
ENHANCED MONTE CARLO TREE

SEARCH IN GAME-PLAYING AI:

EVALUATING DEEPMIND’S

ALGORITHMS

AMÉLIORATION DE LA RECHERCHE

ARBORESCENTE MONTE CARLO

DANS L’INTELLIGENCE

ARTIFICIELLE POUR LES JEUX:

ÉVALUATION DES ALGORITHMES DE

DEEPMIND

A Thesis Submitted to the Division of Graduate Studies
of the Royal Military College of Canada

by

Karla Gonzalez, BSc
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

August, 2023
© This thesis may be used within the Department of National Defence
but copyright for open publication remains the property of the author.

To My Parents

2

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. Francois
Rivest, for his invaluable guidance and support throughout my thesis journey.
His expertise and mentorship have been instrumental in shaping this research
and my academic growth. Thank you to Dr. Haddad, Dr. de Boer, Dr.
Sturgeon and Erin, your friendly faces, encouragement and advice really kept
me going.

Además, estoy profundamente agradecida con mis padres, Carlos y Elsie,
por su amor, creencia en mis habilidades y su ánimo y apoyo constante que
me motivó a echarle ganas y seguir adelante.

A mi hermanita, Elsie. We will always be girls together. I can’t imagine
living in a world without you.

Finally I thank my God, my good Father, for guiding and blessing me
throughout this journey. His unwavering love, mercy, and grace have pro-
vided me with strength, wisdom, and resilience to overcome challenges and
pursue my academic endeavors. I will keep on trusting You for my future.
Thank you, Lord.

Luke 1:37

3

Abstract

In the realm of Artificial Intelligence (AI), game-playing algorithms have

reached remarkable heights of performance, exemplified by DeepMind’s Al-

phaGo, AlphaZero, and MuZero algorithms. However, despite these achieve-

ments, there exists a need for a comprehensive evaluation and comparison of

these algorithms, as well as an exploration of modifications to the underlying

Monte Carlo Tree Search (MCTS) algorithm. This thesis represents a step

forward in addressing these needs, aiming to shed light on the strengths and

limitations of these state-of-the-art algorithms, the impact of modifications to

MCTS, and their performance across diverse game environments.

The thesis first delves into the foundations of Reinforcement Learning (RL)

and the MCTS algorithm, providing a solid understanding of the key concepts.

It then proceeds to evaluate two modifications of the MCTS algorithm, Up-

per Confidence Bound for Trees (UCT) and Loss Avoidance. We found that

both modifications, particularly the simultaneous implementation of both, im-

proved not only MCTS in our selected environment, but also Alpha-Zero when

used within its MCTS search.

Building upon this foundation, the thesis turns its attention to the imple-

4

mentation and evaluation of the DeepMind algorithms themselves: AlphaGo,

AlphaZero, and MuZero. These algorithms are evaluated in a range of game

environments, varying in complexity and size. By subjecting them to identical

computational constraints and neural network architectures, we found that al-

though Muzero is learning a model unlike it’s sibling algorithms, overtime will

outperform within fairly complex environments, such as Othello and Pinball.

5

Resume

Dans le domaine de l’intelligence artificielle, les algorithmes de jeu ont atteint

des niveaux de performance remarquables, comme en témoignent les algo-

rithmes AlphaGo, AlphaZero et MuZero de DeepMind. Cependant, malgré ces

réalisations, il existe un besoin d’implémentation, d’évaluation et de compara-

ison complètes de ces algorithmes, ainsi que d’exploration des modifications

apportées à l’algorithme sous-jacent de Recherche Arborescente Monte Carlo

(MCTS). Cette thèse représente une avancée significative dans la réponse à ces

besoins, visant à mettre en lumière les forces et les limites de ces algorithmes

de pointe, l’impact des modifications apportées à l’algorithme MCTS, et leur

performance dans divers environnements de jeu.

La thèse se penche d’abord sur les fondements de l’apprentissage par

renforcement et de l’algorithme MCTS, ce qui permet de bien comprendre

les concepts clés. Elle procède ensuite à l’évaluation de deux modifications

de l’algorithme MCTS, Upper Confidence Bounds for Trees (UCT) et Loss

Avoidance. Nous avons constaté que les deux modifications, en particulier

l’implémentation simultanée des deux, ont amélioré non seulement MCTS

dans notre environnement sélectionné, mais aussi AlphaZero lorsqu’il est utilisé

6

dans sa recherche MCTS.

Sur cette base, la thèse s’intéresse à la mise en œuvre et à l’évaluation

des algorithmes DeepMind eux-mêmes : AlphaGo, AlphaZero et MuZero.

Ces algorithmes sont évalués dans une série d’environnements de jeu, dont la

complexité et la taille varient. En les soumettant à des contraintes de calcul

et à des architectures de réseaux neuronaux identiques, nous avons constaté

que, bien que Muzero apprenne un modèle différent de celui de ses autres

algorithmes Alpha, les heures supplémentaires seront plus performantes dans

des environnements assez complexes, comme Othello et Pinball.

7

Contents

List of Figures 11

List of Tables 13

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement and Limitations 4
1.3 Solution Overview . 7
1.4 Contribution . 7
1.5 Thesis Outline . 9

2 Background 11
2.1 Reinforcement Learning . 11

2.1.1 Markov Decision Process 12
2.1.2 V-values and Q-values 14
2.1.3 Value-Based and Policy Gradient Methods 15
2.1.4 On-Policy and Off-Policy 17
2.1.5 Model-Based v. Model-Free 18
2.1.6 Monte Carlo Tree Search 19

2.2 Exploration vs. Exploitation Trade-off 20
2.3 Deep Reinforcement Learning 22

2.3.1 Function Approximation 22
2.3.2 Neural Networks . 23
2.3.3 Convolutional Neural Networks 24
2.3.4 Actor Critic Methods 26
2.3.5 Self-Play Advantages . 28

2.4 Conclusion . 29

3 Boosting AlphaZero through MCTS enhancements 31
3.1 Introduction . 31

8

Contents

3.2 Monte Carlo Tree Search . 33
3.2.1 The Algorithm . 34

3.3 AlphaZero . 39
3.4 Literature Review . 42
3.5 Proposed Enhancements . 45

3.5.1 UCT Policy . 46
3.5.2 Loss Avoidance . 48

3.6 Methods . 51
3.6.1 Environments . 51

Connect4 . 52
Othello . 53

3.6.2 Test Opponents . 54
Test Opponents for Connect4 54
Test Opponents for Othello 56

3.6.3 AlphaZero Network . 57
3.6.4 Experimental Setting . 59

3.7 Results . 61
3.8 Conclusion . 68

4 Algorithm Comparison 71
4.1 Introduction . 71
4.2 Literature Review . 73
4.3 Tree Search in Machine Learning 80
4.4 General Outline . 81
4.5 AlphaGo . 86

4.5.1 AlphaGo Methods . 90
4.6 AlphaZero . 93

4.6.1 AlphaZero Methods . 94
4.7 MuZero . 96

4.7.1 MuZero Methods . 102
4.8 The Alphas . 104

4.8.1 Resource Requirements and Restraints 105
4.9 Atari and Atari Learning Environment 109
4.10 Experiments and Methods . 111

4.10.1 Environments . 111
4.10.2 Deep-Q Learning - DQN 113

4.11 Results . 114
4.12 Limitations . 120
4.13 Conclusion . 121

9

Contents

5 Conclusion and Future Work 123
5.1 Conclusions . 123
5.2 Limitations . 124
5.3 Future Work . 126

5.3.1 MCTS in Stochastic Environments 126
5.3.2 Future work - MCTS Impact 128

Bibliography 130

10

List of Figures

3.1 MCTS for one iteration. A single iteration refers to the process of
selecting, simulating, propagating, and backpropagating a single
search path in the search tree. 35

3.2 MCTS outer loop and inner loop interaction. The combination
of these inner loops constitutes the overall MCTS process, which
is often performed iteratively until a stopping criterion, such as a
time limit or a certain number of iterations, is met. 37

3.3 MCTS outer loop, performed to gradually build the search tree
and improve the action selection based on the information gathered
from previous iterations. 38

3.4 Nsim = 10 per iteration on Connect4. Averaged across 5 seeds. . . 66
3.5 Nsim = 100 per simulation on Connect4. Averaged across 5 seeds. 66
3.6 Nsim = 10 per iteration on Othello. Averaged across 5 seeds. . . . 67
3.7 Nsim = 100 per iteration on Othello. Averaged across 5 seeds. . . 67
3.8 AlphaZero-ALL map depicting the average starting positions for

first and second player averaged over 10k games in Connect Four. . 68
3.9 MCTS-ALL map depicting the average starting positions for first

and second player averaged over 10k games in Connect Four. . . . 68

4.1 Network Training . 83
4.2 General Main Training Loop: Iterated tree search and function

approximation. 84
4.3 Episode Generation: An agent plays a real game s1, . . . , sT

against itself. 85
4.4 The four phases of MCTS within AlphaGo 88
4.5 Relationship outline of distinct neural networks within AlphaGo . 88
4.6 Network Architecture: illustrates the network architecture,

consisting of a convolutional block, a residual tower with 19 or
39 blocks, policy and value heads, and specific modules for each
component. All our networks only consist of 10 blocks. 95

11

List of Figures

4.7 How MuZero trains its model. 98
4.8 Demonstrating how MuZero utilizes it’s learned model to plan.

The learned model consists of three connected components for fθ,
gθ and hθ. 102

4.9 How MuZero acts in the environment. 102
4.10 Alpha’s Code Structure . 104
4.11 Evaluation of the Alphas throughout training in Connect4. DQN

is shown as baseline. Averaged across 10 experiment replications . 116
4.12 Evaluation of the Alphas throughout training in Othello. DQN is

shown as baseline. Averaged across 10 experiment replications . . 117
4.13 Evaluation of the Alphas throughout training in Pong. DQN is

shown as baseline. Averaged across 10 experiment replications . . 117
4.14 Evaluation of the Alphas throughout training in Pinball. DQN is

shown as baseline. Averaged across 10 experiment replications . . 118

12

List of Tables

3.1 AlphaZero Network Architecture for Connect Four and Othello.
Each residual block contains a pair of ReLU activated, batch-
normalized convolutional layers, following the ResNet 60

3.2 Average win rates over 50k games of the different algorithms within
the respective environments. AlphaZero results averaged over 5
networks. Random player start. 62

4.1 Selected statistics of AlphaZero training 96
4.2 Latent roll-out depth (K), and latent dimensionality (L = |sk|) . . 103
4.3 Comparison of properties shared among the Alphas 105
4.4 The Alpha’s success is tremendous, but so it their resource require-

ments. 106
4.5 Hyperparameters for the DQN Algoritm 114
4.6 Connect 4 Statistics. Won games over 5k games where agent ini-

tialized for both players equally. 115
4.7 Othello Statistics. Won games over 5k games where agent initial-

ized for both players equally. 116
4.8 Average total reward over 50k episodes of Atari games 116

13

Glossary

AI Artificial Intelligence. 1, 4, 19

CNN Convolutional Neural Network. 24

DNN Deep Neural Network. 2
DQN Deep Q-Network. 10, 71, 113
DRL Deep Reinforcement Learning. 1

LA Loss Avoidance. 4, 7, 32, 49

MB Model-Based. 18
MCTS Monte Carlo Tree Search. 2, 4, 19, 31
MDP Markov Decision Process. 12, 13
MF Model-Free. 18

NN Neural Network. 10, 16

PUCT Positional Upper Confidence Trees. 39

RL Reinforcement Learning. 4, 6

SL Supervised Learning. 42, 86

UCB Upper Confidence Bound. 46
UCT Upper Confidence Bound for Trees. 4, 7, 32, 46

14

1 Introduction

1.1 Motivation

In the world of Artificial Intelligence (AI), a new era has dawned, where ma-

chines have achieved what was once deemed unthinkable: defeating the great-

est human minds in ancient and complex games. Over the years, AI has made

significant strides in tackling games and achieving remarkable performance.

One notable milestone was Deep Blue, a chess-playing computer program

[1]. Deep Blue defeated the reigning world chess champion, Garry Kasparov,

marking a breakthrough in AI’s capabilities in strategic games. Building on

this success, Allis, Uiterwijk, and van Rijswijck’s work [2] explored search-

ing for solutions in games and AI, laying the groundwork for more advanced

algorithms. Mnih et al. [3] demonstrated a groundbreaking achievement in

Deep Reinforcement Learning (DRL) with their paper on ”Human-level con-

trol through deep reinforcement learning.” Their work showcased how AI can

learn from raw pixel inputs to achieve human-level performance in various

challenging games. These developments illustrate the tremendous progress

AI has made in understanding and mastering complex game environments,

1

1.1. Motivation

paving the way for further advancements and real-world applications.

Enter the era of AlphaGo, AlphaZero, and MuZero, groundbreaking al-

gorithms that have captivated the world with their remarkable achievements

within these games [4]. Within this thesis we will refer to the entire group of

them as the Alpha algorithms. These Alphas possess an unparalleled ability

to learn and strategize, pushing the boundaries of what we believed machines

were capable of. With a mix of Deep Neural Network (DNN)s , self-play,

and powerful Monte Carlo Tree Search (MCTS) techniques, these algorithms

have shattered long-standing records, revealing a glimpse of the astonishing

potential of AI [5, 6, 7]. However, as we venture further into the realm of

game-playing algorithms, it becomes clear that further exploration and eval-

uation are necessary to understand the full potential of these algorithms in

different game environments.

The advancements achieved by AlphaGo and AlphaZero algorithms marked

significant milestones, showcasing remarkable accomplishments in game-playing

domains. Nonetheless, MuZero exhibited an unprecedented level of mastery,

surpassing the performance of the aforementioned predecessors. The transfor-

mative impact of these algorithms has been widely acknowledged [8, 9], gener-

ating substantial interest research and application efforts [10, 11, 12, 13]. Here

we list a few of the open research questions which arose with the publication

of the Alpha’s papers:

• Can the self-play training approach of AlphaZero and MuZero be gen-

eralized to domains beyond board games?

• How can the exploration-exploitation trade-off in the MCTS component

of AlphaZero and MuZero be optimized for different types of environ-

2

1.1. Motivation

ments?

• What is the impact of various hyperparameters, such as the number

of simulations and the exploration parameter, on the performance of

AlphaZero and MuZero?

• Can AlphaZero and MuZero be adapted to handle games or decision-

making problems with continuous action spaces?

• How can the learned policies and value functions from AlphaZero and

MuZero be transferred or generalized to new, unseen environments?

• What are the limitations of AlphaZero and MuZero in terms of scalabil-

ity and computational requirements, and how can they be mitigated?

• Is the success of these algorithms able to be replicated without the sup-

port of detail from the original papers?

• Is the astounding performance demonstrated by these algorithms solely

due to the extreme computational resources allotted to them or is there

a scientifically observable and reproducible improvement attributed to

another contribution?

• Can AlphaZero and MuZero be integrated with other RL algorithms or

techniques to further enhance their performance?

These research questions highlight some of the theoretical aspects that

researchers have explored or are yet to explore in relation to AlphaZero and

MuZero, and do not cover the large group of practical applications of these

algorithms which have been tackled by researchers [14, 11]. These inherent

mysteries surrounding the algorithm, combined with its impressive perfor-

mance, continue to motivate further exploration. By delving into these algo-

rithms and their enigmatic nature, we aim to expand our understanding of

3

1.2. Problem Statement and Limitations

their mechanisms, paving the way for continued advancements in the field of

AI.

Unfortunately, there are a number of obstacles still present for the accessi-

bility, understanding, and usage of these algorithms. The propriety nature of

the Alpha’s limits their public accessibility, and their exceptional success can

be attributed, in part, to the substantial computational resources they require,

which are often unattainable for smaller research labs. As a result, different

researchers have sought to overcome these barriers by developing various de-

rived and pieced-together versions of these algorithms [15, 16]. These efforts

aim to bridge the knowledge gaps and replicate the remarkable performance

achieved by the original algorithms.

1.2 Problem Statement and Limitations

For this specific work, we cannot answer all the questions set forth but we do

focus on two main components:

Firstly, MCTS stands as a pivotal component within the Alpha family of

algorithms, playing a crucial role in their remarkable achievements. MCTS

offers a systematic approach to search and decision-making in large and com-

plex domains, enabling the algorithms to navigate expansive state spaces ef-

fectively. The inclusion of MCTS in these algorithms has yielded significant

breakthroughs, propelling the boundaries of AI and game-playing capabilities.

However, throughout the evaluation and evolution of the Alpha algorithms,

the underlying MCTS algorithm has remained relatively unchanged. This

presents a great opportunity to explore the impact of modifications to the

4

1.2. Problem Statement and Limitations

MCTS algorithm and investigate their effectiveness in improving the perfor-

mance of these state-of-the-art game-playing agents. Additionally, there is

a need for a comprehensive evaluation and comparison of these algorithms

in different game environments, considering factors such as computational

constraints and adaptability. The utilization of MCTS also raises intriguing

scientific questions and challenges

We begin by exploring, the integration of the enhancements to the MCTS

algorithm in both sections of the thesis provides an opportunity to explore

the impact of these modifications on algorithmic performance. By evaluating

the modified MCTS algorithm against the DeepMind algorithms, important

questions arise:

• What is the impact of different modifications and variations of the MCTS

component within the AlphaZero algorithm?

• How do these modifications affect the search efficiency and decision-

making process?

• Can the modified MCTS algorithm achieve performance comparable to

the implemented AlphaZero?

The exploration of these questions not only advances our understanding

of the MCTS algorithm but also presents potential avenues for improving

game-playing agents in terms of speed, efficiency, and decision quality.

Second, in this investigation, we aim to address a range of scientific ques-

tions to advance our understanding of the Alpha algorithms and their under-

lying principles. Specifically, we seek to explore:

• Is it feasible and possible to implement a framework which incorporates

5

1.2. Problem Statement and Limitations

the different Alphas algorithms such that we are able to conduct exper-

iments with different size and complexity of environments?

• How do the Alpha algorithms perform when subjected to the same com-

putational constraints?

By conducting a fair and rigorous comparison, this research seeks to un-

ravel insights into the capabilities of these algorithms in different game con-

texts, shedding light on their general performance, adaptability and general-

ization abilities.

While this thesis makes its contributions to the field of game-playing AI

algorithms and provides valuable insights into the capabilities and limita-

tions of the DeepMind algorithms and MCTS modifications, there are certain

limitations that need to be acknowledged. Firstly, the evaluation and com-

parison are primarily focused on zero-sum game environments, which may

limit the generalizability of the findings to more complex and diverse scenar-

ios. Additionally, due to computational constraints and training time, the

algorithms’ performance might not have reached their full potential. Fur-

thermore, the choice of gaming environments might not fully represent the

vast diversity and complexity of real-world problems, necessitating further

exploration in more challenging domains. Moreover, while MuZero exhibits

remarkable adaptability, its training regime might be challenging to replicate

in resource-constrained scenarios, raising questions about its practical appli-

cability in certain real-world applications. Despite these limitations, the thesis

serves as a solid foundation for future research and opens avenues for further

investigations in Reinforcement Learning (RL) and AI domains.

6

1.3. Solution Overview

1.3 Solution Overview

The research begins by focusing on the evaluation and comparison of MCTS

algorithms, including the original form and variations such as Upper Con-

fidence Bound for Trees (UCT) and Loss Avoidance (LA)within MCTS the

AlphaZero algorithm. These evaluations occur within well known board game

environments, specifically Othello and Connect4. Which were chosen for their

specific differences in difficulty, complexity and input dimensions. This work

aims to pinpoint the strengths or weaknesses which arise from the variations

within specific environments, while analyzing performance changes for each

distinct modification.

Building upon the insights gained from the MCTS exploration, the thesis

proceeds to re-implement and evaluate the Alpha algorithms in various game

environments. Through a systematic comparison, the algorithms are evaluated

in their original forms, considering their relative strengths and weaknesses. By

subjecting them to the same computational constraints, the objective is to con-

duct a fair assessment is conducted to uncover their performance differences.

This comparative analysis provides valuable insights into the effectiveness of

each algorithm and their applicability in different strategic decision-making

contexts.

1.4 Contribution

The contributions of this thesis are the following:

1. The implementation of the AlphaZero algorithm. While the original

7

1.4. Contribution

paper provided limited details about the algorithm of the undisclosed

code, we built upon existing research to create a modified version that

can play on the environments of Connect4 and Othello.

2. Evaluate and compare the performance of the replicated algorithm in

different environments, such as Othello and Connect4. Results suggest

a simultaneous implementation of the enhancements produce a strong

agent AlphaZero-ALL, which consistently outperforms the other imple-

mented algorithms and baselines.

3. Evaluate the modifications to the MCTS algorithm proposed in pre-

vious research and analyze their potential impact on the AlphaZero’s

performance. Determined that AlphaZero-LA may be more suitable for

certain games, and that tailoring the modifications to an algorithm can

significantly influence its performance.

4. Replicated the other original Alphas algorithms (AlphaGo and Muzero)

given the limited available information within the published papers within

a variety of different environments: Connect4, Othello, Pong and Pin-

ball.

5. A fair and consistent evaluation of individual algorithms, AlphaGo, Al-

phaZero and MuZero, agents under similarly controlled GPU and CPU

computational resources.

6. Conducted evaluations to analyze and compare the performance and ef-

ficacy of the replicated algorithms in different game environments, par-

ticularly Othello, Connect4, Pong and Pinball. Determined that the

learned model MCTS approach of Muzero outperforms the other Al-

phas and implemented benchmarks.

8

1.5. Thesis Outline

By addressing these scientific questions and providing comprehensive eval-

uations and comparisons, this thesis contributes to the field of ML and intel-

ligent decision-making systems. The findings and insights gained from these

investigations have the potential to inform the development of future game-

playing agents, enhance their performance in diverse game environments, and

pave the way for further research in strategic decision-making and AI algo-

rithms.

1.5 Thesis Outline

This thesis is split into three main sections.

Chapter 2 serves as a comprehensive exposition of the essential background

information required to comprehend the problems addressed in this thesis.

This chapter offers a review of recent advancements in the pertinent domains

of machine learning and RL. The literature review of this thesis is found in

the different corresponding sections and is introduced as the related topics

appear. This was done to avoid confusion and overload and provide an easy

read.

In Chapter 3, we delve into the implementation, analysis, and compar-

ison of various modifications to the MCTS algorithm within the context of

the AlphaZero framework. We explore the integration of the traditional UCT

algorithm as a baseline and within the AlphaZero algorithm, as well as the

incorporation of LA strategies to enhance performance. Through a series of ex-

periments on Connect4 and Othello, we evaluate and compare the performance

of these modifications against random, greedy, and minimax algorithms. Our

9

1.5. Thesis Outline

findings sustain valuable insights into the potential of these enhancements and

their impact on the performance of MCTS-based algorithms.

