
Competitive Reinforcement Learning

for Autonomous Cyber Operations

A Thesis Submitted to the Royal Military College of Canada

Department of Electrical and Computer Engineering

by

Garrett McDonald

In Partial Fulfillment of the Requirement for the Degree of

Master of Applied Science in Computer Engineering

1 May 2023

© This thesis may be used within the Department of National Defence

but copyright for open publication remains the property of the author.

Acknowledgments

I am deeply grateful for the help and support I received to make this thesis

possible. I was very fortunate to have Dr. Ranwa Al Mallah as my committed

supervisor, who provided guidance throughout this project. And I am especially

grateful to Anna, for her constant support and understanding during the long

hours that went into completing this thesis!

i

Abstract

Reinforcement learning (RL) has been responsible for some of the most im-

pressive advances in the field of Artificial Intelligence (AI). RL has benefited

substantially from the emergence of deep neural networks that enable learning

agents to approximate optimal behavior in increasingly complex environments.

In particular, research in competitive RL has shown that multiple agents com-

peting in an adversarial environment can learn simultaneously to discover their

optimal decision-making policies.

In recent years, competitive RL algorithms have been used to train performant

AI for a variety of games and optimization problems. Understanding the funda-

mental algorithms that train these AI models is essential for using these tools

to address real-world challenges. Cybersecurity is a domain where the emerging

research in competitive RL is being considered for its real-world application.

In order to develop Automated Cyber Operations (ACO) tools using RL,

various environments are available to simulate network security incidents. Many

of these ACO environments have been made open-source in just the past three

years. These new environments have facilitated promising research exploring the

potential of AI for cybersecurity. The existing research in these environments

is typically one-sided: a red or blue agent is trained to optimize their decision-

making against a static opponent with a fixed policy.

By training against just one opponent, or a static set of opponents, the learn-

ing AI will not maintain high performance against every other possible opponent

in the scenario. Competitive RL can be used to discover the optimal decision-

making policies against any potential opponent in an adversarial environment.

However, it has not been attempted in these emerging ACO simulations. The

aim of this thesis is to train agents using competitive RL to approximate their

game theory optimal policies in a simulated ACO environment.

ii

Contents

List of Figures v

List of Tables v

1 Introduction 1

1.1 Motivation . 1

1.2 Statement of Deficiency . 4

1.3 Thesis Aim . 5

1.4 Research Activities . 5

1.5 Document Structure . 6

2 Background 7

2.1 Reinforcement Learning . 7

2.1.1 Reward Functions . 7

2.1.2 Markov Decision Processes 8

2.1.3 Tabular RL . 10

2.1.4 Deep Reinforcement Learning 13

2.2 Competitive Reinforcement Learning 15

2.2.1 Markov Games . 16

2.2.2 Non-Stationary Environments 16

2.2.3 Nash Equilibrium . 18

2.2.4 Exploitability . 19

2.2.5 Competitive Algorithms . 19

2.2.6 Fictitious Play . 21

3 Related Work 26

3.1 ACO Research . 27

3.2 Simulated ACO Environments . 30

3.3 Other Competitive RL Applications 31

3.4 Key Findings from Literature Review 34

4 Methodology 36

4.1 Select an ACO Environment . 37

4.2 Identify the Target Behavior . 37

4.3 Define the Game Design . 38

4.3.1 Reward Function . 38

4.3.2 Terminal Conditions . 39

iii

4.4 Implement Fictitious Play . 40

4.5 Validate the Trained Policies . 48

4.6 Experiment Summary . 49

5 Evaluation 50

5.1 CybORG Environment . 50

5.2 Scenario and Game Design . 53

5.3 Environment Wrapper . 54

5.3.1 Action Space . 55

5.3.2 Observation Space . 57

5.4 Fictitious Play Algorithm Implementation 59

5.5 Results and Analysis . 63

5.5.1 Training Scores . 64

5.5.2 Discussion . 66

5.6 Validation . 69

5.6.1 Measuring Exploitability . 69

5.6.2 Minmax Evaluation . 72

5.6.3 Expected Reward Comparison 76

5.7 Evaluation Summary . 77

6 Conclusion 78

6.1 Thesis Contribution . 78

6.2 Future Work . 80

6.3 Closing Remarks . 82

Bibliography 83

A Sample Games 87

A.1 Competitive Blue versus Competitive Red 88

A.2 Competitive Blue versus Dedicated Red 93

A.3 Dedicated Blue versus Competitive Red 99

iv

List of Figures

1 Simple Markov Chain. 8

2 Simple Markov Reward Process. 9

3 Simple Markov Decision Process. 10

4 Overview of Fictitious Play. 23

5 Actor and Critic Neural Network Architectures. 43

6 Blue Opponent Sampling Cycle. 46

7 Red Opponent Sampling Cycle. 47

8 CAGE Challenge Network Topology. 51

9 Evaluation Network Topology. 53

10 Blue Observation Vector. 58

11 Red Observation Vector. 59

12 File Structure. 61

13 Blue Training Scores. 64

14 Red Training Scores. 65

15 CybORG Strategic Cycle. 68

16 Blue Agent Exploitability. 71

17 Red Agent Exploitability. 71

18 Dedicated Red Opponent Training Scores. 73

19 Dedicated Blue Opponent Training Scores. 75

List of Tables

1 Action Space Summary. 56

2 Key Parameter Settings. 63

3 Expected Scores Between Agents. 76

v

Glossary

Agent – A decision-maker in an environment. A participant in a Markov Deci-

sion Process or Markov Game.

Batch – A collection of experiences gathered by an agent interacting with their

environment. The sample experiences in a batch are used to update the

agent’s policy.

Best-Response – Describes an opponent policy that, in all cases, correctly se-

lects the action that will minimize the return of an agent’s policy. This is

the worst-case opponent for an agent policy that is being examined.

Blue Agent – A decision-maker taking actions to maintain the confidentiality,

integrity, and accessibility of network assets in an ACO environment. The

defender during a network security incident.

Experience – An agent’s encounter with an environment that can be used for

learning. One experience includes an observation, the action taken by the

agent, their new observation, and their reward received. An experience is

also known as a “sample” for training. Each new experience is stored in an

agent’s memory buffer until it is used to update the policy.

Exploitability – The difference between a policy’s expected return against a

best-response opponent, and the expected return that is achieved by fol-

lowing an optimal minmax policy. This metric is used to measure how

suboptimal a policy is, by considering the worst-case opponent.

Fictitious Play – A category of competitive RL algorithms, where new agent

policies are trained by simulating experiences against the average of many

potential opponents. These training experiences are curated so that new

agent and opponent policies gradually converge towards optimal play. The

implementation of fictitious play used in this thesis is used to approximate

optimal Red and Blue agent policies for an ACO environment.

Generation – A complete process to train a new agent policy. This includes

creating a new randomized policy, then undergoing many iterations of train-

ing updates until the policy is no longer improving. One loop within the

vi

fictitious play algorithm creates a new generation of Red and Blue poli-

cies. Each saved policy is numbered so that it is uniquely identified by the

generation it was produced.

Iteration – A complete training update for a reinforcement learning algorithm.

This includes gathering experience from the training environment and stor-

ing that experience in a memory buffer. Once a complete batch of sample

experiences have been collected, the learning agent’s policy is updated.

Minmax – Describes a policy that will guarantee the most value for an agent,

regardless of what action is selected by their opponent. In other words,

this describes the policy that will achieve maximum value, when assuming

that the opponent will correctly select actions to minimize the value of any

policy.

Nash Equilibrium – A state during training where neither learning agent has

any incentive to deviate from their current policy, because both agent’s

have arrived at policies that are the best-responses to each other.

Observation – The perceived state of the environment at a timestep. The

environment’s state from an agent’s point of view.

Opponent Sampling – A technique for selecting the opponent that will be used

during training, in order to generate new experience for the learning agent.

This technique allows the learning agent to gather experience against a

wide variety of potential opponents during training and develop a policy

that maximizes its average score across the entire opponent pool that is

being sampled.

Policy – The process used by an agent to select an action in their environment.

A mapping between observations in an environment and the agent’s be-

havior for each observation. To create this mapping, this thesis uses deep

neural networks that are trained to produce action probabilities from agent

observations.

Red Agent – A decision-maker taking actions to compromise assets on a target

network in an ACO environment. The attacker during a network security

incident.

Return – The total amount of reward an agent receives during a sequence.

vii

Reward – A scalar measurement of how desirable a state-action was for a learn-

ing agent.

Reward Function – The system used to determine the reward that an agent

receives for any state-action. This should be carefully crafted so that the

agent will achieve a target behavior by learning to receive the maximum

reward.

Sequence – A chain of states and actions that describe an agent’s participation

in an environment.

Static – Describes an agent that is following a single fixed policy. A non-learning

agent or opponent.

Strategic Cycle – An open-ended learning problem that can occur if both

agents in a two-player Markov Game attempt single-agent RL at the same

time. Neither can converge on the optimal policy because the optimal pol-

icy is constantly changing. Often, they will appear to cycles through the

same progression of policies that are the best responses to each other.

Target Behavior – The priorities that a trained autonomous agent should ad-

here to. The intended performance for a new AI.

Timestep – One abstract unit of time in a simulated environment that is using

discrete time. Also called a “turn” in a Markov Game.

Training Score – The average return that was achieved by an agent during a

single batch of training.

Value – The amount of reward that an agent is likely to accumulate from a

certain state or state-action in a sequence, by following a given policy. Also

called the “expected return”.

viii

1. Introduction

The rapid evolution of modern cyber threats has forced many organizations to

spend significant resources protecting their digital infrastructure. It is a common

practice to secure digital assets on private networks, and establish permanent

Cybersecurity Operations Centers (CSOCs) to monitor network activity and mit-

igate the impact of cyber attacks. The exact risk of such an attack is unique to

every organization and is often difficult to measure. The perceived value of dig-

ital assets can motivate cyber threat actors for a variety of reasons. Regardless

of each organization’s unique priorities and structure, the risk of a cyber attack

continues to grow over time, driven by the number of malicious actors in the wild

and the sophistication of their attack tools.

The cybersecurity analysts that operate a CSOC have to extract useful in-

formation from a tremendous amount of data, and rely on a variety of different

sources, as they attempt to spot unusual (and possible malicious) network ac-

tivity. Fortunately, sophisticated network security tools are available to assist

the analyst with this responsibility. Firewalls, Intrusion Detection/Prevention

Systems (IDS/IPS) and Quality of Service (QoS) protocols are all examples of

systems that automate the inspection and control of network traffic.

Unfortunately, these tools are not always enough to make the analyst’s goal

reasonable. The sheer volume of network traffic that passes through an IDS means

that there will almost always be too many false positive alerts for the CSOC to

examine every alert as a potential threat [1]. For this reason, automated tools

that can assist the human analyst with extracting information from data will be

vital to future CSOC operations. Abstracting tasks away from the analyst will

allow them to focus on higher-level problem solving.

It is still an open question how much of the analyst’s current responsibilities

can realistically be automated [1]. Network security operations can involve so-

phisticated sequential decision-making to protect against threat-actors. In this

thesis, competitive Reinforcement Learning (RL) is explored as a potential tool

for developing Artificial Intelligence (AI) that can automate certain network se-

curity actions during a cyber attack.

1.1. Motivation

During a targeted cyber attack, attackers may conduct long periods of recon-

naissance, learning as much as possible about the target network and its users.

This can be done incrementally throughout an attack: as the actor gains access

1

to new files and systems, they might choose to gather newly available informa-

tion before committing to a crucial tactic such as building persistence or lateral

movement [2] [3]. This cycle of observing and taking action allows an attacker

to carefully choose the quietest or most time-efficient techniques to establish a

presence throughout a target network until they can achieve their objective.

Advances in the field of Reinforcement Learning (RL) have shown that au-

tonomous agents are capable of complex decision-making processes across a wide

variety of domains [4]. RL is distinct from other popular machine learning

paradigms, such as supervised and unsupervised learning, because RL problems

uniquely describe an agent moving through a sequential decision-making process.

The goal of RL is to train an agent to make optimal decisions at every observ-

able state in order to reach the best possible outcome for a sequence. RL has

benefited substantially from the emergence of powerful neural networks that can

facilitate the learning process of an autonomous agent. These neural networks

have been used to create RL models with superhuman performance in a variety

of games and optimization problems. Game playing systems such as AlphaZero

and DeepStack are capable of learning complex strategy in competitive games,

and finding creative solutions to beat human experts [5] [6].

It is unclear what role these AI will have in the future of cyber security.

Network defence could be an especially interesting application for decision mak-

ing AI, partially because cyber incidents can involve two categories of agents

with competing objectives in the same environment. First, an autonomous Red

agent could be trained to conduct lateral movement and attempt to establish a

foothold on a specific target network. Second, an autonomous Blue agent could

monitor the same data used by analysts today, possibly finding useful insights

more quickly, in order to take simple mitigating actions on the target network

during a cyberattack.

On the one hand, defeating AI enabled cyber offense is paramount. On the

other hand, autonomous cyber defence leveraging AI capability needs to be es-

tablished. Research into the potential of RL for cybersecurity application is still

emerging. However, there has already been notable success in the development

of expert systems that are capable of Autonomous Cyber Operations (ACO).

One such example is the development of Xandra: an autonomous cyber agent

capable of conducting sophisticated decision-making for cyber offense [7]. In

fact, Xandra was just one of seven systems developed for the Defense Advanced

Research Projects Agency (DARPA) Cyber Grand Challenge, a capture-the-flag

style competition held in 2016. Teams were each given vulnerable software, and

autonomous cyber agents were expected to patch their own code while simulta-

2

neously exploiting any unpatched vulnerabilities in their opponents.

Today, the state-of-the-art for offensive ACO is CALDERA, a framework de-

veloped by the MITRE corporation for autonomous adversary emulation. CALDERA

performs autonomous Red agent emulation for developers to find their own sys-

tem vulnerabilities [8] [9]. CALDERA is another expert system, whose attack

patterns can be customized and based on the MITRE ATT&CK Framework.

The current state-of-the-art tools for ACO are almost exclusively expert sys-

tems. The biggest challenge when bringing the success of RL to the cyber domain,

is the need to repeatedly simulate many scenarios relatively quickly in order to

train an agent. Simulating a cyber security incident requires a tremendous level of

detail in the environment. Emulation environments virtualize hosts and network

equipment using real-world host images and other software. Simulation environ-

ments are separate applications that attempt to model the relevant details of

network. Simulations are used to examine the outcome of a network security in-

cident in a fraction of the time it would take on an emulated network. Examining

scenarios in real-time on an emulated network would be too slow to generate the

experience required for RL.

Various RL environments have been developed to simulate and emulate cyber

incident scenarios, and many of these environments have been made open source

in just the past two years [8] [10] [11] [12]. The current research done in these

environments is typically one-sided: a Red or Blue agent is trained to optimize

their decision-making against a static opponent. Single-agent RL for ACO has

shown promising results, and it is a crucial first step.

However, when either a Red or Blue agent is trained against a static opponent,

their learned behavior could be flawed: there is no reason to think that the static

opponent is selecting optimal actions, so the learning agent will almost certainly

learn to rely on their opponent’s sub-optimal decision making. By training against

a single opponent, the learning agent might develop a policy that is ineffective

against a wider range of possible opponents. Any learned policy for an ACO

scenario will need to be effective against any adversary, or else the trained AI

could be vulnerable to other potential opponent policies.

A possible solution to this is to train both the Red and Blue agents in these

environments simultaneously. This is a common practice in RL when multiple

agents have competing objectives within the same environment. Training both

agents simultaneously can allow each agent to exploit weaknesses in their op-

ponent’s strategy, until they both arrive at an equilibrium that approximates

optimal decision-making for that specific scenario. This sub-domain of RL is

known as competitive RL.

3

Competitive RL has resulted in superhuman performance in many other ap-

plications and classical games, but it has not yet been attempted in the emerging

ACO simulation environments [4] [13]. It is important to note that success in an

ACO environment today will not result a trained agent that can be used on a

real-world network. Many of these environments are still in early development,

and choose to abstract away certain realistic details to accommodate RL.

Demonstrating the success of competitive learning agents in a simulated ACO

scenario will be a small but crucial step in the evolution of these environments.

If competitive RL can be used to optimize the performance of these agents, their

optimal behavior will give insights into how future simulations should prioritize

features that will add realism to the simulation. So that eventually, competitive

RL might be used to train agents for an emulated or real-world target network,

and truly evaluate their potential as a cybersecurity tool.

1.2. Statement of Deficiency

There is a demand for automated tools that can alleviate the unrealistic workload

that is currently placed on cyber analysts in a CSOC. ML has created powerful

tools for many other domains that require sophisticated data processing and de-

cision making, but the potential and limitations of ACO are not well understood.

Existing Red ACO is dominated by expert systems, like CALDERA, and

most attempts at Blue ACO are still simulated and experimental. There has

been limited research into the use of RL to develop ACO agents because this

will require realistic simulation environments where a cyber attack scenario can

be easily repeated for training. Emerging ACO environments have been used to

successfully train autonomous agents using RL, but existing research typically

trains either a Red or a Blue agent in a static environment. There is a lack of

research exploring Red and Blue that learn their game theory optimal policies in

these environments. Red and Blue agents should be trained using competitive

RL in an ACO environment to see if the learning agents can discover optimal

behavior in these conditions.

Finding near-optimal agent policies will be a crucial step for the evolution

of ACO simulations. Once Red and Blue agents are performing optimally in an

environment, their behavior can be examined to see if their actions would be

intuitive for a human analyst. The difference between these optimized agents,

and the expected human behavior, will give insight into how an ACO environment

might be lacking in realism and suggest areas for future development.

4

1.3. Thesis Aim

The aim of this research is to determine if Red and Blue agents can be trained

using competitive RL to approximate their game theory optimal policies in a

simulated ACO environment.

This attempts to bring the success of competitive RL from classical games into

the cyber domain. To achieve this, two opponents are trained using a competitive

RL algorithm in a simulated environment, where the Red attacker and the Blue

defender take turns selecting abstract cybersecurity actions in order to alter the

network environment towards their competing objectives.

After these agents have finished training, their learned behavior is evaluated

to measure how closely their policies approximate optimal play. An existing

ACO simulation environment is used for this training and validation. However,

modifications are made to the environment to facilitate competitive training.

This exploratory research hopes to contribute to the development of more

advanced ACO environments, so that these simulations might eventually have

the realism necessary to develop AI that can operate in emulated environments,

and begin experimenting with ACO agents that are trained for real-world systems.

1.4. Research Activities

The following activities were conducted in achieve this aim. A more detailed

description of the actions and decisions taken during each of these phases will be

included in Chapter 4, with the thesis methodology:

1. Select an ACO Environment. An open-source ACO simulation environ-

ment was selected for this experiment. This environment was modified

to support competitive play.

2. Identify the Target Behavior. Suitable scenarios were considered for the

learning Red and Blue agents in the chosen environment. A single scenario

was selected for the evaluation. This scenario includes the specific network

topology, the list of actions available to either agent, and the observable

information that is available to either agent. The target behavior is defined

by each agent’s priorities in this scenario.

3. Define the Game Design. The scenario was modelled as a game in the sim-

ulation environment. This is done so that each agent learns its intended

behavior by solving the game theory optimal policy for the scenario.

5

4. Implement Fictitious Play. A new competitive RL algorithm was designed

for this ACO environment. This fictitious play algorithm is based on similar

implementations that have been used to find game theory optimal policies

for classical games. This design leverages available open-source RL re-

sources, and will be discussed in greater detail in the methodology. This

algorithm was used to produce competitive Red and Blue agent policies for

the established game design.

5. Validate the Trained Policies. The competitive policies were validated by

measuring how closely they approximated game theory optimal play. These

results provide a proof-of-concept that competitive RL can be used to dis-

cover optimal decision-making policies in ACO environments.

The remainder of this document will show how these activities proved that

a competitive RL algorithm can produce policies that converge towards optimal

play in an ACO environment. The experiment included in this thesis produces

optimal policies for a simple scenario in a popular ACO simulation. These policies

are validated by examining their guaranteed performance against a worst-case op-

ponent, and it is shown that the guaranteed performance of policies improves with

competitive training. Sample games are played by the optimized agents to reveal

how each agent achieves optimal performance in the target scenario. In these

sample games, the trained agents demonstrate interesting strategic behaviour,

which includes adopting stochastic policies at key decision points.

1.5. Document Structure

The next chapter will present the key concepts of competitive RL that will be

relevant throughout the research. The theory and vocabulary in this background

will be used frequently throughout the remainder of the document. Chapter 3 will

continue with an overview related work in the field. This chapter will examine

existing ACO research and compare ACO environments that were considered for

this thesis. Chapter 3 also highlights what Competitive RL has achieved in other

applications, which heavily influenced the algorithm used in this research.

Chapter 4 will outline the thesis methodology by providing detailed descrip-

tions for each of the research activities. A significant portion of the methodology

discusses the algorithm that was designed for this experiment. Chapter 5 evalu-

ates the algorithm by applying it to the selected environment and scenario. This

includes a discussion of the simulation environment, the training results, and the

validation used to measure agent performance. Chapter 6 will conclude the thesis

by reviewing contributions and considerations for future research.

6

2. Background

This chapter presents the key concepts for competitive RL, with an emphasis

on the topics that will be used in this thesis. This background is intended to

establish a vocabulary for discussing the methodology and evaluation included in

Chapters 4 and 5, and for discussing the related literature presented in Chapter

3.

2.1. Reinforcement Learning

Reinforcement Learning (RL) is distinct from other machine learning paradigms,

such as supervised and unsupervised learning, because RL problems uniquely

describe an agent moving through a sequential decision-making process. The goal

of RL is to train an agent to make the optimal decision at every observable state in

an environment, in order to achieve some desirable behavior in that environment

or sequence. An agent’s “policy” is its process for selecting an action based on

its observed state.

2.1.1 Reward Functions

In order to train a policy via machine learning, the first step is to define the target

behavior for that agent in the environment. RL algorithms are used to learn the

optimal policy, but they require a scalar measurement to compare different states.

This scalar metric, called the “reward”, represents how desirable an agent’s state

is based on all observable information [14].

For example, in many classical games a reward of 1 can be given for any state

where the agent has won the game, with a reward of -1 if the agent has lost, and

0 for every other state. This can be enough for RL algorithms to learn which

actions in that game will navigate towards winning states and avoid losing states.

Reward functions can also be much more complex, with different features of the

states contributing different amounts of reward, or features that interact with

each other for a complex evaluation of the state. Rewards can also be negative

to describe undesirable state, but the reward always needs to be measured using

a single scalar value.

The reward function for an agent must be carefully crafted to describe the

priorities of the desired behavior for that agent. Higher priorities should have a

greater influence on the reward, and lower priorities can have less impact on the

reward, so that when the agent learns to maximize the reward it will be learning

the target behavior. RL trains autonomous agents to converge on an optimal

7

decision-making policy by experiencing a sequence many times and learning from

the results. The optimal decision is the action that will maximize the expected

total reward for that sequence.

2.1.2 Markov Decision Processes

RL algorithms all rely on certain assumptions about the agent’s environment, and

these assumptions must be true for RL to be practical. Specifically, a scenario is

only suitable for RL if it can be described as a Markov Decision Process (MDP).

An MDP is a type of Markov Chain. Markov Chains can be described with the

tuple 〈S,P〉 [15]. S is the state-space, a set of all possible states for an agent

in the sequence. P is the state-transition probability matrix which describes the

probabilities that an agent in the current state s will transition to each state in the

state space. Figure 1 presents an example of a simple Markov Chain, showing

each state with transition probabilities. In this example, state E represents a

terminal state where the state no longer changes.

Figure 1: Simple Markov Chain.

Every state in this model must have the Markov Property: all relevant in-

formation for the state-transition probabilities must only depend on the current

state s. This means that the history of past states for an agent in a Markov

Chain has no effect on the transition probabilities for the current state. In other

words, an agent’s history in the sequence is irrelevant, given its current state.

This relationship is shown in Equation 1.

