

CROSSING THE AIR GAP — AN
ULTRASONIC COVERT CHANNEL

PONTAGE DU RÉSEAU SÉPARÉ — UN
CANAL ULTRASONORE CACHÉ

A Thesis Submitted to the Division of Graduate Studies
of the Royal Military College of Canada

by

Wesley Wong, B.Cmp.H.

In Partial Fulfillment of the Requirements for the Degree of
Master of Applied Science in Electrical and Computer Engineering

September, 2018
© This thesis may be used within the Department of National Defence
but copyright for open publication remains the property of the author

ii

Abstract

Commonly implemented in high-security computer networks, an air gap
physically isolates systems from external threats. Without Internet-
connectivity, another medium is needed to transfer data to/from an air-
gapped network. In this work, the possibility of inaudible acoustic
channels in the ultrasonic frequency range is investigated.

An ultrasonic channel with the Goertzel algorithm, cross-
correlation, pulse shaping, and a medium access control protocol was
developed. Command-line interaction was demonstrated via the
ultrasonic channel. With binary frequency-shift keying (BFSK), speeds
of over 250 bit/s at a distance of 2 m were observed. Quadrature
frequency-shift keying (QFSK) was confirmed possible within the
ultrasonic range to yield speeds of about 500 bit/s. Differential phase-
shift keying (DPSK) was shown to be functional. The ultrasonic channel
may be hidden in audible noise such as music. The channel software
was also capable of transferring data directly via auxiliary (AUX) audio
cable.

iii

Résumé

Généralement mis en œuvre dans les réseaux informatiques de haute
sécurité, la séparation physique isole les systèmes des menaces
externes. Sans l’accès à Internet, une autre méthode est nécessaire pour
le transfert de données du réseau séparé. Dans ce travail, la faisabilité
d’employer des canaux acoustiques inaudibles dans la gamme de
fréquences ultrasonores est étudiée.

Un canal ultrasonore utilisant l’algorithme de Geortzel, la
corrélation croisée, la conformations des impulsions, et un protocole de
contrôle d'accès au support fut développé. La functionnalité de
l’interface en ligne de commande a été démontrée via le canal
ultrasonore. Par une modulation par déplacement de fréquence binaire
(BFSK), des vitesses dépassant 250 bit/s à une distance de 2 m ont été
observées. La modulation par déplacement de fréquence en quadrature
(QFSK) a été confirmée possible dans le domaine ultrasonore, donnant
des vitesses d’environ 500 bit/s. La modulation par changement de
phase différentiel (DPSK) s’est avérée fonctionnelle. Le canal
ultrasonore peut être caché dans le bruit tel que la musique. Le logiciel
du canal ultrasonore est capable de transférer les données directement
par un câble auxiliaire (AUX).

iv

Contents

Abstract ... ii

Résumé .. iii

Contents ... iv

List of Tables ... ix

List of Figures .. x

List of Listings .. xi

List of Equations ...xii

List of Abbreviations and Acronyms .. xiii

1 Introduction .. 1

 Motivation .. 2 1.1

 Operational Scenario ... 3 1.2

 Aim ... 3 1.3

 Research Activities .. 4 1.4

 Thesis Outline .. 4 1.5

2 Literature Review .. 5

 Context of Study .. 5 2.1

2.1.1 Computer Network Security .. 5

2.1.2 Command-and-Control Channel .. 6

2.1.3 Covert Channel ... 7

 Air Gap ... 7 2.2

2.2.1 Air Gap Attacks .. 8

2.2.1.1 Physical Access ... 8

v

2.2.1.2 Removable Media .. 9

2.2.1.3 Agent.btz ... 9

2.2.1.4 Stuxnet .. 10

2.2.1.5 BadBIOS ... 11

2.2.1.6 Human Interface Device (HID) Firmware 11

2.2.1.7 Hardware Implants ... 12

2.2.1.8 TEMPEST ... 13

2.2.2 Air Gap Defence .. 13

2.2.2.1 Physical Security .. 13

2.2.2.2 Trusted Removable Media .. 14

2.2.2.3 Faraday Cage Shielding.. 14

 Acoustic Communications .. 14 2.3

2.3.1 Early Modems ... 15

2.3.2 Existing Research ... 16

 Applied Telecommunications ... 16 2.4

2.4.1 Digital Modulation Schemes .. 16

2.4.1.1 Frequency-Shift Keying (FSK) 17

2.4.1.2 Phase-Shift Keying (PSK) ... 17

2.4.1.3 Amplitude-Shift Keying (ASK) 17

2.4.2 Signal Processing.. 18

2.4.2.1 Fourier Transform .. 18

2.4.2.2 Goertzel Algorithm ... 18

2.4.2.3 Cross-Correlation .. 19

2.4.3 Channel Access Methods .. 19

2.4.3.1 Automatic Repeat Request (ARQ) 19

2.4.3.2 Random Access .. 19

2.4.3.3 Master/Slave ... 19

2.4.3.4 Token Passing ... 20

2.4.4 Network Sockets ... 20

 Summary .. 20 2.5

vi

3 Design ... 21

 Proof of Concept ... 21 3.1

 Protocol Stack .. 23 3.2

3.2.1 Layer 1: Physical .. 23

3.2.1.1 Acoustic Modulation ... 24

3.2.1.2 Goertzel Algorithm Demodulation 25

3.2.1.3 Cross-Correlation Synchronization 27

3.2.1.4 Pulse Shaping ... 29

3.2.1.5 Preamble Pulse ... 30

3.2.1.6 Preliminary Analysis of Digital Modulation Schemes . 31

3.2.1.6.1 Binary Frequency-Shift Keying (BFSK) and
Quadrature Frequency-Shift Keying (QFSK) 32

3.2.1.6.2 Binary Phase-Shift Keying (BPSK) and
Quadrature Phase-Shift Keying (QPSK) 32

3.2.1.6.3 Binary Amplitude-Shift Keying (BASK) and
Quadrature Amplitude-Shift Keying (QASK) 34

3.2.1.6.4 M-ary Shift Keying .. 34

3.2.1.6.5 Combined Digital Modulation Schemes 35

3.2.1.6.6 Summary of Digital Modulation Schemes 36

3.2.2 Layer 2: Data Link ... 36

3.2.2.1 Frame Structure ... 37

3.2.2.1.1 Acknowledgement .. 37

3.2.2.1.2 Duplicate Identifier ... 37

3.2.2.1.3 Port Number .. 38

3.2.2.1.4 Payload Length .. 38

3.2.2.1.5 Payload .. 38

3.2.2.1.6 Cyclic Redundancy Check (CRC) 38

3.2.2.2 Preliminary Analysis of Channel Access Methods 39

3.2.3 Layer 3: Sockets Interface .. 42

3.2.3.1 Generic Sockets Relay ... 42

3.2.3.2 Queued Delivery ... 43

vii

3.2.3.3 Port Mapping External Applications 44

3.2.4 Functional overview ... 44

 Program Features .. 46 3.3

3.3.1 Application Settings ... 46

3.3.1.1 Master/Slave Selection.. 46

3.3.1.2 Port Mapping .. 46

3.3.2 Channel Settings .. 46

3.3.2.1 Pulse Visualization ... 46

3.3.2.2 Preamble Pulse Magnitude Threshold 47

3.3.2.3 Cross-Correlation Synchronization Window Length ... 47

3.3.2.4 Pre-Transmission Pause ... 47

3.3.2.5 RX Wait Time .. 48

3.3.2.6 Post-Transmission Empty Padding 48

3.3.3 Validation Test Settings ... 48

3.3.3.1 Payload Length ... 49

3.3.3.2 Pulse Length ... 49

3.3.3.3 Sampling Rate ... 49

3.3.3.4 Frequency Channels ... 49

3.3.3.5 Goodput Trial .. 50

3.3.4 Auxiliary (AUX) Audio Cable Transfer 50

 Summary .. 51 3.4

4 Validation Activities .. 52

 Experimental Setup ... 52 4.1

 Functional Testing ... 54 4.2

 Validation ... 55 4.3

4.3.1 Channel Bitrate .. 55

4.3.1.1 Variable Frame Length .. 56

4.3.1.2 Variable Pulse Length .. 58

4.3.1.3 Variable Sampling Rate .. 59

4.3.2 Frequency Discrimination .. 60

viii

4.3.2.1 Ultrasonic Frequency Response 61

4.3.2.2 Frequency Discrimination .. 62

4.3.2.3 Frequency Discrimination with White Noise 63

4.3.2.4 Frequency Discrimination in Audio Cable 64

4.3.3 Distance and Noise Models .. 64

4.3.3.1 Distance ... 65

4.3.3.2 White Noise from External Source 66

4.3.3.3 White Noise from Self ... 67

 Summary .. 67 4.4

5 Discussion .. 68

 Channel Effectiveness ... 68 5.1

 Channel Limitations .. 72 5.2

 Future Work ... 73 5.3

 Conclusion .. 74 5.4

5.4.1 Contributions .. 74

6 References ... 75

ix

List of Tables

Table 3.1 Summary of digital modulation schemes 36
Table 4.1 Equipment list .. 53

x

List of Figures

Figure 2.1 FSK modulation example ... 17
Figure 2.2 PSK modulation example ... 17
Figure 2.3 ASK modulation example ... 18
Figure 3.1 Ultrasonic channel setup .. 21
Figure 3.2 Deconstructed software model ... 22
Figure 3.3 Protocol stack model ... 23
Figure 3.4 Usable ultrasonic frequency range 24
Figure 3.5 Signal recorded (left); Cross-correlation scoring (right) 28
Figure 3.6 Pulse-shaped waveform plotted ... 30
Figure 3.7 Preamble pulse ... 31
Figure 3.8 Frame diagram ... 37
Figure 3.9 ARQ protocol (normal) .. 39
Figure 3.10 ARQ protocol (error) ... 40
Figure 3.11 ARQ protocol (duplicate/discard) .. 40
Figure 3.12 Random access protocol collision recovery 41
Figure 3.13 Program data flow with socket ... 43
Figure 3.14 Pre-transmission pause .. 48
Figure 3.15 AUX cable data transfer ... 50
Figure 4.1 Experimental setup diagram .. 53
Figure 4.2 Goodput vs. Payload length .. 57
Figure 4.3 Goodput vs. Pulse length .. 58
Figure 4.4 Goodput vs. Sampling rate ... 59
Figure 4.5 Goodput vs. Frequency response .. 61
Figure 4.6 Goodput vs. Frequency separation 62
Figure 4.7 Goodput vs. Frequency separation with noise 63
Figure 4.8 Goodput vs. Frequency separation in AUX cable 64
Figure 4.9 Goodput vs. Distance .. 65
Figure 4.10 Goodput vs. White noise from external source 66
Figure 4.11 Goodput vs. White noise from self 67
Figure 5.1 Ultrasonic channel hidden in audio 71

xi

List of Listings

Listing 3.1 Pseudocode for Goertzel algorithm coefficient 26
Listing 3.2 Pseudocode for optimized Goertzel algorithm 26
Listing 3.3 Pseudocode for cross-correlation.. 28
Listing 3.4 Pseudocode for phase in Goertzel algorithm 33
Listing 3.5 Physical layer functional overview 44
Listing 3.6 Data link layer functional overview 45
Listing 3.7 Sockets interface layer functional overview 45

xii

List of Equations

Equation 3.1 Waveform generation ... 25
Equation 3.2 Waveform generation with pulse shaping 29
Equation 3.3 Whole number frequency cycles 49
Equation 4.1 Theoretical goodput .. 56

xiii

List of Abbreviations and
Acronyms

ACK acknowledgement
APT advanced persistent threat
ARQ automatic repeat request
ASK amplitude-shift keying
AUX auxiliary
BASK binary amplitude-shift keying
BER bit error rate
BFSK binary frequency-shift keying
BIOS basic input/output system
BPSK binary phase-shift keying
CIA Central Intelligence Agency
CRC cyclic redundancy check
CSMA/CD carrier-sense multiple access with collision detection
DBPSK differential binary phase-shift keying
DFT discrete Fourier transform
DOD Department of Defense
DPSK differential phase-shift keying
DQPSK differential quadrature phase-shift keying
FFT fast Fourier transform
FPSK frequency phase-shift keying
FSK frequency-shift keying
FTP File Transfer Protocol
GFSK Gaussian frequency-shift keying
HID human interface device
HTTP Hypertext Transfer Protocol
ICS industrial control system
IDS intrusion detection system
IIR infinite impulse response

xiv

IP Internet Protocol
IPS intrusion prevention system
MAC media access control
MD5 Message Digest 5
NAK negative acknowledgement
NATO North Atlantic Treaty Organization
NIPRNet Non-classified Internet Protocol Router Network
NSA National Security Agency
OOB out-of-band
OOK on-off keying
OSI Open Systems Interconnection
PCM pulse-code modulation
PLC programmable logic controller
PSK phase-shift keying
QAM quadrature amplitude modulation
QASK quadrature amplitude-shift keying
QFSK quadrature frequency-shift keying
QPSK quadrature phase-shift keying
RSA Rivest–Shamir–Adleman
RX receive
SCADA supervisory control and data acquisition
SIPRNet Secret Internet Protocol Router Network
SSH Secure Shell
TCP Transmission Control Protocol
TX transmit
U.S. United States
USB Universal Serial Bus

1

1 Introduction

Computer networks connected to the Internet are exposed to external
threats and attackers. It follows that high security computer networks
operate disconnected from the Internet and external networks. This
separation is known as the air gap, where secure cyberspace is
physically isolated from outside connectivity. An air gap significantly
minimizes the attack surface of a computer network. Despite the
potential for vulnerabilities to exist in software, attacking an air-
gapped network is more difficult because there are no existing
communications channels to the outside. Air gaps are known as the
“sine qua non of information systems security” [1].

Air gaps are implemented in high security environments, including
military, intelligence, critical infrastructure, and corporate networks.
These networks may still be breached. Malware may cross the air gap
into secure networks through removable media, such as Universal
Serial Bus (USB) devices. Normally, after malware is installed on the
air-gapped system, it has no medium to communicate back to the
attacker. A communications channel to an air-gapped network means
that data can be transferred to and from the secure network. A post
exploitation channel would allow an attacker to access and control
systems across the air gap, acting as a medium for receiving commands
and exfiltrating data off of the network.

Computer network security is enhanced with an understanding of
potential attack vectors before they can be exploited by an adversary.
This thesis researches the feasibility of ultrasonic covert channels in
the context of air gaps, and also as a medium for general-purpose
information transfer.

1.1 Motivation

2

 Motivation 1.1

Malware has been known to use the insertion of removable media into
secure systems as a vector into air-gapped networks [1]. In these cases,
the malware was able to spread to other internal hosts and carry out its
attack automatically within the network [2]. However, exfiltration of
data may have been an additional step after the insertion. Extrusion of
information relies on being able to send data back out to an external
host, perhaps utilizing the same channel as the ingress vector. Radio
transceiver implants have been used to establish rogue communications
links with air-gapped hosts [3]. A radio implant allows an external
attacker within the vicinity of several miles away to communicate with
the target system. The communications channel serves as a command-
and-control channel used to monitor and exfiltrate data from the
infected system.

Our research explores the feasibility of a communications link via
inaudible high-frequency sound over common speakers and
microphones. This entails the transmission of ultrasonic signals via
speakers and reception through microphones in order to establish a
communications link over the air gap. We consider the ultrasonic
channel as an attack vector within the context of computer network
security. The concept of malicious ultrasonic channels has implications
to air gap security as speakers and microphones are commonly attached
and built into many computing devices (e.g., laptops, smartphones, and
tablets). Our research demonstrates the possibility of such a channel
through the development of proof-of-concept software, which relays data
ultrasonically between computing devices using speakers and
microphones.

Audio in air is currently an uncommon medium for communications
between computing devices. Research that features ultrasonic
communications between computers in the context of network security
is recent and little is known about their performance. Our original
motivation in 2012 was to publish a proof of concept for ultrasonic
channels as there was no other research on this subject at the time.
However, as time has passed, other research has been published. In
2013, research indicated that ultrasonic channels in air have low
speeds, around a bitrate of 20 bit/s [4]. A human-audible clicking noise
issue was reported in modulation, detracting from the covertness of the
channel [4]. Our research shows an increased speed that is usable for
command-line interaction and also resolves the clicking noise issue.

1.2 Operational Scenario

3

This thesis examines several fundamental characteristics of ultrasonic
channels: implementation of digital modulation schemes, applicable
channel access methods, and generic compatibility. Reliable data
transfers above the audible range were verified on consumer-grade
equipment. Validation of the channel was performed by measuring the
channel bitrate, frequency discrimination, and operation in noise
models. This research demonstrates ultrasonic communications
between computers and identifies the corresponding vulnerability for
air-gapped network defence.

