is 0.35 for a 3-round burst. 

The sustained rate of fire for the M4 is 15 rounds per minute, and for the M249 the value is 50 

rounds per minute, which is 3.3 times larger (i.e. close to the 0.35 value for the M249 given in 
AAPG). Given that the M249 has a slightly higher muzzle velocity than the M4, this ratio is 

reasonable. 

 Looking at the value of kinetic energy for the M249 in Table 6-2 (1410 ft-lb), we can see that 

a 3-round burst would deliver a cumulative kinetic value of 4230 ft-lb. Dividing this value by the 
kinetic energy of an M4 round (1158 ft-lb) gives us a value of 3.65. Given the closeness of the 

two ratios (3.5 in AAPG, 3.65 when considering kinetic energy values only), we felt that it was 

reasonable to consider bullet kinetic energy as being synonymous with the bullet’s suppression 
value. We further considered the scale of the AAPG values to be a better fit for PMF reservoirs 

that will have ranges of 0–1 or, at most, 0–2. Therefore, we have divided the value from Equation 

7 again by a factor of 4000. This modified Equation 7 gives us the values found in the “Scaled 
Energy” column of Table 6-2. 

 The next question that we were faced with was how many rounds, and at what miss-distance, 

does it take to suppress a soldier. Murray [66] notes that a common rule of thumb states that a 

soldier will become suppressed if a bullet passes within one metre of him every second, and stay 
suppressed if one bullet passes within one metre every three seconds. He goes on to point out that 

this rule of thumb does not fit with what has been seen in real small-arms firefights. Second 

World War field studies, he notes, suggest that one round passing within three metres every six 
seconds would appreciably degrade return fire from a whole fire-team, and two rounds every 

three seconds would prevent any return fire at all. 
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 When one considers that Kushnick and Duffy [65] found that the effect of miss distance also 

varies by troop quality (up to 15 metres for new recruits), we are faced with a problem that could 
be the subject of its own study. We have already determined that a unit’s fire is typically at an 

area, as individual targets are rarely seen. We found that multiplying the suppression value 

(scaled energy at a given range) by the unit’s current effectiveness, and then further modifying 

this value by factors such as the target unit’s troop quality and type of cover, we obtained a 
workable approximation of combat suppression. We will discuss the effects of our combat model 

on suppression further when we discuss the Suppression Moderator Function in Section 6.4.1.1. 

 Casualties are possible in our model, based on the range and effectiveness of the firing unit. 
In the environment that we are modelling, however, casualties are rare and can be turned off 

completely in order to demonstrate fire and manoeuvre scenarios. 

 We found in testing that our combat model provides realistic-looking results. As with other 
features of our model, the individual factors can be manipulated if one desires a different effect. 

Marcus Luttrell, in his book “Service – A Navy SEAL at War” [67], mentions during his 

description of an Al Qaeda ambush of his unit in the Iraqi city of Ramadi, “At least there was no 

belt-fed stuff, thank goodness.” The weapon he was referring to was the Russian PKM General 
Purpose Machine Gun (GPMG), and we can see from Table 6-2 that the bullet energy of the two 

GPMGs (the Russian PKM and the U.S. M240) is more than double that of an M4, the U.S. 

Army’s standard assault rifle, and slightly less than double the bullet energy of the U.S. M249 
Automatic Rifle, which is also belt-fed, but fires the same 5.56 mm round as the M4. According 

to Kushnick and Duffy [65], however, the suppressive value of a bullet is only half of the 

equation. The other half is the volume of fire, which is based on the Weapon’s Rate of Fire 
(ROF). Note that the sustained and rapid rates of fire are in rounds per minute, and these values 

are not the same as the weapon’s cyclic rate of fire. Sustained rate of fire can be maintained for 

long periods of time, while Rapid rate of fire is prone to weapon overheating and must be used 

judiciously. 
 

Table 6-3: Weapon Suppressive Effects 

 

Weapon 
Sustained ROF 

(Rnds/Min) 
Sustained ROF Energy 

(Energy/Min) 
Rapid ROF 
(Rnds/Min) 

Rapid ROF Energy 
(Energy/Min) 

M4 15 4.35 40 11.5 

M249 100 35.3 200 70.6 

M240 100 61.7 200 123.4 

AK47 20 7.6 40 15.2 

PKM 125 75.25 250 150.5 

 

 We can see from the results in Table 6-3 that for Russian-built weapons (the ubiquitous 

AK-47 and the PKM GPMG), the PKM is ten times more effective at suppressing enemy troops 

than the AK-47. For the U.S.-built weapons, M249 Automatic Rifle is approximately nine times 
more effective than the M4, and the M240 GPMG is close to 15 times more effective. The high 

rate of fire of the belt-fed weapons, combined with their increased weight to absorb recoil, makes 

these weapons very dangerous. We have already noted that enemy combatants, if seen, are 
fleeting. The time, therefore, to shoot at an enemy soldier is short, and muzzle rise, caused by 

recoil, quickly throws off initial aim. Having a weapon that allows a soldier to fire the highest 

number of bullets possible in the shortest time increases the likelihood of a hit before recoil 
overcomes the inertia of the weapon and pushes its aiming point upwards. 
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 The values in Table 6-3 are theoretical maxima in our model. The values used in the 

simulation are multiplied by unit skill level and current effectiveness. This last point will be 
discussed further in Section 6.4.1.1. 

 In testing, the addition of the PKM to a competent unit completely changed the results of an 

encounter, due to its high suppressive and casualty-causing effects. To some degree, this validates 

the findings of Kushnick and Duffy [65] regarding the strong correlation between bullet energy, 
rate of fire and suppressive effect. 

 The final point regarding the combat model concerns fatigue. While the majority of the a 

priori information passed from the simulation engine to the CDMM is handled in the 
Comprehension state (e.g. soldier load, ground and weather conditions), fatigue is incorporated 

directly into the unit’s characteristics immediately on start-up. A unit’s initial morale and 

suppression reduction rate are both negatively impacted by fatigue, which is a value set by the 
scenario designer. 

 

6.3 Sensory Cues 
 

As discussed in Section 4.2.5, synthetic environments provide a discrete representation of 

environmental change, which is not how humans perceive an essentially continuous world. 
Similarly, synthetic actors do not ‘see’ in the same manner as humans. Sensory cues are 

transmitted from a DmLeaderController to its counterpart Leader either as they occur (e.g. 

coming under fire) or at a set periodicity. Through experimentation, we found that a value of 4 Hz 

was fast enough to capture environmental changes, but not so fast that it overloaded the Perceive 
state with excessive amounts of redundant data. Some decision-making elements, such as weather 

and ground condition are applicable to all avatars in the scenario, so this information is 

transmitted at scenario start from DmGame to the SimEngineServer in the CDMM. Other 
information, such as troop quality, morale, soldier equipment load and soldier fatigue, are 

requested by each Leader upon instantiation for itself and for all subordinates from its 

corresponding DmLeaderController. Once each Leader possesses this information, it transfers 
responsibility for the reception and routing of incoming cues to the Leader’s Perception State. 

 

6.4 Perception State 
 

Within the CDMM, each Leader’s Perception state possesses an event map that contains all of the 

possible JSON messages that can be received from the simulation engine. The event map parses 

the incoming messages according to the Leader’s current plan and provides cue recognition in 
order to create/trigger SAEs, which represent situations or events in the environment. Some 

events like “Under Fire” will immediately trigger an SAE, whereas the message “In Position” is 

context dependant. If the unit is patrolling, the message, sent from the lead unit, simply means 
that the patrol has reached its destination. If the force is “In Contact” then the message would 

mean that the sending unit has reached its target location, either through a direct order, or via a 

precognitive reaction. In this way, the simulation is event driven. The individual SAEs will be 
discussed in more detail in Section 6.4.2. 
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6.4.1 Performance Moderator Functions 

 

There is a considerable body of research in the field of human physiology and the effects of 
stress, and a number of software tools that attempt to model their effects on human behaviour and 

decision-making. Among these tools, CoJACK [16], PMFserv [68], and ACT-R Phi [14] present 

themselves as applicable for use in military simulation. These tools use cognitive moderators, 
referred to as Performance Moderator Functions (PMF) in CoJACK and PMFserv, to model the 

accumulation or depletion of various physiological and stress factors. Silverman et al. [68] cite 

the work of Janis and Mann [69], as the inspiration for their work, describing it as, “... what is 

probably the most widely cited methodology of decision strategies for coping under stress, time 
pressure and risk.” Despite the fact that Janis and Mann’s work has extensive empirical backing, 

and that their work has been validated by other researchers, we find that there are no actual 

implementations of their model. The authors of CoJACK acknowledge that their work has, in 
turn, been influenced by that of Silverman et al. Both of these tools are closed-source, and their 

published results to date show that their work is still very much in the early stages, and that the 

tools appear to be used primarily for research. Cassenti [17], in his report on the utility of 
PMFserv for military applications found that, while the tool might serve to provide insights into 

Army problems, it would be of limited use. 

