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Abstract

Agent-based models (ABMs) seek to predict behaviour or develop in-
sights into a system by assessing emerging complex behaviour that results
from individual entities adhering to simple rules. Partially observable
Markov decision processes (POMDPs) can be used as an ABM for real-
world problems where limited information is available to guide decisions
and action outcome is variable. POMDPs are notoriously expensive to
solve computationally, but Dynamic Decision Networks (DDNs) exploit
independence in system variables to develop approximate solutions. Key
features in a DDN are the reward and utility functions used to guide
decisions made by the software agents. This research assesses the perfor-
mance of a DDN-controlled agent against an agent designed with expert
domain knowledge for an established simulation environment called “Bug
Battle”. Variations of reward and utility functions were tested to deter-
mine resulting differences in behaviour. It was found that employing
DDNs was an effective strategy for agent performance.
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1 Introduction

1.1 Purpose

This thesis presents a design to create an effective strategy to defeat adver-
saries in the Bug Battle simulation. The development of the strategy was
based on machine learning techniques, guided by expert domain knowledge.

1.2 Background

Bug Battle is a simulation in which programmers design software creatures
to which they can add organs and programmatically define behaviour. Once
the simulation begins, competitors have no influence over their creatures. Bug
Battle was developed by Dr. Greg Phillips and Major Gary Wolfman based
on an original concept called BugWars developed by Dr. Scott Knight. The
simulation is used to teach software engineering concepts in object-oriented
analysis and design courses both at the undergraduate and graduate levels at
the Royal Military College of Canada.

The goal of each simulation instance is to eliminate all competing creatures
from the simulation environment. The environment is a physical representa-
tion of a world encoded as a 100 cell-by-100 cell world, represented as a square
grid with horizontal and vertical wrapping. The simulation begins by placing a
predefined number of each competing creature (called a bug) onto the world,
which then has simulated plants added according to a uniform probability
density. The simulation progresses by stepping through turns sequentially,
in which each bug gets the opportunity to perform actions within the system
rules. These energy-constrained actions are typically to add organs to increase
capabilities and to employ the organs to gain dominance over the simulated
world. Bugs are destroyed either by expending more energy than they have
available, or via combat between bugs. Combat occurs when two bugs occupy
the same cell; the bug having the greater energy becomes the victor. The
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1.3. Motivation

winning bug gains the energy from the losing bug. Losing bugs may impose
defensive damage if they have added specialized organs. Bugs can multiply
by asexual reproduction, which requires further energy expenditure.

Arguably the optimal strategy of Bug Battle is to optimize energy collec-
tion and use. The ways to gain energy include adding specialized organs at
high initial cost or to attack plants or weaker bugs to gain their energy. A full
review of Bug Battle is included at Annex B.

1.3 Motivation

The author participated in the original BugWars competitions as part of a
credit for a graduate-level course. During development of the bug for these
competitions, several extension points and methods to optimize performance
were noted1. The aim of this thesis is to employ machine learning techniques
to refine behaviour within a heuristically determined state space. Neither the
number of turns required to achieve victory nor the computational cost are
considered as important factors for the purpose of the aim, but they will be
examined as the competition environment has a restriction for “reasonable”
time limits.

1.4 Hypothesis

This thesis suggests that treating the Bug Battle simulation as a Partially
Observable Markov Decision Process (POMDP) and solving the resulting Dy-
namic Decision Networks (DDNs) will yield improved performance compared
to an expert design. A Baseline agent is developed from analysis of organ ca-
pabilities and system probabilities, as an extension of the most effective Bug
Battle competitor to date. A Dynamic agent will have access to the same
heuristically determined actions and will use a DDN to choose actions. The
metric to assess agent effectiveness is the probability of winning a simulation
trial with given reward and utility functions.

1.5 Document Organization

The thesis is organized as follows below. Each chapter ends with a summary
of the material presented in the chapter.

1Optimization in terms of winning a simulation instance, not computational efficiency.

2



1.5. Document Organization

Chapter 2 is a literature review of agent-based models and reinforcement
learning.

Chapter 3 develops the concepts for experimental bug models.
Chapter 4 describes the experiment design.
Chapter 5 presents the data gained from experiment trials.
Chapter 6 analyzes the results to determine the causes to gain insight into

the design process and overall system.
Chapter 7 highlights the main findings and suggests future areas for re-

search.
Annex A is the glossary for the document.
Annex B is an in-depth review of the Bug Battle system. Prior credited

work in this area of research will be discussed here.
Annex C is a detailed example of particle filtering and solving decision

trees.
Annex D is detailed data distributed via DVD. It contains the raw Struc-

tured Query Language (SQL) output of the simulation trials as well as SQL
scripts to extract the data presented throughout the main body of the thesis.

3



2 Literature Review

2.1 Introduction

This chapter is divided into the following major sections and with a summary
of the important items to be applied in Chapter 3.

• A review of agent-based modelling in general; and
• A review of learning systems used by learning agents, with a particular

focus on reinforcement learning.

2.2 Agent-based Models

Agent-Based Model (ABM) follow a design philosophy of “bottom-up” mod-
elling. They provide a mechanism for an experimenter to interact with low-
level representations of entities, called agents, with the aim of gaining insight
into the emergent behaviour that results from the plethora of agent interac-
tions [5]. Some authors note this insight as being one purpose for such a model
while prediction can be another [21]. The goal in this thesis is to gain insight
to drive improved designs.

The literature on ABM has many authors who agree on core concepts,
but with slight shifts in definitions or employment of the concepts to fit the
particular situations that they model. To provide a consistent discussion,
some definitions are provided in Section 2.2.11. The main concepts of ABM
will then be examined using these definitions.

Borshchev recognizes the lack of agreement of terminology in his compar-
ison between ABM and system dynamics [4]. The central argument of his
article is that ABM are decentralized. A consequence of this characteristic
is that there is often a considerable amount of inter-agent communication,

1The definitions considered are not a comprehensive summary of characteristics or fea-
tures within the scope of ABM. They are limited to those relevant to modelling Bug Battle
due to scope constraints.

4



2.2. Agent-based Models

which translates to higher computational cost, if cooperative agents are de-
sired. This is a major contributing factor to why ABM is a relatively new
field; sufficient computational capacity is a recent development relative to the
study of models in general. The size of the system under study can still cause
computational difficulties, although there are techniques that may alleviate
some of these issues. Based on the abstractions present in Bug Battle, this is
a very relevant problem.

2.2.1 Definitions

Agents and their components lack crisp definitions in the literature. Russell
and Norvig [20] provide a broad starting point which is “an agent is any-
thing that can be viewed as perceiving its environment through sensors and
acting upon that environment through effectors”. Sometimes, it is appro-
priate to consider an agent to consist of a combination of a physical model
and a behavioural (or mental) model. Both of these components utilize the
idea of state, which in this case becomes a conditional variable that combines
with perceptions to influence behaviour. Russell and Norvig further describe
various sub-categories of agents that are differentiated by their behavioural
sub-models. A table summarizing various agent capabilities (most of which
are discussed below) is available at [22].

ABM research is normally focused on the simulated mental capacity of
an agent. The mental capacity can be divided into two areas: state and
processing. Shoham covers the justification for attributing mental terms to
agents in his early work [23]. He suggests that agents are entities whose
state consists of mental components such as beliefs, capabilities, choices, and
commitments. To aid these mental components, other authors such as Macal
and North [12] note that agents should have some form of memory to allow
planning based on observations. Processing refers to how agents transform
knowledge and observations into actions.

Autonomy is the ability of an agent to determine actions based on a com-
bination of built-in knowledge and experience. This is derived from Russell
and Norvig and others such as [36, 23, 9]. The requirement for agents to be
autonomous is highly desirable across the literature as the sheer volume of
agents, often in dynamic environments, precludes the ability for direct inter-
vention by human operators or exhaustive descriptive rules.

Adaptability is the ability of an agent to explore a state space to make
better decisions based on similar perceptions. This definition is based on
Macal and North [12], among others. Reinforcement learning techniques (see
Section 2.3.1) are inherently adaptable.

5



2.2. Agent-based Models

Beliefs can be considered as perceived knowledge [23]. For example, one
of the organs in Bug Battle allows bugs to “cloak”, which renders the bug
undetectable to sensors. When sensing the location of a cloaked bug, the
sensing bug may believe that there is nothing there. The terminology and
processes for this requirement vary, for example, see [32].

Capability refers to an agents capacity to effect the environment or other
agents [23]. For example, in order to move a bug must have a cilia organ.
Without one (or more) of this organ type, the bug is immobile.

Choice is synonymous with decision. At a given point in time, an agent
will choose the selected action that it desires to perform from a set of potential
actions based on capabilities and the mental assessment of perceptions.

Communication is the ability of agents to pass and receive messages among
themselves. Agent communication can be affected by the environment, al-
though this is not the case in Bug Battle. Communication does not have to
be direct messages between bugs. A shared state is an example of an indirect
communication method.

Reactivity is the ability to perceive the environment and initiate appropri-
ate actions, which is a natural extension from the agent definition by Russell
and Norvig [19]. The actual mechanism to achieve this may vary, with the
simplest being a table of condition-action rules.

In situated environments the environment is a representation of spatial
dispersion, physical terrain or other similar features. Ferber suggests that
an ABM consists of an environment, agents, non-agent artifacts, relations
between agents, and agent actions [9]. The environment will be examined in
Section 2.2.4.

2.2.2 Physical Model

The physical model describes how an agent will interact with a simulated
physical environment. Sensors provide the perception of the environment.
The perceptions are assessed by the behavioural model, which results in the
agent initiating actions. The actions may be physical or mental (or both
simultaneously) and will depend on the capability of the agent.

Physical actions in the Bug Battle simulation include sensing, movement,
cloaking, spitting poison and spawning. There are a variety of sensor organs
that can be added and actuated to detect adjacent cells. Movement refers to
an agent changing its position in the environment, which requires a cilia organ.
Cloaking requires another organ and allows the agent to be undetectable to
sensors. Spitting poison generates a notional agent on the targeted cell that
causes defensive damage to an attacker via the combat mechanism. Spawning

6



2.2. Agent-based Models

occurs when an agent has a reproduction organ that can be actuated to create
a new agent in an adjacent cell.

For consistency, once an agent has chosen an action to perform, the resolu-
tion of the action should be left to the environment [33]. This allows universal
simulated physical laws to be reinforced. The organs employed in Bug Battle
that can interact with the environment adhere to this model.

2.2.3 Behavioural Model

The behaviour model deals with the internal agent state and the mechanisms
used to make decisions. Russell and Norvig [19] introduce mental state as
remembering a fact, such as checking an adjacent lane before attempting to
change lanes while driving. To perform the lane change safely the agent must
first signal (a first action), then view the desired lane (a second action) and
then move into the lane (a third action). Without the ability to retain the
perception of the state of the lane, the third action could not reasonably be
safely performed.

The mental model can further be augmented by knowledge or beliefs. Note
that the example above implicitly assumes that another agent has not moved
into the desired lane between the viewing and the movement2. Based on
the serial nature of Bug Battle, the actions of other agents while a bug is
executing a turn is not a factor. Beliefs in Bug Battle are expectations of the
type of bug given an energy signature, or the probability of bugs beyond the
local environment. See Section B.2.4 or Section B.3.7 for more information
on beliefs in Bug Battle.

Percept is a term for information received by an agent from its sensors [19].
Individual or grouped segments of percepts allow a mapping of (potentially
noisy) input to possible actions. Noisy sensor input would be input with
randomized error from the environment applied.

Weyns et al proposed a generic model for active perception based on sens-
ing, interpreting and filtering [32]. Sensing maps the environment state onto
a representation influenced by perceptual laws (e.g. noise or hidden values
determined by the environment). Interpretation maps a representation to a
percept according to a description. The description may provide multiple
layers of information, for example, a group of bugs might be recognized as
a colony as well as being recognized as individual bugs. Filters are used to
select only the percepts that are relevant for choosing an action.

2The associated “belief” here is that the probability of another vehicle moving into this
space is exceptionally small, so it can be discounted.
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Figure 2.1: Summary of Behavioural Model

Russell and Norvig stress the importance of assessing agent behaviour by
rationality as opposed to omniscience [19]. A rational agent is defined as “one
that does the right thing”, which is dependent on a performance measure,
precept history, environmental knowledge and capability. An example of a
rational agent would be a bug moving onto a cell occupied by a cloaked bug.
Unless the moving bug somehow suspected that cloaked bugs were present in
the simulation, movement onto the apparently empty cell would be a rational
decision.

Figure 2.1 summarizes the concepts presented in this section to show the
abstract process normally used in the behavioural model3.

3This figure was created for the thesis based on collaboration diagrams from the Unified
Modelling Language to highlight the interaction between the environment and mental state
of an agent.
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2.2.4 Environment

An environment is the representation of the physical or relational world in a
model. These representations may be very detailed or very abstract4. Weyns
et al provide an extensive survey of ABM environments in [32]. They de-
scribe environments on a scale ranging from communicative (relational) to
situated (physical). In a fully communicative environment, agents can only
communicate, there is no spatial or action component. In a fully situated
environment these properties are reversed. Since it is a scale, a wide range of
hybrid environments are possible.

Weyns et al include a review of Ferber’s Block-like Representation of Inter-
active Components (BRIC) model [9, 32]. An annotated version of the figure
they presented is given in Figure 2.25. This model is used to synchronize
perception, actions, messages and effects between agents. The BRIC model
effectively separates the action model from the agent representation, which is
a key point in the later work of Weyns [33]. The motivation for this separation
is to keep the design modular and ensure that all phases in a given cycle are
synchronized.

The BRIC model is presented to demonstrate the importance of environ-
mental modelling in agent-based models in general. Each version of Bug Battle
does not directly adhere to this model when released6, but it can be extended
to provide most of the functionality present in the BRIC model. The devia-
tions from the BRIC model are intentional given the development and purpose
of Bug Battle7. The main differences are a serial turn scheduler instead of a
synchronizer, and no message passing8. The Bug Battle simulation framework
is discussed in depth at Annex B.

4Highly detailed environments are dependent on the system being modelled. For ex-
ample, a simulation studying ant-colony optimization [6] may benefit from modelling the
absorption rate of the terrain on the pheromones deposited by ants, as suggested in [33]

5The base model is from [32], it was annotated for this thesis to be able to be read out
of context.

6Each year there are often minor revisions to correct minor problems in the software
code.

7Bug Battle was developed as a teaching aid for introductory software engineering. The
advanced design patterns required to implement the BRIC model are beyond the scope of
the course for which it was designed.

8The intention of the synchronizer in the BRIC model is to collect multiple agent actions
before executing agent actions in the environment whereas Bug Battle maintains a fixed
environment while individual agents execute actions. Extending the Bug Battle framework
to achieve message-passing can be achieved in a variety of ways such as use of the Observer
pattern or by shared variables.
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Figure 2.2: Annotated BRIC Model [32]

2.3 Learning Agents

2.3.1 Introduction

Learning agents are adaptive agents that apply some form of machine learn-
ing to their decision-making. There are three general approaches to machine
learning methods: supervised learning, Reinforcement Learning (RL) and un-
supervised learning [1, 20]. In supervised learning, the agent is supplied a
training set of inputs and the associated value of the output. The goal is
to learn a function that best maps the inputs to the given output so that
future inputs can be similarly handled. In RL, the agent is given a reward
function. The agent takes actions and receives rewards. The goal is to learn
which actions to take when in a given state to maximize or minimize reward.
In unsupervised learning, the agent is given inputs without any feedback and
it must determine patterns.
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Choosing which technique to use depends on the characteristics of the
problem to solve. Russell and Norvig suggest that this choice should be based
on what needs to be learned, prior knowledge available, representation of the
problem and the feedback available to the agent [20]. The state space for Bug
Battle is unnecessarily large and will need to be abstracted to some degree -
how exactly this abstraction is chosen will be discussed in Chapter 3. Super-
vised learning is problematic for this domain as the number of (input, action)
pairs is very large and the preferred outcome is challenging to appropriately
assess. Despite this restriction, expert knowledge of the system can be used
to generally guide preferred actions, which facilitates development of a reward
function. RL is the approach chosen for this thesis.

2.3.2 Markov Decision Process (MDP)

Modelling real-world problems often involves representing the system as a
series of choices that are dependent on previous choices. This complicates
classical probability theory approaches as independence is usually assumed,
which led to the development of Markov chains to allow this dependency
based on the Markov assumption [16, 15]. The Markov assumption is that the
current states depends on only a finite fixed number of previous states [20]. A
first-order Markov process will rely on only the previous state, a second-order
Markov process would rely on the previous two states, and so on. Markov
processes are dependent on the Markov assumption to remain tractable.

