
FIELD-PROGRAMMABLE GATE

ARRAY (FPGA) PARTICLE FILTER

CRACK DETECTION ACCELERATION

ACCÉLÉRATION DE LA DÉTECTION

DE FISSURE VIA UN FILTRE

PARTICULAIRE IMPLÉMENTÉ DANS

UN CIRCUIT LOGIQUE

PROGRAMMABLE

A Thesis Submitted to the Division of Graduate Studies
of the Royal Military College of Canada

by

Tim Chisholm, BSc

Captain

In Partial Fulfillment of the Requirements for the Degree of
Masters of Applied Science in Computer and Electrical Engineering

January, 2019
c© This thesis may be used within the Department of National Defence
but copyright for open publication remains the property of the author.

Acknowledgements

First of all, I would like to acknowledge my academic supervisor, Dr. Sid-
ney Givigi, who has supported me with guidance throughout my lengthy part-
time MASc program at RMC. I would like to thank Dr. Come Rozon, who
has provided excellent FPGA feedback. I would also like to thank Dr. Romulo
Lins for providing his original design and assisting with calculations.

Last, but not least, I would like to acknowledge my wife, Christine Chisholm
for her incredible support, especially in the last couple months of the pro-
gramme attempting to balance the demands of both this research and our
newborn daughter, Clara Violet Chisholm.

ii

Abstract

Due to the related hazards, costly down-time, and detection inconsisten-
cies associated with manual visual inspection for cracks in structures, there
has been an emergence of proposed autonomous robots capable of conducting
these inspections. UAVs have been especially prevalent due to the require-
ment for scanning structures which can be located in remote areas or pose
significant hazards to personnel. Due to the resource limitations inherent to
UAVs, the current solution when conducting crack detection is to transfer
all applicable sensor data to a ground station where detection will occur at
a later time, thereby preventing real-time decision based on the results. To
allow on-board UAV detection, and therefore on-board decision making to
occur, a crack detection particle filter has been optimised for parallel compu-
tation and implemented onto an FPGA. This research shows that an FPGA
holds distinct trade-offs between computational speed, energy consumption,
and physical footprint compared to that of traditional CPU designs, allowing
for it to be an ideal system for UAV applications.

iii

Résumé

En raison des risques associés, des temps d’arrêt coûteux et des incohérences
de détection associées à l’inspection visuelle manuelle des fissures dans les
structures, de nouveaux robots autonomes capables de mener ces inspections
ont vu le jour. L’usage de drones est particulièrement répandu en raison
de la nécessité d’inspecter des structures en zones isolées ou présentant des
risques importants pour le personnel. En raison des limitations de ressources
inhérentes aux drones, la solution actuelle lors de la détection de fissure con-
siste à transférer toutes les données de capteur applicables à la station au sol
où la détection sera effectuée ultérieurement, empêchant ainsi une décision en
temps réel basée sur les résultats. Pour permettre la détection embarquée sur
un drone et donc la prise de décision embarquée, un filtre particulaire pour
la détection de fissure a été optimisé pour le traitement de l’information en
parallèle et implémenté sur un circuit logique programmable (FPGA). Cette
recherche montre que le FPGA fait des compromis distincts entre la vitesse
de calcul, la consommation d’énergie et l’empreinte physique par rapport aux
designs traditionnels des unités centrals, ce qui en fait un système idéal pour
les applications sur les drones.

iv

Contents

Acknowledgements ii

Abstract iii

Résumé iv

List of Tables viii

List of Figures x

List of Code Blocks xii

List of Acronyms xiv

1 Introduction 1
1.1 Introduction . 1
1.2 Literature Review . 2

2 Problem and Thesis Statement 7

3 Technical Background 10
3.1 FPGA Technical Background 10

3.1.1 General . 10
3.1.2 Resources . 13

3.2 FPGA Selection . 16
3.3 Design Tools . 18
3.4 HLS Background . 20
3.5 Video Format . 21
3.6 Computer Vision . 22
3.7 Crack Measurement Algorithm 25

v

Contents

4 Solution Design 27
4.1 Overall Design Strategy . 27
4.2 Software Implementation . 29

4.2.1 Image Acquisition . 33
4.2.2 Sobel Edge Detection Filter 34
4.2.3 Particle Map Initiation 35
4.2.4 YUY2 to RGB Conversion 36
4.2.5 Particle Filter Calculations 37
4.2.6 Uncertainty Calculation 38
4.2.7 Likelihood Calculation 39
4.2.8 Re-sampling . 40
4.2.9 Analysis and/or Data Storage 41