 Operational Scenario 1.2

The ultrasonic channel is considered in the context of an attack
scenario with remote control and data extrusion as the objective. The
ultrasonic channel is established following from an exploit or breach.
This may not require physical presence if a physical medium (e.g., USB
drive) can be delivered or subverted. The channel software is installed
following from an entry vector. Systems may then relay data
ultrasonically to compromised Internet-connected devices in their
proximity. The channel is used to receive commands via microphones
and transmit data via speakers. The air in proximity of the speakers
and microphones is modulated as ultrasonic signals, acting as a
medium for malware to receive commands and transmit data
externally. The ultrasonic channel is functional for command-line
interaction and small data transfers. The channel may also be able to
transmit through a Faraday cage/shield, which blocks electromagnetic
emanations, but is permeable to acoustic waves.

 Aim 1.3

The aim of this research was to identify the vulnerability presented by
ultrasonic channels in air-gapped networks and to investigate the
performance of such channels as a general-purpose communications
medium. The identification of vulnerability includes an exploration and
characterization of ultrasonic modulation schemes using standard
computer hardware. The suitability of such channels as a
communications system for malware will be investigated through

1.4 Research Activities

4

integration of low-level ultrasonic communications with common high-
level network protocol standards.

 Research Activities 1.4

The research conducted in this thesis entailed the design and
development of proof-of-concept software for relaying data
ultrasonically between computers. This included the low-level
modulation/demodulation of acoustic waves at ultrasonic frequencies,
implementation of a suitable data-link communications protocol, and
interfacing the channel with common higher-level computer
communications protocols and applications in a generic manner.
Verification of the channel was performed by ensuring the accurate
transfer of information. Validation was performed by measuring the
channel bitrate, frequency discrimination, and operation in noise
models. Knowledge regarding channel characteristics was gained in
development and in validation testing. This research contributes to
understanding and building better ultrasonic channels.

 Thesis Outline 1.5

The remainder of this thesis is organized as follows. Chapter 2 covers
the background context and existing technical methods applied in this
research. Chapter 3 presents the design and development of our
ultrasonic channel. Chapter 4 describes the validation testing
conducted in order to demonstrate achievement of our aim. Chapter 5
concludes with a discussion of the work.

5

2 Literature Review

We have introduced the purpose of exploring the ultrasonic channel as
a potential vulnerability in air-gapped networks. This chapter covers
the background context to further illustrate the motivation for studying
the problems in air gap security. Next, existing knowledge in acoustic
communications is reviewed. Lastly, the telecommunications theory and
technical methods applied in our channel are described.

 Context of Study 2.1

This thesis investigates the feasibility of an ultrasonic channel to
exfiltrate information over an air gap. To further understand the
scenarios in which an ultrasonic channel could be employed, we have
reviewed the relevant background context.

2.1.1 Computer Network Security

A computer network may be assessed by considering the CIA triad of
information security: Confidentiality, Integrity, and Availability of
information on the network. Confidentiality is compromised where an
attacker can access and view the data. Integrity is compromised where
an attacker can change the data. Availability is compromised where an
attacker can disrupt the systems from normal operation. In air-gapped
networks, integrity and availability can be compromised by fire-and-
forget type malware. As seen with Stuxnet, malware delivered via USB
was propagated through the network (including specialized devices) to
reach and disable target nuclear centrifuge controllers [5]. In contrast
to fire-and-forget type malware, data exfiltration requires a
communications channel back out of the network. This channel serves

2.1 Context of Study

6

to exfiltrate information from secure systems to an external attacker,
thus compromising confidentiality.

Cybersecurity is of interest to military, intelligence, political, and
commercial entities. An informational advantage is gained through the
exploitation of systems where sensitive information is stored.
Information gathering may be a part of foreign government intelligence
routines. For example, Chinese advanced persistent threat (APT)
operations involve the infiltration of air-gapped networks for the
acquisition of private government information relating to socio- and
geopolitical influence [6]. The motive to attack air-gapped networks
may be to thwart capability that poses a threat in other domains, such
as Stuxnet, which targeted nuclear capability. A channel that bridges
the air gap can disable systems when they are needed the most and
disrupt systems in part of larger operations. Attacks that extend
outside of the cyber domain and facilitate real-world damage are
described as having “kinetic” [7] effects. Cyberspace has unique
properties that make the attribution of an attack difficult [7]. Our
research contributes to understanding ultrasonic channels from a
network attack perspective.

2.1.2 Command-and-Control Channel

A command-and-control channel can be established after a vulnerability
is exploited. Malware installed on a system following an exploit may
allow an attacker to maintain access to the compromised system. The
communications channel serves as a command-and-control channel,
used to control a compromised system by receiving instructions for it to
execute. Commands are executed and the corresponding data is
returned to the attacker. Such a channel may be used to monitor, alter,
and disrupt the operation of systems on the network. A command-and-
control channel established to a system on the network can function as
a pivot point to attack other internal systems. The channel allows the
attacker to maintain access to the network. Such a channel provides
access to infected systems, allowing the user to adapt an attack upon a
network over time.

A basic command-and-control channel can be made with a sockets
relay program such as Netcat, executing a command-line interpreter
such as Command Prompt (in Windows) or Unix shell to provide
command-line access to the remote machine [8]. Command-and-control
channels can be more sophisticated to hide the presence of the channel

2.2 Air Gap

7

software on the system (e.g., through a rootkit) [9]. This thesis
investigates the possibility of establishing command-and-control
channels through speakers and microphones at ultrasonic frequencies.
Insight regarding the existence of covert channels is necessary for their
identification and detection.

2.1.3 Covert Channel

A covert channel can be considered any medium that is unintended for
data transfer and hidden from detection. Covert channels provide a
means of communication that is concealed from normal observation
through obfuscation. Data transferred over the channel is not detected
because the existence of the channel itself is hidden. In computer
networks, a covert channel enables the capability to transfer data
despite network restrictions (e.g., a firewall) [10]. The channel is hidden
from normal traffic analysis and detection. The covert channel may be
used as a command-and-control channel.

An example of a covert channel is the variation of a data field in an
existing protocol in a manner such that it transmits data [10]. The
covert channel would appear to be normal protocol communications in
traffic analysis. Since the covert communications are hidden within
normal communications, intrusion detection systems (IDS) may not be
able to match the network traffic to known signatures, thus the channel
would remain undetected [10]. Intrusion prevention systems (IPS)
would be bypassed similarly. After a system is exploited, a covert
command-and-control channel would provide continued access to target
systems and networks. Data could be exfiltrated over a period of time,
undetected by traffic analysis. In this study, the covert channel exists in
air as ultrasonic signals between speakers and microphones. The
channel does not hide within an existing protocol but rather an entirely
different medium. Channels that use non-conventional mediums have
been called “out-of-band” (OOB) [11] covert channels.

 Air Gap 2.2

It is widely accepted that “in order to provide the highest levels of
security for computer systems, they must not be connected to the
Internet” [1]. The Internet and external connectivity are considered a
threat in context of high security networks. The attack surface of a

2.2 Air Gap

8

network connected to the Internet is greater than that of a system
isolated from external connectivity. Even if incoming connections are
blocked, outgoing connections would likely be allowed for internal users
to retrieve information from the Internet. The Internet connection
makes it possible to maintain remote access after a breach (e.g., a
social-engineered client-side attack). With an air gap, the egress of
information may be difficult even if a system has been compromised.

An air gap can be implemented to secure the network by removing
any communications links to the outside, thus isolating the network.
Air gaps are often implemented for high security networks [1].
Examples include intelligence and military networks, financial
networks, industrial control systems (ICS), supervisory control and
data acquisition (SCADA) systems, and critical infrastructure such as
nuclear facilities and aviation systems. Companies may use cold
storage, where data is stored offline. Cold storage may be required for
legal compliance, security for storing sensitive data offline, inexpensive
long-term storage of data that requires minimal access, and backups or
archives [12]. Air gaps have also gained popularity for the secure
storage of cryptocurrency such as Bitcoin [1]. Computers that hold
sensitive research at some universities are required to be air-gapped
[1]. The capability to communicate across an air gap is of relevance to
cybersecurity professionals who use air gaps to secure information
systems.

2.2.1 Air Gap Attacks

Several known vectors have been used in attacking air-gapped
networks. The following subsections describe methods that have been
used to breach air gaps.

2.2.1.1 Physical Access

The most direct type of attack is physical access. Social engineering and
other physical penetration testing methods can be used to gain access to
secured areas. The evil maid attack is an example of a physical access
attack where the attacker gains physical access to tamper with
systems. This type of attack can even defeat full-disk encryption by
replacing the bootloader with one that records the encryption password
[13]. Hardware keyloggers may also be implanted. It is also worth
mentioning the insider threat. In the least, this could be in the form of a

2.2 Air Gap

9

disgruntled employee or contractor who sabotages systems [14]. With
physical access, an attacker completely defeats the air gap.

2.2.1.2 Removable Media

An attacker may not need to have direct physical access to systems if
network users insert infected devices into their computers [1]. Network
users may need external information on the air-gapped network as
tasks arise that require new data. As such, users may transfer data
between air-gapped and untrusted systems. Removable media storage
devices are used to move data onto and off of the air-gapped network.
This in-person sharing of data via removable media has been called
“sneakernet” [7], where network users physically transfer data between
each other via removable media. As air-gapped systems require
external information and users transfer data to and from the network,
malware may also utilize the same pathways to access air-gapped
systems. The insertion of removable media has been a vector for
malware to be transferred into secure systems [1].

Central Intelligence Agency (CIA) malware dubbed Brutal Kangaroo
enables USB drives to breach air gaps [15]. A USB with Brutal
Kangaroo infects the system it is plugged into, spreading to any USB
drives that are plugged into the infected system [15]. This works with
the aim of spreading to reach any air-gapped systems.

Similar to removable media, the personal devices of employees may
also be compromised. Untrusted devices may be plugged in to an air-
gapped system for a variety of reasons (e.g., charging power via USB
cable) [14].

2.2.1.3 Agent.btz

An example of removable media attacks is Agent.btz, a worm that
breached United States (U.S.) military air-gapped networks in 2008.
Agent.btz was not specifically designed to target military networks and
its origins are uncertain although suspected to be from Russia or China
[16]. By first gaining access to the U.S. Department of Defense’s (DOD)
Non-classified Internet Protocol Router Network (NIPRNet) which was
connected to the Internet, Agent.btz could then transfer itself to USB
drives [7]. A USB drive containing Agent.btz was then inserted
unwittingly into a computer that was part of the air-gapped Secret
Internet Protocol Router Network (SIPRNet) [7]. Air-gapped systems

2.2 Air Gap

10

may not be updated/patched frequently as they are disconnected from
the Internet, meaning that software vulnerabilities often exist [7].
Within several hours, Agent.btz had spread from military computers in
the Middle East to systems in the U.S. Central Command; thousands of
classified DOD computers were infected [7]. The infection was described
“the most significant breach of U.S. military computers ever” [17].
Storage media including USB drives, optical discs, external hard drives,
and floppy disks were banned shortly afterwards to prevent further
spreading of the worm [18]. Efforts to remove Agent.btz and defend
against such attacks led to the creation of the U.S. Cyber Command
[17].

Agent.btz infected USB drives by detecting the insertion of
removable media and copying itself over to them [19]. An autorun.inf
file (used to specify a program to execute upon insertion) would be
written to the removable media [19]. Once this USB drive is inserted
into an AutoRun-enabled Windows computer, the copy of Agent.btz on
the drive executes as specified by the autorun.inf file. The USB drive
infected computers it was plugged into, allowing the malware to cross
over onto the air-gapped network. Within the air-gapped network, any
systems that mounted an infected shared network resource were also
infected; similar to removable media, AutoRun would use the
autorun.inf located on the mounted drive and run its copy of Agent.btz
[19]. As such, Agent.btz was able to jump across air gaps and spread to
other systems on the network. Agent.btz collected system information
and opened backdoors as the worm propagated. AutoRun on Windows
XP was disabled by default for USB media, but not for disc media [19].
Some USB drives were made to appear as optical media, allowing
AutoRun to still launch [19]. AutoRun is currently a subset of AutoPlay,
a feature that prompts the user with a selection of options to interact
with removable media [19].

2.2.1.4 Stuxnet

Another example of removable media attacks is Stuxnet, malware used
to sabotage Iranian nuclear enrichment centrifuges in 2010. The
malware was believed to have been a joint American and Israeli effort
to hinder nuclear capability in Iran [5]. Like Agent.btz, Stuxnet was
able to cross the air gap onto the SCADA network via USB drive. As
fire-and-forget malware, Stuxnet spread automatically to other hosts
within the network to reach target systems. Stuxnet was specifically
targeted to Siemens hardware, which was used to monitor and operate

2.2 Air Gap

11

nuclear enrichment centrifuges. Stuxnet modified Siemens project files
and replaced certain .dll files to subvert communications with Siemens
programmable logic controllers (PLC) [2]. Stuxnet increased centrifuge
speeds while displaying normal operation statistics to the monitor,
forcing the centrifuges to physically tear apart. Approximately 1 000
centrifuges were destroyed at the nuclear enrichment facility in Natanz
[5].

Similar to Agent.btz, Stuxnet also used AutoRun to spread to
removable media [5]. Stuxnet did not only depend on the previously
described AutoRun vector in Agent.btz. Additionally, Stuxnet could
spread through removable media using a vulnerability in the handling
of Windows shortcut files (.lnk), allowing the execution of a .dll payload
on removable media [19]. The vulnerability in parsing custom icons
calls the icon library’s DllMain function [20]. Once within a network,
Stuxnet was able to spread automatically to other hosts through several
zero-day exploits.

A variant of Stuxnet, Flame, is also known to cross air gaps through
the .lnk shortcut and AutoRun vulnerabilities [21]. Additionally, Flame
has also been reported to have Bluetooth capability [21].

2.2.1.5 BadBIOS

BadBIOS was malware reported by Dragos Ruiu [22]. It had air gap
crossing capability via ultrasonic frequencies. The malware resides in
the basic input/output system (BIOS) and was said to have self-healing
and updating capabilities via ultrasonic channels [22]. Samples of the
malware were not made publicly available. An ultrasonic
communications capability is the topic of investigation in our research.

Our ultrasonic channel had been developed when BadBIOS was
announced in 2013. At the same time, other researchers published on
ultrasonic channels in the context of crossing the air gap [4]. Our
research confirms that ultrasonic covert channels are feasible and that
software can use speakers and microphones to communicate between
air gaps.

2.2.1.6 Human Interface Device (HID) Firmware

USB vulnerabilities extend beyond the AutoRun and the .lnk
vulnerabilities mentioned in Agent.btz and Stuxnet. Windows, Linux,
and MacOS systems have been affected by other USB exploits [20]. USB

2.2 Air Gap

12

drivers are vulnerable to exploitation and USB protocols can also be
subverted [20].

Other than being mass storage devices, USB is commonly used to
attach computer peripherals: keyboard, mouse, webcam, etc. These are
considered USB HID class examples. A USB stick meant for storage can
be reflashed so that it is recognized as a keyboard, enabling it to “type”
in commands. The USB Rubber Ducky is an example of a HID device
which emulates a keyboard user [23]. It is possible to turn a regular
USB flash drive into a USB Rubber Ducky by reflashing it [24]. When
inserted into a computer, it is recognized as a keyboard.
Indistinguishable from a real user on the keyboard, the device can run
a script of stored keypresses, thereby running the attacker’s commands
and programs. Some firmware allows the device to act as both mass
storage and a HID keyboard. USBdriveby and BadUSB are examples of
USB HID malware. USBdriveby turns a USB drive into a HID device
that is able to quickly and covertly run commands (e.g., install a
backdoor) by acting as a keyboard [25]. Through BadUSB, malware can
hide in peripheral devices with reprogrammed firmware [26].

2.2.1.7 Hardware Implants

Hardware implants are devices dedicated to compromising systems;
they can be well hidden, such as in a USB cable [27]. Keyloggers
provide a broad functionality by capturing all keystrokes entered on a
keyboard. Hardware implants can be software independent, designed to
capture keystrokes regardless of the operating system. A disadvantage
is that hardware implants exist in physical space, and can be visibly
detected.

Devices can be physically added to the network, providing the
attacker remote access. A small device can contain an entirely
functional system with penetration testing tools. The Pwn Plug is an
example of such a tool [28].

A radio transceiver may be a hardware implant, offering an attacker
the capability to remotely access the bugged system via radio
frequencies [27]. A radio channel acts as a relay to the infected host,
running external commands and exfiltrating information from the
infected system. The National Security Agency (NSA) has used radio
implants (e.g., COTTONMOUTH) to access air-gapped hosts [27]. The
NSA ANT catalog features various other hardware implants [27].

2.2 Air Gap

13

2.2.1.8 TEMPEST

Data extrusion in air-gapped networks relates to the study of
compromising emanations known as TEMPEST. North Atlantic Treaty
Organization (NATO) TEMPEST standards define the distances at
which equipment is secured from an attacker in terms of distance (e.g.,
1 m, 20 m, 100 m) [29].

