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Abstract

Supervisory Control and Data Acquisition (SCADA) networks provide con-
trol and monitoring of vital infrastructure. Increasingly, SCADA networks
are composed of traditional IT network hardware and software. While this
increases the risk of computer attack, it also means SCADA networks include
embedded trusted computing technologies. This research leverages these em-
bedded trusted computing technologies in order to design a Trusted Recovery
Framework. This Framework is capable of restoring nodes in a SCADA net-
work to a trusted state, that is, a state in which operators can rely upon them
to behave as expected. The framework is resilient to both direct interference
from an adversary on the same network and persistent malware on the node
itself.

A proof-of-concept implementation of the Trusted Recovery Framework for
the Integrated Platform Management System (IPMS), the SCADA network
used by warships in the Royal Canadian Navy, was developed. This proof of
concept implementation can be generalized to show that the Trusted Recov-
ery Framework is a valid design for both for IPMS and SCADA networks in
general. This research finds that the proposed design is capable of restoring
SCADA network nodes to a trustworthy, operational state in the presence of
malware.
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Résumé

Les réseaux systeme de controdle et d’acquisition de données (SCADA) assurent
le contrdle et la surveillance des infrastructures vitales. De plus en plus, les
réseaux SCADA sont composés de matériel informatique et de logiciels infor-
matiques traditionnels. Bien que cela augmente le risque d’attaque informa-
tique, cela signifie également que les réseaux SCADA incluent des technologies
informatiques sécurisées intégrées. Cette recherche tire parti de ces technolo-
gies informatiques sécurisées intégrées pour concevoir un cadre de récupération
fiable. Ce cadre est capable de restaurer des noeuds dans un réseau SCADA
a un état de confiance, c’est-a-dire un état dans lequel les opérateurs peuvent
compter sur eux pour se comporter comme prévu. Le cadre résiste a la fois
aux interférences directes d’un adversaire sur le méme réseau et aux logiciels
malveillants persistants sur le nceud lui-méme.

Une mise en ceuvre de validation du concept du cadre de rétablissement
fiable pour le systéme de contrdle intégré de plateforme (IPMS), le réseau
SCADA utilisé par les navires de guerre de la Marine royale du Canada, a été
mise au point. Cette implémentation de preuve de concept peut étre général-
isée pour montrer que le Cadre de Restoration Fiable est un concept valide
pour les réseaux IPMS et SCADA en général. Cette recherche montre que
la conception proposée est capable de restaurer les noeuds du réseau SCADA
dans un état opérationnel et fiable en présence de logiciels malveillants.
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Introduction

A Supervisory Control and Data Acquisition (SCADA) system is a class of
Industrial Control System (ICS) which provides centralized data collection
and management over dispersed nodes. Both the ICS Computer Emergency
Readiness Team (CERT) and the European Union Agency for Network and
Information Security (ENISA) have noted that SCADA networks are increas-
ingly built using commercial-off-the-shelf computer hardware, IP protocols,
and common operating systems and therefore now resemble IT networks at
multiple layers [4, 5]. In addition, SCADA systems are increasingly inter-
networked with corporate IT networks which, in turn, are connected to the
Internet.

These trends have increased the attack surface of SCADA systems and,
consequently, the importance of robust incident response plans for SCADA
systems. One key element of an incident response plan is the process through
which a system is recovered. Despite its importance, the recovery process
is given relatively little attention by SCADA cyber security standards and
guidelines when compared to protection or detection measures [4, 6].

In the course of this research we examine advanced features in modern com-
puter hardware which allow the integrity of a system to be verified remotely.
We then present existing architectures which use these advanced features to
generate trust in remote systems[3][7][8] and adapt their ideas to the design of
a trusted recovery architecture for a SCADA system. The proposed trusted
recovery architecture is then validated with a proof-of-concept implementation
for a shipboard SCADA system used by the Royal Canadian Navy (RCN), the
Integrated Platform Management System (IPMS).

1.1 Motivation

The National Institute of Standards and Technology (NIST) Cyber Secu-
rity Framework provides guidance towards making computer network systems
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more secure. The NIST Cyber Security framework outlines five key activi-
ties inherent in managing computer system security [9]. These are: Identify,
Protect, Detect, Respond, and Recover. Protection involves implementing mea-
sures to safeguard computer systems from identified computer security threats.
These measures often compete with usability concerns. Consequently, for a
network to remain usable, it will necessarily be exposed to malicious actors.
Therefore, the NIST Cyber Security Framework also addresses the acts of
detecting, responding to, and recovering from computer incidents. While de-
tection methods are increasingly effective and the field of computer forensics is
maturing, the discipline of recovery is still developing [10]. While traditional
IT networks have the luxury of lower availability demands and are often sup-
ported by specialist IT staffs and therefore do not require as well defined
recovery techniques, SCADA networks have high demands on availability and
often don’t benefit from on-site specially trained computer security personnel.

As a result of these factors, existing incident response approaches and
system restoration software do not sufficiently address the unique operating
environment and challenges of SCADA systems. For this reason, SCADA spe-
cific recovery approaches are required. While the recovery of SCADA systems
is addressed by some SCADA cyber security standards and guidelines it is
not treated at the same length, or to the same level of detail, as protection
or detection measures [6],[4]. We argue that this indicates a lack of maturity
in the field and the need for robust trusted recovery architectures for SCADA
systems.

While the trend towards traditional I'T technologies has increased the ex-
tent of vulnerability of SCADA networks, the modern commercial computer
systems now in use also include hardware security features. These features
provide immutable roots of trust in the computer hardware itself. These roots
of trust can be leveraged in order to ensure the integrity of a computer node
both locally to a user and remotely to a verifier over the network.

1.1.1 Motivating Scenario

The example of a SCADA network relied upon by a maritime vessel is il-
lustrative. Modern warships rely on the complex interrelationships between
propulsion, electrical, auxiliary, and damage control systems in order to float,
move, and fight effectively. Control and monitoring of these systems is pro-
vided by SCADA networks. Like all SCADA networks, shipboard SCADA
networks are designed to be highly reliable in the context of their environment
but do not necessarily take asymmetric threats such as computer-attack into
account. The Canadian Patrol Frigate (CPF), one of the warships operated
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by the RCN, is fitted with IPMS. While attempts to protect IPMS provide
moderate assurance, the risk of computer attack can never fully be eliminated.
The Stuxnet [11] worm demonstrated that isolation from the internet is not
in itself a guarantee of security and ransomware such as WannaCry and Petya
[12] have demonstrated how malware that successfully exploits a vulnerability
in a legacy operating system can have a devastating effect across the numer-
ous networks. These represent real world examples of malware which pose a
direct threat to systems such as IPMS.

The personnel responsible for operating and maintaining IPMS are experts
in the field of maritime engineering. However, a CPF does not deploy with
personnel trained in computer forensics or computer incident response, the two
disciplines required to reliably recover a system following a compromise. The
situation is further complicated by the fact that IPMS is constantly relied upon
to control vital ship systems and conduct damage control operations. This
means that a prolonged loss of availability could potentially be catastrophic to
the ship and its mission. While there are commercial products which support
the timely recovery of remote systems in a network, they do not address an
adversary who may still have presence on the network, or low level persistence
on a node. Asa result, in the event IPMS is compromised the RCN is incapable
of restoring the system to a trustworthy state. This means that while there
may be methods to restore functionality in IPMS, there is currently no way for
the crew to resume confidence in IPMS following the detection of a network
compromise.

1.2 Statement of Deficiency

The motiviating scenario above is a particular example of the general case,
that the recovery of SCADA systems is often conducted on an ad-hoc basis.
Many operators have little understanding of how to recover systems within
SCADA networks effectively and the extent to which potential methods will
address persistent malware. There is currently no solution which can conduct
a fully automated trusted recovery of a SCADA network in the presence of
malware.

1.3 Statement of Aim

The aim of this research is to investigate the design of a framework which
leverages embedded security features in modern computer systems in order
to conduct an automated and trusted recovery of a SCADA system following
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a computer security compromise. Trusted, in this sense, means that follow-
ing recovery, the SCADA system can be relied upon to behave as expected
without the influence of malware. This framework is constrained by fact that
SCADA network nodes are typically dissimilar and therefore a recovery proce-
dure must preserve the particular software and configuration of each. Potential
frameworks are also constrained by the fact that SCADA network operators
are generally not security experts and are unable to conduct comprehensive
forensics investigations or tailor made recovery operations. As a result of this
lack of expertise, any framework that supports recovery of SCADA networks
must automate the process. The IPMS network is used as a representative
SCADA system for validation of the approach. Like most modern SCADA net-
works, IPMS is built on modern computer hardware which provides a number
of embedded security capabilities which could be leveraged to create a chain of
trust from a trusted root in hardware to an operating system’s run-time envi-
ronment. They also include advanced remote management capabilities which
allow an administrator to interact with a system remotely without relying
on software tools or the network stack on the potentially infected operating
system.

1.4 Research Activities

In order to meet the aim of this thesis various embedded security technologies
were studied. The research involved an investigation into how these technolo-
gies could be incorporated into the design of a Trusted Recovery Framework.
The two principal thrusts of this research were the design of the Framework
and the implementation and validation of the framework for the target net-
work.

The design of the framework began with an inquiry into the characteristics
of SCADA networks which influence potential recovery frameworks. Following
this a threat model was developed based on a credible threat faced by many
SCADA networks as well as common threat models used in the literature when
evaluating trusted computing technologies. From both the SCADA networks
characteristics and the adversary model, a list of high-level requirements and
design constraints was developed. With this list in mind platform embedded
security capabilities were incorporated into the design for a Trusted Recovery
Framework.

The Trusted Recovery Framework design was implemented for the target
network, IPMS. Both the implementation and validation were conducted us-
ing a test-bed network which included actual IPMS hardware and software.
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The research investigation began with experimentation with trusted comput-
ing technologies as well as associated technologies required to conduct the
recovery of a node. The results of this experimentation were used to inform a
novel design and implementation of a process by which a single node could be
recovered in a trustworthy manner. The second phase of the research inves-
tigation involved the design and implementation of a Recovery Server which
supports the restoration process on multiple nodes as well as acts as an exter-
nal verifier of the integrity of the recovery process. Once the implementation
was complete, it was validated against the list of high-level requirements for
the Trusted Recovery Framework. Through this testing, the proposed Trusted
Recovery Framework was validated, both for IPMS and for any SCADA sys-
tem with the same generic characteristics.

1.5 Thesis Structure

The remaining chapters will outline this research in greater detail. Chapter
2 provides a thorough discussion of the recovery problem as it pertains to
SCADA networks. It also contains an enumeration of the threats posed to the
recovery process by an adversary and presents the threat model used in this
research. Chapter 2 also includes the background necessary to understand
the embedded security capabilities used in the proposed design. Chapter 3
presents the high-level architecture of the Trusted Recovery Framework and
explains the details of its operation. Chapter 4 details the proof-of-concept
implementation for IPMS, the target network. Chapter 5 provides an analy-
sis of the proof-of-concept implementation in order to validate the proposed
design. Chapter 6 discusses the limitations of the design as well as potential
follow on work to this research before concluding the paper.



Background

In this chapter research and technologies applicable to the problem of recov-
ering SCADA networks following a network intrusion will be discussed. As a
result of the unique composition and operating conditions of SCADA systems
the process by which they are recovered from a compromise differ from that
employed by most I'T networks. These differences will be expanded upon in
the first section of this chapter where we describe SCADA systems in more
detail as well as expand upon the problem of recovery. The following two
sections discuss the threat posed to the recovery process by malware. This in-
cludes a discussion of how malware can subvert the recovery process or avoid it
completely by persisting at a low level within the node. This will be followed
up by a section which describes trust in computing systems and how mod-
ern hardware security features can be leveraged to achieve trust. Once this
technical understanding has been achieved relevant work in the field will be
reviewed, including academic research which could be adapted to the problem
of recovering SCADA systems.

2.1 The SCADA Recovery Problem

ICS-CERT and ENISA have both noted that SCADA systems are increasingly
similar to I'T networks[5, 13]. This similarity includes the use of industry stan-
dard computers, operating systems, and network protocols. While the adop-
tion of I'T practices can decrease costs and increase capability, it also increases
the attack surface. The threat is increased further as SCADA networks be-
come more and more interconnected with corporate I'T networks. This factor,
along with the fact that SCADA systems are often responsible for the safe
operation of critical infrastructure, creates an acute need for SCADA system
security.

While SCADA networks can resemble traditional IT networks on some lev-
els, their unique operating conditions make the task of administrating them
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drastically different. Some of the key differences between SCADA networks
and IT networks include geographic distribution of nodes, operational context,
and the importance of availability [4]. These differences are important in the
development of SCADA security tools as they give rise to special considera-
tions.

The problem of recovery following of computer intrusion is one example
of this. Many IT networks can tolerate a period of downtime to allow for
the network to be reconstituted following an intrusion. In fact, as advised by
NIST [8], organizations should conduct business continuity planning to ensure
operations can still be conducted while sections of their computer network are
quarantined and a CERT conducts response actions. In some cases, the victim
systems may be kept operational to allow counter intelligence surveillance
activities to be conducted against the attacker [14]. These courses of action
are desirable because in the traditional Confidentiality-Integrity-Availability
(CIA) triad confidentiality and integrity concerns often outweigh availability.
This property does not hold in SCADA networks. As SCADA networks are
responsible for the safe and efficient operation of physical machinery their
availability is of the highest concern. Following this, integrity is a secondary
concern and confidentiality is the least pressing requirement [6].

The ICS-CERT publication, Developing an ICS Cybersecurity Incident Re-
sponse Capability, addresses the issue of SCADA system recovery [13]. Inci-
dent Response encompasses all the activities an organization will undertake
in response to a compromise. These include containment, remediation, and
system recovery. Containment involves stopping both the spread of malware
and any damage caused as a result of the compromise. Remediation is the
activity of removing the malware and returning the node to a trustworthy
state, and system recovery refers to the return of operational capability to the
SCADA network as a whole.

In this research we will focus on the remediation process. Ideally reme-
diation would eradicate the malware directly, without modification of other
system files, such as most anti-virus products do. Unfortunately this ap-
proach assumes full knowledge of the malware and its infection. When victim
to novel malware, the extent of the infection is not known. In this case a com-
plete rebuild of the node is advised [13]. The most straightforward method of
conducting such a rebuild is to restore the node from a trusted source image.
Therefore, the remediation of a node involves the restoration of a node to
a trusted state, and any actions associated with the detection or removal of
malware. Consequently a recovery framework is one which permits the reme-
diation of a number of nodes in parallel. A recovery framework can then be
said to support system recovery.
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2.1.1 SCADA Recovery Framework High-Level
Requirements

In order to examine the SCADA Recovery Problem, a generic model of a
SCADA system is developed. Our model of the system is based on the char-
acteristics of SCADA networks we deem to be critical to the design of a re-
covery framework. While it is accepted that these characteristics may not be
present in all SCADA networks we believe they apply to sufficient networks
to make this research relevant. The key characteristics of a SCADA network
are: a high degree of differentiation between nodes, lack of access to nodes,
low forensics and response capability within the network operators, and steep
availability demands.

