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ABSTRACT 

Kim, James Jaehak, Royal Military College of Canada, 2 April 2018. A unified approach to 

multi-server bulk-arrival queues using roots. Supervised by Dr. Mohan Chaudhry. 

 

This thesis encompasses new and complete solution procedures that solve multi-server 

bulk-arrival queues. 

 In solving 𝐺𝐼𝑋/𝑀/𝑐 queues, an elegant and simple solution to determine the distributions 

of queue-length at different time epochs and the waiting-time for the model are presented. In the 

past, 𝐺𝐼𝑋/𝑀/𝑐  queues have been extensively analyzed using various techniques by many 

authors. The purpose of this portion of the thesis is to use the roots method to derive the analytic 

solution for the pre-arrival time epoch probabilities based on the roots of the model’s 

characteristic equation. The solution is then leveraged to compute the waiting-time distributions 

as well as the case when the inter-batch-arrival times follow heavy-tailed distributions. The 

method is also extended to solve 𝐺𝐼𝑋/𝑀/𝑐/𝑁 queues. Numerical examples are presented.  

In solving 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues, a simple solution to determine the distributions of queue-

lengths at different observation epochs is presented. In the past, various discrete-time queueing 

models, particularly multi-server bulk-arrival queues have been solved using complicated 

methods that lead to incomplete results. The purpose of this portion of the thesis is to show that 

the roots method can solve 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues. The method works well even for the case when 

the inter-batch-arrival times follow heavy-tailed distributions. The roots method is also extended 

to solve 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 queues. Numerical examples are presented. 

Finally, the roots method presented in this thesis can be seen as a unified approach for 

analyzing multi-server bulk-arrival queues that involve continuous and discrete-times, finite and 

infinite-buffers, and light and heavy-tailed inter-batch-arrival times. 



 

 

 

Keywords: Multi-server; bulk-arrival; queues; roots; continuous-time; discrete-time; finite-

buffer; infinite-buffer; light-tailed; heavy-tailed  

  



 

 

RÉSUMÉ 

Kim, James Jaehak, collège militaire royal du Canada, 2 avril 2018. Une approche unifiée pour 

files d’attente d’arrivées de masse de multiserveurs à travers racines. Dirigé par M. Mohan 

Chaudhry, Ph.D. 

 

Cette thèse englobe des procédures sur de nouvelles solutions et solutions complètes qui 

résolvent les files d'attente d'arrivées de masse de multiserveurs. 

 En résolvant les files d'attente 𝐺𝐼𝑋/𝑀/𝑐 , une solution simple et élégante pour les 

distributions de longueurs de files d'attente à différents temps donnés, ainsi que le temps d'attente 

pour le modèle, sont présentés. Les files d'attente 𝐺𝐼𝑋/𝑀/𝑐  furent auparavant largement 

analysées par diverses techniques utilisées par de nombreux auteurs. L'objectif de cette partie de 

la thèse est d'utiliser la méthode des racines pour dériver la solution analytique pour les 

probabilités de pré-arrivées de temps donnés en termes des racines de l'équation caractéristique 

du modèle. La solution est ensuite utilisée pour calculer les distributions de temps d'attente, ainsi 

que dans le cas lorsque les temps d'arrivée d'inter-lots suivent les distributions à hautes valeurs. 

La méthode est également davantage utilisée pour résoudre les files d'attente 𝐺𝐼𝑋/𝑀/𝑐/𝑁. Des 

exemples numériques sont présentés.  

En résolvant les files d'attente 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 , une solution simple pour déterminer les 

distributions de longueurs de files d'attente à différents temps observés est présentée. Divers 

modèles de files d'attente à temps discret, en particulier les files d'attente d'arrivées de masse de 

multiserveurs, furent auparavant résolus en utilisant des méthodes complexes conduisant à des 

résultats incomplets. L'objectif de cette partie de la thèse est de démontrer que la méthode des 

racines peut résoudre les files d'attente 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐. La méthode fonctionne également dans le 

cas lorsque les temps d'arrivée d'inter-lots suivent les distributions à hautes valeurs. La méthode 



 

 

des racines est également utilisée pour résoudre les files d'attente 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁. Des exemples 

numériques sont présentés. 

Enfin, la méthode des racines présentée dans cette thèse peut être considérée comme une 

approche unifiée pour files d'attente d'arrivées de masse de multiserveurs qui impliquent des 

temps continus et discrets, mémoires-tampon finies et infinies, ainsi que temps d'arrivée d'inter-

lots à hautes et faibles valeurs. 

 

Mots-clés: Multiserveurs; arrivées de masse; files d'attente; racines; temps continus; temps 

discrets; mémoires-tampon finies; mémoires-tampon infinies; hautes valeurs; faibles valeurs 
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1 INTRODUCTION 

1.1 Problem Description 

In the following two subsections, we describe the remaining problems in the 

multi-server bulk-arrival queues. 

1.1.1 Problem description for 𝑮𝑰𝑿/𝑴/𝒄 and 𝑮𝑰𝑿/𝑴/𝒄/𝑵 queues 

A queue forms whenever and wherever demand exceeds supply. It is for this 

reason that a study of queues naturally emerged as a practical field of study known as 

queueing theory. Among many different types of queues, multi-server bulk-arrival queues 

are particularly useful in modeling cases where a group of customers joins a queue in a 

system that consists of two or more simultaneous servers. Queues of this type are easily 

seen in our daily lives: A barber shop, supermarket, hospital admissions, seaports, 

information transmission systems, and many other settings. In the past, extensive studies 

have been carried out on continuous-time multi-server bulk-arrival queues.  

In particular, 𝐺𝐼𝑋/𝑀/𝑐  queues have been studied using various techniques. 

Though different methods can often lead to the same result, it is always good to have 

simpler and more efficient ways to solve the model at hand analytically. In addition, the 

results for the 𝐺𝐼𝑋/𝑀/𝑐  model involving heavy-tailed inter-batch-arrival times are 

missing in literature. 

Finite-buffer queues are characterized by the imposed limitation to the amount of 

waiting room such that when the line reaches a certain length, no further customers are 

allowed to enter until space becomes available. The 𝐺𝐼𝑋/𝑀/𝑐/𝑁  queue is the finite-

buffer counterpart of 𝐺𝐼𝑋/𝑀/𝑐  queue. Traditionally, 𝐺𝐼𝑋/𝑀/𝑐/𝑁  queues have been 

analyzed using laborious techniques that lead to non-explicit results. Nevertheless, 



2 

 

 

𝐺𝐼𝑋/𝑀/𝑐/𝑁 queues are important since many real-life scenarios that resemble 𝐺𝐼𝑋/𝑀/𝑐 

queues actually entail some degree of limited occupancy. 

A simple and unified approach to treat 𝐺𝐼𝑋/𝑀/𝑐 and 𝐺𝐼𝑋/𝑀/𝑐/𝑁 queues would 

be beneficial when designing efficient algorithms with quicker computing time. It would 

also facilitate further mathematical understanding of continuous-time bulk-arrival multi-

server queues. 

1.1.2 Problem description for 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄 and 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄/𝑵 queues 

The study of discrete-time queues is fairly recent relative to its continuous-time 

counterpart. However, the field quickly gained value among queueing theorists and 

researchers due to the digitization of information technology, particularly in the area of 

signal processing, microcomputers, and computer networks.  

The 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  queues are often the model of choice when measuring the 

performance of existing technologies, however, available literature on 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues 

is not as extensive as that of 𝐺𝐼𝑋/𝑀/𝑐 queues. In addition, the results of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 

queues involving heavy-tailed inter-batch-arrival times are missing in literature. 

The 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 queues are the finite-buffer counterpart of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues. 

In digital communication systems, the rejection policies of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁  queues are 

critical since both partial and total rejections of packets lead to data loss. Such rejections 

must be monitored, understood, and managed in order to effectively balance the 

processor’s speed against the fidelity of information. However, the existing work on 

𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁  queues remains incomplete and the analytical work involved can be 

simplified for wider use. 
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A simple and unified approach to treat 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  and 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁  queues 

would be beneficial for applications while advancing the mathematical literature. 

1.2 Thesis Objectives 

The objective of this thesis is to present a simple and unified approach to solve 

multi-server bulk-arrival queues that involve 

- Continuous and discrete-times 

- Infinite and finite-buffers 

- Light and heavy-tailed inter-batch-arrival times 
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2 ANALYTICAL RESULTS IN 𝑮𝑰𝑿/𝑴/𝒄 AND 𝑮𝑰𝑿/𝑴/𝒄/𝑵 QUEUES  

 Readers may refer to Appendix A.1 for a brief summary of the probability theory, 

stochastic processes, and Markov processes, which are all important topics that underlie 

continuous-time queueing theory. The definitions and properties of a continuous random 

variable (r.v.) and its moments, Laplace transform (L.T.) and Laplace-Stieltjes transform 

(L-S.T.) are provided in Appendix A.2. The basic mathematical construct of a queueing 

system, as well as some common theorems and techniques used in continuous-time 

queueing theory are explained in Appendix B. The rest of the materials that supplement 

Chapter 2 are available in Appendix C.1. 

2.1 Literature review 

In studying the 𝐺𝐼𝑋/𝑀/𝑐 queueing system, different methods and techniques have 

been used by several authors to solve for, and develop relations between various 

probability distributions and performance measures. We provide a brief history behind 

some authors’ work and explain their solution procedures to solve the multi-server bulk-

arrival queueing system with exponential service times. 

One of the pioneering works on the topic of multi-server bulk-arrival queues 

appears in the text by Neuts [39], who presented an algorithmic solution for 𝐺𝐼𝑋/𝑀/𝑐 

queues that involve vectors and matrices. He first introduced the dual nature of the 

model’s transition probabilities based on the difference between the number of servers 

(𝑐) and the maximum batch size (𝑟). In solving the 𝐺𝐼𝑋/𝑀/𝑐 through the probability 

generating function (p.g.f.) Zhao [51] also treats the two cases ( 𝑐 ≤ 𝑟  and 𝑐 > 𝑟 ) 

separately. 
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It is further worth noting that including and beyond the model 𝐺𝐼𝑋/𝑀/𝑐, various 

comparisons between the matrix-geometric method used by Neuts [39] and the roots 

method have been made by several authors: Daigle and Lucantoni [19] state that 

“whenever the roots method works, it works blindingly fast.” Similarly, Janssen and van 

Leeuwaarden [28] who have successfully used the roots method make a comment, 

“initially, the potential difficulties of root-finding were considered to be a slur on the 

unblemished transforms since the determination of the roots can be numerically 

hazardous and the roots themselves have no probabilistic interpretation. However, 

Chaudhry et al. [8] have made every effort to dispel the skepticism towards root-finding 

in queueing theory….” Gouweleeuw [23] states that it is more efficient to use the roots 

method to get explicit expressions for probabilities from generating functions (g.f.’s). 

Furthermore, a recent paper by Maity and Gupta [37] compares the spectral theory 

approach and the roots method. Maity and Gupta [37] indicate several difficulties in 

getting results using the spectral theory approach, an approach which may be simpler than 

the matrix-geometric approach as stated in several papers by Chakka (see e.g., Chakka 

[6]) and others. 

When comparing the roots method and the matrix-geometric technique, it is 

evident that the solution procedure based on the matrix-geometric technique requires a 

unique algorithmic procedure for each arrival pattern. This is not the case in the roots 

method since the roots of the characteristic equation form the basis of solution and as 

such, a simple algorithm can address different arrival patterns. In addition, one can 

discuss the tail probabilities for both light and high traffic cases using the roots method. 

In fact, the roots method is simple analytically, notationally, and computationally. 
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Besides, the matrix-geometric method is sensitive to traffic intensity, whereas the roots 

method is not. 

Historically, when MAPLE and Mathematica could not find a large number of 

roots (they do now), a software package called QROOT developed by Chaudhry [9] was 

used by him and his collaborators to find a large number of roots and use them in solving 

several queueing models. The algorithm for finding such roots is available in some of 

their papers. In particular, see Chaudhry et al. [8]. It may be remarked here that MAPLE 

can now not only find roots that are close to each other (a concern expressed by several 

researchers), but even repeated roots. 

While discussing the simple model 𝑀𝑋/𝑀/𝑐, Cromie et al. [18] pointed out that 

both Kabak [29] and Abol’nikov [1] took the incorrect probability mass function (p.m.f.) 

for the position of the random customer within an incoming batch. This aspect was first 

noticed and corrected by Burke [5] where, in single-server batch-arrival queue, the 

distinction between the delays (waiting times until entering service) of the first and 

randomly positioned customers within an incoming batch was made. Cromie et al. [18] 

extended this concept to 𝑀𝑋/𝑀/𝑐. The two distributions of delay are determined in terms 

of p.m.f. of the number of customers in the system. Other miscellaneous results which 

stem from these distributions are also provided. Chaudhry and Kim [13] generalized 

Burke [5]’s concept to the 𝐺𝐼𝑋/𝑀/𝑐 model, where the waiting-time distributions of first 

and random customers within an incoming batch are both given in terms of the pre-arrival 

queue-length distribution. 

In solving the more general model 𝐸𝑘
𝑋/𝑀/𝑐  with Erlang-𝑘 inter-batch-arrival 

time distribution, Holman and Chaudhry [26] introduced the queue-length distribution, 
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𝑝𝑛,𝑟, as a joint probability distribution with 𝑛 customers in the system (𝑛 ≥ 0) and the 

next incoming batch of customers in the 𝑟-th phase (1 ≤ 𝑟 ≤ 𝑘) of the inter-batch-arrival 

time period. The iterative relations between the 𝑝𝑛,𝑟 at varying 𝑛 and 𝑟 are then expressed 

in terms of four independent equilibrium equations. The solution to these equations is in 

terms of a p.g.f., where the denominator of that p.g.f. has 𝑘 − 1 roots inside the unit circle 

which are also the roots for a portion of the same p.g.f.’s numerator. This portion of the 

numerator, labelled 𝑈(𝑧) , provides 𝑘 − 1  set of equations leading to the solution 

𝑝𝑛,𝑟 , (𝑛 < 𝑐). The remaining probabilities, 𝑝𝑛,𝑟 , (𝑛 ≥ 𝑐) are found by combining and then 

solving the first two of the four equilibrium equations, the 𝑘 − 1 set of equations derived 

from 𝑈(𝑧), and the normalizing condition. The challenge with the method introduced by 

Holman and Chaudhry [26] is in solving a model with large values of 𝑐 and 𝑘. Due to the 

bi-variate nature of the solution and the transition probabilities, the number of linear 

equations (𝑐𝑘) becomes large when working with large input parameters. 

In deriving various relations in 𝐺𝐼𝑋/𝑀/𝑐 queues, Yao et al. [50] first relate the 

pre-arrival queue-length distribution with its counterpart distributions at random and post-

departure time epochs. The procedure to obtain the random time epoch probabilities this 

way is simpler than what is done by Neuts [39] or Laxmi and Gupta [35]. Yao et al. [50] 

also present the waiting-time distributions of the first and random customers within an 

incoming batch. However, these relations are both given in terms of L-S.T.’s. Their 

inverted forms are independently derived by Chaudhry and Kim [13]. Yao et al. [50] also 

derive several relations between the performance measures of 𝐺𝐼𝑋/𝑀/𝑐 queues. However, 

some of these relations do not hold when the inter-batch-arrival times follow a heavy-

tailed distribution with an infinite mean (see Kim and Chaudhry [33]). 
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Heavy-tailed distributions constitute a class of probability distributions that are 

characterized by their slower decay than the exponential distribution. In queueing theory, 

using heavy-tailed distributions as either an inter-arrival or service time distribution 

creates models that are, in general, difficult to analyze due to the unique probabilistic 

properties of heavy-tailed r.v.’s (see Boxma and Cohen [2] or Harris et al. [25]). 

However, analysis of such models holds significant merit for applications when modeling 

real life examples; transportation systems, airport security screening, and in digital 

communication networks (see Leland et al. [36] or Willinger and Paxon [47]). 

In solving 𝐺𝐼/𝑀/1  and 𝐺𝐼/𝑀/𝑐  queues involving heavy-tailed inter-arrival 

times, Harris et al. [25] approximate the root of each model’s characteristic equation. In 

extending and refining the method by Harris et al. [25], Kim and Chaudhry [32] solve 

𝐺𝐼𝑋/𝑀/1 queues involving heavy-tailed inter-batch-arrival times whereas Chaudhry and 

Kim [15] use the standard root-finding method to compute the solution to 𝐺𝐼𝑋/𝑀/𝑐 

queues involving heavy-tailed inter-arrival times. 

In solving the model 𝐺𝐼𝑋/𝑀/𝑐/𝑁 with the finite-buffer 𝑁, Laxmi and Gupta [35] 

present two rejection policies: Partial and total rejections. Given that the size of an 

incoming batch is larger than the available space, in partial rejection, a portion of an 

incoming batch is allowed to enter the system. In total rejection, under the same 

circumstance, an incoming batch is entirely rejected. This results in two different set of 

transition probabilities for the model 𝐺𝐼𝑋/𝑀/𝑐/𝑁. The solution to each rejection policy 

therefore leads to two different pre-arrival queue-length distributions for 𝐺𝐼𝑋/𝑀/𝑐/𝑁 

queues. The solutions are then leveraged to determine the queue-length distribution at a 

random time epoch using the supplementary variable technique. Waiting-time 
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distributions of the first, random, and last customer within an incoming batch are also 

presented. In discussing the same model, Ferreira and Pacheco [20] apply the 

uniformization technique to calculate the transient state and steady-state probabilities of 

the model. (We note that their paper gives a good bibliography of related papers.) Gontijo 

et al. [21] treat 𝐺𝐼𝑋/𝑀/𝑐/𝑁 queues through kernel estimation. In addition, Chaudhry and 

Kim [16] treat the model 𝐺𝐼/𝑀/1/𝑁  using roots. By doing so, the solution can be 

expressed explicitly in terms of the roots of the model’s characteristic equation. While 

their result embarks on the first application of the roots method in 𝐺𝐼/𝑀/1 type finite-

buffer queues, it is also identified that the method remains robust even in the case of 

heavy-tailed inter-arrival times. Kim and Chaudhry [34] extend this concept in treating 

𝐺𝐼/𝑀/𝑐/𝑁 queues using roots.  

In finite-buffer queues, the loss probability can be defined as the probability of a 

particular queue-length at which rejections start to occur. Gouweleeuw [23] presents an 

extensive overview of cases where the loss probabilities in finite-buffer queues can be 

estimated in terms of the queue-length distribution of infinite-buffer queues. Similarly, 

Kim and Choi [30] express the asymptotic loss probabilities of 𝐺𝐼𝑋/𝑀/𝑐/𝑁 queues in 

terms of the positive root of the characteristic equation of the model 𝐺𝐼𝑋/𝑀/𝑐. However, 

the magnitude of the traffic intensity must always be smaller than 1 in the infinite-buffer 

queues whereas in the finite-buffer queues it can be smaller, equal to, or greater than 1. 

Due to this condition, the methods used by Gouweleeuw [23] and Kim and Choi [30] 

cannot estimate the loss probabilities when the traffic intensity is 1 or greater (see 

Appendix C.3.4 for more details). 
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2.2 The 𝑮𝑰𝑿/𝑴/𝒄 queues 

 In this section, we analytically solve 𝐺𝐼𝑋/𝑀/𝑐 queues using roots. 

2.2.1 Model description 

Consider the steady-state aspect of the model 𝐺𝐼𝑋/𝑀/𝑐 where the service times, 

group sizes, and inter-batch-arrival times are mutually independent. There are 𝑐 parallel 

servers where each server has the exponential service rate 𝜇. At any time the state of 𝑐 

servers can be categorized into three different cases: Overloaded is the case when all 𝑐 

servers are busy with a queue of at least a single customer, loaded is the case when the 

system has exactly 𝑐 customers in the system, and under-loaded is the case when there is 

at least an idle server. Customers arrive in batches of size 𝑋  (with maximum size 𝑟), 

which is a r.v. with p.m.f. 𝑏ℎ = 𝑃(𝑋 = ℎ), (1 ≤ ℎ ≤ 𝑟), mean 𝜇𝑋 = ∑ ℎ𝑏ℎ
𝑟
ℎ=1  and p.g.f. 

𝐵(𝑧) = ∑ 𝑏ℎ
𝑟
ℎ=1 𝑧ℎ, (|𝑧| ≤ 1). Batches of customers arrive at time epochs 𝑇1, 𝑇2, … , 𝑇𝑛, …, 

and the inter-batch-arrival times 𝑡𝑛+1 = 𝑇𝑛+1 − 𝑇𝑛 > 0, (𝑛 ≥ 0) are independently and 

identically distributed random variables (i.i.d.r.v.’s) 𝑇  with the probability density 

function (p.d.f.) 𝑎(𝑡), cumulative distribution function (c.d.f.) 𝐴(𝑡) = 𝑃(𝑇 ≤ 𝑡), mean 

1
𝜆⁄ , and L-S.T. �̅�(𝑠) = ∫ 𝑒−𝑠𝑡𝑑𝐴(𝑡)

∞

0
. Let 𝑁(𝑡)  be the number of customers in the 

system at time 𝑡. The 𝑁𝑛
− represents the number of customers in the system including the 

ones, if any, in service just before the arrival instant 𝑇𝑛 such that 𝑁𝑛
− =  𝑁(𝑇𝑛 − 0), (𝑛 ≥

0). The queue-length distribution is 𝑝𝑗
− = lim

𝑛→∞
𝑃(𝑁𝑛

− = 𝑗) , (𝑗 ≥ 0). Similarly, the queue-

length distributions at random and post-departure time epochs are 𝑝𝑗 = lim
𝑛→∞

𝑃(𝑁𝑛 =

𝑗), (𝑗 ≥ 0) and 𝑝𝑘
+ = lim

𝑛→∞
𝑃(𝑁𝑛

+ = 𝑘), (𝑘 ≥ 0), respectively. Let 𝐷𝑛  be the total number 

of customers that depart the system over the course of 𝑡𝑛 with the steady-state p.m.f. 𝑘𝑙 =
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lim
𝑛→∞

∫ 𝑃(𝐷𝑛 = 𝑙 |𝑡𝑛 = 𝑡)𝑑𝐴(𝑡)
∞

0
, (𝑙 ≥ 0)  and p.g.f. 𝐾(𝑧) = ∑ 𝑘𝑙𝑧

𝑙∞
𝑙=0 . The stochastic 

process {𝑁𝑛
−, 𝑛 ≥ 1} forms a homogenous Markov chain 

𝑁𝑛+1
− = {

𝑁𝑛
− + 𝑋𝑛 − 𝐷𝑛, (𝑁𝑛

− + 𝑋𝑛 − 𝐷𝑛 ≥ 0)

0,                         (𝑁𝑛
− + 𝑋𝑛 − 𝐷𝑛 < 0)

 

Since we deal with the steady-state aspect of the model 𝐺𝐼𝑋/𝑀/𝑐, we define the traffic 

intensity of the system as 𝜌 =
𝜆𝜇𝑋

𝑐𝜇
, (0 < 𝜌 < 1). 

2.2.2 The 𝑮𝑰𝑿/𝑴/𝒄 queues at a pre-arrival time epoch 

To compute the queue-length distribution of 𝐺𝐼𝑋/𝑀/𝑐 queues at a pre-arrival 

time epoch we first define the transition probabilities of the model. Let 𝑃𝑖,𝑗(𝑛) =

𝑃[𝑁𝑛+1
− = 𝑗 | 𝑁𝑛

− = 𝑖], (𝑖, 𝑗 ≥ 0, 𝑛 ≥ 1)  be the one-step transition probabilities of 

{𝑁𝑛
−, 𝑛 ≥ 1}. Thus, the steady-state one-step transition probabilities of 𝐺𝐼𝑋/𝑀/𝑐 queues 

are defined as 𝑃𝑖,𝑗 ≡ lim
𝑛→∞

𝑃𝑖,𝑗(𝑛) where 

𝑃𝑖,𝑗 =

{
 
 

 
 ∑𝑏ℎ𝑘𝑖+ℎ−𝑗

𝑟

ℎ=1

, (𝑖 ≥ 0, 𝑗 ≥ 1)

  1 −∑𝑃𝑖,𝑘

∞

𝑘=1

, (𝑖 ≥ 0, 𝑗 = 0)

 

with 𝑏ℎ = 0 for ℎ ≤ 0. The p.m.f. of 𝐷𝑛 is given by 

 𝑘𝑖+ℎ−𝑗

=

{
 
 
 
 

 
 
 
 

0,                                                                                                                       (𝑖 + ℎ < 𝑗)                

∫
(𝑐𝜇𝑡)𝑖+ℎ−𝑗

(𝑖 + ℎ − 𝑗)!
𝑒−𝑐𝜇𝑡𝑑𝐴(𝑡)

∞

0

,                                                                                     (𝑐 ≤ 𝑗 ≤ 𝑖 + ℎ)                       

∫ (
𝑖 + ℎ

𝑗
)

∞

0

(1 − 𝑒−𝜇𝑡)𝑖+ℎ−𝑗(𝑒−𝜇𝑡)𝑗𝑑𝐴(𝑡),                                                            (1 ≤ 𝑗 ≤ 𝑖 + ℎ ≤ 𝑐)                

∫ ∫
𝑒−𝑐𝜇𝑢(𝑐𝜇𝑢)𝑖+ℎ−𝑐−1

(𝑖 + ℎ − 𝑐 − 1)!
𝑐𝜇 (

𝑐

𝑗
)

𝑡

0

∞

0

𝑒−𝜇𝑗(𝑡−𝑢)[1 − 𝑒−𝜇(𝑡−𝑢)]
𝑐−𝑗
𝑑𝑢𝑑𝐴(𝑡), (1 ≤ 𝑗 < 𝑐 < 𝑖 + ℎ)                
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For 1 ≤ ℎ ≤ 𝑟, the above can be derived by replacing the single arrival notion with the 

batch-arrival condition ℎ, (1 ≤ ℎ ≤ 𝑟) in the steady-state one-step transition probabilities 

of 𝐺𝐼/𝑀/𝑐 queues which are available in Gross and Harris [24] and Breuer and Baum 

[3]. The following well-known Chapman-Kolmogorov equation (see Appendix A.1 for 

definition) is used extensively in solving for (𝑝𝑗
−, 𝑗 ≥ 0) 

𝑝𝑗
− =∑𝑝𝑖

−𝑃𝑖,𝑗

∞

𝑖=0

, (𝑗 ≥ 0) (1) 

Since (1) is a set of 𝑗 first order linear difference equations with (𝑝𝑗
−) being the unknown 

functions to be determined (see Appendix B.2), we can assume the solution of a general 

form 

𝑝𝑗
− = 𝐶𝑧𝑗 , (𝑗 ≥ 𝑐, 𝐶 ≠ 0) 

The general solution with a bound 𝑗 ≥ 𝑐 is purposely chosen so that when it is substituted 

into (1), the  𝑘𝑖+ℎ−𝑗 within the  𝑃𝑖,𝑗 of (1) is fixed at  𝑘𝑖+ℎ−𝑗 = ∫
(𝑐𝜇𝑡)𝑖+ℎ−𝑗

(𝑖+ℎ−𝑗)!
𝑒−𝑐𝜇𝑡𝑑𝐴(𝑡)

∞

0
 . 

Intuitively this can be understood as all 𝑐 servers are either overloaded or loaded during 𝑇. 

Such substitution leads to the characteristic equation of 𝐺𝐼𝑋/𝑀/𝑐 queues 

1 = 𝐵(𝑧−1)𝐾(𝑧) (2) 

where 𝐾(𝑧) = ∑ 𝑘𝑛𝑧
𝑛∞

𝑛=0 = ∫ 𝑒−𝑐𝜇(1−𝑧)𝑡𝑑𝐴(𝑡) =  �̅�(𝑐𝜇(1 − 𝑧))
∞

0
. Since (2) has 𝑟 roots 

inside the unit circle |𝑧| = 1  (see Appendix C.1.2 for details), let these roots be 

𝑧1, 𝑧2, … , 𝑧𝑟. The general solution becomes 𝑟-fold and can be expressed as 

𝑝𝑗
− =∑𝐶ℎ𝑧ℎ

𝑗

𝑟

ℎ=1

, (𝑗 ≥ 𝑐) (3) 
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where the 𝐶ℎ  (yet to be evaluated) for  1 ≤ ℎ ≤ 𝑟 are the non-zero constants. In 

completely finding (𝑝𝑗
−, 𝑗 ≥ 0) we replace (𝑝𝑗

−, 𝑗 ≥ 𝑐) in (1) with (3) such that  

𝑝𝑗
− =∑𝑝𝑖

−𝑃𝑖,𝑗

𝑐−1

𝑖=0

+∑∑𝐶ℎ𝑧ℎ
𝑖

𝑟

ℎ=1

𝑃𝑖,𝑗

∞

𝑖=𝑐

, (𝑗 ≥ 0) (4) 

We also consider the normalizing condition 

∑𝑝𝑗
−

𝑐−1

𝑗=0

+∑∑𝐶ℎ𝑧ℎ
𝑗

𝑟

ℎ=1

∞

𝑗=𝑐

= 1 

By letting 𝑗 = 1, 2, … , 𝑐 + 𝑟 − 1 in (4) and with the normalizing condition we have the 

𝑐 + 𝑟 equations that are required to solve for (𝑝𝑗
−, 0 ≤ 𝑗 ≤ 𝑐 − 1) and 𝐶ℎ, (1 ≤ ℎ ≤ 𝑟). 

By solving these equations the (𝑝𝑗
−, 𝑗 ≥ 0) are completely found as 

𝑝𝑗
− = {

determined above, (0 ≤ 𝑗 ≤ 𝑐 − 1)         

 ∑𝐶ℎ𝑧ℎ
𝑗

𝑟

ℎ=1

,                  (𝑗 ≥ 𝑐)                         
(5) 

As a remark, unlike the way we have determined 𝑝𝑗
− , Neuts [39] and Zhao [51] 

distinguish the size difference between 𝑐 and 𝑟 such that there are two different forms of 

𝑝𝑗
−  for 𝑐 ≤ 𝑟  and 𝑐 > 𝑟 , respectively. Although those two different results can be 

combined into a single form and expressed as (5), such separation reveals additional 

mathematical finding (see Appendix C.1.4): The (𝑝𝑗
−, 𝑗 ≥ 0)  when 𝑐 ≤ 𝑟  can be 

expressed entirely as a geometric sum whereas the (𝑝𝑗
−, 𝑗 ≥ 0)  when 𝑐 > 𝑟  can be 

expressed as a partial geometric sum.  
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2.2.3 The 𝑮𝑰𝑿/𝑴/𝒄 queues at random and post-departure time epochs 

The relations of 𝑝𝑗
−  with 𝑝𝑗  and 𝑝𝑗

+  are later required in determining the 

performance measures at random and post-departure time epochs. As stated by Yao et al. 

[50] the relations derived from the standard level-crossing analysis are 

             𝑝𝑘 =
 𝜆

𝜇 min (𝑘, 𝑐)
∑𝑝𝑗

−

𝑘−1

𝑗=0

(1 −∑ 𝑏ℎ
𝑘−𝑗−1

ℎ=1
) 

𝑝𝑘−1
+ =

1

𝜇𝑋
∑𝑝𝑗

−

𝑘−1

𝑗=0

(1 −∑ 𝑏ℎ
𝑘−𝑗−1

ℎ=1
) 

for 𝑘 ≥ 1 and 𝑝0 = 1 − ∑ 𝑝𝑘
∞
𝑘=1 . As a remark, the 𝑝𝑘 can be found in another way using 

the random biased sampling (see Appendix B.4). 

