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Abstract 

The increase in global energy demand has led to the expansion, modernization, and 

digitization of power systems to incorporate new technologies like Electric Vehicles 

(EVs), which has created the potential for optimization of different aspects of the 

grid. The growing number of EVs requires system operators to balance the grid 

power supply against the electrical demand while reducing costs, which can be done 

through optimizing the charging schedule of EVs to manage their charging load. The 

EV charge scheduling optimization problem is complex and nondeterministic 

polynomial time-hard, generally involving a large amount of uncertainty in the 

variables and constraints. Because conventional mathematical and heuristic 

optimization techniques are not always appropriate for use with this problem, it may 

be considered a good candidate for use with metaheuristic optimization methods. 

Metaheuristics are a type of non-deterministic optimization algorithm, which have 

become a popular approach in EV optimization problems because they have been 

shown to provide improved performance with complex problems with many possible 

solutions and local optima, to escape local optima convergence, and to handle 

discrete variables. However, they require significant computational resources to 

compute the optimization for large problem sizes, and may not be calculated in an 

acceptable amount of time. Used in combination with a centralized optimization 

framework, they may produce more optimized results than decentralized models, but 

become unscalable with large power networks or number of EVs.  

The aim of this thesis is to develop a solution for the problem of centralized 

EV charge scheduling with multiple parking lots using metaheuristics, to prove that 

it will find a more optimized solution to the charge scheduling problem, compared 

to decentralized optimization. High Performance Computing (HPC) techniques are 

used to combat the high resource requirements and long simulation time associated 

with the problem size, to increase the scalability of the solution, and to complete the 

optimization in an acceptable real-time interval. A parallelized centralized 

optimization model using two-level particle swarm optimization is designed and 

validated against its sequential version and a decentralized model on a HPC cluster, 

where it provides more optimal solutions than the decentralized model, computes 

solutions for scenarios with up to 27 parking lots in less than 15 minutes, and 

provides average computation speedups of up to 139 times faster. This research 

contributes to the development of centralized optimization solutions to EV charge 
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scheduling optimization problems for multiple parking lots, which may have 

previously been considered intractable.  

 

Keywords: Electric vehicle, charge scheduling, multiple parking lots, centralized 

optimization, particle swarm optimization, metaheuristics, two-level optimization, 

high performance computing, parallelization, multicore computing, distributed 

computing  
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Résumé  

L'augmentation de la demande mondiale d'énergie a conduit à l'expansion, à la 

modernisation et à la numérisation des systèmes électriques pour intégrer de 

nouvelles technologies telles que les véhicules électriques (VE), ce qui a permis 

d'optimiser les différents aspects du réseau. Le nombre croissant de VE oblige les 

opérateurs de système à équilibrer l’alimentation électrique du réseau par rapport à 

la demande électrique tout en réduisant les coûts, ce qui peut être fait en optimisant 

l'horaire de recharge des VE pour gérer leur taux de recharge. Le problème 

d’optimisation de la planification des charges des VE est complexe et non 

déterministe en temps polynomial, impliquant généralement une grande quantité 

d’incertitude dans les variables et les contraintes. Les techniques d'optimisation 

mathématiques et heuristiques conventionnelles ne sont pas toujours appropriées 

pour une utilisation avec ce problème, ce qui en fait un bon candidat pour une 

utilisation avec les méthodes d'optimisation métaheuristiques. Les métaheuristiques 

sont un type d'algorithme d'optimisation non déterministe, qui sont devenues des 

approches populaires dans les problèmes d'optimisation des VE, car il a été démontré 

qu'elles offrent des performances améliorées pour des problèmes complexes avec de 

nombreuses solutions possibles et optima locaux, permettant d'échapper à la 

convergence vers des optima locaux et permettant aussi de manipuler des variables 

discrètes. Cependant, elles nécessitent des ressources de calcul importantes pour 

l'optimisation de problèmes de grande taille et peuvent ne pas être calculées dans un 

délai acceptable. Utilisées en combinaison avec un cadre d'optimisation centralisé, 

elles peuvent produire des résultats plus optimisés que les modèles décentralisés, 

mais deviennent non évolutives avec de grands réseaux électriques ou un grand 

nombre de VE. 

L'objectif de cette thèse est de développer une solution au problème de 

planification centralisée de la recharge des VE avec plusieurs parcs de stationnement 

en utilisant des métaheuristiques, pour prouver que la méthode centralisée trouvera 

une solution plus optimisée au problème de planification de la recharge, par rapport 

à l'optimisation décentralisée. Les techniques de calcul haute performance (CHP) 

sont utilisées pour lutter contre les besoins élevés en ressources et le long temps de 

simulation associés à la taille du problème, pour augmenter l'évolutivité de la 

solution et pour terminer l'optimisation dans un intervalle en temps réel acceptable. 

Un modèle d'optimisation centralisé parallélisé utilisant l'optimisation par essaim de 

particules à deux niveaux est conçu et validé par rapport à sa version séquentielle et 
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à un modèle décentralisé sur un cluster CHP. Ce modèle centralisé fournit des 

solutions plus optimales que le modèle décentralisé, calcule des solutions pour des 

scénarios avec jusqu'à 27 parcs de stationnement en moins de 15 minutes et offre des 

accélérations de calcul moyennes jusqu'à 139 fois plus rapides. Cette recherche 

contribue au développement de solutions d'optimisation centralisées pour résoudre 

les problèmes d'optimisation de la planification de la recharge des véhicules 

électriques pour plusieurs parcs de stationnement qui pouvaient auparavant être 

considérés comme insolubles. 

 

Mots clés : Véhicule électrique, planification de la recharge, plusieurs parcs de 

stationnement, optimisation centralisée, optimisation par essaim de particules, 

métaheuristiques, optimisation à deux niveaux, calcul haute performance, 

parallélisation, calcul multicœur, calcul distribué 
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𝒍𝒊𝒎𝑻𝒇 Vector of solution variables for the set of all transformer 

limits across all parking lots (kW) 

𝑙𝑖𝑚𝑇𝑓𝑏𝑎𝑠𝑒 Base transformer limit for one parking lot (kW) 

𝑙𝑖𝑚𝑇𝑓𝑝 Transformer limit of parking lot 𝑝 (kW) 
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𝑛𝑝𝑙 Number of parking lots in set 𝑃𝑙 

𝑛𝑢𝑚𝐵 Number of buses 

𝑛𝑢𝑚𝐸𝑉 Number of EVs 

𝑛𝑢𝑚𝑇 Number of time intervals 

𝑛𝑢𝑚𝑋 Number of solution variables 

𝑝 Parking lot in set 𝑃𝑙 

𝑡 Time interval in set 𝑇 

𝑥𝑖
𝑡 proportional charging demand quantity from 𝑿 

𝑥𝑑𝑖
𝑡 the decoded proportional charging demand quantities 

𝑥𝑖
𝑡  (kWh) 

𝐴𝑖
𝑡 availability to charge of 𝐸𝑉𝑖 in a parking lot at time 𝑡 

𝐵 Set of distribution system buses 

𝐶 Cost ($) 

𝐶𝑂𝐿 Cost (outer PSO) ($) 

𝐶𝑝 Cost of electricity for parking lot 𝑝 ($) 

𝐸𝑙𝑒𝑐𝑃𝑟𝑖𝑐𝑒 Set of Electricity Prices 

𝐸𝑙𝑒𝑐𝑃𝑟𝑖𝑐𝑒𝑡 Electricity Price at time interval 𝑡 ($) 

𝐸𝑉 Set of EVs 

𝐹(𝒍𝒊𝒎𝑻𝒇) Fitness function of solution vector 𝒍𝒊𝒎𝑻𝒇 

𝐹(𝑿) Fitness function of solution vector 𝑿 

𝑃𝑙 Set of parking lots 

𝑃𝑡𝑜𝑡𝑎𝑙 Total power available to aggregator  

𝑇 Set of time intervals 

𝑿 Vector of solution variables 

𝑉𝑏 Voltage magnitude at bus 𝑏 

𝛼 Normalization range minimum 

𝛽 Normalization range maximum 

𝜌 Penalty term 

𝜌𝑂𝐿 Penalty term (outer PSO) 

𝜌𝑝 Penalty term of parking lot 𝑝 

∆𝑡 Duration of time interval 𝑡 

∀ For all 
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Section 1 

Introduction 

There is an increasing demand for energy and electricity across the globe, which requires 

the modernization, digitization, and expansion of current power systems, along with the 

development of new technologies [2], [3]. Within the transportation sector, electric 

vehicles (EVs) drive a large portion of the current and future demand for electricity, 

currently consuming approximately 100 terawatt-hours (TWh) per year [2]. Due to 

governmental policies and vehicle manufacturer initiatives [2], [4], [5], EVs are beginning 

to dominate the market [6], [7], with the number of EVs in active use increasing every year 

[8] and expecting to reach a global electricity demand of over 380 TWh by 2032 [2], [7]. 

The electricity grid has been required to modernize and automate in order to adapt 

to the increasing demands for electricity from the increasing numbers of EVs, as well as 

new technologies like high levels of renewable energy sources, distributed energy 

resources, and distributed generation [9]. While the modernization may include physical 

upgrades to grid infrastructure in some cases, the optimization of its current operations is 

a more cost-effective solution to integrate the new technologies and shift the peak power 

demand [10], to find the most effective, optimal way to operate the system for the lowest 

cost [11], [12], [13], [14].  The minimization of costs and balancing of the grid’s power 

supply with the electrical demand posed by EVs can be done through management of the 

charging load of the EVs [15], by optimizing the charging schedule of EVs.  

This thesis is concerned with that optimization of EV charge scheduling, 

specifically optimizing the charging schedules of EVs in multiple parking lots. Since the 

EV charge scheduling optimization problem is complex and nondeterministic polynomial 

time (NP)-hard, generally involving a large amount of uncertainty in the variables and 

constraints, it is a good candidate for use with metaheuristic optimization methods [16].  

Metaheuristics are non-deterministic optimization methods, which work by 

iteratively improving one or several candidate solutions to a problem to converge towards 

the global optimal solution [17], [18]. They are problem-independent, and can be applied 

to complex non-linear, non-convex and non-differentiable problems, which is the case for 

power optimization problems involving EVs [7], [18], [19], [20]. While metaheuristics 

have become a popular approach in EV and power systems optimization literature [7], 

because of their “ability to produce near-optimal results in a computationally efficient 

manner” [20], the high complexity of the problems, long simulation times, and requirement 

for significant computational resources to compute the problem output [21] have generally 

limited their use in power systems optimization, either to smaller networks or to problems 
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which have longer time horizons [7], [18], [21], [22], [23]. This has led to the use of High 

Performance Computing (HPC) techniques to reduce computation times [24], [25], [26].  

HPC refers to the use of powerful  processors in parallel to solve complex problems 

and process large datasets at high speeds. HPC has been used in many EV-related 

optimization problems [26], [27], [28], [29], [30], and while the problem of EV charge 

scheduling has been identified as a “major research problem” [15] within power systems 

optimization, and has been approached using metaheuristics many times [7], [15], the 

literature at present is limited in the integration of both metaheuristics and HPC for optimal 

charge scheduling, with few papers having used any form of parallelization to improve the 

execution time of their simulations [23], [24], [25]. The development and use of an EV 

charge scheduling optimization method using both metaheuristics and HPC within this 

thesis will be shown to provide a more optimized solution while maintaining an acceptable 

execution time. 

1.1 Motivation 

The motivation to pursue the subject of the optimization of EV charge scheduling for EVs 

in multiple parking lots is twofold: the increasing number of EVs requires a framework to 

balance their demand against the grid power supply, and the optimization of that charge 

scheduling framework can lead to cost savings for utilities and consumers, with even a 

small percentage improvement in cost reduction equating to a large amount of savings.  

As the number of EVs in use around the world increases, their load demand on the 

power system will increase [2], [5], [7], due to their requirement to charge and re-charge 

continuously during their lifetime. These loads impact the local grid by affecting the 

electricity generation (i.e., is the supply adequate), transformers (potentially accelerating 

their aging and overloading), distribution system power and voltage quality, and potentially 

increasing the peak load demand with uncontrolled charging [6], [10], [20]. Uncontrolled 

charging introduces voltage instability to the grid [31], so one of the main goals of EV 

optimization is to determine their optimal coordinated charge scheduling and management 

to reduce peak power draw on the distribution system and balance that demand with the 

supply [15], [26], [31].  

The management of EV charging can be done through charge scheduling, which 

refers to the assignment of specific time slots to EVs for charging [20]. The optimal 

scheduling [7] of EV charging can be used to “control charging activity at charging stations 

to minimize unexpected spikes in peak load demand” [15], respect local grid constraints, 

and prevent blackouts [20], [32]. Optimization of charge scheduling, when performed 

taking local power system loading and other requirements and constraints into 

consideration, can ensure that the burden on local systems is minimized (for example, in 

the case of fast charging, degrading the power quality in a local system when large amounts 
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of power are drawn over a short period of time [7]), and can also provide “a smoother and 

hassle-free transition from conventional transportation methods to the electrical realm” [7], 

a state desired by many governments and agencies [5]. This means that the problem of 

optimization of EV charge scheduling is relevant to the current state of the industry. 

The potential for cost savings is another major motivator of optimization, with the 

optimization of power systems having long been focused on finding the most effective, 

optimal way to operate the system for the lowest cost [11], [12], [13], [14]. Optimizing the 

operation of EVs through their charge scheduling will reduce energy consumption and 

improve energy management [7], ultimately balancing the demand on the grid and reducing 

costs for operators and consumers. In Ontario Canada, where EVs are expected to add 

approximately 6.81 TWh of annual energy demand by 2030 [33], a 1% reduction in 

demand to 6.129 TWh would provide total annual consumer savings of $32,224,630 based 

on an hourly energy price of $47.32 per MWh [33].    

1.2 Statement of Deficiency 

In literature on the EV charge scheduling optimization problem, there are two main 

approaches to developing a coordinated EV charge scheduling solution: centralized and 

decentralized approaches [7], [15], [34], [35]. Centralized approaches have been 

recognized as providing more optimal solutions [10], [34], [36], but lacking scalability and 

becoming computationally intractable to compute in real-time as the problem size increases 

[15], [34], [35], [37]. Decentralized approaches have therefore attracted interest due to their 

scalability, being better able to address larger problem sizes with lower computational 

complexity and in a shorter time [10], [34], however they do not always provide the more 

optimal charging solution which respects all power system constraints [34], [35], [38]. The 

computational resource requirement and longer execution time for larger optimization 

problems has made centralized solutions less attractive for the EV charge scheduling 

optimization problem. 

In terms of the specific optimization methods used with the EV charge scheduling 

problem, metaheuristics have become a popular and fitting method, due to their ability to 

tackle complex, “non-convex and non-linear” [15] EV objective functions which have a 

large number of possible solutions and local optima [7], [15]. However, metaheuristics also 

have the drawbacks of requiring larger computational resources and longer computational 

times [7], [20]. 

A solution to the EV charge scheduling optimization problem which addresses the 

higher computational resource requirements of both the centralized and metaheuristic 

optimization methods, would likely result in a solution that is more optimized, more 

scalable, and importantly, able to be computed in an acceptable amount of time. The use 

of HPC techniques like parallelization has been recognized as a potential method to address 
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these deficiencies or limitations [39], though few papers have used such techniques at this 

time [24], [25], [26]. The metaheuristic Particle Swarm Optimization (PSO) [25] and PSO 

with Mixed-Integer Linear Programming [24] were used with distributed and multicore 

computing for day-ahead resource and EV scheduling, and the Alternating Direction 

Method of Multipliers algorithm [26] was used with multicore computing for an energy 

management system with EV charge schedule optimization.  

1.3 Aim 

The aim of this thesis is to address the deficiencies in current literature and to prove the 

following research hypotheses: 

1. Centralized EV charge scheduling optimization for EVs in multiple parking lots 

will find a more optimized solution to the charge scheduling problem, compared 

to decentralized optimization. 

2. Calculations for the centralized EV charge scheduling optimization algorithm can 

be parallelized on a HPC system to allow for real-time optimization. 

A “more optimized solution” in this case refers to a reduced (lower) cost. “Real-

time” in this case refers to a 15 minute time limit for the optimization calculations.  

1.3.2 Success Criteria 

The following success criteria will be used to determine if the aim has been met: 

1. Comparison of the results of at least three scenarios of different sizes (i.e., different 

network sizes, number of EVs, and parking lot locations), by fitness function 

metrics (i.e., total cost), between the centralized (parallelized) and decentralized 

algorithm (parallelized) models or methods. This is to determine if the algorithms 

are performing as intended, and to determine which method can produce the more 

optimal solution. The single parking lot scenario will be compared against the 

originating single parking lot model found in [40] to confirm that it can find results 

similar to those found by the authors of that paper. The centralized and 

decentralized methods will be compared against each other. 

2. Comparison of the results of the single parking lot scenario,  between the 

centralized sequential and parallelized methods. This is to determine the accuracy, 

or correctness, of the parallelization.  

3. Comparison of the runtimes of the multi-parking lot scenarios, between the 

centralized sequential and parallelized models, for different problem sizes. This is 

to determine the speedup between the models for a variety of problem sizes, 

confirm that the model can continue to perform as intended as the problem size 
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increases, and to determine the potential maximum problem size that can be 

handled by the model in the real-time limit. Full results for the multi-parking lot 

scenarios will not be compared due to the long runtimes required for the sequential 

versions. 

1.4 Research Activities 

The following activities were conducted in order to prove the research hypotheses stated 

above and compare against the success criteria:  

1. Development of the single parking lot optimization model. This consisted of the 

selection of a suitable metaheuristic-based single parking lot EV charge scheduling 

optimization algorithm and associated simulation parameters from literature, the 

development of a single metaheuristic-based algorithm to optimize a single parking 

lot based on this method from literature, and verification to ensure that the 

developed model performed as expected, i.e. was able to achieve similar results to 

that model from literature when using the same simulation parameters.   

2. Development of the multiple parking lot optimization models. This consisted of 

the development of the centralized and decentralized optimization models, as well 

as suitable simulation parameters, for the optimization of multiple parking lots, 

based on the single parking lot optimization model developed in the previous 

activity.  

3. Parallelization of the single and multiple parking lot optimization models. This 

consisted of taking the algorithms developed in the previous activities, and 

parallelizing the code to enable them to run on a HPC cluster using multicore and 

distributed computing, in MATLAB®.   

4. Validation of the single and multiple parking lot optimization models. This final 

phase consisted of evaluating the simulation results of all the algorithms and 

associated models (single or multiple parking lot, centralized or decentralized, 

sequential or parallelized) against the criteria listed in Section 1.3.2. Five different 

parking lot scenarios with four different distribution system test cases were used 

to demonstrate the behaviour of the algorithms and associated models in a variety 

of situations, and produce the metrics necessary to assess the performance of the 

algorithms against the criteria and determine if the aim of this thesis has been 

achieved.  
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1.5 Summary of Results 

Four main tests with over fourteen individual sub-tests were conducted using MATLAB® 

in order to determine the optimized costs, optimized parking lot charge schedules, and 

speedup (if relevant) for the parallelized and sequential single parking lot optimization 

algorithm, the parallelized and sequential centralized multiple parking lot optimization 

algorithm, and the parallelized decentralized multiple parking lot optimization algorithm.  

The results indicated relationships between the number of parking lots, the 

metaheuristic parameters, the cost, the feasibility of solutions, the total runtime, and the 

speedup gained through parallelization. The single parking lot optimization method was 

able to produce results as good as those using the same single metaheuristic in the paper 

its method was based on, by Wu et al. [40], and nearly as good as the best cost result 

produced by that paper’s proposed model. The parallelized single parking lot optimization 

method was able to produce an average speedup of 1.18 times when using multicore 

computing. On average, the centralized multiple parking lot optimization method was able 

to provide more optimal solutions with lower costs than the decentralized method for all 

parking lot scenarios. In each scenario, a single parking lot contained charging ports for up 

to 20 EVs.  The parallelized centralized multiple parking lot optimization method was able 

to produce average speedups of 73.95 to 139.44 times when using distributed and multicore 

computing. The maximum problem size that can be handled by the model in the real-time 

limit of 15 minutes depends on the number of inner PSO iterations: the parallelized 

centralized multiple parking lot optimization method with 500 iterations was able to 

optimize 9 parking lot charging schedules, though it can be extrapolated that it should be 

able to optimize the charge schedules for up to 15 parking lots in under 15 minutes. The 

centralized algorithm with 250 inner PSO iterations was able to optimize the 27 parking 

lot scenario, and should be able to optimize the schedules for up to 32 parking lots in under 

15 minutes.  

These results provided four main contributions, to add new knowledge to the field 

of real-time centralized EV charge scheduling optimization, to reinforce the assumption of 

the more optimal outcomes of centralized algorithms, and to provide a foundation for future 

work in centralized EV charge scheduling optimization and algorithm parallelization to 

enable real-time optimization. These contributions are:  

1. Development of a complete centralized solution to the problem of EV 

charge scheduling optimization in multiple parking lots, which included the use of 

a two-level PSO and verification of power flow constraints in the system.  

2. Verification that centralized optimization provides a more optimal 

solution than decentralized optimization for the optimization problem, with direct 

comparisons being made between the two multiple-parking lot optimization 

models for a variety of problem sizes. 
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3. Provision of a method to parallelize the two-level PSO centralized 

optimization model. 

4. Demonstration of the scalability of the solution, and verification that using 

parallel computing on HPC systems can allow for real-time optimization of the 

problem for a variety of problem sizes.  

1.6 Organization 

The remaining chapters will provide further details about this area of research and the 

conduct of the research activities for this thesis. Section 2 provides a literature review and 

background on the area of research, providing more information on the topic of power 

systems, EVs, charging, optimization, metaheuristics including PSO, and HPC. Section 3 

describes the methodology and design of the optimization algorithms, including the 

development of the single parking lot optimization algorithm, the centralized and 

decentralized multiple parking lot optimization algorithms, their parallelization, selection 

of the simulation parameters, creation of the parking lot profiles, and selection of the 

distribution system test cases used to make the testing scenarios. Section 4 describes the 

results of the tests or validation activities, comparing the results against the success criteria. 

Section 5 outlines the contributions of this thesis, potential areas for future work in the 

field, and provides recommendations for that future work. Section 6 provides a general 

conclusion of this thesis document. 
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Section 2 

Background and Literature Survey 

This chapter provides a literature review as well as background information on the topics 

related to this thesis, including power systems and optimization, EVs and EV charging 

problems, optimization methods, metaheuristics, and HPC in Sections 2.1-2.5. Five papers 

related to this thesis are summarized and their influence on this thesis described in Section 

2.6. Additionally, information on the parallelization and power flow software tools used in 

this thesis is described in Section 2.7 and Section 2.8. 

2.1 Power Systems 

As EVs increase in popularity and number, they result in an increasing significant variable 

load, and resulting power demand, on the grid [20], and therefore an increasing need for 

research related to the topic of EV integration into these power systems.  

When the word “grid” is used in this context and throughout this document, also 

referred to as the power or electricity grid, network, or system, it refers to a system which 

is generally defined as a network of components and their associated equipment, which 

generates electrical energy and transports it from its sources to its loads or users via power 

transmission lines [41], [42]. There are three main components which form the basis of all 

modern power systems or power grids: the generation system, the transmission system, and 

the distribution system, which provides the power to consumers and industries [42], [43]. 

These components may form systems or sub-systems unto themselves, depending on the 

size of the power system or network. 

Historically, transmission and distribution systems were only designed to serve 

peak power demand requirements, and so did not require any real-time management of the 

system. However, the emergence of EVs and general electrification of the transportation 

sector has brought to light the importance of the modernization, automation, and 

improvement of the grid [9], in order to expand capacity, improve system operational 

security limits, and ensure sustained power reliability [44]. Per the authors of  [32], 

“uncontrolled or un-coordinated charging of EVs will not only degrade the power grid 

capability but will also affect the distribution facility of the overall power structure. If the 

electrification of transportation is not properly optimized, this will ultimately lead to the 

collapse of [the] existing power structure.” While physical upgrades to grid infrastructure 

may be required in some cases, the total upgrade of the power grid is generally considered 

to be unrealistic [10], and the elimination or postponement of  “expensive investments on 

grid infrastructure” [44] through investigating into EV charging control, charging station 
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placement, demand scheduling, and optimization, has been favoured by system operators 

and utilities [44]. In order to understand how EV charging and optimization can affect the 

grid, one must be familiar with its three main components, as well as emerging topics in 

literature like smart grids and microgrids. 

2.1.1 Power System Concepts  

Generation systems are sources of electrical energy or power, which supply the energy via 

the use of conventional or renewable energy to turn a turbine rotor or generate current, or 

via the supply of power from energy storage systems or other types of fuel cells [43], [45]. 

Each power system will have one or more generating units, which provide direct current 

(DC) or alternating current (AC) power depending on their power source [43]. 

Transmission systems transport electrical energy or power from the generation 

system sources to the system loads, often at a high voltage level [41], [43], though often 

the transmission system of a power system is considered to end at the distribution electrical 

substation, where power is transferred from the transmission system to the distribution 

system. Transmission systems provide users with the ability to draw power from multiple 

different generating units [46].  

Distribution systems distribute the power transmitted to the distribution 

substations to commercial and residential customers. Distribution systems contain a 

number of sub- and related topics which play an important role in the system, and are also 

emerging and popular topics within power system research, such as distributed generation, 

and EVs [47]. Distributed generation is generation that is connected directly to the 

distribution system, rather than the transmission system, and usually consists of one or 

more smaller-scale power generation systems which are located much closer to the load, 

reducing the demand on conventional power grid generation and transmission systems 

[46]. One of the largest-growing types of distributed generation is renewable energy 

generation, specifically wind and solar power generation [48]. There has been a large 

amount of research with has looked at the integration of EVs with these topics, such as the 

integration of solar panels at EV charging facilities [49], [50], and the treatment of EVs as 

large energy storage systems within a smart grid [20], [24], [25], [51].  

Smart Grids and microgrids are major topics or concepts in recent power systems 

research, which also have some overlap with the topic of distribution systems due to their 

integration with distributed generation technologies. In general terms, a smart grid is a 

modernized, digitized version of the conventional power grid, which uses digital 

technology and computer processing to facilitate two-way communication and power flow 

between the power utility  and the consumers [14], as well as the integration of automated 

sensors to provide updated, real-time information on the status of the system [43], [52]. 

The aim of a smart grid is to gather and act on its collected information to improve the 

reliability and efficiency of production, transmission, and distribution of power, to detect 
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and react quickly to disturbances, to reduce costs for utilities and consumers, to integrate 

renewable energy sources, and to improve the overall security of the power system [14], 

[43], [52]. A noted benefit of smart grids is their ability to support the increasing 

deployment of EVs, especially those capable of supporting Vehicle-to-Grid (V2G) 

charging and discharging of EVs when functioning as variable loads and energy storage 

systems [24], [53]. The authors of [14] state that a smart grid may be considered to be 

composed of integrated smart microgrids.  

Microgrids are a collection of distributed energy resources, loads, and energy 

storage systems which operate together as a “single controllable entity” which can operate 

in grid-connected or disconnected (islanded) mode [54], and which can be used to improve 

integration and effective use of distributed generation at the distribution level [14].  

2.1.2 Power System Optimization  

According to [55], economic dispatch, power flow, and optimal power flow  (OPF) are 

three main types of problems encountered in power systems literature and research, and 

while they have been used and solved since the 1930s, they have evolved over time to 

match the constant evolution of mathematical optimization techniques and computing 

power since the mid-twentieth century [11]. 

The Economic Dispatch problem aims to find the lowest possible cost of 

generation dispatch to serve a specified load demand [43], [55]. The Power Flow (also 

called load flow) problem refers to the equations used to determine the current, voltages, 

and real and reactive power flows at each bus in a system, and therefore across the 

generation, load, and transmission networks, in response to specified set of generator power 

output and load demands [43], [55].  

The OPF problem was the first to be fully formulated by Carpentier in 1962 [14], 

[55], [56]. The aim of OPF is to find the optimal solution to a given non-linear objective 

function, which has been developed to find optimal control variable values (such as real 

and/or reactive power generation level, generation cost, phase shifter angles, load shedding 

values, voltage settings, transformer tap settings, etc.) or objectives like active power cost 

or line loss minimization, and is constrained by any number of characteristics, such as 

minimum or maximum voltage levels, switching limits, generator minimum outputs, etc. 

[11], [14], [43], [55].  

The OPF problem is one of the most well-known optimization problems in 

generation and transmission systems, with a wide variety of approaches proposed to solve 

the problem over the years [11], [18]. While the basic problem has not necessarily changed 

since the 1960s and it remains mathematically complex, its applications have expanded 

and it has become required to be computed at increasing speeds, which have necessitated 

the development of further algorithms and advanced computing methods to increase the 

speed of its computations [11], [55]. 
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In general, there are a number of optimization problems found in all aspects of 

power systems, smart grids, and microgrids. Some optimization problems are related to 

those discussed above, like the minimization of line loss within the system, as found in in 

[57] and [58]. Increasingly, problems involve elements of distributed generation and other 

new technologies, and are mostly based on the configuration of the system and the 

positioning of components, with problems objectives including the optimal reconfiguration 

of distribution networks, the optimal placement, sizing, and control of electrical units, and 

the optimal management of EV charging.  

The solutions found in literature are generally concerned with ensuring optimal 

power delivery and minimal power loss within a distribution system while compensating 

for the intermittent power generation from renewable energy sources, improving power 

quality, ensuring voltage stability, and in the case of EVs, reducing the voltage fluctuations 

and impact to the grid caused by their uncontrolled charging through determining optimal 

charging schedules, controlling charging costs to users, and through the management of 

V2G services [20], [43], [59].  

Optimization tasks within the topic of smart grid are generally the same as those 

used when optimizing the conventional power grid: OPF-based optimization of the 

operation of the grid, scheduling to ensure the grid’s current resources meet the demand, 

and planning to ensure the future state of the grid will meet expected power demands. The 

optimization aims are also generally similar to those discussed above, including the 

minimization of active power generation and operation costs, minimization of power 

losses, and improvement of grid resiliency [14], [22]. 

EVs have been involved with numerous aspects of power systems optimization, 

and will continue to be important as power system operators and governments stive to meet 

the growing electrification demands of the world [2].   

2.2 EV Optimization Problems 

The specific optimization problems concerned with EV operation and integration into the 

power grid are numerous. However, before discussing these optimization problems in 

detail, the term EV must be defined. According to [60], an EV is any vehicle that is or can 

be powered by an electric motor which draws electricity from a battery, and can be charged 

from an external source (i.e., through plugging it into an electrical outlet). This definition 

encompasses both Battery Electric Vehicles (BEV), which are only powered by batteries, 

and Plug-in Hybrid Electric Vehicles (PHEV), which can be powered by batteries or the 

vehicle’s internal combustion engine [20], [60]. Both EV types have the capability to 

connect (plug-in) to the power grid.  
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The optimization problems concerned with EV operation and integration into the 

power grid generally involve a large amount of uncertainty in their variables and 

constraints due to their behaviour as variable loads. EVs present a large, stochastic load 

demand to the grid, with stochastic charging locations and behaviours impacting where 

that load is present on the grid. With V2G technology, EVs can stabilise grid voltage and 

act as mobile energy storage systems, providing similar benefits. The large-scale 

penetration of EVs will impact the function and reliability of the grid based on a multitude 

of factors, including driving characteristics, charging characteristics, charge timing, battery 

capacities, battery age, charging processes, and penetration level  [27], [61].  

According to the authors of [7], [15], there are six major optimization problems 

concerning EVs, with some overlap between the topics depending on the author: EV 

routing, EV charge scheduling, EV charging station placement and sizing, energy/load 

management, EV design and manufacture, and EV control. According to [7], the EV energy 

management and charge scheduling problems are the two most popular topics in recent 

literature, with hundreds of papers published in those topics in the last five years. The six 

major optimization problems are as follows:  

1. EV routing: Since EVs have a range limited by their need to charge, the 

EV routing problem is concerned with selecting a least-cost route that would serve 

a set of customers, taking into account numerous factors like vehicle load capacity, 

customer time windows, working hours, the time needed to travel to and charge at 

a charging station, and recharging times [7], [15], [62]. 

2. EV charge scheduling: this problem is concerned with generating an 

optimized charging schedule for all EVs within a system, generally managing the 

schedules to achieve a goal, like reducing cost, reducing the peak power draw on 

the distribution system, and balancing demand with supply [15], [26], [31]. This 

can be done through the use of electricity pricing signals and other demand 

response techniques, however the large amount of uncertainties and unknown 

system parameters like EV driving profiles, RES DG production, and electricity 

price, along with the requirement for a secure communications infrastructure for 

utilities, vehicles, and customers, and high computational resources make the 

estimation or prediction of power demand, and therefore the optimization 

problems, very difficult [26], [31], [61]. 

3. EV charging station placement and sizing: these problems are concerned 

with identifying a location for a charging station for each EV in a region to 

minimize the total distance traveled to charge and reduce its impact on the local 

grid, and determining the number and size of those charging stations based on the 

number of EVs in a region and their average demand [7], [15]. 

4. Energy or load management problem: this problem has a large amount of 

overlap with the EV charge scheduling problem, as it is defined in [15] as being 
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concerned with the balancing of EV electrical demand with the power supplied by 

the grid. Whereas the EV charge scheduling problem is mostly focused on the 

scheduling of EV charging with respect to grid constraints, the energy management 

problem involves the integration of distributed generation and use of EVs as energy 

storage systems with bidirectional V2G charging and discharging to maximize 

“strategic utilization of energy sources in a smart grid” [20]. 

5. EV design and manufacture: these problems are generally concerned with 

optimizing different mechanical or electrical systems within an EV, such as engine, 

motor, battery, and wheel component sizing, motor design and optimization, and 

transmission system optimization, and often aims to influence energy management 

and lower fuel consumption of hybrid vehicles [7]. 

6. EV control optimization: this problem is concerned with improving the 

performance of EV through its control systems, specifically with its control 

parameters, control strategy, transmission, torque, braking, and other components 

[7]. 

2.3 EV Charge Scheduling 

As stated in Section 2.2, the EV charge scheduling problem is concerned with generating 

an optimized charging schedule for all EVs within a system. Coordinated EV charging, 

through optimal charge scheduling, has been recognized as an “effective and cost-efficient 

way to mitigate the charging stress on power systems” [63], and remains a popular and 

relevant topic within EV and power system optimization research. The problem has been 

identified as being NP-hard [63], with “no known accurate algorithms for finding optimal 

solutions in polynomial time” [15], and non-convex due to the high number of potential 

variables like number of EVs and random arrival and departure times [37], however 

optimization solutions in literature have been able to achieve optimality or near-optimality 

[34].   

The following subsections will provide more detail about this and related sub-

topics, including the technologies involved with EV charging, the use of centralized and 

decentralized approaches to optimization, the use of metaheuristics and other optimization 

methods, integration with power flow, inclusion of multiple parking lots, and problem 

abstraction.  
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2.3.1 EV Charging Technologies 

 Vehicle-to-Grid 

Within the literature, the charging of plug-in EVs is generally studied in the context of 

controlled or uncontrolled unidirectional charging (sometimes referred to as Grid-to-

Vehicle (G2V), unidirectional V2G charging, or one-way smart charging), and bi-

directional charging, including V2G technologies [64]. While some sources specify that 

V2G can refer to the unidirectional or bidirectional control and management of EVs [20], 

[65], it is most commonly used to refer to bidirectional power flow technologies where the 

EV functions as a distributed and variable energy storage system in the smart grid [25], 

[53], [64], and can be used to provide ancillary services like frequency regulation, voltage 

regulation, reactive power compensation, congestion management, and improvement of 

power quality [20], [64]. 

 EV Charging Stations 

An EV charging station is defined by [60] as a location with one or more EV charging ports 

(each port can supply charge to one EV) at the same location. This definition encompasses 

many locations, including utility and user-installed public, commercial, and private parking 

and charging facilities, including parking lots [6], [44]. In this thesis, a parking lot is the 

same as an EV charging station.  

There are three charging levels which can be supported by a charging port: a 

summary of the three charging levels is shown in Table 2.1 [6], [35], [60], [64], [66], [67]. 

Since Levels 2 and 3 are the fastest, most commercial public charging stations having ports 

which support Level 2 and 3 charging [60], [66], [68], [69]. These levels have the highest 

power draw, and therefore have a larger impact on the local grid. The more EVs in 

operation, the more charging stations that will be required in public parking lots and other 

locations, the higher the power draw, and therefore the larger the impact from EV charging 

at these levels. A framework to manage the charging of EVs at these locations through 

optimal charge scheduling would assist in mitigating the negative effects that these 

charging stations may have on the grid.   
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Table 2.1 Summary of EV Charging Levels (North American Standards) 

Level Charging 

Power 

(kW) 

Voltage 

Supply 

(V) 

Current 

Rating 

(A) 

Connectors Speed Use Advantages Drawbacks 

1 1.44-1.9  120 V 

AC 

12-16 SAE J1772 

 

3-8 km 

per 

hour of 

charge 

Domestic Home 

charging. 

Lowest 

impact on 

distribution 

systems. 

Slowest 

charging 

time. 

2 Up to 

19.2  

208/240 

V AC 

80 SAE J1772 

Tesla 

16-97 

km per 

hour of 

charge 

Domestic 

Public 

Shorter 

charging 

time.  

May 

require 

dedicated 

supply 

equipment. 

3 20-120+ 480 V 

DC 

80-200 Combined 

Charging 

System 

CHAdeMO 

Tesla 

Full 

charge 

in 

approx. 

30 

mins- 

1 hour 

Public Shortest 

charging 

time. 

Most 

energy 

efficient. 

Extremely 

high 

currents 

and 

voltages. 

High 

impact on 

utility. 

May trigger 

extreme 

surges in 

grid 

demand. 

High 

installation 

cost. 

2.3.2 Centralized and Decentralized Approaches 

While there are numerous coordinated charging (also called smart charging) algorithms 

developed by researchers since at least the mid-2000s [34], most current researchers agree 

that there are two main approaches to developing a coordinated EV charge scheduling 

framework: centralized, and decentralized approaches (or architectures) [7], [15], [34], 

[35].  

In both approaches, the EV charging activities are coordinated by a central 

aggregator, which is the link between the distribution network operator and the EV 

customers that ensures that the EV charging demand is met while respecting network 

limitations and constraints [15], [35]. Depending on the objective of the aggregator, it may 

act to obtain a desired grid (utility or operator) or customer objective, as well as provide 

ancillary support to the grid [6], [35]. In a real scenario, the aggregator of a network may 
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be a network operator, utility, EV charging facility, EV fleet operator, or a communication 

device located on a distribution network transformer [34].    

In the centralized approach, the aggregator alone is responsible to collect all 

parameter information and perform the required calculations to determine the charging 

schedule of each EV. It collects a large amount of information about the network, EV 

charge requirements, and more, processes it at a single point, and communicates the 

optimized charging schedules back to each EV. In the decentralized approach, also called 

the distributed approach, the information and calculations are performed by several 

different entities which obtain different parameters from each other through 

communication. In the classic decentralized approach, the computational load of the 

optimization scheme is shared across EVs, and each EV acts as an independent decision-

maker or optimizer for its own charge scheduling problem. In the hierarchical decentralized 

approach, the computational load is shared between EVs and one or more aggregators 

through a “tree-like communication topology” [34], where each aggregator coordinates the 

schedules for its group of EVs, and may also provide parameter information to the other 

aggregators.  

Both approaches require a number of smart grid infrastructure elements to be 

present in order to be conducted, namely the availability of bidirectional communication 

between EV customers and EV aggregators so they can share their charging demand 

information in advance [10]. As well, centralized charging requires that EV customers have 

relinquished control of their EV charging process and schedule to the aggregator, which 

can remotely control the charging infrastructure [10], [34].    