Electromagnetic signals emanate from computers, which may allow
data to be viewed. Electromagnetic signals are leaked from computer
monitors and cables. An attacker can visually see what is on a screen at
a distance of 10 m through three plasterboard walls [30]. Wireless and
wired keyboards have compromising emanations that can be read at a
distance of 20 m [31]. These TEMPEST attacks would not require the
system to be exploited in advance.

Acoustic signals from processor vibrations can also leak information
such as Rivest–Shamir–Adleman (RSA) private keys [32]. The sound
from keys being pressed on a keyboard can be reliably mapped back to
their keys [33]. Various other compromising emanations have been
examined by Guri et al. including physical, electromagnetic, electric,
magnetic, acoustic, thermal, and optical methods [34]. Power lines can
be used to exfiltrate data from air-gapped networks [35]. The USBee is
malware that makes USB drives emanate readable electromagnetic
signals [36].

As in TEMPEST, OOB covert channels may communicate over
acoustic, light, seismic, magnetic, thermal, or radio mediums [11]. A
distinction can be made between compromising emanations that do not
require a system to already be exploited vs. covert channels that are set
up after a system is exploited, such as our ultrasonic channel.

2.2.2 Air Gap Defence

The following subsections describe methods used in defending air-
gapped systems.

2.2.2.1 Physical Security

The security of an air-gapped network is primarily that of its physical
security. Physical security measures may include mechanical or
electronic locks, sensors and alarms, video surveillance, and security
personnel. As discussed, a breach in physical security does not have to

2.3 Acoustic Communications

14

involve the direct presence of a bad actor in person. USB drives
containing malware may be inserted unwittingly into secure systems, or
a compromised device may be used on the air-gapped network. Malware
that connects a remote attacker to a network behind physical security
measures effectively bypasses them.

2.2.2.2 Trusted Removable Media

As previously illustrated, the pathways for legitimate data to be
transferred may also be pathways for malware to enter. USB is a
common medium for malware to be transferred over [1]. Some network
administrators have opted to epoxy glue shut USB ports on sensitive
systems [37]. USB sanitization is a possibility, where USB drives are
plugged into a sanitization device before usage [1]. Some USB drives
are designed to not be reflashable. Examples are the Kanguru
FlashTrust [38] and Kingston IronKey [39]. Devices may be obtained
from trusted suppliers, where the supply chain is secured.

2.2.2.3 Faraday Cage Shielding

As previously mentioned, radio-based transceivers have been used to
communicate with air-gapped systems. In addition, TEMPEST attacks
allow an attacker to exfiltrate electromagnetic signals. A Faraday cage
can be used to block electromagnetic signals from both leaving and
entering. A radio transceiver is unable to communicate outside through
a Faraday cage. Although a Faraday cage blocks electromagnetic
signals, acoustic signals could still go through, depending on whether
the cage construction is permeable to air.

 Acoustic Communications 2.3

This thesis investigates ultrasonic acoustic communications between
computing devices. Acoustic waves, that is, sound waves, are vibrations
in air. Sound is a mechanical wave as it requires a physical medium to
propagate. Electromagnetic waves (e.g., radio, Wi-Fi) do not require a
physical medium such as air to propagate. This distinction is what
allows an acoustic channel to function where electromagnetic signals
are blocked, such as a Faraday cage. Sound waves are gas pressure
oscillations, air molecules compressed and rarefacted, spreading

2.3 Acoustic Communications

15

radially. Sound waves propagate as longitudinal waves, but will be
represented as transverse waves in this thesis.

Speakers and microphones are electroacoustic transducers.
Conventionally, speakers convert electrical signals into acoustic waves
by displacing the speaker cone proportionally to the electrical signals
[40]. Microphones convert acoustic waves into electrical signals as its
diaphragm is displaced proportionally to the acoustic waves [40].
Speakers and microphones are generally designed to function in the
audible frequency range, not made for use at ultrasonic frequencies;
they are often rated to have frequency response from about 20 Hz to
20 000 Hz. In contrast, electromagnetic waves up to 6 GHz can be used
safely for communications [41]. Acoustic waves are expected to have
much lower bitrates and act at shorter distances due to the inherent
characteristics of the physical air medium. With the emergence of
mobile computing, there are a greater number of devices with speakers,
microphones, and Internet connectivity. Speakers and microphones are
common and readily attachable to computing devices.

The ultrasonic channel uses the range of acoustic waves that is
above the human audible range. Sound is audible when acoustic waves
stimulate the ear drum, carrying the vibrations through bones to the
inner ear where hair cells move correspondingly, sending electrical
signals to the brain [42]. Hearing is impaired if these hair cells are
damaged [42]. If the acoustic waves occur at high enough frequencies,
hair cells are not stimulated, and the sound is inaudible. Aging reduces
the ability to hear higher frequencies [43]. Most adults cannot hear
higher frequencies (e.g., above 17 900 Hz) [43]. It should be taken into
consideration that even if frequencies are inaudible, exposure to
acoustic signals in the environment has been documented in producing
effects of nausea, headache, and fatigue [44].

2.3.1 Early Modems

Early modems modulated data over a limited audio frequency
bandwidth. Dial-up modems used common phone lines designed for
voice communication with a frequency range of about 300 Hz to 3300
Hz [45]. The first dial-up modems used full-duplex binary frequency-
shift keying (BFSK) [46]. Using four separate frequency channels (two
for binary downstream and two for binary upstream), they achieved
speeds up to 1.2 kbit/s [46]. Later modems used separate send and
receive frequency channels, applying phase-shift keying (PSK)

2.4 Applied Telecommunications

16

combined with amplitude-shift keying (ASK), known as quadrature
amplitude modulation (QAM) [47]. QAM with error correction and echo
cancellation increased bitrates to 33.6 kbit/s [47]. Speeds were improved
by detecting smaller shifts in phase and amplitude. Telephone networks
became more reliable between cities with improvements such as coaxial
cable, microwave radio relay, and fiber optic cable [48]. Pulse-code
modulation (PCM) and data compression have been used to exceed 56
kbit/s for dial-up modems [49].

2.3.2 Existing Research

The possibility of ultrasonic covert channels has been discussed in the
context of computer network security. In 2013, Hanspach and Goetz
showed transfer speeds of about 20 bit/s and mentioned an audible
clicking noise problem [4]. Around the same time, we had achieved
speeds of about 250 bit/s and solved the clicking noise issue. In 2014,
Deshotels showed transfers up to 100 ft. and over 300 bit/s at close
range [50]. In 2015, Carrara showed speeds of 230 bit/s up to 11 m and
presented the concept of an overnight attack, when audible signals can
be used with no one around [11].

 Applied Telecommunications 2.4

In order to design the channel, we examined signal processing
techniques, channel access methods, and compatibility with existing
network standards. Modulation schemes and protocols have been
developed for electromagnetic communications. The same concepts used
for electromagnetic waves can be applied to acoustic waves. Modulation
schemes, signal processing techniques, and telecommunications
methods were applied in the development of the ultrasonic channel.

2.4.1 Digital Modulation Schemes

Modulation is the process of varying a waveform so that information
can be transferred. Data can be conveyed in a waveform by varying its
frequency, phase, and amplitude. Digital modulation schemes use
discrete changes in the waveform to represent binary symbols. Our
research applies these modulation schemes to acoustic waves.

2.4 Applied Telecommunications

17

2.4.1.1 Frequency-Shift Keying (FSK)

FSK uses a discrete change in frequency to represent different symbols.
For example, as seen in Figure 2.1, one frequency represents a symbol
(0) and another frequency represents another symbol (1). Existing
research on ultrasonic channels has primarily used FSK as the
modulation scheme [4, 50, 11].

Figure 2.1 FSK modulation example

2.4.1.2 Phase-Shift Keying (PSK)

PSK uses a discrete change in phase to represent different symbols. For
example, as seen in Figure 2.2, the normal phase represents a symbol
(0) while a phase shifted by π represents another symbol (1).

Figure 2.2 PSK modulation example

2.4.1.3 Amplitude-Shift Keying (ASK)

ASK uses a discrete change in amplitude to represent different symbols.
For example, as seen in Figure 2.3, the absence of a waveform
represents a symbol (0) while its presence represents another symbol
(1). This is the simplest form of ASK known as on-off keying (OOK).

2.4 Applied Telecommunications

18

Figure 2.3 ASK modulation example

2.4.2 Signal Processing

In order to demodulate these waves, signal processing techniques are
applied.

2.4.2.1 Fourier Transform

In 1822, Joseph Fourier described how the particular value of a
function can be expressed by means of a definite integral containing its
general value [51]. The Fourier transform converts signals in the time-
domain to the frequency-domain, showing the presence of frequencies in
the signal. The discrete Fourier transform (DFT) can be used on
recorded samples to detect the presence of frequencies [52]. DFT allows
for the frequency detection necessary in FSK. The fast Fourier
transform (FFT) is a more efficient algorithm for computing the DFT.
The Fourier transform was used in other ultrasonic channel research
[4, 11].

2.4.2.2 Goertzel Algorithm

In 1958, Gerald Goertzel described a time-domain solution where the
magnitude of a spectral line is calculated, equivalent to a complete
Fourier analysis [53]. Similar to the Fourier transform, the Goertzel
algorithm yields the magnitude of a frequency. The Goertzel algorithm
is computationally more efficient than the FFT to detect frequency
components for a small number of frequencies [52]. The Goertzel
algorithm reduces processing time with fewer computational steps and
requires little memory space as it uses few constants, enabling it to
even be used on embedded systems [54]. Frequency detection using the
Goertzel algorithm is less processing intensive than the FFT, but many
engineers are unaware of it [52]. The Goertzel algorithm provides the
magnitude of a target frequency. It also yields phase information. An

2.4 Applied Telecommunications

19

optimized form of the Goertzel algorithm provides the frequency
magnitude directly at the expense of phase information [52].

2.4.2.3 Cross-Correlation

Cross-correlation is a measure of similarity between two waveforms.
Multiplying one signal by another shows the overlap of their
waveforms. A greater value in cross-correlation means the signals are
more similar to each other.

2.4.3 Channel Access Methods

A channel access method is the protocol by which systems use the
medium to transmit and receive data. Channel access methods can also
be considered medium access control (MAC) protocols. The following
subsections list the channel access methods relevant to our ultrasonic
channel.

2.4.3.1 Automatic Repeat Request (ARQ)

The ARQ protocol uses an acknowledgement (ACK) to confirm that data
has been successfully received. An error-detecting code, such as cyclic
redundancy check (CRC), enables data to be verified. Data is repeatedly
resent unless an ACK is received. Variants of the ARQ protocol have
been developed based on this scheme.

2.4.3.2 Random Access

The random access protocol allows any device to transmit at will. The
communications are not ordered. If transmissions occur at the same
time, there is a collision, a simultaneous interference of transmissions.
Randomized delays can be used to recover from a collision, allowing one
device to transmit before the other.

2.4.3.3 Master/Slave

The master/slave protocol provides ordered communications. The
master initiates and controls communications with the slave.

2.5 Summary

20

2.4.3.4 Token Passing

The token passing protocol uses a token to order the communications.
When a system has the token, it can transmit. The token is then passed
to the next system. The network may be arranged in a ring formation.

2.4.4 Network Sockets

Network sockets allow software to communicate easily with other
software in a standardized manner. Sockets were used to connect our
software to existing computer communication tools using common
computer network standards. Sockets use Transmission Control
Protocol/Internet Protocol (TCP/IP) to make connections, requiring an
IP address and port number.

 Summary 2.5

The literature review covers the context of study, giving insight into air
gap security and why ultrasonic channels are of interest. Air gaps are
critical in high-security networks; however, there are still means to
breach air-gapped networks. Ultrasonic channels are a potential
method for exfiltrating data from air-gapped networks that needs more
research. Existing ultrasonic communications research has been
discussed. The telecommunications theory and techniques applied in
our research were described.

21

3 Design

We have described air gaps and the context in which ultrasonic covert
channels may be used. Through the development of such a channel, we
assess the feasibility and performance of the ultrasonic medium. The
channel serves as a demonstration of a covert acoustic channel between
computing devices, and also acts a tool for the study of characteristics of
similar channels. The channel was developed in three layers:
modulation/demodulation of ultrasonic signals, implementation of a
channel access method, and software interfacing with the channel. This
chapter describes the design and development of the ultrasonic channel.

 Proof of Concept 3.1

Our software demonstrates the possibility of ultrasonic channels
between speakers and microphones. As seen in Figure 3.1, the software
on the air-gapped system transfers information ultrasonically to the
exfiltration device. Likewise, commands are sent ultrasonically from
the exfiltration device to the air-gapped system in a two-way
communications channel.

Figure 3.1 Ultrasonic channel setup

3.1 Proof of Concept

22

A one-way communications channel from the air-gapped system to
the attacker would only allow for exfiltration of data from the secure
network. However, a two-way communications channel between the air-
gapped system and the attacker allows for exfiltration of data as well as
interactive access to the air-gapped system. The two-way channel was
required because the operational scenario includes an interactive
ultrasonic command-and-control channel. Given that the data to be
exfiltrated from an air-gapped system would be of high value,
preserving its integrity is desirable. The two-way channel allows for
error detection and correction, ensuring the fully accurate transfer of
information. Common high-level network protocols such as TCP require
two-way communications. The software can be used in the context of
bridging an air gap, and also for general-purpose information transfer.

Figure 3.2 Deconstructed software model

By developing the proof-of-concept software, we identify the
vulnerability that is ultrasonic channels in air-gapped networks. Figure
3.2 shows the Internet-connected exfiltration device communicating
with the air-gapped system ultrasonically to relay commands from a
remote attacker. Our software enables a remote attacker to use a
sockets program such as Netcat (nc) to connect to an exfiltration device
within acoustic proximity of the air-gapped network. In concept, this
exfiltration device may be a compromised Internet-connected mobile
device (e.g., smartphone) with a speaker and microphone. The malware
communicates ultrasonically with the compromised air-gapped system.
On the air-gapped system, a command-line interpreter (e.g., cmd/
Command Prompt) is attached, allowing command-line access to the
air-gapped system.

3.2 Protocol Stack

23

 Protocol Stack 3.2

The channel was organized into three computer network
communications protocol layers following the layers of the Open
Systems Interconnection (OSI) model.

Figure 3.3 Protocol stack model

As shown in Figure 3.3, our protocol stack uses a physical layer,
data link layer, and sockets interface layer.

 Sockets interface layer: forwards application-level data to/from
external programs via network sockets.

 Data link layer: frame structure and channel access method for
ultrasonic communications.

 Physical layer: low-level modulation, demodulation, and
synchronization of ultrasonic signals; transmit (TX) and receive
(RX) functionality.

The channel was developed with a layered approach. Development

began with low-level functionality and proceeded through to the high-
level. The following subsections proceed through the development of
each layer. Our methods are described and examples of code have been
provided.

3.2.1 Layer 1: Physical

The physical layer acts as a modem for ultrasonic signals. The physical
layer contains our low-level acoustic relay methods, that is, the methods
for modulation, demodulation, and synchronization of acoustic waves.
The following subsections detail the functionality of our physical layer,

3.2 Protocol Stack

24

including a preliminary analysis of digital modulation schemes for
ultrasonic communications.

3.2.1.1 Acoustic Modulation

Initially, audio files (.wav and .mp3) containing ultrasonic frequencies
were generated to roughly assess the ultrasonic transmission capability
of speakers and ultrasonic reception capability of microphones. The
speakers and microphones on several mobile devices were tested to
transmit and receive ultrasonic signals.

Figure 3.4 Usable ultrasonic frequency range

The ultrasonic channel needed to function above the human audible

range but within the frequency response of ordinary speakers and
microphones. Figure 3.4 illustrates the limited ultrasonic channel
bandwidth to operate within. Since the human audible range extends
up to 17 900 Hz [43], and the frequency response of audio hardware
goes up to ~20 000 Hz, the ultrasonic channel is constrained between
these frequencies. We found a usable bandwidth from approximately
18 000 Hz to 20 000 Hz. A more exact usable range is discussed in the
validation activities.

In our channel software, waveforms were generated using a sine
wave formula and plotted as a list of amplitudes in memory. The
sampling rate determines the size of the list of amplitudes. The list of
amplitudes directly correlates to the physical movement of the speaker
cone. Ultrasonic signals are effectively played as normal sound from
speakers.

3.2 Protocol Stack

25

𝑓 =
𝑓

𝑓

𝜔 = 2π𝑓

𝑦 = sin(𝜔𝑥)

where
 𝑓 = normalized frequency (cycles/sample)
 𝑓 = channel frequency (Hz)
 𝑓 = sampling rate (Hz)
 𝜔 = normalized angular frequency (radians/sample)
 𝑦 = amplitude (from -1 to 1)
 𝑥 = sample number

Equation 3.1 Waveform generation

In Equation 3.1, the normalized frequency is calculated by dividing
the channel frequency by the sampling rate. The normalized frequency
shows how many wave cycles pass per sample. The normalized angular
frequency converts this to radians per sample. The waveform amplitude
for each sample is plotted with the normalized angular frequency
multiplier to generate the desired channel frequency.