2.2.4 The waiting-time-in-queue of the first customer within an incoming 

batch 

Let the amount of time spent in queue by the first customer within an incoming 

batch be 𝑊𝐹 , (𝑊𝐹 ≥ 0). The c.d.f. of 𝑊𝐹  is 𝑊𝐹(𝑡) = 𝑃(𝑊𝐹 ≤ 𝑡), (𝑡 ≥ 0). The explicit 

expression of 𝑊𝐹(𝑡) is derived as follows: 

 In 𝐺𝐼𝑋/𝑀/𝑐 queues, the amount of time the first customer within an incoming 

batch spends in queue should closely resemble the waiting-time-in-queue of an incoming 

customer in 𝐺𝐼/𝑀/𝑐 queues (see Gross and Harris [24]). If the first customer within an 

incoming batch enters service immediately, then the servers must be under-loaded prior to 

that batch-arrival. In other words, 

𝑊𝐹(0) =∑𝑝𝑖
−

𝑐−1

𝑖=0

(6) 
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Complement to (6), if the first customer within an incoming batch is not served 

immediately, then the servers must be either loaded or overloaded prior to that batch-

arrival (i.e. 𝑖 ≥ 𝑐). Since there are 𝑖 − 𝑐  customers waiting in queue prior to a batch-

arrival, once a batch arrives, the first customer within that batch must wait until 𝑖 − 𝑐 + 1 

customers in front of him enter service. Hence the waiting time for this customer is 

(𝑖 − 𝑐 + 1)-fold convolution of exponentials with mean 𝑐𝜇, which is Erlang. Removing 

the condition on 𝑖 and coupling it with (6), the 𝑊𝐹(𝑡) is found as 

𝑊𝐹(𝑡) = 𝑃(𝑊𝐹 ≤ 𝑡) = 𝑊𝐹(0) +∑𝑝𝑖
−∫

(𝑐𝜇𝑣)𝑖−𝑐

(𝑖 − 𝑐)!
(𝑐𝜇)𝑒−𝑐𝜇𝑣

𝑡

0

∞

𝑖=𝑐

𝑑𝑣 (7) 

2.2.5 The waiting-time-in-queue of the random customer within an incoming 

batch 

Let the amount of time spent in queue by the random customer within an incoming 

batch be 𝑊𝑅 , (𝑊𝑅 ≥ 0). The c.d.f. of 𝑊𝑅  is 𝑊𝑅(𝑡) = 𝑃(𝑊𝑅 ≤ 𝑡), (𝑡 ≥ 0). The explicit 

expression of 𝑊𝑅(𝑡) is derived as follows: If the position of the random customer within 

an incoming batch is 𝐹 , then its p.m.f. is 𝑃(𝐹 = 𝑓) ≡ 𝑟𝑓 = ∑
𝑏ℎ

�̅�

∞
ℎ=𝑓 , (1 ≤ 𝑓 ≤ 𝑟) (see 

Appendix B.4 for details). If the random customer within an incoming batch enters 

service immediately, then 𝑖 + 𝑓 ≤ 𝑐 must be true. In other words, 

𝑊𝑅(0) = ∑∑𝑝𝑖
−

𝑐−𝑓

𝑖=0

𝑟𝑓

𝑟

𝑓=1

(8) 

Using a similar argument from Subsection 2.2.4 the 𝑊𝑅(𝑡) can be derived as 

𝑊𝑅(𝑡) = 𝑃(𝑊𝑅 ≤ 𝑡) 

= 𝑊𝑅(0) +∑𝑟𝑓 ∑ 𝑝𝑖
−

∞

𝑖=𝑐−𝑓+1

𝑟

𝑓=1

∫
(𝑐𝜇𝑣)𝑖−𝑐

(𝑖 + 𝑓 − 𝑐 − 1)!
(𝑐𝜇)𝑓𝑣𝑓−1𝑒−𝑐𝜇𝑣

𝑡

0

𝑑𝑣 (9) 
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2.2.6 Performance measures 

Since the distributions are known, various moments can be calculated. In 

particular, denote 𝐿𝑠, 𝐿𝑞 ,𝑊𝑞1
−, and 𝑊𝑞

− as the mean number of customers in the system, the 

mean number of customers in queue, and mean waiting-time-in-queue of the first and 

random customers within an incoming batch, respectively. First, the mean number of 

customers in the system is 

𝐿𝑠 =∑𝑖

∞

𝑖=1

𝑝𝑖 (10) 

and similarly, 𝐿𝑠
− = ∑ 𝑖∞

𝑖=1 𝑝𝑖
− and 𝐿𝑠

+ = ∑ 𝑖∞
𝑖=1 𝑝𝑖

+. On the other hand, the mean number of 

customers in queue is defined as 

𝐿𝑞 = ∑ (𝑖 − 𝑐)

∞

𝑖=𝑐+1

𝑝𝑖 (11) 

where (𝑖 − 𝑐) indicates the number of customers in queue when all servers are busy. The 

mean number of customers in queue at pre-arrival and post-departure time epochs are 

𝐿𝑞
− = ∑ (𝑖 − 𝑐)∞

𝑖=𝑐+1 𝑝𝑖
− and 𝐿𝑞

+ = ∑ (𝑖 − 𝑐)∞
𝑖=𝑐+1 𝑝𝑖

+. Moreover, 𝑊𝑞1
− is  

𝑊𝑞1
− = ∫ 𝑡𝑑𝑊𝐹(𝑡)

∞

0

(12) 

where 𝑊𝐹(𝑡) is given in (7). Similarly, 𝑊𝑞
− is  

𝑊𝑞
− = ∫ 𝑡𝑑𝑊𝑅(𝑡)

∞

0

(13) 

where 𝑊𝑅(𝑡) is given in (9). Further, it can be shown that the average number of idle 

servers in the model 𝐺𝐼𝑋/𝑀/𝑐 can be found using the expression 

∑(𝑐 − 𝑗)𝑝𝑗

𝑐−1

𝑗=0

= 𝑐(1 − 𝜌) (14) 
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The left-hand side of (14) determines the average number of idle servers using the queue-

length distribution at a random time epoch. The right-hand side of (14) determines the 

same number, except that it is independent of the queue-length distribution (hence 

independent of roots). In the next chapter we use (14) to verify the accuracy of our 

numerical results, thus demonstrating the robustness of the roots and the roots method 

(see point 4 in Appendix C.3.2 for more details). 

2.2.7 The 𝑮𝑰𝑿/𝑴/𝒄 queues involving heavy-tailed inter-batch-arrival times 

Assume that inter-batch-arrival times of 𝐺𝐼𝑋/𝑀/𝑐  queue under consideration 

follows a heavy-tail distribution with the p.d.f. 𝑎(𝑡) , c.d.f. 𝐴(𝑡) , and L-S.T.  �̅�(𝑠) =

∫ 𝑒−𝑠𝑡𝑑𝐴(𝑡)
∞

0
. Due to the probabilistic properties of heavy-tail distributions, there are 

instances where the mean, variance or higher order moments of the inter-batch-arrival 

times are infinite. In addition, there are also cases where the L-S.T. of the inter-batch-

arrival times is non-closed or non-analytic. To overcome this difficulty we extend the 

technique by Kim and Chaudhry [32] who solved the 𝐺𝐼𝑋/𝑀/1 queue involving the 

heavy-tailed inter-batch-arrival times using the roots method. In doing so, we replace the 

𝐾(𝑧) in (2) with 𝐾𝛹(𝑧) such that 

𝐾𝛹(𝑧) = ∑∫
𝑒−𝑐𝜇𝑡 (𝑐𝜇𝑡)𝑛

𝑛!

∞

0

𝑑𝐴(𝑡)

𝛹

𝑛=0

𝑧𝑛, (0 ≤ 𝛹 < ∞) 

where 𝛹  is a non-negative integer. The very last term of 𝐾𝛹(𝑧)  is 

∫
𝑒−𝑐𝜇𝑡 (𝑐𝜇𝑡)𝛹

𝛹!

∞

0
𝑑𝐴(𝑡)𝑧𝛹 and by assuming that ∫

𝑒−𝑐𝜇𝑡 (𝑐𝜇𝑡)𝛹

𝛹!

∞

0
𝑑𝐴(𝑡)  is a near-zero 

probability, we can determine the value of 𝛹. Based on this notion we have implemented 

a simple algorithm in MAPLE that determines 𝛹 (see Appendix C.1.3). This algorithm 

was used to compute and plot the roots (see Appendices C.3.1) as well as the distributions 
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(see Section 3.2) in 𝐺𝐼𝑋/𝑀/𝑐 queues involving heavy-tailed inter-batch-arrival times. For 

more in-depth numerical analysis on the roots of (2) readers may refer to Appendix C.3.2. 

 In contrast to our root-finding method, Harris et al. [25] use the transform 

approximation method (TAM). TAM is based on approximating the L-S.T. of a heavy-

tailed inter-arrival time distribution by a geometric sum of 𝛹 terms such that 

𝐾𝛹(𝑧) =
1

𝛹
∑𝑒−𝑧𝑋(𝑘)
𝛹

𝑘=1

 

where 𝑋(𝑘), 𝑘 = 1,2, … ,𝛹, are chosen to cover the outcome space of the original inter-

arrival r.v. with 𝐾(𝑋(𝑗)) = (𝑗 − 0.5) 𝛹⁄ . Ultimately, 𝛹  is manually picked so that it 

satisfies lim
𝛹→∞

𝐾𝛹(𝑧) = 𝐾(𝑧) where 𝐾(𝑧) is the L-S.T. of a heavy-tailed inter-arrival time 

distribution such that 𝐾𝛹(𝑧) = �̅�𝛹(𝜇(1 − 𝑧))  for 𝐺𝐼/𝑀/1  queues and 𝐾𝛹(𝑧) =

�̅�𝛹(𝑐𝜇(1 − 𝑧)) for 𝐺𝐼/𝑀/𝑐 queues. Therefore, once 𝛹 is known, solving the equation 

𝑧 = 𝐾𝛹(𝑧) 

results in the root that is needed to solve the single-arrival model. In explaining TAM, 

Harris et al. [25] place a caveat on the fact that TAM results in 𝛹  as large as 106 . 

Moreover, Harris et al. [25] lay their analytical foundation of TAM based on single-

arrival models such as 𝐺𝐼/𝑀/1  and 𝐺𝐼/𝑀/𝑐  queues. Though their method could be 

extended to bulk-arrival models (i.e. multiple roots), such extension may not only lead to 

a laborious analytical foundation, but will require even larger 𝛹 to approximate the L-

S.T. of a heavy-tailed inter-batch-arrival time distribution. 

In contrast to this, the proposed root-finding method employs 𝛹 no larger than 

100 (see Appendix C.3.1). Since finding the roots at a smaller 𝛹 equates to a higher 
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efficiency and shorter computing time, it is concluded that the proposed root-finding 

method is more advantageous than TAM (see Chaudhry and Kim [15] for more details). 

2.3 The 𝑮𝑰𝑿/𝑴/𝒄/𝑵 queues 

In this section, we analytically solve 𝐺𝐼𝑋/𝑀/𝑐/𝑁  queues using roots. Some 

notations from Section 2.2 are redefined in the context of 𝐺𝐼𝑋/𝑀/𝑐/𝑁 queues. 

2.3.1 Model description 

Consider the steady-state aspect of 𝐺𝐼𝑋/𝑀/𝑐/𝑁  queueing system where the 

service times, group sizes, and inter-batch-arrival times are mutually independent. There 

are 𝑐 parallel servers where each server has the exponential service rate 𝜇. Customers 

arrive in batches of size 𝑋  (with maximum size 𝑟) with the p.m.f. 𝑏ℎ = 𝑃(𝑋 = ℎ), (1 ≤

ℎ ≤ 𝑟) , mean 𝜇𝑋 = ∑ ℎ𝑏ℎ
𝑟
ℎ=1 , and p.g.f. 𝐵(𝑧) = ∑ 𝑏ℎ

𝑟
ℎ=1 𝑧ℎ, (|𝑧| ≤ 1) . Batches of 

customers arrive at time epochs 𝑇1, 𝑇2, … , 𝑇𝑛, …, and the inter-batch-arrival times 𝑡𝑛+1 =

𝑇𝑛+1 − 𝑇𝑛 > 0, (𝑛 ≥ 0) are i.i.d.r.v.’s with the p.d.f. 𝑎(𝑡), c.d.f. 𝐴(𝑡), mean 1 𝜆⁄ , and L-

S.T. �̅�(𝑠) = ∫ 𝑒−𝑠𝑡𝑑𝐴(𝑡)
∞

0
. Let 𝑀(𝑡) be the number of customers in the system at time 𝑡 

such that 𝑀𝑛
− =  𝑀(𝑇𝑛 − 0), (𝑛 ≥ 0) is the number of customers in the system including 

the ones, if any, in service just before the arrival instant 𝑇𝑛. The steady-state p.m.f. of 𝑀𝑛
− 

is 𝑝𝑗
− = lim

𝑛→∞
𝑃(𝑀𝑛

− = 𝑗) , (𝑗 ≥ 0). Similarly, the queue-length distribution at a random 

time epoch is 𝑝𝑗 = lim
𝑛→∞

𝑃(𝑀𝑛 = 𝑗), (𝑗 ≥ 0). Let 𝐷𝑛 be the total number of customers that 

depart the system over the course of 𝑡𝑛  with the steady-state p.m.f. 𝑘𝑙 =

lim
𝑛→∞

∫ 𝑃(𝐷𝑛 = 𝑙 |𝑡𝑛 = 𝑡)𝑑𝐴(𝑡)
∞

0
, (𝑙 ≥ 0)  and p.g.f. 𝐾(𝑧) = ∑ 𝑘𝑙𝑧

𝑙∞
𝑙=0 . The stochastic 

process {𝑀𝑛
−, 𝑛 ≥ 1} forms a homogenous Markov chain: 
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𝑀𝑛+1
− = {

min(𝑀𝑛
− + 𝑋𝑛 − 𝐷𝑛, 𝑁), (𝑀𝑛

− + 𝑋𝑛 − 𝐷𝑛 ≥ 0)

0,                                          (𝑀𝑛
− + 𝑋𝑛 − 𝐷𝑛 < 0)

 

The traffic intensity of the system is defined as 𝜌 =
𝜆𝜇𝑋

𝑐𝜇
> 0. The model 𝐺𝐼𝑋/𝑀/𝑐/𝑁 has 

the finite-buffer 𝑁, (𝑁 ≥ 𝑐)  such that an incoming batch is either partially or totally 

rejected if a batch size ℎ, (1 ≤ ℎ ≤ 𝑟) is larger than the available space (𝑁 − 𝑖). 

2.3.2 The 𝑮𝑰𝑿/𝑴/𝒄/𝑵 queues at a pre-arrival time epoch 

To compute the queue-length distribution of 𝐺𝐼𝑋/𝑀/𝑐/𝑁 queues at a pre-arrival 

time epoch we first define the transition probabilities of the model. Let 𝑃𝑖,𝑗(𝑛) =

𝑃[𝑀𝑛+1
− = 𝑗 | 𝑀𝑛

− = 𝑖], (𝑖, 𝑗 ≥ 0, 𝑛 ≥ 1)  be the one-step transition probabilities of 

{𝑀𝑛
−, 𝑛 ≥ 1} . Thus, the steady-state one-step transition probabilities of 𝐺𝐼𝑋/𝑀/𝑐/𝑁 

queues are defined as 𝑃𝑖,𝑗 ≡ lim
𝑛→∞

𝑃𝑖,𝑗(𝑛). Given that a batch can be either partially or 

totally rejected, there are two different set of transition probabilities that correspond to 

each rejection policy: In the case of partial rejection, the 𝑃𝑖,𝑗 are defined as 

𝑃𝑖,𝑗 =

{
 
 
 
 

 
 
 
 

∑ 𝑘𝑖+ℎ−𝑗𝑏ℎ + 𝑘𝑁−𝑗 ∑ 𝑏ℎ 

𝑟

ℎ=𝑁−𝑖+1

𝑁−𝑖

ℎ=𝑗−𝑖

,    (𝑗 > 𝑖 ≥ 0, 𝑗 ≥ 𝑐)     

∑ 𝑘𝑖+ℎ−𝑗𝑏ℎ + 𝑘𝑁−𝑗 ∑ 𝑏ℎ

𝑟

ℎ=𝑁−𝑖+1

𝑁−𝑖

ℎ=1

,      (𝑐 ≤ 𝑗 ≤ 𝑖)               

∑ 𝑉𝑖+ℎ,𝑗𝑏ℎ + 𝑉𝑁,𝑗 ∑ 𝑏ℎ

𝑟

ℎ=𝑁−𝑖+1

𝑁−𝑖

ℎ=max (1,𝑗−𝑖)

, (𝑖 ≥ 0,1 ≤ 𝑗 ≤ 𝑐 − 1)

 

In the case of total rejection, the 𝑃𝑖,𝑗 are defined as 
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𝑃𝑖,𝑗 =

{
 
 
 
 

 
 
 
 

∑ 𝑘𝑖+ℎ−𝑗𝑏ℎ

𝑁−𝑖

ℎ=𝑗−𝑖

,                                       (𝑗 > 𝑖 ≥ 0, 𝑗 ≥ 𝑐)     

∑ 𝑘𝑖+ℎ−𝑗𝑏ℎ + 𝑘𝑖−𝑗 ∑ 𝑏ℎ

𝑟

ℎ=𝑁−𝑖+1

𝑁−𝑖

ℎ=1

,      (𝑐 ≤ 𝑗 ≤ 𝑖)               

∑ 𝑉𝑖+ℎ,𝑗𝑏ℎ + 𝑉𝑖,𝑗 ∑ 𝑏ℎ

𝑟

ℎ=𝑁−𝑖+1

𝑁−𝑖

ℎ=max (1,𝑗−𝑖)

, (𝑖 ≥ 0,1 ≤ 𝑗 ≤ 𝑐 − 1)

 

where 𝑃𝑖,0 = 1 − ∑ 𝑃𝑖,𝑗
𝑁
𝑗=1 , (0 ≤ 𝑖 ≤ 𝑁)  and 𝑘𝑛 = ∫

(𝑐𝜇𝑡)𝑛

𝑛!
𝑒−𝑐𝜇𝑡𝑑𝐴(𝑡)

∞

0
, (𝑛 ≥

0 and 𝑘𝑛 = 0 for 𝑛 < 0). The 𝑉𝑖+ℎ,𝑗 are defined as 

 𝑉𝑖+ℎ,𝑗

=

{
 
 

 
 

                
0,                                                                                                               (𝑖 + ℎ < 𝑗)                

∫ (
𝑖 + ℎ

𝑗
)

∞

0

(1 − 𝑒−𝜇𝑡)𝑖+ℎ−𝑗(𝑒−𝜇𝑡)𝑗𝑑𝐴(𝑡),                                                    (1 ≤ 𝑗 ≤ 𝑖 + ℎ ≤ 𝑐)               

∫ ∫
𝑒−𝑐𝜇𝑢(𝑐𝜇𝑢)𝑖+ℎ−𝑐−1

(𝑖 + ℎ − 𝑐 − 1)!
𝑐𝜇 (

𝑐

𝑗
)

𝑡

0

∞

0

𝑒−𝜇𝑗(𝑡−𝑢)[1 − 𝑒−𝜇(𝑡−𝑢)]
𝑐−𝑗
𝑑𝑢𝑑𝐴(𝑡), (1 ≤ 𝑗 < 𝑐 < 𝑖 + ℎ)                

 

As a remark, the 𝑃𝑖,𝑗 presented above match with those given by Laxmi and Gupta [35]. 

In presenting a novel way of treating 𝐺𝐼𝑋/𝑀/𝑐/𝑁  queues using roots we extend 

the result by Chaudhry and Kim [16] as well as Kim and Chaudhry [34] who solve 

𝐺𝐼/𝑀/1/𝑁 and 𝐺𝐼/𝑀/𝑐/𝑁 queues, respectively, using roots. In doing so, we define the 

Chapman-Kolmogorov equation of 𝐺𝐼𝑋/𝑀/𝑐/𝑁 queues as 

𝑝𝑗
− =∑𝑝𝑖

−

𝑁

𝑖=0

𝑃𝑖,𝑗, (0 ≤ 𝑗 ≤ 𝑁) (15) 

which is a set of 𝑗 first order linear difference equations. As a remark, 𝑁 = 0 indicates 

that no customers are allowed in the system (i.e. 𝑝0
− = 1) hence this case can be ignored. 

Whether the 𝑃𝑖,𝑗  follow partial or total rejection policy, both cases can be solved 
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altogether by assuming the solution of a general form 𝑝𝑗
− = 𝐶𝑧𝑗 , (1 ≤ 𝑗 ≤ 𝑁, 𝐶 ≠ 0). By 

substituting the general solution into (15), we have 

𝐶𝑧𝑗 =∑𝐶𝑧𝑖
𝑁

𝑖=0

𝑃𝑖,𝑗 , (1 ≤ 𝑗 ≤ 𝑁) 

0 =∑𝑧𝑖
𝑁

𝑖=0

𝑃𝑖,𝑗 − 𝑧
𝑗 

By summing both sides of the above over 1 ≤ 𝑗 ≤ 𝑁 we have the characteristic equation 

of 𝐺𝐼𝑋/𝑀/𝑐/𝑁 queues as 

0 =∑(∑𝑧𝑖
𝑁

𝑖=0

𝑃𝑖,𝑗 − 𝑧
𝑗)

𝑁

𝑗=1

(16) 

Since (16) is an 𝑁-th degree polynomial, solving it gives 𝑁  roots. Let these roots be 

𝑧1, 𝑧2, … , 𝑧𝑁 such that the solution becomes 

𝑝𝑗
− =∑𝐶ℎ𝑧ℎ

𝑗

𝑁

ℎ=1

, (1 ≤ 𝑗 ≤ 𝑁) (17) 

where the 𝐶ℎ, (1 ≤ ℎ ≤ 𝑁) are the unknown non-zero constant coefficients. To determine 

these unknowns, we substitute (17) into (15) such that it leads to 

∑𝐶ℎ𝑧ℎ
𝑗

𝑁

ℎ=1

=∑∑𝐶ℎ𝑧ℎ
𝑖

𝑁

ℎ=1

𝑁

𝑖=0

𝑃𝑖,𝑗, (1 ≤ 𝑗 ≤ 𝑁) 

The expression above can be rearranged to 

0 = ∑𝐶ℎ

𝑁

ℎ=1

( ∑ 𝑧ℎ
𝑖

𝑁

𝑖=𝑗−ℎ

𝑃𝑖,𝑗 − 𝑧ℎ
𝑗
) , (1 ≤ 𝑗 ≤ 𝑁) (18) 

To make (17) also true for the case when 𝑗 = 0, we establish the normalizing condition as 
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1 =∑∑𝐶ℎ𝑧ℎ
𝑗

𝑁

ℎ=1

𝑁

𝑗=0

 

The normalizing condition, in conjunction with letting 𝑗 = 1,2, … ,𝑁 − 1 in (18), gives 𝑁 

equations. Solving these equations give the solution to 𝐺𝐼𝑋/𝑀/𝑐/𝑁 queues in terms of 

roots as 

𝑝𝑗
− =∑𝐶ℎ𝑧ℎ

𝑗

𝑁

ℎ=1

, (0 ≤ 𝑗 ≤ 𝑁) (19) 

2.3.3 The 𝑮𝑰𝑿/𝑴/𝒄/𝑵 queues at a random time epoch 

Using the random biased sampling (see Appendix B.4) the queue-length 

distribution of 𝐺𝐼𝑋/𝑀/𝑐/𝑁 queues at a random time epoch (say 𝑝𝑗 , 0 ≤ 𝑗 ≤ 𝑁) can be 

explicitly expressed as 𝑝𝑗 = ∑ 𝑝𝑖
−𝑃𝑖,𝑗

∗𝑁
𝑖=0 , (1 ≤ 𝑗 ≤ 𝑁)  where the (𝑝𝑖

−, 0 ≤ 𝑖 ≤ 𝑁)  are 

available in (19), 𝑝0 = 1 − ∑ 𝑝𝑗
𝑁
𝑗=1 , and 𝑃𝑖,𝑗

∗  are 𝑃𝑖,𝑗 (for both partial and total rejections) 

except 𝐴(𝑡)  is replaced with 𝐴𝑅(𝑡)  where 𝐴𝑅(𝑡) = 𝜆 ∫ [1 − 𝐴(𝑤)]𝑑𝑤,
𝑡

0
(0 < 𝑤 ≤  𝑡) . 

This way of computing 𝑝𝑗 is analytically simpler and computationally more efficient than 

the previous method (see e.g., Laxmi and Gupta [35] who relates 𝑝𝑗 with 𝑝𝑖
− through the 

use of a supplementary variable). As a remark, when 𝜆 → 0 (see next Subsection) 𝑝0 → 1 

since ∑ ∑ 𝑝𝑖
−𝑃𝑖,𝑗

∗𝑁
𝑖=0

𝑁
𝑗=1 = 0  (such phenomena are numerically demonstrated in Section 

3.4). The waiting-time distributions, blocking probabilities, and performance measures of 

𝐺𝐼𝑋/𝑀/𝑐/𝑁  queues can all be found in terms of (19) using the relations derived by 

Laxmi and Gupta [35]. 

2.3.4 The 𝑮𝑰𝑿/𝑴/𝒄/𝑵 queues involving heavy-tailed inter-batch-arrival times 

The analytical results in Section 2.3 remain robust even if the inter-batch-arrival 

times follow heavy-tailed distributions (both non-closed and non-analytic form of L-
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S.T.’s). Unlike in 𝐺𝐼𝑋/𝑀/𝑐 queues involving heavy-tailed inter-batch-arrival times, no 

manipulation of the characteristic equation is required when solving 𝐺𝐼𝑋/𝑀/𝑐/𝑁 queues 

involving heavy-tailed inter-batch-arrival times. Numerical examples are provided in 

Section 3.4. 

2.4 Conclusions 

In Section 2.1 we introduced some earlier work done by others on the continuous-

time multi-server bulk-arrival queues. 

In Section 2.2 we applied the roots method to solve 𝐺𝐼𝑋/𝑀/𝑐  queues. By 

interpreting the Chapman-Kolmogorov equation as a set of linear difference equations we 

can express the solution in terms of roots. We also derived the explicit expressions of the 

waiting-time-in-queue distributions, as well, treated 𝐺𝐼𝑋/𝑀/𝑐 queues involving heavy-

tailed inter-batch-arrival times.  

In Section 2.3 we applied the roots method to solve 𝐺𝐼𝑋/𝑀/𝑐/𝑁 queues. While 

this embarks on the first application of the roots method to treat continuous-time finite-

buffer multi-server bulk-arrival queues, the method remains robust even in the case of 

heavy-tailed inter-batch-arrival times. 
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3 NUMERICAL RESULTS IN 𝑮𝑰𝑿/𝑴/𝒄 AND 𝑮𝑰𝑿/𝑴/𝒄/𝑵 QUEUES 

This chapter provides all the numerical results that complement the analytical 

work provided in Chapter 2. It is organized in the following manner: The 𝐺𝐼𝑋/𝑀/𝑐 

queues involving light-tailed inter-batch-arrival times are discussed in Section 3.1 and 

𝐺𝐼𝑋/𝑀/𝑐 queues involving heavy-tailed inter-batch-arrival times are discussed in Section 

3.2. In addition, whereas Section 3.3 deals with 𝐺𝐼𝑋/𝑀/𝑐/𝑁  queues involving light-

tailed inter-batch-arrival times, Section 3.4 deals with 𝐺𝐼𝑋/𝑀/𝑐/𝑁  queues involving 

heavy-tailed inter-batch-arrival times. All computations were performed on MAPLE, 

calibrated at the ninth decimal place. In presenting our numerical results, all results were 

rounded to four decimal places. 

3.1 The 𝑮𝑰𝑿/𝑴/𝒄  queues involving light-tailed inter-batch-arrival 

times 

In computing the queue-length distributions of 𝐺𝐼𝑋/𝑀/𝑐 queues at a pre-arrival, 

random, and post-departure time epochs, we consider the inter-batch-arrival patterns to be 

exponential and deterministic.  

3.1.1 Exponential inter-batch-arrival times 

The inter-batch-arrival pattern is exponential (𝑀) with  𝑎(𝑡) = 𝜆𝑒−𝜆𝑡, (𝜆, 𝑡 > 0). 

The parameters taken are 𝜌 = 0.5, 𝑏1 = 0.4, 𝑏2 = 0.6, 𝜇 = 1, and 𝑐 = 3. This gives 𝜇𝑋 =

1.6 and 𝜆 = 0.9375. 
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Table 1: Various distributions in 𝑴𝑿/𝑴/𝟑 queue 

𝑗 𝑝𝑗
− 𝑝𝑗 𝑝𝑗

+ 
 

𝑡 𝑊𝐹(𝑡) 𝑊𝑅(𝑡) 

   0 0.2680 0.2680 0.1675 
 
0.0000 0.7125 0.6401 

1 0.2513 0.2513 0.2575 
 
0.0114 0.7162 0.6448 

2 0.1931 0.1931 0.2149 
 
0.1544 0.7584 0.6991 

3 0.1074 0.1074 0.1396 
 
0.4566 0.8287 0.7879 

4 0.0698 0.0698 0.0839 
 
0.6940 0.8694 0.8387 

5 0.0419 0.0419 0.0524 
 
0.7740 0.8809 0.8529 

6 0.0262 0.0262 0.0321 
 
0.8990 0.8956 0.8711 

7 0.0160 0.0160 0.0198 
 
0.9974 0.9078 0.8862 

8 0.0099 0.0099 0.0122 
 
1.0123 0.9094 0.8881 

⋮ ⋮ ⋮ ⋮ 
 

⋮ ⋮ ⋮ 

Sum 1.0000 1.0000 1.0000 
 
9.9999 0.9999 0.9999 

        

 
∑(𝑐 − 𝑗)𝑝𝑗

𝑐−1

𝑗=0

= 1.5000 
  

𝑐(1 − 𝜌) = 1.5000 

 

As expected, 𝑝𝑗
− = 𝑝𝑗 , (𝑗 ≥ 0)  due to the Poisson Arrivals See Time Averages 

(P.A.S.T.A.) property (see Wolff [49]). 

3.1.2 Deterministic inter-batch-arrival times 

 The inter-batch-arrival pattern is Deterministic (𝐷) with 𝜆 = 1. The parameters 

taken are  𝜌 = 0.4888, 𝑏1 = 0.4, 𝑏2 = 0.2, 𝑏3 = 0.2, 𝑏4 = 0.2, 𝜇 = 1.5, and 𝑐 = 3.  This 

gives 𝜇𝑋 = 2.2. 

Table 2: Various distributions in 𝑫𝑿/𝑴/𝟑 queue 

𝑗 𝑝𝑗
− 𝑝𝑗 𝑝𝑗

+ 
 

𝑡 𝑊𝐹(𝑡) 𝑊𝑅(𝑡) 

   0 0.4866 0.2246 0.2211 
 
0.0000 0.9435 0.7431 

1 0.3413 0.3243 0.2878 
 
0.0114 0.9452 0.7508 

2 0.1157 0.2110 0.2341 
 
0.1544 0.9626 0.8309 

3 0.0332 0.1144 0.1529 
 
0.4566 0.9836 0.9269 

4 0.0145 0.0747 0.0677 
 
0.6940 0.9915 0.9625 

5 0.0054 0.0331 0.0230 
 
0.7740 0.9932 0.9701 

6 0.0019 0.0112 0.0080 
 
0.8990 0.9952 0.9784 

7 0.0007 0.0039 0.0031 
 
0.9974 0.9963 0.9841 
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8 0.0002 0.0015 0.0011 
 
1.0123 0.9965 0.9848 

⋮ ⋮ ⋮ ⋮ 
 

⋮ ⋮ ⋮ 

Sum 0.9999 0.9999 0.9999 
 
9.9999 0.9999 0.9999 

        

 
∑(𝑐 − 𝑗)𝑝𝑗

𝑐−1

𝑗=0

= 1.3020         
 

𝑐(1 − 𝜌) = 1.3020 

 

3.2 The 𝑮𝑰𝑿/𝑴/𝒄  queues involving heavy-tailed inter-batch-arrival 

times 

In computing the queue-length distributions of 𝐺𝐼𝑋/𝑀/𝑐 queues at a pre-arrival, 

random, and post-departure time epochs, we consider the inter-batch-arrival patterns to be 

inverse-Gaussian, Pareto, standard log-normal, and Burr. 

3.2.1 Inverse-Gaussian inter-batch-arrival times 

 The inter-batch-arrival pattern is inverse-Gaussian (𝐼𝐺[𝛼, 𝑘]) with 𝑎(𝑡) =

√
𝑘

2𝜋𝑡3
𝑒
−
𝑘(𝑡−𝛼)2

2𝛼2𝑡 , (𝑡 > 0).  The parameters taken are 𝛼 = 2, 𝑘 = 4, 𝜌 = 0.3268, 𝑏1 =

0.325, 𝑏2 = 0.1, 𝑏3 = 0.075, 𝑏4 = 0.05, 𝑏5 = 0.125, 𝑏6 = 0.025, 𝑏7 = 0.025, 𝑏8 = 0.05,  

𝑏9 = 0.125, 𝑏10 = 0.05, 𝑏11 = 0.025, 𝑏15 = 0.025, 𝜇 = 1, and 𝑐 = 7  This gives 𝜇𝑋 =

4.575 and 𝜆 = 𝛼. 