There is a high degree of differentiation between nodes at both the soft-
ware and hardware level in SCADA networks. This is in contrast to many
data centres and administrative networks where workstations and servers will
to a large extent run common images on identical hardware [4]. With the
exception of redundant systems, the role played by each node in a SCADA
system is unique enough to warrant both different software and configura-
tion. The physical context in which the systems are installed often results in
a different hardware composition, which in many cases results in a different
software configuration. This means that the recovery framework will be re-
quired to maintain node specific configuration and software. Further to this,
the framework should provide the network operators the ability to update the
trusted software source for each node in order to account for changes to the
network which must be made in situ [15].

The second key obstacle is the low level access to SCADA network nodes.
This low level of access is observed both spatially and physically. Spatially
speaking, nodes in a SCADA system are often located in close proximity
to machinery or operator positions; this adds the overhead of a technician
travelling to an infected node to the recovery timeline. When the availability
constraints placed on SCADA systems are taken into account this overhead
can become significant, especially when compounded over multiple infected
nodes. In the physical sense, often nodes in a SCADA system are ruggedized
to withstand the environment in which they are employed. The ruggedization
process can restrict the ability a technician to access the computer hardware
directly and enact a restoration. Sometimes security measures put in place to
protect the hardware from intrusion must be removed to allow the technician
access to the machine. These factors again work to delay the restoration of
SCADA systems to a trusted operational state following an intrusion. As a
result, the ability to actuate the recovery in both an automated and remote
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fashion is key to meeting operational timelines for recovery.

As mentioned previously on-site forensics and computer incident response
capabilities are generally not expected to be adequate to conduct the necessary
investigation and remediation activities. As a result the process is required to
be entirely automated from start to finish. This eliminates the risk of human
error undermining trust in a node following recovery. The recovery framework
is also required to address malware persistence at the lowest level possible.
This is because the lack of computer forensic expertise means that the full
extent of the compromise will not be immediately ascertained. Consequently,
the system cannot be trusted fully following the recovery unless the framework
assumes the worst case scenario.

The importance of availability over integrity also requires the framework
to prioritize the restoration of a node to an operable state over any other
concerns, including guarantees of integrity. This means that, when possible,
failure of the framework should leave a node in an operational state. As
a corollary, the framework should indicate to the operator as succinctly as
possible when a failure in an integrity measurement has occurred with enough
information for operators to make a practical security decision.

These identified characteristics of a SCADA system lead to the following
requirements:

1. The framework must preserve system specific software and configuration.
2. The framework must be fully automated and externally driven.

3. The framework must address malware at the lowest level possible.

4. The framework must prioritize availability over integrity.

A recovery framework for any SCADA network which adheres to the key
characteristics described above must satisfy these requirements. Later in this
chapter, further requirements which take into account an adversary’s threat
model will be added which specify a trusted recovery framework.

We argue that the requirements for automation and remote actuation are
best served by a network based recovery scheme. A network based recovery
scheme involves a centralized server which can use existing network infras-
tructure to conduct the recovery of each node. This allows the process to be
scripted by the central recovery server and removes the need for a technician
to physically visit each node. Nodes can use the recovery server’s network
boot services to boot into a remediation environment and be automatically
restored to an operational state. With availability concerns addressed by mak-
ing the recovery scheme network based our attention is given to the concern of
integrity. The integrity of the a system following recovery can be tied to the
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integrity of the recovery process itself. The integrity of the process is threat-
ened by the susceptibility of the recovery process to the malware it attempts
to address and the extent to which the malware can survive the remediation
procedures. Those topics are discussed in the following two subsections.

2.1.2 Attacks on the Network Recovery Process

The first threat to a network based recovery process we will examine is the
threat of direct manipulation from an attacker. In this work, we assume a net-
work based recovery to imply the use of some implementation of the Preboot
Execution Environment (PXE) specification[16]. This assumption is based on
the fact that as many SCADA networks adopt common IT practices, worksta-
tions are increasingly being built on standard computer systems [4]. Support
for PXE is a common feature in Network Interface Card (NIC) firmware and
PXE is an industry standard method of booting a machine from the network.
A recovery process which incorporates PXE would involve configuring a tar-
get machine to boot into a remediation environment provided by a network
boot server. Once in the remediation environment, the target machine can be
restored to a trusted state.

In order to understand how a network recovery process is susceptible to
attack the PXE network boot process will be briefly described. To start the
process, the install target system’s Basic Input/Output System (BIOS) is con-
figured to boot from the NIC firmware. The PXE specification is implemented
in the NIC firmware and makes use of the Dynamic Host Configuration Proto-
col (DHCP) and Trivial File Transfer Protocol (TFTP). The PXE process uses
the DHCP protocol to configure the target’s networking and to pass param-
eters necessary for further file transfer. These parameters include the TFTP
server details and the location of a Network Bootstrap Program (NBP) on the
server. The target will then retrieve the NBP from the TF'TP server and load
it into memory. The NBP is essentially a bootloader and it uses TFTP to
download additional files in order to set up an initial boot environment. The
initial boot environment implements further protocols such as the Hypertext
Transfer Protocol (HTTP) or the Network File System (NFS) protocol which
can then be used to download an image, such as the Windows Preinstalla-
tion Environment (WinPE) or a Linux kernel and initial RAM disk. These
are then loaded into memory and executed, providing the remediation envi-
ronment. WinPE is a lightweight version of the Windows Operating System
which provides an environment with specialized tools for deploying, repair-
ing, and configuring Windows installations. However, a Linux kernel and
its root file system are more easily customizable to meet a network’s needs.
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Once the install target has finished booting into the remediation environment,
the restoration of the node is begun. While there are a variety of potential
methods which could be employed to recover a system we will consider the
simplest, whereby a trusted image is retrieved from the network and restored
to the disk. Once the system is restored it can be rebooted into an operational
state.

The term BIOS is used above and in the rest of this paper to mean
both legacy BIOS as well as a BIOS which implements the Unified Exten-
sible Firmware Interface (UEFI) specification. Although UEFI is a drastic
change from legacy BIOS it provides support for many of the legacy BIOS
features[17]. From its outset, UEFI supported the legacy PXE boot process.
Following version 2.5 of the specification, UEFI has provided advanced net-
work booting capabilities natively, such as the ability to retrieve the NBP
using FTP(S) or HTTP(S). Despite these improvements, the network booting
process has fundamentally stayed the same.

Each stage of the above described process can be manipulated by a mali-
cious actor. As mentioned, in the initial stages of a network boot the target
system broadcasts a DHCP Discovery packet in order to initiate a DHCP ses-
sion during which it will receive networking parameters along with the path
to the NBP on the TFTP server. A malicious DHCP server on the network
could hijack the process and give the attacker access to the system prior to
OS-resident security protections[18]. The TFTP protocol also implements no
security protections. Since the boot image is sent unencrypted a malicious
actor on the network could inject packets to hijack the communication or cor-
rupt the NBP[3]. In addition to this there are concerns depending on how
the new disk image to be restored is transferred to the target system. If it
is passed in the clear and uncompressed, any malicious actor on the network
can observe the image in transit. This means that sensitive information, such
as credentials, which are contained within the image are now known by the
attacker. A malicious actor could also initiate the recovery process from a
node they control on the network in such a way as to gain access to the image.
These issues can be partially addressed by isolating the target system and
DHCP / TETP server from other network nodes using VLANs. An attacker
would then have to accomplish a VLAN hop in order to subvert the process.
If the network switch has been compromised, is not configured correctly, or
not updated regularly, the threat of VLAN hopping is increased[18].

Since the network recovery process itself can be manipulated by malicious
actors on the network, a target system restored as a result cannot be immedi-
ately trusted. We further state that even if the restoration process proceeds
as expected, given current bootkit capabilities, there is no guarantee that the
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restored system is free from malware presence. The next subsection gives a
brief overview of current rootkit / bootkit techniques and the impacts on a
potential recovery process.

2.1.3 Methods of Malware Persistence

A central concern of the recovery process is how concretely it addresses the
problem of persistent malware. Malware is difficult to detect and remove by
design. As mentioned previously, given that malware or its malicious effects
are detected, a comprehensive forensics review of the system is commonly
outside of the capability of SCADA system operators. Such an investiga-
tion would interrupt system operation and fails to satisfy the availability con-
straints. This means that the extent to which the malware has compromised
an individual system or spread on the network will not be immediately known.
As a result of this, operators must assume that the malware will attempt to
install a root or boot kit, and actions should be taken accordingly.

A rootkit is a software tool used to covertly maintain persistent pres-
ence on a system. While many rootkits are installed within the context of
the operating system, some utilize kernel-mode privileges in order to install
themselves to system boot sectors or at even lower levels such as the system
firmware. In these cases the term ’bootkit’ is used to refer to the malware.
The forthcoming book Rootkits and Bootkits provides an excellent description
of the field’s recent history[19]. The recent history has largely been colored by
the emergence of Microsoft’s Kernel-Mode Code Signing Requirements with
Windows Vista 64-bit [20]. This policy prevents Windows from loading any
kernel-mode driver which has not been signed by Microsoft. This disrupted
one of the most common means of infecting the Windows boot process. As
a result, one of the ways in which current bootkits can be classified is the
technique they use to circumvent kernel-mode code signing policy. Rootkits
and Bootkits identifies three circumvention techniques employed by bootkits:
User Mode, Kernel Mode, and System Firmware. User mode bootkits exploit
the methods provided by the operating system for turning off the integrity
checks; subsequently their persistence does not outlive a reinstallation of the
operating system. Kernel mode bootkits attack kernel-mode memory during
the boot process. They reside in the Master Boot Record (MBR) or Vol-
ume Boot Record (VBR) and therefore do not survive the re-imaging of the
system disk, consequently US-CERT recommends that a system should be
formatted and rebuilt following detection of a bootkit [21]. Finally, firmware
bootkits reside in the firmware and attack the system boot process directly.
This type of bootkit is the hardest to both detect and address. Depending on
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which firmware specifically is targeted, response actions range from flashing
firmware to outright replacement of hardware. In addition to proof of concepts
developed in academic settings, firmware bootkits for both BIOS and UEFI
have been detected in-the-wild. The first observed in-the-wild BIOS bootkit,
Mebromi, was detected in China in 2011 [22]. The 2015 Hacking Team breach
revealed a UEFI bootkit targeting Insyde BIOS [23], the most widely used
BIOS [24].

The previous two subsections have described how the ability to trust a
system following a network based recovery approach is undermined by threats
to the network boot process and the persistence techniques used by modern
bootkits. The next section presents a threat model which specifies how an
attacker would use the above techniques to compromise a SCADA network.

2.2 Threat Model

In our threat model, we permit the attacker limited physical access to the
network. We further qualify limited as enough access to compromise a node
locally but not enough to interact directly with hardware. This means that
side channel attacks against cryptographic hardware which require lengthy
physical access, such as those revealed by The Intercept in [25], are outside of
the adversary’s scope. We assume that the attacker has the ability to obtain
system level privilege on the compromised node and thus has the ability to
install a bootkit in the system’s boot sector. We grant the attacker further
capability in that they may have the ability and intent to modify the boot
firmware in order to install a bootkit or adjust the configuration to enable
further compromise. As a result, the attacker has full control of the system
following a compromise.

Further to this, once the adversary has a foothold on one node, we assume
they intend to exploit further nodes on the network. We give them sufficient
capability in order to be successful in these attempts and any systems with
similar operating systems such as redundant nodes are also assumed to be
compromised. Dissimilar nodes on the same network may be compromised
as well, this includes network infrastructure such as switches and routers.
Through access to these compromised nodes the attacker has control over
the network. This control allows the attacker to monitor, modify, and inject
packets into ongoing network communications.

The implications of this level of attacker access are threefold. The attacker
can install kernel mode rootkits, boot sector bootkits, and firmware bootkits.
The attacker can traverse the network laterally and gain equivalent access
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on multiple nodes. The attacker also has the ability to conduct replay or
man-in-the middle attacks on the network.
These implications lead to two operating constraints for a trusted recovery
process.
1. The framework must be able to operate without trusting network com-
munications
2. The framework must be able to operate without trusting any software
on the nodes
What is needed is a way to measure the recovery process itself such that the
authenticity of a node can be verified following recovery given that neither the
network nor the node itself can be relied upon. The following section provides
a more formal definition of trust and describes how trust is bootstrapped in
modern computing systems.

2.3 Bootstrapping Trust

A trusted system, in the context of computer security, is one which acts in
an expected manner for an intended purpose[26]. In order to determine if a
system will act in the expected manner for its intended purpose the state of
the system must be verified. Parneo, et al[27], present a thematic summary
of bootstrapping trust in modern computer systems. In general, a system’s
state can be determined by measuring the identity of the code running on it.
Code identity is made up of the program binary along with applicable inputs,
libraries, or configuration files. As a result, code identity is best measured by
calculating a hash of the code and its properties.

In order to trust a code measurement the code identity of the software
which conducts the measurement must be itself measured and verified. From
this, follows the idea of integrity chaining. This concept was presented in 1997
by Arbaugh, et al in the course of proposing a bootstrap architecture, AEGIS
[7]. Arbaugh, et al present an ideal chain of integrity checks used to sustain
system integrity with the recurrence:

Iy = True,

Iiv1 = L; NVi(Lig1) for 0<i 21)

The integrity at level i is represented by the boolean value I;. Each level
has a corresponding verification function, V; which takes the next level, L; 41,
as an argument and returns true if the next level is successfully verified. The
boolean and operation is depicted with A, consequently, equation 2.1 formally
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states that the integrity of level ¢ 4+ 1 is preserved provided that level 7 is
trusted and the verification function over level ¢ + 1 succeeds.

As in AEGIS, this concept can be applied to the boot process of a com-
puter system, where each level of the boot process (for example: the BIOS,
bootloader, OS.. etc) measures the following level before execution. I, then,
is the code block which conducts the first measurement and it must be trusted
implicitly. This is referred to as Root of Trust for Measurement (RTM) or
as the Core Root of Trust for Measurement (CRTM) as it provides the root
of trust upon which all subsequent measurements are based. As a result the
CRTM often resides early in the boot process and, ideally, is protected from
manipulation by a user. The process of integrity chaining from a CRTM to-
wards the runtime state of the system is referred to as trusted or measured
boot. In situations where the CRTM is contained in the BIOS boot block it
is often referred to as a Static Root of Trust for Measurement (SRTM).

The most commonly used measurement process is with the use of a cryp-
tographic hash function. A hash function maps data of arbitrary length to
a hash value of a fixed size. In order for a hash function to be considered
cryptographic is must be both one-way and have a low collision rate. A hash
function is one-way when it is easy to calculate the output hash and it is
computationally in-feasible to calculate the input data given a hash value. A
low collision rate means that users of the hash function can assume, with a
reasonable probability, that two different inputs will not result in the same
hash value. In trusted computing the SHA-1 and the SHA-2 family of hash
functions are commonly used.