While it does require this infrastructure to be in place, the centralized approach 

offers one main benefit compared to the decentralized approach: it can provide better 

solutions for optimizing the energy management of grids and EVs, having a higher 

possibility of finding the globally optimal solution to the problem, because it collects 

complete information about the system it is connected to and is able to consider more 

system states and constraints in its problem formulation [10], [34], [36], [70]. However, it 

has a number of drawbacks, including that it generates a single point of failure at the 

aggregator, requires a sophisticated communications infrastructure with redundancies, 

raises privacy and security concerns with respect to the amount of information, has a large 

control overhead, is computationally complex, and has a higher computational cost due to 

its use of a larger amount of data to provide a better solution [15], [32], [34], [35], [36], 

[71]. As stated by [34], the key challenge or drawback for centralized approaches is the 

lack of scalability: as the size of the optimization problem increases, in terms of planning 

time horizon, number of EVs, size of the power network, or number of control variables 

and constraints, the complexity increases, and it becomes “computationally intractable with 

respect to the implementation time” [34], able to only handle a limited amount of EVs in 

real-time [15], [35], [37]. As the numbers of EVs connected to the system increase, the 

centralized approach becomes “impractical” [34].   
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In contrast, decentralized approaches have become popular in the literature 

because they are highly scalable, flexible, resistant to communication failure, more 

practical to implement in the field, and offer more control to the individual EV owners 

[34], [35], [38]. They are more scalable in terms of computational complexity, and have 

often been developed with the aim to be more computationally efficient and reduce the 

computational burden [10], [34]. However, their largest drawback is that decentralized 

approaches do not guarantee an optimal charging solution [34], [35], [38], and are generally 

inferior to centralized approaches in terms of “the stability of the entire power network”  

[38].   

Ultimately, according to the literature, the decentralized approach is more 

computationally efficient, but does not give the global optimal or optimized solution 

compared to the centralized approach, which requires more computational resources, but 

has the potential to provide a more optimal solution. While this statement is generally 

agreed upon in recent literature, there are only a few works which compare directly their 

own centralized and decentralized solutions against each other: [44], [63], [71], [72], [73], 

[74], [75], [76]. Since optimization for such complex problems as EV charge scheduling 

will likely not find the ultimate single optimal solution with current methods, the 

generation of more research which directly compares centralized and decentralized model 

results from the same problem will help strengthen the arguments of one approach’s 

superiority over the other. These limitations are part of what this thesis work will attempt 

to address: it will provide direct comparisons between centralized and decentralized 

models, and will address the computational burden of the centralized approach through 

HPC techniques.   

2.3.3 Optimization Methods 

There is a large variety in the optimization approaches viewed across the literature to 

approach the EV charge scheduling optimization problem. The most common methods 

include conventional mathematical approaches and heuristics, specifically metaheuristics. 

It has also been approached with solutions based on machine learning [15], [31], [44] and 

game theory [34], [77], [78]. The authors of [36] note that most centralized approaches 

utilize mathematical optimization like linear and quadratic programming, though many 

others use “game theoretic approaches, heuristics, scheduling algorithms, and medium 

access methods inspired from telecommunication literature.” More details on conventional 

optimization methods, heuristics, and metaheuristics, are found in Section 2.4.  

Conventional mathematical techniques such as linear and mixed-integer linear 

programming have been frequently used as seen in the number of papers surveyed by [15], 

[34], [35], however it was noted by [15] that these approaches are somewhat unsuitable, as 

they “cannot handle [EV charge scheduling] difficulties” due to the long computation times 

and the inability to add necessary problem components into the model. Some authors like 
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[37] have noted that it is difficult to solve the problem in real-time as the complexity 

increases as the number of EVs considered increases, and so have used simplified, 

combined, or hybrid programming techniques to approach the problem.  

Heuristic and other custom algorithms like “Graph Search Algorithm” [79], “First 

Come First Served” [80], and “Interval Graph Coloring”[80] have also been found in the 

literature, often in combination with other techniques [10], [34], [35], [40], [63]. However, 

as with conventional methods, [15] has noted that “the solutions obtained using greedy or 

conventional algorithms for [EV charge scheduling] are usually sub-optimal, especially 

when the problem size becomes larger” [15].  

Metaheuristics are popular methods for the EV charge scheduling problem, with 

the authors of [7] stating “the most prominent area of research in the optimization of EVs 

is the adoption of meta-heuristic based optimization algorithms and machine learning 

strategies.” The authors of [15] notes that metaheuristics are “outperform mathematical 

programming and heuristic methods” when problems like EV charge scheduling are 

complex and have a large number of possible solutions. There are a large number of 

metaheuristics used throughout the literature, used individually and in combination with 

other metaheuristics and optimization methods, so that authors can customize the 

metaheuristics to suit their problem and parameter sizes [7], [15], [20]. The more popular 

metaheuristics used with this problem seem to be PSO and Genetic Algorithm (GA) [35]. 

The drawbacks associated with the use of metaheuristics is their higher computational 

expense and related higher computational time [7], [20]. Centralized metaheuristic 

optimization methods have generally been found to be slower than decentralized heuristic 

or conventionally-based methods [70].  

 Objective Functions 

Regardless of the optimization method used, most literature in the area of EV charge 

scheduling share similarities in terms of the specific objective function they are optimizing, 

because ultimately most are trying to reduce costs to achieve economic efficiency, whether 

from the point of view of the aggregator or the EV user [7], [34], [35]. As well, many 

researchers identify a large number of their equality constraints as coming from the power 

flow model, to ensure that their “system-level voltage and branch flow limits are met” [44]. 

Power flow equations will be discussed in Section 2.3.3.2. 

Looking through the literature, it can be seen that there is a huge variety in 

objective functions, being single or multi-objective, and having a large number of 

constraints and other variables considered. An objective function describes what is being 

optimized, and a fitness function includes the objective function and the constraints or 

penalties of the problem [25], [43]. The fitness function is used by the optimization 

algorithm to “evaluate the quality of the candidate functions and to allow the metaheuristic 

to steer the search toward higher quality solutions” [81]. Since there is no standardized 
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version of a single objective function for the EV charge scheduling problem, authors are 

free to make their problems as complex or simple as they like, depending on their 

computational resources. When resources are increased, the problem can be made more 

complex and more realistic. Multi-objective functions may be made of a combination of 

two or more objective functions, often added together with a weight applied to each 

function [82]. 

 Power Flow Integration 

The use of power flow equations to verify network conditions is an important element of 

EV charge schedule optimization problems, when an entire distribution system is taken 

into consideration in the problem formulation. Based on a proposed objective function 

charging or scheduling solution and its associated load, the power flow is run to verify if 

that solution meets the given equality and inequality constraints.  

The authors of [25] describe how the objective functions and power flow-based 

constraints interact to determine the fitness function of their problem. The fitness function 

includes the two objective functions of their problem (income and operational cost) each 

multiplied by a Pareto weight added together, plus the penalty values. In their solution, the 

penalty values are based on the power flow results of the time period: if the generation 

demand does not meet the power flow load demand, if the bus voltages are over or under 

the power flow voltage limits, and if the current capacity of the network lines is violated. 

In their solution flowchart, the AC power flow is conduced as part of the PSO’s evaluation 

phase (similar to Step 2 of Figure 2.1in Section 2.4.3.2), where the solution’s parameters 

are used to calculate the power flow, those results are checked against the constraints and 

used to assign penalties, and then the fitness function is evaluated. A similar process by the 

same authors is shown in Figure 2.5 in Section 2.6.4. 

The power flow equations model the electrical properties of a transmission or 

distribution network, giving the current, voltage, and real and reactive power flows at every 

bus in the network [43]. The notation used in each paper varies, but the general forms of 

the power flow equations (equations (2.1)-(2.2) copied from [21]), or equality constraints, 

are: 

𝑃𝐺𝑏 − 𝑃𝐷𝑏 − ∑ |𝑉𝑏||𝑉𝑘|(𝐺𝑏𝑘 cos(𝛿𝑏 − 𝛿𝑘) + 𝐵𝑏𝑘 sin(𝛿𝑏 − 𝛿𝑘))

𝑛𝑢𝑚𝐵

𝑘=1

= 0 (2.1) 

𝑄𝐺𝑏 − 𝑄𝐷𝑏 − ∑ |𝑉𝑏||𝑉𝑘|(𝐺𝑏𝑘 sin(𝛿𝑏 − 𝛿𝑘) + 𝐵𝑏𝑘 cos(𝛿𝑏 − 𝛿𝑘))

𝑛𝑢𝑚𝐵

𝑘=1

= 0 (2.2) 

where 𝑃𝐺𝑏 and 𝑃𝐷𝑏  are the real power generation and demand at bus 𝑏, 𝑄𝐺𝑏 and 𝑄𝐷𝑏 are 

the reactive power generation and demand at bus 𝑏, 𝑉𝑏∠𝛿𝑏 is the per-unit complex voltage 
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at bus 𝑏, and 𝐺𝑏𝑘 and 𝐵𝑏𝑘 are the conductance and susceptance of the branch connecting 

bus 𝑏 to bus 𝑘.  

These equations are often accompanied by the following inequality constraints 

((2.3)-(2.7), from [21], [44]), modeling the physical limitations of the transmission 

network:  

|𝑉𝑏,𝑚𝑖𝑛| ≤ |𝑉𝑏| ≤ |𝑉𝑏,𝑚𝑎𝑥| (2.3) 

𝛿𝑏,𝑚𝑖𝑛 ≤ 𝛿𝑏 ≤ 𝛿𝑏,𝑚𝑎𝑥 (2.4) 

𝑃𝐺𝑖,𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖,𝑚𝑎𝑥 (2.5) 

𝑄𝐺𝑖,𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖,𝑚𝑎𝑥 (2.6) 

|𝑆ℎ| ≤ |𝑆ℎ,𝑚𝑎𝑥| (2.7) 

where |𝑉𝑏| and 𝛿𝑏 are the voltage magnitude and voltage angle at bus 𝑏, 𝑃𝐺𝑖 and 𝑄𝐺𝑖 are 

the real and reactive power for generator 𝑖, and |𝑆ℎ| is the apparent power in branch ℎ. 

In other sources like [25], other physical limitation-based inequality constraints 

may be included, to model things like the line thermal limits, power transformer limits, 

maximum distributed generation limits, minimum reserve [24], etc. 

The inclusion of the power flow model and constraints within problem formulation 

is important, as without it, it is uncertain if a given optimization solution violates system 

voltage, current, and power flow limitations [44]. 

2.3.4 Multiple Parking Lots 

Within the EV charge scheduling problem, there are a variety of different problem 

formulations in terms of the physical setup or representation of the EVs within a system. 

Some look at EVs within a system individually at nodes, some look at multiple EVs within 

a single parking lot, and some look at multiple EVs within multiple parking lots.  

The problem of performing EV charge scheduling optimization on multiple EVs 

in multiple parking lots is particularly relevant in that most large communities currently 

have one or more parking lots with one or more EV charging ports [69], [83]. The authors 

of [5] point out the relevancy of this problem formulation to the modern world: “while 

most of the charging demand is currently met by home charging, publicly accessible 

chargers are increasingly needed in order to provide the same level of convenience and 

accessibility as for refueling conventional vehicles. In dense urban areas, in particular, 

where access to home charging is more limited, public charging infrastructure is a key 

enabler for EV adoption” [5].  
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This problem formulation is also relevant to study because it is more realistic when 

comparing it to the real-life operations of a city: EVs do not exist in a vacuum, operating 

in isolation from the grid and each other. The actions of EV charging in one parking lot in 

one area affect the grid, and thus the EVs in another area: “multiple [EV charging stations] 

connected to the same distribution network are coupled by the network constraints” [44]. 

The load at a parking lot increases with every EV that charges, which can create an 

imbalance between parking lots which change over time. The optimization of the EV 

charging schedules is therefore impacted by the functioning of the local parking lot, which 

depends on the functioning of the grid (which changes over time due to factors like 

generation, time of day, time of year, etc.), which depends on the functioning of other 

parking lots.  

The problem involving multiple parking lots is more complex than that with no 

parking lots or just looking at a single lot, because coordination must be done between the 

parking lots, which may require the solving of more than one optimization problem. 

According to [44], there must be coordination between the system operators and the EV 

aggregators to ensure that the system is operated within its physical limitations, and that 

all objectives are satisfied “simultaneously” [44]. The centralized method would be well-

suited for coordination between the different organizations or problem levels, but is 

accompanied by a high computational burden because of the increased amount of data and 

constraints that must be considered. With multiple parking lots, the power flow equations 

must be considered in the problem formulation to ensure that the limits of the power 

network which connects the parking lots are respected. This may also be the case when 

looking at a network with no parking lots and individual EVs charging per bus or node, 

however when the size of the parking lots (number of EV charging ports) increases, the 

load demand may vary more dramatically over time, and the size of the scheduling 

optimization problem at that node (number of EVs and associated parameters) increases, 

making the problem overall more complex.  

There may also be the opportunity for direct coordination between parking lots or 

EV aggregators to redirect EV charging demands between parking lots. Not much literature 

could be found on the subject, but one paper [84] described the use of an inter-aggregator 

collaboration system to have aggregators communicate the charging requirements of EVs 

under their control to other aggregators if they do not have the capacity to charge the EV 

with their own equipment. This paper did not consider power flow within a specific 

distribution system, only using the energy capacity available to the aggregator as an 

aggregator constraint, however it demonstrated the requirement for information about the 

EVs’ origin and destination information so that an EV, if it cannot be charged by its 

controlling aggregator, can be redirected to another charging location within the same zone. 

The authors commented that centralized control would not scale well for the charge 

scheduling problem, however it is possible that a centralized system which contains all the 

information about system aggregators would be able to produce a more profitable response 
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than the solution where aggregators only receive partial information about the other 

aggregators in the system.    

While the authors of [85] do not tackle the problem of multiple parking lots, their 

paper is related in that it also involves directing EVs to a specific parking location, directing 

the EV to a specific port within a parking lot. The paper does not provide details on the 

behaviour of the distribution network during the V2G charge scheduling within the two 

simulated parking lots.  

2.3.5 Problem Abstraction 

As mentioned previously, researchers have approached the EV charge scheduling 

optimization problem in many ways. Many papers seem to abstract the problem in different 

ways, which is understandable due to the requirement to linearize or otherwise simplify a 

problem down to an approximate form that can be optimized.  

In a general survey of EV charge scheduling optimization literature, it was found 

that the problem seems to be approached in one of four main ways: Approach 1) scheduling 

EV charging in a distribution system while abstracting distribution system power flow 

limitations [10], [16], [71], [84], [86], [87], [88]; Approach 2) scheduling EV charging in 

one or more parking lots while abstracting distribution system power flow limitations [36], 

[37], [40], [63], [68], [85], [89], [90], [91]; Approach 3) scheduling EV charging in parking 

lots in a distribution system while abstracting optimization within the parking lots  [92]; 

Approach 4)  scheduling EV charging within a distribution system while considering 

changes in the distribution system (i.e. verification of the network conditions during 

optimization algorithm evolution), with [31], [38], [44], [82], [93], [94] or without [24], 

[25], [26], [39], [95], [96] multiple parking lots.  

In Approaches 1-3, where the power flow calculations seem to only be calculated 

once or are simplified (i.e., only a node power upper limit is considered), this indicates that 

the authors are assuming a given maximum load in a parking lot, and that the grid will not 

necessarily change in behaviour over time. The lack of detail provided in some papers 

makes it hard to confirm what level of abstraction was used in each problem formulation. 

As mentioned in Section 2.3.3.2, the inclusion of the power flow model and constraints are 

important to ensure that a solution is viable on a given distribution system, and prevents 

the need to validate the solution after the optimization has been performed [25].  

A centralized control method with Approach 4 may be a good candidate when 

attempting to formulate the charge scheduling optimization problem to optimize the 

scheduling of EVs in multiple parking lots in a system, because the central aggregator 

would be able to see all details of the distribution system and EVs in the parking lots, and 

could attempt to combat any power imbalances by directing EVs to different charging 

locations (as mentioned above) or delaying their charging times.  Due to the potential 

complexity and number of variables associated with this problem, the use of metaheuristics 
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and HPC techniques to combat the long runtime and computational resource requirement 

may be a potential solution, as they were with papers [24], [25]. 

2.3.6 Offline versus Online Calculations 

In some literature, the words “online” and “offline” have been used to refer to the strategies 

or calculations used in their optimization solutions. Offline strategies (one-time open-loop 

control strategies [34]) assume perfect predicted knowledge of a system’s operations in 

advance of EV scheduling, and are calculated only once [34]. Online strategies (recursive 

closed-loop control strategies [34]) are calculated multiple times, updating their calculated 

based on the feedback received from the system [34]. Online strategies are therefore more 

realistic, as they can respond to the uncertain EV arrival times and other uncertainties [34], 

[89]. As an example, in [44] the critical power is calculated in an online manner, being 

updated with every new EV arrival to ensure the network power constraints “are always 

satisfied even when there are multiple [EV charging stations] across the distribution 

system.”  Online computation strategies are required in order to solve problems in real-

time [63].  

2.4 Optimization Methods and Metaheuristics  

As explained in Section 2.3.3, it is the complexity in their optimization that makes EV 

optimization problems like charge scheduling a good candidate for use with metaheuristic 

optimization methods. However, as mentioned previously, they are not the only types of 

optimization methods that have been used with the problem. This section will provide a 

description of the optimization methods used in power systems and EV charge scheduling, 

with a focus on metaheuristics.  

Optimization, as a mathematical concept, is the process of finding the maximum 

or minimum solution of some function compared against other potential feasible solutions, 

and usually subject to some specified constraints [97], [98]. Optimization problems are 

generally composed of objective functions (the item to be optimized), variable parameters 

called control (or decision) variables, and constraints on the parameter values, sometimes 

referred to as equality or inequality constraints [13], [21]. The goal is to find a set of 

variables which achieve the best, or optimum, value of the problem’s objective function 

within a given number of constraints [99]. Optimization problems may have a single or 

multi-objective function, depending on the problem to be solved. 

Power systems are subject to a variety of constraints, both technical (e.g., 

equipment operation limits) and non-technical (e.g., costs to operate a system over a given 

time), so there must be a way to find the most effective way to operate the system, given 

the constraints. According to [11], the concepts and algorithms of optimization were 
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introduced to power systems in the mid-twentieth century, to formalize decisions and 

processes around power system problems in a mathematical way. Since the early twenty-

first century, there has been a large increase in the amount of research and publications 

concerning the applications of optimization to power engineering, as researchers and 

engineers attempt to find the most effective, optimal way to operate their systems for the 

lowest cost [11], [12], [13], [14]. Multi-objective functions are also becoming more 

important to study, as most real problems in power engineering involve more than one 

optimization objective, especially as power systems become more modern and more 

complex and are further integrated with new technologies like EVs [13], [14], [20], [22]. 

As well, as it becomes necessary to perform power system-related optimization in real-

time [63], [100], research into how to adapt optimization so that solutions can be calculated 

faster or within a given time limit is becoming more important, especially for EV-related 

optimization [7], [70].  

2.4.1 Conventional Optimization Methods 

Conventional optimization methods are those deterministic methods based on precise 

mathematical formulas, often based on calculus and enumeration techniques [13]. A 

selected objective function is subject to given constraint functions, and the best possible 

choice or result from the control variable is selected from a set of potential candidate 

choices [19], [98].  

The benefits of these types of methods is that they can often work very well, if the 

type chosen is well-suited to the problem [13]. As well, depending on the method, the 

computation time may be relatively lower (when compared to a metaheuristic method), and 

they may not require an initial solution before finding the optimal solution [101]. Types of 

conventional optimization methods include: discrete and continuous optimization methods, 

Unconstrained Optimization Approaches (Lagrange multiplier, Newton-Raphson, etc.), 

Linear Programming, Nonlinear Programming, Quadratic Programming, Interior Point, 

Gradient search methods, and Mixed-Integer Linear Programming (MILP) [13], [43]. 

There are also many drawbacks associated with these methods. They can have high 

algorithm complexity, which results in them being difficult to solve and computationally 

expensive for large problem sizes. They also may not be able to process discrete variables, 

and can often fail to converge to the global optimum, instead becoming trapped in a local 

optima [13], [19], [21], [98]. As well, they are not well suited to complex, realistic, and 

non-linear problems, because they require detailed and complete information on all aspects 

of the problem’s objective function and its variables, which is often not realistic for most 

real engineering problems [13]. According to [24], “deterministic optimization techniques 

do not cope well with uncertain variables and require increasing computational resources 

to deal with the large-scale real-world problems.” When a problem becomes very large and 

complex, these methods may not be able to find a convergence solution in an acceptable 

amount of time. 
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2.4.2 Heuristic Optimization Methods 

Heuristics and metaheuristics were developed to improve the speed of problem solutions, 

and to combat the drawbacks associated with conventional optimization techniques, like 

the lack of guarantee of finding the global optimum, difficulties with non-linear problems, 

solving multiple objectives, and addressing problem uncertainty [102]. 

Heuristic optimization methods are problem-specific optimization methods that 

look to develop optimal solution procedures for their given problem [103]. They are 

generally classified into two types: construction heuristics, which perform iterative 

calculation steps to develop a solution, and improvement heuristics, which iteratively apply 

search operators to a provided, initial complete solution to search through the problem-

specific search space and find a more optimal, improved solution [19], [103].  

Types of heuristics include: nearest-neighbour, nearest insertion, cheapest 

insertion, furthest insertion, k-opt, and approximation algorithms like the polynomial-time 

approximation scheme [103].  

Heuristics can improve the speed of an optimization problem when compared with 

conventional methods [102], [103]. They are better suited for large, non-linear search 

spaces [13]. If the specifics of the structure of chosen problem are known very well, a 

heuristic can outperform a metaheuristic. They may be easier to implement when compared 

to other methods, and are more flexible in addressing problem uncertainty. However, 

because they are problem and problem-structure specific, they are very difficult to define, 

and their design and application is very demanding [17], [19], [103]. 

2.4.3 Metaheuristic Optimization Methods 

Metaheuristics are non-deterministic, problem-independent optimization methods, which 

work by iteratively improving one or more candidate solutions to a problem to find an 

optimized solution [17], [18], [103]. They are considered a type of improvement heuristics 

which are not problem specific [103]. They can more effectively solve a variety of 

problems without requiring extensive detail about the problem formulation.  

Their main benefits are that they can be applied to non-linear and complex 

problems, which are those often found in power optimization problems, they can more 

easily escape local minima to find the global optimal solution, and can consider continuous 

and discrete variables within their problem formulation [18], [19]. They can find generally 

acceptable solutions in an acceptable amount of time, depending on the parameters chosen 

by the user [20]. 

Metaheuristics are often inspired by natural behaviours [19], with numerous types 

and subtypes. Some of the more recognized metaheuristic algorithms include: population-

based algorithms like evolutionary (GA, differential evolution, evolution strategy, etc.) and 
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swarm-based algorithms (ant colony optimization, bee colony, PSO, grey wolf optimizer, 

whale hunting, etc.), and non-population-based algorithms like physics-inspired algorithms 

(gravitational search, simulated annealing, harmony search), Tabu search, teacher-learner, 

artificial immune system, and more [12], [20], [22], [43].   

Evolutionary algorithms are optimization methods which simulate the evolution of 

a population of possible solutions to a problem, based on Darwinian theories of evolution 

and natural selection [20], [22]. The algorithms use three main operator types in their 

execution: selection operators to select the parent solutions, a crossover operator to 

generate one or more child solutions, and a mutation operator to modify the child solutions 

[13], [20], [21]. GA, developed in 1975, is one of the most popular evolutionary algorithms. 

Swarm intelligence methods use a population of solutions which interact with each 

other to generate a more “intelligent” global behaviour and achieve a common goal within 

the solution space, and are based on the swarming behaviour of animals and other 

biological organisms [20], [22]. The output of swarm optimization methods depend heavily 

on the tuning of the parameters – while they can generally converge faster than 

evolutionary algorithms, they may converge prematurely and result in a non-optimal 

solution [20]. PSO, developed in 1995 [104], is one of the most popular swarm intelligence 

algorithms. It is described in detail in Section 2.4.3.2 below. 

Non-population based algorithms have a variety of different behaviours, 

depending on their specific solution inspiration. Physics-inspired methods imitate the 

process of physical phenomena, observed in chemical, human, or other natural interactions 

[20], [103]. The main difference between them and population-based algorithms is that 

they often use a single search agent or solution to search the solution space [20]. Simulated 

annealing, developed in 1983, is one of the most popular physics-based algorithms. 

Hybrid metaheuristic techniques combine two or more metaheuristics in order to 

combine their strengths and limit their limitations to find high-quality global optimum 

solutions with fewer iterations [20], [105].  

Combined metaheuristic optimization techniques combine two different 

optimization techniques together, i.e. a discrete method and a metaheuristic [20]. In some 

literature, this term is used interchangeably with hybrid optimization techniques. These 

techniques may be used to reduce the complexity of a problem, break it into related sub-

problems each tackled by a different optimization method, and/or to increase its efficiency. 

Examples include GA- and PSO-linear programming  [21], [105].  For example, according 

to [24], PSO and GA are suitable for many different types of power system optimization 

problems, but both suffer from “premature convergence and stagnation” [24], which can 

negatively affect the quality of the solution. The combination of one or both metaheuristics 

with a conventional optimization method can “overcome the shortcoming of both 

[methods]” [24].  
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The drawbacks associated with metaheuristics are that depending on the 

complexity of the problem, metaheuristics may require significant computational resources 

to compute the optimization problem output [21]. Correct problem-specific assumptions 

are still required in order to get a good output from their use, and the basic problem 

formulation must still be well-understood [103].   

According to the authors of [12], [13], [20], [22], metaheuristics can be generally 

categorized into three main types: evolutionary algorithms, swarm intelligence algorithms, 

and non-population or physics-inspired algorithms. These classifications are helpful to 

explain the inspirations behind and behaviour of various algorithms, however they are 

arbitrary and based on the inspiration of the authors.   

The effectiveness of using one metaheuristic over another for an optimization 

problem will depend heavily on the problem being optimized, the researcher’s 

understanding of it, the method of solution encoding, clear identification of the objective 

function and control variables, the researcher’s understanding of the chosen metaheuristic, 

a good general awareness of how their system reacts when using existing optimization 

techniques, and the understanding of the parameters used in the problem implementation 

[13]. Many algorithms are parameter dependant: a lack of well-selected and well-tuned 

parameters greatly impacts an algorithm’s speed, efficiency, and ability to find the optimal 

solution [106].  

 Metaheuristics for Charge Scheduling Optimization 

As mentioned above, metaheuristics are gaining popularity with EV optimization problems 

[7]. There are a variety of metaheuristics used throughout the EV optimization literature, 

often customized by the authors to suit their problem and parameter sizes [7], [15], [20], 

with PSO and GA seeming to be the most popular metaheuristics used with the EV charge 

scheduling optimization problem [35]. Papers [25], [82], [92], [96], [107] used PSO and 

GA (though often with slight algorithm modifications or different weights applied as in 

[25]), with [38], [92] comparing the performance of PSO and GA. The authors of [16] 

developed a “Mixed-Variable Differential Evolution” algorithm, [80] compared Simulated 

Annealing with other heuristics, [108] compared PSO, Imperialist Competitive, and 

Training-Learning, and [109] used a “Multi-Objective Advanced Grey Wolf Optimization” 

algorithm in their solutions. Other authors develop (and often compare against a “base” 

metaheuristic like PSO) hybrid and combined metaheuristics: [38] developed and 

compared a hybrid PSO-GA and an “improved-hybrid” PSO-GA algorithm, [40] used a 

hybrid “heuristic fuzzy” PSO, [86] developed PSO-Firefly algorithms with Lévy flight 

search strategy, [95] developed and compared a hybrid Tabu Search-Greedy Randomized 

Adaptive Search Procedure against the original algorithms, and [24] combined PSO with 

Mixed-Integer Linear Programming. Due to PSO’s popularity with EV charge scheduling 
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optimization solutions and its use within this thesis, it is described in detail in the next 

section.  

 Metaheuristics have gained their popularity with EV optimization due to the 

advantages they hold over other optimization methods. As stated above, they can “escape” 

local optima to find the global optimum of a solution, and are able to consider both 

continuous and discrete variables within their problem formulation [18], [21], [22], [23]. 

Specifically for the EV charge scheduling optimization problem, the authors of [15] state 

that these “inherent” advantages of metaheuristics over conventional (mathematical) and 

heuristic methods make them better able to tackling complex, “non-convex and non-linear” 

EV objective functions, particularly when problems have a large number of possible 

solutions and local optima, especially as techniques like linear and non-linear programming 

are “incapable of solving [the EV charge scheduling problem] in a reasonable amount of 

time” [15]. The authors of [16] also noted metaheuristics’ suitability for the problem, 

noting that since the problem “has been proven as NP-hard, [it] is suitable for evolutionary 

computation algorithms such as the ant colony optimization to solve.”  

Even with their suitability for the problem, metaheuristics do have a few 

disadvantages that must be taken into account when applying them to the EV charge 

scheduling problem: mainly the higher computational burden, and the need for parameter 

tuning [22]. Metaheuristics are recognized across the literature as requiring significant 

computational resources to compute the optimization problem output, since they usually 

“require many more function evaluations than standard mathematical optimization 

approaches” [22], which often translates to a long computation time for very complex 

problems [7], [15], [20], [21]. Since EV charge scheduling optimization computational 

complexity “increases exponentially” [71] with the number of EVs and length of the 

planning horizon  [63], some metaheuristic-based solutions involving higher numbers of 

EVs may be not be implementable for practical solutions [71], and must be limited to 

smaller problem sizes. For PSO specifically, the authors of [96] explain that this 

metaheuristic suffers from the “curse of dimensionality” and cannot handle a large amount 

of EVs or high number of dimensions in the EV charge scheduling problem without 

requiring significant computational resources: “[since] the number of particles must 

increase with the number of problem dimensions, and the computational time increases 

exponentially with the number of particles […] simultaneous optimization of practical-size 

distribution system areas with thousands or even tens of thousands of EVs and distribution 

system buses may well be intractable” [96].  

The requirement for complex parameter tuning is a drawback for metaheuristic use 

with EV charge scheduling optimization, because tuning impacts the speed of convergence, 

and often requires multiple trial-and-error simulations to find an optimized parameter set 

[22], [106]. When there is a large amount of EVs or dimension size of the problem, 

imprecise tuning may greatly impact the optimization solution’s ability to be computed in 

a reasonable amount of time.  
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This emphasis on computational complexity and computation time has led some 

authors to combine their metaheuristic-based solutions with HPC techniques, to overcome 

the disadvantages by reducing computation time [24], [25]. As well, the authors of [22] 

noted that “most metaheuristic search methods are inherently capable of parallelization,” 

so further research into possible parallelization methods for population and non-

population-based metaheuristic algorithms used in power systems optimization problems 

could allow their use in real-time problems like OPF [22] and EV charge scheduling 

optimization, and could allow for the study of larger problem sizes. The authors of [110] 

note that the parallel implementation of evolutionary algorithms have become “an effective 

strategy to reduce the [computation] time cost.” 

 Particle Swarm Optimization 

PSO is a population-based, swarm intelligence algorithm, where a large population or 

swarm of particles (candidate solutions) move within a multidimensional problem space 

[21]. Each particle has an initial randomized directional velocity and position which are 

updated at every iteration based on its previous best position and the swarm’s best position, 

and they work together to find the best solutions to the given problem based on their 

experiences [12], [13], [21]. PSO is similar to another algorithms like GA in that it is 

population-based and iterative, with its initial population composed of a set of random 

solutions, however it differs in its general behaviour, its fewer parameters, and in its ease 

of use due to its very simple encoding,  [13], [21], [22], [24]. Other advantages of PSO 

include its simplicity, efficiency, general effectiveness in solving a large variety of 

engineering problems, and its relatively faster execution time, which contribute to it being 

an ideal choice for those optimization problems which are constrained by computational 

resources [13], [22]. Its main disadvantage is that it is prone to premature convergence, as 

with other swarm-type methods, and has been noted to suffer from “slow convergence 

speed and sometimes local optima” [111].  

The general steps followed are adapted from [112] and shown in Figure 2.1, where 

the initial candidate solutions (particles) are randomly initiated, best personal and global 

positions are updated, new particle position and velocities are updated, and so on, until the 

process is terminated. 
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Figure 2.1 PSO Algorithm Flowchart 

As explained in [112] the standard [113] PSO equations used to calculate the 

velocity and position of a single particle, at iteration 𝑡, in steps 5 and 6 in Figure 2.1 are: 

𝒗𝑡+1 = 𝜔𝒗𝑡 + 𝑐1𝒓1(𝒃𝑡 − 𝒙𝑡) + 𝑐2𝒓2(𝒈𝑡 − 𝒙𝑡) (2.8) 

𝒙𝑡+1 = 𝒙𝑡 + 𝒗𝑡+1 (2.9) 

where: all bold variables are vectors, 𝑣 is the velocity of the particle; 𝑥 is its position; 𝑏 is 

the best position previously occupied by the particle; 𝑔 is the best position previously 

occupied by any particle of the swarm; 𝑟1 and 𝑟2 are vectors of random values between 0 

and 1; and 𝜔, 𝑐1 and 𝑐2 are the inertia, the personal influence and the social influence 

parameters. The dimension 𝑑 of each vector is the number of independent variables being 

optimized [114].  

Since PSO has been used in multiple EV charge scheduling optimization papers in 

both standard and hybrid forms [7], [15], [24], [25], [38], [40], [82], [92], [96], [107], [108], 

there are a number of ways that the metaheuristic has been adapted to the problem. In [40], 

the dimension of the vectors is “derived by the attributed of the EVs,” being the number of 

EVs (20-150) multiplied by the number of timeslots (10), giving up to total 1500 variables 

to be optimized. The authors of [25] uses 46848 decision variables related to the 

“generators active and reactive power and [EV] charge and discharge.” In [24], the decision 

variables are “the scheduling of the energy resources, such as the EVs’ charging schedule 

and the network variables (such as power flow, voltages and losses).” Papers [38] and [96] 

optimize scheduling of 𝑛𝐸𝑉 number of EVs with dimension 𝑑 = 𝑛𝐸𝑉 for the vectors, 50000 

and 57 EVs respectively. In the other solutions, the size or basis for the dimension or 

number of variables is not explicitly stated. 
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2.5 High Performance Computing  

HPC refers to the use of powerful  processors in parallel to solve complex problems and 

process large datasets at high speeds [23], [115]. In some literature it also overlaps with 

the term Parallel Heterogeneous Computing, which refers specifically to systems where 

the different types of processors (primarily Central Processing Units (CPU) and Graphics 

Processing Units (GPU)) in a computer system execute tasks in parallel [23], [116]. There 

are two main goals or uses of HPC: to perform calculations at a faster rate than conventional 

computing [117]; and to solve large and complex problems that may have been considered 

intractable or unapproachable [117]. Combining these uses leads to a third goal that can be 

achieved [118]: to solve a more complex version of a problem (i.e., of the same size but 

considering more constraints or other parameters) within the same amount of time as 

conventional computing, increasing the computations done within that same amount of 

time (per the Gustafson-Barsis Observation, or Gustafson’s Law [119], [120], see Section 

2.5.5).     

For EV-related problems, HPC has been used to optimize the design of vehicle 

subsystems, simulate charging loads and energy consumption to identify and minimize 

power losses, determine driving routes to minimize power consumption, and to minimize 

transmission dispatch costs [26], [27], [28], [29], [30]. The authors of [26] note that the use 

of HPC is becoming very important for EV research and other problems which model a 

large number of EVs or distributed generation items as variables, because this makes them 

“a computationally-intensive optimization problem.” Research in HPC and EVs has not 

seemed to have advanced largely into the area of charge schedule optimization, at least not 

in the area of combining metaheuristic-based solutions with HPC techniques: only two 

papers were found during the course of this review with used both metaheuristics and HPC 

[24], [25]. In both papers, which share the same first author, parallel computing (distributed 

and multicore) was used through MATLAB, with the aim to reduce the computation time 

of the PSO-based optimizations. In the first paper, two machines with 24 total cores were 

used to reduce the computation time from 42 hours to three hours and 48 minutes (a 

speedup of 11 times) [25], and in the second, a HPC cluster with six machines and 42 cores 

was used to reduce the computation time of their two-step solution from 12 hours to 30 

minutes (a speedup of 24 times) [24]. Neither paper appeared to use of heterogenous 

computing. The growth of the HPC market and its increasing accessibility to researchers 

and other users due to advances in technology is only expected to rise [121], [122], and 

may appear in more works as research continues over time.  

This research aims to achieve all three “goals” of HPC, because it uses or tests 

three main techniques in the EV charge scheduling optimization problem, that have 

traditionally been deemed time consuming and computationally expensive: 
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1. Centralized EV charge scheduling optimization, for EVs in multiple 

parking lots: a conventionally unscalable approach which requires analysis and 

calculation on a large amount of data, and a more complex problem which requires 

the inclusion of more constraints like power flow (see Sections 2.3.2, 2.3.4). The 

literature reviewed which looked at multiple parking lot optimization was a mix of 

decentralized [44], [93] and centralized [31], [38], [82], [94] methods, but this 

research will aim to use the centralized method to provide a more optimized 

solution for multi-parking lot charge scheduling optimization, and  provide a 

method to parallelize it to reduce its computation time.   

2. Metaheuristic-based optimization: computationally resource-heavy and 

requiring long computation times when tackling a large problem sizes and 

suffering from the curse of dimensionality (see Section 2.4.3.1). 

3. Perform the optimization in real-time: the online charge scheduling 

optimization calculations for the EVs will be completed within 15 minute intervals 

(justification for this interval length is provided in Section 2.5.4). Scalability of the 

solution will be tested to determine the maximum problem size that can be 

optimized in the 15 minute window.  

These three aspect of this thesis connect to all three goals of HPC: with the 

centralization, multiple parking lots, and metaheuristics, HPC is needed to solve a more 

complex problem [15]. With the need for real-time optimization, HPC is needed to solve 

that more complex problem within a much faster timeframe. To test the scalability of the 

problem, HPC is needed to increase the computations completed within the real-time limit 

since the computational cost or runtime increases as the number of EVs, system size, or 

other parameters increase [15].  

Using a centralized optimization approach, a better, more precise and realistic 

(more constraints) solution is expected to be achieved with the HPC techniques, as with 

HPC the computational cost of a centralized solution is not a concern [44]. As well, the 

development of centralized and decentralized optimization models in this work will enable 

direct comparison of optimization and timing results. Papers like [44], [63], [71], [72], [73], 

[74], [75], [76] do compare both, often demonstrating that centralized results are slightly 

more optimized, but do not necessarily dictate the specific limits that are reached before 

the centralized versions have too much “computational complexity, control overhead” to 

deal with [71]. 

The use of HPC in this thesis is expected to result in the finding of a more optimal 

solution to the EV charge scheduling in multiple parking lots problem, using centralized 

optimization, and which is able to be computed in an appropriate real-time interval.  
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2.5.2 Definitions 

This section provides short definitions of the HPC-related terms used within this thesis 

document: Single Program, Multiple Data (SPMD), multicore computing, distributed 

computing, GPU parallelization, and computing cluster: 

1. Single Program, Multiple Data (SPMD). In the SPMD computational model, 

multiple threads or processors run the same program code, but each thread applies 

the code logic to a different set of data [123]. 

2. Multicore computing. Multicore processors are computer chips which have two or 

more processing cores (CPUs, also called compute nodes, cores, processors, or 

workers) placed on the same chip [121], [124]. These processors can be used to 

simultaneously execute multiple different instructions or to divide the workload 

and execute the same instructions on different data in parallel, called multicore or 

parallel computing [121], [124], [125]. In this thesis, multicore computing refers 

to the use of multiple processor cores within one computer to complete a 

computing task [126]. With a SPMD-model program, each core executes the same 

code on different portions of a dataset in parallel. A simplified visual 

representation of multicore computing is shown in Figure 2.2 (a). 

