
ORGODEX

A New Paradigm for Role-Based Access Control

ORGODEX

Un nouveau paradigme pour le contrôle d’accès basé

sur les rôles

A Thesis Submitted to the Division of Graduate Studies
of the Royal Military College of Canada

by

Aaron A. Elliott, MSc

In Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

May 2018
c© This thesis may be used within the Department of National Defence
but copyright for open publication remains the property of the author.

Acknowledgements

I thank God for the blessings bestowed upon me. I thank my family for their
love, support and encouragement.

Linda, Nicholas and Alexander, you are everything to me. Together, we
work hard to find balance each and every day, sharing our successes, loving
and supporting one another unconditionally. More than anything I am proud
of you and what we accomplish as a family.

Mom and Dad you are my foundation and I love you dearly. I strive to
make you proud every day. You are a shining example, inspiring me to be
better.

Scott and Tamara I treasure our time together. My brother, my sister, my
best friends, time spent with you and your families are amongst my fondest
memories. I look forward to future fun and adventures, smiling as I write this.

I would like to express my sincere gratitude to my supervisor, Scott Knight.
Without your guidance and direction I calculate my probability of successfully
completing this dissertation in the range of nil to improbable. I have the
utmost respect for you and I thank Terry Shepard for connecting us many
years ago.

I would like to thank my colleagues at the Royal Military College of Canada
who continually challenge me with their honest uncensored opinions. You have
heavily influenced my work. For the friendships forged and the many insightful
conversations, I am eternally grateful.

I would like to thank the members of my examining committee for their
valuable review and feedback, further strengthening this dissertation.

ii

Abstract

Role-Based Access Control (RBAC) is a popular solution for implementing
information security however there is no pervasive methodology used to pro-
duce scalable access control systems for large organizations with hundreds or
thousands of employees. As a result, ten engineers will likely arrive at ten dif-
ferent solutions to the same problem where there is no right or wrong answer
but the cost is both immediate and long term. Moreover, they would have dif-
ficulty communicating the important aspects of their design implementations
to each other. This is an interesting deficiency because despite their diversity,
large organizations share two key concepts, roles and responsibilities, where
a role like Departmental Chair has responsibilities. In this work, our objec-
tive is to introduce ORGODEX, a new model and practical methodology for
engineering scalable RBAC systems in large organizations where employees
require access to information on a need to know basis. First, we motivate the
requirement for new structural RBAC relationships, distinguishing between
roles and responsibilities. Next, we introduce our new model for describing
and reasoning about RBAC implementations. Then we produce a new iter-
ative methodology for engineering scalable access control systems. Finally,
we validate our work with a case study whereby the ORGODEX model and
methodology are used to deploy authorization as a service in the context of
cloud computing.

iii

Résumé

Le contrôle d’accès basé sur les rôles (CABR) est une solution populaire
pour la mise en œuvre de la sécurité de l’information, mais il n’existe pas de
méthodologie omnipreésente utilisée pour produire des systèmes de contrôle
d’accès évolutifs pour les grandes organisations avec des centaines ou des mil-
liers d’employés. En conséquence, dix ingénieurs arriveront probablement à
dix solutions différentes pour le même problème où il n’y a pas de bonne
ou mauvaise réponse, mais où il existe à la fois un coût immédiat et à long
terme. En outre, ils auront du mal à communiquer les aspects importants de
la conception de leurs implémentations. Il s’agit d’une lacune intéressante car,
malgré leur diversité, les grandes organisations sont fondées sur deux concepts
clés, des rôles et des responsabilités, où un rôle comme chef de département
est identifié et attribué des responsabilités. Dans ce travail, notre objectif est
d’introduire ORGODEX, un nouveau modèle et une méthodologie concrète
pour l’ingénierie des systèmes évolutifs CABR dans les grandes organisations
où les employés ont besoin d’accès à de l’information sur le principe du be-
soin de savoir. Premièrement, nous motiverons l’exigence d’une nouvelle re-
lation structurelle CABR, en distinguant les rôles et les responsabilités. En-
suite, nous présentons notre nouveau modèle pour décrire et raisonner les
implémentations CABR. Ensuite, nous produisons une nouvelle méthodologie
itérative pour l’ingénierie des systèmes de contrôle d’accès évolutifs. Enfin,
nous validons notre travail avec une étude de cas selon laquelle le modèle et
la méthodologie ORGODEX sont utilisés pour déployer l’autorisation en tant
que service dans le contexte du cloud computing.

iv

Contents

Acknowledgements ii

Abstract iii

Résumé iv

List of Abbreviations xii

1 Introduction 1
1.1 Information Management (IM) 1
1.2 Authorization . 2
1.3 Role-Based Access Control (RBAC) 4
1.4 Operational Case Studies . 5
1.5 Statement of Deficiency . 7
1.6 Aim . 7
1.7 Validation Approach . 8
1.8 Summary . 9
1.9 Publications . 9

2 Literature Review 11
2.1 Introduction . 11
2.2 Role-Based Access Control 1996 (RBAC96) 11

2.2.1 Base Model (RBAC0) 12
2.2.2 Role Hierarchies (RBAC1) 13
2.2.3 Constraints (RBAC2) 14
2.2.4 Role Hierarchies and Constraints (RBAC3) 15
2.2.5 Administration . 15

2.3 Administrative Role-Based Access Control (ARBAC) 16
2.3.1 ARBAC 1997 . 16

User-Role Assignment (URA) 18

v

Contents

Permission-Role Assignment (PRA) 20
Role-Role Assignment (RRA) 21
Strengths and Weaknesses 22

2.3.2 ARBAC 1999 . 23
2.3.3 ARBAC 2002 . 24

2.4 Scoped Administrative Role-based Access Control (SARBAC) . 25
2.5 Administrative Enterprise Role-based Access Control (A-ERBAC) 26
2.6 Attribute-Based Access Control (ABAC) 28
2.7 Relationship-Based Access Control (ReBAC) 29
2.8 Role-Centric Attribute Based Access Control (RABAC) 31
2.9 Responsibility MetaModel (ReMMo) 33
2.10 Bi-Sorted Role-Based Access Control (RBÄC) 35
2.11 Summary . 38

3 Role Explosion 39
3.1 Introduction . 39
3.2 Background . 39
3.3 Symptoms . 42
3.4 Empirical Study . 43
3.5 Discussion . 45
3.6 Summary . 49
3.7 Publications . 49

4 Role Evolution 51
4.1 Introduction . 51
4.2 Background . 52
4.3 Divergence . 54
4.4 Constraints . 57
4.5 Discussion . 63
4.6 Summary . 66
4.7 Publications . 67

5 ORGODEX 68
5.1 Introduction . 68
5.2 Background . 70
5.3 Model . 71
5.4 Methodology . 74

5.4.1 Analyze . 75
Roles (Ro) . 76
Information (I) . 78

vi

Contents

Responsibilities (Re) . 79
Constraints (C) . 80

5.4.2 Realize . 81
Design . 82
Review . 82
Implement . 82
Test . 84

5.4.3 Publicize . 85
Information . 85
Roles and Responsibilities 85

5.5 Discussion . 87
5.6 Summary . 96
5.7 Publications . 98

6 Validation 99
6.1 Introduction . 99
6.2 Background . 100
6.3 Analyze . 103

6.3.1 Roles (Ro) . 104
6.3.2 Information (I) . 105
6.3.3 Responsibilities (Re) . 106
6.3.4 Constraints (C) . 108

6.4 Realize . 110
6.4.1 Design . 111
6.4.2 Review . 111
6.4.3 Implement . 112
6.4.4 Test . 113

6.5 Publicize . 114
6.5.1 Information . 114
6.5.2 Roles and Responsibilities 114

6.6 Discussion . 117
6.7 Summary . 118
6.8 Publications . 119

7 Conclusion 120
7.1 Introduction . 120
7.2 Deficiency . 121
7.3 Aim . 122
7.4 Validation . 122

7.4.1 Sufficiency . 122

vii

Contents

7.4.2 Validity . 123
7.4.3 Feasibility . 123

7.5 Contributions . 124
7.6 Future Work . 125
7.7 Summary . 126

Bibliography 128

viii

List of Tables

2.1 Administrative RBAC Actions . 23
2.2 User-role Assignments . 23

3.1 Role and User Information for a Representative Application 43
3.2 Applications Required by our Representative Employee. 44
3.3 Application Roles Required by our Representative Employee. . . . 44

4.1 ACME Roles as at April 2015 . 52
4.2 ACME Grants as at April 2015 . 53

5.1 A Role Analysis Document identifies WHO 78
5.2 An Information Analysis Document defines Terms of Reference . . 79
5.3 A Responsibility Analysis Document further identifies WHAT . . . 80
5.4 A constraints analysis document identifies WHO - HAS 81
5.5 The Information Asset Report is subjected to ongoing validations . 86
5.6 The Roles and Responsibilities Report is subjected to ongoing . . 86
5.7 The Roles and Responsibilities Report may also be viewed 96

6.1 Project Team for UISA-MECA-I including their location 102
6.2 Project Plan for UISA-MECA-I expected to be a series 102
6.3 Role Definitions for UISA-MECA including the number 105
6.4 An Extract of the Information Assets defined for the 106
6.5 A sampling of the responsibility analysis document 107
6.6 The Appendix to the Project Plan for UISA-MECA-I 107
6.7 A constraints analysis document identifies WHO - HAS 109
6.8 The Information Asset Report defined for the UISA-MECA 116
6.9 The Roles and Responsibilities Report identifies WHO - HAS . . . 116

ix

List of Figures

1.1 IM architectures may include several applications. 2
1.2 SP is the implicit relationship between 3
1.3 An explicit RBAC relationship includes at least one role 5
1.4 Classic Example of RBAC Administrative Savings 6

2.1 An example of a role hierarchy. Adapted from [74]. 14
2.2 The ARBAC model [74]. 17
2.3 The core ABAC model . 28
2.4 The RABAC model extends the 32
2.5 RBAC adoption between 1992-2010 [58]. 33
2.6 RBÄC proposes a new conceptual boundary between 36

3.1 Old-employee-out (1) and New-employee-in (2). 41

4.1 Role Evolution proposes a phylogenetic divergence 55
4.2 Subject-role relationships may be lost due to employee turnover. . 55
4.3 An RBÄC example found at ACME 58
4.4 Hierarchical Graph for the example found at ACME 59
4.5 Constraining RBÄC . 61
4.6 Courses that may be selected by two Departmental 61
4.7 Courses that may be selected by two Staff Members 62

5.1 The ORGODEX model builds upon RBÄC 72
5.2 The ORGODEX methodology facilitates communication 74
5.3 The ORGODEX model facilitates communication 75
5.4 At ACME university, Role Evolution diverges beyond 77
5.5 The hierarchical diagramming technique employed 83
5.6 ACME Example of RBAC Administrative Savings 88
5.7 ACME Roles and Responsibilities Example 89
5.8 ACME Roles without Responsibilities Example 91
5.9 ACME Roles and Responsibilities Plus One Example 92

x

List of Figures

5.10 The List of Courses that may be selected by George Scott 95
5.11 Determining the List of Courses that may be selected 97

6.1 During the ORGODEX Analyze Phase, project deliverables 103
6.2 During the ORGODEX Realize Phase, terms of reference 110
6.3 During the design phase we propose responsibility hierarchies . . . 111
6.4 During the Test Phase, we expect different results due to 113
6.5 During the ORGODEX Publicize phase, the access control 115

xi

List of Abbreviations

AaaS Authorization as a Service . 100
ABAC Attribute-Based Access Control . vi
AC3 Access Control for Cloud Computing . 101
A-ERBAC Administrative Enterprise Role-based Access Control vi
AP Administrative Permissions . 17
AR Administrative Roles . 17
ARA Ability Role Assignment . 21
ARBAC Administrative Role-Based Access Control . v
ARBAC97 Administrative Role-Based Access Control 1997 16
ARBAC99 Administrative Role-Based Access Control 1999 16
ARBAC02 Administrative Role-Based Access Control 2002 16
AR-UG Associate Registrar, Undergraduate . 62
AR-PG Associate Registrar, Postgraduate .62
BA Business Analyst . 75
C Constraints . 14
CEO Chief Executive Officer . 46
DC Departmental Chair . 54
DEV Developer . 101
DSD Dynamic Separation of Duty . 126
ER Enterprise Roles . 27
ERBAC Enterprise Role-based Access Control . 35
GoC Government of Canada . 1
GoC-SP Government of Canada Security Policy . 40
GRA Group Role Assignment. .21
HR Human Resources .25
HRMS Human Resources Management System . 22
IM Information Management . v
IT Information Technology . 7
MITS Operational Security Standard: Management of Information

Technology Security. .1

xii

MTA Multi-Tenant Architecture . 101
NIST National Institute of Standards and Technology 12
OAuth Open Authorization . 70
OATT Object Attributes . 32
P Permissions . 2
PA Permission Assignment . 12
PD Project Director . 101
PDCA Plan-Do-Check-Act . 69
PFP Permission Filtering Policy. .32
PM Project Manager. .101
PR Permission-Role .4
PRA Permission-Role Assignment .vi
PRMS Permissions . 32
R Roles . 12
RABAC Role-Centric Attribute Based Access Control vi
RBAC Role-Based Access Control . iii
RBAC96 Role-Based Access Control 1996. .v
RBÄC Bi-Sorted Role-Based Access Control . vi
RDBMS Relational Database Management Systems 64
RE Requirements Engineering . 76
ReBAC Relationship-Based Access Control . vi
ReMMo Responsibility MetaModel . vi
RH Role Hierarchy . 4
RHA Role Hierarchy Administration . 25
RMP Role Mining Problem . 56
RRA Role-Role Assignment . vi
S Subjects . 2
SA Security Architect . 81
SaaS Software as a Service . 100
SARBAC Scoped Administrative Role-based Access Control vi
SNS Social Network Systems. .30
SOR Statement of Requirements . 75
SP Subject-Permission. .2
SQL Structured Query Language . 95
SR Subject-Role . 4
SRP Subject-Role-Permission . 4
SRS Software Requirements Specifications . 77
SSD Static Separation of Duty . 126
TS Target System . 27
U Users . 12

xiii

UA User Assignment .12
UATT User Attributes . 32
UIS University Information System . 70
UISA University Information System Application 101
URA User-Role Assignment. .v
XACML eXtensible Access Control Markup Language 69

xiv

1 Introduction

The research described in this dissertation proposes a new model and method-
ology for engineering scalable access control systems in organizations where
hundreds or thousands of employees require access to information on a need
to know basis in order to perform their job. In this chapter, we introduce the
research area, identify an area of deficiency, state our aim and describe our
validation approach.

1.1 Information Management (IM)

The Government of Canada (GoC) Policy on Information Management states
that the objective is to achieve efficient and effective information management
to support program and service delivery; foster informed decision making; fa-
cilitate accountability, transparency, and collaboration; and preserve and en-
sure access to information and records for the benefit of present and future
generations [61].

Applications are developed to permit access to corporate information in
dynamic, complex environments with challenging combinations of employee
turnover, security policy and regulatory compliance. Figure 1.1 is one example
of an IM architecture where several applications may access the corporate
database directly, or indirectly through web or application servers. After a
user successfully enters their user name and password, authenticating their
identity, an application may limit their access to information, employing a
need to know security policy.

Under section 16.4.3 of the GoC Operational Security Standard: Manage-
ment of Information Technology Security (MITS), administrators must keep
user access to the minimum required for an individual to perform their duties.
Furthermore, administrators must ensure that access control implementations
are regularly updated to accurately reflect the current responsibilities of any
individual in the organization [59].

1

1.2. Authorization

INTERNET

`

Application

`

Application

`

Application
Application Server

`

Application

Database

Web Server `

Application

Figure 1.1: IM architectures may include several applications.

In this work the terms IM system and application are used interchangeably
as are the terms subject and user.

1.2 Authorization

Access to information is controlled by layers of security. The authentication
layer facilitates entry into the system, enabling subjects to use their key, for
instance a user name and password, to open up the proverbial door. Once
inside the information system, the authorization layer, specifies WHO has ac-
cess to WHAT. The who is a set of Subjects (S) and the what is a set of
Permissions (P) that have been assigned to the subject. The result is a set
of Subject-Permission (SP) relationships, where the set SP ⊆ S × P specifies
who is authorized to do what in the information system (Figure 1.2). The
authorization layer explicitly details all aspects of a security implementation
for authenticated subjects, forming a rich, complex arena for security practi-

2

1.2. Authorization

Application

Subject(s) Permission(s)

Authentication

Authorization

SP

Figure 1.2: SP is the implicit relationship between Subjects (S) and Permis-
sions (P).

tioners to manage.
Using an analogous scenario from a physical security implementation, con-

sider the case of Bob an employee at a university, whose identification card
acts like a key. Although Bob’s key permits him to access particular build-
ings and rooms, Bob does not have full access to all buildings and rooms on
campus. Security policy dictates that Bob only needs access to a subset of
the buildings and rooms. Bob has no need to access student residences, nor
many other buildings throughout the campus.

In this scenario, Bob’s identification card is the authentication layer. Bob
uses his card as a key, identifying himself to the access control system. Once
his key has been presented, the authorization layer, determines whether Bob
(WHO) may enter the building (WHAT). Maintaining WHO may do WHAT
is not trivial in physical security implementations.

Engineering scalable access control systems permitting employees to utilize
multiple applications with potentially hundreds or thousands of features and
functionalities on a need to know basis is extremely challenging. In this work
we assume a subject has successfully authenticated to an application, for in-
stance by correctly entering their user name and password. After the subject
has gained entry to the IM system, they are only permitted to read or write
information as authorized. The focus of this dissertation is the authorization
layer, where relations between WHO and WHAT are explicitly defined and
maintained.

3

1.3. Role-Based Access Control (RBAC)

1.3 Role-Based Access Control (RBAC)

Since the early 1990’s, the use of RBAC has evolved within large organizations
such as the GoC. Although, RBAC provides a solid foundation for managing
access control, system administrators may be burdened with the maintenance
of hundreds or thousands of roles across several applications [76]. Managing
these roles, users and their interrelationships is a formidable task that is often
highly centralized in small teams of system administrators [74]. This is a
daunting task in large organizations where security practitioners are tasked
with access control as a secondary duty and provided various levels of training
and formalized knowledge [9].

RBAC is a popular model for implementing the authorization layer or
WHO may do WHAT [72]. The use of RBAC for access control has experi-
enced a global proliferation due to the administrative savings afforded by the
RBAC model [12][26][72]. Unlike the concept of groups, the administration of
RBAC is multi-faceted. Performing Subject-Role (SR) enrollments, creating
a Role Hierarchy (RH) and instantiating Permission-Role (PR) assignments
are distinct administrative actions that explicitly relate S and P. An explicit
representation includes at least one role between subjects and permissions,
forming the classic Subject-Role-Permission (SRP) triangle (Figure 1.3).

Consider the case where all bank tellers require the exact same access to
an information system, conservatively five permissions. In this classic RBAC
example, a security officer, responsible for access management, creates the role
bank teller (1), assigns five (5) permissions to the role bank teller and then
enrolls a subject into the role bank teller (1). By creating the role and assigning
it, the security officer invests two extra administrative actions compared to
simply assigning five permissions directly to the subject, however, the return
on investment is four fewer administrative actions for each additional subject
enrolled into the bank teller role. In Figure 1.4, we see that the savings
is fifteen administrative actions (less two), or grants, in case #1 with five
subjects, or users. In large organizations like case #2, we see that the savings
is 9,800 (less two) administrative actions for one hundred subjects.

With RBAC the administrative savings are easily demonstrable. Unfortu-
nately, this example oversimplifies RBAC, making it difficult to understand
the challenges inherent when implementing RBAC in large dynamic organi-
zations with highly diversified workforces. For large-scale RBAC systems,
thousands of access control relationships must be maintained and the admin-
istrative effort to maintain SR, RH and PR relationships is a formidable task
that is often highly centralized in a small team of security administrators [63].

4

1.4. Operational Case Studies

S P

R (RH)

S P

R+ (RH+) D+ (DH+)

a) RBAC b) RBÄC

SP SP

SR PR SR+

G

PD+

Figure 1.3: An explicit RBAC relationship includes at least one role, forming
the classic subject-role-permission triangle.

1.4 Operational Case Studies

Protecting information and client data is an ongoing concern for large public
and private organizations. However, the administration of large-scale RBAC
systems like Dresdner Bank [76], with 40,000 users and 1300 roles, remains a
challenging problem [51]. RBAC is an open, generic technology that permits
several solutions to the same access control requirements and for this reason,
large banking organizations like Dresdner may have similar access control
requirements and vastly different RBAC systems.

Coyne suggests that the definition of roles is essentially a requirements
engineering process [13]. This is an important concern since role engineering
has been determined to be the most expensive aspect of deploying RBAC [58].
This research is particularly interested in the administration of RBAC systems
in large organizations with hundreds or thousands of employees. This includes
the design, implementation, deployment and maintenance of RBAC systems
for information security. The relevance of this research is best illustrated with
two operational case studies.

In the first case study, conducted from the year 2000 onwards, we analyze

5

1.4. Operational Case Studies

Direct User Grants
Case #1: 5 users * 5 tables = 25 grants
Case #2: 100 users * 100 tables = 10,000 grants

Case #1: 5 users + 5 tables = 10 grants
Case #2: 100 users + 100 tables = 200 grants

Role

Role-Based Access Control
(RBAC)

Figure 1.4: Classic Example of RBAC Administrative Savings

the RBAC implementation of ACME university1, resulting in a deep-seated
appreciation of the inherent challenges faced when administering large RBAC
implementations on a yearly basis. We have closely observed the impact of
employee turnover and security policy changes in a real-world setting, forming
the motivation for this research and influencing our work.

In the second case study, we describe a project conducted for MECA2,
an educational institution, whose campus is located more than three hundred
kilometers from ACME university. The scope is a one year engagement (2016)
to extend features and functionalities of the ACME university information
system to MECA. We have closely observed the communication challenges
encountered by a distributed, multi-disciplinary, multi-lingual project team
with extensive to very little understanding of access control.

1The name ACME University is inspired from ACME Looniversity
http://tinytoons.wikia.com/wiki/Acme Looniversity

2The name MECA is an anagram of ACME

6

1.5. Statement of Deficiency

1.5 Statement of Deficiency

RBAC is a popular solution for implementing access control however our re-
search suggests there is no pervasive methodology used to produce scalable
access control systems for large organizations with hundreds or thousands of
employees. As a result ten engineers will likely arrive at ten different solu-
tions to the same problem where there is no right or wrong answer but there is
both an immediate and long term cost. Moreover, they would have difficulty
communicating the important aspects of their design and implementations to
one another. This is an interesting deficiency because despite their diversity,
large organizations are built upon two key concepts, roles and responsibilities,
where a role like Departmental Chair is identified and assigned responsibilities.

Access control is often considered a necessary burden. Organizations must
secure their data in order to preserve intellectual property or meet privacy
concerns and too often RBAC systems are considered a means of restricting
access to information. This is disappointing because RBAC has the potential
to be a well understood, enabling technology, where implementations directly
reflect the business model of an organization. Instead RBAC systems are often
loosely coupled with the business model, ripe with redundancies and costly to
maintain.

This is an important concern because role engineering is expensive [76][58][1].
Large organizations who have significant investments in RBAC implementa-
tions with hundreds of roles engineered over decades to realize security pol-
icy and safeguard information assets would like to reuse their implementa-
tion when deploying new services and adapting to meet the demands and
expectations of clients, stakeholders, partners and employees. For large, ma-
ture organizations with decades of Information Technology (IT) investments,
the challenge of replacing legacy solutions with modern alternatives are well-
documented and costly [37][70][77]. IT supports IM which must support the
business [82].

1.6 Aim

The aim of this research is to deliver a new model and methodology for en-
gineering scalable access control systems in organizations where hundreds or
thousands of employees require access to information on a need to know basis
in order to perform their job.

• The first objective is to challenge the long held belief, notion or sense
that the number of subjects far exceeds the roles found in enterprise sys-

7

1.7. Validation Approach

tems. If role explosion is a normal occurrence and previous models for
the administration of RBAC consider role explosion a design problem
this should motivate the requirement for role evolution and the intro-
duction of new RBAC structural relationships that distinguish between
roles and responsibilities.
• The second objective is to produce a new model for describing and rea-

soning about RBAC implementations using these new relationships to
directly inform the architecture, thereby making RBAC systems more
easily understood and receptive to change.
• The third and final objective is to deliver a new iterative methodology

for engineering scalable access control systems, using the terms role and
responsibility to improve communication.

This research has the potential to impact the perception of access control.
Rather than being viewed as a necessary burden, access control has the po-
tential to be a well understood, enabling technology, directly informed by the
business model, a scaffolding for maintaining information systems, where the
individual parts are simple to understand and the flexibility achieved through
aggregating roles and responsibilities, provides the necessary framework for
scalable access control systems.

1.7 Validation Approach

To the best of our knowledge, the current literature does not provide detailed
research resulting in the delivery of a methodology for engineering scalable
access control systems in organizations with hundreds or thousands of em-
ployees. The validation approach for this work is divided into three distinct
phases.

First, after performing a literature review in chapter 2, we challenge the
belief, notion or sense that the number of subjects far exceeds the roles found
in IM systems in chapter 3 and chapter 4. We analyze the RBAC system
found at ACME university, comparing it to a recently introduced fragment of
RBAC called bi-sorted role-based access control [20]. We present our results
and introduce a new role-centric methodology for dynamically constraining
access to information. We describe how organizational scalability is enhanced
at ACME university by decoupling subject and permission management at
the expense of role evolution.

Next, in chapter 5 we produce our new model and deliver our new method-
ology for engineering scalable access control systems named ORGODEX. We
use our first operational case study at ACME university to motivate the re-

8

1.8. Summary

quirement for new RBAC structural relationships, distinguishing between roles
and responsibilities. We advocate on behalf of role evolution.

Finally, in chapter 6, we validate our new model and methodology in our
second operational case study. Assuming the duties of a Project Manager, we
use our new ORGODEX methodology to lead a one year initiative to extend
features and functionality of the ACME IM system to MECA, another edu-
cational institution. The project team is a distributed, multi-disciplinary and
multi-lingual group of individuals with extensive to very little understanding
of access control. We focus on the added benefits of harmonizing role and
requirements engineering efforts when designing system functions and user
interfaces [13].

1.8 Summary

In this chapter, we introduce our area of research, the authorization layer
where security practitioners manage access to IM systems. When a subject
successfully authenticates, for instance by correctly entering their user name
and password, it is the authorization layer controlling what information they
are authorized to read or write.

RBAC is a popular model for implementing the authorization layer, or
WHO has access to WHAT, however there is no pervasive methodology used
to produce scalable access control systems. This is an important concern
because RBAC is an open, generic solution where there is no right or wrong
answer but there is both an immediate and long term cost associated with its
deployment.

In the following chapter, we perform a literature review, describing the
work of authors who have influenced this dissertation. Then in chapter 3 we
provide additional motivation for this work, introducing the notion of role
explosion before advocating in favour of role evolution in chapter 4.

1.9 Publications

Publications related to this thesis:

• Aaron Elliott and Scott Knight. ORGODEX: Authorization as a Ser-
vice. Proceedings of the 12th Annual IEEE International Systems Con-
ference, to appear 2018.
• Aaron Elliott and Scott Knight. Start Here: Engineering Scalable Access

Control Systems. Proceedings of the 21st ACM Symposium on Access
Control Models and Technologies, pages 113-124, 2016.

9

1.9. Publications

• Aaron Elliott and Scott Knight. Towards Managed Role Explosion. In
Proceedings of the 2015 New Security Paradigms Workshop (NSPW),
number 1, pages 100-111, 2015. ACM Press.
• Aaron Elliott and Scott Knight. Role Explosion: Acknowledging the

Problem. In Proceedings of the 2010 International Conference on Soft-
ware Engineering Research and Practice, WORLDCOMP, pages 349-
355, 2010. CSREA Press.
• Aaron Elliott and Scott Knight. One Employee and Several Applica-

tions: An Information Management Case Study. In Software Engi-
neering Research and Practice, WORLDCOMP, pages 179-185, 2009.
CSREA Press.

10

2 Literature Review

2.1 Introduction

In the previous chapter, we introduced the RBAC model for specifying the
authorization layer and engineering access control systems. We also high-
lighted a deficiency for large organizations, identifying the requirement for a
new methodology for engineering scalable access control systems that are well
understood and directly reflect the business model of an organization.

In this chapter, we complete a literature review to place this work in
context, highlighting the contributions of authors who have influenced this
dissertation. In the following subsections, we chronologically order and present
a series of models proposed for access control and its administration:

1. Role-Based Access Control (RBAC)
2. Administrative Role-Based Access Control (ARBAC)
3. Scoped Administrative Role-based Access Control (SARBAC)
4. Administrative Enterprise Role-based Access Control (A-ERBAC)
5. Attribute-Based Access Control (ABAC)
6. Relationship-Based Access Control (ReBAC)
7. Role-Centric Attribute Based Access Control (RABAC)
8. Responsibility MetaModel (ReMMo)

Finally, we conclude the chapter with a detailed description of Bi-Sorted
Role-Based Access Control (RBÄC) an extension for existing RBAC imple-
mentations. The RBÄC model includes a return to first principles and the
introduction of a new mandatory layer of abstraction for RBAC implementa-
tions intended to address scalability concerns.