Chapter 4 contributes to the field by providing a comprehensive evaluation

of the AlphaGo, AlphaZero, MuZero algorithms, and Deep Q-Network (DQN)

baseline on diverse environments, including Connect4, Othello, Pong, and

Pinball. By training all neural networks (NN) under the same computational

constraints, we aim to conduct a fair evaluation. Our analysis elucidates

the nuances and improvements of MuZero, demonstrating its superiority and

highlighting its strengths beyond computational requirements.

In Chapter 5, we present a comprehensive summary of our work, encap-

sulating the key findings and contributions of our research. We discuss the

implications and significance of our results in relation to the research objec-

tives, providing insights into the broader implications of our study. Addi-

tionally, we examine the limitations of our experiments, addressing potential

constraints, challenges, and constraints that may have influenced our findings.

Additionally, we highlight potential future directions and avenues for further

exploration, suggesting areas where our research can be extended or improved.

This chapter serves as a thoughtful reflection on the outcomes of our research,

offering valuable insights into the scope and boundaries of our study.

10

2 Background

In this chapter we will introduce the fundamental concepts needed to com-

prehensively understand this thesis. First, this section covers the field of RL

and the an array of subtopics pertaining to model learning, and planning.

These subfields of machine learning will provide the necessary insignt and the

primary tools which are used throughout this thesis.

2.1 Reinforcement Learning

Reinforcement learning (RL) is a type of machine learning that enables agents

to learn how to make decisions in complex and dynamic environments, such

as video or board games, through trial and error [17]. The idea is to allow

an agent to iteratively take actions within these environments, and allow it to

learn through a scalar reward signal returned by the environment as a response

to the actions the agent selected. These reward signals will act as a positive or

negative ”reinforcement” and provide associated feedback to the agent. From

this feedback, an agent may learn a policy (a strategy or rule which maps

states to actions which an agent may take in each state) from scratch. The

goal of RL is to learn a policy that maximizes the expected cumulative reward

11

2.1. Reinforcement Learning

over time.

2.1.1 Markov Decision Process

In RL there is constant interaction between an agent and its environment.

Markov Decision Process (MDP) are fundamental mathematical models used

in the field of RL to represent sequential decision-making problems. Many

sequential decision scenarios have the Markov property where an agent’s de-

cision only depends on the current state s. These decision scenarios can be

defined by the five components (S,A,P,R, γ) [17]:

S : a finite set of states

A : a finite set of actions

P : for each triplet of state, action, and next state (s, a, s′), the transition

probability P (s′|s, a) gives the probability that the system will transition

to state s′ if action a is taken in state s.

R : for each triplet of state, action, and next state (s, a, s′), a reward

function, defined as R(s, a, s′) = E[rt+1|St = s,At = a, St+1 = s′]

γ ∈ [0,1]: a discount factor of future rewards.

At each time step t ∈ [0, 1, 2, ...], the agent is presented with a depiction of

the current environment’s state, represented as st ∈ S. Based on this, it opts

for an action, denoted as at ∈ A. As an outcome of its chosen action and after

the lapse of one-time step, the agent is given a real numerical reward, denoted

as rt+1 ∈ R. Subsequently, the agent transitions into an updated state, de-

noted as st+1. This process will continue indefinitely or until a terminal state

is reached at time step T . Within this description we may also include a set

12

2.1. Reinforcement Learning

of at least one possible initial states I ⊆ S and a set of zero or more terminal

states T ⊆ S.

The critical property of MDPs is called the ”Markov Property”. It states

that the system dynamics, P and R, at time step t will only depend on the cur-

rent state st and action at which don’t require any history or prior knowledge

from the environment to be determined. This is expressed as such:

P (s′|st, at) = P (s′|st, at, st−1, at−1, st−2, at−2, ..., s0, a0) (2.1)

In RL, the behaviour of an agent is defined by a policy, denoted as π,

which can be either deterministic or probabilistic. This policy dictates the

probability for the action, at, that an agent takes in its current state, st,

by establishing a probability distribution over all feasible actions, defined as

π(a|s) = P[At = a|St = s]. Future rewards will then be discounted using γ

such that the agent will value immediate rewards higher than those in future.

The cumulative reward is typically defined as the sum of discounted rewards

over a finite or infinite time horizon. We must distinguish this from the actual

return, defined below:

Gt =
∞∑
i=0

γirt+i (2.2)

where Rt is the discounted return at time t, γ is the discount factor, and

rt is the reward at time t.

The discount factor plays a crucial role in determining the significance

of future rewards compared to immediate rewards. The goal of RL achieved

through MDPs is to learn the optimal policy π∗ (if always followed) will give

13

2.1. Reinforcement Learning

the best outcome over any other policy π which could be possibly played.

π∗ = arg max
π

E[
∞∑
t=1

γtrt|at ∼ π(at|st)] (2.3)

2.1.2 V-values and Q-values

In RL, reward measures how beneficial an action is in a given state. Often, we

look at the total of future rewards, adjusted to be less valuable the further in

the future they are, to help improve the agent’s decisions or strategy. We refer

to two crucial value functions associated with an MDP. The first, known as

the state-value function Vπ(s), which represents the expected return when the

agent starts from state s at time t and follows policy π. Its formal definition

is:

Vπ(s) := Eπ[Gt|st = s] (2.4)

The second, important function we must refer to, is the action-value func-

tion:

Qπ(s, a) := Eπ[Gt|st = s, at = a] (2.5)

While Vπ(s) represents the expected value gained by a policy after being

in a state s, Qπ(s, a) signifies the expected value a policy will gain after taking

an action a in state s. The definitions differ only slightly, where Qπ(s, a) is

defined more specifically, over a specific action a.

We may represent V π(s) as the weighted sum of Qπ(s, a) for all valid

actions in the state s under policy π.

14

2.1. Reinforcement Learning

V π(s) =
∑
a∈A

Pπ(a|s)Q(s, a) (2.6)

2.1.3 Value-Based and Policy Gradient Methods

There are two main subsections of RL, value based methods and policy gra-

dient methods.

Value-based methods in RL aim to predict the scalar rewards that an agent

receives after taking an action. The policy then guides the agent to select its

next action based on the predicted highest expected reward or by selecting

an action based on the predicted values. Learning to accurately predict these

values, represented as Q or V , can be highly challenging.. Depending on the

complexity of the environment, a large number of trajectories would need to

be explored in order to be able to then generate accurate predictions. Value

estimation is crucial for an agent to make decisions about which actions to

take. It allows the agent to estimate the long-term return of a state or action,

thereby guiding its decisions about which actions to take.

Typically, these algorithms are optimized as they minimize the discrepancy

between the predicted Q-value Q̂π(s, a) and the estimated action-discounted

return Gπ(s, a) for the given policy. This is given by the following [18]:

Lvalue
t = (Q̂π(st, at)−Gπ(st, at))

2 (2.7)

The estimated return is obtained through a blend of sampled future re-

wards under policy π and, in certain cases, an estimation of Qπ∗ at a future

state. Among these techniques, Q-learning stands out as the most prevalent

15

2.1. Reinforcement Learning

and influential, shown in Equation 2.8 serving as the foundation upon which

other methods are built.

Qπ∗(st, at) = E[rt + γ max
a′

Qπ∗(st, a
′)] (2.8)

where rt is the reward obtained by taking an action at in the state st.

Policy gradient methods are the second category of RL, and the one uti-

lized time and time again in this thesis. These techniques directly enhance a

stochastic policy by adjusting the action probabilities using the gradients of

those probabilities concerning a loss function. [19]. In truth, policy gradient

algorithms work to optimize the parameters θ, often represented by a Neural

Network (NN), of a differentiable, stochastic policy πθ. Aiming to maximize

the expected return (discounted or not):

J(πθ) = E[(Gt)] (2.9)

We then want to optimize the policy using gradient descent method used,

using repeated applications of stochastic ascent to approximate it:

θk+1 = θk + α∇θJ(πθ)|θk (2.10)

and

∇θJ(πθ) = Est,at,st+1...∼πθ
[
T∑
t=

Gπ(st, at)∇θlogπθ(at|st)] (2.11)

With a specified learning rate α and the estimated discounted reward for

the policy at each step of a trajectory Gπ(st, at), we can proceed.

16

2.1. Reinforcement Learning

The algorithms which optimize the policy this way are called policy gradi-

ent algorithms. Policy gradients can also be referred to as actor-critic methods,

directly updating the policy controlling the actions the agent takes. Those will

be covered in section 2.3.4.

2.1.4 On-Policy and Off-Policy

The training process chosen for each RL algorithm is an important way to

categorize them, as this is how they interact with the data used to learn.

Typically, RL algorithms undergo a process of cycling between gathering in-

formation from their environment and modifying their behavior or policy using

the acquired data.

We split these algorithms into two main categories. Understanding their

differences and how it affects them is a crucial part of the study of these algo-

rithms. In on-policy algorithms, the policy being updated is the same policy

that generates the data used for training. Conversely, off-policy algorithms

update a policy that was not responsible for generating the data. For in-

stance, Q-learning employs an ϵ-greedy policy during training, which includes

random actions for exploration purposes. However, Q-learning uses an argmax

operation to learn the optimal policy’s value, thus considered an off-policy al-

gorithm. Off-policy means you are learning/updating a policy that is different

than the one you play.

Off-policy algorithms offer the advantage of incorporating exploration with-

out directly impacting the policy itself, while on-policy algorithms need to

integrate exploration into their policy directly. Various strategies, such as

encouraging high entropy or adding noise to the policy, can be employed to

17

2.1. Reinforcement Learning

facilitate exploration in on-policy algorithms. Notably, exploration plays a

vital role in the success of on-policy algorithms, and studies have emphasized

its significance [20]. Moreover, recent empirical investigations have empha-

sized the significance of policy initialization in the on-policy algorithms’ per-

formance. These studies reveal that a poorly initialized policy can hamper

exploration and hinder the learning progress [21].

2.1.5 Model-Based v. Model-Free

Model-Based and Model-Free RL are two fundamental approaches to solve

sequential decision-making problems. In model-based RL, agents maintain

an internal model of the environment to predict how the world evolves based

on actions and states. This model allows them to plan ahead and simulate

possible trajectories, enabling them to make informed decisions and optimize

their policies. Notable examples include MCTS [22] and AlphaZero [6], which

require a model, and DynaQ [23] and MuZero [24], which combine learning

from real experience with learning from simulated experience using a learned

model.

On the other hand, model-free RL algorithms directly learn from real

experiences without constructing an explicit model of the environment. They

rely solely on observed interactions with the world to optimize their policies.

Notable model-free algorithms include Q-learning [19], DQN [25] and SARSA

[19, 26], which iteratively update their value functions based on the observed

rewards and transitions.

Both model-based and model-free RL have their unique strengths and

weaknesses. Model-based methods tend to be more sample-efficient and can

18

2.1. Reinforcement Learning

make optimal decisions in fewer interactions with the environment. However,

they might suffer from errors and inaccuracies in the learned model, leading

to suboptimal performance in complex or uncertain environments. On the

contrary, model-free methods do not require an accurate model, making them

more robust in such scenarios. Nevertheless, they might need a significant

number of interactions with the environment to converge to an optimal policy.

Recent research has focused on combining the strengths of both approaches

in hybrid algorithms, such as DynaQ+ and Model-based Value Expansion.

These methods aim to leverage the benefits of model-based planning while

addressing the challenges of model inaccuracies and high computational costs.

By finding the right balance between model-based and model-free learning,

these hybrid approaches offer a promising direction to improve the efficiency

and effectiveness of RL algorithms in various real-world applications.

2.1.6 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a powerful and widely used algorithm

in the field of artificial intelligence AI, particularly in the context of games

and decision-making problems. It belongs to the class of model-based RL

algorithms, which leverage an internal model or simulation of the environment

to guide decision-making. MCTS is known for its ability to efficiently explore

large state spaces and find near-optimal solutions by combining tree search

and Monte Carlo sampling techniques.

At its core, MCTS uses a search tree data structure to represent possible

actions and states of the environment. The algorithm iteratively expands the

tree by simulating episodes of play, known as rollouts or playouts, from the

19

2.2. Exploration vs. Exploitation Trade-off

current state to explore different trajectories. During each iteration, MCTS

selects actions based on a balance between exploitation (choosing actions that

seem to be promising based on the current knowledge) and exploration (trying

out new actions to discover potentially better alternatives). The exploration

can be guided by a prior probability distribution derived from the NN or other

learned models.

2.2 Exploration vs. Exploitation Trade-off

Exploration versus exploitation is a fundamental challenge in RL algorithms.

In RL, agents aim to maximize their long-term rewards by interacting with

an environment. Exploration involves trying out different actions to gather

information about the environment and discover potentially better strategies.

On the other hand, exploitation focuses on exploiting the current knowledge

to select actions that are believed to yield the highest immediate rewards

based on past experiences. Striking the right balance between exploration and

exploitation is crucial for finding optimal policies. Insufficient exploration may

lead to suboptimal solutions, while excessive exploration can be inefficient and

time-consuming.

RL algorithms employ various exploration strategies to strike this balance

effectively. Methods like Epsilon-Greedy and Boltzmann Exploration are com-

monly used to encourage exploration during the initial stages of learning, while

gradually shifting towards exploitation as the agent gains more knowledge

about the environment. These strategies enable RL algorithms to navigate

the complexities of real-world environments, adapt to changing conditions,

20

2.2. Exploration vs. Exploitation Trade-off

and deliver safe, efficient, and intelligent solutions across diverse domains.

In the context of game-playing AI, the exploration-exploitation trade-off

is also a critical consideration. Game environments often present vast state-

action spaces, making it challenging to discover optimal strategies. Here,

MCTS emerges as a powerful approach to address this challenge.

MCTS is a popular method for making decisions in complex environments

with large state spaces, commonly used in game-playing AI. It combines tree-

based search and sampling-based rollouts to explore and evaluate potential

actions effectively. During the search process, MCTS builds a search tree,

with each node representing a state and each edge representing an action. The

agent traverses this tree based on a tree policy, which balances the estimated

value of a node with an exploration bonus that encourages the exploration of

less visited nodes.

To further explore unexplored regions of the state-action space, MCTS

employs a default policy. The default policy is a simple, heuristic-based policy

that is used to simulate random rollouts from a given state. These random

rollouts provide MCTS with additional insights into potential outcomes and

contribute to the exploration process. The combination of the tree policy

and the default policy allows MCTS to strike an effective balance between

exploration and exploitation.

MCTS has demonstrated its effectiveness in various game-playing scenar-

ios, where exploration is essential to explore diverse strategies, and exploita-

tion is critical for exploiting the learned knowledge to make informed deci-

sions. As the field of RL and game-playing AI continues to evolve, refining

the exploration-exploitation trade-off in MCTS remains an active area of re-

21

2.3. Deep Reinforcement Learning

search to enhance the algorithm’s performance and adaptability across dif-

ferent game environments. Incorporating RL techniques, such as exploration

through curiosity-driven learning, as explored by Pathak et al. [27], provides

further insights into how to effectively balance exploration and exploitation in

MCTS for various applications, ranging from autonomous driving to financial

trading and robotics.

2.3 Deep Reinforcement Learning

Deep RL is a subfield of machine learning which utilizes NNs with multiple

layers to automatically learn hierarchal representations of data, leading to

powerful pattern reognition and planning capabilities.

2.3.1 Function Approximation

In the realm of RL, early algorithms were designed to operate in relatively

simple environments, relying on tabular data structures to store and pre-

dict values for every possible action in every possible state. However, as the

complexity of problems increases, such tabular approaches become imprac-

tical for high-dimensional scenarios due to their scalability limitations. To

address this challenge, function approximation techniques have emerged as

a powerful alternative. Function approximation involves replacing the tabu-

lar approach with a parameterized function capable of producing outputs for

any valid state or action input without requiring storage for each possibil-

ity. Indeed, an important consideration is the possibility of replacing Q, V ,

and π tables with function approximation methods, such as DNNS. Utilizing

22

2.3. Deep Reinforcement Learning

function approximation can offer more efficient and scalable representations

of game states, empowering agents to handle larger and more complex envi-

ronments while achieving enhanced performance. The function’s parameters

can be iteratively updated to enhance the policy, often utilizing techniques

like policy gradient methods. By approximating the outputs of a vast (po-

tentially infinite) table, function approximation methods are able to handle

complex environments that are infeasible for tabular methods.In contrast to

tabular methods that have independent outputs for each input, function ap-

proximators possess interconnectedness, enabling them to extrapolate to new

states or state-action pairs that resemble existing ones. This property makes

function approximation well-suited for navigating high-dimensional environ-

ments. While linear and kernel-based function approximators were once pop-

ular, modern RL predominantly relies on DNNs as the standard method for

function approximation. [28, 5].

2.3.2 Neural Networks

Neural networks play a vital role in function approximation. They consist of

layers of interconnected units that apply linear transformations to their in-

puts using adjustable weights. The forward pass involves passing the input

through the network, where each unit’s output is determined by a function

with trainable parameters. The output is obtained by applying an element-

wise activation function. Backpropagation, introduced by Rumelhart et al.

[29], enables the training of NNs by computing partial derivatives of the error

with respect to the network’s weights. The weights are then updated using

gradient descent. The performance of the model is evaluated using a cost

23

2.3. Deep Reinforcement Learning

function that measures the error between the predicted output and the de-

sired output. This error is backpropagated through the network to adjust the

weights. Various techniques, such as stochastic updates or batch updates, ex-

ample shuffling, input normalization, and nonlinear activation functions, have

been explored to enhance the training process. These techniques contribute to

improving the NN’s ability to approximate complex functions and minimize

the loss between predicted and desired outputs.

2.3.3 Convolutional Neural Networks

LeCun [30] observed that simple fully-connected feed-forward NNs could not

maintain the topology of the input. As images have specific local structures

and pixels have a high spatial correlation, LeCun et al. presented Convo-

lutional Neural Networks to extract local features. CNNs differ from fully-

connected feed-forward NNs in that the parameters that are trained are the

parameters for the kernel in the convolution. A convolution is an operation

defined as:

(f ∗ g)(t) =

∫ ∞

−∞
f(τ)g(t− τ)dτ (2.12)

The convolution of two functions f and g with respect to the variable

t. The convolution operation combines the two functions by integrating the

product of one function, f , and the time-reversed and shifted version of the

other function, g(t− τ), over the entire range of τ .

Alternatively, if you’re looking for the discrete form of convolution, it can

be represented as:

24

2.3. Deep Reinforcement Learning

(f ∗ g)[n] =

T∑
k=0

f [k]g[n− k]

Here, the convolution of two discrete sequences f and g is computed by

summing the element-wise product of one sequence, f [k], and the time-shifted

version of the other sequence, g[n− k], over all possible values of k.

These equations capture the essence of the convolution operation in both

continuous and discrete domains.

In the context of DeepMind algorithms, CNNs play a crucial role in pro-

cessing and analyzing game-related data, particularly in visual domains such

as Atari games. CNNs are employed to extract meaningful features and repre-

sentations from raw pixel inputs, enabling the algorithms to understand and

make decisions based on the game state.

In AlphaGo and AlphaZero, CNNs are used as policy networks to predict

the probabilities of different moves or actions given a game state. These net-

works learn to encode the patterns and structures present in the game board,

allowing the algorithms to make informed decisions based on the learned pol-

icy.

In MuZero, CNNs are utilized as dynamics models to predict the next state

and next reward from the current state and action. These models help simulate

future trajectories during the search process, aiding in decision-making and

value estimation.

The design and architecture of the CNNs used in these algorithms are

carefully crafted to capture and exploit the specific characteristics of the game

domains. This includes considering factors such as input size, number of lay-

25

2.3. Deep Reinforcement Learning

ers, kernel sizes, and activation functions. The CNNs are trained using large

datasets and sophisticated optimization techniques to learn effective represen-

tations and parameters.

2.3.4 Actor Critic Methods

Actor-critic networks are a form of policy optimization algorithms. These

methods involve the learning of a stochastic policy by the agent, referred to

as the ”actor”, which is parameterized by a function such as a NN. Simulta-

neously, an accompanying ”critic” function, often implemented as a separate

NN, learns to estimate the state-value function. The critic’s estimations serve

to calculate advantage values used in training the actor function.

When training the actor and critic together, the critic can effectively main-

tain a current estimation of the state-value function, relying on the policy

employed by the actor. This interaction between the actor and critic en-

ables the improvement of the actor’s decision-making abilities by leveraging

the critic’s value estimates. This approach is commonly used in policy gra-

dient algorithms, including Vanilla Policy Gradient (VPG) and Trust Region

Policy Optimization (TRPO) [31]. Additionally, Proximal Policy Optimiza-

tion (PPO) [32], Advantage Actor-Critic (A2C), and Asynchronous Advantage

Actor-Critic (A3C) [33]also perform gradient ascent to optimize performance.

While PPO is often referred to as a policy gradient algorithm, it is more accu-

rately an approximation or implementation of the fundamental policy gradient

method. These methods effectively use a policy update based on the gradient

of the performance objective with respect to the policy parameters. Further

details and relevant references for these methods can be found in the literature.

26

2.3. Deep Reinforcement Learning

While the actor and critic can be distinct functions, they may also share

certain parameters, allowing for information transfer and enhancing the learn-

ing process. Parameter sharing facilitates the utilization of shared represen-

tations, potentially expediting convergence.

Actor-critic methods encompass the advantages of both value-based and

policy-based approaches in RL. The actor learns the policy, while the critic

provides valuable feedback on the desirability of different states. This com-

bination leads to more efficient and effective learning, resulting in enhanced

decision-making across a variety of domains.

AlphaZero can be loosely considered as an actor-critic method. While the

original AlphaZero paper does not explicitly use the terminology of ”actor-

critic,” it incorporates elements of both actor and critic in its approach.

In the AlphaZero architecture, the policy network can be seen as the actor,

as it estimates the probabilities of different actions and guides the agent’s

decision-making process. The policy network selects actions based on a policy

distribution, which is updated during training to improve the agent’s policy.

On the other hand, the value network can be seen as the critic in Alp-

haZero. It estimates the value or expected outcome of a given game state,

providing a measure of how favorable the state is for the agent. The value

network is trained to minimize the mean-squared error between its predicted

values and the actual outcomes of the games played.

Therefore, while not explicitly referred to as an ”actor-critic” method in

the original paper, the AlphaZero algorithm incorporates the key components

and principles associated with actor-critic methods.

27

2.3. Deep Reinforcement Learning

2.3.5 Self-Play Advantages

Self-play is a training technique used in RL, where an agent learns by playing

against itself rather than relying on external supervision or expert knowledge.

Self-play is a learning approach in AI where an agent, such as a game-

playing algorithm, improves its performance by playing against itself. It in-

volves simulating a competitive environment within the AI system, where the

agent acts as both players, taking turns to make moves and learn from the

resulting game outcomes. The agent starts with minimal knowledge about

the game and gradually refines its strategies through countless iterations of

self-play. By continually challenging itself and exploring different actions, the

agent learns from its successes and failures, adjusting its decision-making pro-

cess based on the feedback obtained from its own simulated games. This self-

reinforcing learning loop allows the AI agent to discover and adapt to effective

strategies, ultimately achieving higher levels of performance without the need

for external training data or human expertise. Self-play has proven to be a

powerful technique, leading to remarkable successes in complex game-playing

tasks and opening up new possibilities for AI research and applications.