3.2.1.2 Goertzel Algorithm Demodulation

The microphone records in order to receive ultrasonic signals. Sound is
recorded at the sampling rate, the rate at which wave amplitude points
are plotted. Amplitudes are recorded as a floating point number from -1
to 1. The list of wave amplitudes is processed with the Goertzel
algorithm.

The DFT is processing intensive. Similar to other research [4], we
had first tried using FFT. However, an inefficient algorithm would
restrict the channel speed. A faster method is more practical, especially
if it is to be applied to mobile or embedded devices, which have reduced
processing speeds. The Goertzel algorithm was an efficient method for
ultrasonic demodulation. The full Goertzel algorithm was used to detect
the target frequency magnitude and phase of the recorded waveform.
The optimized Goertzel algorithm was used for FSK, where phase
information was unnecessary. The frequency magnitude is a relative
indicator of volume at the specified frequency.

3.2 Protocol Stack

26

The Goertzel algorithm determines the overall frequency magnitude
(and phase) of the recorded waveform over a period of time. The
presence of a frequency above a magnitude threshold signifies the
beginning of an ultrasonic message. The software continues to record
the subsequent ultrasonic signals, which are then run through the
Goertzel algorithm. The waveforms recorded are demodulated into
binary according to frequency magnitude (or phase).

def goertzel_coefficient(frequency):

k = int(0.5 + pulse_length*frequency/sampling_rate)
w = 2*pi/pulse_length*k
cosine = cos(w)
sine = sin(w) #only used for PSK
coeff = 2*cosine
return coeff

Listing 3.1 Pseudocode for Goertzel algorithm coefficient

 The Goertzel algorithm uses a pre-calculated coefficient, shown in
Listing 3.1, based on the target frequency (e.g., 19 000 Hz), sampling
rate (e.g., 44 100 Hz), and pulse length (e.g., 180 samples). The pulse
length is the number of samples it takes to convey one symbol. The
sampling rate and pulse length are kept constant in an instance of the
channel.

def goertzel_algorithm(amplitudes, coeff):

Q1 = 0
Q2 = 0
for sample in range(pulse_length):

Q0 = coeff * Q1 - Q2 + amplitudes[sample]
Q2 = Q1
Q1 = Q0

magnitude = sqrt(Q1**2 + Q2**2 - Q1*Q2*coeff)
return magnitude

Listing 3.2 Pseudocode for optimized Goertzel algorithm

As shown in Listing 3.2, the Goertzel algorithm uses several
temporary variables (Q0, Q1, and Q2) to iterate over the recorded signal
to yield the magnitude of the target frequency. The Goertzel algorithm
acts as a digital filter to speed up the evaluation of a finite
trigonometric series for individual terms in the DFT [55, 56]. The
Goertzel algorithm can be seen as a series of second-order infinite

3.2 Protocol Stack

27

impulse response (IIR) filters [54]. Samples are processed over a set
time interval recursively using its previous two outputs, the temporary
variables Q1 and Q2. After a few samples have been read, the Goertzel
algorithm converges on the target frequency information [57].

3.2.1.3 Cross-Correlation Synchronization

Ultrasonic signals were initially received without cross-correlation,
using a window time length that matches the length of a pulse. Reading
was not accurate and errors in reading were sometimes present.
Without cross-correlation the entire transmission can be misread due to
the position of the ultrasonic signals in the recording. For example, the
beginning portion of an ultrasonic signal may be detected at the end of
a recording, causing the first bit to be read in twice and the rest of the
frame shifted by one bit. Not knowing exactly where the signal begins
results in misreading symbols due to reading in between the symbols.
Imprecise reading distorts the demodulated phase and frequency
information.

This gave rise to the need to track modulated pulses when they are
received. This tracking or synchronization was achieved with cross-
correlation, which provided a more specific position in the recording
over which to run the Goertzel algorithm, making demodulation much
more precise. Cross-correlation eliminates errors in reading.

Cross-correlation was used to find an offset where the ultrasonic
signals begin in a recording. This greatly improved the accuracy of
demodulation. The offset allows us to run the Goertzel algorithm
directly over the location of the signals in the recording.

3.2 Protocol Stack

28

def cross_correlation(amplitudes, reference):
optimal_offset = 0
max_correlation = 0.0
for offset in range(pulse_length):

correlation = 0.0
 for sample in range(pulse_length):

correlation += amplitudes[offset+sample] *
reference[sample]

correlation = abs(correlation)
if correlation > max_correlation:

optimal_offset = offset
max_correlation = correlation

return optimal_offset

Listing 3.3 Pseudocode for cross-correlation

As seen in Listing 3.3, we iterate over the recording at each offset,
finding a correlation of similarity to the reference signal. Cross-
correlation is the sum of the received and reference signal multiplied.
The maximum correlation is the best match of similarity, yielding the
offset where the signal begins in the recording.

Figure 3.5 Signal recorded (left); Cross-correlation scoring (right)

In Figure 3.5, the maximum cross-correlation occurs at about 105
samples (seen on the right). The offset is located at 105 samples, which
is where the signal visibly begins (seen on the left). The precision
provided by cross-correlation allows for accurate demodulation,
especially necessary for shorter pulse lengths.

3.2 Protocol Stack

29

3.2.1.4 Pulse Shaping

A pulse shape improves cross-correlation by making it easier to
recognize the position of a symbol in the recording. It physically
delimits each symbol with an overall recognizable shape, allowing the
receiver to match this overall shape instead of only its contents. The
pulse shape ameliorates cross-correlation as the overall pulse shape
yields more accurate cross-correlation scores compared to matching only
the low-level frequency contents. Pulse shaping increased the accuracy
of finding the offset where the signal starts.

Initially, the amplitude was linearly increased and decreased,
creating diamond shapes. However, a rounder, fuller pulse shape
contains more amplitude presence for better demodulation. The
Gaussian distribution can also be applied, effectively making Gaussian
FSK (GFSK). For simplicity and practicality, we decided to use a cosine
multiplier in order to create the pulse shape.

𝑦 = sin(𝜔𝑥) ∙
(1 − cos(

2π
𝑙

𝑥))

2

 where

 𝑦 = amplitude (from -1 to 1)
 𝑥 = sample number
 𝜔 = normalized angular frequency (radians/sample)
 𝑙 = pulse length (samples)

Equation 3.2 Waveform generation with pulse shaping

In Equation 3.2, the original waveform equation from Equation 3.1
was multiplied with a pulse shape that appropriately positions and
scales the pulse.

3.2 Protocol Stack

30

Figure 3.6 Pulse-shaped waveform plotted

 Figure 3.6 is a graphical representation of the equation used for
pulse shaping from Equation 3.2. Pulse shaping solved the audible
clicking noise issue mentioned in other research [4]. Without pulse
shaping, the jump from one symbol to another causes a distinct audible
click. Since the pulse shape reduces the ends of a symbol in amplitude,
the speaker can transition to the next symbol without any audible
clicking noise. Elimination of the clicking noise is crucial for covert
ultrasonic transmissions.

3.2.1.5 Preamble Pulse

There was still slight inaccuracy after pulse shaping in detecting
precisely where the signal starts. This was due to matching the
reference pulse at one frequency, while the first bit could have been
either of the channel frequencies. Cross-correlation over a longer pulse
(e.g., two pulse lengths) did not have much gain in accuracy. To
increase the accuracy of cross-correlation, a preamble pulse was set to a
designated frequency to be transmitted before the data pulses. The
preamble pulse is more distinctly recognizable in cross-correlation,
providing a more accurate offset from which to start reading the rest of
the message.

The preamble frequency can be set to one of the channel frequencies.
However, cross-correlation with a completely different frequency gave a
slightly more accurate offset. As such, the preamble pulse uses a
frequency that is different from the two channel frequencies. The
preamble frequency can be set to be between the data channel
frequencies to conserve bandwidth. Lower frequencies were more
reliable in demodulation, especially at further distances. Accordingly,

3.2 Protocol Stack

31

the preamble frequency may be set to a lower frequency for increased
accuracy.

Figure 3.7 Preamble pulse

The preamble pulse can also be called a starter pulse; it signifies
where a transmission begins. In Figure 3.7, the preamble pulse can be
seen between 100 and 300 samples. The data pulses follow after the
preamble pulse. The preamble pulse triggers the recording of
subsequent signals (over a specified length of time) to be parsed. With
pulse shaping and a preamble pulse, cross-correlation finds an exact
offset for demodulating the symbols in the transmission.

3.2.1.6 Preliminary Analysis of Digital Modulation
Schemes

After proving functionality at the physical layer, we explored alternate
possibilities for optimality in the different modulation schemes. The
modulation scheme determines how the original waveform is shifted to

3.2 Protocol Stack

32

convey discrete symbols. Each of the digital modulation schemes was
applied to shift the frequency, phase, and amplitude.

Quadrature shift keying has twice the bitrate of binary shift keying
by conveying two bits in 1 symbol (i.e., 00, 01, 10, or 11). The following
subsections report our preliminary findings on digital modulation
schemes for ultrasonic transfer.

3.2.1.6.1 Binary Frequency-Shift Keying (BFSK) and
Quadrature Frequency-Shift Keying (QFSK)

FSK was the primary modulation scheme used in the development of
the ultrasonic channel. In BFSK, a pulse plotted at a certain frequency
designates 0, while a pulse at a different frequency designates 1. These
frequencies were separated by a spectral difference sufficient to
discriminate between the frequencies in demodulation. The normalized
angular velocity, 𝜔 (see Equation 3.1), was recalculated to generate the
different frequencies.

From brief testing, about 500 Hz of separation can be used for FSK.
A more exact measure of frequency discrimination is described in the
validation activities. The 500 Hz of separation can be implemented
around 19 000 Hz. Development began with audible frequencies. FSK
tested to be functional up to around 20 000 Hz. A more precise upper
frequency response is discussed in the validation activities.

QFSK uses two more frequencies. QFSK with four frequencies easily
follows if it can fit within ultrasonic frequency bandwidth. We noted
that the four frequency channels in QFSK can fit in ultrasonic ranges
that most people cannot hear. At 500 Hz of frequency separation, four
frequency channels would require 1 500 Hz of bandwidth (i.e.,
500 Hz × (4-1)). 1 500 Hz bandwidth fits between 18 500 Hz and 20 000
Hz.

3.2.1.6.2 Binary Phase-Shift Keying (BPSK) and
Quadrature Phase-Shift Keying (QPSK)

After confirming that our demodulation methods were functional with
FSK, we experimented with PSK as the modulation scheme. While the
optimized Goertzel algorithm allowed for faster processing of FSK at
the expense of phase information, the full Goertzel algorithm is
required for PSK. Therefore, PSK is slightly more computationally
intensive than FSK. A phase shift of theta (𝜃) is added to the original
wave equation (i.e., sin(𝜔𝑥 + 𝜃)) to represent different symbols.

3.2 Protocol Stack

33

real = Q1 - Q2*cosine
imaginary = Q2*sine
theta = degrees(atan2(imaginary,real))

Listing 3.4 Pseudocode for phase in Goertzel algorithm

Listing 3.4 shows the calculations that are added to the end of the
Goertzel algorithm (see Listing 3.2) to return phase instead of
magnitude. The full Goertzel algorithm yields the real and imaginary
components of the magnitude. The previous cosine and sine variables
calculated in the Goertzel coefficient are required (see Listing 3.1). The
real and imaginary components are used to find the phase shift, 𝜃, of
the waveform.

In BPSK, 360° is halved such that 𝜃 from 0° to 180° represents one
symbol (0) and 𝜃 from 180° to 360° represents the other symbol (1). For
QPSK, there are four different phase states, where 360° is quartered
instead of halved. Similar to QFSK, having four symbols allows the
representation of two bits per symbol, therefore doubling the bitrate.

With PSK there was an issue of a phase drift. An extraneous
addition to the expected value of 𝜃 was observed, interfering with
correct demodulation. The phase drift was a continual 𝜃 shift of about
15° between pulses. Since the phase drift makes a reference phase
unusable, we had to use differential PSK (DPSK) instead of regular
PSK. DPSK compares the current phase to the previous phase instead
of using a reference phase. For the initial phase, the phase of the
preamble pulse can be used. Differential BPSK (DBPSK) was
successfully implemented and functional around 20 000 Hz. Differential
QPSK (DQPSK) is also functional, although it is not as precise as
DBPSK due to the reduced symbol space. Quadrature modulation
schemes have a higher bit error rate (BER) than binary modulation
schemes. The phase drift was noticeably less for lower frequencies (less
than 15°) but the issue persists.

The advantage of phase-shift keying is that phase information can
be transferred on the same frequency without occupying more spectral
bandwidth within the ultrasonic range. The other frequency, instead of
being used to signal the other symbol, can be used for an extra phase-
shift keyed channel. This may allow full-duplex communications.

A problem with PSK may be sound reflection (i.e. echoes). In a real
world application, phase information is the most likely to be distorted.
Acoustic reverberations over distance can cause phase to become highly
distorted. Issues in propagation, loss, and reflection especially affect

3.2 Protocol Stack

34

phase information. These are more of an issue in acoustic waves than
electromagnetic waves. PSK was more prone to errors than FSK. As
such, the channel was developed using BFSK for its reliability.

3.2.1.6.3 Binary Amplitude-Shift Keying (BASK) and
Quadrature Amplitude-Shift Keying (QASK)

An obvious form of modulation is ASK. The simplest form of ASK is the
presence vs. absence of pulse, called OOK, which is the form of BASK
we considered. A pulse represents 1, while absence represents 0.
Demodulation with the Goertzel algorithm calculates whether the
received magnitude of a certain frequency is above or below a threshold.
For QASK, an amplitude multiplier is used (i.e., A ∙ sin(𝜔𝑥)) to constrain
the maximum wave amplitudes.

An advantage of BASK/QASK is that a period of silence acts as a
symbol itself, instead of having to transmit at another frequency. This
saves from having to use another frequency if the spectrum bandwidth
were more restricted because of audio hardware limitations. At the
minimum, one frequency within the ultrasonic range should be usable
for a BASK modulation scheme, which has the same bitrate as with two
frequencies in BFSK. Alternatively, the absence of a frequency above a
magnitude threshold can be used to end the transmission.

ASK was not tested in our channel for several reasons. In BASK, if
the offset is not exactly accurate, it is likely to read a small amount of
frequency presence where there is supposed to be silence, resulting in
error. Implementation of QASK needs to have multiple magnitude
thresholds. There would be three levels of amplitude and silence to
convey the four symbols. In development, we observed that magnitude
was a highly variable number, dependent on distance and hardware.
Reducing the amplitude for QASK also reduces the distance of
transmission because quieter sound cannot travel as far. Compared to
electromagnetic waves, acoustic waves attenuate significantly more
over a shorter distance.

3.2.1.6.4 M-ary Shift Keying

Beyond binary and quadrature schemes, digital modulation can have
M-ary shift keying. The continuation follows from binary and
quadrature schemes by further dividing the modulation space,
extending to 8 symbols, 16 symbols, and so on. Using 8 symbols means
that 4 bits can be transferred per pulse, thereby increasing the binary

3.2 Protocol Stack

35

scheme’s bitrate by four times. Using 16 symbols means that 8 bits can
be transferred per pulse, thereby increasing the binary scheme’s bitrate
by eight times.

In M-ary FSK, more frequency channels would be used. For an
ultrasonic channel between speakers and microphones, the number of
frequencies usable is determined by the ultrasonic frequency range and
how closely frequency channels can be placed. 8 frequency channels do
not easily fit in the ultrasonic range between 18 000 Hz and 20 000 Hz.
The 4 frequency channels in QFSK are the most we could place within
the ultrasonic range with 500 Hz of frequency separation. However, if
the audible range of frequencies could be used, we could certainly have
8, 16, or even 32 frequency channels. Such schemes can be called FSK8,
FSK16, and FSK32 respectively. At 500 Hz of frequency separation, 32
frequency channels require 15 500 Hz of bandwidth (i.e., 500 Hz ×
(32-1)). This would fit between 20 Hz and 20 000 Hz. Using 32 symbols
would mean that 16 bits can be transferred per pulse, thereby
increasing the binary scheme’s bitrate by 16 times. Although entirely
feasible, it was not necessary to demonstrate this; our software was
validated with BFSK.

In M-ary PSK, more phase shifts would be used. Since QPSK was
already not very accurate, PSK8 would have too many errors. In M-ary
ASK, more amplitudes would be used. Since QASK was already not
optimal due to the previously mentioned issues, ASK8 would have been
even more problematic.