4.3 Hardware Implementation . 42
4.3.1 General . 42
4.3.2 Sections for Hardware Acceleration 42
4.3.3 Edge Detection Filter Acceleration 44
4.3.4 YUY2 to RGB Converter Acceleration 45

4.4 Hardware Issues/Potential of Remaining Components 46
4.5 Other Accelerations . 48

5 Testing Methods 49
5.1 General . 49
5.2 Detection and Measurement Accuracy 49

5.2.1 General . 49
5.2.2 Camera vs SD Card . 53

5.3 Computational Performance . 54
5.4 Footprint . 55
5.5 Energy Analysis . 55

6 Results and Discussion 58
6.1 Detection Accuracy . 58
6.2 Computational Performance . 65
6.3 Footprint . 70
6.4 Energy Analysis . 71
6.5 Results Summary . 76

7 Future Areas of Work 77

8 Conclusion 79

vi

Contents

Bibliography 81

Appendices 87

A Zynq-7000 and Zynq-7000S SoCs 88

B Particle Filter Code 93

vii

List of Tables

1.1 Various Image Processing Techniques 3
1.2 Comparison Summary of Various Design Platforms [16]–[18] 4
1.3 Computational Performance of GPU Parallel Particle Filter [11] . 5

4.1 Computational Performance - Zynq-7030 (Software) 43
4.2 Computational Performance (Ranked) - Zynq-7030 (Software) . . . 44
4.3 FPGA Resources Utilised - Sobel Edge Filter 45
4.4 FPGA Resources Utilised - YUY2 to RGB Conversion 45
4.5 FPGA Resources Utilised - Re-sample Section 47

5.1 Test Crack Measurements . 52

6.1 Detection Accuracy - Zynq 7030 - 4,000 Particles 64
6.2 Detection Accuracy - Zynq 7030 - 8,000 Particles 64
6.3 Detection Accuracy - MATLAB - 4,000 Particles 64
6.4 Detection Accuracy - MATLAB - 8,000 Particles 64
6.5 Detection Accuracy - Zynq 7030 vs MATLAB 65
6.6 Computational Performance - Zynq 7030 (Software) 66
6.7 Computational Performance - Zynq 7030 (Hardware) 66
6.8 Computational Performance - Zynq 7030 (Software) vs Zynq 7030

(Hardware) . 67
6.9 Computational Performance - Acer Netbook 68
6.10 Computational Performance - Acer Netbook vs Zynq 7030 (Hard-

ware) . 69
6.11 Computational Performance - EVGA S17 69
6.12 Computational Performance - EVGA S17 vs Zynq 7030 (Hardware) 70
6.13 Platform Footprints . 71
6.14 Power Consumption - Zynq 7030 (Hardware) 72
6.15 Power Consumption - Acer Netbook 73
6.16 Power consumption - EVGA S17 74

viii

List of Tables

6.17 Summary of Results . 76

ix

List of Figures

2.1 Scope of Solution Design . 8

3.1 Internals of an FPGA (modified) [22] 11
3.2 FPGA Design Level [22](modified) 12
3.3 Various Possible LUT Configurations [26](modified) 13
3.4 Xilinx 7-Series CLB [28] . 16
3.5 PicoZed Embedded Vision Kit . 17
3.6 Vivado Block Diagram Example 19
3.7 Memory Allocation of YUY2 Format [33](modified) 22
3.8 Sobel Mask Matrices . 23
3.9 Application of the Sobel Masks [34] 23
3.10 Hysteresis Thresholding [35](modified) 25
3.11 Crack Types [36], [37] . 26

4.1 High Level Overview of Software Design 28
4.2 High Level Overview of Hardware Design 29
4.3 Command-line Interface for the Video Control Application 31
4.4 Design C/C++ Source Code and Header Files 32
4.5 Software Design Component Interaction 33
4.6 Hardware Block Diagram of Image Acquisition [38](modified) . . . 34
4.7 Effects of Sobel Operator Adjustments 35
4.8 IO Diagram of the Likelihood Calculation 39
4.9 IO Diagram of the Re-Sample Calculation 40
4.10 Particle Spread with Different Re-sample Amounts 40
4.11 Baseline Test Image . 43