The goal of self-play is to enable an agent to learn and improve through

a process of self-exploration, discovering optimal strategies and refining its

decision-making abilities. This approach addresses the challenge of training

AI models in complex domains where expert knowledge may be limited or

unavailable.

Both AlphaZero and MuZero leverage self-play as a key component of their

training process. By playing against themselves, these algorithms can generate

28

2.4. Conclusion

a vast amount of training data, exploring a wide range of possible moves and

strategies. This self-generated data serves as a diverse and representative

training set, enabling the models to learn from their own experiences.

The use of self-play offers several advantages for AlphaZero and MuZero.

Firstly, it provides an autonomous and adaptive learning environment. As

the algorithms compete against previous versions of themselves, they face

opponents of varying strengths, constantly challenging their own capabilities.

This adaptive nature ensures ongoing improvement and exploration of new

strategies.

Additionally, self-play allows AlphaZero and MuZero to train in a com-

putationally efficient manner. Since they do not rely on external supervision

or expert guidance, these algorithms can generate training examples rapidly

and at scale. This efficiency enables them to engage in numerous iterations of

self-play, accelerating the learning process and facilitating the development of

robust strategies.

Moreover, self-play promotes the discovery of novel and innovative game-

play. By exploring a wide range of moves and strategies, AlphaZero and

MuZero can uncover unconventional tactics that may not have been consid-

ered by human experts. This capacity for creative exploration allows these

algorithms to achieve groundbreaking performance in complex game domains.

2.4 Conclusion

In summary, this chapter provided an overview of the diverse set of tools used

in modern machine learning and AI for games. We explored the fundamental

29

2.4. Conclusion

concepts, algorithms, and techniques that form the basis of game-playing AI.

While this chapter covered the essential foundations, each subsequent chapter

will delve deeper into the relevant literature, exploring specific algorithms and

their applications in various game environments.

30

3 Boosting AlphaZero through

MCTS enhancements

3.1 Introduction

Monte Carlo Tree Search (MCTS) is a model-based method which aims to

calculate optimal decisions in a chosen domain (oftentimes of large state and

action space) by taking random sequences of decisions and building a search

tree according to it’s simulations [34]. Although it’s introduction into the

world of computing is relatively recent, its influence on AI methodologies has

been significant, particularly in domains represented by decision trees, with

notable impacts on board games and planning problems. Since the original

MCTS algorithm was developed, there has been a tidal wave of time and

energy dedicated to improving and perfecting the algorithm within various

environments. More recent work has also coupled MCTS and other powerful

look-ahead search algorithms with NNs, resulting in state-of-the-art game-

playing agents and decision-making systems [35, 36, 5]. Unfortunately, these

require the use of large pre-computed tables of known moves, professional

31

3.1. Introduction

datasets of human expert games, significant and sometimes unobtainable com-

puting resources and carefully crafted heuristic functions with a variety of edge

cases.

In this chapter, we analyze and compare various proposed modifications

to the MCTS algorithm, as well as their impact on performance when ap-

plied in conjunction with NNs within the AlphaZero algorithm. We imple-

ment the enhancements inividually within both MCTS and AlphaZero, thus

producing MCTS, MCTS-UCT, MCTS-LA, AlphaZero, AlphaZero-UCT and

AlphaZero-LA. Secondly, we then take it one step further and implement the

enhancements concurrently, producing MCTS-ALL and AlphaZero-ALL. The

first modification we explore is the implementation of the traditional Upper

Confidence Bound for Trees (UCT) [22] algorithm within MCTS as a baseline

and then within AlphaZero. UCT was designed to balance exploration and

exploitation during the search process by taking into account both the average

reward and uncertainty of a node in the search tree. This allows the algorithm

to efficiently converge to a good solution without getting stuck in suboptimal

paths. The second modification is Loss Avoidance (LA) [37, 38], which im-

proves the performance of the algorithm by preventing it from making moves

that are likely to result in a loss.

First, we will review the basic algorithms we will be working with in this

thesis, MCTS and AlphaZero. Then we dive into a contextual literature re-

view. Second, we dive into the two aforementioned enhancement strategies.

Then, through a series of experiments, we will compare the performance of

these modifications on Connect4 and Othello against random, greedy and

minimax algorithms and identify the best-performing algorithm for each game.

32

3.2. Monte Carlo Tree Search

Our findings provide valuable insights into the potential of incorporating mod-

ifications in MCTS-based algorithms to enhance their performance. These

modifications can be applied to algorithms integrated with RL and NNs, like

AlphaZero, as well as standalone MCTS algorithms. The implications of our

study can guide future research in this field, paving the way for further ad-

vancements and improvements in the utilization of MCTS for solving complex

problems.

3.2 Monte Carlo Tree Search

The complexity of modern strategy games poses the most significant chal-

lenge when developing AI for such domains. While expert-based techniques

offer rapid progress in achieving a reasonable level of play, they fall short

when confronted with complex or ambiguous situations that are difficult to

encode using heuristics. Search techniques present an appealing solution to

create adaptable and dynamic AI. However, traditional search methods like

minimax, which explore all possible moves and evaluate resulting states, be-

come impractical due to the vast number of moves or limitations imposed by

heuristic quality in strategy games.

MCTS is a powerful search algorithm that has proven successful in a wide

range of domains, including game playing, decision making, and optimization

[34]. It combines heuristics and probabilistic techniques to explore and eval-

uate potential solutions in a systematic manner. MCTS has demonstrated

remarkable performance in challenging environments with complex decision

spaces, making it a valuable tool in various domains requiring intelligent

33

3.2. Monte Carlo Tree Search

decision-making.

MCTS is an informed tree search technique as it uses gathered information

from previous search iterations to guide the exploration of the tree in future

iterations. Over the years, MCTS has been instrumental in achieving signifi-

cant advancements in a variety of board games and computer games [39, 40],

particularly due to its ability to manage complex search spaces by recursively

applying Monte Carlo techniques during the search process. The robustness

and adaptability of MCTS have solidified its position as a key technique de-

spite the myriad of obstacles presented by these complex environments.

When applying tree search to address complex problems, it is possible for

our algorithm to mistakenly identify a suboptimal action as the best choice.

To mitigate this issue, the MCTS algorithm is employed, which continuously

evaluates different actions and paths during the tree search process. By iter-

atively exploring the search space, MCTS progressively focuses on the most

promising regions of the search tree, gradually refining its understanding of

the problem domain. This adaptive exploration strategy allows MCTS to dy-

namically adjust its exploration factor and improve the quality of its decisions.

3.2.1 The Algorithm

Before, doing an actual move, MCTS will do numerous simulations in order

to evaluate the part of the game tree and determine the best action to take.

Each iteration and update of that tree, referred to as a tree-walk, involves the

following four distinct phases, as seen in Figure 3.1:

Selection: The first phase will traverse the tree starting from the root

node (current game state) using a tree policy. While a node s is found in the

34

3.2. Monte Carlo Tree Search

Figure 3.1: MCTS for one iteration. A single iteration refers to the process of
selecting, simulating, propagating, and backpropagating a single search path
in the search tree.

tree, the next edge (s, a) leading to a child node s′ is chosen. The selection

of the child nodes during the tree traversal is done uniformly at random.

This means that each node has an equal probability of being selected. While

this approach ensures that all possibilities are eventually explored, it lacks

efficiency, as it doesn’t prioritize nodes that seem more promising based on

previous simulations.

Expansion: If the selected action a from the state s is not represented in

the tree, then the algorithm is expanding a new edge (s, a) and a new child

node s is added to the tree.

Simulation: For the rest of the simulated game, actions are selected using

a default policy, typically a random play, until a terminal node is reached. The

appropriate assignment of action selection probabilities plays a crucial role in

determining the quality of gameplay. When all legal actions are chosen with

equal probability, the resulting strategy tends to be weak and ineffective,

leading to suboptimal performance of the Monte-Carlo program. Therefore,

35

3.2. Monte Carlo Tree Search

ensuring a proper weighting of action selection probabilities is essential to

achieve optimal gameplay and maximize the program’s effectiveness. We can

use different default policies, some which may rely on heuristic knowledge, to

give larger weights to actions that look more promising and guide our agent

towards a less unsuccessful level of execution.

Backprop: After reaching the end of the tree-walk, there is an associated

reward computed for that terminal state. This reward value (and any acquired

reward during the simulation process) is then used to update each tree node

along the current path from this iteration.

This process is repeated multiple times to generate multiple simulations,

which helps in estimating the values of different nodes. The outer loop, as seen

in Figure 3.2 and 3.3 of MCTS continuously improves the decision-making ca-

pabilities, allowing the algorithm to adapt and learn more effective strategies

as it gains more information from simulations. The game action finally ex-

ecuted by the program in the actual game, is the one corresponding to the

child of the root node which has the best value.

Let us note that of the four aforementioned phases, there are two distinct

sections which can be modified to affect performance. Firstly, we have Tree

Policy defined as: the policy used to select or create a new leaf node from

the previous leaf nodes already contained within the search tree (selection and

expansion). Second, we find the Default Policy which is defined as: the policy

used to play out through the domain from a given non-terminal node s to

produce a reward value estimate. These will be the components where we

propose to certain configurations and modifications in order to evaluate indi-

vidual performance within a selection of different environments. We present

36

3.2. Monte Carlo Tree Search

Figure 3.2: MCTS outer loop and inner loop interaction. The combination
of these inner loops constitutes the overall MCTS process, which is often
performed iteratively until a stopping criterion, such as a time limit or a
certain number of iterations, is met.

a simple pseudocode to illustrate the process in Algorithm 1.

Algorithm 1 Vanilla MCTS approach

function : MCTSEARCH(s0)
create root note v0 with state s0
while within computation budget do

v0 ← TREEPOLICY(v0)
∆← DEFAULTPOLICY(s(v0))
BACKUP(vt,∆)

end while

The policy update mechanism is how MCTS tackles the “exploration-

exploitation” trade-off issue. It utilizes newly discovered actions to update

its policy while simultaneously exploring the local space for alternative paths.

Essentially, the algorithm will continue to explore and discover previously un-

seen nodes of the tree, updating its tree policy based on a more considerable

37

3.2. Monte Carlo Tree Search

Figure 3.3: MCTS outer loop, performed to gradually build the search tree and
improve the action selection based on the information gathered from previous
iterations.

amount of data. As it does, it diminishes the probability of overlooking better

paths toward a solution and, therefore, better policies. This can be classified

as the “exploration” aspect of this approach.

Let it be noted that this version of tree search design also contains the

“exploitation” side of the coin in order to make it efficient and balance out

the issue mentioned above. Occurring in the second half of the algorithm,

where it maintains a greedy policy as it sticks to the path with the greatest

estimated value, enabling the tree to explore its depth alongside its breadth.

MCTS comes with its own share of drawbacks: within problems with

large state spaces and correspondingly large action spaces, the tree will grow

in depth and in breadth quickly due to a high branching factor after a few

38

3.3. AlphaZero

iterations and may result in the algorithm failing to reach an optimal path,

and therefore policy, within reasonable time and computational constraints.

Additionally, with the vanilla approach, MCTS aims not to use any pragmatic

heuristic function for positions in non-terminal states.

3.3 AlphaZero

AlphaZero is a powerful machine learning algorithm that learns complex board

games like Chess, Go, and Shogi without prior knowledge. It combines DNNs,

RL, and MCTS to play games. AlphaZero employs a variant of the Polynomial-

UCT (PUCT) algorithm to balance exploration and exploitation during the

MCTS process [6, 41].

There are three main processes for the AlphaZero algorithm: self-play,

NN training and comparison between new and old network. During self-

play, AlphaZero generates games where the NN, trained by the current MCTS

policy, plays each move. This consists of a batch of episodes of self-play, which

terminate once a terminal state sT is reached (ie. when a winner, or none, has

been established), when the game exceeds the maximum number of allocated

moves, or when the search value returned by MCTS falls below a resignation

threshold.

The NN used within AlphaZero is trained through a self-play RL algorithm

that uses MCTS to play each move. First, the NN is initialized to random

weights θ0 . At each subsequent iteration, games of self-play are generated.

Through each time-step t and each associated state st a MCTS search is

executed using the previous iteration of the NN fθ−1 and outputs a vector of

39

3.3. AlphaZero

search probabilities recommending moves to play πt which it samples to play

the next move.

During each iteration of MCTS, it visits a new game state and evaluates

the network policy. AlphaZero employs a variant of the PUCT (Polynomial-

UCT) algorithm [41] to strike a balance between exploration (i.e., visiting

game states recommended by the initial policy) and exploitation (i.e., focusing

on states with high expected rewards). This prior policy, learned from millions

of games of self-play, provides a heuristic that guides the exploration towards

more promising parts of the search space. This makes the search more efficient,

as it can effectively leverage the knowledge acquired from past games to guide

it.

Each tree edge stores a set of characteristics, N(s, a),W (s, a), Q(s, a), P (s, a)

where N(s, a) is the visit count, W (s, a) is the total action value, Q(s, a) is the

mean action value and P (s, a) is the prior probability given by the network

for selecting that edge. MCTS in AlphaZero follows the same general outline

of the four aforementioned steps of the MCTS search mechanism with a few

changes.

During the Selection phase, each simulation will traverse the tree by se-

lecting the next existing edge with the following PUCT tree policy for action

selection, shown in Equations 3.1 and 3.2:

PUCT (s, a) = cpP (s, a)

√∑
bN(s, b)

N(s, a) + 1
(3.1)

πPUCT (s) = arg max
a

(Q(st, a) + PUCT (st, a)) (3.2)

40

3.3. AlphaZero

which is proportional to the quotient of the prior probability and the visit

count for that edge until a leaf node s′ is encountered.

The Expansion phase is only comprised of the expanded leaf node being

evaluated by the NN fθ(sL) = (p, v) and the prior probability vector is then

stored in the outgoing edges from s. The leaf node is expanded and its node

values are initialized to zero. Once they go through a backprop step, the visit

counts and values are updated.

N(st, at)← N(st, at) + 1

W (st, at)←W (st, at) + v

Q(st, at) =
W (st, at)

N(st, at)

The data from each time step (st, πt, zt) is stored according to the cor-

responding player at time t. Once the indicated amount of self-play games

are completed, new network parameters θi are trained from the stored data,

sampled uniformly from all the time-steps of the last batch of self-play. The

NN aims to minimize the error between it’s output vt and the winner of the

sampled self-play game zt. This allows it to output similar move probabilities

p(s, a) to the search probabilities given by MCTS πt. This is done by adjusting

the NN parameters θ through gradient descent on the following loss, which

combines the MSE and cross-entropy loss:

l = (zt − v)2 − πT log p + c∥θ∥2 (3.3)

where v is the output of the NN, zt is the winner of the sampled game and

41

3.4. Literature Review

c is a parameter controlling the level of L2 weight regularization.

The primary motivation behind this work is that throughout the different

generations of the Alpha algorithms, there have been substantial changes to

different sections of the algorithm, including NN quantities and architecture,

the removal of Supervised Learning (SL) techniques and even the shift from

model-based to model-free learning. But oddly enough, the search algorithm

has remained mostly the same throughout all the versions. Furthermore, there

have been some significant advancements within the realm of MCTS which

have yet to be applied and tested within noteworthy environments [34]. We

aim to provide insight for the behaviour of the MCTS algorithm advancements

within the RL approach of AlphaZero.

3.4 Literature Review

Numerous research endeavors have been undertaken to enhance the perfor-

mance and efficiency of the AlphaZero algorithm. Some of these approaches

involve modifications to the MCTS process. For instance, Anthony et al.

[42] proposed an innovative approach that amalgamates imitation learning

with tree search, creating a dynamic and iterative learning loop between an

apprentice and an expert. Stankiewicz et al. [43] suggested specific enhance-

ments to the MCTS algorithm, using two techniques, Last-Good-Reply (LGR)

and N-grams, to enhance the play-out step of the MCTS algorithm. Addition-

ally, the selection step was improved by initializing the visit and win counts

of new nodes based on pattern knowledge. Other researchers have focused

on exploring adjustments to the training process. This includes the work of

42

3.4. Literature Review

Seify et al. [44], who combined MCTS with DRL, featuring novel action value

normalization.

Additionally some variations address specific challenges and improve its

efficiency in various domains. One such approach is the Nested Monte Carlo

Search (NMCS) [45], which employs multiple nested searches to increase the

accuracy of the evaluations. By simulating shorter rollouts within a larger

rollout, NMCS reduces variance and enhances the quality of evaluations. he

Double Progressive Widening (DPW) algorithm [46] is another notable vari-

ation that extends the Progressive Widening technique. DPW incorporates

two different widening mechanisms to efficiently explore the search space. It

dynamically allocates child nodes to achieve better coverage of promising re-

gions and, at the same time, ensures a balanced exploration of the entire game

tree. The MCTS with Upper Confidence Bounds Applied to RAVE (UCT-

RAVE) [47] is an extension of UCT that incorporates the Rapid Action Value

Estimation (RAVE) heuristic. RAVE updates statistics using additional in-

formation from playouts, which includes the result of all moves played from a

given state, even if they were not directly selected during the search.

To address the challenge of large action spaces, the MCTS with all Moves

as First (MCTS-AMAF) [48] was introduced. It combines MCTS with the All

Moves as First (AMAF) heuristic, which prioritizes moves that have not been

visited in the current simulation. This approach enhances the exploration

of the search space and allows for a more thorough exploration of possible

actions. Other notable variations include the Clustered Monte Carlo Tree

Search (CMCTS) [49], which groups similar game states to accelerate the

search process, and the Parallel Monte Carlo Tree Search (PMCTS) [50], which

43

3.4. Literature Review

leverages parallel computing to speed up the search in complex games.

Furthermore, variations of the UCT algorithm [51] have been explored,

which adaptively balance exploration and exploitation during tree search. Ad-

ditionally, approaches like Loss Avoidance [42] have been proposed to mitigate

overfitting during the learning process, ensuring more robust and generalized

performance.

Moreover, the advent of MuZero [24], a successor to AlphaZero, further

pushes the boundaries of self-learning algorithms by eliminating the need for

a pre-existing model or knowledge of the game dynamics. This innovative

approach enables MuZero to learn directly from raw input and achieve state-

of-the-art performance across multiple domains. These varied modifications

highlight the ongoing potential for improvements to the AlphaZero algorithm

and its successors, such as MuZero. These algoriths, as part of the Alpha

family, will be a main highlight within Chapter 4.

Soemers et al. [37] outline a variety of methodological enhancements made

to the MCTS algorithm to adapt its implementation to improve it’s perfor-

mance within difficult game-playing environments. They introduce the N-

gram Selection Technique, which is a playout policy update that biases the

steps in favor of action sequences that have been successful in past simula-

tions. One particularly notable concept is LA, in which the agent seeks to

minimize losses by immediately pursuing superior options when faced with a

loss.

These variations illustrate the versatility of the MCTS algorithm and its

ability to adapt to different scenarios and challenges. The ongoing research

and development of MCTS and its variations continue to expand the frontiers

44

3.5. Proposed Enhancements

of game-playing AI and decision-making algorithms, driving advancements in

the field of AI and beyond.

3.5 Proposed Enhancements

The decision to test the existing algorithms, UCT and LA in AlphaZero stems

from the motivation to explore and understand how these modifications can

further enhance the performance and capabilities of the AlphaZero algorithm.

UCT, being a widely adopted and successful variation of the MCTS algorithm,

offers a compelling opportunity to investigate how adaptive exploration strate-

gies can influence the search process, potentially leading to more efficient and

effective decision-making. By incorporating UCT into AlphaZero, we aim to

assess whether this variation can improve the algorithm’s ability to balance

exploration and exploitation, thereby leading to better policy generation and

gameplay.

Similarly, the incorporation of LA in AlphaZero arises from the need to ad-

dress potential overfitting during the learning process. By integrating the LA

technique, we aim to mitigate the risks of excessively tailoring the algorithm’s

strategy to specific training data, ensuring more robust and generalized per-

formance across diverse game scenarios. This approach is of particular interest

as it has the potential to enhance the stability and reliability of AlphaZero’s

learning process, allowing it to adapt more effectively to previously unseen

game situations.

In summary, the choice to test UCT and LA in AlphaZero is motivated

by the desire to explore cutting-edge modifications to the MCTS algorithm

45

3.5. Proposed Enhancements

and address specific challenges in RL. By integrating these variations into Al-

phaZero, we seek to unlock further advancements in strategic decision-making

systems, ultimately contributing to the broader field of AI and game-playing

algorithms.

3.5.1 UCT Policy

The Upper Confidence Bound for Trees (UCT) algorithm [22], is a value-driven

RL technique, with the goal of maximizing the reward from a set of options

with uncertain outcomes. It primarily concentrates on the initial state of a

game and the succeeding state tree, disregarding other game aspects. This

is achieved by utilizing the principles of the multi-armed bandit problem-

solving algorithm, specifically the Upper Confidence Bound (UCB) strategy,

introduced by Auer et al. [52] to guide it’s search, favouring actions with both

high average reward and high uncertainty.

UCB = X̂s + 2

√
lnN(s)

N(s, a)
(3.4)

UCB, as shown in Equation 3.4, has the propitious property that it guar-

antees to converge to the minimax tree, meaning it is optimal. Once the

suggested adjustments to this policy are implemented in order to apply it to

rollout-based Monte-Carlo planning.

During the selection phase, the tree policy chooses the next node according

to the statistics stored. The action-value function QUCT (s, a), in Equation 3.5,

is estimated by a search tree in a tabular representation T ⊆ SxA, containing

all the (state, action) visited pairs.

46

3.5. Proposed Enhancements

Q̂UCT =

[
QUCT (s, a) + cuct

√
logN(s)

N(s, a)

]
(3.5)

where QUCT (s, a) is the average reward gathered over the previous tree-walks

that have traversed that node s and edge (s, a) and therefore child node s′.

N(s, a) is the number of times where the action a has been selected from state

s and N(s) counts the total number of visits to a state s. The action selection

is dictated by the Equation 3.6.

πUCT (s) = arg max
a

Q̂UCT (3.6)

This formula encourages the exploitation of higher reward choices while

the right-hand term encourages the exploration of less visited choices. Of

particular significance is the second term, or the exploration term. As having

children nodes which have not been explored will yield a dominantly large

UCT value, therefore they are assigned the largest possible value. This allows

each child node to be explored at least once. Allowing this approach to be a

promising candidate in overcoming the exploration-exploitation conundrum.

We also explore a small variation of UCT [51] which incorporates a prior

policy πθ, shown in Equation 3.7, unlike the original UCT algorithm. This

allows us to incorporate it within the AlphaZero algorithm. We briefly walk

through the steps in Algorithm 2.