3.2.1.6.5 Combined Digital Modulation Schemes

Frequency, phase, and amplitude are independent of one another.
Because these wave properties can carry information independently, it
is possible to combine digital modulation schemes to send more data
simultaneously. For example, PSK applied at different frequencies may
be called frequency-PSK (FPSK). We confirmed that FPSK is possible.
However, it is prone to error due to the phase drift issue mentioned in
experimenting with PSK. FSK was combined with PSK, but the phase
drift persisted. In FPSK, there were sequences that could not be
transferred. For example, multiple of the same symbol in a
transmission would lead to a perceived phase shift when there is none
(e.g., 𝑓 𝜃 , 𝑓 , 𝑓 , 𝑓 𝜃). Phase was compared to the previous phase of the
same frequency. As such, FPSK was not implemented for the channel.
Certain sequences could not be received if the phase drift exists.

3.2 Protocol Stack

36

Ideally, an implementation of QPSK over M-ary FSK channels would
transfer the most information simultaneously.

Another way of combining modulation schemes is the following. In
ASK, a period of silence can be used to represent a symbol. Taking this
concept from ASK, it is possible to implement QFSK with only three
frequencies and a silence, thus conserving spectrum bandwidth by
using one less frequency channel.

3.2.1.6.6 Summary of Digital Modulation Schemes

Table 3.1 summarizes the theoretical bitrate and expected performance
of the different digital modulation schemes that were investigated in
our preliminary analysis.

Modulation
Scheme

Theoretical
Bitrate (bit/s)

Expected Performance

BFSK 250 Reliable
QFSK 500 Reliable, fits in ultrasonic bandwidth
M-ary FSK 1000+ Reliable, requires audible bandwidth
PSK N/A Not functional due to phase drift issue,

reference phase unusable
DBPSK 250 Functional
DQPSK 500 Functional, more error prone than DBPSK
M-ary DPSK N/A Not functional due to reduced symbol space
BASK 250 Functional
QASK N/A Not functional due to variable magnitudes,

reduced transfer distance
M-ary ASK N/A Not functional
FPSK 500 Possible but prone to error

Table 3.1 Summary of digital modulation schemes

3.2.2 Layer 2: Data Link

We returned to our most reliable form of modulation, BFSK, to develop
the remainder our channel. The physical layer had transmit/receive
functions that were usable by the data link layer. We developed a
channel access method suitable for two-way half-duplex
communications between the air-gapped system and the exfiltrating
device.

3.2 Protocol Stack

37

The channel access method uses a frame to transfer data. This
frame contains overhead fields that ensure data is transferred
accurately in the protocol. This frame is effectively the sequence of bits
pulsed in a transmission. At the receiver, the bits are received and
interpreted according to the frame structure. The preamble pulse
precedes the frame.

This section describes the frame structure (see Figure 3.8) for
communications, followed by a preliminary analysis of communications
protocols for ultrasonic transmission.

3.2.2.1 Frame Structure

Figure 3.8 Frame diagram

3.2.2.1.1 Acknowledgement

The acknowledgement is a bit that acknowledges the frame transmitted
was successfully received. The ACK (value of 1) tells the sender that the
previous frame sent was received. Otherwise, the previous frame is
continually resent until the sender receives acknowledgement. A
negative acknowledgement (NAK; value of 0) tells the sender that the
previous frame was not received and must be resent.

Instead of using a serialized acknowledgement number to keep track
of frames, the acknowledgement here is a simplification of this concept
and reduces the frame length required by a serialized number. This was
an efficiency introduced given the slow bitrate of the channel.

3.2.2.1.2 Duplicate Identifier

The duplicate identifier is a bit that identifies whether the frame is new
or a retransmission of the previous frame. This was part of ensuring
reliable transfer. Transmissions may be duplicated if there is an error
causing the sender to retransmit. If the same data is received a second
time, it must be discarded. Additionally, sometimes the payload data
may be exactly same as the previous frame. Even if the payload data
sent is exactly the same, the duplicate identifier tells the receiver that

3.2 Protocol Stack

38

the frame is new information meant to be received. This differentiates
between new data and a retransmission of the previous frame.

Similar to the acknowledgement, instead of using a serialized
number that keeps track of frames, the duplicate identifier is a
simplification of this concept and reduces the frame length required by
a serialized number. This was an efficiency introduced given the slow
bitrate of the channel.

3.2.2.1.3 Port Number

The port number is the TCP port that data is meant to be forwarded to.
The corresponding application is connected to this port, ready to accept
the data that has been transferred ultrasonically.

3.2.2.1.4 Payload Length

The payload length determines the length of a frame. We used a
payload length field to facilitate experimentation with different frame
sizes demonstrated later in the validation activities. This field is not
necessary when frame length is set and consistent. The payload length
field should be entirely omitted to reduce frame length if a consistent
payload length is used.

3.2.2.1.5 Payload

The payload is the actual data to be transferred ultrasonically. This is
the application-level data in binary. The payload length can be
anywhere from 0 to 512 bits. A reasonable upper bound for the payload
length is 512 bits because greater lengths may be prone to error in
practical application. Longer transmission lengths have a higher chance
of a single bit being incorrect in the entire frame.

3.2.2.1.6 Cyclic Redundancy Check (CRC)

CRC is the error-detecting code used to verify the integrity of data
transmitted. CRC provides error detection so that the data link layer
can correct for errors with retransmission. The CRC field is matched to
the CRC computed on the contents of the frame. A match means that
the frame is correct, and a mismatch means that there was some error.
If the CRC doesn’t pass, the entire frame is discarded since the data is
flawed.

3.2 Protocol Stack

39

In choosing the bit length of the CRC, there were 8, 16, and 32 bit
options. CRC8 has 256 hash values, while CRC16 has 65 536 hash
values, and CRC32 has about 4 billion hash values. CRC16 (crc-16-dds-
110) was an appropriate choice given our payload length of up to 512
bits, saving the excessive frame length of CRC32. Although we used
CRC16, CRC8 can suffice to decrease the frame overhead with a low
chance of inaccuracy.

3.2.2.2 Preliminary Analysis of Channel Access Methods

We have previously described the structure of our frame. The frame
was used in our channel access method. Our channel access method
used an ARQ methodology to correct for errors in transmission. This
ensured the reliable transfer of information. In ARQ, transfers proceed
linearly, where the previous frame must be successfully received in
order for the next to be accepted. The next frame is not sent until an
acknowledgement is received. The protocol ensures that 100% of the
data is transferred correctly, guaranteeing the accurate transfer of
data. The following figures (Figure 3.9 to Figure 3.11) illustrate the
ARQ protocol using devices Alice and Bob.

Figure 3.9 ARQ protocol (normal)

In Figure 3.9, the data payload is represented by the first letter of
the sender, followed by a sequence number (e.g., Alice sends A1 data,
then A2 data). Checkmarks represent successful CRC checks done by
the receiver. This figure shows Alice and Bob communicating normally
without error. Alice sends her A1 data. It is successfully received by
Bob, who replies with his B1 data and an acknowledgement, meaning
that A1 has been received. Alice receives acknowledgement and sends
A2 along with an acknowledgement for B1. Bob receives
acknowledgement and sends B2 along with an acknowledgement for A2,
and so on.

3.2 Protocol Stack

40

Figure 3.10 ARQ protocol (error)

In Figure 3.10, an error has occurred in Alice’s transmission of A1
data, causing Bob’s CRC check to fail. Bob replies with his B1 data,
along with a negative acknowledgement because he did not receive the
data correctly from Alice. Alice resends her A1 data along with
acknowledgement of Bob’s B1 data.

Figure 3.11 ARQ protocol (duplicate/discard)

 In Figure 3.11, Alice successfully sends A1 data to Bob. However,
Bob’s reply fails, causing Alice to retransmit A1. Since Bob has already
received A1, he detects that it is a duplicate and discards it.

In addition to the ARQ protocol, we used another means to model
the order of communications in our channel access method. Originally,
a random access protocol was implemented. A random access protocol
was possible due to the capability of detecting starter ultrasonic
frequencies. This is similar to carrier-sense multiple access with
collision detection (CSMA/CD), which is able to detect collisions and
uses random waiting times to recover from collisions. When a starter
frequency is detected, the remainder of the frame is then recorded. Any
device can initiate transmission. A machine address field can be added
without the ordering of communications. A solution to collisions in the
random access protocol is to use randomized waiting times before

3.2 Protocol Stack

41

retransmission. In Figure 3.12, the devices transmit simultaneously,
resulting in a collision. They are set to receive for a random amount of
time before transmitting again, at which point one will likely transmit
before the other.

Figure 3.12 Random access protocol collision recovery

Even more applicable than a random access protocol, a master/slave

protocol was implemented in order to suit the operational scenario. In
the master/slave protocol, only the Internet-connected exfiltration
device initiates communications with the air-gapped system, which also
avoids transmission collisions. The order of the master/slave protocol
avoids errors where multiple hosts attempt to transmit simultaneously.
The random access protocol was more like a “free-for-all” where there
were collisions. Given the potential inefficiencies with heavy loads and
long waiting times, the random access protocol was not as extensible to
a network because all of the devices would be trying to transmit at the
same time, jamming each other, especially since transmissions are slow.
The channel becomes inefficient when considering scalability up to a
network level.

A network can be formed through an ordered scheme such as
master/slave or token passing. The token passing protocol is similar to
master/slave protocol. In token passing, more devices would be used
along with a means of addressing. The master/slave protocol with
implicit token passing on a one-to-one channel can be extended to token
passing for multiple systems. Symmetry was considered in the protocol
so that the code for the master is mostly similar for the slave.

A primary reason for using the master/slave protocol is that the air-
gapped slave device would not be beaconing out constantly if data was
received on the socket. An attacker would want to connect in only when
needed and not have a system broadcast out repeatedly, making the
covert channel potentially more easily detectable. The master device
only beacons out when communication is desired. When the attacker is
connected to the master device, it can then beacon out to nearby

3.2 Protocol Stack

42

systems. In this protocol, the ultrasonic channel may be disconnected
most of the time. The slave does not beacon out and remains silent,
listening for signals. The master connects to the slave when in range.

3.2.3 Layer 3: Sockets Interface

External applications were connected to the ultrasonic channel via
TCP/IP sockets. With sockets connections, the channel was effectively
“interfaced” with external applications in a generic manner. A
simplified overview of our protocol stack implementation appears as
local port forwarding over an ultrasonic channel. Application-level data
is sent through sockets.

The sockets interface was implemented considering compatibility
and extensibility. The sockets network standard is ubiquitous in
contemporary computer communications, commonly used as the
interface to network protocols. Sockets are useful because they can
connect existing, generic sockets-based programs together. Sockets
enable the program to be connected to other programs as part of a
larger set of attack functionality. Programs connected by sockets can
easily pass information between each other, locally and across the
Internet. These programs may be developed independently, performing
unique functionality, and then connected together to relay information
between each other.

3.2.3.1 Generic Sockets Relay

Our software from the outside appears to be a sockets relay over
ultrasonic communications. Once external applications are connected
with sockets, information can be transferred through the ultrasonic
channel. Sockets also enable remote connections (over the Internet) to
the exfiltration device.

The program is set to use specified ports. The Internet-connected
exfiltration device locally binds to these ports and accepts external
application connections. Separately, the air-gapped system repeatedly
tries to connect to its copy of the external applications on the specified
ports. When an external application has a socket connection to the
program, the socket is added to the list of sockets.

Application-level data received on a socket is converted from a bytes
string into a binary list, put into a frame, and sent according to our
channel access method protocol. At the receiver, the binary payload bits

3.2 Protocol Stack

43

are converted back into a bytes string and forwarded to the appropriate
port.

3.2.3.2 Queued Delivery

Given the slow speeds of ultrasonic transfer, queues are useful to hold
the application-level data before ultrasonic transfer. Queue servicing
threads are run concurrently. The transmit queue (TxQueue) and
receive queue (RxQueue) are accessible to the data link layer. These
queues have push & pop methods, and provide a separation of concern.
Having mutual exclusion, the queues are ensured against thread
concurrency errors.

Figure 3.13 Program data flow with socket

As seen in Figure 3.13, data flows from the microphone to the

socket, and from the socket to the speaker. A bytes string received from
a socket is converted into a binary list and placed into a frame
structure. The frame is put into the TxQueue by the TxQueueServicing
thread. This frame in the TxQueue is popped off by the channel access
method when ready to transmit ultrasonically.

The bits received from a CRC-verified and non-duplicate ultrasonic
transmission are placed into a binary list in a frame structure. The
frame structure is put into the RxQueue and popped off by the
RxQueueServicing thread, which converts the binary list into a bytes
string and forwards it to the appropriate socket.

The sockets interface was designed such that each socket has its
own TxQueueServicing thread. Meanwhile, only one RxQueueServicing
thread forwards data from the RxQueue to all of the connected sockets.

3.2 Protocol Stack

44

This architecture is faster than a previous architecture where each
socket used its own TxQueueServicing and RxQueueServicing threads.

3.2.3.3 Port Mapping External Applications

Multiple external applications can be connected simultaneously to the
ultrasonic channel. The program can use multiple ports, enabling
multiple sessions. The same port numbers are used on both devices.
However, the port numbering may be obfuscated by changing the port
numbers. Different port numbers can be used to communicate
ultrasonically (i.e., port A on the master is sent to port B on the slave).

3.2.4 Functional overview

Our software was developed in three layers: physical, data link, and
sockets interface. The protocol stack mapped onto our layered
development process. The following listings display the methods
developed for our software.

physical
class Audio()

def tx_sound(tx_frame)
def rx_sound(seconds) return rx_frame
def graph_pulse_display()
def _plot_pulse(frequency) return amplitudes
def _prepare_pulses()
def _goertzel_coefficient() return coeff
def _prepare_goertzel_coefficients()
def _goertzel_algorithm(amplitudes,f0_coeff,f1_coeff)

return magnitudes[]
def _determine_pulse_bit() return boolean
def _cross_correlation(amplitudes,reference)

return offset
def _read_subsequent_pulse(amplitudes) return bits[]
def _detect_preamble_pulse(amplitudes,coeff)

return magnitude
def _read_pulse(stream) return amplitudes
def _listen() return bits[]

Listing 3.5 Physical layer functional overview

 In Listing 3.5, the functionality of our physical layer is shown. The
Audio class contains the methods for transmitting/receiving acoustic

3.2 Protocol Stack

45

signals, the Goertzel algorithm, cross-correlation synchronization, pulse
shaping, the preamble pulse, and pulse visualization.

datalink
class Frame()

def _pad_list_zeros(list) return padded_list
def _string_to_raw_string(string) return raw_string
def _binary_list_to_integer(binary_list) return integer
def _integer_to_binary_list(integer) return binary_list
def _binary_list_to_string(binary_list) return string
def _string_to_binary_list(socket_data)

return binary_list
def _update_frame(new,index)
def _calculate_crc() return crc
def _check_crc() return boolean
def _set_crc()
def _get_ack() return boolean
def _set_ack(ack)
def _get_duplicate_id() return boolean
def _set_duplicate_id(duplicate_id)
def _get_port() return integer
def _set_port(socket)
def _get_length() return integer
def _set_length(socket_data)
def _get_payload() return raw_string
def _set_payload(socket_data)

class Protocol() #thread
def master_protocol(rx_queue, tx_queue)
def slave_protocol(rx_queue, tx_queue)
def _print_results()

Listing 3.6 Data link layer functional overview

 In Listing 3.6, the functionality of our data link layer is shown. The
Frame class contains the methods for reading and setting the frame
data, and changing data types. The Protocol class contains the channel
access method for the master and slave devices.

sockets
class Sockets()

def create_socket(port) #thread
def _rx_queue_to_sockets() #thread
def _socket_to_tx_queue(socket) #thread

Listing 3.7 Sockets interface layer functional overview

3.3 Program Features

46

In Listing 3.7, the functionality of our sockets interface layer is
shown. The Sockets class contains the methods for forwarding data
between sockets and TX/RX queues.

 Program Features 3.3

Program features entail the controls for the software. Command-line
flags control these features of the program. Issues encountered in
developing the ultrasonic channel were remedied with the adjustable
program features.

3.3.1 Application Settings

These are the program settings required for external applications to use
the ultrasonic channel.

3.3.1.1 Master/Slave Selection

The selection for setting what the device functions as: master or slave.
The Internet-connected exfiltration device is the master. The air-gapped
system is the slave.

3.3.1.2 Port Mapping

The selection of which ports are used by the program.

3.3.2 Channel Settings

These are program options that facilitated usage and testing. They
adjust the variables for the channel and helped debug it. These settings
highlight some of the issues encountered in ultrasonic transfer and
aspects of the hardware/environment.

3.3.2.1 Pulse Visualization

Displays a visual representation of the wave recorded. This was helpful
in debugging, especially to see the preamble pulse. Pulse visualization

3.3 Program Features

47

allows visual assessment of what the program used as the cross-
correlation offset. We can visibly see where pulses start and end.