P[St+1 | St] = P[St+1 | S1, . . . , St] (1)

One possible extension to Markov Chains is the Markov Reward Process (MRP).

An MRP is simply a Markov Chain that includes a reward function, as shown in

Figure 2.

8

Figure 2: Simple Markov Reward Process.

S and P still define the state-space and state-transition probabilities. R de-

fines the reward function, which measures how desirable a state is for an agent

moving through an environment. The most desirable sequence for an agent mov-

ing through an MRP is the sequence that accumulates the maximum possible

reward. This total accumulation of reward through all time steps in an MRP is

called the “return” [14].

E[Gt] = Rt+1 + γRt+2 + · · · =
∞∑
k=0

γkRt+k+1 (2)

The expected return G at a timestep t is equal to the sum of all the rewards

that will be received from all future timesteps. A discount factor γ can be used

to represents the confidence that expected rewards will be available at future

timesteps. The discount factor is a number between 0 and 1, and every future

reward R is reduced by a power of γ to indicate a reduced certainty that the

reward will still be available in the future. The relationship between the discount

factor and the expected return is shown in Equation 2. This discount factor is

just one example of a hyperparameter that can be used by an RL algorithm when

evaluating states. These new parameters in the MRP can be used to calculate

the value v of any state in the chain, as shown in Equation 3.

v(s) = E[Gt | St = s] (3)

Where the value of any state s ∈ S is the expected return for an agent starting

from that state. Finally, one more extension to the parameters of an MRP can

describe an MDP. This extension is shown in Figure 3.

9

Figure 3: Simple Markov Decision Process.

An agent moving through an MDP can influence how it transitions between

states. Agents have access to a set of actions A, and at each timestep they

choose an action according to their policy π. In an MDP, the state-transition

probabilities depend on the action selected by the agent. Therefore, the state-

transition probability matrix P will also have a new dimension to describe the

transition probabilities based on both the current state and selected action.

The agent’s policy π determines what actions it will select in each state. In a

simple MDP, such as in Figure 3, a reasonable policy would be to simply select

actions greedily: always selecting the action with the highest value from the

immediate future states.

But these values are not always obvious for real-world environments: the ex-

act state-transition probabilities are often unknown, and it is not always obvious

if a state is better or worse for long-term reward. For many applications, it is

useful to have an AI agent that makes optimal decisions even when the transi-

tion probabilities and state-values are not obvious by examination. This is the

objective of RL: to use an agent’s past experiences in order to approximate the

optimal policy of an MDP.

2.1.3 Tabular RL

Many of the first proposed RL algorithms find the optimal policy of an MDP by

memorizing an approximate value for every possible state or state-action pair,

by storing these values in a table. Algorithms that operate using these stored

values are known as Tabular RL algorithms, and these traditional methods are

the foundation for many modern algorithms [14].

For example, a tabular RL algorithm called Q-Learning is still used today for

solving simple MDPs [16]. Like all RL algorithms, Q-Learning requires an agent

to simulate the MDP many times. The value of every state-action pair, q(s, a),

10

is stored in a table to track the expected return for every action in every state.

In this model, the value of a state is equal to the highest q-value among available

actions in that state. To update the q-table, each time the agent takes an action

it compares the known q-value for q(s, a) to the expected return in the new state.

q(s, a) is updated by a small step towards the expected return in the new state,

using the q-values for available actions in that new state.

Since the q-values are updating using a mix of true rewards and estimated

values, they gradually become more accurate approximations of the expected

return for each action. If an agent can accurately approximate every q value, and

select the action with the highest q value in every state, then it has converged on

the optimal policy for that environment. This relationship is formalized in the

Bellman optimality equation [14].

The Bellman equation, shown in Equation 4, is a recursive formula to demon-

strate that selecting actions with the maximum expected return will maximize

return over the entire sequence. Future states are shown as s′ and the actions

available in those states are shown as a′. Calculating the exact value of a state-

action q(s, a) requires the probabilities for every state transition and reward

p(s′, r | s, a).

q(s, a) = E[Rt+1 + γmax
a′

q(s′, a′)]

=
∑
s′,r

p(s′, r | s, a)[r + γmax
a′

q(s′, a′)]
(4)

The Bellman equation also indicates the importance of exploring an environ-

ment during RL. In order to accurately determine which future action a′ will

provide the max q value, each state-action will need to be visited. The different

possible paths that an agent can take through a scenario are commonly called

the “game tree”.

How often to select the best available action during training is an important

decision that can impact how quickly an agent converges on the optimal pol-

icy, or if it converges at all. This trade-off is commonly known as “exploration

versus exploitation”: will the policy converge more quickly if the agent explores

a different branch of the game tree, or if it collects more experience using the

state-action that appears to be best?

If the highest value action was selected in every state during training, then a

learning agent could get stuck in a local maximum where it is never exploring to

discover an even higher q-value. This is why the Q-Learning algorithm maintains

an exploration parameter ε for how often it should deviate from selecting the

optimal action. If ε is 0.1, then there is a 10% chance during training that the

11

agent will select a different random action in each state.

Exploration should be tuned for each RL problem and environment, because

the amount of exploration required will depend on the complexity of the game

tree. When considering exploration requirements, it is common to organize sce-

narios into three types of game trees depending on their “horizon” [14]. Finite-

horizon scenarios end after a fixed number of timesteps. Indefinite-horizon tasks

can take variable amount of time, and visit a varied number of states, but must

eventually terminate. Finally, infinite-horizon tasks describe environments where

the scenario never terminates, and the game tree branches out infinitely.

Other tabular RL algorithms, such as SARSA and Monte-Carlo Control, use

a similar process of storing q-values in a table [14]. Most of the differences be-

tween these traditional algorithms are in the nuance of how q-values are updated.

Algorithms can be on-policy or off-policy, and they can apply varied degrees of

Temporal-Difference (TD) learning.

Q-Learning is an off-policy algorithm. It considers the value of a state to

be equal to the highest q-value among actions available at that state, regardless

of which action was actually taken during training. This is different from on-

policy algorithms like SARSA. On-policy algorithms maintain a probability for

selecting each action in a state, and update prior q-values using the action that

was actually selected, regardless of whether it had the maximum value.

Q-Learning is also a TD1 algorithm because it uses the estimated q-values

just one state away to perform updates [14]. In other words, q-values are updated

using the measured reward and the expected return from new states just one-step

away. This is different from algorithms like Monte-Carlo Control, where the q-

value for each state-action encountered during a sequence is updated based on

the total return at the end of that sequence. Monte-Carlo Control does not rely

on any other q-value approximations for updating.

Many of these tabular RL algorithms are excellent for small scale problems

where it is reasonable to store a value for every possible state-action pair in

a table. The drawback of these solutions is that many realistic applications,

even simple applications, have many more state-action pairs than can reasonably

be stored in a table. For example, a classical game like backgammon has 1020

possible states [14]. Many real-world problems can be modeled as MDPs, but

cannot be optimized by traditional RL because of this constraint.

For the aim of this thesis, tabular methods will be insufficient because it is

not feasible to store the value of every possible state-action in a realistic ACO

environment. However, these tabular methods represent the earliest implemen-

tations of RL, and they are the foundation of many modern RL algorithms that

12

succeed by learning to approximate these tabular methods.

2.1.4 Deep Reinforcement Learning

Neural Networks can be used to apply the principles of RL without storing an

infeasibly large table of state-action values for complex MDPs. Deep Neural

Networks (DNNs) are exceptional tools for approximating complex functions.

This can include training a DNN to predict the value of a state-action pair in

an MDP. Training a DNN to approximate a value or policy for an RL agent is

known as Deep Reinforcement Learning (DRL).

In DRL, an agent generates its own training data by interacting with the

environment. Every decision in the MDP represents a state-action pair that can

be used as a unique sample, and an agent can generate the samples required to

train a DNN by simulating the MDP many times. The exact purpose of a DNN

used for RL depends on the algorithm. The two most popular classes of DNNs

used in RL are Value Prediction Networks and Policy Prediction Networks.

Value Prediction Networks use the agent’s experience in an MDP to predict

the value of a state or state-action pair. The output of this network is a single

scalar number predicting the expected return from the MDP. The loss function

Li(wi) for a state-action Value Prediction Network can look reminiscent of the

Bellman optimality equation, such as in Equation 5 where the network weights

are represented by w.

Li(wi) = (r + γ max
a′

q(s′, a′;wi)− q(s, a;wi))
2 (5)

It is worth noting that this loss function itself relies on q value predictions.

These values can be approximated using the same DNN that is being trained and

the network will still converge towards an accurate approximation.

Policy Prediction Networks also use the state features as an input, but this

input tensor does not include an action. These networks do not output a single

scalar value. Instead, they use a softmax activation function on their output

layer in order to generate a policy for available actions in the current state. The

output vector represents the probability that each action should be selected from

that state.

Policy-based learning can have high variance, especially when one sequence

has many timesteps. This makes learning slow because the same policy can have

dramatically different results depending on random factors in the environment

13

during each sequence. This is the same drawback as that of the tabular RL

algorithm for Monte-Carlo Control, which does not use TD learning. However,

policy networks do have certain advantages compared to value-based networks.

Because they use an output vector, they are capable of learning stochastic poli-

cies, instead of deterministic policies that will greedily select the action with the

greatest expected return [14]. As well, policy networks can be more performant

in partially-observed environments, where the agent may not have access to all

the state features.

One way to increase the learning efficiency for these policy networks is to

introduce TD learning by using an actor-critic framework [14]. Actor-critic algo-

rithms use both a policy-based DNN (actor) and a value-based DNN (critic). The

actor-network is still ultimately responsible for producing a policy for each state.

However, by training a critic-network simultaneously, the actor-network can now

be updated after every timestep by using value-predictions, rather than waiting

until the end of the sequence to train using the total accumulated reward. This

framework can dramatically reduce the time it takes for the actor-network to ap-

proximate the optimal policy, while still maintaining the benefits of policy-based

learning [14].

Algorithm 1 presents a generic example of an actor-critic framework [14].

At each timestep, the policy network π is used to select an action a. The critic-

network q approximates the expected return for this action. In this algorithm, the

weights of the policy network are represented with θ and the weights of the critic

are represented as w. After transitioning to the new state s′, the critic-network

also approximates w, the expected return at the new state. The difference δ is

measured between these two predictions. Since the new state includes a measured

reward, and it is closer to the end of the sequence, the critic-network weights are

trained to reduce the error of the prior prediction. Finally, the actor-network

weights are also adjusted using δ in order to increase the probability of selecting

actions that lead to greater expected return in the future.

One widely used class of actor-critic frameworks are Proximal Policy Op-

timization (PPO) algorithms, which were introduced by OpenAI in 2017 [17].

PPO algorithms operate by sampling experiences from the environment until a

full batch of experiences has been collected. The size of one batch is a hyper-

parameter that is tuned for each application. The full batch is then split into

minibatches, and several epochs of Stochastic Gradient Decent (SGD) are used to

update the actor and critic networks for each minibatch. The new updated policy

is used to gather the next batch of samples from the environment. This process

repeats until the networks are no longer changing because the actor is accurately

14

Algorithm 1 Generic One-Step Actor-Critic.

Initialize policy-based actor network π(s; θ) and value-based critic network
q(s, a;w)
while within computational budget do

Initialize s (first state of the sequence)
while s is not a terminal state do

a← π(s; θ)
s′, r ← take action a
δ ← r + γ max

a′
q(s′, a′;w)− q(s, a;w)

w ← adjust critic weights according to δ
θ ← adjust actor weights according to δ
s← s′

end while
end while

Return π

approximating an optimal policy, and the critic is accurately approximating the

return from each state.

What distinguishes PPO algorithms from other actor-critic frameworks is the

inclusion of clipped surrogate objectives [17]. Prior actor-critic frameworks had

the possibility for excessively large policy updates if that update was heavily

supported by a minibatch. These large policy updates might be supported by

a critic network that is not yet accurate, and large policy updates can limit the

ability for SGD to converge in certain environments.

Clipped surrogate objectives set bounds for the loss function used by SGD.

This forces the actor network to update using small step sizes, because its loss

function cannot recognize an extreme difference in advantage for a new policy.

Instead, it will update the policy in the correct direction based on a clipped value,

that still recognizes the advantage, but never in excess. This clipping parameter

can improve the convergence of actor-critic frameworks in many environments.

Since PPO algorithms were introduced in 2017, many open-source resources

for RL have included PPO implementations. In Chapter 4, one of these single-

agent RL implementations will be used for the experiment included in this thesis.

2.2. Competitive Reinforcement Learning

The MDPs and algorithms discussed thus far have described a single learning

agent in an environment. The mechanics of RL change when there are multiple

agents operating in the same space. This is known as Multi-Agent Reinforcement

Learning (MARL) [4]. Many single-agent algorithms are non-viable if multiple

agents are influencing the state transition and reward function in the same envi-

15

ronment. MARL requires its own set of algorithms to overcome these challenges.

MARL algorithms can be loosely grouped into three different settings: coopera-

tive, competitive and mixed [4].

Coorperative MARL techniques are for agents working collaboratively, so that

they can learn a desired behavior by sharing the reward. Competitive MARL is

used when agents compete for a reward in the same environment, and a positive

reward for one agent can mean a negative reward for another. Mixed settings

require considerations from both Cooperative and Competitive MARL, such as

teams of agents that are each trying to maximize the shared reward for their team

in an environment. This thesis is focused specifically on a competitive MARL

setting (simply called Competitive RL for the remainder of this document), with

exactly two competing agents, so that is the only paradigm that will be discussed

further.

2.2.1 Markov Games

Competitive RL is used for a specific type of MDP called a Markov Game [15]. A

Markov Game is an MDP where multiple agents are selecting actions at the same

time in each state, so the state transition depends on their combination of actions

instead of just the one action taken by a single agent. Markov Games can be

defined by the tuple (N,A, r) whereN is a finite set of n players, A = A1×· · ·×An

where Ai is a finite set of actions available to player i, and r = (r1, . . . , rn) is a

reward function for each player [15].

Competitive RL describes exactly two opposing agents, so in these applica-

tions n = 2. It is common in competitive Markov Games that these two agents

have opposing objectives, and so their reward functions are exactly opposite. If

every combination of actions a ∈ A1 × A2 results in equal and opposite rewards

for the players r1(a) + r2(a) = 0 then this is known as a Zero-Sum Game [15].

2.2.2 Non-Stationary Environments

Competitive games invalidate some of the assumptions used by traditional RL

algorithms. First, single-agent RL assumes that every state has the Markov

Property, which includes having stationary transition conditions. In other words,

the state transition should depend solely on the learning agent’s current state

and action. This must be true in order for the agent to discover the value of each

state-action and converge on optimal behavior.

This assumption is not true in a competitive setting because any state transi-

tions will also depend on the actions of the opponent. When the state-transition

probabilities are not constant, this is known as a non-stationary environment.

16

Recall that for single-agent RL, the optimal policy selects the state-actions that

will accumulate the greatest total reward in a sequence. However, in these non-

stationary environments, there may not be one single policy that guarantees

maximum return against every opponent. The value of actions might be different

depending on which action is selected simultaneously by the opponent.

Let’s consider a scenario where learning could still be attempted by using

single-agent RL algorithms in these non-stationary environments. For example,

a Red and Blue agent could simply attempt to learn using PPO simultaneously. In

this scenario, both agents would learn to take the actions that are most valuable

against their opponent’s current policy. However, in many environments, neither

agent would ever converge on a single target policy, and would instead arrive at a

“strategic cycle” [18]. A strategic cycle describes an open-ended learning problem,

where the agents are constantly updating to exploit the current opponent, but in

doing so are also making their own policy more exploitable to different potential

opponents. Sun et al. summarizes this phenomena with an example:

“There exist cases that independent RL is reported to be effec-

tive for MARL, but in many other applications it leads to poor

results. In particular, it suffers [from] policy-forgetting during

training when the policy space is rich and contains circulation.

An example is the game Rock-Paper-Scissor. A naive indepen-

dent RL will circulate over pure-rock, pure-paper, pure-scissor,

[such] that the late policy (e.g., pure-scissor) forgets how to beat

the early policy (e.g., pure-rock). From the perspective of Game

Theory, the “gradient field” of independent RL rotates over (but

never converges to) an optimal point.”[19]

In many adversarial environments, attempting single-agent RL will cause the

learning agent to cycle through the same sequence of strategies, based on whatever

opponent it happens to be training against. In these cases, the optimal policy

for single-agent RL becomes a moving target and the agents can never converge.

A competitive algorithm is needed to ensure that agents are updating to become

more effective against any possible opponent.

17

2.2.3 Nash Equilibrium

Competitive RL algorithms are specifically constructed to avoid these strategic

cycles. Instead of learning to defeat the current opponent, most competitive

RL algorithms target the optimal minmax policy [15]. A minmax policy means

that the learning agent is selecting actions that will minimize their opponent’s

maximum return across every possible opponent action.

In a zero-sum game, this is the same as learning to select the action that will

maximize the agent’s own return, regardless of the opponent’s action. In practice,

this policy assumes that the opponent is going to use the optimal response to

every action. By assuming the opponent’s response for every state-action, the

environment can be treated as stationary again. Therefore, RL can be attempted

in the competitive environment when the optimal minmax policy is the target.

Targeting the optimal minmax policy has important implications for the

agent’s learned behavior. Recall that a reward function should be constructed to

represent an agent’s priorities using a scalar metric. By choosing to converge on

the minmax policy, the agent will learn very conservative behavior, choosing to

prioritize a small guaranteed return over any larger return that would only work

against certain opponents. The reward function for a competitive environment

must be constructed so that this learned conservative behavior matches the target

behavior of the AI agent.

By assuming the opponent will always choose their best-response, the issue

of non-stationarity resolved. However, in order to assume the opponent selects

the optimal response to every state-action, the opponent’s optimal response must

be known. For any novel application of competitive RL, the opponent’s optimal

policy will almost certainly be unknown. Therefore, in order to train an agent

to their minmax policy, the opponent must be trained to their optimal policy as

well. Competitive RL algorithms are processes for training both the agent and

the opponent simultaneously in the environment.

Two competing learning agents in the same environment should learn to maxi-

mize their own reward by exploiting any sub-optimal behavior in their opponent’s

policy. In response, the opponent should learn that the behaviour was subopti-

mal because of the lower accumulated reward, and adjust their policy for future

episodes. Unlike single-agent RL, these agents must update their own policies

to improve the guaranteed return against any known opponent, instead learning

against just one single arbitrary opponent.

This routine of exploiting and adapting will continue until neither agent has

any incentive to change their policy any further, because any further changes

could be exploitable by certain opponent responses, and learning will stop. This

18

occurs when both agents arrive at policies that are the best responses to each

other [15]. When the policy of each agent in an environment is the best response

to every other agent in that environment, this is known as a Nash Equilibrium.

Nash Equilibirum is defined by Equation 6, where vi and πi represent the

value function and policy for an agent i, and π∗ represents a policy at equilibrium,

where for every state s ∈ S.

v1(s, π1
∗, π

2
∗) ≥ v1(s, π1, π2

∗)

v2(s, π1
∗, π

2
∗) ≥ v2(s, π1

∗, π
2)

(6)

2.2.4 Exploitability

In addition to revealing an optimal solution for the scenario, finding the Nash

equilibrium also provides a useful metric for evaluating any alternative policies.

The optimal minmax policy can be used as a baseline to evaluate all other policies.

Any other sub-optimal policy can be measured by how far their expected return

differs from the guaranteed expected return of the minmax policy.

The “exploitability” of any policy is the difference between the policy’s ex-

pected return against a worst-case opponent, and the minmax policy’s expected

return against a worst-case opponent [20]. In other words, this is the difference

in expected return that is guaranteed against any possible opponent, when com-

pared to the minmax policy. This is shown in Equation 7, where πi represents the

policy used by agent i, πi
∗ represents their minmax policy for the game, and π−i

∗

represents the opponent’s optimal response. A concrete example of exploitability

is included in Chapter 4: it is used to validate the experiments included in this

thesis, in order to confirm that learned policies are gradually converging towards

a Nash Equilibrium.

expl = E[G | πi
∗, π

−i
∗]− E[G | πi, π−i

∗] (7)

2.2.5 Competitive Algorithms

The optimal minmax policy will not always be the highest value action for every

state. Competitive algorithms can use value-based or policy-based RL. value-

based methods develop AI agents that select actions greedily (selecting the actions

with the greatest expected value).

Greedy policies can be excellent in some settings, but in many Markov Games

the optimal minmax policy will be stochastic, instead of deterministic, because a

deterministic policy could be more easily exploited by an opponent [15] A more

19

optimal behavior might include a probability distribution across a set of actions

for certain states, which would result in a less predictable behavior.

Many of the ACO environments considered by this thesis model Markov

Games where the Red and Blue agents take actions simultaneously, and therefore

these agents could be less exploitable with stochastic policies. Only policy-based

competitive RL methods will be discussed in greater detail in this chapter. These

algorithms are more suited to ACO environments, since it is possible that there

will be no optimal deterministic policy. There are two dominant categories of

competitive policy-based algorithms that can be used to reach a Nash equilib-

rium: Counterfactual Regret Minimization (CFR) and Fictitious Play [4].

CFR algorithms find the Nash Equilibrium of competitive games by learning

to minimize the “regret” at every possible game state. The regret for a timestep is

the difference between the value that was received and the value that could have

been received (in hindsight) if the optimal action had been selected. This regret is

calculated after an episode is complete, and the true state of the environment for

the entire episode is known. Counterfactual Regret is a metric used in partially

observed environments to measure the regret for an information state of the game

[21].

The information state includes both the agent’s own observation, as well as

the information that has been communicated to their opponent. For example,

modelling a scenario using information states can be crucial for partially observed

games such as Poker [6]. In Poker, an agent and their opponent both rely on a

mixture of private and public information. An agent takes actions to try and

maximize its own reward, but every action taken reveals new information to

their opponent. As a result, a learning agent must optimize to the most valuable

information states. These are the states that maximize reward while not revealing

enough information to the opponent such that the opponent could effectively

interfere.

CFR algorithms are useful for environments where agents must rely on re-

cursive reasoning: where each agent must consider the reasoning used by their

opponent in order to construct an accurate approximation of their opponent’s

private information. The ACO environment examined in this thesis is partially

observed, but the actions taken by agents do not reveal any new private infor-

mation. As a result, recursive reasoning and CFR are not required. The other

category of policy-based competitive algorithms, Fictitious Play, is more appro-

priate for this thesis and will be discussed in more detail.

20

2.2.6 Fictitious Play

The foundational algorithm for Fictitious Play was first proposed in 1951, and like

many RL algorithms, this game theory proof for fictitious play existed for a long

time before modern computing power made it feasible as a solution for problems

[22]. A machine learning implementation of this algorithm called Fictitious Self-

Play (FSP) was proposed in 2015, which was demonstrated using a tabular RL

method called Fitted Q Iteration (a variant of Q-Learning) [23]. The following

year, the same authors proposed Neural FSP (NFSP) as a framework to augment

FSP using DRL [24].

During Fictitious Play, each learning agent generates samples by playing

against the “average policy” of their opponent. This average policy is an ap-

proximation that combines all of the opponent’s previous policies seen so-far.

Experience is generated against the average policy, instead of the opponent’s

current policy, in order to avoid strategic cycles. During a single iteration of the

algorithm, each player uses single-agent RL to discover the optimal policy that

responds to the average opponent response. That new policy is then also used to

update the player’s own average policy, so that the opponent can learn.

Algorithm 2 Summarized Fictitious Play

Γ← initialize training environment
π0 ← set random initial average policies for generation 0
g = 0
while within computational budget do

g ← g + 1
πg ← πg−1

for each player i do
βi
g ← set random initial best-response policy for player i generation g

while βi
g is improving do

βi
g ← update using RL in environment Γ with opponent π−i

g

end while
πi
g ← update average policy using new best-response βi

g

end for
end while
Return πg

A summarized NFSP algorithm is shown in Algorithm 2. Two policy networks

are maintained for each player. The best-response network β is trained using RL

to maximize return against the opponent, this network is constantly updating

towards the optimal response to the opponent’s policy. The average-response

policy network π is trained using supervised learning to predict the player’s own

policy, based on past experiences. Every generation g, a new best-response is

21

calculated and the average-response is updated.