2.2 Role-Based Access Control 1996 (RBAC96)

RBAC is the commercially dominant model for implementing the authoriza-
tion layer or WHO has access to WHAT [39]. A role is a semantic construct

11

2.2. Role-Based Access Control 1996 (RBAC96)

around which access control policy is formulated. Roles are created for the
various job functions in an organization and users are assigned roles based on
their responsibilities and qualifications. Users can be easily reassigned from
one role to another. Permissions can be granted to roles as new applications
and systems are incorporated and subsequently revoked as needed.

Unlike the concept of groups, which only specify a collection of users or
subjects, roles identify a set of users and a related set of permissions. For this
reason, RBAC administration is multi-faceted. User-Role Assignment (URA),
Permission-Role Assignment (PRA) and Role-Role Assignment (RRA) are
distinct actions required to bring users and permissions together. Role-role
relationships are established to implement broad policy objectives [72].

The concept of RBAC began with multi-user and multi-application on-line
systems in the 1970s. However, a resurgence of interest in the early 1990s was
driven by a need for general-purpose features and the RBAC model was for-
mally introduced by David Ferraiolo and Richard Kuhn at the 15th National
Security Conference in October 1992 [26]. In 1996, Sandhu et al. introduced
a novel framework of reference models, commonly known as RBAC96, to sys-
tematically address the diverse components of RBAC [72]. This includes the
base model RBAC0, RBAC1 with role hierarchies, RBAC2 with constraints
and RBAC3, the consolidated model. In the early 2000s, the National Insti-
tute of Standards and Technology (NIST) initiated a process to produce a
standard, ANSI INCITS 359-2004, intended for software engineers designing
products with RBAC [2]. This was followed eight years later with the revised
version, ANSI INCITS 359-2012, maintaining the advantages of RBAC while
providing a mechanism for including attributes in access-control decisions [3].

2.2.1 Base Model (RBAC0)

The base model RBAC0, identifies a collection of sessions and three entities;
Users (U), Roles (R) and Permissions (P) where a user is a human being, a
role is a job function or title and permissions are the approvals required to
access one or more objects in a system. User Assignment (UA) and Permission
Assignment (PA) are many-to-many relationships. A user can be a member of
many roles and a role can have many users. Similarly, a role can hold several
permissions, and the same permission can be assigned to several roles.

Each session is a mapping of one user to possibly many roles. The total
permission set available is the union of all permissions granted to all the roles
assigned and activated for the user in their session. A user may have multiple
sessions open at the same time and each session may have a different com-
bination of active roles. This feature of RBAC0 facilitates the least-privilege

12

2.2. Role-Based Access Control 1996 (RBAC96)

principle, enabling administrators to keep user access to the minimum required
for an individual to perform their duties [60].

Definition 1. The RBAC0 model has the following components:

• U, R, P and S are sets of users, roles, permissions and sessions respec-
tively
• PA ⊆ P × R, a many-to-many permission to role assignment relation
• UA ⊆ U × R, a many-to-many user to role enrollment relation
• user: S 7→ U, a function mapping each session, si, to a single user,

user(si), for a session’s lifetime, and
• roles: S 7→ 2R, a function mapping each session, si, to a set of roles,

roles(si) ⊆ {r|(user(si), r) ∈ UA}, which can change with time and
session, si, has the permissions, ∪r∈roles(si){p|(p, r) ∈ PA}

2.2.2 Role Hierarchies (RBAC1)

The model RBAC1 introduces Role Hierarchy (RH), a natural means for struc-
turing roles to reflect an organization’s lines of authority and responsibility.
In a role hierarchy, senior roles acquire all of the permissions of junior roles.
For example, in Figure 2.1, the Director inherits all of the permissions of both
Project Leads 1 and 2.

Definition 2. The RBAC1 model has the following components:

• user and the sets U, R, P, S, PA and UA are unchanged from RBAC0

• RH ⊆ R × R, is a partial order on R called the role hierarchy or domi-
nance relation, also written as ≥, and

• roles: S 7→ 2R is modified from RBAC0 to require roles(si) ⊆ {r|(∃r′ ≥
r)[(users(si), r′) ∈ UA]} which can change with time and session, si,
has the permissions, ∪r∈roles(si){p|(∃r′′ ≤ r)[(p, r′′)] ∈ PA}

RBAC1 acknowledges that it does not make sense for senior roles to inherit
all of the permissions of junior roles. In such instances, RBAC1 suggests the
use of private roles or multiple inheritances. Using Project Lead 1 (PL1) and
the Director (DIR) from Figure 2.1, for example, one could create a new role,
PL1′, which is a new root node in the role graph senior to PL1. Using this
method, one can assign permissions to PL1′ and grant PL1′ directly to Project
Lead 1, thus blocking the implicit acquisition of roles by DIR.

13

2.2. Role-Based Access Control 1996 (RBAC96)

Figure 2.1: An example of a role hierarchy. Adapted from [74].

2.2.3 Constraints (RBAC2)

The model RBAC2 introduces the concept of Constraints (C). Sandhu et al.
note that RBAC2 is not a progression from RBAC1 despite the labeling, both
RBAC1 and RBAC2 are independent extensions of RBAC0. Constraints are
required to enable policies such as separation of duty where one member of
an organization may not hold two roles simultaneously. The classic example
is the purchasing and accounts payable manager positions in an organization
whose duties are strategically segregated in order to avoid the possibility of
fraud.

Definition 3. RBAC2 is unchanged from RBAC0 except for requiring
that there be a collection of constraints that determine whether or not values
of various components of RBAC0 are acceptable. Only acceptable values are
permitted.

Besides mutually exclusive roles supporting the separation of duties, an-
other user assignment constraint is the number of members a role may have
assigned to it. Similarly, the number of roles that any one user can be associ-
ated with could be limited. These are called cardinality constraints. Another
frequently discussed constraint is the concept of prerequisite roles based on
competency and appropriateness. For example, only persons with the em-

14

2.2. Role-Based Access Control 1996 (RBAC96)

ployee role may be associated with the Engineering Department. It is impor-
tant to note that constraints such as those discussed here assume a one-to-one
correspondence between user identifiers and human beings.

2.2.4 Role Hierarchies and Constraints (RBAC3)

A role hierarchy can be considered a type of constraint where all permissions
assigned to a junior role must also be assigned to all senior roles. Sandhu et
al. feel that it is appropriate to recognize the existence of role hierarchies in
their own right in order to avoid redundancy of permission assignment and
user assignment. RBAC3 combines RBAC1 and RBAC2, providing both RH
and C. However, there are several issues that arise when these two concepts
are brought together. For instance, in Figure 2.1, the Director role inherits
all of the permissions of the junior roles, Project Leads 1 and 2. If there is a
constraint identified such that the Project Lead 1 and 2 are mutually exclusive
then the Director role violates this mutual exclusion.

2.2.5 Administration

Despite the enthusiasm for RBAC, the use of RBAC principles to manage
RBAC systems has been less widely studied [15]. A formalized model for the
administration of RBAC should be both versatile and practical. Crampton
and Loizou define versatility to mean that an access control model should
be widely applicable and practicality to mean that an access control model
could be implemented in a real-world system without incurring unacceptable
overhead [16].

With RBAC, one can easily demonstrate practicality (Figure 1.4). By in-
vesting in role creation, one expects a return on investment for each and every
User-Role Assignment (URA) that follows the first. Granting users access to
information (or objects) is a well established computer science problem. The
reference monitor, introduced by Anderson in 1972, models the controlled
sharing of resources, validating all references made by a program in execution
against those authorized for the subject by the system security policy [4]. An-
other basic abstraction used in dealing with access control is the access matrix
introduced by Lampson in 1974. It describes a formal security model of pro-
tection state in computer systems, characterizing the rights of each subject
with respect to every object in the system [49].

With RBAC, roles can be well understood by their names, and they de-
termine the sets of permissions to be granted to users. In addition, it is easy
to audit which users have access to a given permission and what permissions

15

2.3. Administrative Role-Based Access Control (ARBAC)

have been granted to a given user. A limited number of roles can represent
many users or user types, and roles can be assigned to users by non-expert
personnel [14].

Formal models for the administration of RBAC have been the subject of
considerable research resulting in several important models. In the following
subsections, the work of three influential sets of authors is further described.

2.3 Administrative Role-Based Access
Control (ARBAC)

A literature review for the administration of RBAC typically begins with
the Administrative Role-Based Access Control (ARBAC) family of models
[74][71][63]. This includes the Administrative Role-Based Access Control
1997 (ARBAC97), followed by its extensions Administrative Role-Based Ac-
cess Control 1999 (ARBAC99) and Administrative Role-Based Access Control
2002 (ARBAC02). The use of RBAC to manage RBAC remains a promising
alternative for RBAC administration but the current models must be improved
in order to achieve general acceptance. At the end of this chapter, the intu-
itions and assumptions inherent in the design of current ARBAC models will
be summarized before the ramifications of these design decisions are analyzed
in the subsequent chapter.

2.3.1 ARBAC 1997

ARBAC97, depicted in Figure 2.2, is based on the RBAC model and it
describes the decentralized administration of User-Role Assignment (URA),
Permission-Role Assignment (PRA) and Role-Role Assignment (RRA) [73].
In their introduction to ARBAC 1997, the authors offer the following com-
mentary with respect to large enterprise systems:

• The number of roles can be in the hundreds or thousands and users in
the tens or hundreds of thousands.
• Managing these roles, users and interrelationships is a formidable task

that cannot realistically be centralized in a small team of system admin-
istrators.
• Decentralizing the details of RBAC administration without loosing cen-

tral control over broad policy is a challenging goal for system designers
and architects
• There is tension between the desire for scalability through decentraliza-

tion and maintenance of tight control

16

2.3. Administrative Role-Based Access Control (ARBAC)

Figure 2.2: The ARBAC model [74].

• A complete solution to this problem requires further research and faces
significant theoretical problems

In Figure 2.2, the bottom half is a mirror image of the top half and it is in-
tended that Administrative Roles (AR) and Administrative Permissions (AP)
be respectively disjoint from regular Roles (R) and Permissions (P). A single-
headed arrow indicates a one-to-one relationship and a double-headed arrow
describes a one-to-many relationship. Administrative permissions control ac-
tions such as adding new Users (U) and Roles (R), modifying User Assign-
ment (UA) and Permission Assignment (PA) relations. Regular permissions,
on the other hand, control operations on the data and resources and do not
permit administrative operations. A user can be a member of many roles and
a role can have many users. Similarly, a role can be assigned one or more
permissions and permissions can be assigned to one or more roles. There is a

17

2.3. Administrative Role-Based Access Control (ARBAC)

partially ordered role hierarchy where x ≥ y signifies that role x inherits the
permissions assigned to y and x is senior to y or equivalently y is junior to
x. Inheritance along the role hierarchy is transitive and multiple inheritances
are permitted for partial orders.

Each session in Figure 2.2 relates one user to possibly many roles. A user
establishes a session and activates some subset of roles that he or she is a
member of (directly or indirectly by means of a role hierarchy). The double-
headed arrows from a session, S, to R and AR indicate that multiple roles
and administrative roles can be simultaneously activated. The permissions
available to the user are the union of permissions from all roles activated in
that session. Each session is associated with a single user, as indicated by the
single-headed arrow from the session to U. The concept of a session equates
to the traditional notion of a subject in access control. A subject (or session)
is a unit of access control, and a user may have multiple subjects (or sessions)
with different permissions active at the same time.

User-Role Assignment (URA)

The aim of URA is to impose restrictions on which users can be added to
a role and by whom, as well as to clearly separate the ability to add and
remove users from other operations on the role. The notion of a prerequisite
condition is a key part of URA. It enables administrators to explicitly define
conditions where user-role relationships are not permitted. For instance, an
administrator may explicitly define that a user, u, may not be granted the
role, x, unless they have been previously granted the role, y.

Definition 4. Prerequisite conditions are boolean expressions using the
usual ∧ and ∨ operators on terms of the form x and x̄ where x and x̄ are
regular roles (i.e. x ∈ R). A prerequisite condition is evaluated for a user,
u, by interpreting x to be true if (∃x′ ≥ x)(u, x′) ∈ UA and x̄ to be true if
(∀x′ ≥ x)(u, x′) /∈ UA. For a given set of roles, R, CR denotes the set of all
possible prerequisite conditions that can be formed using the roles in R.

Definition 5. User-role assignments are controlled by can assign ⊆
AR× CR× 2R

The meaning of can assign(x, y, {a, b, c}) is that a member of the admin-
istrative role x (or a member of an administrative role that is senior to x) can
assign a user whose current membership, or non-membership, in regular roles
satisfies the prerequisite condition y to be a member of regular roles a, b, or c.
URA uses the concept of role ranges to facilitate changes in the role hierarchy

18

2.3. Administrative Role-Based Access Control (ARBAC)

and add resiliency to the model. The notation in the following definition is
based on the standard mathematical notation for open and closed intervals.

Definition 6. Role sets are specified in the URA model by the following
range notation:

• [x, y] = {r ∈ R|x ≥ r ∧ r ≥ y}
• [x,y) = {r ∈ R|x ≥ r ∧ r > y}
• (x,y] = {r ∈ R|x > r ∧ r ≥ y}
• (x, y) = {r ∈ R|x > r ∧ r > y}

The URA revoke model is consistent with the philosophy of RBAC. In the
URA model it is inconsequential that Bob has been assigned permissions by
Alice. If Charlie replaces Alice in the organization and Bob is reassigned to
another project then Charlie can revoke Bob’s permissions regardless of the
fact that Alice performed the original grant. This is a departure from the
classical discretionary approach to revocation [75].

Definition 7. User-role revocations are controlled by can revoke ⊆
AR× 2R

The meaning of can revoke(x, Y) is that a member of the administrative
role, x, (or a member of the administrative role that is senior to x) can revoke
membership of a user from any regular role y/inY . Y specifies the range of
revocation using the range notations previously defined.

The revocation operation in URA is considered weak because it only ap-
plies to the role that is directly revoked. Although RBAC permits a user to
be an explicit and implicit member of the same role, weak revocation has an
impact on the explicit membership only.

Definition 8. The user, u, is an explicit member of role x if (u, x) ∈ UA,
and u is an implicit member of role x if for some x′ > x, (u, x′) ∈ UA

Weak revocation only applies to explicit role memberships. If Alice has a
session with the administrative roles defined by A = {a1, a2, ..., ak} and she
tries to weakly revoke Bob from the role x then there are two cases to consider.
In the first case, Bob is not an explicit member of x and the operation has
no effect. In the second case, there exists a can revoke tuple (b, Y) such that
ai ∈ A, ai ≥ b and x ∈ Y revokes Bob’s explicit membership in x.

The algorithm for strong revocation is stated in terms of weak revocation
and it applies to both explicit and implicit role memberships. If Alice has a
session with the administrative roles A = {a1, a2, . . . , ak} and Alice tries to
strongly revoke Bob from role x then find all roles y ≥ x such that Bob is an

19

2.3. Administrative Role-Based Access Control (ARBAC)

explicit member of y. Weakly revoke Bob from all such y as if Alice performed
this weak revoke in this session. If any of the weak revokes fail, then Alice’s
strong revoke has no effect, otherwise all weak revokes succeed. The algorithm
for strong revocation cascades up a role hierarchy and it cascades down when
Bob is explicitly revoked from a role b that is senior to a. However, if Bob
is an explicit member of both b and a then Alice’s revocation of b does not
remove him from a.

Property 1. Implicit membership in a role a, is dependent on explicit
membership in some senior role b > a. Therefore, when explicit membership
of a user is revoked from b, implicit membership is also automatically revoked
on junior role a, unless there is some other senior role c > a in which the user
continues to be an explicit member.

To conclude this summary of the URA model, Sandhu et al. note a
lack of symmetry between the can assign and can revoke operations, in that
can assign involves prerequisite conditions and can revoke does not. Enhance-
ments to the range notation are left as future work.

Permission-Role Assignment (PRA)

PRA is concerned with permission-role assignment and revocation. From the
perspective of a role, users and permissions have similar characteristics. They
are essentially entities that are brought together by a role. Based on this
notion, the authors propose that PRA is a dual of URA.

Definition 9. Permission-role assignment and revocation, respectively,
are authorized in PRA by the following relations:

• can assignp ⊆ AR× CR× 2R

• can revokep ⊆ AR× 2R

The meaning of can assignp(x, y, Z) is that a member of the administrative
role x (or a member of an administrative role that is senior to x) can assign
a permission whose current membership, or non-membership, in regular roles
satisfies the prerequisite condition y to be a member of regular roles in range
Z. The meaning of can revokep(x, Y) is that a member of the administrative
role x (or a member of the administrative role that is senior to x) can revoke
membership of a permission from any regular role y ∈ Y .

Revocation for PRA is weak, so permissions may still be inherited after
revocation. Like URA, strong revocation can be defined in terms of weak

20

2.3. Administrative Role-Based Access Control (ARBAC)

revocation for PRA, where the revocation of permissions cascades down (as
opposed to up for the revocation of user membership).

Definition 10. Permission, p, is explicitly assigned to role x if (p, x) ∈
PA, and p is implicitly assigned to role x if for some x′ < x, (p, x′) ∈ PA

Weak revocation only applies to explicit role assignments. If Alice has a
session with the administrative roles defined by A = {a1, a2, ..., ak} and she
tries to weakly revoke the permission, p, from the role, x, then there are two
cases to consider. In the first case where p is not explicitly assigned to x, the
operation has no effect. In the second case, there exists a can revokep tuple
(b, Y) such that ai ∈ A, ai ≥ b and x ∈ Y revokes p’s explicit assignment to
x.

The algorithm for strong revocation is stated in terms of weak revocation
and it applies to both explicit and implicit role memberships. If Alice has a
session with the administrative roles defined by A = {a1, a2, ..., ak} and she
tries to strongly revoke permission, p, from role x, find all roles y ≤ x such
that p is explicitly assigned to y. Next, weakly revoke p from all such y. If any
of the weak revokes fail, then Alice’s strong revoke has no effect, otherwise all
weak revokes succeed.

Role-Role Assignment (RRA)

RRA distinguishes three types of mutually disjoint roles; Abilities (A), Groups
(G) and UP-roles (UP). Abilities are roles that can only have permissions
and other abilities as members. Groups are roles that can only have users
and other groups as members. UP-Roles are roles that have no restrictions
on membership. Their membership can include permissions, users, groups,
abilities and other UP-roles.

Abilities group the collection of permissions required to perform some task
(e.g. open bank account) into a role. Abilities may be organized into hier-
archies and assigning abilities to roles is similar to assigning permissions to
roles. For this reason, the permission-role assignment model (PRA) is adapted
to produce the Ability Role Assignment (ARA) model under RRA. Likewise,
groups are a collection of users who are assigned as a single unit to a role (or
team). Membership in the team may change over time and groups can be or-
ganized in a hierarchy. For group-role assignment, the authors adapt the user-
role assignment model (URA) to define the Group Role Assignment (GRA)
model under RRA.

Definition 11. Ability-role assignment and revocation, respectively, are
authorized in ARA by the following relations:

21

2.3. Administrative Role-Based Access Control (ARBAC)

• can assigna ⊆ AR× CR× 2A

• can revokea ⊆ AR× 2A

Definition 12. Group-role assignment and revocation, respectively, are
authorized in GRA by the following relations:

• can assigng ⊆ AR× CR× 2G

• can revokeg ⊆ AR× 2G

Strengths and Weaknesses

The strength of the ARBAC 1997 model lies within the formality of its ar-
chitecture and its direct linkage to the RBAC model. As the authors admit,
a complete solution to the problem requires further research and faces signif-
icant theoretical problems. Several weaknesses have been identified with the
ARBAC 1997 model, most notably, the unnecessary coupling of users with role
hierarchies as described in [63][42][64]. In addition, the ARBAC 1997 model
is administratively heavy, contains redundant user-role and permission-role
information.

Recall Figure 2.1 and consider the following example [63]. A new Employee
(E), John, is to become Quality Engineer #1 (QE1). To obtain the QE1 role,
John must be a member of the Engineer #1 (E1) role, Engineering Department
(ED) role and the Employee (E) role where there is a series of events that
must occur in a predetermined order. This requires the coordination of two
or more administrators as described in Table 2.1. In addition to the heavy
administrative load, there is redundant user-role assignment information for
John. As listed in Table 2.2, three of the records (i.e. 1, 2 and 3) result from
the multi-step user assignment process. Since QE1 inherits E1, ED and E
there is no longer a need for these user-role assignments.

In the chapters that follow, the need for a disjoint administrative hierarchy
as prescribed by the ARBAC 1997 model is questioned. This work contends
that security officers are a proxy for the people with the real authority. As a
result, this unnecessarily adds to the administrative burden. By integrating
with the Human Resources Management System (HRMS) as first described by
Oh [63] organizations can empower their managers to do user-role assignment.
A manager who has the authority to hire employees and delegate certain
tasks should not have to ask an application administrator or security officer
to delegate the task on their behalf.

22

2.3. Administrative Role-Based Access Control (ARBAC)

Table 2.1: Administrative RBAC Actions

Description

1 Assignment of John to the role E
2 Assignment of John to the role ED
3 Assignment of John to the role E1
4 Assignment of John to the role QE1

Table 2.2: User-role Assignments

Role Assigned User

1 E John
2 ED John
3 E1 John
4 QE1 John

2.3.2 ARBAC 1999

ARBAC99 extends ARBAC97 with enhancements for both User-Role Assign-
ment (URA) and Permission-Role Assignment (PRA) and no change for RRA
[73]. The important difference between ARBAC99 and ARBAC97 is the con-
cept of mobile and immobile users and permissions. In URA, there are two
consequences of assigning a user to a role. First, the user is authorized to
use the permissions of that role and all of its juniors. Second, the user also
becomes eligible for further role assignment by the appropriate administrative
roles. These two aspects of role membership are tightly coupled in URA. The
main innovation in ARBAC99 is the decoupling of these two aspects.

ARBAC99 distinguishes two kinds of membership in a role. Immobile
membership grants the user the authority to use the permissions of the role
but does not make that user eligible for further role assignment. The au-
thors give several examples such as the case of a consultant who might be
assigned to a project in the Engineering Department of XYZsoft and granted
the role Project 1 Production Engineer (PE1) as an immobile member. Pre-
sumably, the role PE1 provides the consultant with the resources required to
contribute to Project 1 and the immobile status prevents junior administrators
from assigning the consultant to other Project 1 roles. Similarly, ARBAC99
distinguishes permissions that may not be delegated by assigning the immo-
bile status. To formalize this distinction, one must consider that each role x
consists of two sub-roles, Mx and IMx. Membership in Mx is mobile whereas

23

2.3. Administrative Role-Based Access Control (ARBAC)

membership in IMx is immobile.

Definition 13. For a given set of roles, R1, the corresponding set of
roles in ARBAC99 are defined as R = {Mx, IMx|x ∈ R1}

Definition 14. There are four types of user-role memberships and four
types of permission-role memberships in ARBAC99 for any given role x:

• Explicit mobile membership (EMx) for URA and PRA are defined as
u ∈ EMx ≡ (u,Mx) ∈ UA and p ∈ EMx ≡ (p,Mx) ∈ PA respectively
• Explicit immobile membership (EIMx) for URA and PRA are defined

as u ∈ EIMx ≡ (u, IMx) ∈ UA and p ∈ EIMx ≡ (p, IMx) ∈ PA
respectively
• Implicit mobile membership (ImMx) for URA and PRA are defined as
u ∈ ImMx ≡ (∃x′ > x)(u,Mx′) ∈ UA and p ∈ ImMx ≡ (∃x′ <
x)(p,Mx′)(p,Mx) ∈ PA respectively

• Implicit immobile membership (ImIMx) for URA and PRA are defined
as u ∈ ImIMx ≡ (∃x′ > x)(u, IMx′) ∈ UA and p ∈ ImIMx ≡ (∃x′ <
x)(p, IMx′)(p, IMx) ∈ PA respectively

The strength of the ARBAC99 model is the formalization it shares with its
predecessors; RBAC and ARBAC97. The weakness of the ARBAC99 model
is that it contributes very little to the state of the art, in that, the solution
provided is feasible but overly complicates the model while responding to the
problem it is addressing.

2.3.3 ARBAC 2002

While acknowledging the elegance of ARBAC97, the authors of ARBAC02
illustrate redundancies and unnecessary couplings for both user and permis-
sion assignment in URA and PRA [63]. To address these practicality issues,
ARBAC02 introduces the notion of organizational units as logical containers
or pools for new users and permissions. The advantage of this methodology is
that an ARBAC02 based implementation need not redundantly mirror orga-
nizational units and hierarchies already maintained in external systems and
as a result, an ARBAC02 implementation is more conducive to changes in
security policy.

An example of an ARBAC97 to ARBAC02 transform for the can assign
relation follows:

• ARBAC97: can assign(PSO1, E1 ∧ PE1, [QE1, QE1])
• ARBAC02: can assign(PSO1,@PJ1 ∧ PE1, [QE1, QE1])

24

2.4. Scoped Administrative Role-based Access Control (SARBAC)

Under ARBAC02, the @ symbol is a pointer to an organizational unit
name in an external Human Resources Management System (HRMS) that
seamlessly integrates with an ARBAC implementation. This addresses the is-
sue of multi-step user-role assignment in ARBAC97 where new employee John
must be assigned to the role Employee (E) followed by the role Engineering
Department (ED) followed by the role Engineer #1 (E1) before the Project 1
Security Officer (PSO1) can assign John to the Quality Engineer #1 (QE1)
role. Instead, ARBAC02 contends that the assignment of John to the organi-
zational unit Project 1 (PJ1) in the HRMS places John @ the user pool where
he may be assigned directly to Quality Engineer #1 (QE1) by the Project 1
Security Officer (PSO1). This eliminates the first three user-role assignments
of ARBAC97, thus providing a seventy-five percent administrative savings.

The strength of ARBAC02 is its concept of user and permission pools. The
weakness of ARBAC02 is its failure to quantify the administrative savings of
this model. The authors determine that the functions of the Human Resources
(HR) and Information Technology (IT) groups are outside the scope of role-
based security administration. However, this model is entirely dependent on
leveraging the use of an HRMS and the use of user and permission pools is
not generic enough to support all systems [42].

2.4 Scoped Administrative Role-based Access
Control (SARBAC)

In 2002, despite the enthusiasm for RBAC, the use of RBAC principles to
manage RBAC systems had been less widely studied. Crampton and Loizou
considered this a serious omission for dynamic access control systems where
changes must be controlled, believing that it is best to develop a model for
Role Hierarchy Administration (RHA) first since incorporating user-role and
permission-role administration would be relatively easy to do later [16].

SARBAC extends the ARBAC model for administration, introducing scoped
RHA to add flexibility and define domains where every role r ∈ R has an ad-
ministrative scope determined by the structure of the hierarchy. Informally,
r′ is in the administrative scope of r if any change to r′ will only be observed
by r and roles more senior than r [16]. More formally, administrative scope
is defined as follows:

Definition 15. The administrative scope of a role r, denoted σ(r), is
defined to be σ(r) = {s ∈ ↓r : ↑s ⊆ l r}.

The strict administrative scope of r is defined to be σ(r) \ {r} and is

25

2.5. Administrative Enterprise Role-based Access Control (A-ERBAC)

denoted σ̂(r) implying that when A ⊆ R, σ(A) = {r ∈ ↓A : ↑ r ⊆ lA} and
σ̂(A) = σ(A) \ A.

Crampton and Loizou establish a fundamental result, identifying that each
pair of administrative domains is either nested or disjoint which leads natu-
rally to the concept of administrative trees where the execution of a hierarchy
operation will affect one or more roles through transitivity. As a consequence
it may be necessary to repair the hierarchy relation following the addition or
deletion of an edge in the role graph [16].

RHA1 is the basic model and is applied directly to the role hierarchy.
RHA2 insists upon administrative permissions, offering finer granularity than
RHA1. RHA3 introduces a binary relation where admin-authority ⊆ R × R.
If (α, r) ∈ admin-authority then α is called an administrative role. RHA4

extends RHA3 to control changes to the admin-authority relation.
Crampton and Loizo conclude that SARBAC is more complete, offer-

ing greater simplicity, practicality and versatility than the overly restrictive
ARBAC97 model, detailing how SARBAC simplifies add operations and pre-
serves administrative domains for delete operations [16]. With the admission
that the simplicity of a model is a subjective quality, the authors state that
structurally every SARBAC relation is simpler than its ARBAC97 counter-
part. In terms of practicality and versatility RHA4 is more permissive than
ARBAC97 when considering thirteen specific role hierarchy operations where
only two succeed under ARBAC97 and only two fail under SARBAC thereby
raising concerns about the utility of ARBAC97.

The strength of SARBAC is its formalized approach to defining and main-
taining administrative domains. Like ARBAC, the weakness of SARBAC is
the practicality of using role hierarchies as a basis for defining administrative
domains, with an all-powerful role at the root [51]. In addition, role hierar-
chies are not a natural approach for specifying the domain of administrators.
Instead, administrative scopes are often defined based on organizational struc-
tures such as departments or cost centres [42]. Ultimately, both the ARBAC
and SARBAC models lack of validation in a practical domain lead future
researchers to reconcile the requirements of the actual users of products imple-
menting ARBAC with research [42].

2.5 Administrative Enterprise Role-based Access
Control (A-ERBAC)

In 2003, Kern, Schaad and Moffett arrived at similar conclusions. Like Cramp-
ton and Loizou, they identify the notion of scopes which describe the objects

26

2.5. Administrative Enterprise Role-based Access Control (A-ERBAC)

over which an administrator has authority [42]. However, unlike the authors
of SARBAC, Kern et al. perform validations based on real-world experiences
when implementing role-based administration infrastructures, critically eval-
uating and comparing their approach to existing models for administrative
RBAC.