Table 3: Various distributions in 𝑰𝑮𝑿[𝟐, 𝟒]/𝑴/𝟕 queue 

𝑗 𝑝𝑗
− 𝑝𝑗 𝑝𝑗

+ 
 

𝑡 𝑊𝐹(𝑡) 𝑊𝑅(𝑡) 

   0 0.4200 0.3071 0.0918 
 
0.0000 0.9470 0.6984 

1 0.2285 0.2100 0.1119 
 
0.0114 0.9481 0.7041 

2 0.1240 0.1280 0.1136 
 
0.1544 0.9601 0.7696 

3 0.0751 0.0866 0.1093 
 
0.4566 0.9774 0.8685 

4 0.0478 0.0625 0.1034 
 
0.6940 0.9857 0.9161 

5 0.0311 0.0473 0.0891 
 
0.7740 0.9877 0.9280 

6 0.0206 0.0340 0.0793 
 
0.8990 0.9904 0.9433 

7 0.0137 0.0259 0.0716 
 
0.9974 0.9921 0.9532 
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8 0.0106 0.0234 0.0629 
 
1.0123 0.9923 0.9545 

⋮ ⋮ ⋮ ⋮ 
 

⋮ ⋮ ⋮ 

Sum 1.0000 1.0000 1.0000 
 
4.9999 0.9999 0.9999 

        

 
∑(𝑐 − 𝑗)𝑝𝑗

𝑐−1

𝑗=0

= 4.7125 
  

𝑐(1 − 𝜌) = 4.7125 

 

3.2.2 Pareto inter-batch-arrival times 

 The inter-batch-arrival pattern is Pareto (𝑃𝑎𝑟𝑒𝑡𝑜[𝛼, 𝑘]) with 𝑎(𝑡) =
𝑘𝛼𝛼

𝑡𝛼+1
, (0 <

𝑘 ≤ 𝑡). The parameters taken are 𝛼 = 1.5, 𝑘 = 2, 𝜌 = 0.3631, 𝑏1 = 0.325, 𝑏2 = 0.1, 𝑏3 =

0.075, 𝑏4 = 0.05, 𝑏5 = 0.125, 𝑏6 = 0.025, 𝑏7 = 0.025, 𝑏8 = 0.05, 𝑏9 = 0.125, 𝑏10 =

0.05, 𝑏11 = 0.025, 𝑏15 = 0.025, 𝜇 = 0.3, and 𝑐 = 7 . This gives 𝜇𝑋 = 4.575  and 𝜆 =

0.1667. 

Table 4: Various distributions in 𝑷𝒂𝒓𝒆𝒕𝒐𝑿[𝟏. 𝟓, 𝟐]/𝑴/𝟕 queue 

𝑗 𝑝𝑗
− 𝑝𝑗 𝑝𝑗

+ 
 

𝑡 𝑊𝐹(𝑡) 𝑊𝑅(𝑡) 

   0 0.2288 0.3735 0.0500 
 
0.0000 0.8419 0.5676 

1 0.1877 0.1271 0.0748 
 
0.0114 0.8426 0.5694 

2 0.1421 0.0950 0.0875 
 
0.1544 0.8514 0.5916 

3 0.1062 0.0741 0.0928 
 
0.4566 0.8685 0.6361 

4 0.0783 0.0589 0.0937 
 
0.6940 0.8807 0.6684 

5 0.0572 0.0476 0.0876 
 
0.7740 0.8845 0.6788 

6 0.0417 0.0371 0.0813 
 
0.8990 0.8903 0.6945 

7 0.0301 0.0295 0.0751 
 
0.9974 0.8947 0.7064 

8 0.0251 0.0273 0.0685 
 
1.0123 0.8953 0.7081 

⋮ ⋮ ⋮ ⋮ 
 

⋮ ⋮ ⋮ 

Sum 1.0000 1.0000 1.0000 
 
21.9999 0.9999 0.9999 

        

 
∑(𝑐 − 𝑗)𝑝𝑗

𝑐−1

𝑗=0

= 4.4583 
  

𝑐(1 − 𝜌) = 4.4583 
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3.2.3 Standard log-normal inter-batch-arrival times 

 The inter-batch-arrival pattern is standard log-normal (𝑆𝐿𝑁[𝜎2])  with 𝑎(𝑡) =

1

𝑡√2𝜋𝜎2
𝑒
−
ln2(𝑡)

2𝜎2 , (𝑡, 𝜎 > 0) . The parameters taken are 𝜎2 = 0.25, 𝜌 = 0.4437, 𝑏1 =

0.325, 𝑏2 = 0.1, 𝑏3 = 0.075, 𝑏4 = 0.05, 𝑏5 = 0.125, 𝑏6 = 0.025, 𝑏7 = 0.025, 𝑏8 =

0.05, 𝑏9 = 0.125, 𝑏10 = 0.05, 𝑏11 = 0.025, 𝑏15 = 0.025, 𝜇 = 1.3, and 𝑐 = 7. This gives 

𝜇𝑋 = 4.575 and 𝜆 = 𝑒−
𝜎2

2 = 0.8825. 

Table 5: Various distributions in 𝑺𝑳𝑵[𝟎. 𝟐𝟓]𝑿/𝑴/𝟕 queue 

𝑗 𝑝𝑗
− 𝑝𝑗 𝑝𝑗

+ 
 

𝑡 𝑊𝐹(𝑡) 𝑊𝑅(𝑡) 

   0 0.2823 0.1668 0.0617 
 
0.0000 0.9120 0.6410 

1 0.2379 0.1916 0.0936 
 
0.0114 0.9141 0.6487 

2 0.1532 0.1454 0.1041 
 
0.1544 0.9367 0.7365 

3 0.0994 0.1077 0.1051 
 
0.4566 0.9676 0.8628 

4 0.0656 0.0816 0.1020 
 
0.6940 0.9811 0.9190 

5 0.0439 0.0634 0.0920 
 
0.7740 0.9842 0.9324 

6 0.0298 0.0476 0.0826 
 
0.8990 0.9882 0.9491 

7 0.0203 0.0366 0.0748 
 
0.9974 0.9906 0.9594 

8 0.0162 0.0332 0.0668 
 
1.0123 0.9909 0.9607 

⋮ ⋮ ⋮ ⋮ 
 

⋮ ⋮ ⋮ 

Sum 1.0000 1.0000 1.0000 
 
3.9999 0.9999 0.9999 

        

 
∑(𝑐 − 𝑗)𝑝𝑗

𝑐−1

𝑗=0

= 3.8943 
  

𝑐(1 − 𝜌) = 3.8943 

 

3.2.4 Burr inter-batch-arrival times 

 The inter-batch-arrival pattern is Burr (Burr[𝑘, 𝑢])  with 𝑎(𝑡) =

𝑢𝑘
𝑡𝑢−1

(1+𝑡𝑢)𝑘+1
, (𝑘, 𝑢 > 0, 𝑡 ≥ 𝑢). The parameters taken are 𝑘 = 2, 𝑢 = 3, 𝜌 = 0.5405, 𝑏1 =

0.325, 𝑏2 = 0.1, 𝑏3 = 0.075, 𝑏4 = 0.05, 𝑏5 = 0.125, 𝑏6 = 0.025, 𝑏7 = 0.025, 𝑏8 =
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0.05, 𝑏9 = 0.125, 𝑏10 = 0.05, 𝑏11 = 0.025, 𝑏15 = 0.025, 𝜇 = 1.5, and 𝑐 = 7 . This gives 

𝜇𝑋 = 4.575 and 𝜆 =
1

𝑘𝐵(𝑘−1 𝑢⁄ ,1+1 𝑢⁄ )
= 1.2405. 

Table 6: Various distributions in 𝐁𝐮𝐫𝐫[𝟐, 𝟑]𝑿/𝑴/𝟕 queue 

𝑗 𝑝𝑗
− 𝑝𝑗 𝑝𝑗

+ 
 

𝑡 𝑊𝐹(𝑡) 𝑊𝑅(𝑡) 

   0 0.1839 0.1011 0.0402 
 
0.0000 0.8397 0.5608 

1 0.2073 0.1520 0.0724 
 
0.0114 0.8432 0.5697 

2 0.1578 0.1370 0.0882 
 
0.1544 0.8823 0.6727 

3 0.1128 0.1112 0.0941 
 
0.4566 0.9372 0.8240 

4 0.0801 0.0889 0.0947 
 
0.6940 0.9621 0.8933 

5 0.0570 0.0717 0.0891 
 
0.7740 0.9680 0.9099 

6 0.0409 0.0562 0.0820 
 
0.8990 0.9756 0.9310 

7 0.0299 0.0443 0.0754 
 
0.9974 0.9802 0.9442 

8 0.0253 0.0408 0.0691 
 
1.0123 0.9808 0.9459 

⋮ ⋮ ⋮ ⋮ 
 

⋮ ⋮ ⋮ 

Sum 1.0000 1.0000 1.0000 
 
3.9999 0.9999 0.9999 

        

 
∑(𝑐 − 𝑗)𝑝𝑗

𝑐−1

𝑗=0

= 3.2165 
  

𝑐(1 − 𝜌) = 3.2165 

 

As a remark, 𝐵(𝑎, 𝑏) = ∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1
1

0
𝑑𝑡 where 𝑅𝑒(𝑎), 𝑅𝑒(𝑏) > 0. 

3.3 The 𝑮𝑰𝑿/𝑴/𝒄/𝑵 queues involving light-tailed inter-batch-arrival 

times  

In computing the queue-length distributions of 𝐺𝐼𝑋/𝑀/𝑐/𝑁 queues at pre-arrival 

and random time epochs, we consider the inter-batch-arrival patterns to be exponential 

and Erlang. We present three different cases of 𝜌 in each table where 𝜌 < 1, 𝜌 = 1, and 

𝜌 > 1. 
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3.3.1 Exponential inter-batch-arrival times 

The inter-batch-arrival pattern is exponential (𝑀) with  𝑎(𝑡) = 𝜆𝑒−𝜆𝑡, (𝜆, 𝑡 > 0). 

The parameters taken are  𝑏1 = 0.4, 𝑏2 = 0.6, 𝜇 = 1, 𝑐 = 3,𝑁 = 5, 𝜌 = 0.5, 1, and 2. This 

gives 𝜇𝑋 = 1.6, 𝜇 = 1, 𝜆 = 0.9375, 1.875, and 3.75. 

Table 7: Various distributions in 𝑴𝑿/𝑴/𝟑/𝟓 queue 

 
𝑝𝑗
− (partial rejection)  

 
𝑝𝑗
− (total rejection)  

𝑗 𝜌 = 0.5 𝜌 = 1 𝜌 = 2 
 
𝜌 = 0.5 𝜌 = 1 𝜌 = 2 

0 0.2877 0.0851  0.0116     0.2918  0.0916  0.0142  

1 0.2697 0.1595  0.0436     0.2735  0.1716  0.0543  

2 0.2073 0.1974  0.0948     0.2103  0.2124  0.1178  

3 0.1154 0.1832   0.1512     0.1170   0.1971   0.1879   

4 0.0749 0.1885   0.2601     0.0760   0.2028   0.3232   

5 0.0450 0.1865   0.4386     0.0314   0.1246   0.3026   

Sum 1.0000 1.0000 1.0000 
 
1.0000 1.0000 1.0000 

 

 
𝑝𝑗 (partial rejection)  

 
𝑝𝑗 (total rejection)  

𝑗 𝜌 = 0.5 𝜌 = 1 𝜌 = 2 
 
𝜌 = 0.5 𝜌 = 1 𝜌 = 2 

0 0.2877 0.0851  0.0116     0.2918  0.0916  0.0142  

1 0.2697 0.1595  0.0436     0.2735  0.1716  0.0543  

2 0.2073 0.1974  0.0948     0.2103  0.2124  0.1178  

3 0.1154 0.1832   0.1512     0.1170   0.1971   0.1879   

4 0.0749 0.1885   0.2601     0.0760   0.2028   0.3232   

5 0.0450 0.1865   0.4386     0.0314   0.1246   0.3026   

Sum 1.0000 1.0000 1.0000 
 
1.0000 1.0000 1.0000 

 

As expected, 𝑝𝑗
− = 𝑝𝑗 , (0 ≤ 𝑗 ≤ 𝑁) due to the P.A.S.T.A. property. 

3.3.2 Erlang inter-batch-arrival times 

 The inter-batch-arrival pattern is Erlang (𝐸𝑚)  with  𝑎(𝑡) =

(𝑚𝜆)𝑚𝑡𝑚−1𝑒−𝑚𝜆𝑡

(𝑚−1)!
, (𝑚, 𝜆, 𝑡 > 0). The parameters taken are 𝑚 = 2, 𝑏1 = 0.4, 𝑏2 = 0.6, 𝜇 =
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1, 𝑐 = 3, 𝑁 = 5, 𝜌 = 0.5, 1, and 2 . This gives  𝜇𝑋 = 1.6, 𝜇 = 1, 𝜆 =
𝜌𝑐𝜇𝑚

𝜇𝑋⁄ =

1.875, 3.75, and 7.5. 

Table 8: Various distributions in 𝑬𝟐
𝑿/𝑴/𝟑/𝟓 queue 

 
𝑝𝑗
− (partial rejection)  

 
𝑝𝑗
− (total rejection)  

𝑗 𝜌 = 0.5 𝜌 = 1 𝜌 = 2 
 
𝜌 = 0.5 𝜌 = 1 𝜌 = 2 

0 0.0731 0.0063 0.0003   0.0800 0.0086 0.0005 

1 0.1738 0.0333 0.0034   0.1896 0.0453 0.0061 

2 0.2245 0.0902 0.0193   0.2428 0.1207 0.0337 

3 0.2009 0.1641 0.0709   0.2122 0.2109 0.1175 

4 0.1894 0.2957 0.2473   0.1855 0.3407 0.3572 

5 0.1383 0.4105 0.6588   0.0900 0.2738 0.4849 

Sum 1.0000 1.0000 1.0000  1.0000 1.0000 1.0000 

 

 
𝑝𝑗 (partial rejection)  

 
𝑝𝑗 (total rejection)  

𝑗 𝜌 = 0.5 𝜌 = 1 𝜌 = 2 
 
𝜌 = 0.5 𝜌 = 1 𝜌 = 2 

0 0.0499 0.0040 0.0002   0.0548 0.0056 0.0003 

1 0.1371 0.0235 0.0022   0.1501 0.0322 0.0041 

2 0.2041 0.0694 0.0135   0.2227 0.0947 0.0242 

3 0.2055 0.1377 0.0533   0.2229 0.1849 0.0935 

4 0.2098 0.2727 0.2062   0.2237 0.3541 0.3444 

5 0.1937 0.4926 0.7247   0.1259 0.3285 0.5334 

Sum 1.0000 1.0000 1.0000  1.0000 1.0000 1.0000 

 

3.4 The 𝑮𝑰𝑿/𝑴/𝒄/𝑵 queues involving heavy-tailed inter-batch-arrival 

times  

In computing the queue-length distributions of 𝐺𝐼𝑋/𝑀/𝑐/𝑁 queues at pre-arrival 

and random time epochs, we consider the inter-batch-arrival patterns to be Cauchy and 

Lévy. We present three different cases of 𝜇 in each table where 𝜇 < 1, 𝜇 = 1, and 𝜇 > 1. 



33 

 

 

3.4.1 Standard Cauchy inter-batch-arrival times 

The inter-batch-arrival pattern is standard Cauchy ( 𝑆𝐶𝑎𝑢𝑐ℎ𝑦 ) with 𝑎(𝑡) =

2

𝜋(1+𝑡2)
, (𝑡 > 0). The parameters taken are 𝜆 = ∞, 𝑏1 = 0.4, 𝑏2 = 0.6, 𝜇 = 1, 𝑐 = 3,𝑁 =

5, 𝜇 = 0.5, 1, and 1.5. This gives 𝜇𝑋 = 1.6 and 𝜌 = 0. 

Table 9: Various distributions in 𝑺𝑪𝒂𝒖𝒄𝒉𝒚𝑿/𝑴/𝟑/𝟓 queue 

 
𝑝𝑗
− (partial rejection)  

 
𝑝𝑗
− (total rejection)  

𝑗 𝜇 = 0.5 𝜇 = 1 𝜇 = 1.5 
 
𝜇 = 0.5 𝜇 = 1 𝜇 = 1.5 

0 0.2405 0.4354 0.5591   0.2445 0.4372 0.5600 

1 0.2153 0.2581 0.2418   0.2207 0.2597 0.2423 

2 0.2054 0.1724 0.1317   0.2119 0.1736 0.1320 

3 0.1382 0.0741 0.0423   0.1442 0.0748 0.0424 

4 0.1128 0.0405 0.0185   0.1186 0.0409 0.0185 

5 0.0878 0.0194 0.0067   0.0601 0.0140 0.0050 

Sum 1.0000 1.0000 1.0000  1.0000 1.0000 1.0000 

 

 
𝑝𝑗 (partial rejection)  

 
𝑝𝑗 (total rejection)  

𝑗 𝜇 = 0.5 𝜇 = 1 𝜇 = 1.5 
 
𝜇 = 0.5 𝜇 = 1 𝜇 = 1.5 

0 1.0000 1.0000 1.0000   1.0000 1.0000 1.0000 

1 0.0000 0.0000 0.0000   0.0000 0.0000 0.0000 

2 0.0000 0.0000 0.0000   0.0000 0.0000 0.0000 

3 0.0000 0.0000 0.0000   0.0000 0.0000 0.0000 

4 0.0000 0.0000 0.0000   0.0000 0.0000 0.0000 

5 0.0000 0.0000 0.0000   0.0000 0.0000 0.0000 

Sum 1.0000 1.0000 1.0000  1.0000 1.0000 1.0000 

 

3.4.2 Lévy inter-batch-arrival times 

The inter-batch-arrival pattern is Lévy (Lévy[𝑘, 𝑢])  with 𝑎(𝑡) =

√
𝑘

2𝜋

𝑒
−

𝑘
2(𝑡−𝑢)

(𝑡−𝑢)
3
2⁄
, (𝑘, 𝑢 > 0, 𝑡 > 𝑢).  The parameters taken are  𝜆 = ∞, 𝑘 = 0.7, 𝑢 = 0, 𝑏1 =

0.4, 𝑏2 = 0.6, 𝑐 = 3,𝑁 = 5, 𝜇 = 0.5, 1, and 1.5. This gives 𝜇𝑋 = 1.6 and 𝜌 = 0. 
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 Table 10: Various distributions in 𝐋é𝐯𝐲𝐗[𝟎. 𝟕, 𝟎]/𝑴/𝟑/𝟓 queue 

 
𝑝𝑗
− (partial rejection)  

 
𝑝𝑗
− (total rejection)  

𝑗 𝜇 = 0.5 𝜇 = 1 𝜇 = 1.5 
 
𝜇 = 0.5 𝜇 = 1 𝜇 = 1.5 

0 0.4187 0.5737 0.6680   0.4203 0.5743 0.6682 

1 0.2218 0.2258 0.2052   0.2236 0.2263 0.2054 

2 0.1798 0.1327 0.0955   0.1822 0.1331 0.0956 

3 0.0875 0.0422 0.0219   0.0901 0.0425 0.0219 

4 0.0582 0.0192 0.0077   0.0599 0.0190 0.0075 

5 0.0340 0.0066 0.0018   0.0239 0.0049 0.0014 

Sum 1.0000 1.0000 1.0000  1.0000 1.0000 1.0000 

 

 
𝑝𝑗 (partial rejection)  

 
𝑝𝑗 (total rejection)  

𝑗 𝜇 = 0.5 𝜇 = 1 𝜇 = 1.5 
 
𝜇 = 0.5 𝜇 = 1 𝜇 = 1.5 

0 1.0000 1.0000 1.0000   1.0000 1.0000 1.0000 

1 0.0000 0.0000 0.0000   0.0000 0.0000 0.0000 

2 0.0000 0.0000 0.0000   0.0000 0.0000 0.0000 

3 0.0000 0.0000 0.0000   0.0000 0.0000 0.0000 

4 0.0000 0.0000 0.0000   0.0000 0.0000 0.0000 

5 0.0000 0.0000 0.0000   0.0000 0.0000 0.0000 

Sum 1.0000 1.0000 1.0000  1.0000 1.0000 1.0000 

 

3.5 Conclusions 

The numerical results based on Chapter 2 are presented in Chapter 3. In doing so, 

all different cases are considered (the 𝐺𝐼𝑋/𝑀/𝑐 and 𝐺𝐼𝑋/𝑀/𝑐/𝑁 queues involving light 

and heavy-tailed inter-batch-arrival times). 

Since the queue-length distributions are in terms of roots, the characteristic 

equation plays a pivotal role in treating 𝐺𝐼𝑋/𝑀/𝑐 and 𝐺𝐼𝑋/𝑀/𝑐/𝑁 queues. When the 

inter-batch-arrival times of the 𝐺𝐼𝑋/𝑀/𝑐  queues follow heavy-tailed distributions, the 

characteristic equation needs to be modified to allow the computation of roots. This 
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aspect of 𝐺𝐼𝑋/𝑀/𝑐 queues is isolated and studied further in Appendix C.3.1 and C.3.2. 

On the other hand, no manipulation of the characteristic equation is needed when treating 

𝐺𝐼𝑋/𝑀/𝑐/𝑁 queues using roots.  
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4 ANALYTICAL RESULTS IN 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄  AND 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄/𝑵  

QUEUES 

 Readers may refer to Appendix A.1 for a brief summary of probability theory, 

stochastic processes, and Markov processes, which are all important topics that lead to 

discrete-time queueing theory. The definitions and properties of a discrete r.v. and its 

moments, g.f., and p.g.f. are provided in Appendix A.3. The basic mathematical construct 

of a queueing system, as well as some common theorems and techniques used in discrete-

time queueing theory are explained in Appendix B. The rest of the materials that 

supplement Chapter 4 are available in Appendix C.2. 

4.1 Literature review 

The study of discrete-time queues is relatively recent compared to its continuous-

time counterpart. Over the last few decades, the field quickly gained value among 

queueing theorists and researchers due to the digitization of information technology, 

particularly in the area of signal processing devices, microcomputers, and computer 

networks. In analyzing discrete-time queues, many researchers have recognized that the 

continuous-time models are no longer suitable to accurately measure the performance of 

systems in which the basic operational units are digital, such as machine cycle time, bits, 

and packets (see Miyazawa and Takagi [38] for details). For further details on the 

discrete-time models and telecommunications, one may see Bruneel and Kim [4]. In this 

connection, see also Takagi [45]. 

In discrete-time queueing theory, various techniques have been introduced by 

many researchers to analyze the 𝐺𝐼/𝐺𝑒𝑜/1 queues. Some of their techniques include the 

imbedded Markov chain, supplementary variable, semi-Markov process, birth and death 
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process, matrix-geometric, combinatorial, and numerical methods. What is pervasive 

across these techniques is in their final product: The 𝐺𝐼/𝐺𝑒𝑜/1 queues have three distinct 

queue-length distributions at three different time epochs. Though each queue-length 

distribution has its own importance, they all have other purposes as well. For instance, the 

queue-length distribution at a pre-arrival time epoch is used to compute the actual 

waiting-time distribution, and in the case of queues with finite-buffer it is used to evaluate 

the blocking probability (see Chaudhry and Gupta [10]). The queue-length distribution at 

a random time epoch is needed to compute the virtual waiting-time, whereas the queue-

length distribution at an outside observer’s time epoch is used to obtain various 

performance measures such as the mean waiting-time-in-queue using Little’s law. 

Moreover, relations between the queue-length distributions at different time epochs 

involve interesting mathematical derivations. 

In comparing 𝐺𝐼/𝐺𝑒𝑜/1  queues with its continuous-time counterpart, the 

𝐺𝐼/𝑀/1 queues, the main difference between the two models is in the measurement of 

time. While a continuous-time model has a time parameter that is a real number, a 

discrete-time model has a time parameter that is an integer. In 𝐺𝐼/𝐺𝑒𝑜/1 queues, the time 

axis is divided into individual time slots where the duration of 1 time slot is a single unit 

of time. In each individual time slot, two events may occur: arrival and departure. When 

an arrival occurs before a departure it is called 𝐺𝐼/𝐺𝑒𝑜/1 queues with Early Arrival 

System (EAS) and when a departure occurs before an arrival, it is called the 𝐺𝐼/𝐺𝑒𝑜/1 

queue with Late Arrival System (LAS). Further, in 𝐺𝐼/𝐺𝑒𝑜/1 queues with LAS, if a 

server is idle and a customer arrives, then either his service can start immediately or in the 

next time slot. In the former case it is known as an immediate access (IA), whereas in the 
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latter case it is known as a delayed access (DA). When discussing 𝐺𝐼/𝐺𝑒𝑜/1 type queues, 

there exist six queue-length distributions: Pre-arrival, random, and outside observer’s 

time epochs (three for EAS and three for LAS-DA). 

The queueing model 𝐺𝐼𝑋/𝐺𝑒𝑜/1 considers the model 𝐺𝐼/𝐺𝑒𝑜/1 with a batch-

arrival. The earliest work on 𝐺𝐼𝑋/𝐺𝑒𝑜/1 queues appears to be that of Vinck and Bruneel 

[46] who use the complex contour integration technique. Though they provide an 

analytical solution to 𝐺𝐼𝑋/𝐺𝑒𝑜/1 queues with EAS at different time epochs, they do not 

provide the corresponding numerical results. Furthermore, in their work, the analysis of 

𝐺𝐼𝑋/𝐺𝑒𝑜/1 queues with LAS-DA is missing, yet it is deemed to be an important aspect 

of 𝐺𝐼𝑋/𝐺𝑒𝑜/1 queues when considering applications in telecommunications (see Takagi 

[45]). In response to this, Chaudhry and Gupta [11] provide the first complete solution to 

𝐺𝐼𝑋/𝐺𝑒𝑜/1  queues using the supplementary variable technique. One of the main 

contributions of their work is that they do not stop after finding the p.g.f. which was a 

common way to conclude the analysis of a queueing model at that time, but perform the 

inversion of the p.g.f.. Doing so enables the finding of queue-length distributions in terms 

of the roots of the model’s characteristic equation. This technique is referred to as the 

roots method. 

Historically, the roots method was dismissed by some queueing theorists due to 

perceived difficulties in computing the roots of a model’s characteristic equation. Neuts 

states (see Stidham [44]) “in discussing matrix-analytic solutions, I had pointed out that 

when the Rouché roots coincide or are close together, the method of roots could be 

numerically inaccurate. When I finally got copies of Crommelin’s papers, I was elated to 

read that, for the same reasons as I, he was concerned about the clustering of roots. In 
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1932, Crommelin knew; in the 1980, many of my colleagues did not….” Readers can 

refer to Neuts [39] for his other comments on the roots method. In the 1980s, commercial 

computing software such as MATLAB and MAPLE were not able to find the roots (they 

do now). To address the issue of root-finding in queueing theory, the QROOT software 

was developed by M.L. Chaudhry in the early 1990s and demonstrated that such roots can 

be found (see Chaudhry [9]). The roots method was then successfully adopted to solve a 

wide variety of queueing problems as noted by Janssen and van Leeuwaarden [28] who 

write “initially, the potential difficulties of root-finding were considered to be a slur on 

the unblemished transforms since the determination of the roots can be numerically 

hazardous and the roots themselves have no probabilistic interpretation. However, 

Chaudhry et al. [8] have made every effort to dispel the skepticism towards root-finding 

in queueing theory….” 

While the roots method is simply another way of solving queueing problems, 

there are added advantages to it as well. Gouweleeuw [23] states “it is more efficient to 

use the roots method to get explicit expressions for probabilities from g.f.’s.” 

Furthermore, a recent paper by Maity and Gupta [37] compares the spectral theory 

approach against the roots method. Maity and Gupta [37] identify several difficulties in 

getting results using the spectral theory approach, an approach which may be simpler than 

the matrix-geometric approach as stated in several papers by Chakka (see e.g., Chakka 

[6]). As well, Daigle and Lucantoni [19] state “whenever the roots method works, it 

works blindingly fast.” The roots method, when compared to other methods, is deemed 

analytically elegant and computationally efficient. 

However, while the roots method historically only dealt with queues involving 

light-tailed distributions, more recent research by Harris et al. [25] conclude that the roots 
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method cannot solve the queues that involve heavy-tailed inter-batch-arrival times. 

Heavy-tailed distributions constitute a class of probability distributions that are 

characterized by their slower decay than the exponential or geometric distribution. When 

considering heavy-tailed distributions as an inter-arrival time distribution, the consensus 

among some researchers is that the roots method cannot be applied due to the unique 

probabilistic properties of heavy-tailed r.v.’s. In sharing this view, Harris et al. [25] state 

that “the standard root-finding problem gets complicated particularly when the inter-

arrival time distribution possesses a complicated non-closed form or non-analytic L-

S.T..” The same difficulty persists in discrete-time queues since discrete heavy-tailed 

probability distributions such as Weibull and Log-Normal distributions do not have a 

closed form p.g.f.. In addition, the discrete Pareto distribution, for certain values of its 

parameter (see later in Table 11), has an infinite mean just like the continuous Pareto 

distribution. Nevertheless, the heavy-tailed distributions are useful tools in modeling real 

life examples such as in finance, signal processing, and physical or biological systems  

(see Willinger and Paxon [47], Leland et al. [36], Park et al. [40, 41], and Pitkow [43]). In 

particular, heavy-tailed distributions (synonymously referred to as the power, long or fat-

tailed distribution) are particularly useful when modeling the inter-arrival times of 

network packets and connection sizes under heavy traffic congestion (see Harris et al. 

[25]). 

Despite the benefits of the roots method (i.e. analytically simple and numerically 

efficient) the solution to discrete-time multi-server bulk-arrival queues using roots is 

missing in the literature. There exists some work on 𝐺𝐼/𝐺𝑒𝑜/𝑐 and 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues 

using different methods: In solving 𝐺𝐼/𝐺𝑒𝑜/𝑐  queues, Chan and Maa [7] use the 

imbedded Markov chain technique to derive the queue-length distribution for EAS at a 
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pre-arrival time epoch only. Similarly, Wittevrongel et al. [48] solve the 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 

queues using complex analysis and contour integration while only considering the EAS 

with no numerical results. Lastly, Chaudhry et al. [12] solve 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues using the 

supplementary variable technique while only considering light-tailed inter-batch-arrival 

times. The results by Chaudhry et al. [12] are in terms of iterative relations between 

different queue-length distributions which can be analytically laborious and numerically 

inefficient. 

The 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁  queues are the finite-buffer counterpart of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 

queues. In real life applications, many contexts that resemble 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues entail 

some degree of finite-buffer (e.g., maximum data buffer, packet size, processing speed, 

etc). In solving the model 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 , Goswami and Samanta [22] use the 

supplementary variable technique and follow a similar solution procedure used by 

Chaudhry et al. [12] and Laxmi and Gupta [35]. However, like the others’ methods that 

they have followed, the results by Goswami and Samanta [22] are in a non-explicit form 

that involve lengthy expressions. The solution to 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 queues with LAS-DA as 

well as the case of heavy-tailed inter-batch-arrival times are missing in the literature on 

queues. 

4.2 The 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄 queues 

In this section, we analytically solve 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  queues using roots. Some 

notations from Section 2.2 are redefined in the context of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues. 