Core Concepts and Definitions

Markov Decision Processs (MDPs) are used to model agent decisions when
acting in a Markov process [20, 30, 1, 10]. Brief descriptions of the component
parts are given below before formally presenting MDPs. These descriptions
come primarily from [30], but the concepts are repeated throughout much of
the literature.

The environment is defined as a finite set of states where S = {s1, s2, . . . ,
sn}. Any given state is a unique description of the environment components
represented.

Actions are defined as a finite set where A = {a1, a2, . . . , ak}. Actions are
used by agents to affect the state. Not all actions can be applied in each state.
Two common ways to account for this are to use a pre-condition function
pre : S×A→ {true, false} or to set the associated transition probability (see
below) to zero.
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The transition function is defined where an agent selects aεA in state sεS,
causing the system to transition to a new state s′εS. The choice of s′ is
determined by a probability distribution. The transition function is denoted
as T : S ×A× S → [0, 1].

A reward function is used to provide a real number representing an incen-
tive for being in a state, or taking a particular action when in a state. This
leads to two forms of description: either R : S → R or R : S × A → R. The
difference is whether the choice of action should be rewarded or not. When
using probabilistic transitions, note that choosing action a does not guarantee
a transition to s′. In this case, the reward is based on the expected out-
come of the action. Developing a reward function can be a challenge. Russell
and Norvig suggest ordering preferences and assigned ordered weights to the
preferences [20].

Given the above descriptions, a MDP can then defined as a tuple <
S,A, T,R > where S is a finite set of states, A is a finite set of actions,
T is a transition function and R is a reward function.

Choosing which action to take when in a particular state is referred to
as a policy. A stochastic policy is given as π : S × A → [0, 1]. This means
that actions which map to higher probabilities have greater preference. The
lower probability choices may still have value for future learning if they have
not been sufficiently explored. Applying a policy follows the sequence: initial
state, assess policy to choose an action, receive the reward for the action,
apply the transition for the action, transition to the new state, and so forth.

The horizon is the amount of time, or number of actions that an agent
can take. Generally there are three kinds of horizons: fixed finite, indefinite
finite and infinite. Russell and Norvig provide an excellent example of how
the horizon length affects the value of following a policy [20]. In this example,
an agent is attempting to navigate a maze. With a short horizon (fixed finite),
it must target the maze exit as aggressively as possible. A longer horizon may
allow an agent to explore the environment further to make safer options.

While rewards are used for individual state transitions, assessing the value
of a policy requires a state history to be calculated. This is called a utility
function, and is given as Uh([s1, s2, . . . , sn]). The two main ways to calcu-
late this are with additive rewards or discounted rewards. Using discounted
rewards, where γ is a discount factor bounded between [0, 1), even infinite se-
quences can have a utility assigned. In general, the utility function is given as
Uh([s1, s2, . . . , sn]) = R(s1) +γR(s2) +γ2R(s3) + . . .+γn−1R(sn) However, in
a stochastic environment the state transitions are not guaranteed, so policies
are compared by using expected utilities. The expected utility of executing a
policy π starting in state s is given as Uπ(s) = E[

∑∞
t=0 γ

tR(St)].
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Partially Observable MDPs

The initial MDP formalism assumed a fully observable environment that does
not apply to many systems. Typically, noisy or limited sensors mean that
agents cannot plan with knowledge of the full environment. Accounting for
this begins by including a sensor model P (e|s) where eεE is the evidence
received for the state s. E is the set of all potential evidence. A single
evidence variable may be mapped to multiple states (limited sensors), or a
single state may map to multiple evidence variables (noisy sensors). Evidence
is often referred to as percepts, as in Section 2.2.3. These partially observable
MDPs are referred to as POMDPs.

The key feature to deal with this uncertainty is a belief state, which rep-
resents the possible underlying states given the sequence of all actions and
received percepts [20]. Note that currently the belief model is non-Markovian,
as it relies on an indefinite sequence of actions and evidence. When an agent
applies action a on a belief state b, it transitions to a new belief state b′. b′

represents all possible states that the underlying states of b could have transi-
tioned to given action a. When new evidence is received, the agent can filter
out the underlying states that are not possible for b′ to get a better represen-
tation of the true state distribution. This process mitigates the importance
of an indefinite history of the action and evidence sequences and effectively
converts a POMDP into a MDP on the belief space of the agent by making
the belief space distribution dependent on only the evidence received from the
previous state.

Spaan provides an overview of POMDPs in [25]. Solving these systems
is extremely difficult computationally, so much of the research is focused on
exploiting system properties to develop techniques such as factoring the state
space or randomization strategies to select better learning samples. Monte
Carlo Tree Search [24] and scalable planning [2] are a couple of such exam-
ples. Russell and Norvig suggest dynamic decision networks as a computa-
tionally efficient method to solve POMDPs [20]. This will be examined later
in Section 2.3.5.

Bug Battle is a POMDP. Although abstracted as a MDP the outcome of
actions is largely deterministic, but there are some circumstances where the
outcome may vary. The element of partial observation is due to the limited
sensor range and ability of cloaked bugs to remain undetected.
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Solving a MDP

The goal of reinforcement learning is typically to find an optimal policy. MDPs
have two general approaches to solve, value iteration or policy iteration. Each
approach calculates the optimal policy for each state as an exact solution.
When state spaces become larger, the sheer volume of calculations required
makes these exact solutions intractable. For this reason most of the literature
on MDPs or extensions of MDPs focus on approximate solutions. Several of
the developed algorithms focus on the idea that only a very small portion of
the state space needs to be considered in most cases. A brief overview of value
iteration and policy iteration are given here for completeness. Full details are
available in reinforcement learning texts such as [30].

Value iteration is based on the idea of calculating the utility for each state
and then using the state utilities to select the best action to take [20]. It forms
a recursive relationship called the Bellman equation. A system with n states
has n associated Bellman equations. The Bellman equation uses the max
operator, which makes the relationship non-linear and requiring an iterative
solution.

Policy iteration seeks to improve on value iteration by interweaving two
steps: policy evaluation and policy improvement. Policy evaluation is where
the utility of each state is calculated if a given policy were followed. Policy
improvement is where a new maximum expected utility policy is calculated
using one-step look-ahead [20].

2.3.3 Algorithm Review

There are several approaches to solving RL systems throughout the literature.
This section briefly covers a few of the basic algorithms, although it does not
go into extensive detail. Most of these algorithms are not appropriate for Bug
Battle because they are based on the assumption of a static environment.

Temporal-Difference Learning

Temporal-difference learning (TD learning) has a utility function and uses the
differences of temporally successive states to adjust utilities of observed states
while a simulation is running [27, 26]. This allows incremental updates referred
to as bootstrapping. Note that actions chosen are not explicitly considered in
this approach.
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Q-Learning

In Section 2.3.2 the utility function was presented, which considers values of
transitions between states. The actions were not considered directly in this
function. If the utility function is extended to account for actions, we get the
utility-action function Q : S×A→ [0, 1], which is often just referred to as the
Q-function [31, 30].

Q-learning is based on using the Q-function, which attempts to find the
maximum expected utility of taking an action in a given state [20]. The main
advantage of Q-learning over TD learning is that is does not need the transition
function which means it is a model-free algorithm. Further, Q-learning uses
the best Q-value, which means it is learning independently of the actual policy
being followed. This is called off-policy learning.

State-Action-Reward-State-Action (SARSA)

SARSA is very similar to Q-learning, except it is an on-policy algorithm [20].
The learning is applied from the actions that have actually been performed,
not just the best action(s).

Monte Carlo Methods

The basic idea behind a Monte Carlo method is to evaluate randomized input
to develop an estimate for a stochastic process [13]. Monte Carlo Tree Search
is an extension that attempts to estimate the outcome of a simulation by
calculating the average outcome of simulations from a given state. It has been
extended to POMDPs such as Partially Observable Monte-Carlo Planning
(POMCP) [24], but it is not being considered for Bug Battle because the
approach predicated on Bayesian networks was assessed to be more practical
to implement within the given time constraints.

2.3.4 Hierarchical Task Networks

The curse of dimensionality was coined by Bellman in the 1950s [3]. It means
that problems will be difficult to solve with some algorithms because the size
of the problem space is just too large. Attempting to solve this curse has led
to a variety of innovations such as heuristics (functions to guide algorithms
to approximate solutions quickly), sampling methods such as Monte Carlo or
abstracting the problem to reduce the overall size. Hierarchical Task Network
(HTN) are based on the principle of abstraction. The core definitions for
HTNs come from Russell and Norvig unless otherwise stated [20].
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HTNs use hierarchical decomposition to separate a problem into compo-
nent parts to be shared and reused. The main benefit is that at any level
of abstraction the number of activities to plan is much smaller, which can
be solved more easily than a large problem of individual components [20].
Another benefit to abstracting activities is that preconditions are easier to
manage computationally and intellectually.

HTNs divide actions into two sets: primitive actions or High-Level Ac-
tions (HLAs). HLAs may sometimes be referred to as macros or abstract
actions. HLAs contain one or more refinements, which are either sequences of
other HLAs, primitive actions or some combination of the two. An HLA that
consists of only primitive actions is called an implementation of the HLA.

2.3.5 Bayesian Networks and Extensions

This section develops the concept of DDN beginning with the basic Bayesian
Network (BN) and adding features as complications are considered. While
not examined in this review, HTNs can be combined with DDNs to yield
Hierarchical Dynamic Decision Networks (HDDNs) [29]. HDDNs are a natural
extension that offer dramatic speed increases to consider for future work. They
were considered to be out of scope for this thesis.

Bayesian Network

BNs are a data structure to concisely represent dependencies amongst vari-
ables [20]9. A BN can be represented as a directed graph where each node
is a random variable (r.v.) and each edge indicates dependence. For an edge
connecting node X to node Y , X would be called the parent of Y . For every
node X, P (X|Parents(X)) is the conditional probability distribution.

Bayesian networks can be thought of as belief networks because the under-
lying probabilities for the nodes represent the degree of belief that the event
the node represents can occur. Representing a belief network this way simpli-
fies the task required for POMDPs (see Section 2.3.2). Creating the network
with expert domain knowledge can simplify the learning process, but it risks
obscuring actual relationships if built incorrectly. Algorithms exist to both
build the structure of a network and populate the probabilities [11]. Their
implementation was considered out of scope for this research.

9A model can be represented as a joint probability table, but the resulting representation
is extremely large. As an example, a system with just 10 variables would require 210 = 1024
entries to describe the system. This does not scale well, as doubling the quantity of variables
then requires 220 = 1,048,576 entries.
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A system with completely dependent variables would result in a fully-
connected graph which is no better than the joint probability distribution, but
this is often not the case. Sparse networks will have few edges, which makes
them much easier to solve computationally and understand intellectually.

Dynamic Bayesian Network

Moving from a static system (each r.v. is fixed) to a dynamic one (r.v.s can
change over time) causes a problem for standard BNs. To capture the temporal
aspect, a dynamic system is divided into a series of time slices, where the BN
is effectively replicated across time slices [20]. The variables that are hidden
or observable could vary by time, but it is easier to consider them fixed. This
changes the notation of state S and evidence E to St and Et to account for
the time-dependence.

The concepts of this section are reviewed in several textbooks on artificial
intelligence or machine learning, [20, 1, 17, 11] all have similar presentations
of the material.

Since the system can change, as in the case of an MDP, a transition model
is required. This model takes the same form P (St|St−1), which includes the
Markov assumption that the current state only depends on a (fixed number
of) previous state(s). In general, the dependence could be longer than one
state but one is assumed to be sufficient for analysis of Bug Battle.

Similarly, making the Markov assumption for the sensor moves the sensor
model from a general case to a more tractable one. In this case, the current
state generates the current sensor readings which means there is no history
dependence on previous states. The sensor (or observation) model is given as
P (Et|St).

A potential problem is that the distributions between variables could
change between time slices. This is often assumed away by adopting the
idea of stationarity, which keeps the distributions (not the variables) the same
across time slices. It simplifies the model considerably but does not always ap-
ply. [14] describes some work where non-stationarity could be modelled. Bug
Battle could be view as either a stationary or non-stationary process, depend-
ing on the state representation. To keep the thesis within scope, emphasis is
placed on modelling the problem as a stationary process.

Introducing time to the BN representation allows time-based inferences.
The state can be estimated at the current time (filtering), past (smoothing)
or future (prediction). While the purposes of filtering and prediction are
readily apparent, smoothing may be less intuitive since there was already
a state estimation at that past state. Smoothing uses historical and current
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observations to obtain better estimates of previous state distributions [17, 20].
It can effectively be thought of as backwards propagation - if new evidence
makes some elements of a prior distribution impossible, the estimate for the
remaining distribution is improved which aids future prediction.

Particle filtering is a particular approximation algorithm that can be used
for filtering [17, 20, 14, 8]. The general idea is to sample the current distri-
bution on the belief space, weight for the evidence and then re-sample from
weighted evidence to obtain an unweighted sample. This has the effect of re-
inforcing samples that have a high probability and culling samples that have
a low probability. This method is especially useful when the full probabil-
ity model is not know in advance. A detailed example of applying particle
filtering is provided in Section C.1.

Decision Network

The purpose of reinforcement learning is to have agents act within an environ-
ment to learn how to make better decisions in the future. BNs and Dynamic
Bayesian Networks (DBNs) are lacking the element of decisions. Once deci-
sions are permitted, there needs to be some way to indicate which decisions
are better than others. This can begin by stating preferences for actions in a
situation. With some constraints these ordered preferences can be developed
into an underlying utility function [20, 17]. Rational agents are expected to
choose the highest expected utility, which is called the principle of maximum
expected utility.

Decision Networks (DNs) add decision nodes and utility nodes to BNs.
Decision nodes are similar to r.v.s but represent points where an agent has
a choice among a set of actions. Utility nodes represent the utility function.
The parents of the utility node are any variables or decision that directly affect
the utility.

Solving a decision network is similar to solving a BN, but each possible
value of the decision node must be considered. These decisions are then pushed
forward in the network to calculate the utility for each action, and the action
that results in the highest utility should be chosen [20]. The presence of a
large set of actions will significantly increase the computation time for this
algorithm.

Dynamic Decision Network

DDNs combine DBNs with DNs (note that DNs extended BNs and not DBNs).
Thus, a DDN can be thought of as a network spanning multiple time slices
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that incorporates agent decisions and utilities. Filtering algorithms update
the belief state representation and decisions are made by projecting forward
the possible action sequences to choose the best one [20].

There are three general methods to solving a DDN: variable elimination,
value iteration and solving a decision tree. Turkett and Rose suggest that
variable elimination is the best of these methods as it capitalizes on the struc-
ture of the BN [29]. However, variable elimination assumes full knowledge of
system probabilities, which is not always the case. For this reason solving a
decision tree is chosen. A decision tree is a branching structure that considers
the current state and builds branches for each possible decision while track-
ing a overall reward structure in the nodes of the tree [20]. An example of
building and solving a decision tree is given in Section C.2. Decision trees can
be built with approximate methods and are useful when exact solutions are
intractable.

While the time complexity for making decisions in a DDN is far better than
using value iteration to solve a POMDP, there are still potential improvements
[20]10. One such improvement is HDDNs [29], as mentioned at the start of
this Section, although it is out of scope11.

2.4 Summary

ABMs are low-level abstractions of a system that model the mental and phys-
ical states of an actor within an environment. One benefit of dissecting ABM
behaviour is to gain a deeper understanding of the emergent characteristics of
a system to guide future development.

While computationally expensive, machine learning is a useful technique to
explore a system when the scope of interaction is high. Bayesian networks and
their variants (DBNs, HTNs, DDNs, HDDNs) capitalize on underlying con-
ditional probability structures to reduce the computational cost. “Learning”
is achieved in a DDN through the filtering process, which revises an estimate
of the true state based on observations. Future decisions are then guided by
maximizing rewards to optimize agent behaviour.

10The time complexity for DDNs is O(|A|d|E|d) while the time complexity for value

iteration is |A|O(|E|d−1). In both these cases, |A| is the cardinality of the action set, |E| is
the cardinality of the evidence set, and d is the number of decisions projected forward.

11The HDDNs examined in [29] were based on established problems where DDN con-
structs already existed. The decision to keep HDDNs out of scope was based on lack of
experience with DDNs and the scheduling risk to develop both was deemed too large.
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3 Model Design

3.1 Introduction

In order to test the hypothesis that the simulation can be treated as a POMDP
solvable through a DDN, it is necessary to have an adversary to compare the
Dynamic agent against. The strongest candidate from previous years’ sub-
missions to the Bug Battle contest is the expert bug “Rathbug”, whose devel-
opment began in the original BugWars. Due to framework changes between
BugWars and Bug Battle, only the multiple spawning (Section B.3.4) and
energy transfer (Section B.3.5) techniques have been credited in prior work.