3. Distributed computing. This term refers to the use of two or more separate 

computers (or hosts) connected in a network to act together as a single, more 

powerful computer [125], [126]. Each processor within each computer can be used 

to perform different tasks simultaneously, or the same task in parallel [23]. A 

simplified visual representation of this is shown in Figure 2.2 (b). In this thesis, 

distributed computing refers to a combination of multicore and distributed 

computing, using multiple processor cores within multiple computers within a 

cluster to complete a computing task. With a SPMD-model program, each core of 

each computer executes the same code on different portions of a dataset in parallel. 

A simplified visual representation of this computing method is shown in Figure 

2.2 (c). 
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Figure 2.2 Multicore, Distributed, and Distributed and Multicore Computing Systems (adapted from 

[126]) 

4. GPU parallelization. This is another parallelization method which is often 

encountered in literature on HPC, sometimes referred to as GPU or CUDA 

parallelization. Parallelization is possible on GPUs with the use of specialized 

languages such as the NVIDIA® CUDA™ programming language [18], [110], 

[121]. GPUs contain many more cores than CPUs, and through the use of a kernel 

function a large group of threads “in a single multi-processor block” [112] can be 

made to execute a set of instructions on different data in parallel in the SPMD 

method [112], [121]. Further information on this parallelization method can be 

found in online and text sources [121], [127], [128]. CUDA C++ programming 

was not used with this thesis work.  

5. Computing cluster. A computing cluster, sometimes called a HPC cluster in this 

thesis, is a group of computer servers networked together to compute the parallel 

computing task. Most computers in clusters use multi-core CPUs and/or GPUs to 

perform the computing tasks [115]. Clusters can be used to perform multicore 

computing when using all cores within a single computer, distributed computing 
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when using multiple computers in the cluster, and a combination of the two when 

using multiple cores within multiple computers within the cluster.  

2.5.3 Parallelization of the Particle Swarm Optimization Algorithm 

PSO has been identified as a metaheuristic with inherent parallelism [110]. This has led to 

a number of works presenting methods to parallelize the PSO algorithm, using different 

algorithm parallelization methods and different programming methods. Some methods are 

presented here.  

Many methods focus on the fitness function evaluation of each particle, since they 

can be performed in parallel because the evaluation of each candidate solution does not 

depend on the evaluation or outcome of any other candidate solution. This method has been 

referred to as coarse-grain parallelization [129]. A coarse-grain synchronous parallelization 

method is presented in [130], where each particle’s fitness evaluation is completed in 

parallel, and all particles evenly distributed between the available compute nodes by using 

an MPI-based “primary-secondary” implementation. Barrier synchronization is used to 

force the program to wait for all secondary nodes to complete their computations before 

moving onto the evaluation of the best personal and global positions. 

To improve parallel efficiency, the authors of [129] present an asynchronous 

method, where the particle fitness functions evaluations and all the best personal position 

update iterations are completed in parallel for all individual particles, and then the global 

best position is updated at the end of each main PSO iteration. While the particles are 

updating their designs, they only have access to the best possible information available at 

the moment, not the best overall for each iteration [129], [131]. This method also used the 

MPI master-slave implementation.  

The authors of [110] present a combined coarse-grained and fine-grained method 

using heterogenous computing with CPU and GPUs working together. The fitness function 

evaluations and position updates are completed in parallel by the GPUs. Coarse-grained 

parallelization is used to evaluate the fitness function of each particle, with one thread 

computing the fitness function result for one particle. Fine-grained parallelism is used to 

update the best personal positions of each particle, with a group of threads (one per each 

dimension of the particle) computing the personal position update for one particle, and each 

thread performs the same operations or instructions.   

Other parallel PSO methods are described in [131], including multi-swarm 

approaches, map and reduce, and GPU-based methods. The authors mention that CPU-

based PSO parallelization are less complicated than GPU-based methods, and that while 

the synchronous implementation method is easy to implement, it may result in poorer 

parallel efficiency than other methods [129], [131]. In all cases, the number of CPU and/or 

GPU cores affects the potential performance (speedup) of the parallelized algorithms. 
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Other PSO parallelization examples can be found in literature, where some cases parallelize 

the PSO algorithm using multicore and/or distributed computing [21], [112], [132], [133], 

[134], [135], [136], [137] or GPUs [18], [112], [133], [138], [139], [140], [141], and others 

parallelize the execution of multiple PSOs [24], [25]. 

2.5.4 Real-time limits 

The real-time aspect of the aim of this thesis comes from the literature, which has indicated 

that while optimization time intervals should generally be as short as possible in order to 

reflect the most recent changes of the system and therefore generate the most accurate 

charge scheduling optimization [10], a 15-minute period of time is the commonly-used 

“time slot length” or “time interval duration” used for power system load measurements 

and EV charge scheduling research [71], [142]. Per [16], the length of the timeslot 

determines the frequency of calling an online scheduling algorithm to complete the 

optimization calculations, and “has direct impacts on both the system response time and 

the consumed computational resources” [16], so papers like [16] have chosen the 15 minute 

time length to balance the time and the computational cost. The optimization calculations 

must be complete in 15 minutes or less, so that the results may be applied and the next 

schedule optimization or update can be calculated.  

While some papers have used time intervals as short as 10 minutes [37] to as long 

one hour [68], 15 minutes seems to be a very widely-accepted time interval  [10], [16], 

[44], [63], [94], per the limited literature review shown in Table 2.2. Therefore, in this 

work, the optimization calculations for the charge scheduling for each EV must be 

completed within 15 minute intervals, in order to be considered completed in real-time. 

While the use of HPC might enable the solving of a specific problem size in as 

small of a time interval as possible, in this thesis, part of the work will be done to determine 

the scalability of the solution to find what maximum problem size with the highest 

precision can be solved in an acceptable real-time interval of 15 minutes.  
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Table 2.2 Selected Real-Time Intervals in Literature 

Time 

interval 

(min) 

Optimization problem Optimization 

method 

Problem size Ref. 

10 Maximize revenue and 

minimize power 

consumption cost for a 

smart parking lot 

Linear programming 

and simplified convex 

relaxation approach 

1 parking lot, 

500 EV 

[37] 

15 Maximize use of off-peak 

power (valley filling) 

Valley-filling 

algorithm 

1 000 000 EV [10] 

15 Minimize time cost, 

charging expense, 

maximize recharging 

Mixed-Variable 

Differentiate 

Evolution 

10 parking lots 

(charging 

station) with 50 

EVs, 20 parking 

lots with 100 EV 

[16] 

15 Maximize utility of 

service provider 

Load-shifting 

heuristic 

480 EV in 5 

parking decks 

[63] 

15 Minimize network losses 

and user inconvenience 

Mixed Integer 

Quadratic 

Programming with 

GUROBI solver 

500 EV, 5 

parking lots, 33+ 

node network 

[94] 

15 Minimize demand, cost, 

maximize recharging 

Cooperative 

hierarchical 

multiagent system 

300 and 900 

EVs, 3 and 6 

parking lots on 

33 and 118-bus 

system 

[44] 

30 Maximize revenue and 

num. recharged EVs 

AIMMS software 2 parking lots, 

7800 EVs 

[36] 

30 Minimize electricity cost 

for parking lot  

Heuristic fuzzy PSO 1 parking lot, 20-

150 EVs  

[40] 

30 Charging cost and 

waiting time 

minimization 

Two-stage PSO and 

GA 

496-992 EVs in 

22 residential 

and 5 

commercial 

charging 

platforms 

[143] 

60 Maximize recharged EVs MATLAB software 

(nonlinear, convex 

programming) 

1 parking lot, 1-

40 EVs arriving 

per hour 

[68] 

 

It is worth noting that the real-time interval length which determines the frequency 

of calling an online scheduling algorithm and therefore its calculation completion time 

limit, may not be the same as the timeslot duration (scheduling interval ∆𝑡, or time horizon) 

used within the EV charging schedule problem [70]. For example, the scheduling interval 

from the algorithms developed in [24], [25] is dependant on the cost function time intervals, 

and since both algorithms are for day-ahead scheduling, it does not affect the real-time 

interval or time limit required for the optimization solution to be calculated.   
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2.5.5 Speedup 

When comparing the success of the parallelization of an algorithm or program 

implementation, in terms of meeting the HPC aim of performing calculations faster and 

therefore solving more complex problems at high speeds [23], [115], one of the metrics 

used is called the speedup. Per equation (2.10), in the simplest terms, the speedup is the 

ratio of the computational runtime of the parallelized algorithm to the computational 

runtime of the sequential algorithm: 

𝑠 =
𝑇𝑠𝑒𝑞

𝑇𝑝𝑎𝑟
 (2.10) 

where 𝑠 is the speedup, 𝑇𝑠𝑒𝑞 is the computational runtime of the sequential algorithm, and   

𝑇𝑝𝑎𝑟 is the computational runtime of the parallelized algorithm. For a speedup of value 𝑠, 

the parallelization is said to have a speedup of “𝑠 times” or an 𝑠-fold speedup [144]. As the 

runtime of a parallelized algorithm improves, i.e., becomes shorter, the speedup improves. 

For an algorithm to be considered successfully sped-up, the speedup 𝑠 >  1. 

However, the speedup of an algorithm is limited by the part of the algorithm which 

is “inherently sequential” [119]. Per Amdahl’s Law [119], [145], the speedup using 𝑛 

processors is a function of the proportion of the algorithm which can be parallelized, per 

equation (2.11): 

𝑠𝑛 =
𝑇𝑠𝑒𝑞𝑛=1
𝑇𝑝𝑎𝑟𝑛

= 
1

𝑓
𝑛 + (1 − 𝑓)

  (2.11) 

where  𝑠𝑛 is the speedup using 𝑛 processors, 𝑓 is the proportion of the algorithm which can 

be parallelized, 𝑇𝑠𝑒𝑞𝑛=1 is the computational runtime of the sequential algorithm using one 

processor, and 𝑇𝑝𝑎𝑟𝑛 is the computational runtime of the parallelized algorithm using 𝑛 

processors. 

Since the runtime of the inherently sequential portion of the algorithm 1 − 𝑓 

cannot be reduced by adding more processors or improving the speed of the parallelized 

portion, it dominates the runtime of the total algorithm. This is illustrated in Figure 2.3. 

The total runtime of the algorithm is separated into the inherently sequential and 

parallelizable portions. The runtime of the sequential algorithm (the algorithm if run by 

only one processor, 𝑛 =  1) 𝑇𝑠𝑒𝑞 is made up of the runtime of the inherently sequential 

portion plus the total runtime of all the parallelizable portions of the algorithm, run 

sequentially one after another. The runtime of the parallelized algorithm, with its 

parallelized portion divided up over 𝑛 processors 𝑇𝑝𝑎𝑟𝑛 is made up of the runtime of the 

inherently sequential portion, plus the runtime of the portion of the parallelizable work 

done by 𝑛 processors in parallel. 
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Figure 2.3 Amdahl’s Law (adapted from [118], [120]) 

Per [119], the larger the parallelized portion 𝑓, the more the speedup can be 

improved by increasing the number of processors. The larger the inherently sequential 

portion, the faster a speedup plateau is reached, meaning that after a certain point, the 

addition of extra processors will not improve the speedup, and may detrimentally affect the 

runtime if more overhead communication is required by the parallelization method. When 

the inherently sequential proportion of the algorithm is known, Amdahl’s Law can be used 

to provide the maximum possible speedup that could be gained as the number of processors 

is increased, per equation (2.12) (from [119]).  

𝑓 = (
𝑛

𝑛 − 1
) (1 − 

1

𝑠𝑛
)  (2.12) 

While Amdahl’s Law is related mostly to the HPC aim of performing calculations 

faster, there is another perspective which is related to the aim of HPC of solving more 

complex versions of a problem within a given timeframe, increasing the number of 

computations done in that time: the Gustafson-Barsis Observation, or Gustafson’s Law 

[119], [120]. This observation posits that the problem size scales with the number of 

processors, and that a much more complex version of a problem can be tackled with HPC 
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techniques in order to have it run within a set timeframe. The more processors one has, the 

larger and more complex the problem to be solved can become. In this case, the amount of 

work that can be done in parallel 𝑓 varies linearly with the number of processors 𝑛 [120], 

and so the scaled speedup is proportional to 𝑛 or 1 − 𝑛, per equation (2.13):  

𝑠′ = (1 − 𝑓) + 𝑓𝑛 = 𝑛 + (1 − 𝑛)(1 − 𝑓) (2.13) 

where 𝑠′ is the scaled speedup. As shown in [119], when the parallelizable portion of the 

work 𝑓 is larger, and the amount of data to process is so many times larger, the maximum 

potential speedup increases in a linear fashion. 

Knowing these concepts, it is clear that the speed and final speedup achievable 

through a parallelized EV charge scheduling algorithm will be largely dictated by the 

length of the inherently sequential portion of the algorithm 1 − 𝑓. If that portion consists 

of the part of the algorithm which optimizes a group of parking lots, the parallelized 

algorithm will only run as fast as the single slowest processor or worker in a HPC system 

can compute the optimization of those lots. If the inherently sequential portion is made 

smaller, to consist of the parallelization of a single parking lot, or of a single EV, then the 

runtime and speedup can be expected to improve. Considering the Gustafson-Barsis 

observation, if the size or dimension of the problem increases, then the runtime is expected 

to increase, but the potential speedup is expected to improve as well.   

2.6 Related Works 

The following sections provide a brief summary of five papers which include concepts, 

design methodology, or other research closely related to and/or used in this thesis. While 

none share the exact methodology of the full design of the centralized multiple parking lot 

optimization model (see Section 3.3), elements of these papers greatly influenced or 

provided the basis for different aspects of the model’s design.  The works present an 

algorithm for EV charge scheduling in a single parking lot [40], two-level optimization 

algorithms using PSO-PSO [111] and PSO-GA [143] for EV charge scheduling, and the 

integration of PSO-based EV charge scheduling with HPC [24], [25].  

2.6.1 Dynamic resource allocation for parking lot electric vehicle recharging using 

heuristic fuzzy particle swarm optimization algorithm (2018) [40] 

This 2018 paper influenced this thesis by providing an example of a single-objective, PSO-

based optimization algorithm for charge scheduling in a single parking lot, which formed 

the basis for the single parking lot optimization method developed in this thesis.  

This paper presents a “dynamic resource allocation system” [40] for the 

optimization of charging of EVs in a single parking lot, using a developed heuristic fuzzy 
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PSO algorithm to minimize the cost of purchasing electricity to charge the EVs. The paper 

presents the results of its algorithm for simulations of a single parking lot with 20, 40, 100, 

and 150 EVs with transformer limits of 60, 110, 500, and 460-540 kW respectively. The 

simulations were computed with MATLAB (R2016b) on a workstation with an Intel® 

Core i5-4570 CPU.  

Using the presented algorithm, the parking lot (the local aggregator or optimizer 

and executor of the schedule) finds an optimal charging schedule for all EVs which arrive 

at its location. The parking lot can consider the demands of EVs with and without 

appointments (without their arrival time, departure time, and charging demand i.e. desired 

consumption known in advance), as it calculates (and executes) the optimized schedule at 

the beginning of each timeslot, for that current timeslot as well as all subsequent timeslots 

until the end of the total charging period. At every new timeslot, the schedule is re-

calculated and executed. The algorithm does not identify the specific mechanism used to 

deal with unacceptable charging requests or infeasible solutions.  

The authors of the paper considered only unidirectional (non-V2G) charging for 

their algorithm, due to a number of factors including the potential drawbacks of battery 

damage, lack of charging flexibility for the EVs, and the potential for demand to be unmet 

due to changes in departure time [40]. Their model did not include renewable energy 

resources like distributed generation or energy storage systems, abstracting the behaviour 

of the power system the parking lot is connected to and only considering the transformer 

limit of the parking lot as the maximum power supply from the grid to the parking lot. In 

their algorithm, the transformer limit is the largest constraint on how many EVs can be 

charged at a time [40]. Only one EV type was used as a model, and only one Level 2 

charging rate limit was used in the simulations.  

The objective of the model in this paper is to minimize the cost of purchasing 

electricity by the parking lot to charge the EVs, taking into consideration the cost of 

electricity varies with every timeslot. The problem formulation uses continuous variables 

to represent the EVs charging decisions, from 0 (no charging) to the charging rate limit 

(maximum possible charging rate in one timeslot). The solution vector or decision is 

therefore to have each EV assigned a charging decision (proportion of its total charging 

demand) to each timeslot it is present at the parking lot. The objective function result is 

constrained by the charging rate limit, transformer capacity limit, and requirements of each 

EV to charge to 100% of their demand.  

The heuristic fuzzy PSO algorithm was developed by the authors to provide a 

method which could provide a more optimized result than other PSO-based algorithms. 

With this algorithm, a proportion-based assignment method was used to generate a more 

efficient initial population of solutions for the PSO. The PSO then executes one iteration, 

followed by the proposed fuzzy system determining the new inertia, personal influence, 

and social influence parameters (called the personal and global acceleration coefficients 
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[40]), and the proposed heuristic reduces the cost of the current iteration’s solution. The 

algorithm repeats the PSO-fuzzy-heuristic process until the maximum number of iterations 

has been met, and then provides the optimal solution.  

The authors compared the results of their heuristic fuzzy PSO algorithm with first-

in-first-serve and earliest-deadline-first mechanisms, random search, original PSO, inertia-

weight PSO, construction PSO, “original fuzzy” PSO, and proposed fuzzy PSO results 

[40]. In all cases, the heuristic fuzzy PSO algorithm was able to produce a more optimal 

solution, though it required a longer computational time [40].   

While the objective value and optimization methodology used within this paper 

was single-objective and relatively simple when compared to some multi-objective papers 

which considered EVs in different locations or multiple parking lots, it provided the basis 

for the single parking lot optimization method used in this thesis, and its use and 

comparison with other PSO-based algorithms makes it ideal to compare results against 

when using the same simulation parameters.  

A limitation of this work is that it did not consider the impact of the various 

transformer limits of the parking lot on the physical grid. The transformer limit varied 

between 60-540 kW, but there was no consideration on what the various maximum limit 

values, representing the maximum power supply to the parking lot or maximum demand 

from the grid, would have in terms of impacting the limitations of the distribution system 

it was connected to. To improve upon this, this thesis will expand the basic PSO-based 

optimization method presented in this work to integrate power flow calculations, to ensure 

that the transformer limit set for the parking lot does not exceed the limits of the distribution 

system. As well, this this thesis will extend the basic single parking lot optimization method 

to be used for the optimization of multiple parking lots, to better reflect the current state of 

public charging infrastructure, where one community often has many different public 

parking lots with a smaller amount of EV charging ports, rather than one large parking lot 

which can charge a very large number of EVs [69].   

2.6.2 Multi-Objective Scheduling of Electric Vehicles in Smart Distribution 

Network (2016) [111] 

This 2016 paper also influenced this thesis, by proposing a method to integrate the 

optimization of the EV charging with the optimization and consideration of the distribution 

network, through the use of a two-level, PSO-based algorithm. 

This paper presents a two-level (“bi-level” [111]) EV charge scheduling algorithm 

which coordinates the charging of EVs controlled by aggregators using improved PSO. 

The algorithm coordinates between two levels of optimization objectives, to coordinate the 

charging and discharging of EVs in aggregator-controlled parking lots with the distribution 

network loads of the network they are connected to, and the price of electricity. The 
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algorithm considers V2G EVs, capable of charging and discharging power to the grid. 

Simulations were performed to coordinate the charging of 1100-2000 EVs in a six 

aggregator (parking lot), 69-bus system, on a single workstation.  

The algorithm uses a hierarchical approach in order to provide the optimization 

required to the EVs but also reduce the communication burden on the network, by using 

EV aggregators to manage the EVs in a region: the network operator communicates with 

the aggregators, and each aggregator communicates with its group of EVs. The upper level 

of the model considers the demands of the EV aggregators and distributed generators (wind 

turbines, photovoltaic generators), and minimizes the network operating cost [111]. The 

upper level minimizes three objective functions, which minimize: the cost of purchasing 

electricity from the main grid and the distributed generation sources, the cost of network 

losses calculated through power flow, and the cost of the EV charging by the aggregators. 

The functions are constrained by the power flow power balance equations, grid active and 

reactive power limits, aggregator apparent power limits, aggregator EV state of charge 

limits, and distributed generation power limits.  

The lower level of the model uses the results of the upper level optimization to 

determine the charging schedules for the EVs. The objective of the lower level was to 

minimize the deviation between the total aggregated charging power of the EVs, and the 

charging power amount optimized by the upper level model. This single objective function 

was subject to EV state of charge (security) constraints, charging equality limits, charging 

power limits, and final state of charge limits.  

The authors used the “improved” PSO in their algorithm by combining PSO with 

the interior-point method in order to improve the algorithm’s ability to locate and avoid 

local optima [111]. According to the flowchart included in the paper, copied below in 

Figure 2.4, the two-level algorithm worked as follows: at the beginning of one iteration of 

the algorithm, the upper level model used a complete improved PSO to find its optimal 

solution outputs. These outputs, or upper level decision variables, were integrated as the 

lower-level inputs, and the lower level used another complete improved PSO to find its 

optimal solution, and calculated the total charging power of all EV aggregators. At the end 

of the iteration, the lower level results were checked against the constraints of the upper 

level, and if they did not meet the constraints, then the upper-level constraints were altered 

to fit the lower-level results, then a new iteration of the whole algorithm started, with the 

lower level decision variables integrated into the upper level inputs. Based on the 

flowchart, the lower level improved PSO-based algorithm was not contained within the 

upper level improved PSO-based algorithm, but was executed following the completion of 

the upper level algorithm.  
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Figure 2.4 Dispatch model flowchart (copied from Figure 2 of [111]) 

The authors compared the results of their model against an uncoordinated charging 

scheme, and used different case studies with varying percentages of dispatchable EVs. 

Their proposed model was able to provide more optimal solutions than the uncoordinated 

charging model, minimizing the distribution system losses and cost of energy, and was able 

to improve the results when using higher amounts of dispatchable EVs.  

This paper provided an example of the integration of two-levels of optimization 

together, with each level optimizing different objective functions with different constraints, 

while relying on the outputs of the other to influence its own optimization. A limitation of 

this work is that the algorithm must wait for the completion of the full lower level improved 

PSO algorithm, before it determines if the constraints have been violated and if another full 

iteration of both upper and lower level algorithms is required to find a feasible optimal 

solution – while not addressed in the paper, this algorithm behaviour is likely to require a 

longer execution time (the authors did not analyze the performance of the model in terms 

of behaviour in a real-time environment, and did not provide computation runtime 

information [111]). This thesis proposes a method influenced by this paper, which uses 

two-levels of PSO-based optimization, with one level concerned with the optimization of 

the EV charge scheduling, and the other concerned with the optimization of the parking lot 

transformer limits and behaviour of the distribution network. However, in order to consider 
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a real-time environment and address the likely longer computational runtimes required of 

the two-level algorithm proposed in this paper, this thesis will propose a two-level PSO-

based optimization algorithm where the inner (lower) level algorithm is executed within 

the outer (upper) level algorithm instead of after its completion. This will allow for the 

checking of the outer level algorithm’s constraints against the inner level’s results 

throughout its iterative process, decreasing the computational runtime required and 

allowing the model to perform its calculations within a real-time limit. This thesis will also 

demonstrate the performance and scalability of the model on more than one distribution 

system size, one of which is the 69-bus distribution system (though the simulation 

parameters, problem setup, and number of EVs are different).  

2.6.3 A Two-Stage Multi-Agent EV Charging Coordination Scheme for Maximizing 

Grid Performance and Customer Satisfaction (2023) [143] 

This 2023 paper influenced this thesis in a similar way to [111], also proposing a method 

to integrate the optimization of the EV charging with the optimization and consideration 

of the distribution network, through the use of a two-stage, metaheuristic-based algorithm. 

This paper presents a two-stage, sequential, multi-agent-based algorithm to 

optimize and coordinate the charging schedules of EVs in aggregator-controlled charging 

platforms, using PSO and GA, considering both grid performance and customer 

satisfaction. Simulations were conducted to coordinate the charging of 496-992 EVs in a 

33-bus distribution system with 22 residential and five commercial EV charging 

aggregators, using MATLAB (R2015a) on a workstation with an Intel® Core i5-5200 

CPU.    

The algorithm uses a hierarchical two-stage method, where the first stage, the 

distribution network operator, aims to divide power between EV aggregators while 

minimize power losses and voltage deviations to maximize grid performance. In the second 

stage, the aggregators determine the charging schedules of all EVs in their charging 

platforms while maximizing customer satisfaction through minimal cost and minimal 

waiting time. These optimizations are done sequentially, with the second stage requiring 

completion of the optimization of the first stage before it can begin its optimization process. 

The authors explained that the choice of diving the algorithm into two stages was to reduce 

the computation time and resources required for its calculations.  

In the first stage of the algorithm, the network operator receives the charging 

requests from all aggregators. Its objective function is to minimize the power loss index 

and voltage deviation index of the network, constrained by the voltage limits, power 

allocation limitations to serve only active aggregators, power distribution limits to each 

aggregator, and maximum demand limits. The output of the optimization using PSO is the 

distribution of power among the aggregators. 
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In the second stage of the algorithm, each aggregator receives their distribution of 

power from the output of the first stage. Each aggregator has the objective of minimizing 

the cost index and waiting time index, while constrained by the time required to achieve 

the requested state of charge. The output of this GA optimization is each EV’s charging 

power and connection time. Once all aggregators in the second stage have completed their 

optimization process, the network operator in the first stage calculates the total system 

demand and verifies adherence to the network constraints.  

The two-stage algorithm is unlike the one presented in [111], where the two-level 

optimization process may be repeated for a number of iterations until all constraints are 

met. In this paper, the algorithm is executed only once: once the first stage optimization is 

complete, the second stage optimization completes, and then the algorithm ends.  

The authors tested the two-stage algorithm against uncoordinated EV charging, 

and coordinated charging with waiting time and/or charging cost minimization. Charging 

was considered for home and workplace profiles, and simulations used time of use and real 

time pricing schemes. The proposed algorithm was able to provide more optimal results, 

in terms of a higher level of customer satisfaction and network performance, minimizing 

network power loss, voltage deviation, and power consumption.   

This paper provided another example of the integration of two-levels or stages of 

optimization, with each stage optimizing different objective functions with different 

constraints, and ultimately having local aggregators developing optimized EV charging 

schedules which respect the constraints of the distribution system they are attached to. A 

limitation of this work is that following the end of the second stage optimization process, 

there is no opportunity for the algorithm to attempt to re-optimize the schedules or power 

distribution if the network constraints were not adhered to by the EV aggregator agents. 

Due to this, there is potentially the requirement to have the system operator manually re-

start the algorithm until a feasible solution is found and therefore increasing the 

computation time (actions to be taken in the event of an infeasible final solution being 

found are not described in the paper). This thesis proposes a method influenced by this 

paper, which, as described in Section 2.6.2, uses two-levels of optimization to schedule the 

charging of EVs in multiple parking lots while ensuring the distribution network 

constraints are respected. However, the method proposed in this thesis includes a process 

for the algorithm to re-optimize the EV charging schedules and power distribution between 

the parking lots if the network constraints are violated, by integrating the two levels of the 

optimization algorithm together: placing one level inside of the other, instead of having 

their completions be sequential. As described in Section 2.6.2, this will allow for the 

verification of the network constraints as part of the upper-level optimization process since 

the constraints will be integrated into that optimization process. While this thesis does not 

consider residential EV charging, it will demonstrate its scalability of the model on more 

than one distribution system size, one of which is a 33-bus distribution system (though the 

simulation parameters, problem setup, and number of EVs are different).    
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2.6.4 A multi-objective model for the day-ahead energy resource scheduling of a 

smart grid with high penetration of sensitive loads (2016) [24] and Multi-

objective parallel particle swarm optimization for day-ahead Vehicle-to-

Grid scheduling (2013) [25] 

These two papers, with the same first author, influenced this thesis by proposing methods 

which integrated resource scheduling problems involving EV charge scheduling with 

metaheuristics and HPC. At the time of research for this thesis, these were the only papers 

found by the author which explicitly combined all three topics.  

These two papers present multi-objective PSO-based algorithms which perform 

day-ahead resource scheduling for grids with V2G-capable EVs and distributed generation. 

The key feature of both of these papers is the use of parallel (distributed and multicore) 

computing to reduce the computation times of the algorithms.  

In the 2013 paper [25], the authors develop an algorithm for an aggregator to 

schedule the charging and discharging of EVs to support day-ahead energy management, 

which has two objective functions: one to minimize operational costs for the energy 

resources, and the second to maximize profits of the EV owners when they provide energy 

to the grid. The objective functions are subject to the constraints of power flow active and 

reactive power balance, bus voltage magnitude and angle, line thermal limits, transformer 

limits, generation and supply limits, EV technical limits, and battery limits. In the fitness 

function, Pareto weights were added to the two objectives, and a penalty term of value 0-

1000 was used to identify solutions with constraint violations. The authors also used the 

direct repair method to correct solutions which violates constraints [25].  

PSO was used as the optimization algorithm, with Gaussian mutation weighted 

parameters. The authors had 501 total sets of Pareto weights for the fitness function, and a 

PSO using each set of weights was run to find the most Pareto optimal solution [25]. These 

501 PSOs were executed in parallel: using MATLAB (R2012a) on a workstation with two 

six-core Intel® Xeon® X5650 processors and on an Apple® Mac Pro® workstation with 

two six-core Intel® Xeon® processors, each of the 24 cores evaluated one or more 10 

particle, 500 iteration PSOs with a different set of weights. The parallel execution provided 

an approximate speedup of 11 times (per Section 2.5). The case study simulation used a 

33-bus distribution system with 66 distributed generation sources, 10 energy sources, and 

1800 EVs. The authors demonstrate that their algorithm is able to produce the desired 

optimization results for the day-ahead V2G scheduling, minimizing cost and maximizing 

income simultaneously depending on the chosen Pareto weights.  

The 2016 paper [24] is somewhat similar to the first, where the authors developed 

an algorithm for a Virtual Power Player (similar to the network operator) to schedule the 

day-ahead activities in the smart grid, with two objectives: to minimize operational costs 

of the system, and to maximize the minimum system reserve. The functions are subject to 
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the same constraints as [25], plus system net reserve and storage system battery limits. A 

two-stage optimization method was developed, where the first stage uses Mixed Integer 

Linear Programming to solve the objective functions, and the second stage uses PSO with 

different Gaussian weighted parameters to solve the full problem including direct repair of 

any solutions.  

Similar to [25], in the 2016 paper [24] the authors had 100 total sets of Pareto 

weights for the fitness function, and a MILP-PSO algorithms using each set of weights was 

run to find the most Pareto optimal solution [24]. These 100 MILP-PSO algorithms were 

executed in parallel: using MATLAB (R2014a) and TOMLAB on a HPC cluster with six 

machines for a total of 42-cores, each of the 42 cores evaluated one or more 10 particle, 

1000 iteration PSOs with a different set of weights. The parallel execution provided an 

approximate speedup of 24 times (per Section 2.5). This parallel process is shown in Figure 

2.5. The case study simulation used a 180-bus distribution system with 116 distributed 

generation sources, 7 energy storage sources, and 1000 EVs. The authors demonstrate that 

their algorithm is able to produce the desired optimization results, and performed more 

optimally than a MILP or PSO-only based algorithm to solve the same problem.  

Both papers abstracted the specific behaviour of individual EVs in their results, 

showing the charging or discharging behaviour of all EVs as part of their total contribution 

to the algorithm objectives.  

 

Figure 2.5 Flowchart of the weighted sum parallel PSO method (copied from Figure 2 of [24]) 
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Both papers provided examples of the parallelization of a PSO-based process 

involving EV charge scheduling, where PSOs with different parameters were evaluated in 

parallel to reduce the computation time. While the day-ahead resource scheduling problems 

addressed in both papers are quite different from the EV charge scheduling problem 

addressed in this thesis, the parallelization of individual PSOs influenced the parallelization 

method used in this thesis, where individual (inner level) PSOs are evaluated in parallel as 

part of the fitness function evaluation of another (outer level) PSO. 

As well, while not necessarily a limitation to the effectiveness of the overall 

algorithms proposed in the two papers, the speedups of the parallelized algorithms were 

likely limited by the number of processor cores used in each case. Per Amdahl’s Law, the 

speedup of a parallelized algorithm is impacted by the number of processors used to 

compute the parallelized portion of an algorithm. The two papers experienced 11 and 24 

times speedups, using 12 and 42 processor cores, and both parallelized algorithms took 30 

minutes or more to compute. For this thesis, in order to complete the EV charge scheduling 

algorithm calculations in under 15 minutes, a large speedup was required, and therefore a 

large number of HPC cluster processor cores (192) were used to provide that speedup.  

2.7 MATLAB® Parallel Computing Toolbox™ 

MATLAB® (referred to throughout this document as MATLAB) is a programming and 

computing environment used across many engineering and other technical fields [146]. 

One of the toolboxes it offers is the Parallel Computing Toolbox™ (referred to throughout 

this document as the Parallel Computing Toolbox), which enables the use of multicore, 

GPU, and distributed computing with MATLAB applications  [147], [148], [149]. It 

contains functions for specific task and worker communication and control through SPMD 

functions like spmdSend, which works somewhat similarly to MPI message passing 

functions, and the function parfor, which is similar to the OpenMP parallel for loop 

[146]. MATLAB also offers the Parallel Server™, which enables the scaling of programs 

like those made with the Parallel Computing Toolbox to computer clusters and clouds 

[150]. This thesis work used a HPC cluster equipped with MATLAB, the Parallel 

Computing Toolbox, and MATLAB Parallel Server. 

2.7.1 MATLAB parfor 

The MATLAB parfor function is a function from the Parallel Computing Toolbox which 

executes the code within its loop body, in an order-independent and parallel fashion, on the 

workers available in the current computing cluster or multi-core computer (the parallel 

pool) [146], [151]. According to the 2009 paper by Sharma and Martin [146], the loop 

iterations are assigned dynamically to the workers after dividing the iteration range into 

“pieces,” enabling a potentially shorter runtime than a typical static assignment and a more 
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even distribution of the workload across the workers in the parallel pool. However, the 

current Parallel Computing Toolbox online documentation does not specify the type of 

scheduling or method it uses to distribute the iteration range, so it is not apparent if the 

work distribution is done statically (with a fixed iteration range being assigned to each 

worker, as is the case with the static scheduling scheme of OpenMP [123]), dynamically, 

or with another method [151], [152].   

More specific details about the implementation and use of the parfor function 

within MATLAB can be found within MATLAB online documentation and the paper by 

Sharma and Martin [146], [151], [152], but for this thesis it is critical to understand that 

the function enables task parallelism by having all available workers in the cluster work 

independently, simultaneously, on different iterations of the code contained within the 

specified loop. Identification of specific cluster workers to act as the master or worker(s), 

and to send and receive specific data, is not required as it would be with the use of a spmd 

block: the division of work, transportation of data to and from workers, communication 

between workers, and other details are hidden from the user by MATLAB. According to 

[21], when the first instance of the parfor is encountered within the code, the MATLAB 

Parallel Server job scheduler takes the source file code and distributes it to the configured 

cluster (parallel pool) nodes. This enables complex code, which uses for loops to complete 

complex calculations requiring long iteration times, to be simply parallelized with the use 

of the single parfor function.  

2.8 MATPOWER 

MATPOWER is an open-source package of MATLAB files and functions which allow 

users to simulate and solve power flow and optimal power flow problems [153], [154], 

[155]. The software tool allows the user to select a test case, whether included within the 

MATPOWER package or with defined parameters of their own, to set or modify any 

parameters within the case and the simulation function, and to access the solved results of 

their simulation after execution. Modifications to data in the provided transmission and 

distribution system test cases can be made easily, like changing the real and reactive power 

demands to reflect an increased load or the addition of a distributed generator. 

The function runpf, in its default state, is the standard Newton-Raphson method-

based AC power flow solver. Using the “traditional formulation” of the AC power flow 

problem as outlined in [155], the function solves for the unknown voltage quantities and 

generator real and reactive power injections, and does not consider any generator, branch 

flow, or voltage magnitude limits. By solving a selected test case with the function, a user 

can use the function to determine if the solution is initially feasible (i.e., does the solution 

converge), if any voltage, branch, power, or other limits have been breached, and its total 

power loss across all branches.  
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Full details on the use and properties of MATPOWER, including all available 

functions, data file formatting and function options,  can be found within the user’s manual 

[155]. This thesis worked used the MATPOWER runpf function to run power flow 

simulations, and four of the included test cases to develop the distribution system test cases 

used in this work (see Section 3.6.2). 

2.9 Summary 

This chapter provided a literature review as well as background information on the major 

topics related to this thesis. Section 2.1 discussed power systems and related concepts 

including distribution systems, smart grids, and power system optimization problems. 

Section 2.2 outlined the six major EV optimization problems including EV charge 

scheduling optimization. Section 2.3 discussed the topic of EV charge scheduling in more 

detail, including charging technologies, centralized and decentralized optimization, 

optimization objective functions, the inclusion of power flow in the problem, the inclusion 

of multiple parking lots in the problem, and the problem abstraction found in literature. 

Section 2.4 discussed the three main optimization methods, the use of metaheuristics with 

EV charge scheduling, and the PSO method. Section 2.5 discussed the main concepts of 

HPC, its application to this thesis, and PSO parallelization methods found in literature. 

Section 2.6 provides a short review or summary of five papers which influenced the design 

methodology used in this thesis. Section 2.7 provides a short description of the MATLAB 

Parallel Computing Toolbox and parfor function, and Section 2.8 provides a short 

description of the MATPOWER software package.  
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Section 3 

Methodology and Design 

This chapter outlines the research methodology and design used to develop the multiple 

parking lot EV charge scheduling optimization model. The first section discusses the 

assumptions and basic decisions made to determine the scope and limitations of the models 

used in this research. The second section describes the adaptation of the single parking lot 

optimization model from [40] and its parallelization as Algorithm 1. The third section 

describes the design of the centralized multiple-parking lot optimization model and its 

parallelization as Algorithm 2 (and Algorithm 3). The fourth section describes the design 

of the decentralized multiple-parking lot optimization model and its parallelization as 

Algorithm 4 (and Algorithm 3).  The next sections describe the PSO parameters chosen for 

the models, and the adaptation and creation of the parking lot profiles and chosen 

distribution system test cases.  

3.1 Scope and Limitations 

This section describes the decisions, assumptions, and limitations made about how the EV 

charge scheduling problem is approached in this thesis. 

3.1.1 EVs and Charging 

In a general sense, the two EV sub-types of PHEV and BEVs are included in the scope of 

this problem, as they both have the capability to connect (plug-in) to the power grid, though 

they are not identified or treated differently when considered as loads in the problem. There 

is no difference in their identification within in the Parking Lot Profiles in Section 3.6.1.  

For this thesis, only unidirectional V2G (also known as G2V) charging will be 

considered, where EVs function as stochastic and variable loads within the grid. This 

limitation is imposed in order to decrease the complexity of the proposed research 

objectives, and bring the research more directly in-line with related literature [10], [36], 

[40], [84] and the current state of EV charging. V2G technologies are not widely adopted, 

with only a limited number of car manufactures have developed V2G charging 

technologies [156], [157], and the potential for delay of the widespread adoption of 

bidirectional V2G technologies due to a reduction in EV user satisfaction due to the risk of 

accelerated battery degradation from continuous charging and discharging, frequent and 

expensive battery replacement [40], [64] and the hesitance to “give up” their power in case 

of unplanned departures [65]. Therefore, the problem of unidirectional charge scheduling 

is more relevant to the current state of EV charging.  
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A number of parameters were selected due to the use of the single parking lot 

optimization model presented in [40] as the basis for the single parking lot optimization 

model developed in this thesis. Each parking lot (or EV charging station as described in 

Section 2.3.1.2) has the same number of EVs, and the same base transformer limit. Each 

parking lot has as many charging ports as there are EVs: only as many EVs as can be 

supported by each parking lot are scheduled for charging within it. Each parking lot 

charging port supported only one type of charger, or charging level: Level 2 AC charging 

with the SAE J1772 connector, which is the most common type of charger currently 

available to public use in Canada [66], [69]. 