Since maintaining a long chain of trust is often difficult, and in order
to provide a trusted environment after a system’s boot has been completed,
Intel and AMD have implemented instructions for a Dynamic Root of Trust
for Measurement (DRTM) into their chipsets [28]. A DRTM allows a trusted
execution environment to be created during runtime. The key benefit is that
security critical code can be run in a measured environment without having
to implicitly trust the BIOS, boot loader, or OS.

The following two subsections will explore the concepts of a SRTM and
DRTM in more depth by describing the Trusted Platform Module (TPM) and
the associated late-launch capabilities provided by Intel Trusted Execution
Technology (TXT).

2.3.1 Trusted Platform Module

The most widely adopted implementation of a hardware root of trust is the
TPM. Root of trust in this sense does not imply that the TPM implements a
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RTM, as this function is provided by the BIOS, but that it implements a Root
of Trust for Reporting (RTR) and Root of Trust for Storage (RTS). A TPM
is any implementation which meets the interface and isolation requirements
of the TPM specification developed by the Trusted Computing Group (TCG)
[29]. The TPM is almost ubiquitous on enterprise hardware and also occupies
a growing proportion of consumer computers, including Google Chromebooks.
In 2014 the US Department of Defense mandated all new computer purchases,
from desktops to servers to mobile devices to include a TPM [30].

The TPM Specification calls for a secure coprocessor capable of performing
cryptographic functions, unalterable Platform Configuration Registers, and a
unique endorsement key. A Platform Configuration Register (PCR) is used
to store aggregate measurements of software components as they are loaded
during the boot process. The endorsement key uniquely identifies the TPM
and client system and is used to generate other keys used to sign attestations.
The TPM provides two functions related to maintaining a chain of trust and
providing attestation: extend and quote. FExtend is the mechanism by which
measurements are stored in a PCR. The TPM calculates a digest of the existing
measurement concatenated with the new binary data to be measured and
stores it in the PCR. For example: binary data, d, is extended into a PCR
containing measurement m; using hash function H with:

miy1 = H(m;||d) (2.2)

The ability to securely store measurements in PCRs and the extend function
provide the RTR as it allows the system state to be captured in a manner in
which the result cannot be modified. Quote is the mechanism used to support
attestation. The TPM takes a nonce from a verifying system and creates a
signed statement including it and a composite hash of a set of PCRs. The
statement is signed with an attestation identity key (AIK) which is derived
from the endorsement key. Attestation involves a TPM quote along with
the list of measurements taken by the TPM which resulted in the PCR’s
current state. The verifier then validates the attestation by both verifying
the signature and comparing the resultant measurements to a list of golden
measurements.

The RTS is provided by the ability of the TPM to encrypt data outside
of the TPM Non Volatile Random Access Memory (NVRAM) using a secret
stored within the TPM. This functionality is not used in this research and
therefore will not be further expanded on.

The above capabilities can be utilized to support integrity chaining and
trusted boot processes. Figure 2.1 depicts the trusted boot process as de-
scribed for a UEFI BIOS. Following a PC reset, the boot rom verifies that an
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Authenticated Code Module (ACM) has been signed by the vendor’s private
key [31]. This verification is the RTM for the system and is highlighted in the
diagram with a red star. Once the ACM has been verified it is executed and,
in addition to its own start up functionality, extends PCR zero with a mea-
surement of an initial BIOS boot block before passing execution to the BIOS.
From here subsequent modules and configurations of the BIOS are hashed
and extended into PCRs zero through seven. Figure 2.1 depicts the allocation
of UEFI measurements across these PCRs. Once the platform initialization
procedure is complete and execution is passed on to an operating system a
verifier can request a quote of the applicable PCRs and compare the quote to
prerecorded golden measurements for the BIOS [8]. PCRs 8-15 are available
for use by the operating system.

PC Reset

PCRO PCR1 PCR5 PCR7 PCR 8 +

Initial Boot Block

Operating
System

EFI Config
ACPI
SMBIOS

Secure
Boot
Policy

EFI Boot Services

: GPT
| EFI Runtime Services
|

Table

EFI
Drivers

HBA
Drivers

Figure 2.1: Trusted boot sequence with UEFI firwmare [1]

The measured boot process allows for changes in the BIOS to be detected.
This is important in two scenarios. The first is to detect changes to the
BIOS configuration. These changes could be the result of improper use by a
network operator or the result of a malicious actor. In either case the BIOS
configuration has deviated from an established configuration and the system
may now be more exposed to attack. It is also important to detect when the
BIOS has been modified by a bootkit and some malicious process is started as
part of the platform initialization process. Detection of these types of changes
to the BIOS is complicated by the fact that the SRTM could also be modified
by the adversary, which compromises the entire chain of trust.

Drawbacks of a Static Root of Trust for Measurement

Since the RTR is implemented in the TPM it provides a relatively strong
guarantee of integrity. The SRTM, as mentioned, is implemented in firmware
by the BIOS vendor. Since the integrity of all subsequent measurements is
based on the extent to which the SRTM can be trusted, this is an area of some
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concern. In fact there are several issues with the use of a BIOS SRTM as a
RTM.

The first concern is related to the fact that a trusted boot process is only
trustworthy if the SRTM itself is trustworthy and cannot be modified [32].
Researchers have shown that the previous assertion to not be true for com-
mon BIOS implementations [32, 33]. As a result, proof-of-concept malware
has been developed which modifies the BIOS firmware and provides false mea-
surements to the TPM in order to fake authorized integrity measurements [33].
Another criteria for trusting the trusted boot process is that the hash chain
be contiguous, that is that the integrity measurements have full code coverage
and no code is executed without being first measured. This condition has also
been noted to not always be the case in BIOS implementations [32].

The first concern noted above is addressed by Intel’s Boot Guard feature,
in which the boot ROM is stored in One-Time-Programmable memory. The
boot ROM then verifies an ACM using a key loaded into field programmable
fuses during manufacture. The ACM is then relied upon to measure an initial
boot block in the BIOS which begins the integrity chain[31]. These details have
been included in Figure 2.1. When available, Intel Boot Guard does improve
the situation but it does not address the reliance on the vendor to adequately
cover their BIOS with integrity measurements. Further to this, maintaining
a hash chain through the BIOS, a bootloader, and an operating system boot
manager is an onerous task to implement properly. For this reason modern
Central Processing Units (CPUs) now provide a late-launch capability in order
to allow a measured launch environment to be created from a DRTM. The
Intel implementation is referred to as Trusted Execution Technology.

2.3.2 Intel Trusted Execution Technology

Intel Trusted Execution Technology (TXT) is Intel’s implementation of a
DRTM [2]. As mentioned previously, a DRTM is a root of trust which does
not rely on a chain of trust from a SRTM. This is achieved by conducting a
"late-launch’, effectively a reset during runtime, in order to reset the platform
to a known state, measure a piece of code and provide it a hardware protected
environment in which to execute.

Similar to as how the static trusted boot procedure was depicted in Fig-
ure 2.1, an illustration of the TXT launch sequence is provided in Figure 2.2.
There are two principle components that make up the TXT launch sequence:
A Secure Init (SINIT) ACM and a Measured Launch Environment (MLE).
The SINIT ACM is, much like the ACM used during modern boot processes,
a chipset specific code module which the vendor has digital signed. The MLE
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is a code module associated with the trusted operating system being launched
such as bootloader or virtual machine manager. Prior to commencing the
TXT launch sequence the SINIT ACM and MLE are loaded into memory.
Additionally, any further modules required for the trusted environment are
also loaded into memory [2]. In the example presented in Figure 2.2 a linux
kernel and initial RAM disk are also included in the sequence.

The launch process begins with the GETSEC[SENTER] instruction. This
instruction causes all but a system bootstrap processor to perform clean up
and enter a wait status. It also resets PCRs 17 to 22 in the TPM. The mi-
crocode associated with the GETSEC instruction is the only entity authorized
to reset PCRs outside of system boot. Once these steps have been completed
the SINIT ACM is measured, verified, and executed. As shown, the measure-
ment is extended into PCR 17. The SINIT ACM confirms that the chipset
and processor have a suitable configuration before measuring and launching
the MLE. This measurement is stored in PCR 18. In some cases, such as
when the tboot bootloader is used, a Launch Control Policy (LCP) which
describes how the MLE should be established is also measured and extended
into PCR 18 [34]. At this stage the MLE redirects interrupts, uses Intel Vi-
talization Technology for Directed I/O to implement protections from other
devices with Direct Memory Access (DMA), and sends wake up signals to the
waiting processors. It will also implement the LCP. The LCP can specify
valid measurements for PCRs 0-7 as well as for the MLE and any additional
modules. If these valid measurements are not found during the launch process
it can either fail to launch or halt the late-launch process and launch normally.

Once this stage in the sequence has been reached, the MLE will measure
and store hash values for any additional modules, such as the kernel and initial
RAM disk shown in the figure. The final stage of the launch sequence in this
case would be for the MLE to pass execution to the kernel, which will run in
the newly created trusted environment.

RESET PCR 17-22

PCR 17 PCR 18 PCR 19

: vmlinux
GETSEC[SENTER] ‘ SINIT ACM MLE initrd

Figure 2.2: Intel TXT late-launch sequence [2]

v
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As can be seen, Intel TXT provides a way for a trusted environment to be
created from an untrusted system. Since the processors are started directly
into protected mode with the MLE, as opposed to into real, virtual, and
then protected mode as in the normal bootstrap process and the trusted OS
is protected from devices with DMA, such as exploited NIC firmware, the
environment following TXT can be said to be more deterministic than the OS
environment following a standard trusted boot|[35].

That is not to say that the environment is totally isolated. Both System
Management Mode (SMM) processes and the Intel Management Engine (ME)
can both access memory in the trusted environment[36][28].

In this section the idea of trust in computing systems has been explored.
The existence and validity of various roots of trust has been discussed and
common implementations were described. These are relevant to the design
of a trusted recovery framework as they provide a means through which the
recovery process can be measured and tied to a root of trust in hardware.
The next section will continue to explore advanced chipset features in com-
puting hardware with the Intel Management Engine, a remote administration
capability implemented in hardware. These remote administration capabili-
ties aid the design of a trusted recovery framework as they provide the ability
to remotely control a target system outside of the context of an operating
system.

2.4 Intel Management Engine

Intel’s ME was introduced in 2007 as a platform in which to implement Intel’s
Active Management Technology (AMT), which at the time was only resident
on certain network cards[37]. Since then it has grown to include more modules,
all of which are collectively marketed as ’Intel vPro’. At its core the Intel ME
is a dedicated microcontroller contained in the Chipset Memory Controller
Hub along with dedicated storage and memory. While previous versions ran
a proprietary Real Time Operation System (RTOS) on Argonaut RISC Core
(ARC) architecture, as of Version 11 it runs x86-based MINIX 3 [38]. Aside
from level 1 and 2 caches located within the ME microprocessor it uses 16
MB of system memory from DIMM slot 0 for paging and shares the SPI
flash NVRAM on the motherboard with the BIOS and network controller for
firmware storage[37]. It is resident on nearly all modern x86 based computers.
Its level of system access and closed source nature has led to numerous security
concerns[36][39][38].

While originally designed as a remote administration feature, Intel ME now
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implements several security functions including housing an integrated TPM
and supporting real time media decryption for Digital Rights Management[31].
However, its flagship feature is Active Management Technology (AMT).

Intel Active Management Technology

AMT is a feature designed to give systems administrators a suite of remote
administration capabilities. Because it is implemented on the ME it can pro-
vide functionality that would only otherwise be possible when physically at
the system. This functionality is provided ’out-of-band’, meaning that com-
munication with the ME happens outside of the local operating system and
its network stack. As result of this, a systems administrator is able to interact
with a system even when the OS network connectivity is corrupted[37]. It also
allows an administrator to change BIOS boot options and reset the computer;
one use case of this feature would be to configure the system to conduct a
PXE boot in order to redeploy the operating system from a net boot server.
Another unique feature is IDE-Redirection (IDE-R). Using IDE-R, an admin-
istrator can configure a target system to boot from an image file stored on the
admin system as if it were local media over an encrypted serial connection. It
can also act as a hardware firewall, intercepting packets between the NIC and
the operating system. AMT can communicate with the host OS through a
Host Embedded Controller Interface which allows for application monitoring
and persistence features.

Communication with the Intel AMT over the network is secured using
Transport Layer Security (TLS) and authentication is provided by HTTP
digest or Kerberos. Administrators can either issue commands through a web
server hosted on the AMT or by utilizing management applications which
make use of Web Services-Management (WSMAN), Keyboard-Video-Mouse
(KVM) over network, or serial over LAN protocols[31].

2.5 Related Work

In the previous two sections the idea of trust in computing systems was devel-
oped and technologies which allow trust to be bootstrapped from protected
roots of trust were explored. This section will discuss implementations of these
technologies in similar problem areas.

Schiffman et al[3], suggest a network Root of Trust for Installation (ROTI)
process. A ROTI is an operating system installation which is conducted in
such a way as to be trusted implicitly. Subsequent to the installation, the
current state of system files can be measured and then compared to the ROTI
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in order to detect tampering. In order to create this root of trust installation
late-launch technology is used to create a trusted environment on a target
machine following a PXE network boot. In this case AMD’s equivalent to
Intel TXT, Secure Virtual Machine (SVM), is used to create a DRTM. The
DRTM is used to measure the installer which then installs and configures
Linux on the host, creates a record of the filesystem, and signs it using the
TPM. This operation is given by:

P = Sign(F,D,I); (2.3)

That is, a ROTI proof P, can be created with measurements of a recovery
installer I, using disk image D, and resulting in file system F signed by k,
a key unique to the target’s TPM. This signed record is a Root of Trust
for Installation which can be leveraged later to attest to platform integrity.
Figure 2.3 provides a visual overview of how the netROTI was implemented.
Steps 1-3 represent the PXE network booting process. Step 4 is the late-
launch procedure being executed by the oslo bootloader, a bootloader which
used AMD’s SVM to create a DRTM. Step 5 depicts the storage of the DRTM
in PCR 17. Following this some initialization code is executed in step 6 and
it in turn measures any of the modules supplied to it. In this case it measures
the Linux Kernel and initial RAM disk as in step 7. Following step 7, the
installer proceeds to build the system and generate the ROTI proof.

This work is important to the design of a SCADA recovery framework
because it demonstrates how PXE can be used to chain load into Intel TXT
(or its equivalent) and create a DRTM. This means PXE and Intel TXT can
be used to create a measured environment in which remediation activities
can be conducted and whose trust isn’t anchored in the potentially compro-
mised BIOS. It is also valuable because the ROTI proof demonstrates how the
DRTM can be leveraged to generate measurements which cover the entirety of
the remediation process. The boot chain from the DRTM to the trusted op-
erating system is stored in the TPM PCRs following the late-launch process.
The ROTI proof includes these measurements along with the measurement of
additional inputs (the disk image) and the result (the filesystem). This proof
then can be used to establish both the integrity of the installation process
and, through the TPM signature, the identity of the node.