A thorough review of the Bug Battle simulation is provided in Annex B.
This chapter expands on the concepts of that review to explain the designs
of the agents involved in the thesis testing. The chapter is divided into the
following major sections:
• Presentation of physical designs available to both the Baseline and Dy-

namic agents;
• Explanation of the behavioural design of the Baseline agent; and
• Explanation of the behavioural design of the Dynamic agent, which in-

cludes a description of the implementation and solving of the DDN.

3.2 Common Agent Variants

This research assumes that all agents in the experiments will have access to
the same conceptual physical models. It is possible that better organ build
variants exist1. Exploration of the physical model of bugs was not performed

1For example, additional variants were developed in the initial design but discarded due
to complications in use. One such variant was a “Soldier” bug, which was permanently
cloaked with an energy sensor, budder and seven cilia (movement organs). The concept of
the soldier bug was to be spawned onto the edge of an opposing colony where it would begin
undetected. On its turn the soldier bug would penetrate deeply into the colony, harvesting
the energy from the exposed colony interior. The budder would allow it to grow like a
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due to scope constraints.

3.2.1 Physical Model

The sections below describe the build order of organs and the rationale be-
hind the design of each variant. The rationale descriptions are based on the
employment by the Baseline agent. The Dynamic agent uses the same core
physical design, but chooses which action to take based on the DDN selection.
In the organ build tables, there are two times that organs are added: either
the initial build when the bug is created or during the bugs turn as extra
energy is available.

Scout

The Scout variant is used to rapidly explore the environment with a focus on
exploiting plants and weaker enemies. Stronger enemies are avoided. This
variant retains minimal energy from turn-to-turn by focusing on spawning as
many children as possible. The goals of this design are to cover the map as
fast as possible, and to aggressively target weaker enemies. The minimum
energy is based on the probability of finding energy sources on the next turn.
Note that plants regenerate, so while individual bugs will die off quickly, a
Scout colony as a whole can achieve a stable population2.

The Scout variant build order is given as Table 3.1. Note that all organs
are part of the initial build. This is based on the assumption that having
sufficient energy for maximum expansion is ideal. The alternative would be
to start with a reduced quantity of cilia, but it would require considerable
parameter-tuning to be effective.

Worker

This variant is designed as the workhorse of the agent colony. Its goal is
to generate energy while remaining adaptive to the environment. A major
anomaly in the Worker bug relative to most designs is that it is immobile. The
variant uses active and passive defense to protect the colony. The final poison
capability allows the bug to spit poison on adjacent adversaries, or to inflict
damage if the adversary accidentally initiates combat. Further passive defense

cancer within. However, since it is rare for dense colonies to form when employing the rapid
movement of the Scout variants, the potential usefulness of the Soldier was deemed too low
to implement.

2For discussion, a colony is defined as “a collection of bugs which may or may not be
adjacent to each other”.
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Table 3.1: Scout Organ Build

Order Organ Added

1 EnergySensor Initial
2 Budder Initial
3 Cilia Initial
4 Cilia Initial
5 Cilia Initial
6 Cilia Initial
7 Cilia Initial
8 Cilia Initial
9 Cilia Initial
10 Cilia Initial

Table 3.2: Worker Organ Build

Order Organ Added

1 Cloaking Initial
2 PhotoGland Initial
3 PhotoGland Initial
4 PhotoGland Initial
5 PhotoGland Evolve
6 EnergySensor Evolve
7 Budder Evolve
8 PhotoGland Evolve
9 PhotoGland Evolve
10 PoisonGland Evolve

is achieved by always remaining cloaked. Further active defense is achieved
via adaptive spawning to create scenario-specific variants, which include all
variants presented in this work.

While all variants are capable of the energy transfer mechanism (see Sec-
tion B.3.5), it is primarily intended for the Worker variant. Typically the
Worker will be in a clustered colony of other Worker bugs. Spawning inside
the colony uses the energy transfer mechanism. Spawning on the colony fringe
follows several potential paths depending on detection of enemies. If enemies
are detected, then they should be cleared using attacker bugs.

In the case that cloaking is suspected, this variant is capable of employing
the techniques described in Section B.3.9 to target potential cloaked bugs.
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Attacker

The attacker bug is designed to be spawned directly on an enemy, and die
immediately. The organ build is intended to maximize defensive damage based
on the amount of energy supplied to the bug. While this build will often be
one or more poison glands, in some cases it could be spikes. More detail on
how the organ build is selected is given in Section B.3.10.

Feeder

This variant exists purely to transfer energy from a source bug to a target bug.
It has no organs, as adding organs would waste energy. Feeders are designed
to die as soon as they are born, which transfers all available energy to the
recipient bug.

Recce

This variant exists purely to detect if another bug is in a cell to support the
recce technique (see Section B.3.9). It has no organs, as adding organs would
waste energy. Although the organ build is the same as the Feeder variant, the
conceptual employment is completely different so a different name is used to
distinguish the purpose.

3.3 Baseline Agent Design

The Baseline design prioritizes expansion at the expense of survivability ini-
tially, and then transfers to probabilistic consolidation. In the expansion
phase, it spawns aggressively to exploit resources (using the Scout variant,
see Section 3.2.1), which will fuel further growth. In the consolidation phase,
it uses the Worker variant (see Section 3.2.1) to convert excess energy to the
base of a colony.

The transition from expansion to consolidation is based on the number of
turns to cover the map in an unopposed environment, bug energy levels, and
a random variable relative to Scout population and Worker population3. The
probability function used to calculate the likelihood of spawning a Worker bug
is given as Figure 3.1.

3This function was created and calibrated during preliminary testing in an unopposed
environment. Calibration was based on face validation to ensure Worker variants were being
spawn early yet not exclusively.
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Figure 3.1: Probability of Spawning Baseline Worker Agents

The purpose of the probabilistic component is to ensure that an active mo-
bile defense is maintained when the transition begins. Otherwise all Scouts
may attempt to convert to Workers immediately, which would allow adver-
saries a prolonged respite while Workers develop their internal organs.

By placing all effort towards exploiting resources this design is able to
cover the entire map in approximately ten turns4. While the Scout bugs may
not have visited every cell, it will have attacked the vast majority of resources
(plant or adversary) encountered.

4Found by preliminary testing by placing the Baseline variant in an unopposed envi-
ronment and allowing the simulation to run until the initial plant resources were depleted.
The coverage pattern that the bug exhibits when expanding makes the outer edge of the
dispersed colony obvious.

24



3.3. Baseline Agent Design

Table 3.3: Baseline Movement Priorities

Priority Description

1 (Strongest of) weaker enemies
2 (Strongest of non-isolated) plants
3 (Strongest of isolated) plants
4 Default direction (if not already occupied by an ally)
5 Open ground

Table 3.4: Baseline Spawning Priorities - Scout

Priority Description

1 (Strongest) weaker enemy
2 (Strongest) plant
3 Open ground

3.3.1 Behavioural Model

The evolution of the Baseline variant always uses as much energy as available
to complete the physical build while retaining sufficient energy to sense the
environment and act upon these senses. The strategy here is to move as
much as possible to find resources, which will allow additional movement and
spawning.

The design uses the frequency-based exploration technique to choose direc-
tions (see Section B.3.2). After it senses the local environment, it prioritizes
the search results as given in Table 3.3. In this table, a “non-isolated plant”
means a plant that has adjacent plant neighbours.

Note that stronger enemies are absent. Like the tactic of blitzkrieg, strong
pockets of resistance are ignored in favour of destroying their support. Often
when encountering a stronger enemy, the Baseline variant would have sufficient
energy to use the kamikaze technique (see Section B.3.6) to weaken it, but
this is energy that can fuel further exploration and degrade the long-term
survivability of the (temporarily) stronger adversary.

When spawning, the design prioritizes as given in Table 3.4. The strategy
here is similar to the movement plan. Note that the default direction assigned
to the newly spawned bug is orthogonal to the parent bug, which encourages
faster dispersion across the world. On each round of movement the parent
is limited to spawning three children so that it retains sufficient energy and
open space to explore.

Once the transition is triggered, spawning of Worker variants may begin.

25



3.4. Dynamic Agent Design

Table 3.5: Baseline Spawning Priorities - Worker

Priority Target Variant Spawned

1
(Strongest) enemy (if
poison available)

Poison target, then
spawn Scout

2 (Strongest) plant Scout
3 (Strongest) weaker enemy Worker
4 Open ground Worker

Workers are spawned with enough energy to be self-sufficient. If they are
spawned with just enough energy for their initial evolution it will take them
several turns to develop moderate energy generation. However, when the
Scout bugs delay spawning until the end of the turn and collect several food
sources, they will spawn a Worker approaching maximum evolution.

Recalling that Workers are immobile means that they have no movement
decisions to make. Their spawning decisions are more complex and are given
in Table 3.5. The purpose of this design was to ensure that there are as few
plants adjacent to the colony as possible. Since the Workers are cloaked, ad-
versary bugs cannot find them directly, which means they cannot target them.
However, adversaries could target the plants which would place the adversary
adjacent to a Worker. Therefore spawning Scout variants on plants denies
these resources to the adversary and provides an active defensive mechanism
to destroy the adversary if they are weaker.

At the end of a spawning phase, the Worker variant will spit poison onto
adjacent enemies, prioritizing stronger enemies. This is only effective on the
first spawning phase, because the poison reservoir may become depleted and
will not be refilled until the end of the turn. Since the Worker typically uses
all available surplus energy for spawning, this is only a minor concern.

3.4 Dynamic Agent Design

Dynamic bugs execute their turns according to the algorithm presented in
3.2. Evolution is a fixed process to ensure that sensor organs are available
to scan the local environment5. A Dynamic bug then uses the percepts and
probabilities to make a decision according to the DDN, solved using a decision
tree which is built using reward and utility functions. The result of the DDN

5Recall from Annex B that bugs can be spawned on an enemy to trigger combat, and
they may delay adding organs so that they have additional energy to win combat. The
decision-action cycle is the first time that organs can be added post-combat.
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Figure 3.2: Decision-Action Cycle for a Dynamic Bug Turn

is used to execute a low-level action. This decision-action cycle continues until
the bug cannot execute additional actions.

3.4.1 Reward and Utility Functions

Development of reward and utility functions are a critical component of a
DDN, similar to how development of a fitness function is fundamental to a
genetic algorithm [34]. At the highest level the reward would be success or
failure of the Dynamic bug in eliminating the Baseline bug. At a lower level,
the only “reward” the environment offers is energy.

The reward function was defined as addition of weighted sub-functions.
This representation facilitated independent manipulation of sub-function weights.
The sub-functions were designed based on the same heuristics that drove the
implementation of the Baseline bug. The reward function is:

R(S,A, S′) = w1f1(S,A) + w2f2(S,A, S
′) + w3f3(A)

+ w4f4(A) + w5f5(S)
(3.1)

where:
• S is the initial state
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• A is the action taken
• S′ is the transitioned state
• wiε[0, 2], i = {1, 2, . . . , 5}
• f1(S,A) rewards the energy
• f2(S,A, S′) rewards exploration
• f3(A) rewards killing enemy bugs
• f4(A) rewards spawning new bugs
• f5(S) rewards the defensive posture of the bug
Similarly, the utility function considers the average energy and defensive

rating of all samples in a belief node (see Section 3.4.3 for a discussion of belief
nodes).

The implementation of the sub-functions is fixed and based on scaling
the desirability of the intent of the factor based on heuristics. For example,
f2(S,A, S

′) models a bonus for exploring the environment based on the search-
scoring algorithm described in Section B.3.26. An overview of the variable sub-
functions is provided in Figure 3.37. The enemy and spawning sub-functions
were fixed rewards dependent on the action chosen.

Factor weights are defined on a continuous scale relative to the accuracy
of the expert analysis. A weight of zero would imply the expert opinion of
the factor was not relevant. A weight of one would imply that the factor
was assessed accurately, and a weight of two would imply that the factor
was significantly more important than it was assumed. The weights of the
reward function are fixed for a given trial. Varying the weights during a trial
is possible but it was not explored.

3.4.2 DDN Implementation

The additional probabilities that are included in the DDN planner come from
a central controller (see Section B.3.7). When Dynamic bugs act within
the environment, some statistics are generated for recently observed effects.
Regionally-dependent statistics allow the DDN planner to sample the un-
known environment based on recent history, which allow the Dynamic bugs

6Initially this should be crucial for expansion and dispersion of the bugs, to capture
as many of the plant resources as possible. As the local region the bug explores is further
explored, the relative importance of this factor diminishes.

7These were the intended relationships. However, when reviewing the simulation code
to produce the graphs it was discovered that there was a mistake between min and max
operators for the energy and defensive sub-functions. The implemented energy sub-function
does not have the smooth transition at energy = 2000. The defensive sub-function has a
much larger upper range (approximately 8 instead of 2). The impact of these errors is
unknown. This is discussed further in Section 6.2.1
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(a) Energy Sub-Function

(b) Exploration Sub-Function

(c) Defense Sub-Function

Figure 3.3: Reward Sub-Functions
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Table 3.6: DDN Focus

Description Concept

AGGRESSIVE Attempt to damage or kill enemy
DEFENSIVE Make the bug more difficult to kill
DISPERSIVE Spread out across the map
ENERGIZE Prioritize gathering energy

to adapt to the environment as the simulation progresses. For example, ini-
tially the probability of encountering enemy bugs is almost zero. If several
enemies are encountered in a short time period, the DDN planner assumes a
higher chance of additional enemies when exploring the local environment. If
no enemies are then encountered for a few simulation turns, the DDN planner
assumes the enemies have passed through the region and the probabilities are
adjusted.

The DDN planner considers four core foci (see Table 3.6), which define pri-
mary and secondary intent for a strategy. By considering each combination
of foci, there are 16 possible strategies. Each strategy maps to zero or more
low-level actions (see Table 3.7), which have a tactically optimal implementa-
tion once chosen. When a strategy is chosen by the DDN planner, the actual
action to implement is chosen at random. However, the actions are filtered
before executing so there is typically only one action left for a given strategy.

The decision to structure the DDN planner in this strategy-focus-action
construct was partially based on the work of HDDNs (see Section 2.3.5) and
partially to provide a tractable abstraction to implement. Attempting to
determine the combination of factors (e.g. direction, amount of energy to
use, etc) for every possible organ proved cumbersome in preliminary designs.
Using effect-based notation vastly simplified implementation.

3.4.3 Solving the DDN

Solving the DDN amounts to solving a unique decision tree. This must be
done for each decision-action cycle. Nodes in the decision tree correspond to
belief nodes or chance nodes. Particle filtering (see Section 2.3.5) is used to
filter the belief nodes when required. The figures for this discussion are based
on the toy model used for preliminary experiments (see Section 4.2.1) to keep
the scope of the figures sufficiently small. The process is the same for the Bug
Battle decision tree, but the scope is much larger due to the cardinality of the
action set.
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Table 3.7: DDN Action

Primary Focus Secondary Focus Action Name

AGGRESSIVE AGGRESSIVE SPAWN-ATTACKER-TO-KILL

AGGRESSIVE DEFENSIVE
SPIT-POISON-TO-WEAKEN-FOR-WORKER

SPAWN-ATTACKER-TO-WEAKEN-FOR-WORKER
SPAWN-WORKER-ENEMY

AGGRESSIVE DISPERSIVE
SPIT-POISON-TO-WEAKEN-FOR-SCOUT

SPAWN-ATTACKER-TO-WEAKEN-FOR-SCOUT
SPAWN-SCOUT-ENEMY

AGGRESSIVE ENERGIZE -

DEFENSIVE AGGRESSIVE SPIT-POISON-TO-KILL

DEFENSIVE DEFENSIVE FILL-POISON

DEFENSIVE DISPERSIVE SPAWN-RECCE

DEFENSIVE ENERGIZE TRANSFER-ENERGY

DISPERSIVE AGGRESSIVE -

DISPERSIVE DEFENSIVE SPAWN-WORKER-BEST-SEARCH

DISPERSIVE DISPERSIVE SPAWN-SCOUT-BEST-SEARCH

DISPERSIVE ENERGIZE MOVE-TO-BEST-SEARCH

ENERGIZE AGGRESSIVE MOVE-TO-ENEMY

ENERGIZE DEFENSIVE SPAWN-WORKER-BEST-ENERGY

ENERGIZE DISPERSIVE SPAWN-SCOUT-BEST-ENERGY

ENERGIZE ENERGIZE MOVE-TO-BEST-ENERGY

A belief node is a combination of environment percepts and internal bug
state. The environment percepts are based on locations, energy signatures
and underlying probabilities. The type of bug present at each cell is based
on a combination of energy signature and probability - for example, while an
energy reading of 950 is most likely to be a plant, there is a small chance it
could be an enemy. Some probabilities are known with certainty based on the
tracking functions of the centralized “HQ”.