3.3.2.2 Preamble Pulse Magnitude Threshold

We encountered an issue where detection of the preamble pulse was too
late. If recording begins too late, the offset is shifted incorrectly for
reading the remainder of the pulses. This was solved by setting the
preamble pulse magnitude threshold detection lower so that less of a
presence of the preamble pulse initiates receiving earlier. Conversely,
the preamble pulse magnitude threshold may also be set higher for
noisier environments so that it isn’t falsely started on noise that was
not a starter pulse.

The magnitudes returned by the Goertzel algorithm are relative to
the hardware. Different microphones receive sound at different
amplitudes. Depending on the hardware, magnitude is usually a value
between 0 and ~15. The magnitude threshold default is 0.5. At normal
volumes, the laptop microphone received target frequencies around
magnitude 2, while the webcam microphone received target frequencies
around magnitude 5.

3.3.2.3 Cross-Correlation Synchronization Window
Length

The cross-correlation synchronization window length can be adjusted to
ensure that the start of the preamble pulse is detected as the correct
offset. Initially, the channel had a chance of missing the preamble pulse
and instead matching the subsequent data pulse. Shortening the cross-
correlation window size eliminates the chance of this occurring.

3.3.2.4 Pre-Transmission Pause

A slight pause before transmission of a frame ensures that the receiving
device has begun recording. This prevents the start of the signal from
being continually cut off due to potential system-specific processing
time.

3.3 Program Features

48

Figure 3.14 Pre-transmission pause

 Figure 3.14 illustrates the adjustable sleep time before
transmission. The transmission occurs before the receiver times out.
The sleep time can be 0 or greater as required, but as small as possible
to not add delay to the channel.

3.3.2.5 RX Wait Time

The RX wait time sets how long a device waits for a response. This is
illustrated in Figure 3.14. The RX wait time must be longer than the
pre-transmission pause in order to ensure reception given the delay.

3.3.2.6 Post-Transmission Empty Padding

We observed an issue with demodulating incorrectly near the end of
frames. It was necessary to transmit a tail of amplitude 0 after the
pulse, otherwise the speaker stops outputting and the audio stream can
get cut short before the last bits are sent. This was likely due to
inaccuracy in the audio library control of the hardware. Such an error
can make transmissions fail entirely. There must be sufficient zeroes
padding in the tail. The number of zeroes required is hardware specific
and our default is 8 zeroes, which should be enough for most devices.

Stopping the speaker abruptly can ruin the end of a transmission,
distorting the last bits. This was solved by stopping output to the
speaker gently, having a buffer at the end before releasing the speaker.

3.3.3 Validation Test Settings

These are program options that allow for testing the physical channel
capability. They were used in our validation activities as they correlate
to the variables tested in next chapter. This assisted our testing of
characteristics of ultrasonic channels. The settings can also optimize
the channel depending on its usage requirements (e.g., transfer
distance).

3.3 Program Features

49

3.3.3.1 Payload Length

Setting the optimal frame length depends on how much data can
usually be ultrasonically transferred before errors are present. The
payload length can be any value. We chose an upper bound of 512 bits.
In the validation activities, we discuss an optimal value for payload
length.

3.3.3.2 Pulse Length

Setting the optimal pulse length depends on how small a pulse can be
emitted by the speaker and still be read correctly by the microphone.
The bitrate of the channel is inversely proportional to the pulse length.

As the cross-correlation algorithm has complexity O(n2), reading in
pulse lengths that are too long will cause delay in processing. We
started to notice processing delays when pulses were about 1 000
samples long.

3.3.3.3 Sampling Rate

Setting the optimal sampling rate depends on the fastest sampling rate
achievable without errors occurring. The bitrate of the channel is
directly proportional to the sampling rate.

3.3.3.4 Frequency Channels

Setting the frequencies used by the ultrasonic channel (i.e., the two
frequencies in BFSK) depends on the upper frequency range of the
equipment used. Lower quality equipment may require lower
frequencies for accurate transfer without errors.

𝑓 =
𝑓

𝑙
𝑛

where
 𝑓 = channel frequency (Hz)

 𝑓 = sampling rate (Hz)
 𝑙 = pulse length (samples)
 𝑛 = whole number (cycles)

Equation 3.3 Whole number frequency cycles

3.3 Program Features

50

Using Equation 3.3, the frequencies were adjusted to have a whole
number of cycles. Although its effects were not significant due to pulse
shaping, this was performed to perfect the number of cycles and to help
rule out alignment issues. By default, 19 110 Hz and 19 600 Hz are
used as the channel frequencies since they are ultrasonic frequencies
that have a whole number cycles at the 44 100 Hz sampling rate with a
pulse length of 180 samples.

3.3.3.5 Goodput Trial

Performs a test of overall perceived throughput, that is goodput, the
amount of payload data delivered over time. In the validation activities,
goodput is used to measure the practical performance of the channel.

3.3.4 Auxiliary (AUX) Audio Cable Transfer

After development of the ultrasonic channel, we tested transferring
data directly via the 3.5mm AUX audio cables. Although the ultrasonic
channel software was not designed to transfer data directly via audio
cables, we found that the software functioned identically. It was
possible to remove the speakers and microphones from the channel
entirely, directly transferring data via audio cables.

Figure 3.15 AUX cable data transfer

Figure 3.15 shows the line-out jack outputting to the microphone
jack by AUX cable instead of via acoustic waves in air. Frequency waves
in the audio cable propagate much more reliably than in air. The pulse
was visibly more accurate in the AUX cable. This means that frames
can be longer, pulses can be shorter, and the sampling rate increased. A

3.4 Summary

51

two-way channel can be established with two AUX cables. If the two-
way channel is unavailable, a one-way channel can transfer data very
reliably (line-out to microphone) without error-correcting feedback to
the air-gapped system.

Audio cables can, of course, use the entire frequency spectrum
silently instead of having to stay within the ultrasonic range to avoid
audible detection. As mentioned in M-ary modulation schemes (see
section 3.2.1.6.4), this would allow for significantly higher bitrates.
Audio cables can also use higher frequencies in the ultrasonic range.
Phase and amplitude modulation would be more reliable in cable than
in air. As such, combined modulation schemes such as QAM could
increase bitrates.

 Summary 3.4

The ultrasonic channel designed consists of a three-layered protocol
stack model which organizes the functionality of the program. Layer 1
(Physical Layer) entails our methods for the modulation of acoustic
signals, demodulation with the Goertzel algorithm, cross-correlation
synchronization, and pulse shaping. Layer 2 (Data Link) implements
the framing of data and an appropriate channel access method. Layer 3
(Sockets Interface) uses sockets to connect the ultrasonic channel to
external programs. The program features detail the settings of our
program. Lastly, the ability of acoustic software to directly transfer over
AUX audio cables was presented.

52

4 Validation Activities

In the previous chapter, we described the design and development of
our channel in terms of a three-layered protocol stack. Additionally, we
listed program features that allow for validation testing of the channel.
Validation testing was performed to demonstrate that the channel
effectively bridges an air gap by acting as a medium for the transfer of
information between computers. The characteristics of the channel that
were investigated include usable bitrate, frequency discrimination, and
operation in noise. The observable performance of the channel may then
be used to assess its effectiveness and limitations, and help characterize
the ultrasonic channel.

 Experimental Setup 4.1

Our ultrasonic channel was developed and tested in a simulated air-
gapped environment comprised of a desktop computer and a laptop. Our
equipment included several speakers and microphones. By using low-
grade hardware, we tested the ability of an ultrasonic channel to
function over common consumer-grade speakers and microphones. We
observed the capability of acoustic channels to transfer data
ultrasonically on inexpensive hardware not designed to be used at
ultrasonic frequencies, meaning the ultrasonic channel is very likely to
work on most hardware. The validation test settings described in
section 3.3.3 were used to test the channel.

4.1 Experimental Setup

53

Figure 4.1 Experimental setup diagram

Figure 4.1 illustrates the primary equipment configuration we used
in development and validation testing.

Equipment Type
Acer Aspire TimelineX 3830TG-6412 Laptop (with microphone)
Realtek ALC892 Audio chipset
Audioengine A5+ Speakers
Cyber Acoustics CA-2988 Speakers
Logitech Z130 Speakers
Microsoft LifeCam VX-5000 Webcam (with microphone)
Logitech C200 Webcam (with microphone)
Logitech C525 HD Webcam (with microphone)
Genius MIC-01A Desktop microphone
iCan OV-M380A Desktop microphone

Table 4.1 Equipment list

The ultrasonic channel was tested to be functional over all of the
equipment shown in Table 4.1. The channel was mainly developed over
the Audioengine A5+, Microsoft LifeCam VX-5000, Acer Aspire
TimelineX 3830TG-6412, Cyber Acoustics CA-2988, and Realtek
ALC892 (see Figure 4.1). The Microsoft and Logitech webcam
microphones are higher quality and performed better than the
inexpensive Genius and iCan desktop microphones. Weaker
microphones had to be closer to the speakers and were more likely to
have errors in the bit sequences.

4.2 Functional Testing

54

In development, the channel was sensitive to the positioning of the
microphone from the speaker. When the channel was fully developed,
we were able to test at further ranges. The directionality of the
microphone was generally in line with the speaker, but this was not
required. The placement of the microphone can be angled from the
speakers.

We also assessed operation in noise, the transmission of ultrasonic
frequencies despite noise. Several noise models were used to validate
this capability. Operation in noise (e.g., computer fans) was simulated
with a program that generated white noise [58].

Demonstrating the feasibility of ultrasonic channels on one platform
sufficed; the design concepts in this thesis can be ported to other
systems. Preliminary testing with spectrum analyzer applications
showed that the transmission and reception of ultrasonic frequencies on
mobile devices was completely feasible.

 Functional Testing 4.2

Functional testing ensured that the methods were correct as they were
developed. Each layer was proven functional before developing the next.
Data was first shown transferrable at the physical level. As the data
link layer was developed, the handling of ultrasonic signals was
improved on the physical layer. The data link protocol ensured reliable
ultrasonic transfers. The channel access method protocol was verified to
transfer correctly. We tested the channel by ensuring that randomly
generated strings could be transferred reliably. After the sockets
interface layer was implemented, the software was tested externally.
We ensured successful transfer through the layers of the protocol stack.

As sockets enabled external applications to connect to the ultrasonic
channel, Netcat was used to transfer data. The primary program used
to test the ultrasonic channel was Netcat, acting as a TCP/IP
connection program to test the sending of characters. File transfers
through Netcat were also performed. These transfers were verified to be
correct with Message Digest 5 (MD5) checksums.

Sockets enabled application layer protocols to run over our
ultrasonic channel. Entire application-level protocols were also
transferred ultrasonically. Secure Shell (SSH) functioned, but was quite
slow due to the encryption requiring larger amounts of data. A simple
Python Hypertext Transfer Protocol (HTTP) server was set up for

4.3 Validation

55

testing. HTTP was confirmed functional over the ultrasonic channel.
File Transfer Protocol (FTP) was also functional, although it was more
difficult to configure because of its separate data and command
channels. The ultrasonic channel was tested successfully with large
transfers using Netcat.

 Validation 4.3

The following validation activities assess the performance of the
channel under different variables. This serves as a rough assessment of
ultrasonic channel characteristics. Transfers at close range (<2 m),
without any noise or anomalies, would go through successfully 100% of
the time. Any errors were caused by the inability to interpret the
signals due to the intended stressor (e.g., distance, noise). Errors result
in CRC checks failing, forcing the channel to retransmit. There are
different points at which the channel can be hindered: hardware,
equipment (speakers and microphones), processing, and the acoustic
medium. Given the constraints of our experimental setup, we have
demonstrated stress-testing of the acoustic medium.

We use throughput as a generic term to describe the bitrate of the
channel. Goodput is the effective speed of transfer of the channel, not
counting the frame overhead bits transferred as well. Goodput only
considers the payload data delivered. Goodput is a suitable measure
given the large overhead. In validation, 10 to 30 transfers were
performed per goodput trial (with the setting in section 3.3.3.5).
Although a measure of throughput would show an even higher bitrate,
we only consider the payload data as valuable data transferred.

4.3.1 Channel Bitrate

Although the aim of the research was only to build a functional
ultrasonic channel, the channel bitrate exceeded our original
expectations. A binary modulation scheme (BFSK) was used, serving as
a reference for base performance. It follows that a quadrature
modulation scheme implementation would have twice the bitrate. A
means of increasing the channel throughput would be additional
frequency channels.

4.3 Validation

56

4.3.1.1 Variable Frame Length

The payload length was tested (with the setting in section 3.3.3.1) in
relation to goodput to find an optimal frame length. A payload length
that is too short does not effectively make use of the frame overhead
required. However, a reason to use shorter payload lengths is that
frames of excessive length are more prone to failure, as a single
incorrect bit ruins the entire frame. A reasonable frame length is better
in practice given the likeliness of error and response waiting time.

For stable experimentation, we used a sampling rate of 44 100 Hz
and 180 samples/pulse at a distance of <2 m. With this sampling rate
and pulse length, we observed a throughput of about 250 bit/s. The
frame overhead was 40 bits. These were the default settings used in the
validation tests for our channel. The starting payload length was 1 byte.
We increased the number of payload bytes to observe the corresponding
goodput.

44 100 samples

1 second
∙

1 pulse

180 samples
∙

1 bit

1 pulse
∙

8 payload bits ∙ payload length

40 frame bits + 8 ∙ payload length

Equation 4.1 Theoretical goodput

 Equation 4.1 shows the calculation of goodput given our default
settings. Throughput is calculated by dividing the sampling rate by the
pulse length and multiplying by the number of bits per pulse. Goodput
is calculated by multiplying the throughput by the ratio of payload data
in each frame. The units cancel out, leaving the final unit of bit/s. If a
quadrature modulation scheme were used, the calculation would use 2
bits/pulse (instead of 1 bit/pulse), multiplying the bitrate by two times.

4.3 Validation

57

Figure 4.2 Goodput vs. Payload length

In Figure 4.2, the theoretical curve is what the goodput would be
ideally, without any waiting time between transmissions. The channel
curve is the actual performance of the channel. The channel goodput is
slightly lower than the theoretical goodput due to practical delays in the
channel software (e.g., pre-transmission pause).

A reasonably optimal payload length is found where the curve
begins to plateau. We can see that after a payload length of 30 bytes,
the channel does not gain much goodput with further increases to the
payload length. We selected 30 bytes as the payload length to use in the
remainder of the validation tests. As such, goodput is expected to be
about 180 bit/s in the following tests.

It should be noted that the channel can be faster with more optimal
settings such as a smaller pulse length, faster sampling rate, and
reduced overhead (e.g., error-detecting code CRC8 instead of CRC16).

0

50

100

150

200

250

0 20 40 60 80 100

G
o

o
d

p
u

t
(b

it
/s

)

Payload length (bytes)

Channel

Theoretical

4.3 Validation

58

4.3.1.2 Variable Pulse Length

The pulse length was tested (with the setting in section 3.3.3.2) in
relation to goodput at a distance of <2 m. A shorter pulse length results
in an increased channel bitrate. However, the channel is unable to
demodulate correctly if the pulse length is too short. We tested for the
minimum pulse length required.

Figure 4.3 Goodput vs. Pulse length

Figure 4.3 shows that at least 160 samples were required for a pulse
to be demodulated correctly and achieve the expected goodput of about
180 bit/s. The channel default was set a little longer, to 180 samples, for
increased stability at further ranges. A pulse length of 180 samples at
the 44 100 Hz sampling rate takes approximately 4.08 ms. The pulse
length can be shortened to increase the speed of the channel. A pulse
length of 180 samples yields a throughput bitrate of 245 bit/s
(44 100 Hz ÷ 180 samples), while a pulse length of 170 samples yields a
throughput bitrate of 259 bit/s (44 100 Hz ÷ 170 samples).

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

G
o

o
d

p
u

t
(b

it
/s

)

Pulse length (samples)

4.3 Validation

59

4.3.1.3 Variable Sampling Rate

The sampling rate was tested (with the setting in section 3.3.3.3) in
relation to the channel defaults. A sampling rate that is too slow is
unable to demodulate the pulses correctly. Slower sampling rates
require a longer pulse length to demodulate pulses correctly. A faster
sampling rate correlates to higher goodput. However, a sampling rate
that is too high is unstable.

Figure 4.4 Goodput vs. Sampling rate

Figure 4.4 shows that a sampling rate over 40 000 Hz was required
to demodulate pulses 180 samples long. Throughput increases along
with an increase in sampling rate to about 45 000 Hz. When the
sampling rate is above 45 000 Hz, the alignment of pulses is sometimes
inaccurate and frames may be misread. The channel was unreliable
after 45 000 Hz with default settings. The points plotted after 45 000 Hz
were highly variable, and these examples were plotted to show their
variability. Faster sampling rates would require the pulse length to be
proportionally larger. We did not increase the pulse length, but kept it
constant at 180 samples/pulse to isolate for the change in sampling
rate. The default sampling rate was set to 44 100 Hz.