Over the course of training, each player’s best-response policy β learns to

optimize against their opponent’s average-response policy π. The changes to

β should generally become smaller each iteration, and π will gradually become

more similar to β, as the average policies of either agent become gradually less

exploitable. After enough iterations, their average strategy profiles π should

converge to a Nash Equilibrium. At a perfect equilibrium, each agent’s current

response will match their best-response, and neither agent will have an incentive

to deviate from their current policies, so learning is stopped.

If the agents have the same action and observation spaces, this describes a

symmetric game. For symmetric games, only one agent policy needs to be trained.

The best-response policy can be trained against the agent’s own average policy,

because the learning agent and the opponent are solving the same environment

for the same optimal policy. This is not the case for ACO environments, where

the Red and Blue agents have different observation and action spaces. This means

ACO environments are asymmetric, and the new policies for either agent must

be generated separately.

In the seminal paper on fictitious play, the average policy is approximated

by using supervised learning [23]. This involves generating samples by mixing

between the best-response policy and the average policy, and using this to update

the new average policy. However, for many complex environments, developing one

neural network to approximate the mixture of all past policies can be ineffective.

One alternative to approximating the opponent’s average response with super-

vising learning, is to save every past opponent policy and train against the pool

of opponents. This technique is called opponent sampling [19]. When using op-

ponent sampling, each new best-response policy trains by selecting an opponent

from the pool of previously trained opponent policies. When training is com-

pleted, the new best-response policy is added to its own pool and used to train

future opponents. Figure 4 shows the relationships between the many systems

used during fictitious play with opponent sampling.

22

Figure 4: Overview of systems used during fictitious play, including an actor-critic
framework and opponent sampling. Switch the agent and the opponent to train new
policies for the opponent’s policy pool.

To train a new policy, a single-agent RL algorithm such as PPO must be

used. One iteration of PPO collects a batch of experiences by interacting with

the agent’s environment. Each experience includes the agent’s observation, the

selected action, the reward received, and the new observation. These sample

experiences are stored in the agent’s experience memory. Once a complete batch

of experiences have been gathered, the actor and critic networks are updated to

minimize loss on that batch of experiences. Finally, the experience memory is

emptied so a new iteration can begin with the updated policy.

Generating new sample experiences requires an opponent that can select an

action, in order to advance the environment to the next timestep. Opponent

sampling is used so that games in the environment are played against a variety

of different opponents. This way, the PPO algorithm is inherently optimizing the

new policy for the best average performance against the opponent pool.

Once a policy is no longer improving (the average return seen in the expe-

rience batches has stagnated), the newly trained agent policy is saved to that

23

agent’s policy pool. This trained policy includes the actor and the critic neural

networks. These networks produce value predictions and action probabilities for

an observation (note that only the actor network is actually required to produce

action probabilities from a trained policy). Each generation of fictitious play

trains a new agent policy and then a new opponent policy using this system.

Both the agent and the opponent sample from each-other’s policy pools during

the fictitious play loop.

Various methods for sampling opponents from the opponent pool have been

used successfully [19]. Uniform Sampling is the most-straightforward, where op-

ponents are randomly selected from the existing pool. Uniform Sampling provides

effectively the same result as training against an average policy. Each new gen-

eration is optimized against the entire existing pool of opponents, and then adds

that response to their own policy pool. As the existing pools get larger, the

emerging policies will become similar each generation, and the new generations

will more closely resemble their own policies pools. When the new generations

for all game playing agents are arriving at the sam policies each generation, this

indicates that the agents have settled to a Nash Equilibrium, because neither

agent is changing its policy any further as a response to the opponent.

One limitation of uniform sampling is that this could take an unreasonably

long time for complex games. Each new generation contributes to smaller per-

cent of its own policy pool with each generation. Therefore, it takes gradually

longer for the new opponents to react to a flaw in emerging best-response policies.

Whether or not uniform sampling can be used to optimize a Markov Game in a

reasonable computation time will depend on the game complexity.

Other sampling techniques have been proposed to address this limitation [19].

Historic Sampling uses a higher probability for more recent opponent policies and

a lower probability for sampling earlier policies. In some environments this can

improve performance since the samples collected to train a new generation are

skewed, such that the learning agent will collect more experience against more

optimized opponents.

Quality-Based Sampling is similarly used to force the learning agent to sample

from more optimized opponents [25]. However, instead of assuming that the more

recent opponents are the most optimized, quality-based sampling maintains a

quality rating for every policy in the pool. The measured quality of each policy

in the pool is used to determine its sample rate. The quality rating of opponent’s

changes based on the opponents they win or lose against during training.

Sophisticated sampling solutions can be designed and tuned to optimize in

specific environments. For example, OpenAI Five used a mix of historic and qual-

24

ity based sampling to optimize the game DOTA2 using fictitious play [26]. Their

design used a mix of historic and quality-based sampling. 80% of the learning

agent’s games were played against the most recent opponent, and the remaining

20% were played against random past opponents that were sampled based on

quality. Uniform sampling will be sufficient for the competitive scenario exam-

ined in this thesis, but an alternative sampling technique could be beneficial, or

even essential, to implement fictitious play in more complex ACO environments.

25

3. Related Work

In order to meet the aim of this thesis, presented in Chapter 1, an experiment

must demonstrate that a competitive RL algorithm can be designed for an ACO

simulation to approximate the optimal policies in that environment. Chapter 2

discussed some of the most relevant vocabulary and concepts for constructing

the experiment. However, it is still not obvious how to design competitive RL

for an ACO environment from this background alone. This is partially because

there are a variety of competitive RL algorithms that have been used for different

applications, and because there are a variety of different simulation frameworks

that model network security scenarios.

Any exploratory research that applies one of these algorithms to a novel envi-

ronment must leverage existing research to select the most compelling algorithm

and environment. For this experiment, an open-source simulation environment

must be used, that is both relevant to ongoing research and suitable for compet-

itive training. As well, a competitive RL algorithm must be designed for that

environment based on successful implementations for similar game-designs. To

make these design decisions, three distinct domains of research were reviewed

while preparing the thesis methodology.

First, a review of existing ACO research reveals how RL has been already

been applied to a variety of cybersecurity applications. This is done both to

verify that competitive RL in a cyber incident simulation environment would be

novel exploratory research, but also ensure that it would address an open question

and contribute to the domain.

Second, a single environment must be selected to implement competitive RL.

This necessitates a review of available simulation environments, and careful con-

sideration about what would be a good candidate for this experiment. Every

environment relies on trade-offs between realism and accessibility. An ideal can-

didate for this experiment should be accessible so that a new competitive RL

algorithm can be built to interact with the environment, and the learned poli-

cies can be carefully examined. However, it should still be a realistic model of a

real-world problem so that the research stays relevant to the domain.

Finally, a review of existing literature on successful competitive RL applica-

tions is needed. A significant portion of this thesis involves designing an algorithm

for the chosen ACO environment, so it is vital that this algorithm is supported

with evidence that it has succeeded in similar game designs.

26

3.1. ACO Research

“Cyber operations” can describe a wide breadth of activities related to network

security. For this thesis, prior research that is related to automating the lateral

movement of an attacker on a network, or the automated defence of that network

during an attack is considered. Additionally, research that tries to prove the

game theory optimal decisions in these scenarios is most relevant.

In the past, this type of ACO has been dominated by expert systems like

Xandra and CALDERA, introduced in Chapter 1, but the aim of this thesis is

to explore RL solutions. In 2021, a survey of existing research summarized how

deep RL is being applied for various ACO applications across the domain [27].

They found that there are three main categories of research:

1. Automated Solutions for Cyber-Physical System Security

2. Automated Intrusion Detection Techniques

3. RL based Game Theory for Cyber Security

This thesis aims to contribute to the third category. Among the various RL

applications in this space, just one paper from 2017 has also examined Red and

Blue agents learning simultaneously in an adversarial environment through RL

[28]. This research also aimed to explore RL as a tool for learning optimal policies

in an adversarial environment, but their results do not meet the aim of this thesis

for two key reasons.

The first reason, is that this research was severely limited by a lack of re-

alistic simulation environments. A collection of open-source environments will

be discussed next in Section 3.2, and these were all developed in just the past

few years to support ACO research. In [28], to explore Red and Blue learning

in an adversarial setting, they created their own simulation environment for the

experiment. This “simulation” was much more abstract than the environments

used in research today. It described four internet nodes where a Blue agent could

allocate “defense value” while a Red agent allocated “attack value” to try and

overpower the Blue defense and gain a foothold on a node.

This gameplay was entirely about economy of effort and how to prioritize “at-

tack” and “defence” concepts. There is no modeling of exploits, vulnerabilities,

host data, services, processes, or any other information that would help describe

the actions taken during a cyber attack. Of course, this was simply beyond the

scope of their research, and creating a detailed environment from scratch would

have been an unrealistic body of work. Their aim was simply to evaluate different

RL algorithms in their own adversarial environment. They succeeded in this aim,

27

but the simulation they describe is entirely different than the environments used

for ACO research today.

The second reason this research is not sufficient, is that it does not actually

attempt competitive RL. The Red and Blue policies were trained using single-

agent RL, learning simultaneously, where both agents updated their policies after

each game played based on the new experience:

“Both agents needed to use the algorithms to learn a strategy to

win as many games as possible, and due to the competition the

environment became highly non-stationary. The results showed

that the neural networks were not able to handle with this very

well, but the Monte Carlo and Q-learning algorithms were able to

adapt to the changes in behavior of the opponent.” [28]

Learning was conducted in a non-stationary environment. This approach may

have been sufficient to compare results in their own simulation, but simultane-

ous learning in a non-stationary environment can lead to a strategic cycle, as

described in Chapter 2, and this becomes more likely in a complex environment.

What this paper describes as “adversarial learning” did not employ the compet-

itive RL algorithms that are explored in this thesis.

Other research uses RL and game theory to discover the optimal policies

for different adversarial cybersecurity settings. In Bland et al. competitive RL

algorithms were used to find the optimal policies for game models of cross-site

scripting and spear phising attacks [29]. This involved constructing game trees

to represent possible states and realistic actions that would be available to the

attacker and defender in example scenarios. Then, competitive RL algorithms

were used to discover the optimal policies for either agent in these models. This

is an interesting application of competitive RL to a cybersecurity setting, but the

scenarios described in Bland et al. are entirely separate from the environments

examined in this thesis, where a Red agent attempts lateral movement across a

simulated target network.

He et al. describes another experiment where competitive RL was evaluated

for a selection of cybersecurity applications [30]. This time, a jamming versus

anti-jamming scenario, and cloud-resource allocation during an attack, were mod-

elled as examples. Similar to Bland et al. this demonstrated competitive RL was

viable for interesting cybersecurity problems, but uses simulations that are not

reminiscent of the environments considered for this thesis.

28

These examples all attempt to explore game theory optimal behavior in a Red

versus Blue scenario, but much more literature exists exploring either the Red

or the Blue side of an application as a single-agent RL problem. Han et al. is a

unique experiment that first trains a Blue agent to protect a simulated network,

and afterwards trains a Red opponent to use adversarial training and learn the

optimal ways to disrupt Blue learning [31]. This experiment was done using a

network emulator called Mininet [32]. Single-agent RL was used, but because

only one agent is learning at a time there is no issue of non-stationarity. First,

the Blue agent learns to optimize its policy against a scripted Red opponent.

Because the Red opponent follows a static policy, the Blue learner can employ

a single-agent RL algorithm and treat the Red opponent as if it was part of the

environment. After the Blue agent has converged on a policy, the “adversarial

training” described in this research refers to a Red agent learning to tamper with

the training samples used by the Blue agent. The Red agents learns to optimize

attacks that disrupts these samples, such as flipping a fixed number of reward

signals, in order to minimize Blue’s ability to converge on an effective policy.

The first phase of this research, where a Blue defender is trained against a

scripted Red attacker, appears often in the literature. Many of the environments

that will be discussed in Section 3.2 include demonstrations of a Blue agent

learning to defend against a set of static Red opponents in their publications.

Similar research has evaluated single-agent RL for Red attackers. Maeda et al.

attempts to train Red attackers for the post-exploitation phases of a cyberattack,

which describes similar scenarios to those considered in this thesis [33]. However,

this Red agent operates in the absence of a Blue defender, where their Red agent

is simply learning to optimize its own actions in the environment.

All the literature considered so far has modeled adversarial scenarios using

simultaneous turn games. One interesting alternative models a cybersecurity

problem as a Stackelberg game. In Speicher et al. the Red and Blue agents

influence the target network with an “attack budget” and “mitigation budget”

[34]. Then, Stackelberg Planning, not RL, is used to solve for the game theory

optimal policies.

The optimal Red policy here is the “critical attack path”, meaning the de-

terministic policy that will maximize Red’s chance of success, while a Blue agent

converges on a dominant mitigation strategy. This game is meant to optimize the

economy of effort for either agent, and uses abstract cybersecurity concepts as

actions. Still, it represents a unique alternative for modeling a network security

problem in a simulation environment, and then finding the optimal policies using

game theory.

29

3.2. Simulated ACO Environments

Using RL to train an autonomous agent, for any application, will require an

environment that can simulate scenarios in the environment many times while

the agent is learning. Creating a sufficiently detailed simulation is perhaps the

biggest challenge that limits the development of cybersecurity tools using RL. It

is difficult to model the exact conditions of a target network during a cyber attack

with a realistic level of detail. Most of the quality environments that do exist

were published in just the last few years, and all of them still sacrifice certain

elements of realism in order to accommodate RL.

RL is only appropriate for training agents to participate in a sequential

decision-making process. A specific tactic of a cyber attack must be modeled

as an MDP in order to train an AI to take actions using RL. For example, this

thesis will focus on the lateral movement of an attacker expanding their foothold

on a specific network, which can be modelled as an MDP. Ideally, a simulation

would support both Red and Blue agents taking actions on a target network. A

Red agent would represent attackers on the target network, and a Blue agent

would represent an analyst working to prevent that attacker’s progress. There

has been some research into the application of single-agent RL for ACO, but as

shown in Section 3.1 there is not yet published research exploring competitive

RL in these environments.

One of the better known cyber gyms is Microsoft’s CyberBattleSim (CBS),

which was published in 2020 as an experimental research toolkit [10]. Like many

of the environments in this review, CBS is built on the OpenAI Gym framework

[35]. CBS is focused exclusively on training Red agents for the lateral movement

phase of a cyber attack. Some constraints in this environment are more limiting

than other alternatives: the scenarios are specifically for a windows enterprise

environment. As well, the simulation does not model network traffic, and there

are no public plans for this framework to be built into emulation.

The Framework for Advanced Reinforcement Learning for Autonomous Net-

work Defense (FARLAND) was developed by the MITRE corporation in 2021.

This simulation environment offers a detailed game, with both Red and Blue

agent control. It is designed for a Software-Defined Network (SDN) scenario, so

that Blue agent actions include network configuration options such as: migrat-

ing a service by deploying a new virtual host, isolate a host by changing packet

processing rules, and creating honey networks [11]. FARLAND uses a detailed

model of host and network activity, and it supports both simulation and emula-

tion. However, FARLAND is designed for single-agent training of a Blue agent

30

only, using two static Red agent profiles. Only the Blue agent is RL-enabled.

CyGIL was another environment developed in 2021, at Defence Research and

Development Canada [8]. CyGIL’s first prototype uses an emulation environ-

ment, and only supports training a Red attacker. However, this environment was

designed to eventually incorporate Red and Blue agents in competitive train-

ing. Although it is not suitable for competitive RL in its current state, because

it does not support the simultaneous training of Red and Blue agents, CyGIL

could be a potential environment for competitive simulation and emulation once

these features are developed for a future version of the environment.

The Cyber Operations Research Gym (CybORG) was also published in 2021

by the Australian Defense Science and Technology Group (DSTG) [12]. This

environment was made public as part of competition, called the Cyber Auton-

omy Gym for Experimentation (CAGE) Challenge, where teams competed to

train the most effective Blue agent to defend a specific network during an at-

tack [36]. CAGE Challenge 3 was completed in February 2023, and this was the

first challenge to incorporate multi-agent play (multiple Blue defenders). Most

importantly, this environment was also designed with the intent of supporting

competitive play, and so the CAGE Challenge release can be easily modified to

support training both Red and Blue agents simultaneously.

Finally, the Network Attack Simulator is another simulation built on the

OpenAI Gym framework [37]. Unlike CybORG, this environment does model

firewall rules and certain network traffic. However, this environment is exclusively

used for training Red attackers, and does not include an adversarial component.

Many of these open-source environments were compared as part of a recent

ACO review [13]. Published in February 2023, this paper acknowledges that

there are very few ACO environments that are currently available for adversarial

training. Interestingly, this review confirms that CybORG is the only available

open-source environment to support multi-agent training, referring to the coop-

erative Blue agent training used in CAGE Challenge 3.

3.3. Other Competitive RL Applications

In order to facilitate RL, many of the simulation environments discussed in Sec-

tion 3.2 operate as finite state machines, while using discrete time and using dis-

crete action spaces. Organizing actions and network states into neat timesteps is

far easier to simulate than a continuous time model, although this is less realis-

tic. Fortunately, some of the most well document successes from competitive RL

Applications have occurred in finite state environments with discrete time and

31

discrete action spaces.

Perhaps the most celebrated work in the competitive RL space is Google

Deepmind’s AlphaZero algorithm, which has been shown to reach superhuman

level performance in a variety of classical games including Chess and Go [5].

There are two key reasons this fictitious play algorithm may not translate well

to an ACO environment, without modification. First is the turn-based nature

of these games: Chess and Go, like many classical games, require players to

alternate their selection of actions. This is not the case in the most promising

ACO environments, that model gameplay using simultaneous independent action

selection from Red and Blue agents. The second reason, is that these classical

games are played with perfect information, whereas ACO environments require

both agents to operate with partial information. That is not to say that this

algorithm cannot yield results in an imperfect information environment, but other

examples of competitive RL in partially observed environments are discussed in

more detail below.

Additionally, AlphaZero incorporates a general-purpose Tree-Search algorithm.

Implementing a forward search is beyond the scope of this thesis, and this exper-

iment will rely on a neural network to approximate the optimal policy using the

current observation alone. However, Chapter 6 will discuss a forward search as a

possibility to improve on this work in future research.

Some of the most notable research into RL with imperfect information takes

place in competitive video games. Google Deepmind has also explored this space

by training an AI to reach a Grandmaster rating in Starcraft II [38]. This time,

using a dedicated algorithm called AlphaStar, that once again relies on fictitious

play. Starcraft II is a much more complex environment that the ACO frame-

works considered for this thesis, because the action and state spaces are large

and continuous. But this is still a well documented example using fictitious play

to approximate optimal policies in a partially observed environment where oppo-

nents act simultaneously.

Another example is OpenAI Five, where a similar fictitious play algorithm was

used to master the game DOTA 2 [26]. This publication also describes how, in

order to train more efficiently, they used quality-based opponent sampling. When

a new agent policy was trained, they generated experience against higher qual-

ity opponents more often, and played against weaker opponents less frequently.

Every trained policy in the policy pool maintained a quality rating that changed

based on the quality of opponents they won or lost against, similar to the ELO

rating system designed for chess.

These applications are relevant even though they are built for much more

32

complex environments. They meet that challenge using large, complex neural

network architectures and more training time, in order to reach more difficult

approximations. The process for training those neural networks (the algorithm

itself) is equally viable for less complex environments. Scaled-down implemen-

tations of these network architectures have been proven in a number of OpenAI

Gym environments with simple toy games [39] [40].

These applications relied on fictitious play algorithms, but as explained in

Chapter 2, there is another important category of competitive algorithms to

consider. CFR algorithms can be especially performant in imperfect information

games. Perhaps the strongest example is an AI called Deepstack, which was

trained at the University of Alberta to outperform professional poker players at

Heads-up No-limit Texas Hold’em (HUNL) [6]. This impressive AI was built for

a turn-based game and relies on a forward search for HUNL. Like many of the

above examples, it is built for a game with a much more complex action and state

space.

A CFR algorithm could be considered for an ACO simulation, depending on

the scenario, if the performance of agents could be appropriately measured using

regret. However, this application was valuable in poker specifically where agents

must overcome recursive reasoning, because each action made by an opponent

revealed information about the range of cards they might hold:

“The correct decision at a particular moment depends upon the

probability distribution over private information that the oppo-

nent holds, which is revealed through their past actions. However,

how our opponent’s actions reveal that information depends upon

their knowledge of our private information and how our actions

reveal it. This kind of recursive reasoning is why one cannot easily

reason about game situations in isolation, which is at the heart of

heuristic search methods for perfect information games.” [6]

This kind of recursive reasoning is less of a factor in the ACO scenarios con-

sidered for this thesis, because the Red agent in particular has a relatively clear

picture of the environment state, and the Blue agent actions betray no relevant

new information. It is possible to construct scenarios where both agents are try-

ing to withhold information, such as if the Blue agent has actions to establish

decoy or honeypot devices, but these are beyond the scope of this thesis.

For the available ACO simulations, it is not obvious that CFR could be more

33

promising than fictitious play for approximating optimal policies. Although CFR

could be an interesting topic for future research, especially as simulation envi-

ronments become more complex and realistic, fictitious play has been used for

more examples that train performant AI in similar environments, and so it is the

priority to explore in this thesis.

Research into Deep RL for asymmetric games is less abundant. Goldwaser et

al. provides one such example, with a game of 3-player Pacman where one player

controls Pacman and the other players control the ghosts [41]. This research op-

timized performance in this game by extending the AlphaZero algorithm. Criti-

cally, this paper demonstrates how asymmetry between players is easily handled

for fictitious play algorithms: by simply training separate neural networks to ap-

proximate the separate policy and value functions for each player. In fact, this

research suggests that for many games the early layers of the neural network can

be shared between agents since they will rely on similar features from the game

state. However, this would require every agent has matching observability of the

game (in order to have matching input tensors for the neural network), which is

not the case in the considered ACO simulations.

3.4. Key Findings from Literature Review

This review of related works allowed for many key findings that influence the

methodology of this experiment. First, it confirmed that a proof-of-concept for

competitive RL in a simulated ACO environment would be a new contribution

to the existing literature. The last time this research question was considered

was before the emergence of the detailed environments discussed in this review

[28]. Even then, the research only used competing single-agent RL without us-

ing a competitive algorithm like fictitious play. This thesis must use a proven

competitive RL algorithm in a relevant ACO simulation environment.

Furthermore, existing environments are typically used for single-agent RL,

where either a Blue or a Red agent is trained against static opponents, or a Red

agent is trained against no opponent at all. A means to approximate optimal

play in these environments could offer valuable insight into the realism of the

simulations themselves.

Of the simulation environments examined, CybORG is the most appropriate

for this thesis. It is an open-source option that can be modified relatively easily

to support competitive play. The environment does forego certain elements of

realism to accommodate RL, such as modeling scenarios using discrete time, but

this is true of all the available research environments at this time. Many of

34

these environments, including CybORG, have ongoing development to gradually

introduce more realism to the simulations. As well, the recent CAGE Challenges

have made this environment especially relevant to ongoing research in the space.

In order to bring the success of competitive RL from classical games to ACO, a

fictitious play algorithm is used for this thesis. This specific algorithm will be de-

signed for the CybORG environment, but the experiment methodology described

in Chapter 4 is structured to be repeatable in any similar simulation framework.

Scenario details that are specific to CybORG will be introduced during the Eval-

uation in Chapter 5. The scenario network and agent action-spaces are easily

configurable in CybORG. This will be important in order to simplify the scenario

from the intricate CAGE Challenge network, so that the Competitive RL can be

attempted in a network simulation with minimal complexity.