The root belief state is generated based on the initial sensor input, and
filtered for the current probabilities (see Figure 3.4a)8. The result is several
samples of the belief space. The planner then begins to consider every possible
strategy, but filters out strategies that are impossible. Strategies removed due
to filtering may be due to underlying action(s) lacking energy, pre-requisite
organs, or suitable targets in the environment.

A chance node is obtained by having each remaining strategy obtain a copy
of the samples for the parent belief node and transition each sample according
to the action(s) mapped to the strategy. New environment information is

8In the figure it is assumed that the start state is the prior distribution of the toy model.
Further, to be consistent with the literature such as [20, 17], triangles are belief nodes, ovals
are chance nodes and diamonds are utility nodes.
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(a) Root Belief Node

(b) Creating Chance Nodes

(c) Full Decision Tree

(d) Solving the Tree

Figure 3.4: Building and Solving a Decision Tree - 1-step

based on sampling the system probabilities. Rewards are applied based on
the relative quantity of samples in each transitioned state and the action
chosen (Figure 3.4b). Since the decision tree is forward planning, the rewards
are being calculated from the belief state space not the true state space.

Before a chance node propagates to additional belief nodes, it generates
and weighs all evidence for transitioned samples. A new population is then
sampled for the weighted evidence. This effectively prunes branches of the
tree that are very unlikely. The link from a chance node to a child belief
node is the evidence generated. Figure 3.4c provides an example. When
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the maximum depth of the tree is reached, each leaf belief node is evaluated
against a heuristic utility function.

The reward function is a linear combination of factors based on expert
analysis of the simulation, to provide a short-term value for each belief state.
Similarly, the utility function provides an estimate of the long-term value of
each belief state.

Once built, the decision tree is easily solved: belief nodes obtain their
final score from the maximum of their child chance nodes. Chance nodes
obtain their final score from the average of their belief nodes. The end effect
is the root belief node selecting the strategy that led to the highest score.
Ties between child nodes can be resolved randomly. Figure 3.4d provides a
summary of this process.

3.5 Summary

While both the Baseline and Dynamic bugs use the same physical designs,
the Baseline bug uses fixed logic based on hard-coded conditions determined
by expert analysis of the simulation. The Dynamic bug makes very few firm
decisions, instead relying on a decision-action cycle fed by sensor input and
probabilities obtained from a central controller.

The key feature the Dynamic bug relies on is solving a DDN by building
and solving a decision tree constructed with particle filtering. A major chal-
lenge with building the decision tree is the selection of the reward and utility
functions. Continually building and solving decision trees based on the current
environment and observations allows flexibility and adaptability. However, the
quantity of calculations required makes this approach very computationally
expensive.
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4.1 Introduction

This chapter is divided into the following major sections:

• Parameter selection experiment design; and
• Distributed environment.

4.2 Parameter Selection Experiment Design

Since learning in a DDN is determined by the filtering of belief spaces, testing
simulation performance meant either varying the particle filter population size
and decision tree search depth or the reward and utility functions. While a
combination of these approaches could be used, the literature review empha-
sized the high computational cost of DDN solving, so a preliminary experiment
was designed to estimate the cost and benefits of particle filtering with the
intention of guiding which approach to use.

4.2.1 Preliminary Experiment - A Simplified Model

The toy system in the preliminary experiment was a 3-state model as given in
Figure 4.1 developed independently to test simplified characteristics present
within a POMDP. This system captured stochastic transitions, partial obser-
vation (noisy sensors) and a hidden state. The probabilities for the various
sub-models (prior, transition, sensor, reward and utility) were arbitrarily cho-
sen.

The preliminary experiment also allowed verification of a generic DDN
algorithm implementation which could later be adapted the full experimental
model. In order to be considered a valid verification model, the features tested
in the toy model had to map to features in the larger-scale model. Stochastic
transitions are relevant because the outcome of some actions in Bug Battle
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Figure 4.1: Toy 3-State Model

is unknown, as agents have no way to sense adversary cloaking or defensive
damage with certainty1. The noisy sensors and hidden state replicate the
effects caused by the probabilistic target detection (see Section B.2.4 and
Section B.2.5).

Recalling Section 2.3.2, the prior table gives the probability of the state
at system initialization. A percept is generated for an agent according to
the sensor model and the agent can use this to choose one of two actions,
A = {GO,STAY }. The sample is transitioned according to the action and
initial state, and a reward is obtained depending on the true state of the
system2. If an agent is employing a DDN, it uses the utility function to
decide the “long-term” value of the state. For the purpose of this preliminary
experiment, each agent had 200 turns to obtain the best score possible. There
were 1000 trials for each utility function.

The toy model had a dominant strategy of attempting to reach state B and

1This is restricted to movement or spawning actions. Actions such as filling the poison
gland are deterministic.

2Note that since the rewards are distinct in this scenario, it would be possibly to de-
termine the true state with perfect accuracy. This could be mitigated by adding a small
random component to the reward so that there was potential overlap between state rewards,
or having the same reward for multiple states. This singular reward-to-state mapping seldom
applies to full-scale models.
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Table 4.1: Preliminary Experiment Results

Population Depth Time (ms) Avg Reward Utility Function

100 2 63.6 141.6 P (X ′|STAY,X)10 ∗R(X)

100 3 201.9 141.4 P (X ′|STAY,X)10 ∗R(X)

1000 2 398.7 141.5 P (X ′|STAY,X)10 ∗R(X)

1000 3 1601.7 141.7 P (X ′|STAY,X)10 ∗R(X)

100 2 65.2 139.2 Focus on B - 10
100 3 201.6 138.8 Focus on B - 10
1000 2 396.5 141.6 Focus on B - 10
1000 3 1601.1 142.1 Focus on B - 10
100 2 65.8 132.9 Focus on B - 100
100 3 201.1 131.2 Focus on B - 100
1000 2 402.7 141.0 Focus on B - 100
1000 3 1619.3 141.0 Focus on B - 100
. . . . . . . . . . . . . . .

then staying there indefinitely. Sensitivity testing was performed by varying
the population size, search depth and utility function to determine the overall
effect. In general most settings tended to under-perform the simple dominant
strategy, largely due to a lag effect caused by sampled populations entering
state C and then needing a turn or two to re-adjust to either state A or B as
new evidence was received.

Some of the results from the preliminary experiment are presented in Ta-
ble 4.13. The average differences between population sizes are presented in
Table 4.2. The values in Table 4.2 were calculated based on data from all
utility functions. The significant differences in average reward are largely due
to refinements in sampling in the particle filter. The small sample sizes are un-
likely to generate a reasonably accurate prediction of the current state, which
tends to lead to ineffective decisions.

While the effect of the utility function was alluded to in Section 2.3.2,
it is clear from Table 4.1 that the design of the utility function has a effect
on the overall results. The reward function was not varied in this model be-
cause it came directly from the environment. The trade-off of reward between
population sizes of 100-1000 was relatively small given the significant time
savings.

3The full table is almost 300 rows long. This table was edited to highlight the main
relationships only. For comparison purposes, a planner that followed the dominant strategy
scored an average reward of 141.7.
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Table 4.2: Preliminary Experiment Summary

Population Depth Time (ms) Avg Reward

10 2 23.8 120.9
10 3 61.1 119.2
100 2 65.0 139.9
100 3 203.2 139.4
1000 2 405.7 141.5
1000 3 1645.7 141.4

4.2.2 Parameter Selections

The results from the preliminary experiment gave justification to fix both
population size and search depth and to vary reward and utility functions.
Given the minor change in outcome relative to processing time, the fixed
population size was chosen to be 100 samples and the maximum search depth
was 2.

Recall from Section 3.4.1 that the reward function consisted of 5 factors
while the utility function had 2 factors. Ideally factor weight parameter ex-
ploration could be executed first as a coarse parameter search followed by
fine-tuning, but time analysis (see Section 4.3) indicated that this would not
be feasible. Limited time led to the decision to explore weights of 0, 1 and 2
which is effectively only a very coarse parameter search.

4.3 Distributed Environment

The hardware requirements to run the experiment were a concern. Preliminary
trials indicated that a typical run-time was between 20-40 minutes. Given that
there were 37 = 2187 possible parameter permutations, the estimated running
time for 100 trials of each parameter permutation would be 2187 ∗ 100 ∗ 40 =
8,748,000 minutes, or approximately 6075 days. The allocated time to perform
simulation trials was 1-2 months. Running 100 processes independently would
put the number of days to just over 60, which was considered within acceptable
bounds.

The decision to develop a web application to support and coordinate par-
allel simulations was based on preliminary experiments with the toy model to
validate the decision tree and particle filtering methods. In this preliminary
experimentation a MySQL database was used to collect and analyze results.

The experiment application was hosted on Amazon Web Services using a
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2 GB Linux-based instance with a Linux, Apache, MySQL and PHP (LAMP)
stack installed4. A front-end web page was developed using JavaScript, jQuery
and PHP. Moderate attempts were made to secure the web server, which
included restricted ports and enforcing Transport Layer Security (TLS) en-
cryption via a certificate obtained from DigiCert, a multi-national certificate
authority.

An executable Java file (.jar file) was available via a download link on the
web page. Clients could download the executable and run multiple instances.
Client hardware affected the quantity of instances possible per device as well
as the running time for each simulation trial. Software version control was
coordinated manually initially, with an automatic patch notification being
added in a later release.

To prevent client data tampering, temporary simulation results were en-
crypted on client machines using AES-256 encryption until they were uploaded
to the server.

Potential clients were volunteers solicited by social media and email. A
preliminary email with the chair of the RMCC Research Ethics Board (REB)
indicated that REB approval would not be required for this form of involve-
ment by other people [18]. No compensation was provided to volunteers, as
was indicated on a disclaimer on the main application web page.

Clients had the choice to run simulations anonymously or with an au-
thenticated account obtained via email registration. The account option was
provided to allow access to a “leaderboard”, which would log the statistics of
computing power provided. There was no attempt made to capture internet
protocol (IP) addresses or other identifying information beyond an account
name5. The majority of trials (79%) were completed by anonymous clients.

Once a client had downloaded up-to-date software, the process to submit
results was transparent to the client. When a simulation trial completed,
the results were encrypted and queued in an upload folder. Periodically the
software would scan for results in the upload folder, decrypt the file, convert
to JavaScript Object Notation (JSON)6 and upload to the server.

Initially parameters were obtained randomly from the 2187 possible pa-
rameter permutations, but was coordinated within the software as of version
3.00 to ensure an even number of trials would be generated for the selected
permutations.

4https://bugbattleai.net
5This could be easily captured with modifications to server-level code.
6JSON is intended to structure information to facilitate encoding and decoding. For

more information, see http://www.json.org/.
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4.4 Summary

A preliminary experiment led to the conclusion to experiment with parameter
permutation weights for the reward and utility functions instead of varying
the population size and search depths. Even with this reduction in scope, the
time to execute sufficient trails for an adequate analysis would be very long,
so a distributed computing environment was created to facilitate multiple
concurrent trials. The goal of the experiment was a uniform sampling of all
parameter permutations.
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5.1 Introduction

This chapter is divided into the following major sections:

• Modified experiment design; and
• Experiment results.

5.2 Modified Experiment Design

After the initial week of experimentation, it was obvious that the rate of trials
would not support the original goal of over two million trials. This was due
to three main factors: server limitations, lack of available hardware and some
trials taking considerably longer than preliminary tests. Initial problems with
the database optimization and error logging led to a rate of approximately 6000
trials over seven days. These problems were corrected and the simulation was
allowed to continue in the current state to obtain a better estimate on rate of
completion.

When there were approximately 20,000 trials completed, the preliminary
results were reviewed. There were 0 and 17 results for each parameter permu-
tation. This was due to parameter permutation being randomly chosen within
the application instead of being assigned by the server1.

The original parameter space sampling was changed to select a distribu-
tion of 20 parameter permutations, but to assess for 1000 trials each. These
permutations were selected from the sets with the most trials across a range
of performance. At the time of choosing, the performance ranged from 100%

1This was intended to be a minor design feature of the web application to allow laptops to
download the code and run without an internet connection, but the synchronization between
the local cache and server was not implemented.
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win rates down to 0%2. An approximately equal number of permutations were
chosen from each grouping of 20%.

Preliminary results were reviewed again when the reduced permutation
set had logged approximately 400 trials each. The best win rate was just
over 50%, so a decision was made to increase the quantity of permutations to
approximately 50. These permutations were chosen from a mix of the best
preliminary performance and parameter weight patterns observed within the
first 20 in-depth permutations3. The final number of chosen parameter per-
mutations was 56, as six additional permutations were chosen after observing
patterns with the energy and defense factors for both the reward and utility
functions of the selected permutations.

5.3 Experiment Results

The main experiment collected just over 42,000 trials in the distributed envi-
ronment. The total processing time was 21,041 h, or approximately 876 days
of continuous processing if a single process had attempted to collect all the
data. There were three main factors that affected the processing time for in-
dividual trials: client hardware, quantity of Dynamic bugs, and the ability of
the Dynamic bug to find isolated and hidden Baseline bugs.

5.3.1 Data Collection

The logical organization of the database that captured trial data is given in
Figure 5.1. Modifications made to this design to solve website performance
issues include INSERT and UPDATE triggers on several tables4. These trig-
gers were used for parameter permutation tracking and to augment entries
in the “tblSimulationExecution” table, which contained the aggregate infor-
mation for a simulation trial. The final database was approximately 1.1 GB,
distributed as an SQL file on DVD as Annex D for this thesis. The SQL
queries used to generate the data extraction in the figures throughout this
section are also available on the DVD for Annex D.

2The win rates refer to the probability of the Dynamic bug defeating the Baseline bug.
3Generally, permutations with a high reward for energy were performing well. The focus

was to select a mix of positive weights for energy and defense factors, both for reward and
utility functions. Additionally, permutations that had non-zero weights for a wider range of
factors were purposefully selected to ensure some exploration.

4A database trigger executes a segment of code when a pre-condition is met. For example,
an INSERT trigger on table “X” would fire every time a record was added to table “X”.
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When there were approximately 6000 trials, client processes stopped log-
ging trial data directly onto the database. This was done to keep the MySQL
database more responsive. Aggregate data for the “tblSimulationExecution”
table continued to be logged to allow summary statistics to be queried during
the experiment execution. The full trial data was uploaded as a JSON text
file and stored on the server with the filename based on the simulation name.
When the data collection was completed, these files were parsed to add the
full data to the database.

A coding error was discovered when preparing to extract the data from the
JSON files. Each record in the “tblSimulationExecution” table has 1-to-many
entries in the “tblSimulationTurn” table, which contains aggregate details on
a turn-by-turn basis. The “tblSimulationTurn” table has 1-to-many entries
in the “tblTurnStrategies” table, which contains a summary of strategies em-
ployed by all Dynamic bug instances on the given turn5. The problem was
that only a single turn was parsed and recorded to the database for the first set
of trials. The error was corrected before processing the approximately 36,000
trials worth of files on the server. An additional mitigating factor is that most
of the lost data affected the initial exploration of the parameter permutation
space, which means that at most 17 of 500 (3.4%) trials would be lacking the
detailed strategy information for a single parameter permutation.

5This allows multiple layers of information at various performance costs. For example,
all aggregate trial data was captured within 28,000 records, while the detailed turn statistics
required approximately 950,000 records. Finally, exporting the turn information resulted
in a comma-separated-value file that was 1.2 GB - larger than the entire database itself,
because of how the query joined information. Each detailed strategy record was a summary
of the observations on a given turn, because a brief analysis of the space required to capture
the rewards for each strategy on each decision-action cycle would have resulted in a database
in the 300-400 GB range. This would have been significantly reduced due to the reduction
in parameter trials, so capturing detailed decision-action cycle information is a viable future
experiment.
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5.3. Experiment Results

Figure 5.2: Duration of Simulation Trials

5.3.2 Processing Time

The overall simulation durations are provided in Figure 5.2. This graph cap-
tures all data from the selected trials with the exception of four outliers. One
outlier was when the Baseline bug took 251 turns over 308 minutes to achieve
victory. The other three outliers were cases where the Dynamic bug won and
took longer than 800 minutes. The turn durations in these cases were 32, 51
and 144. The shortest number of turns was 9 and the longest was 251.