Unfortunately this work is not directly applicable to the SCADA recovery
problem. Principally, SCADA systems are characterized by their highly dif-
ferentiated and hierarchical nature and this approach does not accommodate
this. Furthermore, while this approach protects against adversarial interfer-
ence with the PXE boot process, it does not address the issue of malware
presence in firmware directly.
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Figure 2.3: Network root of trust for tnstallation [3]

The use of Intel TXT in cloud environments has also been seen in practice
with both the OpenCIT and crowbar projects [40][41]. These are both deploy-
ment software designed to work as part of OpenStack. OpenStack provides a
framework for the management of cloud computing pools and OpenCIT and
crowbar deal with the issue of provisioning a bare-metal server with a hyper-
visor over the network in a trusted manner. Due to the differing nature of
cloud computing networks and SCADA networks it is inappropriate to adapt
one of these software and the OpenStack architecture to serve the needs of
a SCADA system. However, cloud computing networks do share a key char-
acteristic with SCADA networks, the geographic displacement of computer
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systems. In cloud environments this is dealt with by employing remote ad-
ministration tools such as Intel AMT, the Intelligent Platform Management
Interface (IPMI), or other technologies which utilize a system’s Baseboard
Management Controller(BMC) to remotely control a system. These capabil-
ities should also be utilized in a recovery framework for SCADA systems to
address the issue of low access to nodes.

In this chapter SCADA systems and the problem of recovering them fol-
lowing a computer intrusion were discussed. The potential of a network reme-
diation process to address malware was presented, followed by a description
of ways in which an adversary could undermine our trust in such a process.
Hardware security features which can be leveraged to bootstrap trust despite
adversarial activities were then described. This was followed by descriptions
of implementations of these technologies which illustrate how they might serve
the SCADA recovery problem.
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In the first chapter, we described the need for a trusted recovery architecture
for SCADA networks. In the second chapter we elaborate on the problem of
recovering SCADA systems in a trustworthy manner, examined more formally
what is meant by trust in computing systems, and looked at hardware mech-
anisms which can be leveraged to establish trust in computing systems. As
described, none of the software which implement those hardware mechanisms
adequately meets the need of a SCADA recovery framework. The task in
this chapter is to describe the design of a trusted recovery architecture for a
SCADA system. This is done by first enumerating the requirements of the
recovery framework and then describing an architecture which meets those
requirements. The resultant architecture is intended to be simple, extensible,
and reliable.

3.1 Design Considerations

The design of the framework is driven by our model of the system to be
recovered, the threat model, the trust relationships we wish to generate, and
assumptions about how the framework will be employed in practice. The
system model encompasses the characteristics of a SCADA network which
are most typical of those found in use and the attacker model describes the
capabilities of a notional adversary on the SCADA network. These two models
were presented in the previous chapter, Sections 2.1 and 2.2 respectively. As
a result of these two models a set of high-level requirements for a SCADA
Trusted Recovery framework were developed. These requirements were used to
guide the design of the framework described in this chapter. In addition to the
high-level requirements, a trust model and some assumptions were considered.
The trust model results from the threat model as well as the roots of trust
available on the SCADA platforms. The trust model lays out which aspects
of the network we are able to trust and what will be deemed untrustworthy.
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The design will then seek to leverage the trusted aspects of the network in
order to implement a trusted recovery procedure. The assumptions describe
the manner in which we expect the recovery framework to be deployed.

3.1.1 Trust Model

The threat model in 2.2 identified which aspects of the system we cannot
trust. It is now important to identify what can be trusted and what has to be
trusted in order to recover the system to a known good state. While we have
stated that the attacker has full access to a compromised node and we cannot
trust any software on the node, we have excluded hardware attacks against the
computer hardware. This eliminates the attacker’s ability to conduct attacks
against the TPM such as those discussed in [32], [42], and [25]. Consequently
we decide to trust the TPM as a Root of Trust for Reporting.

Along with the TPM we also decide to trust the DRTM created by Intel
TXT or AMD SVM. This is because key aspects of late-launch capabilities are
implemented in CPU micro-code associated directly with the late-launch CPU
instructions. Specifically, the verification of the vendor signed Authenticated
Code Module and the reset of the late-launch specific PCRs can only be done
using specific privileges levels obtained by the CPU during the process [2].
This creates the DRTM upon which the remainder of the late-launch process
is based.

Since we trust the TPM’s RTR and Intel TXT’s DRTM we have roots
of trust for both measurement and reporting. Subsequently it is possible to
create a hash chain from the DRTM into our remediation environment. It is
also possible for the remediation environment to conduct remote attestation
and provide its platform state to a verifier. These two capabilities are key to
the design of a trusted recovery process. Since the remote attestation process
occurs over the network, and we do not trust the network, the claim that
we can conduct remote attestation may be questioned. However, while it
is true that an attacker with control of the network could disrupt network
communications and cause a denial of service, due to a lack of access to the
TPM'’s private key they do not have the ability to forge integrity measurements
and fool the verifier about the state of a node following recovery. Additionally,
the inclusion of a psuedo-random nonce in the TPM quote process prevents
replay attacks.

Leveraging the CPU late-launch capability is also what the netROTI pro-
cess detailed in Section 2.5 was built upon [3]. It is also suggested by NIST as
a potential model for BIOS remediation [8]. It should also be noted that the
Threat Model described in 2.2 is similar to that which the Trusted Computing
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Group seeks to address with the TPM[29]. It is also similar to that used by
Maene, et al, in their comparison of 12 hardware-based trust architectures
[43]. These similarities are valuable because they allow the effectiveness of
the design to be compared to the guarantees provided by the underlying tech-
nology. That is, if the recovery framework cannot provide the same potential
integrity performance as the TPM or the same functionality as that identified
by Maene, et al, then a sufficient reason should be clearly identified.

3.1.2 Assumptions

By focusing on the ability to simultaneously remediate a set of nodes to a
known good state, this framework is designed to be utilized as part of a broader
recovery plan. As such, several assumptions about this broader network re-
covery plan and the nature in which the framework will be employed need to
be made in order to conduct the design. The wider response plan is assumed
to implement a tiered approach in which, perhaps, the network is subdivided
into groups based on functionality and these subgroups are recovered in turn.
This implies some method, physical or virtual, of segregating the network.
This then leads to the important assumption that the segregation policy pro-
tects newly remediated systems from yet to be remediated, still compromised,
systems. It is also assumed that the nodes which are to be remediated can be
safely shutdown without causing an unacceptable loss of service or safety.

Verification of platform state is conducted based on comparison to pre-
viously stored, golden measurements. Therefore, in discussions of the verifi-
cation process it is assumed that these golden measurements were captured
from non-compromised systems. Furthermore, anytime system state is cap-
tured, such as when images are cloned from a node, the node is again assumed
to be in a non-compromised state. This means that the golden measurements
and repository of authorized images are trusted. Another way to state this
assumption is that we only assume an adversarial environment during the re-
store process and not any supplementary processes required to support the
recovery framework.

Finally, we assume the server and any accompanying image repositories
used to conduct the recovery can be adequately protected. In addition to the
TPM and Intel firmware, these must be trusted implicitly in order to trust
the recovery process.

3.2 Design

The high level requirements from Chapter 2 are summarized in Table 3.1.
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Table 3.1: High level design requirements for a SCADA trusted recovery
framework

H No. ‘ Requirement H
1.1 | Restoration must maintain system specific configuration and software
1.2 Framework must be fully automated
1.3 Framework must address persistent malware
1.4 Framework should fail to an operation state
2.1 Framework must not trust network
2.2 Framework must not trust node software

In the remainder of this chapter a design for a trusted recovery architecture
which meets all of the requirements in table 3.1 will be presented. First the
high level architecture of the framework will be described. Following this
pertinent details of the architecture will be described in greater depth. Once
the framework has been presented the system operation procedures will be
outlined in order to illustrate its use.

3.2.1 High Level Architecture

The Trusted Recovery Architecture is designed to address the system con-
straints listed in the previous section. It incorporates CPU-based late-launch
and out-of-band remote administration technology in order to address the
threat of an adversary as described in our attacker model. It is designed to
be modular and extensible such that it can accommodate new hardware with
differing capabilities. The major components are split between the node being
recovered and a Recovery Server which facilitates the operation. There are
four operations the framework can undertake on a node. While these will be
discusses in greater detail in a later section, they are described here, briefly:

e Initialize Take ownership of a node’s TPM, generate an AIK pair and
store the public key and Universally Unique Identifier (UUID) on the
Recovery Server. This is used when adding new hardware to the system.

e Measure Generate golden measurements for the BIOS and a Trust-
Stage Bootloader and store them on the Recovery Server.

e Clone Clone a node’s disk, calculate a hash value for each image cloned,
and store the image and measurement hash on the Recovery Server.

e Restore Restore a node to a previously saved image. As the restore
process proceeds, measurements of all aspects of the process, including
the BIOS, Trust-stage Bootloader, and disk images are stored in the
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TPM. When the process completes these measurements are remotely
attested to an external verifier, the Recovery Server.

The remote attestation process at the end of the restore operation is key
to developing trust in the recovery process. In this framework we refer to the
remote attestation process as the verification phase. The first three operations
establish the node identity and generate golden measurements which repre-
sent the trusted system state. The restore operation allows a system to be
verifiably restored to the determined trusted system state. These operations
are supported by the high level architecture as depicted in Figure 3.1.

Recovery Server Nodes
[
/ Database | APPIiCatior\ //f - _ T(N
Measurement : — /Remedlatlon Environment Architecture
Repositor ! Measurement
Collector

1
| Service Agent
|
Rel n:;igtir | Recovery Agent
P y : \
[ T e I I M
Node I Network Boot Chain

A I
Repository ! Network-Stage Trust-Stage Intel
Il ey : Bootloader Bootloader J | TXT
|

Network Boot Services Conductor \ A~ ____  __________\ |
g Node Firmware
Intel ][ ] [ ] ' NIC ] [ BIOS/ Intel
DHCP | | TFTP | !
[AMT | \- / [ Firmware UEFI ME ]
|
PXE Boot

Figure 3.1: Trusted recovery framework architecture

In general, the Recovery Server conducts a remediation or associated action
on a set of Nodes by leveraging features in the Node’s hardware and firmware.
These features include an out-of-band remote administration capability, such
as Intel AMT to remotely initiate a PXE boot, the NIC firmware to boot
the Node from a Server provided image, and the TPM to support remote
attestation. The high level components on both the nodes and on the server
are described in the following list:

e Nodes:
— Network Boot Chain The network boot chain is composed of a
network-stage bootloader responsible for chain loading the trust-
stage bootloader and remediation environment and the trust-stage
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bootloader itself. The trust-stage bootloader is responsible for ini-
tiating the DRTM and establishing the Remediation Environment.

— Remediation Environment This is the environment from which
all remediation tasks are conducted. These tasks include the cloning
and restoration of images along with the capture of integrity mea-
surements. It consists of a recovery agent which interacts with the
system disk in order to clone or restore system images. It also
contains a measurement collector which is responsible for reporting
integrity measurements to the Recovery Server.

e Recovery Server:

— Network Boot Services These services include remote adminis-
tration functionality for remotely configuring nodes to conduct a
PXE boot, DHCP services for assigning DHCP leases to nodes and
directing them to a TFTP server, and TFTP services to serve the
Network Boot Chain modules to the node.

— Database Layer The Database Layer provides repositories of data
for the nodes, their authorized images, and golden measurements
to be compared against. Node data includes the data required to
support the establishment of node identity. Image data includes a
path to the image resource, which may or may not reside on the
Recovery Server. Measurement data includes the trusted measure-
ment values for the BIOS/UEFI firmware, the trusted images, and
the Trust-stage Bootloader and Remediation Environment.

— Service Agent The Service Agent is responsible for communicat-
ing with the remediation environment on a node in order to support
its ongoing operation. This support includes receiving data from
the node to be stored in the database, providing authorized images,
and receiving TPM quote data. TPM quote data is compared to
authorized values stored in the database and used to validate both
the signature and signed hash in order to establish both node iden-
tity and integrity. The Service Agent is specific to the type of
node, therefore a different one must be implemented for each type
of node. Additionally, during execution, a separate Service Agent
object must be instantiated for each node being operated on.

— Conductor The conductor coordinates actions across multiple nodes.
This coordination includes the commencement of network boot ser-
vices and creation and execution of a Service Agent for each node
being remediated. It is also responsible for receiving events from the
service agents, logging data, and reporting the status of integrity
measurements from each node.
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These components will be described in greater deal in the following two
sections. Following these lower level descriptions the framework operation will
be described in order to illustrate how the framework satisfies the requirements
we have laid out.

3.2.2 Recovery Server

The Recovery Server is made up of a Network Boot Services Layer, which
provides network boot functionality for nodes, a Database layer, which pro-
vides repositories for node data, and an Application layer, which consists of
the operational logic of the framework.

The Network Boot Service Layer provides DHCP and TF'TP services to the
network and provides out-of-band remote administration functionality to the
application layer using Intel AMT. The DHCP and TFTP servers are required
to support the PXE network boot process. The DHCP server is configured to
statically assign IP addresses to nodes based on MAC address. This allows
the framework to establish node identity at the earliest stage and address
node uniqueness throughout the process. The TFTP server allows the node
to retrieve the Network-stage Bootloader, Trust-stage Bootloader, and the Re-
mediation Environment. These services should be enabled during operation
of the framework and disabled when the operation is completed. This lim-
its a potential adversary’s ability to gain information about the remediation
process when it is not being conducted. Out-of-band remote administration
functionality is required to remotely configure the node BIOS to conduct a
PXE boot on the next power cycle. This functionality is available in Intel’s
AMT and can be be achieved through the Simple Object Access Protocol
(SOAP) interface to the Intel Management Engine. Authentication is accom-
plished using a username and password stored for each node in the data layer.
AMT functionality is provided to the Application layer so that a node’s ser-
vice agent can conduct the BIOS configuration and system restart as part of
its remediation process. These capabilities allow for the initial stages of each
system operation to be automated. By automating the process of initiating
an operation on a node the Boot Service Layer partially fulfills Requirement
1.2 from 3.1, that the Framework be fully automated.

The Database Layer provides an interface to a database so the application
layer can store and retrieve data during the framework’s operation. The Data
Layer implements repositories for the different data required by the frame-
work. As previously stated this data includes node data, image data, and
measurement data. Node data includes MAC address, assigned IP address,
AMT credentials, TPM key data, and node type. Image data concerns data
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relevant to a particular restore image, such as the date it was cloned, the
network path to download it, and measurement hashes for each image. Mea-
surement data includes measurement hashes for the remediation environment
and boot chain. Measurement data is also specific to the type of node as
opposed to specific to a particular node, as with the image hashes.