3.1.2 Distribution System 

For this thesis, the scope of the power grid considered in the problem is limited to a 

distribution system network, which represents a commercial area, i.e. the “downtown” area 

of a city which contains one or more parking lots within it, and does not include any 

residential neighbourhood nodes. No distributed generation or renewable energy sources, 

like solar or wind turbine generation, or energy storage resources have been included in the 

system. The four distribution system scenarios developed for this thesis are described in 

Section 3.6.   

As described in Section 2.3.3.2, power flow equations are used to verify network 

conditions and confirm that solutions will not violate system limitations. For this thesis, 

only voltage magnitude limitations are used to indicate if a solution is realistic, i.e. if it will 

operate within the physical or other limitations of the distribution system.  

3.1.3 Centralization with a Single Aggregator  

For centralized optimization within this thesis, a single central aggregator or distribution 

network operator will be performing all the optimization required for the centralized 

optimization of one to 𝑛𝑝𝑙 parking lots. For decentralized optimization, a central aggregator 

provides information to local aggregators at each parking lot, and these local aggregators 

perform their optimizations independently and provide limited information back to the 

central aggregator.  

To perform the centralized optimization, the aggregator is assumed to have prior 

perfect knowledge of all optimization parameters: number of EVs, number of parking lots, 

the charging profile for each EV (from the parking lot profiles), charging rate limit, 

transformer limits for each parking lot, and location of parking lots within the distribution 

system. The distribution system on which the aggregator operates and controls is assumed 

to be a smart grid, with the requisite communications and other control architecture 

required to enable the aggregator to communicate with all parking lots and EVs, and to 

dictate their charging.  
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The aggregator considers a set of parking lots 𝑃𝑙 with 𝑛𝑝𝑙 number of parking lots, 

each with 𝑛𝑢𝑚𝐸𝑉 number of EVs with index 𝑖 (𝐸𝑉𝑖), a 𝑛𝑢𝑚𝑇 total number of time 

intervals 𝑡 of a given duration 𝛥𝑡 from the set 𝑇, a charging station port charging rate limit 

𝑙𝑖𝑚𝐶ℎ𝑟 in kW, and the price of purchasing electricity 𝐸𝑙𝑒𝑐𝑃𝑟𝑖𝑐𝑒 at every timeslot 𝑡 

(𝐸𝑙𝑒𝑐𝑃𝑟𝑖𝑐𝑒𝑡). Each parking lot 𝑝 is located at a bus 𝑏 from the set of all system buses 𝐵. 

The aggregator also considers the transformer limit 𝑙𝑖𝑚𝑇𝑓𝑝 for each parking lot 𝑝, from 

the set of all transformer limits 𝑙𝑖𝑚𝑇𝑓. These transformer limits are set to a specific value 

in advance, or changed during the optimization process.  

The charging demands and basic behaviour of each EV in each parking lot are 

known in advance to the aggregator, being provided in the associated Parking Lot Profile. 

Each profile lists each EV’s arrival time to the parking lot 𝑎𝑟𝑟𝑖, departure time 𝑑𝑒𝑝𝑖 from 

the parking lot, and its total charging demand (desired consumption) in kWh 𝑑𝑒𝑚𝑖. For 

this research, the duration of timeslot 𝑡, or ∆𝑡, is 15 minutes (0.25 hours), though this value 

is ultimately arbitrary to the optimization model itself, and only the total number of 

timeslots 𝑛𝑢𝑚𝑇 that the EVs are present in the parking lots is relevant for the optimization. 

The time intervals are the same across the parking lots: they each have the same total 

number of intervals, and 𝑡1 in one parking lot is the same for all other lots.  

3.1.4 Parallelization  

The parallelization of each model will be completed in MATLAB, and the programs 

executed on either a single multicore workstation (multicore computing) or a computer 

cluster with multiple multicore workstations (multicore and distributed computing).  

For the centralized models which have a single aggregator conducting all 

computations, this single aggregator is considered to encompass the entire multicore 

workstation or computing cluster. All compute nodes (or processors, or workers) of the 

HPC system being used in the model’s execution are controlled by the aggregator. 

For the decentralized models, which have a single central aggregator collecting 

and providing information to multiple local aggregators, each aggregator is considered to 

be one compute node in the cluster, with the central aggregator and a single local aggregator 

of one parking lot 𝑝 sharing the same compute node. Different portions of the HPC system 

represents the different independent aggregators.  

3.2 Single Parking Lot Optimization 

The single parking lot optimization model was based on the single parking lot optimization 

model presented in [40], and its general problem formulation, objective function, 

constraints, and EV and parking lot parameters were reproduced for use in this thesis. As 

discussed in Section 2.6.1, the original paper used a hybrid heuristic fuzzy PSO, with a 
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proportion-based assignment method to generate the initial population, and a “dynamic 

resource allocation system” to consider EVs with and without charging appointments. For 

this research, a much simpler model was developed: the PSO was used without any 

hybridization or other algorithm combinations, and all EV parameters were considered to 

be known in advance by the central aggregator. 

When provided the charging profile behaviour for all EVs 𝐸𝑉 for all timeslots 𝑡 in 

the single parking lot (𝑛𝑝𝑙 = 1), the single parking lot optimization model will determine 

a single optimized charging schedule for all EVs in the entire parking lot, across all 

timeslots. 

Per the problem formulation in Section 4 of [40], each individual EV 𝐸𝑉𝑖 in a given 

parking lot arrives just before its arrival time 𝑎𝑟𝑟𝑖, departs immediately following 𝑑𝑒𝑝𝑖, 

and will be fully charged to its desired demand (desired consumption) 𝑑𝑒𝑚𝑖 when it leaves 

the parking lot. Therefore, 𝐸𝑉𝑖 can only charge between the arrival and departure times 

𝑎𝑟𝑟𝑖 and 𝑑𝑒𝑝𝑖. This behaviour is shown in equation (3.1):  

𝐴𝑖
𝑡 = {

1,
0,
   
𝑎𝑟𝑟𝑖 ≤ 𝑡 ≤ 𝑑𝑒𝑝𝑖
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   ∀𝑖 ∈ 𝐸𝑉 (3.1) 

where the availability to charge 𝐴𝑖
𝑡 of 𝐸𝑉𝑖 in a given parking lot at time 𝑡 is defined as 1 

(available to charge and therefore have its charging rate set through optimization) or 0 

(unavailable to charge). 

As will be discussed in Section 3.2.1, the single parking lot optimization model 

will be solving for the solution vector 𝑿, which is denoted per equation (3.2):  

𝑿 = {𝑥1
𝑎𝑟𝑟1 , … , 𝑥1

𝑑𝑒𝑝1 , 𝑥2
𝑎𝑟𝑟2 , … , 𝑥2

𝑑𝑒𝑝2 , … , 𝑥𝑖
𝑡 , … , 𝑥𝑛𝑢𝑚𝐸𝑉

𝑎𝑟𝑟𝑛𝑢𝑚𝐸𝑉 , … , 𝑥𝑛𝑢𝑚𝐸𝑉
𝑑𝑒𝑝𝑛𝑢𝑚𝐸𝑉} (3.2) 

where 𝑥𝑖
𝑡 represents a proportional quantity of 𝐸𝑉𝑖’s charging demand (consumption) being 

charged during, or assigned to, timeslot 𝑡. For all timeslots where the 𝐸𝑉𝑖 is available to 

charge (𝐴𝑖
𝑡 = 1) an electric quantity of value 𝑥 is assigned. For use with the PSO algorithm, 

the solution vector 𝑿 is equivalent to the PSO particle position vector term 𝒙 from 

equations (2.8) and (2.9).  

Per [40], the single parking lot optimization model finds 𝑛𝑢𝑚𝑋 number of solution 

variables:  

𝑛𝑢𝑚𝑋 = ∑ ∑ 𝐴𝑖
𝑡

𝑛𝑢𝑚𝐸𝑉

𝑖=1

𝑛𝑢𝑚𝑇

𝑡=1

 (3.3) 

where 𝑛𝑢𝑚𝑇 is the total number of time intervals 𝑡 and 𝑛𝑢𝑚𝐸𝑉 is the number of EVs in 

the parking lot. In a case with one parking lot, ten timeslots and 20 EVs, a maximum of 

200 solution variables must be solved. 
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3.2.1 Objective and Fitness Function 

As was the case for the objective function presented in [40], the objective function of this 

single parking lot optimization model was to minimize the cost of electricity purchased 

from the utility to meet the charging demands of all EVs in the parking lot, considering the 

variation in the electricity price in each timeslot: 

 minimize 𝐶 = ∑ ∑ 𝑥𝑑𝑖
𝑡𝐸𝑙𝑒𝑐𝑃𝑟𝑖𝑐𝑒𝑡

𝑑𝑒𝑝𝑖

𝑡=𝑎𝑟𝑟𝑖

𝑛𝑢𝑚𝐸𝑉

𝑖=1

 (3.4) 

where 𝑥𝑑𝑖
𝑡 is the “decoded” version of the proportional charging demand quantities 𝑥𝑖

𝑡, 

which sum to 100% for each individual EV 𝑖 (equations (3.5) and (3.6) below), and 

𝐸𝑙𝑒𝑐𝑃𝑟𝑖𝑐𝑒𝑡 is the electricity price at time interval 𝑡. Each term 𝑥𝑖
𝑡 has a value from [0,1], 

and therefore must be “decoded” to its proper kWh value for the final solution. 

Similar to the constraints in the source paper [40], the constraints for this objective 

function were as follows:  

𝑥𝑑𝑖
𝑡 = (

𝑥𝑖
𝑡

∑ 𝑥𝑖
𝑡𝑑𝑒𝑝𝑖

𝑡=𝑎𝑟𝑟𝑖

)𝑑𝑒𝑚𝑖    ∀𝑖 ∈ 𝐸𝑉, ∀𝑡 ∈ 𝑇 (3.5) 

∑ 𝑥𝑑𝑖
𝑡

𝑑𝑒𝑝𝑖

𝑡=𝑎𝑟𝑟𝑖𝑖

= 𝑑𝑒𝑚𝑖   ∀𝑖 ∈ 𝐸𝑉 (3.6) 

𝑥𝑑𝑖
𝑡 ≤ 𝑙𝑖𝑚𝐶ℎ𝑟   ∀𝑖 ∈ 𝐸𝑉, ∀𝑡 ∈ 𝑇 (3.7) 

∑ 𝑥𝑑𝑖
𝑡

𝑛𝑢𝑚𝐸𝑉

𝑖=1

 ≤ 𝑙𝑖𝑚𝑇𝑓1   ∀𝑡 ∈ 𝑇 (3.8) 

0.9 ≤ |𝑉𝑏| ≤ 1.1  ∀𝑏 (3.9) 

where 𝑙𝑖𝑚𝐶ℎ𝑟 is the charging rate limit, 𝑙𝑖𝑚𝑇𝑓1 is the transformer capacity limit (𝑙𝑖𝑚𝑇𝑓) 

at parking lot 1, and |𝑉𝑏| is the bus voltages magnitude at bus 𝑏. The constraints are that 

the charging demand at each charging port could not exceed the charging rate limit 𝑙𝑖𝑚𝐶ℎ𝑟 

(equation (3.7)), and the total charging demand across all EVs (and thus all charging ports) 

at time 𝑡 could not exceed the given transformer capacity limit 𝑙𝑖𝑚𝑇𝑓 (equation (3.8)).  

In addition to the constraints on the charging within the parking lot, the feasibility 

of the solution’s transformer limit was tested through the conduction of a power flow 

simulation on a selected distribution system test case, and analysis of the voltage 

magnitudes at all buses. The constraint therefore imposed was that all distribution system 

bus voltages magnitudes |𝑉𝑏| across all buses 𝑏 had to remain within the minimum and 

maximum voltage magnitude of 0.9 and 1.1 per unit (p.u.), equation (3.9). The power flow 
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simulation was conducted by selecting a bus for the parking lot to be located at, adding the 

maximum possible additional active power demand at any time interval (𝑙𝑖𝑚𝑇𝑓1, in kW) 

to that bus, and then running the power flow simulation to find the resulting bus voltage 

magnitudes. 

In order to incorporate the constraints with the objective function and provide a 

“relative measure of the optimality of feasible solutions,” [81] a fitness function is required. 

The fitness function created for this model was composed of a penalty term and a cost term, 

similar to that used in [81].  

 Penalty Term 

For this single parking lot optimization model, the penalty term 𝜌 is used to penalize the 

candidate solutions which violated one or more of the constraints listed in equations (3.5) 

to (3.8), i.e. the infeasible solutions. The penalty term equations are: 

𝜌 = 𝑑𝑑𝑒𝑚 + 𝑑𝑙𝑖𝑚𝐶ℎ𝑟 + 𝑑𝑙𝑖𝑚𝑇𝑓 (3.10) 

𝑑𝑑𝑒𝑚 = ∑ (𝑑𝑒𝑚𝑖 − ∑ 𝑥𝑑𝑖
𝑡

𝑑𝑒𝑝𝑖

𝑡=𝑎𝑟𝑟𝑖𝑖

)

2
𝑛𝑢𝑚𝐸𝑉

𝑖=1

 (3.11) 

𝑑𝑑𝑙𝑖𝑚𝐶ℎ𝑟𝑖
𝑡 = {

𝑥𝑑𝑖
𝑡 − 𝑙𝑖𝑚𝐶ℎ𝑟, 𝑥𝑑𝑖

𝑡  > 𝑙𝑖𝑚𝐶ℎ𝑟 

0,                                 𝑥𝑑𝑖
𝑡  < 𝑙𝑖𝑚𝐶ℎ𝑟  

  ∀𝑖 ∈ 𝐸𝑉, ∀𝑡 ∈ 𝑇 (3.12) 

𝑑𝑙𝑖𝑚𝐶ℎ𝑟 = ∑ ∑ (𝑑𝑑𝑙𝑖𝑚𝐶ℎ𝑟𝑖
𝑡)
2

𝑑𝑒𝑝𝑖

𝑡=𝑎𝑟𝑟𝑖

𝑛𝑢𝑚𝐸𝑉

𝑖=1

 (3.13) 

𝑑𝑑𝑙𝑖𝑚𝑇𝑓
𝑡 = 

{
 
 

 
 ∑ 𝑥𝑑𝑖

𝑡

𝑛𝑢𝑚𝐸𝑉

𝑖=1

− 𝑙𝑖𝑚𝑇𝑓1, ∑ 𝑥𝑑𝑖
𝑡

𝑛𝑢𝑚𝐸𝑉

𝑖=1

 > 𝑙𝑖𝑚𝑇𝑓1

0,                                           ∑ 𝑥𝑑𝑖
𝑡

𝑛𝑢𝑚𝐸𝑉

𝑖=1

 < 𝑙𝑖𝑚𝑇𝑓1

   ∀𝑡 ∈ 𝑇 (3.14) 

𝑑𝑙𝑖𝑚𝑇𝑓 = ∑ (𝑑𝑑𝑙𝑖𝑚𝑇𝑓
𝑡)
2

𝑛𝑢𝑚𝑇

𝑡=1

 (3.15) 

where 𝜌 is the penalty term, 𝑑𝑑𝑒𝑚 is the unmet demand (desired consumption) term, 

𝑑𝑙𝑖𝑚𝐶ℎ𝑟 is the charging limit violation term, 𝑑𝑙𝑖𝑚𝑇𝑓 is the parking lot transformer limit 

violation term, 𝑑𝑑𝑙𝑖𝑚𝐶ℎ𝑟𝑖
𝑡
 is the term for when EV 𝑖’s demand in time interval 𝑡 exceeds 

the charging rate limit 𝑙𝑖𝑚𝐶ℎ𝑟, and 𝑑𝑑𝑙𝑖𝑚𝑇𝑓
𝑡
 is the term for when the collective demand 

for all EVs charging in one time interval 𝑡 exceeds the transformer limit 𝑙𝑖𝑚𝑇𝑓1.  
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The penalty term in equation (3.10) is calculated by summing the squares of the 

constraint violations together. The unmet demand (desired consumption) term 𝑑𝑑𝑒𝑚 in 

equation (3.11) calculates the difference between the desired demand or total energy 

consumption of 𝐸𝑉𝑖 and the actual demand provided by the solution, squares the term, and 

then finds the sum of the squared unmet demand across all EVs in the parking lot. The 

charging limit violation term 𝑑𝑙𝑖𝑚𝐶ℎ𝑟 in equation (3.13) finds all instances of an EV’s 

demand in a time interval exceeding the charging rate limit (equation (3.12)), finds the 

difference between the exceeded rate and the limit, squares the result, and then sums the 

values across all EVs in all time intervals together. The parking lot transformer limit 

violation term 𝑑𝑙𝑖𝑚𝑇𝑓 in equation (3.15) finds all instances of all EVs in a time interval 

exceeding the transformer limit (equation (3.14)), squares the difference between the 

exceeded rate and the transformer limit, and then sums the values across all time intervals 

together. 

These penalty terms were all squared in order to ensure that the values were always 

positive, and to ensure they would remain fairly proportionate in their purpose as penalty 

terms. If the difference was very large, i.e. 25, the squared total would be 625, and if small, 

i.e. 0.25, the squared total would be 0.0625: the larger the constraint violation value, the 

larger the penalty term, and the higher its importance in the outcome of the overall fitness 

function.  

One note in this design is that the penalty terms are not normalized to the same 

units, so there is no prevention of bias where penalties with potentially large ranges of 

values would outweigh penalty terms with a smaller range of values [158]. While the terms 

of equations (3.12) and (3.14) could have been multiplied by ∆𝑡 to convert all terms to 

kWh, with interval value of ∆𝑡 = 15 mins (0.25 hours), it was found that the lack of 

inclusion did not prevent the proper working of this model. See Section 3.3.2.1 for more 

information. 

The total unmet demand across all EVs in the parking lot is found using: 

𝑑𝑒𝑚𝑢𝑝 = ∑ |𝑑𝑒𝑚𝑖 − ∑ 𝑥𝑑𝑖
𝑡𝑑𝑒𝑝𝑖

𝑡=𝑎𝑟𝑟𝑖𝑖
|𝑛𝑢𝑚𝐸𝑉

𝑖=𝑖   (3.16) 

where 𝑑𝑒𝑚𝑢𝑝 is the total unmet demand across all EVs in parking lot 𝑝. Due to the 

behaviour of the PSO, finding candidate solutions which had no violation of any constraints 

(i.e. 𝜌 =  0) was extremely difficult. Therefore, in order for a solution to be considered 

feasible, the total unmet demand across all EVs in the parking lot 𝑝 (from equation (3.16)) 

had to be less than one watt, and the total penalty term 𝜌 less than 1×10-8 kWh2, allowing 

for some level of tolerance. This is illustrated in the combined fitness function.  
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 Cost Term 

The cost term 𝐶 of the fitness function represents the optimization objective of the objective 

function equation (3.4), the cost of electricity purchased from the utility. It is repeated in 

equation (3.17) below for clarity:  

𝐶 = ∑ ∑ 𝑥𝑑𝑖
𝑡𝐸𝑙𝑒𝑐𝑃𝑟𝑖𝑐𝑒𝑡

𝑑𝑒𝑝𝑖

𝑡=𝑎𝑟𝑟𝑖

𝑛𝑢𝑚𝐸𝑉

𝑖=1

 (3.17) 

 Combined Fitness Function  

Following the calculation of the penalty and cost terms for the candidate solution 𝑿, the 

fitness function 𝐹(𝑿) of that candidate solution can be calculated per equation (3.18): 

𝐹(𝑿) =  

{
 

 0 + 
1

1 + 𝜌
, 𝜌 ≥ 1 × 10−8 ∨ 𝑑𝑒𝑚𝑢𝑝 ≥ 1 × 10

−3   

1 + 
1

1 + 𝐶
, 𝜌 < 1 × 10−8 ∧ 𝑑𝑒𝑚𝑢𝑝 < 1 × 10−3   

   (3.18) 

where 𝜌 is the penalty term from equation (3.10), 𝐶 is the cost term from equations (3.4) 

and (3.17), and 𝑑𝑒𝑚𝑢𝑝 is the total unmet demand across all EVs in parking lot 𝑝 from 

equation (3.16). This fitness function equation has been defined so that all infeasible 

candidate solutions (where   𝜌 ≥ 1 × 10−8, and/or 𝑑𝑒𝑚𝑢𝑝 ≥ 1 × 10
−3) always have a 

fitness in the range (0, 1), and all feasible candidate solutions will have a fitness above 1, 

in the range of (1, 2). This provides an easy way for the PSO to evaluate the quality of the 

solution (is it feasible or not) [81], and an easy visual representation of the behaviour of 

the PSO as it moves from infeasible to feasible solutions over its iterations. As the solution 

becomes more optimal, i.e. the cost decreases or is minimized, the fitness function value 

will increase, or is maximized.    

3.2.2 Metaheuristic Choice  

The only metaheuristic used within the models for this research is the PSO. The PSO 

version used is the “standard” [113], [131] PSO discussed in Section 2.4.3.2, with a 

constant inertia 𝜔 weight included in the velocity update equation of the algorithm. The 

decision variables used within the objective functions of this research are all continuous 

variables.  

3.2.3 Algorithm Steps 

This model used the basic PSO algorithm as described in Section 2.4.3.2 to compute 

feasible EV charging schedules for the single parking lot. The algorithm steps and 

flowchart for the parallelized version of this are shown in Figure 3.1 and Algorithm 1.  
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For the non-parallelized model described in Sections 3.2 to 3.2.1.3, the flowchart 

of the model follows the standard PSO flowchart in Figure 2.1. Firstly, after receiving all 

the requisite inputs to the algorithm like the EV charging profiles, the aggregator initializes 

the PSO position and velocity vectors, with 𝑛𝑝 number of particles with 𝑛𝑢𝑚𝑋 variables 

each. Then, the fitness function in equation (3.18) is evaluated for each candidate solution. 

The best personal and global positions are updated, new particle position and velocities are 

updated, and so on, until the process is terminated once the maximum number of PSO 

iterations 𝑛𝑖𝑡𝑟 has been reached. The best global position, in this case the most optimal 

charging schedule from a candidate solution vector 𝑿, is taken as the most optimal final 

result for this model. 

However, instead of the finding of this result denoting the end of the algorithm, 

the second-last step in the process is the checking of the feasibility of the solution’s 

transformer limit through the conduction of a power flow simulation. The power flow was 

conducted with the chosen distribution system test case, to find if the constraints in 

equation (3.9) were breached. If this was the case, the final optimized solution was 

determined to be not feasible. If not, the solution was determined to be feasible. After this 

check, the algorithm ended.   

3.2.4 Parallelization 

When metaheuristics like the PSO algorithm are used to solve the EV charge scheduling 

problem with a large number of particles and large number of iterations, the computation 

time may increase to the point of being impractical [21], [96]. In order to reduce this 

runtime, the problem algorithm can be parallelized in order to benefit from the use of HPC.  

In the PSO algorithm, the fitness function evaluation of each particle can be 

performed in parallel, because the evaluation of each candidate solution does not depend 

on the evaluation or outcome of any other candidate solution. Since this is true of this single 

parking lot optimization algorithm, the algorithm can be parallelized in that portion of the 

algorithm: step 2 of the PSO (Figure 2.1), the evaluation of the fitness function for each 

particle. This parallelization method is known as coarse-grained or synchronous 

parallelization, and is most similar to the method presented in [130]. This parallelized 

algorithm process is shown in Figure 3.1 below.  
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Figure 3.1 Single Parking Lot Optimization Algorithm Flowchart 

Figure 3.1 shows that steps 1 to 2 and 4 to 10 are performed sequentially, by the 

same single process, and that step 3 of the process, the evaluation of the fitness function, 

is performed in parallel for each particle of the PSO. In step 3, all processes which perform 

the  parallel fitness function evaluations receive the same parameters and initial velocity 

and position data. The fitness value for each particle is then evaluated independently, 

simultaneously with the other particles, by the parallel processes. Following this, the fitness 

function results are all passed back to the single main process, which then performs the 

updates for the best personal and global positions, and updates the velocity and positions 

for the next iteration. If the maximum number of PSO iterations has been completed, the 

algorithm terminates and presents the final result; if not, steps 3 to 8 are repeated, with step 

3 always occurring in parallel.  

The method used for this parallelization was the SPMD method, where a single 

program is executed (i.e. one program runs the algorithm from Figure 3.1) but each 

processor in the HPC cluster executes the same instructions on their own assigned data, i.e. 

their candidate solution(s) [21]. The program was coded in MATLAB, and the 

parallelization was performed through the use of a parfor loop around the function which 

evaluated the fitness of a single particle. Per Section 2.7, the parfor function or loop 

enables task parallelism by having all available worker processors in the cluster work 

independently, simultaneously, on different iterations of the code contained within the 

specified loop. 
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 The parfor loop was coded to perform the evaluation of the fitness function of 

each particle (from 1 to 𝑛𝑝), and therefore executed each iteration (for particle or iteration 

𝑗 = 1, 2, … , 𝑛𝑝) in parallel on the workers in the HPC cluster (the parallel pool [151]). The 

function which evaluates the fitness of a single particle or iteration intakes all data needed 

to perform the fitness function evaluation, and outputs only the particle’s fitness value 

𝐹(𝑿), cost 𝐶, unmet demand 𝑑𝑒𝑚𝑢𝑝, and penalty value 𝜌, in order to limit the data sent 

between workers and therefore the overhead. The pseudocode of the parallelized algorithm 

with the parfor function is shown in Algorithm 1.  

Algorithm 1. Single Parking Lot Optimization Algorithm Pseudocode (Parallelized) 

1: generate EV parking lot data from parking lot profile 

2: generate problem and PSO parameter data  

3: generate population of 𝑛𝑝 initial candidate solutions (particles) 

4: initialize PSO position and velocity vectors  

5: while termination criteria is false (iteration < 𝑛𝑖𝑡𝑟) 

6: parfor each candidate solution (𝑗 = 1, 2,… , 𝑛𝑝) 

7: evaluate the fitness of the candidate solution 

8: end parfor 

9: for each candidate solution (𝑗 = 1, 2, … , 𝑛𝑝) 

10: update the local best position and fitness 

11: update the global best position and fitness 

12: end for 

13: for each candidate solution (𝑗 = 1, 2, … , 𝑛𝑝) 

14: compute the new particle velocity and enforce velocity limitations 

15: compute the new particle position and enforce velocity limitations 

16: end for 

17: run power flow and check voltage feasibility constraints of best solution 

18: return best solution 

 

The sequential and parallelized portions of the single parking lot optimization 

model are clearly shown with Figure 3.1 and Algorithm 1: only step 3 in the flowchart, or 

lines 6 to 8 in the algorithm, are parallelized, with all other parts of the model or algorithm 

remaining sequential. Per Section 2.5.5, this means that if there are 𝑛 worker processors in 

the HPC cluster, one worker performs all sequential portions of the algorithm, including 

sending and receiving the required data to and from the other worker processors, and all 𝑛 

worker processors perform the parallelized portion together in parallel. Per [146], since 

MATLAB parfor provides generally even distribution of the workload across the 𝑛 

workers in the parallel pool, it is expected that each worker process performs 

approximately 
𝑛𝑝

𝑛⁄  fitness function evaluations, and that a speedup in line with Amdahl’s 

Law (see Section 2.5.5) should be provided.  

While the for loops in lines 9-12 and 13-16 of Algorithm 1 could also be 

parallelized with parfor, the calculations performed in these sections are very simple and 
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quick to be performed by a single worker in MATLAB. They are not parallelized in order 

to reduce the communication overhead created when using parfor, as the trade-off 

between work performed in parallel and runtime is not worth the use of the function.  

3.3 Multi-Parking Lot Optimization 

The optimization of multiple parking lots is a more complex problem, requiring the 

coordination of the parking lots by system operators and other aggregator entities to ensure 

that the power distribution system is operated within its physical limitations, while 

simultaneously optimizing one or more objectives [44].   

For this thesis, in order to optimize multiple parking lots with multiple EVs in each 

parking lot in a centralized manner, the element that was selected to be coordinated 

between the parking lots by the single central aggregator was the transformer capacity limit 

of each parking lot. The explanation is as follows: for a set of parking lots 𝑃𝑙  with 𝑛𝑝𝑙 

number of parking lots, there is a defined amount of power, or generator capacity, 

𝑃𝑡𝑜𝑡𝑎𝑙 that is available to the aggregator to divide among the parking lots (similar to [143]). 

This amount of power has been set to be linearly proportional to the number of parking lots 

in the problem – it is the base transformer limit for one parking lot  multiplied by the 

number of parking lots:  

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑙𝑖𝑚𝑇𝑓𝑏𝑎𝑠𝑒𝑛𝑝𝑙   (3.19) 

where 𝑃𝑡𝑜𝑡𝑎𝑙 is the total power capacity available to the aggregator, 𝑙𝑖𝑚𝑇𝑓𝑏𝑎𝑠𝑒 is the base 

transformer limit for one parking lot, and 𝑛𝑝𝑙 is the number of parking lots. The power is 

available during all time intervals 𝑡, and does not change with time. 

This total power capacity 𝑃𝑡𝑜𝑡𝑎𝑙 is divided up between the parking lots by the 

aggregator, and for each parking lot 𝑝 their portion represents the maximum possible total 

power capacity available at every time interval. This portion therefore represents the new 

transformer capacity limit for that parking lot: 𝑙𝑖𝑚𝑇𝑓𝑝, from the set of transformer limits 

for all parking lots 𝒍𝒊𝒎𝑻𝒇: 

𝒍𝒊𝒎𝑻𝒇 = {𝑙𝑖𝑚𝑇𝑓1 , 𝑙𝑖𝑚𝑇𝑓2, … , 𝑙𝑖𝑚𝑇𝑓𝑝, … , 𝑙𝑖𝑚𝑇𝑓𝑛𝑝𝑙} (3.20) 

where 𝑙𝑖𝑚𝑇𝑓𝑝 represents the maximum transformer capacity of parking lot 𝑝 (across all 

time intervals 𝑡), in kW. The aggregator is therefore dividing the total capacity 𝑃𝑡𝑜𝑡𝑎𝑙 into 

the transformer limits for all parking lots. The aggregator then takes the new transformer 

limits per each parking lot, and optimizes the charging schedule for all EVs in each parking 

lot. The optimization for each individual parking lot with the new transformer limit is based 

on the single parking lot optimization method developed in Section 3.2.   
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The general problem formulation for this multiple parking lot optimization model 

is as follows: when provided the charging profile behaviour for all EVs 𝐸𝑉 for all timeslots 

𝑡 in 𝑛𝑝𝑙 parking lots, the multiple parking lot optimization model will determine an 

optimized transformer limit for all parking lots in the problem, and an optimized charging 

schedule for all EVs in all parking lots with their new optimized transformer limits, across 

all timeslots. 

As will be discussed in Section 3.3.2, the multiple parking lot optimization model 

will be solving two objectives, and therefore has a more complex problem formulation than 

the single parking lot optimization model. Using the model from Section 3.2 as the basis, 

the multiple parking lot optimization model will be solving for the solution vector 𝑿 from 

equation (3.2) for each parking lot, to determine an optimized charging schedule for each 

EV in each parking lot, and will also be solving for the solution vector 𝒍𝒊𝒎𝑻𝒇 (equation 

(3.20), for the set of all transformer limits across all parking lots.  

The multiple parking lot optimization model finds 𝑛𝑝𝑙𝑛𝑢𝑚𝑋 number of solution 

variables for all solution vectors 𝑿 (from equation (3.3)), and 𝑛𝑝𝑙 number of solution 

variables for the solution vector 𝒍𝒊𝒎𝑻𝒇. In a case with three parking lots, ten timeslots and 

20 EVs per parking lot, a maximum of total 603 solution variables must be solved.  

3.3.1 Two-level PSO 

To optimize two objectives in a nearly simultaneous way, a two-level PSO algorithm was 

developed for this model. This model uses the PSO-based single parking lot optimization 

model as the “inner PSO” level of the algorithm, to optimize individual parking lots, with 

an “outer PSO” level developed to optimize the transformer limits for all parking lots in 

the model. A basic flowchart for this two-level PSO is shown in Figure 3.2. 
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Figure 3.2 Two-level PSO Algorithm Flowchart  

In Figure 3.2, the inner PSO is contained in the grey box within step 2 of the outer 

PSO. The completion of the inner PSO is contained within the fitness function evaluation 

of each candidate solution of the outer PSO: for each candidate solution or particle of the 

outer PSO, a complete inner PSO is completed as part of the evaluation of its fitness.    

As opposed to the bi-level PSO model in [111] which has the upper level PSO’s 

optimal solution computed before the lower level PSO begins, or the two-stage model in 

[143] which has the first-stage PSO’s optimal solution computed before beginning the 

second stage GA optimization, this algorithm: begins the outer PSO, completes 𝑛𝑖𝑡𝑟(𝐼𝐿) 

total iterations of the inner (“inner level (IL)”) PSO, uses the results of the inner PSO in 

the outer PSO’s fitness function calculations, and then continues on to complete its 𝑛𝑖𝑡𝑟(𝑂𝐿) 
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total iterations of the outer (“outer level (OL)”) PSO. The outer PSO has 𝑛𝑝(𝑂𝐿) total 

particles. In every single iteration of the outer PSO, 𝑛𝑝(𝑂𝐿) full inner PSOs with 𝑛𝑖𝑡𝑟(𝐼𝐿) 

iterations and 𝑛𝑝(𝐼𝐿) particles each are completed. 

For the inner PSO, as stated in Section 3.2, the solution vector 𝑿 is equivalent to 

the PSO particle position vector term 𝒙 from equations (2.8) and (2.9) (𝒙′ in Figure 3.2). 

For the outer PSO, an “undecoded” version of the solution vector 𝒍𝒊𝒎𝑻𝒇 is equivalent to 

the PSO particle position vector term 𝒙 from equations (2.8) and (2.9) (see Appendix D).  

3.3.2 Objective and Fitness Function 

For this model, each PSO level has a different objective function and fitness function. 

However, both PSO levels have a similar overall objective: the minimization of costs. Per 

equation (3.4), the objective of the inner PSO is to minimize the cost of electricity 𝐶 

required to meet the charging demands (desired consumption) of all EVs in the parking lot, 

and results in an EV charging schedule for all EVs in one parking lot. For the outer PSO, 

the objective is to minimize the total cost of electricity required to meet the charging 

demands of all EVs in all parking lots, by adjusting the transformer limits of all parking 

lots. This adjustment allows for the transformer limit to be set higher or lower depending 

on the demands of the parking lot’s EVs, which allows for the inner PSO to minimize the 

cost using the new transformer limit parameter. 

The objective function of the outer PSO is: 

minimize 𝐶𝑂𝐿 = ∑𝐶𝑝

𝑛𝑝𝑙

𝑝=1

 (3.21) 

where the total cost of electricity for all parking lots 𝐶𝑂𝐿 is the sum of the cost of electricity 

for each parking lot 𝑝, 𝐶𝑝. The 𝐶𝑝 term is equivalent to the cost term 𝐶 from equation (3.4). 

This objective function therefore relies on the result of the inner PSO algorithm of Section 

3.2 in order to perform its own optimization.  

For this objective function, there were fewer additional constraints, since the 

majority of the constraints were addressed by the objective and fitness function of the inner 

PSO as described in Section 3.2.1. The additional constraint for this outer PSO, based on 

equation (3.19), is: 

∑𝑙𝑖𝑚𝑇𝑓𝑝

𝑛𝑝𝑙

𝑝=1

= 𝑃𝑡𝑜𝑡𝑎𝑙 (3.22) 

where the total of the parking lot transformer limits for all parking lots 𝑝 (𝑙𝑖𝑚𝑇𝑓𝑝) must 

equal the total power capacity 𝑃𝑡𝑜𝑡𝑎𝑙. 
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As with the fitness function of the single parking lot optimization model, the basis 

for the inner PSO, the fitness function of the outer PSO for this model was composed of a 

penalty term and a cost term. 

 Penalty Term 

For this outer PSO of the multiple parking lot optimization model, the penalty term 𝜌𝑂𝐿 is 

used to penalize the infeasible candidate solutions. The penalty term of this outer PSO 

fitness function relies on the results and penalty terms of the inner PSO fitness function 

from equation (3.18). The penalty term equations are: 

𝜌𝑂𝐿 = 𝑑𝜌 + 𝑑𝑣 (3.23) 

𝑑𝑑𝜌
𝑝 = {

𝜌𝑝, 𝐹(𝑋) < 1

0, 𝐹(𝑋) ≥ 1
   ∀𝑝 ∈ 𝑃𝑙 (3.24) 

𝑑𝜌 = ∑𝑑𝜌
𝑝

𝑛𝑝𝑙

𝑝=1

 (3.25) 

𝑑𝑑𝑣𝑏 = {
0.9 − |𝑉𝑏|, |𝑉𝑏| < 0.9
|𝑉𝑏| − 1.1,          |𝑉𝑏| > 1.1
0,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     ∀𝑏 ∈ 𝐵 (3.26) 

𝑑𝑣 = ∑ 𝑑𝑑𝑣𝑏

𝑛𝑢𝑚𝐵

𝑏=1

 (3.27) 

where 𝜌𝑂𝐿 is the outer PSO penalty term, 𝑑𝜌 is the total multi-parking lot penalty term, 𝑑𝑣 

is the voltage magnitude limit violation term, 𝑑𝑑𝜌
𝑝

 is the penalty term for parking lot 𝑝, 

𝜌𝑝 is the single parking lot penalty term for parking lot 𝑝, and 𝑑𝑑𝑣𝑏 is the term for when 

one bus’s voltage magnitude exceeds or subceeds the voltage magnitude limit.  

The penalty term in equation (3.23) is calculated by summing the penalty terms for 

all 𝑛𝑝𝑙 parking lots (from the inner PSO, equation (3.10)) with the penalty or constraint 

violation term for the power flow voltage magnitudes.  

The outer PSO has 𝑛𝑝(𝑂𝐿) particles, which each contain the 𝑛𝑝𝑙   candidate 

solutions for the transformer limits of 𝑛𝑝𝑙  parking lots. If the inner PSO’s final results were 

feasible, i.e. 𝐹(𝑿) ≥ 1 for the parking lot 𝑝 term of the candidate solution vector 𝑙𝑖𝑚𝑇𝑓𝑝, 

then the penalty term for the outer PSO is 0 (for that parking lot 𝑑𝑑𝜌
𝑝 = 0). A feasible 

result means that the single parking lot optimization method of Section 3.2 was able to find 

a feasible EV charging schedule solution for parking lot 𝑝 when using the candidate 

transformer limit value for that parking lot 𝑙𝑖𝑚𝑇𝑓𝑝 as its transformer limit 𝑙𝑖𝑚𝑇𝑓1 in 

equations (3.8) and (3.14).  
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If the results were not feasible, i.e. a feasible EV charging schedule solution could 

not be found with transformer limit 𝑙𝑖𝑚𝑇𝑓𝑝 for that parking lot and 𝐹(𝑿) < 1, then the 

penalty term for that parking lot 𝑑𝑑𝜌
𝑝
 is equal to the single parking lot penalty term 𝜌 from 

equation (3.10), denoted as 𝜌𝑝. The total multi-parking lot penalty term 𝑑𝜌 in equation 

(3.25) is therefore found by taking the penalty terms for all parking lots of that solution 

(equation (3.24)) and summing them together. If all 𝑛𝑝𝑙  results for the solution vector 

𝒍𝒊𝒎𝑻𝒇 were feasible, then the penalty term 𝑑𝜌 = 0. 

The voltage magnitude limit violation term 𝑑𝑣 in equation (3.27) finds all instances 

where the voltage magnitude at a bus was above or below the voltage magnitude limits in 

equation (3.9), finds the difference between the actual values and the violated limit 

(equation (3.26)), and sums all constraint violations across all 𝑛𝑢𝑚𝐵 buses together. The 

voltage magnitudes come from the conduction of a power flow simulation. The power flow 

simulation is conducted by selecting the buses for each parking lot to be located at, adding 

the maximum possible additional active power demand of the parking lots (𝑙𝑖𝑚𝑇𝑓𝑝) to 

those buses, and then running the power flow simulation to find the resulting bus voltage 

magnitudes.  