The average running times of the different parameter permutations are
presented in Figure 5.3, in terms of quantity of simulation turns required.
The aggregate data for the parameter permutations is included in Table 5.1.
The graph is sorted by increasing win percentage, which is then superimposed
on the graph. The error bars are the standard deviation of the calculated
averages. There is no relationship between the win percentage and the turn
duration required.
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Figure 5.3: Average Turn Duration
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5.3. Experiment Results

When the effect of win percentage on processing time is considered, a clear
pattern does emerge, as presented in Figure 5.4. This is largely due to the
quantities of Dynamic bug in the simulation, which require considerably more
processing time than the Baseline bug counterparts6. The error bars in Fig-
ure 5.4 are the standard deviation of the averaged trial processing time. The
standard deviation is greater than the average in some cases, as a result of
occasionally long trials7. From the trials for the selected parameter permu-
tations, the shortest trial was 0.012 hours while the longest trial was 18.087
hours.

6Baseline bug processing time was not recorded in the experiment. Anecdotal observa-
tions estimate the processing time to be approximately 10 ms/ By comparison, the average
(filtered) processing time for a Dynamic bug is 310 ms, see Figure 5.5 for more details.

7As an example, one of the parameter permutations with a low win rate of 8.4% but
high standard deviation of 1,468,211 ms had an average processing time of 1,295,474 ms.
This is the 9th from the left in Figure 5.4. The longest trial for this permutation was
16,881,788 ms, which was the result of the simulation taking 73 turns and the Dynamic bug
winning. This permutation had only 33 trials that took over 3,000,000 ms. 70.8% of trials
for this permutation had processing times between 500,000 ms and 1,300,000 ms
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Table 5.1: Permutation Win Rates

Permutation ID Win Rate
Reward Utility

Energy Explore Expand Enemy Defense Energy Defense
1478 53.8% 2 0 0 0 2 0 1
1461 48.0% 2 0 0 0 0 0 2
1477 48.0% 2 0 0 0 2 0 0
1527 46.8% 2 0 0 2 1 1 2
1495 46.0% 2 0 0 1 1 0 0
1463 43.2% 2 0 0 0 0 1 1
1732 43.2% 2 1 0 1 0 1 0
735 42.8% 1 0 0 0 0 1 2
1707 41.8% 2 1 0 0 0 1 2
751 40.8% 1 0 0 0 2 1 0
1842 40.6% 2 1 1 2 0 1 2
1760 39.4% 2 1 0 2 0 1 1
1522 36.2% 2 0 0 2 1 0 0
1486 36.0% 2 0 0 1 0 0 0
1533 35.2% 2 0 0 2 2 0 2
1513 34.2% 2 0 0 2 0 0 0
1479 33.8% 2 0 0 0 2 0 2
1506 31.6% 2 0 0 1 2 0 2
1473 31.4% 2 0 0 0 1 1 2
1035 30.8% 1 1 0 2 0 2 2
1496 30.8% 2 0 0 1 1 0 1
1460 30.4% 2 0 0 0 0 0 1
1862 30.2% 2 1 1 2 2 2 1
1472 28.2% 2 0 0 0 1 1 1
1837 26.4% 2 1 1 2 0 0 0
732 24.6% 1 0 0 0 0 0 2
1504 23.0% 2 0 0 1 2 0 0
730 22.4% 1 0 0 0 0 0 0
1544 21.6% 2 0 1 0 0 1 1
1606 21.2% 2 0 1 2 1 1 0
1534 21.0% 2 0 0 2 2 1 0
767 20.5% 1 0 0 1 1 0 1
743 20.0% 1 0 0 0 1 1 1
753 20.0% 1 0 0 0 2 1 2
793 20.0% 1 0 0 2 1 0 0
2003 20.0% 2 2 0 2 0 1 1
758 19.6% 1 0 0 1 0 0 1
1786 19.4% 2 1 1 0 0 1 0
734 17.6% 1 0 0 0 0 1 1
1465 17.4% 2 0 0 0 0 2 0
1485 17.4% 2 0 0 0 2 2 2
733 16.4% 1 0 0 0 0 1 0
1483 16.4% 2 0 0 0 2 2 0
789 14.8% 1 0 0 2 0 1 2
2044 14.2% 2 2 1 0 2 0 0
1085 13.0% 1 1 1 1 0 1 1
1094 11.8% 1 1 1 1 1 1 1
2157 9.6% 2 2 2 1 2 1 2
814 8.4% 1 0 1 0 0 1 0
882 7.8% 1 0 1 2 1 2 2
1627 5.2% 2 0 2 0 0 2 0
284 4.6% 0 1 0 1 1 1 1
1902 3.4% 2 1 2 1 1 0 2
1661 1.6% 2 0 2 1 1 1 1
1184 1.4% 1 1 2 1 2 1 1
352 0.0% 0 1 1 1 0 0 0
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5.3. Experiment Results

Figure 5.5: Dynamic Bug Processing Time

The estimated time for an individual Dynamic bug to execute a turn has
a mean of 310 ms with a standard deviation of 173 ms. This was calculated
by assuming an equal number of Dynamic bugs on each turn against the turn
duration. 45,193 of 947,175 trials had a high processing time of over 1000 ms,
which accounts for approximately 4.8% of the gathered data. This data was
excluded from the calculations above8. Figure 5.5 presents the frequency of
average durations less than 1000 ms.

An implied assumption in calculating the bug duration frequencies is that
each bug takes an equal amount of time, which is known to lack accuracy due
to physical design differences between the Scout and Worker variants. It also
assumes that there are no other processing costs such as the Baseline bug or
in-turn simulation control. The quantity of decision-action cycles a bug may
execute on a turn is largely influenced by the quantity of cilia organs. Each
actuation of cilia exposes a new environment and often provides additional

8Including all data results in a mean of 413 ms and a standard deviation of 7473 ms,
which is due to the magnitude of the outlier data with values as high as 4,778,701 ms (1.3 h).
The cause of the exceptionally high outliers is unknown. The most likely explanation is that
these trials occurred before modifications to the client program to set fixed population size
and search depth for the DDN algorithm. Since these were originally obtained from the web
database and there were known performance issues with the database, this would be a viable
explanation.
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Figure 5.6: Dynamic Bug Win Rates, by Parameter Permutation

energy, which increases the ability of the bug to perform future actions. A
bug may execute multiple decision-action cycles while stationary, however the
energy of the bug will always decrease which limits the scope of potential
actions. Since each decision-action cycle creates and solves a decision tree,
the quantity of cycles performed by a bug on its turn has a significant effect
on execution time.

5.3.3 Win Percentages

Win percentages of the selected parameter permutations are presented in Fig-
ure 5.6, which is a pivot chart with data slicers on the bottom9. The best
performance of 53.8% and worst performance of 0% were achieved by param-
eter permutations given in Table 5.2. Table 5.2 also includes a row showing
which filters to apply in order to remove the lowest performing permutations.
No patterns emerged from further refinement of the filters. The results with
the filters applied are represented in Figure 5.7.

9Data slicers are used to selectively filter data. When a slicer is filtering data, as in
Figure 5.7, there is a filter icon highlighted red at the top-right of the slicer. Data points
that do not match the criteria of this slicer are then filtered out. This can effect the available
data for the other slicers, which may no longer have their full data set available. For instance,
in Figure 5.7, 4 of 7 filters are applied but the remaining 3 filters still have their full data
set.
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Figure 5.7: Filtered Dynamic Bug Win Ratios, by Parameter Permutation

Table 5.2: Dynamic Bug Performance - Reward and Utility Function Weights

Performance
Reward Utility

Energy Explore Expand Enemy Defense Energy Defense
Best 2 0 0 0 2 0 1
Worst 0 1 1 1 0 0 0
Filtered 2 0 0 0-2 0-2 0 0-2

5.3.4 Strategy Selection

The most important factor that affects how a Dynamic bug performs is how
it selects its strategies, which in turn corresponds to which low-level action is
selected. While the action selection mechanism is based on solving the DDN,
solving the DDN requires choosing one of the strategies with the best score.
The mapping of strategies to actions was presented in Table 3.7.

Figure 5.8 shows the general bug populations by turn for each bug type.
In these figures, the solid lines are the average bug populations and the error
bars represent the standard deviation of the population on a given turn. The
key trend to note is that the Dynamic bug tended to expand faster than the
Baseline bug, but it tended to die off quickly once the initial plant resources
were exhausted.

Isolating Strategies

Noting that there is significant variance in the populations, it becomes worth-
while to examine individual trials to discern patterns. The goal of this review
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5.3. Experiment Results

Figure 5.8: Average Bug Populations

is to determine how to isolate the analysis of the strategy selection. A single
parameter permutation was examined for general trends to guide the data
extraction10. Figure 5.9a is one of a few common patterns when the Baseline
bug wins. Figure 5.9b is a typical trial when the Dynamic bug wins. Lastly,
Figure 5.9c exhibits a special case where the Dynamic bug is able to recover
after falling behind the Baseline population. This last case is rare; of the 500
trials examined, this pattern was only easily discernible in 10 trials. The pat-
terns that emerge from these general classes show that turns 3-10 are likely
to yield the most descriptive behaviour.

A histogram of when trials are “determined”, which was calculated using
the first turn that the eventual winning bug obtained a population lead, is pre-
sented in Figure 5.11. The data is not shown for turn 1 because it accounts for
41.3% of all trials and significantly skews the histogram. The populations on
turn 1 are highly suspectible to the initial plant populations (see Section B.1)
which means that if the bug that eventually won had a few more plants ran-
domly placed beside it, then it would likely have a population lead on turn
1. Based on the rapid growth in all scenarios, it is unlikely that this initial
measure is a good indicator of performance. A more descriptive distribution
emerges by changing the calculation of when trials were “determined” to the

10The permutation with the highest win rate was chosen for this review.
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(a) Baseline Win

(b) Dynamic Win

(c) Dynamic Recovery

Figure 5.9: Common Patterns for Bug Populations
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Figure 5.10: Percentage of Trials Determined by the Leader

state of the populations at turn t relative to the eventual winner. Approx-
imately 91% of trials were won by the bug with the higher population at
turn 1011, which corresponds to the scenarios present in Figure 5.9a and Fig-
ure 5.9b. This increases considerably by turn 16, and is shown in Figure 5.10.
This could be advantageous to consider for future work. Recall from Figure 5.2
that the vast majority of trials ran considerably longer than 16 turns.

At turn 10, there are two general cases for the unaccounted trials - either
the pattern in figures 5.9a or 5.9b had not achieved dominance yet (but did
soon afterward), or the trial exhibited the pattern in Figure 5.9c12. At turn
10, the case where there the Dynamic bug was losing but recovered to win the
trial accounts for 3.1% of trials. The ability to maintain and re-establish the
Dynamic bug population has an impact on success, as exhibited by Figure 5.12.
Notably, the top five performing permutations accounted for approximately
35% of all recovery trials in this figure.

Strategy Details

Examining how the bugs prioritized action selection is crucial to gain insight
into their performance. The population results above support the decision to
limit strategy review to turns 1-10. Before reviewing strategy results, note
that the DDN uses action filtering13 when expanding the tree, so some strate-
gies will be invalid for a single decision-action cycle. There is no action that

1196.3% of trials were decided by turn 10 using the first definition of “determined”.
12There was potentially some overlap here - a “recovery” trial may have had a lead

established by the turn plotted, in which case it would form part of the data in the graph.
13Actions are filtered on a sample-by-sample basis in the DDN. Since a single sample has

defined values from the state space, based on probabilities drawn from the belief space, the
filter can compare low-level conditions to see if an action is legal. For example, if the sample
contains no enemy then all actions involving enemy targets would be filtered out.
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Figure 5.11: Trials When the Population Leader Won

Figure 5.12: Recovered Trials at Turn 10

is always available, therefore it is impossible to determine the quantity of
decision-action cycles performed on a single simulation turn. Further, the dif-
ferent physical characteristics of the Scout and Worker variants will produce
considerably different action filtering14. The quantity of Scouts and Work-
ers was not tracked but it would be a good piece of information for future
experiments.

The remaining results in this section are obtained by extracting the average
number of times each action is selected for each parameter permutation for

14Two obvious examples are movement and poisoning. Scouts are highly mobile but lack
poison while Workers are immobile but make significant use of poison.
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Figure 5.13: Differences in Average Dynamic Bug Population

turns 2-1015. Each record also contains the average population size for the
Dynamic bug to allow a ratio based on the population sizes. For example,
the population sizes between the parameter permutations with the worst and
best win rates is presented in Figure 5.13. While the initial turns are almost
identical, in the later turns the better-performing permutation has an average
population that is approximately twice as large.

Figure 5.14 presents the distribution of actions selected on a typical turn
for a Dynamic bug. This particular distribution came from turn 5, for the per-
mutation with the best performance. The general trend of choosing movement
toward the best energy or expansion instead of the other choices is consistent
across all permutations for most turns. This is likely due to the simulation
world being largely unexplored during these initial turns. Filtering out these
most-common actions for this sample yields the action distribution presented
in Figure 5.15. The distribution of these remaining actions does change turn-
by-turn and between different permutations. The evolution of action selection
by general category is presented in Figure 5.16, which highlights the general
progression from the exploration phase to consolidation. General categories

15Note that the beginning turn here is turn 2 vice turn 1 as discussed in the preceding
paragraph. The reason for this is a coding error in the data logger where results for turn 1
were not logged properly. The exact cause of the error was not determined with certainty,
but it was likely a problem when processing the JSON script in PHP due to occasional errors
that were noticed and suppressed for “turn 0”. This was readily apparent when reviewing
detailed data as the action SPIT-POISON-TO-KILL had high occurrences on turn 1 when
that situation should have been almost impossible.
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Figure 5.14: Typical Action Distribution on a Single Turn

are defined by the intended purpose of the action. Figure 5.17 views the
same data isolated by parameter permutations, restricted to the worst and
best performing permutations. While the trends for both permutations are
consistent with the general case, there are some differences in prioritization.
In the earlier turns the lower-performing permutation attempts to kill ene-
mies more often which is expensive in terms of energy. In the later turns the
lower-performing permutation attempts to weaken enemies more often. Intu-
itively, weakening an enemy for a subsequent spawning action would better
harvest the adversary energy. Given the low performance of the permutation,
it is likely that the Baseline bug has established defensive counter-measures
by this stage which would cause the newly-spawned bug to die, resulting in
an overall weaker Dynamic colony.

Figure 5.18 displays the distribution for the best and worst performing per-
mutations for the most common actions. Some trends can be obtained when
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Figure 5.15: Typical Action Distribution on a Single Turn - Filtered

Figure 5.16: Generalized Action Evolution
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Figure 5.17: Comparative Action Evolution

Figure 5.18: Comparison between Permutations for Selected Actions

viewing the distribution information from the individual action perspective.
In this particular Figure, the priorization between energy and exploration is
apparently reversed for the two permutations. The worst-performing permu-
tation prioritizes exploration over exploiting energy. This suggests a potential
reason why the best-performing permutation had a higher population in later
turns, as higher per-bug energy levels would permit a more stable colony. Bug
energy levels were not recorded during simulation trials. Adding bug energy
for each decision-action cycle to future experiments may permit deeper review
into the decision-making process and the effect on aggregate performance.

Expanding and sorting the permutations considered allows further trends
to be examined. Figure 5.19 presents the data for turns 2, 4 and 7 for all
permutations for the action where the Dynamic bug uses the attack bug to
weaken an enemy to allow a subsequent spawning action. Permutations are
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(a) Attack Action - Turn 2

(b) Attack Action - Turn 4

(c) Attack Action - Turn 7

Figure 5.19: Progression of an Attack Action

sorted by increasing win rate with ratio scores superimposed. As the turns
progress, a pattern emerges where the high-performing permutations use the
action more frequently.

Table 5.3 presents the major relationships between turns and actions cho-
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sen. Actions not present in the table have scattered results. The graphs are
rotated at a variety of angles to highlight the relationships in the respective
graphs. The “Reward Ratio” in these graphs was the ratio of the quantity
of the selected action against the Dynamic bug population at the given turn
to provide an approximation of the frequency of choosing the action. Very
large values such as MOVE-TO-BEST-ENERGY imply that the action would
be chosen several times during a turn whereas low values such as SPAWN-
SCOUT-ENEMY imply the action is rarely chosen. This is not a perfect
measure as the ratio of Scout to Worker variants will have a large impact on
the quantity of decision-action cycles which affects the quantity of decisions
that can be made in a given turn.

Unsurprising, MOVE-TO-BEST-SEARCH, MOVE-TO-BEST-ENERGY,
SPAWN-SCOUT-BEST-ENERGY and SPAWN-SCOUT-BEST-SEARCH are
very frequent at the beginning of a simulation as the environment is largely
unexplored. The probability of choosing these actions decreases significantly
as the simulation progresses. The pattern is largely consistent across all pa-
rameter permutations, with the exception of the spawning actions. The lower-
performing permutations are only about half as likely to spawn Scouts at this
stage.