Finally, the Application layer implements the operational logic of the Re-
covery Server. Its design is inspired by the Command Design Pattern defined
in [44]. The pattern has been modified with the addition of a conductor, which
is composed of a list of command objects and is responsible for executing each
command in its own thread. The Class Diagram in Figure 3.2 illustrates the
Recovery Server architecture.

t+commands: List<ICcommand>
<<Command Interfaces> *Run ()
+Thread Entry(ICommand cmd} ()
ICommand -

+AddInitCommand (agent:IServiceAgent,node:Node): void

Conductor

Execute () +AddMe asCommand (agent : IServicefgent, node :Node) : void

+AddCloneCommand (agent:IServiceAgent, node:Node,name: string): woid
A +AddRe storeCommand (agent: IServicelgent,node: Node, restorePoint:RestorePoint) : void
1
e e r e rrrrrrrrr e e, e —r ,—,——— - —-—-— -
1 | | 1
1 | | 1
L L !
InitializeCommand MeasureCommand CloneCommand RestoreCommand
+node: Node +node: Node +node: Node 4node: Node
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O 0 ? Execute () Execute ()
Node
+Id: int <<Receiver Interface>> RestorePoint
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+provider: NodeServiceProvider +diskpattern: List<Image>
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+nodeType: NodeType A
+GethAgent () : IServiceRgent
+GetSinit () : string |- -

NodeType-1 Agent |
NodeType-2 Agent |
— NodeType-3 Agent |
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Figure 3.2: Class diagram of the recovery server architecture

As shown in Figure 3.2, a Conductor object is composed of a list of com-
mands. It includes methods which allow various command types to be added
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to this list. It also provides a Run() method which executes each command.
As in the Command Design Pattern [44], the Command interface and its im-
plementations provide decoupling between the calling object and the actual
task logic. It also allows for the parameterization of the Service Agent (the
Receiver Interface, in Command Pattern terms). Therefore, implementations
of the Command interface are composed of a Service Agent, a node object,
and additional parameters as required. Service Agent objects include all of
the logic required to complete the various operations (Restore, Clone, Initial-
ize, and Measure) on a particular type of node, as dictated by the Service
Agent interface. Service Agent’s initiate an operation using Intel AMT which
commences the network boot process. Once the node has booted into the re-
mediation environment it establishes network communications with its Service
Agent in order to commence an operation. The Service Agent then supports
the node operation, providing the node with access to image data and veri-
fying quotes received from the node. The Service Agent also communicates
with the Conductor during operation by sending status events as well as a
completion event which contains the final verdict of the integrity verification
phase. The conductor then reports of the final status of its list of commands
to the user or to an existing situational awareness framework in use on the
network.

3.2.3 Node Software

The Remediation Environment is the environment in which all recovery related
activities are conducted on client nodes. It is an operating system which runs
entirely within a node’s memory. In addition to requiring Operating System
services in order to conduct remediation activities it also requires a credible
chain of trust so that any measurement or reporting conducted in the environ-
ment can be trusted by a third party. This chain of trust is achieved using a
CPU-based late-launch technique, such as Intel TXT, to create a DRTM and
extend a chain of trust from the DRTM into the remediation environment. In
order to provide a high level description of the Remediation Environment we
will first describe the network boot chain required to establish it. The net-
work boot chain is made up of a Network-Stage Bootloader and a Trust-Stage
Bootloader which together bootstrap the system from the NIC firwmare to
the Remediation Environment. Following this the required functionality of
the environment will be described in greater detail. Figure 3.3 provides an
illustration of the remediation environment and its associated boot chain.

As described, Intel AMT is used to configure the BIOS to conduct a PXE
boot following the next restart. AMT is also used to initiate the next restart.

33



3.2. Design

Node
@mediation Environmerh \
Attestations ( Measurement ] TSS
L Collector J
Authorized ( 1
Images L Recovery Agent J ™™
( A
Data Storage Trust Stage
Device Bootloader

I Network Bootstrap Network Stage
Network Boot Services ——
Program Bootloader

Figure 3.3: Design of Remediation Environment with supporting software

As part of the PXE boot process the NIC firmware retrieves and executes a
Network Bootstrap Program. As mentioned in 2.1.2, the Network Bootstrap
Program is small and only responsible for downloading further modules. In
our case it is part of the Network-stage bootloader which is in turn responsible
for downloading the Trust-stage Bootloader, the Remediation Environment,
and additional files required to support the late-launch. The Network-stage
Bootloader bootstraps the system from the PXE boot process executed by the
NIC firmware to the Trusted-stage Bootloader that initiates the late-launch
operation. The late-launch operation creates a DRTM which measures the
Trust-stage Bootloader itself, the Remediation Environment, and CPU specific
code modules used to support the late-launch. The hash values associated
with these measurements are stored in special TPM PCRs which can only be
extended by microcode associated with the late-launch.

The above process accomplishes two goals. First it utilizes the PXE pro-
cess to boot a node into an environment provided by the Recovery Server.
Secondly, it creates a chain of trust from a DRTM into the Remediation En-
vironment runtime. Provided the DRTM is trusted (reasons why it might
not be are covered in 6.1.2) then the remediation environment itself can be
trusted.

The Remediation Environment provides two main functions. One is as a
Recovery Agent which is responsible for carrying out operations on the node’s
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disk in order to clone and restore the node. The other is as a Measurement
Collector, which is responsible for extending PCRs with measurements from
additional elements, such as disk images accessed by the Recovery Agent, as
well as reporting system state, as represented by PCR values, to the Recovery
Server.

As mentioned, the Remediation Environment itself is an Operating System
running from memory. In order to act as a Measurement Collector the Re-
mediation Environment must have certain configuration details for the TPM
of the node it is running on. Additionally, the environment must have the
required libraries to interact with the TPM. On Linux these libraries are pro-
vided by TrouSers, an open source implementation of the TCG Software Stack
(TSS)[45].

3.3 System Operation

There are four principal node operations. These represent the four actions
which can be conducted on nodes through the trusted recovery architecture.
Node operations can be scripted to occur once the Remediation Environment
boots, this allows the activity to be automated following the network boot
process. This, along with the network boot process supported by the Recovery
Server, fulfills Requirement 1.2, that the Framework be fully automated. The
four classes of system operation will now be described in more detail in order
to illustrate the use of the recovery framework.

3.3.1 Initialize & Measure

Initialize and Measure operations support the framework by providing the
means to add new hardware and establish golden values for the BIOS and
trust-stage bootloader modules. An Initialize operation handles all tasks re-
quired when adding new hardware to the network. Primarily this involves
preparing the TPM to support the remainder of the framework’s operations.
Initialization activities occur within a generic Initialization Environment as
opposed to within a Remediation Environment. Once The TPM has been
initialized into the framework, all further operations occur through a node
specific Remediation Environment which is configured for the node’s particu-
lar TPM. Measure operations involve determining hash values for authorized
BIOS configurations, trust-stage bootloaders and the Remediation Environ-
ments. These hash values are then stored on the Recovery Server as golden
measurements.
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Prior to the Initialize operation the TPM should be enabled in the BIOS
and be in its reset and un-owned state. Once booted into an Initialization
Environment, ownership is taken of the TPM. This involves setting an Owner
and Storage password [29]. Next, a UUID, which will be used to identify the
AIK in the TPM, is generated. Following this an AIK is created and loaded
into the TPM NVRAM with the previously generated UUID. The products of
these operations are the UUID, the public side of the AIK, and data used by
the TPM libraries to facilitate TPM operations. These products are then sent
to the Recovery Server. The TPM public key is stored in the node repository
and used to verify the signature attached to quotes signed by that particular
TPM. The UUID and TPM library data are incorporated in the build of a
Remediation Environment specific to that node, so that the further TPM
operations can be conducted on the node.

Measurement operations are concerned with measuring the trusted sys-
tem state of the Remediation Environment so that this state can be verified
when conducting future operations. Principally, this state is determined by
the software modules in the chain of trust from the DRTM to the Remedia-
tion Environment runtime. These modules include the Trust-stage Bootloader
which enacts the late-launch procedure, Authenticated Code Modules associ-
ated with the late-launch procedure (the SINIT ACM), and the Remediation
Environment operating system files. As part of the late-launch procedure,
as outlined by Intel and implemented in tboot, hashes of these modules are
calculated with the resultant values being extended into specially designated
PCRs. This means that in order to measure the late-launch trusted boot
chain the TPM can be called on to generate a quote over these PCRs. This
quote data is then sent to the Recovery Server, which verifies the signature
using its knowledge of the TPM’s public AIK, and then stores the value in
the Measurement Repository.

The process to measure the BIOS unfolds similarly. In this case, the BIOS
and its configuration are stored in PCRs zero through seven [29]. A quote is
generated over these values, the signature is verified by the Recovery Server
and they are stored in the Measurement Repository. The distinction between
the measurement of the BIOS and the Remediation Environment is a key
aspect of the framework proposed by this research. As mentioned in 2.3.1,
a TPM quote involves a composite hash over a series of PCR values. As a
result, it is impossible to attribute a change in the TPM composite hash to a
specific PCR within it. By increasing the number of TPM quote operations
and decreasing the number of PCRs in each quote, a greater granularity into
system state is gained. However, as will be discussed in 5.2, TPM quote
operations can be computationally expensive. The Framework considers the
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BIOS and Trusted Boot Chain separately.

3.3.2 Clone

The Clone operation generates authorized disk images from a node in an
operational and trustworthy state. Images can be cloned either from the
entire disk or, more efficiently, at the partition level, by including only sectors
the filesystem is using. Once cloned, the image(s) are sent to the Framework
for storage. Images can be stored either on the Recovery Server or on a file
server elsewhere on the network. In parallel with the storage of the images,
the SHA-1 hash is calculated for each image. These values are used as golden
measurements with which to verify the images as they are used to restore a
node.

This operation satisfies Requirements 1.1 from 3.1, that the restoration
maintain system specific configuration and software. This is because an image
from an operational system preserves the software and all aspects of configu-
ration.

3.3.3 Restore

The final system operation, Restore, performs the actual remediation of the
node. The process carried out by the Recovery Server is shown in the se-
quence diagram in Figure 3.4 which depicts the Restore operation. While
the sequence conducted by the ServiceAgent in the diagram is specific to the
Restore operation, the other actions on the diagram are universal between
operations and therefore their explanation in this subsection is applicable to
all operations,

The client object in Figure 3.4 is responsible for interacting with the UL
When an operation is desired on a particular node a Node object is instan-
tiated with data from the Database Layer (not shown in figure). A Ser-
viceAgent object applicable to the node in question is also created. At this
point an Add<operation>Command(...) function is called on the Conductor.
The Conductor will create the appropriate Command and add it to its list
of Commands to execute. When the Client calls Run() on the Conductor
it will start Network Boot Services and call Execute() on each Command.
Each Command will then execute asynchronously. The Command in turn will
call the desired function on the ServiceAgent, in the case of Figure 3.4 the
Restore() function is called. At this point the remediation of the node will
begin.
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As is the case with all node operations, the ServiceAgent object conducts
the remediation. Each instance of a ServiceAgent uses high level node func-
tions provided by a NodeServiceProvider class to interact with a specific node
in the network. These high level functions include SendFile(), GetFile(),
GetQuote(), InitPXEBoot() among other actions. A ServiceAgent will ini-
tiate the process by calling InitPXEBoot() which will configure the node to
conduct a PXE boot on its next start up and execute a restart on the node
using Intel AMT. This will cause the node to boot using the Network Boot
Services provided by the Recovery Server and load the Remediation Environ-
ment. The Recovery Server will then send the applicable script to the node, in
this case a script which conducts a system remediation. As the node receives
the script it will, in parallel, extend its measurement into a PCR and write
it to the file system. Once the file has been fully received it will be executed.
The script will then conduct the remediation on the node.

The remediation happens in two phases. First, a node is restored to a
trusted image, secondly, a series of integrity metrics from the node are re-
ported on so that the Recovery Server can verify the remediation. The first
phase is relatively straightforward. The Remediation Environment retrieves
the applicable image(s) from the network. As the images are streamed over
the network and written to the disk they are, in parallel, hashed and extended
into a TPM PCR. These can then be verified at a later time. The order the im-
ages are streamed in is specific to the partition scheme used by the particular
node.

Once a node has been restored, its integrity must be verified by the Re-
covery Server. This verification is vital because, if successful, it allows the
operator to trust critical equipment to behave as expected. The integrity of
a node following remediation is a function of the integrity of the Remediation
Environment and its trusted boot chain, the integrity of the disk images re-
stored to, and the integrity of the underlying BIOS firmware which persists
following the remediation. As the process of assessing the integrity of these
elements on a node is crucial to the Trusted Recovery Framework it is covered
in some detail.

Verification Phase

The Recovery Server conducts the Verification Phase. That is, using the
golden measurements stored in the Measurement and Image Repositories, the
Server is responsible for verifying the integrity of a node following remediation
and reporting the status of the verification to the network operator.
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While the TPM quote process was briefly outlined in 2.3.1, it will be
described again here in terms of the proposed Framework in order to make
the subsequent sections more clear. A TPM quote is composed of a composite
hash derived from a set of PCR values, some additional data specific to the
quote, and a signature generated using the AIK. To prevent replay attacks,
the quote also includes a nonce provided by the remote verifier, in this case
the Recovery Server. Therefore, when conducting remote attestation, the
Recovery Server generates and sends a psuedo-random nonce to the node to
be verified. The node sends a message to the TPM with the nonce, requesting
it quote a designated set of PCRs. The quote is generated on the TPM itself
and signed using the private AIK, which is stored on the TPM NVRAM and is
not accessible outside of the TPM. The Recovery Server then uses the public
AIK to verify the quote data and the identity of the node that signed it, as
the AIK is unique to the TPM. It also verifies that the nonce contained in
the quote matches that which it sent initially and finally, verifies that the
composite hash of PCR values matches a golden value held on the Recovery
Server. As a consequence of the above process, provided both the signature
and nonce associated with a quote are verified, the Recovery Server can trust
the quote data is an accurate representation of the current node state. This is
important because as stated in our threat model in 2.2: both the network and
the node prior to the remediation are not trustworthy. The remote attestation
process allows trust to be reestablished in the node.

The Framework conducts the verification in three stages, each identifying
certain aspects of the remediation process. Stage one verifies the disk images
and any other elements received over the network, stage two verifies the BIOS
firmware and its configuration, and stage three verifies the Remediation En-
vironment and the Trusted Boot Chain. As elaborated on in 3.3.1, the TPM
quote process and its associated verification are expensive operations. As a
result the above three stages were chosen as a compromise between added
granularity in detecting mis-configuration or tampering with the remediation
process and increasing the resources required to recover the system.

Any source images used in the restoration as well as any additional inputs
which may also be transferred are also susceptible to manipulation by the
attacker described in our threat model. This means that they must be verified
by the Recovery Server in order to trust the node following restoration. This
verification differs from the verification of the Remediation Environment as
the inputs to be measured are very likely to change independently during the
operation of the network, for example, as a result of software updates. To
accommodate these changes the Recovery Server maintains records of golden
measurements for all potential inputs, be they disk image hashes or hashes
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of other data sent during the remediation. During the verification phase,
the Recovery Server calculates its own composite hash based on its record of
golden measurements, in the same fashion as the TPM does when conducting
the quote (as seen with the TPMCompositeHash object in Figure 3.4). This
allows the expected value of the TPM quote to be created dynamically based
on what data was sent to the node during the operation.

