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Abstract

Anomaly detection is a challenge well-suited to machine learning. In the con-
text of information security, the benefits of unsupervised solutions show signifi-
cant promise when used in conjunction with traditional signature-based detection
techniques. By deriving a context for normal network behaviour, anomaly-based
detection systems provide an adaptive alerting engine that can keep pace with
the growing volume of novel threats in the field of cybersecurity.

The development of behavioural anomaly detection systems is not new. How-
ever, recent attention to Graph Neural Networks (GNNs) has provided an inno-
vative approach to learn from attributed graphs, leveraging both node and edge
attributes alongside network structure. While the focus of graph anomaly de-
tection research has been devoted to anomalous node identification, the edges
between nodes can be similarly detected during the reconstruction phase of a
GNN encoder-decoder architecture. Given that hosts on a computer network can
be naturally modeled as attributed nodes on a graph, the network connections be-
tween hosts can be used to represent relational edges. This topology is a natural
fit for applying link prediction techniques to predict deviating behaviours.

The aim of this research is to determine whether an unsupervised GNN model
can detect anomalous network connections in a static, attributed network. In this
context, a static network refers to a fixed window of analysis, while attributed
denotes the presence of node and edge features. Corporate network logs were
collected using endpoint monitoring tools and analyzed to discern the underly-
ing host communication patterns. A GNN-based anomaly detection system was
designed and employed to score and rank anomalous connections between hosts.
The model was validated against a range of realistic experimental scenarios, in-
corporating real anomalous data from the large corporate networks as well as an
assessment against a smaller artificial network environment. Although quantita-
tive metrics were affected by factors such as the scale of the network, qualitative
assessments indicated that anomalies from all scenarios were detected. This ex-
ploratory research serves as a promising step for advancing this methodology in
detecting anomalous network connections.

Index Terms - Anomaly Detection, Graph Neural Networks, Unsupervised
Learning, Link Prediction
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Resume

La détection d’anomalies est un défi parfaitement adapté à l’apprentissage
automatique. Dans le contexte de la sécurité de l’information, les avantages des
solutions non supervisées présentent une promesse significative lorsqu’elles sont
utilisées en conjonction avec les techniques de détection basées sur des signatures
traditionnelles. En dérivant un contexte pour le comportement normal du réseau,
les systèmes de détection basés sur les anomalies fournissent un moteur d’alerte
adaptatif capable de suivre le volume croissant de menaces nouvelles dans le
domaine de la cybersécurité.

Le développement de systèmes de détection d’anomalies comportementales
n’est pas nouveau. Cependant, l’attention récente portée aux réseaux neuronaux
graphiques (GNN) a permis une approche novatrice pour apprendre à partir de
graphiques attribués, en tirant parti à la fois des attributs des nœuds et des
arêtes ainsi que de la structure du réseau. Alors que la recherche sur la dé-
tection d’anomalies dans les graphiques s’est concentrée sur l’identification des
nœuds anormaux, les arêtes entre les nœuds peuvent également être détectées
lors de la phase de reconstruction d’une architecture encodeur-décodeur GNN.
Étant donné que les hôtes d’un réseau informatique peuvent être naturellement
modélisés comme des nœuds attribués sur un graphique, les connexions réseau en-
tre les hôtes peuvent être utilisées pour représenter des arêtes relationnelles. Cette
topologie est parfaitement adaptée à l’application de techniques de prédiction de
liens pour prédire les comportements déviants.

L’objectif de cette recherche est de déterminer si un modèle GNN non super-
visé peut détecter des connexions réseau anormales dans un réseau attribué sta-
tique. Dans ce contexte, un réseau statique fait référence à une fenêtre d’analyse
fixe, tandis qu’attribué indique la présence de caractéristiques des nœuds et des
arêtes. Les journaux de réseau d’entreprise ont été collectés à l’aide d’outils de
surveillance des points de terminaison et analysés pour déterminer les modèles de
communication sous-jacents des hôtes. Un système de détection d’anomalies basé
sur le GNN a été conçu et utilisé pour évaluer et classer les connexions anormales
entre les hôtes. Le modèle a été validé sur une gamme de scénarios expérimentaux
réalistes, en utilisant des données anormales réelles provenant de grands réseaux
d’entreprise ainsi qu’une évaluation contre un environnement réseau artificiel plus
petit. Bien que les mesures quantitatives aient été affectées par des facteurs tels
que l’échelle du réseau, les évaluations qualitatives ont indiqué que les anomalies
de tous les scénarios étaient détectées. Cette recherche exploratoire constitue une
étape prometteuse pour faire progresser cette méthodologie dans la détection des
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connexions réseau anormales.

Mots-clés - Détection d’anomalies, Réseaux de neurones graphiques, Appren-
tissage non supervisé, Prédiction de liens
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1 Introduction

Anomaly-based detection systems offer a substantial benefit over signature-based
methods as they can identify new and previously unknown threats. However,
these systems often generate a high number of false positives due to challenges
in accurately learning typical system behaviour. To improve their performance,
it is helpful to process the data using representations that better reflect the in-
herent structures present in the data. Graph Neural Networks (GNN) provide
a potential solution for processing graph data and learning from both features
and relational information within the data. This thesis explores the application
of graph anomaly detection, specifically by modelling anomalous connections as
edges between hosts on a graph. This experiment involves an in-depth examina-
tion of host data gathered from four enterprise networks and a simulated network
environment, encompassing exploratory data analysis, model architecture, and
performance evaluation metrics.

1.1 Motivation

The number of threats in the information security environment is proliferating.
Hundreds of thousands of new malware samples are detected daily [1], and a re-
cent survey of Canadian industry determined the average costs of a data breach
exceeded CAD 7 million [2]. These costly figures highlight the demand for intel-
ligent defences to mitigate increasingly numerous threats.

Intrusion Detection Systems (IDS) are a standard layer in the network secu-
rity stack. These systems monitor host logs and network traffic, raising alerts
based on detected policy violations. The most common variant of IDS software
uses signature-based detection [3], scanning for unique patterns extracted from
malware. The straightforward nature of this technique allows signature-based
detection systems to operate effectively within a broad and well-defined range
of attacks. However, the effectiveness of signature-based detection is confined
to known threats, thereby making it impossible to identify new and emerging
attacks.

Empowered by significant advances in Machine Learning, anomaly-based de-
tection systems have become a popular area of research. Anomaly-based detection
systems model the behaviour of the host and/or network, reporting deviations
from a learned context. This framework enables the detection of novel threats,
bridging shortcomings from signature-based techniques. However, anomaly-based
systems can suffer from false positives: by raising alerts on benign data, resources
can be wasted. The challenge of accurately detecting anomalies in network sys-
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tems is further compounded by the massive volume of log data generated by
modern, large-scale enterprise networks [4]. The sheer amount of data available
in these networks adds to the complexity of learning normal system behaviour
and distinguishing between genuine threats and benign activities, making it even
more crucial to develop effective methods for processing and analyzing this data.

To improve the performance of anomaly-based detection systems, the under-
lying representations within logged data can be exploited. While convolutional
neural networks are a robust architecture for computer vision tasks, and recur-
rent networks effectively process sequential data like natural language, computer
networks are a strong fit for GNNs due to relationships present in the underlying
data [5]. Graph anomaly detection is a comparatively new field of machine learn-
ing, and most research into the use of GNNs has focused on identifying anomalous
nodes in present in networks [5], [6]. However, edge-based anomaly detection tech-
niques have effectively identified fraudulent transactions in e-commerce networks
[6], [7]. This link detection approach can also be applied to local computer net-
works with relatively static hosts, where the behavior of incoming and outgoing
connections may vary significantly during anomalous activity.

1.2 Statement of Deficiency

Anomalous edge detection remains a relatively under-explored area in the infor-
mation security domain. Investigating edge-based anomaly detection systems for
modelling suspicious connections within computer networks presents an opportu-
nity to enhance threat detection. By evaluating connections based on their ab-
normality in the context of the larger network, it is possible to develop a valuable
heuristic for identifying potential threats and improving the overall effectiveness
of anomaly detection systems in the field of information security.

1.3 Aim

The aim of this research is to determine whether an unsupervised GNN model
can detect anomalous network connections in a static, attributed network. The
benefit of using attributed network models lies in leveraging node and edge fea-
tures in conjunction with relational information to produce a more representative
model. The data attributed to the model is derived from host-based sources re-
lated to network connections, and to narrow the scope of analysis, browsers will
be excluded.

Excluding browser traffic is useful for constraining the scope of the analysis be-
cause browser traffic is typically quite high in volume and often involves numerous
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connections to various external servers. By removing browser traffic, the research
can focus on more specific types of network connections and help reduce noise in
the data to make it easier to identify meaningful patterns and relationships.

A static network refers to a network that is analyzed based on a fixed snapshot
in time, rather than studying the network as it evolves over time. The network
structure and its features are considered at a particular point in time, and any
changes or updates to the network are not taken into account during the analysis.
This facilitates a more manageable and focused analysis, as it constrains the scope
of the study to a specific, unchanging network state.

The use of host data for anomaly detection provides a granular window into
the state of the host execution environment during a period of analysis. For this
research, host data from endpoint monitoring systems Sysmon [8] and Osquery
[9] is used to characterize communications on the network via features queried
from host runtimes.

The lateral movement phase of an adversarial campaign is often characterized
by new, both failed and successful, connections within a computer network, which
can be indicative of anomalous activity when compared to a derived behavioral
baseline [10]. However, the training and evaluation of an unsupervised anomaly
detection system in real-life corporate networks across various business sectors
presents significant challenges. The presence of a diverse range of users, activities,
and networked devices complicates the task of defining a normal context, making
the detection of anomalies a challenging endeavor.

Furthermore, the relatively small quantities of labelled data presents chal-
lenges when evaluating unsupervised models [11], [12]. To assess the effectiveness
of an edge-based anomaly approach, synthetic data injection with known anoma-
lies is used. Synthetic data injection involves creating artificial data points or
modifying existing data points to represent anomalous behavior in a controlled
manner. By introducing known true positives into the dataset, the performance
of the anomaly detection model can be assessed. It is important to ensure that
the synthetic data is representative of real-world data and scenarios, as the per-
formance associated with the anomaly detection model on synthetic data may not
always generalize to real-world situations [11].

1.4 Research Activities

The following research activities are conducted to evaluate the performance of
edge-based anomaly detection systems when applied to large computer networks:

1. Data Extraction, Exploratory Data Analysis, and Feature Engineering. This
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consists of host data collected from endpoints using Sysmon and osquery.
Following data extraction, exploratory data analysis (EDA) is performed.
EDA includes basic statistical and comparative analysis of the five different
datasets and graph visualizations to characterize communications on the
different networks in order to inform feature engineering and model devel-
opment. Following EDA, core feature engineering is conducted, leading into
model development.

2. Model Development. This includes the development and training of an
unsupervised detector where node and relational features, and GNN hyper-
parameters are investigated and adjusted to produce a functional experi-
mental model.

3. Model Evaluation. In this phase, model performance is measured by detect-
ing a known quantity of synthetic data into the corporate network capture.
Four different scenarios capture a variety of anomalous network behaviours,
yielding metrics that are used to assess the performance of the model under
different conditions.

1.5 Results

A log extraction tool was developed to query vast amounts of unstructured logs,
significantly streamlining the data analysis process. A comprehensive exploratory
data analysis was conducted on four large corporate networks, highlighting infor-
mation about their structure and characteristics. Quantitative metrics obtained
from scenarios indicated a relationship between the performance of the anomaly
detection system and the scale of the network. Qualitatively, the model demon-
strated its capability to detect relational anomalies within large graph structures.
In a separate validation effort, the model was applied to a smaller, simulated
attack network, resulting in considerably enhanced performance. Notably, the
model successfully detected key features of the simulated attack campaign, high-
lighting its potential utility in real-world situations. These findings provide a
stepping stone in advancing the field of graph anomaly detection, particularly
in the context of anomalous edge detection, and pave the way for further devel-
opment and refinement of techniques that can robustly identify and respond to
network anomalies in diverse network data.

4



1.6 Organization

The remainder of this thesis provides a deeper context for the research and how
it was conducted. Chapter 2 presents background information on endpoint moni-
toring tooling, anomaly detection, graph neural networks, and specific challenges
associated with the analysis of large networks. This chapter also introduces the
Graph Autoencoder (GAE) model and its application in detecting anomalous
edges within complex graphs. In Chapter 3, the methodology and design of
the experiment is described, detailing the data collection and preprocessing, fea-
ture selection and engineering, GAE model development, and evaluation metrics.
Chapter 4 presents the results of the experiment, highlighting the model’s per-
formance in a selection of scenarios and against a simulated attack campaign in
an artificial network environment. Finally, Chapter 5 offers a summary and enu-
merates the contributions of the research, as well as outlining potential areas for
future work in the domain of this research.

1.7 Summary

This chapter has offered a brief introduction to the proposed research on anoma-
lous edge detection using graph neural networks. The adoption of graph represen-
tation to model host data is expected to generate a system that accurately mirrors
the inherent features and relationships of the underlying communications. The
set objectives will be pursued through three primary research activities: Data
Extraction, Exploratory Data Analysis, and Feature Engineering, Model Devel-
opment, and Model Evaluation. These activities will involve the extraction of
log data, exploratory data analysis (EDA), and feature engineering and selection,
followed by the development and training of an unsupervised detection model.
The model’s effectiveness will then be gauged through its performance against
corporate network data, in which synthetic labelled data has been injected. This
research explores the potential of identifying suspicious connections in a local
network through anomalous edges.
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2 Background

This chapter presents the theoretical foundations and practical applications that
underpin the research. The discussion begins with an exploration of two essential
endpoint monitoring tools, System Monitor and Osquery. The focus then shifts
to the Simple Storage Service (S3) and the concept of word embeddings, followed
by an examination of graphs as an abstract data type, with a specific look at
the PageRank algorithm. The discussion also incorporates the MITRE ATT&CK
Framework, a critical resource in the field of cybersecurity.

The latter part of the chapter delves into relevant machine learning concepts.
It begins with an overview of unsupervised learning, focusing on anomaly detec-
tion and its evaluation metrics. The discussion then transitions to Graph Neural
Networks (GNNs) and their mechanism of Neural Message Passing. Autoencoders
are next in line, specifically their application in a Graph Autoencoder Architec-
ture, and Graph Attention Networks. An illustration of GNN Encoding provides
practical insights into its operation.

The chapter also explores the concept of link prediction as a method for detect-
ing anomalous edges. Finally, it reviews related works in the field, including key
studies on network lateral movement detection, anomalous edge detection, and
fraud transactions detection using graph-based techniques. These topics build a
comprehensive foundation for the research methodology and design outlined in
Chapter 3.

2.1 Endpoint Monitoring Tools

Monitoring the state of devices on a network is a critical requirement for in-
formation security personnel. Endpoint monitoring tooling is used to continu-
ously record these metrics as structured log data, expediting analysis of host
and network-level behaviours. These logs are typically aggregated in Security
Information and Event Management (SIEM) systems, which can provide a single
interface to analyze events. The experiment uses Sysmon and Osquery to retrieve
host data from a corporate network, which provides a combination of host and
network-level data for further processing

2.1.1 System Monitor

System Monitor (Sysmon) is a Windows system driver used to monitor system
behaviour [8]. Sysmon produces structured log data which can be collected and
analyzed for anomalies. To integrate with log management tooling, records are
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logged in a newline-delimited JSON (NDJSON) format, visualized below in Figure
1.

1 {

2 "event_id": 3,

3 "hostname": "cgrimshaw",

4 "utc_timestamp": "2022-09-26T22:45:25Z",

5 "event_data": {

6 "source_ip": "10.10.0.1",

7 "dst_ip": "8.8.8.8",

8 "src_port": 52091,

9 "dst_port": 52,

10 },

11 ...

12 }

Figure 1: Abbreviated event ID 3 record with logging metadata

The events monitored by Sysmon provide a comprehensive overview of the host
execution environment. Sysmon events are enumerated by a numeric identifier
(ID). For example, Sysmon Event ID 1 captures all process creation events, Event
ID 22 is recorded whenever a process executes a DNS query, and Sysmon Event
ID 3 is a Network Connection Event. An exhaustive list of Sysmon Event IDs is
provided in Appendix A, Section 1.1.

Network Connection Events occur in response to any TCP/UDP connections
made on the host machine. Each connection is linked to a sending/receiving
process via Process ID and Process Globally Unique Identifier (GUID). Sysmon
also provides information on source/destination Internet Protocol (IP) addresses
and ports. In total, 17 features are recorded in Event ID 3, listed in Table 1,
providing an abundance of context per network connection [13].