Q̂UCT =

[
QUCT (s, a) + cuct

√
πθ(a)

logN(s)

N(s, a)

]
(3.7)

47

3.5. Proposed Enhancements

Algorithm 2 MCTS with UCT

function : MCTS UCT(s0)
create root note v0 with state s0
while within computation budget do

v0 ← UCT TREEPOLICY(v0)
∆← DEFAULTPOLICY(s(v0))
BACKUP(vt,∆)

end while
return action of the best child of v0

function : UCT TREEPOLICY(v)
while v is non-terminal do

if v is not fully expanded then
return EXPAND(v)

else
v ← BESTCHILD(v)

end if
end while
return v

function : BESTCHILD(v)
return πUCT (s)

function : EXPAND(v)
select untried action a from A(s(v))
add child v′ to v with s(v′) = f(s(v), a)
return v′

3.5.2 Loss Avoidance

MCTS is often used for games with small state spaces and therefore finite

win states. However, finding these states can be difficult due to the vastness

of the game tree, which can pose a challenge even for powerful algorithms

like MCTS. There are many games which have a high number of losing game

states that are quickly discovered, this allows for the opportunity of avoiding

them in future case.

48

3.5. Proposed Enhancements

Loss Avoidance (LA) [37] is a technique used in MCTS to bypass losses

encountered during the search process. Instead of backpropagating losing

results as in traditional MCTS, LA generates a state for every sibling of the

last node in a simulation, and only the node with the highest evaluation is

backpropagated. All generated nodes are still added to the tree and store

their own evaluation in memory.

LA allows MCTS to maintain an optimistic view of the value of nodes

by avoiding losses and continuing to explore promising nodes that may have

otherwise been discarded. This approach differs from traditional MCTS, which

backpropagates all outcomes equally. LA can be viewed as a modification

to the criteria used to choose the next node to expand in the tree and the

backpropagation method, favoring nodes that have not been explored or have

been explored less. The modified formula for selecting child nodes during the

selection step can be represented as in Equation 3.8:

Q̂LA(s, a) =
QLA(s, a) ∗N(s, a) + (

∑T−t
i=1 γiL(s, a)t+i) ∗ N̂(s, a)

N(s, a) + N̂(s, a)
(3.8)

where L(s, a) is the chosen reward for child node a from state s. Typically

tailored per environment but generalized by setting it to an egregiously large

negative value. We provide the LA algorithm we used in Algorithm 3.

49

3.5. Proposed Enhancements

Algorithm 3 MCTS with Loss Avoidance

function MCTS LA(s0)
Create root node v0 with state s0
while within computation budget do

v0 ← LA TREEPOLICY(v0)
∆← DEFAULTPOLICY(s(v0))
BACKUP(vt,∆)

end while
return action of the best child of v0

end function

function LA TREEPOLICY(v)
while v is non-terminal do

if v is not fully expanded then
return EXPAND(v)

else
v ← BESTCHILD LA(v)

end if
end while
return v

end function

function BESTCHILD LA(v)
return arg maxa Q̂LA

end function

function EXPAND(v)
Select untried action a from A(s(v))
Add child v′ to v with s(v′) = f(s(v), a)
return v′

end function

50

3.6. Methods

3.6 Methods

3.6.1 Environments

The choice to use Connect4 and Othello as the primary environments for our

experiments was deliberate and strategic. These games possess specific charac-

teristics that make them well-suited for evaluating the enhancements discussed

in this paper. First, both Connect4 and Othello are played on squared-boards,

providing a structured and well-defined state space that allows for systematic

exploration and comparison of different algorithms and variations. Second,

being zero-sum games, the objectives of Connect4 and Othello align with the

core principles of RL, where agents aim to maximize their own rewards while

minimizing the opponent’s gains.

Furthermore, Connect4 and Othello are full-information games, meaning

that all relevant information about the game state is readily available to the

players. This aspect is essential for evaluating the effectiveness of the en-

hancements in decision-making accuracy and strategic planning. By having

complete knowledge of the game board, the algorithms can make informed and

strategic moves, allowing us to measure their performance more accurately.

Additionally, Connect4 and Othello are well-known and widely studied

games, which have served as benchmarks for evaluating various AI algorithms.

This prior research [53] provides a rich set of baseline results and reference

points for comparison, enhancing the validity and significance of our experi-

mental evaluations.

By utilizing these games, we could capitalize on the similarities between

their game structures and network architechtures and those of AlphaZero

51

3.6. Methods

and MuZero, thus reducing the potential confounding factors introduced by

varying input representations, network architectures, and other environment-

related variables. This strategic choice allowed us to focus our investigation

on the fundamental capabilities of the algorithms and better isolate their re-

spective performances within the context of these specific games.

Connect4

The first game is Connect4. Connect4 is a popular children’s game played on

a 7x6 grid. It involves two players, red and black, competing on a vertical

grid with six rows and seven columns. The game starts with red making the

first move by dropping a disk, also known as a ”stone,” into one of the seven

columns. The disk then falls into the lowest unoccupied cell in that column.

The players take turns dropping disks into columns until one player manages

to connect four disks either horizontally, vertically, or diagonally. This par-

ticular game has been extensively studied and proven to be a suitable task

for learning algorithms, with traditional model-free approaches demonstrating

exceptional performance in solving it. According to Numberphile, there are

4,531,985,219,092 ways to fill a Connect4 grid.

Connect Four is a well-studied game with a known outcome for perfect

play [53]. It is a first-player win, where the first player will typically achieve a

victory before the 41st move by making their first move in the centre column.

However, starting in the columns adjacent to the center results in a theoretical

draw. These well-established properties of Connect Four provide valuable

insights into its strategic landscape and serve as a benchmark for evaluating

algorithms and enhancements in this domain.

52

3.6. Methods

Agents have complete information about the Connect Four game and can

observe each other’s moves. The agent is provided with the following variables:

• Initial State: Specifies how the game is set up. Connect Four typically

starts with an empty board where players take turns dropping their

pieces into columns.

• Players: Represented as [1, -1]. The player pieces on the board and

their positions aid in evaluating the state from the maximizing player’s

perspective.

• Action: Legal moves in the state space correspond to placing a piece in

an empty column of the board.

• Result: Transition model that specifies the result of moves in the state

space, including the updated board after each player’s move.

• Terminal State: The game ends when a player successfully connects four

of their pieces either horizontally, vertically, or diagonally, or when the

board is completely filled with pieces.

Othello

The second game is Othello, also known as Reversi, a strategy board game

played on an 8x8 board. The game is played by two players, each with their

own set of discs of different colors, typically black and white. The game begins

with four discs placed in the center of the board in a square pattern, with two

discs of each color facing each other. The objective of the game is to have

more discs of your color on the board than your opponent by the end of the

game. Players take turns placing their discs on the board, with each placement

potentially flipping some of the opponent’s discs to their own color. A player

53

3.6. Methods

must place their disc adjacent to an opponent’s disc so that it ”sandwiches”

one or more of the opponent’s discs between two of their own. The sandwiched

discs then flip to the player’s color. If a player cannot make a legal move, their

turn is skipped. The game reaches a terminal state when no other legal move

is available or when both agents pass their turn, and the winner is the player

with the most discs of their color on the board.

In the game, agents possess complete information about the game state

and can observe each other’s moves. The agent is given the following variables:

• Initial State: Describes the game setup, where we introduce diverse

random board states to assess the search performance in start, middle,

and end game scenarios.

• Players: Represented as [-1,1], indicating player pieces on the board

and their positions, which help evaluate the state from the maximizing

player’s viewpoint.

• Action: Denotes the legal moves available in the state space.

• Result: The Transition Model determining the outcome of moves in the

state space, including the available moves for the other player.

• Terminal State: The game concludes either when all empty spaces are

filled or when a player has no more legal moves remaining.

3.6.2 Test Opponents

Test Opponents for Connect4

Greedy Agent: The Greedy agent in Connect4 selects moves that yield the

highest immediate reward based on a straightforward heuristic evaluation of

54

3.6. Methods

the game board. It aims to maximize the number of pieces in a row to achieve

victory.

Let Nagent and Nopponent be the number of pieces owned by the agent

and the opponent, respectively, after making a move. The heuristic value for

Connect4 is given by Equation 3.9:

VH = Nagent −Nopponent (3.9)

Minimax Agent: The Minimax agent in Connect4 employs a depth-limited

search tree with alpha-beta pruning to explore potential moves. The maximum

search depth was set to 5 for a reasonable balance between computational

resources and performance. The evaluation function considered factors such

as the number of potential winning sequences, blocked sequences, and piece

placements on the board. The evaluation function for Connect4 is found in

Equation 3.10

VE = w1 · (Nagent −Nopponent) + w2 ·Nagentw − w3Nopponentw (3.10)

Where w1, w2, and w3 are weights assigned to each factor. Nagent is the

number of pieces controlled by the agent. Nopponent is the number of pieces

controlled by the opponent.Nagentw and Nopponentw are the number of agent

and opponent wins respectively.

55

3.6. Methods

Test Opponents for Othello

Greedy Agent: The Greedy agent in Othello selects moves that lead to the

immediate highest reward, based on a simple heuristic evaluation of the game

board. It prioritizes maximizing the number of pieces owned by the agent.

A simple heuristic called Coin Party [54] is simply the difference in coins

between maximising and minimising player. Often used by Greedy agents in

Othello is based on the difference in the number of pieces owned by the agent

and the opponent after making a particular move. The heuristic value is the

number of pieces gained (or lost) by the agent. Let Nagent and Nopponent be

the number of pieces controlled by the agent and the opponent, respectively,

after making a move, then the equation is congruent to 3.9.

Minimax Agent: The Minimax agent in Othello utilizes a depth-limited

search tree with alpha-beta pruning to explore possible moves. The maximum

search depth was set to 10 for efficiency, and an evaluation function considered

factors such as the difference in the number of pieces controlled by each player

and the mobility of each player’s pieces. The evaluation function for the

Minimax agent in Othello considers several factors to assess the strength of a

board position. One common evaluation function is based on the difference

in the number of pieces controlled by the agent and the opponent. It can be

defined as follows:

One common evaluation function for Othello used in the Minimax algo-

rithm is based on the difference in the number of pieces controlled by the

agent and the opponent, along with additional factors to consider the board’s

positional strength. The evaluation function is defined in Equation 3.11:

56

3.6. Methods

VE = w1 · (Nagent −Nopponent) + w2 ·M + w3 · CC + w4 · Stability (3.11)

Where w1, w2, w3, and w4 are weights assigned to each factor with values

2,2,4,4 respectively. Nagent is the number of pieces controlled by the agent.

Nopponent is the number of pieces controlled by the opponent. M represents the

number of legal moves available to the agent. CC measures the agent’s control

over the corner positions, which are highly valuable in Othello. Stability

evaluates the stability of the agent’s pieces, ensuring that they are less prone

to being flipped by the opponent.

This evaluation function provides a comprehensive measure of the board

position’s strength, combining various aspects of the game to guide the Min-

imax algorithm in making optimal decisions. By incorporating these specific

details about the test opponents for the Connect4 and Othello environments,

we aim to provide a clearer understanding of the evaluation process, empha-

sizing the differences between MCTS and Minimax agents in these specific

games.

3.6.3 AlphaZero Network

Our implementation of AlphaZero for Connect4 and Othello consists of a DNN

with an architecture broadly divided into three parts: an input layer, a body

comprising of multiple residual blocks, and two separate heads for policy and

value outputs.

Input Layer: Similarly to AlphaZero [6], the NN accepts as input an 6x7x3

57

3.6. Methods

image stack for Connect4 and an 8x8x9 image stack for Othello representing

the board state. Each slide in this stack represents a specific aspect of the game

state, such as the current board position, the player’s pieces, the opponent’s

pieces. Othello includes all this information for three historic states, as there

cannot be repeat moves in the game. Each cell in these planes holds binary

values indicating the presence or absence of a piece. Please refer to Table 3.6.3

for comparison table.

Body: The body of the network, consists of 10 residual blocks. Each block

contains a pair of ReLU activated, batch-normalized convolutional layers, fol-

lowing the ResNet architecture principles [55]. Each convolution operation

engages 256 filters, each possessing a kernel size of 3 × 3 and a stride of 1.

Policy Head: The policy head is responsible for predicting a probability

distribution over all possible moves from the current game state. It includes an

additional ReLU activated, batch-normalized convolutional layer, succeeded

by a final convolution. For Othello, the network predicts the likelihood of

placing a disc on each of the 64 board positions plus one additional output

for the ”pass” action, amounting to 65 potential outputs. For Connect4 the

policy head predicts a probability distribution over all possible moves. For

Connect4, this equates to predicting the likelihood of dropping a disc into one

of the seven columns. We then choose a move based off the softmax over the

probability distribution of the columns.

Value Head: The value head predicts the expected outcome of the game

from the current position, outputting a single scalar value within the range

of -1 (expected loss) to 1 (expected win). It begins with a ReLU activated,

batch-normalized convolution involving a solitary filter of kernel size 1 × 1

58

3.6. Methods

with stride 1. This is followed by a ReLU linear layer of size 256 and finally,

a tanh activated linear layer of size 1.

The MCTS and AlphaZero experiments were meticulously implemented

using the Python programming language and orchestrated on the robust Google

Cloud platform. The self-play data, pivotal for enhancing the neural networks,

was collected through uniform sampling from 500k games. This Python-based

implementation, coupled with the computational resources offered by the

Google Cloud, ensured the efficient and comprehensive evaluation of MCTS

and AlphaZero variations across diverse game environments.

3.6.4 Experimental Setting

In this section, we aim to address a couple of questions: (1) How is the

state-of-the-art hybrid algorithm AlphaZero affected once we introduce MCTS

modifications and do these changes bring forward a more robust algorithm?

(2) What changes among the MCTS algorithm subsections positively affect

the performance the most?

To better understand which components of the the different modifications

contribute the most to the performance gains, we implement both, MCTS, and

Alpha-Zero, in four different versions: Standard, UCT, LA, and ALL. In this

experimental setting, we aim to evaluate the performance of the MCTS-based

algorithms, MCTS, MCTS-UCT and MCTS-LA, and MCTS-ALL, as well as

the two AlphaZero algorithms, AlphaZero, AlphaZero-UCT and AlphaZero-

LA, and AlphaZero-ALL against three baseline algorithms: Greedy and Ran-

dom and Minimax. We also conduct a test over the same structure where we

implement both of the MCTS adjustments simultaneously in the same algo-

59

3.6. Methods

Table 3.1: AlphaZero Network Architecture for Connect Four and Othello.
Each residual block contains a pair of ReLU activated, batch-normalized con-
volutional layers, following the ResNet

Game Layer Input Output Details

Connect4

Input 6×7×3 6×7×3
Image stack
representing
board state

Body 6×7×3 8×8×256
10 residual blocks,

256 filters,
3 × 3 kernel

Policy
Head

8×8×256 1×7
Conv layer,

predicts move
probabilities

Value
Head

8×8×256 1

1 convolutional layer,
256 filters,

1 × 1 kernel

ReLU linear layer,
tanh activated linear

layer

Othello

Input 8×8×9 8×8×9
Image stack
representing
board state

Body 8×8×9 8×8×256
10 residual blocks,

256 filters,
3 × 3 kernel

Policy
Head

8×8×256 1×65
Conv layer,

predicts move
probabilities

Value
Head

8×8×256 1

1 convolutional layer,
256 filters,

1 × 1 kernel

ReLU linear layer,
tanh activated

linear layer

60

3.7. Results

rithm; this produces two other game-playing agents which we label as MCTS-

ALL and AlphaZero-ALL. We will evaluate the performance of these algo-

rithms under two different search budgets, low (Nsim=10) and high (Nsim =

100), corresponding to the varying number of allowed simulations (tree-walks)

before selecting the best action. Different experiments may be conducted to

optimize the tree depth but one of our goals was to maintain a reasonable

computation time. Lastly, if the same move was played more then three times

or if the game length exceeded 100 for Othello and 40 for Connect4.

It’s worth noting that our computational requirements were significantly

lower compared to the AlphaZero paper [6], as well as different environments,

where they test on chess, Shogi and Go. The original paper had 5,000 episode

per iteration and 500 simulations per turn. An episode refers to a complete

play-through of a game, starting from the initial state until the game termi-

nates, either by a win, loss, or draw. An iteration is a unit of training in the

AlphaZero algorithm, where the NN is updated based on the data collected

from self-play episodes. A simulation, also known as a search, is a single

traversal of the MCTS algorithm, which explores the game tree and estimates

the value of different actions from a given game state.

3.7 Results

As shown on Table 3.2, our findings highlight the remarkable superiority of

the AlphaZero-ALL algorithm, surpassing its counterparts in both the Othello

and Connect4 games. This trend is evident across multiple games, even out-

performing the standard AlphaZero algorithm. These results suggest that our

61

3.7. Results

Table 3.2: Average win rates over 50k games of the different algorithms within
the respective environments. AlphaZero results averaged over 5 networks.
Random player start.

Connect4 Othello

v. Greedy Random Minimax Greedy Random Minimax

MCTS 52.3% 63.1% 43.3% 41.3% 57.9% 32.2%
MCTS-UCT 53.5% 70.4% 51.5% 43.6% 61.3% 54.4%
MCTS-LA 61.4% 66.5% 63.6% 55.8% 70.7% 64.2%

MCTS-ALL 63.6% 72.5% 65.6% 61.5% 67.1% 65.4%

AlphaZero 77.5% 79.5% 77.6% 73.5% 81.2% 75.3%
AlphaZero-UCT 68.7% 71.3% 76.6% 79.1% 81.1% 82.4%
AlphaZero-LA 72.5% 77.4% 70.9% 82.1% 83.8% 82.7%

AlphaZero-ALL 81.6% 82.4% 78.8% 82.3% 84.3% 83.2%

computationally conservative modifications to the MCTS algorithm have the

potential to elevate performance across the same games when tested against

various opponents. The average win rates were obtained over 50,000 games for

each algorithm within the specific game environments, with AlphaZero results

being averaged over 5 networks and the random player start configuration.

Within the MCTS family of algorithms implemented, we see that there is a

pretty consistent and linear improvement from the MCTS to MCTS-ALL, and

where MCTS-LA outperforms MCTS-UCT within both chosen environments.

All except for MCTS-ALL within the Othello environment against the ran-

dom opponent, where it performs at a 67.1% win rate while MCTS-LA score

in Othello reaches 70.7%. It is also worth noting that againt Minimax and

Random opponents, MCTS-ALL and MCTS-LA perform relatively similarly,

we can tentatively state that the additional implementation of UCT within

MCTS-ALL does not significantly contribute to its performance.

As we examine the progression of win rates across our algorithmic mod-

62

3.7. Results

ifications, a consistent pattern emerges: an increase in wins for algorithms

with additional implementations, as opposed to their original counterparts.

However, this pattern does not extend uniformly to the AlphaZero family of

algorithms. The AlphaZero-ALL algorithm shines with its highest win rates

of 82.4% and 84.3% in the Othello and Connect4 environments, respectively,

against a random opponent. Notably, it also maintains strong performance

against other opponents, including greedy and minimax. Within the context

of the selected parameters and network size, the AlphaZero-ALL modifica-

tion consistently showcases superior performance compared to other variants,

underscoring its adaptability and efficacy even under resource constraints.

Intriguingly, in the Connect4 environment, the original AlphaZero implemen-

tation secures the second-best performance against every opponent. How-

ever, the performance ratios exhibit variations when we shift our focus to the

medium environment of Othello.

To assess the impact of algorithm choice on the obtained means, a one-

factor ANOVA was conducted for each problem. An ANOVA test is used to

determine whether there are significant differences between the means of multi-

ple groups. In this case we conduct an ANOVA test to compare the win rates

of different algorithms (MCTS, MCTS-LA, MCTS-UCT, MCTS-ALL, Alp-

haZero, AlphaZero-UCT, AlphaZero-LA, and AlphaZero-ALL) against three

opponents (Greedy, Random, and Minimax) based on 5 repetitions of 1k games

for each combination. We begin by defining our null hypothesis and alternative

hypothesis. Where our null hypothesis H0 : There is no significant difference

in the mean win rates among the different algorithm-opponent combinations.

And out alternative hypothesis H1: At least one of the algorithm-opponent

63

3.7. Results

combinations has a different mean win rate. And lastly, our significance rate

is α = 0.05

For the Connect4 environment, the ANOVA detected a statistically signif-

icant difference in reward among at least two algorithms. We found a p-value

of 2.31E-04 indicates that we can reject the null hypothesis and conclude that

the four means are not all equal. However, we don’t know which pairs of

groups are significantly different. We also conducted a post-hoc Tukey’s HSD

test. Tukey’s Honest Significant Difference (HSD) test is important because

it helps identify specific pairwise differences between multiple groups, allow-

ing for a deeper understanding of the significance of observed variations in

statistical analyses such as ANOVA. We found that found that the difference

in win rates between MCTS-ALL and AlphaZero-ALL was significant (p =

0.0345 , 95% C.I. = [50.86, 96.34]), as was the difference between AlphaZero

and AlphaZero-ALL. No significant difference was found between MCTS-LA

and MCTS-ALL (p = 0.108).

We repeat the same ANOVA test but within the Othello environment,

though with the same comparative analysis of the algorithms. We obtain a

p = 1.56E-03 value which also indicates that we are able to reject the null

hypothesis and conclude that the means are not equal. The Othello Tukey

test found that the difference in win rates between MCTS and MCTS-ALL

was significant (p = 9.32E-03 , 95% C.I. = [35.52, 84.23]), as is the difference

between MCTS-ALL and AlphaZero (p = 0.0239, 95% C.I. = [41.66, 85.45]).

No significant difference was found between MCTS and MCTS-LA (p=0.299).

While these results offer valuable insights into algorithmic performance,

it’s essential to acknowledge that certain confounding variables might influence

64

3.7. Results

our observations. One such variable could be the sensitivity of algorithmic

performance to specific game environments, opponent strategies, or even the

computational resources available. To mitigate these confounding effects, we

ensure consistency by using identical computational constraints and neural

network architectures across our experiments. This controlled environment

helps us isolate the impact of algorithmic modifications and better comprehend

their implications. It should be noted that there are a variety of ways of

controlling variables for performance. While the approach chosen for this

thesis is to ensure that the network architecture and MCTS algorithm used are

as similar as possible throughout the experiments and different implemented

algorithms, others may choose to simply optimize each algorithm within each

domain and then set them against their opponents.

All the Alpha algorithms showcased in this section shared their networks.

There were 5 different networks were trained and tested, each training with

5k episodes for Connect4 and 5k episodes for Othello. We played a total of

50k games for both environments. The plots in Images 3.4 to 3.7 depict the

rewards averaged over the 5 random seeds.

We present Figure 3.8 and 3.9 which showcase different heatmaps depicting

the learned starting positions of AlphaZero-ALL and MCTS-ALL, respectively

for both players in Connect Four, averaged over an extensive dataset of 10k

episodes per player starting position.

This visualization provides insights into the strategic landscape of the

game, highlighting the preferred initial moves for each player and offering a

comprehensive overview of the opening strategies. By analyzing this heatmap,

we can discern the patterns and tendencies of optimal starting positions, en-

65

3.7. Results

Figure 3.4: Nsim = 10 per iteration on Connect4. Averaged across 5 seeds.

Figure 3.5: Nsim = 100 per simulation on Connect4. Averaged across 5 seeds.