SPAWN-SCOUT-ENEMY, SPIT-POISON-TO-WEAKEN-FOR-SCOUT
and SPAWN-ATTACKER-TO-WEAKEN-FOR-SCOUT are nearly identical
relationships. The delta between higher-performing and lower-performing per-
mutations peaks around turn 7 and quickly stabilizes by turn 10. At turn 7 the
higher-performing permutations are approximately three times as likely to use
these actions. However, the reward ratios for these actions are exceptionally
small so they are rarely used.

MOVE-TO-ENEMY and SPAWN-ATTACKER-TO-KILL are far more
likely as the simulation develops. While SPAWN-ATTACKER-TO-KILL is
nearly consistent across permutations by turn, MOVE-TO-ENEMY is only
about half as likely in higher-performing permutations.

5.3.5 Simulation Observations

The probabilities generated from bug observations were not recorded due to
the sheer volume of data. The simulation code, available on DVD as Annex
D, provides a graphic user interface to explore generated probabilities on a
trial-by-trial basis. Two key assumptions made when generating probabilities
were use of fixed values or normal distributions. Fixed values were used for
centrally-tracked allies and plants because the information was either known
with certainty or it was extremely likely to occur. Normal distributions were
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used when generating aggregate probability information for a single location.
There is some risk in applying a normal distribution here, based on the low
number of observations. An exponential or Bernoulli distribution may be
better to use here, but due to time constraints on implementation the normal
distribution was chosen.

There are several other visual debuggers created in the simulation code
designed to verify the advanced techniques discussed in Annex B. These de-
buggers need activation in the source code to function.

5.4 Summary

The scope of the original experimentation plan had to be adjusted due to tech-
nical difficulties and limited time. This led to a reduced quantity of parameter
permutations.

The extremely high computational cost was underestimated, but a review
of the processing times shows that there is a range of performance. As the
Dynamic bug performed better the trials took longer. Win rates were signif-
icantly affected by the reward sub-function weights. Adjusting these weights
was shown to have an effect on the low-level actions chosen.
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Table 5.3: Action Trends

Action Trend Remarks

MOVE-
TO-BEST-
ENERGY

Very similar to MOVE-TO-
BEST-SEARCH.

SPAWN-
SCOUT-
BEST-
ENERGY

Very similar to SPAWN-
SCOUT-BEST-SEARCH.

SPAWN-
SCOUT-
ENEMY

Virtually identical to SPIT-
POISON-TO-WEAKEN-
FOR-SCOUT and SPAWN-
ATTACKER-TO-WEAKEN-
FOR-SCOUT.

MOVE-
TO-
ENEMY

SPAWN-ATTACKER-TO-
KILL is similar, except higher
win rates are more likely to
spawn an attacker than lower
win rates.
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6 Analysis

6.1 Introduction

The analysis of the experiment is spread across several facets:
• The performance of the Dynamic bug relative to the Baseline bug within

the simulation;
• The computational cost of executing the DDN algorithm; and
• The challenges of assessing agent performance.

6.2 Dynamic Bug Performance

The hypothesis suggested that an effective strategy would emerge by treating
the Bug Battle simulation as a DDN. Although the overall win rate of the
Dynamic bug was approximately 20% for all trials, the five permutations that
had the best performance had an average win rate of 48.5%, while the best
permutation had a win rate of 53.8%. While this was not quite the major-
ity of trials, it was moderately effective. As discussed in Section 3.4.1, the
implementation of the reward sub-functions had minor flaws that may have
degraded performance. This will be discussed further in Section 6.2.1.

One of the tenets of agent-based models is that agents should be au-
tonomous to handle the complexity that exceeds the bounds of direct inter-
vention. The Baseline bug was designed using approximate heuristics based
on informal experiments within the simulation framework. These rudimentary
experiments were by no mean systematic; they were small tests to probe the
effects of the various framework mechanisms. The initial tests were typically
performed in isolation. They hinted at the underlying probabilities, but trials
were limited to basic A-B testing1. Understanding the framework complexity
facilitated the development of the Dynamic bug.

1A-B testing is comparing two versions of a product or system to determine which one
has better performance.
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The ability of the Dynamic bug to manage this complexity was mixed. It
had considerable success in the unopposed environment. The ability to ex-
pand in the initial environment is critical to establish a population baseline
from which to grow while denying the same opportunity to the adversary. The
Dynamic bug significantly out-performed the Baseline bug in initial growth,
evident by Figure 5.8. The problem that the Dynamic bug encountered was
when the initial resources were depleted. All variants would die-off to a degree,
which is expected because there is not enough energy to sustain the popula-
tion2. However, it was clear that some permutations managed the combat
environment better than others. Figure 5.9c was an excellent example of this
as it showed a rare ability to recover. The challenge with designing this per-
formance will be discussed further in Section 6.4.

A deeper analysis of the dominant strategy may have led to a better ex-
periment design. The dominant factor is rapid and efficient use of energy, yet
many parameter permutations had a weight of zero for this factor. This failure
was spectacular - the total win rate for all trials that met this condition was
0.8%. The importance of energy is the only factor that is immediately obvious
in this regard, and energy is a contributing factor in 4 of 7 sub-functions, so a
deeper analysis was not considered necessary. The revised selection of param-
eter permutations in Section 5.2 effectively provided this coarse refinement
based on initial trial results.

6.2.1 Reward Function Implementation

As was suggested by the preliminary experiment in Section 4.2.1, the selection
of the reward and utility functions has a significant effect on the simulation
outcomes. This was readily apparent by the win rates demonstrated in Fig-
ure 5.6. This matches the established literature on reward functions (or fitness
functions for genetic algorithms) as discussed in Section 3.4.1.

The implemented reward functions differed from the intended relation-
ships. From Equation (3.1), each reward sub-function had an intended effect
based on aggregate patterns observed3. The implementation of these functions
had only a cursory verification based on code tracing.

2This happens with the Baseline bug as well, although it tends to be a bit slower.
3These patterns differed by sub-function. The energy sub-function had increasing value

up to an energy of 2000 based on an x2 function at which point it should have transitioned to
a linear function. By contrast the exploration sub-function had globally diminishing returns
based on the assumption that a heavily explored environment would not require significant
dispersion.
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The result of the rushed verification was that the energy and defense sub-
functions had incorrect coding. The error in the energy sub-function is as-
sumed to be small as the relative difference is minor, values in the range of
(1.0,2] are mapped to 2. The range due to the implementation of the defense
sub-function is approximately [0,7.5] vice the intended [0,2]4. This impacts
the expected outcome of the experiment but it does not compromise the over-
all approach. The extended range of the defense sub-function suggests that
defensive measures has a more important role than initially assessed, given
that the top-performing trials all have large defensive weights. Many of the
permutations with win rates in the range of 10% to 20% also have large de-
fensive weights, so the presence of high defensive weights is not exclusive to
success.

The high computational cost of executing simulation trials is an obstacle to
evaluating variations of reward functions. A more effective approach may be to
develop a testing data set of belief space distributions to enable rapid (isolated)
testing of reward functions to validate their implementation. The simulation
experiments would still be required as the coverage of the belief space for
function validation would be infinitesimally small by necessity. “Isolation”
means only a single decision would be considered, which is a consequence of
the sheer scope of the belief space. Evaluating the outcome from many single
states without a simulation framework may be viable, but once multiple steps
are considered there would be too many scenarios to manage.

Another benefit of building a testing data set is the ability to incremen-
tally add features. When the reward sub-function for the enemy factor was
designed, the intent was to reward the bug for killing or weakening the en-
emy. The implementation rewarded the action selection only, not the actual
effect5. There was enough information in the simulation to detect and reward
the effect directly. Discovering these scenarios during development may lead
to expansion of the encoded features. It may also justify additional data col-
lection. For example, it would have been relatively easy to develop statistics
for attack outcomes, would could have been used to reinforce or extinguish
the behaviour.

4Both cases should be relatively rare because the implementation error only impacts
energy levels beyond the creature energy cap.

5While the bug would always be successful in killing or weakening uncloaked enemies,
the bug may die as a result of defensive damage.
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6.3 Computational Cost

The simulation experiment was very expensive to run from a computational
perspective. Based on Section 5.3.4, executing each trial until one bug becomes
extinct is not necessary. The challenge is determining a suitable metric to
signal the end of a trial. It is possible for bug populations to oscillate as was
observed in the “recovery trials” (see Figure 5.9c), so fixed durations are not
ideal. There is a point where the opponent cannot recover. Isolating this
relationship would allow a significant reduction in the time required to run a
similar experiment6. In general it would be a good idea to recognize system
conditions to design suitable termination triggers.

Optimized code is another way to reduce the computational cost. Some
techniques such as variable caching were used to avoid re-calculating fixed
costs that were obvious in the design phase. Optimizing code requires a po-
tentially high investment in programmer time, so the potential increase in
execution efficiency should be weighed carefully. Some of this analysis can be
done by using application profiling for features such as memory use or method
invocations. Since this experiment was intended to be run as a distributed
environment there was limited application of code optimization.

The most significant factor for the high computational cost is the algorithm
selection. The branching factor of the DDN produces exceptionally large trees,
especially for large search depths. A search depth of two was used in the
main experiment because the preliminary experiment had similar or degraded
performance for deeper searches at a much higher processing cost.

One way to reduce the large cost due to branching is to apply the re-
search on HDDNs discussed briefly in Section 2.3.5. The intention-based ac-
tions provided to the DDN planner were partially based on the HTN concept
of HLAs. Table 5.3 shows that some actions appear to be sequenced after
each other, such as SPAWN-ATTACKER-TO-WEAKEN-FOR-SCOUT fol-
lowed by SPAWN-SCOUT-ENEMY. The sequence of actions was not part of
the recorded data so this pattern cannot be confirmed with certainty. Encod-
ing these sequences in a HDDN as an HLA would reduce the span of the DDN
which has been shown to have a significant impact on computation cost [29].

6Using the overly-simplistic cut-off of ending at turn 16, accounting for approximately
97% of trials, the overall experiment time for the selected parameters would have been
reduced from 15,360 h to 4412 h, approximately 29%. The cut-off assumes that all trials
exceeding 16 turns are capped at 17.0 minutes, which is the average duration of the 256
trials that took 16 turns or less.
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6.4. Assessing Agent Performance

6.4 Assessing Agent Performance

Agent-based models are by nature designed using simple rules with the expec-
tation that patterns of behaviour will emerge. While designing the low-level
rules is straight-forward, it is difficult to predict the effect on the emergent be-
haviour. Heuristics developed from experience and preliminary testing guided
the design of the Dynamic bug actions and their efficient tactical implemen-
tations. The representation of the belief networks was based on the same
heuristic analysis. The observation-tracking system employed by the HQ (see
Section B.3.7) was built to support the belief space representation that was
designed.

While the design process was incremental, the representation of statistics
was fixed which led to some desirable information being lost. For example, the
parameter permutation with the worst performance attempted to kill enemies
significantly more than the parameter permutation with the best performance
at turn 10. Based on their relative performance, the likely effect was that
the spawned bug died due to defensive counter-measures. As was warned in
Section 2.2.3, it is important to note that the bug was behaving rationally.
There was limited encoding in the belief state about the presence of poison
for an enemy. It was considered initially but was not implemented due to the
difficulty in validating without a robust test set. The reliance on heuristics
reinforces the earlier suggestion to develop a test set of scenarios.

There were other statistics that may have been beneficial to track that
only became apparent when performing the analysis. The difference in quan-
tities of Scout and Worker variants is one example, as it would have allowed
deeper analysis into the behaviour of the planner for different physical mod-
els. Similarly, tracking the bug lifespan (ideally by variant) would influence
the selection of the utility function. The model assumed an infinite planning
horizon, which is very unlikely. Application debugging and observing trials
suggests that bugs die frequently even in an unopposed environment. This
implies that a finite horizon may be more appropriate, which would require
modifications to the utility function. As alluded to in Section 6.3, tracking
the sequence of decision-action cycle outcomes would likely yield common se-
quences as candidates for HLAs, which would further improve computational
efficiency.

There were some statistics that were recorded but not used in the analy-
sis. The average and standard deviation of the scores for the reward function
were recorded for each action, but the high variance caused by the aggrega-
tion negated their usefulness as there were too many confounding factors to
establish any trends. The decision to record aggregates instead of individual
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scores was based on space estimates for the final database. A better approach
would have been to record individual scores for a smaller experiment, as a
deeper understanding of the effect of the reward function on action selection
may have been possible. Using a small experiment would keep the results to a
manageable size and could be iteratively applied for refinements to the reward
function. This was not done due to time constraints.

6.5 Summary

While the performance of the Dynamic bug was not as strong as anticipated,
several potential improvements were observed for both the execution time
and the design of the reward and utility functions. A test set of belief states
could be used to validate reward functions before extensive simulations and
the experiment would benefit from being conducted as a series of incremental
sub-experiments. This would guide selection of statistics in the belief space
representation to gain insight into the emergent properties of the agent-based
model.
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7 Conclusion

The application of DDNs to Bug Battle yielded improved performance relative
to the Baseline bug. This result can be replicated for the single reward function
that achieved a success rate greater than 50%, but the experiment suggests
that further parameter tuning would yield improved results.

This performance came at a high cost; simulation trials using the DDN
approach are too slow to be feasible for the Bug Battle competition. The
parameterization of the best Dynamic bug implementation would need to be
examined further to create an improved bug that could execute within the
time limits of the Bug Battle competition.

The majority of reward functions examined were unsuccessfully in meeting
the aim of this work. This reinforces established literature which indicates
that selection of a reward or utility function has a significant outcome on
agent decision-making [20]. The trade-off of flexibility of decisions against
high computational cost was apparent by the results in Section 5.3.2.

7.1 Contributions

The main benefit of this work was providing an example of how to apply
and solve DDNs for a particular problem. There are two large challenges in
this type of application: selecting an appropriate DDN model and choosing
appropriate reward and utility functions. The experiments run for this thesis
demonstrate a method to test and refine the selection of the reward and utility
functions.

The implementation of the distributed environment (see Section 4.3) is a
flexible architecture that can be reused for other experiments that have a high
computational cost. The code is available for re-use in Annex D. The main
elements required to re-use are the website code and the bugbattle.distributed
package in the source code. The bugbattle.distributed package is essentially an
application wrapper that communicates with a website. Both portions require
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7.2. Future Work

some modification for other experiments.
The Java code provides several other features for research into Bug Battle

or DDN in general. These include:
• Flexible DDN implementation
• Event-driven architecture for simulation events
• Graphic User Interface (GUI) debugging controllers for spatial environ-

ments

7.2 Future Work

It is likely that extending the DDN approach used in this research to a HDDN
may speed up the simulation execution. This has two benefits; incremental
refinements to the reward and utility functions would be easier to test and the
execution speed may be viable for competition. The core idea that facilitates
a HDDN speed-up is reducing the breadth of the decision trees used to solve
the DDN.

An improvement that would facilitate additional trials is the inclusion of a
premature termination trigger. Although the simulations are “won” when an
opposing bug is eliminated, in most cases the eventual winner has a population
lead early. The vast majority of trials had the winner in the lead by turn 16,
yet most trials took considerably longer for the last remaining bugs to be
eliminated. Developing a metric other than elimination of opposition would
avoid these scenarios. The metric should not be based purely on population
leader at turn X. Based on the population patterns in Figure 5.9, a suitable
metric may be a combination of a minimum turn and a population delta by a
relative or absolute amount. This was not tested in this research due to time
constraints.

Also considered for future work is increased variable-tracking to guide
insight into the emergent properties of the system. Detailed tracking of bug
decisions, quantities of Scout or Worker variants and bug lifespans would
facilitate development of the HLAs discussed above.
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Acronyms

ABM Agent-Based Model. 4–6, 19
ACO Ant-Colony Optimization. xi, 84, 85

BN Bayesian Network. 16–19
BRIC Block-like Representation of Interactive Components. x, 9, 10

DBN Dynamic Bayesian Network. 18, 19
DDN Dynamic Decision Network. ix, 2, 16, 18–21, 26–28, 30, 33–35, 49, 51,

54, 64, 67, 70, 71
DN Decision Network. 18

GUI Graphic User Interface. 71

HDDN Hierarchical Dynamic Decision Network. 16, 19, 30, 67, 71
HLA High-Level Action. 16, 67, 68, 71
HTN Hierarchical Task Network. 15, 16, 19, 67

JSON JavaScript Object Notation. 38, 42, 56

MDP Markov Decision Process. 11–14, 17

POMCP Partially Observable Monte-Carlo Planning. 15
POMDP Partially Observable Markov Decision Process. 2, 13, 15, 16, 19,

20, 34, 95

r.v. random variable. 16–18
REB Research Ethics Board. 38
RL Reinforcement Learning. 10, 11, 14

SQL Structured Query Language. 3, 41

TD learning Temporal-difference learning. 14, 15
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B Bug Battle Simulation

The purpose of this annex is to give sufficiently detailed explanation of the Bug
Battle simulation to understand what the agents are attempting to achieve in
the experiment. The annex is divided into several sections for ease of reading:
• The main simulation framework, which explains how the major elements

of the simulation logic functions.
• Bug organs, which provides a listing and analysis of the different organs

available in the simulation.
• Advanced techniques, which describes several methods to implement

tactically advantageous behaviours for a bug.