2.1.2 Osquery

Osquery is an open-source infrastructure monitoring tool created in 2014 at Face-
book by Mike Arpaia, Ted Reed, and Javier Marcos de Prado [9]. It is composed
of two separate tools: an administrative command shell, and daemon processes
running on remotely configured endpoints. The Osquery daemon turns a host
operating system into a queryable relational database, allowing users to explore
operating system data. When deployed on multiple hosts across a corporate net-
work, Osquery provides a granular window into the state of network behaviour.
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Table 1: Fields present in Sysmon Event ID 3

Field Description

DestinationIsIpv6 Indicates if the destination is an IPv6 address

DestinationIp Destination IP address

DestinationHostname DNS name of the contacted host

DestinationPort Destination port number

DestinationPortName Name of the destination port in use

Image The file path of the process that made the network connection

Initiated Indicates whether the process initiated the TCP connection

ProcessGuid The GUID of the process that made the network connection

ProcessId PID of the process that made the connection

Protocol Protocol used for the network connection (e.g. TCP, UDP)

SourceIsIpv6 Indicates if the source IP is an IPv6 address

SourceIp Originating IP address

SourceHostname DNS name of the host that made the network connection

SourcePort Source port number

SourcePortName Name of the source port in use

User Name of the account that made the network connection

UtcTime Time in UTC when event was created

The current version of Osqeury realizes host operating system information as
274 distinct tables. The code listing in Figure 2 demonstrates a simple query
over multiple schema (the process and listening tables) to report unique listening
processes and related features. This research leverages schema related to Internet
Protocol (IP) addresses and their associated hardware interfaces. The usage of
Osqeury is considered due to the rich feature selection available, and leveraging
Sysmon in tandem allows node and edge data to be strengthened with more host
data.

2.2 Simple Storage Service (S3)

The raw data collected from the corporate networks for this research was initially
pushed to an Amazon S3 (Simple Storage Service) instance. Amazon S3 is a
scalable cloud object storage service offered by Amazon Web Services (AWS) [14].
S3 is designed to store and retrieve large quantities of data from anywhere on the
internet, making it a common choice for various applications, such as content
storage and delivery, big data analytics, and log archival.

Numerous open-source systems can be S3-compliant by implementing the S3

8



1 $ osqueryi

2 osquery> SELECT DISTINCT

3 ...> process.name,

4 ...> listening.port,

5 ...> process.pid

6 ...> FROM processes AS process

7 ...> JOIN listening_ports AS listening

8 ...> ON process.pid = listening.pid

9 ...> WHERE listening.address = ’0.0.0.0’;

10

11 +----------+-------+-------+

12 | name | port | pid |

13 +----------+-------+-------+

14 | Spotify | 57621 | 18666 |

15 | ARDAgent | 3283 | 482 |

16 +----------+-------+-------+

17

Figure 2: A snippet of Osquery usage with resulting output

RESTful API standards, which enables integration and interaction with the Ama-
zon S3 service. This compliance allows developers to utilize the robust capabilities
of Amazon S3, while maintaining the flexibility and extensibility of an open-source
solution.

2.3 Word Embeddings

Word embedding algorithms transform a vocabulary into dense, fixed-dimension
vector representations. These embeddings offer several advantages over one-hot
vector encoding strategies, where each word in the vocabulary is represented by
a unique binary feature. First, the reduced dimensionality of word embeddings
is computationally efficient. Second, embeddings help mitigate the "Curse of Di-
mensionality", a challenge associated with learning from sparse, high-dimensional
data [15]. Lastly, learned representations capture more meaningful and nuanced
relationships between words than encoding strategies that treat each word as an
independent feature. This improved understanding of language can enhance the
performance of machine learning tasks that rely on natural language processing
[15].

Several popular word embedding strategies, such as word2vec, GloVe, and fast-
Text, are commonly used to represent discrete sets as vectors. These approaches
have gained widespread adoption for their effectiveness in capturing linguistic
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relationships in vector form [15] - [16].

2.4 Graph (Abstract Data Type)

Graphs are a data structure used to represent entities and the relationships be-
tween them. This data type is formally represented as G = (V, E), denoting a
set of vertices V connected by a set of edges E . Edges are used to associate ver-
tices. Adjacent vertices are called neighbours. The degree of a vertex refers to
the number of neighbours that it possesses. Many relations can be modeled using
graphs, including molecular structures, social media relationships, and computer
networks. An example of such a structure can be found below in Figure 3.

Figure 3: An unweighted directed graph

Graphs can be enhanced with a variety of data describing the entities and the
types of relations between them. Nodes may possess a set of attributes, or fea-
tures. Edges may possess direction, which impose constraints on the relationships
between vertices, and weight, which adds a value to the link.

Graphs can also be static or dynamic in nature. A static graph is a fixed
sequence of nodes and relations. In contrast, a dynamic graph may change over
a period of analysis. Static graph approaches facilitate offline optimization and
processing, but do not scale well to variable dimensional sizes [5]. Dynamic graphs
are flexible, but do not allow for the same level of graph optimization as their
static counterparts [5]. Lastly, graphs may also be multi-relational, where two
nodes may possess multiple edges.

Internally, graphs are most commonly represented using an adjacency matrix
A ∈ R|V|×|V|. An unweighted edge exists between two nodes i and j if A[i, j] = 1,
and 0 otherwise. If nodes possess features, they can be represented as a sup-
plementary matrix X ∈ R|V|×m, where m is the number of features per-node.
These feature matrices can be processed alongside the adjacency matrix during
graph-level encoding discussed later in this chapter.
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2.4.1 PageRank

PageRank is an algorithm used to determine the relative importance of nodes in
a directed graph [17]. It was originally developed for ranking hyperlinked web
pages, but can be applied to any directed graph, where nodes represent entities
and edges represent the relationships between them.

In a directed graph, each node can have multiple incoming and outgoing links.
PageRank assigns a score to each node based on the importance of the nodes that
link to it. Nodes that have many high-scoring incoming links from other important
nodes will have a higher PageRank score than nodes with fewer or lower-scoring
incoming links.

The algorithm begins by iteratively calculating the PageRank score of each
node based on the scores of the nodes that link to it. The PageRank score of
a node is determined by the sum of the PageRank scores of its incoming nodes,
divided by the total number of outgoing edges from those nodes. This calculation
is repeated until the PageRank scores converge to a stable value.

The usefulness of the PageRank algorithm lies in its ability to leverage the
relationships between nodes to provide a quantitative measure of their relative im-
portance, enabling more efficient and effective navigation and analysis of complex
directed graphs.

2.5 MITRE Attack Framework

The MITRE ATT&CK (Adversarial Tactics, Techniques, and Common Knowl-
edge) Framework is a comprehensive compendium of knowledge concerning the
diverse tactics, techniques, and procedures (TTPs) leveraged by cyber adversaries
at various stages of a cyber attack [18]. Created in 2013 by MITRE, a non-profit
organization that manages federally-funded research and development centers in
the US, the framework undergoes continuous updates with the latest threat intel-
ligence to stay current with emerging threats and the evolving threat landscape.

The framework presents a standardized language for describing the different
stages of a cyber attack and the tactics and techniques employed by attackers
in each stage. It is represented in the form of a matrix, where each technique is
mapped to one or more tactics.

Organizations can utilize the MITRE ATT&CK Framework to assess their
cybersecurity defenses by matching their existing security controls to the various
techniques used by attackers. By doing so, they can identify gaps in their security
posture and take necessary steps to enhance their defenses, thereby reducing the
likelihood of a successful cyber attack.
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2.6 Unsupervised Learning

Unsupervised learning refers to algorithms used to identify patterns in data sets
containing data points that are neither classified nor labelled [19]. These algo-
rithms are able to classify, label and group the data points with no supervision
for the overall task.

As no labels are provided to the learning algorithm, the model attempts to
find structure in the input data set using only features present in the observations.
Consequently, the main goal of unsupervised learning is to discover hidden and
interesting patterns in unlabeled data [5], [19].

2.6.1 Anomaly Detection

Anomaly detection is a data analysis problem dealing with the identification of
events outside of a profiled threshold. Such events may signal potentially inter-
esting or otherwise notable occurrences [4]. Due to the large volume of unlabelled
computer networking data, the anomaly detection problem in the information
security domain is typically treated as an unsupervised learning task.

In the context of graph anomaly detection, the task can be further subdivided
into three different types of anomalies [19] [20]:

1. Node anomalies;

2. Edge anomalies; and

3. Sub-graph anomalies.

Node anomalies may deviate from the remainder of the graph via anomalous
features or anomalous structure, which is based on an abnormal state of rela-
tions with adjacent nodes [19]. Edge-based anomaly detection is concerned with
scoring abnormal or atypical interactions between nodes in a network [6], [21],
[12]. Finally, sub-graph level anomaly detection is an area of research concerned
with identifying subsets of the overall graph that do not conform with the overall
structure of the graph [7].

In exceptionally large data sets sourced from computer networks, anomaly
detection can pose challenges that affect the overall performance and accuracy of
detection algorithms [19], [20]. Three of these challenges include:

1. Scalability: Large networks typically consist of a massive number of nodes
and edges, which can lead to an exponential growth in the amount of data
to be processed. Anomaly detection systems need to be designed with scal-
ability in mind to efficiently handle the volume of data.
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2. High dimensionality: Data collected from networks often encompasses nu-
merous features from a diverse range of sources, which may result in high-
dimensional data. To ensure manageable computational complexity, it is
essential to employ effective feature selection techniques in the anomaly
detection pipeline. This facilitates the identification of the most relevant
features while reducing the overall dimensionality of the dataset.

3. Dynamic nature: Live networks are constantly changing as new devices are
added, existing devices are removed, and network configurations change.
Anomaly detection algorithms should provide some mechanism of either
fixing the window of analysis or provide an adaptive solution.

Addressing these challenges is crucial for the development of an effective
anomaly detection solutions that can provide reliable results in large networks.

2.6.2 Evaluation Metrics

In supervised learning, a model’s performance can be evaluated by evaluating
predictions against a set of known labels. However, in unsupervised anomaly
detection, the goal is to identify patterns or anomalies in data without any prior
knowledge of what those anomalies might be.

Anomaly detection is often realized as a binary classification task: a pattern
of data either conforms to an expected behaviour, or it does not [20]. However,
anomalies are typically scored along a continuous range {x ∈ R | 0 ≤ x ≤ 1}, with
higher scores denoting greater abnormality [6], [21]. A user-defined threshold is
used to realize the final classification of anomalies. This classification process can
have four distinct outcomes:

1. True Positive (TP): An anomalous data point is correctly labelled;

2. True Negative (TN): A benign data point is correctly labelled;

3. False Positive (FP) / Type I error: A benign data point is incorrectly
labelled anomalous; and

4. False Negative (FN) / Type II error: An anomalous data point is incorrectly
labelled benign.

From these four metrics, further performance characteristics can be derived.
A model’s recall, also known as true positive rate, is the model’s ability to cor-
rectly label outlying data from the selected anomalies.
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recall =
TP

TP + FN
(1)

Similarly, precision is the probability of correctly labeling data as anomalous when
considering only the instances that the model has predicted as anomalous.

precision =
TP

TP + FP
(2)

Recall and precision metrics can be combined to give an overall measure of pre-
dictive performance, realized as a model’s F1 score. The F1 score is calculated as
the harmonic mean of precision and recall.

F1 = 2 · precision · recall
precision+ recall

(3)

Holistically, these metrics can be limited in their ability to provide a comprehen-
sive evaluation of the model’s performance, as they may not take into account
the specific context or application domain [19], [21]. Anomalies in a computer
network are not constrained to malicious behaviors, because they can refer to any
deviation from normal patterns or expected behavior [20]. This can encompass a
wide range of activities, including system errors, hardware failures, configuration
changes, unusual user activities, or even legitimate traffic spikes. While some
anomalies may indicate security threats or malicious intent, many are simply the
result of benign events, user mistakes, or natural fluctuations in network usage.
Consequently, defining what constitutes an anomaly is non-trivial, and can vary
greatly depending on the application domain [22]. Behaviours that are considered
anomalous in one network may not be anomalous in another [20]. Additionally,
the concept of an anomaly may evolve over time as new types of anomalies are
discovered or as the underlying data changes [19].

As a result of the challenges associated with evaluating unsupervised anomaly
detection systems, it is important to consider the qualitative performance of the
anomaly detection system and understand the behaviours yielding the binary
classification metrics.

2.7 Graph Neural Networks

Graph Neural Networks (GNNs) are models that can process and learn from
graph-structured data, enabling them to capture complex relationships and pat-
terns between entities. Simple encoding strategies like 1-hot encoding can repre-
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sent categorical data locally, but has the unfortunate consequence of producing
producing a sparse vector of mostly zeroes. Moreover, this local representation
cannot convey relationships between observations. GNNs provide a more general-
ized processing approach, mapping nodes, relations, and all corresponding feature
vectors into a latent space, as visualized in Figure 4 [5]. These mappings, referred
to as embeddings, are vectorized representations of the original nodes, and are
functionally similar to the word embeddings discussed earlier, in section 2.3.

Figure 4: Node encoding into a low-dimension feature space

GNNs have been adopted to efficiently and intuitively detect anomalies from
graphs due to their ability to process complex relationships in data [3], [23].
Modern graph anomaly detection approaches combine GNNs with existing deep
learning approaches [5] - [6]. GNN models facilitate the detection of anomalies
by encoding both graph topology and features simultaneously.

The naive processing scheme for graph data, suggested by Hamilton et. al.,
involves directly training a neural network on the adjacency matrix A, treating
each row in the matrix as distinct node embeddings [5]. However, this approach is
not permutation invariant—it considers the ordering of nodes as a learned context,
even though the order of node/edge occurrences is irrelevant in graph data. GNNs
address this issue by accurately representing node embeddings while preserving
the vital property of permutation invariance, ensuring that algorithms do not
rely on fixed node or relation ordering. This characteristic is achieved through
the implementation of Neural Message Passing, which serves as the foundation
for GNNs’ underlying architecture.

2.7.1 Neural Message Passing

The key framework powering GNN architecture is the concept of Neural Message
Passing, which serves as a generalized convolution algorithm over graph data [5].
This algorithm iteratively updates nodal encodings by aggregating neighbouring
states along with the current state of the node.
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Node u possesses an encoding at epoch k, which is equal to h
(k)
u . The node’s

updated encoding at the next epoch k+1 can be calculated by aggregating state
information over its neighbours, a set of vertices produced by N (u):

h(k+1)
u = UPDATE(k)

(
h(k)u ,AGGREGATE(k)({h(k)

v ,∀v ∈ N (u)})
)

(4)

The functions UPDATE and AGGREGATE are trainable neural networks. After
K iterations of this algorithm node u’s final encoding zu can be derived:

zu = h(K)
u , ∀u ∈ V (5)

The key insight in (4) is that the AGGREGATE function accepts a set of vertices,
making the algorithm permutation invariant. After K layers, the encoding zu

possesses information about nodes from K hops away.
The simplest message-passing implementation sums the incoming messages

from neighbouring nodes as an aggregation function [5]. This operation is defined
below:

hku = σ

(
wk
self + wk

neigh

∑
v∈N(u)

h(k−1)
v + bk

)
(6)

Where wk
self and wk

neigh are trainable parameter matrices, bk represents a bias
term, and σ denotes element-wise non-linearity function such as tanh or ReLU .
Messages from neighbouring nodes are combined with the node’s previous state
prior to the non-linear transformation.

Various aggregation and update functions exist: mean aggregation can capture
the distribution of nodes, maximum aggregation can be used to identify represen-
tative nodes, and sum aggregation facilitates the learning of graph topology [24].
The most popular GNN layer is the graph convolutional network (GCN) layer
[5]. However, traditional GCN implementations cannot handle edge features and
weigh neighbouring nodes with equal priority [25], [26].

2.8 Autoencoders

Autoencoders are a type of artificial neural network trained to learn efficient low-
dimensional representations of input data in an unsupervised manner [20]. Au-
toencoders are commonly composed in a two-step process: an encoder, responsible
for mapping the input data into a compressed representation, and a decoder, which
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reconstructs the original signal from the low-dimensional representation [20]. As
seen in Figure 5, this model forces input features into a lower-dimensional space
(referred to as a "bottleneck") [23], before being reconstructed. Ideally, the re-
sultant representations can be used to reconstruct the original data perfectly. In
practice, however, the models are lossy; errors accrue during input reconstruction
due to information loss during the encoding phase of the model [23].

Figure 5: The "bottleneck" architecture of an autoencoder network

[23]

When using autoencoders for anomaly detection, there is a trade-off between
reconstruction accuracy and anomaly detection sensitivity. If an autoencoder
is trained to perfectly reconstruct the input data, it may not be able to detect
anomalies that deviate only slightly from the norm. However, if the autoencoder
is trained to be highly sensitive to anomalies, it may reconstruct the input data
poorly and introduce false positives into the system.

Therefore, the choice of reconstruction accuracy depends on the specific appli-
cation and the nature of the expected anomalies. In some cases, it may be more
important to accurately reconstruct the input data. In contrast, it may be more
important to detect anomalies even at the cost of introducing some reconstruction
errors.

In practice, a decision threshold is often applied to the reconstruction error,
such that input data with a reconstruction error below the threshold are classified
as belonging to the normal population, and error values above the threshold are
classified as belonging to the anomalous population. The selection of the decision
threshold can be optimized according to the desired balance between Type I and
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Type II errors.
The two-step process of an autoencoder network is a useful tool for graph

anomaly detection. Specifically, an encoder can map nodes v ∈ V to represen-
tational embeddings zv ∈ Rd, where zv corresponds to the embedding for node
v. The representation zv can then be decoded to reconstruct node v’s neighbors.
This process can be repeated for all nodes V , producing a reconstructed graph
[5].

2.9 Graph Autoencoder Architecture

Graph Autoencoders (GAEs) extend autoencoder networks by leveraging graph
data. GAEs are a type of deep neural network architecture that map nodes in
a graph to a latent feature space and reconstruct graph information from these
latent representations. GAEs can be used to generate new graphs or learn network
embeddings, but this document will focus on the latter application.