5.1 Test Crack Sections . 51
5.2 Results from Camera . 53
5.3 Kill A Watt (R) P4400 Energy Meter 56

x

List of Figures

6.1 Edge Image from the Sobel Edge Detection 59
6.2 Edge Image from the Canny Edge Detection 60
6.3 Refined Edge Image from Sobel Edge Detection 61
6.4 Crack detection using the Sobel Edge Detection (FPGA Design) . 62
6.5 Crack Detection using the Canny Edge Detection (Original Design) 63
6.6 PL Power Estimation - Sobel Edge Detector 72
6.7 PL Power Estimation - YUY2 to RGB Converter 73
6.8 Energy Consumption Comparison (Lower is Better) 75
6.9 Energy Efficiency Comparison (Higher is Better) 75

xi

List of Code Blocks

4.1 Particle Map Initialisation C/C++ Code 36
4.2 Simplified Code for YCbCr to RGB Conversion [39] 37
4.3 Uncertainty Calculation Code . 38
4.4 Re-sample Function Arguments . 47

xii

xiii

List of Acronyms

APSoC All-Programmable System on Chip
APU Application Processing Unit
ARM Advanced RISC Machine
ASIC Application-Specific Integrated Circuits
BPP Bit Per Pixel
BRAM Block Random Access Memory
CDPF Crack Detection Particle Filter
CDF Crack Detection Function
CLB Configurable Logic Block
CLI Command-Line Interface
CPU Central Processing Units
DSP Digital Signal Processor
FF Flip-Flop
FPGA Field Programmable Gate Array
FPS Frames Per Second
FPW Frames Per Watt
GB Gigabyte
GHz Giga-Hertz
GPU Graphics Processing Unit
HDL Hardware Description Language
HLS High Level Synthesis
HP High Performance
HR High Range
IDE Integrated Development Environment
IO Input / Output
IP Intellectual Property
LiPo Lithium Polymer
LUT Look-up Table
LUTRAM Look-up Table Random Access Memory
mAh Milliamp Hour
MATLAB Matrix Laboratory (Software)

xiv

MB Megabyte
MM Millimetre
MP Megapixel
NDT Non-Destructive Testing
OS Operating System
PC Personal Computer
PL Programmable Logic
PS Processing System
PLC Programmable Logic Cells
RGB Red Green Blue
RISC Reduced Instruction Set Computer
RNG Random Number Generator
SD Standard Deviation
SD Card Secure Digital Card
SDSoc Software Defined System-On-a-Chip
SoC System on Chip
STRUM Spatially Tuned Robust Multi-Feature
TDP Thermal Design Power
UAV Unmanned Aerial Vehicles
USB Universal Serial Bus
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit

xv

1 Introduction

1.1 Introduction

There are many structures and components, such as buildings, bridges,
gears, or propellers, that require their structural integrity to be monitored in
order to detect any defect which can potentially cause failure and subsequent
lost of life or profit. Depending on the material and the stress, defects can
present themselves as cracks in the material. These cracks can be detected
and monitored to ensure that components can be fixed or replaced before
problems arise. Detecting cracks in these various structures and materials can
be achieved by several methods. As it is generally desired not to damage the
structure in the detection method, Non-Destructive Testing (NDT) will be the
focus of discussion. This area of testing includes, but is not limited to image-
based inspections, ultrasonic, magnetic-particle, liquid penetrant inspection,
radiographic, eddy-current testing, and low coherence interferometry.

A large portion of crack detection is conducted through manual in-person
visual testing in the form of a site inspection, but this is not the ideal solution.
There are many reason why companies are seeking these inspections to become
automated [1]. The first reason is a large variation between the inspector’s
experience and knowledge leading to the results being very subjective and
significantly inaccurate, which can vary tremendously between inspectors [2].
The second reason is that these manual inspections can be very time consum-
ing and cost the company a substantial amount of money especially if system
down-time is required for the duration of the inspection. The third reason
raised is that the locations requiring crack detection can be very impractical
(or dangerous) for a human to inspect, like in the case where an inspector
requires to wear fall restraint to inspect the structural members of bridges at
high heights. [3]

In an effort to offset the disadvantages arising from human-based visual in-

1

1.2. Literature Review

spections there is an emergence of autonomous robots being proposed that are
capable of automatically detecting cracks while being equipped with minimal
resources such as a single optical camera as the sole crack detection sensor [4]–
[6]. With image-based crack detection methods being proposed that are claim-
ing accuracy rates over 95%, there is a strong argument to research automatic
image-based crack detection systems as either a supplement or replacement
for human inspections.

1.2 Literature Review

An image-based crack detection comparison essay that analysed 50 papers
is summarized in Table 1.1 and reveals that there exists little commonal-
ity between the image-based crack detection methods that are currently being
proposed and researched [7]. Literature has suggested that the vast emergence
of different image based crack detection methods is due to the differences in
several factors including the random shape and irregular size of cracks, and
various noises such as irregularly illuminated conditions, shading, and blem-
ishes in the acquired images [8]. Another major contributor to the differences
in the design of crack detection techniques is variances in environment, in-
cluding but not limited to moisture content, sunlight amount and intensity, or
presence of fine debris such as sand, all which will affect the method that is the
most beneficial [9]. Even with all these factors to consider, a large majority
of these solutions are based on a desired specific trade-off between detection
accuracy and computation speed.