The constraint listed in equation (3.22) was not checked as part of the PSO’s fitness 

function evaluation process, but was applied during the solution decoding process. 

A value of more than 0 for the multi-parking lot penalty term 𝑑𝜌 meant that one or 

more of the individual parking lot EV charge scheduling solutions was infeasible. A value 

of more than 0 for the voltage magnitude limit violation term 𝑑𝑣 meant that one or more of 

the distribution system bus voltages magnitudes |𝑉𝑏| was outside the limits, therefore 

violating the distribution system network constraint. In order for a solution to be considered 

feasible, penalty term 𝜌𝑂𝐿 had to be equal to 0, i.e. with a feasible EV charge scheduling 

solution for all parking lots and no distribution system limit violations. This is illustrated 

in the combined fitness function. 

As was the case with the single parking lot model penalty terms described in 

Section 3.2.1.1, these penalty terms are also not normalized to the same units, so there is 

no prevention of bias or attempt to give the terms equal weight [158]. Min-max 

normalization feature scaling was identified as a potential method for normalization of all 

penalty values in a range [min(𝑑) ,max (𝑑)] to the range [𝛼, β], but was found to be 

impractical as all penalty terms have no identifiable real number possible maximum value 

max(𝑑). Min-max normalization feature scaling is given by the following equation: 

𝑑𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = (𝛽 − 𝛼)
𝑑 −min(𝑑)

max(𝑑) − min(𝑑)
+  𝛼 (3.28) 

where 𝑑𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 is the normalized penalty value, 𝑑 is the original penalty value, and 𝛼 

and β are the minimum and maximum of the normalisation range.  
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Ultimately, the biases inherent in the penalty term 𝜌𝑂𝐿 allow solutions with larger 

single parking lot penalty terms (𝜌𝑝) to be more heavily penalized than solutions with large 

voltage magnitude violations. This characteristic supports the model well, as finding 

transformer limits which provide feasible solutions for their parking lots is the key focus 

of the model, and penalization of solutions which violate the voltage magnitude limits 

becomes important after these feasible solutions are found and the penalty term 𝑑𝜌 is 

minimized.   

 Cost Term 

The cost term 𝐶𝑂𝐿 of the fitness function represents the optimization objective of the 

objective function equation (3.21), the cost of electricity purchased from the utility for all 

parking lots. It is repeated in equation (3.29) below for clarity:  

𝐶𝑂𝐿 = ∑𝐶𝑝

𝑛𝑝𝑙

𝑝=1

 (3.29) 

 Combined Fitness Function 

Following the calculation of the penalty and cost terms for the candidate solution 𝒍𝒊𝒎𝑻𝒇, 

the fitness function 𝐹(𝒍𝒊𝒎𝑻𝒇) of that candidate solution can be calculated per equation 

(3.30): 

𝐹(𝒍𝒊𝒎𝑻𝒇) =  

{
 

 0 + 
1

1 + 𝜌𝑂𝐿
, 𝜌𝑂𝐿 > 0   

1 + 
1

1 + 𝐶𝑂𝐿
, 𝜌𝑂𝐿 = 0   

   (3.30) 

where 𝜌𝑂𝐿 is the penalty term from equation (3.23), 𝐶𝑂𝐿 is the cost term from equations 

(3.21) and (3.29). As with combined fitness function in equation (3.18), this equation has 

been defined so that all infeasible candidate solutions (where 𝜌𝑂𝐿 > 0) always have a 

fitness in the range (0, 1), and all feasible candidate solutions will have a fitness above 1, 

in the range of (1, 2). This provides an easy way for the PSO to evaluate the feasibility of 

the solution as well as an easy visual representation of the behaviour of the PSO as it moves 

from infeasible to feasible solutions over its iterations. As the solution becomes more 

optimal and the cost is minimized, the fitness function value is maximized.    

3.3.3 Algorithm Steps 

As described in Section 3.3.1, a two-level PSO algorithm with an inner and an outer PSO 

was developed for this method. This model used the standard PSO algorithm as the basis 

for both the inner and outer PSOs. The outer PSO algorithm computed feasible parking lot 
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transformer limits for multiple parking lots. The inner PSO algorithm computed EV 

charging schedules for each parking lot, with each transformer limit computed by the outer 

PSO. The algorithm steps and flowchart for the parallelized version of this are shown in 

Figure 3.4 and Algorithm 2.  

For the non-parallelized model described in Sections 3.3 to 3.3.2.3, the flowchart 

of the model follows the general two-level PSO flowchart in Figure 3.2. Firstly, after 

receiving all the requisite inputs to the algorithm like the number of parking lots, base 

transformer limit, and EV charging profiles for each parking lot, the aggregator initializes 

the outer PSO position and velocity vectors, with 𝑛𝑝(𝑂𝐿) number of particles with 𝑛𝑝𝑙 

variables (transformer limit candidate solution vector 𝒍𝒊𝒎𝑻𝒇) each. Then, the fitness 

function in equation (3.30) is evaluated for each candidate solution.  

For each candidate solution or particle, the fitness function evaluation requires the 

evaluation of a complete inner PSO for each parking lot. In every iteration of step 2 of the 

outer PSO, 𝑛𝑝(𝑂𝐿)𝑛𝑝𝑙 inner PSOs are required to be evaluated. Each complete inner PSO 

follows the process described in Section 3.2.2, evaluating 𝑛𝑖𝑡𝑟(𝐼𝐿) PSO iterations with 

𝑛𝑝(𝐼𝐿) number of particles with 𝑛𝑢𝑚𝑋 variables each. Once all inner PSOs have been 

completed, the next part of the fitness function evaluation requires the conduction of the 

power flow simulation. Once this has been completed, the fitness function evaluation is 

completed for the outer PSO.    

Next, the best personal and global positions are updated, new particle position and 

velocities are updated, and so on, until the process is terminated once the maximum number 

of PSO iterations 𝑛𝑖𝑡𝑟(𝑂𝐿) has been reached. The best global position, in this case the most 

optimal transformer limits for the 𝑛𝑝𝑙  parking lots (from a candidate solution vector 

𝒍𝒊𝒎𝑻𝒇) with the associated optimal charging schedule for each parking lot (from a 

candidate solution vector 𝑿 per each parking lot), is taken as the most optimal final result 

for this model. Once the final result is selected, the algorithm ends.   

3.3.4 Parallelization  

With the development of this model to optimize 𝑛𝑝𝑙 parking lot charging schedules, 

requiring the evaluation of 𝑛𝑝(𝑂𝐿)𝑛𝑝𝑙 inner PSOs within the outer PSO, the problem has 

become more complex, and features an increased computational burden. As with the single 

parking lot optimization model, this model was parallelized in order to reduce the 

computational runtime and benefit from the use of HPC. 

In this two-level PSO algorithm, the fitness function evaluation of each outer PSO 

particle can be performed in parallel (as can the fitness function evaluations of each inner 

PSO particle per Section 3.2.4), because the evaluation of each candidate solution does not 

depend on the evaluation or outcome of any other candidate solution. As with the single 
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parking lot optimization algorithm, the two-level algorithm can be parallelized in that 

portion of the algorithm: step 2 of the PSO, per Figure 3.2. 

Following the general steps of Algorithm 1, step 2 of the outer PSO would require 

the evaluation of a for loop for each candidate solution (iterations 𝑗 = 1, 2, … , 𝑛𝑝(𝑂𝐿)), 

which would have within each loop iteration the evaluation of a for loop for each inner 

PSO candidate solution (iterations 𝑘 = 1, 2,… , 𝑛𝑝(𝐼𝐿)) (the sequential version of Algorithm 

1 lines 6-8). However, the parallelization of the outer PSO process prevents the nested 

parallelization of any portion of the inner PSO, since in MATLAB, parfor loops cannot 

be nested inside one another [159]. While some other programming languages like 

OpenMP have the possibility to support nested parallelism (though nested parallelism is 

currently disabled by default and the related routines are now deprecated [160], [161]), the 

use of all threads (worker processes) at the most outer-level of the computation algorithm 

and/or the collapsing of multiple inner and outer for loops into one outer loop is generally 

seen as the most efficient and correct way to perform the parallelization of nested loops 

[160], [162]. This method uses the threads at the most outer-level of the algorithm.   

In order to efficiently parallelize the two-level PSO algorithm on a HPC with a 

large number of workers, while maintaining the effective operation of the inner PSO single 

parking lot optimization algorithm, the fitness function evaluation of the outer PSO is 

parallelized, using a row-major layout [121] to linearize the array of candidate solutions. 

Per the first image within Figure 3.3 below, each outer PSO candidate solution (in this 

example, 𝑛𝑝(𝑂𝐿) = 5) has 𝑛𝑝𝑙 = 4 parking lots which need to be optimized using the inner 

PSO algorithm. These solutions are represented by a conventional 20-element 𝑛𝑝(𝑂𝐿)𝑛𝑝𝑙 

two-dimensional array, where each HPC worker evaluates the fitness of one candidate 

solution (one row): one worker performs 𝑛𝑝𝑙 sequential inner PSO optimizations. In Figure 

3.3, each candidate solution is denoted by a different colour (red, blue, yellow, green, and 

grey).  

 

Figure 3.3 Row-major linearization of a two-dimensional array of outer PSO candidate solutions 

(particles) and parking lots (adapted from [121]) 
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If the number of HPC workers is greater than the number of candidate solutions, 

then a number of workers within the cluster may go unused. However, transforming the 

array to a one-dimensional row-major layout with 𝑛𝑝(𝑂𝐿)𝑛𝑝𝑙 = 20 elements (the second 

and third images in Figure 3.3) enables more efficient use of the HPC cluster, with 

assigning one worker per column, and every column containing just one parking lot to be 

optimized. The reduction of individual sequential inner PSO optimizations performed by 

each HPC worker from 𝑛𝑝𝑙 to one reduces the potential control divergence and differences 

in computational runtimes between workers, and uses the HPC workers more effectively 

when the number of workers is more than the number of candidate solutions 𝑛𝑝(𝑂𝐿). 

Using this linearized array, step 2 of the outer PSO therefore consists of the 

evaluation of a for loop for element of the linearized array (elements 𝑗 =

1, 2, … , 𝑛𝑝(𝑂𝐿)𝑛𝑝𝑙). This algorithm process flowchart is shown in Figure 3.4 below.  

 

Figure 3.4 Multiple Parking Lot Optimization Algorithm Flowchart 
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Figure 3.4 shows that steps 1 to 2 and 4 to 10 of the outer PSO are performed 

sequentially, by the same single process, and that step 3 of the process, the completion of 

the PSOs as part of the evaluation of the fitness function, is performed in parallel for each 

parking lot in each particle of the outer PSO.  

In step 3, all processes which perform the parallel fitness function evaluations 

receive the same parameters, except for the candidate solution transformer limits per each 

parking lot. The single parking lot optimization PSO algorithm for each parking lot in each 

particle is completed independently, simultaneously with the other particle parking lots, by 

the parallel processes. Following this, the PSO results (inner PSO fitness value, cost, unmet 

demand, penalties, and the optimized schedule for the parking lot) are passed back to the 

single main process, which then performs the power flow simulation and computes the 

final penalty and fitness results per equation (3.30) for all parking lots. The key inputs to 

the inner PSOs in step 3 are the candidate transformer limit values (equation (3.20)), and 

their key outputs to step 4 are the fitness function values per parking lot (equations (3.18), 

(3.24)), cost per parking lot (equations (3.4), (3.21), (3.29)), penalties per parking lot 

(equations (3.10), (3.24), (3.25)), and resulting schedule per parking lot (from the best 

candidate solution vector, equation (3.2)).  

The single worker process then performs the updates for the best personal and 

global positions, and updates the velocity and positions for the next iteration. If the 

maximum number of PSO iterations has been completed, the algorithm terminates and 

presents the final result (the most optimal transformer limits for the 𝑛𝑝𝑙  parking lots with 

the associated optimal charging schedule for each parking lot); if not, steps 3 to 9 are 

repeated, with step 3 always occurring in parallel.  

The method used for this parallelization was the same SPMD method described in 

Section 3.2.4. The parallelization was performed through the use of a parfor loop around 

the function which performed the optimization of a single parking lot in a single particle, 

and therefore executed each iteration of the linearized candidate solution array (iterations 

𝑗 = 1, 2, … , 𝑛𝑝(𝑂𝐿)𝑛𝑝𝑙) in parallel on the workers in the HPC cluster. The pseudocode of 

the parallelized algorithm with the parfor function is shown in Algorithm 2. Algorithm 

1 has been modified to become the sequential version of the inner PSO algorithm used for 

this method, and is shown in Algorithm 3.  
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Algorithm 2. Multiple Parking Lot Optimization Algorithm Pseudocode (Parallelized) 

1: generate EV parking lot data for 𝑛𝑝𝑙 parking lots from parking lot profiles 

2: generate problem and PSO parameter data  

3: generate population of 𝑛𝑝(𝑂𝐿)𝑛𝑝𝑙 initial candidate solutions (linearized array) 

4: initialize PSO position and velocity vectors  

5: while termination criteria is false (iteration < 𝑛𝑖𝑡𝑟(𝑂𝐿)) 

6: parfor each element of the linearized candidate solution array (𝑗 = 1, 2,… , 𝑛𝑝(𝑂𝐿)𝑛𝑝𝑙) 

7: complete Algorithm 3 (fitness function evaluation stage one) 

8: end parfor 

9: for each candidate solution (𝑗 = 1, 2, … , 𝑛𝑝) 

10: run power flow and check voltage feasibility constraints of each solution 

11: evaluate the fitness of the candidate solution (fitness function evaluation stage two) 

12: end for 

13: for each candidate solution (𝑗 = 1, 2, … , 𝑛𝑝) 

14: update the local best position and fitness 

15: update the global best position and fitness 

16: end for 

17: for each candidate solution (𝑗 = 1, 2, … , 𝑛𝑝) 

18: compute the new particle velocity and enforce velocity limitations 

19: compute the new particle position and enforce velocity limitations 

20: end for 

21: return best solution 

 

Algorithm 3. Single Parking Lot Optimization Algorithm Pseudocode (Sequential Inner PSO Version) 

1: generate and intake PSO parameter data  

2: generate population of 𝑛𝑝(𝐼𝐿) initial candidate solutions (particles) 

3: initialize PSO position and velocity vectors  

4: while termination criteria is false (iteration < 𝑛𝑖𝑡𝑟(𝐼𝐿)) 

5: for each candidate solution (𝑗 = 1, 2,… , 𝑛𝑝(𝐼𝐿)) 

6: evaluate the fitness of the candidate solution 

7: end for 

8: for each candidate solution (𝑗 = 1, 2,… , 𝑛𝑝(𝐼𝐿)) 

9: update the local best position and fitness 

10: update the global best position and fitness 

11: end for 

12: for each candidate solution (𝑗 = 1, 2,… , 𝑛𝑝(𝐼𝐿)) 

13: compute the new particle velocity and enforce velocity limitations 

14: compute the new particle position and enforce velocity limitations 

15: end for 

16: return best solution 

 

The sequential and parallelized portions of the multiple parking lot optimization 

model are clearly shown with Algorithm 2 and Figure 3.4: only step 3 of the outer PSO, or 

lines 6 to 8 in the algorithm, are parallelized, with all other parts of the model or algorithm 
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remaining sequential. As was the case with Algorithm 1, the for loops in lines 9-12, 13-

16, and 17-20 of Algorithm 2 are not parallelized, in order to reduce the communication 

overhead and resulting increase in runtime, because the calculations performed in these 

sections are quick to be performed by a single worker in MATLAB. Since MATLAB 

parfor provides generally even distribution of the workload across the 𝑛 workers in the 

parallel pool, it is expected that each worker process performs approximately 
(𝑛𝑝(𝑂𝐿)𝑛𝑝𝑙)

𝑛⁄  

parfor iterations or inner PSOs.  

The inner PSO, Algorithm 3, is the most computationally complex part of the 

algorithm, being very time consuming to execute. Per Amdahl’s Law, by limiting the 

sequential part of the algorithm, the speedup of an algorithm can be improved. Therefore, 

by parallelizing the execution of a large number of the computationally complex inner 

PSOs, a large gain in performance (decrease in algorithm runtime, and increase in speedup) 

is expected.  

3.4 Decentralized Multi-Parking Lot Optimization 

The method developed for the decentralized optimization of the EV charge scheduling 

within multiple parking lots is based on the centralized algorithm described in Section 3.3: 

it is a decentralized version of that algorithm. 

The concept for the decentralized version is as follows: instead of the 

computational load being processed by only one aggregator, it is shared across each 

parking lot. Each parking lot has their own local aggregator, which acts as an independent 

optimizer for the EV charging schedules within its location. Parameter or other 

optimization information is not shared between the local parking lot aggregators, and only 

limited optimization results are provided back to the central aggregator. This method 

attempts to provide the benefits of the decentralized approach as discussed in Section 2.3.2: 

to reduce communication overhead, divide the computational load, and provide a much 

faster runtime.  

The information known to the central aggregator which flows “downwards” to the 

local aggregators consists of the EV parking lot profiles, the charging rate limit, 

transformer limit per each parking lot, the price of purchasing electricity during all time 

intervals, and the set amount of power 𝑃𝑡𝑜𝑡𝑎𝑙  that is available to the central aggregator to 

divide among the parking lots. The only information provided back to the central 

aggregator from each local parking lot, which is required for the functioning of the 

algorithm, is the feasibility of that lot’s optimization results, the cost, and the resulting EV 

charging schedule. This limited information is only required by the central aggregator to 

determine the total cost among parking lots, and to determine if the optimization solution 

for the total 𝑛𝑝𝑙 parking lots is feasible or not, with regards to both individual optimization 

results and power flow within the distribution system. 
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The main difference in this method from the centralized method is that the 

transformer limits are not optimized: the central aggregator does not perform any 

optimization itself. Instead, each parking lot is assigned the same transformer limit by the 

central aggregator: 𝑙𝑖𝑚𝑇𝑓𝑏𝑎𝑠𝑒. The power is divided equally among the parking lots, and 

each lot performs their own independent single parking lot optimization algorithm. The 

removal of the optimization of the transformer limits for each parking lot (and therefore 

the removal of the outer PSO) is expected to result in a less optimal result in terms of the 

total cost of electricity for all parking lots, but is also expected to result in a much more 

computationally efficient (faster) result.  

Figure 3.5 shows a basic comparison between the two methods. In the centralized 

method, all computations for the two-objective, two-level optimization are performed by 

the central aggregator. In the decentralized method, all computations are divided amongst 

the local aggregators at each parking lot, where each aggregator performs its own 

independent single-level optimization.  

 

Figure 3.5 Centralized and Decentralized Method Comparison 

3.4.1 Objective and Fitness Function 

The overall objective of this method is the same as the others: to minimize cost of 

electricity. In this case, it is the electricity required to meet the charging demands (desired 

consumption) of all EVs in all parking lots, resulting in EV charging schedules for all EVs 

in all parking lots. However, since the central aggregator is not performing any 

optimization of the total cost, the optimization objective for this model is met by each local 

aggregator independently optimizing the cost of their single parking lot charging schedule.  

 Therefore, the objective function is the same as that for the single parking lot 

optimization model: to minimize the cost of electricity purchased from the utility to meet 

the charging demands of all EVs in a parking lot, considering the variation in the electricity 

price in each timeslot, using equation (3.4). The optimization function is subject to the 

same constraints from equations (3.5) to (3.8) (where 𝑙𝑖𝑚𝑇𝑓1 = 𝑙𝑖𝑚𝑇𝑓𝑏𝑎𝑠𝑒), and the fitness 
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function which is being evaluated during the optimization process by each local aggregator 

is the same function from equation (3.18). 

This model is also subject to the voltage magnitude constraint from equation (3.9), 

though it is not included in the fitness function like it is in the centralized model. Instead, 

it is used by the central aggregator to check the feasibility of the overall solution, as it was 

for the single parking lot optimization model. The central aggregator receives the fitness 

values 𝐹(𝑿) from each local aggregator, and runs the power flow simulation using the 

transformer limits 𝑙𝑖𝑚𝑇𝑓𝑏𝑎𝑠𝑒 for each parking lot as maximum possible additional active 

power demand at each selected bus. Since a penalty value is not required from the power 

flow simulation as it was from the centralized model (equations (3.26), (3.27)), if the 

constraint was found to be violated at any bus, the solution was determined to be infeasible. 

As well, if any parking lot’s returned fitness value indicated an infeasible solution for that 

parking lot, 𝐹(𝑿) < 1, then the total solution was also determined to be infeasible.  

To have a feasible final solution for this model, the power flow simulation had to 

result in no violations of equation (3.9), and all local aggregator solutions for all 𝑛𝑝𝑙 

parking lots had to result in feasible solutions, 𝐹(𝑿) ≥ 1 for each parking lot.  

Equation (3.31) is used by the central aggregator to produce the final cost: 

𝐶𝑡𝑜𝑡𝑎𝑙 = ∑𝐶𝑝

𝑛𝑝𝑙

𝑝=1

 (3.31) 

where 𝐶𝑡𝑜𝑡𝑎𝑙 is the final or total cost of the solution, found by summing the cost per each 

optimized parking lot 𝐶𝑝.  

3.4.2 Algorithm Steps 

This model used the PSO-based single parking lot optimization algorithm developed in 

Section 3.2 in combination with summation and feasibility actions to compute feasible EV 

charging schedules for multiple parking lots. The algorithm steps and flowchart for the 

parallelized version of this are shown in Figure 3.6 and Algorithm 4.  

For the non-parallelized model described in Sections 3.4 and 3.4.1, the flowchart 

of the model follows and extended version of the standard PSO flowchart from Figure 2.1, 

or the non-parallelized version of Figure 3.1. Firstly, the central aggregator receives all the 

inputs to the algorithm like the number of parking lots, base transformer limit, and EV 

charging profiles for each parking lot, and passes the relevant information to each local 

aggregator.  

Next, each local aggregator performs the single parking lot optimization process 

for their lot. Each aggregator initializes the PSO position and velocity vectors, with 

𝑛𝑝 number of particles with 𝑛𝑢𝑚𝑋 variables each. Then, the fitness function in equation 
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(3.18) is evaluated for each candidate solution. The best personal and global positions are 

updated, new particle position and velocities are updated, and so on, until the process is 

terminated once the maximum number of PSO iterations 𝑛𝑖𝑡𝑟 has been reached. The best 

global position, in this case the most optimal charging schedule from a candidate solution 

vector 𝑋, is taken as the most optimal final result for that aggregator’s optimization process. 

Next, each local aggregator provides their fitness and cost result to the central 

aggregator. The central aggregator checks the feasibility of the entire solution by checking 

the individual fitness results and by conducting a power flow simulation. Once the 

feasibility has been checked and the total cost calculated, the algorithm is complete. The 

optimal charging schedule for each parking lot is taken as the final result for this model.  

3.4.3 Parallelization 

This model was developed to optimize 𝑛𝑝𝑙 parking lot charging schedules, requiring the 

evaluation of 𝑛𝑝𝑙 independent PSOs by the local aggregators. As with the other 

optimization models, this model was parallelized in order to reduce the computational 

runtime. However, in this case the parallelization of the algorithm is also necessary to 

demonstrate how the model would perform on a system with local aggregators which are 

physically or otherwise separate from a central aggregator, and would be expected to 

perform their computations independently and in parallel with each other. As opposed to a 

single central aggregator which uses a computational cluster to perform its calculations for 

the centralized multiple parking lot optimization model, this model would function by 

having the central aggregator using a single workstation or compute node, and the local 

aggregators each represented by a single workstation or compute node, which can all 

communicate with the central aggregator (see Section 3.1.4).  

In this algorithm, the full PSO optimization of each parking lot by the local 

aggregators can be performed in parallel since no part of their optimization process depends 

on the outcome or actions of another parking lot’s optimization. Therefore, the algorithm 

can be parallelized in step 2 of the figure below, where each local aggregator completes a 

full single parking lot optimization. This algorithm process is shown in Figure 3.6 below.  
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Figure 3.6 Decentralized Multiple Parking Lot Optimization Algorithm Flowchart 

Figure 3.6 shows that steps 1, 3, and 4 of the algorithm, shown in blue, are 

performed by the central aggregator sequentially, and that step 2, which encompasses all 9 

steps of the single parking lot PSO optimization process, has each PSO optimization 

performed in parallel by the local aggregators.   

In step 2, all local aggregators receive the same parameters, except for the parking 

lot profile to be optimized. The single parking lot optimization PSO algorithm for each 

parking lot is completed independently, simultaneously with the other particle parking lots, 

by the parallel aggregators. Following this, optimization results for fitness, cost, and the 

optimized schedule for the parking lot are passed back to the single main process, which 

then performs the power flow simulation, determines the feasibility of the solution, and 

computes the final costs per equation (3.31) for all parking lots.  

The method used for this parallelization was the same SPMD method described in 

Sections 3.2.4 and 3.3.4. The parallelization was performed through the use of a parfor 

loop around the function which performed the optimization of a single parking lot, and 

therefore executed each iteration, or each parking lot’s optimization (iterations 𝑗 =

1, 2, … , 𝑛𝑝𝑙), in parallel on the workers in the HPC cluster. The pseudocode of the 

parallelized algorithm with the parfor function is shown in Algorithm 4. For this 

algorithm, the single parking lot optimization performed by the local aggregators is the 

same as that shown in Algorithm 3.  
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Algorithm 4. Decentralized Multiple Parking Lot Optimization Algorithm Pseudocode (Parallelized) 

1: generate EV parking lot data for 𝑛𝑝𝑙 parking lots from parking lot profiles 

2: generate problem data  

3: parfor each parking lot (𝑗 = 1, 2, … , 𝑛𝑝𝑙) 

4: complete Algorithm 3 

5: end parfor 

6: run power flow and check voltage feasibility constraints of the solution 

7: check overall feasibility of the solution (each parking lot’s best solution) and compute total cost 

8: return solution 

 

The sequential and parallelized portions of the decentralized multiple parking lot 

optimization model are clearly shown with Figure 3.6 and Algorithm 4: only step 2 of the 

flowchart, or lines 3 to 5 in the algorithm, are parallelized, with all other parts of the model 

or algorithm remaining sequential.  

It is expected that each worker process performs approximately 
𝑛𝑝𝑙

𝑛⁄  parfor 

iterations. In a case where there are fewer parking lots than processes, only 𝑛 = 𝑛𝑝𝑙 

processes are required to execute the algorithm. 

3.5 PSO Parameters 

For all instances of the PSO being used (inner and outer PSOs of the centralized 

parallelized and sequential functions, the single PSO in the decentralized function), the 

parameters in Table 3.1 were used. The inertia and influence values came recommended 

from Table 2 of [132] and [21], and are close to the values recommended in [163]. 

Table 3.1 PSO Parameters 

Parameter Value 

Inertia (𝜔) 0.7298 

Personal Influence (𝑐1) 1.4960 

Social Influence (𝑐2) 1.4960 

Particle (𝑥𝑖)  / search space boundaries 0 ≤ 𝑥𝑖 ≤ 1 

Maximum velocity (𝑣𝑚𝑎𝑥) 0.25 

 

The particle boundaries ensure that the particle remains within the search space of 

0 to 1. The maximum velocity value ensures that each single particle cannot travel more 

than a quarter of the distance of the search space (from 0 to 1 for particle 𝑥𝑖 as 𝑥 ∈  [0, 1]) 
in each iteration, assisting to “reduce the convergence speed and encourage exploration” 

[21]. 
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3.6 Distribution System Scenarios 

Four distinct scenarios, or combinations of parking lots and distribution system test cases, 

were created for the tests in Section 4.  

3.6.1 Parking Lot Profiles 

Nine parking lot profiles were developed, based on the single parking lot, 20 EV charging 

request profile from Table 5 in [40]. Parking lot profiles 2-9 can be found in Table 6.1 to 

Table 6.8 in Appendix A. Parking Lot Profile 1, seen in Table 3.2 below, is identical to the 

20 EV charging request profile from Table 5 in [40], in order to allow for direct comparison 

and validation (see Sections 4.3 and 4.7.1.1). All other parking lot profiles were made by 

combining EVs from Profile 1 in various ways to change their charging timeslots, the 

number of EVs with different demands, and the overall total demand (desired 

consumption). The base transformer limit for each parking lot was kept as 60 kW.  

Table 3.2 Parking Lot Profile 1 (reproduced from [40]) 

EV Number Arrival Timeslot Departure Timeslot Charging Demand 

(Desired 

Consumption) (kWh) 

1 1 3 18 

2 3 5 15 

3 1 5 25 

4 2 4 18 

5 2 3 15 

6 6 10 22 

7 7 8 14 

8 8 10 16 

9 7 8 10 

10 6 9 20 

11 3 8 26 

12 2 6 17 

13 5 8 15 

14 4 8 16 

15 3 7 14 

16 5 8 12 

17 4 7 16 

18 5 9 19 

19 1 10 28 

20 1 5 16 
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3.6.2 MATPOWER Distribution Systems 

Four distribution system test cases included in the MATPOWER package were selected as 

the test case scenarios to be used in combination with the different parking lot scenarios 

(1, 3, 9, 18, and 27 parking lots): 18-bus [164], 33-bus [165], 69-bus [166], and 141-bus 

[167] distribution systems. The locations of each parking lot within each distribution 

system model were selected after some experimentation. The symbol for the EV parking 

lot in this thesis is shown in Figure 3.7, and represents a parking lot with 20 EV charging 

ports, which can contain and/or charge a maximum of 20 EVs at one time. 

For the scenario of one parking lot in an 18-bus system, the parking lot was 

connected to bus 2. For the scenario of three parking lots in an 18-bus system, the parking 

lots were connected to buses 2, 22, and 26. For the scenario of nine parking lots in the same 

system, the parking lots were connected to buses 2, 4, 6, 7, 8, 22, 23, 24, and 26, as shown 

in Figure 3.8.  

 

Figure 3.7 EV Parking Lot Symbol 

 

Figure 3.8 18-bus system with 9 Parking Lots (adapted from [153], [164]) 

For the scenario of nine parking lots in a 33-bus system, the parking lots were 

connected to buses 7, 8, 14, 24, 25, 29, 30, 31, and 32, as shown in Figure 3.9.  
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Figure 3.9 33-bus system with 9 Parking Lots (adapted from [153], [165]) 

For the test scenario with 18 parking lots in the 69-bus system, the parking lots 

were connected to buses 2, 3, 4, 5, 15, 19, 23, 25, 30, 31, 32, 38, 42, 44, 47, 56, 57, and 58 

of the system, as shown in Figure 3.10.  

 

Figure 3.10 69-bus system with 18 Parking Lots (adapted from [153], [166]) 

For the test scenario with 18 parking lots in the 141-bus system, the parking lots 

were connected to buses 2, 4, 7, 10, 22, 38, 46, 63, 70, 78, 81, 95, 99, 102, 114, 118, 120, 

and 131 of the 141-bus system. For the test scenario with 27 parking lots in the 141-bus 

system, the parking lots were connected to buses 2, 4, 6, 7, 10, 16, 22, 28, 31, 38, 46, 54, 

63, 70, 78, 81, 85, 91, 95, 99, 102, 108, 114, 118, 120, 125, and 131, as shown in Figure 

3.11.  
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Figure 3.11 141-bus system with 27 Parking Lots (adapted from [153], [167]) 

Since each parking lot contains 20 EVs, the scenarios with 1, 3, 9, 18, and 27 

parking lots contain a total of 20, 60, 180, 360, and 540 EVs.  

3.7 Summary 

This chapter presented the design of the models used in this research, detailing their 

objective and fitness functions, algorithm workflow, and parallelization. The assumptions 

and limitations described in Section 3.1 determined the scope and behaviour of the three 

models. The single parking lot optimization method described in Section 3.2 was adapted 

from [40] and parallelized as its own model, but also served as the basis for the sub-

algorithm (Algorithm 3) used by the two multiple-parking lot models. Section 3.3 

described the centralized multiple-parking lot optimization model, including its use of a 

two-level PSO and the linearization of its candidate solution array to be more effectively 

parallelized. The development of the decentralized version of the multiple-parking lot 



85 

 

optimization model is described in Section 3.4. Section 3.5 outlined the PSO parameters 

used for all models, and Section 3.6 described the parking lot profiles and distribution 

system test cases developed for this research.  
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Section 4 

Results 

This section describes the results obtained from the different experimental tests run in order 

to validate the performance of the developed methods or algorithms, for different scenarios. 

The summarized results for each test are presented in their relevant sections, which include 

results for the algorithm outputs and performance in terms of cost, fitness, and runtime. 

The results for each test are discussed in order to address the aim, or research hypothesis, 

of this thesis. 

The experimental setup is discussed in Section 4.1, and the success criteria in 

Section 4.2. The four tests and their results are shown and discussed in Sections 4.3, 4.4, 

4.5, and 4.6. The test results in terms of meeting the success criteria are discussed in Section 

4.7, and the overall section is summarized in Section 4.8.  

The aim of this thesis is to develop a solution for EV charge scheduling 

optimization for multiple parking lots, using centralized and metaheuristic optimization 

methods to provide more optimal solutions, and using parallel computing to increase the 

scalability of the solutions and to complete the optimization in an acceptable real-time 

interval. The results show that the centralized method was able to provide more optimal 

solutions compared to the decentralised method for scenarios with more than one parking 

lot, and that parallel computing enabled the optimization of scenarios with up to 27 parking 

lots to be computed in less than 15 minutes, depending on their PSO parameters.  

It must be noted that any use of the words “optimal solution,” “optimized solution,” 

or other similar wording does not mean that the solution is the best possible global or final 

solution to the problem [40], but means that it is the best solution found by the algorithm 

out of all its completed tests.  

4.1 Experimental Setup 

The tests to optimize a single parking lot used a single, standalone workstation with an 

Intel® Xeon® Silver 4210 CPU with 20 cores, using the Microsoft Windows operating 

system. All other tests were conducted on the RMC Taurus HPC Cluster [147], configured 

using MATLAB Parallel Server to use all 192 cores of the eight Linux compute nodes. 

Each node contains dual Intel Xeon Silver 4214R CPUs with 12 hyper-threaded cores, for 

a total of 24 cores or workers each. The eight compute nodes are connected through a 10 

Gbps gigabit network [21]. The setup of the parallel job schedule is the same as described 

in [21]: the first node in the cluster, leo1.local.net, runs the scheduler, receives the 
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parallel jobs from the client workstation (also leo1.local.net), and distributes that 

parallel workload among the 192 compute nodes. Code which is not parallelized is run on 

the client workstation CPU [21], [147].  

All tests were conducted using MATLAB version 2023a, the MATLAB Parallel 

Computing Toolbox, and the MATLAB Parallel Server [149], [168], [169]. All tests used 

the standard Newton-Raphson method-based AC power flow solver from the 

MATPOWER software tool [153], [154] using different distribution system test cases 

included in the tool: 18-bus [164], 33-bus [165], 69-bus [166], and 141-bus [167] 

distribution systems, as described in Section 3.6.2.  

The simulation parameters listed in Table 4.1 and Table 4.2 were consistent 

through all tests.  

Table 4.1 Simulation Parameters for All Tests 

Parameter Value 

Number of Charging Time Intervals 𝑛𝑢𝑚𝑇 10 

EV Charging Rate Limit in One Time Interval 𝑙𝑖𝑚𝐶ℎ𝑟 9.6 kW 

Base transformer limit value for a single parking lot 𝑙𝑖𝑚𝑇𝑓𝑏𝑎𝑠𝑒  60 kW 

 

Table 4.2 Electricity Prices Per Timeslot (from [40]) 

Time 

Interval 

1 2 3 4 5 6 7 8 9 10 

Price ($/kWh) 0.1 0.2 0.4 0.2 0.1 0.1 0.2 0.4 0.2 0.1 

 

Since the PSO metaheuristic is non-deterministic [19], and therefore expected to 

produce different results each time, the average value over a large number of samples 

needed to be taken to produce a result more representative of the method’s capabilities. As 

well, since simulation computation times may vary due to any number of background 

activities happening on the machines, the average computation time was taken to provide 

a better representation of the model’s behaviour. All timing results found in the next 

sections include the parallel pool startup time for 192 workers.  

In order to obtain statistical results that more accurately represented the method’s 

capabilities, Tests 1 and 3 were was run 100 times independently, and Test 2 run 10 times 

independently (similar to the method used by [38]). For Test 4, the item being tested 

(iteration time) was only trialed five times, due to the long and impractical time required 

to run full versions of the speedup tests (for example, it would require over 750 hours or 

over 31 days to run 10 trials of the full centralized, sequential 27 parking lot model).  
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The optimum (best out of all test results), worst, median, mean, and standard 

deviation (std.) results for each test are provided in the sections below. The standard 

deviation being used or calculated for all tests used the default MATLAB normalization of 

𝑁 –  1, where 𝑁 is the number of observations [1].  The average time or runtime required 

to run one independent test of each type is also included in the relevant results sections.  

All results are provided with an accuracy of two to four decimal places and copied 

from the MATLAB results. There may be slight discrepancies between results in 

MATLAB and those printed here due to rounding.   

4.2 Success Criteria 

The aim of this thesis is to develop a solution for EV charge scheduling optimization for 

multiple parking lots, using centralized and metaheuristic optimization methods to provide 

more optimal solutions, and using parallel computing to increase the scalability of the 

solutions and to complete the optimization in an acceptable real-time interval.  

As per Section 1.3.2, the success criteria for this thesis are:  

1. Comparison of the results of at least three scenarios of different sizes (i.e., 

different network sizes, number of EVs, and parking lot locations), by fitness 

function metrics (i.e., total cost), between the centralized (parallelized) and 

decentralized algorithm (parallelized) models or methods. This is to determine if 

the algorithms are performing as intended, and to determine which method can 

produce the more optimal solution. The single parking lot scenario will be 

compared against the originating single parking lot model found in [40] to confirm 

that it can find results similar to those found by the authors of that paper. The 

centralized and decentralized methods will be compared against each other. 

2. Comparison of the results of the single parking lot scenario,  between the 

centralized sequential and parallelized methods. This is to determine the accuracy, 

or correctness, of the parallelization.  

3. Comparison of the runtimes of the multi-parking lot scenarios, between 

the centralized sequential and parallelized models, for different problem sizes. This 

is to determine the speedup between the models for a variety of problem sizes, 

confirm that the model can continue to perform as intended as the problem size 

increases, and to determine the potential maximum problem size that can be 

handled by the model in the real-time limit. Full results for the multi-parking lot 

scenarios will not be compared due to the long runtimes required for the sequential 

versions. 
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These criteria will be evaluated through four main tests, testing the centralized 

algorithm’s ability to optimize a single parking lot (Test 1, accuracy of the implementation, 

criterion #1), ability to optimize multiple parking lots (Test 2, accuracy of the 

implementation, criteria #1 and #3), the accuracy of its parallelization and its speedup when 

compared to sequential version of the single and multi-parking lot algorithms (Test 3 and 

4, criteria #2 and #3), and the final cost outcome of the algorithm when compared to the 

decentralized version of the parallelized algorithm (Test 2, accuracy of the implementation 

of the decentralized version, criterion #1).   

4.2.2 Accuracy of Implementation: Centralized Single and Multi-Parking Lot 

Optimization  

For success criteria #1: to determine the accuracy, or correctness, of the centralized model 

for a single parking lot, a test must be conducted which runs the centralized multiple 

parking lot optimization model (Algorithm 2, which contains Algorithm 3), for a single 

parking lot (𝑛𝑝𝑙 = 1). With the specifications for certain parameters to suite the testing of 

a single parking lot, the use of a separate program to run Algorithm 1 is not required. The 

test will use a modified parallelized version of Algorithm 3. The test results will be used 

for Test 1 (Section 4.3) and Test 3 (Section 4.5).  