The GAE model created by Kipf et. al. [27] consists of two components: an
encoder and decoder. First, the encoder leverages two Graph Convolutional Lay-
ers to encode structural and feature information concurrently. The final encoder
output is a matrix of node embeddings, where each row represents a node and
each column represents a feature in the embedding space. Encoding is described
in equation 7:

Z = enc(X,A) = f(Gconv(A,X;Θ1)) (7)

where:

• Z: Represents the output feature matrix, containing the encoded node fea-
tures after applying GNN layers;

• enc(X, A): An encoding function that takes the input node feature matrix
X and the adjacency matrix A;

• Gconv: A graph convolution operation applied in a GNN layer; and

• Θ1: A learnable weight matrix associated with the GNN layer.

Relational information between nodes is reconstructed by applying a simi-
larity function to node embeddings, as given in equation 8 [5]. In practice, the
most common implementation is the cosine similarity between vectors, or the dot
product of pair of nodes u and v [20]. The resulting dot product is input to a
sigmoid function to yield a probability value between 0 and 1. When this process
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is applied to each pair of nodes, the outputs are used to populate the entries of a
predicted adjacency matrix.

Âu,v = dec(zv, zu) = σ(zv
T zu) (8)

where:

• Âu,v: The predicted or reconstructed edge weight between nodes u and v

based on the encoded features;

• dec(zu, zv): A decoding function, which accepts the embeddings of nodes u
and v.

• σ: A sigmoid activation function, which maps the input value to a range
between 0 and 1; and

• zTv zu: The dot product of the encoded feature vectors of nodes u and v,
which measures the similarity between two nodes.

The Graph Autoencoder (GAE) model by Kipf et al. learns to reconstruct the
original input graph by comparing the real adjacency matrix A and the predicted
adjacency matrix Â. It does so by minimizing the cross-entropy loss between
these two matrices [27]. In this context, the presence or absence of an edge in
the graph is treated as a binary classification problem. Cross-entropy loss is a
suitable choice for this task because it quantifies the dissimilarity between the
predicted edge probabilities and the actual presence of edges in the network. By
minimizing this loss, the GAE model learns to generate accurate predictions of
edge probabilities that closely resemble the true adjacency matrix A [27].

2.9.1 Graph Attention Networks

In many popular GNN architectures, each neighbour has the same importance
during the message-passing phase [25]. This can be an undesirable quality; in
some tasks, nodes should not all have the same importance. To work around
this limitation, Graph Attention Networks (GATs) compute a learned weighted
score over the neighbors of each graph node, yielding a score for each edge (u, v)

indicating the importance of the features of the neighbor u to the node v [25], [26].
The attention mechanism works by computing a weight for each node in the graph
based on its features and the features of its neighbors. These weights are then
used to compute a weighted sum of the features of the neighboring nodes, which
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is combined with the features of the central node to obtain a new representation
for that node.

One of the advantages of GATs is that they can learn different weights for each
neighbor of a node, depending on its relevance to the task [25]. This allows the
model to capture complex patterns in the graph data, such as node importance
and community structure.

GATs have demonstrated strong performance in a wide range of graph-based
tasks, including node classification, link prediction, and graph classification [21],
[23], [25], [26].

2.9.2 GNN Encoding Example

In a traditional GNN, the goal is to generate node embeddings that represent
nodes in a graph based on their features. Figure 6 describes a simple two-layer
GNN designed to process node features in undirected graphs. With two layers,
each node encodes information from neighbours up to two hops away.

Figure 6: 2-layer GNN applied to an undirected graph, with an unrolled layout.

This model accepts two inputs. First, an array X of node feature vectors.
This array has N rows, where N is the number of nodes in the graph. Each
row represents the feature vector of a node, capturing its attributes or properties.
The second input is usually given as a list of node tuples (pairs of connected
nodes). This list represents the connections or relationships between the nodes
in the graph and guides the message-passing mechanism within subsequent GNN
layers.

The sequence of events can be broken down into four main steps:

1. Input: First, a fixed-length feature vector is assigned to each node, based
on its attribute data.

20



2. First Layer: The GNN begins the message-passing mechanism in its first
layer. Each node sends its feature vector to its neighbors. After all messages
are sent, every node aggregates the received messages using an aggregation
function. The aggregated data is combined with the node’s original features
through a neural network layer, followed by a non-linear activation function
(e.g., Sigmoid, tanh). The output of this layer is an updated set of node
feature vectors.

3. Second Layer: The same process is repeated in the second layer of the
GNN, using the updated node embeddings from the first layer instead of
the original feature vectors.

4. Output: After the second layer, the final node embeddings are generated.
These embeddings represent nodes in the original graph and encode data
from both node features and the local structure around each node.

In summary, a two-layer GNN creates node embeddings by processing and
aggregating node features hierarchically. These embeddings capture both feature
and relational information, making them valuable for various downstream tasks,
such as node classification and link prediction.

2.10 Link Prediction

Link prediction is a task in network analysis that involves predicting the likelihood
of a missing link between two nodes in a network based on the network’s structure
and properties [19]. This approach can be useful in various applications, such as
detecting fraudulent transactions in financial networks or identifying potential
disease-causing genes in biological networks [21], [28].

Link prediction tasks may be transductive or inductive. Transductive and in-
ductive detection systems differ in their approach to identifying anomalies within
graph-structured data. Transductive systems focus on detecting abnormalities
within a given graph, and do not generalize to other unseen graphs, making them
suitable for single, fixed datasets. In contrast, inductive systems learn general
patterns from one or more input graphs, allowing them to identify anomalies in
new, unseen graphs, and adapt to dynamic environments.

In the context of link prediction, an autoencoder architecture can be used to
detect anomalous links in a network by training the autoencoder on a subset of
the network and using it to predict the likelihood of the missing or future links
[20]. Anomalous links, which are not well-represented in the normal patterns of
the network, will result in high prediction errors [19]. These errors can be used as
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an indicator of anomalous links in the network. Anomalous links can be identified
by comparing the prediction errors with a threshold value. Links with prediction
errors above the threshold are classified as anomalous [21].

It is typical to use negative labels in the training data to enable the system
to learn the patterns of non-existent edges [5], [21]. Positive labels correspond
to pairs of nodes that are connected by an edge in the graph, whereas negative
labels correspond to pairs of nodes that are not connected by an edge.

Without the inclusion of negative samples for training, the model will not
learn the patterns of non-existent edges, which can lead to overfitting and poor
generalization performance [21]. Therefore, it is typical to include negative ex-
amples in the training data to enable the model to learn to that the absence of
an edge is equally important as the presence of an edge during reconstruction.

2.11 Related Works

2.11.1 EULER: Detecting Network Lateral Movement via Scalable Tem-

poral Graph Link Prediction (2022)

This paper formulates anomalous lateral movement detection as a temporal graph
link prediction problem, improving precision over standard anomaly-based intru-
sion detection techniques [21]. The authors propose EULER, a framework that
combines a GNN with a sequence encoder, such as a recurrent neural network
(RNN), to capture topological and temporal features of an evolving network.

In this research, a GAE architecture [27] is employed, leveraging a selection
of GNN layers, including a GAT [25] encoder. Experimental evaluation on three
datasets shows that the EULER framework performs as well or better than state-
of-the-art temporal link prediction models and can scale to accommodate larger
data. When tested on the Los Alamos National Laboratory (LANL) real-world
dataset with approximately 1.6 billion events [29], EULER-based models outper-
form prior works in both precision and compute time.

Table 2: LANL Dataset Metadata

Nodes 17,685

Events 45,871,390

Anomalous Edges 518

Duration (Days) 58
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The authors highlight certain challenges in evaluating anomaly detection sys-
tems, particularly when real network data lacks fine-grained labeling. One such
challenge is that events identified as anomalies might not be part of the labeled
dataset, even though they display anomalous behavior. Due to the absence of
detailed labeling information, these events are considered false positives. This
issue underscores the difficulty in assessing the effectiveness of anomaly detec-
tion systems when dealing with real-world network data that lacks comprehensive
labeling.

Additionally, although the LANL Dataset is a good representation of real
network traffic, the events in the dataset are custom abstractions of authentic
corporate network events and only include connections internal to the LANL
intranet [29]. Despite these limitations, EULER still sets a strong precedent for
unsupervised anomaly detection through link prediction, showcasing its potential
in addressing network security challenges.

2.11.2 Unified Graph Embedding-Based Anomalous Edge Detection

(2020)

Ouyang introduces a unique end-to-end framework for anomaly detection in graph
data, focusing on identifying anomalous edges in static, unattributed graphs [12].
The approach, a "shallow embedding" strategy, considers only relational data
and not edge or node features. Conventional shallow embedding methods often
depend on hand-crafted features or community-based techniques, which might
not be well-suited for anomaly detection tasks as they involve separate models
with different objective functions. To address these limitations, the proposed
framework jointly learns the graph structural embedding and normal behavior
model. The framework consists of three components: a conditional probability
distribution used as an objective function to guide normal behavior modeling, an
end-to-end neural network architecture parameterizing the probability distribu-
tion, and an unsupervised training algorithm. Experiments on six public datasets
demonstrate the method’s superior accuracy and scalability compared to other
shallow graph embedding techniques. The size of these graphs is presented below
in Table 3.

In the experiments, the authors use six datasets, four of which did not have
ground truth anomalies present. To quantitatively compare anomaly detection
methods against their model, the authors manually injected anomalous edges
into these datasets using an injection technique from a similar experiment [30].
The goal of the injection technique was to assess the behaviour of the anomaly
detection system in both sparse and dense connection areas in the graph structure
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Table 3: Public Datasets for Ouyang et. al.

Dataset # Vertex # Edge

UCI Messages 1,899 13,838

arXiv hep-th 9,877 25,998

Digg 30,398 86,312

DBLP 317,080 1,049,866

Email-Eu-core 1,005 16,706

Enron Email 36,692 183,831

[12]. To accomplish the anomaly injection task, the authors sorted nodes by degree
and selected the top 25% and bottom 25% nodes as "High-Deg" and "Low-Deg",
respectively. Following this random selection, a quantity equal to 1% of the
total edges in the network was injected with anomalous edges in various source-
destination combinations, yielding three datasets: "Low-Deg, Low-Deg", "Low-
Deg, High-Deg", and "High-Deg, High-Deg". Additionally, with ground truth
anomalies available in the Email-Eu-core dataset, the authors devised a scenario
called "Groups" wherein existing anomalous edges were also randomly inserted
between nodes in different groups to simulate malicious emails sent by attackers,
as would be typical in a spearphishing campaign [12].

Table 4: Connection Density Comparison Results in the Email-Eu-core Dataset

Table 4 shows the performance comparison of Ouyang et al.’s approach and
Non-negative Matrix Factorization (NMF) using the Area Under the Curve (AUC)
classification metric [12]. AUC measures the probability that a randomly chosen
positive instance is ranked higher than a randomly chosen negative instance, with
higher values indicating better classification performance. NMF is a shallow em-
bedding algorithm that creates a lower-rank approximation of a graph’s adjacency
matrix to uncover inherent community structures. Anomalies are often associated
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with predicted edges that differ significantly from the approximated matrix.
The researchers employed anomaly injection techniques to assess the robust-

ness and sensitivity of various methods, including NMF, in detecting anomalous
edges. This comparison demonstrated the effectiveness of the strategy proposed
by Ouyang et al. in identifying anomalies within static unattributed graphs, out-
performing NMF and other techniques. Moreover, the approach reaffirms that a
significant amount of classification accuracy can be derived solely from the struc-
ture of the graph.

2.11.3 Intention-aware Heterogeneous Graph Attention Networks for

Fraud Transactions Detection (2021)

In the commerce domain, deep learning models often employ sequence-based
methods that analyze users’ behaviors as ordered sequences of actions [31]. How-
ever, these existing methods typically treat each transaction as an independent
event, overlooking the rich interactions between entities involved in the trans-
actions. To address this limitation, the authors introduce a novel approach
called Intention-aware Heterogeneous Graph ATtention networks (IHGAT). This
method utilizes a heterogeneous transaction-intention network to capture both
transaction and intention-level interactions. Heterogeneous graphs comprise mul-
tiple types of nodes and edges, representing various entities and relationships
within a complex network. In the context of this study, an intention refers to a
sequence of user behaviors that ultimately lead to a transaction.

Figure 7: IHGAT model architecture
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The authors conceive the input network as transaction nodes and intention
nodes. The network also incorporates transaction-transaction edges based on
co-occurred attributes and transaction-intention edges created through user be-
havioural sequence segmentation. The IHGAT model derives a transaction node
representation in a two-stage process, visualized in Figure 7 [31]. First, intention
neighbors are aggregated using a sequence-based model with an attention mecha-
nism, such as Long Short-Term Memory Networks (LSTM), to capture sequential
information. Attention weights are calculated to measure the importance of each
intention neighbor and then aggregated to form the current transaction node rep-
resentation. Next, a multi-head graph attention operation is applied to aggregate
transaction neighbors. The final representation of the transaction node is cal-
culated by averaging the attention scores across multiple attention mechanisms.
This process enables the model to capture both intention and transaction-level
interactions for better fraud transaction detection.

Table 5: IGHAT Methods Comparison Results

The researchers conducted extensive experiments on a large-scale, real-world
industrial dataset from an online e-commerce platform to evaluate the effective-
ness of the proposed model. The dataset consisted of 1.59 million transactions,
with 0.51% identified as fraudulent transactions. Table 5 outlines an evaluation
between a variety of sequence, tree, and graph-based methodologies [31]. Entries
labeled with an asterisk indicate the best performance out of the three types of
baselines. The IHGAT model demonstrated superior performance, with graph-
based methods outperforming sequence-based and tree-based models. In a notable
follow-up experiment, the model was tested in an online setting on an e-commerce
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platform, processing a subset of actual transactions for one month. Compared to
the e-commerce platform’s existing fraud detection system, the IHGAT model
achieved a 1.66% improvement in AUC. This research showcases the significant
potential of GAT-based anomaly detection models when compared to other robust
machine learning solutions.

2.12 Summary

This chapter laid the groundwork for the research by discussing various topics
relevant to the study. Endpoint Monitoring Tools, such as System Monitor and
Osqeury, are crucial for gathering network data. The chapter also explored Ama-
zon S3, a popular service for large-scale log storage. Word Embeddings and
Graphs were examined, in addition to a particular focus on the PageRank algo-
rithm. The MITRE ATT&CK Framework was introduced to offer a standardized
understanding of cybersecurity threats.

Unsupervised Learning techniques were investigated, centering on anomaly de-
tection, associated metrics, and challenges with model evaluation. Autoencoders
and Graph Autoencoder Architecture were studied within the context of anomaly
detection, including a provided example. Furthermore, Graph Neural Networks,
such as Neural Message Passing and Graph Attention Networks, were discussed in
relation to their application in Link Prediction tasks. Finally, a brief discussion of
related works was covered, with particular focus on link prediction in a cyberse-
curity context, unsupervised evaluation strategies, and graph attention networks.
This offered a comprehensive overview of the key concepts and techniques nec-
essary for grasping the fundamentals of an edge-based graph anomaly detection
model over large network captures.
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3 Methodology and Design

This chapter describes the research methodology and design to develop an anoma-
lous edge detection model. The first phase covers an exploratory investigation of
corporate and artificial network environments, summarizing characteristics and
identifying patterns and trends in the host-based logs. The second phase is de-
signing and implementing the end-to-end anomaly detection pipeline capable of
scoring connections using a probabilistic reconstruction score to yield outlying
data. The third phase of research includes the development and application of
ATT&CK -sourced scenarios using a combination of hybrid and synthetic data to
collect metrics related to the quantitative performance of the model.

3.1 Phase 1: Data Extraction, Exploratory Data Analysis, and

Feature Engineering

The data extraction, EDA, and feature engineering phase is a crucial step in un-
derstanding and analyzing host-based network connection logs in large networks.
EDA provides a means to summarize and visualize insights, identify patterns and
trends, and identify potential issues or limitations that may affect downstream
tasks. In the context of massive log data files, it also provides an opportunity to
filter superfluous data to greatly reduce the processing overhead of the pipeline.
The EDA phase informs the development of subsequent features which are used
during the graph encoding process.

3.1.1 Data Extraction

In the initial stage of the experimentation process, a solution is needed for query-
ing large-scale data stores containing unstructured log data. Therefore, a solution
must be designed and implemented to effectively extract the relevant data needed
for analysis. This solution should satisfy the following requirements:

• Enable fine-grained control over the time period of logs being analyzed,
which means allowing the selection of specific time windows or intervals for
data extraction; and

• Process vast amounts of data efficiently and rapidly to prevent it from be-
coming the primary bottleneck during experimentation.

To meet these requirements, the log extraction tool must be capable of re-
trieving only the fields of interest to minimize the amount of unnecessary data
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that needs processing. Developing and implementing this solution is crucial for
the success of the Exploratory Data Analysis (EDA) process.

3.1.2 Exploratory Data Analysis

The data exploration sub-phase involves constructing the graph representation
of the target computer network, which allows for a better understanding of the
network structure and facilitates the identification of patterns and relationships
among nodes. Analyzing the data in both tabular and graph-based formats using
intermediate data formats helps to gain deeper insights into normal host commu-
nication patterns and behaviors, as well as to summarize relevant characteristics.