2

1.2. Literature Review

Image Processing Technique # of Papers

Morphological approach 5
Digital image correlation 4

Randomized hough transform 3
Ultrasonic pulse velocity technique 3

Wavelet transform 5
Median filtering 3
Gabor filtering 2
Otsu’s method 3

Statistical approach 3
Threshold method 4

Superpixel algorithm 2
Data fusion filtering 3

Reconstruction technique 4
Photogrammatic technique 3

PA imaging 3
Percolation 3

Centroid method 2
Delaying and summing algorithm 2

GLCM texture analysis 3
Dijkstra’s algorithm 1

Skeletonization techniques 2

Table 1.1: Various Image Processing Techniques
(adapted from [7])

Unfortunately, many of the potentially most accurate algorithms come at
a huge computational cost [10]. Even running these algorithms on a perfor-
mance computer can yield several seconds of runtime just to analyse a single
frame. While this can suffice for running detection methods back in the office,
it is not practical when implementing this on mobile platforms such as UAVs
or wheeled robots which may require analysis in a timely manner. Fortunately,
a few of these computational heavy crack detection algorithms can be drasti-
cally sped up by taking advantage of parallelism. When the code is optimised
to run several hundred or thousand parallel operations, it can be placed into
hardware specifically built to exploit this type of design framework. This can
potentially yield much faster computational speeds than a CPU running the
equivalent serial-based algorithm. [11], [12]

The run-time of the various techniques shown in Table 1.1 vary widely,

3

1.2. Literature Review

but they all show that crack detection systems require a substantial amount
of computational power. This is shown in research such as [13] which used two
different crack detection algorithms, a Sobel based and particle filter based,
which run-time varied from 30 minutes to several days based on the ground
station hardware. Another example of computational performance is taken
from a UAV-based crack inspection system using a structured forest solution,
which a ground station was able to compute in 4.4 seconds for a 7400 x 2580
pixel image [6]. A bridge crack detection robot was also designed based on the
STRUM (spatially tuned robust multi-feature) classifier which acquired and
analysed frames in around 2 minutes and 45 seconds [14].

Computer vision algorithms can be implemented into a wide range of sys-
tems. The four most common being Central Processing Units (CPU) [15],
Graphics Processing Units (GPU), Field Programmable Gate Arrays (FPGA),
and Application-Specific Integrated Circuits (ASIC) [16], each having a vari-
ety of reasons for being chosen, including performance, energy, footprint, cost,
development complexity, etc. Table 1.2 shows a general summary of the trade-
offs highlighting the relative pros and cons of each criteria.

Device Computational Energy Size Cost Design
Performance Consumption Complexity

CPU Low Low Med Low Simple
GPU High Med Large Med Simple

FPGA High High Small Med Moderate
ASIC High High Tiny Low-High Complex

Table 1.2: Comparison Summary of Various Design Platforms [16]–[18]

Table 1.2 generally holds true when the project is optimized for the specific
strengths and weaknesses of the target platforms. If projects are not designed
for their target platform, it is very likely that large performance penalties will
be encountered, such as in the case if a serial program was written for an
FPGA or a parallel program for a single processor CPU. There are also other
device characteristics that must be considered above and beyond the consid-
erations given in Table 1.2. For instance, while many of the platforms have
the flexibility to be changed (or fixed) through the use of software updates,
one of the major factors which cause developers to shy away from ASIC is
that once manufactured they generally cannot be changed or updated.

4

1.2. Literature Review

Many image processing algorithms have seen speed increases around 15 to
30 times compared to a conventional CPU [19], [20] when optimized for par-
allel computation. One particular algorithm, particle filtering, has a strong
potential for this type of optimisation. Particle filters are based on recur-
sive Bayesian filter and calculate (re-sample, predict, update) the weight of
each particle to determine density estimations [12]. There are several steps
that are very computationally expensive, such as the calculation for sample
weights. However, due to that calculation being independent of the weights
of neighbouring particles, this has demonstrated tremendous performance im-
provements through parallelism. In addition, experiments with parallel par-
ticle filters have been conducted on GPUs (Table 1.3) and have resulted in
remarkable speed-ups [11]. This is especially true for larger particle counts as
serial computations start to become infeasible due to the required time.