 We have chosen to leverage the modelling concept of PMFs in order to moderate cognitive 

and combat efficiency. While our model provides a framework for exploring the concepts of 
physiology and cognitive psychology, our primary goal is measuring the real-time effects of these 

concepts on the speed of the decision-making loop. As a result of the modular fashion of our 

framework, more detailed cognitive models could be added in future work. 
 In his book, “Into the Fire”, Dakota Meyer [64] notes, “Fear slows down your logic circuits, 

gives you tunnel vision, and triples your heart rate”. Grossman [43] is even more specific, stating 

that heart rate increase in response to fear is correlated with a deterioration of motor skills and 

senses like vision and hearing. Eventually, cognitive abilities degrade to a point that he calls 
condition black, based on work by Cooper’s “Principles of Personal Defense”, where the 

individual is completely overwhelmed and is incapable of rational thought. 

 While the concept of stress provides an abstract concept for moderating the physical and 
cognitive abilities of and individual, it was deemed to be too high-level for the purpose of our 

model. Therefore, throughout the following discussion on PMFs, the reader will note that stress is 

represented across a number of PMFs, including Suppression, Morale and Shock. 
 We chose to use the effects of stress-related factors to moderate both cognitive and combat 

efficiency, albeit at different rates. The effects of stress can be accumulated through a number of 

both combat factors (under fire, friendly casualties) and environmental factors (fatigue, ground 

conditions, equipment load). 
 Figure 6-2 is a screenshot of a scenario in progress in the CDMM display. To the left (Blue) 

and right (Red) of the centre “Projection” display, we can see graphical depictions of four PMFs: 

Effectiveness; Suppression; Morale; and Shock. Each grouping of PMFs (Blue and Red) 
represents the overall state of each side, as seen through the eyes of that side’s Force Commander. 

 The Effectiveness PMF has a range of 0–1 and all forces start a scenario with an effectiveness 

of one. As we will see in Section 6.4.1.2, the rate of decay of this PMF is a function of morale 
(discussed in Section6.4.1.3), which is variable at scenario start. Of note in Figure 6-2 is the 

difference in colour between Blue’s Effectiveness PMF (yellow), and Red’s (green). The colour 

of the effectiveness bar changes as a visual cue when effectiveness enters certain regions. 

Effectiveness values between 0.5–1.0 are green, and represent troops engaged in a firefight. 
Values between 0.2–0.5 are yellow, and represent troops that are sufficiently suppressed so as to 
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have a major impact on their performance. Values less than 0.2 are red, and represent troops who 

are pinned down and are no longer combat-effective. Each of the PMFs will be explained in more 
detail in the following sub-sections. 

 

 
 

Figure 6-2: Performance Moderator Functions 

 

6.4.1.1 Suppression Moderator Function 

 

Our previous discussions have shown that suppression of enemy troops is a key consideration in 

infantry combat, particularly since it is difficult to spot, let alone kill an enemy soldier. NATO’s 

publication on terminology, AAP-6 [70], defines suppressive fire as “Fire used to protect troops 
when they are within range of enemy small arms.” Suppressive fire achieves its effect by 

threatening casualties to individuals who expose themselves to it. Willingness to expose 

themselves varies depending on the morale and leadership of the target troops, concepts that we 
will elaborate on further in later sections. The term suppressive fire is frequently used 

interchangeably with the term “Covering Fire” and is also referred to as “winning the firefight.” 

Smoke used to blind enemy observation is a form of non-lethal suppression, and is also factored 
into our simulation. 

 AAP-6 [70] stipulates that suppressive fire requires sufficient intensity over the target area, 

with intensity being the suppressive effect per unit of target area per unit of suppression time. The 

Fleet Marine Force Manual MCWP 3-11.2 – Marine Rifle Squad [71] describes suppressive fire 
as a tactic to reduce casualties to friendly forces and enable them to conduct their immediate 

mission. A suppressed target will be unable to engage vulnerable forces that are moving without 

cover. This enables forces to advance to new positions or to close with the enemy. 
 The primary intended effect of suppressive fire is psychological. Rather than directly trying 

to kill enemy soldiers, it makes the enemy soldiers feel unable to safely perform any actions other 

than seeking cover. When a unit is completely suppressed, it is considered “Pinned Down.” A 
unit in this state has lost its ability to move, lost all or most of its ability to return fire, and lost 
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much of its ability to gather real-time intelligence on the enemy position, as it is concerned with 

staying under cover. Often, a suppressed unit will lose organizational efficiency and morale if 
kept in that state for an extended period of time. 

 Enemy suppression, therefore, is key not only in protecting friendly troops from enemy fire, 

but also for denying the enemy the real-time intelligence that he needs to drive his OODA loop 

forward. In essence, it slows the speed of the enemy’s OODA loop. For these reasons, the effects 
of suppression are an important component in our model. 

 Whereas most of our PMF reservoirs range in value from zero to one, our suppression 

reservoir ranges from zero to two. Suppression values from zero to one reflect a unit that is 
suffering from suppression, but is not pinned down (i.e. it still retains combat effectiveness). 

Once the suppression value exceeds one, the unit has lost most of its combat effectiveness. 

Soldiers in this state will be more inclined to blind-fire at their opponents, or simply peek in order 
to get an idea of what they are up to. As suppression approaches two, the unit will have lost all 

ability to move, return fire or gather intelligence on their enemy. The effects of suppression on 

unit effectiveness will be discussed further in Section 6.4.1.2. 

 As discussed earlier, units also have the ability to recover from suppression. Suppression 
recovery rate is the most subjective part of our model. After some initial testing, we selected a 

value of 30 seconds for a Level 1 unit to fully recover from suppression, given that it was no 

longer taking fire. For each unit level above Level 1 we subtracted 4 seconds from that time, so a 
Level 4 unit would fully recover in 18 seconds. Given the weapon values for suppression that we 

were working with, we found with continued testing that these values gave reasonable results, 

particularly given the effects we were trying to demonstrate. 
 The final point regarding our suppression moderator function is in regards to the point made 

earlier that “...suppressive fire requires sufficient intensity over the target area...” Our combat 

model already provides us with fire intensity, so we divide this value by the number of soldiers in 

the target group. In this way, a group of four soldiers would find it more difficult to suppress an 
enemy group of six soldiers than a group of four (assuming that the target troop quality remains 

the same). 

 

6.4.1.2 Effectiveness Moderator Function and the Effectiveness Model 

 

Effectiveness is the primary moderator in our model and is a high-level representation of both 

physical and cognitive effectiveness. We have seen how the primary effect of suppression is 
psychological, but we have also discussed its physical ramifications. In this regard, the cognitive 

and the physical are intertwined. 

 Numerous after-action accounts [66] [30] [72] refer to the initial effects of an encounter with 

an enemy force as being very dynamic, where the desire to avoid harm is in direct opposition to a 
soldier’s desire to not let his teammates down. However, once a unit has essentially lost the 

firefight and is in the process of becoming pinned down, there is an inertia that sets in where the 

desire to avoid harm becomes the overriding factor. Once a unit reaches this state, suppression 
recovery becomes more difficult. 

 The other factor in this equation is unit morale, where morale represents a unit’s willingness 

to expose itself to fire. Low morale troops become suppressed very quickly, as their self-
preservation instincts take over almost immediately. Troops with high morale, on the other hand, 

are much more difficult to suppress, as they are driven to succeed, even to the point of being 

foolhardy. 
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 It was felt that the best way to integrate all of these elements into a model for unit 

effectiveness was through the use of an exponential decay function, shown in Equation 8. In our 
model, Morale has a minimum value of 0.2, which avoids a “divide by zero” error. 

 

  Effectiveness = e
(-Suppression / Morale)

 x Skill Level (8) 

 
 Figure 6-3 provides us with a graphical depiction of Equation 8 for Level 2 troops. We can 

see from Figure 6-3 that the starting unit effectiveness has the same value as the unit’s troop 

quality. As unit suppression approaches one, unit effectiveness has been reduced to 
approximately 12% and the curve begins to flatten as the unit spends most of its time at this point 

under cover and is making very little attempt to return fire. 

 As our Effectiveness PMF represents an abstraction for both physical and cognitive 
effectiveness, we can use the effectiveness value to determine the probability (willingness) of 

each soldier popping up to shoot. As group effectiveness decreases, fewer and fewer soldiers will 

pop up, and will either blind-fire, peek, or simply remain under cover. The value on the x-axis is 

the current value of the Suppression reservoir, which has a range of 0–2. Effectiveness is at its 
maximum when Suppression is 0. 