66

3.7. Results

Figure 3.6: Nsim = 10 per iteration on Othello. Averaged across 5 seeds.

Figure 3.7: Nsim = 100 per iteration on Othello. Averaged across 5 seeds.

67

3.8. Conclusion

Figure 3.8: AlphaZero-ALL map depicting the average starting positions for
first and second player averaged over 10k games in Connect Four.

Figure 3.9: MCTS-ALL map depicting the average starting positions for first
and second player averaged over 10k games in Connect Four.

abling a deeper understanding of the game’s dynamics and strategic decision-

making.

3.8 Conclusion

In conclusion, this study aimed to investigate the impact of various search

modifications on the state-of-the-art hybrid algorithm AlphaZero and iden-

tify which changes within the MCTS algorithm can positively affect its per-

formance the most. Utilizing Connect4 and Othello as test environments,

the AlphaZero-ALL algorithm emerged as a favourable and strong performer,

68

3.8. Conclusion

showcasing the potential of specific modifications to enhance MCTS-based

algorithms.

Our findings reveal that different algorithms may be more suitable for

certain games, and that tailoring the modifications to an algorithm may in-

fluence its performance. The success of the AlphaZero-LA algorithm may

be attributed to its dual implementation of UCT and LA, and it’s ability to

avert losses and maintain an optimistic view of node values, allowing for con-

tinued exploration of promising paths. Although there were improvements in

the results between the algorithms with different enhancements, more stud-

ies should be done to conclude on the significance in performance difference

between each variation.

Despite the promising results, it is essential to acknowledge the limita-

tions of our study. The experiments were conducted on two specific games,

Connect4 and Othello, which are squared-board, zero-sum, full-information

games. These games share similarities with Go, the domain for which Alp-

haZero was initially designed. Therefore, our conclusions may not directly

apply to other types of games, such as card games or chess, where different

strategies and game dynamics may come into play.

Furthermore, the simulation budget used in our experiments was con-

strained to a specific value, limiting the depth and breadth of the search

space explored by the algorithms. Increasing the simulation budget could

potentially lead to different outcomes, providing further insights into the al-

gorithms’ behaviors and performances.

Despite these limitations, the results of this study shed light on the ef-

fectiveness of various modifications to the MCTS algorithm and their impact

69

3.8. Conclusion

on the performance of AlphaZero in Connect4 and Othello. By understand-

ing the strengths and weaknesses of different algorithms, we can better tailor

their configurations for specific game domains, paving the way for more effi-

cient and effective AI agents in a wide range of applications. Future research

could expand this investigation to other game domains and explore the im-

pact of varying simulation budgets on algorithm performance, providing a

more comprehensive understanding of the algorithmic enhancements.

70

4 Algorithm Comparison

4.1 Introduction

In this chapter, we delve into the implementation and evaluation of a compre-

hensive framework encompassing the Alpha algorithms, better knows as the

three Deepmind cutting-edge algorithms: AlphaGo, AlphaZero, and MuZero.

These Alpha algorithms, along with a baseline of Deep Q-Network (DQN),

serve as the foundation for our study, allowing us to explore their capabilities

and compare their performance on four diverse environments: Connect4, Oth-

ello, Pong, and Pinball. A notable aspect of our research is that all NNs were

trained under the same computational resource and time constraints, ensuring

a fair and unbiased evaluation.

While it is expected that MuZero, a state-of-the-art algorithm and youngest

of the Alpha siblings, outperforms its counterparts, our aim is to determine

whether its superiority is solely, or not, attributed to its intensive training

regime or it’s substantial allocation of resources (compared to it’s other Al-

pha predecessors). Through our evaluation, we elucidate the nuances and

improvements of MuZero compared to AlphaGo, AlphaZero, and DQN. By

71

4.1. Introduction

analyzing their performance on different gaming environments, we uncover

valuable insights into the strengths and weaknesses of each algorithm and

provide a comprehensive assessment of their efficacy.

By conducting this implementation and evaluation, we contribute to the

understanding of these remarkable algorithms and their potential applications

and behaviour within a diverse set of problem domains. Our findings shed light

on the implementation of the Alpha algorithms, as well as the advancements

made by MuZero, while also highlighting the significance of well-balanced

comparisons to ascertain its true value beyond its computational requirements.

Through this chapter, we provide a foundation for further exploration of these

algorithms and pave the way for future advancements in the field of RL.

In this chapter, we will first cover the essential related work of other re-

searchers which span from the re-implementation to diverse testing within

different environments. Their array of work has also focused on transferabil-

ity, self-play, scaling and adversarial models. Next, we dive into the definition

and a brief re-explanation of tree search within ML, as MCTS was the prime

focus of the first section, yet still a critical part within the Alpha algorithms,

which are now our focus within Chapter 4. Then, we dive into a structured

and thorough presentation of AlphaGo, AlphaZero and MuZero. Lastly, con-

clude the thesis with an array of experiments over four critical environments;

Connect4, Othello, Pong and Pinball. Our main contributions include, what

we call the ”re-implementation” of the Alpha algorithms. We build upon the

previous work of Davaut and Hainaut who implemented Muzero [56]. Which

encompasses the implementation of each of the algorithms using network struc-

tures and algorithms which are as similar as possible, aiming towards a fair

72

4.2. Literature Review

comparison when comparing the algorithms to their siblings. We run these

experiments with the goal of assessing the performance and capabilities of the

Alpha algorithms in diverse problem domains. Through comprehensive evalu-

ations, we aim to understand the strengths and weaknesses of each algorithm

and shed light on their adaptability and generalization abilities across different

environments. Furthermore, we analyze the impact of the factor of training

resources, with the aim of potentially observing how variations in the amount

of computational power and data availability can influence the algorithms’

learning rates and performance.

4.2 Literature Review

After the publication of AlphaZero, there was a huge surge of researchers

scrambling to replicate, improve and test this algorithm. ELF OpenGo [57],

an open-source reimplementation of AlphaZero, showcased convincing super-

human performance against top professionals in Go, shedding light on unre-

solved mysteries and facilitating future research. Similarly, A0C (Alpha Zero

for Continuous action space) [58] presented a method to learn continuous pol-

icy networks, extending the success of iterated search and learning to single-

player, continuous action space domains. Moreover, a critical examination of

AlphaZero’s limitations [59] highlighted the need for explanation techniques

for human-friendly understanding of acquired game-playing knowledge and

improvements in machine learning methods for more data-efficient learning in

real-world domains. These subsequent algorithms serve as important stepping

stones to further propel research in the field of AI and highlight the potential

73

4.2. Literature Review

of DRL in various domains.

Several papers have contributed to the advancement of AlphaZero, explor-

ing its capabilities and enhancing its performance. A paper [60] focused on RL

techniques applied to AlphaGo Zero, combining deep learning with MCTS to

improve the algorithm’s performance. They experimented with different RL

strategies and shed light on the training process. To further enhance Alp-

haZero’s performance, Huang, Li, and Wang (2019)[61] proposed Residual

Monte Carlo Tree Search (RMCTS). By addressing the issue of inadequate

exploration during the MCTS process, they introduced a residual network ar-

chitecture that improved the algorithm’s exploration capability. Experimental

results demonstrated that RMCTS outperformed the original AlphaZero.

Schrittwieser et al. [62] presents the original algorithm with an extensive

exploration of the MuZero algorithm. It showcases MuZero’s exceptional per-

formance across a diverse set of domains, including Atari 2600 games, Go,

chess, and shogi. The authors highlight the versatility of MuZero by demon-

strating its ability to achieve state-of-the-art results in complex environments

without relying on any domain-specific knowledge or human data. The paper

also delves into the inner workings of MuZero’s learned model and planning

algorithm, shedding light on its impressive adaptive learning and decision-

making capabilities.

The underlying core of the Alpha algorithms - is their ability to learn

and improve through self-play and the reliance on DNNs to guide decision-

making—makes self-play a crucial aspect in the advancement of RL. Self-play

enables an agent to continuously refine its strategies by competing against

different versions of itself, thereby generating diverse and informative training

74

4.2. Literature Review

data. By engaging in self-play, the agent can explore various decision-making

scenarios, learn from its successes and failures, and iteratively update its poli-

cies to achieve higher levels of performance. Moreover, the integration of DNN

allows the agent to generalize its knowledge and make informed decisions based

on learned patterns and representations. Through this review, we explore the

significance of self-play in RL, examining how it fosters the development of

intelligent agents capable of adaptive and strategic behavior in diverse environ-

ments. Furthermore, this paper [63] focused on improving self-play techniques

in the AlphaZero algorithm. They proposed Adaptive Symmetric Self-Play

(ASSP), a method that dynamically adjusts the exploration rate during self-

play. This approach led to more balanced and effective training, resulting in

improved performance across various game scenarios. This paper [64] intro-

duces near-optimal self-play algorithms in two-player zero-sum games. In a

tabular episodic Markov game with S states, A max-player actions, and B

min-player actions, achieving a complexity O(SAB) significant improvements

in sample complexity. The proposed optimistic Nash Q-learning algorithm

requires steps, while the new Nash algorithm has a sample complexity of

O(S(A + B)), both closing the gap with previous lower bounds. Moreover,

the paper provides a computational hardness result for the process of learning

best responses against a fixed opponent in Markov games.

Furthermore, Browne et al.[65] explore a general framework that combines

DRL and search for self-play in any two-player zero-sum game. It guarantees

convergence to a Nash equilibrium and has demonstrated success in both per-

fect and imperfect-information games. In heads-up no-limit Texas hold’em

poker, ReBeL achieves superhuman performance while requiring less domain

75

4.2. Literature Review

knowledge compared to previous poker AI systems. Additionally, in Wu et

al. [66], they investigate the combination of self-play with population-based

training, which involves training multiple agents simultaneously. Through ex-

tensive experiments, they demonstrate the benefits of self-play and population-

based training in achieving improved performance and faster convergence in

RL tasks. Sun et al. [67] delve into the adversarial self-play algorithm. They

propose a framework where agents compete against each other through self-

play to enhance their learning capabilities. By incorporating adversarial train-

ing techniques, the authors demonstrate the effectiveness of the approach in

enhancing the agent’s decision-making abilities and achieving better perfor-

mance in RL tasks. Lastly, another paper written by Tian et al. [68] presents

an approach to improving RL through self-play and the use of an opponent’s

model. They explore how self-play can be combined with the knowledge of an

opponent’s strategy to enhance the learning process. The authors highlight

the importance of self-play in exploring different strategies and refining the

agent’s policy, ultimately leading to improved performance in RL tasks. A

specific area of research focuses on the development of methods tailored for

game AI competitions [69]. These competitions are held annually, providing

a platform for AI players to compete against each other. The IEEE Confer-

ence on Games (CoG), previously known as Computational Intelligence and

Games (CIG), is a prominent event in the academic community, featuring pop-

ular games such as Angry Birds and StarCraft, as well as broader disciplines

like General Video Game Playing, MicroRTS, and Strategy Card Game. Open

competitions encourage the exploration of novel methods, leading to remark-

able results achieved through the skillful integration of multiple techniques.

76

4.2. Literature Review

Effective problem-specific enhancements address various aspects of the MCTS

algorithm, contributing to improved performance in game AI competitions.

One instance of such a masterful combination is the algorithm designed

to triumph in the Pac-man competition [70] named MAASTRICHT. The key

enhancement focused on predicting the opponent’s moves, lessening the num-

ber of states assessed. In the backpropagation phase, the node reward scheme

incorporated the final score and simulation time. Interestingly, the Pac-Man

winner also employed the MCTS algorithm. A series of refinements were out-

lined in that same paper. The majority pertain to heuristic modifications in

the policy:

1. a tree with edges of varying lengths

2. preserving a history of favorable decisions to enhance the default policy,

3. policy alterations (distinct ways to eliminate some evidently incorrect

decisions)

Another well-known challenging environment we have seen used for per-

formance testing is the Mario arcade game [71] detail a series of tweaks and

enhancements to the standard MCTS algorithm which yield some outstanding

results. Unfortunately, the majority of these improvements can be categorized

as the integration of domain knowledge into the general algorithm: MixMax

(high rewards for effective actions), Macro Actions (dodge monsters in a se-

ries of moves), Partial Expansion (remove evident choices), and Hole Detection

(additional heuristic to leap over a fatal trap).

In the field of model-based RL (MBRL), the question arises whether the

objective of models should be to accurately simulate environment dynamics.

77

4.2. Literature Review

This study [72] challenges the notion of pursuing perfect accuracy in model-

ing and instead proposes focusing on the usefulness of models to the learner.

Through experiments in a non-stationary environment, the researchers demon-

strate that their meta-learning algorithm, which prioritizes model usefulness

over accuracy, enables faster learning compared to using an accurate model

built with domain-specific knowledge. These findings shed light on the po-

tential benefits of redefining the goals of MBRL models, emphasizing their

practical usefulness rather than striving for unattainable accuracy. Addition-

ally, another study [73] investigates the role of episodic memory in model-

based (MB) versus model-free (MF) learning. By examining the influence of

episodic information on choices, the study aims to discern whether it affects

decision-making through MB planning or MF evaluation. The findings reveal

that subjects exhibited both incremental MF and MB strategies, alongside

strong MB planning using individually cued episodes.

DREAMERv2 [74] is a recent paper that combines model-based and model-

free learning to improve the efficiency of RL. DREAMERv2 uses a model-

based approach to learn a predictive model of the environment, which is used

to generate simulated experience. This simulated experience is then used to

train a model-free policy. The combination of model-based and model-free

learning allows DREAMERv2 to learn more efficiently than using either ap-

proach alone.

While there has been significant research and interest in replicating and im-

proving these algorithms after the publication of AlphaZero, my work stands

out in several ways. Firstly, I present a unique developmental framework that

encompasses all three Alpha algorithms, facilitating a holistic view of their

78

4.2. Literature Review

capabilities and performance. The implementation of these algorithms simul-

taneously, with shared network architecture and MCTS algorithm, has not

been widely attempted in previous research. Additionally, I conduct a com-

prehensive and systematic comparison of these algorithms across four diverse

environments: Connect4, Othello, Pong, and Pinball. This allows for a fair

and unbiased evaluation, ensuring that the algorithms’ strengths and weak-

nesses are thoroughly examined in different problem domains. Moreover, my

research aims to understand the impact of training resources on the perfor-

mance of MuZero, investigating whether its superiority is solely attributed to

its intensive training regime or if it can generalize effectively with fewer re-

sources. This investigation is essential for gaining insights into the algorithm’s

adaptability and potential real-world applications. By exploring this novel

approach, I contribute to the understanding of the interplay between these

state-of-the-art algorithms, paving the way for potential synergistic benefits

and new insights.

In summary, my thesis differentiates itself from previous research by pre-

senting a reimplementation framework to facilitate testing, by conducting a

comprehensive comparison of Alpha algorithms and analyzing the impact of

training resources on MuZero. These contributions advance our understand-

ing of RL algorithms, their capabilities, and potential applications, paving the

way for further research and development in this exciting field.

79

4.3. Tree Search in Machine Learning

4.3 Tree Search in Machine Learning

The field of ML has witnessed a significant surge in computer science research,

resulting in numerous groundbreaking innovations. Its widespread popularity

and versatile applications in addressing real-world problems have been rapidly

expanding. ML encompasses a diverse range of techniques, with NNs being

one of its prominent components.[75], decision trees [76], random forests[77],

boosting algorithms[78], Bayesian approaches[79], support vector machines

[80]. While traditionally associated with classical AI and search problems,

MCTS can be viewed as a ML approach, specifically a form of RL. In recent

times, MCTS has been increasingly combined with other ML models, resulting

in remarkable achievements and successes in various domains. This integration

of MCTS with ML highlights its adaptability and versatility in addressing

complex challenges beyond its classical applications.

MCTS is a model-based search algorithm used to find optimal decisions in

complex decision-making domains, particularly in games and planning prob-

lems. The main goal of MCTS is to efficiently explore the vast decision space

and identify the most promising moves to make. Unlike traditional tree search

algorithms, MCTS uses two essential components: the tree policy and the de-

fault policy. During the selection phase, the tree policy guides the search by

determining which child nodes to explore based on their estimated potential

for achieving high rewards. It aims to strike a balance between exploring new

possibilities and exploiting known promising paths. On the other hand, the

default policy is utilized during the simulation phase to play out the game

from a given node to generate a terminal state. This simulation, also known

80

4.4. General Outline

as a ”rollout,” helps estimate the value of the node by considering various

game outcomes and approximate the potential outcomes of actions and build

a search tree incrementally. It starts with a single node representing the

current state of the game and iteratively expands the tree by selecting and

simulating actions until a certain computational budget is reached.

As explained in Chapter 3, during each iteration, MCTS employs a four-

step process: Selection, Expansion, Simulation, and Backpropagation. By re-

peating these iterations, MCTS efficiently allocates computational resources to

promising moves, focusing on those with higher win rates and exploration po-

tential. This property allows MCTS to handle games with large and complex

decision spaces, making it a powerful and widely used algorithm in modern

game-playing AI, most notably for us, in the Alpha algorithms. Its ability to

combine exploration and exploitation effectively makes MCTS an essential tool

in building intelligent agents capable of achieving superhuman performance in

various domains.

4.4 General Outline

The family of game-playing algorithms comprising AlphaGo, AlphaZero, and

MuZero share fundamental components that underpin their success in mas-

tering complex games. These algorithms harness the power of DNNs, RL,

and search techniques to achieve remarkable performance. At their core, all

three algorithms utilize MCTS as a key component. MCTS facilitates explo-

ration of the game tree, enabling the agents to simulate future game trajec-

tories, evaluate potential moves, and refine their policies. This combination

81

4.4. General Outline

of self-play training and MCTS provides a solid foundation for learning and

decision-making in strategic games.

The MCTS procedure depicted in Figure 3.1 can be iteratively employed

to play entire episodes or outer loops. This process entails conducting a search

from the current state st of the environment, selecting an action at+1 based

on the statistics πt obtained during the search, executing the chosen action

to transition to the next state st+1, and recording the corresponding reward

ut+1. This cycle continues for multiple iterations, enabling the agent to learn

and refine its decision-making abilities over time. This process is repeated

until the environment reaches a terminal state sT . By iteratively performing

these steps, MCTS enables the agent to progressively improve its decision

making capabilities within real states by exploring and evaluating different

action sequences within the search tree (ie. latent states). The tree policy can

be greedy or exploratory. If the latter then the sample action is proportional

to the visit count and with a temperature parameter to control the degree of

exploration, as shown in Equation 4.1.

π(a|s) = (
N(s, a)∑
bN(s, b)

)1/t (4.1)

The architecture of Alpha algorithms revolves around two ML models,

which represent the value and policy functions, respectively. In the context

of NNs, these models are commonly referred to as ”heads,” as illustrated

in Figure 4.1. During the training process, the NN is supplied with training

examples in the format (st, πt, zt), where πt corresponds to the MCTS estimate

of the policy from state st, and zt denotes the final outcome of the game from

82

4.4. General Outline

Figure 4.1: Network Training

the perspective of the player at that state. This combined approach, involving

the value and policy functions, plays a crucial role in the success of Alpha

algorithms.

The self-play algorithm can be seen as an approximate policy iteration

scheme, where MCTS is utilized for both policy improvement and policy eval-

uation. Initially, a NN policy is used as a starting point. MCTS is then

employed based on the NN’s policy recommendations, resulting in a much

stronger search policy. The refined search policy derived from MCTS is inte-

grated back into the NN’s function space to bolster the policy even further.

Likewise, the results obtained from self-play games are also incorporated into

the NN’s function space to enhance its capabilities. This iterative process

of refinement and evaluation through self-play enables the algorithm to con-

verge towards more effective and resilient policies. The projection steps entail

training the NN parameters to align with the search probabilities and self-

play game outcomes, ensuring a continuous and adaptive enhancement in the

agent’s decision-making capabilities. By adjusting the NN’s parameters based

83

4.4. General Outline

Figure 4.2: General Main Training Loop: Iterated tree search and function
approximation.

on the search probabilities, the policy can be improved to reflect the stronger

search policy. Additionally, aligning the NN with the self-play game outcomes

enhances its ability to evaluate different states and make informed decisions

during the RL process. Through this training procedure, the NN gradually

adapts to capture the knowledge and strategies learned from the MCTS and

self-play, leading to more effective and accurate policies. The general process

is shown in Figure 4.2

In order to conduct the previously describe self-play training loop, the

agents must train on generated data, as shown in Figure 4.3. By playing thou-

sands of games against themselves, these algorithms generate a vast amount

of training data, allowing them to refine their strategies and improve their

decision-making abilities over time. In each position st, a MCTS π is exe-

cuted (see Figure 4.4) using the latest NN fθ. Actions are chosen based on

the MCTS-generated search probabilities, with at drawn from πt. The final

state sT is evaluated using the game rules to determine the game’s winner zt.

In summary, the primary training loop involves a learner that receives and

stores the latest observations in a replay buffer. The learner utilizes these

84

4.4. General Outline

Figure 4.3: Episode Generation: An agent plays a real game s1, . . . , sT
against itself.

trajectories to execute the training algorithm explained earlier. Additionally,

multiple actors are employed, which periodically access the most recent net-

work checkpoint from the learner. These actors utilize the network in MCTS

to select actions and engage with the environment, generating new trajectories

during the process.

AlphaGo used a combination of SL and RL with separate NNs for policy

and value estimation. AlphaZero, in contrast, employed a single NN architec-

ture for both policy and value estimation, using unsupervised learning through

self-play. MuZero, being the most advanced, integrated a learned model for

state transitions with value and policy networks to predict outcomes and sug-

gest actions during MCTS. It could play games without prior knowledge of

game rules, making it more versatile and adaptable to various domains. These

differences in NN architectures and learning methods allowed each algorithm

to achieve remarkable success in mastering complex games.

85

4.5. AlphaGo

4.5 AlphaGo

The introduction of MCTS marked a significant leap in AI’s ability to play

what is considered to be a significantly complex board game, such as Go.

MCTS emerged as a major breakthrough in computer Go, and the combina-

tion of MCTS with ML techniques constituted another significant advance-

ment [81]. In 2015, AlphaGo, developed by Silver et al. [5] with the support of

Google, achieved a groundbreaking milestone by defeating a professional hu-

man player, Fan Hui, on a standard board without a handicap. Subsequently,

in 2016, AlphaGo demonstrated its exceptional capabilities by winning a mo-

mentous 4-1 victory against Lee Sedol [8], one of the most esteemed Go players

in history. This accomplishment is widely regarded as a recent and significant

AI achievement and has inspired a multitude of research efforts that combine

MCTS with ML models.

AlphaGo combines several key elements in its algorithm. It utilizes a

combination of DNNs and MCTS. The NNs are trained using a large dataset of

expert human moves to learn patterns and strategies in the game. The MCTS

algorithm explores potential moves by simulating numerous game sequences

to evaluate their potential outcomes.