Finally, CybORG is built using the OpenAI Gym framework, and so it sup-

ports many existing RL tools for OpenAI Gym [35]. These existing tools will

be leveraged as much as possible when implementing the RL portion of the ficti-

tious play algorithm. However, separate actor and critic neural networks will be

required for each agent since this game-design will be asymmetric. These design

details will be explored more in the following chapter.

35

4. Methodology

This chapter presents the methodology which will describe the process of im-

plementing a competitive algorithm, and verifying that the trained agents have

approximated optimal play. This includes the evaluation process and design deci-

sions for the experiment included in this thesis. This experiment will achieve aim

of this research if it can demonstrate a competitive RL algorithm that is used to

approximate optimal policies for Red and Blue agents in an ACO environment.

The experiment can be organized into five phases. Each of these phases aligns

with a research activity listed in Chapter 1, and will be described in greater detail

in the sections below.

1. Select an ACO Environment. Identify a simulated ACO environment that

is suitable for competitive training.

2. Identify the Target Behaviour. Consider why a Red or Blue AI is being

developed at all. This may be limited by the scope of the environment,

including the simulation features that are modelled, and the features that

may have been abstracted away. Within the constraints of this environment,

identify all the priorities for the Red and Blue agents. These priorities will

define the target behaviors of the optimized agents, and should reveal one

or more eligible network topologies for the scenario.

3. Define the Game Design. Set the parameters for the Markov Game that

will be used for training. This will include modelling the priorities of either

agent as a reward function, and defining termination conditions for the sce-

nario. This will also include identifying the state-space for the environment,

the scenario topology, and the observation space of each agent.

4. Implement Fictitious Play. Use available RL tools to conduct fictitious play

in the simulation environment. Monitor the training performance of either

agent to observe their convergence to a Nash Equilibrium.

5. Validate the Trained Policies. Measure the exploitability of agents in the

Red and Blue policy pools to confirm that exploitability decreases across

generations, which demonstrates a convergence towards Nash Equilibrium.

Examine sample games of the trained policies to ensure they meet the target

behaviour.

This chapter will not discuss the specific implementation details for the Cy-

bORG environment that is used in this experiment. These will be included as

36

part of the evaluation in Chapter 5, because this methodology is meant to be

repeatable for any eligible ACO environment.

4.1. Select an ACO Environment

Before attempting any sort of competitive game design, a simulation environ-

ment must be selected. The simulation environment will set limitations for the

scenario and game design, because neither of these can violate the simulation

constraints. Eligible simulation environments for competitive RL must accept

actions and return observations for a Red and Blue agent operating simultane-

ously. Additionally, the environment must be able to simulate the scenario many

times relatively quickly to accommodate RL. This is why a simulated environment

is required for training instead of an emulated environment.

The process of selecting an environment was completed during the literature

review in Chapter 3, by examining the available open-source environments. It was

found that the CybORG environment could be modified to support competitive

play. The environment was also publicly distributed during the CAGE Challenge,

and as a result, it has a scenario and game design that have already been explored

extensively with single-agent RL [36]. A simplified CAGE Challenge scenario is

an ideal target for this thesis.

This environment does impose certain limitations, which will be discussed in

more detail in Chapter 5. To operate in the CybORG environment, the fictitious

play algorithm in this experiment will rely on the discrete timesteps, as well as

discrete observation and action spaces. Although it might be possible to imple-

ment fictitious play in an ACO environment with continuous time or continuous

action spaces, it will not be explored here.

4.2. Identify the Target Behavior

The target behavior describes what each agent should learn to do in the environ-

ment. Identifying the target behavior includes committing to a specific cyber in-

cident scenario. This will be used to construct a game design where this behavior

is the most rewarded. If RL was being used to develop a decision-making policy

for some real-world application, the target behavior could be very nuanced. How-

ever, for the purpose of this thesis it is relatively straight-forward. The CybORG

environment is used with a simplified CAGE Challenge scenario, and therefore

the target behavior is inherited from the goals of the CAGE Challenge.

A Red and Blue agent will compete in a capture-the-flag (CTF) style game. In

these games, a Red agent attempts to compromise a target server which represents

37

the “flag”. It will also need to compromise other machines on the network in

order to reach the flag. This style of cyber competition is a popular category for

human experts, and so it is a sensible game to simulate in an ACO environment.

The Blue agent must learn to take mitigation actions that will minimize Red’s

foothold on the network, while prioritizing the defence of the target server. The

Red agent will attempt to expand its foothold on the network by compromising

additional hosts, but impacting the target server is much more important than

every other device. Intuitively, the desired behavior for an AI agent in an ACO

environment would match the decisions a human-expert would take if given the

same set of observations and actions.

The trained agents at this end of this experiment should prioritize their sce-

nario objectives while selecting actions that are not obviously refuted by their

opponent. The validation at the end of this experiment will confirm if the agents

have achieved minmax policies, but observing sample games is still the only way

to confirm that the optimized policies match the intended behavior. This is be-

cause it is possible that the agent has correctly optimized for the game design,

but the game design did not adequately reward the desired behavior [42].

4.3. Define the Game Design

A competitive algorithm can be used to train autonomous agents in a suitable

environment, but agents will only learn a desired behavior if the game design

correctly rewards it. A Markov Game must be designed so that agents have a

system to optimize. This game must be able to calculate either agents reward

based on the true state of the simulation, in order to provide that reward to the

learning agents. The observation and action spaces for the agents are defined

by the environment and the scenario, but the reward function and termination

conditions need additional consideration.

Agents need a reward signal in order to learn: their policies will update

to maximize their return in the scenario. Therefore, the reward function must

precisely reward the target behavior of the agents. The terminal conditions for

the game during training are equally important, as intelligent agents might seek

out or avoid terminal conditions if this effects their total accumulated reward.

4.3.1 Reward Function

If reaching a target server on the network is the objective of a Red agent, then

defending this node would be the top priority of a Blue agent. But the Blue

agent should not be impartial to the Red agent establishing a foothold elsewhere

38

on the network: a Blue agent that allows the Red attacker to reach everywhere

except the operational server is not a very useful AI agent.

The intuitive target behavior for a Blue agent requires that it learns to ad-

dress the different priorities, or objectives, within its environment. This includes

minimizing Red’s foothold on the network and avoiding downtime of services to

network users. Often, the Blue agent will be required to choose between actions

that both support different priorities. These conflicting priorities need to be

quantified in the Blue reward function in order to shape the target behavior of

an optimal Blue agent. Training an agent to resolve conflicting priorities using

RL is known as Multi-Objective Reinforcement Learning (MORL) [43].

The seminal paper on MORL argues that when training an RL agent with

multiple objectives, and it is impractical to scalarize their relative importance, it

is often more effective to train multiple agents across a variety of reward functions

for the different objectives [43]. Then afterwards, compare the behavior of these

optimized agents and select the AI agent that most closely demonstrates the

desired behavior.

This will not be necessary for this thesis because optimizing a single game

design will be a sufficient proof of concept for fictitious play. However, if com-

petitive RL was being used to achieve a more nuanced target behavior, it might

be beneficial to attempt learning with a variety of sensible game designs and see

which of the trained agents most closely resembled the desired AI agent.

This could include training multiple agents that each use different reward

functions, while changing the relative importance of rewards in the environment.

For example, it could be worthwhile to train separate agents for the same scenario

where the target server is worth 2, 5, and 10 points in their respective reward

functions, then examine the optimized agents to see which policy best matches

the desired behavior.

4.3.2 Terminal Conditions

In many MDPs, terminal conditions for a sequence can be just as important as

the reward function. If an agent can continue to accumulate reward by delaying

end of a game, it might learn to do so even if this is not the desired behavior.

This is especially important during a zero-sum game, where a reasonable agent

might attempt to end the game rather than lose reward.

The ideal terminal conditions for a game design will depend heavily on the

scenario and the desired behavior. For example, in order to encourage agents to

achieve their goal as soon as possible, a game design might penalize the agents

more heavily if it takes them longer to reach a terminal state. This is espe-

39

cially important for infinite-horizon and indefinite-horizon scenarios, but even in

environments with a finite-horizon the termination time must be chosen carefully.

The scenario used in this research has a finite-horizon, and uses discrete

timesteps instead of continuous time. Every scenario will run for a fixed amount

of timesteps, with no opportunity for agents to end the sequence prematurely.

Their ability to accumulate reward will depend entirely on their decisions prior

to the final termination time. During the game design in Chapter 5, a horizon

of 12 timesteps is used to create a game that is less complex than the CAGE

Challenge, where the optimal policies are still non-trivial.

4.4. Implement Fictitious Play

Although fictitious play has been used in many other adversarial environments,

this experiment is the first implementation in an ACO environment. Algorithm 3

presents the details for each component of fictitious play with opponent sampling.

Algorithm 3 Fictitious Play for ACO Environments.

Γ← initialize training environment
π0 ← set random initial policies for generation 0 (πblue

0 , πred
0)

g = 0
while within computational budget do

g ← g + 1
for each player i in [blue, red] do

πi
g ← set random initial policy for player i generation g

while πi
g is improving do

M i ← clear memory buffer to store new batch of samples
while memory buffer M i is not full do

π−i ← select opponent policy from the pool Π−i

Γ← reset the training environment for a new game
M i ← store samples (uit, a

i
t, r

i
t+1, u

i
t+1) for every timestep t in Γ

end while
πi
g ← update policy using PPO for batch of samples M i

end while
Πi ← add new policy πi

g to pool
end for

end while
Return (πblue

g , πred
g)

This algorithm requires an environment Γ as input and produces approxi-

mations of the optimal Red and Blue policy (πblue, πred) for that scenario as an

output. The accuracy of this approximation will depend on the complexity of

the environment and the computational budget. For this reason, the experiment

40

shown in Chapter 5 uses a relatively simple scenario. A simple scenario should

allow for a better approximation of the optimal policies, to demonstrate a proof

of concept for this algorithm.

The first step is to initialize the training environment. A new OpenAI Gym

environment was constructed to act as the training environment for this experi-

ment [35]. The OpenAI Gym framework is a well-established resource for building

RL environments. The training environment is used by the algorithm to generate

samples for RL. It must be able to accept a Blue and Red action (abluet , aredt),

advance the environment one timestep, and return each agent’s new observation

uit+1 and reward rit+1. To do this, the training environment used in this experi-

ment maintained a CybORG simulation as an attribute, and used that simulation

to determine new observations and rewards.

Many open-source RL solutions are built to train specifically in OpenAI Gym

environments. For this experiment, resources from the open-source library RLLib

are used. RLLib is part of the Ray framework [44]. Ray provides a means

for parallel processing Python applications. RLLib is used here because the

included RL algorithms integrate easily with OpenAI Gyms environments, but

also because collecting samples in parallel substantially improves the speed that

new policies can be produced. Using many parallel training environments means

that more generations of policies can be produced within the computation budget,

allowing the algorithm to output a better approximation of the optimal policy.

Once the training environment is set, the initial policies (generation 0) must

be created and saved. Each generation g represents one loop of the algorithm

where a new set of policies will be saved. Policies in this experiment are saved

using RLLib’s checkpoint system. The learning algorithm is selected when a new

RLLib policy object is created. For this experiment, PPO is used for the RL

component of fictitious play.

PPO was selected for this experiment because it has been demonstrated to

be performant in the CybORG environment. It was used by many teams dur-

ing the CAGE Challenge to train performant Blue agent policies, including by

Mindrake which won the first CAGE Challenge [36] [45]. Moreover, PPO has

been proven for other applications in environments that are similarly partially-

observed, asymmetric, or competitive.

For generation 0, two RLLib PPO objects are created and saved as the initial

Red and Blue agents. The observation space and action space of the agents are

declared when they are initialized. A multi-binary observation space is used for

both agents. This means that the PPO agents must receive their observations as

a vector of 0 and 1 bits.

41

Observation vectors are a one-hot encoding of the categorical features from

the agent’s most recent observation in the environment. They are used as the

input tensor for the actor and critic neural networks in order to output a policy

or value. The Red and Blue agents may have different sized observation vectors,

since this is an asymmetric game, and the encodings used by each agent are

different.

The observation space will also be different for every environment and sce-

nario. For an ACO environment such as CybORG, one-hot encoding is used

to describe the status of each machine on the network, as seen by either agent

(such as using five bits per machine to represent five observed boolean features

on each host). Examples of these encoded observations are included as part of

the evaluation in Chapter 5.

This highlights an important limitation of this algorithm: a policy trained

for one network topography will not generalize to any other networks. A trained

policy cannot produce actions for a different network, because the encoded obser-

vation of that network will be unusable as an input to the actor. The multi-binary

observation vector must exactly match the expected input of the neural network.

Options for generalizing trained policies is another topic of ongoing research in

ACO environments.

Both agents also use a discrete action space. When selecting an action, an

agent’s entire action space is encoded so that each action is represented by a

unique integer. The output layer of the actor network has one unit per action

in the agent’s action space. A softmax activation function is used for the output

layer, so that every index of the output vector holds a probability for selecting

the corresponding action. This way, the actor network does not just produce

an action but also a probability. The output vector is a stochastic policy that

approximates the probabilities that should be used for selecting each action, based

on the observation.

The observation and action spaces determine the input and output layers

of the networks. For the other components of the network architecture, design

decisions must be made to try and maximize performance and lower training

time. The number of hidden layers, the units in each layer, and their activation

functions will all depend on the complexity of the environment. The architectures

that were used for this experiment are shown in Figure 5.

42

Figure 5: Actor and Critic Neural Network Architectures.

The CybORG environment and scenario used in this thesis are relatively

simple (less than 50 encoded bits in the observation vector, and less than 20

discrete actions for both agents). A recent study investigated the effectiveness of

different PPO network architectures with various activation functions [46]. This

study, as well as some local tuning, were used to contruct PPO networks that

were suitable for the scenario environment. The actor and critic networks for

the Red and Blue agents each use two hidden layers of 256 units. These are

fully-connected layers using a tanh activation function.

The critic network uses the same multi-binary input, but the output for this

network is a single unit. The critic network is not trying to produce a probability

distribution, it is used to produce a value prediction from an observation. An

entirely separate network was used for the critic for this experiment, although

this is not necessarily required.

RLLib includes an option to have the actor and critic networks share hidden

layers, so that only a separate output layer is used. This can allow the agents to

learn more quickly in many environments because the actor and critic often rely

on the same environmental features. However, the networks were kept separate

for this experiment because Andrychowicz et al. found that separate networks led

to more performant policies in most environments, at the cost of slower training

[46].

43

After the generation 0 agents have been saved, the first generation of training

starts. The OpenAI Gym environment is split into seperate “RedTrainer” and

“BlueTrainer” environments for the experiment. The environments are identical,

except that the RedTrainer environment only required Red actions as an input

to step the environment, and the BlueTrainer environment only required Blue

actions as input.

The generation 1 Blue agent trains first, learning to optimize against the only

available Red opponent. Since the Red opponent is taking random actions, it

is unlikely that the Red opponent will accumulate any significant reward during

these initial games. As a result, the generation 1 Blue agent should lower the

score as close to 0 as possible, and adopt a policy to simply avoid any actions

that would incur a reward penalty.

During each generation of training, the agents are trained until their score is

no longer improving. The average return from each batch of samples is recorded.

The batch size is a very important hyperparameter that should be tuned for each

environment and scenario. The batch size determines how many samples will be

added to the memory buffer M before updating the networks.

If the batch size is too small, then the learning agent might converge on a

policy before thoroughly exploring the game tree. In environments with delayed

rewards, it is crucial that the batch size is large enough so that the learning agent

will encounter critical rewards in the game tree before updating. Otherwise, the

policy is likely to get stuck in a local minima, capitalising on one source of reward

while never exploring to find an even better source elsewhere in the game tree.

However, larger batch sizes can substantially increase training time, since more

samples are required to perform one update step.

For this experiment, a large batch size was required for the Red agent to find

crucial rewards that were delayed in game tree. Often the Red agent will need

to select the correct combination of three actions in sequence before receiving a

reward. Consider that this Red agent which has 19 actions will start learning by

exploring randomly, and will only select the correct combination of actions one

in 193 attempts. To ensure sufficient exploration, batches of 61440 samples were

used. This was a deviation from the recommendations in Andrychowicz et al.

but a crucial design choice for the CybORG environment.

A generation of training is stopped when the average return from a batch is

no longer improving. This is controlled using a variable called “tolerance”. The

tolerance sets how many batches in a row an agent can go without improvement

before training is stopped.

During a typical generation of training, the agent should show continuous

44

improvement every single batch until it is nearing the optimal policy for that

generation. At that point, the average score for any individual batch might vary

based on random elements the environment. Small optimizations may impact the

overall score less than this random chance, and tolerance is an important tool to

control how agents proceed in this state.

If the tolerance is too low, then an episode of training can be stopped prema-

turely before an agent has approximated the optimal policy. If the tolerance is

too high, then every single generation of training can take significantly longer as

agents dwell on nearly negligible improvements (even if these policies are more

optimal, this time could be better spent training additional generations). In this

experiment, a tolerance of 3 batches was used, and this allows the agents to reach

accurate policies in reasonable time.

In rare cases, a policy might suffer from forgetting if it hovers at the near

optimal policy for too long. This occurs when the network is updated in such

a way that it has an unintended effect. In most cases, the learning agent can

recover to its near optimal state (for example, see the training performance for

dedicated agents in Chapter 5, Figure 18 where the performance occasionally

drops temporarily).

Fortunately, in the rare cases that a sub-optimal policy reaches the end of

its tolerance and joins the policy pool, this never has enough of an impact to

prevent the overall convergence of later generations (consider that every early

generation adds a sub-optimal policy to the pool). However, this is still an

important factor for training efficiency. Training parameters should be tuned to

ensure that learning is stable and forgetting happens as little as possible.

The first Blue agent is trained until it has experienced 3 batches of training

with no improvement. This trained policy is saved as an RLLib checkpoint and

added to the pool of Blue policies. Next, the generation 1 Red policy is trained

against the generation 1 Blue opponent. Since the Blue agent has not learned

how to intelligently defend the network (because it was trained against the initial

random opponent), this first Red generation should learn to accumulate a near

maximum possible score in the environment when the policy finishes training.

The algorithm continues by training the second and third generations of

agents. However, all generations past the first are trained against more than

one opponent. This is the most important component of the algorithm, because

it ensures that subsequent generations converge towards an optimal minmax pol-

icy. Instead of optimizing against a single opponent, every new generation collect

samples by simulating scenarios against various opponents selected from the ex-

isting opponent pool.

45

The opponent sampling procedure depends on which minmax policy is being

solved by fictitious play. Because this is an asymmetric environment, where the

Red and Blue agents have separate actions and observation spaces, only one

optimal policy is solved at a time.

The Blue minmax policy is solved first. Each generation, a Blue agent is

trained against the entire Red opponent pool equally with uniform sampling.

Then, the Red policy learns the best-response to the most recent Blue agent.

Figure 6 shows this cycle of training and saving new policies to the pool.

Figure 6: Opponent sampling technique used during fictitious play to find the Blue
minmax policy. Each new generation (g + 1) is trained against the existing pool of Red
policies. Then, the new Red best-response is trained and added to the pool.

When the Red agent is learning a new best-response policy, 90% of the Red

agent’s games are played against the most recent Blue policy and 10% are played

against random opponents from the existing Blue pool. This ensures that the

new Red policy is still capable of operating in game tree branches that are never

reached by the most recent Blue agent.

This cycle of solving the optimal policy against the opponent pool, and then

adding the opponent’s new best-response, ensures that any exploitable behavior

in the Blue policy becomes less likely each generation. Because with each new

generation, the learning Blue agent is more likely to encounter an opponent that

will discourage that exploitable behavior. Through this cycle, the emerging Blue

agent policies are gradually steered towards game theory optimal play.

The RedTrainer and BlueTrainer environments maintain the opponent’s sam-

pled policy as an attribute. Every timestep, the training environment uses the

current opponent’s policy and observation to determine an opponent action and

step the environment. Every time the reset method is called, the environment

updates the opponent for the next game by selecting a new opponent policy from

the pool. By using these separated RedTrainer and BlueTrainer environments, an

agent can train a new policy using just RLLib’s PPO algorithm, and the custom

46

environment controls the opponent sampling.

Training against the entire pool of past opponents has the same effect as train-

ing against the average opponent policy, as proposed in [23]. Each new generation

is not specifically targeting an optimal minmax policy. Instead, PPO is used to

optimize expected return against the entire pool without any consideration for

guaranteed return against individual opponents. However, by adding each newly

trained policy to the pool, this does ensure a gradual convergence towards the

optimal minmax policy.

Consider a newly trained Blue policy that has optimized against the existing

Red pool, but this is an early generation and it does not represent a true minmax

policy. If this new generation is not minmax optimal, then it will be exploitable

in some way. This means that the Red best-response will converge towards a

policy that exploits this fault. Then, when future Blue generations are trained,

they will be less likely to inherit the same exploitable behavior, because it will

now be less effective against the pool of Red opponents with every subsequent

generation.

As each new generation of Blue agent learns to maximize score against the

entire existing opponent pool, newer generations are forced to avoid any non-

optimal behaviour, because any exploitable behaviour will be less viable with

every passing generation. Generations should start to demonstrate near-optimal

behavior once a minmax policy will offer the best return against the varied pool

of opponents. This is how fictitious play converges towards the optimal minmax

policies for an environment.

After the Blue agent training is completed, fictitious play is used one more

time to discover the optimal Red agent policy. The process is exactly the same,

except that new Red policies are trained against the entire existing Blue pool,

and Blue best-responses are calculated, as shown in Figure 7.

Figure 7: Opponent sampling technique used during fictitious play to find the Red
minmax policy.

47

The training scores for the Blue and Red agents should converge during both

instances of fictitious play. As the training scores for both agents flatten to single-

values, this indicates that the algorithm has reached a Nash Equilibrium where

neither agent is being encouraged to deviate their policy further. In this state,

opponent training scores should be held near the minmax value each generation.

The true minmax score of the competitive policies is confirmed in the validation.

4.5. Validate the Trained Policies

With the competitive policies trained, the last step of the experiment is to con-

firm that they approximate minmax optimal policies. This is done using two

tests. First, every trained policy from the entire pool will be evaluated for its

exploitability. This should demonstrate a gradual convergence towards more op-

timal policies throughout training. Second, new dedicated opponents will be

trained against the competitive policies in order to measure the worst possible

return for the competitive policies. Their true score against a worst-case oppo-

nent, that has been optimized exclusively against the competitive agents, will

reveal how accurately the policies were able to approximate optimal play.

To evaluate the exploitability of every policy in the pool, every Blue com-

petitive policy simulates 50 games against every Red opponent policy. This de-

termines the expected return for every possible combination of these Blue and

Red agents. The maximum expected return for every Blue policy is saved. If

the policy pool has enough variance, then these scores should approximate the

guaranteed return for every agent against a worst-case opponent. Then, the ex-

ploitability is calculated for the Red competitive policies in the same way. This

time by measuring the minimum expected return for every Red policy against

any Blue opponent.

Recall that exploitability measures the difference between a policy’s guaran-

teed return and the guaranteed return of the optimal policy. Plotting the guar-

anteed return for every Red policy should indicate a gradual increase in scores

across generations. In the later generations, these guaranteed scores should con-

verge towards the asymptote that represents the Red minmax score: the highest

expected return that an optimal policy can guarantee against any opponent.

Blue agent scores should reveal a similar but opposite trend. Early Blue poli-

cies will likely be more exploitable and allow high expected return. Later Blue

generations should lower the expected scores as they approach a guaranteed max-

imum: the Blue minmax score. By validating that agent exploitability decreases

across generations, it is proven that the policies are converging towards optimal

48

play.

Once it is observed that policies are gradually less exploitable, the last step

in the experiment is to verify how accurately the competitive agents have ap-

proximated optimal play. To do this, new dedicated opponents are trained using

PPO, in the exact same RedTrainer and BlueTrainer environments, except with-

out opponent sampling. Their only opponents are the individual competitive

policies.

If the competitive policies are in any way exploitable, it will be trivial for

dedicated opponents to discover these vulnerabilities and lower their score. The

first evaluation provides the expected minmax score using the fictitious play op-

ponent pool. The dedicated opponents will show the true guaranteed score for

either agent.