4.2.1 Model description 

Consider the model 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  in which customers arrive in batches of size 

𝑋 with a maximum size 𝑟, (0 < 𝑟 < ∞). The p.m.f. of 𝑋 is 𝑏ℎ = 𝑃(𝑋 = ℎ),   (1 ≤ ℎ ≤ 𝑟) 
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with mean �̅� = ∑ ℎ𝑏ℎ
𝑟
ℎ=1  and p.g.f. 𝐵(𝑧) = ∑ 𝑏ℎ

𝑟
ℎ=1 𝑧ℎ, (|𝑧| ≤ 1). The 𝑛-th inter-batch-

arrival time, say 𝑇𝑛, (𝑛 ≥ 1) is a discrete-time period that is measured from the moment 

just before the n-th batch-arrival (say at time 𝑡) to the moment just before the (𝑛 + 1)-th 

batch-arrival (say at time 𝑡 + 𝑚). Inter-batch-arrival times are i.i.d.r.v.’s distributed as 𝑇 

which is divided into 𝑚 time slots. The 𝑇 has a p.m.f. 𝑎𝑚 = 𝑃(𝑇 = 𝑚), (𝑎0 = 0,𝑚 ≥ 1), 

mean �̅� = ∑ 𝑚𝑎𝑚
∞
𝑚=1 = 1

𝜆⁄ , and p.g.f. 𝐴(𝑧) = ∑ 𝑎𝑚𝑧
𝑚∞

𝑚=1 , (|𝑧| ≤ 1). The batch sizes 

are independent of the inter-batch-arrival times. There are 𝑐 parallel servers in the model 

where each has a service time 𝑌 that is independent to one another and geometrically 

distributed as 

𝑃(𝑌 = 𝑦) = (1 − 𝜇)𝑦−1𝜇, (0 < 𝜇 < 1, 𝑦 ≥ 1) 

At any time the state of servers can be categorized into three different cases: Overloaded 

is the case when all 𝑐 servers are busy with a queue of at least a single customer, loaded is 

the case when the system has exactly 𝑐 customers in the system, and under-loaded is the 

case when there is at least an idle server. The mean service time of a server is 𝐸[𝑌] = 1 𝜇⁄  

and traffic intensity of the model is 𝜌 = �̅� �̅�𝑐𝜇⁄ , (0 < 𝜌 < 1). In addition, let 𝜔(𝑗|𝑖) be 

the probability of an event that 𝑗 customers are served out of 𝑖 customers within a single 

time slot. The conditional probability 𝜔(𝑗|𝑖) is a binomial distribution 

𝜔(𝑗|𝑖) = {
(
𝑖
𝑗
) 𝜇𝑗(1 − 𝜇)𝑖−𝑗 , (0 ≤ 𝑗 ≤ 𝑖 < 𝑐)       

(
𝑐
𝑗) 𝜇

𝑗(1 − 𝜇)𝑐−𝑗, (0 ≤ 𝑗 ≤ 𝑐 ≤ 𝑖)       
(20) 

where 𝜔(0|0) = 1 and (
𝑎
𝑏
) = 0  for 𝑎 < 𝑏  or 𝑎 < 0 . Lastly, given that the system 

𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  is a discrete-time queueing model it has two different but related aspects 
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(EAS and LAS-DA). Since the model is solved under the steady-state condition, the 

queue-length distribution of the LAS-IA is identical to that of the EAS. 

4.2.2 The 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄 queues with EAS at a pre-arrival time epoch 

In 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  queues with EAS, the 𝑛 -th batch arrives before an event of 

customer departures in the 𝑛-th inter-batch-arrival time. This is illustrated in Figure 1 

below. 

 
 

Figure 1: The 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄 queues with EAS 

 

Let 𝑁𝑛
−  be the number of customers in the system, including those, if any, 

receiving service just before the 𝑛-th batch-arrival (i.e. at the 𝑛-th pre-arrival time epoch). 

The stochastic process {𝑁𝑛
−, 𝑛 ≥ 1} forms a homogenous Markov chain: 

𝑁𝑛+1
− = {

𝑁𝑛
− + 𝑋𝑛 − 𝐷𝑛, (𝑁𝑛

− + 𝑋𝑛 − 𝐷𝑛 ≥ 0)

0,                         (𝑁𝑛
− + 𝑋𝑛 − 𝐷𝑛 < 0)

 

where 𝐷𝑛 is the total number of customers that depart the system during 𝑇𝑛 and 𝑋𝑛 is the 

size of the 𝑛-th batch-arrival. In considering the steady-state aspect of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues 
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with EAS, 𝑁𝑛
− becomes 𝑁− as 𝑛 → ∞ and has the steady-state p.m.f. 𝑄𝑗

− = lim
𝑛→∞

𝑃(𝑁𝑛
− =

𝑗) , (𝑗 ≥ 0) . Let 𝑃𝑖,𝑗(𝑛) = 𝑃[𝑁𝑛+1
− = 𝑗 | 𝑁𝑛

− = 𝑖], (𝑖, 𝑗 ≥ 0, 𝑛 ≥ 1)  be the one-step 

transition probabilities of {𝑁𝑛
−, 𝑛 ≥ 1} . Thus, the steady-state one-step transition 

probabilities of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues with EAS are defined as 𝑃𝑖,𝑗 ≡ lim
𝑛→∞

𝑃𝑖,𝑗(𝑛) where 

𝑃𝑖,𝑗 =

{
 
 

 
 ∑𝑏ℎ𝑘𝑖+ℎ−𝑗

𝑟

ℎ=1

, (𝑖 ≥ 0, 𝑗 ≥ 1)

  1 −∑𝑃𝑖,𝑘

∞

𝑘=1

, (𝑖 ≥ 0, 𝑗 = 0)

 

where  𝑏ℎ = 0 for  ℎ ≤ 0 . As 𝑛 → ∞, 𝐷𝑛  becomes 𝐷  with the steady-state p.m.f. 𝑘𝑗 =

lim
𝑛→∞

𝑃(𝐷𝑛 = 𝑗) , (𝑗 ≥ 0), which is defined as 

 𝑘𝑖+ℎ−𝑗

=

{
 
 
 
 
 
 

 
 
 
 
 
 

0,                                                                                                                        (𝑖 + ℎ < 𝑗)                

∑ 𝑎𝑚 (
𝑐𝑚

𝑖 + ℎ − 𝑗)

∞

𝑚=1

(1 − 𝜇)𝑐𝑚−(𝑖+ℎ−𝑗)(𝜇)𝑖+ℎ−𝑗 ,                                                    (𝑐 ≤ 𝑗 ≤ 𝑖 + ℎ)                       

∑ 𝑎𝑚

∞

𝑚=1

(
𝑖 + ℎ
𝑗
) (1 − 𝜇)𝑚𝑗(1 − (1 − 𝜇)𝑚)𝑖+ℎ−𝑗 ,                                                   (1 ≤ 𝑗 ≤ 𝑖 + ℎ ≤ 𝑐)              

∑ [∑∑ ∑ (
𝑐(𝑤 − 1)

𝑖 + ℎ − 𝑙 − 𝑠
)

𝑐

𝑙=𝑐−𝑠+1

𝜇𝑖+ℎ−𝑙−𝑠
𝑐

𝑠=𝑗

𝑚

𝑤=1

∞

𝑚=1

(1 − 𝜇)𝑐(𝑤−1)−(𝑖+ℎ−𝑙−𝑠) ×                                                

(
𝑐
𝑙
) 𝜇𝑙(1 − 𝜇)𝑐−𝑙 (

𝑠
𝑗) (1 − 𝜇)

(𝑚−𝑤)𝑗(1 − (1 − 𝜇)𝑚−𝑤)𝑠−𝑗] 𝑎𝑚 ,                        (1 ≤ 𝑗 < 𝑐 < 𝑖 + ℎ)             
 

 

for 1 ≤ ℎ ≤ 𝑟. The 𝑃𝑖,𝑗 can be derived by replacing the single-arrival notion with a batch-

arrival condition ℎ, (1 ≤ ℎ ≤ 𝑟)  in the steady-state one-step transition probabilities of 

𝐺𝐼/𝐺𝑒𝑜/𝑐  queues which are available in Chan and Maa [7]. Furthermore, the same 

results are also available in Chaudhry et al. [12]. Lastly, in expressing (𝑄𝑗
−, 𝑗 ≥ 0) in 

terms of roots, the global balance equation (see Appendix A.1 for definition) 

𝑄𝑗
− =∑𝑄𝑖

−𝑃𝑖,𝑗

∞

𝑖=0

, (𝑗 ≥ 0) (21) 
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is used extensively. Since (21) is a set of 𝑗 first order linear difference equations with 

(𝑄𝑗
−) being the unknown functions to be determined, we can assume the solution of a 

general form 

𝑄𝑗
− = 𝐶𝑧𝑗 , (𝑗 ≥ 𝑐, 𝐶 ≠ 0) 

The general solution with a bound 𝑗 ≥ 𝑐 is purposely chosen so that when it is substituted 

into (21), the  𝑘𝑖+ℎ−𝑗 within the  𝑃𝑖,𝑗 of (21) is fixed at  𝑘𝑖+ℎ−𝑗 = ∑ 𝑎𝑚 (
𝑐𝑚

𝑖 + ℎ − 𝑗)
∞
𝑚=1 (1 −

𝜇)𝑐𝑚−(𝑖+ℎ−𝑗)(𝜇)𝑖+ℎ−𝑗 (intuitively this can be understood as all 𝑐 servers are either overloaded 

or loaded during 𝑇). This substitution leads to the characteristic equation of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 

queues 

1 = 𝐵(𝑧−1)𝐾(𝑧) (22) 

where 𝐾(𝑧) = ∑ 𝑘𝑗
∞
𝑗=0 𝑧𝑗 = ∑ 𝑎𝑚

∞
𝑚=1 (𝜇𝑧 + 1 − 𝜇)𝑐𝑚 = 𝐴{(1 − 𝜇 + 𝜇𝑧)𝑐}. As a remark, 

while (22) is superficially identical to (2), these two characteristic equations are 

fundamentally different since (2) takes place in continuous-time whereas (22) takes place 

in discrete-time. The two characteristic equations can be related as shown in Appendix 

C.2.3. Since (22) has 𝑟 roots inside the unit circle |𝑧| = 1 (see the proof in Appendix 

C.2.1), let these roots be 𝑧1, 𝑧2, … , 𝑧𝑟. Hence the 𝑄𝑗
− for 𝑗 ≥ 𝑐 becomes 𝑟-fold and can be 

expressed as 

𝑄𝑗
− =∑𝐶ℎ𝑧ℎ

𝑗

𝑟

ℎ=1

, (𝑗 ≥ 𝑐) (23) 

where the 𝐶ℎ  (yet to be evaluated) for 1 ≤ ℎ ≤ 𝑟  are the non-zero constants. In 

completely finding (𝑄𝑗
−, 𝑗 ≥ 0) we replace (𝑄𝑗

−, 𝑗 ≥ 𝑐) in (21) with (23) such that  

𝑄𝑗
− =∑𝑄𝑖

−𝑃𝑖,𝑗

𝑐−1

𝑖=0

+∑∑𝐶ℎ𝑧ℎ
𝑗

𝑟

ℎ=1

𝑃𝑖,𝑗

∞

𝑖=𝑐

, (𝑗 ≥ 0) (24) 
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We also consider the normalizing condition 

∑𝑄𝑗
−

𝑐−1

𝑗=0

+∑∑𝐶ℎ𝑧ℎ
𝑗

𝑟

ℎ=1

∞

𝑗=𝑐

= 1 

By letting 𝑗 = 1, 2, … , 𝑐 + 𝑟 − 1 in (24) and with the normalizing condition we have the 

𝑐 + 𝑟 equations that are required to solve for (𝑄𝑗
−, 0 ≤ 𝑗 ≤ 𝑐 − 1) and 𝐶ℎ, (1 ≤ ℎ ≤ 𝑟). 

By solving these equations the (𝑄𝑗
−, 𝑗 ≥ 0) are completely found as 

𝑄𝑗
− = {

determined above, (0 ≤ 𝑗 ≤ 𝑐 − 1)         

 ∑𝐶ℎ𝑧ℎ
𝑗

𝑟

ℎ=1

,                  (𝑗 ≥ 𝑐)                         
(25) 

4.2.3 The 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄 queues with EAS at a random time epoch 

In the steady-state aspect of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  queues with EAS, a pre-arrival time 

epoch falls immediately before a batch-arrival whereas a random time epoch falls at any 

instant between two consecutive batch-arrivals. To illustrate this concept, let 𝑅𝑛 be the 

discrete-time period measured from 𝑡 to 𝑡 + 𝑖, (1 ≤ 𝑖 ≤ 𝑚). In addition, 𝑅𝑛 are i.i.d.r.v.’s 

distributed as 𝑅 with the p.m.f. 𝑎𝑖
∗ = 𝑃(𝑅 = 𝑖), (𝑎0

∗ = 0, 𝑖 ≥ 1). The visual illustration of 

𝑅𝑛 and 𝑇𝑛 for 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues with EAS are provided in Figure 2 where 𝑅𝑛 consist of 

𝑖 time slots which are the duration of time measured from the 𝑛-th pre-arrival time epoch 

to the (𝑛 + 1)-th random time epoch. On the other hand, 𝑇𝑛  consists of 𝑚  time slots 

which are the duration of time measured from the 𝑛-th pre-arrival time epoch to the 

(𝑛 + 1)-th pre-arrival time epoch. 
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Figure 2: The 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄 queues with EAS at pre-arrival and random time 

epochs 

 

 

Based on the discrete renewal theory and random biased sampling (see Appendix 

B.4), if 𝑅 consists of 𝑖 time slots then its p.m.f. (𝑎𝑖
∗, 1 ≤ 𝑖 ≤ 𝑚) can be expressed in terms 

of (𝑎𝑚, 𝑚 ≥ 1) such that 

𝑎𝑖
∗ =

1

�̅�
(𝑎𝑖 + 𝑎𝑖+1+. . +𝑎𝑚−2 + 𝑎𝑚−1 + 𝑎𝑚), (1 ≤ 𝑖 ≤ 𝑚) 

As 𝑚 → ∞, the above expression becomes 

𝑎𝑖
∗ =

1

�̅�
lim
𝑚→∞

∑𝑎𝑙

𝑚

𝑙=𝑖

, (𝑖 ≥ 1) 

In addition, let (𝑄𝑗, 𝑗 ≥ 0) be the steady-state p.m.f. of the number of customers in the 

system at a random time epoch for 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  queues with EAS. Using the above 

relation, we can determine (𝑄𝑗, 𝑗 ≥ 0) with the following global balance equation: 

𝑄𝑗 =∑𝑄𝑖
−𝑃𝑖,𝑗

∗

∞

𝑖=0

, (𝑗 ≥ 1) 
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where (𝑄𝑖
−, 𝑖 ≥ 0) are available in (25) and the 𝑃𝑖,𝑗

∗  are the transition probabilities from 

Subsection 4.2.2 except (𝑎𝑚, 𝑚 ≥ 1) are replaced with (𝑎𝑚
∗ , 𝑚 ≥ 1). In addition, 𝑄0 =

1 − ∑ ∑ 𝑄𝑖
−𝑃𝑖,𝑗

∗∞
𝑖=0

∞
𝑗=1  holds. The Geometric Arrivals See Time Averages (G.A.S.T.A.) 

property holds if 𝑎𝑙 = 𝜆(1 − 𝜆)
𝑙−1, (𝑙 ≥ 1,0 < 𝜆 < 1)  are substituted into the relation 

between 𝑎𝑚 and 𝑎𝑖
∗ (see Takagi [45] for more details). Doing so leads to 𝑎𝑖

∗ = 𝑎𝑖, (𝑖 ≥ 1), 

hence due to this property, 𝑄𝑗 = 𝑄𝑗
−, (𝑗 ≥ 0)  in 𝐺𝑒𝑜𝑋/𝐺𝑒𝑜/𝑐  queues (see later in 

Subsection 5.1.1). 

4.2.4 The 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄 queues with EAS at an outside observer’s time epoch 

By definition, an outside observer’s time epoch in 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues with EAS 

falls anywhere just after a batch-arrival and immediately before an event of customer 

departures (see Figure 3 below). Let (𝑄𝑗
𝑜 , 𝑗 ≥ 0)  be the queue-length distribution of 

𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues with EAS at an outside observer’s time epoch. 

 
 

Figure 3: Outside observer’s and random time epochs in 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄 queues 

with EAS 
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In the above figure, the 𝑛-th inter-batch-arrival time period is a single time slot 

(i. e.𝑚 = 1)  hence the (𝑛 + 1) -th random and (𝑛 + 1) -th pre-arrival time epochs 

coincide at 𝑡 + 1 (this can be verified by letting 𝑚 = 1 in Figure 2). 

In Figure 3, if there are 𝑗 customers in the system at an outside observer’s time 

epoch (with probability 𝑄𝑗
𝑜) and there are 𝑙 customers in the system at a random time 

epoch (with probability 𝑄𝑙 ) then there must be an event of 𝑗 − 𝑙  customer departures 

between an outside observer’s and random time epochs with the probability 𝜔(𝑗 − 𝑙|𝑗). 

Based on this notion, we can form the relation 

𝑄𝑙 =∑𝑄𝑗
𝑜𝜔(𝑗 − 𝑙|𝑗)

𝑙+𝑐

𝑗=𝑙

, (𝑙 ≥ 0) (26) 

Since (26) is a set of 𝑙  first order linear difference equations with (𝑄𝑗
𝑜)  being the 

unknown functions to be determined, we assume that (𝑄𝑗
𝑜 , 𝑗 ≥ 𝑐) is a geometric sum that 

consists of the roots of (22) but with different constant coefficients (hence they are 

unknown). Let these unknown constant terms be 𝐸ℎ, (1 ≤ ℎ ≤ 𝑟), then the (𝑄𝑗
𝑜 , 𝑗 ≥ 0) 

can be expressed as 

𝑄𝑗
𝑜 =∑𝐸ℎ𝑧ℎ

𝑗

𝑟

ℎ=1

, (𝑗 ≥ 𝑐) 

By replacing (𝑄𝑗
𝑜, 𝑗 ≥ 𝑐) in (26) with the above geometric sum we have 

𝑄𝑙 =∑𝑄𝑗
𝑜𝜔(𝑗 − 𝑙|𝑗)

𝑐−1

𝑗=𝑙

+∑∑𝐸ℎ𝑧ℎ
𝑗

𝑟

ℎ=1

𝜔(𝑗 − 𝑙|𝑗), (𝑙 ≥ 0)

𝑙+𝑐

𝑗=𝑐

(27) 

We also consider the normalizing condition 

∑𝑄𝑗
𝑜

𝑐−1

𝑗=0

+∑∑𝐸ℎ𝑧ℎ
𝑗

𝑟

ℎ=1

∞

𝑗=𝑐

= 1 (28) 
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We let 𝑙 = 1, 2, … , 𝑐 + 𝑟 − 1 in (27) and with (28) it leads to 𝑐 + 𝑟 equations that are 

required to solve for (𝑄𝑗
𝑜, 0 ≤ 𝑗 ≤ 𝑐 − 1)  and 𝐸ℎ, (1 ≤ ℎ ≤ 𝑟) . By solving these 

equations the (𝑄𝑗
𝑜 , 𝑗 ≥ 0) are completely found as 

𝑄𝑗
𝑜 = {

determined above, (0 ≤ 𝑗 ≤ 𝑐 − 1)               

 ∑ 𝐸ℎ𝑧ℎ
𝑗

𝑟

ℎ=1

,                 (𝑗 ≥ 𝑐)                              
(29) 

4.2.5 The 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄 queues with LAS-DA at a pre-arrival time epoch 

In 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  queues with LAS-DA, the 𝑛 -th batch arrives after an event of 

customer departures in the 𝑛-th inter-batch-arrival time. This is illustrated in Figure 4 

below. 

 
 

Figure 4: The 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄 queues with LAS-DA 

 

 

Let 𝑀𝑛
− be the number of customers in the system, including the ones, if any, in 

service just before the 𝑛 -th batch-arrival. The 𝑀𝑛
−  becomes 𝑀−  as 𝑛 → ∞  and has a 

steady-state p.m.f. 𝑃𝑗
− = lim

𝑛→∞
𝑃(𝑀𝑛

− = 𝑗) , (𝑗 ≥ 0). Before proceeding to find 𝑃𝑗
− , it is 

worth mentioning that 𝑃𝑗
−  can be found independently of 𝑄𝑘

−, (0 ≤ 𝑗 ≤ 𝑘) (as done by 
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Chaudhry and Kim [14] in solving the model 𝐺𝐼𝑋/𝐺𝑒𝑜/1). However, we leverage 𝑄𝑘
− 

from Subsection 4.2.2 to determine 𝑃𝑗
− for the purpose of demonstrating continuity in our 

solution procedure. Let 𝑃𝑗
−(𝑠) be the p.m.f. of there being 𝑗  customers in the system 

𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 with LAS-DA at time 𝑠 and let 𝑄𝑘
−(𝑡) be the p.m.f. of there being 𝑘, (0 ≤

𝑘 ≤ 𝑗) customers in the system 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 with EAS at time 𝑡. Figure 5 illustrates that 

in EAS, the 𝑛-th batch arrives at the beginning of the time slot (𝑡, 𝑡 + 1), whereas in 

LAS-DA, the same 𝑛-th batch would arrive at the end of the time slot (𝑠, 𝑠 + 1). 

 
 

Figure 5: A comparison between EAS and LAS-DA at the 𝒏-th batch-arrival 

 

 

Since there can be an event of up to 𝑐 customer departures during (𝑠, 𝑡) we can 

form the relation between 𝑄𝑘
−(𝑡) and 𝑃𝑗

−(𝑠) as 

𝑄𝑘
−(𝑡) = ∑𝑃𝑗

−(𝑠)𝜔(𝑗 − 𝑘|𝑗)

𝑛+𝑐

𝑗=𝑘

, (𝑘 ≥ 0) 

As a remark, 0 ≤ 𝑘 ≤ 𝑗 indicates that if no customers depart during (𝑠, 𝑡) then 𝑘 = 𝑗 with 

probability 𝜔(0|𝑗), whereas any customer departure during (𝑠, 𝑡) results in 𝑘 < 𝑗  with 
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probability 𝜔(𝑗 − 𝑘|𝑗). By letting 𝑄𝑛
− = lim

𝑡→∞
𝑄𝑛
−(𝑡), (𝑛 ≥ 0)  and  𝑃𝑗

− = lim
𝑠→∞

𝑃𝑗
−(𝑠), 

(𝑗 ≥ 0), so that we have the queue-length distributions, we have 

𝑄𝑘
− =∑𝑃𝑗

−𝜔(𝑗 − 𝑘|𝑗)

𝑛+𝑐

𝑗=𝑘

, (𝑘 ≥ 0) (30) 

Since (30) is a set of 𝑘  first order linear difference equations with (𝑃𝑗
−)  being the 

unknown functions to be determined, we can make a similar assumption as the one made 

in Subsection 4.2.4 and let 

𝑃𝑗
− =∑𝐹ℎ𝑧ℎ

𝑗

𝑟

ℎ=1

, (𝑗 ≥ 𝑐 + 1) (31) 

where the 𝐹ℎ , (1 ≤ ℎ ≤ 𝑟) in (31) are the unknown non-zero constants. As a remark, (31) 

differs from (23) since we have  𝑗 ≥ 𝑐 + 1 in (31) but 𝑗 ≥ 𝑐 in (23). This difference is due 

to the property of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues with LAS-DA: Assume that there are initially no 

customers in the system and then a batch of customers arrives after some inter-batch-

arrival time. If the next inter-batch-arrival time is 1 time slot (with probability 𝑎1), then 

no customers access any of the 𝑐 servers even if there are idle servers, whereas if the 

inter-batch-arrival time is at least two time slots (with probability 𝑎𝑚, 𝑚 ≥ 2 ), then 

customers start accessing the idle servers at the beginning of the second time slot. To 

solve for the (𝑃𝑗
−, 0 ≤ 𝑗 ≤ 𝑐) and 𝐹ℎ , (1 ≤ ℎ ≤ 𝑟), (30) is alternatively expressed as, 

𝑄𝑘
− =∑𝑃𝑗

−𝜔(𝑗 − 𝑘|𝑗)

𝑐

𝑗=𝑘

+ ∑ ∑𝐹ℎ𝑧ℎ
𝑗

𝑟

ℎ=1

𝜔(𝑗 − 𝑘|𝑗), (𝑘 ≥ 0)

𝑘+𝑐

𝑗=𝑐+1

(32) 

We also consider the normalizing condition 

∑𝑃𝑗
−

𝑐

𝑗=0

+ ∑ ∑𝐹ℎ𝑧ℎ
𝑗

𝑟

ℎ=1

∞

𝑗=𝑐+1

= 1 (33) 
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We let 𝑘 = 1,2, … , 𝑐 + 𝑟 in (32) and with (33) it leads to 𝑐 + 𝑟 + 1 equations that are 

required to solve for the (𝑃𝑗
−, 0 ≤ 𝑗 ≤ 𝑐) and 𝐹ℎ , (1 ≤ ℎ ≤ 𝑟). By solving these equations 

the (𝑃𝑗
−, 𝑗 ≥ 0) are completely found as 

𝑃𝑗
− = {

determined above, (0 ≤ 𝑗 ≤ 𝑐)                    

 ∑𝐹ℎ𝑧ℎ
𝑗

𝑟

ℎ=1

,                   (𝑗 ≥ 𝑐 + 1)                     
(34) 

4.2.6 The 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄 queues with LAS-DA at other time epochs 

In addition, let the (𝑃𝑗 , 𝑗 ≥ 0) and (𝑃𝑗
𝑜 , 𝑗 ≥ 0) be the steady-state p.m.f.’s of the 

number of customers in 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  queues with LAS-DA at random and outside 

observer’s time epochs, respectively. In LAS-DA, an outside observer’s time epoch falls 

in a time interval that begins just after a departure and immediately before a batch-arrival. 

Based on this notion 𝑃𝑗
𝑜 = 𝑃𝑗 for 𝑗 ≥ 0. In addition, we have 

𝑄𝑗
𝑜 = 𝑃𝑗

𝑜 = 𝑃𝑗 , (𝑗 ≥ 0) 

where the (𝑄𝑗
𝑜 , 𝑗 ≥ 0) are available in (29). 

4.2.7 P.m.f. of the waiting-time-in-queue and performance measure 

Let 𝑇𝑞  be the amount of time the random customer within an incoming batch 

spends in queue upon batch-arrival and until entering service. As mentioned by Chaudhry 

and Templeton [17] if the position of the random customer within an incoming batch is 𝐹, 

then its p.m.f. is 𝑃(𝐹 = 𝑓) ≡ 𝑟𝑓 = ∑
𝑏ℎ

�̅�

∞
ℎ=𝑓 , (1 ≤ 𝑓 ≤ 𝑟). Since 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues are 

infinite-buffer queues, the waiting time distribution remains the same in both LAS-DA 

and EAS (see Hunter [27] and Chaudhry and Gupta [11]). Let the p.m.f. of 𝑇𝑞 be 𝑤𝑘 =

𝑃(𝑇𝑞 = 𝑘), (𝑘 ≥ 0). As stated by Chaudhry et al. [12], the (𝑤𝑘, 𝑘 ≥ 0) are defined as 
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𝑤𝑘

=

{
 
 

 
 ∑�̂�𝑖

𝑐

𝑖=1

,                                                                                                                              (𝑘 = 0)

∑ ∑ (
𝑐(𝑘 − 1)

𝑗
) 𝜇𝑗(1 − 𝜇)𝑐(𝑘−1)−𝑗

𝑑−1

𝑗=max(0,𝑑−𝑐)

𝑐𝑘

𝑑=1

∑ (
𝑐
𝑙
)

𝑐

𝑙=𝑑−𝑗

𝜇𝑙(1 − 𝜇)𝑐−𝑙�̂�𝑐+𝑑, (𝑘 ≥ 1)

 

where �̂�𝑖 = ∑ 𝑄𝑙
−𝑖−1

𝑙=0 𝑟𝑖−𝑙, (𝑖 ≥ 1) . As a remark, letting 𝑟1 = 1  in the definition of 𝑤𝑘 

leads to the p.m.f. of the waiting-time-in-queue of the first customer within an incoming 

batch. 

The model 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  has various performance measures. Since the 

distributions are known, various moments can be calculated. In particular, denote 𝐿𝑠
𝑜 as 

the mean number of customers in the system and 𝐿𝑞
𝑜  as the mean number of customers in 

queue, both at an outside observer’s time epoch. The 𝐿𝑠
𝑜 and 𝐿𝑞

𝑜  can be found in terms of 

the (𝑄𝑗
𝑜 , 𝑗 ≥ 0) such that 

𝐿𝑠
𝑜 =∑𝑛𝑄𝑛

𝑜

∞

𝑛=1

 

𝐿𝑞
𝑜 = ∑ (𝑛 − 𝑐)𝑄𝑛

𝑜

∞

𝑛=𝑐+1

 

The mean waiting-time in the system (say 𝑊𝑠) and the mean waiting-time-in-queue (say 

𝑊𝑞) can be found using Little’s law: 

𝑊𝑠 =
�̅�𝐿𝑠

𝑜

�̅�
(35) 

𝑊𝑞 =
�̅�𝐿𝑞

𝑜

�̅�
(36) 

In addition, 𝑊𝑞 can be found independently from 𝑊𝑞 = ∑ 𝑘𝑤𝑘
∞
𝑘=1 . The average number 

of idle servers in 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues is defined as 
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∑(𝑐 − 𝑗)𝑄𝑗
𝑜

𝑐−1

𝑗=0

= 𝑐(1 − 𝜌) (37) 

The left-hand side of (37) determines the average number of idle servers in terms of the 

queue-length distribution at an outside observer’s time epoch. The right-hand side of (37) 

determines the same number, except that it is independent of the (𝑄𝑗
𝑜 , 𝑗 ≥ 0)  (hence 

independent of roots). In the next chapter we use (37) to verify the accuracy of our 

numerical results, thus demonstrating the robustness of the roots and the roots method 

(see point 4 in Appendix C.3.2 for more details). 

4.2.8 The 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄 queues involving heavy-tailed inter-batch-arrival times 

Heavy-tailed distributions distinguish themselves from light-tailed distributions by 

having a significantly slower rate of decay. In 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues, a slow decaying arrival 

time distribution renders a very lengthy (or an infinite) mean inter-batch-arrival time that 

equates to a very small (or a zero) arrival rate (𝜆). The 𝜆 is directly proportional to 𝜌 and 

as 𝜌 → 0 the roots of the characteristic equation of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues converge toward 

the origin (see later in Table 23) which was a concern to some researchers. 

Heavy-tailed distributions are believed to impose another challenge on the roots 

method due to its non-closed form or non-existent p.g.f.’s. While light-tailed distributions 

have a closed form of 𝐴(𝑧) (see e.g., the first two rows in Table 11), this is not the case 

for Weibull, standard log-normal (SLN), and Pareto distributions. Moreover, directly 

solving (22) with an 𝑎𝑚 that follows the Pareto distribution with 𝑀 ≤ 1 will consume a 

very lengthy computing time (or not compute at all) due to the infinite series of a p.m.f. 

that decays at an extremely slow rate. 

Table 11: Discrete probability distributions 
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𝑮𝑰 𝒂𝒎, (𝒎 ≥ 𝟏) 𝑨(𝒛), (|𝒛| ≤ 𝟏) Parameter(s) Mean 

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐[𝜆] 𝜆(1 − 𝜆)𝑚−1 
𝜆𝑧

1 − (1 − 𝜆)𝑧
 𝜆 > 0 1

𝜆⁄  

𝑃𝑜𝑖𝑠𝑠𝑜𝑛[𝜆] 
𝜆𝑚−1

(𝑚 − 1)!
𝑒−𝜆 𝑧𝑒−𝜆(1−𝑧) 𝜆 > 0 1 + 𝜆 

𝑊𝑒𝑖𝑏𝑢𝑙𝑙[𝛽] 
𝛽−√𝑚

𝛽′ − 1
 

1

𝛽′ − 1
∑ 𝛽−√𝑚𝑧𝑚
∞

𝑚=1

 

𝛽 > 0, 𝛽′

=∑𝛽−√𝑗
∞

𝑗=0

 
∑

𝑚𝛽−√𝑚

𝛽′ − 1

∞

𝑚=1

 

𝑆𝐿𝑁 𝜑𝑒−
𝑙𝑛2(𝑚)

2  𝜑 ∑ 𝑒−
𝑙𝑛2(𝑚)

2 𝑧𝑚
∞

𝑚=1

 𝜑 =∑𝑒−
𝑙𝑛2(𝑗)

2

∞

𝑗=1

 𝜑 ∑ 𝑚𝑒−
𝑙𝑛2(𝑚)

2

∞

𝑚=1

 

𝑃𝑎𝑟𝑒𝑡𝑜[𝑀] 
𝛿

𝑚𝑀+1
 Does not exist 

𝑀 > 0,     
𝛿 = 𝜑(𝑀 + 1)−1 

{
∞,                            (𝑀 ≤ 𝑘)

𝜑(𝑀)
𝜑(𝑀 + 1)⁄ , (𝑀 > 𝑘)

 

 

As a remark, in 𝑃𝑎𝑟𝑒𝑡𝑜[𝑀] the function 𝜑(·) is the Riemann zeta function .  The 𝑘 -th 

moment of 𝑃𝑎𝑟𝑒𝑡𝑜[𝑀]  exists as 𝐸[𝑇𝑘] = 𝜑(𝑀 − 𝑘 + 1) 𝜑(𝑀 + 1)⁄  if 1 ≤ 𝑘 < 𝑀  is 

true. On the contrary, the 𝐸[𝑇𝑘] → ∞ if 𝑘 ≥ 𝑀. 