AlphaGo’s training involved a two-step process: SL and RL. Initially, the

NN was trained using expert human moves, learning to predict the best moves

given a board position. This SL phase helped the system develop a strong

foundation for gameplay.In the process of training the NN for AlphaGo, several

key components are integrated. First, we train a fast rollout policy pπ and a

SL policy network pσ using a dataset of human expert moves, allowing them

86

4.5. AlphaGo

to predict these moves accurately. The SL policy network then serves as the

initial state for the RL policy network pρ, which is subsequently improved

through policy gradient learning, aiming to outperform previous versions of

the policy network. Their interaction is showcased in Figure4.5. The RL

policy network is further used to generate a new dataset by engaging in self-

play games. To complement the policy networks, a value network vθ is trained

using regression to predict the expected outcomes of the games, enabling the

estimation of the agent’s chances of winning or losing.

In the AlphaGo tree search process, the algorithm follows a series of steps

to determine the best action to take. Initially, the edge with the highest action-

value Q is selected, and an upper confidence bound U is applied, incorporating

the stored prior probability P and the visit count N for that edge. The visit

count N increases as the algorithm traverses through the search tree.

Once a leaf node is reached, it is expanded, and the associated position s is

evaluated using the NN. The NN stores the vector of P values in the outgoing

edges from s. After evaluation, the action-values Q are updated by taking the

mean of all evaluations V in the subtree below that specific action.

This intricate combination of different components significantly contributes

to the overall effectiveness and success of the AlphaGo algorithm, enabling it

to make highly strategic and intelligent moves during gameplay. Finally, upon

completion of the search, search probabilities π are returned, as seen in Figure

4.4

After that, RL was employed to further improve AlphaGo’s performance.

The system played numerous games against itself, utilizing the outcomes of

these games to refine its NN and policy network. Reinforcement learning

87

4.5. AlphaGo

Figure 4.4: The four phases of MCTS within AlphaGo

Figure 4.5: Relationship outline of distinct neural networks within AlphaGo

enabled the system to explore new strategies and optimize its gameplay. Al-

phaGo employs a sophisticated architecture consisting of three NNs during

gameplay. The first NN serves as a policy network pσ for real play, albeit with

a slower computational speed than the second NN. However, it exhibits high

accuracy (

sim57%) in predicting human moves. Its primary function is to generate a list

of plausible moves, each assigned with corresponding probabilities. By lever-

aging these plausible moves, the MCTS is initialized. The slower speed of the

first NN can be attributed to its larger size and the computation-intensive

nature of the Go board’s properties it considers, such as liberty counts, ataris,

and ladder status.

88

4.5. AlphaGo

In contrast, the second NN pρ with parameters ρ, is designed to be smaller

and faster, sacrificing some accuracy (

sim24%) in predicting moves. This policy network operates without utilizing

computed properties as inputs. Once the MCTS component reaches a leaf

node in the current tree, pρ takes over. It simulates the remainder of the game

by playing out positions using vaguely plausible moves and assigns scores to

the resulting end positions.

The third NN acts as a value network vθ, solely focusing on estimating the

expected win margin for a given board position without engaging in actual

gameplay simulations. Its purpose is to provide a value calculation for the

provided game state without executing any moves. To arrive at an approx-

imate result for a particular MCTS node, the results obtained from Monte

Carlo playouts using pρ and the value calculations derived from the third NN

are averaged. This averaged value is then recorded as the approximation for

the respective MCTS state. Using the priors from pσ and the accumulating

results of MCTS, the values will continue to guide the actions the agent will

take, creating a new path for further Monte Carlo exploration.

The impact of AlphaGo extends beyond the game of Go. Its advance-

ments in DL and RL techniques have influenced various fields, including nat-

ural language processing, robotics, and scientific research [82, 83, 14]. Over-

all, AlphaGo demonstrated the potential of combining DNNs and MCTS in

achieving high-level performance in complex games. It showcased the power

of machine learning and pushed the boundaries of AI research.

89

4.5. AlphaGo

4.5.1 AlphaGo Methods

In order to be able to evaluate this particular architecture on another envi-

ronment other than Go, we require a dataset on which to train SL aspect.

In this thesis we utilize separate human games dataset for AlphaGo, found

in the following: Othello database, Connect4 database, Atari database, Atari

database2. There are some limitations to consider when using these datasets,

as they are either human expert games, complete set of possible moves or DQN

generated and stored values. These values may not be optimal nor might they

be plentiful enough to train a NN extensively. This is outside the scope of

this thesis and we lean heavily on the concept of self-play and assume that the

usage among the three Alpha algorithms is sufficient to replicate results as the

original datasets are unavailable. To build the game dataset we use to train

the network, we randomly sample 1k games from the different databases.

The selected environments are always two-player zero-sum games, ensur-

ing that the original function with deterministic transitions and zero rewards

(except at terminal states) can be effectively utilized. In this context, a policy

represents a probability distribution over the legal actions, while the value

function denotes the expected outcome when all actions for both players are

chosen based on the policy. Recall that each zero-sum game has a unique op-

timal value which determines the outcome from a state obtained by choosing

optimal policy play from both players, demonstrated in Equation 4.3.

90

http://www.othbase.net/
http://archive.ics.uci.edu/dataset/26/connect+4
https://console.cloud.google.com/storage/browser/atari-replay-datasets
https://github.com/google-research/batch_rl
https://github.com/google-research/batch_rl

4.5. AlphaGo

vp(s) = E[zt|s, at,...,T ∼ p] (4.2)

v∗(s) =


zT if s = sT

maxa−v∗(f(s, a)) else

(4.3)

Where vp(s) is the expected value and v∗(s) optimal value can be estimated

via MCTS. It will estimate the optimal value of the interior nodes through

double approximation, as in Equation 4.4 :

Vn(s) ≈ vp(s) ≈ v∗(s) (4.4)

In the initial approximation, n Monte Carlo simulations are employed to

estimate the value function of a tree policy Ptree. Subsequently, the tree

policy p is utilized, which selects actions based on a search control function

argmaxa(Qn(s, a) + U(s, a)), such as PUCT (Polynomial Upper Confidence

Bound for Tree). This function aims to choose children with higher action

values, where Qn(s, a) = Vn(f(s, a)) + U(s, a) and U(s, a) plays a crucial role

in encouraging exploration during the search process.

The AlphaGo program efficiently integrates large NNs into its search al-

gorithm by implementing an asynchronous policy and value MCTS approach.

The search tree consists of nodes (s) with edges (s, a) for all legal actions

a ∈ A(s). Each edge stores statistics and follow the selection algorithm covered

in Chapter 3. Each edge stores the prior probability (P (s, a)), and combined

91

4.5. AlphaGo

mean action value (Q(s, a)). The MCTS algorithm proceeds through four

stages: Selection, Evaluation, Backup, and Expansion. The state-action pair

(s′) is enqueued for evaluation by the policy network. Using the SL policy net-

work pσ(·|s′) with parameters σ, the prior probabilities are computed and then

substituted for the existing placeholder prior probabilities P (s′, a)← pσ(a|s′).

We trained the pσ to classify positions learned through targets in the en-

vironments respective dataset. The data set was split into a test set and a

training set (1:3). Each position consisted of a raw board description or raw

Atari frames consisting of 210 × 160 pixel images with a 128 color palette.

Fortunately, the selected datasets for Atari already underwent preprocessing

steps to reduce input dimensionality. The initial RGB frames are converted

to gray-scale and down-sampled to a 110×84 image. For the final input rep-

resentation, an 84×84 region of the image, which captures the playing area

s and the selected move a made by the human, is cropped. In each training

step, a randomly selected mini-batch of 64 samples from the dataset, were

sampled, and a stochastic gradient descent update was applied to maximize

the log-likelihood of the action, as depicted in Equation 4.5.

∆σ =
α

m

m∑
k=1

∂ log pσ(ak|sk)

∂σ
(4.5)

Gradients older than 100 steps were discarded. Similarly, the other policy

network weights are initialized and every 100 iterations.

∆ρ =
α

n

n∑
i=1

T i∑
t=1

∂ log pρ(ait|sit)
∂σ

(zit − v(sit)) (4.6)

92

4.6. AlphaZero

The training procedure for the value network follows the same approach as

the SL policy network, with the only difference being the parameter update

based on Mean Squared Error (MSE) between the predicted values and the

actual rewards, as illustrated in Equation 4.7.

∆θ =
α

m

m∑
k=1

(zk − vθ(s
k))

∂ log pσ(ak|sk)

∂σ
(4.7)

The original AlphaGo has two seperate RL networks, but in order to main-

tain the objective of comparing the Alphas in the most equilateral testing

environment, we implement the AlphaZero architecture where there is one

network but two separate heads representing p and v. In the original imple-

mentation of AlphaGo, the state representation uses a few handcrafted feature

planes. For the sake of this thesis we forgo these as the main goal is to create

a framework which is easily adaptable to different environments.

4.6 AlphaZero

AlphaZero [62] is the third generation algorithm developed by DeepMind

within this family. The main core and concepts remain the same. Recall

the following details about how AlphaZero works. Essentially there are three

stages which make up the trainign pipeline, all of which are executed in par-

allel:

Self-play games are continuously generated via MCTS and the data is col-

lected to train the singular DNN. Following each training round, the newly

trained model undergoes a comparison with the previous model. If the new

model achieves victory over the previous one, the training process proceeds.

93

4.6. AlphaZero

However, in case the new model does not outperform the previous one, the

training outcome is discarded, and the process reverts to the previous step. In

contrast, AlphaGo’s training process involved multiple stages and a combina-

tion of SL from human expert games, RL, and self-play. Initially, AlphaGo was

trained on a dataset of human expert moves to learn the basic patterns and

strategies used by skilled players. Then, it employed RL by playing against

various versions of itself to improve its gameplay through self-play. The train-

ing was iterative, with each new version of AlphaGo competing against the

previous one, and only the superior models were retained for further training.

The process continued for thousands of iterations until AlphaGo reached a

high level of proficiency, eventually defeating world champion Go players.

While both AlphaZero and AlphaGo utilize self-play and NNs for training,

AlphaZero’s training approach is more streamlined and does not require any

human expert guidance. It relies solely on self-play simulations and MCTS to

explore game positions and generate data for training. This simplicity allows

AlphaZero to achieve remarkable performance in various games without the

need for extensive human expert knowledge, making it a more efficient and

adaptable algorithm for mastering multiple board games.

4.6.1 AlphaZero Methods

The network architecture is as follows, in Figure 4.6: The input features

undergo processing through a residual tower, which consists of a single convo-

lutional block followed by either 19 or 39 residual blocks. The convolutional

block applies a convolution operation with 256 filters of size 3x3 and stride

1, accompanied by batch normalization and a rectifier ReLU activation. The

94

4.6. AlphaZero

Figure 4.6: Network Architecture: illustrates the network architecture,
consisting of a convolutional block, a residual tower with 19 or 39 blocks,
policy and value heads, and specific modules for each component. All our
networks only consist of 10 blocks.

residual blocks sequentially apply convolutions, batch normalization, ReLu,

skip connections, and more convolutions. The policy head will output a vector

of variable size depending on the chosen environment. This vector represents

logit probabilities for all intersections and the pass move/no move if the game

allows. The value head outputs a scalar value in the range of [-1, 1].

It’s important to note that for this thesis, a modified version of the network

was used, with a total of 10 residual blocks across all environments and algo-

rithms to ensure a standarized implementation for the variety of algorithms.

Additionally, the input dimensions and thus the layer dimensions all change

depending on the environment chosen for the simulation.

The loss function used during the optimization process is defined by the

Equation 3.3. This loss function guides the training process by quantifying the

discrepancy between the predicted outputs of the NN and the desired outputs.

The optimization algorithm aims to minimize this loss, resulting in improved

performance and accuracy of the NN. The cross-entropy and MSE losses are

95

4.7. MuZero

Table 4.1: Selected statistics of AlphaZero training

Othello Connect4 Pong Pinball

Mini-batches 64 64 500 500
Training Games 1k 1k 50 k 50 k

MCTS Sims 100 100 100 100
α {0.3, 0.15, 0.03} {0.3, 0.15, 0.03} {0.5} {0.5}

weighted equally, assuming unit-scaled rewards between -1 and +1.

In AlphaZero, a single NN is continuously updated, eliminating the need to

wait for iterations to complete. Self-play games are generated using the most

recent parameters of this NN at all times. Checkpoints are created every 1k

training steps, serving as snapshots of the NN’s state and aiding in the gener-

ation of subsequent self-play game batches. These settings provide a balanced

framework considering stability, regularization, and progress tracking.

4.7 MuZero

When faced with limited access to rules or a perfect simulator, planning for

search requires essential elements: policy, value, and reward predictions. To

achieve this, MuZero defines a representation function, denoted as hθ, which

projects the observation history to a latent state, s, used in the model. This

hidden state enables us to make predictions about the value and policy using

the prediction function. Additionally, there is the dynamics function gθ, al-

lowing us to simulate the model forward. It estimates the next state and the

associated reward, aiding our search without a simulator. At each step of the

search tree, we utilize the prediction function fθ to roll it forward, guiding

our search with the predicted values. By repeating this process and rolling

96

4.7. MuZero

it out to generate trajectories, we interact with the environment, collecting

observations, and running our search to obtain visit counts and distributions.

These critical functions are depicted in Equations 4.8.

representation: hθ(o)→ s0 (4.8)

dynamics: gθ(s
k−1, ak)→ sk, rk (4.9)

prediction: fθ(s
k)→ pk, vk (4.10)

These trajectories (Equation 4.11), in turn, are used to train and update

our model, as seen in Equation 4.13. We use prioritized replay to sample a

trajectory and state from our replay buffer. At the sampled state, we align

the representation function, mapping it to the latent space of our model’s

embedding. By rolling the model forward using the real trajectory s1, ..., sT ,

we ensure that the model remains grounded and can predict the quantities

produced during the actual search. This approach strengthens our model’s

ability to make accurate predictions during imaginary states, contributing to

the effectiveness of our planning process.

(s0, ..., st, at, ..., at+n)→ (p0t , v
0
t , r

1
t , ..., p

n+1
t , vn+1

t , rn+1
t) (4.11)

The objective is to discover the policy π that maximizes the value v(s0)

from the initial state, where the value is defined as the finite-horizon cumula-

tive return, in Equation 4.12:

97

4.7. MuZero

Figure 4.7: How MuZero trains its model.

v(s0) = E

[
T∑
t=0

γt · ut
∣∣∣∣ s0 = s

]
(4.12)

Model:

µθ(o1, ..., ot, a1, ..., ak) = pk, vk, rk


s0 = hθ(o1, ..., ot)

rk, sk = gθ(s
k−1, ak)

pk, vk = fθ(s
k)

(4.13)

Note subscripts denote the time index in the real game environment, and

superscripts index the timestep in the latent environment. Altogether, the

entire computation graph implements the mapping, as illustrated in Figure

4.7:

s0t = hθ(ot, ot−1, .., o1) (4.14)

fθ(s
0
t) = p0t , v

0
t (4.15)

gθ(s
0
t , a

1) = r1t , s
1
t (4.16)

98

4.7. MuZero

Recall that t denotes the length of the sequence of observations (real states)

on which we are training and t will also denote the current observation.

There are multiple things that need to be clarified here; we begin with the

original notation of the dynamics function and note that it does not match

with the loss function (starting at k=0 is infeasible), thus I suggest changing

this to gθ(s
k, ak+1) → sk+1, rk+1 in order to accurately depict the flow of

the dynamics function within the expansion of the tree. Additionally, we

note that, even starting at the very first iteration of the loss sum, the smallest

superscript obtained for the reward is 1. Hence, the first term of the published

loss equation will never be fulfilled at k=0. Keeping to the notation of Figure

4.5, we also see that the target values u (the actual reward) for the imaginary

reward r are always correlated to the next time step (t+1) and so this also

serves as an argument for the, dare we call them, corrections to the original

in Equation 4.16.

Using a single network with three distinct heads f , g, and h as functions,

we leverage them to conduct a MCTS from state st in the latent space. Firstly,

we encode the current state using h. Then, a variant of MCTS called PUCT

[41] is employed, incorporating prior weights on available actions based on

the policy network pkt [5]. Within the MCTS process, g and f govern the

state transitions and policy/value predictions, respectively. As a result of

the MCTS procedure, we obtain a policy πt = π(st) and a value estimate

vt = v(st) for the root node, represented as (πt, vt) ∼ MCTS(s0, . . . , st|µθ).

Subsequently, an action at ∼ πt is chosen in the real environment, leading to

a state transition, and the search process is repeated. This section is summa-

rized in Equation block 4.17.

99

4.7. MuZero

Search:

vt, πt = MCTS(s0t , µθ) (4.17)

at ∼ πt (4.18)

At each timestep t, an MCTS is executed, following the described proce-

dure outlined in the section above. The search policy πt guides the selection

of the next action at+1 based on the visit count of each action from the root

node. The environment responds to the action by providing a new observa-

tion ot+1 and reward ut+1. After an episode concludes, the trajectory data is

stored in a replay buffer for later use. This process is depicted in Figure 4.9.

During the training process, a trajectory is randomly sampled from the

replay buffer, and the sampled observations o1, . . . , ot undergo processing

through the representation function h. Following this, the model, or latent

states, are recurrently unrolled for K steps, as depicted in Figure 4.7. At each

step k, the dynamics function g utilizes the previous hidden state sk−1 and

the actual action at+k to generate the current hidden state sk. By conducting

joint training of the representation, dynamics, and prediction functions, the

model’s parameters are updated using backpropagation through time. The

primary objective of this training process is to approximate the policy pk as

πt+k, the value function vk as zt+k, and the reward rk as ut+k, where zt+k cor-

responds to the sample return, either representing the final reward for board

games or an n-step return for Atari. as seen in Equation 4.19.

100

4.7. MuZero

zt =


uT for games

ut+1 + γut+2 + ... + γn−1ut+n + γnvt+n for MDPs

(4.19)

Losses:

lP (π, p) = πT logp (4.20)

lv(z, v) =


(z − v)2 for games

ϕ(z)T logv for MDPs

(4.21)

lr(u, r) =


0 for games

ϕ(u)T logr for MDPs

(4.22)

lt(θ) =

K∑
k=0

lP (πt+k, p
k
t) +

K∑
k=0

(zt+k, v
k
t) +

K∑
k=1

lr(ut+k+1, r
k+1
t)(4.23)

The Atari environment presents unique challenges for the other two al-

gorithms, AlphaGo and AlphaZero, due to its specific characteristics and re-

quirements. One of the major difficulties arises from the need to clone the

Atari state during the tree search process. Unlike board games like Go and

Chess, where states are well-defined and can be easily represented, the Atari

environment involves complex pixel-based inputs, making it harder to create

a precise state representation. Cloning the Atari state accurately is essential

for performing tree search effectively, as it forms the foundation for evaluating

potential moves and planning future actions. The intricate nature of Atari

states demands significant computational resources and poses a considerable

101

4.7. MuZero

Figure 4.8: Demonstrating how MuZero utilizes it’s learned model to plan.
The learned model consists of three connected components for fθ, gθ and hθ.

Figure 4.9: How MuZero acts in the environment.

technical hurdle for the other algorithms to adapt and perform optimally. This

unique challenge highlights the need for tailored approaches and adaptations

to leverage the strengths of AlphaGo and AlphaZero in the context of Atari

games, making it an exciting area for further research and development.

4.7.1 MuZero Methods

To ensure coherence across the extensive MuZero model, all individual net-

works (hθ, gθ, and fθ) shared a unified internal architecture. The encoding

function hθ solely processed present observations, independent of trajectories.

Moreover, the dynamics functions integrated one-hot-encoded actions, com-

bined with the current latent state, and then transmitted to gθ. The action

policy, value function, and reward prediction were represented as probability

102

4.7. MuZero

Table 4.2: Latent roll-out depth (K), and latent dimensionality (L = |sk|)

Hyperparameters Pong Pinball

L 4 4
K 5 10
t 0.5 0.5

distributions and trained using a cross-entropy loss, consistent with the origi-

nal research [24]. For other unspecified hyperparameters, please refer to Table

4.2.

Ultimately, MuZero adopts dual normalization techniques to ensure stable

learning. It leverages min-max normalization as the output activation for both

hθ and gθ. Concretely, every abstract state undergoes adjustments according

to the formula expressed in Equation 4.24:

sscaled =
s−min(s)

max(s)−min(s)
(4.24)

This process aligns the range of s with that of the discrete actions, but

it also introduces a noteworthy constraint, particularly when the latent space

is compact. For instance, when L = |sk| = 4, the min-max normalization

enforces one element of s ∈ [0, 1] For specific details on the latent space di-

mensionality parameters, refer to the information provided in Table 4.2.

Our MuZero implementation trained at K = 5 and 10 latent steps. Train-

ing proceeded for 100k mini batches of size 64 for the board game environments

and 512 for the Atari environments.

103

4.8. The Alphas

Figure 4.10: Alpha’s Code Structure

4.8 The Alphas

We present a comprehensive reimplementation of AlphaGo, AlphaZero and

MuZero, adhering as much to the original paper as feasibly possible [5, 6,

24]. Our implementations are written in Python, utilizing Tensorflow 2.0 [84],

whose structure is shown in Figure 4.10.

In summary, the algorithms differ in their tree-policy, where AlphaGo

utilizes prior probabilities from SL, AlphaZero relies on self-play probabilities,

and MuZero employs learned model-based predictions. The default-policy

varies as well, with AlphaGo using expert moves, AlphaZero employing a

Monte Carlo policy, and MuZero learning its default policy. Furthermore,

the simulation length is fixed for AlphaGo and AlphaZero but variable for

MuZero, allowing it to adapt to different domains effectively. Additionally,

AlphaGo uses separate NNs for policy and value estimation, while AlphaZero

and MuZero employ a single network for both tasks, trained through self-play

in the case of AlphaZero and integrated with a learned model for MuZero.

104

4.8. The Alphas

Table 4.3: Comparison of properties shared among the Alphas

AlphaGo AlphaZero MuZero

Tree Policy

MCTS with
prior
probabilities
from
supervised
learning

MCTS with
prior
probabilities
from self-play

MCTS with
learned
model-based
predictions

Default Policy
Monte Carlo
Policy

Monte Carlo
Policy

Learned along
with the value
and policy networks
as part of the
integrated learned
model in MuZero

Neural Network
Structure

Separate
neural
networks for
policy and
value
estimation

Single neural
network
for both policy
and value
estimation,
trained through
self-play

Integrated learned
model for state
transitions, value,
and policy networks,
shared backbone
for policy
and value heads

Computational
Resource

32 GPU
10 CPU

32 GPU
10 CPU

32 GPU
10 CPU

Training Time 150 hours 150 hours 150 hours

These distinctions highlight the evolution and adaptability of each algorithm,

contributing to their unprecedented performance in mastering complex games.

4.8.1 Resource Requirements and Restraints

The Alphas have showcased remarkable accomplishments in the realm of game-

playing AI. However, it is important to note that these achievements come at

the cost of tremendous computational resource requirements. The training

process of these algorithms involves intensive computation, which demands

105

4.8. The Alphas

Table 4.4: The Alpha’s success is tremendous, but so it their resource require-
ments.