In this process, EDA is performed across multiple networks varying in size,
ranging from academic to production transnational networks in scale. Using fea-
tures available in Sysmon Event ID 3, source and destination address/port fea-
tures are employed to attribute nodes in the graph. Osquery is utilized to collect
hardware interface details, which serve to enhance the network features further.

Constructing the graph representation enables the extraction of valuable in-
sights from the network topology, such as identifying central nodes, detecting
communities, or revealing potential vulnerabilities. This graphical representation
aids in the development of effective anomaly detection models by providing a
comprehensive view of the network’s structure and its underlying communication
patterns.

The inclusion of relational-based analysis allows a wide range of new metrics
to be derived from the data. A key step in this phase is filtering; Sysmon logs
collected from a wide time window on the target network can total hundreds
of millions of records and communications between hundreds of hosts. To reduce
the computational overhead incurred by GNN-based computations, events related
to web-browser connections and isolated sub-communities are removed from the
data.

3.1.3 Feature Engineering

Feature engineering is a critical steps following the EDA process, as it ensures
that relevant and informative features are used to build the anomaly detection
model. This step involves transforming existing features, or deriving new ones.

Based on the insights gained during the EDA process, new features can be
created to better capture the underlying patterns and relationships within the
network. These features may include aggregated or derived statistics, such as
importance measures like PageRank, or connectivity metrics like the in/out degree
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of a node. Additionally, domain-specific knowledge can be incorporated to create
features that reflect the unique aspects of the network, such as the administrative
credentials or protocol-specific attributes.

Some features may require transformation to improve their usefulness in the
model. Techniques such as frequency encoding or categorical variable encoding
can be applied to ensure that features are weighted appropriately and compatible
with the chosen modeling approach.

After engineering and transforming features, it is essential to select a subset
of features that contribute most to the model’s performance. By incorporating
the results from the EDA process, feature engineering and selection steps ensure
that relevant features are used to build the anomaly detection model. These steps
ultimately contribute to improved model performance and generalization.

3.2 Phase 2: Model Development

The purpose of phase two is to develop an unsupervised model capable of pro-
cessing the static, attributed network created in phase one. This model will be
transductive, scoring relational anomalies based on their probability of occurrence
during reconstruction, as seen in other anomalous edge detection models [6], [12].
The strategy is to use graph representations with an autoencoder architecture to
determine which edges are anomalous. This approach is effective because outlying
connections are sparse, and will be mapped to uncertain latent representations [5].
In turn, this produces a higher reconstruction error during the decoding process
[19].

The model development stage involves constructing an end-to-end anomaly
detection pipeline using an anomalous edge detection method based on a GAE link
prediction architecture [27]. The performance is enhanced by incorporating GAT
layers during the encoding process [26]. A significant challenge is handling the
large network sizes; to address this, the GAT-GAE model is specifically designed
for large graphs, providing an effective solution for identifying anomalous edges.
Hyperparameter tuning is conducted during the development of the GAT-GAE
model to further optimize performance.

3.2.1 Loss Function

The choice of loss function is a critical decision when measuring the difference
between the predicted output of the model and the true output, as it provides
a signal to update the model’s parameters during training. Link prediction can
be formulated as a probability estimation, where potential links are associated
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with existence probabilities. For measuring the error in the reconstruction of a
given sample of links, a binary cross-entropy (BCE) loss with an applied sigmoid
function is selected.

In the context of graph reconstruction, the task is to predict the presence or
absence of edges between nodes, which can be framed as a binary classification
problem: either an edge exists (1) or it does not (0). BCE loss measures the
dissimilarity between the predicted probabilities of edge existence and the actual
presence of edges in the adjacency matrix of the graph. By minimizing BCE
loss during training, the model learns to generate accurate predictions for edge
existence. This loss function is particularly useful when the presence or absence
of edges can be interpreted as probabilities yielded by the sigmoid function, as
BCE loss accounts for the uncertainty in the predictions and penalizes wrong
predictions with high confidence.

The BCE with Logit function is described in equation 9 [32]:

l(x, y) = L = {l1, ..., lN}T , ln = −wn[yn · log σ(xn)+(1−yn) · log(1−σ(xn))] (9)

where:

• L is the BCE loss value;

• N is the number of training samples;

• wn is the weight assigned to the example as a scalar value;

• xn is the raw output of the model;

• yn is the binary label for an example; and

• σ is the sigmoid function, mapping logits to a probability values between 0
and 1.

This loss accepts a tensor of logits and binary labels, given as x and y, respec-
tively. The term wn is a weight assigned to each training example. and computes
the binary cross-entropy loss between the logits and labels. A binary selection
of labels is created by sampling positive and negative edges within the network
structure.

3.2.2 Optimizer

The optimization algorithm plays a crucial role in a machine learning model, as it
is responsible for minimizing the loss function during the training process. In this
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case, a standard implementation of the Adam optimizer [33] was selected, which
is an adaptive stochastic gradient-descent optimizer.

Adam is a widely-used optimization algorithm, valued for its adaptive learning
rate and low memory requirements. It offers an adjustable learning rate hyperpa-
rameter for the model, controlling the step size at which the model’s weights are
updated during the training process. This flexibility allows for more efficient and
effective training, as the learning rate can be adjusted to optimize the model’s
performance.

3.2.3 Detection Threshold

With labeled data available through scenario injection, automating the deter-
mination of the detection threshold for identifying anomalies proved valuable in
obtaining quantitative metrics. The optimal cutoff threshold for edge likelihood
scores was formulated as an optimization problem.

By leveraging the known labels in the data, the optimization algorithm ad-
justs the anomaly threshold to maximize the F1 score, which balances precision
and recall. This approach enables a more efficient and accurate identification
of anomalies in the network by selecting the detection threshold that achieves
the best trade-off between recall and precision, leading to the highest possible
F1-score.

3.3 Phase 3: Model Evaluation

During this phase, model performance is evaluated by inserting a known quantity
of synthetic data into the corporate network capture. Four distinct scenarios
encompass a range of anomalous network behaviors, generating metrics that assess
the model’s performance under various conditions. By analyzing the model’s
ability to detect these synthetic anomalies, its effectiveness in identifying different
types of anomalous behaviors can be quantified and compared.

3.3.1 Insertion of Data for Model Evaluation

Evaluating unsupervised models, particularly at scale, presents a significant chal-
lenge due to the absence of ground truth anomalies in the networks under analysis.
Obtaining ground truth anomalies is a well-known challenge in the field [21], [12].
To enable quantitative evaluation of the anomaly detection model, synthetic data
is inserted into the networks using anomaly injection.

Anomaly injection involves manually introducing synthetic anomalous edges
into the original dataset. These edges represent connections that deviate from the
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typical patterns observed in the network. By injecting these synthetic anomalies,
a pseudo-ground truth is created, which can be used for model evaluation and
comparison.

This solution is commonly adopted in literature [6] [12] [21]; however, it does
not address the presence of fine-grained anomalous behaviors already present in
the data. These unidentified events may be detected as false positives, potentially
negatively affecting the metrics associated with the model and impacting the
overall evaluation of its performance.

3.3.2 Model Performance Metrics

In the model evaluation sub-phase, various performance metrics are used to quan-
tify the effectiveness of the anomaly detection system. These metrics are derived
from four binary classification outcomes: True Positives (TP), False Positives
(FP), False Negatives (FN), and True Negatives (TN).

Moreover, the concept of reconstruction error is critical in the context of
anomalous edge detection. Reconstruction error can be viewed as an inverse in-
dicator of an edge’s presence probability within the network. Specifically, a high
reconstruction error suggests a low probability of an edge being present in the
original network. Consequently, edges with high reconstruction errors are more
likely to be anomalies, as they deviate from the expected network patterns.

These performance metrics, along with the understanding of the relationship
between reconstruction error and edge presence probability, enable an effective
measurement of the anomaly detection system’s performance.

3.4 Scenarios

In this experiment, custom scenarios are used as a conceptual framework that de-
fines how hybrid (real labeled events) or synthetic (artificial) edges are connected
to source and destination nodes within the actual network data. These scenarios
provide a structured way of introducing edges into the network, allowing for a
controlled evaluation of the model’s ability to detect anomalies.

Four scenarios are implemented: NMAP, MoziDDoS, ExternalToEndpoint, and
EndpointToExternal.

3.4.1 NMAP

The NMAP scenario is designed to emulate the network traffic behaviour gener-
ated by the NMAP tool. NMAP, or Network Mapper, is a widely-used open-source
tool for network discovery and security auditing. It scans hosts and services on a
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network by sending packets and analyzing responses to identify active hosts, open
ports, and running services.

Regarding host-based connections, NMAP generates a significant amount of
traffic by sending various types of packets to target hosts. These scans may create
a noticeable pattern in the network traffic as NMAP probes multiple ports on the
target hosts, often in a sequential or near-sequential manner.

NMAP fits into the MITRE ATT&CK framework as a tool that can be used
during the "Reconnaissance" stage of the attack lifecycle. Attackers may use
NMAP to gather information about the target network, identify vulnerabilities,
and plan their attacks accordingly. In the MITRE ATT&CK framework, NMAP
is commonly associated with technique T1046 (Network Service Scanning).

In the NMAP scenario, synthetic edges are inserted between nodes to mimic
NMAP scanning the immediate subnet of nodes artificially. This process results
in the addition of numerous edges to the graph, simulating the network traffic
generated by NMAP scans. Moreover, node features are modified to indicate that
a range of ports is being scanned, further replicating the behaviour of NMAP in
the network.

By incorporating the NMAP scenario into the graph anomaly detection sys-
tem, the effectiveness of the system can be evaluated in the context of detecting
network traffic patterns associated with NMAP scanning, which is a common tool
used by adversaries during the reconnaissance phase of an attack.

3.4.2 MoziDDoS

The MoziDDoS scenario simulates the behaviour of the Mozi IoT botnet conduct-
ing a Distributed Denial of Service (DDoS) attack [34]. Mozi is an IoT botnet
that targets poorly secured IoT devices, such as Smart TVs, DVRs, and IP cam-
eras, exploiting known vulnerabilities. Once compromised, these devices can be
remotely controlled by the attacker to conduct various attacks, with DDoS attacks
being one of the most common use cases.

Botnets like Mozi are often used to execute DDoS attacks by overwhelming a
target system or service with an excessive volume of traffic. This influx of traffic
can lead to the target system becoming unresponsive or unavailable to legitimate
users.

In the context of the MITRE ATT&CK framework, DDoS attacks fit within
the "Impact" tactic, specifically the T1498 (Network Denial of Service) technique.
This tactic aims to disrupt, degrade, or deny the availability of target systems,
services, or network resources.
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In the MoziDDoS scenario, synthetic nodes representing real malicious IP
addresses are incorporated into the graph structure. User endpoints within the
corporate network initially establish connections with these new malicious IPs,
creating both request and response edges between the user endpoint and the
new node. Following this, a large-scale DDoS attack is simulated, targeting a
random external IP address that already exists within the network structure.
This mimics the command and control aspect of a DDoS operation. As a result,
numerous edges are added to the network, reflecting the substantial volume of
traffic generated during a DDoS attack.

Incorporating the MoziDDoS scenario into the graph anomaly detection sys-
tem enables the evaluation of its effectiveness in detecting network traffic patterns
associated with DDoS attacks conducted by IoT botnets like Mozi. This evalua-
tion is crucial due to the prevalence of DDoS attacks in the current cybersecurity
landscape, emphasizing the importance of early detection for mitigating their
impact.

3.4.3 ExternalToEndpoint

The ExternalToEndpoint scenario is designed to simulate real anomalous connec-
tions between external (public) addresses and user workstations within a corporate
network. In this scenario, hybrid edges are inserted into the graph as incoming
connections, representing potential security threats from external sources to in-
ternal endpoints.

In the context of the MITRE ATT&CK framework, the ExternalToEndpoint
scenario can be associated with several tactics and techniques, including:

1. Lateral Movement: This tactic involves an attacker moving through a net-
work after gaining initial access to expand their foothold. Techniques such
as T1021 (Remote Services) or T1570 (Lateral Tool Transfer) can be linked
to this scenario, as they involve accessing or transferring tools to internal
endpoints from external sources.

2. Command and Control: This tactic pertains to how an attacker commu-
nicates with compromised systems within a network to execute their com-
mands. Techniques such as T1562 (Impair Defenses) are relevant to the
ExternalToEndpoint scenario, as they involve incoming connections to es-
tablish or maintain control over internal systems.

3. Infiltration: This tactic emphasizes the unauthorized transfer of data into
a target network. The ExternalToEndpoint scenario could be associated
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with techniques such as T1105 (Infiltration of Files or Information), as they
involve sending data from external addresses to internal endpoints within a
network.

By integrating the ExternalToEndpoint scenario, the graph anomaly detec-
tion system’s effectiveness in identifying suspicious connections between external
addresses and user workstations can be evaluated. This is crucial for preventing
breaches or data exfiltration in corporate networks.

3.4.4 EndpointToExternal

The EndpointToExternal scenario is a similar conception to the ExternalToEnd-
point scenario, designed to simulate connections initiated by user workstations
within a corporate network to potentially dangerous public IPs. In contrast to the
ExternalToEndpoint scenario, where the connections were incoming, the connec-
tions in this scenario are outgoing, representing potential security risks associated
with internal endpoints connecting to external sources.

In the context of the MITRE ATT&CK framework, the EndpointToExternal
scenario may be associated with similar tactics to ExternalToEndpoint, such as
file exfiltration or command and control. In the latter case, techniques such as
T1071 (Application Layer Protocol) or T1090 (Proxy) may be related to the End-
pointToExternal scenario, as they involve using outgoing connections to establish
or maintain control over external systems.

The non-trivial change in direction from incoming to outgoing connections
in the EndpointToExternal scenario affects the order of message passing within
the graph anomaly detection system. This alteration emphasizes the importance
of evaluating the system’s effectiveness in detecting potential security risks as-
sociated with internal endpoints connecting to external sources. Identifying and
mitigating such connections is crucial for preventing potential breaches, data ex-
filtration, or unauthorized control over internal systems in a corporate network
environment.

In summary, scenarios are utilized to assess the efficacy of a graph anomaly
detection system that relies on anomalous edge detection. By defining how hybrid
or synthetic edges are connected to nodes in real network data and incorporating
various parameters to refine the graph, scenarios play a crucial role in evaluating
the performance of the detection system under different conditions.
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3.5 Summary

In this chapter, three research phases are outlined to achieve the project’s aim.
The first phase involves data extraction and exploration from the target network.
This phase concludes when the target network’s characteristics are sufficiently
described through data exploratory analysis. The second phase focuses on model
development, during which the message passing architecture and loss functions
are refined to determine the reconstruction loss of connections that exceed a pre-
determined threshold. This phase ends when the model successfully scores edges
and detects connections considered anomalous within the broader network con-
text. Lastly, the third phase comprises model validation against synthetic and
hybrid edges. These data points are used to gather performance metrics assess
the quantitative performance of the model in detail.
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4 Results

This chapter outlines the development and assessment of an anomaly detection
system aimed at identifying irregular connections within computer networks. The
chapter begins with an overview of the experimental environment employed for
conducting this research. Subsequently, it delves into the findings obtained from
the exploratory data analysis. The chapter then proceeds to describe the essential
feature engineering techniques utilized in the experiment. In the Model Devel-
opment section, the design and implementation of the GAT-GAE architecture
are discussed. Finally, the Model Evaluation phase examines the system’s verifi-
cation and the model’s validation against various scenarios, including a smaller,
artificially constructed computer network.

4.1 Experimental Design

Figure 8 displays a high-level architectural design for the complete anomaly de-
tection pipeline. Key components of the architecture are elaborated upon in the
subsequent sections.

Figure 8: Experimental Architecture

4.2 Experimental Environment

The entire research process was carried out in a high-performance computing
environment, which had privileged access to four large corporate networks. This
included a local S3-API compliant archive of host log data and active remote
endpoint monitoring tools.

The entire pre-processing, training, and evaluation process was powered by
a state-of-the-art Nvidia RTX A6000 GPU. Under the largest processing loads,
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the pipeline demanded up to 900 gigabytes of memory, with the most significant
consumption occurring during parallel conversion to network file formats described
shortly. This robust computational setup enabled efficient handling and analysis
of the vast data sets involved in the experiment, ensuring timely results.

Log records obtained from these corporate networks for anomaly detection
purposes are subject to a confidentiality disclosure agreement and cannot be
shared publicly. To prevent the disclosure of any identifiable corporate informa-
tion, several data visualizations and other findings from the exploratory analysis
are anonymized.

Lastly, log data was obtained from an artificial network environment (ANE).
This data capture spanned approximately twenty hours, during which automated
network user activity occurred in the background. Simultaneously, an attack
campaign mimicking the behaviors of APT-29 was conducted. This simulated at-
tack involved activities such as file download, the establishment of a long-running
command and control (C2) channel, and file exfiltration [35]. The artificial net-
work environment provided a unique dataset for analyzing the performance of the
anomaly detection model in a controlled environment.