 

 
Figure 6-3: Effectiveness vs. Suppression for Level 2 Troops 
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6.4.1.3 Morale Moderator Function 

 

Unit morale is affected in a number of ways in our model. Being pinned down erodes morale, so 
in our model, once a unit enters that state (suppression value between 1 and 2), morale begins to 

decrease at a rate that is proportional to how full the suppression reservoir is. The decay rate of 

unit morale is never more than 1/100 of its value, but even at that rate, prolonged suppression can 
seriously degrade a unit’s combat effectiveness. This is because morale lost due to suppression is 

not regenerated when the unit is no longer suppressed. Combat takes its toll and, eventually, 

soldiers will become ineffective to the point of no longer being able to undertake high-risk 

courses of action, such as assault. 
 Morale erosion is modelled as follows: 

 
 if (suppressionLevel >= 1.0) 

 { 

  suppressedAmount = 3.0 - suppressionLevel; 

  double moraleReduction = Math.Exp(-suppressedAmount / leader.InitialMorale)  

          * leader.InitialMorale  

          / 1000.0; 

  leader.MoraleReservoir.Remove(moraleReduction); 

 } 

 
 Another manner in which morale is affected is through the effects discussed in Bridges’ [26] 

Transition Model. From it, we can see that events that are either Wanted or Unwanted will have a 

direct impact on morale, and these effects are driven by the various SAEs, which will be 

discussed in Section 6.4.2. Wanted events will increase morale, while Unwanted events will 
decrease morale. 

 The final way in which morale can be affected in our model is through interaction with a 

leader. Once a leader joins a group (team leaders start with their groups), his leadership affects 
the joined group in several ways. Immediately on joining, the joined unit inherits the leader’s 

morale and suppression recovery rate. Murray [66] notes that it is almost universal that 

individuals perform better when the boss is watching, and military units are no exception. The 
unit inheriting the leader’s values is representative of the leader’s ability to motivate the joined 

unit to perform better. Even leaders of the same troop quality as the unit they are joining provide 

a small bonus to these values. 

 It should be noted that, while in most armies, leaders are selected for their ability to lead. In 
some armies, leaders are appointed for political reasons and may actually have a negative impact 

on the troops that they are leading (they have lower morale than the group they are joining) [73]. 

This effect is also reflected in our model. It should be noted that the leadership effect is removed 
when the leader leaves the unit. 

 

6.4.1.4 Shock Moderator Function 

 
In the same way that morale can be affected by the Wanted and Unwanted elements of 

Bridges [26] model, shock is the result of the Expected and Unexpected elements generated by 

individual SAEs. While it may seem strange to associate an Expected event with shock, an event 

that is Expected but Unwanted can still cause shock, although the degree to which shock affects 
the unit is dependent on how unexpected the event is. A unit on patrol that believes that the 

likelihood of contact is “Highly Likely”, will experience some shock when first fired upon, but 

that value will be nowhere near the value associated with a unit that believes that the likelihood of 
contact is “Highly Unlikely” (i.e. they are completely surprised). 
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 The shock values associated with the various SAEs is inversely proportional to the 

expectedness of the event and the skill level of the affected troops. On each iteration of the 
simulation loop, a unit whose shock reservoir is not empty may take no action (the unit is 

temporarily frozen). Units dissipate shock at the same rate that they dissipate suppression 

(section 6.4.1.1). The effects of shock on other PMFs are discussed in the next section on SAEs. 

 

6.4.2 Situational Awareness Elements 

 

Figure 6-1 shows all of the SAE’s associated with the Leader class. Of the SAEs listed, our 

testing has only incorporated UnderFire, EnemyFlanking, ArtilleryBombardment and Casualty, 
so we will limit our discussion to these four. Based on the following descriptions, however, it 

should not be difficult for the reader to generalize how the other SAEs would affect a scenario. 

 All SAEs are derived from the base class SAE and, as such, are required to check upon 
instantiation whether or not a precognitive reaction is possible, and calculate their degree of 

Wanted/Unwanted and Expected/Unexpected. 

 When an SAE fires, it stores the outputs of its calculations in properties of the Leader class in 
a manner that is analogous to the way that values are centrally stored in a blackboard architecture. 

In this way, the properties,—which, in addition to SAEs, includes all values which affect a 

leader’s state, such as fatigue, and modified troop quality and morale—can be thought of as short-

term memory storage that other cognitive processes can tap into. 
 

6.4.2.1 Under Fire 

 

By nature of what we are simulating, UnderFire is the most prominent of the SAEs, and affects 
both the shooting group as well as the one receiving fire. 

 To some degree, all units engaged in a firefight suffer from tunnel vision [66] [30] [67]; the 

degree being determined by how highly trained the troops are. This tunnel vision is particularly 
dangerous for a leader if he involves himself in the firefight, as he loses his perspective of the 

battlefield. In our model, leaders can be either “Acting” or “Assessing the Situation”, but not both 

at the same time. 

 When a unit first perceives that it is under fire, it reacts according to its level of training and 
the degree of shock associated with the event. The amount of shock is inversely proportional to 

the expectedness of the event and the skill level of the affected troops. The unit may take no 

action until the level of shock in the shock reservoir has decayed to zero. 
 Once the initial shock has worn off, the unit may react to contact, which normally means 

either heading for the closest cover, or dropping prone, and returning fire. 

 The UnderFire SAE increases the level of suppression in the unit’s suppression reservoir 
based on the intensity of the incoming fire. As we have seen earlier, this increase in suppression 

will directly impact the unit’s effectiveness. Unlike the other SAEs, the UnderFire SAE does not 

perform a Wanted/Unwanted check as this is already factored into the unit’s decreased 

effectiveness. 
 

6.4.2.2 EnemyFlanking 

 

The more a group is out-flanked, the less secure they feel. The realization that the enemy is not 
only getting closer, but also improving its firing position, creates stress, which is manifested as 

suppression (i.e. the unit becomes less effective), and causes a temporary paralysis (shock). As 
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the unit cannot perform any action, including shedding stress (suppression) while it is suffering 

from shock, an aggressive enemy can exploit this by pushing hard for the enemy’s flank while the 
base of fire unit keeps the enemy’s heads down. The degree of suppression generated is a 

function of the cosine of the angle between the flanking unit and the target unit’s facing (values 

vary from 0 to 1). 

 The U.S. Field Manual 3-21.8 (Infantry Rifle Platoon and Squad) [62] defines a dilemma as a 
situation in which the enemy is presented with two or more equally bad alternatives, whereas a 

problem is a situation in which the enemy is presented with only one bad COA. When a leader 

can push his manoeuvre element towards the enemy’s flank while his base of fire unit engages 
them, he creates a dilemma for his opponent—which unit should he engage. His first reaction is 

not knowing what to do as he attempts to decide between equally bad options. The second 

reaction would be to engage one of the two units, leaving himself vulnerable to fire from the 
other. The enemy’s reaction is a function of his own troop quality and current effectiveness. As 

we will see in Chapter 7, enemy response will vary between “do nothing” and “break contact”. 

 

6.4.2.3 Artillery Bombardment 

 

The ArtilleryBombardment SAE covers a range of artillery strikes, ranging from light mortars up 

to heavy artillery. The Wanted/Unwanted calculation of an artillery bombardment causes 

suppression, based on the calibre of the firing artillery and the rate of fire. The Wanted/Unwanted 
method does not directly affect morale. Instead, prolonged maximum suppression reduces morale, 

which is not regenerated. We discuss how suppression is calculated in section 6.6.4 

 An artillery bombardment also creates shock, as even if it is expected, it is definitely not 
wanted. This shock will inhibit the unit from shedding stress, which mounts with each artillery 

round that falls. Units subject to an artillery bombardment frequently become pinned down and, 

as this is on the relatively flat portion of the Effectiveness exponential decay curve, effectiveness 

recovery after a bombardment is generally slow. As mentioned in Sections 6.4.1.1 and 6.4.1.4, 
suppression and shock recovery rates are based on the unit’s troop quality, an effect we will see 

more clearly in Chapter 7. 

 

6.4.2.4 Casualty 

 

Casualties directly affect a unit’s morale. The morale reduction is the ratio of the casualty to the 

total number of soldiers in the unit (e.g. 1 in 3 would cause a reduction of 0.333%). Note that this 
is not a percentage of the current morale level; it is a reduction of the starting value. This 

percentage is then modified by the unit’s skill level so that highly motivated troops are affected 

less by casualties than units with low morale. 
 

6.5 Comprehension and Projection 
 
We have already noted in Section 4.2.1 that Lipshitz [61], in his study on NDM-related research 

observed that all nine of the theories that he reviewed included an element of situation 

assessment, and that expert decision makers are able to perform situation assessment more 
quickly and accurately than novices. It is believed that this superiority in situation assessment 

skills accounts for much of the ability of experts to make rapid decisions and contributes to their 

decision-making accuracy. As Klein [25] notes, cue recognition/significance gives expert 

decision-makers an advantage because they can recognize cues more quickly and completely than 
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novices, and they recognize patterns of cues better than novices. They can also detect important 

features of a stimulus more readily than novices so that they can detect the underlying structure of 
a problem. Here we can see that the Comprehension and Projection steps in Endsley’s model for 

situation awareness allow us finer grained control in representing the relevance and potential 

impact of an actor’s observations/perceptions. This, in turn, will allow for better separation of 

individuals in their decision-making ability. 
 

6.5.1 Comprehension 

 

In the Comprehension step, SAEs and a priori information, comprised of both environmental and 
physical factors, are combined via fuzzy rules, into a high-level appreciation of the situation. In 

essence, the outputs of the fuzzy rules provide us with the ground truth of the current situation. 