0

50

100

150

200

250

0 10000 20000 30000 40000 50000 60000

G
o

o
d

p
u

t
(b

it
/s

)

Sampling rate (Hz)

4.3 Validation

60

4.3.2 Frequency Discrimination

The concept of frequency discrimination was previously presented in
the design of our channel. The frequencies used in FSK had to be placed
a sufficient spectrum distance apart in order to be demodulated
correctly as distinct frequencies. The frequency distance required to tell
frequencies apart determines how many frequency channels can fit into
the ultrasonic range. We tested (with the setting in section 3.3.3.4) how
closely the frequencies can be placed together and still be consistently
demodulated as distinct frequencies. This was performed by setting the
two frequencies used in our software.

Frequency magnitudes were smaller and less comparably different
from each other at higher frequencies. Magnitudes are smaller at
frequencies above 18 000 Hz, leading to more demodulation errors. The
weaker microphones we used had lower magnitudes returned from the
Goertzel algorithm and therefore less ability to discriminate between
frequencies. It is preferable to have a larger usable frequency
bandwidth for better discrimination.

Frequency discrimination determines the channel bitrate as the
ability to fit two more frequency channels means that QFSK is possible
in the ultrasonic range. QFSK provides double the bitrate of BFSK.

4.3 Validation

61

4.3.2.1 Ultrasonic Frequency Response

The ultrasonic frequency response of the microphone was tested to find
the usable upper bound frequency. We noticed that inexpensive
microphones detected frequencies higher than advertised in their
product specifications. One microphone specification stated frequency
response up to 16 000 Hz, but it was able to detect up to 19 500 Hz.
Figure 4.5 shows the ultrasonic frequency response of the primary
equipment used in development (i.e., laptop microphone).

Figure 4.5 Goodput vs. Frequency response

Since the laptop microphone was weaker than the Microsoft

LifeCam VX-5000, it was the device limiting ultrasonic frequency
response. The laptop microphone was able to detect ultrasonic
frequencies reliably up to approximately 20 700 Hz.

0

20

40

60

80

100

120

140

160

180

200

19500 20000 20500 21000 21500

G
o

o
d

p
u

t
(b

it
/s

)

Frequency response (Hz)

4.3 Validation

62

4.3.2.2 Frequency Discrimination

The default frequencies used were 19 110 Hz and 19 600 Hz. These two
frequency channels used in BFSK were brought closer together until
the channel was unable to discriminate between the frequencies. Figure
4.6 shows how closely the frequencies can be placed and still maintain
full goodput.

Figure 4.6 Goodput vs. Frequency separation

The frequency discrimination was smaller than expected from the
visible signal bandwidth seen in spectrum analysis. Previously, we
described using 500 Hz of separation in our design. The frequency
separation may be decreased to 355 Hz or greater if the usable
ultrasonic range were more limited.

We observed that two more channels can fit within the ultrasonic
range, allowing for QFSK. Given the previously stated ultrasonic
frequency response up to 20 700 Hz and frequency discrimination of
355 Hz, we can fit four frequency channels in the ultrasonic range.
QFSK is possible within the ultrasonic range, enabling double the speed
of BFSK. As we have previously demonstrated bitrates of about 250
bit/s with BFSK, it follows that QFSK would have 500 bit/s.

0

20

40

60

80

100

120

140

160

180

200

348 350 352 354 356 358 360 362

G
o

o
d

p
u

t
(b

it
/s

)

Frequency separation (Hz)

4.3 Validation

63

4.3.2.3 Frequency Discrimination with White Noise

The same frequency discrimination test was repeated along with white
noise being generated in the background.

Figure 4.7 Goodput vs. Frequency separation with noise

In Figure 4.7, we can see that it is slightly more difficult to

discriminate between frequencies in the presence of noise. The volume
of white noise generated from an external source ~3 m away was
measured to be 70 dB at the channel. Errors occurred with less
frequency separation; therefore, the channel required greater frequency
separation to be stable. Imperfections in the graph are due to practical
testing inaccuracy.

0

20

40

60

80

100

120

140

160

180

200

345 350 355 360 365 370

G
o

o
d

p
u

t
(b

it
/s

)

Frequency separation (Hz)

4.3 Validation

64

4.3.2.4 Frequency Discrimination in Audio Cable

The same frequency discrimination test was repeated in the 3.5 mm
AUX audio cable. It can be expected that transfers in the AUX cable are
more stable than in air.

Figure 4.8 Goodput vs. Frequency separation in AUX cable

As seen in Figure 4.8, we observed that 355 Hz separation was
required for frequency discrimination. This confirms the same
minimum frequency separation as in air.

4.3.3 Distance and Noise Models

Noise impairs correct demodulation. The ultrasonic channel was
measured in the presence of noise to find the level of noise required to
prevent demodulation. The default channel volume was about 87 ±
2 dB. Ambient noise before applying white noise was 45 dB in volume.

Since loud noises have great amplitude, their signal bandwidth
spills into the range of high frequencies. For example, a loud enough
cough or clapping noise would distort the ultrasonic channel. A loud
noise can exceed the preamble pulse magnitude threshold to initiate
recording. Loud noises also affect the correct offset position in cross-
correlation.

0

20

40

60

80

100

120

140

160

180

200

348 350 352 354 356 358 360 362

G
o

o
d

p
u

t
(b

it
/s

)

Frequency separation (Hz)

4.3 Validation

65

White noise was produced with a program [58] randomly generating
amplitudes from -1 to 1. We used the white noise program to jam the
ultrasonic channel. We tested for the extent of noise that distorts the
channel.

4.3.3.1 Distance

The distance at which the channel performs was tested. When the
speaker to microphone distance is too far, data can no longer be
transferred. The channel was measured at increasing distances. Some
equipment functioned at further distances more reliably than others. As
expected, the channel can transfer further with a higher speaker
volume.

Figure 4.9 Goodput vs. Distance

As shown in Figure 4.9, the channel with default settings was
impaired after 2 m and did not work beyond 4 m.

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5

G
o

o
d

p
u

t
(b

it
/s

)

Distance (m)

4.3 Validation

66

4.3.3.2 White Noise from External Source

White noise was generated from an external source to find the level of
noise required to disrupt the channel. The external noise source was
placed ~3 m away from the ultrasonic channel. Noise testing was
conducted in ambient noise (not in an anechoic chamber) as an estimate
for practical implementation.

Figure 4.10 Goodput vs. White noise from external source

As seen in Figure 4.10, the channel was disrupted after 70 dB of
noise and completely unable to function after 80 dB of noise. As such,
the volume of noise required to impair the channel was about 17 dB
lower than the channel volume at 87 dB.

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100

G
o

o
d

p
u

t
(b

it
/s

)

White noise (dB)

4.4 Summary

67

4.3.3.3 White Noise from Self

White noise was generated from the speakers used in the ultrasonic
channel itself to find the level of noise required to disrupt our channel.

Figure 4.11 Goodput vs. White noise from self

As shown in Figure 4.11, after 66 dB of noise the channel was
disrupted, and completely unable to function after 72 dB of noise.
Effectively, the volume of noise required to impair the channel was
about 21 dB lower than the channel volume at 87 dB. As expected, the
channel was disrupted with less noise than from an external source.

 Summary 4.4

The experimental setup has been described along with functional
testing of the software during development. The validation activities
show the performance of our ultrasonic channel and also provided some
insight into the characteristics of ultrasonic channels. Additionally, the
validation activities highlight further potential for increasing the
performance of ultrasonic channels.

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80

G
o

o
d

p
u

t
(b

it
/s

)

White noise (dB)

68

5 Discussion

The literature review described our motivation for studying ultrasonic
covert channels in the context of computer network security. The proof-
of-concept ultrasonic channel was developed in order to demonstrate
the feasibility of such a channel. As part of the design process, we
performed a preliminary analysis of digital modulation schemes. The
validation activities showed the performance of our channel.
Characteristics of the channel that were measured include channel
bitrate, frequency discrimination, and operation in noise. The
implementation of a sockets-layer interface showed the suitability of
the channel for generic high-level computer communications. This
chapter analyzes the effectiveness and limitations of the ultrasonic
covert channel, and concludes the thesis with comments on future work.

 Channel Effectiveness 5.1

This research confirms that ultrasonic covert channels are possible.
Following from the breach of an air-gapped network, an ultrasonic
channel may be used to exfiltrate information. Such a channel can allow
sustained access to the network over time. The channel may not need
the physical presence of an intruder. As discussed in the literature
review, air gap breaching malware has shown the capability to spread
via removable media. Ultrasonic channel malware running across
multiple devices would improve the chances of successfully exfiltrating
data. In practice, the malware installation would be more covert (e.g.,
kernel-level hiding) [9]. Ultrasonic channels are not commonly expected
and detected in computer network security. The channel software
shows that the compromised machines do not have to beacon out. Only
a master device must try and contact out as desired or at regular
intervals. This would be difficult to detect because the channel does not

5.1 Channel Effectiveness

69

need to beacon out constantly. Once the channel is established, all of
the necessary transfers can take place. Our ultrasonic channel software
was developed as an example of this operation.

Our ultrasonic channel design demonstrated accurate transfers. We
observed 100% successful transfers at close range, where the setup was
not disturbed. The channel bitrate was sufficient for transferring small
amounts of data, such as command-line interaction and text. The
Goertzel algorithm was effective for demodulation. Processing the
Goertzel algorithm was not a bottleneck since it is not processing
intensive. The usage of higher bitrates provided an assessment of the
acoustical medium itself. There would not have been a significant gain
with faster processing of the Goertzel algorithm and cross-correlation in
demodulation. The limiting factor was the physical medium and audio
hardware. As such, the performance of our ultrasonic channel was
observed.

In terms of speed, the potential of ultrasonic channels was
demonstrated. We have explored different methods to achieve even
higher bitrates. Each digital modulation scheme (FSK, PSK, ASK) was
investigated in binary and quadrature implementations. Frequency
discrimination only required 355 Hz of separation, meaning that that
four frequency channels can be used within the ultrasonic range.
Realistically, we would want to set a greater frequency separation to
reduce the chance of error, such as 380 Hz. A quadrature modulation
scheme provides twice the bitrate of a binary modulation scheme. The
measured bitrate of 250 bit/s for BFSK would be 500 bit/s in QFSK.
With a frequency separation of 380 Hz, only 1 140 Hz of bandwidth (i.e.,
380 Hz × (4-1)) is required to convey four frequencies, as opposed to our
initial design estimate of 1 500 Hz. It is also possible to use 3
frequencies and a pause to represent the four symbols if ultrasonic
bandwidth is limited, which would require 760 Hz of bandwidth (i.e.,
380 Hz × (4-2)). It may even be possible to fit FSK8 within the
ultrasonic range using 7 frequencies and a pause, which would require
2 280 Hz of bandwidth (i.e., 380 Hz × (8-2)). FSK8 would have an
estimated speed of 1 kbit/s. DBPSK allows for the transfer of phase
modulated information on a single frequency, saving the frequency
bandwidth required. DQPSK was also implemented, although it was
not as accurate as DBPSK. PSK may be combined with FSK (i.e.,
FPSK) to achieve higher bitrates, although it is prone to error.
Significantly higher bitrates can be achieved if the audible frequency
bandwidth can be used. In the audible range of frequencies, 32
frequency channels can be used with M-ary FSK. 32 frequency channels

5.1 Channel Effectiveness

70

would allow the transfer of 16 bits/pulse, thus increasing the binary
modulation scheme’s bitrate by 16 times (16 × 250 bit/s = 4 kbit/s).
Relative to the classic 56 kbit/s dial-up modem, this is very fast for
acoustic transfers. It is likely that audible frequencies may also require
less Hz of separation for frequency discrimination because lower
frequencies are more easily discernable. Audible frequencies retain
information better and transfer further than frequencies in the
ultrasonic range.

We have demonstrated bitrates of about 250 bit/s, which is higher
than the 20 bit/s reported by Hanspach and Goetz [4]. As previously
discussed, implementation of QFSK would achieve a bitrate of 500 bit/s.
This would demonstrate a higher bitrate at close range than reported
by Deshotels (300 bit/s) [50] and Carrara (230 bit/s) [11].

Considering the fast bitrate and small size of the pulses, we have
shown a measure of bitrate at close range. Longer pulses would be
required for greater distances. There is a tradeoff between bitrate and
distance. Closer range allows for higher speeds, which was what our
channel showed. Transfers at further distances need to have slower
bitrates in order for the information to be retained acoustically. This
was evident in other research that showed transfers at a greater
distance at the expense of slower bitrate (i.e., 20 bit/s at 19.7 m) [4].
Our focus was on the speed of the channel, how small the pulses can be
made while still demodulating reliably. In terms of distance, the
ultrasonic channel requires devices to be at fairly close range. However,
the software can be set to transfer over greater distances at slower
speeds. A concept would be to make the channel self-optimize speed
according to distance. It would run a test periodically that determines
signal strength. For example, the channel starts with slower transfers
using long, slow pulses to enable transfers at the furthest distances.
Shorter pulses and faster transfers are then used for closer distances.
The channel would test for and adjust the pulse length, thereby
achieving the highest bitrates given the distance.

We demonstrated data transfers in 3.5 mm AUX audio cables. The
entire audible frequency bandwidth and as many frequencies possible
in the ultrasonic range can be used (e.g., with M-ary FSK) in AUX
cables, providing much faster bitrates, around 4 kbit/s. Because phase
and amplitude modulation are more reliable over a cable than in air,
modulation schemes combined with FSK could increase bitrates over
AUX cables. Since transfers in AUX cables were much more accurate
than in air, correctional feedback is not essential and data can be

5.1 Channel Effectiveness

71

transferred reliably one-way. We confirmed that audio jacks are a
means of transferring data out of a system.

The channel is able to broadcast on top of noise/speech/music.
Because the Goertzel algorithm finds the magnitude of specific
frequencies, it is sensitive to the ultrasonic frequencies the channel
uses and resilient to noise such as music. We observed that playing
music and speaking do not disturb the channel significantly because
they tend to be below ultrasonic frequencies, whereas white noise spans
the entire frequency spectrum randomly. The channel works when
playing music through the same speakers that are transmitting the
ultrasonic channel. As such, ultrasonic channels may be hidden in the
background while broadcasting other audio such as music or speech.
Figure 5.1 is a spectral analysis performed while running the channel
simultaneously with audible noise in the background. The ultrasonic
channel resides at about 20 000 Hz, while audible noise is visible lower
in the frequency spectrum.

Figure 5.1 Ultrasonic channel hidden in audio

The channel is effective where speakers are in place for the purpose

of transmitting audio. Microphones are common on mobile devices.

5.2 Channel Limitations

72

Existing audio channels (i.e., for voice communication) may be used.
Depending on the scenario requirements, the channel can be changed to
be one-way with forward error correction, where correctness is not
guaranteed. Such a channel does not require both speakers and
microphones on both devices, but rather only one speaker and one
microphone. With this setup, commands could not be sent and the
channel would be used for exfiltration only. Acoustic channels were
considered in the context of crossing the air gap, but there may be other
general-purpose applications.

Acoustic signals can be used where electromagnetic signals are
blocked (i.e., with a Faraday cage/shield). Ultrasonic signals pass
through electromagnetic shielding because they are acoustic signals.
Devices placed on either side of a Faraday cage would enable ultrasonic
transfers to penetrate directly through the Faraday cage.

 Channel Limitations 5.2

In terms of malware, an ultrasonic channel requires an initial vector or
exploit through which it can be installed on the air-gapped system. It
also requires compromised devices with speakers and microphones to be
in place in a relatively close range setup. Where speakers/microphones
are not on the network, the channel cannot be used. If the air-gapped
system does not have a microphone, the ultrasonic channel can be
converted to be one-way, beaconing out constantly, and can only
exfiltrate data but not receive new commands. Additionally, other
research has shown the capability of speaker-to-speaker transfers,
where speakers were turned into microphones (with jack retasking) to
record ultrasonic signals at a low bitrate of 10 bit/s [59]. An acoustic
channel is dependent on the volume of speakers. Speakers physically
set to a low volume would not enable a channel to transfer very far. The
ultrasonic channel attack has a somewhat limited application but works
well where necessary, such as in air-gapped systems.

A limitation is the audio hardware, the ultrasonic frequency
response and quality of speakers and microphones. Better equipment
may improve the channel proportionally by improving frequency
discrimination and transmission range. Tweeters, speakers designed for
high frequencies, would be able to leverage more frequency channels in
the ultrasonic range. Specialized speakers and microphones with a
higher ultrasonic frequency response would permit using a larger range

5.3 Future Work

73

of ultrasonic frequencies, allowing for higher speeds and greater
distances of transfer.

Despite having speeds higher than that of previous research, the
ultrasonic channel is still slow in comparison to conventional
communications channels. For general-purpose information transfers,
the slow speed hinders multimedia ability. It is mostly confined to
text/numerical data and small media.