4.3 Phase 1: Data Extraction, Exploratory Data Analysis, and

Feature Engineering

This phase encompasses data generation and extraction from log data, transfor-
mation of the tabular data into NetworkX format, initial feature selection and
processing based on Sysmon Event ID 3, and exploratory data analysis (EDA) to
gain a deeper understanding of the data. The data was collected using a custom
program developed specifically for this research, designed to efficiently extract
relevant data from an S3-compliant log storage system. A 12-hour window across
local working hours for each network (approximately 0600h - 1800h EST) was
selected for high user activity. Four corporate networks were analyzed across a
12-hour window, except for the APT-29 artificial network environment, which was
a continuous 20-hour capture.

The insights derived from the EDA process serve as the foundation for feature
engineering and model development. The focus of this phase is on extracting
valuable information from the data and transforming it into a suitable format
for the subsequent modeling process. By carefully selecting features and con-
ducting a thorough analysis, this phase ensures that the data is well-prepared
for the anomaly detection model, ultimately contributing to the model’s overall
performance and effectiveness.
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4.3.1 Data Generation

Sysmon drivers on the target network are configured for live host monitoring and
required no modification for this research. A log aggregation pipeline continually
ingested events from remote endpoints and wrote to a remote archive. Log records
were stored as compressed NDJSON files.

Osquery returns selected features from host operating systems using SQL [9].
Queries were executed against endpoints in real-time. The data returned from
queries was returned as a standard JSON list array [36].

The period of data extraction between the tools coincides in order to accurately
attribute nodes with features extracted from Osquery and Sysmon. Fine-grained
control over periods of monitoring is relatively straightforward by performing a
JOIN on features common to both datasets [8], [9].

4.3.2 Data Extraction

Access to a large quantity of enterprise network logs was facilitated through a
remote archival server cluster via a research partner. The log storage server is
an S3-compliant fault-tolerant distributed object storage system that is suitable
for storing large amounts of unstructured logs. Log data is stored per-client as
newline-delimited JSON files, typically sized around 100Mb per log file uncom-
pressed. One hour of log data typically produces between 700 and 1200 log files,
dependent on the client and working hour. Summarily, 70-120GB of log data is
scanned for each hour of analysis. Consequently, it is intractable to download all
logs in a fixed time period. However, S3-compliant systems provide a mechanism
to filter the data server-side by leveraging the S3-SELECT API.

S3-SELECT is a client programming interface that allows various file formats
to be queried directly using a SQL-like syntax. Using prepared statements, a
query is dynamically generated to retrieve log data that fits within user-defined
conditionals. The query is concurrently applied against each log file with the
user-defined start and end time period. An example of a query literal is provided
in Listing 1.

1 SELECT s.computer_name, s.event_data.image, s.event_data.user ...

2 FROM S3Object s

3 WHERE s.event_id in (3) AND s.source_name in ’sysmon’)

Listing 1: S3-SELECT example

The response JSON is serialized into a single compressed file, producing a
much smaller file that can be immediately loaded into memory for downstream
analysis.
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The tooling developed for this research effectively distributed queries in paral-
lel; however, a performance bottleneck was encountered in the pipeline due to the
serialization of response queries into a single file. This bottleneck resulted from
the acquisition of a mutual exclusion lock, which limited the speedup gains. To
enhance scalability, an alternative solution could involve writing data to tempo-
rary intermediate files and consolidating the results as a final step. It is important
to note that during the experimentation phase of this research, a readily available
solution to this problem did not exist, highlighting the significance of the custom
tooling created for this research.

4.3.3 Data Preprocessing

The data was then read into a tabular in-memory format via the Python Pandas

library by reading the filtered NDJSON from disk [37]. To accommodate the size
of the file in working memory, the data was processed in chunks. Preprocessing
steps included:

1. File format conversion to Parquet, a space-optimized columnar file format
that significantly reduces the memory footprint and greatly speeds up reads
from disk [38];

2. Filtering: records from outside the window of analysis or otherwise contain-
ing NULL values were droppped from the dataset. In total, these out-of-
band records comprised less than 1% of the total dataset;

3. Image editing: The absolute paths of each image was removed, yielding only
the executable name; and

4. Feature engineering: an IsAdmin feature as assigned to each record, based
on whether or not the USER feature contained NT AUTHORITY or other
client-specific strings such as "<Corporate Network>-ADMIN".

Upon completion of this step, the data exists in two formats: on disk, as a
space-efficient Parquet file, which is compressed for optimal storage, and an in-
memory representation as a Pandas DataFrame object. This dual representation
ensures efficient data handling and processing throughout the analysis.

4.3.4 NetworkX Transformation

The next intermediate representation of the data involves transforming the log
data into a graph data structure. This is supported by the Python programming
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library NetworkX [39]. The advantage of using NetworkX graphs as an intermedi-
ate representation is that the library has a wide range of graph methods available,
including PageRank, eigenvector centrality, and other connectivity metrics.

Composing a DataFrame into a graph involves a complete scan of the data.
Each record provides additional context about the structure of the graph, which
requires updating relevant node and edge features via the update_edge and
update_node functions.

The algorithm is described in Listing 2.

1 import networkx as nx

2 import pandas as pd

3

4 def to_graph(

5 df: pd.DataFrame,

6 top_k_images: Optional[dict] = None

7 ) -> nx.MultiDiGraph:

8 """Convert DataFrame to a multi-relational directed graph."""

9 graph = nx.MultiDiGraph()

10

11 for row in df.itertuples():

12 update_edge(graph, row, top_k_images)

13 update_node(graph, row)

14

15 return graph

Listing 2: NetworkX Transformation

By partitioning the input argument df: pd.DataFrame, the algorithm de-
scribed in Listing 2 could be executed in parallel with the resulting output col-
lected as a list of sub-graphs. A performant strategy to combine the sub-graphs
is described in Appendix A.1.2.

1 import functools

2

3 def reduce(graphs: list[nx.MultiDiGraph]) -> nx.MultiDiGraph:

4 """Compose a single graph from a list of sub-graphs."""

5 return functools.reduce(merge, graphs)

Listing 3: Sub-Graph Composition

4.3.5 Feature Selection and Engineering

Almost all Sysmon Event ID 3 features are characterized by high degrees of non-
ordinal cardinality. Consequently, few features are immediately usable without
further processing. This experiment used manual feature selection based on do-
main knowledge to derive meaningful context from the log data.
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Table 6: Selected Sysmon Event ID 3 Features

Field Description

DestinationIsIpv6 Indicates if the destination is an IPv6 address

DestinationIp Destination IP address

DestinationHostname DNS name of the contacted host

DestinationPort Destination port number

DestinationPortName Name of the destination port in use

Image The file path of the process that made the network connection

Initiated Indicates whether the process initiated the TCP connection

ProcessGuid The GUID of the process that made the network connection

ProcessId PID of the process that made the connection

Protocol Protocol used for the network connection (e.g. TCP, UDP)

SourceIsIpv6 Indicates if the source IP is an IPv6 address

SourceIp Originating IP address

SourceHostname DNS name of the host that made the network connection

SourcePort Source port number

SourcePortName Name of the source port in use

User Name of the account that made the network connection

UtcTime Time in UTC when event was created

Table 6 features highlighted in green were selected for the model because
they provide valuable information for characterizing and understanding network
connections. The selected features are categorized as follows:

Address and Port Information: Features like DestinationIp, DestinationPort,
SourceIp, and SourcePort are essential for identifying the endpoints of network
connections. These features allow the model to differentiate between various con-
nections and capture patterns in the communication between hosts and services
on the network.

Process Information: The Image feature indicates the file path of the pro-
cess involved in the network connection, either as the initiator or the handler.
This information sheds light on the applications and services responsible for the
connections, playing a critical role in identifying anomalous behaviours.

Connection Details: The Initiated and Protocol features capture whether the
process initiated the TCP connection and the protocol used for the connection,
respectively. These features provide insight into the direction of the connections
and can help identify unusual or suspicious behavior in the network.

User Information: The User feature captures the name of the account that

43



made the network connection. This information helps identify the users respon-
sible for the connections and can be useful in detecting anomalous behaviours
associated with accounts.

Timestamp: The UtcTime feature records the time in UTC when the event
was created. This information enables the model to window time appropriately,
and can be leveraged during EDA to examine access patterns over time.

These selected features provide a comprehensive view of network connections
and their associated processes, users, and timestamps. By incorporating this
information into the model, it can better identify patterns, relationships, and
anomalies in the network activity.

4.3.6 Exploratory Data Analysis

The aim of EDA is to collect insights into the structure and features of the corpo-
rate networks, particularly in filtering superfluous data to reduce the processing
overhead of the pipeline. This consisted of analysis steps on both the tabular
data, and relational metrics on the directed graph. During the EDA phase of the
research, several important patterns and findings emerged concerning scale, time
processes, users, and connectivity. The following sections provide more detail on
each of these aspects.

4.3.6.1 Network Scale

Table 7: 12h Corporate and 20h Artificial Network Capture Scale

Client # Records # Nodes # Edges Business Sector

A 92,793,807 33,459 420,935 Industrial

B 136,201,466 18,197 247,396 Industrial

C 124,169,703 330,585 981,566 Natural Resources

D 45,097,758 14,526 140,961 Transit

ANE 48,630 437 256 -

1. Scale. As seen in Table 7, the corporate networks were exceptionally large,
both in terms of the number of users, and the number of interconnected
devices.

2. Applications. The quantity and types of applications used in the corpo-
rate networks featured many business-related applications attributed to the
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broader scope of operations, often exceeding 3000 unique programs during
the period of analysis

3. Usage patterns. The user behaviour in a corporate network is far more di-
verse than in a simulated network environment, where automated processes
generate traffic. Corporate network traffic reflects the habits and needs of a
heterogeneous group of users, but also extends beyond human interaction,
including IoT devices and smart devices within the network. In the simu-
lated network environment, the traffic generated is not representative of the
real-world user behaviour represented in the four corporate datasets.

Special attention must be given to the size of the client networks in this
study. As illustrated in Table 7, even though the feature set was limited to
Sysmon Event ID 3 records, the resulting graphs were still remarkably large.
Throughout the experimentation process, a diverse range of monitored networks
were analyzed, spanning from academic institutions to national-level networks.
The distribution of public-to-private IP addresses can be seen in Figure 9. In
general, the distribution is fairly balanced, with the notable exception of Network
C, which has a significantly broader internal monitoring coverage.

Figure 9: Distribution of public versus private IPs in corporate networks

As described in the preprocessing transformation, the number of edges in
the networks was significantly reduced by aggregating and weighting edges along
(Source IP, Destination IP, Image) pairs.
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4.3.7 Graph Visualization and Analysis

Figure 10: One-Hour Sampled Client D - Network Graph

Attempting to visualize enterprise-scale networks presents challenges. Figure 10
demonstrates that even filtered one-hour network samples suffer from node oc-
clusion and edge crossings that almost completely obfuscate the inter-node space.
This results in what has affectionately presented in graph literature as a hairball
topology [40]. Still, focusing attention on particular sub-structures presents in-
sight into network behaviours. Note that white nodes signify internal addresses,
whereas red nodes highlight external addresses. There is no significance to the
colouring of edges in the following visualizations.
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Figure 11: Client D - Active Directory Server Cluster

Figure 11 presents a closer look at a community within the visualization given
by Figure 10, and shows several well-connected internal addresses. Further anal-
ysis of the edges associates this intranetwork connection density with active di-
rectory servers, specifically lsass.exe and netlogon.exe connections.
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In Figure 12, an internal address is connected to multiple external addresses.
Analysis revealed that the external addresses were associated with AWS Cloud-
Compute EC2 instances. These instances provide computing resources to compa-
nies on demand. It is important to consider these behaviours to yield high link
presence probabilities that exhibit similar connection behaviours. Consequently,
a representative node embedding should reflect the connection patterns seen in
EC2 instances to effectively capture the underlying network structure.

Figure 12: Client D - Cloud Computing Instances

Figure 13 is a graph visualization of the artificial network environment with
the node and link sizes scaled by the total links and number of connections, respec-
tively. The centralized, well-connected nodes are user workstations interconnected
by various networked processes. Each user workstation also features a prominent
hub-and-spoke topology generated by bidirectional background services traffic .
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Figure 13: Artificial Network Environment Graph

Despite the limited scope of the network and the stark contrast to larger
corporate environments, it remains non-trivial to visually identify any structural
abnormalities between nodes.

4.3.7.1 Time Period

The duration of the analysis, referring to the continuous capture of log data, was
determined by taking into account several factors. First, larger time windows
effectively capture a wider range of potential anomalous behavior. Second, larger
samples provide more contextual information, allowing for further reinforcement
of network connection patterns. Finally, larger samples ranging from 18-24 hours
can significantly increase disk usage, network bandwidth, and processing over-
head, limiting the ability to rapidly iterate on the datasets. In summary, selecting
the analysis duration is a trade-off between the need for wider coverage, increased
contextual information, and computational constraints.
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4.3.7.2 Processes

The presence of a large volume of unique users and unique processes poses a
significant challenge in the realm of anomaly detection. Corporate networks are
complex ecosystems where thousands of employees access numerous resources,
services, and applications daily. This results in an extensive number of unique
users and processes, each with their specific behavior patterns, access privileges,
and usage patterns.

During the EDA process, it was discovered that browser traffic made up the
majority of network connections in corporate environments. However, it is im-
portant to note that Sysmon Event ID 3 data offers limited metadata for these
connections, providing no details beyond the browser image involved in the re-
quest or response. To improve the signal-to-noise ratio and emphasize other types
of connections, browser traffic was excluded from the analysis. This decision not
only enhanced computational performance by eliminating a substantial number
of edges but also allowed for a more focused examination of the more interesting
connection types.

Upon excluding browser traffic from the analysis, the most significant con-
tributing processes in the corporate networks were found to be background Win-
dows processes like svchost.exe and programming language runtimes such as java.exe.
These process images were kept in the network as they exhibit unique behaviors
that reveal the underlying network structure and communication patterns between
various services and applications. By retaining these background processes, edge-
based anomaly detection techniques were better equipped to identify deviating
patterns and dependencies in the data without the large volume of unique edges
and nodes produced by outbound browser traffic.

Figure 14: Number of unique users and images per network
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Figure 14 displays the number of unique user accounts and images for both
artificial and corporate networks. The corporate networks exhibit a significantly
higher number of users and unique images compared to the artificial network, with
both falling within a similar order of magnitude. This emphasizes the extensive
variety of unique users and images present within the four corporate networks.

In the artificial network environment, there was no need for rigorous filtering
like excluding browser traffic, as seen in corporate networks, due to the lower
traffic volume. As seen in Figure 15, the connection behavior distribution in this
environment was mainly dominated by background processes, with user-based
Microsoft Office processes occurring at predetermined intervals. The simpler net-
work structure facilitated a more direct analysis, allowing graph-based anomaly
detection techniques to efficiently identify patterns and dependencies without re-
quiring extensive filtering or preprocessing.

Figure 15: Distribution of Images in the Artificial Network Environment

4.3.8 Users

In Figure 16, it is observed that the most prevalent users across all networks
are the predefined local accounts under the NT AUTHORITY category, including
SYSTEM, LOCAL SERVICE, and NETWORK SERVICE, as well as their locale-specific
counterparts. This is an expected outcome, as these accounts play a crucial role
in managing security, network resources, and system configurations. They are
responsible for tasks such as software updates, security scans, and system main-
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tenance. Consequently, a significant proportion of Sysmon Event ID 3 connection
events are associated with these accounts, given their active participation in nu-
merous system processes, services, and scheduled tasks.

Figure 16: Top 10 Users Across Corporate Networks

As illustrated in Figure 17, the distribution of unique user-based connections
in the artificial network appears relatively consistent throughout the log data.
This uniformity reflects the communication patterns within the network are pre-
dominantly automated. This automated nature of communication is a result of
scheduled processes, and other background tasks running at regular intervals,
maintaining a consistent level of user activity across the network.
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Figure 17: Unique User Connection Count in Artificial Network Environment

4.3.8.1 Network Connectivity

The NetworkX transformation of the data facilitated the exploration of several
graph-based metrics, such as node connectivity and importance.

The distribution of node importance, measured using eigenvector centrality
as utilized in the PageRank algorithm detailed in section 2.4.1, is divided into
two distinct sets. According to this metric, a node’s importance is recursively
determined based on the importance of its immediate neighbors [17]. This pattern
was consistently observed across all networks and is illustrated in Figure 18, which
displays a log-scaled graph of eigenvector centrality.

Figure 18: Network A - Log-Eigenvector Node Importance
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The majority of nodes hold minimal influence, but a small subset of routing
nodes are highly interconnected. A closer examination of this heuristic revealed
that internal routing structures are considered highly influential nodes, which is
a reasonable conclusion given their function in connecting network components.
Additionally, this analysis emphasized the role of broadcast addresses. To reduce
the overall noise in the graph data, these broadcast addresses were consequently
filtered out of the graphs.

4.4 Feature Engineering

Feature engineering plays a critical role in building a machine learning model.
It involves generating new features from raw data or selecting the most relevant
features to enhance the model’s predictive capabilities. This study categorizes
features into two schemas: node and edge. The node schema pertains to individual
node characteristics, while the edge schema relates to connections between nodes.
This categorization is made possible by the GAT layers, which allows the model
to process both node and edge features during the learning phase. This method
enables the model to not only recognize structural connections but also learn
behaviors based on the inherent characteristics of the node and edge features
themselves.