 The FIS is comprised of 23 rules, based on five input and two output fuzzy variables. The 
five input fuzzy variables were chosen as a representational cross-section of the factors that a 

leader has to contend with, and are not meant to be exhaustive. 

 Figure 6-4 shows the fuzzylite editor [74] used to create and test the fuzzy variables and 
rules. The author participated in the development of this tool in the testing and validation steps. 

 

 
 

Figure 6-4: FuzzyLite FIS Editor 

 

 As discussed in Section 3.2.1, we chose to use the TSK method of fuzzy reasoning for its 
computational efficiency. We can see from Figure 6-4 that the output fuzzy variables use 

constants, which is consistent with a zero-order Sugeno model [53]. The representation of fuzzy 

sets in the input fuzzy variables is a mix of the familiar triangles and ramps, and “Z” and “S” 

curves. The latter were chosen for use in the fuzzy variables Cover, GroundCondition, and 

GroundElevation as we sought to define fuzzy variables that were relatively insensitive to 

change around their neutral point. This was done as a result of early testing that showed that in 
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the early phases of a firefight, where neither side held an advantage, the high-level 

comprehension jumped around in a manner that we felt was inconsistent with the actual situation. 
 Given that the TSK method of defuzzification is by weighted average, we noted that as we 

added more input fuzzy variables, we began to dilute the strength of some of the fuzzy variables 

that we felt should be more prominent, such as cover and enemy fire. We addressed this problem 

by assigning decreased rule weights to the other fuzzy variables in order to retain the balance that 
we sought. 

 Some of the input variables, such as SoldierLoad, GroundCondition and 

GroundElevation are simply fuzzified and fed directly into a fuzzy rule. Others, such as 

Cover, are more involved. In the Comprehension state, the leader’s assessment of the quality of 

cover is based on the distance his troops have to move from one piece of cover to reach the next 

one. The U.S. Field Manual 3-21.8 (Infantry Rifle Platoon and Squad) [62] stipulates that when 
rushing forward on the attack, soldiers are to remain exposed for no more than five seconds at a 

time. The degree of risk, therefore, when moving from one piece of cover to the next is directly 

proportional to the time that soldiers are exposed in the open (5 seconds being the maximum time 
a leader is willing to expose his soldiers to enemy fire, which equates to a manoeuvre risk value 

of 1). 

 It should be noted that the leader’s assessment of cover at this point in the SA process 
provides only a rough sense of the quality of the cover available. Regions of cover, however, 

must pass this initial test to be considered further in the Decision state. In other words, if a cover 

region is deemed too risky to cross, based on this initial assessment, then it will not be considered 

further. In the CDMM, this assessment is accurate, and there is no chance that the AI will 
mistakenly choose the wrong cover region. 

 Utmost in the mind of any small unit leader is the concept of “winning the firefight” [62]. In 

other words, can his side suppress the enemy sufficiently that his troops can manoeuvre with 
minimal risk from enemy fire. Rather than feeding each side’s fire effectiveness into a fuzzy rule, 

we calculate the effectiveness delta and pass that value to a fuzzy rule. While we could have 

simply fed the effectiveness values directly into fuzzy rules, as we do with friendly and enemy 

suppression values, and obtained the same results, we found the effectiveness differential to be a 
useful comparator further down stream in the Projection and Decision states. This will be 

discussed further when we reach those sections. 

 Figure 6-4 shows that our two output variables are ManoeuvreRisk and 

FireSuperiority, which are in keeping with the description in FM 3-21.8 [62], where the 

leader’s decision-making can be distilled down to two questions: 1) Can I suppress the enemy?, 

and if the answer is yes; 2) Can I manoeuvre? If the answer to both of these questions is yes, then 

the leader can attack. If the answer to the first is no, then the leader must determine if he has a 
subordinate unit that he can add to suppressing the enemy. If he does, then his best COA now 

becomes Support by Fire for another leader’s unit. In this way, we can see that the responses to 

“Do I have fire superiority?” and “What is my manoeuvre risk” ultimately shape his 
comprehension of the current situation. 

 Figure 6-5 shows the CDMM display with the four possible COAs, each in its own quadrant. 

FireSuperiority is shown along the x-axis, while ManoeuvreRisk is on the y-axis. The lines 

which divide the central display into the four quadrants represent a value of 0.5 along each axis, 

where FireSuperiority and ManoeuvreRisk are equal for both sides. In the scenario shown, 

we get an indication of Blue’s high-level comprehension of the situation, which is that he does 

not have Fire Superiority, his Manoeuvre risk is high, and his side is slowly being forced onto the 

defensive. 
 



56 
 

 
 

Figure 6-5: Comprehension 

 
 The following are the fuzzy rules used in the CDMM: 

 
 if groundCondition is POOR then manoeuvreRisk is HIGH; 

 if groundCondition is AVERAGE then manoeuvreRisk is AVERAGE; 

 if groundCondition is GOOD then manoeuvreRisk is LOW; 

 if groundElevation is UNFAVOURABLE then manoeuvreRisk is HIGH; 

 if groundElevation is AVERAGE then manoeuvreRisk is AVERAGE; 

 if groundElevation is FAVOURABLE then manoeuvreRisk is LOW; 

 if soldierLoad is LOW then manoeuvreRisk is LOW; 

 if soldierLoad is AVERAGE then manoeuvreRisk is AVERAGE; 

 if soldierLoad is HIGH then manoeuvreRisk is HIGH; 

 if cover is POOR then manoeuvreRisk is HIGH; 

 if cover is AVERAGE then manoeuvreRisk is AVERAGE; 

 if cover is GOOD then manoeuvreRisk is LOW; 

 if fireDifferential is LOW then manoeuvreRisk is HIGH; 

 if fireDifferential is very LOW then manoeuvreRisk is very HIGH; 

 if fireDifferential is AVERAGE then manoeuvreRisk is AVERAGE; 

 if fireDifferential is HIGH then manoeuvreRisk is LOW; 

 if fireDifferential is very HIGH then manoeuvreRisk is very LOW; 

 if enemySuppression is HIGH then fireSuperiority is HIGH; 

 if enemySuppression is MEDIUM then fireSuperiority is MEDIUM; 

 if enemySuppression is LOW then fireSuperiority is LOW; 

 if ownSuppression is HIGH then fireSuperiority is LOW; 

 if ownSuppression is MEDIUM then fireSuperiority is MEDIUM; 

 if ownSuppression is LOW then fireSuperiority is HIGH; 

 

 In the following sub-section, we will see how this high-level comprehension drives Projection 

and, ultimately, the leader’s SA. 
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6.5.2 Projection 

 

The Projection module receives the high-level comprehension from the FIS in the Comprehension 
module. 

 The SOM used in the Projection module is atypical in that its functioning had to be altered to 

fit within our architecture. A typical SOM will normally run for a given number of iterations, or 
epochs. As the time span of a tactical engagement is open-ended, we could not use this aspect of a 

SOM. 

 In our implementation, we refer to the SOM’s learning rate as the leader’s comprehension 

rate. This is due to the fact that we are simulating the leader’s ability to incrementally gain 
situation awareness in a complex environment. Comprehension rate, like the neighbourhood 

radius, is not affected by the number of iterations of the leader’s OODA loop, but rather by the 

leader’s effectiveness. 
 In Section 6.4.1.2, we indicated that effectiveness is a high-level representation of both 

physical and cognitive effectiveness. Therefore, as a leader’s effectiveness decreases, so does his 

comprehension rate. In effect, a leader that is forced to increasingly duck behind cover to avoid 
enemy fire is increasingly denied the real-time intelligence that he needs to obtain SA. His 

comprehension of the current situation is degraded. 

 Even with the use of the “Z” and “S” curves mentioned in Section 6.5.1, the hollow square on 

the CDMM display that represents the leader’s high-level comprehension still jumped in large 
increments, particularly early on in a firefight where one side, then the other, has the upper hand.  

At this very early stage in an engagement, the limited data is insufficient for the AI to determine a 

trend. 
 We have already noted in Section 6.5 that cue recognition/significance gives expert decision-

makers an advantage because they can recognize cues more quickly and completely than novices, 

and they recognize patterns of cues better than novices. They can also detect important features of 

a stimulus more readily than novices so that they can detect the underlying structure of a problem. 
 When observing one of our scenarios, it quickly becomes apparent to the observer if one side 

has the advantage; knowledge not available to our synthetic leader. The information is there, but 

initially appears chaotic. In essence, the true situation is obscured by noise and the leader cannot 
discern a pattern. 

 To permit our leader to focus only on the relevant pieces of information, we use a standard 

moving average by way of a circular array to filter out spurious data points. The length of the 
array is determined by the leader’s projection skill which, in turn, is based on the leader’s skill 

level. Highly skilled leaders can manage this filtering by maintaining data for the past 15 seconds. 