If the dedicated opponents match the expected minmax scores from the eval-

uation, then this confirms the agents have perfect optimal policies, because the

competitive agents are able to hold even a dedicated opponent to the expected

return limit. If the dedicated opponents are able to reduce the performance of

the competitive agents, this will reveal exactly how accurately (or inaccurately)

the competitive agents were able to approximate optimal play.

4.6. Experiment Summary

This experiment details a process for identifying an eligible environment and

target behavior, developing optimal policies through fictitious play, and validating

those optimal policies. If this process can be followed and the learned policies

are confirmed to be optimal, this achieves the aim of this thesis. The evaluation

in Chapter 5 will document the specific implementation details for this algorithm

in the CybORG environment, and the results obtained via this methodology.

49

5. Evaluation

This chapter presents an implementation of a fictitious play algorithm in a cyber

incident simulation environment, and evaluates the performance of a Red and

Blue agent pair that have been trained to Nash Equilibrium. The exploitability of

these trained agents will be measured to determine their minmax performance and

validate that the agents have approximated their optimal policies. This chapter

will also discuss in detail the specific environment, the algorithm implementation,

and the parameters that were used when obtaining these results.

5.1. CybORG Environment

The methodology was designed such that it would be repeatable in other sim-

ulation environments. This was done to support the continued development of

ACO environments for RL, by providing an experiment methodology that could

applied to any eligible environment. However, in order to observe the algorithm

for this evaluation, a specific environment and scenario are selected.

The Cyber Operations Research Gym (CybORG) was selected as the simula-

tion environment for this research. As discussed in Chapter 3, this environment

was initially made public as part of a competition called the CAGE Challenge,

where teams competed to train the most effective Blue agent to defend a target

network during an attack [36].

The simulation models a cyber security incident as a turn-based game between

a Red and Blue agent that takes place over a fixed number of timesteps. Each

timestep, both Red and Blue independently select one action simultaneously.

The environment resolves their actions to update the network, and provides each

player with a new observation for the next timestep. This is an asymmetric game,

where Red and Blue are using different sets of actions. Red actions model an

attacker trying to conduct lateral movement on the network. Blue actions model

the options of a SOC analyst defending the network during a cyber attack. The

environment is also only partially observable for either agent. Neither player has

access to the complete state of the environment, both are limited to their own

observations during each timestep when selecting actions.

50

Figure 8: Network Topology for the CAGE Challenge. This network will be simplified
for the evaluation.

The network topology is easily configurable in CybORG. Figure 8 shows the

topology used for the CAGE Challenge. The environment includes a variety of

host operating system images that all have some form of vulnerability. These

devices are simulated, not emulated, so these are not real or virtual machines.

These hosts are simply python objects that are generated at the start of each

scenario to track the status of each device on the network. As a result, many ele-

ments of realism are missing from the environment, but the simulation attempts

to track the most important details for a cyber incident scenario. Host details

include the operating system, what processes are running, what ports are open,

what user accounts exist on the host, what are the privileges of each user, and

various other details that would be relevant during a cyber attack.

CybORG was an ideal environment for this research for a few key reasons.

First, it is built using the OpenAI gym framework, and so it supports many

existing RL tools for OpenAI gyms [35]. The scenarios are easily configurable,

and different game designs have been publicly tested during past iterations of the

CAGE Challenge. Most importantly, CybORG can be modified relatively easily

to support competitive play.

The CAGE Challenge environment was only intended to train Blue agents,

so it only accepts actions from one agent and simulates the choices of other

agents within the environment. However, the Fictitious Play algorithm requires

the environment to accept actions from both the Red and Blue agents, and it

must return each of their rewards and observations as they transition to the

next timestep. This is needed to train both agents simultaneously. In order to

accommodate competitive play, two key changes were made to the source code:

1. Results.py. The Results object class was modified to store both a red observation

51

and a blue observation as attributes, rather than just a single observation.

These separate dictionaries ensure each agent only receives their own partial

observation of the environment state.

2. EnvironmentController.py. The Step method in the EnvironmentController

class was modified to accept both a Red action and a Blue action as pa-

rameters, and to return a Results object that contained the separate Red

and Blue observations. Previously, the Step method only accepted one ac-

tion as a parameter, and simulated the actions of other agents within the

environment. The Reset method was also modified to return an updated

Results object.

Committing to this framework introduces some important considerations for

the experiment. Like all other suitable environments, CybORG abstracts away

certain elements of realism in order to facilitate RL. Although the framework

attempts to model all the relevant information for each host, it is unreasonable

to assume that a decision-making agent in this simulation environment would

maintain its performance in an emulation environment. The most egregious ab-

straction is the use of discrete time to model the cyber incident. This alone

means that any trained policy in this simulation would not translate to a real

world or emulated scenario, where the actions of a Red and Blue actor would not

be organized neatly into timesteps that resolve actions simultaneously.

Of course, the design philosophy of the environment is iterative, and more

elements of realism (including continuous time) are planned as future features

by the developers of the framework. Regardless, these current limitations are

still relevant to this experiment, as both the algorithm and the learned policies

abuse this discrete time model. The game design that is optimized here would

be significantly different in a continuous time model. A similar fictitious play al-

gorithm could still be implemented in such an environment, despite substantially

different observation and action spaces, but that discussion is beyond the scope

of this thesis.

A final key limitation to acknowledge is that this environment is still under

development, and thus it is not bug free. This was most noticeable when a Blue

agent uses the remove action in the environment, which appears to have a much

lower success rate than intended. Some actions in the CybORG environment have

less than a 100% chance of success, and the low success rate for the remove action

can be dismissed as part of the game design for this scenario. The learning agents

simply optimize around these new success rates instead, and the Blue agent is

forced to consider other, more reliable, choices. As long as the agents still learn

52

to optimize their policies for this game design, the results are equally viable. It is

possible that this behaviour was caused by the modifications to the Environment

Controller that were required to support competitive play. Although this does

influence the learned policies in this environment, the low success of the remove

action does not impact the experiment.

Additional details about the CybORG environment and its design decisions

can be found in the research paper, and the original source code can be found at

the CAGE Challenge Github repository [12] [36].

5.2. Scenario and Game Design

This experiment will simulate a smaller network than was used during the CAGE

Challenge. This is done to focus the evaluation on the fictitious play algorithm

and ensure that any performance issues cannot be dismissed as the consequence

of a complex scenario. A simple network has been chosen because the goal of this

thesis is to provide a proof of concept for fictitious play, not to explore the limits

of the parameters and hardware that were used in this experiment.

The network topology used for the evaluation is shown in Figure 9. The

scenario used in this evaluation contains two sub-networks: a User subnet, and an

Operations subnet. The Red agent starts with Root privileges on a compromised

host in the User subnet. The goal of the Red agent is to achieve Root access and

impact a target server on the Operations subnet.

Figure 9: Network Topology for the Evaluation.

Red receives a reward for expanding its foothold on the target network. A

single scalar reward is required for RL, and it is the same reward function that is

used in the CAGE Challenge. Each parameter of the reward function is assigned

a value based on how critical these events are to the Blue defender. As the

Blue agent learns to minimize the expected reward through its actions, it should

prioritize protecting the assets that have been assigned a higher value. The

components of this reward function are:

53

1. Impacting the Op Server. If Red uses the impact action while it has Root

privileges on the Op Server, Red scores 10 points.

2. Foothold on an Ops Device. Red scores 1 point for each Ops device it has

Root privileges on at the end of a timestep.

3. Foothold on a User Host. Red scores 0.1 points for each User host it has

Root privileges on at the end of a timestep.

4. Blue Defender Restores a Device. Red scores 1 point every time Blue re-

stores a device to a clean image.

The final scoring parameter represents a Blue penalty if it is required to restore

any machine to a fresh image. This penalty is included in the game design because

this action is undesirable for Blue, as restoring a potentially compromised host

or server would impact regular network users.

The Red agent has 12 timesteps to collect as much reward as possible before

the scenario terminates. The goal of the Blue agent is to minimize this score,

making this scenario a zero-sum game. During the CAGE Challenge, policies were

evaluated using three different termination conditions: agents were evaluated for

average performance in scenarios that lasted 30, 50, and 100 timesteps. The

termination condition used in our evaluation was simplified for the same reason

as the network topology. 12 timesteps is long enough for the Red agent to reach

and impact the target server, with some extra timesteps to spare in order to

allow for strategic play (specifically, the Red agent can Impact the Op Server on

turn 8 at the earliest). This keeps the scenario as simple as possible to observe

the fictitious play algorithm, while keeping the game complex enough that the

optimal policies are not obvious.

Finally, it is worth noting that Red does not score any points for its initial

compromised machine, nor can Blue restore this initial foothold to remove Red

from the network entirely. Red must maintain control of at least one User machine

to have any agency in the game.

5.3. Environment Wrapper

In order to facilitate the training of RL agents, a wrapper is put around the

environment to act as the interface between the agents and the simulation.

Although the simulation tracks the specific vulnerabilities and exploits used

during a scenario, these details are abstracted away from a decision-making agent

during training. The wrapper provides this layer of abstraction between the agent

54

and the environment. For example, the wrapper accepts an abstract action choice

from an agent that only requires an action-type and a target, such as “Exploit

User1”, and then it will construct an exploit with appropriate parameters based

on the agent’s intention and the collected information about User1. If the agent

does not have the required information about the target to perform that action,

then the action will be unsuccessful. To perform this task, the observation and

action spaces for the agents are explicitly defined in the wrapper.

The CAGE Challenge required teams to use a standard wrapper, called the

Challenge Wrapper, for the competition. However, since the CAGE Challenge in-

volved training Blue agents against scripted Red opponents, the Challenge Wrap-

per is not suitable for training both agents in fictitious play. To overcome this,

a new Competitive Wrapper was designed for this experiment. This Competi-

tive Wrapper defined the observation and action spaces for each agent for this

evaluation.

5.3.1 Action Space

Table 1 provides a summary of the action space for the Red and Blue agents.

The Red attacker has a list of discrete actions that are based on tools and ex-

ploits found in the Metasploit framework. They can scan subnets to find the

IP addresses of reachable hosts, and scan individual devices for open ports and

services. The information gathered is typically limited to what the Red agent

could collect using scanning tools such as NMap.

Using this information, the attacker can take actions to exploit a target host.

These exploits are only successful if the Red agent has identified a suitable vul-

nerability and can match the correct parameters for the exploit. A successful

exploit will give the Red agent either User or Root credentials on the target. Red

can also escalate privileges on a target in order to transition from User to Root

credentials.

55

Red Action Space Blue Action Space

Discover Remote Systems. Discovers hosts/IP
addresses in a subnet through active scanning
tools.

Analyze Host. Collect information on a specific
host to identify if Red is present on the systems.
Receive information on any malicious processes,
files, and services to identify if Red has Root or
User privileges.

Discover Network Services. Discover responsive
services on a selected host by initiating a connec-
tion with that host. Receive ports and service
information.

Remove. Removes Red from a host by destroy-
ing any known malicious processes, files and ser-
vices. This action attempts to stop all processes
identified as malicious.

Exploit Network Services. Exploit a known vul-
nerable service on a target system. Requires the
IP and service port. Establishes user privileges
on the target system.

Restore. Restores a system to a known good
state. This has consequences for system avail-
ability.

Escalate. Escalate to admin privileges on a com-
promised machine.

Impact. This action can only be used once Red
has admin privileges on the target server. This
action indicates that Red has completed their
lateral movement and is ready to achieve their
objective on the target.

Table 1: Action Space Summary.

The Blue agent actions are limited to simple actions that a network analyst

could take to protect a network during a security incident. This includes Analyz-

ing hosts to identify a Red foothold, removing users from hosts if they appear to

be compromised, and restoring devices to a clean image to ensure Red is off the

machine. The restore action is undesirable for Blue because restoring a machine

would impact regular network users. A penalty for this action was included in

the reward function to measure exactly how important this priority is for the

Blue agent.

Both Red and Blue actions have varying probabilities of success. For many

actions, the likelihood of success depends on the host, because the host image

determines what vulnerabilities can be exploited and how easily Red can establish

a foothold on the device. For example, the remove action has a very small chance

of success on the Op Server, forcing Blue to rely on the restore action to disrupt

Red on the server, but removing has a high chance of success on the Op Host.

As well, when Red exploits a User host it will very often (but not always) gain

Root access immediately, without needing to escalate privileges, but this almost

never occurs on Ops devices.

Finally, Blue does receive certain information passively without the need to

analyze a host. Blue receives an alert whenever Red scans a host for open ports,

or when Red exploits a vulnerable service. The information that Blue receives

56

passively is meant to model the alerts that would be received by an endpoint

monitoring tool, such as Velociraptor. Any information gathered passively or

with the analyze action is encoded in Blue’s observation space.

5.3.2 Observation Space

The Competitive Wrapper converts the raw observation data into an observation

vector that is usable by game playing agents. The raw observation from the

environment is a python dictionary describing all the known information about

every known host, and the observation vector is a series of bits that represent the

key information for that observation state. This process is crucial to the successful

convergence of the learning agents, because this observation vector will also serve

as the input tensor for the actor neural network that will determine the agent’s

policy. The Red and Blue observation vectors in the Competitive Wrapper are

specific to the scenario used in this evaluation, and these vectors would need to

be modified to correctly represent a different game design.

The Blue observation vector includes 5 bits to represent the state of each host

(excluding the User0 and Defender hosts, since these are out of play). Each bit

is a flag :

1. This device is not compromised.

2. This device was exploited last timestep.

3. The status of this device is unknown (the device has not been analyzed or

restored).

4. Red has at least User privileges on this device.

5. Red has Root privileges on this device (device was analyzed).

Finally, the Blue observation vector also includes a 13 bit sequence to indicate

how many timesteps are remaining in the scenario (from 12 to 0). An example of

a complete Blue observation vector is shown in Figure 10. This is an observation

returned by the Competitive Wrapper for turn 9. In this scenario, Red has

previously established Root privileges on the User2 and User3 hosts, and has just

exploited the Op Server. Blue has not analyzed either User host, so it is not

known if Red has escalated beyond User privileges on these devices:

57

Figure 10: Labeled Example of a Blue Observation Vector.

Note that this observation vector does not provide a complete picture of the

true state of the environment. It only encodes that information that the Blue

agent has gathered. Blue receives some information passively each timestep, but

detailed information about the state of a host requires the analyze action. For

example, the Blue agent is alerted whenever a Red agent exploits a device based

on the activity that is seen on the open port, but after this, Blue cannot passively

observe what Red does on that device.

The only way Blue can be sure of the status of a compromised host, is to

either analyze the host to learn Red’s privileges, or restore the host to be sure

that it is clean. Either of these actions requires a valuable timestep, during which

Red will continue to attack the network.

The Red observation space is a little more complex. First, Red uses five bits

to track which devices it has scanned. A device can only be scanned once Red

knows its IP address. Red learns the User IP addresses by scanning the User

Subnet, and as part of the scenario, Red discovers the Operations IP addresses

once it has Root access to any User device.

Next, Red uses three bits to represent its privileges on any device. Either it

has User, Root, or No privileges. Red uses 2 bits to track its progress scanning

each subnet: if the IPs in a subnet are known, and if any device has been scanned

for vulnerable ports. Red also uses 2 bits per subnet to track its highest level of

access in that subnet: a bit for User access and another for Root access. Red uses

a single bit to track whether it is currently impacting the Op Server. Finally,

Red has 13 bits to track how many timesteps are remaining (from 12 to 0).

An example of a Red observation is shown Figure 11. This is extracted from

the exact same simulation as the Blue vector shown in Figure 10 after the ninth

timestep where Red has just exploited the Op Server.

58

Figure 11: Labeled Example of a Red Observation Vector.

The Red agent has a much clearer picture than Blue as to the true state

of the environment. There is very little Blue can do that Red cannot observe,

because Red will see if it loses any privileges. However, Red does not know the

IP addresses or vulnerable services of any device at the start of a scenario. Red

must learn these by scanning devices on the network. This observation vector

encodes whether that information is known or not, in order to determine what

action Red should take next.

5.4. Fictitious Play Algorithm Implementation

Agents were trained through fictitious play to compete in this scenario. First,

to train a minmax Blue policy, and then to train a minmax Red policy. In both

cases, the Red and Blue agents were initialized with random policies (generation

0). Then, each iteration of the algorithm produced a new generation of policies.

Each generation, the Blue agent would use opponent sampling to optimize

against the existing pool of Red policies, and the resulting Blue policy would be

added to the Blue agent pool. Then, a new Red agent would be created and

trained against the existing Blue agent pool. The distributions that were used

for opponent sampling depended on which minmax policy was being solved, and

these distributions were explained in greater detail in Chapter 4.

Each new generation produces a policy that optimizes its average score against

the entire existing pool of opponents. Then, the opponent’s best-response to that

policy is trained and added to the pool. Fictitious play should continue for enough

generations that the opponent’s best-response scores stagnate near an asymptote.

This indicates that the learning agent is producing near-optimal policies each

generation, since new best-responses are being held near the minmax score. This

occurs because each best-response policy that exploits the latest generation is

used to train future generations towards a minmax policy.

For example, early in training, if no Red agent has targeted the Op Host yet,

then no existing Blue policy will have learned to defend the Op Host. A new

59

Red best-response might discover that the best way to exploit the latest Blue

policy is to target the Op Host. However, every subsequent generation of Blue

agents will now learn from this Red policy and learn that the Op Host is trivial to

protect with a remove action. Future Red agents will find that targeting the Op

Host is less viable with each generation, because now the emerging Blue agents

are trained to protect it, so these future Red agents optimize by finding other

exploitable behavior.

This process must occur for every combination of actions that would exploit

the existing agent pool. A diverse opponent pool ensures that later generations

will experience every relevant branch of the game tree, and will never end up in

a game state that was not seen during training and could exploit their policy.

For a relatively simple game such as this, the fictitious play was continued

for 100 generations. By observing the policies discovered by these agents during

training, it was clear that by 100 generations, all the most recent agents were

producing similar stochastic policies. There were exceptions where the learning

agent or opponent got stuck in a suboptimal local minima during training, but

the majority of later generations followed the same priorities of eligible actions.

Each new generation was trained using a PPO algorithm from RLLib, an

open-source reinforcement learning library from the Ray framework [44]. RLLib

allows parallel sample collection during training. Using the Ray framework, it

creates multiple ”workers” that each play sample games in the environment.

During a single iteration of training, workers repeatedly play games and collect

samples until their total number of samples is enough for one complete batch.

That batch is used to update the current policy via PPO, and the new policy is

pushed to the workers. For this experiment, 40 Red workers and 40 Blue workers

were used.

Two new OpenAI gym environments were designed to be compatible with

the PPO algorithm included in RLLib: a BlueTrainer and a RedTrainer. Each

training environment contains its own CybORG simulation as an attribute, which

uses the competitive wrapper. Because Red and Blue each used 40 workers in

parallel, this meant that 80 CybORG simulations were used simultaneously in this

experiment. Increasing the number of workers any further caused the program

to hang when it was run. 40 was the maximum number of parallel workers for

the hardware used in this experiment.

RLLib require that the BlueTrainer and RedTrainer environments included

a Step method and a Reset method, which will be called by the PPO algorithm

during training. This Reset method is where opponent sampling occurs. At the

start of each new game, the Reset method is called within the training envi-

60

ronment to generate a fresh scenario. Then, the environment checks how many

policies currently exist in the opponent pool. It randomly selects one of these

opponents, and stores that policy in the training environment as an attribute.

During the Step method, this sampled opponent policy will be used to deter-

mine what action is taken by the opponent. The learning agent is never aware of

which opponent policy it is currently playing against, and so the PPO algorithm

optimizes for performance against the entire opponent pool.

A generation of training ends when the learning agent is no longer improving:

it has reached the best possible performance against the existing opponent pool.

When the learning agent has finished converging, the new policy is saved as an

RLLib checkpoint in a new directory for that policy. A pool size file is also

updated to indicate that a new policy has been added to the pool. When a

worker starts a new game, they read the pool size file for the opponents pool and

then restores the saved checkpoint for the sampled opponent. The complete file

structure used for this fictitious play implementation is shown in Figure 12.

Figure 12: File Structure for Fictitious Play Implementation for CybORG.

So far, this chapter has described the key concepts used in this fictitious play

implementation, and shown an overview of the project structure. In addition to

the small changes made to the EnvironmentController.py and Results.py files,

many brand-new processes were designed to facilitate this experiment. The envi-

ronment wrapper was built by using the Blue Table Wrapper (included with the

CybORG environment) as a template. This new competitive wrapper incorpo-

rates the new observation vectors for both agents, and includes a new method to

resolve their discrete action choices.

The BlueTrainer and RedTrainer environments, included in environments.py,

61

were designed to train new policies for this scenario by using the RLLib PPO

algorithm and interacting with the competitive wrapper. In addition to these

Trainer environments, there are also the BlueOpponent and RedOpponent envi-

ronments, which are used to create best-response opponents during the fictitious

play loop. Finally, the DedicatedBlue and DedicatedRed environments are used

to produce the dedicated opponent policies used during the validation. The only

differences between the Trainer, Opponent, and Dedicated environments are the

opponent sampling pools and distributions that are used during training.

The opponent sampling framework that is used by these environments was also

designed from scratch for this experiment. Each generation, the newly trained

actor and critic networks are saved in a directory that represents that agent’s

policy pool. Then, the pool size file is updated so that any other environment

that samples opponents from this pool can check the number of policies that it

currently contains.

To conduct the experiment, the experiment.ipynb notebook trains the com-

petitive agents and the best-response opponents, and then calculates the ex-

ploitability for every competitive policy relative to the other policies in their

pool. The validation.ipynb notebook trains four dedicated opponents to play

against each of the top performing competitive policies, in order to complete

the validation. Finally, score matrix.ipynb displays the expected scores between

competitive, dedicated, and random agents by having each combination of agents

play 1000 games to determine their average outcome.

Throughout the experiment, sample games between agents are used to exam-

ine the behavior of newly trained policies. The function to print a sample game

is included in environments.py. This function can reveal each agent’s action-

probabilities for different observed states, and is crucial to examine why the

optimal policies are able to achieve better scores in this scenario.

Table 2 shows the values for some parameters that were used during training.

This table is limited to the key parameters that have been discussed in this chap-

ter and in Chapter 4. Additional design details, experiment parameters, and more

can be found in the source code for this project at https://github.com/RMC-

AIvsAI/CybORG-Competitive. The remainder of this chapter will discuss the

outcome of this evaluation.

62

Fictitious Play Parameters

Generations 100

Tolerance 3

Best-Response Mixing Parameter 0.9

Minmax Evaluation Games 50

PPO Parameters

Hidden Layers 2

Activation Function tanh

Units per Hidden Layer 256

Batch Size 61440 (5120 Games)

Learning Rate 1e-3

Discount Factor 0.99

Parallel Workers 40

Table 2: Key parameter settings that were discussed in this thesis. Additional param-
eters and configuration settings that were used in this experiment can be examined with
the source code at https://github.com/RMC-AIvsAI/CybORG-Competitive.

5.5. Results and Analysis

Training was run on a single machine with an NVIDIA Quadro P2000 GPU. One

generation typically took about 30 minutes of training to produce a new pair

of Blue and Red policies. Training a new Blue competitive policy took between

22 and 62 iterations of training, whereas training a new Red competitive policy

ranged between 27 and 60 iterations.

One single iteration updates the policy using a batch of 61440 samples. At 12

timesteps per game, 5120 games were played each iteration. Therefore, we can

observe that a new Blue policy required at least 113k games to converge, and a

new Red policy required at least 138k games.

Policies used separate actor and critic neural networks. Each of these con-

sisted of two fully-connected hidden layer, with 256 units and tanh activation

functions. Both used multi-discrete input tensors to match the observation vec-

tors used by each agent, and the actor networks used a softmax output across

each agents action space. This architecture is shown in Figure 5.