Model Self-Play Training Frames

AlphaGo - 2000 GPUs 100 M
AlphaZero 64 TPUs 8 TPUs 200 M

MuZero 1000 TPUs 16 TPUs 20 B

significant computational power, time, and resources. DeepMind’s original

implementations of these algorithms made use of large-scale distributed sys-

tems with multiple CPUs, GPUs and TPUs working in parallel. The training

of NNs in MuZero, for instance, employed 16 TPU workers for training and

1k TPUs for self play. For AlphaZero, depending on the version could be

anywhere from 176 GPUs to 48 TPUs. Please see Table 4.4 for standarized

resource requirement for original algorithms. This resource-intensive training

approach allowed the algorithms to learn and refine their strategies through an

extensive exploration of game states. While these computational requirements

pose challenges in terms of scalability and accessibility, they also highlight the

significant strides made in game-playing AI and the immense computational

power harnessed to achieve such groundbreaking results.

In order to establish a fair and level playing field for the evaluation and

comparison of the Alpha family of algorithms in this thesis, we have imposed

limitations on the computational resources allocated to each algorithm. By en-

suring that all algorithms are trained with an equal amount of computational

power, we aim to mitigate potential biases arising from disparate resource uti-

lization. This approach enables a more objective assessment of the algorith-

mic improvements and advancements made in each iteration. Each algorithm’s

NNs, including their respective optimization processes, are implemented using

106

4.8. The Alphas

the same framework and executed on the same infrastructure. By enforcing

uniformity in computational resources and time allocation, we reduce the im-

pact of resource disparities on the performance outcomes. This rigorous and

controlled experimental setup allows us to better isolate and evaluate the spe-

cific algorithmic enhancements and modifications, providing valuable insights

into the strengths and weaknesses of each approach. Moreover, this approach

aligns with scientific principles of fairness and repeatability, enabling robust

comparisons and meaningful conclusions to be drawn from the experimental

results.

Another aspect to consider is the computational time required for training

and evaluation. While our study strives to maintain consistent computational

constraints across the algorithms, it’s important to acknowledge that the ac-

tual implementation and hardware dependencies can influence performance.

Different implementations might exhibit varying levels of efficiency, poten-

tially resulting in faster execution times for certain algorithms. However, the

fact that the Alpha algorithms share the same framework somewhat mitigates

these disparities, as the underlying components remain consistent.

Nonetheless, the intricacies of software optimization and hardware com-

patibility can introduce a layer of unpredictability. A seemingly minor tweak

in code could significantly impact execution speed on a specific architecture.

It’s also worth noting that our evaluation doesn’t delve into the realm of code

optimization tailored to specific algorithms. While we attempt to control

variables, the reality is that the AI landscape is nuanced, and even seemingly

minute changes in implementation details could yield diverse outcomes.

Despite our efforts to measure CPU and GPU utilization, a more intricate

107

4.8. The Alphas

assessment reveals that MuZero’s operational and computational complexity

surpasses that of the other Alpha algorithms. This distinction arises from

MuZero’s utilization of a larger neural network architecture, enabling it to ex-

ecute a greater number of simulations compared to its Alpha algorithm coun-

terparts. Furthermore, it’s worth noting that AlphaGo employs four distinct

neural networks for various purposes, which adds another layer of complexity

to its computational demands.

The inherent complexity of these algorithms invites the possibility of con-

ducting a more in-depth analysis using Big-O complexity notation. This could

provide insights into the algorithms’ scalability and efficiency as their compu-

tational requirements grow with increasing problem sizes. However, a com-

prehensive Big-O complexity analysis might prove challenging due to the in-

tricate interplay of neural network computations, MCTS operations, and par-

allel processing, all of which contribute to the overall operational complexity.

Nevertheless, such analysis could potentially yield valuable insights into the

algorithms’ behavior as the problem scales, shedding light on their potential

limitations and optimal utilization.

In conclusion, our study contributes valuable insights into the performance

of Alpha algorithms within a controlled experimental setup. Yet, the broader

context of AI research reminds us that findings can be influenced by a mul-

titude of factors. The dynamic interplay between computational resources,

code implementation, and the inherent complexities of game-playing domains

underscores the need for comprehensive explorations in various scenarios to

paint a complete picture of the capabilities and limitations of these cutting-

edge algorithms.

108

4.9. Atari and Atari Learning Environment

The NNs utilized in AlphaGo, AlphaZero, and MuZero, represented as fθ,

underwent optimization using TensorFlow, a powerful deep learning frame-

work, in Python, and executed on the Google Cloud platform. This endeavor

required the collaborative effort of 32 GPU workers alongside 10 CPU param-

eter servers. Each worker performed training with a mini-batch size of 64,

collectively amounting to a substantial batch size of 2,048. To ensure a well-

rounded training dataset and promote efficient NN learning, we employed a

sampling strategy that uniformly selected data from 500k games of self-play,

contributing to the diverse training process.

4.9 Atari and Atari Learning Environment

Atari and the Arcade Learning Environment (ALE) have played a significant

role in advancing the field of RL. Atari games serve as a benchmark for testing

and evaluating the performance of various RL algorithms due to their com-

plexity, diverse dynamics, and rich visual representations. The ALE, devel-

oped by Marc Bellemare and colleagues[85], provides a standardized platform

for researchers to interact with Atari games, enabling fair comparisons and

reproducibility.

In this thesis, we utilized the Atari games and the ALE as a testbed to

evaluate the performance of the Alpha algorithms and compare it to the DQN

baseline. By training and testing these algorithms on a range of Atari games, I

aimed to investigate their abilities to learn and generalize across various game

environments. The use of Atari and the ALE allowed me to assess the algo-

rithms’ performance in challenging and dynamic domains, providing insights

109

4.9. Atari and Atari Learning Environment

into their strengths, limitations, and potential for real-world applications.

Furthermore, the availability of a wide range of Atari games within the

ALE allowed for comprehensive experimentation and analysis. I utilized game-

specific performance metrics, such as average episode rewards and achieved

scores, to quantify the algorithms’ effectiveness and compare their perfor-

mance across different games. This evaluation on the Atari platform served as

a valuable means to assess the capabilities of the algorithms and understand

their behavior in complex and dynamic environments.

Overall, Atari and the ALE have been instrumental in driving research

and progress in RL. They provide a standardized and challenging testbed that

enables researchers to develop, evaluate, and compare novel algorithms, ulti-

mately contributing to the advancement of AI techniques in solving complex

real-world problems.

Using Atari games in the MCTS algorithm presents a unique challenge

since the states must be close enough to the original environment states in

ordre to effectively simulate the game until the end. Unlike MuZero, which

overcomes this issue through its self-play and simultaneous learning process,

other algorithms like AlphaGo and AlphaZero face difficulties when dealing

with large state spaces and complex game environments like Atari. This im-

plementation challenge arises because in Atari games, reaching the terminal

state requires navigating through numerous intermediate states, making the

MCTS more computationally demanding.

MuZero, on the other hand, benefits from its ability to predict future states

and rewards without having to fully simulate the game until the end. Through

its NN architecture and Monte Carlo planning, MuZero can efficiently gen-

110

4.10. Experiments and Methods

erate action sequences without relying on complete game simulations. This

advantage allows MuZero to handle large and complex state spaces, making

it particularly well-suited for games like Atari, where exhaustive simulations

might be infeasible due to the vast number of possible states.

Highlighting the strength of MuZero in addressing this challenge sheds

light on the benefits of its unique approach to self-play and learning. By di-

rectly predicting state transitions and rewards, MuZero avoids the need for

exhaustive simulations, making it more adaptable to various game environ-

ments. This advantage could be crucial for game-playing AI algorithms, as

it allows for efficient learning and decision-making even in complex and high-

dimensional domains like Atari.

4.10 Experiments and Methods

4.10.1 Environments

We have already described in depth the Connect4 and Othello Environments

in Section 3.6.1. Pong and Pinball were chosen as additional environments in

our experiment due to their characteristics as zero-sum two-player games. This

deliberate selection allowed us to explore the algorithms’ performance in com-

petitive settings where maximizing one player’s reward directly impacts the

other player’s reward. By incorporating these games, we aimed to assess how

the algorithms handle adversarial situations and strategic decision-making in a

more dynamic and interactive environment. Moreover, these games presented

distinct challenges compared to Connect4 and Othello, allowing us to exam-

ine the algorithms’ adaptability across diverse domains and their potential for

111

4.10. Experiments and Methods

broader applicability.

Pong is a classic Atari game that simulates a table tennis match.In Pong,

players control paddles on opposite sides of the screen, aiming to hit the ball

past their opponent’s paddle and score points. Each time the ball successfully

passes the opponent’s paddle, a point is awarded to the player. The game

continues until one player reaches a predetermined score or a time limit is

reached. Pong was chosen as an environment for the algorithms because it is a

simple yet competitive game that involves precise timing, strategic positioning,

and quick decision-making. Its zero-sum nature, where one player’s gain is

directly at the expense of the other player, makes it a suitable choice for

evaluating the effectiveness of self-play algorithms like MuZero and AlphaZero

in learning optimal strategies through RL. The state space is an RGB image

tensor of shape 210x160x3 then reduced to that of 84x84x4. The input action

is an integer in [0,1,2,3,4,5], which denotes the following meanings: 0 : no

action , 1 : fire , 2 : right , 3 : left, 4 : rightfire, 5 : leftfire.

Video Pinball, another Atari game, emulates the classic pinball arcade ex-

perience. The objective in Video Pinball is to keep a ball in play by controlling

two paddles at the bottom of the screen and hitting targets on a pinball-like

table. Players score points by hitting various objects and targets, such as

bumpers, spinners, and ramps. The more accurately the ball is hit and the

more targets are hit consecutively, the higher the score. Video Pinball was

selected as an environment for the algorithms due to its rich dynamics, requir-

ing players to consider timing, ball trajectory, and skillful paddle control. The

scoring mechanics and the strategic decision-making involved in maximizing

points make Video Pinball a challenging and interesting domain for exploring

112

4.10. Experiments and Methods

the capabilities of self-play algorithms in learning optimal gameplay strategies.

The state space in the Video Pinball environment is an RGB image tensor,

typically with a shape of 210x160x3, which is then resized to 84x84x4 for pro-

cessing. The input actions are integers ranging from 0 to 17, corresponding

to different button combinations for controlling the flippers and launching the

ball.

4.10.2 Deep-Q Learning - DQN

Deep Q-Network (DQN) [3] is a RL algorithm that belong to the Q-learning

family. DQN introduced the use of DNNs to approximate the Q-values, en-

abling it to handle high-dimensional state spaces. It leverages an experience re-

play buffer to store and sample from past experiences, allowing for better data

efficiency and reduced correlation between samples. This method uses a func-

ton approximator to estimate the action-value function Q(s, a; θ) ≈ Q∗(s, a).

We train NN θ by minimizing the loss function in Equation 4.25 [17]:

Li(θi) = E[(yi −Q(s, a; θi))
2] (4.25)

where yi = E[r + γ maxa′ Q(s′, a′; θi−1] is the target for iteration i and the

parameters θi−1 stay fixed when optimizing the loss. We then optimize the loss

function by stochastic gradient descent. We note that this algorithm is model-

free, as it learns via direct samples from the environment, without constructing

a model. This method learns via a ϵ-greedy strategy a = maxaQ(s, a; θ) where

it selects random actions with probability ϵ. Refer to Table 4.5 for specific

parameters used in the implementation.

113

4.11. Results

Table 4.5: Hyperparameters for the DQN Algoritm

Hyperparameters DQN

Replay Buffer Capacity 100k
Agent Update Freq. 500
Target Update Freq. 250
Max ϵ 1
Min ϵ 0.05
Learning Rate 1× 10−3

Batch Size 64

4.11 Results

Starting with the board game environments, Connect4 and Othello, we ob-

served intriguing results as MuZero demonstrated superior performance com-

pared to its Alpha counterparts. However, an interesting observation was that

DQN achieved a remarkably similar performance to AlphaGo in Connect4.

Moreover, we noticed a significant advantage for the first player in Connect4,

as evidenced by the results in Table 4.6. In contrast, the Othello environment

did not exhibit a significant advantage for the first player, as shown in Table

4.7.

To assess the capabilities of the Alpha algorithms in different environ-

ments, we conducted a thorough comparison against the benchmark perfor-

mance of DQN. The diverse challenges presented by these environments did

not appear to hinder MuZero’s performance, nor significantly improve Alp-

haZero’s. Figures 4.13 to 4.14 display the average training curves for each of

the four algorithms on the four different environments. Interestingly, we ob-

served consistent patterns, where the size and complexity of the environments

did not seem to substantially affect the performance of the MuZero algorithm.

114

4.11. Results

Table 4.6: Connect 4 Statistics. Won games over 5k games where agent
initialized for both players equally.

Algorithm # Player 1 wins # Player 2 wins # of tie games
Move Count

per game

AlphaGo 3040 1905 55 22.102

AlphaZero 3325 1653 22 21.764

MuZero 3420 1580 0 18.44

DQN 2854 2086 60 23.252

On average, DQN (a model-free approach) performed less successfully than

the Alpha algorithms, with AlphaGo and AlphaZero (both utilizing a model)

following closely behind, while MuZero (learning the model) demonstrated

the highest level of performance. This not only highlights MuZero’s unique

characteristic of not requiring a model, unlike other MCTS techniques, but

also showcases its superiority over model-free techniques like DQN, making it

an extremely efficient and effective choice.

Furthermore, we observed that MuZero effectively navigates the challenges

presented by both dense reward environments, like the Atari games, where it

quickly obtains gradients to structure the latent space, and sparse reward

environments. Despite the larger and more complex environments, MuZero

maintained its exceptional performance, further reinforcing its versatility and

adaptability.

We approach the statistical analysis in a very similar way to which we

approached the challenge in Chapter 3. For the Connect4 environment, we

conduct an ANOVA test which detected a statistically significant difference

in reward among at least two algorithms. We found a p-value of 0.039 which

is close to our alpha parameter but still indicates that we can reject the null

115

4.11. Results

Table 4.7: Othello Statistics. Won games over 5k games where agent initialized
for both players equally.

Algorithm # Player 1 wins # Player 2 wins # of tie games
Move Count
\per Game

DQN 2869 2083 48 68.254

AlphaGo 2941 2023 46 65.397

AlphaZero 2097 1887 116 64.168

MuZero 3295 1693 12 58.621

Table 4.8: Average total reward over 50k episodes of Atari games

Average Total Reward Single Best Performing Episode
Pong Video Pinball Pong Video Pinball

DQN -3 76,421 10 144,253
AlphaGo 5 134,217 14 589,326

AlphaZero 11 221,579 21 501,978
MuZero 14 512,365 21 537,942

Figure 4.11: Evaluation of the Alphas throughout training in Connect4. DQN
is shown as baseline. Averaged across 10 experiment replications

116

4.11. Results

Figure 4.12: Evaluation of the Alphas throughout training in Othello. DQN
is shown as baseline. Averaged across 10 experiment replications

Figure 4.13: Evaluation of the Alphas throughout training in Pong. DQN is
shown as baseline. Averaged across 10 experiment replications

117

4.11. Results

Figure 4.14: Evaluation of the Alphas throughout training in Pinball. DQN
is shown as baseline. Averaged across 10 experiment replications

hypothesis and conclude that the four means are not all equal. We also con-

ducted a post-hoc Tukey’s HSD test and found that the difference in win

rates between AlphaGo and AlphaZero was significant (p = 0.010 , 95% C.I.

= [38.63,77.98]), as was the difference between AlphaZero and MuZero (p =

0.042, 95% C.I. = [67.84,97.28]). No significant difference was found between

DQN and AlphaGo (p = 0.074).

We repeat the same ANOVA test for each of the remaining environments:

Othello, Pong and Pinball. with and obtain a p = 2.88E-04, p = 0.039 and

p = 5.64E-05 value which also indicates that we are able to reject the null

hypothesis and conclude that the means are not equal for each of the envi-

ronments. We also conducted a post-hoc Tukey’s HSD test for each of these,

which we will go through in order.

The Othello Tukey test found that the difference in win rates between

118

4.11. Results

DQN and AlphaGo was significant (p = 0.012, 95% C.I. = [38.99 , 88.17]),

as is the difference between AlphaGo and MuZero (p = 0.003, 95% C.I. =

[45.18, 82.22]). No significant difference was found between AlphaZero and

MuZero (p = 0.333). The Pong Tukey test found that the difference in win

rates between all the pairs of algorithms. DQN and AlphaGo (p = 3.233E-

04, 95% C.I. = [32.72 ,78.23]) and DQN and AlphaZero (p = 6.53E-05, 95%

C.I. = [40.49, 93.91]) and DQN and Muzero (p= 5.63E-04, 95% C.I. [8.59,

96.36]) Followed by AlphaGo and AlphaZero (p= 4.43E-03, 95% C.I. [17.48,

66.43]), AlphaGo and MuZero (p= 1.33E-06, 95% C.I. [58.39, 74.38]) and

lastly, AlphaZero and MuZero (p= 0.045, 95% C.I. [23.44, 57.99]) The last

Tukey test we conducted was within the Pinball environment. We found that

there was no significant difference between the win rates between AlphaZero

and MuZero (p = 0.183). Every other algorithm pair comparisons and results

were statistically different.

The results of our comparative evaluation reveal intriguing insights into

the performance of the implemented algorithms on the Connect4, Othello,

Pong, and video pinball environments. Notably, MuZero consistently outper-

forms all other algorithms, showcasing its remarkable capabilities in strategic

decision-making and adaptive learning. However, our analysis goes beyond

mere performance comparison and emphasizes the improvement and signifi-

cance of MuZero, even when accounting for its intensive training. Our results

suggest that MuZero’s success stems not only from its resource-intensive na-

ture but from its unique ability to generalize and plan without prior domain

knowledge. These findings solidify the position of MuZero as a groundbreak-

ing algorithm in the realm of RL and underscore its potential for real-world

119

4.12. Limitations

applications. Furthermore, our results highlight the strengths and limitations

of AlphaGo and AlphaZero providing valuable insights for future research and

algorithmic developments in the field.

4.12 Limitations

Despite the comprehensive evaluation and insightful findings presented in this

work, there are some limitations that should be acknowledged. Firstly, our

study focused primarily on zero-sum game environments, and the performance

of the Alpha algorithms in multi-agent settings remains an area for further

investigation. Additionally, our evaluation was constrained by computational

resources and training time, potentially limiting the algorithms’ full potential.

Moreover, the choice of gaming environments may not fully represent the di-

versity and complexity of real-world problems, warranting further exploration

in more challenging domains. Lastly, while MuZero showcased remarkable

adaptability, its training regime might be challenging to replicate in resource-

constrained scenarios, raising questions about its practical applicability in

certain real-world applications. Despite these limitations, this work provides

a solid foundation for future research and highlights the impressive capabilities

of the Alpha algorithms in RL.

In addition to the factors mentioned earlier, there are other variables that

we did not explicitly control, which could potentially impact the results. One

such factor is the difference in internal policies used by the Alpha algorithms

during the training process. Each algorithm may adopt different exploration

strategies and policies for guiding the search process, leading to variations

120

4.13. Conclusion

in their decision-making and learning behaviors. Furthermore, the specific

training loops and hyperparameter settings used for each algorithm could also

contribute to differences in their performance. The choice of learning rates,

batch sizes, and other training hyperparameters can significantly influence

the speed and stability of the learning process, potentially affecting the final

results. While we made efforts to maintain consistency in the implementation

and training settings, these variations remain potential sources of influence on

the performance of the Alpha algorithms in our experiments. For example,

there could be a set of hyperparameters where different algorithms will perform

better and differently than our results. Acknowledging and understanding

these uncontrolled factors helps to contextualize the results and encourages

further investigation to identify their individual impacts.

4.13 Conclusion

In conclusion, our comprehensive evaluation of the Alpha algorithms, in-

cluding AlphaGo, AlphaZero, and MuZero, alongside the baseline DQN, has

revealed valuable insights into their performance on diverse gaming envi-

ronments. Notably, MuZero demonstrated superior capabilities in strategic

decision-making and adaptive learning, outperforming all other algorithms

consistently. Importantly, we found that MuZero’s success can be attributed

not only to its resource-intensive training but also its unique ability to gen-

eralize and plan without prior domain knowledge. These findings solidify

MuZero’s position as a groundbreaking algorithm in RL, showcasing promis-

ing potential for real-world applications. Furthermore, our analysis shed light

121

4.13. Conclusion

on the strengths and limitations of AlphaGo, AlphaZero, and DQN, provid-

ing valuable guidance for future research and algorithmic developments in the

field.

122

5 Conclusion and Future Work

5.1 Conclusions

In this comprehensive thesis, we delve into a thorough exploration and meticu-

lous evaluation of various MCTS algorithm variations within the context of the

AlphaZero paradigm. Furthermore, we undertake the endeavor of conducting

a comparative analysis of diverse members within the Alpha algorithm family,

all under the same computational resources.

Chapter 2 serves as the foundation, offering the essential background and

fundamental concepts required for a coherent comprehension of the subsequent

algorithms and discussions presented throughout this thesis. Proceeding to

Chapter 3, we delve into a detailed evaluation of an array of MCTS varia-

tions, both within the original MCTS algorithm framework and integrated

into the AlphaZero algorithm. We set all our eight implemented algorithms

against three test opponents and obtained win rates for each match, averaged

over multiple games. Notably, our findings highlight the emergence of the

AlphaZero-ALL algorithm as a standout performer across a range of carefully

chosen game environments.

123

5.2. Limitations

In Chapter 4, our attention pivots towards an in-depth assessment of the

fundamental Alpha algorithms. This evaluation takes place across a metic-

ulously curated set of diverse game environments, with the aim of gaining

comprehensive insights into the algorithms’ performance across varying chal-

lenges and complexities. While all three Alpha algorithms demonstrate excep-

tional performance, the latest and most robust entrant, MuZero, consistently

emerges as the front runner in every environment evaluated within this thesis.

This resounding achievement extends to complex Atari games like Pong and

Pinball, solidifying MuZero’s status as the preeminent algorithm among its

counterparts.

This work represents a commendable attempt at exploring and improving

game-playing AI algorithms, particularly focusing on the Alpha algorithms

and MCTS modifications for various environments. By comprehensively eval-

uating and comparing the DeepMind algorithms and modifications to the

MCTS algorithm, the thesis advances our foundational understanding of their

capabilities and limitations. The findings of this thesis hold promise for the

continued development and refinement of strategic decision-making systems,

propelling the field of AI into new realms of achievement.

5.2 Limitations

This thesis entails certain limitations that deserve consideration. Firstly, the

choice of game environments for evaluation, namely Connect4 and Othello,

alongside the absence of more diverse and complex real-world tasks like Atari

games, might limit the generalization of results. The similarities of these

124

5.2. Limitations

games to Go could potentially bias the algorithms’ performance, favoring those

designed explicitly for Go-like scenarios.

Moreover, the variations in network architectures and distinct MCTS im-

plementations employed by each algorithm in Chapter 4 could introduce biases

and impact their respective performances. Understanding the isolated effects

of individual components becomes challenging due to these differences.