The cost solution output of the test will be compared to the cost or objective value 

solution of the 20 EV single parking lot optimization tests discussed in Section 6.1 of [40], 

the paper its objective function and general parameters were reproduced from. The results 

will be used to verify that the average, lowest, and highest electricity costs produced by the 

model are comparable to the range of results listed in [40]: $73.69 for the Earliest Deadline 

First scheduling algorithm, to $59.45 (59.4461) for the “original PSO” method, to $53.77 

(53.7660) for the proposed heuristic fuzzy PSO method. An averaged and a maximum 

result within the range of $53.7660 to $73.69 would show that the centralized model is 

performing as intended, providing an accurate result. A minimum or optimized result 

within the range of $53.7660 to $59.4461 would show that the centralized model is 

performing accurately and well.   

For success criteria #1 and #3: to determine the accuracy of the centralized model 

for a multiple parking lots, and to confirm that the model can continue to perform as 

intended as the problem size increases, tests must be conducted which run the centralized 

multiple parking lot optimization model for a minimum of three different scenarios. Since 

there are no equivalent results to compare against in literature, the accuracy of the model 

implementation will be based on the cost results. With a base transformer limit of 60 kW, 

and likely cost output of $54-$74 for a single parking lot (an approximate average cost of 

$63.73) [40], a solution for 𝑛𝑝𝑙 parking lots should be approximately $ 𝑛𝑝𝑙 × $ 64, scaling 

linearly with the number of parking lots. Values close to this (below it, or within 

$ 𝑛𝑝𝑙 × $ 5 above it) for the different scenario results will show that the centralized model 
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is performing accurately. The test will use Algorithm 2, which contains Algorithm 3. The 

test results will be used for Test 2 (Section 4.4) and Test 4 (Section 4.6).  

For success criteria #1: to determine which model is able to provide the more 

optimal result, the cost results for the centralized and decentralized models will be 

compared for a minimum of three different scenarios. The model which is able to produce 

the lower minimal and lower average result is the model able to produce the more optimal 

result.  

4.2.3 Accuracy of Parallelization: Parallel Implementation of the Centralized 

Single and Multi-Parking Lot Algorithms  

Accuracy of parallelization in this case refers to both the accuracy, or correctness, of the 

implementation of the sequential code into the parallelized version (does it provide the 

same result [125]) and the impact of the parallelization on the computational speed (does 

the code run faster i.e. provide a speedup). Per [123], to be considered successfully 

parallelized, the code must “not only run faster, but also produce identical results as its 

sequential counterpart” [123]. 

For success criteria #2: to determine the accuracy of the parallelization of the single 

parking lot models, tests must be run using both the parallelized and the sequential versions 

of the model, to test the accuracy of the implementation of the sequential code into the 

parallelized version. The expectation is that the parallelized and sequential versions will 

have very similar if not the same results (due to the non-deterministic PSO), so the accuracy 

of the parallelization will be based on the cost results. Costs for the sequential and 

parallelized results within $5 of each other (minimum, maximum, median, and average) 

would show that the parallelization has been completed correctly. The other aspect of 

parallelization, the speedup provided by the parallelized version, will be measured be 

recording the code runtimes for both versions. An average speedup of more than 1 times 

(𝑠 > 1, see Section 2.5.5 and 4.2.5) will indicate that the model had been successfully 

parallelized. This test will use a modified parallelized version of Algorithm 3, and the non-

parallelized version, with results used for Test 3 (Section 4.5).  

Full cost results for the multi-parking lot scenarios will not be compared due to the 

long runtimes required for the sequential versions which were determined to be impractical 

to measure for this thesis. Instead, only average program runtimes for a single iteration of 

the outer PSO of Algorithm 2 were used to determine speedup and therefore accuracy of 

parallelization. The other aspect of the accuracy of the parallelization, in terms of it being 

able to produce the correct or expected cost result, will be confirmed by the tests discussed 

in Section 4.2.2 which determine the accuracy of the models’ implementation.  

For success criteria #3: to determine the speedup between the centralized 

sequential and parallelized models, for different problem sizes, tests must be run which 

measure the runtime of at least three different multi-parking lot scenarios. An average 
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speedup of more than 1 times will indicate that the parallelization was done accurately. The 

runtimes must also be compared between the parallelized models to determine which 

models were able to complete their optimizations within the 15 minute time limit imposed 

in this research (see Section 2.5.4): this will find maximum problem size that can be 

handled by the model in the real-time limit. The tests will use the parallelized and 

sequential version of Algorithm 2. The test results will be used for Test 2 (Section 4.4) and 

Test 4 (Section 4.6).  

4.2.4 Accuracy of Implementation: Parallel Implementation of the Decentralized 

Multi-Parking Lot Algorithm 

For success criteria #1: to determine the accuracy, or correctness, of the implementation of 

the decentralized model for a multiple parking lots, tests must be conducted which run the 

decentralized multiple parking lot optimization model for a minimum of three different 

scenarios. The cost results for this model will be compared against the cost results for the 

centralized model. The same cost values to determine accuracy will be used for the results 

of this model: a solution for 𝑛𝑝𝑙 parking lots should be approximately $ 𝑛𝑝𝑙 × $ 64, scaling 

linearly with the number of parking lots. Cost results below this values, or within 

$ 𝑛𝑝𝑙 × $ 5 if above it for the different scenario results will show that the decentralized 

model is performing accurately, as intended. The test will use Algorithm 4, which contains 

Algorithm 3. The test results will be used for Test 2 (Section 4.4).  

In terms of the accuracy of the parallelization of the decentralized model, no 

separate tests will be run which calculate the speedup of the model versus a sequential 

version. However, the runtime results of the decentralized model tests can be compared to 

the runtime results of the sequential single parking lot optimization model. Since Algorithm 

4 has only one instance of evaluating its parking lots in parallel, for any scenarios where 

the number of parking lots is less than or equal to the number of HPC cluster workers, the 

scenario runtime should be equal to the runtime required to sequentially optimize a single 

parking lot. Therefore, if the minimum, maximum, and average runtime for the 

decentralized model scenarios are within the same general range of the minimum, 

maximum, and average runtime of the sequential single parking lot results (for Test 3 in 

Section 4.5),  then the decentralized model can be considered to be accurately parallelized.  

4.2.5 Speedup of the Parallelized Algorithms 

To compare the success of the parallelization of the algorithms per success criteria #2 and 

#3, one of the metrics to be used the speedup. The simplified version of the calculation 

from equation (2.10) will be used, with the speedup being the ratio of the computational 

runtime of the parallelized algorithm to the computational runtime of the sequential 

algorithm.  
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As discussed in Section 4.1, the non-deterministic nature of metaheuristic-based 

algorithms requires an average value of a selected item, taken over a large number of 

samples, to produce a result more representative of the method’s capabilities. Therefore, to 

calculate a speedup more representative of the algorithm’s capabilities, the speedup will be 

calculated using the average algorithm runtimes: 

𝑠 =

1
𝑛
∑ 𝑇𝑠𝑒𝑞𝑖
𝑛
𝑖=1

1
𝑚
∑ 𝑇𝑝𝑎𝑟𝑗
𝑚
𝑗=1

 (4.1) 

where the speedup 𝑠 is the ratio of the parallelized algorithm computation runtime 𝑇𝑝𝑎𝑟 

averaged over 𝑖 = 1, 2, 3,…  𝑛 rounds of tests, to the computational runtime of the 

sequential algorithm  𝑇𝑠𝑒𝑞, averaged over j = 1, 2, 3, … 𝑚 rounds of tests. For all tests in 

this section, 𝑚 =  𝑛.  

4.3 Test 1: Single Parking Lot Optimization 

This test was conducted to verify the performance of the PSO optimization of a single 

parking lot, by comparing its results to the results in Section 6.1 of the paper its method 

was based on: [40]. The aim of the test was to meet success criteria #1, and verify that the 

average, lowest, and highest electricity costs produced by the algorithm were comparable 

to the range of results listed in [40]: from to $53.77 (53.7660) for the proposed heuristic 

fuzzy PSO method, to $73.69 for the Earliest Deadline First scheduling algorithm. This 

test demonstrated the performance of Algorithm 1, by using the parallelized version of 

Algorithm 3 (the inner PSO of Algorithm 2), optimizing the charging of a single parking 

lot with a given number of EVs and their charging request profiles, to obtain the lowest 

cost.  

This test used the simulation parameters listed in Table 4.3, in addition to those 

listed in Table 4.1 and Table 4.2. This test was run on the single, multicore workstation, 

using 9 of the 20 available cores.  

Table 4.3 Simulation Parameters – Test 1 

Parameter Value 

Number of Parking Lots 1 

Number of EVs 20 

Number of Particles (Outer PSO) 1 

Number of Iterations (Outer PSO) 1 

Number of Particles (Inner PSO) 100 

Number of Iterations (Inner PSO) 500 

Distribution System Test Case 18-bus 
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The test used the EV charging request profile of EV Parking Lot 1, listed in Table 

3.2. The parking lot was connected to bus 2 of the 18-bus system, as described in Section 

3.6.2.  

The test description is as follows: the modified version of the centralized algorithm 

(Algorithm 2) was run with the specified parameters, 100 times independently. The final 

cost, fitness, and algorithm runtime were recorded, along with graphical representations of 

the fitness and cost for the PSOs.  

 The same test was also run with the sequential version of the algorithm in order 

to obtain speedup results: this test and the subsequent results are described for Test 3 in 

Section 4.5 below. The results from Test 1 were used in Test 3 as the parallelized results.  

4.3.1 Results  

A summary of the results of this test are listed in Table 4.4 to Table 4.7, and the test’s 

optimum results shown in Figure 4.1 and Figure 4.2. A segment of the full results can be 

found in Appendix B. Table 4.5 has been coloured to better visualize the charging 

schedules of the EVs in the parking lot, where green indicates the EV is charging and 

yellow indicates no charging by that EV in that time interval even though it remains 

plugged into the grid.  

In Table 4.4, for the cost and test runtime, the optimum value is the minimum value 

out of all tests. For the fitness, the optimum value is the maximum value out of all tests. 

Table 4.4 Single Parking Lot Results: Cost and Time 

 Cost ($) Fitness Time required to run 1 

test (inner PSO 

parallelized) (s) 

Optimum  53.77 1.0183 14.91 

Worst 61.36 1.0160 19.25 

Median 57.16 1.0172 15.32 

Mean 57.09 1.0172 15.30 

Std. 1.83 0.00 0.44 
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Figure 4.1 Final Cost for all 100 Test Rounds  

The results in Table 4.4 and Figure 4.1 show that Algorithm 1 is able to produce 

results within the range of objective values produced in [40]: the optimum result was within 

$0.004 of the optimal result produced in that paper, and the mean, median, and worst (or 

highest) results were comparable to the results produced by the construction, inertia-

weight, and original PSOs in [40], within $1.92. These results show that the algorithm was 

able to function accurately, producing an optimized charging schedule for a set of EVs with 

known arrival and departure times and demands, when provided the cost of electricity for 

all time intervals, the maximum rate of charging for one time interval, and the maximum 

transformer capacity or limit for one time interval. The feasible results produced by this 

algorithm also demonstrate that the 60 kW transformer limit, and therefore the maximum 

real power demand at any time interval, is a permissible demand on bus two of the 18-bus 

system, as the voltage limits are respected at all buses within the system.  

The closeness of the objective values to those produced by the improved and other 

PSO-based algorithms in [40] may be attributed in part to the increased number of particles 

and iterations used in these tests: 100 particles and 500 iterations versus the 28 particles 

and 50 iterations used in [40], a 3.5 and 10-fold increase. This increase in particles and 

iterations is reflected in the average runtime of 15.30 seconds for one test, a 2.5-fold 

increase compared to the 6.2 second runtime for the original PSO in [40].   
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Table 4.5 shows the optimum schedule determined by the algorithm in 10 rounds, 

with a total objective value (electricity cost) of $53.77 (53.76934, see Table 4.7), total 

power demand (consumption) of 352 kWh (see Table 4.6), and unmet demand of 

approximately 0 kWh, or no unmet demand (see Table 4.8). Table 4.6 and Table 4.7 show 

that the total demand (consumption) and cost at each time interval follow the electricity 

price pattern from Table 4.2 (and therefore from [40]); most EVs are present during 

intervals 3 to 8, and the highest total demands occur when the price is the lowest at intervals 

5 and 6, and the lowest demands occur when the price is highest, at intervals 3 and 8. Table 

4.8 shows that the algorithm was able to optimize the schedule and meet the demand 

(desired consumption) of each EV to the kWh, only over or undercharging EVs 5, 9, 10, 

13, 14, and 19 by approximately two to four pWh. 

Table 4.5 Optimal Schedule for Parking Lot 1 (kWh) 

Time 

Interv

al 

1 2 3 4 5 6 7 8 9 10 

EV 1 9.5592 8.4408 0 - - - - - - - 

EV 2 - - 0 7.5000 7.5000 - - - - - 

EV 3 9.5239 3.4930 1.7954

×10-8 

7.9677 4.0155 - - - - - 

EV 4 - 9.1548 0.0059

525 

8.8992 - - - - - - 

EV 5 - 9.5989 5.4011 - - - - - - - 

EV 6 - - - - - 7.7530 4.6644 0 0 9.5826 

EV 7 - - - - - - 9.5119 4.4881 - - 

EV 8 - - - - - - - 0 6.4584 9.5416 

EV 9 - - - - - - 9.5828 0.4172

2 

- - 

EV 10 - - - - - 9.2887 3.6175 0 7.0938 - 

EV 11 - - 0 1.3405 8.2198 8.2198 8.2198 4.2514

×10-8 

- - 

EV 12 - 4.7788

×10-5 

0 6.6806 4.6476 5.6717 - - - - 

EV 13 - - - - 7.3372 7.6628 0 0 - - 

EV 14 - - - 9.0084 0.0094

24 

3.4839 3.4984 0.0003

4914 

- - 

EV 15 - - 0.0013

075 

1.5723 4.9773 5.1414 2.3076 - - - 

EV 16 - - - - 5.4180 2.8946 3.6874 0 - - 

EV 17 - - - 1.6007 5.4646 3.0561 5.8786 - - - 

EV 18 - - - - 9.2136 4.8019 2.4750 0 2.5095 - 

EV 19 9.5822 1.0148

1 

0.0049

156 

3.7445 0.1198

4 

2.0031 2.9279 0.0030

483 

0 9.5996 

EV 20 9.5884 0.3860

7 

1.5919

×10-6 

2.9520 3.0735 - - - - - 
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Table 4.6 Total Power Demand (Consumption) for Optimal Schedule Solution (kWh) 

Time 

Interv

al 

1 2 3 4 5 6 7 8 9 10 Total 

Deman

d 

Power 

Deman

d 

38.25

4 

31.08

8 

5.413

2 

51.20

6 

59.99

6 

59.97

7 

56.37

1 

4.908

7 

16.06

2 

28.72

4 

352 

 

Table 4.7 Cost for Optimal Schedule Solution ($) 

Time 

Inter

val 

1 2 3 4 5 6 7 8 9 10 Total 

Cost 

Cost 3.825

4 

6.217

7 

2.165

3 

10.24

1 

5.999

6 

5.997

7 

11.27

4 

1.963

5 

3.212

3 

2.872

4 

53.76

9 

 

Table 4.8 EV Demand (Consumption) for Optimal Schedule for Parking Lot 1 (kWh) 

Time Interval Desired Demand 

(consumption) 

Met Demand* 

(consumption) 

Unmet Demand 

(consumption) 

EV 1 18 18 0 

EV 2 15 15 0 

EV 3 25 25 0 

EV 4 18 18 0 

EV 5 15 15 -1.7764×10-15 

EV 6 22 22 0 

EV 7 14 14 0 

EV 8 16 16 0 

EV 9 10 10 -1.7764×10-15 

EV 10 20 20 3.5527×10-15 

EV 11 26 26 0 

EV 12 17 17 0 

EV 13 15 15 -1.7764×10-15 

EV 14 16 16 -1.7764×10-15 

EV 15 14 14 0 

EV 16 12 12 0 

EV 17 16 16 0 

EV 18 19 19 0 

EV 19 28 28 -3.5527×10-15 

EV 20 16 16 0 

*value rounded to nearest kWh 
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Figure 4.2 shows the behaviour of the objective function’s value (cost) over the 

iterations, showing the expected steady improvement over all iterations, with the most 

dramatic improvement occurring in the first 150 iterations. This figure shows that the 

behaviour of the algorithm follows the typical PSO convergence pattern, similar to those 

shown in Figure 6 of [40].   

 

Figure 4.2 Change in Cost over Iterations for Optimum Test Round (Round 93) 

Overall, the results of this test show that the algorithm and its selected PSO 

parameters were able to perform as expected and produce good results, providing an 

optimized EV charging schedule for a 20-EV parking lot, with final costs in the same range 

as the results provided by the paper the algorithm was based on. The lowest cost was very 

close to the lowest cost provided in the paper, demonstrating that the algorithm could be 

expected to provide very good results when required to optimize the charging schedule of 

a single parking lot with a given number of EVs and their charging request profiles, to 

obtain the lowest cost.  

The results of this test led to the conclusion that this algorithm would be able to 

optimize different parking lot charge profiles using different transformer limits, enabling 

the use of the same algorithm to independently optimize different parking lots with 

different parameters.     
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4.4 Test 2: Multiple Parking Lot Optimization: Centralized versus 

Decentralized Methods 

This test was conducted to compare the results of the centralized optimization method 

(Algorithm 2) with the decentralized optimization method (Algorithm 4). The aim of this 

test was twofold: 1) to determine if the decentralized model performed as expected (i.e., 

produced comparable results to the centralized model in terms of algorithm behaviour to 

optimize the individual parking lots); and 2) to observe if one hypothesis was correct: 

determining if the costs results obtained from the centralized model were lower on average 

(i.e., “better”) than those of the decentralized model. 

The results of these tests were also used for two main areas of analysis and 

discussion: 1) to compare feasibility of the results of the centralized optimization method 

as the number of parking lots increased; and 2) to compare algorithm runtime of the 

centralized optimization method, for different inner PSO iteration totals. The aim of this 

analysis was to determine what potential combinations of PSO parameters had an average 

algorithm runtime, over of all sub-tests conducted, under the 15-minute real-time limit set 

in Section 2.5.4 above, for simulations with 3, 9, 18, and 27 parking lots. This test also 

analyzed the optimum costs versus the general feasibility and average runtime of that test 

case, to determine the potential trade-off between the potential cost savings versus time 

required to calculate that result and the risk of calculating an infeasible result. 

The test results of the centralized model demonstrated the performance of 

Algorithm 2, optimizing the power division between multiple 20 EV parking lot loads (the 

outer PSO), and the charge scheduling of EVs within the parking lot (inner PSO) with a 

given number of EVs and their charging request profiles, to obtain the lowest cost. The test 

results of the decentralized model demonstrated the performance of Algorithm 4, 

optimizing the charge scheduling of the same EVs within the parking lots with a set 

transformer limit of 60 kW each, to obtain the lowest cost. 

This test used the simulation parameters listed in Table 4.9, in addition to those 

listed in Table 4.1 and Table 4.2. This test consisted of six main sub-tests, which used 

different combinations of parking lots and distribution system test cases. The test used 

different combinations of the EV charging request profiles of EV Parking Lots 1-9, listed 

in Appendix A. Since there are almost unlimited number of possible combinations of 

population and iteration sizes for the outer and inner PSOs, the main test cases (2.1-2.6) 

use the selected base case of 50 and 100 particles with 10 and 500 iterations for the outer 

and inner PSOs.  The additional cases used with the 3, 9, 18, and 27 parking lot scenarios, 

which used 250 iterations of the inner PSO, were selected from experimental trials to 

provide results to compare against the base case in terms of cost, feasibility, and runtime 

(tests 2.7-2.10). 
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Table 4.9 Simulation Parameters – Test 2 

Parameter Value 

Sub-test no. 2.1 2.2 2.3 2.4 2.5 2.6 

Number of Parking Lots 3 9 9 18 18 27 

Number of EVs 60 180 180 360 360 540 

Number of Particles (Outer PSO) 50 50 50 50 50 50 

Number of Iterations (Outer PSO) 10 10 10 10 10 10 

Number of Particles (Inner PSO) 100 100 100 100 100 100 

Number of Iterations (Inner PSO) 500 500 500 500 500 500 

Distribution System Test Case 18-bus 18-bus 33-bus 69-bus 141-bus 141-bus 

Sub-test no. 2.7 2.8 2.9 2.10   

Number of Parking Lots 3 9 18 27   

Number of EVs 60 180 360 540   

Number of Particles (Outer PSO) 50 50 50 50   

Number of Iterations (Outer PSO) 10 10 10 10   

Number of Particles (Inner PSO) 100 100 100 100   

Number of Iterations (Inner PSO) 250 250 250 250   

Distribution System Test Case 18-bus 33-bus 69-bus 141-bus   

 

For Test 2.1 and 2.7, the profiles of Parking Lots 1-3 were used, and the parking 

lots were connected to buses 2, 12, and 16 of the 18-bus system. 

For Test 2.2, the profiles of Parking Lots 1-9 were used, and the parking lots were 

connected to buses 2, 4, 6, 7, 8, 22, 23, 24, and 26 of the 18-bus system, as shown in Figure 

3.8.  

For Test 2.3 and 2.8, the profiles of Parking Lots 1-9 were used, and the parking 

lots were connected to buses 7, 8, 14, 24, 25, 29, 30, 31, and 32 of the 33-bus system, as 

shown in Figure 3.9.  

For Test 2.4 and 2.9, the profiles of Parking Lots 1-9 were duplicated to make 18 

parking lots. The parking lots were connected to buses 2, 3, 4, 5, 15, 19, 23, 25, 30, 31, 32, 

38, 42, 44, 47, 56, 57, and 58 of the 69-bus system, as shown in Figure 3.10.  

For Test 2.5, the profiles of Parking Lots 1-9 were duplicated to make 18 parking 

lots. The parking lots were connected to buses 2, 7, 22, 46, 70, 118, 4, 10, 38, 63, 78, 81, 

95, 99, 102, 114, 120, and 131 of the 141-bus system.  

For Test 2.6 and 2.10, the profiles of Parking Lots 1-9 were tripled to make 27 

parking lots. The parking lots were connected to buses 2, 4, 6, 7, 10, 16, 22, 28, 31, 38, 46, 

54, 63, 70, 78, 81, 85, 91, 95, 99, 102, 108, 114, 118, 120, 125, and 131 of the 141-bus 

system, as shown in Figure 3.11.  
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The test description is as follows: for each sub-test, the centralized parallelized 

algorithm (Algorithm 2) was run with the specified parameters, 10 times independently. 

Then, within the same sub-test, the parallelized decentralized algorithm (Algorithm 4) was 

run with the same parameters, 10 times independently. The final cost, fitness, feasibility, 

and algorithm runtime were recorded, along with graphical representations of the fitness 

and cost, for both versions of the algorithm, for the inner and outer PSOs.  

4.4.1 Results  

A summary of the results of sub-tests 2.1-2.6 are listed in Table 4.10 to Table 4.11, and 

shown in Figure 4.3 to Figure 4.13 (showing results from the 9 parking lot scenario from 

test 2.3 only). The summarized results for all tests, including 2.7-2.10, can be found in 

Table 6.9 and Table 6.10 of Appendix C, and have been included in Figure 4.11 to Figure 

4.13 for comparison purposes. 

As will be described in Section 4.4.3, some of the results for the tests with larger 

numbers of parking lots were not feasible. All results are included in Table 4.10, but for 

the results and comparison in Section 4.4.2 and Table 4.11, these infeasible results have 

been omitted.  

In Table 4.10, the cost is the total cost required to charge all parking lots in that 

scenario. The fitness values for the decentralized results are taken from all fitness values 

across all parking lots, across all test rounds. The time is for the time required to run one 

test. The feasibility columns list the total number of feasible test results out of 10 (i.e., 8), 

followed by its conversion into percentage (i.e., 80%). For the cost and runtime, the 

optimum value is the minimum value out of all tests. For the fitness, the optimum value is 

the maximum value out of all tests. 
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Table 4.10 Centralized and Decentralized Multiple Parking Lot Results: Cost, Fitness, Time, and 

Feasibility 

Sub

-test 

 Centralized Decentralized 

 Cost ($) Fitness Time 

(s) 

Feasibil

ity 

Cost ($) Fitness Time 

(s) 

Feasibil

ity 

2.1 

(3 

park

ing 

lots) 

Optimum  182.17 1.0055 253.78 10  189.53 1.0180 17.43 10 

Worst 187.39 1.0053 307.63 (100%) 197.49 1.0136 21.54 (100%) 

Median 183.49 1.0054 264.17  193.00 1.0148 17.48  

Mean 184.31 1.0054 267.40  193.81 1.0154 17.90  

Std. 1.80 0.00 14.81  2.78 0.00 1.28  

2.2 

(9 

park

ing 

lots) 

Optimum  527.75 1.0019 531.90 10 556.56 1.0268 19.17 10 

Worst 535.29 1.0019 574.48 (100%) 578.57 1.0106 36.07 (100%) 

Median 531.15 1.0019 537.29  565.98 1.0167 19.38  

Mean 531.65 1.0019 541.09  566.08 1.0168 21.02  

Std. 2.43 0.00 12.60  6.47 0.00 5.29  

2.3 

(9 

park

ing 

lots) 

Optimum  527.45 1.0019 525.51 10 550.41 1.0264 17.99 10 

Worst 541.25 1.0018 576.56 (100%) 573.96 1.0107 46.13 (100%) 

Median 532.15 1.0019 536.89  564.51 1.0169 18.20  

Mean 532.82 1.0019 538.76  563.94 1.0168 21.92  

Std. 3.93 0.00 14.56  6.89 0.00 8.73  

2.4 

(18 

park

ing 

lots) 

Optimum  1082.49 1.0009 943.63 10 1117.15 1.0271 19.09 8 

Worst 1107.87 1.0009 1018.75 (100%) 1156.95 0.2033 37.58 (80%) 

Median 1091.19 1.0009 967.31  1128.38 1.1068 25.59  

Mean 1094.43 1.0009 960.92  1130.15 1.0079 25.78  

Std. 9.98 0.00 22.05  11.93 0.09 4.72  

2.5 

(18 

park

ing 

lots) 

Optimum  1079.51 1.0009 973.00 10 1116.44 1.0267 18.37 9 

Worst 1117.53 1.0009 1021.54 (100%) 1142.61 0.2033 37.58 (90%) 

Median 1087.05 1.0009 988.55  1131.05 1.0168 18.46  

Mean 1091.42 1.0009 991.39  1130.32 1.0124 20.41  

Std. 12.79 0.00 13.33  9.31 0.06 6.03  

2.6 

(27 

park

ing 

lots) 

Optimum  1624.80 1.0006 1455.90 9 1687.61 1.0272 18.98 10 

Worst 1747.82 0.7895 1628.01 (90%) 1724.23 1.0105 43.34 (100%) 

Median 1657.37 1.0006 1483.13  1692.60 1.0166 21.60  

Mean 1667.83 0.9795 1497.78  1695.77 1.0169 23.70  

Std. 38.37 0.07 49.21  11.20 0.00 7.4  

Results in italic denote an infeasible result 

 

The results of Table 4.10 show that the centralized algorithm was able to provide 

a more optimal result (i.e., a lower cost) than the decentralized algorithm, for all scenarios. 

As the number of parking lots increased, the likelihood that the algorithms would produce 

an infeasible final test result increased. As the number of parking lots increased, the 

runtime for both algorithms increased, with the centralized algorithm taking a much longer 

time to complete a single test due to it completing 10 iterations of the outer PSO in order 
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to optimize the transformer limits or maximum real power demand for each individual 

parking lot. These results are discussed in more detail in Sections 4.4.2 to 4.4.4 below.  

A feasible solution was one where which did not violate any constraints: where the 

inner PSO solution, for the optimization of the charge schedule of a specific parking lot 

with a specific transformer limit, did not exceed the transformer limit or the charging rate, 

and was within 1 W of the demand (desired consumption) across all EVs (per equations 

(3.7)-(3.8), (3.10)-(3.15), (3.18)), and the outer PSO solution, for the optimization of the 

individual parking lot transformer limits, did not exceed the voltage magnitudes at all the 

buses where the parking lots were located (equations (3.23)-(3.27), (3.30)). The 

transformer limits, i.e., the maximum additional active power demands at the assigned 

buses, optimized by the outer PSO were tested for compliance with the system voltage 

limits through the power flow simulation.  

The following figures show the cost and fitness results for all 10 test rounds for 

the centralized (Figure 4.4 to Figure 4.6) and decentralized algorithms (Figure 4.7 to Figure 

4.10) of sub-test 2.3, in order to show PSO convergence behaviour for the inner and outer 

PSOs of the centralized algorithm, and the PSOs of the decentralized algorithm.  

Figure 4.3 shows all test cost results for the centralized and decentralized 

algorithms of sub-test 2.3, clearly showing the improvement in the optimization objective 

of total cost of the centralized algorithm when compared to the decentralized algorithm. 

Even between the highest cost of the centralized algorithm ($541.25) and the lowest of the 

decentralized algorithm ($550.41), there was still a different of $9.16. The figure shows 

that the improvement in results remained consistent across all tests, demonstrating the 

overall better performance (in terms of cost) of the centralized algorithm.  

 

Figure 4.3 Final Costs for Centralized and Decentralized Test Rounds of Test 2.3 
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Figure 4.4 shows the convergence behaviour of the objective value of the outer 

PSO of the algorithm, showing fairly steady improvement over all iterations for each test 

round.  

 

Figure 4.4 Change in Cost over Iterations for 10 rounds of Centralized Algorithm of test 2.3 (outer 

PSO) 

Figure 4.5 and Figure 4.6 show the convergence behaviour of the fitness function 

value of the outer PSO. They show that while only one test round (round 4) had a feasible 

result at the end of its first iteration, by the third iteration all test rounds had generated a 

feasible solution, and continued to improve their objective values over each subsequent 

iteration. These figures also clearly show the behaviour of the PSO in terms of how the 

fitness function values change depending on the feasibility of the results (as per equation 

(3.30)): all infeasible results have a fitness below 1, but as soon as the result is feasible, the 

value is instantly equal to 1 or more, and the fitness value increases in much smaller 

increments after this point, as it increases in relation to the improvement in cost only. In 

order to see the improvement after reaching feasibility, the results must be enlarged as they 

are in Figure 4.6.  
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Figure 4.5 Change in Fitness over Iterations for 10 rounds of Centralized Algorithm of test 2.3 (outer 

PSO) 

 

Figure 4.6 Enlarged Segment of Figure 4.5 
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Figure 4.7 shows the general convergence behaviour of the objective value of the 

single PSO of the decentralized algorithm, showing the total cost of all nine parking lots 

summed together, at each iteration. It shows the same general behaviour as that for the 

single parking lot optimization in Figure 4.2, with fairly steady improvement over all 

iterations for each test round, with the most dramatic improvement occurring in the first 

150 iterations. 

 

Figure 4.7 Change in Cost over Iterations for 10 rounds of Decentralized Algorithm of test 2.3 

Figure 4.8, Figure 4.9, and Figure 4.10 show the convergence behaviour of the 

fitness function value of the PSO for each individual parking lot of each test round (a total 

of 90 objects in each graph). They show that while many tests began with infeasible parking 

lot solutions, by iteration 35 all test rounds had generated feasible solution for all parking 

lots, and thus for their round. They show the continued improvement of the objective values 

over each subsequent iteration. As with the results for the centralized algorithm, these 

figures also clearly show the behaviour of the PSO in terms of how the fitness function 

values change depending on the feasibility of the results (as per equation (3.18)): all 

infeasible results have a fitness below 1, but as soon as the result reach feasibility, the value 

is instantly equal to 1 or more, and increases in much smaller increments after that point.  

 



106 

 

 

Figure 4.8 Change in Fitness over Iterations for 10 rounds of Decentralized Algorithm of test 2.3 

Figure 4.9 shows the fitness values before all parking lots reached feasible 

solutions by iteration 35, and Figure 4.10 shows the improvement in fitness results after 

each solution reached feasibility, showing the expected gradual improvement and general 

PSO convergence behaviour.  

 

Figure 4.9 Enlarged Segment of Figure 4.8 
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Figure 4.10 Enlarged Segment of Figure 4.8 

The results of sub-test 2.3 displayed in the above tables and figures clearly 

illustrate the overall successful behaviour of the centralized and decentralized algorithms, 

in being able to produce comparable results, and in optimizing the total cost of a nine 

parking lot EV charge scheduling scenario, while ensuring the voltage magnitudes of the 

associated 33-bus system remained within the specified voltage limits.  

4.4.2 Discussion: Cost 

This section discusses the results of Test 2 as they pertain to the costs for the two 

algorithms.  

Table 4.11 lists the same cost results as Table 4.10, but includes a column listing 

the difference between the centralized and decentralized costs for each result type. As with 

Table 4.10, the optimum value is the minimum value out of all tests, and the worst value 

is the maximum value. 
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Table 4.11 Cost Comparison for all Sub-Tests ($) 

Sub-test  Centralized Decentralized Difference 

2.1  

(3 parking 

lots) 

Optimum  182.17 189.53 7.36 

Worst 187.39 197.49 10.10 

Median 183.49 193.00 9.51 

Mean 184.31 193.81 9.50 

Std. 1.80 2.78  

2.2 

(9 parking 

lots) 

Optimum  527.75 556.56 28.81 

Worst 535.29 578.57 43.28 

Median 531.15 565.98 34.83 

Mean 531.65 566.08 34.43 

Std. 2.43 6.47  

2.3 

(9 parking 

lots) 

Optimum  527.45 550.41 22.96 

Worst 541.25 573.96 32.71 

Median 532.15 564.51 32.36 

Mean 532.82 563.94 31.12 

Std. 3.93 6.89  

2.4 

 (18 

parking 

lots) 

Optimum  1082.49 1117.15 34.66 

Worst 1107.87 1143.08 35.21 

Median 1091.19 1125.87 34.68 

Mean 1094.43 1126.94 32.51 

Std. 9.98 8.28  

2.5 

(18 

parking 

lots) 

Optimum  1079.51 1116.44 36.93 

Worst 1117.53 1142.61 25.08 

Median 1087.05 1130.51 43.46 

Mean 1091.42 1126.61 35.19 

Std. 12.79 9.58  

2.6 

(27 

parking 

lots) 

Optimum  1624.80 1687.61 62.81 

Worst 1720.65 1724.23 3.58 

Median 1656.28 1692.60 36.32 

Mean 1658.94 1695.77 36.83 

Std. 27.71 11.20  

 

Table 6.10 in Appendix C shows the difference in cost between the centralized and 

decentralized versions for all inner PSO iteration variations. 

These tables show that there is an increase in cost as the number of parking lots 

increases, and in all cases, the centralized algorithm produced a lower cost solution, and 

therefore more optimal solution. For both the centralized and decentralized algorithms, the 

cases using more iterations of the inner PSO produced lower costs than those using fewer, 

as would be expected: double the number of iterations provides a much larger chance of 

the PSO finding a more optimal result.  

The increase in cost as the number of parking lots increased followed a nearly 

linear relationship, likely due to the way the parking lot profiles were developed (all 

algorithms used the same combinations of the 20 EV parking lot profiles, the base 
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transformer limit used by the decentralized algorithm was 60 kW, and the cost per parking 

lot tended to range between $35 to $95 depending on the specific profile).  Based on the 

trendline for each dataset generated by Microsoft Excel (see Appendix C Table 6.11), the 

cost per parking lot for the centralized algorithm with 500 iterations was approximately 

$61.72. The centralized algorithm with 250 iterations cost approximately $62.45, the 

decentralized algorithm with 500 iterations cost approximately $62.57, and the 

decentralized algorithm with 250 iterations cost approximately $63.11. These values 

indicate that as the number of parking lots increases, the centralized algorithm will be 

expected to produce a lower, more optimum cost solution for all cases.  

4.4.3 Discussion: Feasibility 

This section discusses the results of Test 2 as they pertain to the feasibility of the two 

algorithms. In this case, feasibility refers to the ability of the algorithm to generate results 

which did not violate any constraints, such as the transformer limit, charging rate, demand, 

or voltage magnitudes from equations (3.7)-(3.15), (3.18), (3.23)-(3.27), and (3.30). Figure 

4.11 shows the feasibility results from Table 4.10 in graphical form.  

 

Figure 4.11 Feasibility Comparison for Test 2 Results  

The results in Figure 4.11 show that generally, as the number of parking lots 

increased, the total amount of feasible solutions generated by the algorithm in the ten test 

rounds decreased. However, there are some unexpected behaviours in the results which are 
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likely to due to the nondeterministic nature of the metaheuristic, and the PSO’s 

susceptibility to premature convergence to a local minima [170].  

 The centralized algorithm was able to produce 100% feasible results for both 

iteration test cases, until the tests with 27 parking lots. This behaviour was expected, as 

due to the nondeterministic behaviour of the PSO, a higher proportion of infeasible results 

was expected for the 18 and 27 parking lot cases. A higher number of parking lots means 

that the algorithm has a higher number of inner PSOs to solve at every outer PSO iteration 

(number of outer PSO parfor loops is equal to the number of particles 𝑛𝑝 multiplied by 

the number of parking lots 𝑛𝑝𝑙), and therefore a higher chance of prematurely converged 

PSOs to occur. The results do indicate that the algorithm is more likely to produce a feasible 

solution than an infeasible one for all tested number of parking lots, but if the number of 

parking lots increases, it is expected that there would be a higher number of infeasible 

solutions and therefore a downward trend in percentage of feasible results, if the PSO 

parameters remain unchanged.  

The test results for the centralized algorithm also demonstrate the expected 

behaviour in terms of inner PSO iterations: the case with half the number of iterations (250 

versus 500) had a higher number of infeasible results with the 27 parking lots test case. 

This is most likely because with fewer iterations, the inner PSO had fewer chances to 

escape local minima. These results indicate that if the number of PSO iterations were 

increased, on both the inner and outer PSOs, there would be a higher chance of producing 

more feasible final solutions. As has been seen so far in this section and will also be 

discussed in Section 4.4.4, there is a trade-off that occurs when the PSO parameters are 

affected: more iterations lead to better and more feasible solutions, but also requires a 

longer runtime.   

The decentralized algorithm was able to produce 100% feasible results except for 

both 18 parking lot cases. It was expected that the results would follow the same pattern as 

the centralized algorithm, and have more infeasible results for the 27 parking lot cases, but 

this did not occur. For sub-test 2.4, two single parking lot PSOs in two different test rounds 

(round 4, parking lot 18 and round 6, parking lot 9) were unable to converge to a feasible 

solution, becoming stuck in a local minima within the first 25 iterations, and therefore 

resulted in infeasible solutions for those test rounds.  

Since the test cases with 27 parking lots required the solving of nine more PSOs 

than the 18 parking lot cases, it was expected that the decentralized algorithm would have 

behaved the same as the centralized version, and produced a few infeasible results in the 

10 test rounds, particularly for the 250 iteration test case. However, due to the centralized 

test rounds with 250 iterations resulting in 100% feasible results for all test rounds, it is 

possible that the results for the 18 parking lot test cases were anomalous, and totally 

coincidental that the cases where the PSO failed to act in the ideal manner occurred in both 

sub-tests 2.4 and 2.5. It is possible that instead, the more likely behaviour of the 
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decentralized algorithm is to produce more feasible results for higher numbers of parking 

lots. Further testing with more than 27 parking lots could be completed to confirm if this 

conclusion is correct: that the decentralized results for sub-tests 2.4 and 2.5 were exceptions 

to the general behaviour of the algorithm. 

Comparing the feasibility results of the centralized and decentralized algorithms, 

it can be seen that it is more likely for the centralized algorithm to result in infeasible 

solutions, particularly for higher numbers of parking lots. This is most likely due to the 

centralized algorithm having to run 50 times more PSOs than the decentralized algorithm 

in a single PSO iteration, which increases the risk of one of the PSOs becoming trapped in 

an infeasible local minima. It is also likely due to the centralized algorithm’s outer PSO 

behaviour producing many infeasible transformer limit results, which require additional 

PSO iterations to correct. Due to the way the EV parking lot profiles were created, a 

feasible solution for all 9 profiles can be found with a base transformer limit of 60 kW. 