Solving 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  queues involving heavy-tailed inter-batch-arrival times 

requires a different approach than the one traditionally used to deal with 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 

queues involving light-tailed inter-batch-arrival times. To accomplish this, we extend the 

technique by Chaudhry and Kim [14] who solve 𝐺𝐼𝑋/𝐺𝑒𝑜/1 queues involving heavy-

tailed inter-batch-arrival times using the roots method. In doing so, we replace the 𝐾(𝑧) in 

(22) with 𝐾𝛹(𝑧) where 

𝐾𝛹(𝑧) = ∑ 𝑎𝑚

𝛹

𝑚=1

(𝜇𝑧 + 1 − 𝜇)𝑐𝑚, (1 ≤ 𝛹 < ∞) 

where 𝛹 is a non-zero integer. Modern computing software such as MAPLE can easily 

determine the roots of (22) when using the above expression of 𝐾(𝑧). However, one must 

choose an adequately sized 𝛹 given that the value of 𝛹 is indirectly proportional to the 

rate of decay of 𝑎𝑚 (larger 𝛹 is required for the 𝑎𝑚 with a slower decay). To offset this 
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balance, we have implemented a simple algorithm in MAPLE that determines 𝛹  (see 

Appendix C.2.2). This algorithm was used to compute several results in 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 

queues involving heavy-tailed inter-batch-arrival times (see later in Section 5.2). 

4.3 The 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄/𝑵 queues 

In this section, we analytically solve 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁  queues using roots. Some 

notations from Section 2.3 are redefined in the context of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 queues. 

4.3.1 Model description 

Consider the steady-state aspect of the model 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 in which customers 

arrive in batches of size 𝑋 with a maximum size 𝑟, (0 < 𝑟 < ∞) . The p.m.f. of 𝑋  is 

(𝑏ℎ, 1 ≤ ℎ ≤ 𝑟) with mean �̅� = ∑ ℎ𝑏ℎ
𝑟
ℎ=1  and p.g.f. 𝐵(𝑧) = ∑ 𝑏ℎ

𝑟
ℎ=1 𝑧ℎ, (|𝑧| ≤ 1). The 

𝑛-th inter-batch-arrival time, say 𝑇𝑛, (𝑛 ≥ 1) is a discrete-time period that is measured 

from the moment just before the n-th batch-arrival (say at time 𝑡) to the moment just 

before the (𝑛 + 1) -th batch-arrival (say at time 𝑡 + 𝑚) . Inter-batch-arrival times are 

i.i.d.r.v.’s distributed as 𝑇 which is divided into 𝑚 time slots. The 𝑇 has a p.m.f. 𝑎𝑚 =

𝑃(𝑇 = 𝑚), (𝑎0 = 0,𝑚 ≥ 1) , mean �̅� = ∑ 𝑚𝑎𝑚
∞
𝑚=1 = 1

𝜆⁄ , and p.g.f. 𝐴(𝑧) =

∑ 𝑎𝑚𝑧
𝑚∞

𝑚=1 , (|𝑧| ≤ 1). There are 𝑐 parallel servers in the model where each has a service 

time 𝑌 that is independent to one another and geometrically distributed as 

𝑃(𝑌 = 𝑦) = (1 − 𝜇)𝑦−1𝜇, (0 < 𝜇 < 1, 𝑦 ≥ 1) 

The mean service time of a server is 𝐸[𝑌] = 1
𝜇⁄  and traffic intensity of the model is 𝜌 =

�̅�
�̅�𝑐𝜇⁄ > 0. The batch sizes, inter-batch-arrival times, and services times are independent 

of one another. In addition, let 𝜔(𝑗|𝑖) be the probability of an event that 𝑗 customers are 
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served out of 𝑖 customers within a single time slot. The conditional probability 𝜔(𝑗|𝑖) 

then follows a binomial distribution 

𝜔(𝑗|𝑖) = {
(
𝑖
𝑗
) 𝜇𝑗(1 − 𝜇)𝑖−𝑗, (0 ≤ 𝑗 ≤ 𝑖 < 𝑐 ≤ 𝑁)       

(
𝑐
𝑗) 𝜇

𝑗(1 − 𝜇)𝑐−𝑗, (0 ≤ 𝑗 ≤ 𝑐 ≤ 𝑖 ≤ 𝑁)       
(38) 

with 𝜔(0|0) = 1 and (
𝑎
𝑏
) = 0 for 𝑎 < 𝑏 or 𝑎 < 0. Since the 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 is a discrete-

time queueing model, it has two different but related aspects (EAS and LAS-DA). Since 

the model is solved under the steady-state condition, the queue-length distribution of 

LAS-IA is identical to that of the EAS. Lastly, the model 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 has the finite-

buffer 𝑁, (𝑁 ≥ 𝑐) such that an incoming batch is either partially or totally rejected if a 

batch size ℎ, (1 ≤ ℎ ≤ 𝑟) is larger than the available space (𝑁 − 𝑐). 

4.3.2 The 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄/𝑵 queues with EAS at a pre-arrival time epoch 

Let 𝑀𝑛
−  be the number of customers in the system, including those, if any, 

receiving service just before the 𝑛-th batch-arrival (i.e. at the 𝑛-th pre-arrival time epoch). 

The stochastic process {𝑀𝑛
−, 𝑛 ≥ 1} forms a homogenous Markov chain: 

𝑀𝑛+1
− = {

min(𝑀𝑛
− + 𝑋𝑛 − 𝐷𝑛, 𝑁), (𝑀𝑛

− + 𝑋𝑛 − 𝐷𝑛 ≥ 0)

0,                                          (𝑀𝑛
− + 𝑋𝑛 − 𝐷𝑛 < 0)

 

where 𝐷𝑛 is the total number of customers that depart the system during 𝑇𝑛, 𝑋𝑛 is the size 

of the 𝑛-th batch-arrival and 𝑁 is the finite-buffer. In considering the steady-state aspect 

of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 queues with EAS, 𝑀𝑛
− becomes 𝑀− as 𝑛 → ∞ and has the steady-state 

p.m.f. 𝑄𝑗
− = lim

𝑛→∞
𝑃(𝑀𝑛

− = 𝑗) , (𝑗 ≥ 0) . Let 𝑃𝑖,𝑗(𝑛) = 𝑃[𝑀𝑛+1
− = 𝑗 | 𝑀𝑛

− = 𝑖], (𝑖, 𝑗 ≥

0, 𝑛 ≥ 1) be the one-step transition probabilities of {𝑀𝑛
−, 𝑛 ≥ 1}. Thus, the steady-state 

one-step transition probabilities of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁  queues are defined as 𝑃𝑖,𝑗 ≡

lim
𝑛→∞

𝑃𝑖,𝑗(𝑛). Given that a batch can either be partially or totally rejected, there are two 
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different set of transition probabilities that correspond to each rejection policy: In the case 

of partial rejection, the 𝑃𝑖,𝑗 are defined as 

𝑃𝑖,𝑗 =

{
 
 
 
 

 
 
 
 

∑ 𝑘𝑖+ℎ−𝑗𝑏ℎ + 𝑘𝑁−𝑗 ∑ 𝑏ℎ 

𝑟

ℎ=𝑁−𝑖+1

𝑁−𝑖

ℎ=𝑗−𝑖

,    (𝑗 > 𝑖 ≥ 0, 𝑗 ≥ 𝑐)     

∑ 𝑘𝑖+ℎ−𝑗𝑏ℎ + 𝑘𝑁−𝑗 ∑ 𝑏ℎ

𝑟

ℎ=𝑁−𝑖+1

𝑁−𝑖

ℎ=1

,      (𝑐 ≤ 𝑗 ≤ 𝑖)               

∑ 𝑉𝑖+ℎ,𝑗𝑏ℎ + 𝑉𝑁,𝑗 ∑ 𝑏ℎ

𝑟

ℎ=𝑁−𝑖+1

𝑁−𝑖

ℎ=max (1,𝑗−𝑖)

, (𝑖 ≥ 0,1 ≤ 𝑗 ≤ 𝑐 − 1)

 

In the case of total rejection the 𝑃𝑖,𝑗 are 

𝑃𝑖,𝑗 =

{
 
 
 
 

 
 
 
 

∑ 𝑘𝑖+ℎ−𝑗𝑏ℎ

𝑁−𝑖

ℎ=𝑗−𝑖

,                                       (𝑗 > 𝑖 ≥ 0, 𝑗 ≥ 𝑐)     

∑ 𝑘𝑖+ℎ−𝑗𝑏ℎ + 𝑘𝑖−𝑗 ∑ 𝑏ℎ

𝑟

ℎ=𝑁−𝑖+1

𝑁−𝑖

ℎ=1

,      (𝑐 ≤ 𝑗 ≤ 𝑖)               

∑ 𝑉𝑖+ℎ,𝑗𝑏ℎ + 𝑉𝑖,𝑗 ∑ 𝑏ℎ

𝑟

ℎ=𝑁−𝑖+1

𝑁−𝑖

ℎ=max (1,𝑗−𝑖)

, (𝑖 ≥ 0,1 ≤ 𝑗 ≤ 𝑐 − 1)

 

where 𝑃𝑖,0 = 1 − ∑ 𝑃𝑖,𝑗
𝑁
𝑗=1 , (0 ≤ 𝑖 ≤ 𝑁)  and 𝑘𝑛 = ∑ 𝑎𝑚 (

𝑐𝑚
𝑖 + ℎ − 𝑗)

∞
𝑚=1 (1 −

𝜇)𝑐𝑚−(𝑖+ℎ−𝑗)(𝜇)𝑖+ℎ−𝑗, (𝑛 ≥ 0, 𝑘𝑛 = 0 for 𝑛 < 0). The 𝑉𝑖+ℎ,𝑗 are defined as 

 𝑉𝑖+ℎ,𝑗

=

{
 
 
 
 

 
 
 
 

0,                                                                                                                         (𝑖 + ℎ < 𝑗)                
      

∑ 𝑎𝑚

∞

𝑚=1

(
𝑖 + ℎ

𝑗
) (1 − 𝜇)𝑚𝑗(1 − (1 − 𝜇)𝑚)𝑖+ℎ−𝑗,                                                   (1 ≤ 𝑗 ≤ 𝑖 + ℎ ≤ 𝑐)              

∑[∑∑ ∑ ( 𝑐(𝑤 − 1)
𝑖 + ℎ − 𝑙 − 𝑠

)

𝑐

𝑙=𝑐−𝑠+1

𝜇𝑖+ℎ−𝑙−𝑠

𝑐

𝑠=𝑗

𝑚

𝑤=1

∞

𝑚=1

(1 − 𝜇)𝑐(𝑤−1)−(𝑖+ℎ−𝑙−𝑠) ×                                                

(
𝑐

𝑙
) 𝜇𝑙(1 − 𝜇)𝑐−𝑙 (

𝑠

𝑗) (1 − 𝜇)
(𝑚−𝑤)𝑗(1 − (1 − 𝜇)𝑚−𝑤)𝑠−𝑗] 𝑎𝑚 ,                        (1 ≤ 𝑗 < 𝑐 < 𝑖 + ℎ)             

 

 

As a remark, the 𝑃𝑖,𝑗 presented above match with those by Goswami and Samanta [22]. 
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The global balance equation of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 queues with EAS is defined as 

𝑄𝑗
− =∑𝑄𝑖

−

𝑁

𝑖=0

𝑃𝑖,𝑗 , (0 ≤ 𝑗 ≤ 𝑁) (39) 

which is a set of 𝑗 first order linear difference equations. As a remark, 𝑁 = 0 indicates 

that no customers are allowed in the system (i.e. 𝑄0
− = 1) hence this case can be ignored. 

Whether the 𝑃𝑖,𝑗  follow partial or total rejection policy, both cases can be solved 

altogether by assuming the solution of a general form 𝑄𝑗
− = 𝐶𝑧𝑗 , (1 ≤ 𝑗 ≤ 𝑁, 𝐶 ≠ 0). By 

substituting the general solution into (39), we have 

𝐶𝑧𝑗 =∑𝐶𝑧𝑖
𝑁

𝑖=0

𝑃𝑖,𝑗 , (1 ≤ 𝑗 ≤ 𝑁) 

0 =∑𝑧𝑖
𝑁

𝑖=0

𝑃𝑖,𝑗 − 𝑧
𝑗 

By summing both sides of the above over 1 ≤ 𝑗 ≤ 𝑁 we have the characteristic equation 

of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 queues with EAS: 

0 =∑(∑𝑧𝑖
𝑁

𝑖=0

𝑃𝑖,𝑗 − 𝑧
𝑗)

𝑁

𝑗=1

 

Since the above is an 𝑁-th degree polynomial, solving it gives 𝑁 roots. Let these roots be 

𝑧1, 𝑧2, … , 𝑧𝑁 such that the solution becomes 

𝑄𝑗
− =∑𝐶ℎ𝑧ℎ

𝑗

𝑁

ℎ=1

, (1 ≤ 𝑗 ≤ 𝑁) (40) 

where the 𝐶ℎ, (1 ≤ ℎ ≤ 𝑁)  are the unknown constant coefficients. To compute these 

unknowns, we substitute (40) into (39) such that it leads to 
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∑𝐶ℎ𝑧ℎ
𝑗

𝑁

ℎ=1

=∑∑𝐶ℎ𝑧ℎ
𝑖

𝑁

ℎ=1

𝑁

𝑖=0

𝑃𝑖,𝑗, (1 ≤ 𝑗 ≤ 𝑁) 

The above expression can be rearranged to 

0 = ∑𝐶ℎ

𝑁

ℎ=1

( ∑ 𝑧ℎ
𝑖

𝑁

𝑖=𝑗−ℎ

𝑃𝑖,𝑗 − 𝑧ℎ
𝑗
) , (1 ≤ 𝑗 ≤ 𝑁) (41) 

To make (40) also true for the case when 𝑗 = 0, we establish the normalizing condition as 

1 =∑∑𝐶ℎ𝑧ℎ
𝑗

𝑁

ℎ=1

𝑁

𝑗=0

 

The normalizing condition, in conjunction with letting 𝑗 = 1,2, … ,𝑁 − 1 in (41), gives 𝑁 

equations. Solving these equations gives the solution to 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 queues with EAS 

in terms of roots as 

𝑄𝑗
− =∑𝐶ℎ𝑧ℎ

𝑗

𝑁

ℎ=1

, (0 ≤ 𝑗 ≤ 𝑁) (42) 

4.3.3 The 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄/𝑵 queues with EAS at a random time epoch 

The queue-length distributions of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 queues with EAS at a random 

time epoch (say 𝑄𝑙, 0 ≤ 𝑙 ≤ 𝑁) and (42) can be related in the same manner as we have 

done in 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues with EAS (see Subsection 4.2.3). 

4.3.4 The 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄/𝑵 queues with EAS at an outside observer’s time epoch 

In relating the queue-length distributions of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 queues with EAS at 

random and outside observer’s time epochs we adopt the relation (26) from Subsection 

4.2.4 and then modify it to comply with the finite-buffer 𝑁: Unlike in 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues 

with EAS where 𝑄𝑗
𝑜 has no upper-bound (i.e. 𝑗 ≥ 0), in 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 queues with EAS 
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the 𝑄𝑗
𝑜  has an upper-bound (i.e. 0 ≤ 𝑗 ≤ 𝑁) due to the finite-buffer 𝑁 . Based on this 

notion, (26) is modified to 

𝑄𝑙 = ∑ 𝑄𝑗
𝑜𝜔(𝑗 − 𝑙|𝑗)

min(𝑙+𝑐,𝑁)

𝑗=𝑙

, (0 ≤ 𝑙 ≤ 𝑁) (43) 

Since (43) is a set of 𝑙 first order linear difference equations, we assume that the (𝑄𝑗
𝑜 , 1 ≤

𝑗 ≤ 𝑁) is a geometric sum that consists of the same roots as those in (40) but with 

different constant coefficients (hence they are unknown). Let these non-zero unknown 

constant terms be 𝐸ℎ, (1 ≤ ℎ ≤ 𝑁), then we have 

𝑄𝑗
𝑜 =∑𝐸ℎ𝑧ℎ

𝑗

𝑁

ℎ=1

, (1 ≤ 𝑗 ≤ 𝑁) 

By substituting the above geometric sum in (43) we have 

𝑄𝑙 = ∑ ∑𝐸ℎ𝑧ℎ
𝑗

𝑁

ℎ=1

𝜔(𝑗 − 𝑙|𝑗)

min(𝑙+𝑐,𝑁)

𝑗=𝑙

, (1 ≤ 𝑙 ≤ 𝑁) (44) 

and the normalizing condition 

𝑄0
𝑜 +∑∑𝐸ℎ𝑧ℎ

𝑗

𝑁

ℎ=1

𝑁

𝑗=1

= 1 (45) 

By letting 𝑙 = 1,2, … ,𝑁 in (44) we have 𝑁 equations that can be solved with (45) such 

that the (𝑄𝑗
𝑜 , 0 ≤ 𝑗 ≤ 𝑁) are completely found as 

𝑄𝑗
𝑜 = {

determined above, (𝑗 = 0)                                        

 ∑𝐸ℎ𝑧ℎ
𝑗

𝑟

ℎ=1

,                  (1 ≤ 𝑗 ≤ 𝑁)                              
(46) 
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4.3.5 The 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄/𝑵 queues with LAS-DA at a pre-arrival time epoch 

In developing a relation between the pre-arrival queue-length distributions of 

𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 queues with EAS and LAS-DA we adopt (30) from Subsection 4.2.5 and 

then modify it to comply with the finite-buffer 𝑁. Doing so leads to 

𝑄𝑘
− = ∑ 𝑃𝑗

−𝜔(𝑗 − 𝑘|𝑗)

min(𝑛+𝑐,𝑁)

𝑗=𝑘

, (0 ≤ 𝑘 ≤ 𝑁) (47) 

Since (47) is a set of 𝑙 first order linear difference equations, we assume that the (𝑃𝑗
−, 1 ≤

𝑗 ≤ 𝑁) is a geometric sum that consists of the same roots as those in (40) but with 

different constant coefficients (hence they are unknown). Let these unknown constant 

terms be 𝐹ℎ, (1 ≤ ℎ ≤ 𝑁), then we have 

𝑃𝑗
− =∑𝐹ℎ𝑧ℎ

𝑗

𝑁

ℎ=1

, (1 ≤ 𝑗 ≤ 𝑁) 

By substituting the above geometric sum in (47) we have 

𝑄𝑘
− = ∑ ∑𝐹ℎ𝑧ℎ

𝑗

𝑁

ℎ=1

𝜔(𝑗 − 𝑘|𝑗)

min(𝑛+𝑐,𝑁)

𝑗=𝑘

, (0 ≤ 𝑘 ≤ 𝑁) (48) 

and the normalizing condition 

𝑃0
− +∑∑𝐹ℎ𝑧ℎ

𝑗

𝑟

ℎ=1

𝑁

𝑗=1

= 1 (49) 

By letting 𝑙 = 1,2, … ,𝑁 in (48) we have 𝑁 equations that can be solved with (49) such 

that the (𝑃𝑗
−, 0 ≤ 𝑗 ≤ 𝑁) are completely found as 

𝑃𝑗
− = {

determined above, (𝑗 = 0)                                        

 ∑𝐹ℎ𝑧ℎ
𝑗

𝑟

ℎ=1

,                  (1 ≤ 𝑗 ≤ 𝑁)                              
(50) 
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4.3.6 The 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄/𝑵 queues with LAS-DA at other time epochs 

The relation 𝑄𝑗
𝑜 = 𝑃𝑗

𝑜 = 𝑃𝑗 , (𝑗 ≥ 0) in 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues from Subsection 4.2.6 

also holds in 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 queues for 0 ≤ 𝑗 ≤ 𝑁. 

4.3.7 The 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄/𝑵  queues involving heavy-tailed inter-batch-arrival 

times 

The analytical results in Section 4.3 remain robust even if the inter-batch-arrival 

times follow heavy-tailed distributions (both non-closed and non-existent form of p.g.f’s). 

Unlike in 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  queues involving heavy-tailed inter-batch-arrival times, no 

manipulation of the characteristic equation is needed when solving 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 queues 

involving heavy-tailed inter-batch-arrival times. Numerical examples are provided in 

Section 5.4. 

4.4 Conclusions 

In Section 4.1 we introduced some earlier work done by others in discrete-time 

multi-server bulk-arrival queues. 

In Section 4.2 we applied the roots method to solve 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  queues. By 

interpreting the global balance equation as a set of linear difference equations we can 

express the solution in terms of roots. We also treated 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  queues involving 

heavy-tailed inter-batch-arrival times.  

In Section 4.3 we applied the roots method to solve 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 queues. While 

this embarks on the first application of the roots method to treat discrete-time finite-buffer 

multi-server bulk-arrival queues, the method remains robust even in the case of heavy-

tailed inter-batch-arrival times. 
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5 NUMERICAL RESULTS IN 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄  AND 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄/𝑵 

QUEUES 

This chapter provides all the numerical results that complement the analytical 

work provided in Chapter 4. It is organized in the following manner: The 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 

queues involving light-tailed inter-batch-arrival times in Section 5.1 and 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 

queues involving heavy-tailed inter-batch-arrival times in Section 5.2. In addition, 

𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 queues involving light-tailed inter-batch-arrival times in Section 5.3 and 

𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 queues involving heavy-tailed inter-batch-arrival times in Section 5.4. All 

computations were performed on MAPLE, calibrated at the fifteenth decimal place. In 

presenting our numerical results, all results were rounded to four decimal places except in 

the case when the first four decimal places are all zero. 

5.1 The 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄 queues involving light-tailed inter-batch-arrival times 

In computing the queue-length distributions of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues at a pre-arrival, 

random, and outside observer’s time epochs, we consider the inter-batch-arrival patterns 

to be geometric and deterministic.  

5.1.1 Geometric inter-batch-arrival times 

The inter-batch-arrival pattern is geometric (𝐺𝑒𝑜)  with 𝑎𝑚 = 𝜆(1 − 𝜆)𝑚−1,

(0 < 𝜆 < 1,𝑚 ≥ 1)  and 𝜆 = 0.25 . The parameters taken are 𝑏1 = 0.6, 𝑏5 = 0.4, 𝜇 =

0.3, and 𝑐 = 4. This gives �̅� = 2.6, �̅� = 4, and 𝜌 = 0.5417. 
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Table 12: Various distributions in 𝑮𝒆𝒐𝑿/𝑮𝒆𝒐/𝟒 queue 

𝑗 𝑄𝑗
− 𝑄𝑗 𝑄𝑗

𝑜 𝑃𝑗
− 𝑃𝑗 𝑃𝑗

𝑜  𝑚 𝑤𝑘  

   0 0.3002 0.3002 0.2251 0.2251 0.2251 0.2251  0 0.3998  

1 0.2142 0.2142 0.2057 0.2057 0.2057 0.2057  1 0.1425  

2 0.1162 0.1162 0.1193 0.1193 0.1193 0.1193  2 0.0984  

3 0.0798 0.0798 0.0773 0.0773 0.0773 0.0773  3 0.0699  

4 0.0690 0.0690 0.0638 0.0638 0.0638 0.0638  4 0.0510  

5 0.0579 0.0579 0.0838 0.0838 0.0838 0.0838  5 0.0376  

6 0.0405 0.0405 0.0605 0.0605 0.0605 0.0605  6 0.0277  

7 0.0293 0.0293 0.0396 0.0396 0.0396 0.0396  7 0.0204  

8 0.0226 0.0226 0.0293 0.0293 0.0293 0.0293  8 0.0150  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  ⋮ ⋮  

Sum 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999  Sum 0.9999  

           

  ∑𝑄𝑗
𝑜

𝑐−1

𝑗=0

(𝑐 − 𝑛) = 1.8333 

 

𝑐(1 − 𝜌)
= 1.8333 

 

As expected, 𝑄𝑗
− = 𝑄𝑗 and 𝑄𝑗

𝑜 = 𝑃𝑗
− = 𝑃𝑗 = 𝑃𝑗

𝑜 for 𝑗 ≥ 0 due to the G.A.S.T.A. property. 

5.1.2 Deterministic inter-batch-arrival times 

The inter-batch-arrival pattern is deterministic (𝐷) with 𝑎4 = 1. The parameters 

taken are 𝑏1 = 0.6, 𝑏5 = 0.4, 𝜇 = 0.35, and 𝑐 = 5. This gives �̅� = 2.6, �̅� = 4, and 𝜌 =

0.3714. 

Table 13: Various distributions in 𝑫𝑿/𝑮𝒆𝒐/𝟓 queue 

𝑗 𝑄𝑗
− 𝑄𝑗 𝑄𝑗

𝑜 𝑃𝑗
− 𝑃𝑗 𝑃𝑗

𝑜  𝑚 𝑤𝑘  

   0 0.5684 0.3582 0.2162 0.4316 0.2162 0.2162  0 0.9559  

1 0.2994 0.3236 0.3340 0.3308 0.3340 0.3340  1 0.0719  

2 0.0973 0.1434 0.1640 0.1470 0.1640 0.1640  2 0.0171  

3 0.0272 0.0820 0.0898 0.0628 0.0898 0.0898  3 0.0039  

4 0.0059 0.0520 0.0546 0.0202 0.0546 0.0546  4 0.0009  

5 0.0013 0.0272 0.0846 0.0055 0.0846 0.0846  5 0.0002  

6 0.0003 0.0099 0.0399 0.0016 0.0399 0.0399  6 3.9399x10−5  

7 0.0001 0.0028 0.0126 0.0004 0.0126 0.0126  7 8.4349x10−6  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  ⋮ ⋮  

Sum 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999  Sum 0.9999  
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  ∑𝑄𝑗
𝑜

𝑐−1

𝑗=0

(𝑐 − 𝑛) = 3.1429 

 

𝑐(1 − 𝜌)
= 3.1429 

 

5.2 The 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄 queues involving heavy-tailed inter-batch-arrival times 

In computing the queue-length distributions of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues at a pre-arrival, 

random, and outside observer’s time epochs, we consider the inter-batch-arrival patterns 

to be Weibull and standard log-normal. 

5.2.1 Weibull inter-batch-arrival times 

 The inter-batch-arrival pattern is Weibull (𝑊𝑒𝑖𝑏𝑢𝑙𝑙[𝑀])  with 𝑎𝑚 =

𝑀−√𝑚

(𝑉 − 1)
⁄ , (𝑚 ≥ 1, 𝑉 = ∑ 𝑀−√𝑗∞

𝑗=0 > 1).  The parameters taken are 𝑀 = 2, 𝑏1 =

0.425, 𝑏2 = 0.325, 𝑏3 = 0.075, 𝑏4 = 0.05, 𝑏5 = 0.125, 𝜇 = 0.11, and 𝑐 = 5. This gives 

�̅� = 2.125, �̅� = 13.7054, and 𝜌 = 0.2819. 

Table 14: Various distributions in 𝑾𝒆𝒊𝒃𝒖𝒍𝒍𝑿[𝟐]/𝑮𝒆𝒐/𝟓 queue 

𝑗 𝑄𝑗
− 𝑄𝑗 𝑄𝑗

𝑜 𝑃𝑗
− 𝑃𝑗 𝑃𝑗

𝑜  𝑚 𝑤𝑘  

   0 0.3300 0.4172 0.4338 0.3041 0.4338 0.4338  0 0.1996  

1 0.2279 0.2097 0.2033 0.2161 0.2033 0.2033  1 0.0382  

2 0.1606 0.1291 0.1323 0.1623 0.1323 0.1323  2 0.0314  

3 0.1002 0.0756 0.0805 0.1053 0.0805 0.0805  3 0.0258  

4 0.0635 0.0458 0.0505 0.0690 0.0505 0.0505  4 0.0212  

5 0.0411 0.0286 0.0347 0.0497 0.0347 0.0347  5 0.0174  

6 0.0270 0.0188 0.0228 0.0327 0.0228 0.0228  6 0.0143  

7 0.0176 0.0122 0.0149 0.0215 0.0149 0.0149  7 0.0117  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  ⋮ ⋮  

Sum 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999  Sum 0.9999  

           

  ∑𝑄𝑗
𝑜

𝑐−1

𝑗=0

(𝑐 − 𝑛) = 3.5905 

 

𝑐(1 − 𝜌)
= 3.5905 
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5.2.2 Standard log-normal inter-batch-arrival times 

The inter-batch-arrival pattern is standard log-normal (𝑆𝐿𝑁)  with 𝑎𝑚 =

𝑉𝑒
−[ln(𝑚)]2

2 , (𝑚 ≥ 1, 𝑉 = 1/∑ 𝑒
−[ln(𝑗)]2

2∞
𝑗=1 ).  The parameters taken are 𝑏1 = 0.425, 𝑏2 =

0.325, 𝑏3 = 0.075, 𝑏4 =  0.05, 𝑏5 = 0.125, 𝜇 = 0.2, and 𝑐 = 5. This gives �̅� =

2.125, �̅� = 4.6519, and 𝜌 = 0.4568. 

Table 15: Various distributions in 𝑺𝑳𝑵𝑿/𝑮𝒆𝒐/𝟓 queue 

𝑗 𝑄𝑗
− 𝑄𝑗 𝑄𝑗

𝑜 𝑃𝑗
− 𝑃𝑗 𝑃𝑗

𝑜  𝑚 𝑤𝑘  

   0 0.2080 0.2765 0.2339 0.1630 0.2339 0.2339  0 0.4175  

1 0.2188 0.2141 0.1860 0.1844 0.1860 0.1860  1 0.0805  

2 0.1811 0.1646 0.1602 0.1737 0.1602 0.1602  2 0.0591  

3 0.1253 0.1107 0.1190 0.1335 0.1190 0.1190  3 0.0432  

4 0.0819 0.0715 0.0837 0.0955 0.0837 0.0837  4 0.0315  

5 0.0549 0.0477 0.0630 0.0725 0.0630 0.0630  5 0.0229  

6 0.0396 0.0344 0.0464 0.0535 0.0464 0.0464  6 0.0167  

7 0.0278 0.0241 0.0331 0.0382 0.0331 0.0331  7 0.0122  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  ⋮ ⋮  

Sum 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999  Sum 0.9999  

           

  ∑𝑄𝑗
𝑜

𝑐−1

𝑗=0

(𝑐 − 𝑛) = 2.7160 

 

𝑐(1 − 𝜌)
= 2.7160 

 

5.3 The 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄/𝑵  queues involving light-tailed inter-batch-arrival 

times 

In computing the queue-length distributions of the 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 queues at a pre-

arrival, random, and outside observer’s time epochs, we consider the inter-batch-arrival 

patterns to be geometric and deterministic. We present three different cases of 𝜌 in each 

table where 𝜌 < 1, 𝜌 = 1, and 𝜌 > 1. 
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5.3.1 Geometric inter-batch-arrival times 

The inter-batch-arrival pattern is geometric (𝐺𝑒𝑜)  with  𝑎𝑚 = 𝜆(1 − 𝜆)𝑚−1,

(0 < 𝜆 < 1,𝑚 ≥ 1).  The parameters taken are   𝑏1 = 0.25, 𝑏2 = 0.25, 𝑏3 = 0.25 , 𝑏4 =

0.25, �̅� = 5, 𝑐 = 3,𝑁 = 5, 𝜌 = 0.5, 1, and 2 . This gives  �̅� = 2.5 , 𝜇 = 0.3333, 0.1667, 

and 0.0833. 