A-ERBAC describes the model employed by a commercial enterprise secu-
rity management software solution deployed at a European bank where 70,000
users are administered [42]. Users are created and deleted automatically via
a connection to the Human Resources Management System (HRMS) and the
primary roles are assigned and revoked using automation. Kern et al. claim
that Enterprise Roles (ER) are increasingly used by medium to large organi-
zations as the basis for security management across different systems. In large
RBAC implementations hundreds of administrators may be required to cope
with the volume of users and their authority must be controlled by an internal
mechanism, adhering to the principle of least privilege while supporting the
creation and maintenance of roles.

A-ERBAC introduces the concept of scopes to control the authority of ad-
ministrators on a Target System (TS). An administrator may be assigned the
ability to view, insert, change or delete various RBAC elements such as users
and roles provided that they are assigned one or more administrative scopes
within the hierarchy of objects (e.g. Organizational Units or Cost Centres).
Furthermore, Kern et al. argue that the scopes of A-ERBAC provide a more
comprehensive solution than the pools of ARBAC02 as each scope is optionally
associated with attributes that enrich the administrative convenience.

In the A-ERBAC model, scopes are not limited to the organizational hi-
erarchy because other objects are often relevant in the enterprise. In the
experiences provided, the authors observed cases where the administration
of a TS was performed by different departments and in one instance, a bank
made a clear distinction between system security (e.g. operating system access
control) and application security.

The strengths of A-ERBAC follow from the strong practical background
of the authors presenting this work and the introduction of scopes which is
more generic and flexible than the use of pools in ARBAC02. Additionally,
the concept of ER is an important step towards the consolidation of role
information, describing a central repository where applications can integrate
a shared set of roles instead of each redefining novel sets.

The A-ERBAC model describes a second layer of roles between subjects
and permissions without highlighting the fact that this implies a minimum of
two roles for each user (i.e. subject-role-role-permission) where new seman-
tics have been informally introduced, differentiating business and functional

27

2.6. Attribute-Based Access Control (ABAC)

Figure 2.3: The core ABAC model . Thin solid arrows denote many-to-many
relations, thick solid lines denote relation with policy engine, and dotted lines
denote information used by the policy engine to evaluate a given policy. Ovals
represent ABAC model elements [78].

roles. While we agree that the scopes of A-ERBAC are an important addition,
the notion of typed roles might be equally important despite its unheralded
presentation in this work.

2.6 Attribute-Based Access Control (ABAC)

Several recent papers related to access control focus on the debate between
ABAC and RBAC. According to proponents of ABAC it is newer, simpler
to implement, and accommodates real-time environmental states as access
control parameters [14]. ABAC asserts that access control can be determined
based on various attributes presented by a subject [40]. In its most basic
form, ABAC relies upon the evaluation of attributes of the subject and object,
environmental conditions and the access control policy defining the allowable
operations for the subject-object attribute combinations [34].

With reference to Figure 2.3, each object within a system must be assigned
specific attributes, characterizing the object. Likewise, each subject that uses
the system must be assigned specific attributes. The policy evaluation engine

28

2.7. Relationship-Based Access Control (ReBAC)

necessitates every object within the system to have a least one policy defining
the access rules for the allowable subjects, operations and the environmen-
tal conditions. Once attributes and policies are established, objects can be
protected using ABAC. The policies that may be implemented in an ABAC
model are only limited to the degree imposed by the computational language
and the richness of the available attributes.

There are several open problems with ABAC primarily stemming from the
increased complexity introduced when attempting to enhance the flexibility
and generality of access control policies [78][34][39]. The lack of an agreed
upon or foundational model and limited emulation for representing traditional
models does not facilitate a transition from legacy RBAC implementations to
ABAC. Moreover, there are concerns about hierarchical ABAC, auditability,
formal security analysis, separation of duties, delegation, attribute storage and
sharing between different organizations, scalability, administration and user
comprehension.

RBAC and ABAC have their particular advantages and disadvantages.
ABAC may require up to 2n rules for n attributes and RBAC could require
2n roles in the worst case. In essence, RBAC trades up-front role engineering
effort for ease of administration and auditing, conversely ABAC may require
less up-front engineering effort at the expense of complicating user audits
[45][14].

For example, if a subject is currently on project A but also sometimes
works on projects B and C, rules must be instantiated and evaluated for each
of their projects. If the subject has another attribute with three possible values
(1, 2, or 3), then rules must be instantiated with nine possible value combina-
tions for these two attributes, quickly reaching a combinatorial explosion of
possible rule instantiations to evaluate.

The major challenge of ABAC is the just-in-time evaluation of its rules
making it extremely difficult, if not impossible, to determine the permissions
available to a particular user [23]. On these grounds alone we consider ABAC
insufficient as a security model. With ABAC how does one report on the pro-
tection state of their computer system when breaches inevitably occur [49][31].
We strongly support a hybrid RBAC-ABAC approach similar to what is de-
scribed in section 2.8, introducing our new hybrid model in section 4.4.

2.7 Relationship-Based Access Control (ReBAC)

In many emerging application domains, such as health care and education, it
is more natural to determine authorization decisions based on a relationship

29

2.7. Relationship-Based Access Control (ReBAC)

(e.g. doctor-patient) thus identifying the requirement for access control sys-
tems to support the sharing of wide-scope relationships across multiple access
contexts and to do so in a rational manner [27]. Social Network Systems (SNS)
explicitly track the social networks of their users, for example Facebook per-
mits one individual to invite another to connect. If the invitation is accepted,
the relationship is confirmed and a new edge in the social graph is created
between two friends. Gates first described a new paradigm for access control
based on interpersonal relationships, highlighting the requirement for access
controls that are (1) relationship-based, (2) fine-grained, and (3) support in-
teroperability [28].

ReBAC is formulated to capture the core idea of employing social net-
works as the basis of authorization decisions, enabling the explicit tracking of
interpersonal relationships between users, and the expression of access control
policies based on these relationships. Contrary to other SNSs, ReBAC relates
several notional connections (e.g. child-parent and doctor-patient) with di-
rectional information (e.g. child-parent and parent-child are distinct). These
features allow the model to capture rich domain concepts where relationships
and authorizations are articulated in terms of context [27].

ReBAC is not entirely distinct from RBAC and may be considered a nat-
ural generalization through the use of binary relations over users rather than
roles for capturing domain knowledge. Fong believes RBAC has been pushed
to the limit to cope with this demand, demonstrating why previous work such
as role templates is merely a way of encoding a binary relationship, for ex-
ample manager(john) [29]. There exists a number of parallels between RBAC
and ReBAC including the following:

• user-role enrollment and inter-user relationships
• permission-role assignment and policies
• sessions and contexts
• role and context hierarchies
• separation of duty constraints and well-formed contexts

The health care domain is described as the archetypal application realm
where ReBAC is most required. For example, in support of security policy
statements like my patient record should only be accessible to my family doctor,
not all doctors. In [69], the authors demonstrate the feasibility of ReBAC,
incorporating this model into a production-scale medical records system (i.e.
OpenMRS) with backward compatibility for the legacy RBAC mechanism.
This is an important accomplishment however the performance evaluation
indicates that the implementation is not yet deployed in any clinical setting,
therefore no production data set is available and synthetic data is utilized

30

2.8. Role-Centric Attribute Based Access Control (RABAC)

instead. In addition the authors report unacceptable authorization times when
relying on a relational database implementation.

Rizvi and Fong extend ReBAC to support fine-grained interoperability be-
tween the ReBAC model and legacy RBAC models, correctly identifying that
due to significant investment, RBAC is not going to disappear any time soon,
stressing that any extension of an existing software application to incorpo-
rate ReBAC must find a way for the new access control model to integrate
harmoniously with the legacy RBAC model [68]. With this objective the au-
thors introduce the notion of demarcations and demonstrate how RBAC and
ReBAC can interoperate in interesting ways. Referencing the work of [46],
they recognize the value of creating demarcations as abstract groupings of
privileges decoupled from user management.

We agree that demarcations are an important notion and we describe the
work of Kuijper and Ermolaev in detail in section 2.10. However, in this dis-
sertation we propose a way forward for access control and information security
that is not based on new ideas like ReBAC and ABAC whose implementation
is essentially orthogonal to RBAC [68]. Instead, we propose extensions for
RBAC that offer the advantages championed by these alternative models for
access control.

2.8 Role-Centric Attribute Based Access
Control (RABAC)

It has long been recognized that traditional RBAC formulations are inefficient
when fine-grained access control is required, for instance, the familiar doctor-
patient problem where a doctor is only allowed to view the records of his own
patients. Under the NIST RBAC model a doctor role needs to be defined for
each patient, thus dramatically increasing the number of roles. Anecdotally,
current practice indicates that organizations work around these limitations in
ad-hoc ways.

In 2010, NIST announced an initiative to unify and standardize various
RBAC extensions by integrating roles with attributes, identifying three alter-
natives [45]:

1. Dynamic Roles. The first option employs user and context attributes to
dynamically assign roles to users.

2. Attribute Centric. In this option roles are simply another attribute of
users.

3. Role Centric. The third option proposes that the activated set of roles
for a user session be reduced based upon attributes.

31

2.8. Role-Centric Attribute Based Access Control (RABAC)

Figure 2.4: The RABAC model extends the NIST RBAC model, adding
user and object attributes combined with permission filtering policies [39].

Combining the benefits of RBAC and ABAC to incorporate the advan-
tages of each model is an interesting approach fueled by the ongoing RBAC
versus ABAC debate. With RABAC, Jin and Sandhu propose a novel role-
centric attribute-based access control model as an extension to the RBAC
model, offering a path for practical deployment based on the addition of User
Attributes (UATT), Object Attributes (OATT) and a Permission Filtering
Policy (PFP) as depicted in Figure 2.4 [39]. Attributes are either atomic or
set-valued and the PFP constrains the available set of permissions using filter
functions {F1, F2, F3 ... Fn} to return a boolean expression based on user and
object attributes. The result is a set of Permissions (PRMS) including sup-
port for both static (ssd) and dynamic (dsd) separation of duties, explained
briefly in section 7.6.

ABAC and RBAC may be combined judiciously to offer access control that
is scalable, flexible, auditable and understandable [14]. RABAC is the first
model to integrate attributes using a role-centric approach thereby maintain-
ing static relationships between roles and permissions to facilitate the determi-
nation of risk exposure [44]. This model is important because it addresses the
undefined role explosion problem with an extension to the commercially pop-
ular and mature RBAC model, unlike ABAC and ReBAC. However, RABAC
does not semantically separate roles and responsibilities like our model. In
addition, we present role versus user attributes as a preferred basis for engi-
neering PFPs.

32

2.9. Responsibility MetaModel (ReMMo)

Figure 2.5: RBAC adoption between 1992-2010 [58].

2.9 Responsibility MetaModel (ReMMo)

According to O’Connor and Loomis [58], the use of RBAC has grown steadily
since 1994, with the rate of adoption accelerating in both 2004 and 2008
as visualized in Figure 2.5. Their analysis estimates that between 1994 and
2009, the use of RBAC yielded a net savings of 6 billion dollars for American
businesses. Furthermore, their study indicates that the number of employees
whose permissions are at least partially managed by roles grew from only 2.5%
in 1995 to 40.5% in 2009 and they estimate this number will grow to 50.5%
of users at organizations with more than 500 employees by 2010.

With the success and rapid adoption for RBAC, Feltus stresses the re-
quirement for engineers to define methods and techniques to align information
systems with the business processes they support [25], observing the following
three critical problems when modeling and engineering employee access rights:

• Insufficient analysis of the business roles as defined in the employment
contract or job profile
• Misalignment between the business roles and those defined at the appli-

cation layer
• Misalignment between the employees responsibilities and their access

rights

33

2.9. Responsibility MetaModel (ReMMo)

With the objective to better align business and IT, the ReMMo is proposed
as an enhancement to RBAC built around three concepts. The first concept
defines the obligation of the employee to perform an action. The second
concept describes the rights required by the employees to fulfill an obligation
and the third concept identifies the assignment process as the the action of
linking an employee to a responsibility [24].

The ReMMo proposes the introduction of responsibilities as an intermedi-
ary concept between the user and the role in RBAC. Feltus et al. suggest that
employees should be assigned specific responsibilities independent of roles and
that permissions are associated with the responsibilities for which they are
required. This model allows them to refine the URA concept of RBAC where
users are assigned to responsibilities as far as they commit to them. The
responsibility is an abstract concept that could be either a concrete atomic
responsibility or a group of responsibilities. The PRA concept of RBAC is
refined through associating permissions both to atomic responsibilities and to
roles.

The tuple of concepts [user-role-responsibility] facilitates defining two types
of user-role assignments and one type of responsibility-role assignment:

1. Direct role assignment: an employee is assigned to a role and gets the
corresponding responsibilities and permissions. In that case, the role is
often the main function of the employee and corresponds to his main
function in the company.

2. Direct atomic responsibility assignment: An employee is assigned an
atomic responsibility without any associated role and the employee then
gets the corresponding permissions.

3. Indirect role assignment: an employee is assigned, by direct atomic re-
sponsibility assignment all the responsibilities that compose a predefined
role, so he is implicitly assigned to the role and he gets the permissions
corresponding to those responsibilities. This case reflects the situation
where an employee is assigned to more and more responsibilities which
happens to be the responsibilities predefined in a role. Whereas from an
IT point of view, the set of these responsibilities correspond to a role,
the employee does not have the title corresponding to the role, from an
organizational viewpoint.

The strength of the ReMMo includes its notion of independently modeled
responsibilities combined with its objective to better align business and IT.
However, we feel it is a precarious proposition to advocate the performance of
direct atomic responsibility assignment in organizations with high volumes of
employee turnover [21].

34

2.10. Bi-Sorted Role-Based Access Control (RBÄC)

In the following section, we introduce RBÄC, a new principled approach
to engineering RBAC that does not permit the assignment of responsibilities
directly to users. We absolutely agree with the authors of this model and
to ease comprehension for the reader they should understand the notion of
demarcations is equivalent to the concept of responsibilities described in this
section.

2.10 Bi-Sorted Role-Based Access
Control (RBÄC)

RBÄC is presented as a fragment of RBAC which may be applied to exist-
ing RBAC implementations, the perceived added value lies within the con-
ceptual boundaries it introduces, decoupling subject and permission manage-
ment, thus introducing a higher administrative level for access management
[46]. For practitioners, this decoupling implies that modeling (1) subjects and
(2) permissions is broken into independent activities. With these two aspects
maintained by suitable teams, security officers may configure access control
rules at an appropriate level of abstraction.

In addition, RBÄC inherently facilitates many-to-many administrative
mutations and ultimately leads to more organizational scalability. The spec-
ulation being that such an approach might prove beneficial in the following
senses:

• subject management can be delegated as appropriate in organizations,
reducing administrative overhead.
• application architects can focus on creating independent roles based on

the functional requirements.
• security officers can perform access management at an appropriate level

of abstraction.

RBÄC describes two distinct objects of indirection: the (1) proper role and
(2) demarcation which are used to distinguish conceptual boundaries for the
administration of RBAC [46]. This is not a new idea. Kuijper and Ermolaev
cite Oh and Park as the first researchers proposing permissions be grouped
independently into task-based roles [62]. Next, the work of Kern et al. [42],
on Enterprise Role-based Access Control (ERBAC) is provided as an exam-
ple, clearly demonstrating the practicality of maintaining two distinct role
hierarchies. Finally, the work of Nyanchama and Osborn [57] is referenced
as further evidence that a dichotomy exists between subject and permission

35

2.10. Bi-Sorted Role-Based Access Control (RBÄC)

S P

R (RH)

S P

R+ (RH+) D+ (DH+)

a) RBAC b) RBÄC

SP SP

SR PR SR+

G

PD+

Figure 2.6: RBÄC proposes a new conceptual boundary between subjects
and permissions. Adapted from [46].

management. The important difference to consider with RBÄC is the asser-
tion subjects and permissions are never linked by a single role. Instead, there
is always at least two roles between a subject and a permission.

Unlike previous extensions to the classic RBAC model [72], RBÄC revisits
first principles with the hypothesis that organizational scalability is facilitated
when permissions are managed independently from subjects. RBÄC is pre-
sented as a fragment of RBAC, a conceptual shift, from the triangular RBAC
model to the desirable square model of RBÄC. In Figure 2.6a, we see that
RBAC introduced the role as a layer of indirection between subjects and per-
missions. SP is the implicit result of assigning permissions to a role (PR) and
then enrolling subjects into this role (SR). To achieve the square of RBÄC in
Figure 2.6b, another layer of indirection is introduced with roles being cate-
gorized as either a proper role (R+) or a demarcation (D+) . Permissions are
assigned to demarcations (PD+) and subjects are enrolled into proper roles
(SR+). Permissions are never assigned to proper roles directly. Instead all
subjects obtain permissions indirectly through the grant relation (G) where
proper roles and demarcations are linked up. Figure 2.6 slightly adapts the
work of Kuijper and Ermolaev, adding directional arrows to depict the explicit
role hierarchy that exists between subjects and permissions.

Definition 16. RBÄC retains the principal semantic domains underlying
RBAC (i.e. S and P) and defines the following syntax:

• Let S be a set of subjects
• Let P be a set of permissions
• Let R+ be a set of proper roles
• Let D+ be a set of demarcations 1

1R+ and D+ are disjoint sets

36

2.10. Bi-Sorted Role-Based Access Control (RBÄC)

• Let SR+ ⊆ S × R+ be a subject-proper-role assignment relation
• Let PD+ ⊆ P × D+ be a permission-demarcation assignment relation
• Let RH+ ⊆ R+ × R+ be a proper-role-hierarchy relation, RH+ is re-

quired to be acyclic
• Let DH+ ⊆ D+ × D+ be a demarcation-hierarchy relation, DH+ is

required to be acyclic
• Let G ⊆ R+× D+ be a grant relation

Definition 17. The semantics of RBÄC identify the access relations SP
⊆ S × P such that (s,p) ∈ SP iff there exists roles r, r′ ∈ R+ and demarcations
d, d′ ∈ D+ and the following conditions hold:

1. (s,r) ∈ SR+, i.e.: subject s is a member of proper role r.
2. r ≥+

r r′, i.e.: r = r′ or r is a senior role of r′ 2

3. (r′,d′) ∈ G, i.e.: proper role r′ is granted access to demarcation d′

4. d′ ≥+
r d, i.e.: d = d′ or d is a sub-demarcation of d′. 3

5. (p,d) ∈ PD+, i.e. permission p is part of demarcation d

For small organizations where the number of roles remain relatively few,
classic RBAC is often an adequate solution. However, for large organizations
where there is an ongoing requirement to support employee turnover, policy
changes and reorganization, RBÄC is a logical evolution. Despite the advan-
tages of RBAC, the administrative degrees of freedom become limited when
practitioners utilize a triangular RBAC model, Figure 2.6a), where there are
four basic mutations:

1. Enroll a subject s ∈ S to role r ∈ R, i.e.: add (s,r) to SR
2. Disenroll a subject s ∈ S from role r ∈ R, i.e.: remove (s,r) from SR
3. Assign a permission p ∈ P to role r ∈ R, i.e.: add (p,r) to PR
4. Unssign a permission p ∈ P from role r ∈ R, i.e.: remove (p,r) from PR

The effect of an atomic RBAC mutation on SP is always one-to-many or
many-to-one and never many-to-many. This is referred to as the adminis-
trative micro-stepping problem [46]. With RBÄC the intent is to break away
from the classic triangular example of RBAC, enforcing another degree of free-
dom and facilitating many-to-many mutations for SP. For practitioners this
additional layer of abstraction permits administrative degrees of freedom not
enjoyed under the classic triangular RBAC model.

As previously, stated this is not a new idea and one could certainly design
RBAC systems in this fashion prior to RBÄC. However, with this fragment

2≥+
r defines the transitive reflexive closure of RH+

3≥+
d defines the transitive reflexive closure of DH+

37

2.11. Summary

of RBAC the suggestion is that one would never assign permissions to a role
granted directly to users. In the strictest sense a subject would never receive a
permission in a subject-role-permission mapping. This guarantees that every
subject has at least two roles and often many more.

RBÄC is explained in the context of a physical access control system. In
chapter 4, we analyze the RBAC implementation used by ACME university
to secure its student information system where access is granted on a need
to know basis. In extreme cases subjects have more than one hundred roles.
Many of these roles are demarcations or discrete units of functionality deliv-
ered organically over time as functional or task-based roles. Readers who are
familiar with this area of research may be experiencing a strong sense of dis-
belief at this point. Others might immediately decide this is a poorly designed
RBAC system. Ten or more years ago we might have been equally critical but
today we know that ACME university is not the only organization describing
subjects with more than one hundred roles [38].

2.11 Summary

In this chapter, we complete a literature review to place this work in context,
highlighting the contributions of authors who have influenced this disserta-
tion. We begin with a review of RBAC before reviewing three models for the
administration of RBAC including ARBAC, SARBAC and A-ERBAC. Then
we review access control models proposed to address the perceived weaknesses
of RBAC. We provide a chronology for the maturation process of RBAC and
its administration before reviewing alternative solutions and considering their
strengths and weaknesses.

Finally, we conclude this chapter with a detailed description of RBÄC, a
new fragment of RBAC and a return to first principles, resulting in the intro-
duction of a new mandatory layer of abstraction guaranteeing the desirable
square subject-role-role-permission relationship. In the following chapter we
provide additional motivation for this work, introducing the notion of role ex-
plosion before advocating in favour of our new concept termed role evolution.

38

3 Role Explosion

3.1 Introduction

In the previous chapter we reviewed papers for RBAC and its administration,
explored alternative models and concluded with a relatively new RBAC model
insisting upon two mandatory layers of roles between subjects and permissions.

In this chapter, we introduce the term role explosion, conducting a real-
world case study for one employee in the Government of Canada (GoC) to
better appreciate this concern and its symptoms. We provide motivation for
satisfying our first objective, challenging the long held belief, notion or sense
that the number of subjects far exceeds the roles found in enterprise systems.

First, we provide background information for our case study. Next, we
propose two symptoms of role explosion. Then we perform an empirical study,
investigating and analyzing the role information related to one employee of
the GoC. Finally, we discuss our results and present our conclusions.

At the conclusion of this chapter, the reader will better appreciate why
role explosion occurs in large organizations where more and more new types
of applications that require controlled sharing of resources or discrimination
of information appear [9]. If role explosion is a normal occurrence and previ-
ous models for the administration of RBAC consider role explosion a design
problem this should motivate the requirement for new RBAC structural rela-
tionships.

3.2 Background

During the last few decades, the use of RBAC has exploded within organiza-
tions such as the GoC. As employees enter and exit large GoC organizations
there are a number of security challenges present when on-boarding and off-
boarding employee access to IM systems. Our research demonstrates that new
GoC employees may be granted access to several applications [18]. In large

39

3.2. Background

organizations where employees are constantly entering, exiting and moving
between organizational units, it is extremely challenging to maintain access
control systems that are tightly coupled with security policy. The Government
of Canada Security Policy (GoC-SP) states that department’s interoperability
and information exchange are enabled through effective and consistent security
and identity management practices [60].

IM systems provide access to corporate information in dynamic, heteroge-
neous infrastructures with challenging combinations of employee turnover and
security policy. Protecting information and client data is an on-going concern
for large public and private organizations. In the GoC, one of these challenges
is the least-privilege principle. Under section 16.4.3 of the Operational Se-
curity Standard: Management of Information Technology Security (MITS),
departments must keep access to the minimum required for individuals to
perform their duties (i.e. the least-privilege principle), and ensure that they
are regularly updated to accurately reflect the current responsibilities of the
individual [59].

In its policy statement, the GoC defines IM as a discipline that directs and
supports effective and efficient management of information in an organization,
from planning and systems development to disposal or long-term preservation
[61]. An IM system can be a paper-based filing cabinet under lock and key
or it can be a large centralized database. In the latter case, employees might
retrieve information using an application developed to permit access to corpo-
rate information in dynamic, complex environments. After a user successfully
enters their user name and password, authenticating their identity, an appli-
cation may limit their access to information.

The on-boarding process for a new employee in the GoC may include a
series of administrative actions that grant access to one or more applications.
Likewise, the off-boarding process for a departing employee in the GoC may
include a series of administrative actions that remove access from one or more
applications. Collectively, these processes are elements of a larger business
process referred to as employee turnover.

An example for one microscopic aspect of an RBAC implementation is
pictured in Figure 3.1 where the employee turnover process is occurring, old-
employee-out (1) and new-employee-in (2). Each user account is enrolled into
one or more roles and each role is assigned various permissions. In this exam-
ple, lines connecting a role to a folder imply that a role has the authorization
required to both read and write information to a database. Lines from a role
to a grid indicate that the role is assigned permissions to read information.

This example describes access to one application for five different em-
ployees where twelve roles have been implemented to restrict read and write

40

3.2. Background

Figure 3.1: Old-employee-out (1) and New-employee-in (2).

access to information. Several administrative actions are required to revoke
permissions from a departing employee and grant access to a new hire. Pause
and consider that this example relates to one application and employees often
require access to several applications in large organizations. Managing and
monitoring who has access to what, on an individual user and resource basis,
can be very costly for large organizations. As a result, it is very challenging
to maintain a practical RBAC implementation that is tightly coupled with an
organization’s security policy.

In this chapter the term role explosion is symptomized and supported by
our real-world case study. Results are presented for one employee in the GoC
and the advantages of on-boarding and off-boarding by staffing position are
discussed. As the number of applications for each employee increase, so too
does the cost of the related administrative processes.

41

3.3. Symptoms

3.3 Symptoms

To our knowledge the term role explosion has not been formally defined by the
research community. Instead it would seem there is a belief, notion or sense
that some threshold ratio of roles to subjects indicates bad RBAC design
[45][39][34]. We propose the following two symptoms of role explosion:

• Symptom 1 An organization requires employees to access several ap-
plications autonomously managing their own set of role information.
• Symptom 2 An organization has one or more applications where the

ratio of roles to users approaches or exceeds 1.

Symptom 1 contributes to the role explosion problem because it is admin-
istratively costly to introduce and maintain redundant role information across
several applications.

Symptom 2 contributes to the role explosion problem because it is ad-
ministratively costly to maintain an application with an excessive number of
roles.

At the RBAC2000 Workshop, the number of roles was estimated to be
3-4% of the subject population [76]. We are curious if oral estimates have
been provided at similar workshops over the past two decades and we wonder
whether this percentage holds today. Several models have been proposed for
maintaining access control implementations. Proofs for the utility of these
models are typically restricted to contrived examples that fail to reflect the
complexity of medium to large organizations [76].

Organizations with extensive work breakdown structures organically move
towards role explosion over time as more and more applications are integrated
into the business infrastructure and more and more specialization (or cus-
tomization) is supported in software features and functionalities. Table 3.1
lists role and subject information for a real-world application by calendar year.
The role granularity metric is a simple ratio, comparing the total number of
roles and subjects.

The data shows a ratio higher than 1 from the onset, providing real-world
evidence for symptom 2 of role explosion at the macro level. In 2008, we have
an example of an application where the actual number of roles is 150% of the
subject population. This explosive role growth speaks to the popularity of
RBAC but it does not support the 3-4% estimate provided at the RBAC2000
Workshop.

At the micro level, we are curious why this explosive growth is occurring
and we wonder how it is being managed. In the following subsection, we
perform an empirical study to better understand why this might occur.

42

3.4. Empirical Study

Table 3.1: Role and User Information for a Representative Application

Year Roles Subjects Roles/Subject

2005 348 271 1.3
2006 441 295 1.5
2007 506 335 1.5
2008 563 379 1.5

3.4 Empirical Study

The following case study is an investigation and analysis of the role informa-
tion related to one employee in the GoC. Tables are used to summarize the
research results. The participant is Alice, the Administration Officer for the
Information Services department. The responsibilities of Alice’s staffing posi-
tion dictate that she is granted access to the 7 applications listed in Table 3.2
and the roles associated with each of Alice’s accounts are listed in Table 3.3.

This IM case study is an investigation and analysis of the on-boarding and
off-boarding procedures for one GoC employee and several applications with
the following constraints:

• Each application is required by the employee to complete the tasks as-
sociated with their staffing position
• Each application requires authentication, for instance the successful en-

try of a user name and password

If one GoC employee requires 7 different applications and each account (i.e.
user name and password) is enrolled into 2 roles, for example, the number of
roles being managed for one employee is 14. If GoC employees are requiring
access to more and more secure applications and the number of roles created
to limit (or customize) access for each application is increasing, one might
conclude that the administration of RBAC is a growing concern.

• 1 GoC Employee
• 7 Applications or Services / Employee
• 2 Roles / Application / Employee

As new employees enter the GoC, there is an associated cost with manag-
ing the on-boarding process and this directly relates to the maturity of human
resource relationships like those found in this study. If Alice leaves the orga-
nization before the new employee arrives and Alice’s application requirements
have not been thoroughly documented then the on-boarding process may prove

43

3.4. Empirical Study

Table 3.2: Applications Required by our Representative Employee.

Acronym Application Name

1 DIR Directory
2 HRS Human Resources
3 FIN Financial Application
4 CLA Administrative Application
5 CLB Collaboration
6 ISA Administrative Application
7 PTL Staff Application

Table 3.3: Application Roles Required by our Representative Employee.