4.4.1 Node Schema

The node schema, displayed in Table 8, comprises features related to the entities
within the network. The approach to feature selection relies on manual selection
and the development of custom features, drawing upon the findings from the
earlier EDA and existing domain knowledge.

In this network, an IP address serves as the "entity", and acts as a unique
identifier for each node in the graph. Although additional features are derived
from the IP address, such as private or external characteristics, the primary pur-
pose of the IP address is to uniquely identify nodes within the network. This
convenient approach establishes the foundation of the directed graph.

4.4.1.1 Binned Ports

A port number is a 16-bit unsigned integer associated with a local or remote con-
nection endpoint. More specifically, ports may be associated with System/Known
Ports (0-1023), User Ports (1024-49151) and Ephemeral/Dynamic Ports (49152-
65535). This encoding strategy realizes the port ranges outlined in RFC6335 as
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Table 8: Node Schema

Node Schema Encoding Strategy

Binned Ports Integer

IsPrivate Binary Flag

OUI Manufacturer One-Hot Encoding

In Degree Integer

Out Degree Integer

PageRank Floating Point

"bins", where instances of a port connection on a node increments the correspond-
ing bin.

Figure 19: Binned Ports Example

Figure 19 describes an example of this encoding strategy. A significant number
of ephemeral outbound browser connections from a monitored host would result
in a correspondingly large weight assigned to the ephemeral port bin of a node.
On the receiving side, a host serving web content on port 443 would increase the
system port weighting. This strategy provides a context for node behaviour based
on service communication patterns in typical port ranges.

An issue with a fixed-bin strategy for port encoding is described under the
Security Considerations section of RFC6335 [41]:

The fact that network traffic is flowing to or from a registered port does
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not mean that it is "good" traffic, nor that it necessarily corresponds to the
assigned service. Firewall and system administrators should choose how to
configure their systems based on their knowledge of the traffic in question,
not whether there is a port number registered or not.

Consequently, the reliability of using port numbers to identify services is limited
because there is no strict enforcement governing their assignment. This approach
can be disrupted by changing port numbers on the transmitting or receiving side.
Despite these limitations, using binned ports to group behaviours still serves as
a reasonable heuristic for analyzing network traffic, as it records state associated
with the port activity on a node.

4.4.1.2 IsPrivate

A private network IP and a public network IP differ in terms of their accessibility
and scope of use. Private network IPs are reserved for internal networks and are
not routable over the internet, while public network IPs are globally unique and
used for communication over the internet. This experiment uses the IsPrivate

flag in conjunction with the semantics in RFC 6890 - Special-Purpose IP Address
Registries to encode this information as a node feature [42].

According to the Internet Protocol (IP) specifications, private IP addresses
are reserved for use in private networks, such as those within an organization,
and are not routable on the public internet. The Internet Assigned Numbers
Authority (IANA) has reserved several blocks of IP addresses for private networks,
including 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16, which are commonly used
for internal network communication.

On the other hand, public IP addresses are globally unique and routable over
the internet. These IP addresses are assigned to devices by Internet Service
Providers (ISPs) and can be accessed from anywhere on the internet. Public-
facing IP addresses are essential for devices that need to communicate with other
devices over the internet, such as servers and routers.

The IsPrivate feature serves a valuable purpose in the anomaly detection
model, as it aids in differentiating between internal and external network traffic.
By making this distinction, the model can better analyze network communication
patterns and effectively identify potential anomalous behaviors.
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4.4.1.3 OUI Manufacturer

An OUI (Organizationally Unique Identifier) is a 24-bit identifier assigned to a
manufacturer by the IEEE Registration Authority. OUIs are used as the first
three octets (bytes) in the MAC (Media Access Control) addresses of devices
produced by that manufacturer.

Using data collected from Osquery, a mapping of OUIs to their correspond-
ing manufacturers was conducted using an OUI database. The IEEE provides a
public OUI database that can be used for this purpose [43]. This facilitates the
creation of a categorical feature in the model, which can be helpful in identifying
patterns or anomalies related to specific manufacturers, device types, or network
equipment. OUI manufacturer information may provide some insight into dif-
ferentiating between devices like client workstations, phones, routers, or servers,
as different manufacturers often specialize in producing specific types of network
devices.

4.4.1.4 In/Out Degree

The in-degree and out-degree of a node refers to the number of inbound and
outbound connections. When directly encoded as a node feature, these structural
features can highlight a role of importance in the network. These features can aid
in the predictive power of the model, providing a learnable context for increasing
or decreasing the likelihood of being connected to another given node in a network.

4.4.1.5 PageRank

The output of the PageRank algorithm is applied to all nodes in the graph, char-
acterizing each node based on its importance in the entire network [17]. The un-
derlying assumption is that important nodes are more likely to receive links from
other nodes. The PageRank algorithm outputs a probability distribution asso-
ciated with the likelihood of connecting to that node from a randomly selected
node in the graph. This attribute provides a similar role to the in/out-degree fea-
ture, but the importance calculation incorporates a holistic view of the network
structure as opposed to node-specific.

4.4.2 Edge Schema

The edge schema consists of features related to the connections between entities
in the network. As with the node schema, the selection of relevant and informa-
tive features for the edge schema is based on manual selection and hand-crafted
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features, drawing from EDA and domain expertise.

Table 9: Edge Schema

Edge Schema Encoding Strategy

Top-K Images Integer / One-Hot/Frequency Encoding

IsAdmin Binary Flag

Protocol One-Hot Encoding

4.4.2.1 Top-K Images

The name of a given process, recorded by Sysmon as an Image, is a valuable
categorical feature, as it describes the transmitting or listening process handling
a network connection. However, this feature exhibits unbounded cardinality in a
large network: in a single capture, a network may present thousands of unique
images. Further challenges arise from the process names. Images do not follow
a natural language grammar, making a word embedding strategy like word2vec
[15] intractable. Similarly, a one-hot encoding strategy leveraging each unique
image as a separate feature would critically affect both the computational time
and space complexity of the model.
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Figure 20: Top-3 Images Example

As a compromise, this experiment selects the Top-K images from the dataset
for encoding process names, where K is a user-defined parameter. This is a fre-
quency encoding that only encodes the Top-K images as a fixed-length, weighted
vector. As an added benefit, this feature aggregates multiple (Source, Destina-
tion, Image) links into a single weighted edge, greatly reducing the number of
edges used during model training and inference.

A Top-K Image scenario is described in Figure 20. In this example, K = 3,
therefore the top-3 most frequent images will be encoded. In descending order,
java.exe, outlook.exe, and dns.exe are the top-3 most frequent images in the net-
work, so these are the only images that will be encoded. Integer values correspond
to a connection summation: the edge between node A and B is indicative of 15
separate java.exe connections in a fixed time period. Similarly, the link between
B and D is two separate dns.exe connections. Due to the top-3 constraint in
Figure 20, the (E,A,malicious.exe) connection presents as an empty vector of
size K.

The selection of K as a hyper-parameter should be determined experimen-
tally. If K is a very low number, the model will not capture the behaviour of
many processes. Contrarily, If K is too large, model performance will be signifi-
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cantly impacted. Overall, this heuristic allows the model to learn traffic patterns
associated with the most common processes in the network, and penalizes outly-
ing, one-off connections.

One disadvantage to this approach this that any semantic meaning associated
with the process is essentially discarded.

4.4.2.2 IsAdmin

The User feature associates a user session with a logged network connection.
The IsAdmin feature extends this behaviour by associating the connection with
an administrative account. This is realized as a binary encoding, with 0 and 1

denoting an unprivileged and privileged connection, respectively.
NT AUTHORITY\SYSTEM is the default superuser account on Windows comput-

ers. However, client-specific EDA can also identify administrative accounts: in a
contrived example, GLOBOTECH\AdminJoe can be interpreted as an administra-
tive account. Consequently, identifying strings are trivially matched using regular
expressions, as given in Listing 4.

1 import re

2

3 def is_admin(

4 user: str,

5 ADMIN_IDENTIFIERS: list[str] = ["NT AUTHORITY", ...],

6 ) -> bool:

7 """Checks if a given user is an administrative account."""

8 return any(re.match(user, _id) for _id in ADMIN_IDENTIFIERS)

Listing 4: Admin Account String Matching

A downside to this approach centers on the expert knowledge required to
populate the ADMIN_IDENTIFIERS vector, as the administrative accounts were
not provided by the companies in question during this experimentation. This is
mitigated by one pass of client-level EDA, using best judgment for identifying
strings associated with administrative accounts.

4.4.2.3 Protocols

The transport-layer protocol of a connection captured by Sysmon is a string value,
indicating UDP or TCP traffic. Sysmon only captures traffic event ID 3 using
these protocols, so there is no possibility of missing values in this field. This
feature is trivially encoded as a binary feature. In combination with other edge-
features, like Top-K Images, a model will learn to associate certain protocols
with certain images. This feature can derive potentially anomalous behaviour
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deviating from a learned context, like a spurious dns.exe connection leveraging
TCP instead of common UDP-based communication.

4.5 Phase 2: Model Development

Model Development is a critical stage in the overall process, as it involves the
creation and training of an unsupervised anomaly detection system that can score
graph data. In this phase, the focus is on implementing the model as well as
adjusting GAT hyperparameters to ensure optimal performance. This phase is
essential for laying the groundwork for a robust unsupervised detection system,
which, in turn, plays a vital role in addressing the challenges associated anomalous
edge detection.

Figure 21 outlines a high-level design of the link prediction model. The
pipeline begins with node and feature-level encoding using the message-passing
framework of GNN layers. During this phase, a reconstruction strategy that con-
siders the presence of anomalous edges in the original graph data will be used
[27]. This strategy uses losses derived from the original graph and the resultant
reconstruction to predict the presence probability of edges between adjacent nodes
following the decoding process.

Figure 21: Link Prediction Model

In order to effectively handle graph data, the widely-recognized PyTorch Geo-
metric library was utilized. The GATv2Conv encoding layers were chosen based on
their outstanding performance in previous work and their ability to accommodate
both node and edge features [31] [26]. The model worked directly with the node
features, edge index, and edge attribute matrices. Through the encoding process,
the encoder produced embeddings for each node that incorporated information
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about the node itself, as well as its local edges and surrounding neighborhood.
This approach enabled the model to effectively learn and represent complex rela-
tionships within the graph data. Granular details regarding the implementation
of the model are available in Appendix A.1.2.

The decoder utilized was a standard InnerProductDecoder, which is a common
selection used in literature [21], [12], [27]. The InnerProductDecoder functions by
computing the inner product of the node embeddings generated by the encoder.
This computation results in a similarity score between each pair of nodes, which
is then transformed into a probability using a sigmoid activation function. The
predicted presence probability of the edge represents the likelihood of an edge
existing between the two nodes.

The predicted presence probability of the edge was compared against the orig-
inal graph to evaluate the model’s ability to reconstruct the original graph ac-
curately. When the model showed no sign of improvement during the train/test
loop, large reconstruction errors for edges were considered indicators of anoma-
lous behaviour in the input network. The GAT-GAE training and test loops are
detailed in Appendix A, sections 1.5 and 1.6, respectively.

4.5.1 Model Training

The model parameters are updated using the Adam optimizer, with an initial
learning rate of 0.01, determined through trial and error. The model is trained
separately on each dataset, and the training process continues until a user-defined
patience parameter in the EarlyStopper algorithm is reached. This stopping
criteria, available in Appendix A.1.4, is triggered when there is no improvement
in the model’s performance for 50 consecutive epochs, at which point the learning
rate is reduced by a factor of 10.

Table 10 outlines the values assigned to a variety of hyperparameters within
the GAT-GAE model. The activation function, loss type, and optimizer were
choices derived from the original GAE model developed by Kipf et. al. [27]. The
remainder of the parameters were determined experimentally. Deeper networks
yielded poorer reconstruction performance, which is a consistent result associated
with the over-smoothing problem in GNNs [5].

To preserve the best-performing model parameters for each dataset, a standard
greedy algorithm is employed. This process compares the current reconstruction
accuracy with the highest achieved accuracy for the specific dataset. When the
current accuracy surpasses the previous best, the model’s weights are serialized,
ensuring that the optimal parameters for each dataset are retained.
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Table 10: GAT-GAE Autoencoder Parameters

Parameter Value

Activation Function ReLU

Loss Binary Cross-Entropy With Sigmoid Loss

Optimizer Adam

Number of GAT Layers 3

Learning Rate 0.01

K (Top-K Images) 256

Attention Heads 4

In all scenarios, a threshold was chosen to maximize the F1 score, ensuring
the best balance between precision and recall. In practice, the optimal thresh-
old typically fell within a range of 2 to 3 standard deviations from the mean
reconstruction error.

4.6 Phase 3: Model Evaluation

In this section, the results of the scenarios and corporate network events are dis-
cussed. This includes insights surrounding the reconstruction error distributions,
the distributions of anomalies in the scenarios, and metrics associated with the
performance of the anomaly detection pipeline.

4.6.1 Synthetic Data Insertion for Model Evaluation

With the absence of ground truth labels for anomalous behaviour present in the
networks, model performance was evaluated by inserting a known quantity of
synthetic data into the corporate networks. Four distinct scenarios encompassed
a range of anomalous network behaviors, generating metrics that assessed the
model’s performance under various conditions. In the case of the artificial network
environment, the resulting graph was small enough, with only 256 edges, that it
could be manually labeled and inspected without the need for scenario-derived
metrics. By analyzing the model’s ability to detect anomalies, its effectiveness in
identifying different types of anomalous behaviors could be quantified.
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Figure 22: Experiment Class Diagram

Figure 22 depicts the software architecture used in the experiment. Key fea-
tures of this architecture include that an Experiment is composed of one Scenario
instance and one Model instance. A Scenario, acting as an interface, outlines
the process of injecting labeled data into an input graph. Each Scenario object
contains an identifying endpoint string, stored as endpoint_str. This string literal
is employed to identify human users operating workstations within a corporate
network environment.

Additionally, a scenario may contain an optional FILTER_LIST, which is a
list of images that are to be excluded from the graph. For this specific experi-
ment, the list was populated with browser images such as chrome.exe, edge.exe,
and firefox.exe. Furthermore, a constant integer value, the maximum community
diameter, is recorded in the scenario. Small, isolated subgraphs may represent
noise or rare events that are not representative of the overall network behavior.
Removing them can help focus the analysis on more meaningful patterns and
relationships.
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4.6.1.1 NMAP

The NMAP scenario was designed to simulate the behaviour of NMAP scans
within the network structure. The NMAP scenario was unique in that it solely
relied on synthetic data, and none of the inserted edges were derived from previ-
ously labeled events.

Initially, the scenario examined the graph to locate /24 private IPv4 subnets
in the network structure, with a requirement that each subnet contained at least
20 endpoints. Within these subnets, a node was chosen at random to create
connections to all other nodes in the same subnet. This procedure was repeated
for up to 50 identified subnets, until at least 3,000 synthetic edges were added to
the graph. While there was no specific reason for selecting 3,000 as the minimum
number, it was an intentional decision to ensure that the newly inserted edges
constituted a statistically significant portion of the total population.

The new edges were assigned the image name nmap.exe and given TCP as
their protocol, in line with default NMAP behavior [44]. Edges also originated
from an administrative account, which simulated a compromised workstation.
Additionally, this scenario uniquely affected the targeted destination nodes by
updating the binned port node feature to accurately represent a full port scan of
the targeted nodes.

4.6.1.2 MoziDDoS

The MoziDDoS scenario aimed to simulate the behavior of an IoT botnet DDoS
attack, specifically reflecting the known activities of the Mozi botnet [34]. This
was the only scenario that involved adding new nodes to the graph. To initiate the
process, malicious URLs and associated binaries were collected from urlhaus.org, a
collaborative platform where security researchers, ISPs, and security vendors can
submit and share information about malicious URLs hosting malware, exploit
kits, or phishing sites. URLhaus maintains a regularly updated database for use
by security professionals to enhance their security measures, such as blocking
known malicious URLs or analyzing emerging threats.

In this study, a database of actively malicious IPs and metadata describing
their associated binaries was downloaded from URLhaus. This data was filtered
to select all Mozi-associated hosts, amounting to approximately 2,000 new nodes.
Existing user workstations in the network structure were randomly chosen to
undergo a sequence of events:

1. The user workstation would visit the malicious IP, resulting in an edge being
inserted into the network.
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2. The malicious IP would send back a response, analogous to the malicious
IoT botnet software being downloaded. This would lead to another edge
being inserted into the network.

3. Finally, the botnet would be "activated," and an edge would be inserted
between the user workstation and a randomly selected public IP already
present in the graph. This randomly selected public IP would be the same
address for all nodes in the scenario, simulating numerous requests from
internal addresses.

As a result of this sequence of events, approximately 6,000 new edges are
inserted into the network structure during this scenario. It is important to note
that, since the network input is formulated as a static graph, there is no concept
of sequenced activities based on elapsed time, making all these activities appear
to occur concurrently.

4.6.1.3 ExternalToEndpoint and EndpointToExternal

The objective of the ExternalToEndpoint and EndpointToExternal scenarios was
to simulate lateral movement and file infiltration/exfiltration.