Since the decentralized algorithm uses this limit for all parking lots, it is more likely that 

each parking lot’s PSO can find a feasible solution. Since the centralized algorithm’s outer 

PSO may generate infeasible solutions in each of its 50 outer PSO particles, it is possible 

that the outer PSO cannot converge to a feasible final solution.  

4.4.4 Discussion: Runtime 

This section discusses the results of Test 2 as they pertain to the runtime of the two 

algorithms. Table 4.13 shows the runtime results from Table 4.10 in seconds and minutes 

for ease of comparison. Figure 4.12 and Figure 4.13 show the runtime results from Table 

4.10 and Table 4.13 in graphical form.  
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Table 4.12 Centralized and Decentralized Multiple Parking Lot Results: Runtime 

Sub-test  Centralized Decentralized 

 Seconds (s) Minutes (min.) Seconds (s) Minutes (min.) 

2.1  

(3 parking 

lots) 

Optimum  253.78 4.23 17.43 0.29 

Worst 307.63 5.13 21.54 0.36 

Median 264.17 4.40 17.48 0.29 

Mean 267.40 4.46 17.90 0.30 

Std. 14.81  1.28  

2.2 

(9 parking 

lots) 

Optimum  531.90 8.87 19.17 0.32 

Worst 574.48 9.57 36.07 0.60 

Median 537.29 8.95 19.38 0.32 

Mean 541.09 9.02 21.02 0.35 

Std. 12.60  5.29  

2.3 

(9 parking 

lots) 

Optimum  525.51 8.76 17.99 0.30 

Worst 576.56 9.61 46.13 0.77 

Median 536.89 8.95 18.20 0.30 

Mean 538.76 8.98 21.92 0.37 

Std. 14.56  8.73  

2.4 

 (18 parking 

lots) 

Optimum  943.63 15.73 19.09 0.32 

Worst 1018.75 16.98 37.58 0.63 

Median 967.31 16.12 25.59 0.43 

Mean 960.92 16.02 25.78 0.43 

Std. 22.05  4.72  

2.5 

(18 parking 

lots) 

Optimum  973.00 16.22 18.37 0.31 

Worst 1021.54 17.03 37.58 0.63 

Median 988.55 16.48 18.46 0.31 

Mean 991.39 16.52 20.41 0.34 

Std. 13.33  6.03  

2.6 

(27 parking 

lots) 

Optimum  1455.90 24.27 18.98 0.32 

Worst 1628.01 27.13 43.34 0.72 

Median 1483.13 24.72 21.60 0.36 

Mean 1497.78 24.96 23.70 0.40 

Std. 49.21  7.4  

 

Figure 4.12 includes a yellow line along the y-axis at 900 seconds, to represent the 

15-minute limit. Figure 4.13 is an enlargement of Figure 4.12, showing the average runtime 

of the decentralized algorithm.  
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Figure 4.12 Average Runtime Comparison for Test 2 Results 
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Figure 4.13 Average Runtime Comparison for Test 2 Decentralized Results  

Figure 4.12 and Figure 4.13 show the runtime for each number of parking lot 

charge schedules to be optimized, for the two cases of different inner PSO iteration 

parameters. Of all the tests completed, only the centralized algorithm with 500 inner PSO 

iterations was unable to complete its optimizations within the 15-minute timeframe: 

requiring approximately 16 and 25 minutes to complete the optimizations for 18 and 27 

parking lots. All centralized algorithm optimizations using 250 inner PSO iterations were 

completed in under 14 minutes, and all decentralized optimizations were completed in 

under one minute. In all cases, the algorithm test cases with half the number of iterations 

had a runtime approximately half the length of that with more iterations.  As was seen in 

Sections 4.4.2 and 4.4.3, more iterations results in more optimal (lower cost) and more 

feasible solutions, but also requires a longer runtime.   

For the centralized algorithm, the table and figures show a linear relationship 

between the runtime and the number of parking lot charging schedules to optimize. As was 

the case with feasibility as described in Section 4.4.3, this is most likely attributable to the 

relationship between the amount of parfor loops (and therefore inner PSOs) to be 

completed and the number of parking lots in Algorithm 2: since the number of outer PSO 
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parfor loops is equal to the number of particles 𝑛𝑝 multiplied by the number of parking 

lots 𝑛𝑝𝑙, as the parking lots increase, the number of loops and PSOs to be executed also 

increases. In the case of 27 parking lots, the 192 workers in the Taurus Cluster are required 

to execute 1350 PSOs in parallel every outer PSO iteration, which is approximately seven 

PSOs per worker if split evenly. Knowing that it takes approximately 20 seconds for a 

single PSO to be optimized and approximately 160 seconds or 2.67 minutes for one 

iteration of the outer PSO to optimize 1350 PSOs (per Test 4 in Section 4.6), it therefore 

makes sense that the execution of 10 iterations of the outer PSO for this case would require 

approximately 26.67 minutes, as shown in Table 4.12. 

 Based on the trendlines produced by Microsoft Excel (see Appendix C Table 6.11) 

and Figure 4.12, it can be extrapolated that the centralized algorithm with 500 inner PSO 

iterations should be able to optimize the charge schedules for up to 15 parking lots in under 

15 minutes, and the centralized algorithm with 250 inner PSO iterations should be able to 

optimized the schedules for up to 32 parking lots in under 15 minutes. Further testing with 

different combinations of inner and outer PSO iterations and numbers of parking lots could 

confirm the total number of parking lots which can be optimized in 15 minutes or less.      

For the decentralized algorithm, the table and figures show a different relationship 

between the runtime and the number of parking lot charge schedules to be optimized. It 

shows that the algorithm with 500 inner PSO iterations requires less than 30 seconds to 

complete the optimizations, and the algorithm with 250 iterations requires less than 15 

seconds. This relationship, as well as the variation seen in Figure 4.13 (a decrease in 

runtime as the number of parking lots increases in four cases, which is not present for the 

centralized runtime results) is most likely due to the number of parfor iterations, and 

therefore workers in the Taurus cluster, required to complete the work. In the decentralized 

algorithm, Algorithm 4, the number of parfor loops (and therefore individual PSO 

optimizations) is equal to the number of parking lots 𝑛𝑝𝑙. For less than 24 parking lots, 

only one workstation in the Taurus Cluster was required to be activated, so there was likely 

less communication overhead between the 3, 9, or 18 workers of the cluster completing the 

work. For the 27 parking lot case, only 27 workers on the first and second workstations of 

the Taurus Cluster were required to complete the work. The decrease in runtime from the 

18 to the 27 parking lot optimization cases may be due to communication overhead 

between the workers changing between tests due to other work being completed, or 

changes in how the workers communicated within the same or different workstations.  

It would be expected that up to 192 parking lots could be optimized by both 

decentralized algorithm versions in similar 15 and 30 second intervals, since that is the 

maximum size of the Taurus Cluster. Further testing would be required to confirm the 

behaviour of the decentralized algorithm, but it can be theorized that up to approximately 

5760 and 11520 parking lots could be optimized within 15 minutes with the decentralized 

algorithm, using 500 and 250 inner PSO iterations respectively. 
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4.4.5 Summary  

The results of this test provided ample comparison between the centralized and 

decentralized algorithms, in order to compare their results in terms of cost, feasibility, and 

runtime. The results showed that in terms of cost, the decentralized model was able to 

function accurately and produce comparable results to the centralized model, and that most 

importantly, that the centralized algorithm was able to provide a more optimal result (i.e., 

a lower cost) than the decentralized algorithm, for all scenarios. In terms of feasibility, the 

likelihood that both algorithms would produce an infeasible final test result increased as 

the number of parking lots increased, with the centralized result slightly more likely to 

produce an infeasible result. In terms of runtime, the results showed that as the number of 

parking lots increased, the runtime for both algorithms increased, with the centralized 

algorithm taking a much longer time to complete a single test due to it completing 10 

iterations of the outer PSO in order to optimize the transformer limits or maximum real 

power demand for each individual parking lot. The decentralized model’s runtimes were 

very short for all cases, whereas the centralized model’s runtimes increased dramatically 

and linearly as the number of parking lot charging schedules to be optimized increased.   

Related to the 15-minute time limit for the optimization, it was theorized that the 

centralized algorithm with 500 inner PSO iterations should be able to optimize the charge 

schedules for up to 15 parking lots in under 15 minutes, and the centralized algorithm with 

250 inner PSO iterations should be able to optimize the schedules for up to 32 parking lots 

in under 15 minutes. It was also theorized that the decentralized algorithm with 500 inner 

PSO iterations should be able to optimize the charge schedules for approximately 5760 

parking lots in under 15 minutes, and the decentralized algorithm with 250 inner PSO 

iterations should be able to optimize the charge schedules for approximately 11520 parking 

lots in under 15 minutes.  

In terms of weighing the optimum costs versus general feasibility versus average 

runtime of the test cases, the results of the test showed that these are all related to the 

parameters of the PSO. When the number of PSO iterations was increased from 250 to 500, 

the costs were lower and more optimal, and there was a greater number of feasible final 

solutions, but the runtime was doubled. For larger numbers of parking lots, having more 

inner PSO iterations caused the algorithm runtimes to exceed the 15-minute time limit. 

Further testing is required to determine how different inner PSO population sizes, and outer 

PSO population and iteration size combinations could be made to enable the centralized 

algorithm to meet the 15-minute runtime limit but also provide good, low cost solutions. 

For a distribution system where there are many different EV parking lots and locations, the 

potential cost savings offered by the centralized method may provide enough incentive for 

the operator to use larger inner and outer PSO populations and/or iterations in order to 

lower costs and reduce the risk of an infeasible final solution, but for those less concerned 

with cost, using fewer inner or outer PSO iterations may provide a solution that is “good 

enough” for their purposes, and within their required time limit.  
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4.5 Test 3: Speedup - Sequential versus Parallelized Centralized Methods 

for a Single Parking Lot 

The purpose of this test was to determine the speedup of a parallelized version of the PSO 

optimization of a single parking lot, as described in Algorithm 1, by comparing the results 

of a sequential version of the algorithm with the results of a parallelized version (from Test 

1).  The aim of the test was to verify the speedup, or reduction in computation time, using 

the standalone multicore workstation, and also to verify that the parallelized version 

performed as well as the sequential version. This test demonstrated the speedup of the 

parallelized version of Algorithm 3, the inner PSO of Algorithm 2 and modified version of 

Algorithm 1, optimizing the charging of a single parking lot with a given number of EVs 

and their charging request profiles.  

This test used the same simulation parameters as Test 1, and had the same 60 kW 

parking lot transformer limit.  

The test description is as follows: the parallelized, centralized algorithm described 

in Section 3.3 above was run with the specified parameters, 100 times independently, and 

then the sequential algorithm was run with the same parameters, 100 times independently. 

The final cost, fitness, and algorithm runtime were recorded, along with graphical 

representations of the fitness and cost, for both versions of the algorithm. The parallelized 

test was run using 9 of the 20 available cores or processors on the workstation. This number 

was selected based on speedup tests run as part of this overall test, as described in Section 

4.5.2.  

4.5.1 Results  

A summary of the results of this test are listed in Table 4.13, and shown in Figure 4.16 to 

Figure 4.15. A segment of the full results can be found in Appendix B. The results from 

Table 4.4 of Test 1 are repeated in Table 4.13 for ease of comparison. The speedup is 

calculated by dividing the time required to run one sequential test, by the time required to 

run one parallelized test. 
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Table 4.13 Parallelized and Sequential Single Parking Lot Results: Cost, Time, and Speedup – using 9 

workers 

 Sequential Parallelized  

 Cost ($) Fitness Time 

required 

to run 1 

test (s) 

Cost ($) Fitness Time 

required to 

run 1 test 

(s) 

Speedup 

(x 

times) 

Optimum 53.78 1.0183 17.47 53.77 1.0183 14.91 1.17 

Worst 62.14 1.0158 36.69 61.36 1.0160 19.25 1.91 

Median 56.69 1.0173 18.10 57.09 1.0172 15.30 1.18 

Mean 57.04 1.0173 18.75 57.16 1.0172 15.32 1.22 

Std. 2.19 0.00 2.22 1.83 0.00 0.44 0.14 

 

The results listed in Table 4.13 can be used to answer both aims of this test: the 

standalone multicore workstation was able to provide an average speedup of 1.22 times 

with the parallelized version of the test, and the parallelized version was able to perform as 

well as the sequential version, with less than a $0.80 difference between the best, worst, 

median, and mean results. 

Figure 4.14 shows the variation in runtime over all parallelized and sequential 

tests, and Figure 4.15 shows a visual representation of the speedup results.  

 

Figure 4.14 Runtime and Average Runtime for all Parallelized and Sequential Test Rounds 
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Figure 4.15 Optimum (min), Worst (max), Mean, and Median Speedup Results for Test 3 

These figures illustrate that in all test cases except for the first one, the parallelized 

runtime was shorter than the sequential runtime by approximately two seconds (an 

averaged parallelized runtime of 15.30 to the minimum sequential runtime of 17.47 

seconds), and therefore was always able to provide a speedup just over 1.1 times. A 

potential maximum speedup of almost 2 times was observed when comparing the 

maximum runtimes between the two algorithms (36.69 to 19.25 seconds), though the mean 

and median speedups provide a more accurate runtime of approximately 1.2 times since 

the vast majority of the test runtimes were must closer to the calculated average runtimes 

of 15.32 and 18.75 seconds.  

It is evident in these results that the speedup is incredibly limited. Using equation 

(2.12) where 𝑛 =  9 and 𝑠𝑛 = 1.22, the parallelizable portion of the algorithm 𝑓 is found 

to be approximately 0.2029, approximately two tenths of the overall algorithm. This aligns 

with the results in [119], where an algorithm with a parallelizable portion 𝑓 of 0.2 has a 

maximum speedup of 1.25 times. The limited speedup may also be attributable to 

communication overhead of the parfor function, but the limited parallelizable proportion 

of the algorithm is likely to be the most important factor in the relatively small speedup. 

Per the Gustafson-Barsis Observation, is likely that a higher speedup would be seen if the 

number of PSO particles were increased and therefore the amount of parallel work 

increased by that factor, but this was not tested formally as part of this thesis.  

The following figures demonstrate visually how the parallelized version performed 

in comparison the sequential version: Figure 4.16 shows the performance of both PSO 

versions, and Figure 4.17 shows the variation in final cost for both versions over all 100 

test rounds.  
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(a) (b) 

Figure 4.16 Change in Cost over Iterations for the Optimum Test Rounds: Parallelized – round 93 (a), 

and Sequential – round 188 (b) 

Figure 4.16, with Figure 4.16(a) being a reproduction of Figure 4.2, shows the very 

similar behaviour of the objective function’s cost values over the iterations, for the 

optimum test round of each algorithm. Both images show that the PSOs followed the 

expected convergence pattern, and therefore were able to produce very similar results.  

 

Figure 4.17 Final and Average Final Costs for all Parallelized and Sequential Test Rounds 
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Figure 4.17 confirms the similarity of final results between the two algorithms, and 

shows that the parallelized version was able to perform as well as the sequential version, if 

not slightly better, over the 100 test rounds.  

Overall, these results show that the parallelization of the algorithm was done 

accurately, or correctly, able to produce results similar to and slightly better than to those 

of the sequential version, and that the parallelization resulted in a speedup of approximately 

1.2 times.  

4.5.2 Selection of Nine Worker Processes 

When the standalone workstation with 20 cores was selected to run the single parking lot 

optimization tests, initial tests were run to determine the number of cores that should be 

used in the MATLAB parallel pool, to provide the best speedup before the final official 

100-round simulations would be run. To determine the approximate speedup available on 

the multicore workstation, the same centralized parallelized and sequential algorithms were 

run with the specified parameters in Table 4.3 10 times independently. The test runtimes 

and speedup were recorded. Figure 4.18 shows the results, for the average (mean), 

minimum, maximum, and median speedup values for all tested number of cores. 

 

Figure 4.18 Single 20 Core Workstation Speedup Test Results 
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Figure 4.18 shows that a speedup of more than 1 (i.e. achieved any speedup) was 

found when using six to 12 cores of the available 20. With five or fewer cores, or 13 or 

more cores, the parallelized algorithm took as long, if not longer, than the sequential 

algorithm to run, likely due to the communication overhead required. The use of nine cores 

provided the highest potential speedup of up to 1.19 times, so that number of workers was 

selected for use in the test described in Sections 4.3.1 and 4.5.1. 

4.6 Test 4: Speedup - Sequential versus Parallelized Centralized Methods 

for Multiple Parking Lots 

The purpose of this test was to determine the speedup of a parallelized version of the PSO 

optimization of multiple parking lots, as described in Algorithm 2, by comparing the results 

of a sequential version of the algorithm with the results of a parallelized version.  The aim 

of the test was to verify the speedup, or reduction in computation time, using the 192-

worker HPC cluster. This test demonstrated the speedup of the parallelized Algorithm 2, 

optimizing the charging of multiple parking lots with a given number of EVs and their 

charging request profiles.  

This test used most of the same simulation parameters and tests results (for the 

parallelized version) as Test 2. However, due to the long algorithm runtimes required by 

the sequential versions, this test used a modified set of parameters and only one scenario 

for each number of parking lots, as listed in Table 4.14.  

 Table 4.14 Simulation Parameters – Test 4 

Parameter Value 

Sub-test no. 4.1 4.2 4.3 4.4 

Number of Parking Lots 3 9 18 27 

Number of EVs 60 180 360 540 

Number of Particles (Outer PSO) 50 50 50 50 

Number of Iterations (Outer PSO) 5 5 5 5 

Number of Particles (Inner PSO) 100 100 100 100 

Number of Iterations (Inner PSO) 500 500 500 500 

Distribution System Test Case 18-bus 33-bus 69-bus 141-bus 

 

As described previously, running 10 test trials of the full version of these tests 

requires an exceptionally long and impractical amount of time (for example, it would 

require over 750 hours or 31 days to run 10 trials of the full centralized, sequential 27 

parking lot model). Therefore, for this test, the individual item being tested was a single 

test’s outer PSO iteration time, and the final cost and fitness outcomes were ignored. The 

iteration time was therefore trialed five times in one test, to keep the test runtimes under 
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48 hours. To determine the approximate or estimated time required to run one full 10-

iteration version of the test, the average or mean iteration runtime was multiplied by 10.  

The test description is as follows: the parallelized, centralized algorithm described 

in Section 3.3 was run for each sub-test with the specified parameters, one time 

independently, and then the sequential algorithm was run with the same parameters, one 

time independently. The five iteration runtimes were recorded for both versions of the 

algorithm, and their speedup results compared. In order to determine the speedup as if a 

full 10 iteration version of the parallelized and sequential algorithms were run, the average 

single iteration times were multiplied by 10 and the speedup results for this case were also 

recorded.  

4.6.1 Results  

A summary of the results of this test are listed in Table 4.15 and Figure 4.19. The speedup 

is calculated by dividing the time required to run one sequential test by the time required 

to run one parallelized test, per equation (2.10). 
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Table 4.15 Parallelized and Sequential Multiple Parking Lot Results: Time and Speedup 

Sub

-test 

 Sequential Parallelized  

  Time 

required 

to run 1 

iteration 

(s) 

Time 

required to 

run 1 test* 

(s) 

Time 

required to 

run 1 

iteration 

(s) 

Time 

required to 

run 1 test* 

(s) 

Speedup 

for 1 

iteration (x 

times) 

Speedup 

for 1 test* 

(x times) 

4.1 

(3 

park

ing 

lots) 

Optimum  2650.69  25.34  104.59  

Worst 2768.03  75.67  36.01  

Median 2664.67  25.69  103.72  

Mean 2685.64 26856.4 36.32 363.20 73.95 73.95 

Std. 48.31  22.7  29.18  

4.2 

(9 

park

ing 

lots) 

Optimum  7079.96  52.71  134.31  

Worst 7499.52  107.58  69.71  

Median 7247.30  55.09  131.55  

Mean 7278.86 72788.60 65.67 656.70 110.84 110.84 

Std. 183.90  23.54  30.96  

4.3 

(18 

park

ing 

lots) 

Optimum  14424.00  90.10  160.09  

Worst 14553.74  149.83  97.13  

Median 14461.90  92.28  156.71  

Mean 14485.84 144858.40 103.88 1038.80 139.44 139.44 

Std. 57.46  25.81  27.53  

4.4 

(27 

park

ing 

lots) 

Optimum  20758.22  138.92  149.42  

Worst 21254.14  205.73  103.31  

Median 20945.81  147.25  142.25  

Mean 20933.40 209334.0 157.34 1573.40 133.05 133.05 

Std. 202.47  27.34  19.33  

* estimated times, based on multiplication of average runtime of one iteration by 10 to make 10 iterations (1 

full test) 

 

The results in Table 4.15 are visually illustrated in Figure 4.19. They show that in 

all test cases, there was a runtime speedup of at least 27 times, due to the variations in 

runtime across all tests. The lowest potential speedups for all cases were seen when 

comparing the maximum runtimes for the algorithm versions, and the highest seen when 

comparing the minimum runtimes observed across the five test iterations. The estimated 

times for the parallelized tests are in-line with the real results seen in Test 2 (runtimes 

ranging from 253.78 to 307.63 seconds for three parking lots, 525.51 to 576.56 seconds for 

nine parking lots, 943.63 to 1018.75 seconds for 18 parking lots, and 1455.90 to 1628.01 

seconds for 27 parking lots), showing that these can be considered good estimated total 

runtimes.   
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Figure 4.19 Single Iteration Optimum (min), Worst (max), Mean, and Median Speedup of the 

Parallelized versus the Sequential Algorithm, and estimated Mean Speedup for a Full Test, for Various 

Numbers of Parking Lots 

The line in Figure 4.19 shows the general behaviour of the average speedup value 

as the number of parking lots, and therefore size of the problem, increases. The speedup 

appears to increase in a mostly linear fashion from three to 18 parking lots, but plateaus or 

slightly decreases from 18 to 27 parking lots. This is mostly consistent with the expected 

linear increase in speedup as the amount of work increases. Further testing with different 

numbers of parking lots above and below 27 may produce a clearer relationship between 

the number of parking lots and algorithm speedup.  

Using equation (2.12) and the average speedup for each number of parking lots, 

the parallelizable portions of the algorithm 𝑓 are found to be approximately 1, or 100% 

(0.9916, 0.9962, 0.9980, 0.9977).  Based on the speedup rules from Amdahl’s Law, this 

parallelizable proportion of nearly 100% implies that the addition of more processors 

should always provide a speedup with nearly no upper bound, and from and the Gustafson-

Barsis Observation, the speedup should be proportional to the number of processors 𝑛. 

Further testing with different numbers of processors may produce a clearer relationship 

between the number of processors, amount of work, and algorithm speedup.  

The results of Test 3 showed that the parallelization of the fitness function 

evaluation of the single parking lot PSO, i.e. the parallel evaluation of the 100 inner PSO 

particles, reflected an algorithm with only a 20% parallelizable proportion. These test 

results showed that the parallelization of the fitness function evaluation of the outer PSO, 

i.e., the parallelization of 50 particles multiplied by 𝑛𝑝𝑙 number of parking lots full 100 

particle, 500 iteration PSO evaluation, reflected an algorithm with a nearly 100% 
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parallelizable proportion. This shows that the algorithm with the parallelized outer PSO 

(Algorithm 2) was more effectively parallelized in terms of it resulting in a much greater 

speedup, however with the chosen inner and outer PSO parameters, the minimum runtime 

for a test remains 20 seconds (for one parking lot optimized with one outer PSO iteration), 

and that time cannot be further reduced without changes to the parallelization method of 

the algorithm since parfor loops cannot be nested inside one another [159].    

Overall, the results of Test 4 show using all 192 worker processors in a HPC cluster 

can result in a speedup of approximately 74 to 139 times for the optimization of EV charge 

scheduling for three to 27 parking lots.  

4.7 Validation 

To validate this thesis, the centralized, parallelized algorithms adapted (Algorithm 1 and 

Algorithm 3) and developed (Algorithm 2) to optimize one or more parking lot charging 

schedules were compared against: the original results of the single parking lot optimization 

method developed in [40] to confirm that individual parking lots were being optimized 

properly, compared against the developed decentralized algorithm (Algorithm 4) to 

compare optimization results as the problem size increased, and compared against the 

sequential version of the algorithms to compare runtime results.  

The following sections compare the results obtained in Sections 4.3, 4.4, 4.5, and 

4.6 with the success criteria established in Section 4.2, to verify the accuracy of the 

implementation and the accuracy of the parallelization of the model algorithms.  

4.7.1 Accuracy of Implementation: Centralized Single and Multi-Parking Lot 

Optimization  

The results used to determine the accuracy of the implementation of the centralized model, 

from success criteria #1 and #3, come from Test 1 (Section 4.3), Test 2 (Section 4.4), and 

Test 3 (Section 4.5). 

 Single Parking Lot Optimization 

As was discussed in Section 4.3.1, the Test 1 results showed that the implementation of the 

centralized multiple parking lot optimization model, when modified to run for one parking 

lot, was able to perform accurately, as intended. The average, lowest, and highest electricity 

costs produced by the model were within the range of $53.77 to $61.36, well within the 

range of $53.77 to $73.69 from [40]. The $61.36 maximum result is slightly higher than 

the $59.45 “original PSO” result, but since no standard deviation or other results for the 

same 20 EV, 60 kW transformer limit result were presented in the paper, it is unsure if that 
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result was for the best original PSO result, or the average result from an unknown number 

of trials.  

 Multiple Parking Lot Optimization 

The Test 2 results show that the centralized multiple parking lot optimization model was 

implemented accurately, and could continue to perform as intended as the problem size 

increased. The average cost output for each problem size or scenario scaled linearly with 

the number of parking lots (see Table 6.11 in Appendix C), and were below and within the 

desired $ 𝑛𝑝𝑙 × $ 5 margin value. This is shown in Table 4.16. 

Table 4.16 Cost Comparison for Expected and Test 2 Centralized Results ($) 

Sub-test 𝒏𝒑𝒍 𝒏𝒑𝒍 × 𝟓 Average Cost 𝒏𝒑𝒍 × 𝟔𝟒 Difference 

2.1 3 15 184.31 192 7.69 

2.2 9 45 531.65 576 44.35 

2.3 9 45 532.82 576 43.18 

2.4 18 90 1094.43 1152 57.57 

2.5 18 90 1091.42 1152 60.58 

2.6 27 135 1658.94 1728 60.17 

 

The average cost results are from Table 4.11. The fifth column shows the result of 

the expected approximate cost output equation from Section 4.2.2, $ 𝑛𝑝𝑙 × $ 64, and the 

third column shows the result of the value margin equation $ 𝑛𝑝𝑙 × $ 5. The table shows 

that in all cases, the average cost was close to or below the expected value, and never 

exceeded the margin value. 

For success criteria #1, determining which model is able to provide the more 

optimal result, the cost results for the centralized and decentralized models were compared 

in Section 4.4.2, and clearly showed that in all cases, the centralized algorithm produced a 

lower cost therefore more optimal solution.  

4.7.2 Accuracy of Parallelization and Speedup: Parallel Implementation of the 

Centralized Single and Multi-Parking Lot Algorithms  

The results used to determine the accuracy, or correctness, of the parallelization of the 

centralized model, from success criteria #2 and #3, come from Test 1 (Section 4.3), Test 2 

(Section 4.4), Test 3 (Section 4.5), and Test 4 (Section 4.6). 

 Single Parking Lot Optimization 

The results of Test 3 show that the sequential and parallelized version of the centralized 

multiple parking lot optimization model, when modified to run for one parking lot, 
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provided results within $0.01-0.78 of the minimum and maximum results. These very 

similar results show that the model was parallelized accurately, in terms of implementation. 

The speedup results of Test 3 also show that the model was parallelized accurately 

in terms of speedup: all speedup values were greater than 1 times, with an average speedup 

of 1.22 times. Though this was not a large decrease in computational runtime it does 

demonstrate that the model was parallelized accurately.  

 Multiple Parking Lot Optimization 

The results of Test 2 show that the centralized multiple parking lot optimization model was 

parallelized accurately, in terms of implementation, being able to produce the accurate 

expected cost results (see Section 4.7.1.2), 

The results of Test 4 showed that the model was parallelized accurately, in terms 

of speedup. All speedup values for all tested scenarios were greater than 1, with average 

speedups ranging from 74 to 139 times.  

The problem sizes (number of parking lots with 20 EVs each) which were able to 

complete their optimizations within the 15 minute time limit depended on the PSO iteration 

parameters chosen for the test. The centralized algorithm using 500 inner PSO iterations 

was able to compute the optimization for a maximum of 9 parking lots in under 15 minutes, 

though it may be possible to optimize up to 15 parking lots. The centralized algorithm using 

250 inner PSO iterations was able to optimize up to 27 parking lots in under 15 minutes, 

though it may be able to optimize up to 32 parking lots.  

4.7.3 Accuracy of Implementation: Parallel Implementation of the Decentralized 

Multi-Parking Lot Algorithm 

The results used to determine the accuracy of the implementation (and parallelization)  of 

the decentralized model, from success criteria #1, Test 2 (Section 4.4) and Test 3 (Section 

4.5).  

The Test 2 results show that the decentralized multiple parking lot optimization 

model was implemented accurately, and could continue to perform as expected as the 

problem size increased. The average cost output for each problem size or scenario scaled 

linearly with the number of parking lots (see Table 6.11 in Appendix C), and were below 

or within the desired $ 𝑛𝑝𝑙 × $ 5 margin value. This is shown in Table 4.17. 
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Table 4.17 Cost Comparison for Expected and Test 2 Decentralized Results ($) 

Sub-test 𝒏𝒑𝒍 𝒏𝒑𝒍 × 𝟓 Average Cost 𝒏𝒑𝒍 × 𝟔𝟒 Difference 

2.1 3 15 193.81 192 1.81 

2.2 9 45 566.08 576 9.92 

2.3 9 45 563.94 576 12.06 

2.4 18 90 1126.94 1152 25.06 

2.5 18 90 1126.61 1152 25.39 

2.6 27 135 1695.77 1728 32.23 

 

The average cost results are from Table 4.11. The fifth column shows the result of 

the expected approximate cost output equation from Section 4.2.2, $ 𝑛𝑝𝑙 × $ 64, and the 

third column shows the result of the value margin equation $ 𝑛𝑝𝑙 × $ 5. The table shows 

that in all cases, the average cost was close to or below the expected value, and never 

exceeded the margin value. 

Since the single parking lot optimization tests used a different computer and testing 

configuration than those of Test 2, the runtime results do not align perfectly, so there cannot 

be true comparison between the minimum, maximum, and average runtime for the 

decentralized model from Table 4.12 and the minimum, maximum, and average runtime 

for the sequential single parking lot optimization model from Table 4.13. However, as was 

discussed in Section 4.4.4, all decentralized model average test runtimes were within a 

17.9-23.7 second range, indicating that each decentralized model test runtime was 

approximately equal to the runtime required to sequentially optimize a single parking lot.  

4.8 Summary 

This chapter described the results obtained from the different tests run in order to validate 

the performance of the developed methods for different scenarios and numbers of parking 

lots. The results showed how the models developed support the aim of this thesis, as the 

centralized method was able to provide more optimal solutions compared to the 

decentralised method for scenarios with more than one parking lot, and that parallel 

computing enabled the optimization of scenarios with up to 27 parking lots to be computed 

in less than 15 minutes, depending on the chosen PSO parameters. The centralized model 

with 500 inner PSO iterations was only able to compute up to 9 parking lots, but could 

compute up to the maximum test amount of 27 parking lots within 15 minutes when using 

250 inner PSO iterations. Section 4.1 discussed the experimental setup of the multicore and 

distributed computing cluster testing systems. The three success criteria and their 

comparison metrics were explained in Section 4.2. Sections 4.3, 4.4, 4.5, and 4.6 showed 

the results for all the completed tests, and Section 4.7 explained how the results met the 

success criteria for this thesis.  
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Section 5 

Contributions and Future Work 

This chapter describes the contributions of this thesis research, and provides a number of 

recommendations for future work to build on the research as well as areas to improve and 

expand on the models designed and presented in this thesis.  

5.1 Contributions 

As mentioned in Section 1.5, this research provided four main contributions to the field of 

EV charge scheduling optimization, with a focus on real-time centralized optimization. The 

contributions from this thesis research are as follows:  

1. Development of a complete centralized solution to the problem of EV charge 

scheduling optimization in multiple parking lots. A two-level PSO algorithm was 

designed and implemented, building on the single parking lot optimization model 

developed by Wu et al. in 2018 [40]. This algorithm included the definition of two 

fitness functions, and included the verification of power flow voltage constraints 

in the system. This solution enabled the optimization of charging schedules for 

individual EVs within parking lots, coordinating the transformer limits or 

maximum charging capacity between all parking lots in a system to minimize costs 

while remaining within system power flow constraints.   

2. Verification that centralized optimization provides a more optimal solution than 

decentralized optimization. A decentralized version of the centralized algorithm 

was created for the optimization problem, and direct comparisons for cost, 

feasibility, and algorithm runtime, were made for ten different scenarios. In all 

cases, the centralized algorithm was able to provide a more optimal result (i.e., a 

lower cost) than the decentralized algorithm. These results support the assertions 

made in literature that the centralized approach provides a more optimal result [10], 

[34], [36], [70]. The results presented in this thesis also support assertions made 

about the decentralized approach: that while it may not be able to provide a more 

optimal solution, it is more computationally efficient. These results and their 

comparison contribute to the body of literature which directly compare centralized 

and decentralized EV charge scheduling solutions together, providing more 

examples of benefits and drawbacks which may support the use of one method 

over another. 
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3. Provision of a method to parallelize the two-level PSO centralized optimization 

model. The two-level PSO centralized multiple-parking lot optimization model 

was parallelized with the SPMD method, using the MATLAB parfor function to 

evaluate the fitness of and perform the optimization of a specified amount of PSO 

candidate EV parking lot charging schedules in parallel. This parallelization 

reduced the computational burden of the centralized optimization model, enabling 

all tested scenarios of three to 27 parking lots to be completed in a much shorter 

amount of time, providing speedups of approximately 74 to 139 times using the 

experimental setup.  

4. Demonstration of the scalability of the solution. The parallelized two-level PSO 

centralized optimization model was tested against its sequential version, and the 

results verified that using parallel computing on HPC systems can allow for real-

time optimization of the EV charge scheduling problem for a variety of problem 

sizes. Depending on the PSO parameters used, the parallelized model was able to 

compute the EV charging schedules for up to 180 EVs in 9 parking lots (500 inner 

PSO iterations) or 540 EVs in 27 parking lots (250 inner PSO iterations) in under 

15 minutes. Further experimentation could verify the exact number of parking lots 

which could be optimized with this algorithm with a specific set of PSO parameters 

in 15 minutes or less using the same experimental setup.  

5.2 Future Work and Recommendations 

The research conducted for this thesis can provide a foundation for future work in 

centralized EV charge scheduling optimization and algorithm parallelization to enable real-

time optimization. 

Firstly, the two-level PSO algorithm can be integrated with future optimization 

problems which consider multiple objectives, multiple EVs, or multiple parking lots, when 

considering a centralized optimization method. As well, the two-level model could be 

adapted to include other metaheuristic or optimization methods as the outer or inner 

method, to tailor the optimization to the specific problem and combat some of the less 

desirable aspects of PSO like its tendency to premature convergence. A combination of 

PSO and GA, hybrid methods, or the use of techniques like islanded PSO could be trialed 

to determine if a method could be found which can offer more consistent feasible results 

for a larger number of parking lots.  Further experimentation with the centralized multiple 

parking lot optimization model developed in this thesis could be conducted in order to 

determine which different inner and outer PSO population and iteration size combinations 

could enable the algorithm to meet the 15 minute runtime limit while also providing good, 

low cost, and feasible solutions.    



132 

 

Secondly, the use of parallelization with other approaches should be investigated. 

The parallelization of the two-level PSO algorithm within this thesis was successful, since 

it was able to greatly reduce the runtimes and provide large speedups. The use of 

parallelization to reduce the computational burden and improve algorithm runtimes should 

be investigated for use with other approaches to the problem of EV charge scheduling, 

especially for those which have larger problem sizes (using the centralized method, 

optimizing multiple parking lots, etc.). As well, investigation on how to use GPU-based 

parallelization should be considered, as it may allow for even greater reductions in 

algorithm runtime as the problem size increases.  

There are also a number of recommendations for future work which may build on 

this thesis, to improve the optimization process, increase the realism of the scenarios and 

model, and overall improve the quality of solutions produced by the centralized, two-level 

PSO multiple-parking lot EV charge scheduling optimization model.  

Firstly, to increase the realism of the scenarios to better reflect current power 

systems, the distribution system can have distributed generation and energy storage 

systems integrated into the scenarios. As well, with the expected implementation of V2G 

technologies in the future, the modification of the model to support charging and 

discharging of EVs and their behaviour as mobile energy storage systems would allow for 

a wider variety of scenarios and EV charging behaviours to be investigated.  

Another way to increase the realism of the EV charging would be to generate more 

distinct EV parking lots and EV charging profiles based on different types of EVs with 

different charging demands. These parking lots could have differing numbers of charging 

ports, and include Level 2 and 3 charging ports. The EV charging profiles could be 

extended to include more than 10 time intervals to better model behaviour over a full day 

or a week. Lots could be identified as serving commercial, industrial, workplace, or other 

areas, and have parking profiles generated from real EV charging data to better model the 

behaviour and impact on different nodes of a distribution system.  

The modification of the electricity costs to reflect a real city’s utility and power 

demand would also increase the realism of the model, and better support the assertion that 

EV charging schedule optimization can be used to “control charging activity at charging 

stations to minimize unexpected spikes in peak load demand” [15]. If the price reflects the 

demand, i.e. a higher price reflects a period where demand needs to be shaved or 

minimized, then the model developed in this thesis can reduce the peak power demand by 

optimizing the schedule to reduce charging during those periods. However, this claim could 

be better supported by expanding the simulation data and model to use a longer timeframe 

and demand and pricing information from a city where the demand is known for each time, 

and the costs reflect real time pricing. Using this expanded information, it could be 

demonstrated whether the model can be truly used to minimize spikes in load demand on 

the system.   
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5.3 Summary 

This chapter described the four main contributions of this thesis research, which included 

the development of a complete centralized solution to the EV charging schedule 

optimization problem, verification that it provided a more optimal solution than a 

decentralized solution, the provision of a method to parallelize it, and demonstrations of its 

scalability. It also described a number of number of recommendations for future work to 

build on the research, as well as areas to improve and expand on the models designed and 

presented in this thesis in order to make the scenarios and resulting solutions more 

reflective of realistic scenarios.  
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Section 6 

Conclusion  

The research conducted for this thesis has successfully produced an optimization model for 

the EV charge scheduling problem, which used a parallelized two-level PSO algorithm to 

optimize the charging schedules of EVs in multiple parking lots. The model was validated 

using four main tests with over fourteen individual sub-tests and four distribution system 

scenarios, and its results compared against its sequential version and a decentralized model 

in order to prove the research hypothesis. The results showed that a centralized EV charge 

scheduling optimization model for EVs in multiple parking lots will find a more optimized 

solution to the charge scheduling problem, compared to a decentralized optimization 

model, and that parallelization of the calculations on a HPC system like a multicore 

workstation or HPC cluster will allow for real-time optimization. 

As the number of EVs in operation around the world continues to rise, the 

management and optimization of EV charge scheduling is becoming even more necessary 

in order to minimize the burden on existing power infrastructure while reducing costs for 

utilities and users. This work contributes to the body of literature providing potential 

solutions to the problem of optimizing EV charging schedules in multiple parking lots. It 

provides a method of parallelizing a two-level metaheuristic optimization algorithm to 

enable centralized optimization of the problem, which is both scalable and computationally 

viable in a practical amount of time, and considers power flow limitations to respect grid 

constraints. With further research and improvements to the model to include more 

parameters to simulate even more realistic scenarios, it has the potential to provide 

solutions to problems that were not previously investigated with a centralized model due 

to computational limits.    
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Appendix A 

EV Parking Lot Profiles 

The following tables contain the EV parking lot charging profiles for EV parking lots 2-9 

(Profile 2 to Profile 9).