In the preliminary analysis of modulation schemes, the difficulties
with PSK and ASK were discussed. PSK had a phase drift problem and
phase information was not as reliable as the frequency of a wave. ASK
uses a reduction in amplitude, which would reduce the distance that the
acoustic wave can travel. Although QAM is a popular modulation
scheme in wired and electromagnetic communications, it is not suitable
for acoustic communications due to the aforementioned issues with PSK
and ASK. In FSK, the number of M-ary channels implemented is
determined by the ultrasonic frequency bandwidth usable. Loud noises
distort ultrasonic signals when large amplitudes cause sufficient
distortion in the ultrasonic frequency bandwidth.

Defensive strategies were considered. The existence of ultrasonic
channels may suggest caution for devices with speakers/microphones in
air-gapped networks. Although it may impair the quality of audio,
speakers may be limited to audible frequencies to prevent covert
ultrasonic channels. AUX audio ports may be removed or epoxy glued
shut where they are not needed. It is also possible to jam inaudible
frequencies, however, there may be effects on health to consider.
Ultrasonic frequencies can be detected and viewed with spectrum
analysis. Ultrasonic detectors may be placed where there are speakers,
treating frequencies above the audible range as a potential for
ultrasonic channels.

 Future Work 5.3

In future research, a deeper investigation into digital modulation
schemes for acoustic channels would be beneficial, with the aim of
increasing the channel bitrate at the lowest level. In particular, PSK is
of interest due to its ability to transfer information at the same
frequency, thus conserving frequency bandwidth. If the phase drift
issue were solved, then PSK could be combined with FSK to achieve
FPSK.

5.4 Conclusion

74

Other methods of exfiltrating information over an air gap would be
valuable. Future research may reveal other non-conventional means
through which information can be transferred, along with assessment of
their performance. The general-purpose applicability of such channels
is also of interest.

 Conclusion 5.4

We have identified the ultrasonic channel as a potential vulnerability in
air-gapped networks. Our software acts as an ultrasonic channel proof-
of-concept. It served as an artifact or tool that demonstrates the
capability of acoustic channels. The low-level characteristics of
ultrasonic channels were examined, where our methods increased the
performance of acoustic channels. This thesis serves as a guide for the
development of ultrasonic channels and provides a basis for the study of
similar channels. Notable observations from our research are
mentioned in the following contributions.

5.4.1 Contributions

The Goertzel algorithm was implemented in our ultrasonic channel to
increase processing performance. The clicking noise issue mentioned in
previous research [4] was solved by pulse shaping. Command-line
interaction was demonstrated over the ultrasonic channel. All of the
basic digital modulation schemes have been compared in a preliminary
analysis. With BFSK, we measured speeds of about 250 bit/s at a
distance of 2 m. Using QFSK in the ultrasonic bandwidth was
confirmed possible by frequency discrimination, allowing for speeds of
500 bit/s. DBPSK was shown to be functional. DQPSK is also
functional, although not as precise. A combined modulation scheme,
FPSK, was shown to be possible, although prone to error. We have
operated the ultrasonic channel in noise, such as hiding in music. We
described the concept of self-optimizing speeds according to distance,
where faster speeds can be achieved at closer distances. We showed
that acoustic channel software can transfer data directly over AUX
audio cables, where the entire audible frequency bandwidth can be used
silently. Lastly, we showed the suitability of such channels to support
common high-level network protocols by demonstrating multi-session
support for existing network applications using generic sockets.

75

6 References

[1] G. Pajari, 'USB Flash Storage Threats and Risk Mitigation in an

Air-Gapped Network Environment', in CanSecWest Applied
Security Conference, Vancouver, BC, 2014.

[2] N. Falliere et al., 'W32.Stuxnet Dossier - Symantec Security
Response', 2011. [Online]. Available:
https://www.symantec.com/content/en/us/enterprise/media/security
_response/whitepapers/w32_stuxnet_dossier.pdf [Accessed: 1-Aug-
2018].

[3] D. Sanger and T. Shanker, 'N.S.A. Devises Radio Pathway Into
Computers - The New York Times', 2014. [Online]. Available:
https://www.nytimes.com/2014/01/15/us/nsa-effort-pries-open-
computers-not-connected-to-internet.html [Accessed: 26-Jul-2018].

[4] M. Hanspach and M. Goetz, 'On Covert Acoustical Mesh Networks
in Air', Journal of Communications, vol. 8, no. 11, pp. 758-767,
2013.

[5] P. Mueller and B. Yadegari, 'The Stuxnet Worm', 2012. [Online].
Available: https://www2.cs.arizona.edu/~collberg/Teaching/466-
566/2012/Resources/presentations/topic9-final/report.pdf [Accessed:
27-Jul-2018].

[6] M. Bigueur, 'Chinese APT Analysis “APT30”', 2017. [Online].
Available: https://miguelbigueur.com/2017/10/26/chinese-apt-
analysis-apt30/ [Accessed: 16-Aug-2018].

6 References

76

[7] R. Clarke and R. Knake, Cyber War: The Next Threat to National
Security and What to Do About It. New York, NY: HarperCollins,
2010.

[8] E. Skoudis, 'Netcat Cheat Sheet'. [Online]. Available:
https://www.sans.org/security-resources/sec560/
netcat_cheat_sheet_v1.pdf [Accessed: 25-Sep-2018].

[9] C. Chapman, 'USBCat - Towards an Intrustion Surveillance
Toolset', M.A.Sc. thesis, Royal Military College of Canada,
Kingston, ON, 2013.

[10] E. Couture, 'Covert Channels', SANS Institute, 2010. [Online].
Available: https://www.sans.org/reading-room/whitepapers/
detection/covert-channels-33413 [Accessed: 25-Sep-2018].

[11] B. Carrara, 'Air-Gap Covert Channels', Ph.D. thesis, University of
Ottawa, Ottawa, ON, 2016.

[12] A. Mendoza, 'Cold Storage in the Cloud: Trends, Challenges, and
Solutions - Intel', 2013. [Online]. Available:
https://www.intel.com/content/dam/www/public/us/en/documents/w
hite-papers/cold-storage-atom-xeon-paper.pdf [Accessed: 12-Aug-
2018].

[13] B. Schneier, '"Evil Maid" Attacks on Encrypted Hard Drives', 2009.
[Online]. Available:
https://www.schneier.com/blog/archives/2009/10/evil_maid_attac.ht
ml [Accessed: 25-Sep-2018].

[14] B. Perelman, 'Air Gap or Not, Why ICS/SCADA Networks Are at
Risk | SecurityWeek', 2016. [Online]. Available:
https://www.securityweek.com/air-gap-or-not-why-icsscada-
networks-are-risk [Accessed: 16-Jul-2018].

[15] K. Collins, 'Wikileaks: The CIA can remotely hack into computers
that aren’t even connected to the internet - Quartz', 2017. [Online].
Available: https://qz.com/1013361/ [Accessed: 16-Jul-2018].

6 References

77

[16] The Economist, 'The worm turns', 2008. [Online]. Available:
https://www.economist.com/united-states/2008/12/04/the-worm-
turns [Accessed: 21-Apr-2018].

[17] W. Lynn III, 'Defending a New Domain: The Pentagon's
Cyberstrategy', Foreign Affairs, vol. 89, no. 5, pp. 97-108, 2010.

[18] N. Shachtman, 'Under Worm Assault, Military Bans Disks, USB
Drives | WIRED', 2008. [Online]. Available:
https://www.wired.com/2008/11/army-bans-usb-d/ [Accessed: 16-
Jul-2018].

[19] B. Anderson and B. Anderson, Seven Deadliest USB Attacks.
Burlington, MA: Syngress, 2010.

[20] J. Larimer, 'Beyond Autorun: Exploiting vulnerabilities with
removable storage', in Black Hat, Washington, DC, 2011.

[21] K. Zetter, 'Meet “Flame,” The Massive Spy Malware Infiltrating
Iranian Computers | WIRED', 2012. [Online]. Available:
https://www.wired.com/2012/05/flame/ [Accessed: 21-Apr-2018].

[22] D. Goodin, 'Meet “badBIOS,” the mysterious Mac and PC malware
that jumps airgaps | Ars Technica', 2013. [Online]. Available:
https://arstechnica.com/information-technology/2013/10/meet-
badbios-the-mysterious-mac-and-pc-malware-that-jumps-airgaps/
[Accessed: 14-Jul-2018].

[23] Hak5, 'USB Rubber Ducky'. [Online]. Available:
https://hakshop.com/products/usb-rubber-ducky-deluxe [Accessed:
25-Sep-2018].

[24] A. Zhukov, 'Turning a Regular USB Flash Drive into a USB
Rubber Ducky'. [Online]. Available: https://hackmag.com/security/
rubber-ducky/ [Accessed: 25-Sep-2018].

[25] S. Kamkar, 'USBdriveby: exploiting USB in style', 2014. [Online].
Available: http://samy.pl/usbdriveby/ [Accessed: 16-Jul-2018].

6 References

78

[26] K. Nohl and J. Lell, 'BadUSB - On accessories that turn evil', in
Black Hat, Las Vegas, NV, 2014.

[27] NSA, 'NSA ANT Catalog - USB', 2008. [Online]. Available:
https://nsa.gov1.info/dni/nsa-ant-catalog/usb/index.html [Accessed:
16-Jul-2018].

[28] R. McMillan, 'The Pwn Plug is a little white box that can hack your
network | Ars Technica', 2012. [Online]. Available:
https://arstechnica.com/information-technology/2012/03/the-pwn-
plug-is-a-little-white-box-that-can-hack-your-network/ [Accessed:
16-Aug-2018].

[29] Holland Shielding Systems, 'Tempest solutions against stealing
information - Faraday Cages'. [Online]. Available:
https://www.faradaycages.com/eavesdropping [Accessed: 16-Jul-
2018].

[30] M. Kuhn, 'Compromising emanations: eavesdropping risks of
computer displays', Technical Report UCAM-CL-TR-577,
University of Cambridge, Cambridge, U.K., 2003.

[31] M. Vuagnoux and S. Pasini, 'An improved technique to discover
compromising electromagnetic emanations', in 2010 IEEE
International Symposium on Electromagnetic Compability, Fort
Lauderdale, FL, 2010.

[32] D. Genkin et al., 'RSA Key Extraction via Low-Bandwidth Acoustic
Cryptanalysis', in CRYPTO, 2014, pp. 444-461.

[33] L. Zhuang et al., 'Keyboard acoustic emanations revisited', ACM
Transactions on Information and System Security, vol. 13, no. 1,
pp. 3:1-3:26, 2009.

[34] M. Guri, 'BeatCoin: Leaking Private Keys from Air-Gapped
Cryptocurrency Wallets', 2018. [Online]. Available:
https://arxiv.org/pdf/1804.04014.pdf [Accessed: 16-Jul-2018].

6 References

79

[35] M. Guri et al., 'PowerHammer: Exfiltrating Data from Air-Gapped
Computers through Power Lines', 2018. [Online]. Available:
https://arxiv.org/pdf/1804.04014.pdf [Accessed: 16-Jul-2018].

[36] M. Guri et al., 'USBee: Air-gap covert-channel via electromagnetic
emission from USB', in 14th Annual Conference on Privacy,
Security and Trust, Auckland, New Zealand, 2016.

[37] S. Stolfo, 'IBM and thumb drives: epoxy or beacons?', 2018.
[Online]. Available:
https://www.csoonline.com/article/3270971/physical-security/ibm-
and-thumb-drives-epoxy-or-beacons.html [Accessed: 25-Sep-2018].

[38] Kanguru, 'Kanguru FlashTrust™ Secure Firmware USB Flash
Drive'. [Online]. Available: https://www.kanguru.com/storage-
accessories/kanguru-flashtrust-secure-firmware.shtml [Accessed:
21-Apr-2018].

[39] Kingston Digital, 'IronKey S1000 Secure USB Drive', 2018.
[Online]. Available:
https://www.kingston.com/datasheets/IKS1000_en.pdf [Accessed:
13-Aug-2018].

[40] C. Woodford, 'How loudspeakers work - Explain that Stuff', 2018.
[Online]. Available: https://www.explainthatstuff.com/
loudspeakers.html [Accessed: 25-Sep-2018].

[41] Consumer and Clinical Radiation Protection Bureau, 'Limits of
Human Exposure to Radiofrequency Electromagnetic Energy in
the Frequency Range from 3 kHz to 300 GHz', Safety Code 6,
Health Canada, Ottawa, ON, 2015. [Online]. Available:
https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/ewh-
semt/alt_formats/pdf/consult/_2014/safety_code_6-
code_securite_6/final-finale-eng.pdf [Accessed: 12-Aug-2018].

[42] Dangerous Decibels, 'How do we hear?'. [Online]. Available:
http://www.dangerousdecibels.org/virtualexhibit/2howdowehear.ht
ml [Accessed: 26-Apr-2018].

6 References

80

[43] B. Lawton, 'Damage to human hearing by airborne sound of very
high frequency or ultrasonic frequency', Contract Research Report
343, Health & Safety Executive, London, U.K., 2001, p. 77.
[Online]. Available:
http://www.hse.gov.uk/research/crr_pdf/2001/crr01343.pdf
[Accessed: 12-Aug-2018].

[44] B. Smagowska and M. Pawlaczyk-Łuszczyńska, 'Effects of
Ultrasonic Noise on the Human Body - A Bibliographic Review',
International Journal of Occupational Safety and Ergonomics, vol.
19, no. 2, pp. 195-202, 2013.

[45] L. Peterson and B. Davie, Computer Networks: A Systems
Approach. Burlington, MA: Morgan Kaufmann, 2012, pp. 74-75.

[46] Electron18, 'Exchange interface Bell 202', 2010. [Online].
Available: http://www.softelectro.ru/bell202_en.html [Accessed: 25-
Sep-2018].

[47] D. Lawyer, 'Modem-HOWTO: Appendix A: How Analog Modems
Work', 2007. [Online]. Available: https://www.tldp.org/HOWTO/
Modem-HOWTO-21.html [Accessed: 25-Sep-2018].

[48] S. Hochheiser, 'Telephone Transmission', 2015. [Online]. Available:
https://ethw.org/Telephone_Transmission [Accessed: 25-Sep-2018].

[49] M. Pellegrini, 'Testing 56k Modems', 1998. [Online]. Available:
https://www.evaluationengineering.com/testing-56k-modems
[Accessed: 25-Sep-2018].

[50] L. Deshotels, 'Inaudible sound as a covert channel in mobile
devices', in 8th USENIX Workshop on Offensive Technologies
(WOOT '14), Berkeley, CA, 2014, p. 16.

[51] A. Dominguez, 'Highlights in the History of the Fourier Transform
- IEEE Pulse', 2016. [Online]. Available:
https://pulse.embs.org/january-2016/highlights-in-the-history-of-
the-fourier-transform/ [Accessed: 27-Jul-2018].

6 References

81

[52] K. Banks, 'The Goertzel Algorithm | Embedded', 2002. [Online].
Available: http://www.embedded.com/design/configurable-
systems/4024443/The-Goertzel-Algorithm [Accessed: 21-Apr-2018].

[53] J. Penketh, 'An Efficient Method for the Use of Overlapped
Analysis', in London Communications Symposium, London, U.K.,
2002. [Online]. Available: http://www.ee.ucl.ac.uk/lcs/
previous/LCS2002/LCS043.pdf [Accessed: 27-Jul-2018].

[54] P. Mock, 'Add DTMF Generation and Decoding to DSP-µP
Designs', Application Report SPRA168, Texas Instruments, 1989.
[Online]. Available: http://www.ti.com/lit/an/spra168/spra168.pdf
[Accessed: 25-Sep-2018].

[55] G. Goertzel, 'An Algorithm for the Evaluation of Finite
Trigonometric Series', The American Mathematical Monthly, vol.
65, no. 1, pp. 34-35, 1958.

[56] D. Jones, 'Goertzel's Algorithm - Digital Signal Processing: A
User's Guide - OpenStax CNX', 2006. [Online]. Available:
https://cnx.org/contents/kw4ccwOo@5/Goertzel-s-Algorithm
[Accessed: 25-Sep-2018].

[57] G. Schmer, 'DTMF Tone Generation and Detection: An
Implementation Using the TMS320C54x', Application Report
SPRA096A, Texas Instruments, 2000. [Online]. Available:
http://www.ti.com/lit/an/spra096a/spra096a.pdf [Accessed: 25-Sep-
2018].

[58] B. Walker, Noise_Generator.py, 2012. [Online]. Available:
https://code.activestate.com/recipes/578350-platform-independent-
white-noise-generator/download/1/ [Accessed: 1-Sep-2018].

[59] M. Guri et al., 'MOSQUITO: Covert Ultrasonic Transmissions
between Two Air-Gapped Computers using Speaker-to-Speaker
Communication', 2018. [Online]. Available:
https://arxiv.org/pdf/1803.03422.pdf [Accessed: 29-Sep-2018].