Table 16: Various distributions in 𝑮𝒆𝒐𝑿/𝑮𝒆𝒐/𝟑/𝟓 queue 

 
𝑄𝑗
− (partial rejection)  

 
𝑄𝑗
− (total rejection)  

𝑗 𝜌 = 0.5 𝜌 = 1 𝜌 = 2 
 
𝜌 = 0.5 𝜌 = 1 𝜌 = 2 

0 0.4518 0.1621 0.0303 
 
0.4771 0.2013 0.0536 

1 0.2338 0.1932 0.0768 
 
0.2463 0.2395 0.1355 

2 0.1398 0.1832 0.1248 
 
0.1424 0.2199 0.2134 

3 0.0924 0.1682 0.1738 
 
0.0814 0.1664 0.2324 

4 0.0606 0.1728 0.2707 
 
0.0420 0.1216 0.2293 

5 0.0217 0.1205 0.3236 
 
0.0108 0.0513 0.1359 

Sum 1.0000 1.0000 1.0000 
 
1.0000 1.0000 1.0000 

 

 
𝑄𝑗 (partial rejection)  

 
𝑄𝑗 (total rejection)  

𝑗 𝜌 = 0.5 𝜌 = 1 𝜌 = 2 
 
𝜌 = 0.5 𝜌 = 1 𝜌 = 2 

0 0.4518 0.1621 0.0303 
 
0.4771 0.2013 0.0536 

1 0.2338 0.1932 0.0768 
 
0.2463 0.2395 0.1355 

2 0.1398 0.1832 0.1248 
 
0.1424 0.2199 0.2134 

3 0.0924 0.1682 0.1738 
 
0.0814 0.1664 0.2324 

4 0.0606 0.1728 0.2707 
 
0.0420 0.1216 0.2293 

5 0.0217 0.1205 0.3236 
 
0.0108 0.0513 0.1359 

Sum 1.0000 1.0000 1.0000 
 
1.0000 1.0000 1.0000 

 

 
𝑄𝑗
𝑜 (partial rejection)  

 
𝑄𝑗
𝑜 (total rejection)  

𝑗 𝜌 = 0.5 𝜌 = 1 𝜌 = 2 
 
𝜌 = 0.5 𝜌 = 1 𝜌 = 2 

0 0.3615 0.1297 0.0243 
 
0.3816 0.1611 0.0429 

1 0.2096 0.1627 0.0629 
 
0.2209 0.2017 0.1111 

2 0.1461 0.1643 0.1052 
 
0.1572 0.2089 0.1908 

3 0.1152 0.1615 0.1506 
 
0.1166 0.1828 0.2293 

4 0.0943 0.1735 0.2368 
 
0.0873 0.1568 0.2496 

5 0.0734 0.2083 0.4201 
 
0.0364 0.0887 0.1764 

Sum 1.0000 1.0000 1.0000 
 
1.0000 1.0000 1.0000 
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𝑃𝑗
− (partial rejection)  

 
𝑃𝑗
− (total rejection)  

𝑗 𝜌 = 0.5 𝜌 = 1 𝜌 = 2 
 
𝜌 = 0.5 𝜌 = 1 𝜌 = 2 

0 0.3615 0.1297 0.0243 
 
0.3816 0.1611 0.0429 

1 0.2096 0.1627 0.0629 
 
0.2209 0.2017 0.1111 

2 0.1461 0.1643 0.1052 
 
0.1572 0.2089 0.1908 

3 0.1152 0.1615 0.1506 
 
0.1166 0.1828 0.2293 

4 0.0943 0.1735 0.2368 
 
0.0873 0.1568 0.2496 

5 0.0734 0.2083 0.4201 
 
0.0364 0.0887 0.1764 

Sum 1.0000 1.0000 1.0000 
 
1.0000 1.0000 1.0000 

 

 
𝑃𝑗 (partial rejection)  

 
𝑃𝑗 (total rejection)  

𝑗 𝜌 = 0.5 𝜌 = 1 𝜌 = 2 
 
𝜌 = 0.5 𝜌 = 1 𝜌 = 2 

0 0.3615 0.1297 0.0243 
 
0.3816 0.1611 0.0429 

1 0.2096 0.1627 0.0629 
 
0.2209 0.2017 0.1111 

2 0.1461 0.1643 0.1052 
 
0.1572 0.2089 0.1908 

3 0.1152 0.1615 0.1506 
 
0.1166 0.1828 0.2293 

4 0.0943 0.1735 0.2368 
 
0.0873 0.1568 0.2496 

5 0.0734 0.2083 0.4201 
 
0.0364 0.0887 0.1764 

Sum 1.0000 1.0000 1.0000 
 
1.0000 1.0000 1.0000 

 

 
𝑃𝑗
𝑜 (partial rejection)  

 
𝑃𝑗
𝑜 (total rejection)  

𝑗 𝜌 = 0.5 𝜌 = 1 𝜌 = 2 
 
𝜌 = 0.5 𝜌 = 1 𝜌 = 2 

0 0.3615 0.1297 0.0243 
 
0.3816 0.1611 0.0429 

1 0.2096 0.1627 0.0629 
 
0.2209 0.2017 0.1111 

2 0.1461 0.1643 0.1052 
 
0.1572 0.2089 0.1908 

3 0.1152 0.1615 0.1506 
 
0.1166 0.1828 0.2293 

4 0.0943 0.1735 0.2368 
 
0.0873 0.1568 0.2496 

5 0.0734 0.2083 0.4201 
 
0.0364 0.0887 0.1764 

Sum 1.0000 1.0000 1.0000 
 
1.0000 1.0000 1.0000 

 

As expected, 𝑄𝑗
− = 𝑄𝑗  and 𝑄𝑗

𝑜 = 𝑃𝑗
− = 𝑃𝑗 = 𝑃𝑗

𝑜  for 0 ≤ 𝑗 ≤ 𝑁  due to the G.A.S.T.A. 

property. 
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5.3.2 Deterministic inter-batch-arrival times 

The inter-batch-arrival pattern is deterministic (𝐷)  with  𝑎7 = 0.5, 𝑎10 =

0.2, and  𝑎15 = 0.3. The parameters taken are  𝑏1 = 0.2, 𝑏5 = 0.3, 𝑏10 = 0.5, 𝑐 = 4,𝑁 =

7, 𝜌 = 0.86, 1, and 2. This gives �̅� = 10, �̅� = 6.7, 𝜇 = 0.1948, 0.1675, and 0.0838. 

Table 17: Various distributions in 𝑫𝑿/𝑮𝒆𝒐/𝟒/𝟕 queue 

 
𝑄𝑗
− (partial rejection)  

 
𝑄𝑗
− (total rejection)  

𝑗 𝜌 = 0.86 𝜌 = 1 𝜌 = 2 
 

𝜌 = 0.86 𝜌 = 1 𝜌 = 2 

0 0.4226 0.3228 0.0477 
 

0.7793 0.7197 0.4103 

1 0.2729 0.2693 0.1160 
 

0.1490 0.1746 0.2536 

2 0.1595 0.1837 0.1616 
 

0.0502 0.0674 0.1466 

3 0.0840 0.1151 0.1785 
 

0.0161 0.0267 0.0917 

4 0.0384 0.0630 0.1747 
 

0.0041 0.0084 0.0532 

5 0.0171 0.0329 0.1678 
 

0.0011 0.0026 0.0307 

6 0.0050 0.0114 0.1139 
 

0.0002 0.0005 0.0115 

7 0.0007 0.0019 0.0397 
 
1.8084x10−5 0.0001 0.0025 

Sum 1.0000 1.0000 1.0000 
 

1.0000 1.0000 1.0000 

 

 
𝑄𝑗 (partial rejection)  

 
𝑄𝑗 (total rejection)  

𝑗 𝜌 = 0.86 𝜌 = 1 𝜌 = 2 
 
𝜌 = 0.86 𝜌 = 1 𝜌 = 2 

0 0.2212 0.1620 0.0205 
 
0.6392 0.5861 0.3269 

1 0.2045 0.1864 0.0600 
 
0.1759 0.1935 0.2368 

2 0.1462 0.1504 0.0952 
 
0.0710 0.0826 0.1439 

3 0.1141 0.1245 0.1193 
 
0.0471 0.0551 0.1035 

4 0.0990 0.1117 0.1396 
 
0.0363 0.0423 0.0772 

5 0.0945 0.1112 0.1798 
 
0.0244 0.0307 0.0679 

6 0.0775 0.0962 0.2085 
 
0.0051 0.0078 0.0328 

7 0.0429 0.0576 0.1771 
 
0.0011 0.0019 0.0111 

Sum 1.0000 1.0000 1.0000  
 
1.0000 1.0000 1.0000 

 

 
𝑄𝑗
𝑜 (partial rejection)  

 
𝑄𝑗
𝑜 (total rejection)  

𝑗 𝜌 = 0.86 𝜌 = 1 𝜌 = 2 
 
𝜌 = 0.86 𝜌 = 1 𝜌 = 2 

0 0.1790 0.1297 0.0158 
 
0.6002 0.5501 0.3064 

1 0.1857 0.1659 0.0494 
 
0.1841 0.1992 0.2323 

2 0.1357 0.1374 0.0813 
 
0.0714 0.0828 0.1417 

3 0.1089 0.1167 0.1047 
 
0.0478 0.0559 0.1046 

4 0.0968 0.1077 0.1257 
 
0.0365 0.0427 0.0780 
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5 0.1063 0.1189 0.1679 
 
0.0478 0.0524 0.0807 

6 0.0855 0.1038 0.2039 
 
0.0096 0.0131 0.0408 

7 0.1021 0.1199 0.2513 
 
0.0026 0.0039 0.0157 

Sum 1.0000 1.0000 1.0000 
 
1.0000 1.0000 1.0000 

 

 
𝑃𝑗
− (partial rejection)  

 
𝑃𝑗
− (total rejection)  

𝑗 𝜌 = 0.86 𝜌 = 1 𝜌 = 2 
 

𝜌 = 0.86 𝜌 = 1 𝜌 = 2 

0 0.3649 0.2752 0.0384 
 

0.7460 0.6871 0.3882 

1 0.2590 0.2493 0.0987 
 

0.1582 0.1808 0.2499 

2 0.1693 0.1834 0.1432 
 

0.0614 0.0766 0.1476 

3 0.1063 0.1316 0.1651 
 

0.0245 0.0363 0.0970 

4 0.0585 0.0849 0.1735 
 

0.0075 0.0136 0.0608 

5 0.0301 0.0511 0.1837 
 

0.0022 0.0047 0.0378 

6 0.0102 0.0204 0.1410 
 

0.0004 0.0010 0.0151 

7 0.0017 0.0040 0.0564 
 
4.3013x10−5 0.0001 0.0035 

Sum 1.0000 1.0000 1.0000 
 

1.0000 1.0000 1.0000 

 

 
𝑃𝑗 (partial rejection)  

 
𝑃𝑗 (total rejection)  

𝑗 𝜌 = 0.86 𝜌 = 1 𝜌 = 2 
 
𝜌 = 0.86 𝜌 = 1 𝜌 = 2 

0 0.1790 0.1297 0.0158 
 
0.6002 0.5501 0.3064 

1 0.1857 0.1659 0.0494 
 
0.1841 0.1992 0.2323 

2 0.1357 0.1374 0.0813 
 
0.0714 0.0828 0.1417 

3 0.1089 0.1167 0.1047 
 
0.0478 0.0559 0.1046 

4 0.0968 0.1077 0.1257 
 
0.0365 0.0427 0.0780 

5 0.1063 0.1189 0.1679 
 
0.0478 0.0524 0.0807 

6 0.0855 0.1038 0.2039 
 
0.0096 0.0131 0.0408 

7 0.1021 0.1199 0.2513 
 
0.0026 0.0039 0.0157 

Sum 1.0000 1.0000 1.0000 
 
1.0000 1.0000 1.0000 

 

 
𝑃𝑗
𝑜 (partial rejection)  

 
𝑃𝑗
𝑜 (total rejection)  

𝑗 𝜌 = 0.86 𝜌 = 1 𝜌 = 2 
 
𝜌 = 0.86 𝜌 = 1 𝜌 = 2 

0 0.1790 0.1297 0.0158 
 
0.6002 0.5501 0.3064 

1 0.1857 0.1659 0.0494 
 
0.1841 0.1992 0.2323 

2 0.1357 0.1374 0.0813 
 
0.0714 0.0828 0.1417 

3 0.1089 0.1167 0.1047 
 
0.0478 0.0559 0.1046 

4 0.0968 0.1077 0.1257 
 
0.0365 0.0427 0.0780 

5 0.1063 0.1189 0.1679 
 
0.0478 0.0524 0.0807 

6 0.0855 0.1038 0.2039 
 
0.0096 0.0131 0.0408 

7 0.1021 0.1199 0.2513 
 
0.0026 0.0039 0.0157 
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Sum 1.0000 1.0000 1.0000 
 
1.0000 1.0000 1.0000 

 

5.4 The 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄/𝑵  queues involving heavy-tailed inter-batch-arrival 

times 

In computing the queue-length distributions of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁  queues at a pre-

arrival, random, and outside observer’s time epochs, we consider the inter-batch-arrival 

patterns to be Weibull and standard log-normal. We present three different cases of 𝜌 in 

each table where 𝜌 < 1, 𝜌 = 1, and 𝜌 > 1. 

5.4.1 Weibull inter-batch-arrival times 

The inter-batch-arrival pattern is Weibull (𝑊𝑒𝑖𝑏𝑢𝑙𝑙[𝑀])  with 𝑎𝑚 =

𝑀−√𝑚 (𝑉 − 1)⁄ , (𝑚 ≥ 1, 𝑉 = ∑ 𝑀−√𝑗∞
𝑗=0 > 1) . The parameters taken are 𝑀 = 2,𝑁 =

5, 𝑏1 = 0.425, 𝑏2 = 0.325, 𝑏3 = 0.075, 𝑏4 = 0.05, 𝑏5 = 0.125, 𝑐 = 4, 𝜌 =

0.5, 1, and 3. This gives �̅� = 2.125, �̅� = 13.7054, and 𝜇 = 0.0775, 0.0388, and 0.0129. 

Table 18: Various distributions in 𝑾𝒆𝒊𝒃𝒖𝒍𝒍𝑿[𝟐]/𝑮𝒆𝒐/𝟒/𝟓 queue 

 
𝑄𝑗
− (partial rejection)  

 
𝑄𝑗
− (total rejection)  

𝑗 𝜌 = 0.5 𝜌 = 1 𝜌 = 3 
 
𝜌 = 0.5 𝜌 = 1 𝜌 = 3 

0 0.2428 0.0917 0.0138 
 
0.2714 0.1138 0.0174 

1 0.2223 0.1385 0.0261 
 
0.2587 0.1851 0.0446 

2 0.1898 0.1714 0.0617 
 
0.2081 0.2187 0.1055 

3 0.1433 0.1834 0.1223 
 
0.1383 0.2084 0.1944 

4 0.1111 0.1915 0.2339 
 
0.0820 0.1676 0.3001 

5 0.0908 0.2235 0.5423 
 
0.0416 0.1064 0.3379 

Sum 1.0000 1.0000 1.0000 
 
1.0000 1.0000 1.0000 

 

 
𝑄𝑗 (partial rejection)  

 
𝑄𝑗 (total rejection)  

𝑗 𝜌 = 0.5 𝜌 = 1 𝜌 = 3 
 
𝜌 = 0.5 𝜌 = 1 𝜌 = 3 

0 0.3737 0.1911 0.0910 
 
0.4037 0.2177 0.0955 

1 0.2163 0.1574 0.0310 
 
0.2419 0.1988 0.0517 

2 0.1608 0.1721 0.0736 
 
0.1687 0.2050 0.1166 

3 0.1114 0.1663 0.1377 
 
0.1025 0.1756 0.1968 
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4 0.0791 0.1552 0.2313 
 
0.0564 0.1279 0.2681 

5 0.0588 0.1578 0.4353 
 
0.0270 0.0752 0.2713 

Sum 1.0000 1.0000 1.0000 
 
1.0000 1.0000 1.0000 

 

 
𝑄𝑗
𝑜 (partial rejection)  

 
𝑄𝑗
𝑜 (total rejection)  

𝑗 𝜌 = 0.5 𝜌 = 1 𝜌 = 3 
 
𝜌 = 0.5 𝜌 = 1 𝜌 = 3 

0 0.3566 0.1851 0.0906 
 
0.3845 0.2100 0.0949 

1 0.2075 0.1502 0.0295 
 
0.2337 0.1904 0.0494 

2 0.1595 0.1660 0.0703 
 
0.1704 0.2002 0.1121 

3 0.1133 0.1620 0.1314 
 
0.1089 0.1758 0.1905 

4 0.0819 0.1520 0.2197 
 
0.0653 0.1356 0.2674 

5 0.0812 0.1848 0.4586 
 
0.0372 0.0880 0.2858 

Sum 1.0000 1.0000 1.0000 
 
1.0000 1.0000 1.0000 

 

 
𝑃𝑗
− (partial rejection)  

 
𝑃𝑗
− (total rejection)  

𝑗 𝜌 = 0.5 𝜌 = 1 𝜌 = 3 
 
𝜌 = 0.5 𝜌 = 1 𝜌 = 3 

0 0.2253 0.0864 0.0134 
 
0.2511 0.1067 0.0168 

1 0.2094 0.1306 0.0248 
 
0.2455 0.1752 0.0425 

2 0.1855 0.1633 0.0586 
 
0.2073 0.2111 0.1008 

3 0.1431 0.1758 0.1154 
 
0.1448 0.2061 0.1864 

4 0.1113 0.1821 0.2164 
 
0.0939 0.1762 0.2975 

5 0.1254 0.2618 0.5713 
 
0.0575 0.1247 0.3560 

Sum 1.0000 1.0000 1.0000 
 
1.0000 1.0000 1.0000 

 

 
𝑃𝑗 (partial rejection)  

 
𝑃𝑗 (total rejection)  

𝑗 𝜌 = 0.5 𝜌 = 1 𝜌 = 3 
 
𝜌 = 0.5 𝜌 = 1 𝜌 = 3 

0 0.3566 0.1851 0.0906 
 
0.3845 0.2100 0.0949 

1 0.2075 0.1502 0.0295 
 
0.2337 0.1904 0.0494 

2 0.1595 0.1660 0.0703 
 
0.1704 0.2002 0.1121 

3 0.1133 0.1620 0.1314 
 
0.1089 0.1758 0.1905 

4 0.0819 0.1520 0.2197 
 
0.0653 0.1356 0.2674 

5 0.0812 0.1848 0.4586 
 
0.0372 0.0880 0.2858 

Sum 1.0000 1.0000 1.0000 
 
1.0000 1.0000 1.0000 

 

 
𝑃𝑗
𝑜 (partial rejection)  

 
𝑃𝑗
𝑜 (total rejection)  

𝑗 𝜌 = 0.5 𝜌 = 1 𝜌 = 3 
 
𝜌 = 0.5 𝜌 = 1 𝜌 = 3 

0 0.3566 0.1851 0.0906 
 
0.3845 0.2100 0.0949 

1 0.2075 0.1502 0.0295 
 
0.2337 0.1904 0.0494 

2 0.1595 0.1660 0.0703 
 
0.1704 0.2002 0.1121 
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3 0.1133 0.1620 0.1314 
 
0.1089 0.1758 0.1905 

4 0.0819 0.1520 0.2197 
 
0.0653 0.1356 0.2674 

5 0.0812 0.1848 0.4586 
 
0.0372 0.0880 0.2858 

Sum 1.0000 1.0000 1.0000 
 
1.0000 1.0000 1.0000 

 

5.4.2 Standard log-Normal inter-batch-arrival times 

The inter-batch-arrival pattern is standard log-normal (𝑆𝐿𝑁)  with 𝑎𝑚 =

𝑉𝑒
−[ln(𝑚)]2

2 , (𝑚 ≥ 1, 𝑉 = 1/∑ 𝑒
−[ln(𝑗)]2

2∞
𝑗=1 ). The parameters taken are 𝑀 = 2,𝑁 = 5, 𝑏1 =

0.425, 𝑏2 = 0.325, 𝑏3 = 0.075, 𝑏4 = 0.05, 𝑏5 = 0.125, 𝑐 = 4, 𝜌 = 0.5, 1, and 3.  This 

gives �̅� = 2.125, �̅� = 4.6519 and 𝜇 = 0.2284, 0.1142, and 0.0381. 

Table 19: Various distributions in 𝑺𝑳𝑵𝑿/𝑮𝒆𝒐/𝟒/𝟓 queue 

 
𝑄𝑗
− (partial rejection)  

 
𝑄𝑗
− (total rejection)  

𝑗 𝜌 = 0.5 𝜌 = 1 𝜌 = 3 
 
𝜌 = 0.5 𝜌 = 1 𝜌 = 3 

0 0.2825 0.0883 0.0064 
 
0.3201 0.1168 0.0103 

1 0.2644 0.1517 0.0223 
 
0.3006 0.2111 0.0425 

2 0.1994 0.1938 0.0578 
 
0.2033 0.2450 0.1093 

3 0.1299 0.2045 0.1285 
 
0.1081 0.2127 0.2126 

4 0.0836 0.1997 0.2682 
 
0.0503 0.1445 0.3171 

5 0.0403 0.1621 0.5168 
 
0.0176 0.0700 0.3082 

Sum 1.0000 1.0000 1.0000 
 
1.0000 1.0000 1.0000 

 

 
𝑄𝑗 (partial rejection)  

 
𝑄𝑗 (total rejection)  

𝑗 𝜌 = 0.5 𝜌 = 1 𝜌 = 3 
 
𝜌 = 0.5 𝜌 = 1 𝜌 = 3 

0 0.3588 0.1407 0.0185 
 
0.3950 0.1730 0.0246 

1 0.2488 0.1687 0.0367 
 
0.2777 0.2213 0.0596 

2 0.1757 0.1901 0.0765 
 
0.1773 0.2306 0.1264 

3 0.1114 0.1871 0.1440 
 
0.0924 0.1899 0.2169 

4 0.0710 0.1746 0.2620 
 
0.0427 0.1253 0.2968 

5 0.0342 0.1388 0.4623 
 
0.0150 0.0599 0.2757 

Sum 1.0000 1.0000 1.0000 
 
1.0000 1.0000 1.0000 

 

 
𝑄𝑗
𝑜 (partial rejection)  

 
𝑄𝑗
𝑜 (total rejection)  

𝑗 𝜌 = 0.5 𝜌 = 1 𝜌 = 3 
 
𝜌 = 0.5 𝜌 = 1 𝜌 = 3 

0 0.2981 0.1217 0.0171 
 
0.3262 0.1479 0.0224 
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1 0.2178 0.1442 0.0325 
 
0.2504 0.1923 0.0526 

2 0.1767 0.1685 0.0666 
 
0.1910 0.2146 0.1116 

3 0.1248 0.1729 0.1233 
 
0.1197 0.1946 0.1957 

4 0.0861 0.1673 0.2206 
 
0.0705 0.1533 0.2957 

5 0.0965 0.2255 0.5399 
 
0.0422 0.0973 0.3220 

Sum 1.0000 1.0000 1.0000 
 
1.0000 1.0000 1.0000 

 

 
𝑃𝑗
− (partial rejection)  

 
𝑃𝑗
− (total rejection)  

𝑗 𝜌 = 0.5 𝜌 = 1 𝜌 = 3 
 
𝜌 = 0.5 𝜌 = 1 𝜌 = 3 

0 0.2188 0.0716 0.0056 
 
0.2464 0.0932 0.0088 

1 0.2247 0.1247 0.0190 
 
0.2646 0.1777 0.0362 

2 0.1975 0.1671 0.0484 
 
0.2168 0.2238 0.0939 

3 0.1440 0.1848 0.1057 
 
0.1395 0.2156 0.1879 

4 0.1014 0.1886 0.2177 
 
0.0830 0.1761 0.3134 

5 0.1136 0.2633 0.6036 
 
0.0497 0.1136 0.3600 

Sum 1.0000 1.0000 1.0000 
 
1.0000 1.0000 1.0000 

 

 
𝑃𝑗 (partial rejection)  

 
𝑃𝑗 (total rejection)  

𝑗 𝜌 = 0.5 𝜌 = 1 𝜌 = 3 
 
𝜌 = 0.5 𝜌 = 1 𝜌 = 3 

0 0.2981 0.1217 0.0171 
 
0.3262 0.1479 0.0224 

1 0.2178 0.1442 0.0325 
 
0.2504 0.1923 0.0526 

2 0.1767 0.1685 0.0666 
 
0.1910 0.2146 0.1116 

3 0.1248 0.1729 0.1233 
 
0.1197 0.1946 0.1957 

4 0.0861 0.1673 0.2206 
 
0.0705 0.1533 0.2957 

5 0.0965 0.2255 0.5399 
 
0.0422 0.0973 0.3220 

Sum 1.0000 1.0000 1.0000 
 
1.0000 1.0000 1.0000 

 

 
𝑃𝑗
𝑜 (partial rejection)  

 
𝑃𝑗
𝑜 (total rejection)  

𝑗 𝜌 = 0.5 𝜌 = 1 𝜌 = 3 
 
𝜌 = 0.5 𝜌 = 1 𝜌 = 3 

0 0.2981 0.1217 0.0171 
 
0.3262 0.1479 0.0224 

1 0.2178 0.1442 0.0325 
 
0.2504 0.1923 0.0526 

2 0.1767 0.1685 0.0666 
 
0.1910 0.2146 0.1116 

3 0.1248 0.1729 0.1233 
 
0.1197 0.1946 0.1957 

4 0.0861 0.1673 0.2206 
 
0.0705 0.1533 0.2957 

5 0.0965 0.2255 0.5399 
 
0.0422 0.0973 0.3220 

Sum 1.0000 1.0000 1.0000 
 
1.0000 1.0000 1.0000 
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5.5 Conclusions 

The numerical results based on Chapter 4 are presented in Chapter 5. In doing so, 

all different cases are considered (the 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 and 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 queues involving 

light and heavy-tailed inter-batch-arrival times). 

Since the queue-length distributions are in terms of roots, the characteristic 

equation plays a pivotal role in treating 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  and 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁  queues. 

Particularly, when the inter-batch-arrival times of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues follow heavy-tailed 

distributions, the characteristic equation needs to be modified to allow the computation of 

roots. This aspect of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues is isolated and studied even further in Appendix 

C.3.1, C.3.2, and C.3.3. On the other hand, no manipulation of the characteristic equation 

is needed when treating 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 queues using roots. 
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6 CONCLUSIONS 

6.1 Thesis findings  

6.1.1 Findings for 𝑮𝑰𝑿/𝑴/𝒄 and 𝑮𝑰𝑿/𝑴/𝒄/𝑵 queues 

• Derived the queue-length distribution at various time epochs in terms of the 

roots of the characteristic equation. 

• Provided computational results in the 𝐺𝐼𝑋/𝑀/𝑐  and 𝐺𝐼𝑋/𝑀/𝑐/𝑁  queues 

involving both light and heavy-tailed inter-batch-arrival times. 

6.1.2 Findings for 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄 and 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄/𝑵 queues 

• Derived the queue-length distribution at various time epochs for both the EAS 

and LAS-DA in terms of the roots of the characteristic equation. 

• Provided computational results in the 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 and 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 queues 

involving both light and heavy-tailed inter-batch-arrival times. 

6.2 Summary 

 Multi-server bulk-arrival queues are advanced queues that are widely studied and 

applied across various fields of study. The purpose of this thesis is to introduce a unified 

approach, called the roots method, in treating multi-server bulk-arrival queues that 

involve continuous and discrete-times, infinite and finite-buffers, and light and heavy-

tailed inter-batch-arrival times.  

 In essence, it is our intention to solve an advanced set of queueing models in the 

most simple and pragmatic way using the roots method. The roots method consists of two 

steps: Derive the characteristic equation of the model followed by expressing the solution 

in terms of the roots of the model’s characteristic equation.  
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In Chapter 2 we applied the roots method to find the queue-length distributions of 

𝐺𝐼𝑋/𝑀/𝑐 and 𝐺𝐼𝑋/𝑀/𝑐/𝑁 queues. By interpreting each model’s Chapman-Kolmogorov 

equation as a set of linear difference equations, the solutions can be expressed in terms of 

roots. In dealing with heavy-tailed inter-batch-arrival times, the characteristic equation of 

𝐺𝐼𝑋/𝑀/𝑐 queues is modified to comply with the properties of continuous heavy-tailed 

probability distributions. However in 𝐺𝐼𝑋/𝑀/𝑐/𝑁  queues, such modification is not 

needed. Based on the analytical findings in Chapter 2, various numerical results were 

computed in Chapter 3. 

In Chapter 4 we again applied the roots method to find the queue-length 

distributions of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  and 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁  queues. By interpreting each model’s 

global balance equation as a set of linear difference equations, the solutions can be 

expressed in terms of roots. Interestingly, in both models, the queue-length distribution at 

an outside observer’s time epoch in the EAS and the distributions in the LAS-DA share 

the same roots. In dealing with heavy-tailed inter-batch-arrival times, the characteristic 

equation of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  queues is modified to comply with the properties of discrete 

heavy-tailed probability distributions. However in 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁  queues, such 

modification is not needed. Based on the analytical findings in Chapter 4, various 

numerical results were computed and presented in Chapter 5. 

Because the characteristic equation and its roots play a pivotal role in the roots 

method, we analyze this aspect of the thesis even further and deduce some facts in 

Appendix C.3. The root finding programs and the analytical proof of the existence of 

roots are also provided in Appendices C.1 and C.2. Lastly, the characteristic equation of 
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𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  can be transformed into that of 𝐺𝐼𝑋/𝑀/𝑐  queues as demonstrated in 

Appendix C.2.3. 
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APPENDIX A 

This appendix provides all preliminary knowledge that is required to understand 

this thesis. This appendix begins with a brief summary of the probability theory, 

stochastic processes, and Markov processes in a progressive manner. The summary then 

leads to the following: 

Under the continuous probability theory (Appendix A.2) the definition of the p.d.f., 

L.T., and L-S.T. are discussed. Similarly, under the discrete probability theory (Appendix 

A.3) the definition of the p.m.f., g.f., and p.g.f. are discussed. 

A.1 Brief summary of the probability theory, stochastic processes, and 

Markov processes 

The probability theory can be explained by the example of a coin toss. When a 

coin is tossed, it could lead to two possible outcomes (heads or tails), and each outcome 

has a probability of 0.5. A r.v. represents a group of outcomes (in this case, heads or tails) 

and the distribution function (d.f.) allocates probability to each outcome (in this case, 0.5 

chance of getting heads and the same for getting tails).  

In general, the outcomes of a r.v. can be non-negative real numbers or non-

negative integers. In the case of the former, the d.f. of a r.v. becomes a p.d.f. and in the 

case of the latter, the d.f. of a r.v. becomes a p.m.f.. The c.d.f. is a sum of either the 

p.d.f.’s or p.m.f.’s from the smallest valued outcome up to a particular outcome of 

interest. In a holistic sense, r.v.’s can be added, subtracted, multiplied, divided, or 

collected to describe a system. 

A r.v. could also be time sensitive such that a probability of an outcome changes 

over time. Building on the previous example of a coin toss, the probability of getting tails 
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on the first coin toss (0.5) would be different from the probability of getting five tails in a 

row (0.55 = 0.03125). As explained, it is evident that the probability of an outcome in 

the future depends on the probabilities of all previous outcomes. In view of this, a 

collection of time dependent r.v.’s form the stochastic processes, which Parzen [42] 

describes as the “dynamic part of the probability theory.” The concept of the stochastic 

processes is familiar and extensively applied across various fields including statistical 

physics (Brownian motion, fluctuations, and thermal noise), communication and control 

(automatic tracking of moving objects, reproduction of sound and images), and inventory 

control (minimizing time-of-delivery lag and deciding when to place an order for 

replenishment of stock). 

There exists a special class of the stochastic processes called the Markovian 

stochastic processes (Markov processes). The Markov processes inherit the basic 

properties of the stochastic processes but have an additional consideration known as the 

Markov property: The probability of an outcome in the future only depends on the 

probability of the present outcome and not that of the past. For example, the Markov 

property states that given a car engine with a mileage of 120,000 kilometers, the 

probability of this engine lasting for another 50,000 kilometers is the same as the 

probability of the same engine lasting for 50,000 kilometers from the time it was first 

built. When comparing the two probabilities, the previous mileage on the engine (i.e. the 

past) is simply forgotten when considering additional mileage from the present to the 

future. The two well known d.f.’s that possess the Markov property are the exponential 

and geometric distributions. The Markov property is often referred to as ‘the forgetfulness 

property’ due to its tendency to ignore the past. Interestingly, the Markov processes are a 

powerful tool when deducing predictions from a limited amount of information. It enables 
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a great degree of simplification in the queueing theory when considering the services 

times to follow the exponential or geometric distribution. The Markov processes can be 

further divided into four sub-processes: 

Table 20: Classification of the Markov processes 

 
Discrete-state Continuous-state 

Discrete-time 
Discrete parameter Markov 

chains 

Discrete parameter Markov 

processes 

Continuous-

time 

Continuous parameter Markov 

chains 

Continuous parameter Markov 

processes 

 

The Markov chains are Markov processes whose state space is discrete. In the continuous 

parameter Markov chains, the transition of a r.v. from a state to another can be 

probabilistically described in terms of the Chapman-Kolmogorov equation. Similarly in 

the discrete parameter Markov chains, the transition of a r.v. from a state to another can 

be probabilistically described in terms of the global balance equation. 

A.2 Continuous probability theory 

Assume that there is a continuous r.v., say 𝑇, such that it has a p.d.f. 𝑓(𝑡), (0 ≤

𝑡 < ∞). The 𝑛-th moment of 𝑇 is defined as 𝐸[𝑇𝑛] = ∫ 𝑡𝑛𝑓(𝑡)𝑑𝑡
∞

0
, (𝑛 ≥ 1).  