Acronym # of Roles

DIR 2
HRS 2
FIN 2
CLA 1
CLB 2
ISA 3
PTL 1

13

more challenging. Capturing application requirements by staffing position, as
detailed in Table 3.2, facilitates the on-boarding process in enterprise orga-
nizations by formalizing access control requirements in an intuitive, scalable
and dynamic framework that may be automated or captured in formalized
business processes. Consider the impact when Alice retires, for instance. If
the relationships constructed in both Table 3.2 and Table 3.3 remain when
a new employee resources the Administration Officer staffing position, this
could greatly facilitate the on-boarding process.

In summary, this case study shows that for one employee of the GoC, a
total of 7 applications are required to fulfill the responsibilities of the staffing
position. In addition, a total of 13 roles are indirectly associated with the
staffing position. While we understand that many of these roles are meant
to be shared by multiple employees, we also recognize that we have real-
world examples for both Symptom 1 and 2 of role explosion as defined above.
We see that an organization requires employees to access several applications

44

3.5. Discussion

autonomously managing their own set of role information. We also see that an
organization has one or more applications where the ratio of roles to subjects
approaches or exceeds 1 (Table 3.1).

In this dissertation, we refuse to dismiss the 150% role to subject ratio
discovered in our case study as bad RBAC design. Instead, we are curious
why this occurs. In the discussion that follows, we make simple observations
related to influential RBAC literature found in the previous chapter.

3.5 Discussion

In 2001, Schaad, Moffett and Jacob perform an empirical study for the role-
based access control system of Dresdner, a large European bank, highlighting
the fact that very little has been done to identify and describe existing role-
based access control systems within large organizations [76]. In their analysis
of the number of roles for this real-world example they theorize that the total
number of roles would be the product of every position and function in the
organization. They identify 65 official positions, ranging from Clerk to Branch
Manager and 368 different job functions, as provided by the Human Resources
Management System (HRMS), suggesting a possible 23,920 roles. However,
the number of implemented roles they discovered currently in use was about
1300 for 40,000 subjects, a ratio of 3-4% matching the estimate provided at
the RBAC2000 Workshop.

Schaad et. al elaborate on these findings, identifying that this distribution
is not uniform due to the pyramid shaped hierarchy of many organizations,
like Dresdner Bank, where there are always many more clerks than there are
Heads of Divisions. It is important for the reader to pause and reflect on the
relevance of these findings nearly two decades later, especially considering that
the access control system under study, called FUB, was already more than a
decade old and suffering from several limitations and weaknesses including the
following:

• A user can be assigned to more than one role, for instance when a
colleague becomes ill or is on holidays, but also in more permanent cases
where a clerk works at one branch in the morning and another in the
afternoon. In the RBAC96 model a user (or subject) must choose which
role to activate. However, with FUB there is no concept of a session,
so when a user logs into a system they have all the permissions of all
the roles they have been assigned. This creates a problem with respect
to the principle of least privilege and careful attention must be paid by
administrators in these scenarios.

45

3.5. Discussion

• Access control services are provided to users not considered permanent
staff, including consultants and temporary employees who work for the
Bank during projects of varying length. Due to administrative overhead
this group is not included in the HRMS and must be manually admin-
istered by FUB staff. The resulting overhead is substantial as there are
hundreds of users in this group. Furthermore, these numbers are not
included in the role to subject ratio presented above.
• FUB only permits administrators to group employees using the combi-

nation of function, position and organizational unit. It is not possible
to group employees according to other criteria and assign group-specific
access rights.
• The implementation does not allow for the grouping of access rights

which naturally belong together. For example, it is not possible to group
the privileges required to create account and delete account. Instead,
these access rights must both be granted to each and every role requiring
these permissions. It would be better if these privileges could be grouped
to facilitate administration.

Only five years later, in 2006, mounting evidence for the flattening of
corporate hierarchies was being produced [67]. Rajan and Wulf examine how
corporate hierarchies have changed in the recent past using a detailed database
of job descriptions and their reporting relationships tracked over a period of
13 years. First, they discovered that the number of managers reporting to
the Chief Executive Officer (CEO) has increased steadily over time from an
average of 4.4 in 1986 to 8.2 in 1998. Second, they find that the depth or
number of positions between the CEO and the lowest managers has decreased
by more than 25% over this period. Finally, they provide three explanations
as follows:

• An increase in the competitiveness of the external environment forcing
the need for a more streamlined organization
• An improvement in corporate governance, forcing CEOs to eliminate

excessive layers of managers built up during past empire building
• Advances in information technology that expand the effective span of

control for top managers

We observe scalability concerns for each administrative RBAC model de-
scribed in the previous chapter, beginning with the ARBAC family of models
[74][71][63].

ARBAC97 describes the decentralized administration of subject-role en-
rollment, role-role grants and permission-role assignment with reference to

46

3.5. Discussion

the RBAC96 model [72]. In their introduction to ARBAC97 the authors pre-
sume that in large enterprise-wide systems, the number of roles can be in the
hundreds or thousands, and subjects in the tens of hundreds or thousands sug-
gesting that the ratio of roles to subjects is 10%. The belief, notion or sense
that the number of subjects far exceeds the roles found in enterprise systems
is repeated in each extension to the ARBAC97 model as is the example of a
Director overseeing two projects with a Project Lead, Production Engineer,
Quality Engineer and a (Junior) Engineer. However, if one considers the sim-
ple example of one employee in each role on each project we observe that this
example defines eleven roles for nine subjects, a ratio of more than 120%. Fur-
thermore, when we conceptually scale this model up to hundreds of projects in
a society where the demand for skilled workers is not being met [41], we won-
der whether Junior Engineers are allocated in quantity to single or multiple
projects.

SARBAC is intended to be used with RBAC96 as a complete role-based
model for administration [16]. Unlike ARBAC, SARBAC does not assume the
existence of a disjoint set of administrative roles. SARBAC develops a model
for role hierarchy administration with the belief that it will be easier to then
incorporate subject-role and permission-role administration. We observe that
Crampton et al. reuse the example from ARBAC97 where the ratio of roles
to subjects is more than 120%.

A-ERBAC describes the model employed in a commercial enterprise secu-
rity management software solution [42]. Kern et al. suggest that Enterprise
Roles are increasingly used by medium to large organizations as the basis for
security management across different systems. A-ERBAC uses the concept
of scopes to control the authority of administrators on a Target System. An
administrator may be assigned the ability to view, insert, change or delete
various RBAC elements such as subjects and roles provided they are assigned
one or more administrative scopes within the hierarchy of objects (e.g. Orga-
nizational Units or Cost Centres). Furthermore, Kern et al. argue that the
scopes of A-ERBAC provide a more comprehensive solution than the pools of
ARBAC02 as each scope is optionally associated with attributes that enrich
the administrative convenience. This work also provides a case study from a
European bank where subjects are created and deleted using connections to
the Human Resources database.

It is not explicitly stated in this work that Dresdner bank is the institution
observed [76]. If indeed this case is based on another banking institution with
70,0000 subjects (vice 40,000 at Dresdner) it would have been interesting to
know the number of roles implemented in this system. Instead, we observe that
the example with functional and business roles depicted in this work identifies

47

3.5. Discussion

a scenario where eight roles are defined for five subjects. We understand that
this disproportionate use of subjects and roles is not the focus of the A-ERBAC
model and acknowledge that the authors assume the reader will intuit that as
this example scales more subjects will be disproportionately enrolled in the
defined business roles. Nevertheless, we find it interesting that the ratio of
roles to subjects is 160% in the example depicted.

With all due respect to the Dresdner bank case study, consider the classic
RBAC example of the bank teller role where hundreds of subjects share a
generic, simplistic role with the exact same permissions. We argue that this
scenario is still well-ingrained in the collective psyche of the research commu-
nity and we have found it difficult to challenge this long held belief and gain
traction. Anecdotally, the rise of on-line banking, automated teller machines
and the proliferation of credit card transactions has impacted the number of
employees, specifically bank tellers employed at banks. It would be interesting
to review the ratio of subjects to roles at Dresdner bank today. We suspect
that if one was to monitor this ratio on a yearly basis there would be a clear
trend.

In the previous subsection, we offer a new case study where the number of
roles exceed subjects. This may seem counterintuitive to those visualizing a
classic RBAC example where tens or hundreds of subjects are enrolled in the
bank teller role which has been assigned several permissions.

It is not clear whether the classic subject-role-permission model remains
dominant in medium to large organizations with highly skilled workforces.
Over a decade and a half ago, the A-ERBAC model described a second layer
of roles between subjects and permissions without expressly highlighting the
fact that this implies subjects will always hold a minimum of two roles in a
hierarchy (i.e. subject-role-role-permission). We understand that these roles
are meant to be shared but we believe there has been a fundamental shift in
the way RBAC systems are implemented and maintained over the past decade.

In our investigation, we are unable to determine if the research community
influenced the introduction of subject-role-role-permission design patterns or
whether this was an organic by-product of real-world implementations or both.
In 2000, Oh and Park describe the notion of Task-Role Based Access Control
(T-RBAC) where intermediary tasks are assigned permissions instead of roles
[62]. In 2001, Schaad, Moffett and Jacob describe roles hierarchies based on
positions and functions [76]. Peisert and Bishop suggest that traditional access
controls have evolved from being static and coarse-grained to being dynamic
and very fine-grained [66].

48

3.6. Summary

3.6 Summary

In this chapter, we describe role explosion, conducting a real-world case study
for one employee in the GoC to better appreciate this concern and further
motivate a return to first principles for RBAC. We define two symptoms for
role explosion and perform an empirical analysis for one GoC organization,
discovering the following real-world results:

• At the macro level, we discover a role to subject ratio exceeding 1.
As detailed in Table 3.1 the role granularity metric for one application
exceeds 150% in 2008.
• At the micro level, we perform an empirical analysis for one employee of

the GoC requiring access to several applications autonomously managing
their own set of role information as listed in Table 3.3.

In this chapter, we satisfy our first objective, challenging the long held be-
lief, notion or sense that the number of subjects far exceeds the roles found in
enterprise systems. If role explosion is a normal occurrence and previous mod-
els for the administration of RBAC consider role explosion a design problem,
this should motivate the requirement for new RBAC structural relationships.

The reader should now better appreciate why role explosion occurs in large
organizations. It is rarely a dramatic explosive event but rather an organic
daily growth pattern for large organizations where more and more new types
of applications that require controlled sharing of resources or discrimination
of information appear [9].

In this dissertation we argue in favour of role evolution, introducing our
new ORGODEX model and methodology to direct and control growth. We
acknowledge role explosion but do not consider it a design problem. Instead
we motivate the demand for our a new evolutionary growth pattern for large
organizations whose employees require access to information on a need to know
basis. In the following chapter, we compare the information security of ACME
university to RBÄC, using real-world data and experiences to support this new
principled approach to RBAC, or role evolution. In chapter 5 we introduce
our new ORGODEX model and methodology for engineering scalable access
control systems and distinguishing between roles and responsibilities.

3.7 Publications

Publications related to this chapter:

• Aaron Elliott and Scott Knight. Role Explosion: Acknowledging the
Problem. In Proceedings of the 2010 International Conference on Soft-

49

3.7. Publications

ware Engineering Research and Practice, WORLDCOMP, pages 349-
355, 2010. CSREA Press.
• Aaron Elliott and Scott Knight. One Employee and Several Applica-

tions: An Information Management Case Study. In Software Engi-
neering Research and Practice, WORLDCOMP, pages 179-185, 2009.
CSREA Press.

50

4 Role Evolution

4.1 Introduction

In the previous chapter we discussed role explosion, performing a case study
to better appreciate this concern and its origin. In this chapter, motivated by
role explosion, we discuss the notion of directed evolutionary growth for RBAC
implementations. This dissertation is divided into three distinct phases:

• In this chapter, we further refine our contributions, introducing and
motivating the requirement for new RBAC structural relationships that
distinguish between roles and responsibilities, thereby satisfying our first
objective. We analyze a real-world RBAC implementation, performing
an empirical study at ACME university.
• In chapter 5, we introduce our new ORGODEX model and methodology

for engineering scalable access control systems, thereby satisfying our
second and third objectives.
• In chapter 6, we validate the efficiency and practicability of our model

and methodology during a real-world empirical study, leading an ini-
tiative to deploy an instance of ORGODEX at two geographically dis-
tributed partner institutions.

In the following sections, we refine our contributions. First, we analyze
a real-world access control system, performing an empirical study at ACME
university and compare its RBAC implementation with RBÄC, first intro-
duced in chapter 2. We use real-world data and experiences in support of
this new principled approach to RBAC, further extending RBÄC with role-
centric constraints and describing how ACME university decouples subject
and permission management, using role evolution to direct growth.

Next, we further motivate the requirement for new RBAC structural re-
lationships to describe and reason about implementations, We advocate on
behalf of role evolution, a mandatory divergence between roles and respon-
sibilities. Then, we investigate how ACME university performs access man-

51

4.2. Background

Table 4.1: ACME Roles as at April 2015

Label Count

Subject 351
Role 558

agement, performing a microanalysis on a scenario of special interest, using
our new hierarchical graphing model to better visualize the subject-permission
mappings and introducing our new role-centric methodology for dynamically
constraining access to information [20].

Finally, we discuss why RBÄC provides a stabilizing layer for RBAC and
we describe a fundamental shift in the way RBAC implementations are en-
gineered and maintained. At the conclusion of this chapter, the reader will
better understand the requirement for role evolution, a semantic divergence
between roles and responsibilities when engineering and maintaining RBAC
implementations.

4.2 Background

ACME university is located in North America. While the name of the insti-
tution is contrived for anonymity, the information that follows is based upon
an existing RBAC implementation, supporting more than 700 employees. We
perform queries against the data dictionary to determine the complete set of
roles created in the IM system1. From this set we have excluded subjects and
roles created at the installation of the database software2.

As listed in Table 4.1 we discover that ACME university has a role to
subject ratio of approximately 160%. Coincidentally, this is the ratio we
describe in section 3.5 for ARBAC97, SARBAC and A-ERBAC. This is clearly
a huge deviation from the 3-4% ratio estimated at the RBAC2000 Workshop
or the 10% ratio described by Sandhu et al. in ARBAC97. Upon further
investigation of the available metadata, we learn that the ACME university
role information is well-documented within the IM system, greatly facilitating
this research.

1Relational databases typically include meta data repositories identifying objects created
in the system such as roles

2OracleR© databases include several roles such as DBA that were considered out of scope
for this study

52

4.2. Background

Table 4.2: ACME Grants as at April 2015

Grant RBÄC Count

Subject-Role SR+ 386
Role-Role RH+ 294
Role-Role G 683
Role-Role DH+ 215

Permission-Role PD+ 2281

Each and every role is labeled an Appointment, a Position, a Group or
a Functional role in a table called Role Documentation. Understanding that
RBÄC proper roles (R+) are granted to subjects and do not obtain permis-
sions directly, we determine that Appointment, Position and Group roles meet
this description. Like RBÄC demarcations (D+), Functional roles are assigned
permissions directly and granted to proper roles.

Subjects are enrolled into Appointment roles with no direct permissions as
described in RBÄC (SR+). For example, when a faculty member is appointed
as Departmental Chair #1 for a three year term, the HR group enters this
information into the IM system. This data entry is used to automate the
enrollment of a subject into the corresponding Department Chair #1 role for
a three year term.

Subjects were also enrolled into Position roles on an indeterminate or term
basis (SR+). Employees hired indeterminately are identified by a job title or
position number and enrolled in the corresponding role. Unlike Appointment
roles, the enrollment of subjects into Position roles is not automated. We
understood this automation would be introduced at a future date.

With consideration for the examples presented in ARBAC, SARBAC and
A-ERBAC this seems reasonable. ARBAC and SARBAC describe a model
that is based on the positions found in the Engineering Department of a
fictitious organization. A-ERBAC uses the example of business roles, similar
to positions, in their account of the design found in a European bank.

Using the Role Documentation and the data dictionary allowed us to de-
termine the subject-role, role-role and permission-role mappings. Our query
results are listed in Table 4.2. As further evidence that the RBAC implemen-
tation under investigation is indeed a practical example of RBÄC we queried
role-role grants. We observe that Appointment and Position roles are often
enrolled into Group roles forming proper role hierarchies (RH+). As one ex-
ample, the role Departmental Chair #1 is enrolled into the Departmental

53

4.3. Divergence

Chair Group role. Similarly, we observe that Functional roles are often as-
signed to one another in demarcation hierarchies (DH+). As one example, the
role Approve Grades is assigned to the role Final Grades. Finally, we observe
that Functional roles are granted to Appointment, Position and Group roles
consistent with the Grant (G) relation of RBÄC.

4.3 Divergence

In section 2.10, we review RBÄC, a new fragment of RBAC that may be
applied to both new and existing implementations [46]. Unlike previous ex-
tensions to the classic RBAC model,RBÄC revisits first principles, extending
the traditional subject-role-permission, or triangular model, with a second
mandatory role to form the subject-role-role-permission square model (Fig-
ure 2.6).

Not only does RBÄC improve organizational scalability, it improves com-
prehension by separating proper roles (i.e. roles) from demarcations (i.e. re-
sponsibilities). Although communication with the business side of an organi-
zation does not appear to be a primary motivation for RBÄC, we suggest the
formalization of this additional layer is an important evolutionary concept,
enforcing a divergence between roles and responsibilities for RBAC.

A dichotomy partitions its membership into two distinct subsets where
everything must decidedly belong to one set or the other. In this section, we
motivate the requirement for a new RBAC dichotomy, partitioning roles and
responsibilities into distinct subsets. In large RBAC implementations with
hundreds or thousands of roles, the phylogeny of roles is an important evolu-
tionary concept. It is no longer sufficient to think simply in terms of roles.
In Figure 4.1, we present a new phylogenetic representation for RBAC sys-
tems where responsibilities have semantically diverged from roles. This is an
important evolutionary concept because there is considerable misunderstand-
ing among information security practitioners, where access control is often
performed irregularly and considered a secondary duty [9].

Definition 18. A Role is a part that someone or something has in a par-
ticular activity or situation. For example, a role or position in an organization
like a Departmental Chair (DC).

Definition 19. A Responsibility is a duty or task that one is required
or expected to do. A DC is responsible for approving grades.

Using the terminology role and responsibility is a practical approach to im-
plementing RBAC, permitting engineers to more easily communicate the im-

54

4.3. Divergence

ROLES

ROLES RESPONSIBILITIES

Figure 4.1: Role Evolution proposes a phylogenetic divergence between Roles
and Responsibilities.

Figure 4.2: Subject-role relationships may be lost due to employee turnover.

portant aspects of their design implementations to each other and the business
side of an organization. This is an important concern because role engineering
is the most expensive aspect of deploying RBAC [58].

Using organizational structure as the security framework provides clear
focus for business analysts charged with eliciting requirements. Unlike Feltus
et al. [25], we do not believe responsibilities should ever be directly assigned
to subjects. Our argument against direct atomic responsibility assignment
relates to employee turnover.

55

4.3. Divergence

In large organizations with highly skilled workforces, an employee (i.e.
subject) may acquire several responsibilities directly, resulting in the loss of
important subject-role relationships when an employee leaves the organiza-
tion. In Figure 4.2, we observe that if employee #1 leaves the organization
three subject-role relationships may be lost before they are assigned to em-
ployee #2. Like the authors of RBÄC, we believe a conceptual split right down
the middle of RBAC improves scalability, eradicating inflexible subject-role-
permission triangles from large organizations. Furthermore, we have observed
how this conceptual split facilitates information management security in prac-
tice, insulating systems against ongoing employee turnover, policy changes
and reorganization.

It is not clear whether the classic subject-role-permission model remains
dominant in medium to large organizations with highly skilled workforces.
Over a decade and a half ago, the A-ERBAC model described a second layer
of roles between subjects and permissions without expressly highlighting the
fact that this implies subjects will always hold a minimum of two roles (i.e.
subject-role-role-permission). We understand that these roles are meant to be
shared but we believe there has been a fundamental shift in the way RBAC
implementations are maintained over the past decade.

Conway’s law suggests that managers should take a step back from look-
ing at a system with respect to inputs, outputs, and call graphs and, instead,
examine the tasks that people must perform and how software modules influ-
ence these tasks [47]. Coyne suggests that the definition of roles is essentially a
requirements engineering process [13]. Unlike traditional top-down or bottom-
up approaches for role engineering [55], RBÄC proposes an additional layer
of abstraction such that permissions are never assigned to subjects in the tra-
ditional triangular subject-role-permission model. Instead, permissions are
always assigned indirectly using a square subject-role-role-permission model,
thereby facilitating organizational scalability. Consequently, the problem of
determining the optimal set of roles for an RBAC implementation, referred to
as the Role Mining Problem (RMP) is fundamentally redefined in the context
of a square model, where finding the minimal set of roles (e.g. Basic-RMP) is
not a primary concern [83].

In the following section we extend RBÄC, adding role-centric constraints
in support of directed evolutionary growth for RBAC implementations. Our
extension acknowledges and supports a common reality for large organizations
where responsibilities may be shared by various members of the workforce, but
the scope is different. For example, at ACME university, the group DC shares
similar responsibilities but their accountability relates to different sets of de-
gree programs, courses and students. We use our new hierarchical graphing

56

4.4. Constraints

model to better visualize the subject-permission mappings to depict how our
constraints permit shared responsibilities to be scoped.

4.4 Constraints

In the previous section we describe a divergence between roles and responsi-
bilities. Like the authors of RBÄC, we advocate on behalf of role evolution,
using the terms role and proper (role) interchangeably throughout this sec-
tion. We also use the terms demarcation and responsibility synonymously,
acknowledging that our work is rooted in this semantic divergence for RBAC
implementations. In this section we describe how ACME university performs
access management, describing the relationship between the role Departmental
Chair #1 and the responsibility Approve Grades.

Example 1. Departmental Chair #1 is responsible for Approving
Grades.

• s1 = Dr. George Scott
• p1 = SELECT information FROM course view
• R+ = {Departmental Chair #1, Departmental Chair}
• RH+ = {(Departmental Chair #1, Departmental Chair)}
• D+ = {View Final Grades, Approve Grades}
• DH+ = {(View Final Grades, Approve Grades)}
• SR+ = {(s1, Departmental Chair #1)}
• PD+ = {(p1, Approve Grades)}
• G = {(Departmental Chair, View Final Grades)}

At the end of each academic term, Departmental Chair #1 is responsi-
ble for approving final grades. Instructors set up an evaluation scheme and
evaluate the student but before the final grades are released they must be ap-
proved by a Departmental Chair. The implicit SP mapping required for DC
#1 to approve final grades is explicitly spelled out in the language defined by
RBÄC. The subject is Dr. George Scott (s1) and the permission is SELECT
information from course view (p1). In other words, Dr. George Scott, as DC
#1, must have access to a constrained list of courses from the IM system so
that he may review and approve grades.

In Figure 4.3 we visualize our scenario using the graphing model intro-
duced by Kuijper and Ermolaev [46]. On the left side of the graph are the
proper roles DC #1 and DC. On the right side of the graph are the demar-
cations View Final Grades and Approve Grades. In this example, we have
the implicit SP relationship and the explicit RBAC implementation where

57

4.4. Constraints

Subject(s) Permission(s)

Departmental Chair
#1 Approve Grades

Departmental Chair View Final Grades

SP

SR+ PD+

G

RH+ DH+

Figure 4.3: An RBÄC example found at ACME

subject-role-role-responsibility-responsibility-permission relationships permit
DC #1 to approve grades. SR+ indicates a subject-role relationship, RH+

defines a role hierarchy, G indicates that a responsibility (or demarcation) is
granted to a role, DH+ identifies a demarcation (or responsibility) hierarchy
and PD+ describes a permission-demarcation (or permission-responsibility)
relationship.

At this juncture, the reader may be curious why ACME university has
an RBAC implementation where five relationships exist between the subject
Dr. George Scott and the permission required to approve final grades. In
Figure 4.4 we introduce our new hierarchical diagramming notation to better
visualize the directional hierarchy of subject-role, role-role and permission-role

58

4.4. Constraints

Subject(s)

Permission(s)

Departmental Chair
#1

Approve Grades

Departmental Chair

View Final Grades

Proper Roles Demarcations

SP

SR+

RH+

G

DH+

PD+

Figure 4.4: Hierarchical Graph for the example found at ACME

grants, explaining the rationale for this design.
The elements of our diagram can be reconfigured to look like the desirable

square (or rectangle) of RBÄC however, we feel that the notion of hierar-
chy is an important aspect not well represented in Figure 4.3. Instead, we
use swim lanes to depict the conceptual boundaries between subjects, proper
roles, demarcations and permissions. To better comprehend real-world RBAC
implementations it is important to visualize the directionality of the enroll,
grant and assign relationships and see the depth at which one actually obtains
permissions to do something. In our scenario of interest there is a cascade
of diamond shaped relationships between entities (i.e. rectangles) ultimately
linking subjects and permissions together. We use arrows within the diamonds
to indicate directionality. When one analyzes Figure 4.3 and Figure 4.4, it is
important to understand the implicit relationship SP is non-trivial. There
are five relationships explicitly defined between Dr. George Scott and the
permission SELECT information from course view. As we will see, this new
hierarchical diagramming technique also facilitates the introduction of our new
role-centric constraints.

In this section we present a new methodology for dynamically constraining
permissions under RBÄC, providing additional validity for this new fragment

59

4.4. Constraints

of RBAC. We elaborate upon our scenario of interest where DC #1 is re-
sponsible for approving final grades at the end of each academic term. Unlike
ARBAC and SARBAC which describe constraints on subject-role enrollments
and permission-role assignments our constraint model introduces constraints
on permissions already assigned to one or more roles. Unlike RABAC [39],
whose intent is to dynamically constrain the set of permissions available to
users, our intent is to dynamically constrain the information returned by static
role-responsibility-permission relationships.

At ACME university, each DC is responsible for approving final grades
within their respective department. We observe that each DC is directly
enrolled in a proper role indicative of their appointment, meaning one unique
role for each and every Departmental Chair. This is counterintuitive. Classic
RBAC suggests that all subjects share a grouping role called Departmental
Chair in a triangular subject-role-permission design. However, we discovered
that instead of subjects sharing a grouping role, there were eleven unique
Departmental Chair roles (i.e. #1 .. #11) enrolled in a grouping Departmental
Chair role for a total of twelve defined roles. Using Figure 4.5 as a point of
reference, consider the result. One could draw eleven diagrams exactly alike,
simply substituting the Departmental Chair #1 role with each of the other
Departmental Chair # roles.

We introduce constraints for RBÄC as a (name,value) pair attribute re-
stricting role-responsibility grants. For example, DC #1 is responsible for Ap-
proving Grades in their respective department and may only SELECT courses
WHERE the attribute DEPT is restricted to the value [#1] when Reviewing
Course Information (Figure 4.5).

Example 2. DC #2 is responsible for Approving Grades in their
respective department. DC #2 may only SELECT courses WHERE the
DEPT=[#2] when Reviewing Course Information (Figure 4.6)

This was a recurring theme. We learned that DC #1 had SELECT ac-
cess on similarly restricted lists of students, programs and staff within their
respective department. In each case, the WHERE clause used a role attribute
to restrict access to information. Figure 4.6 depicts the match condition used
to constrain the List of Courses for both DC #1 and DC #2 when approving
final grades.

We raised our concern with the practice of assigning the Department
(name,value) pair to the applicable role vice simply using the Department
assigned to the person in the HRMS [34]. In response to our concern, we were
informed that the department of a subject or individual did not always reflect
an appointment. We were informed that Deans, for instance, were faculty

60

4.4. Constraints

Subject
Dr. George
Scott

Departmental Chair
#1

Departmental Chair

Review Course
Information

Permission
SELECT Course
Information
WHERE

DEPT=[#1]

DEPT=[#1]

Role Role Responsibility

Role Attribute

SR+

RH+

G

PD+

Figure 4.5: Constraining RBÄC. The List of Courses that may be selected
by Departmental Chair #1

Subject
Dr. George
Scott

Departmental Chair
#1

Departmental Chair

Review Course
Information

Permission
SELECT
Course
Information
WHERE

Subject
Dr. Allan
Williams

Departmental Chair
#2

DEPT=[#2]

DEPT=[#1]

DEPT=[VALUE]

Role Role Responsibility

Role Attribute

Role Attribute
SR+

SR+

RH+

RH+

G

PD+

Figure 4.6: Determining the List of Courses that may be selected by two
Departmental Chairs.

61

4.4. Constraints

Subject
Ms. Victoria
Mason

Associate
Registrar -

Undergraduate

Undergraduate
Registrar Staff

Review Course
Information Permission

SELECT
Course
Information
WHERE

Subject
Ms. Alice Faux

Associate
Registrar -

Postgraduate

CATALOG=[UG]

CATALOG=[VALUE]

Postgraduate
Registrar Staff

CATALOG=[PG]

Role Role Responsibility

Role Attribute

Role Attribute

SR+

SR+

RH+

RH+
G

G

PD+

Figure 4.7: Determining the List of Courses that may be selected by two
Staff Members.

members within one academic department while simultaneously responsible
for an entire faculty under their appointment.

Figure 4.7 depicts the match condition used to restrict the list of courses
for both the Associate Registrar, Undergraduate (AR-UG) and Associate Reg-
istrar, Postgraduate (AR-PG). In this instance, we see that the role attribute,
or (name, value) pair (Catalog, [Value]), is used to restrict access. When the
AR-UG accesses course information the name value pair (Catalog, [UG]) is
used in the WHERE clause, and when the AR-PG accesses course information
the name value pair (Catalog, [PG]) is used in the WHERE clause.