63

5.5.1 Training Scores

The Blue minmax policy was trained first. 100 generations of policies were

trained, and the average score during the final batch of training was recorded

for every new generation. These training scores are shown in Figure 13. Exam-

ining these training scores gives a first indication that the agent policies have

converged on meaningful scores.

Figure 13: Training scores for fictitious play, solving for the Blue minmax policy.
Average scores are taken for each generation when that policy finished training.

The first generation for both Red and Blue was optimized against an untrained

opponent, so the scores from this generation are outliers compared to the rest

of the data. The first Blue generation achieved an expected score of 0.02, and

the first Red generation achieved an expected score of 56.20. These results are

approaching the minimum and maximum possible scores for the game.

The minimum score occurs because the Blue agent has learned to never use a

restore action, and the untrained Red agent is almost never able to exploit a User

host because it is selecting random actions. The maximum score occurs because

the Red agent has learned to reach the Op Server and impact as quickly as

possible, and the only trained Blue policy has not learned to take any mitigating

actions.

Both agents improved substantially in the first few generations of training,

as these agents converged on obvious policies that exploited their opponents by

exploring new branches of the game tree. After this, improvements across gener-

ations became much slower and less consistent.

64

The same general progression of scores can be seen when fictitious play is used

to solve the Red minmax policy, as seen in Figure 14. A key difference is that the

agents here have converged to different values. The Blue opponents here should

be held at or near the Red minmax score. Whereas, when the Blue competitive

policy was trained, the Red opponents in Figure 13 were held at or near the Blue

minmax score.

Figure 14: Training scores for fictitious play, solving for the Red minmax policy. Av-
erage scores are taken for each generation when that policy finished training.

The Red agent scores gradually decrease during training as the quality of

agents in the Blue pool increased. Conversely, Blue scores gradually increased as

new Blue policies were forced to compete with more performant Red agents. This

is true for both instances of fictitious play, regardless of which minmax policy is

being solved, which is why Figures 13 and 14 have similar shapes.

As training continues, new policies emerge with less and less variance between

them. Many policies in the later generations achieve similar scores using very

similar policies. This training state, where new agents are converging on the

same policies without an incentive to deviate, indicates a Nash Equilibrium.

The rate at which these scores converge decreases over time. This is partially

because there is gradually less room for improvement, but also because each

new policy added to the pool contributes less to new samples with each passing

generation. For example, at generation 10 a new Red opponent will contribute

to 10% of the samples used for training the next Blue Agent, but at Generation

50 a new Red policy will only be used for 2% of the samples. So even though

newer policies are better over time, they influence the existing pool less and less.

65

This is a limitation of uniform sampling, and possible alternatives to this will be

suggested for future work in Chapter 6.

This is also the most likely reason that the opponent scores appear to be more

volatile in both cases. Scores for the learning agent become relatively stable,

as each generation is trained against an opponent pool that is mostly the same.

However, the opponent scores continue to vary since each best-response is trained

against a specific policy. Even minor changes in a policy, such as the exact

distribution of probability between two state-actions, can have an effect on the

opponents best-response.

5.5.2 Discussion

Sample games were used to observe the learned policy of the competitive agents.

For brevity, these sample games are placed in Appendix A of this document, but

they will be referenced throughout the results.

The first interesting behavior observed in these games, is that the Blue agent

never prioritized the analyze action, and only ever used the remove action to

defend the Op Host. This is a great example showing how the optimal policies

can indicate problems with a scenario or environment. The information provided

by the analyze action is never useful to the Blue agent in this scenario. The

information that the competitive Blue agent receives passively is enough to make

informed decisions, without ever wasting a timestep on an analyze action.

Similarly, this indicates the issue with the remove action in this environment.

It can be seen during training that the remove action is selected any time the

Red Agent has exploited the Op Host, because it is effective at removing the

compromised User before Red can escalate to Root privileges on the machine.

However, the remove action had a very low probability of success when it was

used on any User host or the Op Server, which is why it is not a significant tool

used by the optimized policy.

Of the 16 discrete actions in the Blue action space, only 7 options were signif-

icant to trained policies: the restore actions for the 5 devices, the remove action

for the Op Host, or selecting a non-restore action. Since the Op Host was easily

defended, the trained Red agents learn to avoid it. The Blue agent policies seen

in sample games were typically distributions across all the non-restore actions,

except in the cases where a restore action was viable. For this reason, in Ap-

pendix A, the Blue policy is only shown if there was a non-zero probability of

selecting a restore action. Otherwise, the Blue policy was simply to never restore

a device for that state, and only the Red agent’s action had an effect.

The training scores for both instances of fictitious play suggest that the com-

66

petitive Red and Blue agents maintain different minmax scores, as expected. Red

opponents typically scored above 5 points against the optimized Blue agents, but

Blue opponents were typically able to hold optimized Red agents below 4 points.

The exact exploitability of either agent will be confirmed in the validation.

The expected score when two competitive agents play against each other

should land somewhere within this range. A dedicated opponent can reach the

minmax score, but only because doing so would be risky against other policies.

To explore this idea further, consider the sample game shown in Appendix A:

Sample Game 1. This game is between a Red and Blue policy that were each

trained through fictitious play.

For many states, Red will select a single viable action with over 99% cer-

tainty, and Blue will maintain a less than 0.1% chance of selecting any restore

action. However, these agents will instead use stochastic policies at crucial de-

cision points during the game, in order to be less predictable and increase their

average performance against the entire opponent pool.

The most obvious occurrence of this, that appears in almost every sample

game, is just after Red has exploited the Op Server. In Sample Game 1, Red

exploits the Op Server on turn 8, and both agents reach a key decision point. The

Red agent could gain two points by escalating privileges on the Server, which will

score a point now and another point next turn when Blue is forced to restore the

machine (to avoid a Red impact action).

The precise rules of the simulation become important here, because both

Blue and Red need to make their selection simultaneously each timestep, without

knowing the other’s action. This has an important implication, because the Blue

action resolves first every turn, and then the Red action resolves. This means

that, if on turn 9, Red tries to escalate privileges but Blue restores the Op Server,

Blue’s action will resolve first and Red will lose its foothold on the Server, causing

the privilege escalation to fail, and Red will have wasted a turn.

Early in training, Red best-responses do adopt this strategy of always trying

to escalate privileges in this situation. But as the Red opponent pool fills with

policies that always escalate the Op Server, new generations of Blue policies learn

to minimize the score by restoring the server as soon as its exploited. Red wastes

their privilege escalation action, because it no longer controls the server.

Blue is equally exploitable with this deterministic policy, because new Red

policies stop trying to escalate privileges, and defeat the new Blue policies by

exploiting the server every turn, forcing Blue to restore every single turn. These

deterministic policies form a strategic cycle, shown in Figure 15, where any de-

terministic policy can be exploited by certain opponents.

67

Figure 15: The open ended learning problem for this scenario. Any deterministic policy
can be exploited. Only an optimal stochastic policy is non-exploitable.

Fictitious play, with opponent sampling, addresses this problem and forces

new policies to become less exploitable across training. The later generations con-

verge on policies that mix these strategies stochastically, they no longer converge

on any one deterministic policy. Once the opponent pool has enough variety, new

agents converge towards multiple viable strategies proportional to how effective

those strategies are against the entire opponent pool.

This section has discussed a key decision point after Red exploits the Op

Server, but this is just one example from this scenario. A similar strategic cycle

occurs on a User host after Red has exploited it. Even though the User hosts

are only worth 0.1 point each, Blue can delay Red reaching the Op Server by

guarding these hosts. As a result, Blue will usually have some probability of

restoring a User host after Red has exploited it. This forces the competitive Red

agent to mix between escalating privileges (required to learn the IP address of

the Op Server) or scanning or exploiting another User host, because either choice

would be predictable on its own.

The final decision point occurs when Red is selecting which User host to

scan and exploit. This probability distribution varied widely across different

policies, but in later generations Red typically maintained a non-zero probability

of selecting each host. Red’s decision here does not effect the exploitability of

either agent. The difference between User hosts is arbitrary, because whichever

host Red chooses to scan and exploit, Blue is alerted and can take actions to

protect the target host. Most likely, Red converges to a random distribution

across which hosts to target, because all options are equally viable.

68

The actions of the Red and Blue agents at these three decision points typically

shape the entire game tree for a single scenario. For all other observed states,

the agents are consistent with just one optimal action. By observing the learned

behaviour of these optimized agents, through sample games, it is clear why there

was a substantial initial improvement as agents converged on strong deterministic

policies, and then a much longer gradual improvement as agents became less

exploitable by stochastically mixing between viable strategies.

It is also important to acknowledge that the scores did not improve consis-

tently every generation. Although the learning agent’s scores tended to become

smaller over time, this was not the case in every generation. This is a reminder

that these policies are approximations, and each new policy is relying on other

approximations to train. The improvement across generations might have been

more consistent with even larger batch sizes, more tolerance, and perhaps other

combinations of neural network hyperparameters, all of which would have re-

sulted in longer training time. Other possibilities for quality control features,

such as forward searches and non-uniform opponent sampling, will be discussed

in the final chapter of this thesis.

Even if they were not always consistent, the convergence in Figures 13 and 14

shows that the agents are objectively improving against the opponent pool. This

is the expected behavior for agents converging towards optimal performance.

However, the gradual improvement against the opponent pool does not prove

that they have converged on optimal policies. The research question still needs

to be answered: did fictitious play produce policies that accurately approximate

optimal play?

In the next section, the validation will determine if the exploitability of newer

generations improved over time, to see if the agents were objectively improving

their guaranteed scores against any opponent. This will confirm that the agents

are not converging towards an arbitrary score, but are indeed achieving the goal

of increasing minmax performance across generations.

5.6. Validation

5.6.1 Measuring Exploitability

The first component of validation involves confirming that newer generations are

gradually less exploitable. This is perhaps the most important component of the

experiment, because it will show that the improvement in performance against the

opponent pool is not arbitrary, and that the agents are improving their minmax

performance throughout training.

69

To measure a policy’s exploitability, the worst-case performance for every

policy must be found first. The worst-case performance is the maximum score

that a Blue policy allows, and the minimum score that a Red policy achieves.

Recall from Equation 7 that this is required to calculate exploitability, since

exploitability measures the difference between this score and what the agent could

have achieved by following an optimal policy. Equation 8 shows the process for

finding this worst-case score. Each competitive policy played 50 sample games

against every policy in the opponent pool. This determined its expected score

against every available opponent. The worst-case score for that generation is

equal to the worst expected score against any opponent. In other words, a Blue

agent’s maximum expected score across all possible opponents, or a Red agent’s

minimum expected score across all possible opponents. This is the individual

minmax score for any policy.

E[G | πblue, πred
∗] = max

πred

∑50
k=0G(πblue, πred)

50

E[G | πblue
∗ , πred] = min

πblue

∑50
k=0G(πblue, πred)

50

(8)

Once the every Blue agent’s maximum expected score has been found, and ev-

ery Red agent’s minimum expected score has been found, the relative exploitabil-

ity is calculated using Equation 9. Since the true game theory optimal policy is

unknown, the Blue and Red agents with the best minmax scores are used as op-

timal (benchmark of 0 exploitability) and the exploitability of every other agent

it calculated relative to these scores.

expl(πblue) = E[G | πblue, πred
∗]− E[G | πblue

∗ , πred
∗]

expl(πred) = E[G | πblue
∗ , πred]− E[G | πblue

∗ , πred
∗]

(9)

Once the relative exploitability of every competitive policy is known, their ex-

ploitability across training is plotted in order to observe if there was any trend.

The agents are converging towards optimal play if the Blue agents are gradu-

ally learning to lower the maximum Red reward, and Red agents are learning

to increase their minimum guaranteed reward. This can be confirmed using a

regression line, in both cases, the exploitability should trend towards 0. The rel-

ative exploitability for Blue agent policies for each generation is shown in Figure

16.

70

Figure 16: Each Blue generation’s relative exploitability (left). This data is shown
again with the first five generations dropped (right) to adjust the scale and show the
progression of the later generations more clearly.

Plotting the relative exploitability of Blue policies reveals that there was a

dramatic improvement in the first few generations, then a much more gradual

improvement into the later generations. By generation 80, most new policies

seem to be approaching 0 exploitability. It would appear that this is where

a Nash Equilibrium occurred, where each new Blue agent is producing similar

policies and the Red best-response can only approximate the minmax score each

generation. The top performing Blue agent actually occurs at generation 82, with

a minmax score of 5.39.

This proves that the Blue agents are indeed converging towards optimal poli-

cies through fictitious play, as their minmax score improves and they become less

exploitable across generations. The relative exploitability of Red agent policies

is shown in is shown in Figure 17.

Figure 17: Each Red generation’s relative exploitability.

71

Red agent performance is much less consistent across training, although the

regression line does still confirm a general downward trend. The scale on this

graph, when compared to the Blue agent, is crucial to understanding why this

occurs. Although the exploitability of Red agents appears to be far more volatile

across generations, consider that every policy falls within a range of just two

points. By observing sample games from the early generations, it is clear that a

Red agent can score very well by simply selecting actions to move directly to the

Op Server and exploiting any device that is restored by Blue.

Like the Blue agent, the Red agent can reduce its exploitability by adopting

non-predictable behavior and using a stochastic strategy at key decision points,

but unlike the Blue agent, this only results in a marginal improvement for Red.

The Blue and Red agents were trained using the same PPO network architectures

and hyperparameters. Both would occasionally converge on local minima that did

not represent their optimal policy during an individual generation. Based on some

of the (relatively) high exploitability that still occurs in late Red generations, it

would appear that the Red agent is more likely to converge on a local minima in

this game design.

Regardless, and most importantly, the Red agent does also demonstrate a

gradual decrease in exploitability across training, as shown by the regression line.

The top performing Red agent occurs at generation 72, with a minimum expected

score of 3.97. It is possible that additional generations would have gathered more

consistently at the minmax score with additional training. Although these results

are less dramatic than the improvement shown by the Blue agents, the Red agents

are also converging towards the optimal minmax policy.

5.6.2 Minmax Evaluation

The next step in validation is to confirm exactly how accurately each agent has

approximated a non-exploitable policy. To do this, the most performant Red and

Blue agent policies are selected, based on their scores in the minmax evaluation.

These are Blue agent 82, whose highest expected score across every Red oppo-

nent was 5.39, and Red agent 72, whose lowest expected score across every Blue

opponent was 3.97. These two policies will be known as the competitive policies

for the rest of the validation, because they represent the closest approximations

of optimal policies that were produced by fictitious play.

These optimal policies will be evaluated against a dedicated opponent to

measure their true minmax score. To do this, new dedicated opponents will be

trained against each competitive policy using single agent RL. If the competitive

agents are precisely optimal, then a dedicated opponent should only be able to

72

match their minmax scores. But if the agents are non-optimal then it should

be trivial for a dedicated opponent to lower the Red agents score, or score more

points against the Blue agent. This is because these dedicated agents are not

trained against a pool of opponents, they are optimizing in a static environment

where their only opponent uses a competitive policy.

Each dedicated opponent was trained for 100 iterations, using the same PPO

algorithm and hyperparameters that were used for each generation of fictitious

play. Recall that each point on the training graphs in Figures 13 and 14 repre-

sented the score of a policy that had finished converging, and that each of these

individual policies converged in no more than 62 iterations of training. 100 itera-

tions were used here to show that the dedicated opponents could not improve any

further. Figure 18 shows the training scores for four separate dedicated agents

that were trained in this way.

Figure 18: Dedicated Red opponent’s average score each iteration, when training
against the Competitive Blue agent, across four separate attempts.

The competitive Blue agent is able to hold the dedicated Red opponent to

a score of 5.36, the policy that achieved this score is used as the dedicated Red

opponent for the remainder of the evaluation. The true exploitability of the com-

petitive Blue agent is only 0.03 more than the exploitability measured against

73

the opponent pool. Note that the training scores of the Red agents occasionally

dip when they stagnate at the minmax score. This demonstrates the forgetting

problem described in Chapter 4, and it is likely a consequence of hyperparam-

eters that force the network to learn too quickly. A slower learning rate with

a reduced clipping parameter would likely address this problem, but this would

also drastically slow down training. Regardless, the learning agent recovers from

any forgetting incidents in every attempt.

The behavior of the dedicated Red agent can be examined through sample

games to see how it achieved this score. An example game between the compet-

itive Blue agent and the dedicated Red opponent can be found in Appendix A

- Sample Game 2. The most notable difference between this Red opponent and

the competitive Red agent, is that this dedicated opponent has a deterministic

policy in almost every state.

The dedicated opponent was trained using single-agent RL to defeat a single

policy, and therefore, it no longer benefits from being unpredictable at key deci-

sion points. Instead, it has converged on the actions that are the ideal responses

to the most likely Blue actions in every state. This makes the dedicated Red

opponent a worst-case opponent for the competitive Blue policy. However, this

also means the dedicated Red opponent would also be much more exploitable

than the competitive Red policy.

A similar outcome is observed as the dedicated Blue opponents are trained

against the competitive Red agent in Figure 19.

74

Figure 19: Dedicated Blue opponent’s average score each iteration, when training
against the Competetive Red agent, across four separate attempts.

The dedicated Blue opponent is able to hold the competitive Red agent to a

maximum expected score of 3.97. This score exactly matches the expected ex-

ploitability from the evaluation. It relies on many of the same strategies as the

competitive Blue agent, but no longer benefits from any unpredictable behavior,

and so it learns to hold the competitive Red agent to the minmax score. An ex-

ample game between the competitive Red agent and the dedicated Blue opponent

is found in Appendix A - Sample Game 3.

The behavior of these two dedicated opponents confirm that the competitive

agents have correctly identified the correct set of actions for every state they

encounter. They correctly distribute their action-probabilities at the key decision

points where it is ideal to adopt a stochastic strategy, instead of a deterministic

one. The competitive agents have correctly identified the viable set of actions for

every state, with relatively low margin of error in their expected exploitability,

confirming that they are accurate approximations of an optimal policy.

75

5.6.3 Expected Reward Comparison

For the final phase of validation, the expected score for every pair of competitive,

dedicated, and random agents were compared. The expected scores were gathered

by having each pair of agents play 1000 games and taking their average score.

These scores are shown in Table 3, and confirm that the scores seen during

training were accurate. They also show each agent’s utility against an opponent

selecting random actions.

Competitive Red Dedicated Red Random Red

Competitive Blue 4.79 5.38 0.03

Dedicated Blue 4.02 4.98 0.03

Random Blue 15.43 12.24 4.06

Table 3: Expected Scores between agents used in this experiment.

The expected score between a Blue and Red agent selecting random actions

is about 4.06 each game. It is very unlikely for the random Red agent to score

any points at all against a Blue agent. A Red agent in this scenario has 19

discrete actions to select from. To compromise a User host and score just 0.1

point it needs to: scan the User subnet, scan a User host, exploit that User host,

and possibly escalate privileges, in that order within 12 timesteps. The reason

the expected score is about 4.0, is because the random Blue agent is choosing a

restore action and taking a 1 point penalty 4 times each game on average.

It is interesting to note that the Competitive Red Agent outperforms the

Dedicated Red agent by over 3 points against a Random opponent. Even though

both are conservative scores, this result is another consequence of the dedicated

Red agent being trained for just one specific opponent.

The 0.03 expected score that the trained Blue agents receive against a ran-

dom Red opponent could be due to the Red agents rarely selecting a correct

combination of actions to compromise a User host. But more likely, this indi-

cates that the Blue agents still have a small probability of incorrectly selecting a

restore action once every 30 to 40 games. This is a consequence of every policy

being neural network approximations: no action probability is every truly zero.

Even the competitive Red agent only scans the User subnet on 99.98% of the

time on the first turn of the game. As previously discussed, more training time

and larger batches could have likely improved this accuracy even further, and

the final chapter of this thesis will discuss certain quality control techniques that

could improve this accuracy in future research.

76

5.7. Evaluation Summary

Through this experiment, it is confirmed that fictitious play can be used in the Cy-

bORG environment to approximate the optimal policies for game-playing agents.

The trained agents are able to identify the set of viable actions at each key

decision point in the game tree, by using policies that were developed through

fictitious play. This, more than any other outcome, demonstrates the potential

for competitive RL in cyber incident simulation environments.

The exploitability of agents was shown to gradually decrease across train-

ing for both the Red and Blue agents, but these improvements were not always

consistent every generation. With more generations of training, lower learning

rates, or larger batch sizes, the new generations of agents could likely have shown

more reliable improvement with each generation. However, this would have dras-

tically slowed training, and the policies trained here did still correctly converge

to approximate the optimal minmax policies.

Finally, a measurement of the expected score between trained agents showed

that no neural network approximation trained in this way is 100% accurate. Even

Red’s first move of the game, which should be the same every time, has an error

of 0.02%. The sample games included in Appendix A almost certainly leave

room for small probability optimizations at the key decision points, that would

marginally improve the minmax scores that were approximated here. The final

chapter of this thesis will recommend some quality control techniques that could

improve this accuracy even further in future research.

77

6. Conclusion

This chapter will conclude the thesis by emphasizing what this research con-

tributes to the ACO domain. As well, it will highlight some open research ques-

tions that were encountered during this process and could be the aim of future

work in the domain.

6.1. Thesis Contribution

This thesis is exploratory research to examine whether proven competitive RL

algorithms could be equally effective in simulated ACO environments. The eval-

uation included in Chapter 5 provides a proof of concept that competitive RL,

specifically fictitious play, could be a tool for finding game theory optimal policies

in the eligible environments.

However, this experiment is limited by the realism of available ACO simula-

tion environments. The environment examined in this thesis, like all open-source

ACO environments at this time, is not realistic enough to contribute any mean-

ingful tools to cybersecurity. An AI trained using RL in these environments could

not assist with any real-world task, because many essential details for enacting

these policies in the real world have been abstracted away in ACO simulators.

This is precisely why ongoing research for more realistic ACO simulations is

so important. Existing literature, some of which was discussed in Chapter 3, has

shown encouraging results to suggest that RL could be viable for training an AI

to assist in the duties of a cybersecurity analyst defending a specific network.

Like any RL application, the potential for these tools can only be truly explored

once a sufficiently realistic ACO environment is available for simulation, such

that any learned policy can be used to take action on a real-world network.

This thesis has no implication for existing cybersecurity tools or practices,

but it does contribute to the continued development of realistic ACO environ-

ments, with the hope that these environment will eventually be accurate models

that are used for developing cybersecurity tools. It contributes to the continued

development of these environments in two important ways.

First, it provides a methodology that can still serve as a foundation for com-

petitive RL in more realistic environments. The fictitious play design used in this

thesis was based on existing competitive applications in other domains. Similarly,

many of the details discussed in the methodology in Chapter 4 will stay the same

regardless of environment complexity. In particular, the cycle of learning-from

and contributing-to separate Blue and Red agent pools during opponent sampling

78

is irrelevant to the environment’s realism, and this thesis has shown it is effective.

As well, using exploitability to show convergence of ACO agents towards optimal

policies is a new idea introduced in this thesis. This is a convenient metric to

compare the quality of different policies in competitive ACO environments.

Second, this thesis provides a means for finding the optimal policies for other

environments and scenarios that are available today. The optimal behaviors of

competitive agents reveal insights about the realism of that environment and

suggests priorities for continued development. Do the optimized agents match

the expected behavior of a human analyst? Or, do they exploit some unrealistic

feature of the environment? If optimized agents rely heavily on an unrealistic

abstraction this suggests a priority for future development, because adding addi-

tional realism elsewhere in the environment will not change how learning agents

abuse the most egregious flaws.

The competitive policies trained in Chapter 5 do abuse a number of abstrac-

tions in the CybORG environment to arrive at their optimized policies. Perhaps

the most egregious, is that the CybORG environment models a cyber incident as

taking place in a fixed number of timesteps. The competitive agents have learned

behaviors that take advantage of the abstract nature of this scenario.