The poorest quality leader, however, is not as quick to recognize non-relevant data and must 

maintain data for a full minute. In this way, the skilled leader’s ability to determine where the 
current situation is heading is extremely agile and adapts quickly to changes in the environment. 

The non-skilled leader, however, maintains a great deal of inertia in his cognitive processing and 

reacts very slowly to situational changes. 
 In our simulation, the filtered data represents the leader’s near-future projection of the 

situation and is passed to the SOM to compute the leader’s SA. The current value of the leader’s 

projection is illustrated in Figure 6-6 as a solid square, and the leader’s current level of SA is 
represented by the solid circle. 
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Figure 6-6: Projection 

 
 If we take our description of a SOM from Section 3.2.3 and use our own decision-making 

terminology, we observe that a leader’s SA is driven by his interpretation of elements in the 

environment, not all of which are relevant. 

 As the BMU in a SOM (the leader’s level of SA in our model) moves by a percentage of the 
distance between the BMU and the latest data point (the leader’s projection), it stands to reason 

that the further apart the two are, the faster the BMU will move. In our model, the more quickly a 

leader can accurately project where the current situation is heading, the more quickly he will gain 
sufficient SA to make a decision. 

 Conversely, the closer the two points are, the longer it will take the leader to make a decision 

because he lacks sufficient information. 
 

6.5.3 Conclusion 

 

In this section we have seen how the Comprehension and Projection steps in Endsley’s model are 

inextricably linked, as described by our expanded Boyd model in Section 4.2.1, and we have 
shown that SA is a function of effectiveness. The less effective a leader is—both in terms of 

inherent skill and enemy action—the slower his OODA loop moves and, thus the longer it takes 

to obtain sufficient SA to make a decision. We saw how a leader first obtains a high-level 
comprehension of the situation, and from that is able to discard non-relevant data in order to 

project where the current situation is heading. From this the leader’s current situation awareness 

is formed. 
 In the next section, we will describe how a leader determines when he has enough SA to 

make a decision, and how supporting assets can play a role. 
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6.6 Decision 
 

The Decision phase is where we determine whether or not the leader has sufficient situation 

awareness to make a decision (Attack, Support by Fire, Break Contact or Defend). In other 

words, the decision-maker decides if the current situation matches one that is already known. If 
yes, the selected COA will be assessed in order to determine if it will work in the current 

situation, or if another COA must be selected. As the four situations are defined in order of 

preference, the next COA on the list will be tested next. 
 

6.6.1 Decision Circle 

 

Once the leader’s current level of SA is known, and the leader is able to project which COA is the 
most likely, we need to test to see if the current level of SA is sufficient to make a decision. We 

accomplish this by first establishing a skill-based decision distance for each leader; that is, how 

far from the neutral (0.5/0.5) position must the SA circle travel in order to represent that a 

leader’s SA is good enough to make a decision. Figure 6-7 portrays an engagement between an 
elite leader (Blue) and a conscript one (Red). In the figure, each leader’s decision distance is 

represented by a circle, centred on 0.5/0.5. One can see from the figure the difference in size 

between Blue’s decision circle, and Red’s, which shows that the conscript leader requires 
considerably more information (trips through the OODA loop) than its Blue counterpart. 

 Once the SA dot has crossed the decision threshold, a determination is made as to which 

quadrant (COA) best represents the current situation. As we will see in the next sub-section, 
however, the size of each quadrant is not fixed. 

 

6.6.2 Risk Tolerance 

 

In the same manner that we established a decision distance for each leader, we also determine a 
base level of risk tolerance that is based on the leader’s skill level. In other words, the default 

manoeuvre risk line at 0.5 on the y-axis is simply a point of reference, and does not necessarily 

represent a leader’s actual tolerance to manoeuvre risk. 
 Our Effectiveness Model updates a leader’s effectiveness in real time (i.e. as soon as an SAE 

causes a change), but it also monitors the effectiveness differential between the two leaders that 

we discussed in Section 6.5.1, at a rate of 10 Hz. A leader’s actual risk tolerance, therefore, is a 
function of the effectiveness differential which will either raise or lower the leader’s base risk 

tolerance as shown by the red and blue lines of Figure 6-7. 

 Referring again to Figure 6-7, we can see that, based on the current effectiveness differential, 

Blue’s risk tolerance is quite high, despite the fact that the enemy is not yet fully suppressed. 
Red’s tolerance to manoeuvre risk is, commensurately, very low. 

 The shaded blue region in Figure 6-7 shows us the area that delineates the “Attack” COA for 

the Blue leader, and the shaded red region defines the new “Defend” COA for the Red leader. 
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Figure 6-7: Decision with Decision Circles and Risk Tolerance Lines 
 

6.6.3 Mental Simulation 

 

Once it has been determined that a leader has sufficient SA to make a decision which, in this 
scenario is to Attack for the Blue leader (Red is still a long way from having sufficient SA to 

make a decision), then as stipulated by Klein, the leader must mentally simulate the COA to see 

if, in fact, it will work. 

 In Section 6.5.1, we discussed how the assessment of available cover is simply a quick check. 
The leader must now look more closely at the route that his assault element will follow in order to 

position themselves on the enemy’s flank. 

 We discussed our weapon ballistics model in Section 6.2, where we demonstrated that 
distance from the enemy is a factor in enemy fire effectiveness. As the Blue leader’s assault 

element, with each bound forward, will be under increasingly effective enemy fire, he must now 

reassess the quality of available cover against the enemy’s current effectiveness. 
 Here, we assess the enemy’s current level of lethality at each of the cover points that the 

assault element must traverse. Enemy lethality varies depending on their current effectiveness and 

the types of weapons that they are employing. For example, an enemy crew-served weapon will 

be more dangerous, even at longer ranges, than standard assault rifles, and the leader must take all 
of this into account before he commits his second fireteam to an assault. The assessment also 

factors in the team’s exposure time, based on the team’s running speed and the distance between 

cover points. In this way, we conduct a more accurate assessment of cover than the one 
performed in Section 6.5.1. 

 If the risk is deemed acceptable (i.e., less than his risk tolerance), and the leader has a non-

committed unit available to conduct the assault, then the “Attack” COA is implemented. If the 

risk is deemed to be too high, or the leader has already committed all of his units to suppressing 
the enemy, then his fallback option is “Support by Fire” (i.e., continue to suppress the enemy and 

wait for his own superior to commit a unit to the assault). 
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6.6.4 Additional Support 

 
We saw in Section 6.6.3 that, in addition to determining which COA best fits a given situation, 

the leader must also possess enough troops to execute it. In military engagements of this nature, 

leaders frequently have external resources at their disposal. In addition to supporting units, 
leaders can often call in airstrikes or artillery bombardments, particularly if they are in trouble. 

The leader is able to conclude this due to the fact that in the CDMM, all leaders are able to assess 

whether the current firefight is locked in stalemate, or if they are winning or losing, based on the 

effectiveness differential, which was discussed in Section 6.5.1. 
 In our model, we have implemented a basic version of the most likely support unit to be 

available to a squad leader; company-level 60 mm mortars. A company weapons platoon contains 

a mortar section of three 60 mm mortars, each of which is capable of a sustained rate of fire of 20 
rounds per minute, or one round every three seconds. In our implementation, the mortars fire 

three rounds in a sequential manner, which results in a round landing on target every second for 

nine seconds. The suppressive energy of each round was found by dividing the calibre of the 
round (60 mm in our case) by 100, and then adjusting this value to account for the quality of the 

receiving unit’s cover (no cover provides a value of one). 

 Support of this nature allows a leader to very quickly change the environment that both 

leaders are working in, and to subject his enemy to rapid, large-scale suppression. If the leader is 
good enough, he can use this sudden change to the environment to seize the initiative from his 

opponent and act decisively. We will discuss these effects more in Section 7 when we discuss the 

scenarios used to validate our findings. 
 

6.6.5 Conclusion 

 

In this section we demonstrated how we simulate the manner in which individual leaders 
determine if they have enough SA to make a decision, and how the degree of risk that they are 

willing to tolerate is highly dependent on both the leader’s skill level and the current effectiveness 

differential. 

 If we look more closely at the scenario depicted in Figure 6-7, we see a Blue Level 4 leader 
(Elite) pitted against a Red Level 1 leader (Conscript). In a little better than 17 seconds, the Blue 

leader has determined that the conditions are right for an attack (the blue dot has cleared the 

decision circle), despite the fact that his enemy is only partially suppressed. 
 In contrast, the Red leader’s current understanding has barely moved. The accuracy and fire 

discipline of the Blue troops has almost immediately overwhelmed the Red side, thereby denying 

real-time intelligence on “what is going on” to the Red side as they focus more on self 
preservation. 

 Once the Blue attack is launched, the Blue base of fire group will, in accordance with 

doctrine, switch to rapid rate of fire, further deepening Red side’s suppression. When the flanking 

group begins to manoeuvre, the shock of Red side’s predicament will fully paralyze the Red 
leader, which demonstrates that by seizing the initiative quickly, the Blue leader has ensured that 

the Red leader will be constantly reacting to the Blue leader’s moves instead of focusing on what 

he should do next. 
 In the next section, we will close the OODA loop through the action determined by the 

selected COA. 
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6.7 Action 
 

As discussed previously in Section 2.4, the primary focus of our research has been on situation 

awareness. The Action state, therefore, is the least complex of the OODA loop states. 