Example 3. The AR-UG is responsible for maintaining UG Course
Information. The AR-UG may only SELECT courses WHERE the CATA-
LOG=[UG] (Figure 4.7)

Example 4. The AR-PG is responsible for maintaining PG Course
Information. The AR-PG may only SELECT courses WHERE the CATA-
LOG=[PG] (Figure 4.7)

For ACME university, we were inundated with examples of the practi-
cality of this approach, especially when considering the degrees of freedom

62

4.5. Discussion

afforded to application architects. We were informed that the relative cost
of creating and maintaining database objects such as views and packages was
relatively expensive. On the other hand, the cost of creating and maintaining
light-weight roles that could be easily delegated with no direct permissions
was inexpensive. For this reason, the Security Architect had decided to hide
this design decision within the role information, affording applications more
flexibility and scalability. Organically, from the year 2000 onward, ACME
had discovered that who has access to what was difficult to maintain in an
environment with constant employee turnover. By aggregating permissions
into responsibilities (i.e. demarcations) and assigning them to Appointment,
Position or Group roles (i.e. proper roles) in a role hierarchy they could avoid
losing important security relationships when employees left the organization
(Figure 4.2). If a subject had acquired several permissions directly or indi-
rectly via grouping roles this was previously lost when subjects were removed
from an RBAC implementation. To avoid this loss, permissions are aggregated
into responsibilities and assigned to Appointment, Position or Group roles.

4.5 Discussion

RBÄC provides a stabilizing layer for RBAC. It facilitates the automation
of enrolling employees into proper roles (SR+) and it prevents the loss of
important security relationships when employees leave the organization. In
this chapter we introduce dynamic role-centric constraints for RBÄC as a
means of enforcing conditionals when subjects share the same responsibility
in different departments, for instance. This is an important design concern
for medium to large organizations operating under a need to know security
policy.

Role evolution presumes the number of roles will scale uncontrollably in
large organizations or controllably using a prescribed methodology. We ac-
knowledge that responsibilities explosion may be a concern for role evolution.
However, we believe the optimization work found in the role engineering lit-
erature could be leveraged to refine the number of responsibilities defined by
an RBAC implementation [55]. In particular, bottom up role mining might
be an interesting means of addressing this concern [83].

Responsibilities explosion is a natural occurrence emerging organically over
the lifetime of an RBAC implementation, as measured in months and years.
A simple example would be a poorly named responsibility that is duplicated
when a Security Architect does not realize a suitable responsibility for their
requirement already exists. With role mining, responsibility duplication could

63

4.5. Discussion

be reported, addressed and controlled. In addition, role evolution controls
explosion through the use of role-centric constraints, permitting the reuse of
responsibilities by different roles.

Role evolution defines an architecture where roles are not explicitly as-
signed permissions. Orphaned roles no longer needed by an organization may
be dropped inconsequentially. In contrast, orphaned responsibilities, permit-
ting access to information must be more carefully considered and only removed
on confirmation from the business side of an organization. With the controls
in place to semantically check and act upon the population of roles and re-
sponsibilities, entitlement review might equate to addressing alerts raised by
an application instead of monthly or bi-annually attempting to review reports
where business terminology is not being used.

With role evolution, a primary concern is communication with the business
side of an organization. We are motivated to better align role and require-
ments engineering with a methodology that facilitates communication, using
roles and responsibilities to describe and reason about RBAC implementations
using business terminology. We recognize that there is a mismatch between
mental models and real-world RBAC implementation where designs and op-
erations are often trivialized when individuals carry invalid assumptions from
the physical world into the digital world [54].

We acknowledge that it is non-trivial and irregular to think of responsi-
bilities absent those charged with their completion. Nevertheless, we contend
that responsibility analysis is an essential component of role evolution. We
suggest this based upon decades of practical experience as a Security Archi-
tect in an organization where responsibilities dynamically shift on a weekly,
monthly and yearly basis. For RBAC implementations, we contend that this
is a fundamental change, a new paradigm extending the scalability and main-
tainability of the RBAC model.

Similar to Role Templates as proposed by Giuri [29], we recognize the
requirement for permission granularity in Relational Database Management
Systems (RDBMS) and our constraints model addresses this need. For ex-
ample, granting select permissions on a database table to a role enables all
subjects with this role to access every record in the table unless constraints
are put in place. In this chapter we do exactly that, however unlike Role
Templates, our RBAC extension permits constraints for role-responsibility
relationships. It does not require administrators to constrain access for indi-
vidual subjects, nor does it require database views to be constructed for each
role. This is important because it minimizes the maintenance effort in large
organizations where employee turnover and security policy changes render the
creation of database views for each parameterized role and direct permission

64

4.5. Discussion

grants for individual subjects impractical [7].
As with Extended RBAC [85], our constraints model does not permit

attributes to be associated directly to subjects. For the reasons described
above this is impractical in large organizations where employee turnover and
term appointments, like DC #1, necessitate role-attribute relationships to
promote an economy of mechanism [51]. However, unlike the Extended RBAC
model our constraints do not associate attributes with roles directly, instead
we place constraints on the relationship between a role and a responsibility.
This is important because the granularity of responsibilities dictate that a DC
have more or less permissions depending upon the task at hand. Specifically,
a DC might be responsible for reviewing course information for an entire
department while simultaneously restricted to entering grades for the courses
they are instructing.

The insider threat has long been considered one of the most serious chal-
lenges in computer security [10]. Unlike external threats, insiders require
access to information to perform their job, creating a gap between the prac-
ticality of administering one’s access control system and the principle of least
privilege, thereby exposing too much information and creating susceptibilities
for abuse. Role evolution seeks to bridge this gap with a semantic diver-
gence between roles and responsibilities, resulting in a clearer mental model
for RBAC implementations and facilitating entitlements review [54].

In this chapter we describe how organizational scalability is enhanced at
ACME university by decoupling subject and permission management at the
expense of role evolution. During our analysis at ACME university, we ob-
served that the Security Architect had aggregated permissions into responsi-
bilities and assigned them to Appointment, Position or Group roles in a role
hierarchy to avoid losing important security relationships when employees left
the organization (Figure 4.2). In large organizations with highly skilled work-
forces, an employee (i.e. subject) may acquire several responsibilities directly,
resulting in the loss of important subject-role relationships when an employee
leaves the organization. Furthermore, we have observed how this conceptual
split facilitates requirements engineering for information security. Like RBÄC,
role evolution permits many-to-many administrative mutations and ultimately
leads to more organizational scalability.

We observe that ACME university is a real-world instance of RBÄC where
subjects and permissions are never linked by a single role. Instead, there is
always at least two roles between a subject and a permission. We understand
that this happened organically over the past fifteen years and was directly
influenced by the ARBAC, SARBAC and A-ERBAC models [74][16][42]. Se-
curity practitioners at ACME university had discovered that who has access

65

4.6. Summary

to what is difficult to maintain in an environment with constant employee
turnover. By aggregating permissions into responsibilities (i.e. demarcations)
and assigning them to Appointment, Position or Group roles (i.e. proper roles)
they could avoid losing important security relationships when employees left
the organization. This is exactly what RBÄC proposes with the following
results:

• subject management is delegated as appropriate in organizations, reduc-
ing administrative overhead
• application architects are able to focus on creating independent respon-

sibilities based on the functional requirements
• security officers are able to perform access management at an appropri-

ate level of abstraction

In this chapter, our working example describes a scenario where eleven
Departmental Chairs share similar responsibilities but their scope is different.
At ACME university, role-responsibility constraints determine the records re-
turned when reviewing course information. We learned that the role DC #1
was assigned the role-responsibility constraint, or (name, value) pair (Depart-
ment, #1). Then when applicable queries were performed the WHERE clause
used this constraint to determine what records should be returned. This was
derived directly from the roles held by the subject. When Dr. George Scott,
DC #1, reviews course information his role-responsibility constraints are used
to determine whether or not courses may be viewed.

Finally, the fact that ACME university documents role and responsibil-
ity information is important to highlight. Not only did this practice greatly
facilitate this research, it is directly responsible for our new concept of role
evolution, the hypothesis being that if the business model of an organization
directly informs its RBAC implementation the result is a security model that
is more easily understood, more receptive to change and simpler to maintain.

4.6 Summary

In this chapter, we validate and extend the RBÄC model, making the following
contributions:

• We introduce our new concept of role evolution, a divergence between
roles and responsibilities
• We present our our new hierarchical graphing model to better visualize

non-trivial SP mappings

66

4.7. Publications

• We extend RBÄC with our new role-centric approach for dynamically
constraining access to information

Using real-world data and experiences, we compare the RBAC implemen-
tation of ACME university to RBÄC, detailing our scenario of interest for De-
partmental Chairs and using our new hierarchical graphing model to better
visualize the subject-permission mappings before introducing our new role-
centric methodology for dynamically constraining access to information.

The reader should now understand that role evolution is an extension of
RBÄC, specifying a new mandatory layer for RBAC implementations where
responsibilities are created, assigned permissions and granted to roles, thereby
promoting organizational scalability. In the following chapter, we introduce
our new ORGODEX model and methodology for engineering scalable access
control systems.

4.7 Publications

Publications related to this chapter:

• Aaron Elliott and Scott Knight. Towards Managed Role Explosion. In
Proceedings of the 2015 New Security Paradigms Workshop (NSPW),
number 1, pages 100-111, 2015. ACM Press.

67

5 ORGODEX

5.1 Introduction

In the previous chapter, we suggest that the term role explosion be replaced
by the notion of role evolution, presuming the number of roles will scale un-
controllably in large organizations or controllably using a prescribed method-
ology. In this chapter, we prescribe a new evolutionary model for RBAC in
support of scalable implementations. We describe ORGODEX, a model and
methodology for engineering scalable RBAC implementations where hundreds
or thousands of employees require access to information on a need to know
basis to meet the responsibilities of their role within the organization. The
aim of this dissertation is met during three distinct phases:

• In chapter 4, we refine our contributions, introducing and motivating
the requirement for new RBAC structural relationships that distinguish
between roles and responsibilities, thereby satisfying our first objective.
• In this chapter, we introduce our new ORGODEX model and methodol-

ogy for engineering scalable RBAC implementations, thereby satisfying
our second and third objectives. We use our operational case study at
ACME university to validate the utility of our new model and method-
ology.
• In chapter 6, we further validate the general applicability of ORGODEX,

leading a one year project to extend features and functionalities of the
ACME university information system to a partner institution.

ORGODEX is founded in RBAC, assimilating decades of research to real-
ize a hybrid RBAC-ABAC role-centric model, addressing several open prob-
lems described for the core ABAC model [78][34][39]. This includes the lack of
an agreed upon or foundational model and limited emulation for representing
more mature models like RBAC. This is an important concern for organiza-
tions that have significant investments in large RBAC implementations where

68

5.1. Introduction

hundreds of roles have been engineered to realize security policy and safeguard
information assets for several years if not decades.

ORGODEX offers a practical alternative for large organizations who do
not see value in redesigning their information security architecture to use the
ABAC model and its eXtensible Access Control Markup Language (XACML)
policies. Unlike traditional access control technologies, such as RBAC, that
have a proven track record in being adopted in large scale real-world systems,
ABAC is still largely unproven in terms of practical scalability [78].

In the following sections, we produce a new granular, evolutionary model
and methodology for describing and reasoning about RBAC implementations,
using roles and responsibilities to directly inform the architecture. First, we
introduce ORGODEX, our new model for describing and reasoning about
RBAC implementations using the terms role and responsibility to facilitate
communication. We explain why a mandatory separation between roles and
responsibilities permits engineers to more easily communicate with one an-
other and we stress the importance of communication with the business side
of an organization.

Next, we deliver our new methodology for engineering scalable implemen-
tations, using our ORGODEX model to iteratively analyze, realize and publi-
cize a RBAC implementation. We use the ISO/IEC 27001 standard for speci-
fying information security management systems, adopting the Plan-Do-Check-
Act (PDCA) cycle for continuous improvement, we describe how ORGODEX
facilitates communication, delivering consistent access control solutions that
directly reflect the business model. We validate the utility of our methodol-
ogy by reverse engineering the ACME university example from the previous
chapter.

Finally, we discuss how ORGODEX saves time for organizations. Unlike
the classic triangular RBAC model where the savings are easily demonstrated,
with ORGODEX we make the case for investing minutes to save hours, days
and weeks when maintaining large RBAC implementations over a span of
years and across decades.

At the conclusion of this chapter, the reader should better understand
why the ORGODEX model and methodology saves time for organizations
with large RBAC implementations, recognizing the added value of working
away from the classic triangular model and towards a granular, evolutionary
model where roles and responsibilities have semantically diverged to improve
communication, thereby lowering the cost of maintenance.

69

5.2. Background

5.2 Background

From the year 2000 onwards, we have analyzed, realized and publicized the
RBAC implementation of ACME university, resulting in a deep-seated ap-
preciation of the inherent challenges faced when administering RBAC across
decades. We have closely observed and responded to the impact of employee
turnover and security policy changes in a real-world setting, forming the mo-
tivation for this research and influencing our work.

The University Information System (UIS) is an OracleTMdatabase contain-
ing hundreds of tables designed by a small team of IM specialists responsible
for software development, enhancement and integration in support of both
national and international clients. In the late 1990’s this team consisted of
fewer than five members. Today there are about a dozen employees respon-
sible for supporting the information needs of multiple learning institutions,
thousands of students, hundreds of staff members and an eclectic group of
affiliates, including hundreds of contractors.

As RBAC practitioners, we have found it extremely challenging to main-
tain RBAC implementations that are tightly coupled with security policy. In
our experience, the complexity of RBAC implementations is not well appreci-
ated. As RBAC researchers, we are well aware of the popularity of the RBAC
model despite its open, generic framework for engineering solutions that may
be costly to maintain [12] [52] [58]. In this dissertation, we are motivated
to convince the reader that the implicit subject-permission model hides too
many important details to the detriment of RBAC practitioners, especially
those accountable for administering hundreds or thousands of roles.

In the following section, we produce a new model for describing and reason-
ing about RBAC implementations using roles and responsibilities to directly
inform the architecture, publishing explicit, comprehensible representations
of RBAC implementations that are more easily understood and receptive to
change. The reader should not confuse the ORGODEX model with the Open
Authorization (OAuth) solution re-purposed for user authentication by ma-
jor identity providers such as Facebook, Google and Microsoft [11]. Where
OAuth 2.0 defines an open framework for access control delegation, typically
permitting users to share information about their accounts with third party
applications or websites, ORGODEX is a model and methodology for engi-
neering scalable access control systems [80].

To aid comprehension, equating OAuth and ORGODEX is like comparing
insurance companies and manufacturers in the automobile industry. OAuth
is like an insurance company where the business problem requires individuals
to share their personal information to establish trust relationships and ac-

70

5.3. Model

countability whereas ORGODEX is like an automobile manufacturer where
the objective is determining how to make a better automobile given what we
know today and what we believe will be true in the future.

5.3 Model

In business management a roles and responsibilities matrix may be used to
clarify who is responsible for what [30]. A mandatory separation between
roles and responsibilities is an evolutionary approach to implementing RBAC,
permitting engineers to more easily communicate the important aspects of
their design implementations to one another. In addition, describing and rea-
soning about RBAC implementations using the terms role and responsibility
facilitates communication with the business side of an organization, allowing
practitioners to publish comprehensible security information. In this section,
we introduce ORGODEX, our new model (and methodology) for engineer-
ing scalable RBAC implementations in large organizations where employees
require access to information on a need to know basis.

Figure 5.1a is an intentional repetition of Figure 2.6b meant to highlight
the similarities and differences between RBÄC and ORGODEX as follows:

• ORGODEX discards the implicit SP relation
• S is renamed Workforce
• SR+ is renamed WHO
• R+(RH+) is renamed Role
• G is renamed HAS ACCESS TO
• D+(DH+) is renamed Responsibility
• PD+ is renamed WHAT
• P is renamed Information
• ORGODEX introduces CONSTRAINT(S)

ORGODEX workforce-role-responsibility-information relationships are de-
fined and enforced. There is always a role and responsibility between the
workforce and information. In Figure 5.1b, we see that the ORGODEX model
builds upon RBÄC and the notion of role evolution, using business terminol-
ogy and providing support for role-centric constraints.

Definition 20. The Workforce is enrolled into roles. Dr. George Scott
is a member of the workforce fulfilling the DC #1 role.

Definition 21. The ability to review and maintain Information is
assigned to a responsibility. A DC, responsible for approving grades, requires
access to course information to meet this responsibility.

71

5.3. Model

S P

R+ (RH+) D+ (DH+)

a) RBÄC

SP

SR+

G

PD+

Workforce Information

Role Responsibililty

b) ORGODEX

WHO

HAS ACCESS TO

WHAT

CONSTRAINT(S)

Figure 5.1: The ORGODEX model builds upon RBÄC and the notion of role
evolution, using business terminology and providing support for role-centric
constraints.

Definition 22. An Attribute has a name and holds a value. For
example, the (name,value) tuple (Department,#1).

Definition 23. A Constraint limits information accessible for role-
responsibility relationships. A DC, responsible for approving grades for (De-
partment,#1), requires access to course information for Department #1 only
when approving grades.

ORGODEX retains the principal semantic domains underlying RBAC and
RBÄC, adding constraints and using business terminology:

• Let W be a Workforce, a set of subjects, s
• Let I be Information, accessible through a set of permissions, p
• Let Ro be a set of roles defined in an organization
• Let Re be a set of responsibilities defined in an organization1

• Let A be a set of attributes defined as (name, value) tuples in an orga-
nization
• Let C ⊆ Ro × Re × A be a role-responsibility-information constraint

relation
• Let WRo ⊆ W × Ro be a workforce-role enrollment relation
• Let IRe ⊆ I × Re be an information-responsibility assignment relation
• Let RoH ⊆ Ro × Ro be a role-role-hierarchy relation, RoH is required

to be acyclic
• Let ReH ⊆ Re × Re be a responsibility-hierarchy relation, ReH is re-

quired to be acyclic

1Ro and Re are disjoint sets

72

5.3. Model

• Let RoRe ⊆ Ro × Re be a grant relation

In terms of complexity, Kuijper and Ermolaev provide a proof that RBAC
is equivalent to RBÄC.

Theorem 2. There exists a linear translation from RBAC to RBÄC
and, vice versa, there exists a linear translation from RBÄC back to RBAC
[46].

RBÄC defines the following syntax:

• Let R+ be a set of proper roles
• Let D+ be a set of demarcations2

Considering the trivial case of translating ORGODEX to RBÄC, we arrive
at the following theorem.

Theorem 3. There exists a linear translation from RBÄC to ORGODEX
and, vice versa, there exists a linear translation from ORGODEX back to
RBÄC.

Proof. We provide a constructive proof by mapping each role (Ro) to a
proper role (R+) and each responsibility (Re) to a demarcation (D+).

• Ro = {role[r] | r ∈ R+}
• Re = {responsibility[d] | d ∈ D+}
• WRo = {(s, role[r]) | (s, r) ∈ SR+}
• IRe = {(p, responsibility[d]) | (p, d) ∈ PD+}
• RoH = {(role[r], role[r′]) | (r, r′) ∈ RH+}
• ReH = {(responsibility[d], responsibility[d′]) | (d, d′) ∈ RD+}
• RoRe = {(role[r], responsibility[d]) | r ∈ R+, d ∈ D+}

Next we consider the case of translating ORGODEX to RBÄC, highlight-
ing the semantic equivalence of these two models when not considering the
extension for constraints defined by ORGODEX:

• R+ = Ro

• D+ = Re

• SR+ = WRo

• PD+ = IRe

• RH+ = RoH
• RD+ = ReH

2R+ and D+ are disjoint sets

73

5.4. Methodology

Figure 5.2: The ORGODEX methodology facilitates communication, pro-
viding a practical framework for consistent access control solutions through
iterative analyze, realize and publicize cycles.

The requirements for scalable access control and management architec-
tures presents a unique set of challenges. In terms of scalability, ORGODEX
provides support for several languages and applications, permitting the use
of multiple interfaces for configuring security policies described by roles, re-
sponsibilities and constraints. Moreover, ORGODEX facilitates decentralized
management in distributed architectures where the administration of roles and
responsibilities is just another responsibility, thereby providing cost effective
maintenance without sacrificing efficiency [43].

In the following subsections, we describe the ORGODEX methodology for
analyzing the business, realizing a RBAC implementation and publicizing the
implemented security architecture.

5.4 Methodology

The ORGODEX methodology is based upon the ISO/IEC 27001 standard
for specifying information security management systems, adopting the PDCA
cycle for continuous improvement [35][21]. It facilitates communication by

74

5.4. Methodology

Reports

Terms of Reference
Access Control

SystemProject Deliverables

Roles

Information

Responsibilities

Constraints

Implement

Test

Design

Review

Roles and
Responsibilities

Information

Validation

Figure 5.3: The ORGODEX model facilitates communication, providing
a practical framework for complex, scalable RBAC implementations where
the outputs of one phase supply the inputs to the next phase in continuous
feedback loops.

providing a practical framework for consistent access control solutions through
iterative analyze, realize and publicize cycles (Figure 5.2).

In Figure 5.3, the methodology begins with the Analyze phase where
Project Deliverables serve as the input in this example. The initial input,
or starting point, could also be a Statement of Requirements (SOR) or mile-
stone or any work objective defined to meet a business outcome.

5.4.1 Analyze

The PDCA cycle begins with the Plan phase. With ORGODEX, the analyze
phase may be completed by a Business Analyst (BA) with project deliverables
serving as inputs and the following terms of reference produced as outputs:

75

5.4. Methodology

1. Roles
2. Information
3. Responsibilities
4. Constraints

BAs are expected to elicit outputs by asking questions related to the
project deliverables and using the five W’s; who, what, why, when and where
to ultimately produce a roles and responsibilities matrix.

According to Ziv’s Law software development is unpredictable and doc-
umented artifacts such as specifications and requirements will never be fully
understood [87]. For this reason and others, communication is often consid-
ered the most important aspect of Project Management, justifying the need
to work towards shared goals, objectives and outcomes with the following
assumptions:

• Limited information is available when planning and initiating a project
• No two stakeholders share the exact same imagined outcome

In this dissertation we focus on the added benefit of integrating role and
requirements engineering efforts when designing system functions and user in-
terfaces. We also identify candidate roles as nouns and similar to the method-
ology described by Coyne [13], we identify responsibilities by determining
activities that may be stated as a verb-information pair, for example Approve
Final Grades. Finally, we link up roles and responsibilities, identifying role-
centric constraints when applicable.

Roles (Ro)

Requirements Engineering (RE) is not only a process of discovering and speci-
fying requirements, it is also a process for facilitating effective communication
among different stakeholders. RE papers generally note that access control
is often considered late in the software development cycle and consequently
a thorough validation of the security requirements is not performed. Many
authors suggest that access control policies must be elicited early in the de-
velopment cycle, the RE phase [17][32][33]. In their field study, Wilander and
Gustavsson discover that 75% of security requirements are functional, leading
them to conclude that following well-known and rigorously reviewed standards
would make the management of security features equivalent to other functional
requirements.

Haley, Moffett, Laney and Nuseibeh describe a framework for security
requirements engineering [32]. From RE they utilize the concept of opera-
tionalized functional requirements with appropriate constraints. From secu-
rity engineering they use the concept of assets and deal with threats to those

76

5.4. Methodology

ROLES

ROLES RESPONSIBILITIES

POSITION APPOINTMENT GROUP

Figure 5.4: At ACME university, Role Evolution diverges beyond Roles and
Responsibilities.

assets. He and Antón prescribe a method for deriving access control policies
from Software Requirements Specifications (SRS) and database designs. In
addition, He and Antón have published a goal-driven framework for bridging
the gap between high-level privacy requirements and low-level access control
policies [33]. Crook, Ince and Nuseibeh relate roles to organizational theory
and describe how these roles can be employed to define access policies [17].

Like Crook et al. [17], we believe that roles must be typed. Role typing is
an important aspect of the role analysis process. In Figure 5.4, we illustrate
how roles have diverged beyond roles and responsibilities at ACME university
where appointment, position and group roles are identified, providing further
evidence of an organic role phylogeny that is occurring in real-world RBAC
systems. In the context of ACME university, we note the following:

• A position is a role typically held by an employee on an indeterminate,
term or casual basis. A position is associated with a number and title
in the Human Resources Management System (HRMS), for example,
position number #123456, Project Manager.
• An appointment is a role that one fulfills for a specified (or unspeci-

fied) period of time above and beyond the responsibilities of a staffing
position, for example, a Departmental Chair.
• Logically, there are sets of roles that are grouped because they share

similar responsibilities. In many cases this is done to distribute the
workload. For example, DC#1 and DC#2 require access to different
sets of information.

77

5.4. Methodology

Table 5.1: A Role Analysis Document identifies WHO, establishing a rela-
tionship between the Workforce and a defined Role.

Ro Type Description

DC#1 Appointment Departmental Chair #1

DC#2 Appointment Departmental Chair #2

DC Group Departmental Chair

To build an instance of ORGODEX, an analysis begins by identifying
WHO the information management system and its security will support, an-
alyzing the roles to better understand the workforce. At ACME university,
fourteen Departmental Chairs report to one of three Deans. In Table 5.1 we
produce a small sampling of a role analysis document. We do not identify
members of our workforce (e.g. Dr. George Scott), instead we focus on the
roles they fulfill at ACME university.

It is important for the reader to consider the impact of this trivial exercise
and the rationale for its placement as the lead output of the ORGODEX
analyze phase. From the onset, prior to any development activities the project
team collaboratively produces a simple document (Table 5.1) identifying the
intended workforce (W) and their respective roles (Ro), potentially redefining
the scope of the project with the shared realization that the workforce is
larger or smaller than anticipated. Furthermore, a simple tool for better
understanding roles and their maintenance, including addition and subtraction
is quickly established.

Information (I)

ORGODEX separates WHO (Ro) and WHAT (I) from the onset, mandating
that BAs identify terms of reference and associate protection levels as follows:

• The flow of information is primarily orchestrated around notional con-
cepts such as students and courses
• Protected information may only be viewed by those who have been au-

thorized
• Public information is not protected and may be published for all to see

In Table 5.2 we produce a small sampling of an information analysis doc-
ument, highlighting concepts of interest such as Course and Student. The
rationale for determining the protection levels early in the analysis process is
twofold. First, we must establish a balance between security and practicality
from the onset. Information deemed to require additional protection levels

78

5.4. Methodology

Table 5.2: An Information Analysis Document defines Terms of Reference
including whether or not the information is deemed Protected or Public (Yes
or No)

Information
(I)

Description Protected

Student Identifies individuals engaged in the pursuit
of higher education

Yes

Course Identifies the subject and learning objectives
to be delivered in a defined period of time
(e.g. English 101)

No

must be further considered upstream (i.e. Responsibility Analysis). Second,
we observe that personnel at ACME university are often unsure of the pro-
tection level for the information they are responsible for, often unknowingly
compromising security protocols. To this end, we do not suggest our method-
ology will fix this problem, however, we do believe that the last phase of our
methodology, publicize, should link back to these protection levels, advertising
information security on a regular basis, ideally strengthening the posture of
an organization.

Responsibilities (Re)

ORGODEX next prescribes the identification of responsibilities, intentionally
separating WHO (Ro) and WHY (Re) from the onset. The objective of a re-
sponsibility analysis document is to promote communication amongst project
team members early and often, working towards a shared understanding of the
system-to-be and prioritizing requirements, ensuring that they can be read,
analyzed, (re-)written, and validated [56].

BAs use requirements documentation to produce a simple three column
table including the following fields:

• Information: A relationship to our definition of WHAT (I) .
• Responsibility: The focus of this document, identifying responsibilities

(Re).
• Requirement: A relationship to the features and functionalities identified

in requirements documentation.

BAs must analyze responsibilities independently from those charged with
their completion. We contend that the responsibility analysis document may

79

5.4. Methodology

Table 5.3: A Responsibility Analysis Document further identifies WHAT,
including the related information concept, a novel high-level responsibility
and the initiating requirement.

Information
(I)

Responsibility (Re) Requirement

Course Review Course Informa-
tion

View list of students associ-
ated with course offering

Student View Final Grades Review results achieved by
students in a course offering

Student Approve Final Grades Approve results achieved by
students in a course offering

be one of the most important work products established within our methodol-
ogy. We suggest this based on years observing enterprise organizations where
responsibilities dynamically shift on a daily, weekly, monthly and yearly basis.
From an information management security viewpoint, we contend that this
is the fundamental difference with our model. In Table 5.3 we list records of
interest from a responsibility analysis document, describing the information-
responsibility relationship.

Consider the impact of this ORGODEX work product and its timing. From
the onset, prior to any development activities the project team collaboratively
produces a simple document (Table 5.3), identifying the Information (I) assets
and the related responsibilities (Re), collaboratively working towards a shared
understanding of the system-to-be and its security architecture. Furthermore,
the maintenance, including addition, modification and subtraction of respon-
sibilities is established in a very short period of time by determining WHY
(Re) access to information is required and with the understanding that WHO
(Ro) requires access is subject to change in both the short and long term.

Constraints (C)

Finally, ORGODEX mandates a constraints analysis before linking roles and
responsibilities, formalizing WHEN (C) and WHERE (C) access to informa-
tion is required. The result of a constraints analysis exercise is a roles and
responsibilities matrix, identifying WHO - HAS ACCESS TO - WHAT, in-
dicating WHY, WHEN and WHERE as applicable. During this activity, the
BA must analyze the constraints or scope for each responsibility. Although
this is all very abstract and listed sequentially, it is assumed these activities
and their related work products will be carried out simultaneously using var-

80

5.4. Methodology

Table 5.4: A constraints analysis document identifies WHO - HAS ACCESS
TO - WHAT, indicating WHY, WHEN and WHERE as applicable.