Table 6.1 Parking Lot Profile 2 

EV 

Number 

Arrival 

Timeslot 

Departure 

Timeslot 

Charging 

Demand 

(kWh) 

1 3 5 18 

2 5 10 26 

3 5 9 25 

4 1 6 26 

5 9 10 15 

6 2 6 22 

7 6 7 14 

8 4 9 26 

9 1 2 10 

10 1 4 20 

11 2 7 26 

12 3 7 17 

13 5 10 26 

14 3 8 26 

15 4 8 14 

16 4 7 12 

17 5 8 16 

18 3 7 19 

19 1 10 28 

20 5 10 26 

 

 

 

 

 

Table 6.2 Parking Lot Profile 3 

EV 

Number 

Arrival 

Timeslot 

Departure 

Timeslot 

Charging 

Demand 

(kWh) 

1 2 7 26 

2 5 9 22 

3 6 10 19 

4 1 10 28 

5 2 6 25 

6 1 5 17 

7 2 4 18 

8 2 6 16 

9 4 8 25 

10 4 7 16 

11 1 5 25 

12 7 9 16 

13 3 7 25 

14 7 10 20 

15 5 9 25 

16 4 9 26 

17 3 7 16 

18 1 6 26 

19 1 3 18 

20 3 5 15 
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Table 6.3 Parking Lot Profile 4 

EV 

Number 

Arrival 

Timeslot 

Departure 

Timeslot 

Charging 

Demand 

(kWh) 

1 2 7 26 

2 6 8 22 

3 3 7 19 

4 8 10 22 

5 1 10 28 

6 1 6 26 

7 6 8 18 

8 5 7 22 

9 3 6 20 

10 1 3 22 

11 2 5 20 

12 1 10 28 

13 5 8 15 

14 5 10 26 

15 4 8 25 

16 2 7 26 

17 1 6 26 

18 3 8 26 

19 2 4 22 

20 5 10 26 

 

 

 

 

 

 

 

 

 

Table 6.4 Parking Lot Profile 5 

EV 

Number 

Arrival 

Timeslot 

Departure 

Timeslot 

Charging 

Demand 

(kWh) 

1 6 7 14 

2 3 4 10 

3 3 5 16 

4 2 3 10 

5 8 9 10 

6 1 6 12 

7 1 2 10 

8 2 4 18 

9 1 2 15 

10 5 8 12 

11 2 5 12 

12 8 9 10 

13 7 10 12 

14 8 9 14 

15 6 8 15 

16 4 7 12 

17 3 4 10 

18 6 10 14 

19 3 4 10 

20 7 9 15 
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Table 6.5 Parking Lot Profile 6 

EV 

Number 

Arrival 

Timeslot 

Departure 

Timeslot 

Charging 

Demand 

(kWh) 

1 2 5 20 

2 5 7 15 

3 6 10 25 

4 1 3 18 

5 9 10 15 

6 2 6 22 

7 6 7 14 

8 5 7 16 

9 8 9 15 

10 5 8 20 

11 5 10 26 

12 3 7 17 

13 6 9 15 

14 1 4 20 

15 4 8 14 

16 1 2 15 

17 5 8 16 

18 3 7 19 

19 1 10 28 

20 4 5 15 

 

 

 

 

 

 

 

 

 

Table 6.6 Parking Lot Profile 7 

EV 

Number 

Arrival 

Timeslot 

Departure 

Timeslot 

Charging 

Demand 

(kWh) 

1 7 8 14 

2 6 10 22 

3 5 9 19 

4 1 10 28 

5 7 8 10 

6 2 6 17 

7 1 3 18 

8 1 5 16 

9 2 3 15 

10 4 7 16 

11 5 8 12 

12 8 10 16 

13 5 8 15 

14 6 9 20 

15 1 5 25 

16 3 8 26 

17 4 8 16 

18 3 7 14 

19 2 4 18 

20 3 5 15 
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Table 6.7 Parking Lot Profile 8 

EV 

Number 

Arrival 

Timeslot 

Departure 

Timeslot 

Charging 

Demand 

(kWh) 

1 2 3 14 

2 2 3 10 

3 4 6 16 

4 1 2 10 

5 9 10 10 

6 2 7 12 

7 2 3 10 

8 3 5 18 

9 1 2 15 

10 7 10 12 

11 3 6 12 

12 7 8 10 

13 6 9 12 

14 3 4 14 

15 3 5 15 

16 2 5 12 

17 5 6 10 

18 1 5 14 

19 5 6 10 

20 4 6 15 

 

 

 

 

 

 

Table 6.8 Parking Lot Profile 9 

EV 

Number 

Arrival 

Timeslot 

Departure 

Timeslot 

Charging 

Demand 

(kWh) 

1 2 7 26 

2 6 8 22 

3 3 7 19 

4 8 10 22 

5 1 10 28 

6 1 6 26 

7 6 8 22 

8 5 7 22 

9 3 6 20 

10 1 3 22 

11 2 5 20 

12 1 10 28 

13 5 7 22 

14 5 10 26 

15 4 8 25 

16 2 7 26 

17 1 6 26 

18 1 10 28 

19 2 4 22 

20 5 10 26 
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Appendix B 

Test 1 and 3 Results 

This appendix includes an except of the MATLAB simulation results for Test 1 and 3 

(Sections 4.3 and 4.5), showing the results for the optimum test results at rounds 93 and 84 

of the parallelized and sequential algorithms, as well as the final schedules and result 

comparisons. 

Function start time:   7-Dec-2023 17:02:47 -0500 
 
Starting parallel pool (parpool) using the 'Processes_Copy' profile ... 
Connected to parallel pool with 9 workers. 
RMC Workstation 
 
Testing Start. Parpool startup time = 30.258 s (9 workers) 
Function start time:   7-Dec-2023 17:03:18 -0500 

 

[…] 

**********************R O U N D 93********************** 
PSO: Parking Lot Power 
   Number of parking lots: 1 
   Number of particles: 1 
   Number of PSO iterations: 1 
Power PSO: iteration 1, PART 1 fitness evaluation time: = 14.92 s (0:15) 
 
MATPOWER Version 7.1, 08-Oct-2020 -- AC Power Flow (Newton) 
 
Newton's method power flow (power balance, polar) converged in 4 iterations. 
 
Converged in 0.00 seconds 
================================================================================ 
|     System Summary                                                           | 
================================================================================ 
 
How many?                How much?              P (MW)            Q (MVAr) 
---------------------    -------------------  -------------  ----------------- 
Buses             18     Total Gen Capacity     100.0        -100.0 to 100.0 
Generators         1     On-line Capacity       100.0        -100.0 to 100.0 
Committed Gens     1     Generation (actual)     11.9              -2.1 
Loads             15     Load                    11.7               7.6 
  Fixed           15       Fixed                 11.7               7.6 
  Dispatchable     0       Dispatchable          -0.0 of -0.0      -0.0 
Shunts            10     Shunt (inj)             -0.0              11.0 
Branches          17     Losses (I^2 * Z)         0.26              1.32 
Transformers       0     Branch Charging (inj)     -                0.0 
Inter-ties         0     Total Inter-tie Flow     0.0               0.0 
Areas              1 
 
                          Minimum                      Maximum 
                 -------------------------  -------------------------------- 
Voltage Magnitude   1.027 p.u. @ bus 8          1.054 p.u. @ bus 1    
Voltage Angle      -7.43 deg   @ bus 26         0.00 deg   @ bus 51   
P Losses (I^2*R)             -                  0.05 MW    @ line 1-20 
Q Losses (I^2*X)             -                  0.87 MVAr  @ line 50-1 
 
================================================================================ 
|     Bus Data                                                                 | 
================================================================================ 
 Bus      Voltage          Generation             Load         
  #   Mag(pu) Ang(deg)   P (MW)   Q (MVAr)   P (MW)   Q (MVAr) 
----- ------- --------  --------  --------  --------  -------- 
    1  1.054   -4.398       -         -         -         -    
    2  1.051   -4.874       -         -        0.26      0.12  
    3  1.045   -5.453       -         -        0.40      0.25  
    4  1.042   -5.734       -         -        1.50      0.93  
    5  1.036   -6.355       -         -        3.00      2.26  
    6  1.035   -6.433       -         -        0.80      0.50  
    7  1.032   -6.561       -         -        0.20      0.12  
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    8  1.027   -6.590       -         -        1.00      0.62  
    9  1.050   -4.904       -         -        0.50      0.31  
   20  1.050   -5.499       -         -        1.00      0.62  
   21  1.049   -6.190       -         -        0.30      0.19  
   22  1.048   -6.225       -         -        0.20      0.12  
   23  1.045   -7.089       -         -        0.80      0.50  
   24  1.048   -7.391       -         -        0.50      0.31  
   25  1.042   -7.425       -         -        1.00      0.62  
   26  1.041   -7.433       -         -        0.20      0.12  
   50  1.050   -0.218       -         -         -         -    
   51  1.050    0.000*    11.92     -2.07       -         -    
                        --------  --------  --------  -------- 
               Total:     11.92     -2.07     11.66      7.59 
 
================================================================================ 
|     Branch Data                                                              | 
================================================================================ 
Brnch   From   To    From Bus Injection   To Bus Injection     Loss (I^2 * Z)   
  #     Bus    Bus    P (MW)   Q (MVAr)   P (MW)   Q (MVAr)   P (MW)   Q (MVAr) 
-----  -----  -----  --------  --------  --------  --------  --------  -------- 
   1      1      2      7.75      0.32     -7.73     -0.25     0.023      0.07 
   2      2      3      6.97      0.98     -6.94     -0.91     0.027      0.08 
   3      3      4      6.54      1.31     -6.53     -1.28     0.013      0.04 
   4      4      5      5.03      1.00     -5.01     -0.94     0.022      0.06 
   5      5      6      2.01      0.61     -2.01     -0.61     0.001      0.00 
   6      6      7      1.21      0.11     -1.21     -0.10     0.002      0.00 
   7      7      8      1.01      0.62     -1.00     -0.62     0.005      0.00 
   8      2      9      0.50      0.31     -0.50     -0.31     0.001      0.00 
   9      1     20      4.12     -1.98     -4.07      2.05     0.055      0.07 
  10     20     21      3.07     -2.01     -3.04      2.04     0.027      0.04 
  11     21     22      0.20      0.12     -0.20     -0.12     0.000      0.00 
  12     21     23      2.54     -1.03     -2.51      1.07     0.027      0.04 
  13     23     24      0.51     -1.33     -0.50      1.34     0.005      0.01 
  14     23     25      1.21     -0.23     -1.20      0.24     0.005      0.01 
  15     25     26      0.20      0.12     -0.20     -0.12     0.000      0.00 
  16     50      1     11.91     -0.79    -11.87      1.67     0.040      0.87 
  17     50     51    -11.91      2.12     11.92     -2.07     0.007      0.05 
                                                             --------  -------- 
                                                    Total:     0.261      1.32 
*****Particle 1: power flow feasibility = 1, penalty = 0 
*****Particle 1: fitness = 1.0183 
Power PSO: iteration 1, PART 2 fitness evaluation time: = 0.05 s (0:0) 
Iteration: 1, best fitness = 1.018258391. 
Power PSO Round 93  
Cost = $ 53.77 
Feasibility = 1 
Time per round = 14.97 s (0:15) 
Time per round including parpool startup time = 14.97 s (0:15) 

 

[…] 
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Minimum charging cost out of 100 rounds: $53.77 from round 93 
Average charging cost out of 100 feasible rounds: $57.16 
Round 93 Solutions: 
Transformer Limits per each Parking Lot: 
                  PL 1 (kWh) 
                  __________ 
 
    Particle 1        60     
 
 
Parking Lot # 1, transformer limit 60.0000 kWh 
********** 
           T1          T2            T3          T4         T5          T6        T7          T8          T9       T10      Unmet Demand (kWh)    Met Demand (kWh)    Desired 
Demand (kWh) 
         ______    __________    __________    ______    _________    ______    ______    __________    ______    ______    __________________    ________________    
____________________ 
 
EV 1     9.5592        8.4408             0         0            0         0         0             0         0         0                 0               18                    18          
EV 2          0             0             0       7.5          7.5         0         0             0         0         0                 0               15                    15          
EV 3     9.5239         3.493    1.7954e-08    7.9677       4.0155         0         0             0         0         0                 0               25                    25          
EV 4          0        9.1548     0.0059525    8.8392            0         0         0             0         0         0                 0               18                    18          
EV 5          0        9.5989        5.4011         0            0         0         0             0         0         0       -1.7764e-15               15                    15          
EV 6          0             0             0         0            0     7.753    4.6644             0         0    9.5826                 0               22                    22          
EV 7          0             0             0         0            0         0    9.5119        4.4881         0         0                 0               14                    14          
EV 8          0             0             0         0            0         0         0             0    6.4584    9.5416                 0               16                    16          
EV 9          0             0             0         0            0         0    9.5828       0.41722         0         0       -1.7764e-15               10                    10          
EV 10         0             0             0         0            0    9.2887    3.6175             0    7.0938         0        3.5527e-15               20                    20          
EV 11         0             0             0    1.3405       8.2198    8.2198    8.2198    4.2514e-08         0         0                 0               26                    26          
EV 12         0    4.7788e-05             0    6.6806       4.6476    5.6717         0             0         0         0                 0               17                    17          
EV 13         0             0             0         0       7.3372    7.6628         0             0         0         0       -1.7764e-15               15                    15          
EV 14         0             0             0    9.0084    0.0090424    3.4839    3.4984    0.00034914         0         0        1.7764e-15               16                    16          
EV 15         0             0     0.0013075    1.5723       4.9773    5.1414    2.3076             0         0         0                 0               14                    14          
EV 16         0             0             0         0        5.418    2.8946    3.6874             0         0         0                 0               12                    12          
EV 17         0             0             0    1.6007       5.4646    3.0561    5.8786             0         0         0                 0               16                    16          
EV 18         0             0             0         0       9.2136    4.8019     2.475             0    2.5095         0                 0               19                    19          
EV 19    9.5822       0.01481     0.0049156    3.7445      0.11984    2.0031    2.9279     0.0030483         0    9.5996       -3.5527e-15               28                    28          
EV 20    9.5884       0.38607    1.5919e-06     2.952       3.0735         0         0             0         0         0                 0               16                    16          
 
                  T1        T2        T3        T4        T5        T6        T7        T8        T9       T10   
                ______    ______    ______    ______    ______    ______    ______    ______    ______    ______ 
 
Demand (kWh)    38.254    31.088    5.4132    51.206    59.996    59.977    56.371    4.9087    16.062    28.724 
 
              T1        T2        T3        T4        T5        T6        T7        T8        T9       T10      Total Cost ($) 
            ______    ______    ______    ______    ______    ______    ______    ______    ______    ______    ______________ 
 
Cost ($)    3.8254    6.2177    2.1653    10.241    5.9996    5.9977    11.274    1.9635    3.2123    2.8724        53.769     
 
Total cost = $53.76934 OR $53.76934. 
Total unmet demand = 0.000000000 kWh. 
 
------------------------------------------------------------------------- 
Parallel pool using the 'Processes_Copy' profile is shutting down. 
Function start time:   7-Dec-2023 17:29:33 -0500 
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[…] 

**********************R O U N D 84********************** 
PSO: Parking Lot Power 
   Number of parking lots: 1 
   Number of particles: 1 
   Number of PSO iterations: 1 
Power PSO: iteration 1, PART 1 fitness evaluation time: = 18.42 s (0:18) 
 
MATPOWER Version 7.1, 08-Oct-2020 -- AC Power Flow (Newton) 
 
Newton's method power flow (power balance, polar) converged in 4 iterations. 
 
Converged in 0.00 seconds 
================================================================================ 
|     System Summary                                                           | 
================================================================================ 
 
How many?                How much?              P (MW)            Q (MVAr) 
---------------------    -------------------  -------------  ----------------- 
Buses             18     Total Gen Capacity     100.0        -100.0 to 100.0 
Generators         1     On-line Capacity       100.0        -100.0 to 100.0 
Committed Gens     1     Generation (actual)     11.9              -2.1 
Loads             15     Load                    11.7               7.6 
  Fixed           15       Fixed                 11.7               7.6 
  Dispatchable     0       Dispatchable          -0.0 of -0.0      -0.0 
Shunts            10     Shunt (inj)             -0.0              11.0 
Branches          17     Losses (I^2 * Z)         0.26              1.32 
Transformers       0     Branch Charging (inj)     -                0.0 
Inter-ties         0     Total Inter-tie Flow     0.0               0.0 
Areas              1 
 
                          Minimum                      Maximum 
                 -------------------------  -------------------------------- 
Voltage Magnitude   1.027 p.u. @ bus 8          1.054 p.u. @ bus 1    
Voltage Angle      -7.43 deg   @ bus 26         0.00 deg   @ bus 51   
P Losses (I^2*R)             -                  0.05 MW    @ line 1-20 
Q Losses (I^2*X)             -                  0.87 MVAr  @ line 50-1 
 
================================================================================ 
|     Bus Data                                                                 | 
================================================================================ 
 Bus      Voltage          Generation             Load         
  #   Mag(pu) Ang(deg)   P (MW)   Q (MVAr)   P (MW)   Q (MVAr) 
----- ------- --------  --------  --------  --------  -------- 
    1  1.054   -4.398       -         -         -         -    
    2  1.051   -4.874       -         -        0.26      0.12  
    3  1.045   -5.453       -         -        0.40      0.25  
    4  1.042   -5.734       -         -        1.50      0.93  
    5  1.036   -6.355       -         -        3.00      2.26  
    6  1.035   -6.433       -         -        0.80      0.50  
    7  1.032   -6.561       -         -        0.20      0.12  
    8  1.027   -6.590       -         -        1.00      0.62  
    9  1.050   -4.904       -         -        0.50      0.31  
   20  1.050   -5.499       -         -        1.00      0.62  
   21  1.049   -6.190       -         -        0.30      0.19  
   22  1.048   -6.225       -         -        0.20      0.12  
   23  1.045   -7.089       -         -        0.80      0.50  
   24  1.048   -7.391       -         -        0.50      0.31  
   25  1.042   -7.425       -         -        1.00      0.62  
   26  1.041   -7.433       -         -        0.20      0.12  
   50  1.050   -0.218       -         -         -         -    
   51  1.050    0.000*    11.92     -2.07       -         -    
                        --------  --------  --------  -------- 
               Total:     11.92     -2.07     11.66      7.59 
 
================================================================================ 
|     Branch Data                                                              | 
================================================================================ 
Brnch   From   To    From Bus Injection   To Bus Injection     Loss (I^2 * Z)   
  #     Bus    Bus    P (MW)   Q (MVAr)   P (MW)   Q (MVAr)   P (MW)   Q (MVAr) 
-----  -----  -----  --------  --------  --------  --------  --------  -------- 
   1      1      2      7.75      0.32     -7.73     -0.25     0.023      0.07 
   2      2      3      6.97      0.98     -6.94     -0.91     0.027      0.08 
   3      3      4      6.54      1.31     -6.53     -1.28     0.013      0.04 
   4      4      5      5.03      1.00     -5.01     -0.94     0.022      0.06 
   5      5      6      2.01      0.61     -2.01     -0.61     0.001      0.00 
   6      6      7      1.21      0.11     -1.21     -0.10     0.002      0.00 
   7      7      8      1.01      0.62     -1.00     -0.62     0.005      0.00 
   8      2      9      0.50      0.31     -0.50     -0.31     0.001      0.00 
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   9      1     20      4.12     -1.98     -4.07      2.05     0.055      0.07 
  10     20     21      3.07     -2.01     -3.04      2.04     0.027      0.04 
  11     21     22      0.20      0.12     -0.20     -0.12     0.000      0.00 
  12     21     23      2.54     -1.03     -2.51      1.07     0.027      0.04 
  13     23     24      0.51     -1.33     -0.50      1.34     0.005      0.01 
  14     23     25      1.21     -0.23     -1.20      0.24     0.005      0.01 
  15     25     26      0.20      0.12     -0.20     -0.12     0.000      0.00 
  16     50      1     11.91     -0.79    -11.87      1.67     0.040      0.87 
  17     50     51    -11.91      2.12     11.92     -2.07     0.007      0.05 
                                                             --------  -------- 
                                                    Total:     0.261      1.32 
*****Particle 1: power flow feasibility = 1, penalty = 0 
*****Particle 1: fitness = 1.0183 
Power PSO: iteration 1, PART 2 fitness evaluation time: = 0.05 s (0:0) 
Iteration: 1, best fitness = 1.018255157. 
Power PSO Round 84  
Cost = $ 53.78 
Feasibility = 1 
Time per round = 18.47 s (0:18) 
Time per round including parpool startup time = 18.47 s (0:18) 
 

[…] 
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Minimum charging cost out of 100 rounds: $53.78 from round 84 
Average charging cost out of 100 feasible rounds: $57.04 
Round 84 Solutions: 
Transformer Limits per each Parking Lot: 
                  PL 1 (kWh) 
                  __________ 
 
    Particle 1        60     
 
 
Parking Lot # 1, transformer limit 60.0000 kWh 
********** 
           T1        T2         T3         T4          T5          T6        T7          T8            T9<         T10      Unmet Demand (kWh)    Met Demand (kWh)    Desired 
Demand (kWh) 
         ______    ______    ________    _______    _________    ______    ______    __________    __________    ______    __________________    ________________    
____________________ 
 
EV 1     9.5971    8.4029           0          0            0         0         0             0             0         0                 0               18                    18          
EV 2          0         0    0.011288     5.8523       9.1364         0         0             0             0         0                 0               15                    15          
EV 3     9.5983    5.0134           0     1.2595       9.1288         0         0             0             0         0                 0               25                    25          
EV 4          0    8.9447           0     9.0553            0         0         0             0             0         0                 0               18                    18          
EV 5          0    9.5993      5.4007          0            0         0         0             0             0         0        1.7764e-15               15                    15          
EV 6          0         0           0          0            0    7.9814    0.7329             0        3.6901    9.5956                 0               22                    22          
EV 7          0         0           0          0            0         0    9.5979        4.4021             0         0       -1.7764e-15               14                    14          
EV 8          0         0           0          0            0         0         0             0        6.4002    9.5998                 0               16                    16          
EV 9          0         0           0          0            0         0    9.5965       0.40349             0         0                 0               10                    10          
EV 10         0         0           0          0            0    8.0408    3.7751             0        8.1841         0                 0               20                    20          
EV 11         0         0           0      2.432       8.5867    8.5102    6.4712             0             0         0                 0               26                    26          
EV 12         0    2.8029           0     5.0997       3.9978    5.0996         0             0             0         0                 0               17                    17          
EV 13         0         0           0          0       8.7571    6.2429         0             0             0         0                 0               15                    15          
EV 14         0         0           0     4.5608    0.0002748    6.3436    5.0953             0             0         0                 0               16                    16          
EV 15         0         0           0          0       5.7555         0    8.2445             0             0         0       -1.7764e-15               14                    14          
EV 16         0         0           0          0       5.7915    4.5593    1.6492    7.7417e-09             0         0                 0               12                    12          
EV 17         0         0           0     2.2925       6.8561    6.8514         0             0             0         0                 0               16                    16          
EV 18         0         0           0          0       1.9864    6.3692    1.8535    0.00052199        8.7903         0                 0               19                    19          
EV 19    9.3238         0           0      9.338            0         0         0    2.2447e-09    0.00025072     9.338                 0               28                    28          
EV 20    9.5984     6.202           0    0.19958            0         0         0             0             0         0        3.5527e-15               16                    16          
 
                 T1        T2       T3       T4        T5        T6        T7        T8        T9       T10   
               ______    ______    _____    _____    ______    ______    ______    ______    ______    ______ 
 
Demand (kWh)   38.118    40.965    5.412    40.09    59.997    59.998    47.016    4.8062    27.065    28.533 
 
             T1        T2        T3        T4        T5        T6        T7        T8       T9       T10      Total Cost ($) 
           ______    ______    ______    ______    ______    ______    ______    ______    _____    ______    ______________ 
 
Cost ($)   3.8118    8.1931    2.1648    8.0179    5.9997    5.9998    9.4032    1.9225    5.413    2.8533        53.779     
 
Total cost = $53.77904 OR $53.77904. 
Total unmet demand = 0.000000000 kWh. 
 
-----------------------------------------------------------Comparison complete----------------------------------------------------------- 
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[…] 
 
Cost Comparison - across 100 (parallelized) and 100 (sequential) feasible rounds of tests 
 Parallelized || Sequential 
(1) $56.32 || $55.94 
(2) $58.23 || $57.02 
(3) $55.60 || $56.69 
(4) $58.90 || $58.83 
(5) $56.37 || $55.18 
(6) $58.26 || $57.57 
(7) $57.61 || $57.75 
(8) $58.99 || $55.59 
(9) $56.75 || $53.92 
(10) $59.62 || $60.55 
(11) $58.15 || $59.27 
(12) $56.66 || $57.45 
(13) $59.55 || $58.40 
(14) $54.17 || $56.75 
(15) $57.62 || $59.01 
(16) $55.20 || $56.68 
(17) $56.52 || $55.15 
(18) $57.97 || $54.39 
(19) $58.69 || $56.08 
(20) $57.75 || $59.35 
(21) $58.49 || $55.54 
(22) $58.79 || $57.59 
(23) $58.14 || $55.07 
(24) $54.92 || $56.17 
(25) $55.81 || $55.62 
(26) $56.21 || $59.49 
(27) $55.22 || $55.47 
(28) $55.76 || $58.77 
(29) $58.60 || $54.62 
(30) $55.53 || $55.50 
(31) $56.95 || $55.18 
(32) $56.76 || $54.62 
(33) $59.07 || $59.98 
(34) $57.14 || $59.34 
(35) $59.27 || $55.67 
(36) $56.06 || $53.96 
(37) $57.00 || $55.01 
(38) $56.48 || $56.67 
(39) $58.39 || $56.46 
(40) $57.84 || $60.03 
(41) $54.00 || $59.10 
(42) $56.18 || $55.87 
(43) $54.73 || $58.49 
(44) $57.63 || $56.97 
(45) $55.21 || $57.05 
(46) $54.01 || $61.66 
(47) $59.56 || $61.05 
(48) $59.82 || $60.98 
(49) $59.09 || $55.83 
(50) $59.88 || $57.51 
(51) $57.03 || $54.75 
(52) $56.14 || $62.12 
(53) $54.13 || $55.60 
(54) $55.95 || $58.65 
(55) $57.94 || $54.09 
(56) $57.60 || $60.63 
(57) $59.78 || $54.93 
(58) $58.19 || $55.34 
(59) $54.57 || $55.25 
(60) $55.96 || $55.24 
(61) $55.34 || $55.69 
(62) $53.78 || $58.59 
(63) $59.23 || $54.07 
(64) $55.81 || $56.30 
(65) $56.91 || $57.78 
(66) $59.09 || $58.49 
(67) $54.51 || $57.69 
(68) $58.57 || $53.80 
(69) $55.81 || $61.17 
(70) $55.65 || $56.60 
(71) $56.41 || $57.18 
(72) $56.09 || $55.71 
(73) $57.42 || $62.14 
(74) $54.35 || $54.69 
(75) $60.11 || $59.35 
(76) $60.11 || $55.83 
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(77) $61.36 || $57.39 
(78) $57.51 || $61.91 
(79) $56.08 || $55.48 
(80) $57.76 || $55.13 
(81) $58.42 || $57.30 
(82) $56.39 || $56.91 
(83) $54.59 || $56.49 
(84) $58.47 || $53.78 
(85) $56.79 || $58.71 
(86) $55.69 || $58.21 
(87) $58.14 || $57.83 
(88) $55.61 || $60.22 
(89) $58.90 || $57.83 
(90) $59.18 || $56.04 
(91) $59.39 || $58.25 
(92) $54.43 || $61.63 
(93) $53.77 || $57.31 
(94) $59.18 || $57.62 
(95) $54.64 || $55.50 
(96) $55.19 || $55.40 
(97) $57.98 || $54.74 
(98) $58.20 || $53.92 
(99) $61.00 || $54.01 
(100) $59.73 || $53.95 
The average feasible cost (parallelized) = $57.16 
The average feasible cost (sequential) = $57.04 
--> The sequential version provides the lowest average feasible cost, for 1 parking lot optimization, by $0.12 
The lowest feasible cost (parallelized) = $53.77 
The lowest feasible cost (sequential) = $53.78 
--> The parallelized version provides the lowest feasible cost, for 1 parking lot optimization, by $0.01 
Parallelized Costs (feasible): 
Min: $53.77 ||| Max: $61.36 ||| Mean: $57.16 ||| Median: $57.09 ||| Standard deviation: 1.83 
Sequential Costs (feasible): 
Min: $53.78 ||| Max: $62.14 ||| Mean: $57.04 ||| Median: $56.69 ||| Standard deviation: 2.19 
Percentage of feasible results out of 100 test rounds: 100.00 % (parallelized), 100.00 % (sequential) 
 
Fitness Comparison 

 

[…] 
 
Parallelized fitnesses (feasible): 
Min: 1.0160 ||| Max: 1.0183 ||| Mean: 1.0172 ||| Median: 1.0172 ||| Standard deviation: 0.00 
Sequential fitnesses (feasible): 
Min: 1.0158 ||| Max: 1.0183 ||| Mean: 1.0173 ||| Median: 1.0173 ||| Standard deviation: 0.00 
 
Time Comparison 
Parallelized average time per round: 15.32 s (0:15). 

 

[…] 

 
Sequential average time per round: 18.75 s (0:19). 

 

[…] 

 
Parallelized time (s): 
Min: 14.91 ||| Max: 19.25 ||| Mean: 15.32 ||| Median: 15.30 ||| Standard deviation: 0.44 
Sequential time (s): 
Min: 17.47 ||| Max: 36.69 ||| Mean: 18.75 ||| Median: 18.10 ||| Standard deviation: 2.22 

 

[…] 

 
Speedup (x times) (sequential time / parallelized time) 
Min: 1.17 ||| Max: 1.91 ||| Mean: 1.22 ||| Median: 1.18 ||| Standard deviation: 0.14 

 

[…] 

 
Function end time:   7-Dec-2023 18:00:54 -0500 
 
Total time required to run 100 testing rounds:   00:58:06 
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Appendix C 

Test 2 Results 

This appendix includes the full table results for Test 2 (Section 4.4). 

Table 6.9 Centralized and Decentralized Multiple Parking Lot Results: Cost, Fitness, Time, and 

Feasibility 

Sub

-test 

 Centralized Decentralized 

 Cost ($) Fitness Time 

(s) 

Feasibil

ity 

Cost ($) Fitness Time 

(s) 

Feasibil

ity 

2.1 Optimum  182.17 1.0055 253.78 10  189.53 1.0180 17.43 10 

 Worst 187.39 1.0053 307.63 (100%) 197.49 1.0136 21.54 (100%) 

 Median 183.49 1.0054 264.17  193.00 1.0148 17.48  

 Mean 184.31 1.0054 267.40  193.81 1.0154 17.90  

 Std. 1.80 0.00 14.81  2.78 0.00 1.28  

2.2 Optimum  527.75 1.0019 531.90 10 556.56 1.0268 19.17 10 

 Worst 535.29 1.0019 574.48 (100%) 578.57 1.0106 36.07 (100%) 

 Median 531.15 1.0019 537.29  565.98 1.0167 19.38  

 Mean 531.65 1.0019 541.09  566.08 1.0168 21.02  

 Std. 2.43 0.00 12.60  6.47 0.00 5.29  

2.3 Optimum  527.45 1.0019 525.51 10 550.41 1.0264 17.99 10 

 Worst 541.25 1.0018 576.56 (100%) 573.96 1.0107 46.13 (100%) 

 Median 532.15 1.0019 536.89  564.51 1.0169 18.20  

 Mean 532.82 1.0019 538.76  563.94 1.0168 21.92  

 Std. 3.93 0.00 14.56  6.89 0.00 8.73  

2.4 Optimum  1082.49 1.0009 943.63 10 1117.15 1.0271 19.09 8 

 Worst 1107.87 1.0009 1018.75 (100%) 1156.95 0.2033 37.58 (80%) 

 Median 1091.19 1.0009 967.31  1128.38 1.1068 25.59  

 Mean 1094.43 1.0009 960.92  1130.15 1.0079 25.78  

 Std. 9.98 0.00 22.05  11.93 0.09 4.72  

2.5 Optimum  1079.51 1.0009 973.00 10 1116.44 1.0267 18.37 9 

 Worst 1117.53 1.0009 1021.54 (100%) 1142.61 0.2033 37.58 (90%) 

 Median 1087.05 1.0009 988.55  1131.05 1.0168 18.46  

 Mean 1091.42 1.0009 991.39  1130.32 1.0124 20.41  

 Std. 12.79 0.00 13.33  9.31 0.06 6.03  

2.6 Optimum  1624.80 1.0006 1455.90 9 1687.61 1.0272 18.98 10 

 Worst 1747.82 0.7895 1628.01 (90%) 1724.23 1.0105 43.34 (100%) 

 Median 1657.37 1.0006 1483.13  1692.60 1.0166 21.60  

 Mean 1667.83 0.9795 1497.78  1695.77 1.0169 23.70  

 Std. 38.37 0.07 49.21  11.20 0.00 7.4  

2.7 Optimum  184.42 1.0054 129.25 10 187.37 1.0180 8.57 10 

 Worst 187.60 1.0053 170.53 (100%) 201.81 1.0136 12.82 (100%) 

 Median 185.74 1.0054 131.68  196.60 1.0146 8.63  
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 Mean 185.97 1.0053 135.16  195.38 1.0152 9.05  

 Std. 0.92 0.00 12.51  4.24 0.00 1.33  

2.8 Optimum  536.33 1.0019 264.13 10 564.00 1.0262 9.44 10 

 Worst 547.26 1.0018 313.25 (100%) 582.25 1.0104 13.58 (100%) 

 Median 539.38 1.0019 272.60  573.27 1.0166 9.91  

 Mean 540.63 1.0018 274.81  573.05 1.0166 9.52  

 Std. 3.73 0.00 13.91  5.45 0.00 1.29  

2.9 Optimum  1092.42 1.0009 484.69 10 1129.82 1.0269 12.45 10 

 Worst 1127.34 1.0009 553.15 (100%) 1154.47 1.0105 24.14 (100%) 

 Median 1102.87 1.0009 491.80  1145.41 1.0166 12.50  

 Mean 1105.76 1.0009 499.43  1143.33 1.0167 13.67  

 Std. 11.14 0.00 20.76  9.28 0.00 3.68  

2.10 Optimum  1637.72 1.0006 737.22 7 1692.00 1.0267 9.32 10 

 Worst 1764.86 0.0859 815.55 (70%) 1720.29 1.0103 19.18 (100%) 

 Median 1698.34 1.0006 752.73  1714.33 1.0166 9.41  

 Mean 1702.53 0.8479 757.91  1709.21 1.0167 11.11  

 Std. 46.41 0.31 21.32  9.18 0.00 3.23  

Results in italic denote an infeasible result 

 

Table 6.10 Cost Comparison for all Sub-Tests ($) 

Sub-test  Centralized Decentralized Difference 

2.1 Optimum  182.17 189.53 7.36 

 Worst 187.39 197.49 10.10 

 Median 183.49 193.00 9.51 

 Mean 184.31 193.81 9.50 

 Std. 1.80 2.78  

2.2 Optimum  527.75 556.56 28.81 

 Worst 535.29 578.57 43.28 

 Median 531.15 565.98 34.83 

 Mean 531.65 566.08 34.43 

 Std. 2.43 6.47  

2.3 Optimum  527.45 550.41 22.96 

 Worst 541.25 573.96 32.71 

 Median 532.15 564.51 32.36 

 Mean 532.82 563.94 31.12 

 Std. 3.93 6.89  

2.4 Optimum  1082.49 1117.15 34.66 

 Worst 1107.87 1143.08 35.21 

 Median 1091.19 1125.87 34.68 

 Mean 1094.43 1126.94 32.51 

 Std. 9.98 8.28  

2.5 Optimum  1079.51 1116.44 36.93 

 Worst 1117.53 1142.61 25.08 

 Median 1087.05 1130.51 43.46 

 Mean 1091.42 1126.61 35.19 

 Std. 12.79 9.58  

2.6 Optimum  1624.80 1687.61 62.81 
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 Worst 1720.65 1724.23 3.58 

 Median 1656.28 1692.60 36.32 

 Mean 1658.94 1695.77 36.83 

 Std. 27.71 11.20  

2.7 Optimum  184.42 187.37 2.95 

 Worst 187.60 201.81 14.21 

 Median 185.74 196.60 10.86 

 Mean 185.97 195.38 9.41 

 Std. 0.92 4.24  

2.8 Optimum  536.33 564.00 27.67 

 Worst 547.26 582.25 34.99 

 Median 539.38 573.27 33.89 

 Mean 540.63 573.05 32.42 

 Std. 3.73 5.45  

2.9 Optimum  1092.42 1129.82 37.40 

 Worst 1127.34 1154.47 27.13 

 Median 1102.87 1145.41 42.54 

 Mean 1105.76 1143.33 37.57 

 Std. 11.14 9.28  

2.10 Optimum  1637.72 1692.00 54.28 

 Worst 1743.58 1720.29 -23.29 

 Median 1691.80 1714.33 22.53 

 Mean 1681.45 1709.21 27.76 

 Std. 37.97 9.18  

 

Table 6.11 Cost and Runtime Trendline Equations Generated by Microsoft Excel 

Algorithm Cost Equation Runtime Equation 

Centralized (500 iterations) y = 61.72x - 15.152 y = 50.982x + 86.874 

Centralized (250 iterations) y = 62.448x - 11.429 y = 25.92x + 47.473 

Decentralized (500 iterations) y = 62.573x + 2.8347 y = 0.2184x + 18.73 

Decentralized (250 iterations) y = 63.109x + 5.936 y = 0.1181x + 9.2515 
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Appendix D 

Transformer Limit Decoding 

This appendix describes the equations used to find the decoded version of the transformer 

limit solution vector 𝒍𝒊𝒎𝑻𝒇 referred to in Section 3.3. 

In the PSO algorithm, the each “undecoded” candidate solution array term has a 

value from [0,1], and thus must be “decoded” to its proper kW value for the final 

transformer limit solution vector 𝒍𝒊𝒎𝑻𝒇, similar to what was done in equation (3.5) for the 

single parking lot optimization algorithm.  

 The equations used decode the transformer limits from the range [0,1] to the range 

[0, 𝑃𝑡𝑜𝑡𝑎𝑙] in kW is as follows: 

𝑙𝑖𝑚𝑇𝑓𝑝 = (
𝑙𝑖𝑚𝑇𝑓𝑝

𝑢

∑ 𝑙𝑖𝑚𝑇𝑓𝑝
𝑢𝑛𝑝𝑙

𝑝=1

)𝑃𝑡𝑜𝑡𝑎𝑙 , 𝑝 ∈ 𝑃𝑙 (6.1) 

where 𝑙𝑖𝑚𝑇𝑓𝑝 is the decoded transformer capacity limit for parking lot 𝑝, 𝑙𝑖𝑚𝑇𝑓𝑝
𝑢 is the 

undecoded transformer capacity limit for parking lot 𝑝 in the range [0,1], and 𝑃𝑡𝑜𝑡𝑎𝑙  is the 

total power capacity available to the aggregator from equation (3.19). 

The decoded version of the transformer limit solution vector 𝒍𝒊𝒎𝑻𝒇 is what is 

meant when the solution vector or set of transformer limits for all parking lots 𝒍𝒊𝒎𝑻𝒇 is 

referred to throughout Section 3.3. 