The second aspect to be verified is the BIOS. This is important because
the BIOS configuration may have been changed in such a way as to make
the node more vulnerable. The BIOS may also be infected with a bootkit
(as detailed in 2.1.3) which would not be addressed by the remediation pro-
cess incorporated in this framework. As a result of the late-launch process
the Remediation Environment is both separate from and protected from the
system state previous to the late-launch. This makes it an ideal environment
for measuring the integrity of the BIOS. While nothing is done to remedy the
BIOS itself in this framework, it is capable of detecting changes. The integrity
of the BIOS can then be signalled to the network operator, allowing them to
make an informed security decision.

The final aspect verified is the Trusted Boot Chain & the Remediation
Environment. This verification is vital as the Remediation Environment itself
must be trusted in order to trust the outcome of the remediation. Addition-
ally, the chain of trust from the DRTM, as captured by the Trusted Boot
Chain measurements, must be verified too. Although the source of the mod-
ules that make up the Trusted Boot Chain and the Remediation Environment
is the Recovery Server itself, they are transferred over the network, and as
outlined in 2.2, the attacker has control over the network. The Trusted Boot
Chain and the Remediation Environment are verified by comparison to the
golden measurement stored on the Configuration Management Server. If this
verification is successful we now trust the Remediation Environment to reli-
ably report on the subsequent verifications, that of the elements used in the
restoration and of the BIOS firmware.

Each verification is carried out in sequence following the restoration of the
node, as depicted in Figure 3.5. If any verification fails the sequence ends and
the failure is indicated to the operator. Since the restoration activities happen
prior to the verification sequence, this failure does not necessarily mean that
the node is not operational. This allows the operator the option of accepting
the risk of returning the node to operation in order to meet service demands
despite a failed verification process.

Following the verification phase the node is rebooted. On the Configura-
tion Management Server a completion event is sent to the Conductor object,
which is then, in turn, responsible for reporting the outcome of the operations
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Figure 3.5: The verification phase control flow

to the Client. On the node, the BIOS reverts to its previously configured
boot device order, which means the node will boot from its newly restored
hard disk. The node is now operational and can be trusted to the extent
to which the verification phase was successful. The result of the verification
phase indicates to the network operator the degree to which the remediation
process has been successful at addressing persistent malware or an adversary
who attempts to interfere with the recovery process, the two principal threats
identified in 2.1.2 and 2.1.3. When it comes to rootkits & bootkits there are
three broad cases:

1. The rootkit is remediated but not detected
2. The bootkit is detected but not remediated
3. The bootkit is not detected or remediated

These cases are mapped to various types of root and boot kits in table 3.2.
The proposed framework does not achieve the ideal case of both detecting
and remediating a rootkit or bootkit infection. This stems from the unique
priorities of SCADA systems. The timely restoration of supervisory control
over an Industrial Control System trumps other concerns, such as forensic
investigation. In order to realize this, the framework prioritizes restoration
activities over integrity measurement, therefore the best case outcome is for
the framework to have removed malware without having detected it. The next
best scenario is for the framework to detect a bootkit but not remediate it.
This occurs when the bootkit resides in the BIOS firmware. In this case, the
BIOS integrity is measured as part of the verification phase, and the result
is reported to the network operator. At this stage the network operator is
able to investigate further and respond accordingly. The worst case scenario
occurs if an adversary manages to install a bootkit in system firmware which
is not measured as part of the verification phase. Potential locations include
the NIC firmware, hard drive firmware, or even, potentially, the Intel ME
firmware. These techniques indicate a highly advanced, likely nation-state
level, adversary. In this case the bootkit is neither detected nor removed.
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Table 3.2: The extent to which potential rootkit or bootkits are addressed

H Rootkit /Bootkit Location Detected | Remediated H
OS (User-mode) No Yes
OS (Kernel-mode) No Yes
Boot Sector (eg. MBR) No Yes
BIOS/UEFI Yes No
System Firmware (other than BIOS) | No No

The framework is also resilient to manipulation by an adversary. As ex-
plained in 2.2 the adversary is given full control over the network. This allows
them to interfere with communications between the node and server by creat-
ing, injecting, or modifying packets in the communication stream. Using this
ability the adversary could corrupt modules and images in transit in order to
conduct a denial of service attack by preventing the remediation from occur-
ring. The framework is incapable of countering a denial of service attack of
this nature. However, if the adversary attempts to manipulate the process in
order to maintain persistence on a node following remediation the framework
will necessarily detect them. Attempts to modify the Trusted Boot Chain or
Remediation Environment will be detected during the first stage of the veri-
fication phase. The image files in transit are equally resistant to this type of
manipulation. Since the integrity hash data for the images are calculated on
the node, within the Remediation Environment, as long as the first stage of
the verification phase was successful the image integrity measurement can be
relied upon.

Table 3.3 summarizes the possible outcomes of the verification process
and their implications. The first column lists some attack scenarios. The next
three columns detail whether each stage of the verification process has re-
sulted in a pass (P) or fail (F'). These stages verify, from one to three in order,
the late-launch trusted boot chain and Remediation Environment, all further
inputs to the restoration process such as images, and the BIOS firmware. The
final column lists the implications the operator can infer from the different
results. The exact effects of an adversary’s manipulation of network commu-
nications are difficult to enumerate as potential adversary actions vary widely.
In general, a denial of service will leave the node not operational. Importantly,
the framework prohibits any manipulation of the process resulting in all three
stages of the verification phase being successful. More subtle techniques may
not impede the restoration itself, but will cause the verification to fail, leaving
the node untrustworthy.
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Table 3.3: Attack scenarios and their implications on node availability and
integrity

H Scenario \ 1 ‘ 2 ‘ 3 ‘ Implications H

1. User-mode Rootkit | P | P | P | Node is operational and trustworthy
in OS
2. Kernel-mode Rootkit | P | P | P | Node is operational and trustworthy
in OS
3. Bootkit in Boot Sec- | P | P | P | Node is operational and trustworthy
tor
4. Bootkit in BIOS P | P | F | Node is operational but not trust-
worthy BIOS has been changed and
potentially contains a bootkit

5.  Bootkit in other | P | P | P | Node is operational but not trust-
Firmware worthy. Note: This framework is in-
capable of detecting bootkits in sys-
tem firmware other than the BIOS.
This scenarios is indistinguishable
from scenarios one through three.

6. Adversary manipu- | F | F | P | Node is not operational or trustwor-
lates network communi- thy.
cations

3.4 Design Summary

Section 3.1 provides a representative model of the SCADA networks we seek
to recover. It also outlines the threat model and the ramifications on the
design of a trusted recovery framework. As a result of those two models a list
of requirements for the trusted recovery of SCADA networks was enumerated.
This chapter has presented a design for a Trusted Recovery Framework for
SCADA systems. Table 3.4 presents a summary of the requirements stated
in 3.1 and lists which aspects of the design presented in 3.2 satisfy them. As
can be seen, this framework satisfies all of the stated requirements. The next
chapter will describe the implementation of a proof-of-concept framework for
a target system used at sea in the Royal Canadian Navy.
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Implementation

In the first chapter, we described the importance of being able to recover
SCADA networks following a computer network intrusion. In the second chap-
ter we expanded on the problem of recovering computer networks in a trusted
manner when in the presence of an adversary and their malware. We also
introduced the concept of Trusted Computing and provided background on
hardware security capabilities which support it. The third chapter proposed
a design for a Trusted Recovery Framework which is capable of addressing
the problem of recovering a SCADA network following a compromise. This
chapter will describe a proof-of-concept implementation of the framework for
the Integrated Platform Management System (IPMS). IPMS is the SCADA
network used by the Royal Canadian Navy to supervise the machinery plant of
several classes of warship. While both the maritime and military environments
are unique, SCADA networks are commonly deployed in unique conditions,
and the general models described in Section 2.1 and provided by NIST are
general enough to apply in these environments [4]. Therefore, for the pur-
poses of validating our proposed design of a Trusted Recovery Framework
for SCADA systems, we consider IPMS a representative target system. This
proof-of-concept implementation will be used to validate the proposed design
in the following chapter.

The first section of this chapter will provide a brief description of the IPMS
network as deployed on the Canadian Patrol Frigate(CPF). Following this it
will describe the laboratory configuration used to develop and validate the
framework. The final two sections will contain details of the implementation
for the node-based Remediation Environment and the Recovery Server.

4.1 The Integrated Platform Management System

IPMS is a typical SCADA network in that remote sensors, actuators, and
machinery controllers are interfaced to it through Remote Terminal Units
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(RTUs). The RTUs are connected to 2 redundant TCP/IP based networks.
These networks then connect to each of the SCADA nodes. Nodes come in
several types, including: consoles, large screen displays (LSDs), and local oper-
ating panels (LOPs). IPMS also provides numerous ethernet jacks throughout
the ship for portable operating units (POUs), essentially laptop computers,
to be connected. The consoles, LSDs, LOPs, and POUs run the IPMS soft-
ware which provides the graphical interface for control and monitoring of the
machinery plant. Technicians use the IPMS interface to start or stop ma-
chinery such as pumps, generators, or the gas turbine engines. Operators use
the interface to make changes to the ordered speed or propeller pitch while
maneuvering the ship. The interface includes the ability to monitor the sta-
tus of the propulsion, electrical, auxiliary, and damage control systems. In
addition, the system also provides a damage control incident board which is
used to coordinate the damage control efforts of numerous outstations during
shipboard emergencies. For these reasons IPMS is vital to operations onboard
a CPF; ship’s staff must be able to trust IPMS in order to operate effectively
at sea.

At the network level, all of the IPMS nodes sit within a dedicated subnet
on several redundant networks. At a hardware level the nodes are ruggedi-
zed versions of commodity computer hardware which include modern Intel
chipsets, UEFI firmware, and NIC functionality. Most, but not all, nodes
support Intel AMT and its remote administration capability. At the software
level IPMS runs within the Windows Operating System, including versions
XP, 7, and 10. For the purpose of development and validation an experimen-
tal environment which consisted of representative and actual IPMS hardware
was established.

4.2 Development & Validation Environment

The proof-of-concept implementation was developed using actual and facsimile
hardware. The IPMS vendor and project office made several laptops (POUs)
available for testing and development. In order to spare this hardware the
wear of prolonged power cycles and disk writes during testing, a consumer
grade laptop with comparable hardware and software was used during stages
of both development and validation. The IPMS laptop used was a DELL
Latitude E6430 ATG, a semi-rugged version of the Latitude line of Dell laptops
running Windows XP. The non-IPMS target was a Lenovo Thinkpad T420
running Windows 7. While the Thinkpad is not used in IPMS, it has equivalent
hardware security capabilities, in particular a TPM, a chipset with supports
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late-launch, and Intel AMT. The Recovery Server was developed and tested
on a System 76 Lemur laptop. System images were stored on an external solid
state drive which could accommodate large images sizes and also be secured
in accordance with IPMS handling policies.

The development targets and the server were either connected on a point-
to-point basis for testing against one target or through an Ethernet switch to
test simultaneous node operation. This set up simulates either a static infras-
tructure where the Recovery Services are provided by an existing node, such
as a Configuration Management Server, or a scenario in which the Recovery
Server is connected to the network, or partitions of the network, only when
supporting a recovery effort.

4.3 Recovery Server

The Recovery Server was developed in a Linux environment using C# and
the Mono project, an open source implementation of the .NET Framework.
While minimal consideration was given to portability in the course of this re-
search, the cross-platform nature of the Common Language Runtime means it
is likely straightforward to port aspects of the server to Windows. To stream-
line debugging the server was given a Command Line Interface (CLI) but the
framework is intended to be incorporated into existing node management soft-
ware or deployed with a more user friendly interface. Using the CLI of the
proof-of-concept implementation, a user is able to list nodes and their details
as well as call for nodes to be cloned or restored.

4.3.1 Network Boot Services

Section 3.2.2 provides an overview of the services required to support the
automated network booting of nodes. These services include Intel AMT func-
tionality and PXE (DHCP and TFTP).
The Recovery Server’s application layer accesses Intel AMT features through

a wrapper class, which was designed to provide high level access to various
node functions, including Power & Boot Operation. This wrapper class uses
Intel’s AMT Software Developer’s Kit (SDK) to provide Intel AMT function-
ality. The Intel AMT SDK provides a High-level Application Programming
Interface (API) for the Intel AMT [46]. This API provides direct support for
all AMT features in C# as well as a COM interface for a handful of features
in other languages [46]. The Recovery Server only required support for basic
Boot & Power operations which are readily implemented using the SDK.
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The Recovery Server was programmed to start and stop a third party PXE
server as required during system operations. In this case, the PXE server
used was dnsmasq [47]. The framework utilizes only basic DHCP and TFTP
functionality and the required services could potentially be implemented into
the framework with additional effort, removing the requirement for 3rd party
software. Dnsmasq provides a lightweight and easily configurable PXE server.
The DHCP server was configured to provide static IP addresses to the nodes,
based on MAC address. These IP addresses correspond to the IP address
normally assigned to the node in IPMS’ operation. The TFTP server was
configured to serve the PXELINUX bootstrap program to the node during the
PXE boot process. PXELINUX will be discussed in Section 4.4.1.

4.3.2 Data Layer

The Data layer of the Recovery Server includes interfaces for the required
data repositories. Each interface specifies the operations required for the par-
ticular data in each repository. In this implementation the interfaces were
implemented using a SQLite database [48]. SQLite is a lightweight database
engine designed to run within the application process. The SQLite library is
distributed as a single file which is linked in to the application program dur-
ing compilation. Given its lightweight nature and the ease of configuration
it was ideal for this project. The data layer also makes use of Dapper [49],
an Object-Relational Mapping library. Dapper allowed for the data stored in
the repositories to mapped to data objects within the application layer. This
greater simplified the act of accessing and storing data in the framework.

4.3.3 Application Layer

As seen in Figure 3.2 the application layer is straightforward to implement in
an object-oriented language. In addition to the implementation of the classes
specified in Figure 3.2 further classes were included to store Node and Restore
Point data. Node objects provided a straightforward way to encapsulate and
pass the data for a particular node through the software. Restore Point objects
encapsulate the resulting image locations and metadata associated with a clone
operation. Therefore, when a user requests a node be restored to a certain
restore point, a Restore Point object can be passed to the Restore command
along with a node object representing the node to be restored.
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4.4 Node-based

This section details the implementation of the node-based portion of the
Trusted Recovery Framework. This includes the network stage bootloader,
the trust stage bootloader, and the remediation environment.

4.4.1 Network Stage Bootloader

The network stage bootloader is required to bootstrap from the NIC firmware
into the trust stage bootloader. For this project PXELINUX [50], was chosen as
the network stage bootloader. PXELINUX is provided under the GNU General
Public License (GPL) Version 2 and provides the ability to boot Linux from a
PXE server. It consists of an image, the Network Bootstrap Program, which
in turn grabs an intermediate bootloader which is in turn used to boot the
operating system. In our case it is used to chain load the trust stage boot-
loader. PXELINUX can be configured to boot nodes to different images based
on their MAC or TP address. The framework uses this feature to boot each
node into an operating system based on its type. This allows the framework to
accommodate nodes with different hardware configurations. PXELINUX down-
loads the trust stage bootloader, supporting modules, and the remediation
environment into memory before executing the trust stage bootloader.