 In the UE3 editor, the scenario designer specifies the initial mission for the two opposing 
leaders. At scenario start, each avatar leader in UE3 passes its initial mission value to its CDMM 

counterpart. Based on the mission received, orders are specified in the Leader class and passed to 

the Action class, where one of the predefined plans that match the mission is selected. The plan is 
a C# dictionary that maps an input signal to a command delegate. In this way, the plan is 

configured like an event driven state machine, complete with transitions to other states (plans) 

based on the input received, either from the Decision state or from the Perception state. 

 By way of example, a unit that receives an “Ambush” mission will be initialized with the 
“Start” signal that will order the avatar leader and his unit to “Find Cover”. The Action class has 

an Orders helper class that converts the received order to a JSON-formatted message for onward 

transmission to the avatar leader. 
 Once the avatar leader and his unit are in cover, the avatar sends an “In Position” message to 

the Leader’s Perception state, which forwards the message on to the Action state. Once received 

by the Action state, the “In Position” message is looked up in the dictionary, and the 
corresponding order, “Peek” in this instance, is sent to the avatar leader via the Orders class. As 

mentioned previously, the received signal can also result in a change in state (plan). 

 A unit that is following “Patrol” orders that comes “Under Fire” (an SAE generated in the 

Perception state), changes its current plan to a predefined battle drill; “React to Contact” in this 
instance. 

 

6.8 Conclusion 
 

In this section on Behaviour, we described how our initial CDMM model incorporates the 

theoretical models of Endsley and Klein into Boyd’s model in order to elaborate the OODA loop 
into a functioning software architecture. In addition to supporting the decision-making cycle, our 

CDMM model implements this decision-making process in a time-competitive environment 

where small-unit leaders are required to operate in the highly complex and dynamic environment 
of combat. Our synthetic leaders must make decisions under the conditions of time pressure, 

uncertain information, and competing goals, with self-preservation often being at the forefront of 

these goals. 

 The following chapter will discuss how we chose to validate our model, and the scenarios 
used to do so. 
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7 Validation 
 

There are two observations which deserve attention at this point: 1) the CDMM is not a fully 
functional military simulation (however, all those elements and behaviours deemed necessary to 

demonstrate the time-competitive nature of Boyd’s OODA loop have been implemented); and 2) 

the field of cognitive science is extremely large and diverse, and since the author is not trained in 

this field, the models used within the CDMM are, by necessity, basic, although every effort has 
been made to make the behaviour of the synthetic entities as believable as possible. All of the 

values (and ranges of values) discussed thus far can be replaced, if the user wishes, in order to 

align the values to better represent what the user is testing for. 
 The CDMM has been designed in a modular fashion and, as mentioned in Section 5.2, the 

computational burden of the cognitive models has been offloaded from the process that runs the 

simulation engine in order to facilitate replacing any or all of the existing cognitive modules with 

more detailed ones without disrupting the frame rate of the simulation engine. 
 The scenarios discussed below were chosen so that, while we felt that they represented a 

good cross-section of the various aspects of the CDMM, their outcomes would be obvious to the 

observer. 
 In Figure 7-1 we see the Leader Properties dialog that we created within the UDK to enable 

the scenario designer to set scenario-specific leader properties. These properties include whether 

or not the leader is also the force commander, mission type, waypoints for a patrol, initial soldier 
load, initial fatigue, troop quality and morale, and likelihood of enemy contact. 
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Figure 7-1: Leader Properties Dialog 

 

7.1 Scenario Overview 
 

We used a single test map, shown in Figure 7-2 and Figure 7-3, for all of our test scenarios, each 

of which begins with a meeting engagement between Blue and Red forces at a range of 
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approximately 150 metres. The same weapons are used for both groups in order to remove 

weapon variances. As discussed in Section 6.4.2.4, there is an SAE option for casualties, but it is 
not used in the following scenarios so as to focus solely on leader effectiveness. 

 Figure 7-2 shows a three dimensional view of our test map, looking from Blue’s end of the 

map towards Red’s, with Red being at the north end. The map was divided into cover zones 

(north, south, east and west), with the west and east zones clearly visible in the figure. This was 
done so that leaders could quantify risk for map areas. From Figure 7-2, the reader can see that 

there is significantly more cover in the western zone than the eastern one. While our synthetic 

leaders will assess the manoeuvre risk for both zones in the same manner, it is obvious to the 
observer that the western zone provides considerably more protection to a manoeuvring unit than 

does the eastern one. 

 

 
 

Figure 7-2: 3D View of the Test Map in the Unreal Editor 
 

 Figure 7-3 shows the same map, but from a top-down, wireframe perspective. Here we get a 

better look at the cover zones, including the northern one, which is the route Red would take if 

they chose to break contact. Interspersed amongst the areas of cover—large rocks in our case—
we can see small dark dots. Each dot marks an area of cover on the map for the leaders. As we 

mentioned in Section 1.4, synthetic actors do not ‘see’ in the same manner as humans. Therefore, 

we must provide another mechanism for synthetic actors to ‘spot’ cover. In Figure 7-3, the 
disparity in available cover between the western and eastern cover zones is even more apparent. 
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Figure 7-3: Top View to Test Map in Unreal Editor 
 

 In the following sub-sections, we will review each of the six scenarios whose outcomes we 

have used to validate our model. All scenarios are reciprocal in that there is no advantage for a 
force to be at one end of the map or the other. We have selected the Blue side as the aggressor in 

all scenarios so that we can use the same starting forces for both sides. In this way, we can see the 

effects of leadership skill and troop quality, as well as the effects of giving one leader supporting 
assets. 
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 Both sides in each of the scenarios use U.S.-style formations and weapons. Blue side is a U.S. 

Army squad of nine men, with a squad leader and two four-man fireteams. The squad leader is 
equipped with an M4 carbine, and each fireteam contains two M4s (fireteam leader and a 

rifleman), an M4 equipped with and underslung 40 mm grenade launcher (used only as a third 

rifleman in our scenarios), and an M249 light machinegun, referred to as a Squad Automatic 

Weapon, or SAW, in U.S. terminology. 
 This formation was chosen because the squad leader (i.e. the decision-maker) is separate from 

the fighting units. Each fireteam is also led by a leader, complete with a CDMM counterpart, in 

order to establish a chain of command for passing orders. 
 The Red side is comprised of a leader and a single four-man fireteam, equipped in an 

identical manner to the Blue side. In this configuration, we have a leader embedded within the 

fighting unit, which is a configuration more closely related to how, in Commonwealth countries, 
the squad leader is also a fireteam leader. In our scenarios, the leader is separate from the fireteam 

which, like the Blue side, is led by a fireteam leader. This provides us with a different chain of 

command configuration. 

 The results of each of the scenarios are tabulated in Table 7-1 at the end of this chapter. 
 

7.2 Scenario 1 
 

Scenario 1 depicts two equal, Level 3 forces against each other. In terms of supporting assets, as 

we mentioned in Section 7.1, Blue has (for all scenarios), two fireteams to Red’s one. As such, 

once contact is made in a scenario, Blue will have an uncommitted unit. 
 Once contact is made, both sides pause momentarily until the initial shock of meeting the 

enemy has passed. The likelihood of contact in all of our scenarios is “very high” so the initial 

shock is short-lived, but still dependant on troop quality. Once the shock has passed, both sides 
execute the React to Contact battle drill—they move to the nearest cover and return fire on the 

enemy. 

 At this point in the scenario, we have a firefight between two equal fireteams which will end 
in a stalemate, and both leaders will recognize this at approximately the same time. We say 

approximately because of the ebb and flow of the fight, where one side, and then the other, holds 

a slight advantage. As a leader’s effectiveness drops, his cognitive processing speed slows 

down—he is spending increasingly more time under cover to avoid enemy fire and, therefore, is 
not assessing the situation. Therefore, while the length of time it takes a leader to recognize a 

stalemate is a function of a leader’s skill level, the value is based on 100% effectiveness. 

 Once the Blue leader recognizes that he is in a stalemate, and that he will be unable to attack, 
he brings his second fireteam forward to help suppress the enemy, and is successful in doing so. 