Particle # GPU time (s) Serial Time (s) Speedup (%)

200 0.046 0.827 1,797.8
400 0.062 1.104 1,780.5
600 0.068 1.739 2,557.4
800 0.083 2.246 2,706.0

1,000 0.093 3.525 3,790.3

Table 1.3: Computational Performance of GPU Parallel Particle Filter [11]

In 2016, Romulo Gonçalves Lins completed research at RMC in which he
implemented a particle filter for the purposes of crack detection [21]. The
CDPF he developed has shown to be accurate within 7.51% - 8.59% while
retaining the possibility to increase the accuracy based on the particle count
and image resolution. He chose a particle count of 4,000, which was a compro-
mise between computational speed and accuracy. Even though this developed
algorithm yielded an accuracy rate of approximately 92 percent on a personal
computer, there are still potential improvements that can be made. In his pa-
per, he proposed that “implementation in a Digital Signal Processor (DSP) or
a Field-Programmable Gate Array (FPGA) is possible with many advantages
over a software program operating on a conventional computer” [21].

To increase the accuracy rate and reduce all the runtime, footprint, and
power requirements of this particle filter, this algorithm will be optimised then
implemented onto an FPGA. In Chapter 4, this research will propose a break-
down on how each step of the original particle filter will be approached to

5

1.2. Literature Review

optimize for hardware acceleration.

6

2 Problem and Thesis
Statement

While successfully implementing a solution for a ground based mobile
robot, the original design’s particle filter based crack detection solution is
not fully optimised for the computational, footprint, or energy constraints in-
herit of those seen in resource limited applications such as airborne platforms
(e.g., UAVs).

Using the original design’s hardware resources which incorporated a PC
Netbook, a UAV would not have the on-board resources to meet the large
energy requirements of the Netbook to fully analyse a structure. Issue would
also arise in regards to the handling of the much larger payload weight, es-
pecially the additional weight of a bigger energy source (e.i., larger battery)
required to sustain a Netbook. The Netbook’s computational performance
limitations would also mean that the UAV requires to stay airborne longer
to conduct the required crack detection, putting further strain on the limited
on-board resources.

Computational performance poses a substantial issue with the original de-
sign’s implementation onto resource-limited platforms. Standard serial imple-
mentations of image-based CDPF systems with large particle counts require
long computational times, high-performance computers, bulky footprint, and
consequential heavy power draw. Due to these requirements, the solution to
operate directly on small resource limited platforms becomes infeasible. The
current solution is to transfer all applicable sensor data (imagery) to a ground
station where detection will occur at a later time, thereby taking up a larger
storage or transmission requirements.

The goal of this research is to implement a functionally equivalent al-

7

gorithm onto an FPGA which allows for a reduction in weight and energy
consumption, while retaining similar crack detection accuracy. In addition,
this design is also expected to demonstrate an increase in computational per-
formance shown in terms of a reduced run-time per analysed image frame. To
allow for self-contained detection ability on this platform, the system will be
optimized through the use of parallel computation and ported onto an FPGA.

Figure 2.1 shows the four key stages of crack detection systems, where this
design is limited to the first two stages, meaning that the functionality of this
designed crack detection system is limited to detecting cracks, and will not
have the on-board ability to conduct analysis on those detected cracks.

Figure 2.1: Scope of Solution Design

The hypothesis of this work is that a Parallel Crack Detection Particle Fil-
ter (CDPF) may be effectively implemented on a Field Programmable Gate
Array (FPGA) for Unmanned Aerial Vehicles (UAV) applications allowing for

8

the on-board crack detection to further assess areas of interest on the struc-
tures being inspected. While UAV is the main target due to the resource
limited nature, other applications include, but are not limited to, ground
based vehicles, high volume crack analysis, inspections aided with augmented
reality, and assisting manual on-site inspections. This research argues that
an FPGA holds trade-offs between computational speed, energy consumption
and physical footprint of an FPGA implementation compared to that of tra-
ditional CPU designs when implemented onto a UAV.

In regards to the literature reviewed, this research is unique as it is one
of the only particle filter based crack detection systems that have been accel-
erated through the use of FPGA, allowing this research to more readily im-
plemented for airborne applications. This platform will not require the down-
loading of structural imagery to a remote system for computational analysis,
instead it will have the required resources on-board to conduct all related
crack detection requirements, while only requiring to store or transmit the
much smaller sized crack or particle data.

The research will be of great benefit to the continued automation and
independence of robotic crack detection systems, as well as to provide a
cost-effective, measurement consistent, and less dangerous solution than what
would be seen in typical manual processes.