4.4.2 Trust Stage Bootloader

The trust stage bootloader is responsible for conducting the late-launch pro-
cedure to execute the remediation environment. For this implementation
Trusted Boot [51] (tboot) was used. Tboot is an open source bootloader
which uses Intel TXT to launch either a hypervisor or a Linux kernel. It
makes use of an SINIT ACM provided by Intel to conduct a late-launch in ac-
cordance with a user defined Launch Control Policy. Following the late-launch
it calls kexec on the Remediation Environment’s kernel, turning control over
the Remediation Environment.

4.4.3 Remediation Environment

As mentioned, the Remediation Environment is an operating system which
has been configured and scripted to support the remediation process. In this
implementation, a custom kernel and initial RAM disk were built using Buil-
droot [52]. Buildroot is a cross-compilation tool for creating embedded Linux
systems. It provides a ncurses menu through which the system can be config-
ured to meet a variety of needs. It allowed the Remediation Environment to
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be built with a footprint of less than 20MB. This small footprint is valuable for
several reasons. First of all it greatly decreases the amount of time required to
both stream the images over the network and the time required to calculate
the SHA-1 hash. An added benefit of the small size is that it can reliably
run on memory constrained systems, as are likely to found on ICS networks.
Buildroot also offers a build system which includes numerous packages and
methods of adding new packages to the system. It also allows a custom root
file system overlay to be specified which is then reflected in the resultant sys-
tem file system. Finally, it includes support for many architectures in addition
to x86__64 which means the recovery OS is extensible to additional hardware.

The kernel is Version 2.4 of the Linux kernel. The only customization
to the kernel was the inclusion of kernel modules to support the TPM. The
TCG_TPM module is required for basic TPM communications, additional mod-
ules, such as TCG_NSC, TCG_ATMEL, and TCG_INFINEQN, are required to support
the different vendor implementations of the TPM. This allows one kernel to
be compatible with multiple types of hardware, provided they are of the same
CPU architecture. The initial RAM disk, however, was built for a specific
node. This is because the library required for TPM operations, TrouSers,
must be configured for the node’s specific TPM.

Figure 4.1 depicts the system and the programs which it is composed of.
Bash was used to script the Initialize, Measure, Clone, and Restore operations.
Initially ash, a lightweight linux shell included with Buildroot, was used. Un-
fortunately it did not support process substitution, which was required to pipe
the output of one command to the input of two (or more) other commands.
This operation was required to support parallelism.

File and data transfer was handled using netcat, a simple program for
sending and receiving arbitrary data through TCP connections. TPM op-
erations were supported by TrouSers, tpm-tools, tpm-quote-tools, and
pcr-extend. As mentioned in the previous chapter, TrouSers is an open
source implementation of the TCG Software Stack (TSS). It provides tcsd a
user space daemon which provides access to TPM commands. TrouSers in-
cludes the tpm-tools package and is used by tpm—quote-tools and pcr-extend.
Tpm-tools provides basic TPM administration functions that allow the frame-
work to take take ownership of the TPM and configure it for use. The
tpm-quote-tools package extends this functionality with programs to gen-
erate AIKs as well as to generate and verify TPM quotes. Pcr-extend is a
small software tool which calculates the SHA-1 hash of predefined data and ex-
tends a user designated PCR with the result. In the course of implementation
pcr-extend had to be modified to read and hash data from standard input as
opposed to from a file. While TrouSers and tpm-tools were included as pack-
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ages in Buildroot, custom make instructions had to be developed in order to
compile tpm-quote-tools and the modified pcr-extend for the remediation
environment. Most of the configuration changes were required because the
remediation environment makes use of ulibe, a small C library for embedded
systems, as opposed to the standard C library.

/ Remediation Environment \

( Measurement Collector A

Attestations ( netcat ]—[ tpm-quote-
L L tools

/ Recovery Agent \
Callbback | | TrouSers TPM

Script

Images ——————>t————————-] pcr-extend

\- %

Figure 4.1: Implementation of the remediation environment

Storage
Device

ntfsclone

Partition

Now that the software which makes up the Remediation Environment has
been described, a short description of the Restore operation from the point of
view of the node will be provided. Once the Remediation Environment has
finished booting the init system executes a series of scripts to start essential
services, including the tcsd daemon. At this point the node has acquired an
IP address from the DHCP service on the Recovery Server. As mentioned, this
IP is statically assigned based on the hardware address. The final script exe-
cuted as part of system initialization uses the node’s IP address to determine
a port number to call back to on the Recovery Server. The node initiates a
TCP connection on the Recovery Server at the determined port number using
netcat and begins to receive a script. Since the script is received following
the node’s callback to the server, we refer to it as the callback script. As
the callback script is received its data is piped to both pcr-extend and to a
file. Pcr-extend reads the script from standard input and generates a SHA1
hash which is extended into a TPM PCR. Once the transfer is completed the
script is executed. Since a record of the script now sits in a PCR, it can be
verified during the verification phase. In this example we are describing the
Restore operation, so the callback script undertakes the Restore operation.
It first receives a compressed image of the MBR from Recovery Server, decom-
presses it, and writes it to the storage device using dd. As with the previous
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network transfer, the data received from the Recovery Server is also piped to
pcr-extend so it can be recorded in a PCR. Overwriting the MBR allows the
partition table to be reestablished (if damaged). Once the partition table is
reestablished, New Technology File System (NTFS) partitions can be restored
using ntfsclone. Ntfsclone creates and writes partition images based on
which blocks contain data allocated by the file system, as opposed to cloning
the entire disk block by block. This allows both the clone and restore proce-
dures to be conducted considerably faster. The choice of using ntfsclone is
discussed at greater length in 6.1.2. The node iterates through this process
for each partition on the disk. Once completed the node has been restored
and the verification phase begins. The verification phase has been treated at
length in the previous chapter. It suffices to say that tpm-quote-tools is
used to generate TPM quotes using fresh nonces provided by the Recovery
Server. As previously described, three quote operations are conducted, one
for each stage of the verification process. The callback script and each image
used during the restoration have all been measured and extended into PCRs
on the node. Since the Recovery Server knows what script it sent to the node
and the hashes of each image provided, it can dynamically determine the au-
thorized quote value for the second stage of the verification phase. Following
the verification phase the system is rebooted into its recovered state.

This chapter has described a proof-of-concept implementation of the frame-
work design presented in the previous chapter for IPMS. It first described
the target system, IPMS, and the environment in which the implementation
was developed. It then enumerated the various software and libraries which
were used to implement the framework and described how the implementation
worked in practice. The next chapter will analyze the proof-of-concept imple-
mentation in terms of the design requirements derived in Chapter 3 and the
deficiency outlined in Chapter 1. Through this analysis it will show that anal-
ysis of the implementation described above demonstrates that the proposed
Trusted Recovery Framework satisfies the aim of this research.
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Chapter 1 introduced the problem of recovering SCADA systems to a trust-
worthy state following a computer security incident and described how this
research aims to address the problem. Chapter 2 elaborated on the threat
posed to potential recovery frameworks by malware which interferes with the
recovery process and bootkits installed at low levels on the system. The sec-
ond chapter also described hardware security capabilities embedded in modern
computing systems and how they can establish the trustworthiness of system.
Chapter 3 presented the design for a framework which leverages those trusted
computing capabilities in order to restore a SCADA system to a trustwor-
thy state. Chapter 4 detailed a proof-of-concept implementation for a rep-
resentative SCADA network, the Integrated Platform Managment System.
This chapter will argue that the design for a Trusted Recovery Framework
for SCADA systems presented in Chapter 3 satisfies the aim of this research
stated in Chapter 1. First, the implementation described in Chapter 4 will
be shown to meet the high-level requirements outlined in Table 3.1. This will
show that the proof-of-concept framework is an accurate implementation of
the proposed design. Following this the implementation will be analyzed in
terms of the Statements of Deficiency and Aim to demonstrate how the design
for a Trusted Recovery Framework is capable of leveraging inherent embed-
ded hardware security capabilities in order to recover SCADA systems to a
trustworthy state and consequently, that the aim of this research has been
satisfied.

5.1 Analysis

The analysis begins by empirically demonstrating how the implementation sat-
isfies each of the high level design requirements enumerated in tables 3.1 and
3.4. This both establishes that a functional implementation of the proposed
design is possible and that the proof-of-concept system is a genuine represen-
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tation of the design. Once this has been established the proof-of-concept is
evaluated against the stated deficiency and the aim of this research.

5.1.1 Verification of the Proof-of-Concept Implementation

Tables 3.1 and 3.4 contain the high level requirements and how aspects of the
design seek to address them. They are included again in Table 5.1 for reference.
Testing has shown that the proof-of-concept implementation realizes each of
these. While in many cases it is evident from the description of the technique
that the requirement is satisfied, for completeness each was specifically tested
and is covered in this section.

Table 5.1: Trusted Recovery Framework Requirements (Repeated from 3.1)

H No. ‘ Requirement H
1.1 | Restoration must maintain system specific configuration and software
1.2 Framework must be fully automated
1.3 Framework must address persistent malware
14 Framework should fail to an operation state
2.1 Framework must not trust network
2.2 Framework must not trust node software

Requirement 1.1, that system specific configuration and software must be
preserved during recovery was trialed using both the IPMS POU and the
facsimile target. In testing, the implementation’s technique of copying the
node’s MBR and then creating NTFS images of subsequent partitions during
the clone operation was able to preserve the system state. Once the partition
table is reestablished and the NTFS partition images have been written to
each partition the system state is identical to that of the system when cloned.
This was verified during testing by observing that ntfsclone was behaving as
expected and the newly restored system reflected that desired system state.

Requirement 1.2 stated that the framework must be fully automated. This
is easily verified in testing. Once launched from the Recovery Server CLI, any
operation requires no further operator input, with the exception of the Initial-
ize operation which requires the node specific remediation environment to be
built on completion. This action is taken outside of the described framework
and involves using Buildroot to generate an initial RAM disk which includes
node specific tcsd library files generated during the TPM ownership process.
This step is required so that subsequent node operations can make use of the
TPM.
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Requirement 1.3 requires the framework to address malware persistence at
the lowest level possible. The design addresses this differently depending on
the level in question. For the same reasons that system specific configuration
and software are preserved by the process, bootkits which reside on the storage
disk, either in the boot sector or operating system, are necessarily overwritten
as part of the restore procedure. This is seen during testing when corruptions
added to the MBR or changes to the operating system during testing are
negated by the Restore operation. During testing it was confirmed that the
framework is also capable of detecting configuration changes to the BIOS. This
was verified by observing the BIOS verification stage fail following changes to
various BIOS settings. This simulates detection of a BIOS bootkit as changes
to the BIOS, be they configuration changes or the installation of a bootkit,
will both end with a resultant change to a PCR value which will cause the
verification to fail. This last supposition only holds if the BIOS in question
implements total code coverage in its trust chain. If aspects of the BIOS
are not measured as part of the trusted boot process, then modifications can
potentially evade the verification process. Addressing issues with individual
BIOS implementations is outside the scope of this research.

Requirement 1.4, that the framework should fail to an operational state
was also verified during testing. During testing it was observed that as long
as disk write operations complete the node will be operational, to the extent
that an adversary has not interfered with its availability.

Requirements 2.1 and 2.2 are based on what facets of the network the
framework can not rely on to bootstrap trust. In order to verify that the im-
plementation can operate within these constraints we will examine the tech-
niques the framework uses to generate integrity. While the previous require-
ments (1.1-1.4) were verified empirically, we present a rational argument for
the satisfaction of requirements 2.1 and 2.2. This is because empirically veri-
fying these properties is a prohibitively complex and onerous task. To verify
that an adversary with control of the network or a node is unable to spoof
the results of the verification phase requires an implementation of adversarial
techniques which attempt to spoof authorized values on a compromised node.
Such techniques will need to be implemented for an adversary on the network
as well as on the node. It must then be argued that the techniques provide a
sufficient representation of potential attacks to the system.

As opposed to this approach, we accept the results of Parneo, et al and
Maene, et al when evaluating trusted computing technologies and architec-
tures [27][43]. We then argue that the proof-of-concept system implements
each of the trusted computing technologies in such a way as to provide a
credible guarantee of integrity.
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The reader is reminded of the formal specification of an integrity chain in
equation 2.1. That is, that the integrity of a level in an integrity chain is a
function of the integrity in the preceding level and the result of a verification
function over that level. The integrity of the root level is assumed. The
framework will be analyzed using this equation in order to formally qualify
the integrity of the recovery process. Since the root level, level 0, must be
assumed to be trustworthy it is the starting point of this analysis. In Trusted
Computing, level 0 is the Root of Trust for Measurement. The proof-of-
concept implementation uses Intel TXT to create a DRTM. This DRTM is
created when the microcode associated with the late-launch CPU instruction
measures the SINIT ACM. Since the SINIT ACM is digitally signed by the
vendor, it is also verified by the CPU. In this way the DRTM is created.
The SINIT ACM, in addition to implementing certain protections, measures
the tboot boot loader before passing execution back to it. Tboot measures
the Remediation Environment kernel and initial RAM disk, completes the
protection measures, and passes execution to the kernel. There is one more
condition that must be met in order to ensure the integrity of the remediation
environment. The requirements stipulate that the framework must not rely
on the integrity of either the network or the node prior to the operation. The
integrity of the node is compromised because of our threat model and the
attacker’s access described in our threat model. The integrity of PXE boot
process, specifically the network-stage bootloader is potentially compromised
by an attacker on the network’s ability to man-in-the-middle its transfer. For
the purposes of this research, the protections implemented by Intel TXT are
sufficient to isolate the integrity chain from the DRTM up to and including
the remediation environment from the system state prior to late-launch. If
they were not, equation 2.1 does not hold and the integrity of the recovery
can not be verified. The extent to which Intel TXT can be relied on will
be discussed in 6.1.2. The first stage of the verification phase attests to the
integrity of the remediation environment and its integrity chain through the
late-launch process. Once this integrity has been established the remediation
environment can be trusted to establish the integrity of subsequent elements.
The process by which subsequent aspects of the restoration are verified has
been previously described in detail in this paper. The proof-of-concept system
implements the verification phase control flow depicted in figure 3.5 with the
use of goto statements on the result of a failed verification stage. Only once all
three stages are verified is the trusted status variable set to true. Additionally,
events are triggered for each stage on both successful and failed verifications.
In this way an accurate picture of the state of a node during the restoration
process is captured by the Recovery Server.
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5.1.2 Validation of the Design

Now that the proof-of-concept implementation has been verified against the
design requirements generated in section 3.1 we seek to validate the design
against the stated aim of this research. The stated aim of this research was
to design a framework which leverages embedded security features in mod-
ern computer systems in order to conduct a trusted recovery of a SCADA
system following a computer security compromise. This aim was expanded
upon with a description of relevant characteristics of SCADA networks and
concerns specific to the recovery of SCADA systems. From these descrip-
tions and an associated threat model, a set of formal high-level requirements
were generated. As a result, the set of high level requirements flow directly
from the stated aim of the research and must be satisfied in order for the
aim itself to be achieved. In the course of this research a Trusted Recovery
Framework which utilized security capabilities embedded in modern computer
systems was designed in order to meet those requirements. This design was
realized in a proof-of-concept implementation for a representative SCADA
system, IPMS. In the previous subsection the proof-of-concept implementa-
tion was verified against the design requirements using both empirical testing
and rational arguments. This implies that the proof-of-concept is an accurate
implementation of the proposed design. Consequently, the implementation is
validation that the design for the Trusted Recovery Framework satisfies the
aim of this research.