WHO
(Ro)

WHAT
(I)

WHY (Re) WHEN (C) WHERE
(C)

DC#1 Course Review Course
Information

Course is adminis-
tered by DC#1

UIS

DC#2 Course Review Course
Information

Course is adminis-
tered by DC#2

UIS

ious requirements elicitation techniques, perhaps interview questions similar
to those described by Jaferian [38].

The roles and responsibilities for a Departmental Chair has been a subject
of interest within the research community [8]. At ACME university, each and
every DC shares similar if not identical permissions but they are responsible
for different information sets. During our constraints analysis, we observe DCs
are responsible for approving final grades for students taking a course deliv-
ered within their respective department. Grades are entered by instructors
who teach an academic course to students, set up an evaluation scheme and
grade the student. In Table 5.4 we highlight the roles and responsibilities of
interest for this chapter, indicating that DC#1 is only responsible for review-
ing department #1 course information. Similarly, DC#2 is only responsible
for approving final grades for courses offered by department #2.

In the following subsection, we describe how the work products of the BA,
listed in this section, are directly leveraged during the realize phase.

5.4.2 Realize

The PDCA cycle continues with the Do and Check phases. With ORGODEX,
the realize phase may be completed by a Security Architect (SA) using the
terms of reference defined by BAs during the analyze phase as inputs to engi-
neer an access control system using the following highly iterative process:

1. Design
2. Review
3. Implement
4. Test

A version of Humphrey’s Law states that users don’t know what they want
until they see working software while another version suggests people don’t
know what they want until they see what they don’t want. Agile methodologies

81

5.4. Methodology

attempt to put the software being developed first, acknowledging that user
requirements will change both during and after projects [36]. ORGODEX
embraces the following agile principles:

• Deliver working software frequently
• Business people and developers must work together daily
• Working software is the primary measure of progress
• Promote sustainable development

In the following subsections we present our methodology for realizing infor-
mation security. We elaborate upon our scenario of interest from the previous
chapter where DC#1 and DC#2 are responsible for approving final grades at
the end of each academic term.

Design

During the Design phase, the SA uses terms of reference from the analyze
phase as inputs to create independent roles and responsibilities, proposing
hierarchies where applicable. In Figure 5.5, the appointment roles DC#1
and DC#2 are enrolled in the group role DC forming a role-role hierarchy
relation, RoH. Similarly, the responsibilities Approve Final Grades and View
Final Grades form a responsibility-responsibility hierarchy, ReH.

Review

During the Review phase, the SA utilizes the ORGODEX hierarchical dia-
gramming technique to validate their comprehension of the business model,
using a visual representation of the directional hierarchy of workforce-role,
role-role, role-responsibility, responsibility-responsibility and responsibility-
information relationships [20]. Once validated, the design is used by the SA
to implement the access control system.

Implement

First, with a reviewed list of roles (Table 5.1), the SA uses the CREATE
ROLE command three times as follows:

• CREATE Ro DC#1;
• CREATE Ro DC#2;
• CREATE Ro DC;

Then based upon design reviews (Figure 5.5), the SA implements role
hierarchies (RoH), issuing the following commands:

82

5.4. Methodology

Workforce
Allan Williams

Information
STUDENT

Role ResponsibilityResponsibility

Approve Final
Grades

View Final Grades

Information
COURSE

Review Course
Information

Role

Departmental Chair
(DC)

DC #1

DC #2

Workforce
George Scott

DEPT=[#1]

DEPT=[#2]

DEPT=[VALUE]

Figure 5.5: The hierarchical diagramming technique employed by OR-
GODEX may be used by a Security Architect to validate their comprehension
of the business model.

• CREATE RoH between DC#1 and DC;
• CREATE RoH between DC#2 and DC;

Similarly, with a defined set of responsibilities (Table 5.3), the SA would
use the CREATE RESPONSIBILITY command three times as follows:

• CREATE Re REVIEW COURSE INFORMATION ;
• CREATE Re VIEW FINAL GRADES ;
• CREATE Re APPROVE FINAL GRADES ;

Then based upon design reviews (Figure 5.5), the SA would implement a
responsibility hierarchy (ReH), issuing the following command:

• CREATE ReH between VIEW FINAL GRADES and APPROVE FI-
NAL GRADES;

Creating independent roles and responsibilities allows the SA to initiate
a simple framework for application developers to assign permissions to inde-
pendent responsibilities based on the functional requirements without being
overly concerned about who will ultimately hold the responsibility.

83

5.4. Methodology

Next, we must add constraints where A is a set of (name,value) pairs and
C is a set of role-responsibility-information constraint relationships. In the
following example, we add ORGODEX role-centric constraints, permitting
DC#1 and DC#2 to review course information for their respective depart-
ments:

• ADD A1 = (DEPT, #1)
• ADD A2 = (DEPT, #2)
• ADD C (DC#1, REVIEW COURSE INFORMATION, A1)
• ADD C (DC#2, REVIEW COURSE INFORMATION, A2)

Constraints are applied by creating database views with support for OR-
GODEX role-centric constraints. For instance, #1 is substituted for [value]
in the following database view when DC#1 is reviewing course information:

• SELECT information FROM course WHERE dept in [value])

It is important for the reader to note that unless constraints are defined in
this example, no records are returned for members of the workforce accessing
this database view, imposing a strong default security posture.

Finally, the SA links up roles and responsibilities using the following
GRANT commands:

• GRANT APPROVE FINAL GRADES to DC;
• GRANT REVIEW COURSE INFORMATION to DC;

Test

During the Test phase, the SA grants the appointment roles to the applicable
workforce members in the development system, ensuring that features and
functionalities are working to satisfaction before coordinating a review and
approval demonstration session for concerned stakeholders. For instance, the
SA expects DC#1 to only have access to their respective courses (Figure 5.5).

• GRANT DC#1 to George Scott;
• GRANT DC#2 to Allan Williams;

Following a review and approval demonstration, the SA would use the
feedback obtained to complete the remaining work before granting roles to
workforce members in the production RBAC implementation.

84

5.4. Methodology

5.4.3 Publicize

One revolution of the PDCA cycle completes with the Check and Act phases.
In the ORGODEX publicize phase, the realized RBAC implementation is used
to produce the following reports at a minimum:

1. Information
2. Roles and Responsibilities

According to Conway’s Law, software architecture tends to mirror the de-
signing organization. Kwan suggests this law is important when developing
software from a responsibility or task-level perspective [47]. Using roles and
responsibilities, ORGODEX mirrors the communication structures of an or-
ganization, directly reflecting its business model and implicitly coordinating
the distributed development of secure information management systems [65].

During the publicize phase, we report the realized roles and responsibili-
ties, facilitating their ongoing validation with terms of reference that directly
reflect the business model. The intent is to display real security architec-
ture information on demand for authorized members of the workforce using a
comprehensible roles and responsibilities matrix to regularly validate profiles
[6]. With ORGODEX this is just another responsibility (Re) that may be
constrained (C).

Information

Over time a business develops and operates using a unique glossary or terms
of reference. Some terms might be well understood concepts like student or
course while other terms may be very context specific. For this reason, it is
important for large organizations to develop and maintain searchable terms
of reference that are regularly validated as part of the ORGODEX publicize
cycle.

The Information Asset Report (Table 5.5) serves as an operational glossary
of terms that are to be used by BAs, SAs and Developers to elicit and confirm
requirements both within and between distributed organizations [65]. These
terms are communicated out to the organization.

Roles and Responsibilities

The Roles and Responsibilities Report (Table 5.6) identifies WHO - HAS
ACCESS TO - WHAT, indicating WHY, WHEN and WHERE as applicable:

• The report is an inclusive matrix listing roles and their assigned respon-
sibilities.

85

5.4. Methodology

Table 5.5: The Information Asset Report is subjected to ongoing validations,
publishing the Terms of Reference including whether or not the information
is deemed Protected or Public (Yes or No)

Information Description Protected

Student Identifies individuals engaged in the pursuit
of higher education

Yes

Course Identifies the subject and learning objectives
to be delivered in a defined period of time
(e.g. English 101)

No

Table 5.6: The Roles and Responsibilities Report is subjected to ongoing val-
idations, publishing WHO - HAS ACCESS TO - WHAT and dicating WHY,
WHEN and WHERE as Applicable.

WHO
Ro

WHAT
(I)

WHY (Re) WHEN (C) WHERE
(C)

DC#1 Course Review Course
Information

Course is adminis-
tered by DC#1

UIS

DC#2 Course Review Course
Information

Course is adminis-
tered by DC#2

UIS

• The report resembles a job description for individual roles

Communication with the business side of an organization is a primary mo-
tivation for ORGODEX. We believe that the Roles and Responsibilities Report
in particular is an interesting solution to the challenging problem of entitle-
ments review where managers are expected to validate the permissions held
by their subordinates [38]. If this report directly reflects the work produced
by the BA during the Analyze phase, we believe a communication language
that crosses from the business world to the information security world has
been achieved. One can envision a software application whereby managers
regularly review an interactive Roles and Responsibilities report for their em-
ployees, determining whether their access is too restrictive or overly permissive
[5].

With ORGODEX the intent is to report security architecture information
both on-demand and periodically, utilizing a comprehensible roles and respon-
sibilities matrix to regularly validate profiles. Although we do not focus upon
the notion of Insider Threat in this work [10][35], we believe ORGODEX in-
herently addresses this concern, delivering a model and methodology based

86

5.5. Discussion

upon the ISO/IEC 27001 standard, where provisioning information on a need-
to-know basis is a primary objective.

In the following section, we discuss how the ORGODEX model and method-
ology controls growth, using role evolution to insulate RBAC systems against
ongoing employee turnover, policy changes and reorganization.

5.5 Discussion

It is surprising that the business model of large organizations is often loosely
coupled with its RBAC implementations, merging the notions of role and
responsibility into simplistic, inflexible subject-role-permission relationships.
Perhaps this is directly linked to the classic RBAC example where all bank
tellers share the same role and have the exact same responsibilities. Unfortu-
nately, this example oversimplifies RBAC, making it difficult to understand
the challenges inherent when implementing RBAC in large dynamic organiza-
tions with highly diversified workforces.

ORGODEX discards the implicit subject-permission relation. This may
seem trivial but the intent is quite deliberate. Implicit SP relationships hide
too many details, trivialize RBAC implementations and impede communica-
tion. Managing roles, subjects and their interrelationships is a formidable task
that is often highly centralized in small teams of administrators [74]. A daunt-
ing task in large organizations where access control is a secondary duty result-
ing in considerable misunderstanding amongst practitioners [9]. Instead with
ORGODEX, we have an explicit roles and responsibilities matrix produced
by BAs, implemented by SAs and regularly reviewed by those responsible for
validating their employees access to information.

Recall from chapter 1 that with RBAC the administrative savings are eas-
ily demonstrable (Figure 5.6). Using our scenario of interest from ACME
university, the SA creates the role DC, assigns the permissions to access five
database views to DC and then enrolls each subject into the role DC. By cre-
ating the role DC the SA invests two extra administrative actions, however,
the return on investment is four fewer administrative actions for each addi-
tional subject enrolled into the DC role, a savings of fifteen administrative
actions (less two) for five DCs.

Unfortunately, this example oversimplifies RBAC, making it difficult to un-
derstand the challenges inherent when implementing RBAC in large dynamic
organizations like ACME university where thousands of access control rela-
tionships must be maintained by a small team of SAs. At ACME university,
there are a total of eleven DCs, conservatively each has five responsibilities

87

5.5. Discussion

Direct User Grants
5 Departmental Chairs * 5 views = 25
administrative actions

5 Departmental Chairs + 5 views = 10
administrative actions

Departmental
Chair (DC)

Role-Based Access Control
(RBAC)

Figure 5.6: ACME Example of RBAC Administrative Savings

defined, each responsibility has the permission to access at least two database
views (Figure 5.7) for a total of ten permissions. In this real-world scenario
the savings is calculated by determining the Cartesian product of multiplying
the set of eleven DCs by ten database views for a total of 110 direct user grant
relationships.

Simply creating the role DC and assigning ten permissions affords the SA
a net savings of 87 direct SP relationships:

• 11 DCs multiplied by 10 database views is 11 * 10 = 110 administrative
actions when performing direct user grants
• 11 DCs plus 10 database views is 11 + 10 = 21 administrative actions

for an RBAC implementation
• This implies a savings of 110 - 21 = 89 administrative actions

88

5.5. Discussion

Responsibility
1

Departmental
Chair (DC)

Responsibility
2

Responsibility
3

Responsibility
5

Responsibility
4

Figure 5.7: ACME Roles and Responsibilities Example

• Less the investment in one role creation and one role enrollment results
in a savings of 89 - 2 = 87 administrative actions

ORGODEX and role evolution proposes further investment when intro-
ducing a responsibility. In Figure 5.7 the SA invests 10 additional adminis-
trative actions to create 5 responsibilities (Re) and 5 role-responsibility grants
(RoRe), for example (DC,Responsibility #1). The net savings is still 77 direct
SP relationships.

The ORGODEX methodology invests extra administrative actions when
defining responsibilities to describe and reason about RBAC implementations
using business terminology. Unlike classic RBAC, the administrative savings
are not easily demonstrable. The motivation for this design decision is best
summarized as follows:

• access control may be delegated and managed in a roles and responsi-

89

5.5. Discussion

bilities matrix
• application architects can focus on mapping the permissions associated

with functional requirements to responsibilities
• The degree of delegation for responsibilities is an interesting metric.

The SA is not generally authorized to assign responsibilities absent the
confirmation of an approving authority. Developing RBAC systems that
facilitate entitlements review and permit managers to directly assign
responsibilities to roles has the potential to impact the perception of
access control.

Figure 5.7 depicts how each of these motivations are supported in a gran-
ular role-responsibility design as follows:

• If DC#1 chooses to delegate Responsibility #1 in its entirety to their Ad-
ministrative Officer, (AO#1), the result is one additional role-responsibility
grant, ideally performed by DC#1 directly. In building a granular
RBAC implementation where responsibilities are clearly defined we fa-
cilitate delegation. Furthermore, the result of this action is immediately
apparent in the next publication of the Roles and Responsibilities Report
for AO#1.
• If ACME university would like to develop functionality for a new re-

sponsibility (e.g. #6), application architects simply map permissions
to the newly created Responsibility #6. For instance, in the develop-
ment environment, Responsibility #6 might be granted to DC during
test only to later discover that this new responsibility will also be re-
quired by Deans and their Administrative Officers. With ORGODEX,
responsibilities facilitate ongoing change.

Figure 5.7 provides a clear demarcation between the group role DC, and
five responsibilities. As per the advantages listed above, the administrative
savings are measured downstream in terms of adding new functionality (i.e.
responsibilities), delegating and/or sharing a responsibility and finally when
reporting the entitlements of an employee in a readable roles and responsibil-
ities matrix.

Consider the alternative classic triangular model pictured in Figure 5.8.
In this example we show how new functionality and its related permissions are
often added for RBAC implementations. In contrast to the previous figure,
permissions are added in sets of two, absent the definition of five responsibil-
ities. The short term gain is minimal, likely measured in minutes. For each
responsibility, the SA saves two administrative actions by not creating the
responsibility and associating it with the role DC. In all likelihood the trace-
ability for each additional set of permissions is not well-documented. This

90

5.5. Discussion

Departmental
Chair (DC)

Figure 5.8: ACME Roles without Responsibilities Example

trivial time savings results in the loss of hours downstream when six months
(or three years) later a responsibility is to be delegated or shared as follows:

• If DC#1 chooses to delegate Responsibility #1 in its entirety to their Ad-
ministrative Officer, (AO#1), the result is likely a support request that
eventually finds its way to the SA who is now responsible for interpreting
the requirement. After analyzing the permission set of DC to determine
the required two permissions to perform Responsibility #1, the SA might
choose to grant both permissions to AO#1 directly, further propagating
the problem. By not building a granular RBAC implementation where
responsibilities are clearly defined and documented, delegation becomes
challenging, often measured in hours if not days. Furthermore, the in-
dividual with the authority to delegate a responsibility may be waiting
days or weeks for the SA to complete their request. Clearly, investing the

91

5.5. Discussion

Responsibility
1

Departmental
Chair (DC)

Responsibility
2

Responsibility
3

Responsibility
5

Responsibility
4

DC#1

DC#2

DC#3

DC#4

DC#5

DC#6

DC#7

DC#8

DC#9

DC#10

DC#11

Figure 5.9: ACME Roles and Responsibilities Plus One Example

minutes required to introduce and document an ORGODEX responsi-
bility produces administrative savings measured in hours and days based
on this example. For businesses, the miscommunication and frustration
are often palpable.
• If ACME university would like to develop functionality for a new respon-

sibility (e.g. #6), application architects are unable to focus on mapping
permissions directly to a newly created Responsibility #6. Instead, in the
development environment, the permissions required to perform Respon-
sibility #6 are granted directly to DC. At deployment, the traceability
for the two permissions required to perform this new responsibility are
immediately lost, blending in to the accumulated permission set of DC.

ORGODEX and role evolution proposes further investment in roles and
responsibilities. In Figure 5.9 the SA invests 22 additional administrative
actions to create 11 constrained roles and 11 role hierarchies (RoH), for ex-
ample (DC#1, DC). The net savings is still 55 direct SP relationships. The

92

5.5. Discussion

ORGODEX methodology invests extra administrative actions when defining
constrained roles to describe and reason about RBAC implementations using
business terminology. This may seem counterintuitive to those whose beliefs
are firmly entrenched in the classic triangular RBAC model. The motivation
for this design decision is best summarized as follows:

• Workforce-role management may be automated as appropriate in orga-
nizations, reducing administrative overhead.
• Rather than producing metrics aimed at optimal role sets, we believe

that the degree of automation for roles is of interest. At ACME univer-
sity, the enrollment of employees into appointment roles is automated
as part of existing business processes.
• Creating singular, multipurpose database views for various roles and

responsibilities is desirable but expensive.

Figure 5.9 depicts how each of these motivations are supported in a gran-
ular role-role hierarchy design as follows:

• When a member of the workforce, for example Dr. George Scott, is
appointed to DC#1 for a three year term, integrations with the HRMS
may be leveraged to automate his enrollment into the role DC#1. If
Dr. Scott takes an extended leave, for example a sabbatical, an acting
appointment may be automated for another member of the workforce.
While we acknowledge that the HRMS could likewise be used to auto-
mate the enrollment of DCs into the DC group role, this would not fa-
cilitate a fundamental aspect of the ORGODEX model (i.e. role-centric
constraints).
• Automation aside, the administrative savings of the ORGODEX model

and methodology is best exemplified when considering the addition of
role-centric constraints and their application to database views. The
creation of 11 constrained DC roles can be measured in minutes. In con-
trast, the creation and maintenance of singular, multipurpose database
views may be measured in hours and days.

Figure 5.9 provides a clear demarcation between roles and responsibilities.
As per the two advantages listed above the administrative savings are mea-
sured downstream when measuring the cost of maintenance. In opposition
to the classic triangular model pictured in Figure 5.8, the short term gain is
minimal, likely measured in minutes. For each of the 11 DC roles, the SA
saves two administrative actions by not creating the role-role hierarchy rela-
tionships found Figure 5.9. The deficiency with this approach is the hours
and days lost when asked to constrain a responsibility as follows:

93

5.5. Discussion

• If a responsibility such as Review Course Information is to be con-
strained, application architects have several options. Creating 11 database
views, one for each DC with a different constraining where clause is costly
and infeasible because one would still need 11 DC roles to assign each
of these new views to each DC
• Another popular option is ABAC. However, the shortcomings of this

approach are described in detail in chapter 2. ORGODEX introduces
role-centric constraints as a hybrid RBAC-ABAC model that does not
rely on implicit relationships with business data, maintaining a security
architecture that is abstracted and flexible

The challenge for ORGODEX is to demonstrate the administrative savings
achieved by adding 11 role-role hierarchies for DCs. First, let’s consider the
net savings when comparing the classic triangular RBAC model (Figure 5.8)
to the ORGODEX model and methodology (Figure 5.9):

• With the classic triangular model we save 87 administrative actions, both
the investment and savings are easily demonstrated and measured in
minutes. However, the long term cost of maintaining inflexible subject-
role-permission triangles may be measured in hours, days and weeks.
• With ORGODEX, the net savings is 55 administrative actions. We in-

vest 32 (i.e. 87-55=32) additional relationships at a cost of minutes to
standardize the development of an architecture permitting large enter-
prise organizations to save hours, days and weeks.

The SAs at ACME university strongly contend their practical experience,
explicitly separating roles and responsibilities, has proven to be an invaluable
design decision when engineering a scalable RBAC implementation over the
past two decades. The investment in light-weight roles and explicitly defined
responsibilities results in a scalable, granular architecture where the payoff is
much greater than the investment.

In our scenario of interest, the RBAC implementation includes two roles
and one responsibility, permitting Dr. George Scott, DC#1, to Review Course
Information. Although it may be difficult to see the immediate advantages
of the ACME implementation, questioning the excessive number of roles and
responsibilities, one begins to appreciate the simplicity of the subject-role
relations found on the surface as they tunnel deeper into the design.

ACME university employs an evolutionary, fine-grained RBAC implemen-
tation where role-centric constraints are defined to directly influence the records
returned in shared database views, for example:

• SELECT information FROM course WHERE dept = [value]

94

5.5. Discussion

Role Responsibility

Information
COURSE

Review Course
Information

Role

Departmental Chair
(DC)

DC #1

Workforce
George Scott

DEPT=[#1]

DEPT=#1

Role Attribute

Figure 5.10: The List of Courses that may be selected by George Scott is
constrained by the role-centric attribute DEPT with value #1.

• ADD A1 = (DEPT, #1)
• ADD C (DC#1, REVIEW COURSE INFORMATION, A1)

A database view is defined using Structured Query Language (SQL). In the
example above all fields or columns are selected from the course table. When
Dr. George Scott queries the database view, the role attribute (dept,#1)
defined for DC#1 when reviewing course information is substituted for the
parameter [value] at run time, thereby determining the set of courses that
may be viewed by Dr. Scott.

Figure 5.10 depicts the match condition used to restrict the review of
course information for Dr. Scott, fulfilling the role and responsibility require-
ment described in the first record of Table 5.7. For brevity, we do not include
records for all eleven DCs. We do show how the database view is extended to
support other groups of administrators in a scalable architecture that includes
the AR-UG and AR-PG, briefly described in the previous chapter and further
elaborated next.

In Figure 5.11 one can visualize how ACME university uses the flexibil-
ity and scalability of ORGODEX to create singular, multipurpose database
views for tens if not hundreds of members of the workforce, providing both

95

5.6. Summary

Table 5.7: The Roles and Responsibilities Report may also be viewed for
each Responsibility

WHO
Ro

WHAT
(I)

WHY (Re) WHEN (C) WHERE
(C)

DC#1 Course Review Course
Information

Course is adminis-
tered by DC#1

UIS

DC#2 Course Review Course
Information

Course is adminis-
tered by DC#2

UIS

AR-UG Course Review Course
Information

Course is listed in
Undergraduate Cat-
alog

UIS

AR-PG Course Review Course
Information

Course is listed in
Postgraduate Cata-
log

UIS

constrained and consistent, context aware information to a variety of employ-
ees at the university. Combining the roles and responsibilities of these four
members of the workforce in a hierarchical diagram results in a busy but
explicit representation of the RBAC implementation. The intent of this ex-
ample is not to confuse the reader but instead to help them better visualize
the details of a real-world RBAC implementation found at ACME university.

It is important to realize that the Roles and Responsibilities Report may
be viewed both by role and by responsibility as listed in Table 5.7. This
facilitates entitlement review at ACME university. By decoupling roles and
responsibilities and publicizing dynamic reports directly from the RBAC im-
plementation, those charged with validations may be provided with simple
reports indicating WHO, WHAT, WHY, WHEN and WHERE.

5.6 Summary

In this chapter we present our new granular, evolutionary approach for engi-
neering RBAC implementations, making the following contributions:

• We introduce ORGODEX, our new model for describing and reason-
ing about RBAC using the terms role and responsibility to facilitate
communication
• We deliver our new ORGODEX methodology for iteratively analyzing,

realizing and publicizing scalable RBAC implementations

96

5.6. Summary

Workforce
Ms. Victoria
Mason

Associate
Registrar -

Undergraduate

Information
Course

Workforce
Ms. Alice Faux

Associate
Registrar -

Postgraduate

CATALOG=[VALUE]
Workforce

Dr. George
Scott

Departmental
Chair #1

Departmental
Chair

Review Course
Information

Workforce
Dr. Allan
Williams

Departmental
Chair #2

DEPT=[#2]

DEPT=[#1]

DEPT=[VALUE]

Undergraduate
Registrar Staff

CATALOG=[UG]

Postgraduate
Registrar Staff

CATALOG=[PG]

Role Role Responsibility

Role Attribute

Role Attribute

Role Attribute

Role Attribute

OR

Figure 5.11: Determining the List of Courses that may be selected by a
variety of subjects.

• We validate the utility of our new model and methodology, reverse en-
gineering the example from our first operational case study at ACME
university
• We discuss how ORGODEX saves time for large organizations with

highly diversified workforces

Using real-world data and experiences, we further motivate a mandatory
separation between roles and responsibilities, permitting engineers to more
easily communicate the important aspects of their design implementations to
one another. We stress the importance of communication with the business
side of an organization as a primary motivation for ORGODEX, producing a
model and methodology where the terms of reference captured by a BA are
leveraged by a SA to realize an access control system that is regularly reported

97

5.7. Publications

in a comprehensible roles and responsibilities matrix, thereby improving the
security posture.

We suggest that the time investment for implementing an ORGODEX
solution may be measured in minutes and that the expected payoff is the ac-
cumulated hours, days and weeks saved when maintaining large-scale RBAC
implementations over years and decades. The reader should now better un-
derstand why the ORGODEX model and methodology saves time for large
organizations with highly diversified workforces, like ACME university, recog-
nizing the added value of working away from the classic triangular model and
towards a granular, evolutionary model where roles and responsibilities have
semantically diverged to improve communication, thereby lowering the cost of
maintenance.

In the following chapter, we further validate the general applicability of
ORGODEX, leading a one year project to extend features and functionalities
of the ACME university information system to a partner institution.

5.7 Publications

Publications related to this chapter:

• Aaron Elliott and Scott Knight. Start Here: Engineering Scalable Access
Control Systems. Proceedings of the 21st ACM Symposium on Access
Control Models and Technologies, pages 113-124, 2016.

98

6 Validation

6.1 Introduction

In the previous chapter we introduced ORGODEX, our new model and method-
ology for engineering scalable access control systems, building upon our notion
of role evolution and providing clear separation for WHO (Ro) and WHY (Re).
In this chapter we validate our new alternative for engineering scalable autho-
rization solutions during a real-world project to deploy both software and
authorization services at two geographically distributed partner institutions.
To recap, the validation approach for this dissertation is divided into three
distinct phases:

• In chapter 3 and chapter 4, we refine our contributions, introducing and
motivating the requirement for new RBAC structural relationships that
distinguish between roles and responsibilities, thereby satisfying our first
objective. We extend RBÄC with role-centric constraints, describing
how ACME university decouples subject and permission management
to manage role explosion [20].
• In chapter 5 we introduce our new ORGODEX model and methodology

for engineering scalable RBAC implementations. We use our first oper-
ational case study at ACME university to further motivate the require-
ment for distinguishing between roles and responsibilities, advocating
on behalf of role evolution [21].

• In this chapter, our objective is to demonstrate the general applicability
of ORGODEX, validating our new model and methodology for engineer-
ing scalable authorization solutions in the context of cloud computing.
In our second operational case study, we assume the duties of a Project
Manager and Security Architect to launch a new shared software solution
at two geographically distributed partner institutions where security re-
quirements for data collaboration and isolation are implicit deliverables.

99

6.2. Background

Our objective in this chapter is to demonstrate the efficiency and prac-
ticability of our new model and methodology named ORGODEX by leading
the deployment of both Software as a Service (SaaS) and Authorization as
a Service (AaaS) at two geographically distributed partner institutions. The
project team is a multi-disciplinary, multi-lingual group of individuals with
extensive to very little understanding of information security and RBAC.

First, during the Analyze phase, the project team collaboratively identifies
roles and responsibilities, cohesively aligning role and requirements engineer-
ing efforts. We show that ORGODEX is a suitable methodology for aligning
project deliverables and authorization from the onset, describing how terms
of reference are formalized during early, iterative requirements engineering
phases.

Next, during the Realize phase, terms of reference from the Analyze phase,
are used to engineer the RBAC implementation. We iteratively design, review,
implement and test new features and functionalities before linking roles and
responsibilities to realize AaaS. We show that there is a natural progression
from the terms of reference distilled during the Analyze phase, to a validated
real-world authorization service that is well-understood by the project team.

Finally, during the Publicize phase, we report the realized roles and re-
sponsibilities in comprehensible matrices. We demonstrate how ORGODEX
supports the ongoing validation of both the software and authorization ser-
vices, using terms of reference that directly reflect the business model of an
organization to facilitate communications.