He then contacts his immediate superior (not represented in any of the scenarios) and advises him 

that he can only “Support by Fire” in this engagement and that it is up to his superior to commit 

additional forces to the battle. 
 As Red is forced increasingly on the defensive, the option to “Break Contact” is no longer 

possible due to the intensity of fire from Blue. In CDMM terms, Red’s tolerance for manoeuvre 

risk is now too low to allow them to safely manoeuvre, and their only option is to defend in place. 
 In Figure 7-4, we see that both sides are in a stalemate, as illustrated by the similarity of each 

of their PMFs, and their decision dots are still within their respective decision circles. Blue leader, 

therefore, has made the decision to bring his trail fireteam forward to support by fire. 
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Figure 7-4: Fireteam 2 moving to Support by Fire 
 

7.3 Scenario 2 
 

Scenario 2 is identical to Scenario 1, except that Blue now has a mortar barrage on call as an 

additional asset. The scenario proceeds in the same manner as Scenario 1, except that once the 

Blue leader recognizes that the situation is likely to end in a stalemate, he calls in the mortar 
barrage, rather than deploying his non-committed unit to aid in suppressing the enemy. Now, he 

is relying on the barrage to suppress the enemy, which it does. Once Red is suppressed, Blue 

employs his non-committed unit as a manoeuvre unit in a flanking (using the western zone) 
manoeuvre, and orders his suppressing unit to increase their rate of fire from “sustained” to 

“rapid”. As we discussed in Section 6.2, sustained rate of fire can be maintained for long periods 

of time, but Rapid rate of fire is prone to weapon overheating and must be used judiciously. In 

our model, the AI only uses rapid rate of fire when an assault begins. The effect of weapon 
overheating is not modelled. 

 By having the flanking unit aggressively push towards the enemy’s open right flank (Blue’s 

left), and by increasing the suppressing unit’s rate of fire, Red now has two sources of danger, is 
suppressed, and is increasingly paralyzed as the flanking unit closes in on his position. By 

maintaining a high tempo to his attack, Blue ensures that every bound forward by the flanking 

unit throws Red further and further off balance. 
 

7.4 Scenarios 3 and 4 
 
Scenarios 3 and 4 are both standard attack scenarios. In Scenario 3, we have a Level 3 Blue vs. a 

Level 2 Red, while in Scenario 4, we have a Level 4 Blue vs. a Level 1 Red. As in Scenario 1, 

Blue’s only additional asset is the uncommitted fireteam. In both scenarios, Blue will gradually 
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begin to win the firefight (suppress the enemy) and choose the “Attack” COA. The primary 

difference in the scenarios is time; Blue in Scenario 4 obtains sufficient SA to be confident that 
he can order an attack in approximately half the time that it takes Blue in Scenario 3. We are 

demonstrating here that while leader quality is extremely important, the disparity between the two 

leaders also has a tremendous impact on the outcome of the engagement. Figure 7-5 shows Blue’s 

trail fireteam manoeuvring to their left to launch a flank attack. We can see from the CDMM inset 
that Red’s SA is not yet good enough to make a decision. 

 

 
 

Figure 7-5: Blue launching a flank attack 

 

7.5 Scenario 5 
 

Scenario 5 is a reversal of Scenarios 3 and 4, in that an inferior group (Level 2 Blue) is facing a 
superior (Level 3 Red) group. Blue, however, has a mortar bombardment on call as a supporting 

asset, while Red has none. As we would expect from looking at the preceding scenarios, Red 

slowly begins to win the firefight. 
 As discussed in Section  6.6.4, in the CDMM, all leaders are able to assess whether the 

current firefight is locked in stalemate, or if they are winning or losing, based on the effectiveness 

differential. As a result, once Blue recognizes that he is losing, he calls in the bombardment and, 

just as in Scenario 2, Blue recognizes that, while Red is suppressed by the bombardment, he can 
attack. 

 Once again, the combination of stepping up the suppressing unit’s rate of fire to “Rapid”, and 

the aggressive flanking move by the manoeuvre unit, puts Red on the defensive and keeps them 
there. 
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7.6 Scenario 6 
 

Scenario 6 is configured in much the same manner as Scenario 5, with an inferior force attacking 

a superior one. This time, however, we have a Level 2 Blue group vs. a Level 4 Red group—a 

disparity of two levels in the defender’s favour. 
 As in Scenario 5, Red begins to win the firefight and, due to the Red leader’s high skill level 

(elite), recognizes that Blue is sufficiently suppressed for Red to attack (COA of “Attack” is 

selected). During the mental simulation of the plan in the Decision state, however, Red deems 
that the attack is too risky because he is outnumbered 2–1 and Blue’s second fireteam is not yet 

committed. He, therefore, falls back to “Support by Fire” as his chosen COA. 

 Blue, once he recognizes that he is losing, calls in his bombardment, which has the desired 

effect of reversing the firefight in Blue’s favour. Red, however, is sufficiently experienced so as 
to overcome the effects of the bombardment (suppression inertia) sufficiently to recognize that 

the situation is lost, and decides to “Break Contact”, even before Blue can launch his flanking 

assault in order to pin Red in place. 
 Here again, we see how the effects of skill and experience can alter the outcome of an 

engagement, and the larger the delta between leaders, the greater the effect. 
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Table 7-1: Results from Validation Scenarios 

 

Number Situation (Blue vs. Red) Assets (Blue) Observed Explanation 

1 
Level 3 vs. Level 3 
(Equal opponents) 

Supporting Unit 

Engagement will end in stalemate. Blue calls 
up supporting fireteam to assist in 

suppressing the enemy. He then reports to his 

superior that he cannot Assault, but can 

Support by Fire. 

Once Red determines that they are 
overmatched, they are too late to 

attempt to break contact, as the 

manoeuvre risk is too high. Red is 

now fixed in place. 

2 
Level 3 vs. Level 3 

(Equal opponents) 

Bombardment, 

Supporting Unit 

Engagement will end in a stalemate. Blue 

employs his on-call bombardment, thereby 

breaking the stalemate in Blue’s favour and 
allowing Blue to Assault. 

Blue’s bombardment tips the balance. 

Blue capitalizes on the suppression 

effect of the bombardment to assault, 
which throws Red further and further 

off balance. 

3 
Level 3 vs. Level 2 

(Blue slightly superior) 
Supporting Unit 

It takes Blue approximately 37 seconds to 

recognize that he can Assault. 

Blue suppresses Red and launches a 

flank attack. 

4 
Level 4 vs. Level 1 

(Blue greatly superior) 
Supporting Unit 

It takes Blue approximately 18 seconds to 

recognize that he can Assault. 

Same effect as Scenario 3, but in 

approximately half the time. 

5 

Level 2 vs. Level 3 

(Blue has slightly inferior 
troops) 

Bombardment, 

Supporting Unit 

Blue is initially losing, as we would expect. 

The bombardment allows Blue to gain the 
upper hand and Assault. 

Once heavily suppressed by the 

bombardment, Red’s only option is to 
Defend. 

6 

Level 2 vs. Level 4 

(Blue inferior) 

Engagement status code 

changed 

Bombardment, 

Supporting Unit 

Blue is initially losing. Red assesses that it 

can attack. After completing the mental 
simulation of the assault, however, it is 

deemed too risky to attack, and Support by 

Fire is selected instead. Blue’s bombardment 

reverses the situation, but Red is able to 
break contact before Blue can capitalize on 

its advantage. 

Blue is losing initially and calls in a 

bombardment which reverses its 
situation. Red, however, is 

sufficiently skilled to recover from 

the bombardment enough that they 

can Break Contact. 
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7.7 Additional Observations 
 

The following additional observations, while not associated with any one particular scenario, 

provide the reader with insight into some of the subtler points of the CDMM. 

 We can see from Table 6-1 that there are, in fact, many more combinations than the nine 
shown. This is because morale can be specified separately from skill to create a wide variety of 

units, or unit situations (e.g. lower morale due to being in combat for too long). Additionally, 

units can have leaders who are at a higher or lower skill level than the troops they are leading. In 
the CDMM, good leaders cause troops to perform better, and recover from suppression faster, 

while bad leaders drag down the overall quality of the troops that they are with. 

 Marcus Luttrell’s comment regarding belt-fed weapons [67] that we referred to in Section 6.2 

is particularly noticeable in the CDMM, as these weapons cause the most damage, by far. In test 
scenarios, where U.S. forces were facing insurgents armed with Russian weapons, the PKM light 

machinegun, which fires a 7.62 mm round vs. the 5.56 mm round from the U.S. M249, in the 

hands of a skilled operator, could completely dominate the battlefield, particularly when firing at 
a rapid rate of fire, and it was absolutely devastating when fired from ambush. From Table 6-2 we 

can see that the PKM can put almost double the energy on target as the M249. 

 In scenarios similar in structure to scenarios 3 and 4, but with the U.S. forces depicted in the 
scenarios above vs. an insurgent group with triple the firepower of the U.S. group, superior troop 

quality and leadership was still often able to offset this firepower disparity, depending on the 

effectiveness differential. 

 In the end, we opted for scenarios with forces using identical weapons so that we could focus 
solely on the effects of troop quality and leadership skills, and their effect on the decision-making 

process. 

 

7.8 Conclusion 
 

In this chapter, we have validated our thesis, that by merging the stand-alone theoretical models 
of Boyd, Endsley and Klein, we could create a practical application for decision-making that 

demonstrates the time-competitive nature of warfare on the modern battlefield. 

 With the introduction of the cognitive Transition Model of Bridges, we have validated the 
primary factor that sets Boyd’s work apart from other models, which is the human dimension—

how humans react to change, and the stress that it brings. 