5.2 Performance Characteristics

Following the validation activities, the performance of the architecture in the
laboratory configuration was examined. Given the emphasis on availability
in SCADA networks, the ammount of time required to conduct a restore
operation was measured. Broadly speaking, the length of this operation is
composed of the time required to boot the remediation environment, restore
the authorized image, and conduct the verification phase. Of these steps, the
restoration phase takes the longest. The length of time required to restore a
disk image is a function of the size of the disk image and the speed that the
process can attain. The size of the image is greatly influenced by the choice
of using ntfsclone to create an image of the allocated portion of the New
Technology File System (NTFS) partition which does not include unused disk
space. The dramatic change in size can be seen in tables 5.2 and 5.3, which
depict the actual disk space utilized on the two target nodes. Table 5.2 shows
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Table 5.2: Dell E6430 ATG Disk Utilization
Partition 1
‘ Size ‘ Utilization Notes

298 GB 8.4 GB Windows XP +
IPMS Software

Table 5.3: Thinkpad T420 Disk Utilization

Partition 1 Partition 2
Size Utilization | Size \ Utilization | Notes
105 MB | 26 MB 298 GB 15.6 GB Windows 7 64
4+ no additional
software

that given modern system disk sizes, the operating system and IPMS only
occupy a small fraction.

While potential drawbacks of using ntfsclone are discussed in 6.1.2, it
is extremely beneficial when considering the time required to restore or clone
a node. The difference in speed this allows compared to the use of dd was
bench marked using the Thinkpad T420 with a Windows 7 installation which
occupied roughly 15 GB of the 300GB hardrive. The dd program took 4:05
hours to clone and compress the disk and 1:15 hours to uncompress and restore
the disk. After compression the image created by dd was 54 GB. Conversely,
ntfsclone took 6:32 minutes to clone the Windows partition with a resultant
image size of 14 GB and 6:11 min to restore the image. While compression
was likely the limiting factor in the use of dd, the benefits of ntfsclone are
clear.

This data was captured with the node connected directly to the Recov-
ery Server and the image being stored directly on the Recovery Server’s solid
state drive. The trusted recovery framework performance was measured in
the development configuration, with nodes connected to the Recovery Server
through an Ethernet switch and the images stored on an external solid state
drive connected to the Recovery Server. In this configuration, it is expected
that the speed of read and write operations on the external solid state drive
became the limiting factor, although this was not confirmed as it was seen as
ancillary to the aim of the research. In a production environment this frame-
work would likely not have this constraint. Table 5.4 contains performance
data for each of the nodes. In order to eliminate interference between simulta-
neous operations this data was measured during the restore operation of each
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Table 5.4: Time Required for the Restore Operation

H Node Type ‘ Reboot ‘ PXE ‘ thboot ‘ OS Boot ‘ Restore | Verification H
Dell E6430 ATG | 8s 14s 8s 8s 12m 9s | 14s
Thinkpad T420 | 8s 18s 6s 58 22m21s | 18s

node individually.

The reboot stage consists of the time span from when the operation is
commenced on the Recovery Server and the system power is cycled on the
node. The PXE stage is the span from the power cycle to the execution
of tboot. The remainder of the stages are self explanatory. Since the reboot
phase consists mainly of the Recovery server using AMT to remotely configure
the BIOS and initiate the power cycle, it is expected that it would take the
same amount of time regardless of node type. The differences in NIC and BIOS
firmware implementations account for the differences in time required to boot
into the operating system. The differences in time required to restore each
node correspond to the differences in utilized disk space on each node. The
verification phase was limited by the speed of TPM operations. The differing
TPM implementations and drivers explains the difference in time required for
equivalent operations on each node. Generating the PCR composite hash data
took approximately half of the duration with the signing of the data taking
the other half.

This chapter has analyzed the proof-of-concept implementation by verify-
ing its operation against the formulated high level design requirements. It then
went on to argue that the proof-of-concept implementation demonstrates that
the design for a Trusted Recovery Framework presented in Chapter 3 satisfies
the stated aim of this thesis. This chapter followed up this argument with a
discussion of the performance characteristics of the framework in a laboratory
setting. The next chapter will provide further discussion into limitations of
the design and potential future work in this area.
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Previous chapters have laid out the SCADA recovery problem, trusted com-
puting technologies which can be utilized to address the problem, and a pro-
posed design for a trusted recovery framework. The proposed design was
implemented for a target SCADA network. In the preceding chapter the im-
plementation was used to validate the design against the stated aim of this
research. This section will continue the discussion by describing how the
framework would fit into a larger recovery plan and presenting limitations of
both the proposed framework and the technologies underlying the proof-of-
concept implementation. It then offers future work in the field to both increase
the utility of the recovery framework and increase SCADA network security
overall. Following this discussion the work is concluded.

6.1 Discussion

This section includes a discussion of how this framework could be incorporated
into a larger recovery plan, limitations of the framework, and potential future
work. The noted limitations are drawbacks of the underlying technologies
necessitated by the design or used by the proof-of-concept. Future work in
the area could focus on ways of improving the capability of the framework in
certain areas.

6.1.1 Trusted Recovery Framework in the Context of a
Wider Recovery Plan

In section 3.1.2 some assumptions of the broader recovery plan in which the
proposed framework was expected to be utilized by were outlined. This sec-
tion will discuss those further in order to illustrate the sort of SCADA network
recovery approaches that are made possible by the trusted recovery frame-
work. While appropriate recovery approaches are dependant on the particu-
lar SCADA network and its operational environment, a general approach is
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outlined below in order to demonstrate how an approach might incorporate
the proposed framework.

The proposed recovery framework provides the ability to simultaneously
restore a group of nodes to a trustworthy state. The restored group of nodes
can be relied upon to behave as expected, provided that some of the assump-
tions in 3.1.2 are adhered to. The group of nodes to be restored can range
from a single node up to the entirety of the SCADA network and they will not
be operational during the restoration process. This leads to a number of con-
cerns, namely: how network capability is maintained during the recovery, how
are restored nodes maintained in a trustworthy state following restoration,
and what should be done if the verification phase fails.

An axiom of this research was that availability of the SCADA network is
of the highest importance. Following a compromise, a SCADA network may
be in a degraded but still operational state. As a result, operational capability
may have to be temporarily sacrificed in order to conduct the recovery. While
the appropriate recovery plan depends on the particulars of each individual
SCADA network one approach could be to segregate the network into a com-
promised, recovered, and in process segments. This segregation policy could
be implemented, for instance, with the use of Virtual Local Area Networks
(VLANS). Following a compromise, the degraded network would continue to
operate in the compromised segment. Certain nodes could then be transferred
to the in process segment, along with the recovery server, where the restora-
tion would occur. Once the restoration has been verified successfully the nodes
could be moved to the recovered segment. The restoration of the final batch
of nodes would involve a transfer of operational control to the recovered seg-
ment. SCADA networks with redundancy in nodes lend themselves to such an
approach. This approach allows the SCADA network to remain operational
during recovery and segregates the restored nodes with renewed trust from
the compromised nodes. This second feature allows the trustworthiness of the
restored nodes to be maintained following recovery.

The outcomes of the verification phase are enumerated in Table 3.3. Since
each outcome is mapped to particular methods of malware persistence, the
framework provides some information to the operator about the trustworthi-
ness of a node following recovery. This information is one factor of a larger
group which includes the role of the particular node in the SCADA network,
the current operational context of the network, and any further threat infor-
mation gathered during or prior to the compromise. Given all those factors
a SCADA network operator must make a decision regarding the course of ac-
tion following a failed verification. The framework cannot provide particular
guidance, however it can help network operators better understand the risk of
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trusting a node following recovery.

6.1.2 Limitations

While this section may appear to focus on implementation specific limitations,
such as those involving particular technologies used by the proof-of-concept,
the choice of technology was often driven by decisions made by the design.
For this reason, limitations in the underlying technologies are, in a large part,
the result of the design. The framework’s inability to measure any system
firmware other than the BIOS has been identified and discussed in Section
3.3.3, therefore it is omitted from this section, however, potential solutions
are discussed in the following section, Future Work.

Use of ntfsclone vs. dd

In the implementation dd is used to restore the MBR from an authorized im-
age and ntfsclone is used to restore NTFS partition images. As described,
ntfsclone writes only to the sectors which contain data used by the file sys-
tem. As a result, when a partition is restored from an NTFS image, any data
from the previous NTFS filesystem which resides outside of the blocks used
by the new NTFS filesystem will remain on the disk following restoration.
This represents stateful memory which is not measured as part of the veri-
fication phase. On the other hand dd writes out an image block by block,
this overwrites the entire disk. Despite these risks, ntfsclone was chosen
based on the timing constraints placed on the design. The performance of dd
and ntfsclone was discussed in section 5.2. The performance considerations
can be weighed against the increased risk of not measuring an aspect of the
restored system.

Trustworthiness of the Intel TXT DRTM

Since the guarantee of integrity provided by the framework is entirely based
upon the DRTM created by Intel TXT, it is worth examining the extent to
which this root of trust can be relied upon.

There is a history of reported vulnerabilities for Intel TXT. In 2009 the
Invisible Things Lab demonstrated methods of attacking Intel TXT using an
SMM handler exploit [53] and the SINIT ACM [54]. In addition to SMM,
the Intel ME can also bypass the DMA protections put in place by Intel
TXT. Despite these reports we still decide to trust Intel TXT’s DRTM. This
is because TXT is still believed to add security value to a trusted recovery
architecture by raising attacker costs considerably. So far, the only examples
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of attacks on Intel TXT have been laboratory proof-of-concepts. However, the
fact that vulnerabilities are found in Intel firmware and extended instruction
set re-enforces the importance of regular software and firmware patching.

Security Considerations of Enabled Intel AMT

Given the level of system access granted to Intel AMT it is an obvious secu-
rity concern. Consequently, there has been a large amount of reporting on
Intel AMT and potential vulnerabilities within it. As a result, enabling it
within a SCADA network should not be done without due regard to secu-
rity. However, the risk can be mitigated. Some of the reported ’backdoors’
involved allowing an adversary access to a node which allows access to the
BIOS configuration, leaving the default Intel AMT password in place, and
allowing remote access to the the ports used by Intel AMT[55]. The attacker
would then use Intel AMT functionality to remotely control a system. This
sort of vector can be countered with basic protective measures. More note-
ably, in late 2017, Positive Technologies disclosed three vulnerabilities in the
Intel ME firmware [56, 57, 58] which allowed arbitrary code execution. These
vulnerabilities depended on four conditions: 1) AMT is enabled on the node
2) the AMT administrator password is known or can be bypassed 3) the BIOS
password is known or can be bypassed and 4) the BIOS can be configured to
allow write access to memory region assigned to the ME. Using Intel AMT as
part of a Trusted Recovery Framework would necessarily satisfy the first con-
dition and the fourth condition is dependant upon the BIOS implementation.
Conditions two and three could be satisfied with insufficient security controls
on the implementation of AMT or access to the BIOS password. Further to
this, network controls can restrict access to the ME by remote systems and
decrease the security threat.

Given this discussion, the security considerations of enabling Intel AMT
are an important factor in the implementation of the design trusted recovery
framework.

6.1.3 Future Work

There are several areas in which certain aspects of framework’s approach could
be developed further. These include progressing the use of a late-launch en-
vironment as a platform to measure firmware by including the capability to
verify firmware other than the BIOS and increasing the scope in which the
recovery process aids in forensic investigation.
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Extended Firmware Measurement

One notable limitation was the framework’s inability to measure firmware
outside of the BIOS. As a result of this limitation, there is stateful mem-
ory on a node which is not measured as part of the verification phase. A
potential improvement to the framework could include adding capabilities to
measure other firmware, such as that of the NIC or disk drive. Projects such as
chipsec and viper provide potential approaches to this problem [59, 60]. The
late-launch environment provides a trustworthy environment from which the
privileged operations required to verify system firmware can be conducted. An
investigation into combining late launch techniques with advanced firmware
measurement techniques would improve the capability of a trusted recovery
framework. While verifying system component firmware increases the com-
plexity of the framework, it adds considerable security benefit, particularly
when advanced nation state level actors are included in the threat model.

Forensic Data Capture

This paper cited the importance of availability over other concerns as a reason
to forgo forensic activities on a compromised node. As a result, the proposed
framework actually destroys any potential evidence which may be on the disk
during the recovery process. Future work could explore the idea of gathering
evidence prior to the remediation activities. Such research would investigate
methods for retrieving important artifacts from a compromised node prior
to remediation. Such activity would aid post incident investigations, help
determine the extent of the compromise, and, consequently, confirm that the
compromise has been fully addressed by the remediation actions.

6.2 Conclusion

SCADA networks can never be entirely protected from computer security
threats. As methods for detecting network attacks and the presence of mal-
ware mature, appropriate recovery processes must also be developed. The
unique characteristics and operating environment of SCADA networks make
recovery approaches used in IT networks non-applicable. This research uti-
lized the ideas of integrity chaining [7] as well as using CPU-based late-launch
to create an environment from which to conduct a remediation or system
deployment [8, 3] in order to develop a design for a Trusted Recovery Frame-
work which utilized security capabilities embedded in hardware. The resultant
framework was capable of automatically restoring multiple nodes in a SCADA
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network to a trustworthy state following a compromise. This was validated
with the development of a proof-of-concept implementation for IPMS, the
SCADA system used onboard certain classes of vessel in the RCN. This re-
search contributes knowledge to field of SCADA network recovery. As a result,
future work into the detection of advanced firmware bootkits on SCADA net-
works and the incorporation of forensics evidence gathering into the recover
process can be conducted.

6.3 Contributions

The contributions of this research are:

1. The enumeration of high level requirements for a SCADA recovery frame-
work based on characteristics of SCADA networks ascribed within SCADA
security literature.

2. The design of an architecture to support the trusted recovery of nodes
on SCADA networks. This architecture leverages embedded security
capabilities in modern computer systems for both a root-of-trust for the
measurement and reporting of platform state during the recovery process
and an out-of-band method of remote control to automate the process.
The architecture also satisfies the unique constraints of SCADA network
recovery.

3. A three stage method of verifying platform state during the remediation
of a node as well as a discussion of the possible outcomes of these three
stages and the implications on node security.

4. An implementation of the trusted recovery framework for IPMS which
allows nodes to be verifiably restored to a trustworthy state and provides
all associated operations required to support the restoration function.
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