9

3 Technical Background

3.1 FPGA Technical Background

3.1.1 General

To better understand the components of this research, technical back-
ground in several areas will be first provided to establish a baseline knowledge.
Due to the hardware platform used to accelerate this system, the first area
of technical background to be discussed will be in regards to the hardware
aspects and the design of FPGAs. After that, information will be provided in
the field of computer vision due to the use of the image-based crack detection
algorithm, which utilises the Sobel Edge Detector. Given the background of
these two key subject areas, discussion of the more in-depth research can pro-
ceed.

FPGAs are a hardware solution that take the best aspects of ASICs and
CPUs and combines them into a single package [22]. Like processors, but
unlike ASICs, they can be ‘reprogrammed’ multiple times in order to meet
a range of different applications. In most cases these components are also
equipped with multiple sub-components that can be programmed into a de-
sign including logic blocks, DSPs, Block Random Access Memory (BRAM),
and Input/Output (I/O) blocks, all of which can be used in a varying degree
depending on the application. These components can be interconnected as
required as shown in Figure 3.1.

10

3.1. FPGA Technical Background

Figure 3.1: Internals of an FPGA (modified) [22]

Unlike processors, FPGAs run in truly parallel hardware, where thousands
of independent computations can be completed simultaneously. For applica-
tions that can make use of this parallelism feature, designers can find large
improvements in their runtime performance. GPUs also make use of paral-
lelism, and can be faster in many cases, but it comes with an increase in energy
consumption and physical footprint. FPGAs are also more deterministic than
GPUs, and hence hold an advantage for real-time applications [23]. The main
reason for choosing to conduct this research on an FPGA vice a GPU, was due
to the lower power consumption and smaller footprint of an FPGA, making
it more ideal for a resource limited platform, such as a UAVs.

One of the most difficult aspects of FPGA design compared to that of
conventional software programming is the low level hardware design such as
VHDL and Verilog which require knowledge on both a programming language
and hardware aspects of the design to successfully produce a working system.

11

3.1. FPGA Technical Background

Unlike designs using higher level languages, the designs for FPGA are usually
more complex and require much more time and effort to produce a function-
ally equivalent system [15]. Although this can be mitigated by design tools
which can allow higher level hardware programming, such as Xilinx’s High
Level Synthesis (HLS) design methodology [24], this still requires the designer
to have an in-depth knowledge of the target hardware.

One of the core concepts for any FPGA designer to understand is that
hardware is being designed, not software. Figure 3.2 shows the various pro-
cessing levels of conventional CPU architectures compared to the much lower
level hardware design. While software designs generally follow the higher “Ap-
plication Software” level, FPGAs deal with the low level “Hardware” process-
ing. FPGA designs have several advantages over software designs including
higher result/run-time determinism and higher reliability. This comes at the
cost of FPGA projects generally becoming more complex and having larger
design times even when factoring design acceleration tools.

Figure 3.2: FPGA Design Level [22](modified)

12

3.1. FPGA Technical Background

3.1.2 Resources

As previously discussed, the Xilinx Zynq 7030 comes with several on-board
resources for a developer to use in their design [25]. The Xilinx tool itself
gives performance estimates including the resources used for each build which
include Look-up Tables (LUT), Look-up Tables Random Access Memory (LU-
TRAM), Flip-Flops (FF), BRAM, DSPs, IO blocks, and BUFGs.

Each of the resources are limited in number and play a vital role in the
build of a successful system. Each of the various FPGA components are fur-
ther described as follows:

Lookup Tables (LUT): Along with FFs, LUTs are one of the most im-
portant components in the design of an FPGA. These are essentially pro-
grammed tables which give a pre-determined output based on an input. These
allow for fast boolean logic decision making to occur in the device. Fig-
ure 3.3 provides examples of LUTs programmed as conventional combinato-
rial logic, such as ANDs, ORs, NANDs, XORs, etc., but it is important to
know that LUTs are not restricted to just these and can be programmed
to provide any custom requirement. In FPGAs, conventional combinatorial
logic is in reality usually implemented on LUTs vice using the actual gates
(AND/OR/NANDs/XORs/etc) to allow for greater flexibility when program-
ming the FPGA board in terms of routing. The Zynq 7030 gives 78,600 LUTs
resources to be used in a design [25].

Figure 3.3: Various Possible LUT Configurations [26](modified)

Lookup Table Random Access Memory (LUTRAM): Like many of
the resources listed here, LUTs can be used in a variety of ways which in
this case includes the form of small 64-bit memory modules called LUTRAM.
While LUTRAM is much smaller than BRAM, it is usually much faster. Only
about 34% of the total 78,600 LUTs on the Zynq 7030 can be used as dis-
tributed memory in the form of LUTRAM, giving us a total available number

13

3.1. FPGA Technical Background

of 26,600. In cases of small memory requirements, it is generally advisable to
consume one of the 26,600 LUTRAMs versus one of extensively more limited
265 BRAMs.