Both scenarios shared similarities in their implementation. Initially, a labeled
set of "true positive" events were provided by the research partner granting access
to the environment. These events were actual Sysmon Event ID 3 events originat-
ing from the networks under analysis, triggered by a production signature-based
detection system. A separate team of analysts individually investigated each
event. In every case, the events stemmed from potentially unwanted programs.
As Sysmon Event ID 3 events, they could be seamlessly integrated into the net-
work structure by trivially modifying the source and target nodes in the record.

The modified edges were incorporated into the graph structure by randomly
selecting existing internal user workstations and connecting them to a randomly
chosen external IP address. This injection resulting in approximately 7,000 edges
added to the graph under test. User workstations were identified by the pres-
ence of client-specific strings, an instance variable defined in the Scenario object
of Figure 22. Finally, the direction of the inserted edge was determined by the
scenario, with ExternalToEndpoint representing an inbound connection and End-
pointToExternal representing an outbound connection, relative to the internal
company network.
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4.6.2 Verification

Over the course of experimentation, a complete anomaly detection pipeline was
built and utilized to score presence probability connections in a multi-relational
directed graph. This pipeline includes the collection, ingestion, and transfor-
mation of corporate Sysmon log data into several intermediate formats. These
intermediate formats facilitated EDA in both tabular and relational formats to
identify particulars associated with the corporate networks. Next, a methodology
for feature selection and engineering was developed for the anomaly detection
model. Finally, a GAT-GAE model was developed and trained on the host log
data, yielding a vector of probability scores. These scores, when ranked, provide
insight into anomalous connections in the host network.

4.6.3 Validation

The aim of this research is to determine whether an unsupervised GNN model can
detect anomalous network connections in a static, attributed network. To vali-
date the effectiveness of the anomaly detection method, four corporate datasets
were injected with anomalous data. This allowed for the calculation of pseudo-
performance metrics, such as precision, recall, and F1 Score, to evaluate the overall
performance of the anomaly detection framework. The results were assessed based
on the model’s performance under various custom scenarios, which controlled the
insertion of anomalies into the networks under test.

The analysis demonstrated that the GNN model was effective in segregating
a significant number of potentially interesting and outlying behaviors from the
majority of the network traffic. The limitations of the evaluation method impacted
the ability to have numerically precise performance metrics, though this does not
deter from the fundamental effectiveness of the model in detecting anomalies,
including malicious ones.

Despite these limitations, the entire anomaly detection pipeline serves as an
effective coarse filter using Sysmon Event ID 3 logs, which are readily available
on Windows networks.

4.6.3.1 Reconstruction Error Distributions

Two recurring patterns appear in all network reconstructions. Firstly, there is a
significant majority of edges with low reconstruction error, which indicates a high
presence probability in the network. This results in a pronounced overall score
distribution that is skewed positively. Secondly, there is a group of edges with
higher reconstruction errors that form a distinct and uniform "long tail" in the
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score distribution. This is visually distinguishable from the primary population,
and can present for several reasons:

1. Lack of discernible anomalous behaviours: If the anomalies in the graph
do not follow any learned patterns or share common characteristics, the
GAT-GAE model may struggle to learn features that distinguish them from
the rest of the edges. Consequently, the reconstruction errors for these
anomalies can spread uniformly across a range of values.

2. Feature insensitivity: If the node and edge features used by the GAT-GAE
model are not sensitive enough to capture the nuances between anomalous
and benign edges, the reconstruction errors for the anomalies may end up
being uniformly distributed. This may be an indication that the model is
not able to effectively distinguish between anomalous and non-anomalous
edges based on the available feature set.

3. Inherent randomness: It is also feasible that the anomalies themselves are
inherently random, and do not follow any specific pattern or structure. In
this case, the uniform distribution of reconstruction errors may be a reflec-
tion of the real distribution of anomalies in the graph.

The results of all experiments are provided in Appendix B, in the form of
both scatter plots and confusion matrices. Each scatter plot features a marginal
distribution on the right side, illustrating the edge distribution at the same scale
as the main plot. The threshold value, selected based on the optimal F1 Score,
efficiently segregates the majority of edges. This separation is especially evident
in the marginal distribution. It’s important to note that false negatives in the
scatter plots may visually obscure the true negatives, but the marginal plot reveals
that the majority of true negatives are clustered around 0. This segregation is
conveyed in the corresponding confusion matrix, given in Figure 24.
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Figure 23: Reconstruction Scatter Plot - Network D (ExternalToEndpoint)

A closer look at the false positives in scatter plots, such as Figure 23, was
necessary. Even though they were not part of the labeled data set, the false
positives displayed some degree of unusual behavior, often as a single connection
event in the broader context of the network. For instance, the series of false
positives centered around 1 in Figure 23 were all linked to separate one-time
connections to external addresses and were notably rare occurrences among the 45
million logged events for Network D. This false positive behaviour with unlabeled
datasets in computer networking environments is congruent with results from
similar research [21].

Figure 24: Confusion Matrix - Network D (ExternalToEndpoint)

Figure 25 presents the distribution of control reconstruction scores derived
from all four corporate networks. These scores were calculated without incorpo-
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rating any scenario injections, indicating that the reconstructions represent the
baseline behaviors of the networks. The presence of outlying behaviors within
these large network captures, even without anomaly injections, is evident.

Figure 25: Reconstruction Distributions Across Corporate Networks

The distribution of reconstructions was more closely related to the original
input network than the tested scenario. This observation results in relatively
similar reconstruction error distributions across the four scenarios per client, with
minor variations. This is expected because the input graphs themselves have
significantly more variation than the changes introduced by the synthetic anomaly
injection.

4.6.3.2 NMAP Scenario Results

In the NMAP scenario, Networks B and D exhibited the best overall performance
metrics. Intriguingly, this scenario displayed the most substantial disparity be-
tween recall and precision scores compared to all other scenarios. The likely cause
for this discrepancy is the nature of the NMAP scenario itself, which ended up
inserting fewer edges into the network structure than other scenarios, as the other
scenarios had less stringent criteria for anomaly insertion, whereas the NMAP
scenario needed to consider viable subnets and workstations for insertion. In
practice, the number of edges inserted constituted between a minimum of 0.7%
(Network C) and a maximum of 2.41% (Network D) of the total edges in the
network. Moreover, this scenario involved altering source and destination nodes,
which influenced the reconstruction scores associated with the modified nodes.
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Table 11: NMAP Scenario Metrics

# Edges Recall Precision F1 Score

Network A 420,935 0.32 0.15 0.20

Network B 240,887 0.30 0.22 0.25

Network C 982,592 0.24 0.17 0.19

Network D 134,696 0.35 0.28 0.31

Figure 26: NMAP Grouped Metrics

The smaller number of synthetic edges in the NMAP scenario led to a more
challenging anomaly detection task, as the signal-to-noise ratio decreased, making
it harder for the graph-based anomaly detection techniques to effectively discern
the anomalous connections. Consequently, the larger gap between recall and
precision scores in this scenario potentially highlights the sensitivity of the model’s
performance to the number of synthetic edges.

4.6.3.3 MoziDDOS Scenario Results

In the MoziDDoS Scenario, the model’s performance was tested against hybrid
edges connecting user workstations, which operated as DDoS nodes participating
in an attack against a randomly selected public IP within the network. Across
all networks, the model demonstrated the ability to detect edges engaged in this
attack sequence. However, Network C underperformed compared to the other
networks by a considerable margin.
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Table 12: MoziDDOS Scenario Metrics

# Edges Recall Precision F1 Score

Network A 425,719 0.35 0.29 0.31

Network B 243,291 0.35 0.32 0.33

Network C 988,415 0.27 0.20 0.22

Network D 136,985 0.37 0.33 0.35

Figure 27: MoziDDOS Grouped Metrics

The disparity in performance for Network C can likely be attributed to the
scale of the network itself. Network C possesses almost ten times the total number
of edges present in Network D, resulting in a more complex and intricate network
structure. The increased complexity and sheer volume of connections in Network
C make it more challenging for the graph-based anomaly detection techniques
to effectively identify the DDoS attack connections among the vast number of
legitimate edges. This highlights the impact of network scale on the model’s
performance and emphasizes the need for further optimization and adaptation of
the techniques to maintain their effectiveness in detecting anomalies in large-scale
networks.

4.6.3.4 ExternalToEndpoint Scenario Results

The ExternalToEndpoint Scenario assessed the model’s performance against anoma-
lous connections between external addresses and user workstations, which often
indicate the presence of a Command and Control (C2) channel or some form of
file infiltration. In this scenario, Client B and D once again outperformed the
other networks.
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Table 13: ExternalToEndpoint Scenario Metrics

# Edges Recall Precision F1 Score

Network A 427,853 0.28 0.24 0.26

Network B 247,396 0.33 0.29 0.31

Network C 981,566 0.21 0.20 0.20

Network D 140,961 0.35 0.31 0.33

Figure 28: ExternalToEndpoint Grouped Metrics

Despite being based on 45 million records, Network D’s network demonstrated
an impressive detection capability. Notably, Network B achieved a comparable
level of performance despite having twice the number of connections, originating
from 136 million Sysmon records. This indicates that the graph-based anomaly
detection techniques utilized by the GAT-GAE model are effective in identifying
suspicious connections, even when working with a limited dataset in networks
with a substantial number of connections.

The detection of anomalous connections in the ExternalToEndpoint Scenario
underscores the potential of edge-based anomaly detection techniques for uncov-
ering covert C2 channels and file infiltration attempts.

4.6.3.5 EndpointToExternal Scenario Results

The EndpointToExternal scenario evaluated behaviors similar to those in the Ex-
ternalToEndpoint scenario, but with reversed connection directions. This type of
behavior could be indicative of file exfiltration attempts, C2 channels, or unautho-
rized access to external resources. The anomaly detection performance across all
instances was largely identical to the results obtained in the ExternalToEndpoint
scenario. However, an interesting observation is that all metrics either remained
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the same or suffered a slight decrease in performance.

Table 14: EndpointToExternal Scenario Metrics

# Edges Recall Precision F1 Score

Network A 427,853 0.27 0.22 0.24

Network B 247,395 0.32 0.29 0.31

Network C 981,566 0.19 0.19 0.19

Network D 140,961 0.34 0.31 0.32

Figure 29: EndpointToExternal Grouped Metrics

This subtle difference suggests that the reversal of connection directions might
have assisted the model in learning the behaviors of the anomalous connections,
potentially enabling the message-passing framework to aggregate more neighbor-
hood information into the node embeddings. Although the decrease in perfor-
mance is minimal, it does imply an impact on the model’s effectiveness in detect-
ing suspicious connections when the directionality is altered.

The results from the EndpointToExternal scenario emphasize the importance
of considering connection directionality in graph-based anomaly detection and
highlight the need for further exploration and refinement of the model to ensure
robust performance across varying connection behaviors and network character-
istics.

4.6.3.6 Artificial Network Environment Results

The Sysmon EID 3 logs of the Artificial Network Environment were extracted,
yielding approximately 50,000 records. These records produced a directed multi-
relational graph consisting of 435 nodes and 256 edges. This relatively low number
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of edges in the network highlights the relatively predictive behaviour of the system.

Table 15: APT-29 Artificial Environment Scenario Metrics

# Edges Recall Precision F1 Score

APT-29 Campaign 256 0.49 0.76 0.60

Since the artificial network was smaller and less complex, it could be exhaus-
tively labeled for anomalous behaviors manually. This comprehensive labeling
process allowed for a more accurate identification of true positives, leading to a
significantly higher precision score compared to the custom scenarios in corporate
environments. The increased precision in the artificial network demonstrates the
effectiveness of the graph-based anomaly detection techniques when working with
well-annotated data and further highlights the importance of accurate labeling
when evaluating the performance of such models.

The model successfully identified anomalous activity originating from the
APT29 attack campaign. Notably, it detected all instances of python.exe, a
Cobalt Strike beacon concealed under a gcc.exe alias, all powershell.exe ac-
tivities, and some, but not all, Microsoft Office-suite software tools found to be
networking with external endpoints. It is worth mentioning that two out of three
Microsoft Office networked connections were detected, while the one that re-
mained undetected had a higher frequency than the other two combined. The
Microsoft Office networked connections that fell below the threshold for alert-
ing occurred more frequently in the network environment, likely appearing more
normal as a behavioral baseline in the network.

4.7 Discussion

The results presented in this study raise several points of discussion. One im-
portant aspect to consider is the inherent uncertainty in using supervised metrics
with incomplete labeling in large, noisy corporate network environments. The
complexity and volume of data in these environments can lead to ambiguities and
inaccuracies when evaluating the performance of the model. As such, it is cru-
cial to acknowledge these limitations when interpreting the results and making
recommendations for practical applications.

The feature selection in this study was intentionally kept light to avoid signif-
icant computational overhead in a real-life operational setting, with exceptional
network size. While this approach enabled faster processing and analysis, it may
also contribute to a higher rate of false positives compared to more sophisticated
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feature engineering and selection methods. However, the results generally demon-
strate the model’s capability to filter out a considerable amount of connections
and highlight outlying events.

It is important to note that the current rate of false positives may be too
high for direct use in a production IDS. Instead, the current formulation of this
tooling could serve as a coarse-grain filter to reduce the number of events processed
per second, allowing analysts to focus on a smaller, more manageable subset of
potentially anomalous connections. Holistically, this outcome is congruent with
similarly recent the works of King et. al., discussed in the Chapter 2.11.1 [21].

In summary, though the model demonstrates promising results in identifying
anomalous network behaviors, further research and refinements are necessary to
address the challenges posed by incomplete labeling and high false positive rates.
By acknowledging and addressing these limitations, the model could potentially
become a more valuable asset in enhancing the detection and analysis of network
anomalies in real-world settings.

4.8 Summary

This chapter presented the results of the experiment focused on anomalous edge
detection, detailing the various stages of the research process. The data collection
and exploratory data analysis phases laid the groundwork for understanding the
problem domain and identifying potential features for detection. Feature selection
and engineering were performed to define the node and edge schema for the Graph
Autoencoder (GAT-GAE) model. The GAT-GAE model was then developed
and optimized for detecting anomalous edges in complex network environments.
Quantitative and qualitative assessments were conducted using custom scenarios
to evaluate the model’s performance and generalizability. The model was further
validated against a simulated Advanced Persistent Threat (APT-29) campaign in
an artificial network environment, demonstrating its effectiveness in identifying
anomalous edges and potential security threats in real-world situations.
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5 Conclusion

This research has successfully yielded an edge-based anomaly detection model, uti-
lizing a GAT-GAE autoencoder architecture to identify anomalous connections
within large directed graphs. The model was validated against four real-world
corporate networks and one artificial network, demonstrating a promising ability
to detect anomalous connections in a variety of contexts. Despite the challenges
posed by the scale and complexity of the networks, the model has shown its po-
tential to identify anomalous behaviours. As network security threats continue
to evolve, this work serves as a valuable foundation for developing more robust
and adaptable graph-based anomaly detection techniques that can effectively safe-
guard corporate environments and mitigate potential risks. With further research
and optimization, this edge-based anomaly detection model has the potential to
significantly contribute to the advancement of network security and the protection
of valuable digital assets.

5.1 Contributions

The contributions from this research are as follows:

1. Log Extraction Tool Development. A log extraction tool for S3-compliant
archives was designed and implemented, featuring dynamic query generation
and a user-friendly API. This tool enables efficient extraction of relevant
information from unstructured log data, facilitating the further analysis of
network connections in the context of anomaly detection.

2. NetworkX Graph Merging Tool. A generic graph merging algorithm uti-
lizing the NetworkX library was developed. This function streamlines the
process of merging network graphs while aggregating node and edge features,
improving the efficiency and scalability of the anomaly detection pipeline
when dealing with large-scale datasets.

3. Early Stopping Class. As of writing, the PyTorch library does not have
a built-in solution for training cessation based on training/validation loss
divergence, and instead forces users to rely on third-party tooling or manual
implementation. This document contributes a generic EarlyStopper class
for use in any machine learning application, available in Appendix A.1.4.

4. End-to-End Graph Anomaly Detection Pipeline. An end-to-end graph anomaly
detection pipeline was constructed for detecting anomalous network con-
nections using Sysmon Event ID 3 log data. This comprehensive pipeline
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integrates the log extraction tool, graph merging tool, and graph neural
network-based anomaly detection techniques, providing a robust and effi-
cient solution for identifying anomalous edges in network data.

This exploratory research serves as a foundation for future work in edge-based
anomaly detection and other graph techniques. Potential avenues for further
investigation include exploring edge/node anomalies, incorporating temporal as-
pects, and employing different feature engineering strategies, both in general and
for specific attack families.

5.2 Future Work

In light of the findings from this exploratory research on edge-based anomaly de-
tection in large corporate networks, several recommendations for future work can
be proposed. Firstly, future research could explore the development of a more ro-
bust set of features engineered from events beyond Sysmon Event ID 3, balanced
with common sense processing constraints when dealing with real life networks.
This would facilitate the development of a more comprehensive and robust set
of features that could be intelligently incorporated into the graph structure. By
doing so, the detection capabilities of the system could be significantly enhanced,
allowing for the identification of a broader range of anomalies and ultimately
contributing to improved security in large-scale enterprise networks. Secondly,
there is potential to streamline the data processing pipeline by reducing the num-
ber of intermediate data formats. Logs could be transformed directly into the
PyTorch Geometric format, resulting in lower processing overhead and increased
efficiency. Finally, an additional direction for future research could involve the
investigation of anomalous sub-community detection within the network graphs.
This approach could uncover more intricate threat patterns and further improve
the overall performance of anomaly detection systems in the information security
domain.