At the conclusion of this chapter, the reader will better understand why
moving towards a roles and responsibilities based RBAC model is an evo-
lutionary approach. We provide evidence for the broader applicability of
ORGODEX, further validating this model and methodology in the context
of a cloud-computing architecture, satisfying our objective and providing an
interesting solution to the challenging problem of entitlements review.

6.2 Background

Since its inception, the cloud-computing paradigm has gained widespread pop-
ularity in both industry and academia [1]. With both economical and scala-
bility advantages, shifting business processes to the cloud is a logical evolution
for large distributed organizations. However, the cloud requires dynamic, fine-
grained access control mechanisms to support employee turnover and adapt
quickly to ongoing security policy changes [79].

100

6.2. Background

Unlike other solutions for moving security to the cloud that are based upon
different models and technologies such as ABAC and XACML [50] [48], we
present a solution that is entirely founded in RBAC. Like the Access Control
for Cloud Computing (AC3) model we propose similar principles, enrolling
subjects into a role that relates to their job and assigning responsibilities to
this role [86].

RBAC has been the dominant access control model for the application
layer of computer systems for several decades now [68]. Cloud computing is
considered one of the most dominant paradigms in the IT industry today, sup-
porting new cost effective SaaS solutions. Marrying these technologies presents
interesting alternatives for partner institutions while presenting unique secu-
rity challenges that may not be fulfilled by RBAC in a collaborative cloud
computing Multi-Tenant Architecture (MTA) [86].

This is an important concern because role engineering is expensive [76][58][1].
Large organizations who have significant investments in RBAC implementa-
tions with hundreds of roles engineered over decades to realize security policy
and safeguard information assets would like to reuse their implementation
when deploying services to partner institutions. Fostering multi-tenant col-
laboration supported by AaaS is a desirable solution for cloud computing
environments where tenants are often isolated, minimizing collaboration [81].

The University Information System Application (UISA) permits users to
access information in the IM system of ACME university, supporting multiple
higher education institutions, thousands of students, hundreds of staff mem-
bers and dozens of contractors in an environment operating under a need to
know security policy. ACME has a significant investment in a large RBAC
implementation where hundreds of roles have been engineered over the past
two decades to realize security policy and safeguard information assets.

MECA is a partner institution whose campus is located more than three
hundred kilometers from ACME university. Students admitted to MECA
typically progress in their academic studies and move on to ACME within
one to two years, forming an integral connection between the institutions and
justifying the requirement for a shared information system. However, failed
attempts to meet this requirement historically suggested success would neither
be trivial nor a guaranteed outcome for the newly formed project team.

Nevertheless, interest in realizing a shared information system persisted
and stakeholders at both institutions prioritized a new project in the spring of
2015, with a Project Director (PD) from ACME working with two BAs from
MECA to acquire sponsorship and a commitment to staff the initiative (Ta-
ble 6.1). In January 2016, the PD assigned one dedicated Developer (DEV)
and a part-time Project Manager (PM) to the UISA-MECA-I project. The

101

6.2. Background

Table 6.1: Project Team for UISA-MECA-I including their location, ACME
or MECA, and their time commitment to the initiative, part-time (PT) or
full-time (FT).

Role Responsibilities

Sponsor Project Approval and Resources

PT ACME Project Director (PD) Resources and Reports

PT ACME Project Manager (PM) Communications and Deliverables

FT ACME Developer (DEV) Communications and Development

2 PT MECA Business Analysts (BA) Requirements and Validations

Table 6.2: Project Plan for UISA-MECA-I expected to be a series of one to
many projects.

Goal Description Milestone

Communicate Project initiation FEB 2016

Integrate First set of deliverables MAY 2016

Integrate Second set of deliverables AUG 2016

Integrate Third set of deliverables DEC 2016

Communicate Project completion. JAN 2017

PD’s description for the initiative can be paraphrased as follows: The UISA-
MECA-I project will replace MECA’s current obsolete IM systems with a more
sustainable long term solution, aligning business processes and improving com-
munications between MECA and ACME.

Coordination is an inherent aspect of work in any organization and takes
place in the form of meetings, scheduling, milestones, planning and processes
[65]. In early 2016, the newly assigned PM worked with the project team
to define scope, milestones and deliverables for the UISA-MECA-I project
with the expected business outcomes of reduced administration and improved
communication.

The roman numeral notation in the acronym UISA-MECA-I indicates the
project is expected to be the first in a series of projects delivering UISA func-
tionality to MECA. As listed in Table 6.2, the project scope was confirmed in
February 2016 with three sets of deliverables targeted for May 2016, following
the winter term, August and December 2016 preceding and following the fall
term respectively.

In the following section, we focus on the added benefits of harmonizing
role and requirements engineering efforts before designing an access control

102

6.3. Analyze

Terms of ReferenceProject Deliverables

Roles

Information

Responsibilities

Constraints

Figure 6.1: During the ORGODEX Analyze Phase, project deliverables serve
as inputs and terms of reference including roles, information, responsibilities
and constraints are the resulting outputs

model. We show that ORGODEX is a suitable methodology for cohesively
aligning project deliverables and access control from the onset, describing
how terms of reference are formalized during early, requirements engineering
phases. ORGODEX is an iterative process. We presume the reader will
deduce that multiple iterations of the analyze, realize and publicize cycles
have resulted in the body of the following sections, despite their sequential
presentation. What may not be apparent to the reader is the velocity at which
these cycles are occurring, often resulting in deployed roles and responsibilities
within days of inception. In the real-world case study that follows, we describe
our maiden voyage with the ORGODEX model and methodology.

6.3 Analyze

In January 2016, the BAs at MECA produced a 744 word, three page re-
quirements document following interviews with various stakeholder groups at
MECA. Features and functionalities were requested by each of the stakeholder

103

6.3. Analyze

groups and captured in bullet form with requirements ranging from partial
sentences such as need to have a system to track contact information to two
word requirements such as enter grades.

In February 2016, acting as the PM and SA we used this document as the
initial input to the ORGODEX methodology with the belief that we could
rapidly realize an access control system, tightly coupled with the project de-
liverables and well-understood by the team.

The Analyze phase is collaboratively completed by the project team with
the PM making requests to a BA using the following prescriptive, mandated
steps to analyze project deliverables and produce the following terms of ref-
erence:

1. Roles
2. Information
3. Responsibilities
4. Constraints

BAs are expected to elicit outputs by asking questions related to the
project deliverables and using the five W’s; who, what, why, when and where
to ultimately produce a roles and responsibilities matrix.

6.3.1 Roles (Ro)

To build one’s instance of ORGODEX, an analysis begins by identifying WHO
the information management system and its access control model will support,
analyzing the roles to better understand the workforce. This is a critical
indicator of scope.

The BAs at MECA estimated an initial workforce of 12 members for the
first phase of the envisioned SaaS solution. Subsequently, as mandated by
ORGODEX, we requested that the BAs complete a document identifying
positions, appointments and groups requiring access. Two days later, the
completed document was returned defining 5 positions, 2 appointments and 8
groups with an estimated 37 members of the workforce requiring access, nearly
three times greater than the original estimate, providing a better indication
of project scope.

It is important for the reader to consider the impact of this straight forward
exercise and the rationale for its placement as the lead output of the analyze
phase. From the onset, prior to any development activities the project team
collaboratively produces a simple document (Table 6.3) identifying the in-
tended workforce (W) and their respective roles (Ro), potentially redefining
the scope of the project with the shared realization that the workforce is larger

104

6.3. Analyze

Table 6.3: Role Definitions for UISA-MECA including the number (#) of
persons associated with each role and whether or not these individuals have
access to MECA’s current system (Yes or No)

Role
(Ro)

Type Description # Access

P1 Position Director 1 1 No

P2 Position Director 2 1 No

P3 Position Administrator 1 Yes

P4 Position Director 3 1 No

P5 Position Admin. Assistant 1 No

A1 Appointment Dean 1 1 No

A2 Appointment Dean 2 1 No

G1 Group Group 1 4 Yes

G2 Group Group 2 6 Yes

G3 Group Group 3 3 Yes

G4 Group Group 4 2 Yes

G5 Group Group 5 4 Yes

G6 Group Group 6 2 No

G7 Group Group 7 2 No

G8 Group Group 8 7 No

37

than initially anticipated. Furthermore, a simple tool for better understand-
ing roles and their maintenance, including addition and subtraction is quickly
established by separating WHO (Ro) from WHAT (I) and WHY (Re) at the
onset.

6.3.2 Information (I)

Next, as mandated by ORGODEX, we used the requirements document to
abstract informational concepts such as Student, Person and Applicant, doc-
umenting and further clarifying our terms of reference (WHAT) while simul-
taneously identifying the corresponding protection levels.

In Table 6.4 we produce a small sampling of our information analysis
document. The rationale for determining the protection levels early in the
analysis process is twofold. First, we must establish a balance between security
and practicality from the onset. Second, we want to confirm protection levels
for information before performing a responsibility analysis.

105

6.3. Analyze

Table 6.4: An Extract of the Information Assets defined for the UISA-MECA
project including whether or not the item is deemed Protected or Public (Yes
or No)

Information
(I)

Description Protected

Person Consolidates information for individuals with
multiple profiles. At a higher learning insti-
tution, an individual can be a Staff member
and a Student, for example

Yes

Applicant Relates information concerning an individual
applying for admission

Yes

Student Identifies individuals engaged in the pursuit
of higher education

Yes

Course Identifies the subject and learning objectives
to be delivered in a defined period of time
(e.g. English 101)

No

Program Defines the cumulative learning competencies
that must be achieved to be awarded certifi-
cation (e.g. Undergraduate Degree)

No

If an information set is deemed PROTECTED an organization must apply
safeguards to ensure its safe use and distribution. The need to know principle
or policy of least privilege proposes that access to sensitive information must
be limited to those whose responsibilities require such access.

6.3.3 Responsibilities (Re)

ORGODEX prescribes the identification of responsibilities, intentionally sep-
arating WHO (Ro) and WHY (Re) from the onset to facilitate communication
amongst project team members early and often, working towards a shared un-
derstanding of the access control system-to-be and prioritizing requirements,
ensuring that they can be read, analyzed, (re-)written, and validated [56].

The project team collectively distilled requested features and function-
alities into high-level responsibilities, using a highly iterative process where
Table 6.5 lists only a few items of interest from the responsibility analysis
document.

Consider the impact of this ORGODEX work product and its timing. From
the onset, prior to any development activities the project team collaboratively

106

6.3. Analyze

Table 6.5: A sampling of the responsibility analysis document for UISA-
MECA-I including the related information (I) concept and a defined respon-
sibility (Re).

Information
(I)

(Re) Responsibility

Student R1 View List of Active Students

Student R2 Maintain List of Active Students

Person R3 Maintain Personnel File

Person R4 View List of Active Personnel

Person R5 Maintain List of Active Personnel

Applicant R6 View List of Applicants

Table 6.6: The Appendix to the Project Plan for UISA-MECA-I defines de-
liverables (or responsibilities) to be implemented along with the target mile-
stone.

Deliverable Milestone

View List of Active Students 2016-05

Maintain List of Active Students 2016-05

Maintain Personnel Files 2016-05

View List of Active Personnel 2016-05

Maintain List of Active Personnel 2016-05

View List of Applicants 2016-05

View Language Results 2016-08

Maintain Language Results 2016-08

Evaluate List of Applicants 2016-08

View Athletic Results 2016-08

Maintain Athletic Results 2016-08

Support Multiple Languages 2016-08

Maintain Student File 2016-12

View Academic Results 2016-12

Maintain Academic Results 2016-12

107

6.3. Analyze

produces a simple document (Table 6.5), identifying the Information (I) as-
sets and the related responsibilities (Re), collaboratively working towards a
shared understanding of the security architecture. Furthermore, the mainte-
nance, including addition, modification and subtraction of responsibilities is
established in a very short period of time by determining WHY (Re) access
to information is required.

As stated earlier, communication is often considered the most important
aspect of Project Management, justifying the need to work towards shared
goals, objectives and outcomes that must be communicated out from the
project team to stakeholders (Table 6.6). With this objective in mind, the
PM coordinated a teleconference with the BAs to outline the purpose of a
responsibility analysis document and propose next steps. The BAs agreed
to confirm priorities with stakeholders at MECA. By determining WHY (Re)
access to information is required with the understanding that WHO (Ro) re-
quires access is subject to change in both the short and long term.

6.3.4 Constraints (C)

Finally, ORGODEX mandates a constraints analysis before linking roles and
responsibilities, formalizing WHEN (C) and WHERE (C) access to informa-
tion is required. As one example, it was generally acknowledged by the project
team and expected that the workforce at MECA would only have access to
students at their institution. In the SaaS model proposed for the project, all
active students at both ACME and MECA were listed in the same logical
database table, making it necessary to define constraints (C) when accessing
sets of active students.

The result of a constraints analysis exercise is a roles and responsibilities
matrix, identifying WHO - HAS ACCESS TO - WHAT, indicating WHY,
WHEN and WHERE as applicable. In Table 6.7, we list the constraints placed
upon all groups identified in the role analysis document when viewing the
list of active students, documenting the requirement for all groups at MECA
G1...Gm to access the functionality to View List of Active Students. We also
transparently acknowledge the parallel intent to deploy the SaaS solution at
ACME, indicating that ACME groups Gi...Gn may one day share the system-
to-be and indicating this requirement is out of scope for UISA-MECA-I**.

Although we were confidently informed all members of the workforce at
MECA, with access to UISA, would have the responsibility View List of Active
Students, we also noted that student information was previously labeled pro-
tected, making us wary of this particular authorization. With the ORGODEX
methodology we anticipate change, singularly defining the responsibility to

108

6.3. Analyze

Table 6.7: A constraints analysis document identifies WHO - HAS ACCESS
TO - WHAT, indicating WHY, WHEN and WHERE as applicable. **ACME
requirements are transparently acknowledged but not in scope for the UISA-
MECA-I project.

WHO
(Ro)

WHAT
(I)

WHY (Re) WHEN (C) WHERE
(C)

G1...Gm

Student View List of Active
Students

Student is adminis-
tered by MECA

UIS

ACME**

Gi...Gn

Student View List of Active
Students

Student is adminis-
tered by ACME or
MECA

UIS

View List of Active Students. This is an important design consideration as we
will see in the following section as the requirement for all personnel at MECA
to access the functionality View List of Active Students had the distinct odor
of a short-sighted assumption.

A secondary longer term objective not scoped for the UISA-MECA-I project
was well-understood by the PM. The old desktop version of UISA, a custom
in-house software developed by the IM team for the MicrosoftTMWindows op-
erating system and acting as a client to the UIS database for ACME personnel
had lagged well behind more current technologies, making its replacement a
desirable outcome running parallel to the UISA-MECA-I project.

In this section, we empirically verify the efficiency and practicability of the
ORGODEX model and methodology, demonstrating how project deliverables
are used to directly influence the RBAC implementation, thereby confirming
our belief that project management and access control can be seamlessly inte-
grated from the onset. Throughout this section we list work products delivered
by a geographically distributed project team whose members have extensive
to very little understanding of RBAC and security requirements.

In this fashion, we risk trivializing the important tangible results hiding
in the details. The assumption being that the reader will understand that
it is the project team performing each and every phase of the methodology
to analyze project deliverables, collaboratively define terms of reference and
realize an access control system that is well-understood by all members of the

109

6.4. Realize

Terms of Reference
Access Control

System

Implement

Test

Design

Review

Figure 6.2: During the ORGODEX Realize Phase, terms of reference iden-
tified during the Analyze Phase, including roles, information, responsibilities
and constraints serve as inputs to produce an access control system as the
output.

project team, facilitating its ongoing maintenance and scalability.
In the following section, we describe how we directly leverage the project

team’s work products during the realize phase of ORGODEX. We presume the
reader will infer that we have iteratively designed, reviewed, implemented and
tested new features and functionalities before linking roles and responsibilities
to realize an access control system.

6.4 Realize

In February 2016, acting as both the PM and SA for the project, we initiated
the design, review and implementation of our authorization service. In the
following subsections we demonstrate how the outputs of the ORGODEX
Analyze phase serve as inputs to the Realize phase. We show that there is a
natural progression from the terms of reference (Ro, I, Re, C) to a validated
real-world access control system that is well-understood by the project team

110

6.4. Realize

Workforce
T.B. Determined

Group 1
Maintain List of
Active Students

View List of Active
Students

Information
STUDENT

Role ResponsibilityResponsibility

Maintain List of
Active Personnel

View List of Active
Personnel

Information
PERSON

View List of
Applicants

Information
APPLICANT

Maintain Personnel
File

Role

Group 2

Group 3

Group 4

Group 5

Group 8

Group 7

Group 6

Position 1

Position 2

Position 3

Position 4

Position 5

Appointment 1

Appointment 2

Figure 6.3: During the design phase we propose responsibility hierarchies
(ReH) and identify roles (Ro) typed as positions, appointments and groups.

and communicated out to the business.

6.4.1 Design

During the Design phase we propose hierarchies for responsibilities (ReH),
producing diagrams to confirm our understanding with the BAs. Malone and
Crowston emphasize that software architecture can serve as a coordination tool
where distributed project teams must collaborate with visual aids to develop
a shared understanding of the system-to-be [53].

6.4.2 Review

During the Review phase, we utilize ORGODEX hierarchical diagrams to
better visualize the directional hierarchy of workforce-role, role-responsibility
and responsibility-information grants to confirm our design [20]. In Figure 6.3,
we include our proposed responsibility hierarchies, visually depicting depen-
dencies between responsibilities. We also identify roles typed as positions,
appointments and groups to help the project team visualize the logical de-
sign.

With independent roles and responsibilities, we initiate a simple framework
for developers to focus on the functional requirements, assigning permissions

111

6.4. Realize

to read and write data to responsibilities from the onset as we describe in the
following subsection.

6.4.3 Implement

During the Implement phase of ORGODEX, a reviewed list of roles (Ro) as
defined in Table 6.3 enables us to issue the CREATE ROLE command and
implement 5 positions, 2 appointments and 8 groups as follows:

• CREATE Ro P1 ... P5 ;
• CREATE Ro A1 ... A2 ;
• CREATE Ro G1 ... G8 ;

Next, with a reviewed list of responsibilities (Re) as defined in Table 6.5,
we issue the CREATE RESPONSIBILITY command to implement 6 respon-
sibilities:

• CREATE Re R1 ... R6 ;

Then following our design reviews, we implement two responsibility hier-
archies (ReH), issuing the following commands:

• CREATE ReH between R1 and R2;
• CREATE ReH betwee R4 and R5;

Finally, we must add constraints. In the following example, we add OR-
GODEX role-centric constraints permitting the group roles G1 to Gm to view
the list of active students (R1) administered by MECA:

• ADD ATTRIBUTE A1 = (ADMIN, MECA)
• ADD CONSTRAINT (G1, R1, A1)
• ADD CONSTRAINT (Gm, R1, A1)

Constraints are applied by creating database views with support for OR-
GODEX role-centric constraints. For instance, MECA is substituted for
[value] in the following database view when a member of G1 is viewing the list
of active students.

• SELECT information FROM student WHERE admin IN [value]

It is important for the reader to note that unless constraints are defined,
no records are returned for groups accessing this database view, imposing a
strong default security posture. For the ACME group roles Gi to Gn multiple
constraints are defined, permitting access to view the active list of students
at both partner institutions:

112

6.4. Realize

Workforce
ACME

Group i ... n

View List of Active
Students

Information
select from
STUDENT
where

Workforce
MECA

Group 1 ... m

ADMIN=[MECA]

ADMIN=[VALUE]

Role Responsibility

Role Attribute

Role Attribute

WHO

WHO

HAS ACCESS TO

WHAT

ADMIN=[ACME
or MECA]

Figure 6.4: During the Test Phase, we expect different results due to the
constraints applied to various ACME and MECA groups.

• ADD ATTRIBUTE A2 = (ADMIN,ACME)
• ADD CONSTRAINT (Gi, R1, A1)
• ADD CONSTRAINT (Gi, R1, A2)
• ADD CONSTRAINT (Gn, R1, A1)
• ADD CONSTRAINT (Gn, R1, A2)

6.4.4 Test

During the Test phase of ORGODEX, developers ensure that features meet
the constraints identified during the analyze phase prior to coordinating a
review and approval demonstration. For instance, the project team expects
staff members at MECA to have access to students at their institution only
(Figure 6.4).

At review and approval demonstrations with the project team and relevant
stakeholders, feedback obtained is used to complete the remaining work before
granting responsibilities to roles in the production RBAC implementation, for
example:

• GRANT R1 to G5;
• GRANT R3 to G5;

113

6.5. Publicize

• GRANT R6 to G5;

Although we were confidently informed all individuals at MECA, would
need the View List of Active Students responsibility (R1), in October 2016,
we were informed Groups 4 and 5 no longer required this access. With the
ORGODEX methodology we anticipate change, and defining the responsibility
to View List of Active Students makes this change trivial:

• REVOKE R1 from G4;
• REVOKE R1 from G5;

6.5 Publicize

In the Publicize phase, we report the realized roles and responsibilities of
our AaaS service directly within the deployed SaaS solution, facilitating its
ongoing validation with terms of reference that directly reflect the business
model of MECA. The intent is to display real security architecture information
on demand for authorized members of the workforce using a comprehensible
roles and responsibilities matrix to regularly validate profiles.

6.5.1 Information

Over time a business develops and operates using a unique glossary or terms
of reference. During the UISA-MECA-I project well-understood concepts like
student and course were defined in addition to very context specific terms of
reference such as UISA. For this reason, it is important for large organizations
to develop and maintain searchable terms of reference.

The Information Asset Report (Table 6.8) defines terms of reference that
are used by BAs, SAs and Developers. These terms are also communicated out
to the organization directly within the deployed SaaS solution as a searchable
glossary that may be regularly validated as part of the ORGODEX publicize
cycle.

6.5.2 Roles and Responsibilities

Ensuring that the workforce has access to the required information is a chal-
lenging problem for professionals [6]. RBAC implementation changes are re-
quired when new hires enter the organization, former employees leave and
individuals move from one position to another. RBAC implementations must
adapt to new security policies and new software applications. Using the terms

114

6.5. Publicize

Reports

Access Control
System

Roles and
Responsibilities

Information

Figure 6.5: During the ORGODEX Publicize phase, the access control sys-
tem serves as the input and reports related to information assets, roles and
responsibilities are the output.

role and responsibility is a practical approach to implementing RBAC, per-
mitting BAs, SAs and Developers to more easily communicate the important
aspects of their design implementations to one another and the business.

The Roles and Responsibilities Report in particular is an interesting solu-
tion to the challenging problem of entitlements review [38]. We have observed
the utility of this report in practice for more than twelve months at MECA
where it has proven to be a valuable communication tool. With ORGODEX
the administration of roles and responsibilities is just another responsibility,
thereby providing cost effective maintenance without sacrificing efficiency [43].
Table 6.9 identifies WHO - HAS ACCESS TO - WHAT, indicating WHY,
WHEN and WHERE.

115

6.5. Publicize

Table 6.8: The Information Asset Report defined for the UISA-MECA
project including whether or not the item is deemed Protected or Public (Yes
or No)

Information
(I)

Description Protected

Person Consolidates information for individuals with
multiple profiles. At a higher learning insti-
tution, an individual can be a Staff member
and a Student, for example

Yes

Applicant Relates information concerning an individual
applying for admission

Yes

Student Identifies individuals engaged in the pursuit
of higher education

Yes

Course Identifies the subject and learning objectives
to be delivered in a defined period of time
(e.g. English 101)

No

Program Defines the cumulative learning competencies
that must be achieved to be awarded certifi-
cation (e.g. Undergraduate Degree)

No

Table 6.9: The Roles and Responsibilities Report identifies WHO - HAS
ACCESS TO - WHAT, indicating WHY, WHEN and WHERE as applicable.

WHO
Ro

WHAT
(I)

WHY (Re) WHEN (C) WHERE
(C)

Group 4 Student View List of Ac-
tive Students

Student is administered
by MECA

UIS

Group 4 Student Maintain List of
Active Students

Student is administered
by MECA

UIS

Group 4 Person Maintain Person-
nel File

Person is a Student ad-
ministered by MECA

UIS

Group 4 Applicant View List of Ap-
plicants

All Applicants admin-
istered by MECA and
ACME

UIS

Group 4 Applicant Evaluate List of
Applicants

Applicants adminis-
tered by MECA

UIS

116

6.6. Discussion

6.6 Discussion

In this chapter, we detail aspects of a project to extend features and functional-
ities of a university information system to a geographically distributed partner
institution. The empirical study described provides architectural information
for an access control system developed and deployed on an OracleTMtechnology
stack in April 2016. Both our SaaS and AaaS solutions have scaled to support
many more roles and responsibilities since its initial deployment more than
twelve months ago.

Unlike other models found in the literature, where validations are limited
to prototypes or example policy specifications [84] [81], this is a real-world
RBAC implementation. Moreover, unlike other authors, we explain that large
organizations who have RBAC implementations with hundreds of roles engi-
neered over decades to realize security policy would like to reuse their imple-
mentation when deploying services to distributed partner institutions.

In this work, we do exactly that, extending the RBAC implementation of
ACME university to MECA, deploying AaaS and empirically verifying the ef-
ficiency and practicability of the ORGODEX model and methodology, thereby
offering a new integrated alternative for the most expensive aspect of deploy-
ing RBAC [58]. We cohesively align role and requirements engineering efforts,
validating the work of Coyne who suggests that the definition of roles is es-
sentially a requirements engineering process [13].

First, we assume the duties of both a PM and SA to analyze project deliv-
erables with our team, demonstrating how they are used to directly influence
the RBAC implementation and confirming our belief that project management
and access control can be seamlessly integrated from the onset. We show that
our terms of reference (Ro, I, Re, C) are critical indicators of project scope and
we produce simple communication tools to clearly separate WHO (Ro) from
WHAT (I) and WHY (Re) at the onset before discussing constraints such as
WHEN (C) and WHERE (C).

Next, we realize our first instance of an ORGODEX AaaS that is tightly
coupled with our terms of reference. Then we deploy the first version of our
SaaS solution to MECA less than three months after project initiation, utiliz-
ing our new authorization service to deliver information on a need to know ba-
sis. It is important for the reader to understand that both our AaaS and SaaS
solutions are collaboratively developed and validated by a multi-disciplinary,
multi-lingual project team with extensive to very little understanding of in-
formation security and RBAC.

Finally, we explain why the Role and Responsibilities Report is a prac-
tical approach to implementing RBAC, permitting the PM, BAs, SAs and

117

6.7. Summary

Developers to more easily communicate the important aspects of the security
architecture to one another and the business, thereby facilitating the scalabil-
ity and on-going maintenance of an ORGODEX AaaS implementation.

Although the cloud-computing environment is the platform described in
this chapter, the reader should understand that ORGODEX is a generalized
solution for engineering scalable RBAC implementations on a variety of plat-
forms, including but not limited to relational database management systems
and cloud computing environments. During our validation, we often con-
sidered the notion of a shared RBAC repository where practitioners could
collaboratively design and review domain specific RBAC implementations.

ORGODEX proposes a model and methodology for delivering this plat-
form, permitting engineers to more easily communicate the important aspects
of their designs to one another. We consider the notion of shared critically
reviewed RBAC implementations to be a new paradigm for RBAC. To the
best of our knowledge, this is a new proposition for RBAC, an open, generic
technology where, for most practitioners, information security is a secondary
duty.

6.7 Summary

This research has the potential to impact the perception of access control, pro-
viding consistent role and responsibility based security architectures that are
subject to critical analysis and reuse. In this chapter, we make the following
contributions:

• We empirically verify the efficiency and practicability of ORGODEX
in the context of a cloud-computing MTA, demonstrating how project
deliverables are used to directly influence a realized and publicized real-
world RBAC implementation.
• We validate a new RBAC alternative for large organizations who do not

see value in redesigning their information security architecture to use
the ABAC model and its XACML policies.
• We show how communication is facilitated, listing work products col-

laboratively delivered by a project team whose members have extensive
to very little understanding of RBAC and information security.

The reader should now better understand why evolving towards a role
and responsibility based RBAC model is a suitable progression for AaaS so-
lutions, enabling distributed project teams with multi-disciplinary skill sets
to collaboratively develop and maintain a shared understanding of the RBAC
implementation, thereby facilitating its ongoing validation.

118

6.8. Publications

6.8 Publications

Publications related to this chapter:

• Aaron Elliott and Scott Knight. ORGODEX: Authorization as a Ser-
vice. Proceedings of the 12th Annual IEEE International Systems Con-
ference, to appear 2018.

119

7 Conclusion

7.1 Introduction

In the previous chapter we perform validation activities for ORGODEX, our
new model and methodology for engineering scalable access control systems,
building upon our notion of role evolution. In this chapter, we conclude this
dissertation, beginning with a final summarization of the validation approach:

• In chapter 3 and chapter 4, we refine our contributions, challenging the
belief, notion or sense that the number of subjects far exceeds the roles
found in enterprise systems, thereby motivating a return to first princi-
ples. Next, we compare the information security of ACME university to
bi-sorted role-based access control (RBÄC), using real-world data and
experiences to support this new principled approach to RBAC. Then,
we extend RBÄC with role-centric constraints, describing how ACME
university decouples subject and permission management at the expense
of role evolution.
• In chapter 5 we introduce our new ORGODEX model and methodology

for engineering scalable RBAC implementations. We use our first op-
erational case study at ACME university to motivate the requirement
for new RBAC structural relationships, distinguishing between roles and
responsibilities, advocating on behalf of role evolution. We discuss time
savings that may be measured in hours, days and weeks when maintain-
ing RBAC implementations, especially those whose lifetime spans years
and crosses decades.
• In chapter 6, we demonstrate the general applicability of ORGODEX,

validating this new model and methodology for engineering scalable au-
thorization solutions in the context of cloud computing. In this real-
world case study, we assume the duties of a Project Manager and Se-
curity Architect to lead a one year initiative to deploy both software
and authorization services at two geographically distributed partner in-
stitutions. The project team is a multi-disciplinary, multi-lingual group

120

7.2. Deficiency

of individuals with extensive to very little understanding of information
security and RBAC.