For example, a Red agent in the CybORG environment might choose to “ex-

ploit” a host that it already controls, and this is a viable strategy because the

Blue opponent might simultaneously choose to “restore” the machine on the same

timestep. Because the Blue action resolves first, Red maintains a foothold on the

machine. Agents also rely on the termination time for the scenario. The Blue

agent might freely allow Red to escalate privileges in the final timestep if this

does not change the game’s outcome.

Any Markov Game requires some sort of guaranteed termination condition for

RL to take place. Otherwise, the estimated value of any state could be infinite:

a learning agent could maximize its return by choosing to never terminate a

scenario. Therefore, the termination conditions during training are as important

as the reward function for shaping an agent’s learned behavior.

A sufficiently motivated attacker could maintain a foothold for weeks or longer

before attempting a single tactic. Or, that attacker could attempt to complete

their cyber killchain in the span of hours. In modelling more realistic environ-

ments, developers will be forced to commit to a timescale that is less nebulous

than “timesteps”. This decision will require a more precise goal for the learning

agent, that should be rooted in a well-defined real-world application for a trained

AI.

The CybORG environment does not attempt to definite the timescale for the

79

simulated cyber incident, but in a more realistic environment, the specific appli-

cation and scope of the AI will need to be more defined. The results of this thesis

demonstrate why this would be a worthwhile priority for future development: the

optimal policies of agents in this environment rely heavily on the discrete time

model in a way that does not reflect real-world behavior.

6.2. Future Work

There are two broad categories of obvious potential research to build on this the-

sis: Exploring competitive RL in more complex and realistic ACO environments,

and exploring more elegant competitive RL designs to improve on this algorithm’s

performance.

The methodology included in Chapter 4 is designed to support fictitious play

in any eligible ACO environment. Any attempt to use fictitious play in an alter-

native ACO simulator, or even in a future release of CybORG, would be a useful

contribution to the domain. The scenario in this thesis was intentionally simple as

a proof of concept, even attempting this exact methodology in the same environ-

ment but with a more realistic network topology would help explore the potential

and limitations for this algorithm. Comparing alternative scenarios (such as dif-

ferent network topologies and observable features) or alternative game designs

(such as different reward functions and termination conditions) could provide a

more nuanced critique for this application of fictitious play.

This thesis included a design for fictitious play in a relatively simple ACO

scenario. However, as ACO environments become more realistic and complex,

this design will almost certainly need to be adapted to rely on the less abstract

features of those environments. Some of these adaptations can be investigated

immediately. For example, the scenario used in this thesis included a simple

observation vector. The CybORG wrappers make it easy for a learning AI to

deduce whether a host was scanned, or targeted with an exploit. As well, when

Blue analyzes a host, it is given the true state of the Red agent on that host.

In this way, the game is played at an abstract tactical level. At the same time,

CybORG does simulate each agents lower-level activity, such as what exploit

was used on an available service with a known vulnerability. Future research

will need to consider what a viable observation vector will look like in a realistic

simulation, but the CybORG environment has enough details to explore more

detailed, low-level observation vector immediately.

More elegant competitive RL designs are equally important for continued re-

search in this domain. As discussed in Section 6.1, this research is primarily

80

meant to contribute to the continued development of more realistic ACO envi-

ronments. Many existing competitive RL applications for other domains include

quality-control techniques that ensure their computation time is spent efficiently.

These quality-control techniques will become especially beneficial, and perhaps

essential, in more complex ACO environments.

Perhaps the most obvious tool for a competitive AI (that was excluded from

this thesis) is a forward search. Many other competitive applications use policies

that are trained using fictitious play while employing some kind of forward search,

such as a Monte-Carlo Search Tree (MCTS), to improve their accuracy. A forward

search is, intuitively, how an agent spends time “thinking” about its next action

instead of immediately using the output of the actor network.

To conduct a forward search, the trained AI must maintain a local copy of

the simulation environment. Then, before committing to an action, it simulates

out many possible game trees from the current state to a predetermined depth.

This way, the agent is relying on value estimations at the depth of the search

tree, instead of estimating value at the current state. A forward search could

augment the algorithm from this thesis to improve the performance of a trained

competitive agent in an ACO environment. Suitable research could involve train-

ing optimized agents using fictitious play and then comparing their performance

with and without a search tool, in the most realistic available ACO simulation

environment.

Another potential technique to improve the quality of competitive agents,

or at least to reduce the time required to approximate the optimal policy, is

more intelligent opponent sampling. In this research, uniform opponent sampling

was used so that each new generation was trained against the average of all

past opponents. This ensured gradual convergence as each new generation was

encouraged to avoid the vulnerabilities of the previous generation, because of the

newest opponent in the opponent pool.

However, as noted in Chapter 5, newer generations had a reduced impact on

their existing pool over time. This is because, when using uniform sampling, early

generations have a significant impact on the existing pool, but later generations

only make a small change to the existing pool of policies. The scenario exam-

ined in this thesis was simple enough that uniform sampling could still be used

to arrive at an optimal policy, but it is feasible that a more complex scenario

(including another scenario in the CybORG environment) could not be solved

by this method of uniform sampling. This might occur if new generations were

having a negligible impact on their policy pools before a Nash Equilibrium had

been reached. Uniform sampling should still lead to the optimal policies after

81

an infinite number of generations, but it could be computationally infeasible in a

more complex ACO scenario.

More elegant sampling techniques have been used across a variety of compet-

itive applications to improve training speed and performance. The most effective

opponent sampling techniques are used today to optimize games, but these same

techniques will likely be equally important for realistic ACO simulations. Quality

based sampling is perhaps the technique that was cited most frequently during the

literature review in Chapter 3 for highly complex game environments. Historic

sampling is another option to ensure that new generations are trained against the

most performant opponents, and ensures that even late generations of training

have a significant impact on training future opponents. Any of these alternatives

would introduce a new variation of fictitious play for ACO, and would be valuable

research topics that provide another novel contribution to the domain.

6.3. Closing Remarks

This thesis provides a proof of concept that fictitious play can be used to solve a

simple cybersecurity scenario in the popular ACO simulation environment, Cy-

bORG. However, even CybORG is not nearly realistic enough for the trained

policies to be of any real-world use. The availability of sufficiently realistic train-

ing environments is the greatest challenge that prevents RL from creating ACO

tools today. The algorithm demonstrated in this thesis can be used to discover

optimal policies in eligible ACO environments. These optimal policies can sug-

gest priorities for future development, by revealing which abstract features an

optimized agent relies on the most.

Furthermore, this fictitious play algorithm can act as a foundation for solv-

ing complex scenarios in more realistic environments. When these environments

become available, fictitious play should be tested with other quality-control tech-

niques, such as a forward search and intelligent opponent sampling.

Competitive RL research is most often used to develop an AI that is highly

performant in some sort of classical game. Games make excellent demonstration

tools for these algorithms, but the value of this technology is in its potential to

solve real-world optimization problems. Cybersecurity and ACO are domains

where ongoing research in competitive RL could contribute to the development

of real-world tools in the future.

82

Bibliography

[1] C. Zhong, J. Yen, and P. Liu, “Can cyber operations be made autonomous?

an answer from the situational awareness viewpoint,” Adaptive Autonomous

Secure Cyber Systems, 2020.

[2] K. Kim, F. A. Alfouzan, and H. Kim, “Cyber-attack scoring model based on

the offensive cybersecurity framework,” Applied Sciences 11 no. 16, 2021.

[3] Mitre attck framework. (accessed: 22.03.2023). [Online]. Available:

https://attack.mitre.org/

[4] K. Zhang, Z. Yang, and T. Basar, “Multi-agent reinforcement learning: A

selective overview of theories and algorithms,” Handbook of Reinforcement

Learning and Control, 321-384, 2021.

[5] D. Silver et al., “Mastering chess and shogi by self-play with a general rein-

forcement learning algorithm,” arXiv:1712.01815, 2017.

[6] M. Moravcik, M. Schmid, B. Lisy, D. Morrill, N. Bard, T. Davis, K. Waugh,

M. Johnson, and M. Bowling, “Deepstack: Expert-level artificial intelligence

in heads-up no-limit poker,” Science 356.6337, 2017.

[7] A. Nguyen-Tuong et al., “Xandra: An autonomous cyber battle system for

the cyber grand challenge,” IEEE Security Privacy 16.2, 2018.

[8] L. Li, R. Fayad, and A. Taylor, “Cygil: A cyber gym for training autonomous

agents over emulated network systems,” IJCAI-21 1st International Work-

shop on Adaptive Cyber Defense, 2021.

[9] Caldera. (accessed: 01.04.2023). [Online]. Available:

https://github.com/mitre/caldera

[10] Microsoft. Cyberbattlesim. (accessed: 08.03.2023). [Online]. Available:

https://github.com/microsoft/CyberBattleSim

[11] A. Molina-Markham, C. Miniter, B. Powell, and A. Ridley, “Network envi-

ronment design for autonomous cyberdefense,” arXiv preprint, 2021.

[12] M. Standen, M. Lucas, D. Bowman, T. J. Richer, J. Kim, and D. Marriot,

“Cyborg: A gym for the development of autonomous cyber agents,” IJCAI-

21 1st International Workshop on Adaptive Cyber Defense, 2021.

83

[13] S. Vyas, J. Hannay, A. Bolton, and P. Burnap, “Automated cyber defence:

A review,” arXiv preprint arXiv:2303.04926, 2023.

[14] R. Sutton and A. Barto, Reinforcement Learning, An Introduction, 2nd ed.

MIT Press, 2020.

[15] K. Leyton-Brown and Y. Shoham, Essentials of Game Theory, a Concise

Multidisciplinary Introduction, 2008.

[16] C. Watkins and P. Dayan, “Q-learning,” Machine Learning 8.3, 1992.

[17] J. Schulman and Others, “Proximal policy optimization algorithms,” arXiv

preprint arXiv:1707.06347, 2017.

[18] D. Balduzzi and Others, “Open-ended learning in symmetric zero-sum

games,” International Conference on Machine Learning, 2019.

[19] P. Sun and Others, “A framework for competitive self-play based distributed

multi-agent reinforcement learning,” arXiv preprint arXiv:2011.12895, 2020.

[20] F. Timbers and Others, “Approximate exploitability: Learning a best re-

sponse in large games,” arXiv preprint arXiv:2004.09677, 2020.

[21] M. Zinkevich et al., “Regret minimization in games with incomplete infor-

mation,” Advances in Neural Information Processing Systems 20, 2007.

[22] G. Brown, “Iterative solution of games by fictitious play,” Act. Anal. Prod

Allocation 13.1: 374, 1951.

[23] J. Heinrich, M. Lanctot, and D. Silver, “Fictitious self-play in extensive-form

games,” International conference on machine learning, 2015.

[24] J. Heinrich and D. Silver, “Deep reinforcement learning from self-play in

imperfect-information games,” arXiv preprint arXiv:1603.01121, 2016.

[25] M. Jaderberg et al., “Human-level performance in 3d multiplayer games with

population-based reinforcement learning,” Science 364.6443, 2019.

[26] C. Berner et al., “Dota 2 with large scale deep reinforcement learning,” arXiv

preprint arXiv:1912.06680, 2019.

[27] T. T. Nguyen and V. J. Reddi, “Deep reinforcement learning for cyber secu-

rity,” IEEE Transactions on Neural Networks and Learning Systems, 2021.

[28] R. Elderman, L. Pater, A. Thie, M. Drugan, and M. Wiering, “Deep rein-

forcement learning for cyber security,” ICAART (2), 2017.

84

[29] J. Bland et al., “Machine learning cyberattack and defense strategies,” Com-

puters & security 92, 2020.

[30] X. He, H. Dai, and P. Ning, “Faster learning and adaptation in security

games by exploiting information asymmetry,” IEEE Transactions on Signal

Processing 64.13, 2016.

[31] Y. Han et al., “Reinforcement learning for autonomous defence in software-

defined networking,” Decision and Game Theory for Security: 9th Interna-

tional Conference, 2018.

[32] Mininet Project. Mininet. (accessed: 09.03.2023). [Online]. Available:

http://mininet.org/

[33] R. Maeda and M. Mimura, “Automating post-exploitation with deep rein-

forcement learning,” Computers Security 100, 2021.

[34] P. Speicher et al., “Towards automated network mitigation analysis,” Pro-

ceedings of the 34th ACM/SIGAPP symposium on applied computing, 2019.

[35] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,

and W. Zaremba. (2016) Openai gym. https://github.com/openai/gym. (ac-

cessed: 23.02.2023).

[36] “Cyber autonomy gym for experimentation challenge 1,”

https://github.com/cage-challenge/cage-challenge-1, 2021, created by

Maxwell Standen, David Bowman, Son Hoang, Toby Richer, Martin Lucas,

Richard Van Tassel.

[37] J. Schwartz and H. Kurniawatti, “Nasim: Network attack simulator,”

https://networkattacksimulator.readthedocs.io/, 2019.

[38] O. Vinyals et al., “Grandmaster level in starcraft ii using multi-agent rein-

forcement learning,” Nature 575.7782, 2019.

[39] Y. Seo. Laser tag pytorch nfsp. (accessed: 13.03.2023). [Online]. Available:

https://github.com/younggyoseo/pytorch-nfsp

[40] E. Steinberger, “Pokerrl,” https://github.com/TinkeringCode/PokerRL,

2019, (accessed: 30.03.2023).

[41] A. Goldwaser and M. Thielsher, “Deep reinforcement learning for general

game playing,” Proceedings of the AAAI conference on artificial intelligence.

Vol. 34. No. 02, 2020.

85

[42] J. Clark and D. Amodei, “Faulty reward functions in the wild,” Internet:

https://blog.openai.com/faulty-reward-functions, 2016.

[43] D. Roijers et al., “A survey of multi-objective sequential decision-making,”

Journal of Artificial Intelligence Research 48, 2013.

[44] E. Liang et al., “Rllib: Abstractions for distributed reinforcement learning,”

International Conference on Machine Learning, 2018.

[45] M. Foley et al., “Autonomous network defence using reinforcement learn-

ing,” Proceedings of the 2022 ACM on Asia Conference on Computer and

Communications Security, 2022.

[46] M. Andrychowicz et al., “What matters in on-policy reinforcement learning?

a large-scale empirical study,” arXiv preprint arXiv:2006.05990, 2020.

86

A. Sample Games

This appendix contains example games between trained agent policies. Each of

these games is referenced as part of the evaluation in Chapter 5. The three games

included here are labeled based on their corresponding policy from the evalua-

tion. The “competitive” agents are the Red and Blue policies generated through

fictitious play. The “dedicated” agents were trained using single-agent RL to

optimize against the competitive policies, as part of the experiment validation.

These games show the raw text file output for each game. When these samples

are created, they include:

1. The Blue agent action probabilities.

2. The Blue action that was selected.

3. The Red agent action probabilities.

4. The Red action that was selected

5. A table to show the new Red observation

6. The reward for that timestep,

7. The new score.

The Red agent action space contains 19 discrete actions, and for most timesteps

the majority of actions had a probability less than 0.02%. Rather than show the

full list of action probabilities for the Red agent, Red action probabilities are only

listed if they had at least a 1% chance of being selected.

As discussed in Chapter 5, it was observed that restore actions were the

only Blue actions that influenced the game progression. As a result, Blue often

maintained a 0% chance of selecting any restore action, and its action probabilities

were distributed among the remaining actions. If the Blue agent policy supported

a restore action, then a certain amount of probability would be allocated to that

action, and the remaining probability would still be distributed among the non-

restore actions.

For the sake of brevity, instead of printing an additional 16 lines for every

timestep, the Blue agent policy is only shown if there was at least a 1% chance

of selecting a restore action. Otherwise, the Blue agent action-probabilities and

the selected action are hidden, as neither impacted the progression of that game.

87

A.1. Competitive Blue versus Competitive Red

---- Turn 1 ----

Red Policy:

Red selects (’DiscoverSystems’, ’User’) with probability 99.98%

+-----------------+--------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-----------------+--------------+-----------------+---------+------------+

| 10.0.213.112/28 | 10.0.213.113 | UNKNOWN_HOST: 2 | False | None |

| 10.0.213.112/28 | 10.0.213.119 | User0 | False | Privileged |

| 10.0.213.112/28 | 10.0.213.120 | UNKNOWN_HOST: 0 | False | None |

| 10.0.213.112/28 | 10.0.213.121 | UNKNOWN_HOST: 1 | False | None |

+-----------------+--------------+-----------------+---------+------------+

Reward: +-0.0

Score: 0.0

---- Turn 2 ----

Red Policy:

(’DiscoverServices’, ’User1’): 88.57%

(’DiscoverServices’, ’User2’): 9.98%

(’DiscoverServices’, ’User3’): 1.39%

Red selects (’DiscoverServices’, ’User1’) with probability 88.57%

+-----------------+--------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-----------------+--------------+-----------------+---------+------------+

| 10.0.213.112/28 | 10.0.213.113 | UNKNOWN_HOST: 2 | False | None |

| 10.0.213.112/28 | 10.0.213.119 | User0 | False | Privileged |

| 10.0.213.112/28 | 10.0.213.120 | UNKNOWN_HOST: 0 | True | None |

| 10.0.213.112/28 | 10.0.213.121 | UNKNOWN_HOST: 1 | False | None |

+-----------------+--------------+-----------------+---------+------------+

Reward: +-0.0

Score: 0.0

---- Turn 3 ----

Red Policy:

Red selects (’ExploitServices’, ’User1’) with probability 99.65%

+-----------------+--------------+-----------------+---------+------------+

88

| Subnet | IP Address | Hostname | Scanned | Access |

+-----------------+--------------+-----------------+---------+------------+

| 10.0.213.112/28 | 10.0.213.113 | UNKNOWN_HOST: 2 | False | None |

| 10.0.213.112/28 | 10.0.213.119 | User0 | False | Privileged |

| 10.0.213.112/28 | 10.0.213.120 | User1 | True | Privileged |

| 10.0.213.112/28 | 10.0.213.121 | UNKNOWN_HOST: 1 | False | None |

+-----------------+--------------+-----------------+---------+------------+

Reward: +0.1

Score: 0.1

---- Turn 4 ----

Blue policy:

(’Restore’, ’User1’): 13.36%

Blue selects (’Analyse’, ’User3’) with probability 5.26%

Red Policy:

(’DiscoverServices’, ’User2’): 82.49%

(’DiscoverServices’, ’User3’): 9.65%

(’PrivilegeEscalate’, ’User1’): 7.61%

Red selects (’DiscoverServices’, ’User2’) with probability 82.49%

+-----------------+--------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-----------------+--------------+-----------------+---------+------------+

| 10.0.213.112/28 | 10.0.213.113 | UNKNOWN_HOST: 2 | False | None |

| 10.0.213.112/28 | 10.0.213.119 | User0 | False | Privileged |

| 10.0.213.112/28 | 10.0.213.120 | User1 | True | Privileged |

| 10.0.213.112/28 | 10.0.213.121 | UNKNOWN_HOST: 1 | True | None |

+-----------------+--------------+-----------------+---------+------------+

Reward: +0.1

Score: 0.2

---- Turn 5 ----

Red Policy:

Red selects (’ExploitServices’, ’User2’) with probability 99.88%

+-----------------+--------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-----------------+--------------+-----------------+---------+------------+

| 10.0.213.112/28 | 10.0.213.113 | UNKNOWN_HOST: 2 | False | None |

| 10.0.213.112/28 | 10.0.213.119 | User0 | False | Privileged |

89

| 10.0.213.112/28 | 10.0.213.120 | User1 | True | Privileged |

| 10.0.213.112/28 | 10.0.213.121 | User2 | True | Privileged |

+-----------------+--------------+-----------------+---------+------------+

Reward: +0.2

Score: 0.4

---- Turn 6 ----

Blue policy:

(’Restore’, ’User1’): 10.92%

(’Restore’, ’User2’): 22.88%

Blue selects (’Analyse’, ’Op_Server0’) with probability 7.17%

Red Policy:

(’PrivilegeEscalate’, ’User1’): 90.81%

(’PrivilegeEscalate’, ’User2’): 8.89%

Red selects (’PrivilegeEscalate’, ’User1’) with probability 90.81%

+-------------------+--------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-------------------+--------------+-----------------+---------+------------+

| UNKNOWN_SUBNET: 5 | 10.0.182.20 | UNKNOWN_HOST: 6 | False | None |

| UNKNOWN_SUBNET: 3 | 10.0.182.24 | UNKNOWN_HOST: 4 | False | None |

| 10.0.213.112/28 | 10.0.213.113 | UNKNOWN_HOST: 2 | False | None |

| 10.0.213.112/28 | 10.0.213.119 | User0 | False | Privileged |

| 10.0.213.112/28 | 10.0.213.120 | User1 | True | Privileged |

| 10.0.213.112/28 | 10.0.213.121 | User2 | True | Privileged |

+-------------------+--------------+-----------------+---------+------------+

Reward: +0.2

Score: 0.6

---- Turn 7 ----

Blue policy:

(’Restore’, ’User2’): 1.74%

Blue selects (’Remove’, ’User2’) with probability 27.36%

Red Policy:

Red selects (’DiscoverServices’, ’Op_Server0’) with probability 99.90%

+-------------------+--------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-------------------+--------------+-----------------+---------+------------+

90

| UNKNOWN_SUBNET: 5 | 10.0.182.20 | UNKNOWN_HOST: 6 | True | None |

| UNKNOWN_SUBNET: 3 | 10.0.182.24 | UNKNOWN_HOST: 4 | False | None |

| 10.0.213.112/28 | 10.0.213.113 | UNKNOWN_HOST: 2 | False | None |

| 10.0.213.112/28 | 10.0.213.119 | User0 | False | Privileged |

| 10.0.213.112/28 | 10.0.213.120 | User1 | True | Privileged |

| 10.0.213.112/28 | 10.0.213.121 | User2 | True | Privileged |

+-------------------+--------------+-----------------+---------+------------+

Reward: +0.2

Score: 0.8

---- Turn 8 ----

Red Policy:

Red selects (’ExploitServices’, ’Op_Server0’) with probability 99.92%

+-------------------+--------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-------------------+--------------+-----------------+---------+------------+

| UNKNOWN_SUBNET: 5 | 10.0.182.20 | Op_Server0 | True | User |

| UNKNOWN_SUBNET: 3 | 10.0.182.24 | UNKNOWN_HOST: 4 | False | None |

| 10.0.213.112/28 | 10.0.213.113 | UNKNOWN_HOST: 2 | False | None |

| 10.0.213.112/28 | 10.0.213.119 | User0 | False | Privileged |

| 10.0.213.112/28 | 10.0.213.120 | User1 | True | Privileged |

| 10.0.213.112/28 | 10.0.213.121 | User2 | True | Privileged |

+-------------------+--------------+-----------------+---------+------------+

Reward: +0.2

Score: 1.0

---- Turn 9 ----

Blue policy:

Blue selects (’Restore’, ’Op_Server0’) with probability 90.59%

Red Policy:

(’ExploitServices’, ’Op_Server0’): 19.38%

(’PrivilegeEscalate’, ’Op_Server0’): 80.10%

Red selects (’PrivilegeEscalate’, ’Op_Server0’) with probability 80.10%

+-------------------+--------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-------------------+--------------+-----------------+---------+------------+

| UNKNOWN_SUBNET: 5 | 10.0.182.20 | Op_Server0 | True | None |

| UNKNOWN_SUBNET: 3 | 10.0.182.24 | UNKNOWN_HOST: 4 | False | None |

91

| 10.0.213.112/28 | 10.0.213.113 | UNKNOWN_HOST: 2 | False | None |

| 10.0.213.112/28 | 10.0.213.119 | User0 | False | Privileged |

| 10.0.213.112/28 | 10.0.213.120 | User1 | True | Privileged |

| 10.0.213.112/28 | 10.0.213.121 | User2 | True | Privileged |

+-------------------+--------------+-----------------+---------+------------+

Reward: +1.2

Score: 2.2

---- Turn 10 ----

Red Policy:

Red selects (’ExploitServices’, ’Op_Server0’) with probability 99.94%

+-------------------+--------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-------------------+--------------+-----------------+---------+------------+

| UNKNOWN_SUBNET: 5 | 10.0.182.20 | Op_Server0 | True | User |

| UNKNOWN_SUBNET: 3 | 10.0.182.24 | UNKNOWN_HOST: 4 | False | None |

| 10.0.213.112/28 | 10.0.213.113 | UNKNOWN_HOST: 2 | False | None |

| 10.0.213.112/28 | 10.0.213.119 | User0 | False | Privileged |

| 10.0.213.112/28 | 10.0.213.120 | User1 | True | Privileged |

| 10.0.213.112/28 | 10.0.213.121 | User2 | True | Privileged |

+-------------------+--------------+-----------------+---------+------------+

Reward: +0.2

Score: 2.4

---- Turn 11 ----

Blue policy:

Blue selects (’Restore’, ’Op_Server0’) with probability 84.72%

Red Policy:

(’ExploitServices’, ’Op_Server0’): 98.84%

(’PrivilegeEscalate’, ’Op_Server0’): 1.03%

Red selects (’ExploitServices’, ’Op_Server0’) with probability 98.84%

+-------------------+--------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-------------------+--------------+-----------------+---------+------------+

| UNKNOWN_SUBNET: 5 | 10.0.182.20 | Op_Server0 | True | User |

| UNKNOWN_SUBNET: 3 | 10.0.182.24 | UNKNOWN_HOST: 4 | False | None |

| 10.0.213.112/28 | 10.0.213.113 | UNKNOWN_HOST: 2 | False | None |

| 10.0.213.112/28 | 10.0.213.119 | User0 | False | Privileged |

92

| 10.0.213.112/28 | 10.0.213.120 | User1 | True | Privileged |

| 10.0.213.112/28 | 10.0.213.121 | User2 | True | Privileged |

+-------------------+--------------+-----------------+---------+------------+

Reward: +1.2

Score: 3.6

---- Turn 12 ----

Blue policy:

Blue selects (’Restore’, ’Op_Server0’) with probability 15.35%

Red Policy:

Red selects (’PrivilegeEscalate’, ’Op_Server0’) with probability 97.16%

+-------------------+--------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-------------------+--------------+-----------------+---------+------------+

| UNKNOWN_SUBNET: 5 | 10.0.182.20 | Op_Server0 | True | None |

| UNKNOWN_SUBNET: 3 | 10.0.182.24 | UNKNOWN_HOST: 4 | False | None |

| 10.0.213.112/28 | 10.0.213.113 | UNKNOWN_HOST: 2 | False | None |

| 10.0.213.112/28 | 10.0.213.119 | User0 | False | Privileged |

| 10.0.213.112/28 | 10.0.213.120 | User1 | True | Privileged |

| 10.0.213.112/28 | 10.0.213.121 | User2 | True | Privileged |

+-------------------+--------------+-----------------+---------+------------+

Reward: +1.2

Score: 4.8

A.2. Competitive Blue versus Dedicated Red

---- Turn 1 ----

Red Policy:

Red selects (’DiscoverSystems’, ’User’) with probability 99.99%

+----------------+-------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+----------------+-------------+-----------------+---------+------------+

| 10.0.31.160/28 | 10.0.31.161 | UNKNOWN_HOST: 2 | False | None |

| 10.0.31.160/28 | 10.0.31.165 | User0 | False | Privileged |

| 10.0.31.160/28 | 10.0.31.167 | UNKNOWN_HOST: 1 | False | None |

| 10.0.31.160/28 | 10.0.31.170 | UNKNOWN_HOST: 0 | False | None |

+----------------+-------------+-----------------+---------+------------+

93

Reward: +-0.0

Score: 0.0

---- Turn 2 ----

Red Policy:

Red selects (’DiscoverServices’, ’User1’) with probability 100.00%

+----------------+-------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+----------------+-------------+-----------------+---------+------------+

| 10.0.31.160/28 | 10.0.31.161 | UNKNOWN_HOST: 2 | False | None |

| 10.0.31.160/28 | 10.0.31.165 | User0 | False | Privileged |

| 10.0.31.160/28 | 10.0.31.167 | UNKNOWN_HOST: 1 | False | None |

| 10.0.31.160/28 | 10.0.31.170 | UNKNOWN_HOST: 0 | True | None |

+----------------+-------------+-----------------+---------+------------+

Reward: +-0.0

Score: 0.0

---- Turn 3 ----

Red Policy:

Red selects (’ExploitServices’, ’User1’) with probability 100.00%

+----------------+-------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+----------------+-------------+-----------------+---------+------------+

| 10.0.31.160/28 | 10.0.31.161 | UNKNOWN_HOST: 2 | False | None |

| 10.0.31.160/28 | 10.0.31.165 | User0 | False | Privileged |

| 10.0.31.160/28 | 10.0.31.167 | UNKNOWN_HOST: 1 | False | None |

| 10.0.31.160/28 | 10.0.31.170 | User1 | True | User |

+----------------+-------------+-----------------+---------+------------+

Reward: +-0.0

Score: 0.0

---- Turn 4 ----

Blue policy:

(’Restore’, ’User1’): 13.36%

Blue selects (’Remove’, ’Op_Host0’) with probability 7.64%

Red Policy:

94

Red selects (’PrivilegeEscalate’, ’User1’) with probability 99.88%

+-------------------+-------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-------------------+-------------+-----------------+---------+------------+

| UNKNOWN_SUBNET: 3 | 10.0.165.18 | UNKNOWN_HOST: 4 | False | None |

| UNKNOWN_SUBNET: 5 | 10.0.165.27 | UNKNOWN_HOST: 6 | False | None |

| 10.0.31.160/28 | 10.0.31.161 | UNKNOWN_HOST: 2 | False | None |

| 10.0.31.160/28 | 10.0.31.165 | User0 | False | Privileged |

| 10.0.31.160/28 | 10.0.31.167 | UNKNOWN_HOST: 1 | False | None |

| 10.0.31.160/28 | 10.0.31.170 | User1 | True | Privileged |

+-------------------+-------------+-----------------+---------+------------+

Reward: +0.1

Score: 0.1

---- Turn 5 ----

Red Policy:

Red selects (’DiscoverServices’, ’Op_Server0’) with probability 99.98%

+-------------------+-------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-------------------+-------------+-----------------+---------+------------+

| UNKNOWN_SUBNET: 3 | 10.0.165.18 | UNKNOWN_HOST: 4 | False | None |

| UNKNOWN_SUBNET: 5 | 10.0.165.27 | UNKNOWN_HOST: 6 | True | None |

| 10.0.31.160/28 | 10.0.31.161 | UNKNOWN_HOST: 2 | False | None |

| 10.0.31.160/28 | 10.0.31.165 | User0 | False | Privileged |

| 10.0.31.160/28 | 10.0.31.167 | UNKNOWN_HOST: 1 | False | None |

| 10.0.31.160/28 | 10.0.31.170 | User1 | True | Privileged |

+-------------------+-------------+-----------------+---------+------------+

Reward: +0.1

Score: 0.2

---- Turn 6 ----

Red Policy:

Red selects (’ExploitServices’, ’Op_Server0’) with probability 99.98%

+-------------------+-------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-------------------+-------------+-----------------+---------+------------+

| UNKNOWN_SUBNET: 3 | 10.0.165.18 | UNKNOWN_HOST: 4 | False | None |

| UNKNOWN_SUBNET: 5 | 10.0.165.27 | Op_Server0 | True | User |

95

| 10.0.31.160/28 | 10.0.31.161 | UNKNOWN_HOST: 2 | False | None |

| 10.0.31.160/28 | 10.0.31.165 | User0 | False | Privileged |

| 10.0.31.160/28 | 10.0.31.167 | UNKNOWN_HOST: 1 | False | None |

| 10.0.31.160/28 | 10.0.31.170 | User1 | True | Privileged |

+-------------------+-------------+-----------------+---------+------------+

Reward: +0.1

Score: 0.3

---- Turn 7 ----

Blue policy:

(’Restore’, ’Op_Server0’): 53.90%

Blue selects (’Remove’, ’User3’) with probability 11.75%

Red Policy:

(’ExploitServices’, ’Op_Server0’): 92.20%

(’PrivilegeEscalate’, ’Op_Server0’): 7.78%

Red selects (’ExploitServices’, ’Op_Server0’) with probability 92.20%

+-------------------+-------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-------------------+-------------+-----------------+---------+------------+

| UNKNOWN_SUBNET: 3 | 10.0.165.18 | UNKNOWN_HOST: 4 | False | None |

| UNKNOWN_SUBNET: 5 | 10.0.165.27 | Op_Server0 | True | User |

| 10.0.31.160/28 | 10.0.31.161 | UNKNOWN_HOST: 2 | False | None |

| 10.0.31.160/28 | 10.0.31.165 | User0 | False | Privileged |

| 10.0.31.160/28 | 10.0.31.167 | UNKNOWN_HOST: 1 | False | None |

| 10.0.31.160/28 | 10.0.31.170 | User1 | True | Privileged |

+-------------------+-------------+-----------------+---------+------------+

Reward: +0.1

Score: 0.4

---- Turn 8 ----

Blue policy:

(’Restore’, ’Op_Server0’): 46.79%

Blue selects (’Restore’, ’Op_Server0’) with probability 46.79%

Red Policy:

Red selects (’PrivilegeEscalate’, ’Op_Server0’) with probability 99.75%

+-------------------+-------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

96

+-------------------+-------------+-----------------+---------+------------+

| UNKNOWN_SUBNET: 3 | 10.0.165.18 | UNKNOWN_HOST: 4 | False | None |

| UNKNOWN_SUBNET: 5 | 10.0.165.27 | Op_Server0 | True | None |

| 10.0.31.160/28 | 10.0.31.161 | UNKNOWN_HOST: 2 | False | None |

| 10.0.31.160/28 | 10.0.31.165 | User0 | False | Privileged |

| 10.0.31.160/28 | 10.0.31.167 | UNKNOWN_HOST: 1 | False | None |

| 10.0.31.160/28 | 10.0.31.170 | User1 | True | Privileged |

+-------------------+-------------+-----------------+---------+------------+

Reward: +1.1

Score: 1.5

---- Turn 9 ----

Red Policy:

Red selects (’ExploitServices’, ’Op_Server0’) with probability 99.99%

+-------------------+-------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-------------------+-------------+-----------------+---------+------------+

| UNKNOWN_SUBNET: 3 | 10.0.165.18 | UNKNOWN_HOST: 4 | False | None |

| UNKNOWN_SUBNET: 5 | 10.0.165.27 | Op_Server0 | True | User |

| 10.0.31.160/28 | 10.0.31.161 | UNKNOWN_HOST: 2 | False | None |

| 10.0.31.160/28 | 10.0.31.165 | User0 | False | Privileged |

| 10.0.31.160/28 | 10.0.31.167 | UNKNOWN_HOST: 1 | False | None |

| 10.0.31.160/28 | 10.0.31.170 | User1 | True | Privileged |

+-------------------+-------------+-----------------+---------+------------+

Reward: +0.1

Score: 1.6

---- Turn 10 ----

Blue policy:

(’Restore’, ’Op_Server0’): 51.09%

Blue selects (’Analyse’, ’User1’) with probability 11.22%

Red Policy:

Red selects (’PrivilegeEscalate’, ’Op_Server0’) with probability 99.89%

+-------------------+-------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-------------------+-------------+-----------------+---------+------------+

| UNKNOWN_SUBNET: 3 | 10.0.165.18 | UNKNOWN_HOST: 4 | False | None |

| 10.0.165.16/28 | 10.0.165.27 | Op_Server0 | True | Privileged |

97

| 10.0.31.160/28 | 10.0.31.161 | UNKNOWN_HOST: 2 | False | None |

| 10.0.31.160/28 | 10.0.31.165 | User0 | False | Privileged |

| 10.0.31.160/28 | 10.0.31.167 | UNKNOWN_HOST: 1 | False | None |

| 10.0.31.160/28 | 10.0.31.170 | User1 | True | Privileged |

+-------------------+-------------+-----------------+---------+------------+

Reward: +1.1

Score: 2.7

---- Turn 11 ----

Blue policy:

Blue selects (’Restore’, ’Op_Server0’) with probability 98.25%

Red Policy:

Red selects (’ExploitServices’, ’Op_Server0’) with probability 100.00%

+-------------------+-------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-------------------+-------------+-----------------+---------+------------+

| UNKNOWN_SUBNET: 3 | 10.0.165.18 | UNKNOWN_HOST: 4 | False | None |

| 10.0.165.16/28 | 10.0.165.27 | Op_Server0 | True | User |

| 10.0.31.160/28 | 10.0.31.161 | UNKNOWN_HOST: 2 | False | None |

| 10.0.31.160/28 | 10.0.31.165 | User0 | False | Privileged |

| 10.0.31.160/28 | 10.0.31.167 | UNKNOWN_HOST: 1 | False | None |

| 10.0.31.160/28 | 10.0.31.170 | User1 | True | Privileged |

+-------------------+-------------+-----------------+---------+------------+

Reward: +1.1

Score: 3.8

---- Turn 12 ----

Blue policy:

(’Restore’, ’Op_Server0’): 6.49%

Blue selects (’Remove’, ’Op_Server0’) with probability 15.43%

Red Policy:

Red selects (’PrivilegeEscalate’, ’Op_Server0’) with probability 99.98%

+-------------------+-------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-------------------+-------------+-----------------+---------+------------+

| UNKNOWN_SUBNET: 3 | 10.0.165.18 | UNKNOWN_HOST: 4 | False | None |

| 10.0.165.16/28 | 10.0.165.27 | Op_Server0 | True | Privileged |

98

| 10.0.31.160/28 | 10.0.31.161 | UNKNOWN_HOST: 2 | False | None |

| 10.0.31.160/28 | 10.0.31.165 | User0 | False | Privileged |

| 10.0.31.160/28 | 10.0.31.167 | UNKNOWN_HOST: 1 | False | None |

| 10.0.31.160/28 | 10.0.31.170 | User1 | True | Privileged |

+-------------------+-------------+-----------------+---------+------------+

Reward: +1.1

Score: 4.9

A.3. Dedicated Blue versus Competitive Red

---- Turn 1 ----

Red Policy:

Red selects (’DiscoverSystems’, ’User’) with probability 99.98%

+-----------------+--------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-----------------+--------------+-----------------+---------+------------+

| 10.0.173.128/28 | 10.0.173.129 | UNKNOWN_HOST: 1 | False | None |

| 10.0.173.128/28 | 10.0.173.132 | UNKNOWN_HOST: 2 | False | None |

| 10.0.173.128/28 | 10.0.173.136 | User0 | False | Privileged |

| 10.0.173.128/28 | 10.0.173.138 | UNKNOWN_HOST: 0 | False | None |

+-----------------+--------------+-----------------+---------+------------+

Reward: +-0.0

Score: 0.0

---- Turn 2 ----

Red Policy:

(’DiscoverServices’, ’User1’): 88.57%

(’DiscoverServices’, ’User2’): 9.98%

(’DiscoverServices’, ’User3’): 1.39%

Red selects (’DiscoverServices’, ’User2’) with probability 9.98%

+-----------------+--------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-----------------+--------------+-----------------+---------+------------+

| 10.0.173.128/28 | 10.0.173.129 | UNKNOWN_HOST: 1 | True | None |

| 10.0.173.128/28 | 10.0.173.132 | UNKNOWN_HOST: 2 | False | None |

| 10.0.173.128/28 | 10.0.173.136 | User0 | False | Privileged |

| 10.0.173.128/28 | 10.0.173.138 | UNKNOWN_HOST: 0 | False | None |

+-----------------+--------------+-----------------+---------+------------+

99

Reward: +-0.0

Score: 0.0

---- Turn 3 ----

Red Policy:

(’DiscoverServices’, ’User1’): 2.73%

(’ExploitServices’, ’User2’): 96.89%

Red selects (’ExploitServices’, ’User2’) with probability 96.89%

+-----------------+--------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-----------------+--------------+-----------------+---------+------------+

| 10.0.173.128/28 | 10.0.173.129 | User2 | True | Privileged |

| 10.0.173.128/28 | 10.0.173.132 | UNKNOWN_HOST: 2 | False | None |

| 10.0.173.128/28 | 10.0.173.136 | User0 | False | Privileged |

| 10.0.173.128/28 | 10.0.173.138 | UNKNOWN_HOST: 0 | False | None |

+-----------------+--------------+-----------------+---------+------------+

Reward: +0.1

Score: 0.1

---- Turn 4 ----

Red Policy:

(’DiscoverServices’, ’User1’): 54.60%

(’DiscoverServices’, ’User3’): 2.30%

(’PrivilegeEscalate’, ’User2’): 42.62%

Red selects (’DiscoverServices’, ’User1’) with probability 54.60%

+-----------------+--------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-----------------+--------------+-----------------+---------+------------+

| 10.0.173.128/28 | 10.0.173.129 | User2 | True | Privileged |

| 10.0.173.128/28 | 10.0.173.132 | UNKNOWN_HOST: 2 | False | None |

| 10.0.173.128/28 | 10.0.173.136 | User0 | False | Privileged |

| 10.0.173.128/28 | 10.0.173.138 | UNKNOWN_HOST: 0 | True | None |

+-----------------+--------------+-----------------+---------+------------+

Reward: +0.1

Score: 0.2

---- Turn 5 ----

100

Red Policy:

Red selects (’ExploitServices’, ’User1’) with probability 99.82%

+-----------------+--------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-----------------+--------------+-----------------+---------+------------+

| 10.0.173.128/28 | 10.0.173.129 | User2 | True | Privileged |

| 10.0.173.128/28 | 10.0.173.132 | UNKNOWN_HOST: 2 | False | None |

| 10.0.173.128/28 | 10.0.173.136 | User0 | False | Privileged |

| 10.0.173.128/28 | 10.0.173.138 | User1 | True | Privileged |

+-----------------+--------------+-----------------+---------+------------+

Reward: +0.2

Score: 0.4

---- Turn 6 ----

Blue policy:

(’Restore’, ’User1’): 99.93%

Blue selects (’Restore’, ’User1’) with probability 99.93%

Red Policy:

(’PrivilegeEscalate’, ’User1’): 90.81%

(’PrivilegeEscalate’, ’User2’): 8.89%

Red selects (’PrivilegeEscalate’, ’User1’) with probability 90.81%

+-----------------+--------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-----------------+--------------+-----------------+---------+------------+

| 10.0.173.128/28 | 10.0.173.129 | User2 | True | Privileged |

| 10.0.173.128/28 | 10.0.173.132 | UNKNOWN_HOST: 2 | False | None |

| 10.0.173.128/28 | 10.0.173.136 | User0 | False | Privileged |

| 10.0.173.128/28 | 10.0.173.138 | User1 | True | None |

+-----------------+--------------+-----------------+---------+------------+

Reward: +1.1

Score: 1.5

---- Turn 7 ----

Red Policy:

Red selects (’ExploitServices’, ’User1’) with probability 99.70%

+-----------------+--------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

101

+-----------------+--------------+-----------------+---------+------------+

| 10.0.173.128/28 | 10.0.173.129 | User2 | True | Privileged |

| 10.0.173.128/28 | 10.0.173.132 | UNKNOWN_HOST: 2 | False | None |

| 10.0.173.128/28 | 10.0.173.136 | User0 | False | Privileged |

| 10.0.173.128/28 | 10.0.173.138 | User1 | True | Privileged |

+-----------------+--------------+-----------------+---------+------------+

Reward: +0.2

Score: 1.7

---- Turn 8 ----

Red Policy:

(’PrivilegeEscalate’, ’User1’): 3.87%

(’PrivilegeEscalate’, ’User2’): 96.03%

Red selects (’PrivilegeEscalate’, ’User2’) with probability 96.03%

+-------------------+--------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-------------------+--------------+-----------------+---------+------------+

| 10.0.173.128/28 | 10.0.173.129 | User2 | True | Privileged |

| 10.0.173.128/28 | 10.0.173.132 | UNKNOWN_HOST: 2 | False | None |

| 10.0.173.128/28 | 10.0.173.136 | User0 | False | Privileged |

| 10.0.173.128/28 | 10.0.173.138 | User1 | True | Privileged |

| UNKNOWN_SUBNET: 5 | 10.0.239.6 | UNKNOWN_HOST: 6 | False | None |

| UNKNOWN_SUBNET: 3 | 10.0.239.9 | UNKNOWN_HOST: 4 | False | None |

+-------------------+--------------+-----------------+---------+------------+

Reward: +0.2

Score: 1.9

---- Turn 9 ----

Red Policy:

Red selects (’DiscoverServices’, ’Op_Server0’) with probability 99.98%

+-------------------+--------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-------------------+--------------+-----------------+---------+------------+

| 10.0.173.128/28 | 10.0.173.129 | User2 | True | Privileged |

| 10.0.173.128/28 | 10.0.173.132 | UNKNOWN_HOST: 2 | False | None |

| 10.0.173.128/28 | 10.0.173.136 | User0 | False | Privileged |

| 10.0.173.128/28 | 10.0.173.138 | User1 | True | Privileged |

| UNKNOWN_SUBNET: 5 | 10.0.239.6 | UNKNOWN_HOST: 6 | True | None |

| UNKNOWN_SUBNET: 3 | 10.0.239.9 | UNKNOWN_HOST: 4 | False | None |

102

+-------------------+--------------+-----------------+---------+------------+

Reward: +0.2

Score: 2.1

---- Turn 10 ---

Red Policy:

Red selects (’ExploitServices’, ’Op_Server0’) with probability 99.94%

+-------------------+--------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-------------------+--------------+-----------------+---------+------------+

| 10.0.173.128/28 | 10.0.173.129 | User2 | True | Privileged |

| 10.0.173.128/28 | 10.0.173.132 | UNKNOWN_HOST: 2 | False | None |

| 10.0.173.128/28 | 10.0.173.136 | User0 | False | Privileged |

| 10.0.173.128/28 | 10.0.173.138 | User1 | True | Privileged |

| UNKNOWN_SUBNET: 5 | 10.0.239.6 | Op_Server0 | True | User |

| UNKNOWN_SUBNET: 3 | 10.0.239.9 | UNKNOWN_HOST: 4 | False | None |

+-------------------+--------------+-----------------+---------+------------+

Reward: +0.2

Score: 2.3

---- Turn 11 ----

Red Policy:

Red selects (’ExploitServices’, ’Op_Server0’) with probability 98.84%

+-------------------+--------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-------------------+--------------+-----------------+---------+------------+

| 10.0.173.128/28 | 10.0.173.129 | User2 | True | Privileged |

| 10.0.173.128/28 | 10.0.173.132 | UNKNOWN_HOST: 2 | False | None |

| 10.0.173.128/28 | 10.0.173.136 | User0 | False | Privileged |

| 10.0.173.128/28 | 10.0.173.138 | User1 | True | Privileged |

| UNKNOWN_SUBNET: 5 | 10.0.239.6 | Op_Server0 | True | User |

| UNKNOWN_SUBNET: 3 | 10.0.239.9 | UNKNOWN_HOST: 4 | False | None |

+-------------------+--------------+-----------------+---------+------------+

Reward: +0.2

Score: 2.5

---- Turn 12 ----

103

Red Policy:

Red selects (’PrivilegeEscalate’, ’Op_Server0’) with probability 97.16%

+-------------------+--------------+-----------------+---------+------------+

| Subnet | IP Address | Hostname | Scanned | Access |

+-------------------+--------------+-----------------+---------+------------+

| 10.0.173.128/28 | 10.0.173.129 | User2 | True | Privileged |

| 10.0.173.128/28 | 10.0.173.132 | UNKNOWN_HOST: 2 | False | None |

| 10.0.173.128/28 | 10.0.173.136 | User0 | False | Privileged |

| 10.0.173.128/28 | 10.0.173.138 | User1 | True | Privileged |

| 10.0.239.0/28 | 10.0.239.6 | Op_Server0 | True | Privileged |

| UNKNOWN_SUBNET: 3 | 10.0.239.9 | UNKNOWN_HOST: 4 | False | None |

+-------------------+--------------+-----------------+---------+------------+

Reward: +1.2

Score: 3.7

104