A.2.1 Laplace transform and Laplace-Stieltjes transform 

As indicated in Chaudhry and Templeton [17], applying L.T. in the continuous 

probability theory transforms a p.d.f. into a L.T. In defining L.T., assume that there is a 

continuous r.v. 𝑇 with a p.d.f. 𝑓(𝑡), (𝑡 ≥ 0). Its L.T. is defined as 

𝑓(̅𝜔) = 𝐸[𝑒−𝜔𝑇] = ∫ 𝑒−𝜔𝑡𝑓(𝑡)𝑑𝑡
∞

0
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where 𝑓(̅0) = 1 and 𝑓(̅𝜔) is an analytic function in the half-place Re(𝜔) > 𝜔0, (𝜔0 ≤

0) since  0 ≤ 𝑓(̅𝜔) ≤ 1 for  𝜔 ≥ 0 . L.T. is a useful tool in the continuous probability 

theory due to its ability to express useful information in a fairly simple form. 

When 𝑓(̅𝜔) is inverted to 𝑓(𝑡), the procedure is known as the inverse L.T. and defined as 

𝑓(𝑡) =
1

2𝜋𝑖
∫ 𝑒𝜔𝑡𝑓(̅𝜔)𝑑𝜔
𝑎+𝑖∞

𝑎−𝑖∞

 

where the contour is any vertical line 𝜔 = 𝑎 so that 𝑓(̅𝜔) has no singularities on, or to the 

right of it. 

The L-S.T is considered to be more general than the L.T. as it encompasses a 

wider class of r.v.’s than the simple L.T. The definition of the L-S.T. is as follows: 

Let 𝑇 be a non-negative r.v. with a c.d.f. 𝐹(𝑡) = 𝑓(𝑡 ≤ 𝑇), then the L-S.T. of 𝐹(𝑡) is 

defined as 

𝑓�̅�(𝜔) = ∫ 𝑒−𝜔𝑡𝑑𝐹(𝑡)
∞

0

 

with Re(𝜔) ≥ 0. The integral on the right-hand side of the definition of L-S.T. is known 

as the Stieltjes integral. In addition, the L-S.T. of 𝐹(𝑡) becomes the L.T. of 𝑓(𝑡) if 𝑓(𝑡) =

𝑑𝐹(𝑡)
𝑑𝑡
⁄  exists. 

A.3 Discrete probability theory 

Assume that there is a discrete r.v., say  𝑀 , such that it has a p.m.f.  𝑓𝑚 =

𝑃(𝑀 = 𝑚), (0 ≤ 𝑚 < ∞).  The  𝑛 -th moment of  𝑀 is defined as  𝐸[𝑀𝑛] =

∑ 𝑚𝑛𝑓𝑚
∞
𝑚=0 , (𝑛 ≥ 1). 
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A.3.1 Generating function and probability generating function 

Let {𝑢𝑛} be a sequence of real numbers. If 𝑈(𝑧) = ∑ 𝑢𝑛𝑧
𝑛∞

𝑛=0  converges in some 

interval  |𝑧| < 𝑧0, (0 ≤ 𝑧0 ≤ ∞), then  𝑈(𝑧) is called the g.f. of the sequence  {𝑢𝑛} (see 

Hunter [27] for details). Here, 𝑧0 is a unique number called the radius of convergence 

such that 

- ∑ 𝑢𝑛𝑧
𝑛∞

𝑛=0  converges (absolutely) for |𝑧| < 𝑧0 

- ∑ 𝑢𝑛𝑧
𝑛∞

𝑛=0  diverges for |𝑧| > 𝑧0 

- ∑ 𝑢𝑛𝑧
𝑛∞

𝑛=0  converges uniformly for |𝑧| ≤ 𝜃, where 𝜃 < 𝑧0 

Since a g.f. transforms a sequence into a power series (a procedure also known as the 𝑧-

transform) an inverse g.f. returns a power series back into a sequence. 

In introducing the g.f. in the discrete probability theory, let there be a discrete 

r.v.  𝑉.  The 𝑈(𝑧)  becomes a p.g.f. of 𝑉  if and only if  𝑢𝑛 satisfies the following the 

following conditions: 

- 𝑢𝑛 = 𝑃(𝑉 = 𝑛), (𝑛 ≥ 0) 

- 0 ≤ 𝑢𝑛 ≤ 1, (𝑛 ≥ 0) 

- ∑ 𝑢𝑛
∞
𝑛=0 = 1 

When all three of the above conditions are met, 𝑈(𝑧) becomes the p.g.f. of  𝑉, such that 

𝑈(𝑧) = 𝐸[𝑧𝑉], (|𝑧| ≤ 1) 

In this regard, a p.g.f. is always a g.f. but a g.f. is not always a p.g.f. In addition, 

the p.g.f is a power series that has advantages over its p.m.f. counterpart when obtaining 

moments of a r.v.. For instance, the moments of a discrete r.v. are easy to derive from a 

p.g.f. as illustrated by the following property: 
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𝑈(𝑟)(1) = lim
𝑧→1−

𝑑𝑟𝑈(𝑧)

𝑑𝑧𝑟
=
𝑑𝑟

𝑑𝑧𝑟
𝐸[𝑧𝑉]|𝑧=1, (𝑟 ≥ 1) 

where 𝑈(𝑟)(1) is the 𝑟-th derivative of the p.g.f. of the r.v. 𝑉 evaluated at 𝑧 = 1. This can 

be used to find various parameters such as the mean, variance, and moments of 𝑉. Heavy-

tailed probability distributions have non-closed form or non-existent p.g.f.’s. 
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APPENDIX B 

In this appendix, we explain the basic constructs of a queueing model, as well, 

introduce some theorems that are commonly used when analyzing both continuous and 

discrete-time queues. 

B.1 Basics of queueing theory and Kendall’s notation 

The queueing theory analyzes the properties that surround a queueing model. In 

this thesis, the term ‘queueing system’, ‘queueing model’, or simply ‘queues’ are 

synonymous terms that refer to the mathematical construct that composes of the servers, 

customers in the servers, and customers in queue (if any). Queueing models can be 

described as the mathematical models that describe the process of customers arriving for 

service, waiting for service (if service is not immediately available), and receiving of 

service, followed by leaving the system once service is complete. In the context of this 

thesis (i.e. bulk-arrival multi-server queues), a ‘system’ refers to the space that includes 

the queue of customers and the servers with customers under service. A queue refers to 

only the space which includes the queue of customers. As well, a customer is a generic 

term that refers to any element (person, product, packet, etc) that participates in a 

queueing system. Queueing models can be described in terms of the Kendall’s notation: 

𝐴𝑛
𝑋𝑛(𝑡)/𝐵𝑛

𝑎,𝑏/𝑐/𝑁 

where 

𝐴𝑛(𝑡): Inter-arrival time distribution with arrival rate depending on 𝑡 and 𝑛 (if 𝑡 and 𝑛 in 

𝐴𝑛(𝑡) are missing, it means the arrival rate 𝜆𝑛 is a constant 𝜆). 
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𝑋𝑛:  Arrival group size distribution with group size probability depending on 𝑛 (if 𝑛 in 

𝑋𝑛 is missing, it means the group size probability is independent of 𝑛). In this 

thesis, the terms ‘group,’ ‘bulk,’ and ‘batch’ are synonymously used. 

𝐵𝑛:     Service time distribution with service rate depending on 𝑛 (if 𝑛 in 𝐵𝑛 is missing, it 

means the service rate 𝜇𝑛 is a constant 𝜇). 

𝑎:       Quorum for service group. 

𝑏:       Capacity for service group. 

𝑐:        Number of servers. 

𝑁:       Finite-buffer. The queues with Kendall’s notation that entail 𝑁 are referred to as 

finite-buffer queues; otherwise they are referred to as infinite-buffer queues. 

The traffic intensity (𝜌) is a parameter that is uniquely defined for each queueing model. 

In finite-buffer queues 𝜌 > 0 whereas in infinite-buffer queues 0 < 𝜌 < 1. Lastly, the 

term ‘queue-length distribution’ and ‘steady-state p.m.f. of the number of customers in 

the system’ are used synonymously in this thesis. 

B.2 Linear difference equations 

 The linear difference equations frequently arise in the theory of queues (see 

Chaudhry and Templeton [17]). In particular, an equation of the type 

𝑎0𝑓𝑥+𝑛 + 𝑎1𝑓𝑥+𝑛−1+. . . +𝑎𝑛−1𝑓𝑥+1 + 𝑎𝑛𝑓𝑥 = 𝑏𝑥, (𝑥 = 1,2, … ) 

is called a non-homogeneous linear difference equation of order 𝑛  where 𝑎𝑖  are the 

known constants, 𝑓𝑖  are the unknown functions to be determined, and 𝑏𝑥  is the given 

function of 𝑥. If  𝑏𝑥 = 0 for all 𝑥  then it is called the homogeneous linear difference 

equation with constant coefficients. A general solution to the above non-homogenous 

equation consists of two parts: 
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1. A linear combination of all solutions to the homogeneous equation 

2. A particular solution to the non-homogeneous equation 

The solution to the homogeneous part of the equation proceeds along the following lines. 

Letting 𝑓𝑥 = 𝐶𝑧
𝑥 in the homogeneous equation leads to 

𝑎0𝑧
𝑛 + 𝑎1𝑧

𝑛−1+. . . +𝑎𝑛−1𝑧 + 𝑎𝑛 = 0 

The above expression is an 𝑛-th degree polynomial that has 𝑛 roots (real or complex, 

distinct or coincident). This expression, unique for each queueing model, is also called the 

characteristic equation. Assuming that the roots of the characteristic equation are distinct, 

the general solution of the homogeneous part can be written as 

𝑓𝑥 =∑𝐶𝑗𝑧𝑗
𝑥

𝑛

𝑗=1

 

For more details on linear difference equations, readers may refer to Chaudhry and 

Templeton [17]. 

B.3 Rouché’s theorem 

If 𝑓(𝑧) and 𝑔(𝑧) are the functions of 𝑧, which are analytic inside and on a closed 

contour 𝐶, and if |𝑓(𝑧)| < |𝑔(𝑧)| on 𝐶, then 𝑔(𝑧) and 𝑔(𝑧) + 𝑓(𝑧) have the same number 

of roots inside 𝐶. 

B.4 Random biased sampling 

 The random biased sampling is a technique in queueing theory that is often used 

on two particular occasions: When developing a relation between the queue-length 

distributions at pre-arrival and random-time epochs (see e.g., Kim [31]), as well, when 

expressing the random position of a customer within an incoming batch (see Burke [5]).  
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 The random biased sampling can be best explained using the renewal theory. The 

renewal theory deals with the study of renewal processes. A process {𝑁(𝑡), 𝑡 ≥ 0} whose 

state space belongs to a denumerable set {0,1,2, … } and for which the inter-arrival times 

𝑈𝑛 = 𝜎𝑛
′ − 𝜎𝑛−1

′ , 𝑛 = 1,2,3, … , (𝜎0
′ = 0) between successive arrivals (or occurrences) are 

positive i.i.d.r.v.’s, is called a renewal process. Let the renewals occur at instants of time 

𝜎1
′, 𝜎2

′ , …, and suppose that 𝑈𝑛 = 𝜎𝑛
′ − 𝜎𝑛−1

′ , 𝑛 = 2,3, … are i.i.d.r.v.’s with the c.d.f. 

𝐴(𝑢) = 𝑃(𝑈𝑛 ≤ 𝑢), (𝑛 ≥ 2) 

and mean 

𝑎 = 𝐸[𝑈𝑛], (𝑛 ≥ 2) 

Further, let 𝑈1 = 𝜎1
′ − 𝜎0

′ be independent of other 𝑈’s and 

𝐴1(𝑢) = 𝑃(𝑈1 ≤ 𝑢) 

By letting 𝑈1 to be independent of the remaining 𝑈’s, the renewal process {𝑁(𝑡), 𝑡 ≥ 0} 

becomes a modified (also called delayed or general) renewal process with 

𝐴1(𝑢) =
1

𝑎
∫ [1 − 𝐴(𝑥)]
𝑢

0

𝑑𝑥 

where 𝑎 = ∫ 𝑢𝑑𝐴(𝑢)
∞

0
. The above expression can be interpreted as the relation between 

the c.d.f.’s of the inter-batch-arrival times at random and pre-arrival time epochs in 

continuous-time queues.  

 Another application of the random biased sampling in queueing theory is 

explained. As introduced by Burke [5], using the random biased sampling, we can find 

the distribution of the position of the random customer within an incoming group of size 

𝑋. The distribution of the size of the group in which the random position falls within 

should be proportional to ℎ𝑏ℎ  where 𝑃(𝑋 = ℎ) = 𝑏ℎ, (ℎ ≥ 1) , and is thus given by 
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ℎ𝑎ℎ �̅�⁄  where �̅� = ∑ ℎ𝑏ℎ
∞
ℎ=1 . Consequently, if the position of the random customer within 

the arrival group is 𝐽, then  

𝑃(𝐽 = 𝑗) =∑
𝑏ℎ

�̅�

∞

ℎ=𝑗

, (𝑗 = 1,2, … ) 

 The above relation can also be interpreted as the relation between the steady-state 

p.m.f.’s of the inter-batch-arrival times at pre-arrival and random time epochs in discrete-

time queues. 

  



96 

 

 

APPENDIX C 

The purpose of this appendix is to present a wide range of materials that are 

needed in explaining the solution procedures and numerical results in the main body of 

this thesis (Chapters 2, 3, 4, and 5). 

C.1 Supplementary materials on 𝑮𝑰𝑿/𝑴/𝒄 queues 

C.1.1 Transition probabilities of 𝑮𝑰𝑿/𝑴/𝒄 queues 

The transition probabilities of 𝐺𝐼𝑋/𝑀/𝑐 queues can be grouped into two different 

matrices: [𝑃𝑖,𝑗]𝑐≤𝑟 when 𝑐 ≤ 𝑟 and [𝑃𝑖,𝑗]𝑐>𝑟 when 𝑐 > 𝑟 

 
  

Figure 6: The transition probabilities of 𝑮𝑰𝑿/𝑴/𝒄 queues when 𝒄 ≤ 𝒓 

 

 

 
 

Figure 7: The transition probabilities of 𝑮𝑰𝑿/𝑴/𝒄 queues when 𝒄 > 𝒓 
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C.1.2 Proving the existence of roots 

We prove that the characteristic equation of the model 𝐺𝐼𝑋/𝑀/𝑐  has 𝑟  roots 

inside the unit circle. In doing so, we rearrange (1) as 

𝑝𝑗
− =∑𝑏ℎ

𝑟

ℎ=1

∑ 𝑝𝑖
−𝑘𝑖+ℎ−𝑗

∞

𝑖=𝑗−ℎ

, (𝑗 ≥ 1) 

Now substituting  𝑝𝑗
− = 𝐶𝑧𝑗 , (𝑗 ≥ 𝑐) into above expression leads to (2) which is the 

underlying characteristic equation of 𝐺𝐼𝑋/𝑀/𝑐  queues. To prove that (2) has  𝑟 roots 

inside the unit circle |𝑧| = 1, let us rewrite it as 

𝑧𝑟 − (∑𝑏ℎ𝑧
𝑟−ℎ

𝑟

ℎ=1

)𝐾(𝑧) = 0 

Now let 

𝑓(𝑧) = 𝑧𝑟 

and 

𝑔(𝑧) = −(∑𝑏ℎ𝑧
𝑟−ℎ

𝑟

ℎ=1

)𝐾(𝑧) 

Consider the absolute values of  𝑓(𝑧) and  𝑔(𝑧) on the circle |𝑧| = 1 − 𝛿 , where  𝛿 is 

positive and sufficiently small. This gives,  

|𝑓(𝑧)| = (1 − 𝛿)𝑟 = 1 − 𝛿𝑟 + 𝑜(𝛿),  

and 

|𝑔(𝑧)| ≤ ∑𝑏ℎ|𝑧|
𝑟−ℎ

𝑟

ℎ=1

𝐾(|𝑧|) 

which leads to 

 = 1 − 𝛿(𝑟 − 𝜇𝑋) −
𝑐𝜇

 𝜆
𝛿 + 𝑜(𝛿) 
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or 

= 1 − 𝛿𝑟 −
𝑐𝜇

 𝜆
(1 − 𝜌)𝛿 + 𝑜(𝛿) 

where  𝜌 =
𝜆𝜇𝑋

𝑐𝜇
, (0 < 𝜌 < 1).  Thus, for 0 < 𝜌 < 1 and  𝛿 sufficiently small,  |𝑓(𝑧)| >

|𝑔(𝑧)| on |𝑧| = 1 − 𝛿. Because 𝑓(𝑧) and 𝑔(𝑧) satisfy the conditions of Rouché’s theorem 

(see Appendix B.3), it follows that (2) has 𝑟 roots inside the unit circle, since 𝑓(𝑧) has 𝑟 

roots inside |𝑧| = 1. 

C.1.3 Root finding program 

Below program computes the roots of the characteristic equation of 𝐺𝐼𝑋/𝑀/𝑐 

queues involving heavy-tailed inter-batch-arrival times. 

(1) with(𝑝𝑙𝑜𝑡𝑠): 

(2) 𝐿𝐶:= 10−40: 

(3) 𝜇 ≔ 

(4) 𝑎 ≔ (𝑡) → 

(5) 𝑏 ≔ (ℎ) → 

(6) 𝑐 ≔ 

(7) 𝑟 ≔ 

(8) 𝛹:= 1: 

(9) while Re [∫ 𝑒−𝑐�̂�𝑡
(𝑐�̂�𝑡)𝛹

𝛹!

∞

0
𝑎(𝑡)𝑑𝑡] > 𝐿𝐶 do 

(10)  𝛹:= 𝛹 + 1: 

(11) end do: 

(12) if Re [∫ 𝑒−𝑐�̂�𝑡
(𝑐�̂�𝑡)𝛹

𝛹!

∞

0
𝑎(𝑡)𝑑𝑡] ≤ 𝐿𝐶 then 

(13) 𝛹:= 𝛹 − 1: 

(14) end if: 

(15) 𝑦 ≔ 𝑧𝑟 − 𝑒𝑥𝑝𝑎𝑛𝑑 (𝑧𝑟 ∗ ∑ 𝑏(ℎ) ∗ 𝑧−ℎ𝑟
ℎ=1 ∑ (∫ 𝑒−𝑐𝜇𝑡

(𝑐𝜇𝑡)𝑛

𝑛!
𝑎(𝑡)𝑑𝑡

∞

0
)𝛹

𝑛=0 𝑧𝑛) 
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(16) 𝐴𝑙𝑙𝑅𝑜𝑜𝑡𝑠 ≔ [𝑓𝑠𝑜𝑙𝑣𝑒(𝑦, 𝑧, {𝑧 = −1 − 𝐼. .1 + 𝐼}, 𝑐𝑜𝑚𝑝𝑙𝑒𝑥)]: 

(17) 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒(𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑝𝑙𝑜𝑡, [𝐴𝑙𝑙𝑅𝑜𝑜𝑡𝑠, 𝑠𝑦𝑚𝑏𝑜𝑙 = (𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑐𝑟𝑜𝑠𝑠
, 𝑠𝑦𝑚𝑏𝑜𝑙𝑠𝑖𝑧𝑒 = 10, 𝑠𝑡𝑦𝑙𝑒 = 𝑝𝑜𝑖𝑛𝑡, 𝑙𝑎𝑏𝑒𝑙𝑠 = ["Re", "𝐼𝑚"], 𝑐𝑜𝑙𝑜𝑟
= "𝑅𝑒𝑑"], [𝑐𝑜𝑠 + 𝑠𝑖𝑛𝐼, −𝜋. . 𝜋, 𝑐𝑜𝑙𝑜𝑟 = "𝑆𝑡𝑒𝑒𝑙𝐵𝑙𝑢𝑒"]) 

To run the above program, 𝜇, 𝑎(𝑡), 𝑏(ℎ), 𝑐 , and 𝑟  must be defined. In line (2) of the 

program, the LC of 10−40 is used as the default value but it can be scaled depending on 

the desired degree of accuracy. In addition, the term Re [∫ 𝑒−𝑐�̂�𝑡
(𝑐�̂�𝑡)𝛹

𝛹!

∞

0
𝑎(𝑡)𝑑𝑡] in line 

(9) and (12) of our program were chosen as the demarcation point to determine 𝛹 since it 

is the constant coefficient of the last term of 𝑧 in 𝐾𝛹(𝑧), hence LC stands for the Last 

Coefficient. Line (17) plots all 𝑟 roots that are found within the contour of a unit circle 

|𝑧| = 1. 

C.1.4 Distinguishing between 𝒄 ≤ 𝒓 and 𝒄 > 𝒓 in solving for 𝒑𝒋
− 

We take an alternate approach by assuming two different solutions, 𝑝𝑗
− =

∑ 𝐶ℎ𝑧ℎ
𝑗𝑟

ℎ=1 , (𝑗 ≥ 𝑟, 𝑐 ≤ 𝑟) and 𝑝𝑗
− = ∑ 𝐶ℎ𝑧ℎ

𝑗𝑟
ℎ=1 , (𝑗 ≥ 𝑐, 𝑐 > 𝑟), and then substitute each 

of them into (1). By doing so, it reveals additional mathematical properties of 𝑝𝑗
− : 

Readers will see that when 𝑐 ≤ 𝑟, the 𝑝𝑗
− can be completely expressed in terms of the 

roots of (2) (i.e. a geometric sum) whereas when 𝑐 > 𝑟, the 𝑝𝑗
− can be partially expressed 

in terms of the roots of (2) (i.e. a partial geometric sum). This analytical finding was 

introduced by Chaudhry and Kim [13]. In the following, we first solve (𝑝𝑗
−, 𝑗 ≥ 0) when 

𝑐 ≤ 𝑟 and then solve (𝑝𝑗
−, 𝑗 ≥ 0) when 𝑐 > 𝑟. 
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C.1.4.1 First case: 𝒄 ≤ 𝒓 

We assume that the 𝐶ℎ, (1 ≤ ℎ ≤ 𝑟)  in 𝑝𝑗
− = ∑ 𝐶ℎ𝑧ℎ

𝑗𝑟
ℎ=1 , (𝑗 ≥ 𝑟)  also span the 

bound (𝑐 ≤ 𝑗 ≤ 𝑟 − 1) . Thus, substituting 𝑝𝑗
− = ∑ 𝐶ℎ𝑧ℎ

𝑗𝑟
ℎ=1 , (𝑐 ≤ 𝑗 ≤ 𝑟 − 1)  into (1) 

leads to  

                                      ∑𝐶ℎ

𝑟

ℎ=1

𝑧ℎ
𝑗
=∑∑𝐶ℎ𝑧ℎ

𝑖

𝑟

ℎ=1

∞

𝑖=0

∑𝑏𝑙

𝑟

𝑙=1

𝑘𝑖+𝑙−𝑗 

                                                        = ∑𝐶ℎ

𝑟

ℎ=1

∑𝑏𝑙

𝑟

𝑙=1

(∑𝑘𝑖+𝑙−𝑗𝑧ℎ
𝑖

∞

𝑖=0

) 

                                                        = ∑𝐶ℎ

𝑟

ℎ=1

∑𝑏𝑙

𝑟

𝑙=1

( ∑ 𝑘𝑛

∞

𝑛=𝑙−𝑗

𝑧ℎ
𝑛−𝑙+𝑗

) 

which can be rearranged to 

0 = ∑𝐶ℎ𝑧ℎ
𝑗

𝑟

ℎ=1

(∑𝑏𝑙

𝑟

𝑙=1

𝑧ℎ
−𝑙 ∑ 𝑘𝑛

𝑙−𝑗−1

𝑛=0

𝑧ℎ
𝑛) , (𝑐 ≤ 𝑗 ≤ 𝑟 − 1) (51) 

Now letting 𝑗 = 𝑟 − 1 in (51) gives 

                                                   0 = ∑𝐶ℎ𝑧ℎ
𝑟−1

𝑟

ℎ=1

(∑𝑏𝑙

𝑟

𝑙=1

𝑧ℎ
−𝑙 ∑ 𝑘𝑛

𝑙−(𝑟−1)−1

𝑛=0

𝑧ℎ
𝑛)                

                                                       = ∑𝐶ℎ𝑧ℎ
𝑟−1

𝑟

ℎ=1

(∑𝑏𝑙

𝑟−1

𝑙=1

𝑧ℎ
−𝑙∑𝑘𝑛

𝑙−𝑟

𝑛=0

𝑧ℎ
𝑛 + 𝑏𝑟𝑧ℎ

−𝑟𝑘0) 

Since ∑ 𝑘𝑛𝑧ℎ
𝑛

𝑛<0 = 0, the above expression simplifies to  

                                                       = ∑𝐶ℎ𝑧ℎ
𝑟−1

𝑟

ℎ=1

(𝑏𝑟𝑘0𝑧ℎ
−𝑟),   (𝑏𝑟 , 𝑘0 > 0)  

                                                       = ∑
𝐶ℎ
𝑧ℎ

𝑟

ℎ=1
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Similarly, by letting 𝑗 =  𝑟 − 2,… , 𝑐 − 1 , 𝑐, we obtain the following (𝑟 − 𝑐) equations: 

∑
𝐶ℎ
𝑧ℎ

𝑟

ℎ=1

=∑
𝐶ℎ

𝑧ℎ
2

𝑟

ℎ=1

= ⋯ =∑
𝐶ℎ

𝑧ℎ
𝑟−𝑐−1

𝑟

ℎ=1

=∑
𝐶ℎ
𝑧ℎ
𝑟−𝑐

𝑟

ℎ=1

= 0 (52) 

Progressively, we further assume that the 𝐶ℎ, (1 ≤ ℎ ≤ 𝑟)  in 𝑝𝑗
− = ∑ 𝐶ℎ𝑧ℎ

𝑗𝑟
ℎ=1 , (𝑗 ≥ 𝑟) 

also span the bound (1 ≤ 𝑗 ≤ 𝑐 − 1). Thus we substitute 𝑝𝑗
− = ∑ 𝐶ℎ𝑧ℎ

𝑗𝑟
ℎ=1 , (1 ≤ 𝑗 ≤ 𝑐 −

1) into 𝑝𝑗
− = ∑ 𝑝𝑖

−𝑃𝑖,𝑗
∞
𝑖=0 , such that 

0 =∑𝐶ℎ𝑧ℎ
𝑗

𝑟

ℎ=1

(∑𝑏𝑙

𝑟

𝑙=1

𝑧ℎ
−𝑙 ∑ 𝑘𝑛

𝑙−𝑗−1

𝑛=0

𝑧ℎ
𝑛) , (1 ≤ 𝑗 ≤ 𝑐 − 1) (53) 

Now substituting 𝑗 = 𝑐 − 1, 𝑐 − 2,… ,1  into (53), we obtain (𝑐 − 1)  equations. 

Combining (52) and (53), we now have (𝑟 − 1) equations. However, to solve for the 

unknown 𝐶ℎ, (1 ≤ ℎ ≤ 𝑟), we require 𝑟 equations. To get the 𝑟-th equation, so that the 

result is also true for 𝑗 = 0, consider the sum of 𝑝𝑗
− 

1 =∑𝑝𝑗
−

∞

𝑗=0

=∑∑𝐶ℎ

𝑟

ℎ=1

𝑧ℎ
𝑗
=∑𝐶ℎ

𝑟

ℎ=1

∑𝑧ℎ
𝑗

∞

𝑗=0

∞

𝑗=0

 

leading to 

∑
𝐶ℎ

1 − 𝑧ℎ

𝑟

ℎ=1

= 1 (54) 

Solving (52), (53), and (54) using available software such as MAPLE or Mathematica, we 

can easily compute the 𝐶ℎ, (1 ≤ ℎ ≤ 𝑟) . Finally, the complete solution to 𝐺𝐼𝑋/𝑀/𝑐 

queues when 𝑐 ≤ 𝑟 is 

𝑝𝑗
− =∑𝐶ℎ𝑧ℎ

𝑗

𝑟

ℎ=1

, (𝑗 ≥ 0) (55) 
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C.1.4.2  Second case: 𝒄 > 𝒓 

In the case of 𝑐 > 𝑟, we replace the entire tail distribution (𝑝𝑗
−, 𝑟 < 𝑐 ≤ 𝑗) of (1) 

with (3). This is done by first expanding and rearranging (1) and letting 𝑗 = 0,1,2, … , 𝑐 +

𝑟 − 2, which yields the following 𝑐 + 𝑟 − 1 equations. 

         0 = 𝑝0
−(𝑃0,0 − 1) + 𝑝1

−𝑃1,0 + 𝑝2
−𝑃2,0+. . . +𝑝𝑐−1

− 𝑃𝑐−1,0 +∑(∑𝐶ℎ𝑧ℎ
𝑖

𝑟

ℎ=1

)𝑃𝑖,0

∞

𝑖=𝑐

                              

         0 = 𝑝0
−𝑃0,1 + 𝑝1

−(𝑃1,1 − 1) + 𝑝2
−𝑃2,1+. . . +𝑝𝑐−1

− 𝑃𝑐−1,1 +∑(∑𝐶ℎ𝑧ℎ
𝑖

𝑟

ℎ=1

)𝑃𝑖,1

∞

𝑖=𝑐

                                       (56) 

                                                                                                 ⋮ 

         0 = 𝑝0
−𝑃0,𝑐+𝑟−2 + 𝑝1

−𝑃1,𝑐+𝑟−2 + 𝑝2
−𝑃2,𝑐+𝑟−2+. . . +𝑝𝑐−1

− 𝑃𝑐−1,𝑐+𝑟−2 +∑𝐶ℎ

𝑟

ℎ=1

∑(𝑧ℎ
𝑖 𝑃𝑖,𝑐+𝑟−2 − 𝑧ℎ

𝑐+𝑟−2)

∞

𝑖=𝑐

 

The (𝑐 + 𝑟)-th equation is found from the normalizing condition, which is simply 

1 = 𝑝0
− + 𝑝1

− + 𝑝2
− +⋯+∑(∑𝐶ℎ𝑧ℎ

𝑗

𝑟

ℎ=1

)

∞

𝑗=𝑐

(57) 

By solving (56) and (57), the boundary probabilities (𝑝𝑗
−, 0 ≤  𝑗 < 𝑐)  as well as the 

unknown constants 𝐶ℎ, (1 ≤ ℎ ≤ 𝑟)  are determined. Hence the solution to 𝐺𝐼𝑋/𝑀/𝑐 

queues when 𝑐 > 𝑟 is   

𝑝𝑗
− = {

determined above, (0 ≤ 𝑗 < 𝑐)

 ∑𝐶ℎ𝑧ℎ
𝑗

𝑟

ℎ=1

,                   (𝑟 < 𝑐 ≤ 𝑗) 
(58) 

C.2 Supplementary materials on 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄 queues 

C.2.1 Proving the existence of roots 

The proof here runs parallel to that of Appendix C.1.2. First, by rearranging (21), 

we have 
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𝑄𝑗
− =∑𝑏ℎ

𝑟

ℎ=1

∑ 𝑄𝑖
−𝑘𝑖+ℎ−𝑗

∞

𝑖=𝑗−ℎ

, (𝑗 ≥ 1) 

Now substituting 𝑄𝑗
− = 𝐶𝑧𝑗 , (𝑗 ≥ 𝑐) into above expression leads to (22) which is the 

underlying characteristic equation of the 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  queue. To prove that (22) 

has 𝑟 roots inside the unit circle |𝑧| = 1, let us rewrite it as 

𝑧𝑟 − (∑𝑏ℎ𝑧
𝑟−ℎ

𝑟

ℎ=1

)𝐾(𝑧) = 0 

Now let 

𝑓(𝑧) = 𝑧𝑟 

and 

𝑔(𝑧) = −(∑𝑏ℎ𝑧
𝑟−ℎ

𝑟

ℎ=1

)𝐾(𝑧) 

Consider the absolute values of  𝑓(𝑧) and  𝑔(𝑧) on the circle  |𝑧| = 1 − 𝛿 , where  𝛿 is 

positive and sufficiently small. This gives,  

|𝑓(𝑧)| = (1 − 𝛿)𝑟 = 1 − 𝛿𝑟 + 𝑜(𝛿),  

and 

|𝑔(𝑧)| ≤ ∑𝑏ℎ|𝑧|
𝑟−ℎ

𝑟

ℎ=1

𝐾(|𝑧|) = 1 − 𝛿(𝑟 − �̅�) − (�̅�𝑐𝜇)𝛿 + 𝑜(𝛿) 

                                    = 1 − 𝛿𝑟 − (�̅�𝑐𝜇)(1 − 𝜌)𝛿 + 𝑜(𝛿) 

Finally we have 

|𝑔(𝑧)| < 1 − 𝛿𝑟 + 𝑜(𝛿) = |𝑓(𝑧)| 

where 𝜌 =
�̅�

�̅�𝑐𝜇
, (0 < 𝜌 < 1) . Thus, for 0 < 𝜌 < 1  and 𝛿  sufficiently small, |𝑓(𝑧)| >

|𝑔(𝑧)|  on |𝑧| = 1 − 𝛿 . Because 𝑓(𝑧)  and 𝑔(𝑧)  satisfy the conditions of Rouché’s 
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theorem, it follows that (22) has 𝑟 roots inside the unit circle, |𝑧| = 1, since 𝑓(𝑧) has 𝑟 

roots inside |𝑧| = 1. 