In the following sections, we begin with a review of our statement of de-
ficiency, reminding the reader of the relevance of this work. Next, we restate
our aim, identifying our objectives before describing how they have been met.
Then we elaborate upon the validations completed, specifically making our
arguments for sufficiency, validity and feasibility. Finally, we list our contri-
butions and suggest streams for future work.

At the conclusion of this chapter, the reader will better understand why
evolving towards a roles and responsibilities model like ORGODEX is a suit-
able progression for RBAC, improving communication activities and introduc-
ing time savings that may be measured in hours, days or weeks.

7.2 Deficiency

Although RBAC is a popular solution for implementing information security
our research suggests there is no pervasive methodology used by practitioners
when producing scalable access control systems for large organizations with
hundreds or thousands of employees. As a result, there is both an immediate
and long term cost related to the difficulty of communicating the important
aspects of the RBAC implementation to those responsible for its maintenance.
This is an interesting deficiency because despite their diversity, large organi-
zations are built upon two key concepts, roles and responsibilities, where a
role like Departmental Chair is identified and assigned responsibilities

Access control is often considered a necessary burden and too often it
is an afterthought [17][32][33]. This is disappointing because RBAC has the
potential to be a well understood, enabling technology, where implementations
directly reflect the business model of an organization. Instead RBAC systems
are often loosely coupled with the business model, ripe with redundancies and
costly to maintain [12] [52] [58].

Employees are dissatisfied because it is often unclear how to obtain the
information they need to perform their job and SAs are overburdened because
they are responsible for thousands of fragile subject-role-permission intercon-
nections that are subject to continuous change.

This is an important concern because role engineering is expensive [76][58][1].
Large organizations who have significant investments in RBAC implementa-
tions with hundreds of roles engineered over decades to realize security policy
and safeguard information assets would like to reuse their implementation
when deploying new services and adapting to meet the demands and expec-

121

7.3. Aim

tations of clients, stakeholders, partners and employees. For large, mature or-
ganizations with decades of IT investments, the challenge of replacing legacy
solutions with modern alternatives are well-documented and costly [77][70][70].
IT supports IM which must support the business [82].

7.3 Aim

From section 1.6, the aim or our research is:
To deliver a new model and methodology for engineering scalable access

control systems in organizations where hundreds or thousands of employees
require access to information on a need to know basis in order to perform
their job.

In this dissertation, we refined our contributions, introducing and motivat-
ing the requirement for new RBAC structural relationships that distinguish
between roles and responsibilities. Then we delivered ORGODEX, our new
model and methodology for engineering scalable RBAC implementations, us-
ing our operational case studies at ACME university and its partner institu-
tion, MECA, to further validate the general applicability of this work.

Our literature review and validation approach identify a deficiency and
our research delivers valuable contributions to the field of computer science
and information security.

7.4 Validation

In this dissertation it is incumbent that we demonstrate why ORGODEX is
valid, successfully providing argumentation for its sufficiency and feasibility
in relation to our statement of deficiency and research aim.

7.4.1 Sufficiency

The ORGODEX model and methodology delivers a novel solution to the re-
search problem. The model introduces a new mandatory layer of abstraction,
termed a responsibility, to better align with the business model of large orga-
nizations, like ACME university. The methodology delivers a highly iterative,
repeatable framework for engineering scalable access control systems based
upon comprehensible role and responsibility matrices.

122

7.4. Validation

7.4.2 Validity

The success of the RBAC model is due in large part to the administrative
savings achieved by creating logical roles versus simply assigning permissions
directly to the user. It is easy to demonstrate how trivial time investments
result in administrative savings. Likewise, ORGODEX and role evolution
introduce trivial time investments that have the potential to save hours, days
and weeks.

To successfully argue that the aim of the research has been met, we must
demonstrate how this dissertation addresses our statement of deficiency. To
this end our argumentation may be best summarized as follows:

• If role explosion is a normal occurrence and previous models for the
administration of RBAC consider role explosion a design problem, this
should motivate the requirement for role evolution and the introduction
of new RBAC structural relationships that distinguish between roles and
responsibilities.
• Role evolution does not aim to prevent role explosion, instead it pre-

sumes the number of roles will scale uncontrollably in large organizations
or controllably using a prescribed methodology.
• ORGODEX is a new granular, evolutionary model and methodology for

describing and reasoning about RBAC implementations, using roles and
responsibilities to directly inform the architecture.
• The general applicability of ORGODEX has been demonstrated using

two operational case studies at ACME university and its partner in-
stitution, MECA. We have demonstrated the utility of our new model
and methodology, observing improved communications when reasoning
about RBAC structural relationships and using the terms role and re-
sponsibility to better align with the business model.

7.4.3 Feasibility

We demonstrate the feasibility of ORGODEX with each of our operational
case studies:

• We validate the utility of our methodology by reverse engineering our
ACME university scenario of interest where each Departmental Chair
(DC) has similar responsibilities but different sets of students, courses
and programs to manage. We demonstrate how role-centric constraints
are applied to responsibilities to restrict access to information.

123

7.5. Contributions

• We further validate the general applicability of our new model and
methodology during our second operational case study, extending fea-
tures and functionalities of the ACME university information system to
it partner institution, MECA. We use ORGODEX to deploy software
and authorization services in April 2016, realizing many more roles and
responsibilities since the initial deployment more than twelve months
ago.
• The reader should now better understand why ORGODEX is a suitable

progression for RBAC, enabling project teams with multi-disciplinary
skill sets to collaboratively develop and maintain a shared understand-
ing of both roles and responsibilities, thereby facilitating the ongoing
validation of an RBAC implementation.

7.5 Contributions

This research makes several contributions to the field of computer science and
information security:

• Our most important contribution is the delivery of our new methodol-
ogy for engineering scalable RBAC implementations that are well under-
stood, directly reflect the business model and facilitate communications.
• Our ORGODEX model introduces a new layer of abstraction for RBAC

implementations, where both roles and mandatory responsibilities are
created, permitting engineers to more easily communicate the important
aspects of their design implementations to one another.
• Our description of role evolution is a novel concept forming the foun-

dation of our ORGODEX model. We propose a mandatory divergence
between roles and responsibilities.
• Role evolution is based upon a return to first principles. We extend the

work of Kuijper and Ermolaev [46], adding role-centric constraints to
their model and introducing business terminology to facilitate compre-
hension amongst practitioners.
• We introduce a novel hierarchical diagramming notation to better visu-

alize explicit RBAC implementations. We show why implicit subject-
permission relationships hide too many details, trivialize RBAC imple-
mentations and impede communication.
• We dispel the belief, notion or sense that some threshold ratio of roles

to subjects indicates bad RBAC design. We discuss why role explosion
naturally occurs in large organizations with highly diversified workforces.

124

7.6. Future Work

• We empirically verify the efficiency and practicability of ORGODEX,
demonstrating how project deliverables are used to directly influence a
realized and publicized real-world RBAC implementation.
• We have already contributed to the field of research through publication

in [18][19][20][21][22]. These works acknowledge role explosion, express
ideas aimed towards role evolution and propose our ORGODEX model
and methodology for engineering scalable access control systems.

7.6 Future Work

There are many streams for future work that we simply did not have time to
see through to fruition prior to the completion of this dissertation including
the following:

• We have developed a novel database integration component for apply-
ing our ORGODEX model and methodology to both new and existing
information systems. We are continuing our development of the sup-
porting software and we look forward to one day publishing our results.
Although this validation aspect has not been described throughout this
dissertation, the reader may have presumed such a tool was under de-
velopment. We confirm that presumption here but have decided against
its inclusion at this time.
• In the chapter 5 discussion we refer to the Degree of Delegation and Au-

tomation as metrics of interest. In future iterations of the ORGODEX
model and methodology these will be important points of reference used
to further strengthen the validity of this work. With the ORGODEX
model, there is a clear path towards delegation for managers, using re-
sponsibilities as the currency. Similarly, ORGODEX demonstrates how
a granular, evolutionary model might facilitate the enrollment of em-
ployees into a role. Our scenario of interest from ACME university ex-
emplifies a case where the appointment of a Departmental Chair in the
HRMS automates the assignment of a role to the individual appointed,
for example DC#1.
• The chapter 6 discussion includes insight obtained during our project

to extend features and functionality from ACME university to MECA.
We consider work directed towards creating and sharing critically re-
viewed, domain specific RBAC implementations a new paradigm for
RBAC. ORGODEX proposes a model and methodology for delivering
this platform, permitting engineers to more easily communicate the im-
portant aspects of their designs to one another. RBAC is challenging to

125

7.7. Summary

implement and even more costly to maintain for large organizations like
universities, banks and hospitals.
• In this work we include support for constraining responsibilities. Our op-

erational case study at ACME university describes a scenario where the
responsibility to Review Course Information is constrained to Dept#1
for DC#1. At ACME university there are also temporal constraints for
this responsibility, currently performed twice per academic year follow-
ing the Fall and Winter sessions. Although we firmly believe the current
version of the ORGODEX model supports temporal constraints it would
be interesting to validate this belief using a real-world case study.
• Likewise, support for other constraints is of interest. In particular,

Static Separation of Duty (SSD) defining mutually exclusive responsi-
bilities and Dynamic Separation of Duty (DSD) identifying scenarios
where the same individual may not perform both the initiating and ap-
proving responsibility within the context of one process. For SSD the
classic example defines a static rule where no individuals responsible
for initiating payments may perform approvals. For DSD, the classic
example also revolves around initiating and approving payments. This
constraint is considered dynamic because an individual who is responsi-
ble for initiating payments may also perform approvals as long as they
are not the initiator of the process. Again, we believe that the current
version of the ORGODEX model supports both SSD and DSD but would
like to confirm this belief with a real-world case study.

7.7 Summary

In this chapter, we conclude this dissertation:

• We review our statement of deficiency and restate our aim before listing
our objectives and describing how they are met
• We discuss the validation activities performed in this dissertation and

make our arguments for sufficiency, validity and feasibility
• We list future work that we intend to pursue, further strengthening and

adding value to our new paradigm for RBAC

The reader should now better understand that role explosion is a normal
occurrence for large organizations with highly diversified workforces. Role evo-
lution presumes the number of roles will scale controllably using a prescribed
model and methodology. The general applicability of ORGODEX has been
demonstrated using two operational case studies where roles and responsibili-

126

7.7. Summary

ties have semantically diverged to directly inform the RBAC implementation,
improve communications and lower the cost of maintenance.

127

Bibliography

[1] Mazhar Ali, Samee U. Khan, and Athanasios V. Vasilakos. Security in
cloud computing: Opportunities and challenges. Information Sciences,
305:357–383, 2015.

[2] American National Standards Institute. INCITS 359-2004: Information
Technology - Role Based Access Control, 2004.

[3] American National Standards Institute. INCITS 359-2012: Information
Technology - Role Based Access Control, 2012.

[4] James P Anderson. Computer Security Technology Planning Study.
Technical report, DTIC Document, oct 1972.

[5] Steffen Bartsch and M Angela Sasse. How Users Bypass Access Control -
And Why: The Impact Of Authorization Problems On Individuals And
The Organization. In Proceedings of the 21st European Conference on
Information Systems. Association for Information Systems, 2012.

[6] Lujo Bauer, Lorrie Faith Cranor, Robert W. Reeder, Michael K. Reiter,
and Kami Vaniea. Real life challenges in access-control management.
Proceedings of the 27th international conference on Human factors in
computing systems - CHI 09, page 899, 2009.

[7] Matthias Beckerle and Leonardo a Martucci. Formal Definitions for Us-
able Access Control Rule Sets from Goals to Metrics. SOUPS ’13: Pro-
ceedings of the Ninth Symposium on Usable Privacy and Security, pages
2:1—-2:11, 2013.

[8] Iris Berdrow. King among kings: Understanding the role and responsi-
bilities of the department chair in higher education. Educational Man-
agement Administration & Leadership, 38(4):499–514, 2010.

[9] Konstantin Beznosov, PG Inglesant, Jorge Lobo, R Reeder, and
ME Zurko. Usability meets access control: challenges and research op-
portunities. pages 3–4, 2009.

128

Bibliography

[10] Matt Bishop, Sophie Engle, Sean Peisert, Sean Whalen, and Carrie Gates.
We have met the enemy and he is us. In Proceedings of the 2008 workshop
on New security paradigms - NSPW ’08, volume 15, page 1, New York,
New York, USA, 2008. ACM Press.

[11] Eric Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and
Patrick Tague. OAuth Demystified for Mobile Application Developers.
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS), (1):892–903, 2014.

[12] Alessandro Colantonio, Roberto Di Pietro, and Alberto Ocello. A cost-
driven approach to role engineering. Proceedings of the 2008 ACM sym-
posium on Applied computing - SAC ’08, page 2129, 2008.

[13] Edward J Coyne. Role engineering. Proceedings of the first ACM Work-
shop on Rolebased access control RBAC 95, (4):4–es, 1996.

[14] Edward J. Coyne and Timothy R. Weil. ABAC and RBAC: Scalable,
flexible, and auditable access management. IT Professional, 15(3):14–16,
2013.

[15] J Crampton. Understanding and developing role-based administrative
models. In Proceedings of the 12th ACM conference on Computer and
communications security, pages 158–167, New York, New York, USA,
2005. ACM Press.

[16] Jason Crampton and George Loizou. Administrative scope. ACM Trans-
actions on Information and System Security, 6(2):201–231, may 2003.

[17] Robert Crook, Darrel Ince, and Bashar Nuseibeh. Modelling access poli-
cies using roles in requirements engineering. Information and Software
Technology, 45(14):979–991, nov 2003.

[18] Aaron Elliott and Scott Knight. One Employee and Several Applica-
tions: An Information Management Case Study. In Software Engineering
Research and Practice, WORLDCOMP, pages 179–185. CSREA Press,
2009.

[19] Aaron Elliott and Scott Knight. Role Explosion: Acknowledging the
Problem. In Software Engineering Research and Practice, WORLD-
COMP, pages 349–355. CSREA Press, 2010.

[20] Aaron Elliott and Scott Knight. Towards Managed Role Explosion. In
Proceedings of the 2015 New Security Paradigms Workshop (NSPW),
number 1, pages 100–111. ACM Press, 2015.

129

Bibliography

[21] Aaron Elliott and Scott Knight. Start Here: Engineering Scalable Access
Control Systems. In Proceedings of the 21st ACM Symposium on Access
Control Models and Technologies, pages 113–124. ACM Press, 2016.

[22] Aaron Elliott and Scott Knight. ORGODEX: Authorization as a Service.
In Proceedings of the 12th Annual IEEE International Systems Confer-
ence, 2018.

[23] EmpowerID. Best Practices in Enterprise Authorization : The
RBAC/ABAC Hybrid Approach. Technical report, EmpowerID, 2013.

[24] Christophe Feltus. Aligning Access Rights to Governance Needs with the
Responsibility MetaModel (ReMMo) in the Frame of Enterprise Architec-
ture. 2014.

[25] Christophe Feltus, Michaël Petit, and Morris Sloman. Enhancement
of Business IT Alignment by Including Responsibility Components in
RBAC. Proceedings of the CAiSE 2010 Workshop Business/IT Align-
ment and Interoperability, pages 61–75, 2010.

[26] D F Ferraiolo and R Kuhn. Role-based access controls. Proc. of 15th
NIST-NSA National Computer Security Conference, 1992.

[27] Philip W.L. Fong. Relationship-based access control. Proceedings of the
first ACM conference on Data and application security and privacy - CO-
DASPY ’11, page 191, 2011.

[28] C Gates. Access control requirements for Web 2.0 Security and Privacy.
In IEEE Web, volume 2, pages 2–4, 2007.

[29] Luigi Giuri and Pietro Iglio. Role templates for content-based access
control. Proceedings of the second ACM workshop on Role-based access
control - RBAC ’97, pages 153–159, 1997.

[30] Michael Goold, Ashridge Strategic, Management Centre, Andrew Camp-
bell, Ashridge Strategic, and Management Centre. Work : Creating Clar-
ity on Unit Roles and Responsibility. 21(3):351–363, 2003.

[31] G Scott Graham and Peter J Denning. Protection. In Proceedings of the
November 16-18, 1971, fall joint computer conference on - AFIPS ’71
(Fall), page 417, New York, New York, USA, 1971. ACM Press.

[32] Charles B Haley, Jonathan D Moffett, Robin Laney, and Bashar Nu-
seibeh. A Framework for Security Requirements Engineering. Proceedings
of the 2006 international workshop on Software engineering for secure
systems, SESS’06, pages 35–41, 2006.

130

Bibliography

[33] Qingfeng He and AI Antón. A framework for modeling privacy require-
ments in role engineering. Proc. of REFSQ, 2003.

[34] Vincent C. Hu, David Ferraiolo, Rick Kuhn, Adam Schnitzer, Kenneth
Sandlin, Robert Miller, and Karen Scarfone. Guide to Attribute Based
Access Control (ABAC) Definition and Considerations. Technical report,
National Institute of Standards and Technology, Gaithersburg, MD, jan
2014.

[35] Edward Humphreys. Information security management standards: Com-
pliance, governance and risk management. Information Security Technical
Report, 13(4):247–255, 2008.

[36] John Hunt. Agile software construction. 2006.

[37] Julie Ireton. Phoenix payroll system doomed from the start, 2017.

[38] Pooya Jaferian and Konstantin Beznosov. Poster : Helping users review
and make sense of access policies in organizations. In SOUPS ’14: Pro-
ceedings of the Tenth Symposium On Usable Privacy and Security, pages
301–320, 2014.

[39] Xin Jin, Ravi Sandhu, and Ram Krishnan. RABAC: Role-centric
attribute-based access control. Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 7531 LNCS:84–96, 2012.

[40] Alan H Karp, Harry Haury, and Michael H Davis. From ABAC to ZBAC
: The Evolution of Access Control Models. ISSA Journal, (April):22–30,
2010.

[41] Lawrence Katz and Robert Margo. Technical Change and the Relative
Demand for Skilled Labor: The United States in Historical Perspective.
Technical Report January, National Bureau of Economic Research, Cam-
bridge, MA, feb 2013.

[42] Axel Kern, Andreas Schaad, and Jonathan Moffett. An administration
concept for the enterprise role-based access control model. Proceedings of
the eighth ACM symposium on Access control models and technologies -
SACMAT ’03, page 3, 2003.

[43] Angelos D. Keromytis and Jonathan M. Smith. Requirements for scalable
access control and security management architectures. ACM Transactions
on Internet Technology, 7(2):8–es, 2007.

[44] M. Fahim Ferdous Khan and Ken Sakamura. Fine-grained access control
to medical records in digital healthcare enterprises. 2015 International

131

Bibliography

Symposium on Networks, Computers and Communications, ISNCC 2015,
2015.

[45] D. Richard Kuhn, Edward J. Coyne, and Timothy R. Weil. Adding
attributes to role-based access control. Computer, 43(6):79–81, 2010.

[46] Wouter Kuijper and Victor Ermolaev. Sorting out role based access con-
trol. Proceedings of the 19th ACM symposium on Access control models
and technologies - SACMAT ’14, pages 63–74, 2014.

[47] Irwin Kwan, Marcelo Cataldo, and Daniela Damian. Conway’s Law Re-
visited: The Evidence for a Task-Based Perspective. IEEE Software,
29(1):90–93, jan 2012.

[48] Romain Laborde, François Barrère, and Abdelmalek Benzekri. Toward
authorization as a service: a study of the XACML standard. Communi-
cations and Networking Symposium, page 9, 2013.

[49] Butler W Lampson. Protection. ACM SIGOPS Operating Systems Re-
view, 8(1):18–24, jan 1974.

[50] Ulrich Lang. OpenPMF SCaaS: Authorization as a service for cloud &
SOA applications. Proceedings - 2nd IEEE International Conference on
Cloud Computing Technology and Science, CloudCom 2010, pages 634–
643, 2010.

[51] Ninghui Li and Ziqing Mao. Administration in role-based access control.
Proceedings of the 2nd ACM symposium on Information, computer and
communications security - ASIACCS ’07, page 127, 2007.

[52] Haibing Lu, Yuan Hong, Yanjiang Yang, Lian Duan, and Nazia Badar.
Towards user-oriented RBAC model. Journal of Computer Security,
23(1):107–129, 2015.

[53] Thomas W Malone and Kevin Crowston. The Interdisciplinary Study of
Coordination. ACM Computing Surveys, 26(1):87–119, 1994.

[54] Michelle L Mazurek, J P Arsenault, Joanna Bresee, Nitin Gupta, Iulia
Ion, Christina Johns, Daniel Lee, Yuan Liang, Jenny Olsen, Brandon
Salmon, Richard Shay, Kami Vaniea, Lujo Bauer, Lorrie Faith Cranor,
Gregory R Ganger, Michael K Reiter, and E T H Z. Access Control
for Home Data Sharing : Attitudes , Needs and Practices. Computing,
48(2):645–654, 2010.

[55] Barsha Mitra, Shamik Sural, Jaideep Vaidya, and Vijayalakshmi Atluri.
A Survey of Role Mining. ACM Computing Surveys, 48(4):1–37, 2016.

132

Bibliography

[56] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering. In
Proceedings of the conference on The future of Software engineering -
ICSE ’00, pages 35–46, New York, New York, USA, 2000. ACM Press.

[57] Matunda Nyanchama and Sylvia Osborn. The role graph model and con-
flict of interest. ACM Transactions on Information and System Security,
2(1):3–33, feb 1999.

[58] AC O’Connor and RJ Loomis. 2010 Economic Analysis of Role-Based
Access Control. Technical Report 0211876, NIST, 2010.

[59] Government of Canada. Operational Security Standard: Management of
Information Technology Security (MITS), 2017.

[60] Government of Canada. Policy on Government Security, 2017.

[61] Government of Canada. Policy on Information Management, 2017.

[62] Sejong Oh and Seog Park. Task-role based access control (T-RBAC): An
improved access control model for enterprise environment. Database and
Expert Systems Applications, pages 264–273, 2000.

[63] Sejong Oh and Ravi Sandhu. A model for role administration using
organization structure. Proceedings of the seventh ACM symposium on
Access control models and technologies - SACMAT ’02, page 155, 2002.

[64] Sejong Oh, Ravi Sandhu, and Xinwen Zhang. An effective role adminis-
tration model using organization structure. ACM Transactions on Infor-
mation and System Security, 9(2):113–137, may 2006.

[65] Päivi Ovaska, Matti Rossi, and Pentti Marttiin. Architecture as a coor-
dination tool in multi-site software development. Software Process Im-
provement and Practice, 8(4):233–247, 2003.

[66] Sean Peisert and Matt Bishop. Dynamic, Flexible, and Optimistic Access
Control. Technical report, UC Davis CS Technical Report CSE-2013-76,
2013.

[67] Raghuram G Rajan and Julie Wulf. the Flattening Firm: Evidence From
Panel Data on the Changing Nature of Corporate Hierarchies. Review of
Economics & Statistics, 88(4):759–773, 2006.

[68] Syed Zain R Rizvi and Philip W L Fong. Interoperability of Relationship-
and Role-Based Access Control. Codaspy, pages 231–242, 2016.

[69] Syed Zain R. Rizvi, Philip W.L. Fong, Jason Crampton, and James Sell-
wood. Relationship-Based Access Control for an Open-Source Medical
Records System. Proceedings of the 20th ACM Symposium on Access
Control Models and Technologies - SACMAT ’15, pages 113–124, 2015.

133

Bibliography

[70] Karina Roman. Federal government to downsize failing Canada.ca
project, 2017.

[71] R. Sandhu and Q. Munawer. The ARBAC99 model for administration
of roles. In Proceedings 15th Annual Computer Security Applications
Conference (ACSAC’99), pages 229–238. IEEE Comput. Soc, 1999.

[72] R S Sandhu, E J Coyne, H L Feinstein, and C E Youman. Role-based
access control models. Computer, 29(2):38–47, 1996.

[73] Ravi Sandhu and Venkata Bhamidipati. Role-based administration of
user-role assignment: The URA97 model and its Oracle implementation.
Journal of Computer Security, 1999.

[74] Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. The AR-
BAC97 model for role-based administration of roles. ACM Transactions
on Information and System Security, 2(1):105–135, feb 1999.

[75] Ravi Sandhu and Qamar Munawer. How to do Discretionary Access
Control Using Roles. Proceedings of the third ACM Workshop on Role-
Based Access Control (RBAC ’98), pages 47–54, 1998.

[76] Andreas Schaad, Jonathan Moffett, and Jeremy Jacob. The role-based
access control system of a European bank. In Proceedings of the sixth
ACM symposium on Access control models and technologies - SACMAT
’01, pages 3–9, New York, New York, USA, 2001. ACM Press.

[77] Monique Scotti. Government email project still stalled after five years
$100 million spent, 2017.

[78] Daniel Servos and Sylvia L. Osborn. Current Research and Open Prob-
lems in Attribute-Based Access Control. ACM Computing Surveys,
49(4):1–45, 2017.

[79] S. Subashini and V. Kavitha. A survey on security issues in service
delivery models of cloud computing. Journal of Network and Computer
Applications, 34(1):1–11, 2011.

[80] San-Tsai Sun and Konstantin Beznosov. The Devil is in the (Implementa-
tion) Details: An Empirical Analysis of OAuth SSO Systems. Proceedings
of the 2012 ACM conference on Computer and communications security
- CCS ’12, pages 378–390, 2012.

[81] Bo Tang, Ravi Sandhu, and Qi Li. Multi-tenancy authorization models
for collaborative cloud services. Concurrency Computation, 27(11):2851–
2868, 2015.

134

Bibliography

[82] Treasury Board of Canada Secretariat. Government of Canada Strategic
Plan for Information Management and Information Technology 2017 to
2021, 2017.

[83] Jaideep Vaidya, Vijayalakshmi Atluri, Janice Warner, and Qi Guo. Role
engineering via prioritized subset enumeration. IEEE Transactions on
Dependable and Secure Computing, 7(3):300–314, 2010.

[84] Shin Jer Yang, Pei Ci Lai, and Jyhjong Lin. Design role-based multi-
tenancy access control scheme for cloud services. Proceedings - 2013
International Symposium on Biometrics and Security Technologies, IS-
BAST 2013, (1):273–279, 2013.

[85] J. Yong, E. Bertino, M. Toleman, and D. Roberts. Extended RBAC
with role attributes. PACIS 2006 - 10th Pacific Asia Conference on
Information Systems: ICT and Innovation Economy, 2006.

[86] Younis A. Younis, Kashif Kifayat, and Madjid Merabti. An access con-
trol model for cloud computing. Journal of Information Security and
Applications, 19(1):45–60, 2014.

[87] Hadar Ziv and Debra J Richardson. The Uncertainty Principle in Soft-
ware Engineering. 19th International Conference on Software Engineer-
ing, pages 1–20, 1997.

135

	Acknowledgements
	Abstract
	Résumé
	List of Abbreviations
	Introduction
	Information Management (IM)
	Authorization
	Role-Based Access Control (RBAC)
	Operational Case Studies
	Statement of Deficiency
	Aim
	Validation Approach
	Summary
	Publications

	Literature Review
	Introduction
	Role-Based Access Control 1996 (RBAC96)
	Base Model (RBAC0)
	Role Hierarchies (RBAC1)
	Constraints (RBAC2)
	Role Hierarchies and Constraints (RBAC3)
	Administration

	Administrative Role-Based Access Control (ARBAC)
	ARBAC 1997
	User-Role Assignment (URA)
	Permission-Role Assignment (PRA)
	Role-Role Assignment (RRA)
	Strengths and Weaknesses

	ARBAC 1999
	ARBAC 2002

	Scoped Administrative Role-based Access Control (SARBAC)
	Administrative Enterprise Role-based Access Control (A-ERBAC)
	Attribute-Based Access Control (ABAC)
	Relationship-Based Access Control (ReBAC)
	Role-Centric Attribute Based Access Control (RABAC)
	Responsibility MetaModel (ReMMo)
	Bi-Sorted Role-Based Access Control (RBÄC)
	Summary

	Role Explosion
	Introduction
	Background
	Symptoms
	Empirical Study
	Discussion
	Summary
	Publications

	Role Evolution
	Introduction
	Background
	Divergence
	Constraints
	Discussion
	Summary
	Publications

	ORGODEX
	Introduction
	Background
	Model
	Methodology
	Analyze
	Roles (Ro)
	Information (I)
	Responsibilities (Re)
	Constraints (C)

	Realize
	Design
	Review
	Implement
	Test

	Publicize
	Information
	Roles and Responsibilities

	Discussion
	Summary
	Publications

	Validation
	Introduction
	Background
	Analyze
	Roles (Ro)
	Information (I)
	Responsibilities (Re)
	Constraints (C)

	Realize
	Design
	Review
	Implement
	Test

	Publicize
	Information
	Roles and Responsibilities

	Discussion
	Summary
	Publications

	Conclusion
	Introduction
	Deficiency
	Aim
	Validation
	Sufficiency
	Validity
	Feasibility

	Contributions
	Future Work
	Summary

	Bibliography