 We have tested and validated that our software model, and its elaboration into a software 

architecture, effectively models the time-competitive nature of Boyd’s OODA loop. We have 
demonstrated that by representing the interaction between opposing, or competitive, OODA 

loops, we have developed a more realistic model of the dynamics associated with the tactical 

decision-making process of AI small-unit leaders in a Constructive Simulation and thereby 
provided more credible synthetic forces. 

 Holistically, we have validated our findings by demonstrating that, as Boyd predicted, better 

trained leaders can alter the outcome of a fight through improved morale and experience, leading 
to faster decision-making. U.S. Field Manual 3-21.8 [62] stresses the importance of maintaining a 

high tempo in offensive operations, and we have shown that by seizing the initiative and 

manoeuvring aggressively, this high tempo induces a paralysis in the enemy. We have also 

demonstrated that more experience/better training can offset a numerical/firepower disadvantage. 
 In the next, and final, section, we will provide our overall conclusions of our work, and 

provide suggestions for future work.  
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8 Conclusions and Future Work 
 

Liddell Hart wrote that: “In war every problem, and every principle, is a duality. Like a coin, it 
has two faces. This is the inevitable consequence of the fact that war is a two-party affair, so 

imposing the need that while hitting, one must guard” [75]. 

 This quote underlines the importance of considering that war is a two-sided affair, and that 

one’s action will have an effect on the other party’s response. Boyd understood this duality, 
which he captured in his theory of the OODA loop. 

 In our thesis, we have created a theoretical model, based on the work of Boyd, Endsley and 

Klein; designed an architecture of distributed processes; and elaborated the software modules 
using Soft Computing techniques into a functioning architecture that supports a practical 

implementation of the time-competitive nature of Boyd’s model. Our use of Soft Computing 

techniques makes our model tolerant of the ambiguity and imprecision found on the modern 

battlefield, which contributes further to the credibility of our synthetic actors. Our CDMM is a 
standalone test bed that helps to prove this very concept.  

 In Section 1 we introduced the current state of AI in military simulations and demonstrated 

the need for an AI model that would reduce the considerable manpower requirements for running 
military simulations. In addition, we proposed to make CGF that respond appropriately to 

military tactics. 

 In Section 2 we presented Boyd’s time-competitive OODA loop decision-making model 
which postulates that the key to victory is to be able to create situations wherein one can make 

appropriate decisions more quickly than one's opponent. We noted that while Boyd’s model is 

useful as an illustration of the time-competitive nature of the decision-making cycle, it is not 

sufficiently detailed to allow for the creation of a software architecture that supports this cycle. 
Therefore, we decomposed the OODA loop into its logical components—Observe and Orient; 

Decide; and Act—in order to provide additional modelling detail to each of the steps. More 

specifically, we mapped Endsley’s SA model to Boyd’s concepts of Observe and Orient, and 
Klein’s RPD model to the Decision step in the OODA loop. Finally, we described how the Act 

step would be limited to pre-defined military battle drills. 

 In Section 3 we explored the concept of hybrid intelligent systems and demonstrated how a 
complementary fuzzy-neuro system could be used to model Endsley’s three levels of SA 

(Perception, Comprehension and Projection), which feeds forward to the Decision step. The 

architecture for this system is shown in Figure 4-2. 

 Section 4 combined our findings from the previous three sections into our expanded Boyd 
model, and Bridges’ Transition Model to account for the human element in the decision-making 

process. We further discussed how we intended to use cognitive PMFs to model the effects of 

effectiveness, suppression, morale and shock on a leader’s ability to make decisions in the highly 
complex and dynamic environment of combat. 

 Section 5 provided high-level descriptions and class diagrams of Unreal Engine 3, our 

simulation engine, and the CDMM. In addition, we discussed the communication protocol used to 

connect the two components and how our decision to create a distributed application, where the 
simulation engine and the CDMM operate as separate processes, allowed us to offload the 

cognitive processing from the CPU-intensive simulation engine to the CDMM component. 

Finally, we discussed how, by running the CDMM in a distributed environment, we are free to 
make our models for cognitive behaviour as complex as required without affecting the frame rate 

of the simulation. 

  Section 6 described the individual behavioural components of the CDMM that make up the 
decision-making cycle. Our description demonstrated how our CDMM incorporates the 



74 
 

theoretical models of Endsley and Klein into Boyd’s model in order to elaborate the OODA loop 

into a functioning software architecture. 
 In Section 7 we validated our thesis by demonstrating that better trained leaders can alter the 

outcome of a fight through improved morale and experience, leading to faster decision-making. 

We also demonstrated how, by maintaining a high tempo in offensive operations and seizing the 

initiative, we induce a decision-making paralysis in the enemy. We also demonstrated that more 
experience/better training can offset a numerical/firepower enemy advantage. All of which 

validated our thesis that by merging the stand-alone theoretical models of Boyd, Endsley and 

Klein, we could create a practical application for decision-making that demonstrates the time-
competitive nature of warfare on the modern battlefield. 

 

8.1 Model Requirements Review 
 

 The decision-making factors identified in Section 2 (repeated here for clarity) are as follows: 

 

 Situation Awareness – the appreciation of those aspects of the current situation that are 

relevant to the question at hand. 

 Predictive Capability – the ability of the agent to foresee the consequences of actions and 

the likely actions/reactions of other entities that are part of the scenario. 

 Response Repertoire – the known action sequences for dealing with the current situation 

(skill set). 

 Personal Preference – preferred methods of dealing with the current situation, often based 

on experience of previous successes and failures. 

 Cognitive Effectiveness – the current state of the underlying cognitive architecture, 

affecting capabilities such as ability to recall facts, hold intermediate results in working 

memory, and stay focused on the problem. 

 Affective State – the emotional factors that can influence a decision; for example, a high-

level of fear can predispose a person to make an irrational decision. 
 

 When we map these requirements to the CDMM, we note that: 

 

 The description of Situation Awareness is, essentially, Endsley’s model of SA. 

 Predictive capability is inherent in the Projection stage of Endsley’s SA model. 

 Response repertoire is supported by the use of trained responses (battle drills), and is also 

identified by Klein as an important part of NDM. 

 Cognitive Effectiveness and Affective State have both been modelled by the use of PMFs 

(effectiveness, suppression, morale and shock), where the “fullness” of the reservoir has a 

proportionate impact on both decision-making speed and ability. 
 

 From this comparison of the factors affecting decision making, we can see that these 

requirements are supported by the CDMM that we have developed. Beyond just supporting the 

decision-making cycle, however, we have developed an architecture that also supports the time-
competitive nature of Boyd’s loop, augmented by the models of Endsley and Klein, where 

decisions are not made in a vacuum and there is a real requirement to be aggressive so as to deny 

to one’s opponent the opportunity to understand what is going on around him; and to paralyse 
him so that he makes no decision at all. This behaviour is specifically what U.S. Army doctrine 

encourages [62], and it is precisely this element that is missing in existing decision-making 
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models. Thus, the advantage of our CCDM is that it addresses both the real-time aspect of 

decision-making and the time-competitive nature of Boyd’s OODA loop.  
 

8.2 Future Work 
 
The following sub-sections briefly discuss areas of future work, should development of the 

CDMM continue. 

 

8.2.1 Upgrade the CDMM to Unreal Engine 4 

 

Unreal Engine 3 is no longer supported by Epic Games, now that Unreal Engine 4 is available, so 

upgrading the CDMM to UE4 should be seriously considered. UE4, like its predecessor, is also 
free for non-commercial use and, unlike the UDK, users have access to the C++ source code. 

Users of UE4 have the choice of programming in either C++ or Epic’s new visual scripting 

language, Blueprints. 

 This latter point would make it easier for non-programmers to continue to evolve the CDMM. 
Caution should be exercised here, however, as developing and debugging a distributed 

application, such as we have, is difficult. Developing and debugging one that also based on 

timing is considerably harder, yet again. 
 

8.2.2 Upgrade the CDMM to Unity 3D 

 

Extremely popular amongst independent developers, Unity has the advantage that its scripting 
language is C#, the same language the CDMM is developed in. This would consolidate the 

programming language requirements, rather than a developer having to learn C++. 

 

8.2.3 Improvements to the CDMM 

 

The following points came up during development of the CDMM, but were deemed to be outside 

the scope of this thesis. Modifications could include: 

 

 Expanding the scope to include platoon and company-level operations; 

 Modifying the suppression model to increase suppression if being fired upon by two or 

more groups that are separated, as the group being fired would be caught in a cross-fire, 

and the further apart the firing groups are, the greater the effect should be; 

 Taking into account how a casualty is caused. A soldier killed in a firefight would lower 

morale, but if the same soldier were to be shot by a sniper, this should have a more 
detrimental effect on unit morale; 

 Modifying the cover system so that not all cover has open flanks. The degree to which a 

flank is open should be a matter of degree, rather than simply binary; 

 Factoring soldier load into soldier movement speed, rather than being a fuzzy variable. 

This would require, however, greater granularity in the definition of soldier attributes 
(e.g. strength). 
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