5.3 Recommendations

Based on the performance of the edge-based graph anomaly detection model pre-
sented in this study, several recommendations can be made to further enhance
its effectiveness and adaptability in various network environments. First, it is
clearly beneficial to explore methods for experimentation in large-scale, realistic
networks, as it has been observed that the size and complexity of the network can
significantly impact the model’s ability to accurately detect anomalies. Employ-
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ing scalable graph neural network architectures could be considered to address
this challenge.

Additionally, it is important to examine the impact of connection directional-
ity on model performance, as it has been observed that reversing connection di-
rections may slightly affect the effectiveness in detecting suspicious connections.
Further research could be conducted to refine the ability to adapt to different
connection behaviors, ensuring robustness in detecting anomalies across varying
network characteristics.

Another area of interest is the development of techniques for handling im-
balanced datasets, as the scenarios with fewer synthetic edges tended to show
a larger gap between recall and precision scores. Increasing the number of in-
stances in the anomalies by duplicating or generating far more synthetic sample
may help balance the class distribution and provide the model with more examples
of anomalous behaviors.

Finally, it is crucial to continuously validate and update the model to account
for the evolving nature of network traffic and emerging threats. Regularly incor-
porating new data and retraining the model will ensure that it remains effective in
identifying anomalous connections and safeguarding corporate networks against
potential security risks.
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A Appendix A

1.1 Sysmon Event IDs

Sysmon events are given unique identifying numbers known as Event IDs. Each
event is designed to give detailed information about host behaviour. These num-
bers are listed below.

Event ID Description

1 Process creation event
2 A process changed a file creation time
3 Network connection successful
4 Sysmon service state changed
5 Process terminated
6 Driver loaded
7 Image loaded
8 Process created thread in another process
9 Process reading from drive using RawAccessRead
10 Process opened another process
11 File creation/overwrite event
12 Registry event (object created or deleted)
13 Registry event (value set)
14 Registry event (key or value renamed)
15 File stream created
16 Sysmon service configuration changed
17 Pipe connection created
18 Named pipe connected to service
19 WMI event filter activity is detected
20 Registration of WMI consumer
21 Consumer bound to WMI event filter
22 Process executed a DNS query
23 File deletion event, saved file to archive
24 System clipboard contents changed
25 Process tampering detected
26 File deletion event
27 Blocked creation of executable file
28 Detected block file shredding
255 Error within the Sysmon service
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1.2 Graph Merge

The parallel execution of the to_graph algorithm described in listing 2 posed a
challenge: How should the resulting sub-graphs be combined?

As of version 2.8.8, the NetworkX library implements compose, which returns
the structural union of input graphs a and b. However, the composition only
retains node and edge features unique to graph a.

This thesis contributes a generic function merge, which overcomes the limita-
tions of compose by combining structural and feature-based data with user-defined
parameters.

1 from dataclasses import dataclass

2 from itertools import chain

3 from typing import Callable, TypeVar

4

5 import networkx as nx

6

7

8 @dataclass

9 class MergeableFeature:

10 """A MergeableFeature is a named feature with a function describing how

11 to merge instances of the feature via aggregation.

12

13 Existing aggregation functions can be found in the stdlib under

14 the operator module. For example:

15 operator.add(x, y) is equivalent to x + y;

16 operator.and_(x, y) is equivalent to x & y.

17 """

18

19 # Defines a private, generic type T internal to this class.

20 __T = TypeVar("__T")

21 # An aggregation function is defined by two arguments

22 # of type T, returning the same type.

23 __AggFunc = Callable[[__T, __T], __T]

24

25 name: str

26 aggregation_func: __AggFunc

27

28

29 def node_features(graph: nx.Graph) -> list[str]:

30 """Extracts node features from a NetworkX graph"""

31 return list(

32 chain.from_iterable(n.keys()

33 for *_, n in graph.nodes(data=True))

34 )
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35 def edge_features(graph: nx.Graph) -> list[str]:

36 """Extracts edge features from a NetworkX graph"""

37 return list(

38 chain.from_iterable(e.keys()

39 for *_, e in graph.edges(data=True))

40 )

41

42 def merge(

43 a: nx.Graph,

44 b: nx.Graph, *,

45 node_features: list[MergeableFeature] | None = None,

46 edge_features: list[MergeableFeature] | None = None,

47 ) -> nx.Graph:

48 """Returns the feature and structural union of A & B"""

49 if not isinstance(a, nx.Graph) or not isinstance(b, nx.Graph):

50 raise ValueError(

51 "Input graphs should be of type nx.Graph, or subclassed type"

52 )

53 if not isinstance(a, type(b)):

54 raise ValueError(

55 f"Input graphs should be same type; got {type(a)} and {type(b)}"

56 )

57

58 # Returns the union of A and B-- does not update feature data

59 a_compose_b = nx.compose(a, b)

60

61 # Update node features common to union of A and B

62 node_features = node_features if node_features is not None else []

63 for feature in node_features:

64 aggregate, name = feature.aggregation_func, feature.name

65 feature_data = {

66 n: aggregate(a.nodes[n][name], b.nodes[n][name])

67 for n in a.nodes & b.nodes

68 }

69 nx.set_node_attributes(a_compose_b, feature_data, name)

70

71 # Update edge features common to union of A and B

72 edge_features = edge_features if edge_features is not None else []

73 for feature in edge_features:

74 aggregate, name = feature.aggregation_func, feature.name

75 feature_data = {

76 e: aggregate(a.edges[e][name], b.edges[e][name])

77 for e in a.edges & b.edges

78 }

79 nx.set_edge_attributes(a_compose_b, feature_data, name)

80

81 return a_compose_b
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1.3 GAT Encoder

This code samples provides a Graph Attention Network (GAT) Encoder using the
PyTorch framework and associated PyTorch Geometric library. The GATEncoder
class is a custom implementation of the GAE Encoder, inspired by the GAE
architecture proposed by Kipf [27]. It uses GATv2Conv layers for message passing,
a more advanced version of the GAT (Graph Attention Network) layers that
support dynamic attention calculations.

The GATEncoder class has two main components:
The constructor initializes three GATv2Conv layers (conv1, conv2, and conv3)

with different input and output channels specified by a configuration object. The
number of heads, edge dimensions, and dropout rates are also set based on the
configuration.

This forward method describes a forward pass of the encoder, which takes
three input arguments: the node features (x ), adjacency list (edge_index ), and
edge attribute matrix (edge_attr). The forward method processes the input graph
data through the GATv2Conv layers sequentially. The use of this modified GAT
encoder encompasses the following four steps:

1. The input tensors are first converted to float.

2. The data is passed through the first GATv2Conv layer (conv1), followed by
a ReLU (rectified linear unit) activation function.

3. The output is then passed through the second GATv2Conv layer (conv2)
and another ReLU activation.

4. Finally, the data is passed through the third GATv2Conv layer (conv3)
without any activation function, and the resulting tensor is returned.

The GATEncoder class implements a graph attention-based encoder for use
in Graph Autoencoder models, which can be applied to various graph-based ma-
chine learning tasks, such as node classification, link prediction, or graph anomaly
detection.

1 import torch

2 from torch_geometric import GATv2Conv

3

4

5 class GATEncoder(torch.nn.Module):

6 """A GAE encoder, modeled after Kipf (2017) GAE architecture, using

7 GATv2Conv layers for message passing.
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8 """

9

10 def __init__(self, in_channels, out_channels):

11 self.conv1 = GATv2Conv(

12 in_channels=in_channels,

13 out_channels=config.hidden_layers,

14 heads=config.num_heads,

15 edge_dim=config.edge_dim,

16 dropout=config.dropout,

17 concat=True,

18 )

19 self.conv2 = GATv2Conv(

20 in_channels=config.hidden_channels * config.num_heads,

21 out_channels=config.hidden_channels // 2,

22 heads=config.num_heads // 2,

23 edge_dim=config.edge_dim,

24 concat=True,

25 )

26 self.conv3 = GATv2Conv(

27 in_channels=config.hidden_channels,

28 out_channels=out_channels,

29 edge_dim=config.edge_dim,

30 concat=False,

31 )

32

33 def forward(

34 self, x: torch.Tensor, edge_index: torch.Tensor, edge_attr: torch.

Tensor

35 ) -> torch.Tensor:

36 """forward describes a forward pass of the encoder, yielding an N-

dimensional

37 tensor, where N is the number of nodes in the input graph.

38

39 Args:

40 x: node features, where the i’th entry corresponds to the

41 feature vector for node i

42 edge_index: adjacency list

43 edge_attr: edge attribute matrix, where the i’th entry

44 corresponds to the feature vector for edge i

45 """

46 x, edge_attr = x.float(), edge_attr.float()

47 x = self.conv1(x, edge_index, edge_attr)

48 x = torch.relu(x)

49 x = self.conv2(x, edge_index, edge_attr)

50 x = torch.relu(x)

51 return self.conv3(x, edge_index, edge_attr)
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1.4 Early Stopping Algorithm

The EarlyStopper class is designed to monitor a loss value of a machine learning
model during training and stop the training process early if the loss doesn’t im-
prove over a given number of epochs. In the context of the GAT-GAE model, this
refers to no forward progress on the accuracy of the input graph reconstruction.

The patience parameter determines the number of epochs to wait for the loss
to improve before stopping the training process. The delta parameter determines
the minimum percentage difference between the current validation loss and the
minimum validation loss seen so far. If the relative difference between the current
validation loss and the minimum validation loss is greater than delta, the counter
attribute is incremented. If the counter exceeds patience, the early_stop method
returns True, indicating that the training process should be stopped.

1 class EarlyStopper:

2 """

3 patience: int

4 Determines the number of epochs to wait for the validation loss

5 to improve before stopping the training process.

6 delta: float

7 Determines the percentage difference between the current validation

8 loss and the minimum validation loss seen so far.

9 """

10

11 def __init__(self, patience=1, delta=0):

12 self.patience = patience

13 self.delta = delta

14 self.counter = 0

15 self.min_validation_loss = float(’inf’)

16

17 def early_stop(self, validation_loss: float) -> bool:

18 relative_difference = (

19 validation_loss - self.min_validation_loss

20 ) / self.min_validation_loss

21 if validation_loss < self.min_validation_loss:

22 self.min_validation_loss = validation_loss

23 self.counter = 0

24 elif relative_difference > self.delta:

25 self.counter += 1

26 if self.counter >= self.patience:

27 return True

28 return False
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1.5 GAT-GAE Training Loop

This code defines a training loop for training a GAE model using an Adam op-
timizer and provided training data. The code is composed of the following key
components:

1. model.train(): This sets the model into training mode, enabling features
such as dropout and batch normalization that are specifically used during
training.

2. neg_edge_index = negative_sampling(...): This line generates negative
samples (i.e., edges that are not present in the graph) using the nega-
tive_sampling function. These samples are used to train the model on
both positive (existing) and negative (non-existing) edges.

3. optimizer.zero_grad(): This clears any existing gradients from the previous
iterations, ensuring that the gradients for the current iteration are calculated
correctly.

4. z = model.encode(...): This line performs the forward pass through the
model’s encoder, which generates the embeddings (z) for each node in
the graph based on the input features (train_data.x), the edge indices
(train_data.edge_index), and the edge attributes (train_data.edge_attr).

5. link_logits = model.decode(...): This line calculates the logits (pre-activation
values) for the edges using the model’s decoder. It takes the node em-
beddings (z) and computes the logits for both positive and negative edge
samples.

6. link_labels = get_link_labels(...): This line generates the ground truth
labels for the positive and negative edge samples, with positive edges labeled
as 1 and negative edges labeled as 0.

7. loss = F.binary_cross_entropy_with_logits(...): This calculates the loss
using the binary cross-entropy with logits function, which computes the
binary cross-entropy loss between the predicted logits (link_logits) and the
ground truth labels (link_labels). This loss quantifies the difference between
the model’s predictions and the actual labels, guiding the model to learn
the correct edge predictions.

8. loss.backward(): This performs backpropagation, calculating the gradients
of the loss function with respect to the model’s parameters.
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9. optimizer.step(): This updates the model’s parameters using the calculated
gradients and the Adam optimizer.

1 def train(

2 model: torch.nn.Module,

3 optimizer: torch.optim.Adam,

4 train_data: Data

5 ) -> float:

6 model.train()

7

8 neg_edge_index = negative_sampling(

9 edge_index=train_data.edge_index,

10 num_nodes=train_data.num_nodes,

11 num_neg_samples=train_data.edge_index.size(1),

12 )

13

14 optimizer.zero_grad()

15

16 z = model.encode(train_data.x, train_data.edge_index, train_data.edge_attr)

17 link_logits = model.decode(z, train_data.edge_index, neg_edge_index)

18

19 link_labels = get_link_labels(train_data.edge_index, neg_edge_index)

20 loss = F.binary_cross_entropy_with_logits(link_logits, link_labels)

21

22 loss.backward()

23 optimizer.step()

24

25 return loss

In summary, this code defines a training function for the GAT-GAE pipeline
that takes the model, optimizer, and training data as inputs. It performs forward
and backward passes, computes the loss, and updates the model’s parameters
using the Adam optimizer.
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1.6 GAT-GAE Testing Loop

This code defines a test function for evaluating the GAT-GAE model on val-
idation and test datasets using the AUC score as a performance metric. The
function takes the model and data (validation and test) as inputs and returns the
performance scores. The code is composed of the following key components:

1. @torch.no_grad(): This decorator disables gradient calculation during the
evaluation process, which reduces memory consumption and speeds up com-
putation since gradients are not needed for model evaluation.

2. model.eval(): This sets the model into evaluation mode, disabling features
such as dropout and batch normalization that are only used during training.

3. pos_edge_index and neg_edge_index: These variables store the indices of
positive and negative edge samples in the dataset, respectively.

4. z = model.encode(...): This line performs the forward pass through the
model’s encoder, which generates the embeddings (z) for each node in the
graph based on the input features (data.x), the edge indices (data.edge_index),
and the edge attributes (data.edge_attr).

5. link_logits = model.decode(...): This line calculates the logits (pre-activation
values) for the edges using the model’s decoder. It takes the node em-
beddings (z) and computes the logits for both positive and negative edge
samples.

6. link_probs = link_logits.sigmoid(): This applies the sigmoid activation
function to the logits, converting them into probabilities.

7. link_labels = get_link_labels(...): This line generates the ground truth
labels for the positive and negative edge samples, with positive edges labeled
as 1 and negative edges labeled as 0.

1 from sklearn.metrics.roc_auc_score

2

3 @torch.no_grad()

4 def test(

5 model: torch.nn.Module,

6 val_data: Data,

7 test_data: Data

8 ) -> float:

9 model.eval()

10 perfs = []
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11 for data in [val_data, test_data]:

12 pos_edge_index = data.pos_edge_label_index

13 neg_edge_index = data.neg_edge_label_index

14

15 z = model.encode(data.x, data.edge_index, data.edge_attr)

16 link_logits = model.decode(z, pos_edge_index, neg_edge_index)

17 link_probs = link_logits.sigmoid()

18

19 link_labels = get_link_labels(pos_edge_index, neg_edge_index)

20

21 perfs.append(

22 roc_auc_score(link_labels.cpu(), link_probs.cpu())

23 )

24 return perfs

The test function returns the ROC-AUC scores for both validation and test
datasets, which can be used to evaluate the model’s performance in reconstructing
the original graph.
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This code defines an EarlyStopper class, which is a utility for implementing
early stopping in the training process of machine learning models. Early stopping
is a technique used to prevent overfitting by halting the training process if the
validation loss does not improve beyond a certain threshold for a specified number
of epochs.

1 class EarlyStopper:

2 """

3 patience: int

4 Determines the number of epochs to wait for the validation loss

5 to improve before stopping the training process.

6 delta: float

7 Determines the percentage difference between the current validation

8 loss and the minimum validation loss seen so far.

9 """

10

11 def __init__(self, patience=1, delta=0):

12 self.patience = patience

13 self.delta = delta

14 self.counter = 0

15 self.min_validation_loss = float(’inf’)

16

17 def early_stop(self, validation_loss: float) -> bool:

18 relative_difference = (

19 validation_loss - self.min_validation_loss

20 ) / self.min_validation_loss

21 if validation_loss < self.min_validation_loss:

22 self.min_validation_loss = validation_loss

23 self.counter = 0

24 elif relative_difference > self.delta:

25 self.counter += 1

26 if self.counter >= self.patience:

27 return True

28 return False
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B Appendix B

2.1 Confusion Matrices

The binary classification results from all scenario/network pairings are listed in
this section. All confusion matrices the format below.

NMAP MoziDDoS

ExternalToEndpoint EndpointToExternal

Figure 30: Confusion Matrices - Client A
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Figure 31: Confusion Matrices - Client B
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Figure 32: Confusion Matrices - Client C
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Figure 33: Confusion Matrices - Client D
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2.2 Reconstruction Plots

Figure 34: Reconstruction Plots - Client A
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Figure 35: Reconstruction Plots - Client B
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Figure 36: Reconstruction Plots - Client C
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Figure 37: Reconstruction Plots - Client D
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