It is essential to note that the computational resources used during the

original experiments were substantial, which, while necessary for achieving

state-of-the-art performance, might not be readily available to all researchers

and practitioners. Consequently, the practical applicability of the proposed

algorithms in resource-constrained settings might be limited. In our work

we simply limited the resources as a proposed mean to control one of the

influencing variables.

Additionally, the evaluation metrics utilized in this thesis provide a com-

prehensive assessment of the algorithms’ capabilities. However, there might be

other relevant metrics or real-world benchmarks that could further enhance

the evaluation and demonstrate the agents’ strengths and weaknesses more

effectively.

While our evaluation offers valuable insights into the performance of var-

ious algorithms within identical computational constraints, it’s important to

consider the limitations of our approach. By controlling factors like network

size and computational resources, we aim to ensure a fair comparison among

the algorithms. However, it’s crucial to acknowledge that other variables,

such as hyperparameters and neural network architectures, could impact the

results. Confounding variables that we haven’t accounted for might also play

125

5.3. Future Work

a role in influencing the outcomes.

Furthermore, the results we present here provide only a limited glimpse

into the capabilities and limitations of the Alpha algorithms. Each algorithm’s

performance might be contingent on specific game environments, opponents,

and conditions, which our evaluation might not fully encapsulate. The dy-

namic nature of AI research and the complexities of game-playing domains

make it challenging to draw definitive conclusions from a single study.

In summary, while our experiments shed light on the comparative perfor-

mance of the Alpha algorithms, they represent only a single snapshot in the

broader landscape of AI research. As the field continues to evolve, a compre-

hensive understanding of the algorithms’ strengths and limitations will require

rigorous exploration across a wider range of variables and conditions.

By acknowledging these limitations, this thesis offers valuable contribu-

tions to the field of AI and RL, showcasing the potential of deep learning and

MCTS techniques in mastering complex game environments. Identifying these

limitations also paves the way for future research to build upon this work, ad-

dress the challenges, and explore opportunities for advancing AI algorithms

beyond the scope of this thesis.

5.3 Future Work

5.3.1 MCTS in Stochastic Environments

Stochastic environments pose unique challenges for MCTS due to the inherent

variability and uncertainty of outcomes. In these environments, the main

challenge lies in accurately estimating the value of actions or states, as the

126

5.3. Future Work

outcomes of simulations can be unpredictable and noisy. Such challenges can

lead to suboptimal decisions and slower convergence to the optimal policy.

However, several techniques have been developed to address these challenges

and enhance the performance of MCTS in stochastic environments.

One of the primary challenges in stochastic environments is handling the

variability of outcomes during simulations. To tackle this, rollout policies

are employed to guide the simulation towards more promising paths. Rather

than randomly sampling actions, rollout policies utilize learned models, such

as NNs, to predict likely outcomes for each action. By incorporating these

predictions, rollout policies improve the accuracy of value estimates, allowing

for more informed decision-making.

Another challenge is the accurate estimation of values in the presence of

noise and uncertainty. Importance sampling is a technique used to adjust

the weight of each simulation based on the likelihood of being a reasonable

estimate of the actual value. By considering the probabilities of simulated

outcomes, importance sampling reduces the impact of noisy simulations and

enhances the accuracy of value estimates.

The exploration-exploitation trade-off is crucial in stochastic environments.

Progressive widening is a technique used to balance this trade-off based on the

number of visits to each node. It progressively increases the exploration of new

actions or states as the search progresses while favoring the most promising

options based on accumulated information. This approach ensures a balanced

exploration of the search space, leading to more effective decision-making.

Ensembling is a powerful technique that combines multiple estimators to

improve the accuracy of value estimates. In the context of MCTS, ensembling

127

5.3. Future Work

involves aggregating outputs from different MCTS algorithms with diverse

exploration strategies. By leveraging the strengths of each algorithm, ensem-

bling provides a more robust and accurate estimate of the optimal solution in

stochastic environments.

To implement these techniques effectively, adaptations in the MCTS algo-

rithm and exploration strategies are necessary. This may involve addressing

computational resource requirements by utilizing parallelization techniques

and optimizing the search algorithm to reduce computational complexity. Ad-

ditionally, incorporating domain-specific knowledge and tuning hyperparame-

ters can further enhance the performance of MCTS in stochastic environments.

In summary, stochastic environments present unique challenges for MCTS,

as the variability and uncertainty of outcomes can hinder accurate value esti-

mation and decision-making. However, through the utilization of rollout poli-

cies, importance sampling, progressive widening, and ensembling, the perfor-

mance of MCTS can be significantly improved in these complex and uncertain

domains. These techniques enable more effective exploration and exploitation

of the search space, leading to better decision-making and faster convergence

to optimal policies in a wide range of stochastic environments.

5.3.2 Future work - MCTS Impact

In terms of future work, one intriguing avenue for further exploration is to con-

duct experiments that minimize the influence of MCTS in the implemented

algorithms. By significantly reducing the activity of MCTS or even remov-

ing it entirely, we can gain deeper insights into the specific impact of MCTS

on the algorithms’ performance. This experiment would enable us to isolate

128

5.3. Future Work

and analyze the contributions of other components, such as the DNNs and

the learned model, in decision-making and strategic planning. Understanding

the relative importance of MCTS and its interplay with other elements could

provide valuable knowledge for optimizing and fine-tuning these algorithms,

potentially leading to more efficient and effective models. Such investigations

into the role of MCTS would contribute to our broader understanding of RL

techniques and pave the way for advancements in algorithm design and opti-

mization.

However, it is important to note that minimizing the activity of MCTS in

these algorithms also poses certain challenges and limitations. One significant

consideration is the need for environment-specific tuning of the NNs utilized

in these algorithms. Neural networks often require careful calibration and op-

timization to adapt to the nuances and complexities of each environment. By

reducing the influence of MCTS, we risk diminishing the role of exploration

and relying solely on the NNs’ existing knowledge. This approach might lead

to suboptimal performance or an inability to adapt effectively to diverse en-

vironments. Hence, striking a balance between the exploration capabilities of

MCTS and the adaptability of NNs is crucial to ensure optimal performance

across different domains. Finding the right trade-off between these elements

remains a key challenge that future research must address to maximize the

potential of these algorithms.

129

Bibliography

[1] M. Campbell, A. Hoane, and F. Hsu, “Deep blue,” Artificial Intelligence,

vol. 134, pp. 57–83, 2002.

[2] L. V. Allis, Searching for Solutions in Games and Artificial Intelligence.

PhD thesis, Univ. Limburg, Maastricht, The Netherlands, 1994.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,

S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,

D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through

deep reinforcement learning,” Nature, vol. 518, pp. 529–533, 2015.

[4] M. Taves, “Google’s alphago isn’t taking over the world, yet,” March 13

2016.

[5] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van

Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,

M. Lanctot, et al., “Mastering the game of go with deep neural networks

and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[6] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,

A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering

130

Bibliography

the game of go without human knowledge,” Nature, vol. 550, no. 7676,

pp. 354–359, 2017.

[7] DeepMind, “The challenge match: Alphago vs. lee sedol.”

https://www.deepmind.com/research/highlighted-research/

alphago/the-challenge-match, Year of Access. Accessed: [Insert

Access Date].

[8] F.-Y. Wang, J. J. Zhang, X. Zheng, X. Wang, Y. Yuan, X. Dai, J. Zhang,

and L. Yang, “Where does alphago go: From church-turing thesis to

alphago thesis and beyond,” IEEE/CAA Journal of Automatica Sinica,

vol. 3, no. 2, pp. 113–120, 2016.

[9] S. D. Holcomb, W. K. Porter, S. V. Ault, G. Mao, and J. Wang,

“Overview on deepmind and its alphago zero ai,” in Proceedings of the

2018 international conference on big data and education, pp. 67–71, 2018.

[10] Y. Chen, A. Huang, Z. Wang, I. Antonoglou, J. Schrittwieser, D. Silver,

and N. de Freitas, “Bayesian optimization in alphago,” arXiv preprint

arXiv:1812.06855, 2018.

[11] DeepMind, “Deepmind ai reduces google data centre

cooling bill by 40%.” https://www.deepmind.com/blog/

deepmind-ai-reduces-google-data-centre-cooling-bill-by-40,

2023. Accessed: [Insert Access Date].

[12] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,

T. Eccles, J. Keeling, F. Gimeno, A. Dal Lago, et al., “Competition-level

code generation with alphacode,” Science, vol. 378, no. 6624, pp. 1092–

1097, 2022.

131

https://www.deepmind.com/research/highlighted-research/alphago/the-challenge-match
https://www.deepmind.com/research/highlighted-research/alphago/the-challenge-match
https://www.deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40
https://www.deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40

Bibliography

[13] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,

K. Tunyasuvunakool, R. Bates, A. Ž́ıdek, A. Potapenko, et al., “Highly

accurate protein structure prediction with alphafold,” Nature, vol. 596,

no. 7873, pp. 583–589, 2021.

[14] A. Senior, J. Jumper, R. Evans, T. Green, P. Ewels, J. Preece, D. Taylor,

D. Fields, G. Prodromou, A. Antoniou, et al., “Alphafold: Using ai for

scientific discovery.” DeepMind Blog, 2020.

[15] J. A. de Vries, K. S. Voskuil, T. M. Moerland, and A. Plaat, “Visualizing

muzero models,” arXiv preprint arXiv:2102.12924, 2021.

[16] S. Thakoor, S. Nair, and M. Jhunjhunwala, “Learning to play othello

without human knowledge,” 2016.

[17] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

MIT Press, 2018.

[18] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans, “Bridging the

gap between value and policy based reinforcement learning,” CoRR,

vol. abs/1702.08892, 2017.

[19] R. S. Sutton and A. G. Barto, “Introduction to reinforcement learning,”

MIT press, 1998.

[20] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration

via bootstrapped dqn,” arXiv preprint arXiv:1602.04621, 2016.

[21] M. Andrychowicz, A. Raichuk, P. Stańczyk, M. Orsini, S. Girgin,

R. Marinier, L. Hussenot, M. Geist, O. Pietquin, M. Michalski, et al.,

“What matters in on-policy reinforcement learning? a large-scale empir-

ical study,” arXiv preprint arXiv:2006.05990, 2020.

132

Bibliography

[22] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in

European Conference on Machine Learning, pp. 282–293, 2006.

[23] R. S. Sutton, “Dyna, an integrated architecture for learning, planning,

and reacting,” ACM SIGART Bulletin, vol. 2, no. 4, pp. 160–163, 1991.

[24] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,

S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, et al., “Mas-

tering atari, go, chess and shogi by planning with a learned model,”

Nature, vol. 588, no. 7839, pp. 604–609, 2020.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,

et al., “Human-level control through deep reinforcement learning,” Na-

ture, vol. 518, no. 7540, pp. 529–533, 2015.

[26] G. A. Rummery and M. Niranjan, “On-line q-learning using connection-

ist systems,” tech. rep., Cambridge University Engineering Department,

1994.

[27] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven

exploration by self-supervised prediction,” in International Conference

on Machine Learning, 2017.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-

stra, and M. Riedmiller, “Playing atari with deep reinforcement learning,”

arXiv preprint arXiv:1312.5602, 2013.

[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-

tations by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–

536, 1986.

133

Bibliography

[30] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,

no. 7553, pp. 436–444, 2015.

[31] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust re-

gion policy optimization,” in Proceedings of the 32nd International Con-

ference on Machine Learning (ICML), pp. 1889–1897, 2015.

[32] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-

imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,

2017.

[33] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,

D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-

forcement learning,” in Proceedings of the 33rd International Conference

on Machine Learning (ICML), pp. 1928–1937, 2016.

[34] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlfsha-

gen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A survey of

monte carlo tree search methods,” IEEE Transactions on Computational

Intelligence and AI in Games, vol. 4, no. 1, pp. 1–43, 2012.

[35] L. Wang, Y. Zhao, Y. Jinnai, Y. Tian, and R. Fonseca, “Alphax: explor-

ing neural architectures with deep neural networks and monte carlo tree

search,” arXiv preprint arXiv:1903.11059, 2019.

[36] C. Gao, M. Müller, and R. Hayward, “Three-head neural network archi-

tecture for monte carlo tree search.,” in IJCAI, pp. 3762–3768, 2018.

[37] D. J. N. J. Soemers, C. F. Sironi, T. Schuster, and M. H. M. Winands,

“Enhancements for real-time monte-carlo tree search in general video

134

Bibliography

game playing,” in 2016 IEEE Conference on Computational Intelligence

and Games (CIG), pp. 1–8, IEEE, 2016.

[38] D. Perez, S. Samothrakis, J. Togelius, T. Schaul, S. M. Lucas,

A. Couëtoux, J. Y. Lee, C.-W. Lim, and T. Thompson, “The 2014 general

video game playing competition,” IEEE Transactions on Computational

Intelligence and AI in Games, 2016. To appear.

[39] Y. Tian, Q. Gong, W. Shang, Y. Wu, C. L. Zitnick, Y. Sun, and W. Chen,

“Elf opengo: An analysis and open reimplementation of alphazero,” in

International Conference on Machine Learning, pp. 6247–6256, PMLR,

2019.

[40] G. Chaslot, M. Winands, J. van den Herik, and J. Uiterwijk, “Monte-

carlo tree search: A new framework for game ai,” in Proceedings of the

AAAI Conference on Artificial Intelligence and Interactive Digital En-

tertainment, vol. 4, pp. 185–190, 2008.

[41] C. D. Rosin, “Multi-armed bandits with episode context,” in 28th Inter-

national Conference on Machine Learning (ICML 2011), pp. 1057–1064,

2011.

[42] T. Anthony, Y. Tian, D. Barber, et al., “Thinking fast and slow with

deep learning and tree search,” arXiv preprint arXiv:1705.08439, 2017.

[43] B. Stankiewicz, M. Szubert, T. Szczepanski, W. Jaśkowski, K. Krawiec,

and Z. Michalewicz, “Monte-carlo tree search enhancements for othello,”

in Computational Intelligence and Games (CIG), 2012 IEEE Conference

on, pp. 270–277, IEEE, 2012.

135

Bibliography

[44] M. Seify, G. Chaslot, and O. Teytaud, “Single-player atari 2600 games

with deep reinforcement learning and tree search,” arXiv preprint

arXiv:2008.05041, 2020.

[45] G. M.-B. Chaslot, M. H. Winands, J. V. D. Herik, et al., “Nested monte

carlo search,” in Computer Games Workshop, vol. 8, p. 4, 2008.

[46] A. Couëtoux, T. Cazenave, and A. Saffidine, “Double progressive widen-

ing: learning a selection policy for guiding a monte carlo tree search,”

arXiv preprint arXiv:1110.4650, 2011.

[47] S. Gelly, L. Kocsis, D. Silver, and C. Szepesvári, “Uct with rave,” Hand-

book of Games and Economic Behavior, vol. 3, pp. 45–96, 2011.

[48] G. Chaslot, M. H. Winands, J. V. D. Herik, J. W. Uiterwijk, and

B. Bouzy, “Monte-carlo tree search: A new framework for game ai,” Pro-

ceedings of the fourth international conference on Computers and games,

pp. 216–227, 2008.

[49] M. Enzenberger, P. Kissmann, M. Müller, A. Saffidine, T. Schubert, and

M. Tscherepanow, “Clustered monte-carlo tree search,” in Proceedings of

the 3rd International Conference on Fun and Games, pp. 27–38, 2010.

[50] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Parallel monte-carlo

tree search,” New Mathematics and Natural Computation, vol. 4, no. 3,

pp. 343–357, 2008.

[51] J.-B. Grill, F. Altché, Y. Tang, T. Hubert, M. Valko, I. Antonoglou, and

R. Munos, “Monte-carlo tree search as regularized policy optimization,”

in International Conference on Machine Learning, pp. 3769–3778, PMLR,

2020.

136

Bibliography

[52] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the

multiarmed bandit problem,” Machine learning, vol. 47, no. 2-3, pp. 235–

256, 2002.

[53] L. V. Allis, “A knowledge-based approach of connect-four.,” J. Int. Com-

put. Games Assoc., vol. 11, no. 4, p. 165, 1988.

[54] V. Sannidhanam and M. Annamalai, “An analysis of heuristics in oth-

ello,” 2015.

[55] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016.

[56] H. Duvaud, “Muzero general: Open reimplementation of muzero.”

[57] Y. Tian, J. Ma, Q. Gong, S. Sengupta, Z. Chen, J. Pinkerton, and L. Zit-

nick, “ELF OpenGo: an analysis and open reimplementation of Alp-

haZero,” in Proceedings of the 36th International Conference on Machine

Learning (K. Chaudhuri and R. Salakhutdinov, eds.), vol. 97 of Proceed-

ings of Machine Learning Research, pp. 6244–6253, PMLR, 09–15 Jun

2019.

[58] T. M. Moerland, J. Broekens, A. Plaat, and C. M. Jonker, “A0c: Alpha

zero in continuous action space,” arXiv preprint arXiv:1805.09613, 2018.

[59] I. Bratko, “Alphazero–what’s missing?,” Informatica, vol. 42, no. 1, 2018.

[60] L. Xu and J. Hu, “Reinforcement learning for alphago zero,” in Proceed-

ings of the IEEE International Conference on Data Mining Workshops,

pp. 887–892, 2018.

137

Bibliography

[61] W. Huang, Y. Li, and X. Wang, “Residual monte carlo tree search in alp-

hazero,” in Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 33, pp. 7246–7253, 2019.

[62] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,

S. Schmitt, and et al., “Mastering atari, go, chess and shogi by plan-

ning with a learned model,” Nature, vol. 588, no. 7839, pp. 604–609,

2019.

[63] Y. Shen and F. Wang, “Improved self-play in alphazero,” in Proceedings

of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 7254–7261,

2019.

[64] Y. Bai, C. Jin, and T. Yu, “Near-optimal reinforcement learning

with self-play,” in Advances in Neural Information Processing Systems

(H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, eds.),

vol. 33, pp. 2159–2170, Curran Associates, Inc., 2020.

[65] N. Brown, A. Bakhtin, A. Lerer, and Q. Gong, “Combining deep re-

inforcement learning and search for imperfect-information games,” Ad-

vances in Neural Information Processing Systems, vol. 33, pp. 17057–

17069, 2020.

[66] T.-R. Wu, T.-H. Wei, and I.-C. Wu, “Accelerating and improving al-

phazero using population based training,” in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 34, pp. 1046–1053, 2020.

[67] Q. Sun, S. Zhang, Y. Qi, and C. Xu, “Adversarial self-play algorithm for

reinforcement learning,” International Journal of Machine Learning and

Cybernetics, vol. 11, no. 5, pp. 1061–1072, 2020.

138

Bibliography

[68] Y. Tian, Q. Yu, H. Zhu, S. Zhang, and C. Xu, “Improving reinforcement

learning with self-play and opponent’s model,” in 2020 IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pp. 2754–2760,

2020.

[69] M. Świechowski, “Game ai competitions: motivation for the imitation

game-playing competition,” in 2020 15th Conference on Computer Sci-

ence and Information Systems (FedCSIS), pp. 155–160, IEEE, 2020.

[70] T. Pepels, M. H. Winands, and M. Lanctot, “Real-time monte carlo tree

search in ms pac-man,” IEEE Transactions on Computational Intelli-

gence and AI in games, vol. 6, no. 3, pp. 245–257, 2014.

[71] H. Svoren, V. Thambawita, P. Halvorsen, P. Jakobsen, E. Garcia-Ceja,

F. M. Noori, H. L. Hammer, M. Lux, M. A. Riegler, and S. A. Hicks,

“Toadstool: A dataset for training emotional intelligent machines playing

super mario bros,” in Proceedings of the 11th ACM Multimedia Systems

Conference, pp. 309–314, 2020.

[72] E. Saleh and et al., “Should models be accurate?,” arXiv preprint

arXiv:2205.10736, 2022.

[73] O. Vikbladh, D. Shohamy, and N. Daw, “Episodic contributions to model-

based reinforcement learning,” in Annual conference on cognitive compu-

tational neuroscience, CCN, 2017.

[74] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba, “Mastering atari with

discrete world models,” arXiv preprint arXiv:2010.02193, 2020.

139

Bibliography

[75] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural Infor-

mation Processing Systems (NIPS), 2012.

[76] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification

and Regression Trees. CRC Press, 1984.

[77] L. Breiman, “Random forests,” Machine Learning, 2001.

[78] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-

line learning and an application to boosting,” Journal of Computer and

System Sciences, 1997.

[79] M. L. Littman, T. L. Dean, and L. P. Kaelbling, “A bayesian framework

for model-based reinforcement learning in partially observable domains,”

Machine Learning, 2002.

[80] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,

1995.

[81] R. Coulom, “Monte-carlo tree search and rapid action value estimation

in computer go,” Artificial Intelligence, vol. 170, no. 11, pp. 1856–1875,

2006.

[82] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

 L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings of

the 31st Conference on Neural Information Processing Systems, pp. 6000–

6010, 2017.

[83] Z. Zhang, “When doctors meet with alphago: potential application of

machine learning to clinical medicine,” Annals of translational medicine,

vol. 4, no. 6, 2016.

140

Bibliography

[84] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-

scale machine learning on heterogeneous systems.” http://download.

tensorflow.org/paper/whitepaper2015.pdf, 2015.

[85] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade

learning environment: An evaluation platform for general agents,” Jour-

nal of Artificial Intelligence Research, vol. 47, pp. 253–279, 2013.

141

http://download.tensorflow.org/paper/whitepaper2015.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf

	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement and Limitations
	Solution Overview
	Contribution
	Thesis Outline

	Background
	Reinforcement Learning
	Markov Decision Process
	V-values and Q-values
	Value-Based and Policy Gradient Methods
	On-Policy and Off-Policy
	Model-Based v. Model-Free
	Monte Carlo Tree Search

	Exploration vs. Exploitation Trade-off
	Deep Reinforcement Learning
	Function Approximation
	Neural Networks
	Convolutional Neural Networks
	Actor Critic Methods
	Self-Play Advantages

	Conclusion

	Boosting AlphaZero through MCTS enhancements
	Introduction
	Monte Carlo Tree Search
	The Algorithm

	AlphaZero
	Literature Review
	Proposed Enhancements
	UCT Policy
	Loss Avoidance

	Methods
	Environments
	Connect4
	Othello

	Test Opponents
	Test Opponents for Connect4
	Test Opponents for Othello

	AlphaZero Network
	Experimental Setting

	Results
	Conclusion

	Algorithm Comparison
	Introduction
	Literature Review
	Tree Search in Machine Learning
	General Outline
	AlphaGo
	AlphaGo Methods

	AlphaZero
	AlphaZero Methods

	MuZero
	MuZero Methods

	The Alphas
	Resource Requirements and Restraints

	Atari and Atari Learning Environment
	Experiments and Methods
	Environments
	Deep-Q Learning - DQN

	Results
	Limitations
	Conclusion

	Conclusion and Future Work
	Conclusions
	Limitations
	Future Work
	MCTS in Stochastic Environments
	Future work - MCTS Impact

	Bibliography