B.1 Simulation Framework

The Bug Battle simulation is a Java project. The 2015 version of Bug Battle
was used for this research1. This discussion assumes the use of “agent”, “bug”
and “creature” interchangeably.

The simulation user interface consists of two parts: bug selection (Fig-
ure B.1) and simulation execution (Figure B.2, note that green dots are
plants). To prepare a new simulation instance the process is as follows:
• the environment is cleared of all creatures;
• plants are randomly generated with an initial uniform probability of
ρ = 0.12; and
• three instances of each participating bug are created and placed in the

environment.

B.1.1 Simulation Logic

The simulation is multi-threaded but only in the sense that the graphic user
interface and simulation logic run on separate threads. The simulation logic

1Minor glitches are fixed between versions, core functionality is not modified.
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B.1. Simulation Framework

Figure B.1: Bug Selection

consists of a loop that executes turns. The simulation loop is presented in
Figure B.3.

Simulation Loop

There are a few significant elements to note from this loop in terms of the
simulation. First, only the creatures that exist at the start of the simulation
turn can receive a turn which means that new bugs created during the turn
cannot execute their turn logic until the next simulation turn 2. Secondly, the
list of creatures is traversed using fast enumeration. Order of execution is not
guaranteed to be consistent, so turn-order bias should be minimal. Lastly, the
probability of open ground spontaneously becoming a plant is adjusted based
on the current number of plants in the environment. Even in the case of
bugs that expand as quickly as possible to deplete the initial plant population

2It is possible for a newly-created bug to receive a turn immediately by explicitly invoking
its doTurn() method, but this is not allowed in the simulation rules.
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B.1. Simulation Framework

Figure B.2: Simulation Execution

there will almost always be plants in the simulation due to this conditional
probability.

For the agents themselves, Figure B.3 presents three key methods3. The
maintain() method reduces bug energy based on a baseline maintenance cost
as well as the maintenance costs of all current organs. It also resets organs
with limited actions per turn (cilia in particular) and deducts the cost of
cloaking, if cloaked. The doTurn() method is where the agent can define its
behaviour. Finally, the capStrength() method ensures that the agent strength
does not surpass a maximum of 2000 energy.

Although not in the diagram, when agents are instantiated, they execute
an initialize() method before their first doTurn(). Initialization typically adds
initial organs, but bugs can minimize energy loss in the maintenance phase by
delaying adding organs until their doTurn() is invoked4.

3The logic in this figure is represented as a sequence diagram in the Unified Modelling
Language.

4A trade-off exists here if attempting to spawn directly onto an enemy. Allowing a bug
to delay organ creation leaves it with higher energy to win combat, so the energy cost to the
parent is reduced. The downside of this delayed initialization is that an enemy may destroy
the un-initialized bug before it gets a turn, which would give the attacker a better energy
return. This is assumed to be rare as the energy cap is not applied until the end of the first
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B.1. Simulation Framework

Figure B.3: Simulation doTurn() Sequence Diagram

77



B.2. Organs

Since the energy cap is not applied until the end of the turn, it is possible
(and common) that an agent will have more than 2000 energy during the turns.
This is crucial to allowing some of the techniques discussed in Section B.3.

Simulation Combat

Simulated combat occurs immediately whenever two agents occupy the same
location in the environment. The actual energy level of each creature is com-
pared. If the attacker’s (the creature moving onto the cell) energy is greater
than or equal to the defender’s energy, the attacker wins, otherwise the de-
fender wins. The winning agent absorbs all the energy of the losing agent
and then defensive damage (if any) inflicted by the losing agent is applied
to the winner. This can result in the winner being killed as a result of com-
bat. Defensive organs are discussed in Section B.2, and techniques to optimize
defensive damage to kill adversaries is discussed in Section B.3.10.

Note that there are two ways to initiate combat, either moving onto a cell
using cilia or spawning onto a cell using a budder. There are two techniques
discussed in Section B.3 that use the spawning approach.

B.2 Organs

Each bug can have zero-to-ten organs attached. Table B.1 provides a summary
of the different costs for each organ5. The sections that follow provide a
description of the capability in the physical model that the organ adds as well
as suggestions for viable employment. While most organs have parameters
that could be adjusted in the code, these settings are assumed to be fixed.
Note that creatures have a base maintenance cost of 100.

doTurn() invocation for the bug. Un-initialized bugs will frequently have far more energy
than the energy cap permits.

5The organs are introduced by their simulation representation, e.g. “OrganName”.
When they are referenced later in the text this name is decomposed to the more readable
“organ name” representation.
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Table B.1: Bug Battle Organs

Name Creation Cost Maintenance Cost Use Cost Purpose Remarks
Budder 50 5 100 Create new bugs Unlimited uses
Cilia 100 10 20 Move Max 1 move/turn
Cloaking 500 10 100 Become invisible No cost to toggle
CreatureTypeSensor 100 10 2 Detect type Unlimited uses
EnergySensor 100 10 2 Detect energy Unlimited uses
LifesignSensor 50 5 1 Detect presence Unlimited uses
PhotoGland 500 -150 N/A Generate energy Passive
PoisonGland 500 20 Variable Create/spit poison Max reservoir of 1000
PoisonSensor 50 5 1 Detect poison Unlimited uses
Spikes 200 5 N/A Defensive damage Passive
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B.2. Organs

B.2.1 Budder

Budder is an abstract class that must be sub-classed. The purpose of this is to
force creature-specific sub-classes to provide an implementation of the method
that specifies what kind of creature(s) should be created when the sub-class is
used. Using the budder creates a new instance of some type of bug in a given
direction that is adjacent to the parent.

One approach that provides significant flexibility is to have the budder
conditionally determine what type of creature to create. This allows for bug
variants to be custom-tailored to specific situations. Specialized techniques
that use this idea are discussed later in Section B.3.

B.2.2 Cilia

Cilia allows the bug to move up to a maximum of 1 cell per turn. However,
there is no restriction (other than the organ limit) on the number of cilia that
may be added to a given creature. Recognizing this flexibility is essential to
developing a bug that can rapidly and efficiently explore the environment.

B.2.3 Cloaking

Cloaking renders the bug undetectable to all sensors. Since sensors are the only
framework-provided mechanism to gather information about the environment,
this can render the bug invisible. The negative consequence of this mechanism
is that the bug is also invisible to friendly instances of bugs, so it is very
possible that friendly instances will kill each other. A special technique to
mitigate this effect is discussed later in Section B.3.9.

Despite appearing to be invisible, the bug is still subject to normal combat
rules. Balancing use of limited energy with situational invisibility could be a
useful component for an effective secondary bug variant. However, the high
energy cost of the organ and its employment preclude cloaking from being an
effective choice for a main bug variant6.

6This implication mostly follows from not having sufficient energy to explore the envi-
ronment rapidly to exploit plant energy. A preliminary primary design using cloaking was
explored, but it was too slow to be competitive with the Baseline agent. The Baseline agent
killed the cloaking agent by covering all the locations in the environment before the cloaking
agent could establish self-sufficiency, regardless if it knew the cloaked agent was there or
not.
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B.2. Organs

B.2.4 CreatureTypeSensor

When used, this sensor reports the apparent type of creature that resides in
the requested adjacent cell (given by the Java class name). Cloaking can fool
this sensor.

Using this sensor aids determining friendly bugs, plants, open ground (dirt)
and enemy bugs. The information gained for a single organ position and fairly
low cost is quite beneficial. However, since plants have a well-defined energy
pattern depending on the number of turns they have been alive, this sensor
could be replaced with another organ if necessary as long as the agent has an
energy sensor. Given that plants begin with fixed energy and assuming they
live a maximum of 10 turns, the energy values for plants only occupy 0.55%
of the values from [0,2000]7.

B.2.5 EnergySensor

When used, this sensor reports the apparent amount of energy present in the
requested adjacent cell. Cloaking can fool this sensor.

This sensor is very useful to guide decisions on whether or not to engage
in combat, and how to select targets. As noted above, the energy sensor alone
is sufficient to determine a creature type between open, plant or enemy with
high probability. Accounting for friendly bugs is discussed later in Section B.3.

B.2.6 LifesignSensor

When used, this sensor reports if the requested adjacent cell contains some
form of creature. Cloaking can fool this sensor.

Although the costs to add and use this sensor are lower, adding this sensor
occupies a valuable position in the physical model with limited information
gains.

B.2.7 PhotoGland

This organ is used to generate energy (which is why it has a negative mainte-
nance cost). It is the only way bugs can generate energy other than combat.

Since the only ways to gain energy are via combat or this organ, it is very
common for bugs to have several of these organs. An alternate strategy is to
aggressively seek combat by using several cilia.

7Limiting the expected plant life to 10 turns is a reasonable assumption in a rapid
expansion environment. The Baseline agent easily exploits the initial plants within 10 turns.
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B.2.8 PoisonGland

This organ adds an offensive and defensive capability to the bug. Once this
organ is added, bugs can spend energy to fill a poison reservoir (to a max of
1000 units). The reservoir is expended in one of two ways: by spitting poison
onto an adjacent cell or dealing defensive damage if the bug is defeated in
combat. The damage multiplier is 4-to-18, which makes this organ the most
effective way to reduce enemy energy levels.

The poison-spitting can be used in either attacking an enemy directly, or
spitting poison onto an empty cell. One technique that can be used is to spit
poison onto an enemy such that it is weak enough to defeat in combat, and
then to move onto it using cilia. Spitting poison onto an empty cell (which
creates a poison drop) will damage any creature that moves onto it, which can
form a protective barrier. However, this technique is not particularly effective
because the strength of the poisoned creature is not considered, so a creature
with 1 energy could negate a poison drop with 1000 energy invested into it.
Further, the energy in a poison drop dissipates each turn.

A comparison between defensive organs is discussed in Section B.3.10.
This section also covers advanced techniques on how to effectively use poison
glands.

B.2.9 PoisonSensor

When used, this sensor reports if the requested adjacent cell contains a crea-
ture that is apparently poisonous. This could be either a poison drop or a bug
with a poison gland. Cloaking can fool this sensor.

Similar to the lifesign sensor, the poison sensor has limited use.

B.2.10 Spikes

Spikes are an organ that cause defensive damage to be applied when the bug
with the spikes is defeated in combat.

A comparison between defensive organs is discussed in Section B.3. Spikes
have limited use for primary designs as they are only useful when the bug dies.

B.3 Techniques

This section contains advanced techniques developed independently by the
author. A primitive version of the energy transfer technique was used in the

8This means a full reservoir of 1000 units is capable of dealing 4000 units of damage.
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graduate course for which credit was previously received. A more advanced
version of this transfer mechanism is combined with adaptive spawning and the
“HQ” (see Section B.3.7) to direct energy where it is perceived to be needed
most. Probabilistic exploration was also recognized informally during the
graduate course, although no analysis of the probabilities or related statistics
was performed in the course.

These techniques are assumed to be basic knowledge for the purposes of
the thesis.

B.3.1 Probabilistic Exploration

To prevent bugs from aimlessly wandering, perhaps in circles, it is beneficial
to assign a default direction for a bug to travel in lieu of more information.
The goal of this technique is to encourage exploration.

Plants are initially spawned in the environment with a uniform probability
density of ρ = 0.12. Thus, the probability that a bug is initially placed beside
a plant is given as:9

P (plants ≥ 1) = 1− P (plants = 0)

= 1− (1− ρ)8

= 0.64

Assuming that the environment is symmetric, the choice of how to assign
a default direction can be reduced to choosing diagonal directions or verti-
cal/horizontal directions. With horizontal or vertical movement three new
cells are explored whereas diagonal movement explores five new cells. The
respective probabilities of finding a plant with each option then becomes:10

P (plants ≥ 1|diagonal) = P (plants = 1) + P (plants = 2) + . . .

+ P (plants = 5)

= 5 ∗ (0.12)1(0.88)4 + 10 ∗ (0.12)2(0.88)3

+ . . .+ 1 ∗ (0.12)5(0.88)0

= 0.472

9Recall that each cell is considered to have 8 neighbours.
10Note that sampling each cell becomes a “trial” with a true or false outcome, so the

calculations are based on the binomial distribution.
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P (plants ≥ 1|vertical) = P (plants = 1) + P (plants = 2) + P (plants = 3)

= 3 ∗ (0.12)1(0.88)2 + 3 ∗ (0.12)2(0.88)1

+ 1 ∗ (0.12)3(0.88)0

= 0.319

This means that diagonal movement should be preferred. The preferences
for initial bugs are randomized amongst the four diagonals. When later bugs
are spawned, their movement preference is orthogonal to their parent to en-
courage faster dispersion.

Bugs should be created with sufficient energy to explore their environment
so that they have a reasonably high chance of finding food.

B.3.2 Frequency-Based Exploration

Alternative methods to the simplistic dispersion in Section B.3.1 were consid-
ered, using Ant-Colony Optimization (ACO) [6, 7] and influence maps [28, 35]
as inspiration. The general idea of ACO is that agents explore the environment
and deposit “pheromones” where they move, with the pheromones dissipating
over time. When agents are choosing where to move, locations with higher
pheromones are more likely to be chosen. In influence mapping, a grid (or
mesh) is laid over the environment. Key features are assigned scores which
are highest in the grid they occupy, and propagate to neighbouring cells sub-
ject to some fall-off rate. This allows algorithms to assess the value of a grid
quickly.

Given the aim to encourage dispersion, the idea is to reverse the ACO
concept. The idea is to maintain a grid of “search scores”. Each cell in the
environment is initialized with the value τUNEXPLORED. When a friendly agent
moves onto a cell, the value is set to 0. On each simulation turn, the values
in the cells decay (increase) by τDECAY . To allow agents to consider shared
regional information beyond their local sensor ranges, pre-defined search pat-
terns of length r are considered. As movement in any direction is equally
valid, the search patterns are constructed such that each direction considers
an equal number of cells. An example with r = 3 is presented in Figure B.4.
When choosing which direct to prioritize exploration, the sum of each grid is
considered. The highest search values (least explored directions) are held in a
data structure. Once all directions have been evaluated, the best direction to
explore is taken from the data structure11.

11Note that directions with friendly agents are removed from consideration to prevent
unwanted combat. This may not be strictly necessary as the probability that those directions
have the highest search score is very low.
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Figure B.4: ACO-Inspired Search Patterns

Preliminary experiments with r = 4 found dispersion behaviour of the
baseline agent to be similar to the probabilistic exploration method. This is
largely because the agent only relies on this approach to move when no other
information is available. If plants or enemies are nearby then they are targeted
first.

B.3.3 Adaptive Spawning

Adaptive spawning is advantageous based on a cursory analysis of the initial
environment and the limitations of the physical model for the bugs. Initially
there are many plants and very few enemies in the environment. As the simu-
lation progresses, the bug density (potentially) quickly increases, to the point
where the organs added for early exploration become ineffective for colony con-
solidation. Further, there are cases such as Section B.3.5, Section B.3.6 and
Section B.3.9 where entirely different conceptual bug designs are warranted.

Aside from the special sections noted above, two ways to address adaptive
variation are to change the organs added dependent on the limited system state
information they have access to or to create entirely different bugs (which are
still considered allies). This research uses the latter approach, as it is easy to
manage the complexity by varying levels of abstraction12.

12From an object-oriented perspective, common behaviours can be built into a base class
and specialized variants can extend the base class to achieve their particular purpose.
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B.3.4 Multiple Spawning

As alluded to in Section B.3.3, some bug variants should prioritize environ-
mental exploration at all costs. In the expansion phase of the simulation, it
may be possible that a bug has sufficient energy to generate many children.
Spawning multiple children in this phase results in faster exploitation of plant
resources which in turn results in a more rapid transition to consolidation
while denying adversaries the same opportunities.

Multiple spawning is generally not considered effective in the consolidation
phase of the simulation, because positions to spawn tend not to have plants for
rapid expansion. Furthermore, the spawned bugs need to have higher energy
levels to survive contact with adversaries.

B.3.5 Energy Transfer

When a bug is surrounded by allies and it has generated surplus energy beyond
the 2000 energy cap, this energy would be wasted unless it can be transferred
to an ally. This can be achieved by spawning a basic bug with up to x − 1
energy onto the bug targeted to receive the energy, where x is the energy of
the target bug. If x is sufficiently small, this basic algorithm can be looped
until the desired amount of energy is expended.