Flip-Flops(FF): As mentioned previously, FFs along with LUTs form the
most important resources that make an FPGA operate. FFs allow the board
to have extremely low-level bit-wise memory which stores states between clock
cycles. Given those properties, FFs are widely implemented in the form of a
register. With 157,200 FFs being provided, they form the vast majority of
resources available on the Zynq 7030.

Block Random Access Memory (BRAM): Another type of memory
available to designers of an FPGA. The Zynq 7030 has 265 BRAM blocks
each having 36 Kilobit (Kb) capacity which equates to a total of 9.3 Megabit
(Mb) available. These blocks are fairly configurable as FIFO, single/dual ac-
cess and can also be adjusted in bit width and be chained together to form
larger memory blocks.

Digital Signal Processor (DSP): One of the biggest disadvantages with
FPGAs is the extensive amount of resources required to do floating point math
operations, especially when considering multipliers of a large width (16/32/64-
bit). In addition to the amount of resources being used, the size and complex-
ity of these components lead to extensively higher run-times in comparison to
even CPUs which generally have a floating point unit embedded. To give an
idea of the scale of effort required to implement a multiplier on conventional
FPGA resources, in order to multiply two 32-bit numbers together, you should
expect to use over 2,000 components [22]. To address this major flaw, con-
ventional FPGA manufacturers are embedding floating point DSPs directly
on the FPGA boards to provide flexible design opportunities. In particular,
our Zynq 7030 comes equipped with 400 DSP slices of the DSP48E1 variant.
The DSP48E1 slice supports many independent functions including multiply,
multiply accumulate (MACC), multiply add, three-input add, barrel shift,
widebus multiplexing, magnitude comparator, bitwise logic functions, pattern
detect, and wide counter [27].

Input/Output (IO): These blocks, as shown in Figure 3.1, provide com-
munications from the Programmable Logic section of the FPGA to other on-
board resources such as the Application Processing Unit (APU) or RAM. The
Zynq 7030 has 150 IO blocks for designers to use. With this design’s large
data arrays including image storage and likelihood vectors, this will be one of

14

3.1. FPGA Technical Background

the most demanded resources. When adding additional hardware accelerated
modules to a design on the same FPGA, IO blocks become further utilised.
We will see in later chapters how quickly these are consumed in comparison
to other resources given the nature of the research.

BUFG: These components are used to provide a common low-latency clock
values to the global level of the entire board. In our Zynq 7030 specifically,
32 of them can be employed on a single design. With the large size of the
system being designed and the various different components being integrated,
it is essential to ensure that all components are running on the same clock
(when required) to ensure the correctness of the values.

As a final point, it is important to describe the layout of the FPGA archi-
tecture. These components are grouped together in slices and Configurable
Logic Blocks (CLB). Specifically for the Xilinx Zynq 7030, a logic block con-
sists of 2 logic slices, as shown in Figure 3.4. In turn, each slice consists of 4
LUTs and 8 FFs. The 1:2 LUT to FF ratio in each slice carries over to the
high level totals, where 157,200 FFs is twice the amount of the 78,600 LUTs.

15

3.2. FPGA Selection

Figure 3.4: Xilinx 7-Series CLB [28]

3.2 FPGA Selection

Selection of the FPGA and associated peripherals required to support this
design was the first step in the process, as future steps were dependant on
the hardware, such as the coding language and design software. Due to the
requirements associated with on-board UAV calculations, especially when con-
sidering heavy particle filter computations, this design required an embedded
vision kit with a high-performance FPGA.

The hardware chosen for this design is the PicoZed Embedded Vision Kit
(shown in Figure 3.5), which is available online for approximately $1,500.00
USD. This kit was chosen for multiple reasons, the first being that the kit
centres around the Xilinx Zynq 7030 All Programmable System on Chip (AP-
SoC) which contains programmable logic equivalent to their Kintex-7 FPGA
family. This contains 124,000 Programmable Logic Cells (PLC) as well as
a dual-core ARM Cortex-A9 co-processor running at 1 GHz. The kit also
contains all required components for vision-based projects ready in a single

16

3.2. FPGA Selection

package including the Python-1300-C camera module, capable of resolutions
of 1280x1024 @ 210 frames per second. This camera is targeted towards ma-
chine vision and motion monitoring applications, making it an excellent choice
in this design. Given the high FPS, is is expected to be able to obtain sharp
images from a moving platform easily.