C.2.2 Root finding program 

Below program computes the roots of the characteristic equation of 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 

queues involving heavy-tailed inter-batch-arrival times. 

(1) with(𝑝𝑙𝑜𝑡𝑠): 

(2) 𝐿𝐶:= 10−400: 

(3) 𝜇 ≔ 

(4) 𝑎 ≔ (𝑚) → 

(5) 𝑏 ≔ (ℎ) → 

(6) 𝑐 ≔ 

(7) 𝑟 ≔ 

(8) 𝛹:= 1: 

(9) while 𝜇𝑐∗𝛹 ∗ 𝑎(𝛹) > 𝐿𝐶 do 

(10)  𝛹:= 𝛹 + 1: 

(11) end do: 

(12) if 𝜇𝑐∗𝛹 ∗ 𝑎(𝛹) ≤ 𝐿𝐶 then 

(13) 𝛹:= 𝛹 − 1: 

(14) end if: 

(15) 𝑦 ≔ 𝑧𝑟 − 𝑒𝑥𝑝𝑎𝑛𝑑(𝑧𝑟 ∗ ∑ 𝑏(ℎ) ∗ 𝑧−ℎ𝑟
ℎ=1 ∑ (𝜇 ∗ 𝑧 + 1 − 𝜇)𝑐∗𝑚 ∗ 𝑎(𝑚)𝛹

𝑚=1 ) 

(16) 𝐴𝑙𝑙𝑅𝑜𝑜𝑡𝑠 ≔ [𝑓𝑠𝑜𝑙𝑣𝑒(𝑦, 𝑧, {𝑧 = −1 − 𝐼. .1 + 𝐼}, 𝑐𝑜𝑚𝑝𝑙𝑒𝑥)]: 

(17) 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒(𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑝𝑙𝑜𝑡, [𝐴𝑙𝑙𝑅𝑜𝑜𝑡𝑠, 𝑠𝑦𝑚𝑏𝑜𝑙 = (𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑐𝑟𝑜𝑠𝑠
, 𝑠𝑦𝑚𝑏𝑜𝑙𝑠𝑖𝑧𝑒 = 10, 𝑠𝑡𝑦𝑙𝑒 = 𝑝𝑜𝑖𝑛𝑡, 𝑙𝑎𝑏𝑒𝑙𝑠 = ["Re", "𝐼𝑚"], 𝑐𝑜𝑙𝑜𝑟
= "𝑅𝑒𝑑"], [𝑐𝑜𝑠 + 𝑠𝑖𝑛𝐼, −𝜋. . 𝜋, 𝑐𝑜𝑙𝑜𝑟 = "𝑆𝑡𝑒𝑒𝑙𝐵𝑙𝑢𝑒"]) 

To run the above program, 𝜇, 𝑎(𝑚), 𝑏(ℎ), 𝑐  and 𝑟  must be defined. In line (2) of our 

program, the LC of 10−400 is used as the default value but it can be scaled depending on 

the desired degree of accuracy. In addition, the term 𝜇𝑐∗𝛹  in line (9) and (12) of our 
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program were chosen as the demarcation point to determine 𝛹 since it is the constant 

coefficient of the last term of 𝑧 in 𝐾𝛹(𝑧). Line (17) plots all 𝑟 roots that are found within 

the contour of a unit circle |𝑧| = 1. 

C.2.3 Deriving the characteristic equation: From 𝑮𝑰𝑿/𝑮𝒆𝒐/𝒄  to 𝑮𝑰𝑿/𝑴/𝒄 

queues 

We derive the characteristic equation of the 𝐺𝐼𝑋/𝑀/𝑐  queue from that of the 

𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queue. Let 𝑡 be the inter-batch-arrival time of the 𝐺𝐼𝑋/𝑀/𝑐 queue such that 

it is a non-zero real-number (𝑡 ∈ 𝑅∗) . It has a c.d.f. 𝐴(𝑡) = 𝑃(�̂� ≤ 𝑡), (𝑑𝐴(𝑡) 𝑑𝑡⁄ ≡

𝑎(𝑡), 𝑡 > 0) with the mean 𝐸[�̂�] and arrival rate �̂� such that 𝐸[�̂�] = 1
�̂�
⁄ . Similarly, let �̂� 

be the exponential service time of a server with mean 𝐸[�̂�] and service rate �̂�, (0 < �̂� <

1) such that 𝐸[�̂�] = 1
�̂�⁄ . In the 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  queue, 𝑇 is divided into 𝑚 time slots and 

multiplying 𝑚 by a very small real number (say ∆) results in a continuous inter-batch-

arrival time 𝑡 . Based on this notion, we have 𝑡 = ∆𝑚  (similarly, 𝐸[�̂�] = ∆𝐸[𝑇]  and 

𝐸[�̂�] = ∆𝐸[𝑌]). 

To derive the characteristic equation of the 𝐺𝐼𝑋/𝑀/𝑐  queue we consider the 

𝑘𝑖+ℎ−𝑗, (𝑐 ≤ 𝑗 ≤ 𝑖 + ℎ) from Subsection 4.2.2 in a form that is prior to being conditioned 

on 𝑎𝑚 which is 

(
𝑐𝑚

𝑖 + ℎ − 𝑗)𝜇
𝑖+ℎ−𝑗(1 − 𝜇)𝑐𝑚−(𝑖+ℎ−𝑗), (𝑚 ≥ 1,1 ≤ ℎ ≤ 𝑟, 𝑖 ≥ 0, 𝑐 ≤ 𝑗 ≤ 𝑖 + ℎ, ) 

Substituting 𝑚 = 𝑡 ∆⁄  and 𝜇 = ∆�̂� into the above equation gives 

(𝑐𝑡 ∆⁄ ) !

(𝑖 + ℎ − 𝑗)! [𝑐𝑡 ∆⁄ − (𝑖 + ℎ − 𝑗)] !
(∆�̂�)𝑖+ℎ−𝑗(1 − ∆�̂�)

𝑐𝑡
∆⁄ −(𝑖+ℎ−𝑗) 
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To transform the 𝑘𝑖+ℎ−𝑗  of the 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  queue into �̂�𝑖+ℎ−𝑗  of the 𝐺𝐼𝑋/𝑀/𝑐  queue, 

taking the limit of the above result as ∆→ 0 (so that the discrete time parameter becomes 

the continuous time parameter) gives 

lim
∆→0

(𝑐𝑡 ∆⁄ ) !

(𝑖 + ℎ − 𝑗)! [𝑐𝑡 ∆⁄ − (𝑖 + ℎ − 𝑗)] !
(∆�̂�)𝑖+ℎ−𝑗(1 − ∆�̂�)(

𝑐𝑡
∆⁄ )−(𝑖+ℎ−𝑗)

 

Multiplying and then dividing the above expression by (𝑐𝑡)𝑖+ℎ−𝑗, (𝑡 > 0, 𝑐 ≥ 1, 𝑖 + ℎ ≥ 𝑗) 

gives 

lim
∆→0

(𝑐𝑡 ∆⁄ ) !

(
𝑐𝑡

∆
)
𝑖+ℎ−𝑗

[𝑐𝑡 ∆⁄ − (𝑖 + ℎ − 𝑗)] !

(𝑐𝑡�̂�)𝑖+ℎ−𝑗

(𝑖 + ℎ − 𝑗)!
[(1 − ∆�̂�)

1

∆]
𝑐𝑡

(1 − ∆�̂�)−(𝑖+ℎ−𝑗) 

Since 𝑖 + ℎ ≥ 𝑗 and using the fact that lim
𝑎→∞

(
𝑎
𝑏
) (

1

𝑎𝑏
) =

1

𝑏!
, the above simplifies to 

(𝑐�̂�𝑡)𝑖+ℎ−𝑗

(𝑖 + ℎ − 𝑗)!
𝑒−𝑐�̂�𝑡 

We now condition the above expression on the p.d.f. 𝑎(𝑡), (𝑡 > 0) over (0,∞) such that it 

leads to 

�̂�𝑖+ℎ−𝑗 = ∫
(𝑐�̂�𝑡)𝑖+ℎ−𝑗

(𝑖 + ℎ − 𝑗)!
𝑒−𝑐�̂�𝑡𝑎(𝑡)𝑑𝑡

∞

0

, (1 ≤ ℎ ≤ 𝑟) 

or 

�̂�𝑖+ℎ−𝑗 = ∫
(𝑐�̂�𝑡)𝑖+ℎ−𝑗

(𝑖 + ℎ − 𝑗)!
𝑒−𝑐�̂�𝑡𝑑𝐴(𝑡)

∞

0

, (1 ≤ ℎ ≤ 𝑟) 

where 𝐴(𝑡) = 𝑃(�̂� ≤ 𝑡), (𝑡 > 0). The p.m.f. �̂�𝑖+ℎ−𝑗 has a p.g.f. �̂�(𝑧) 

�̂�(𝑧) = ∑ �̂�𝑖+ℎ−𝑗𝑧
𝑖+ℎ−𝑗

∞

𝑖=𝑗−ℎ

, (1 ≤ ℎ ≤ 𝑟, |𝑧| ≤ 1) 
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which can also be expressed as �̂�(𝑧) = ∫ 𝑒−𝑐�̂�(1−𝑧)𝑡𝑑𝐴(𝑡) = �̃�(𝑐�̂�(1 − 𝑧))
∞

0
, where 

�̃�(𝑠) is the L-S.T. �̃�(𝑠) = ∫ 𝑒−𝑠𝑡𝑑𝐴(𝑡)
∞

0
. As the last step, replacing �̂�(𝑧) in (22) with 

�̂�(𝑧) leads to (2). 

C.3 Additional numerical results 

C.3.1 Computing the roots of the characteristic equation 
 

In Table 21, 22, and 23 we consider the binomial, (1,10), and normalized Poisson 

batch size distributions, respectively. In the same tables, the traffic intensities are in a 

descending order and the maximum batch size includes both even and odd numbers. We 

find the roots of the characteristic equation of the 𝐺𝐼𝑋/𝑀/𝑐 and 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues in 

Tables 21 and 22, whereas in Table 23 we focus on 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues with a larger 𝑟. 

We have purposely used 𝑐 = 5 in all tables in order to isolate and study the effect of other 

input parameters. All computations were performed in MAPLE using the program in 

Appendices C.1.3 and C.2.2. All the roots were found up to the tenth decimal place and 

rounded to four decimal places. We have also embedded the figures of plotted roots in 

each table for visual illustration. 

Table 21: The roots of the characteristic equations with the binomial batch size 

distribution 𝒃𝒉 = (
𝒓

𝒉 − 𝟏
)𝒑𝒉−𝟏𝒒𝒓−𝒉+𝟏, (𝒑 = 𝟎. 𝟒𝟓, 𝒒 = 𝟎. 𝟓𝟓, 𝒓 = 𝟐𝟏) and 𝝆 = 𝟎. 𝟖 

 
𝐺𝐼𝑋/𝐺𝑒𝑜/5 𝐺𝐼𝑋/𝑀/5 

𝐺𝐼  
   𝑧ℎ 

 𝑆𝐿𝑁 𝑊𝑒𝑖𝑏𝑢𝑙𝑙[2] 𝑃𝑎𝑟𝑒𝑡𝑜[4.5,2] 𝐼𝐺[2,3] 

𝑧1 0.9656 0.9786 0.8031 0.9453 

𝑧2 0.5625 − 0.4433i 0.0977 − 0.5157i 0.3845 − 0.3232i 0.5494 − 0.4076i 

𝑧3 0.5625 + 0.4433i 0.0977 + 0.5157i 0.3845 + 0.3232i 05494 + 0.4076i 

𝑧4 02578 − 0.5013i 0.3205 − 0.5482i 0.1938 − 0.3462i 0.2830 − 0.4770i 

𝑧5 0.2578 + 0.5013i 0.3205 + 0.5482i 0.1938 + 0.3462i 0.2830 + 0.4770i 

𝑧6 0.0669 − 0.4518i 0.6354 − 0.4463i 0.0655 − 0.3256i 0.0970 − 0.4537i 

𝑧7 0.0669 + 0.4518i 0.6354 + 0.4463i 0.0655 + 0.3256i 0.0970 + 0.4537i 
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𝑧8 −0.0364 − 0.2412i −0.3959 − 0.0553i −0.0337 − 0.2760i −0.0364 − 0.2412i 

𝑧9 −0.0364 + 0.2412i −0.3959 + 0.0553i −0.0337 + 0.2760i −0.0364 + 0.2412i 

𝑧10 −0.0496 − 0.3859i −0.3663 − 0.1622i −0.2536 − 0.1213i −0.3530 − 0.0487i 

𝑧11 −0.0496 + 0.3859i −0.3663 + 0.1622i −0.2536 + 0.1213i −0.3530 + 0.0487i 

𝑧12 −0.1391 − 0.3290i −0.3087 − 0.2578i −0.2789 − 0.0417i −0.3275 − 0.1428i 

𝑧13 −0.1391 + 0.3290i −0.3087 + 0.2578i −0.2789 + 0.0417i −0.3275 + 0.1428i 

𝑧14 −0.2149 − 0.2670i −0.2270 − 0.3348i −0.1367 − 0.2398i −0.2071 − 0.2973i 

𝑧15 −0.2149 + 0.2670i −0.2270 + 0.3348 −0.1367 + 0.2390i −0.2071 + 0.2973i 

𝑧16 −0.3160 − 0.0388i −0.1330 − 0.3877i −0.2052 − 0.1893i −0.2779 − 0.2275i 

𝑧17 −0.3160 + 0.0388i −0.1330 + 0.3877i −0.2052 + 0.1893i −0.2779 + 0.2275i 

𝑧18 −0.3012 − 0.1166i −0.0414 − 0.4447i −0.0332 − 0.1820i −0.1219 − 0.3499i 

𝑧19 −0.3012 + 0.1166i −0.0414 + 0.4447i −0.0332 + 0.1820i −0.1219 + 0.3499i 

𝑧20 −0.2688 − 0.1941i −0.0364 − 0.2412i −0.0406 − 0.2424i −0.0282 − 0.4006i 

𝑧21 −0.2688 + 0.1941i −0.0364 + 0.2412i −0.0406 + 0.2424i −0.0282 + 0.4006i 

𝛹 91 144 49 81 

𝐿𝐶 10−110 10−520 10−4 10−4 

|𝑧| = 1 

    

 

Table 22: The roots of the characteristic equations with the (1,10) batch size 

distribution 𝒃𝟏 = 𝟎. 𝟗, 𝒃𝟏𝟎 = 𝟎. 𝟏, and 𝝆 = 𝟎. 𝟐𝟓 

 
𝐺𝐼𝑋/𝐺𝑒𝑜/5 𝐺𝐼𝑋/𝑀/5 

𝐺𝐼  
   𝑧ℎ 

𝑆𝐿𝑁 𝑊𝑒𝑖𝑏𝑢𝑙𝑙[2] 𝑃𝑎𝑟𝑒𝑡𝑜[4.5,2] 𝐼𝐺[2,3] 

𝑧1 0.7408 0.7820 0.6065 0.7086 

𝑧2 0.0974 − 0.5902i 0.5448 − 0.4547i 0.0209 − 0.4062i 0.4544 − 0.4278i 

𝑧3 0.0974 + 0.5902i 0.5448 + 0.4547i 0.0209 + 0.4062i 0.4544 + 0.4278i 

𝑧4 0.4798 − 0.4518i 0.1663 − 0.6423i 0.3137 − 0.3790i 0.1048 − 0.5568i 

𝑧5 0.4798 + 0.4518i 0.1663 + 0.6423i 0.3137 + 0.3790i 0.1048 + 0.5568i 

𝑧6 −0.4953 −0.6026 −0.3262 −0.5033 

𝑧7 −0.4344 − 0.2646i −0.5021 − 0.3460i −0.1765 − 0.3123i −0.2121 − 0.4860i 

𝑧8 −0.4344 + 0.2646i −0.5021 + 0.3460i −0.1765 + 0.3123i −0.2121 + 0.4860i 

𝑧9 −0.2377 − 0.4915i −0.2221 − 0.5901i −0.2895 − 0.1665i −0.4275 − 0.2780i 

𝑧10 −0.2377 + 0.4915i −0.2221 + 0.5901i −0.2895 + 0.1665i −0.4275 + 0.2780i 
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𝛹 15 49 22 34 

𝐿𝐶 10−40 10−240 10−3 10−3 

|𝑧| = 1 

    

 

Table 23: The roots of the characteristic equation with the normalized Poisson batch 

size distribution 𝒃𝒉 = (
𝟏

∑
𝑷𝒍

𝒍!
𝒓
𝒍=𝟏

)
𝑷𝒉

𝒉!
, (𝑷 = 𝟎. 𝟑, 𝒓 = 𝟓𝟎) and 𝝆 = 𝟎 

𝑃𝑎𝑟𝑒𝑡𝑜𝑋[1]/𝐺𝑒𝑜/5 

𝑧1 0.3004 𝑧20 0.0072 − 0.0069i 

 

𝑧2 0.0007 − 0.0146i 𝑧21 0.0072 + 0.0069i 

𝑧3 0.0007 + 0.0146i 𝑧22 0.0073 − 0.0051i 

𝑧4 0.0012 − 0.0158i 𝑧23 0.0073 + 0.0051i 

𝑧5 0.0012 + 0.0158i 𝑧24 0.0101 − 0.0449i 

𝑧6 0.0025 − 0.0138i 𝑧25 0.0101 + 0.0449i 

𝑧7 0.0025 + 0.0138i 𝑧26 −0.0146 

𝑧8 0.0027 − 0.0235i 𝑧27 −0.0145 − 0.0018i 

𝑧9 0.0027 + 0.0235i 𝑧28 −0.0145 + 0.0018i 

𝑧10 0.0039 − 0.0127i 𝑧29 −0.0141 − 0.0036i 

𝑧11 0.0039 + 0.0127i 𝑧30 −0.0141 + 0.0036i 

𝑧12 0.0050 − 0.0115i 𝑧31 −0.0136 − 0.0053i 

𝑧13 0.0050 + 0.0115i 𝑧32 −0.0136 + 0.0053i 

𝑧14 0.0060 − 0.0101i 𝑧33 −0.0128 − 0.0069i 𝑧39 −0.0095 − 0.0111i 𝑧45 −0.0048 − 0.0138i 

𝑧15 0.0060 + 0.0101i 𝑧34 −0.0128 + 0.0069i 𝑧40 −0.0095 + 0.0111i 𝑧46 −0.0048 + 0.0138i 

𝑧16 0.0067 − 0.0086i 𝑧35 −0.0119 − 0.0085i 𝑧41 −0.0080 − 0.0122i 𝑧47 −0.0030 − 0.0143i 

𝑧17 0.0067 + 0.0086i 𝑧36 −0.0119 + 0.0085i 𝑧42 −0.0080 + 0.0122i 𝑧48 −0.0030 + 0.0143i 

𝑧18 0.0069 − 0.0032i 𝑧37 −0.0108 − 0.0099i 𝑧43 −0.0065 − 0.0131i 𝑧49 −0.0012 − 0.0146i 

𝑧19 0.0069 + 0.0032i 𝑧38 −0.0108 + 0.0099i 𝑧44 −0.0065 + 0.0131i 𝑧50 −0.0012 + 0.0146i 

𝐿𝐶 = 10−55 𝑁 = 19 
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C.3.2 Numerical analysis 

From Appendix C.3.1 and other additional numerical tests, we have deduced the 

following points: 

- Point 1: While 𝑧1 is always a positive real root (as proven by Kim and Choi 

[30]), when 𝑟 is an odd number there will be 𝑟 − 1 imaginary roots, and when 

𝑟 is an even number, there is also a negative real root and 𝑟 − 2 imaginary 

roots. In addition, 𝑧1 has the largest modulus out of all 𝑟 roots inside |𝑧| = 1. 

- Point 2: The imaginary roots of the characteristic equations always exist in 

complex conjugate pairs. If 𝑟 is an odd number, there are 
𝑟−1

2
 pairs of complex 

conjugates whereas if 𝑟 is an even number, there are 
𝑟−2

2
 pairs of complex 

conjugates. 

- Point 3: The LC for the 𝐺𝐼𝑋/𝑀/𝑐 queue must be significantly larger than the 

LC for the 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  queue in order to compute the roots of satisfying 

accuracy. This is due to the magnitude of 𝜇𝑐∗𝛹 being much smaller than that 

of ∫ 𝑒−𝑐�̂�𝑡
(𝑐�̂�𝑡)𝛹

𝛹!

∞

0
𝑑𝐴(𝑡) when 𝜇 = �̂�. 

- Point 4: In the 𝐺𝐼𝑋/𝑀/𝑐 and 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queues, we can verify the accuracy 

of roots by back-substituting any of the 𝑟 roots into (2) or (22), respectively. 

While substituting into the characteristic equation with a root that is found at a 

higher 𝛹 leads to a value that is closer to 1, a moderately sized 𝛹 will find 

roots that are just as effective. The accuracy of roots can be verified in another 

way: Compute the queue-length distributions with the 𝑟  roots found at a 

moderately sized 𝛹 and then use those roots to compute the left-hand sides of 
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(14) and (37). Since the right-hand sides of (14) and (37) are independent of 

roots, one can choose to use a higher 𝛹 to make the left-hand sides of (14) 

and (37) match their respective right-hand sides up to the desired decimal 

place. 

- Point 5: As seen in Table 23, as �̅� → ∞ , the roots converge towards the 

origin. However, the value of 𝜇, (0 < 𝜇 < 1)  also influences the plotting 

pattern of roots. Given the relation 𝜌 = �̅�
�̅�𝑐𝜇⁄ , letting �̅� = ∞ leads to 𝜌 = 0. 

However, making 𝜇 → 0 will have a counter effect and withhold the roots 

from converging towards the origin (see later in Figure 6 where �̅� = ∞ and 

𝜇 = 10−6). On the other hand, a large 𝜇 (and 𝑐) coupled with 𝜌 = 0 would 

even further the clustering of roots towards the origin. In either case, roots can 

be found. 

- Point 6: The root 𝑧1 nears 1 as 𝜌 approaches 1: This behavior can be seen by 

observing the decrease in 𝑧1 in the tables as we make 𝜌 = 0.8, 0.25, and 0.  

- Point 7: The magnitude of 𝜇, (0 < 𝜇 < 1) is directly proportional to the size 

of 𝛹. While the size of 𝛹 is primarily determined by the size of LC, if LC is 

fixed at a certain value, a smaller 𝜇 will lead to smaller 𝛹 while a larger 𝜇 will 

lead to a larger 𝛹. This is true since given the same power, an exponent with a 

smaller base will always be smaller than the other exponent with a larger base. 

In the 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐  and 𝐺𝐼𝑋/𝑀/𝑐  queues involving heavy-tailed inter-batch-

arrival times the 𝑎𝑚 and 𝑎(𝑡) decay at an extremely slow rate as 𝑚, 𝑡 → ∞ 

while 𝜇𝑐𝑚 and 𝑒−𝑐�̂�𝑡
(𝑐�̂�𝑡)𝑛

𝑛!
 decay faster with smaller values of 𝜇 and �̂�, thus 
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requiring less number of iterations (𝛹)  to reach LC. We have tested this 

concept on 𝑃𝑎𝑟𝑒𝑡𝑜𝑋[1]/𝐺𝑒𝑜/5 by finding the 𝛹 at various values of 𝜇 while 

letting 𝐿𝐶 = 10−100, 𝑏ℎ = (
1

∑
𝑃𝑙

𝑙!
𝑟
𝑙=1

)
𝑃ℎ

ℎ!
, (𝑃 = 0.1, 𝑟 = 10), and 𝜌 = 0: 

Table 24: Relation between 𝝁 and 𝜳 

𝑃𝑎𝑟𝑒𝑡𝑜𝑋[1]/𝐺𝑒𝑜/5 

𝜇 𝛹 

0.1 19 

0.2 27 

0.3 36 

0.4 48 

0.5 63 

0.6 86 

0.7 123 

0.8 196 

0.9 413 

0.99 4239 

 

- Point 8: Different batch size distributions lead to different plotting patterns of 

roots. In Table 22, the (1,10) batch size distribution plotted an equal number 

of roots on each side of the imaginary axis (with the exception of 

𝑃𝑎𝑟𝑒𝑡𝑜𝑋[4.5,2]/𝑀/5 ) whereas this was not the case in other tables. 

However, there is always an equal number of roots plotted on each side of the 

real axis (this is due to the complex conjugate pairing as per the Point 2). 

- Point 9: When �̅� = ∞ in the 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queue it results in 𝑄0 = 𝑄0
𝑜 = 𝑃0

𝑜 =

𝑃0 = 1. Intuitively, this can be understood as the system being empty (in 

steady-state) at the outside observer’s and random time epochs since there are 

no arrivals while remaining customers continue to get served. This 
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phenomenon can be proven as follows: Since �̅� = ∞  the relation 𝑄𝑗 =

∑ 𝑄𝑖
−𝑃𝑖,𝑗

∗∞
𝑖=0 , (𝑗 ≥ 1)  becomes 𝑄𝑗 = 0, (𝑗 ≥ 1)  which results in 𝑄0 = 1 . 

Another approach is by letting 𝜌 = 0 in (37) which leads to ∑ (𝑐 − 𝑗)𝑄𝑗
𝑜𝑐−1

𝑗=0 =

𝑐 . This indicates that the mean number of idle servers is 𝑐  (i.e. an empty 

system). Therefore it can be simplified to 𝑐𝑄0
𝑜 = 𝑐 or 𝑄0

𝑜 = 1. When 𝜆 → 0 in 

𝐺𝐼𝑋/𝑀/𝑐  queues, the queue-length distribution at a random epoch (say 

𝑝𝑗, 𝑗 ≥ 0 ) becomes 𝑝0 = 1 . As a remark, several relations between the 

performance measures of the 𝐺𝐼𝑋/𝑀/𝑐 queue were are derived by Yao et al. 

[50]. If the inter-batch-arrival times follow heavy-tailed distributions with an 

infinite mean, some of their relations that involve 𝜌 become invalid. As an 

example, Yao et al. [50] derive the relation 

𝑊𝑞1
− =

𝜌

𝜆𝜇𝑋
(𝐿𝑠

− + 1 − 𝑐 +∑(𝑐 − 𝑘 − 1)𝑝𝑘
−

𝑐−1

𝑘=0

) 

In this relation, when 𝜆 and 𝜌 → 0, the right-hand side becomes undefined 

while the left-hand side does not. The same phenomena can be observed when 

𝜌 = 0 in another relation that determines 𝑊𝑞
− which is the waiting-time-in-

queue of the random customer within an incoming batch. 

C.3.3 Extreme case 

We have plotted the roots of the characteristic equation for the model 𝐺𝐼𝑋/𝐺𝑒𝑜/5 

when 𝐺𝐼 = 𝑃𝑎𝑟𝑒𝑡𝑜[1]. Doing so leads to �̅� = ∞ which results in 𝜌 = 0. The batch size 

distribution is a binomial distribution (𝑝 = 0.45, 𝑞 = 0.55)  with 𝑟 = 1,000.  We have 

used 𝜇 = 10−6 and 𝐿𝐶 = 10−10,000 which led to 𝛹 = 333. 
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Figure 8: Plotting 1,000 roots 

 

 

Using our MAPLE program from Appendix C.2.2 we have successfully plotted all 1,000 

roots inside the unit circle with 𝑧1 = 0.9999959545 (a smaller 𝐿𝐶 will lead to a 𝑧1 that is 

closer to 1). As a remark, one may encounter the error message in MAPLE “Length of 

output exceeds limit of 1000000” as 𝑧1 becomes very close to 1. This can be overcome by 

changing the default setting in MAPLE in the following manner: go to ‘Tools’, ‘Options’, 

‘Precision’, and change the ‘Limit expression length’ from 1,000,000 to 90,000,000 or 

greater. Doing so prevents MAPLE from rounding 𝑧1 to 1 which is what is needed to 

compute the queue-length distributions in terms of roots. 

C.3.4 Approximating the loss probability based on a single root 

In the model 𝐺𝐼𝑋/𝑀/𝑐/𝑁 , Kim and Choi [30] define the asymptotic loss 

probability as the probability of 𝑁 customers in system at a pre-arrival time epoch as 𝑁 

tends to infinity. Their proposition is that the asymptotic loss probability of the 𝐺𝐼𝑋/𝑀/𝑐/

𝑁 queue based on both partial and total rejections (i.e. 𝑝𝑁
−) can be accurately approximated 
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using the boundary probabilities and the roots of the characteristic equation of the 

𝐺𝐼𝑋/𝑀/𝑐 queue. In the context of this thesis, we express the proposition of Kim and Choi 

[30] as 

𝑝𝑁
− = 𝐶1𝑧1

𝑁 as 𝑁 → ∞ 

where 𝑧1, (0 < 𝑧1 < 1) is a root of (2) and 𝐶1 is its corresponding constant coefficient in 

(5). Kim and Choi [30] proved that there is exactly a simple, positive root (𝑧1) of (2) that 

has the largest modulus among the 𝑟 roots. However, it is evident that all constant terms 

𝐶ℎ, (1 ≤ ℎ ≤ 𝑟)  must be determined prior to identifying its corresponding constant 

coefficient 𝐶1 . This results in a phenomenon where all terms within (5) need to be 

determined prior to selecting the geometric term of interest. If this is the case, then the 

question arises as to why not use all the roots and the corresponding constants to enhance 

the accuracy of asymptotic approximations. Furthermore, since the numerical computation 

of (5) with a large 𝑗 can be done easily, the approximation of 𝑝𝑁
− can be enhanced if we, 

instead of the proposition by Kim and Choi [30], express it as  

𝑝𝑁
− = ∑ 𝐶ℎ𝑧ℎ

𝑁𝑟
ℎ=1  as 𝑁 → ∞ 

where 𝑁 → ∞.  Although ∑ 𝐶ℎ𝑧ℎ
𝑁𝑟

ℎ=1 → 𝐶1𝑧1
𝑁  for  𝑁 → ∞ , the emphasis is on the 

enhancement of Kim and Choi [30]’s method when approximating 𝑝𝑁
− at moderate values 

of 𝑁 using already determined results. The numerical comparison between the proposition 

of Kim and Choi [30] and our expression is provided below in Table 25. 

Consider the model 𝐷𝑋/𝑀/𝑐/𝑁 with the same parameters as used in Table 2 except for 

the finite-buffer 𝑁 . We compare the 𝑝𝑁
−  at  𝑁 = 5,10,15,20,50,100, and  1000 using a 

geometric sum (𝑝𝑁
− = ∑ 𝐶ℎ𝑧ℎ

𝑁𝑟
ℎ=1 ) and a geometric term (𝑝𝑁

− = 𝐶1𝑧1
𝑁), where the positive 

root of (2) is 𝑧1 = 0.3716 and its corresponding constant 𝐶1 is 0.7497. Relative errors 
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between the two results are the absolute values of each difference such that 𝛿𝑒𝑟𝑟𝑜𝑟(𝑁) =

|∑ 𝐶ℎ𝑧ℎ
𝑁𝑟

ℎ=2 |. 

Table 25: Comparing the geometric sum and geometric term 

𝑁 ∑𝐶ℎ𝑧ℎ
𝑁

𝑟

ℎ=1

 𝐶1𝑧1
𝑁 𝛿𝑒𝑟𝑟𝑜𝑟(𝑁) 

5 5.455309x10−3 5.415048x10−3 1.402611x10−4 

10 3.762469x10−5 3.768008x10−5 5.538531x10−8 

15 2.671454x10−7 2.671261x10−7 1.925054x10−11 

20 1.893737x10−9 1.893743x10−9 6.126980x10−15 

50 2.404079x10−22 2.404079x10−22 2.791419x10−36 

100 7.708950x10−44 7.708950x10−44 3.342722x10−71 

1000 9.904428x10−431 9.904428x10−431 6.841268x10−697 

 

As expected, 𝛿𝑒𝑟𝑟𝑜𝑟(𝑁) → 0 as 𝑁 → ∞. Kim and Choi [30] state that a geometric term 

can approximate accurate results even for moderate size 𝑁, which we have shown at 𝑁 =

15, 20, and 50. However, even more accurate approximations can be made by using a 

geometric sum instead of a geometric term. As a remark, the same phenomenon occurs 

when approximating the asymptotic loss probability of the 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐/𝑁 queue using 

the roots of (22) in the 𝐺𝐼𝑋/𝐺𝑒𝑜/𝑐 queue. 