Choosing how much energy to transfer between bugs is debatable. Retain-
ing only the amount required to survive the maintenance phase will push the
maximum amount of energy where it is needed, but it also makes the colony
interior susceptible to penetration. There is no apparent optimal strategy on
which to base this decision.

If the relative position within a colony is known (see Section B.3.7), there
are three main approaches to deciding where to transfer this energy. Firstly,
the easiest mechanism is to always go in the same direction that will have the
effect of one edge of the colony being very strong and the opposite edge being
very weak. Secondly, the agent could detect which neighbour(s) will lead to
the closest edge based on the assumption that this location will need energy
the most. Lastly, the colony could tweak the second behaviour to include
adaptation to threats. In this behaviour the colony would detect, classify and
prioritize where energy should be sent based on where attackers have struck13.

13This behaviour was not implemented. With rapid expansion it is rare for large colonies
to form, so the benefit of this approach was considered to be negligible.

86



B.3. Techniques

B.3.6 Kamikaze Strikes

Methods of offensive action in the simulation are limited to movement, spawn-
ing and spitting poison. Movement is effective only when the current agent
has more energy than the target. Spawning a standard bug variant onto a tar-
get faces a similar limitation, but because of the use cost of the budder organ,
the energy thresholds are even lower. Poison may be effective if coordinated,
but the poison gland requires a position in the limited organ hierarchy.

A hybrid approach is the most energy-effective form of attack; it retains
the flexibility of not adding a poison gland to the normal build order. This
approach spawns a specialized kamikaze bug designed to lose combat but inflict
significant defensive damage on the target. To maximize the defensive damage,
the kamikaze bug should have no energy left after creating defensive organs.
Targets can be weakened or killed with this method. In the case of weakening
the target, the original bug can then move onto the target to gain its remaining
energy.

Choosing how to build a kamikaze agent depends on the energies of the
source bug and the target. Optimal energy use to inflict a given amount of
damage is discussed further in Section B.3.10. Choosing how to select targets
is left to the agent designs.

B.3.7 Headquarters (HQ)

In the original BugWars framework, bugs could access their absolute position
in the environment. As long as each instance passed this information to a
higher coordinating mechanism, colony-wide behaviour could then be coordi-
nated. The conversion to Bug Battle removed this mechanism, so bugs no
longer have any knowledge of their location in the environment, at least in the
exposed portion of the framework available to competitors.

However, this locating mechanism can be created using relative position
tracking and principles of reconnaissance (recce). Initially there are a set
number of bug instances in the simulation. Each bug in the simulation is
assigned a unique identification number, for tracking in various data struc-
tures. Each of the initial bugs assumes an initial local position of (0,0), and a
tracker identification number to indicate their group ownership. When bugs
are spawned, they are added to the same group as the bug that spawned
them. By tracking births, movement and deaths, relative positioning can be
developed independently for each group.

In order to synchronize the independent groups into a single collective,
the bugs make extensive use of message-passing via the observer pattern and
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top-level observer object (the “HQ”) to coordinate events. Since bugs only
have energy sensors, they cannot know if a detected energy signature is an
allied or enemy bug. The bug that is about to move signals that it is about
to move and it will signal again when it is done moving. When friendly bugs
die, they send a signal that they are dying. This allows synchronization of
the data structures if a death event is detected between “about to move” and
“done moving” events14.

The “HQ” is used to coordinate the group data structures and abstract
employment of the data structures. Knowing the (relative) positions of all
friendly bugs allows key pieces of information or capabilities:
• If surrounded by allies, the direction(s) to the closest edge of the colony

can be determined;
• Environmental sensing is minimized, by not sensing known ally posi-

tions;
• Search scores can be maintained (see Section B.3.2);
• Detailed statistics of enemy encounters can be maintained; and
• Cloaking can be used, since the positions of cloaked allies will be known.

B.3.8 Scan Caching

Agent variants in the exploration phase should have multiple cilia to maximize
movement and exploration of the environment. Since each move is only one
cell away, agents will often have to re-consider positions that they previously
knew about. On a single turn for an agent, the results of scans can be cached
to prevent energy waste by re-scanning positions where the data cannot have
changed.

Attempting to cache scanning information between agents is invalid, par-
tially because of the unknown turn order and partially because other agents
may move more than one cell.

Table B.2 outlines the energy costs for the worst-case energy costs. The
table only covers up to eight moves between this is the maximum reasonable
number of organ positions available for cilia. One position is normally required
for a sensor and one for a budder. The worst case occurs when each move
is along the same diagonal direction. The initial position is exposed to eight
cells, and each subsequent move exposes five new cells. Scanning a position
assumes an energy scan.

14There are special cases such as the mover dying due to defensive damage. They are
accounted for in the design but are excluded here for brevity.
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Table B.2: Benefits of Scan-Caching (Worst-Case)

Moves
Basic Cached Movement Total Total

Scanning Cost Scanning Cost Cost Basic Cost Cached Cost
1 16 16 20 32 32 (100%)
2 32 21 40 72 61 (85%)
3 48 26 60 108 86 (80%)
4 64 31 80 144 111 (77%)
5 80 36 100 180 136 (76%)
6 96 41 120 216 161 (75%)
7 112 46 140 252 186 (74%)
8 128 51 160 288 211 (74%)

B.3.9 Defeating Cloaking

Although expensive to execute, cloaking can be mitigated. If an agent suspects
cloaking is being used, they could spawn minimum energy bugs (“recce bugs”)
onto apparently open ground. If the bug survives then the ground actually is
open, but if it dies then there is a cloaked bug there. Since no information
about the energy levels of cloaked bugs can be obtained, methods to deal with
the detected bug are explored in the agent designs.

Since each recce bug costs 101 energy to employ (100 for the budder use,
1 to be placed in the environment), the worst time to employ this technique
is in the exploration phase since the energy could be used more effectively to
explore the environment. This technique should only be employed when there
is a high probability of cloaked enemy present.

Due to the turn ordering of the simulation, adjacent allied bugs will not
need to spawn recce bugs on the same cells. The recce bugs will survive (unless
killed directly) until the next simulation turn. Having the recce bugs killed
by enemies is actually a fringe benefit because it would waste their movement
or energy for unnecessary spawning.

B.3.10 Defensive Organs

Table B.1 presented the organs and their relative cost. The only two organs
that provide defensive damage are spikes and poison (created with the poison
gland). When using the kamikaze strike (see Section B.3.6), the bug spawns
a new child that has only defensive organs added in its initialization phase,
which occurs before cost. This leads to the question of which organs will do
the most damage. While a decision about whether or not to use the kamikaze
strike depends on the strength of the parent bug and the target, the efficiency
or which organs to use is fixed. The base cost to spawn the attacker is 100,
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which is the cost to use the budder15. This base cost will be ignored for the
rest of this section, to avoid confusion when considering the organs that are
added. Spikes cause 200 damage and are added at a fixed rate of 100 energy
each. Poison glands cost 500 to add, but then each poison unit (up to a
maximum of 1000 units per poison gland) only cost 1 energy. Each poison
unit causes 4 damage. If it is assumed that a bug would create all 10 organs
as spikes, the total cost would be 1000 energy for 2000 damage. Using this
same amount of energy for poison, the bug could create a poison gland with
500 poison units, which is also capable of 2000 damage. If another organ could
be added then poison would be more effective after this equilibrium. When
between 1000-4000 is required, a single poison gland with sufficient poison
is the most effective option. Past 4000 damage requires additional organs, at
which point the high cost of the poison gland makes spikes more effective until
the maximum organ count is reached.

The conclusion of the above comparison is that spikes are always more ef-
ficient as long as there is sufficient space in the organ limit. To deal extremely
high amounts of damage, a combination of poison glands and spikes are re-
quired. Dealing less than 200 damage is never efficient, due to the base cost
of spawning and the minimum of one spike organ. The maximum amount of
damage that can be dealt with a single bug is 40000, generated by an attacker
with 10 fully loaded poison glands. This scenario would cost the parent bug
15100 energy, although it is extremely unlikely. A magnified perspective of
the damage function is given in Figure B.5, while the total damage function
is given in Figure B.6.

15For clarity, the “attacker” is the child bug created by the parent bug. The parent bug
is the active bug that selects the enemy target.
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Figure B.5: Magnification of the Attack Bug Damage Function

Figure B.6: Attack Bug Damage Function
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C Particle Filtering and
Decision Trees

This Annex presents a detailed example for particle filtering to illustrate how
the algorithm works. Particle filtering is discussed at the end of Section 2.3.5.
The system used in this example is the toy system as presented in Section 4.2.1,
which is repeated in Figure C.1 to facilitate reading probabilities from the
various sub-models. After the particle filtering example is worked through,
the example is extended to build a full decision tree of depth two to illustrate
how to solve a decision tree. A population size of ten is used throughout for
the particle filtering algorithm, which is quite small for an actual application.

Figure C.1: Toy 3-State Model
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C.1 Particle Filtering

Bayes’ rule is crucial to the particle filtering algorithm and is given below. It
can be found in most introductory probability textbooks, [16] is one example.
The form of the equation presented has the set of all possible evidence E and
the set of all possible states X. The t subscripts denote time. Membership in
a set is denoted by a lower-case letter, e.g. xεX means a single possible state
as opposed to X which is all states.

P (Xt|et) =
P (et|Xt)P (Xt)

P (et)
=

P (et|Xt)P (Xt)∑
xεX

P (et|xt)P (xt)
(C.1)

Assume that a state is sampled from the prior distribution. Our initial state
will be A in this example. To begin the particle filtering algorithm, we obtain
an initial sample. The distribution that the initial sample is drawn from
depends when sampling occurs. Since this example is just starting, sampling
from the prior distribution is ideal. If attempting to sample in the middle of
a simulation, an estimate of the current distribution will be required. The
initial sample for this example will be:

A B C

3 4 3

Note that main benefit of using particle filtering is that the quantity of samples
of a state can be used as an estimate for the probability of that state. For
example, P (A) = N(A)

N(A)+N(B)+N(C) = 0.3.
Evidence is generated from the current state. For this example, e0 = A. For
each xεX we need to calculate:

P (X0|e0 = A) =
P (e0 = A|X0)P (X0)∑

xεX

P (e0 = A|x0)P (x0)

Since the denominator will be common for all state elements, it will save space
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to calculate that first:∑
xεX

P (e0 = A|x0)P (x0) = P (e0 = A|x0 = A)P (x0 = A)

+ P (e0 = A|x0 = B)P (x0 = B)

+ P (e0 = A|x0 = C)P (x0 = C)

= (0.8)(0.3) + (0.2)(0.4) + (0.5)(0.3)

= 0.47

Performing the calculation for each xεX yields:

P (x0 = A|e0 = A) =
P (e0 = A|x0 = A)P (x0 = A)

0.47

=
(0.8)(0.3)

0.47

=
0.24

0.47
= 0.51

P (x0 = B|e0 = A) =
P (e0 = A|x0 = B)P (x0 = B)

0.47

=
(0.2)(0.4)

0.47

=
0.08

0.47
= 0.17

P (x0 = C|e0 = A) =
P (e0 = A|x0 = C)P (x0 = C)

0.47

=
(0.5)(0.3)

0.47

=
0.15

0.47
= 0.32

This provides the probability vector 〈0.51, 0.17, 0.32〉 , which is re-sampled
to obtain an estimate of the actual state given then current evidence. One
possible sampling is:
This completes the filtering algorithm. The process is summarized in Fig-
ure C.2.
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A B C

5 2 3

Figure C.2: Particle Filtering Algorithm

C.2 Decision Trees

Generally a decision tree is developed by examining likely outcomes for dif-
ferent decisions by projecting forward. At each decision point, each potential
action is examined and the relative reward is compared to the other actions.
When multiple steps are considered the rewards of the future actions are fac-
tored into the assessment of which decision is best by averaging the reward
against the likelihood of the future state. At each decision point, the decision
that is chosen is one of the decisions with the highest overall reward. Decision
trees are discussed in [20].

Creation of a decision tree for a POMDP follows this same process. The
difference between a fully and partially observable case is that the decision
points are belief distributions instead of state distributions. To simplify the
presentation, only belief distributions will be considered and as they will be
presented graphically later they will be called belief nodes. Propagating the
decisions forward involves obtaining a sample from the belief node and apply-
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ing the transition model for each sample, which results in a “chance node”.
Evidence can then be generated for the transitioned sample with a relative
weight leading to the next decision (belief) node. Note that while samples are
used to build a branch for a particular action, this is not particle filtering.

As an example, the decision tree begun in Section C.1 will be propagated
to two decisions and then the decision tree will be solved. Solving the decision
tree involves averaging the children of chance nodes and selecting the child
with the maximum reward from belief nodes.

To aid in mapping the calculations from the text to the resulting figure,
the notation Bt and Cta will be used. B denotes a belief node while C denotes
a chance node. The t and ta subscripts denote the turn, evidence and action
sequence that led to the node. For example, B0 is the first belief node and
C0−GO is the chance node that results from propagating forward the GO
action.
Recall the post-filtering sample obtained from B0 was given as:

A B C

5 2 3

Recall that for at = GO the extract from the transition model is:

x0
x1

A B C

A 0.05 0.80 0.15
B 0.80 0.05 0.15
C 0.7 0.0 0.3

Which results in a possible sampling for a0 = GO of:
Similarly the same process for a0 = STAY potentially yields:
To calculate the reward at C0−GO, we multiply the probability of the state by
the corresponding entry in the reward function:

R(C0−GO) = P (x′ = A)(R(A)) + P (x′ = B)(R(B)) + P (x′ = C)(R(C))

= (0.4)(0.0) + (0.4)(2) + (0.2)(1)

= 1.0

(C.2)
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x0
x1

A B C

A 0 4 1
B 2 0 0
C 2 0 1

4 4 2

A B C

5 2 3

And for C0−STAY :

R(C0−STAY ) = P (x′ = A)(R(A)) + P (x′ = B)(R(B)) + P (x′ = C)(R(C))

= (0.5)(0.0) + (0.2)(2) + (0.3)(1)

= 0.7

Next, the evidence generated by C0−GO is required. To obtain P (E1), we apply
the sensor model and normalize the result. Note that since P (Et = C) = 0 is
always true, we omit considering C whenever evidence is discussed.

P (e1 = A) = P (e1 = A|x1 = A)P (x1 = A) + P (e1 = A|x1 = B)P (x1 = B)

+ P (e1 = A|x1 = C)P (x1 = C)

= (0.8)(0.4) + (0.2)(0.4) + (0.5)(0.2)

= 0.5

P (e1 = B) = P (e1 = B|x1 = A)P (x1 = A) + P (e1 = B|x1 = B)P (x1 = B)

+ P (e1 = B|x1 = C)P (x1 = C)

= (0.2)(0.4) + (0.8)(0.4) + (0.5)(0.2)

= 0.5

Then evidence is generated for C0−STAY :
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P (e1 = A) = P (e1 = A|x1 = A)P (x1 = A) + P (e1 = A|x1 = B)P (x1 = B)

+ P (e1 = A|x1 = C)P (x1 = C)

= (0.8)(0.5) + (0.2)(0.2) + (0.5)(0.3)

= 0.59

P (e1 = B) = P (e1 = B|x1 = A)P (x1 = A) + P (e1 = B|x1 = B)P (x1 = B)

+ P (e1 = B|x1 = C)P (x1 = C)

= (0.2)(0.5) + (0.8)(0.2) + (0.5)(0.3)

= 0.41

Next a belief node is generated for each evidence branch by assuming the
evidence is fixed and applying particle filtering. This follows the same process
as Section C.1, so for brevity the calculations are omitted. At this point the
partial decision tree is given in Figure C.3.

Figure C.3: Partial Decision Tree - Once Evidence is Generated

The rest of the decision tree is built by completing these same steps for each
successive layer of the tree. The process changes when the desired depth is
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reached. At this point an estimate of the long-term utility of the leaf belief
nodes is calculated used the utility function, which is by necessity a heuristic.
The utility for the belief node is calculated the same way as Equation (C.2),
except the utility function is used instead of the reward function.
Figure C.4 shows the completed tree with all samples and distributions. Fig-
ure C.5 is the same tree, but abstracted to show only the utilities, rewards
and evidence distributions. Finally Figure C.6 presents the solved tree, which
shows that the preferred action is a0 = GO.
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Figure C.5: Full Decision Tree - Abstracted
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Figure C.6: Full Decision Tree - Solved
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D Supplementary Data

The contents of the data DVD are as follows:

• Source.zip - The simulation source code, packaged as an Eclipse project.
• Website.zip - The source code for the experiment website1.
• bugbattleai.sql - The raw data from the simulation trials.
• Graphs.zip - The Excel files that graphs were generated from.

1This does not contain server configuration information, it is only the front-end code.
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