Figure 3.5: PicoZed Embedded Vision Kit

The technical background behind the multiple programmable logic re-
sources were already covered in the previous section. The resource amounts
that were discussed are determined by the model number and can be deter-
mined by Tables A.1 and A.2 (A.# Tables are attached as an appendix) and
show that the Zynq 7030 falls into the upper-middle of the 7-Series product
line. Compared to other models, the Zynq-7030 was an ideal choice due to
the lower cost, but still having a 1 GHz Dual-core ARM Cortex APU and a
relatively large amount of floating point DSPs and BRAM, all of which the
lower models lack.

Although the details are covered in later chapters, the limiting factor of
resources for a design of this type is the amount of IO blocks. The Zynq-7030
board being used in this design utilises an SBG485 package (refer to Table A.3
for more details) which contains 150 SelectIO pins (50 High Range (HR) I/O
+ 100 High Performance (HP) I/O). Much more flexibility could have been
delivered if utilising a higher level Zynq component such as the Zynq-7100
which delivers 500 IO blocks. However, which the price of the Zynq-7100 SoC
being $3,324.69 on www.Digi-Key.com versus the $331.50 cost of the Zynq-

17

3.3. Design Tools

7030 SoC, compromises were made.

3.3 Design Tools

The proposed design will be produced using Xilinx’s Vivado Design Suite
tools. One of the main factors of purchasing the PicoZed Embedded Vision
Kit was the inclusion of licenses for these tools, which will allow easier and
faster product design specifically for the target FPGA. The vision kit also
came with a reference design which was compatible with Xilinx’s 2016.2 series
of design tools. Despite the availability of their 2018.2 version, certain Intel-
lectual Property (IP) within the reference design could not be easily updated
to be compatible with this newest version of the tool, due to some IP being
discontinued.

Vivado contains many features to accelerate the design processing includ-
ing the employment of an easy to use GUI interface, FPGA focused pre-built
C/C++ libraries and Intellectual Property (IP) Blocks, automated integra-
tion between the components using visual block diagrams (Figure 3.6), visual
interactive designs, debugging tools, simulation and synthesis options, and
HLS programming.

18

3.3. Design Tools

Figure 3.6: Vivado Block Diagram Example

The suite includes three main tools to utilize during a design; Vivado [29],
Vivado HLS [30], and Software Defined System-On-a-Chip (SDSoC) [31]. SD-
Soc provides a tool which allows programming conventional C/C++ programs
for use on the APU using a similar and easy to use Eclipse IDE. It also allows
writing of HLS C/C++ in the same design which SDSoC can later automat-
ically generate into hardware components for use on the FPGA, but which
hardware details are generally invisible to SDSoC. Vivado HLS is the back-
ground tool (and can be used stand-alone) that SDSoc relies on in order to
convert the user defined HLS C/C++ code into fully functioning hardware
components. Users can enter the Vivado HLS tool to have greater control
of the HLS C/C++ to VHDL/Verilog conversion, to the point of alternating
the VHDL/Verilog code for any user requirement. The third tool, Vivado,

19

3.4. HLS Background

is also an excellent tool that is aimed at the overall hardware programming
of the programmed components with the rest of the FPGA. While Vivado
HLS allows building of individual hardware components, Vivado allows for
the overall use of those hardware components, from logic routing, external
clocks/resources, external component memory, data movement, etc. Vivado
also allows for in-depth analysis of the hardware side, including power con-
sumption and resources utilization that will be made use of in the research
and discussed in future chapters.

This proposed system was mostly designed using the SDSoC tool as it
allowed greater control of the entire design from the hardware accelerated
components to the baseline linux operating system running on the ARM Cor-
tex APU. Both Vivado and Vivado HLS were used in minor roles for additional
information, small optimizations and some lower level tweaks [24].

3.4 HLS Background

Xilinx’s SDSoc development environment employs a tremendously power-
ful HLS C/C++. This is a key method in order to design hardware functions
at a much higher level than writing Verilog or VHDL from scratch. This lan-
guage is part of Xilinx’s High-Level Productivity Design Methodology which
experts have shown to reduce project development time by 4X to 10X de-
pending on several factors including, but not limited to the ability to leverage
on pre-existing components such as IPs, projects compatibility for automated
synthesis, and project complexity [24].

HLS C/C++ is mostly based on conventional C/C++ with a few hardware
orientated requirements embedded within, including the use of PRAGMAS
and ensuring that the code is hardware compatible/optimised. To ensure the
code is written to optimise hardware, designers need to ensure many factors
are considered, including using the properly sized data type (ex. Hardware
can support off byte types, such as 4 or 10 bit vice the normal 8, 16, 32,
64 data types), specific hardware libraries, and allowing computational heavy
algorithms to be conducted in independent series of loops. HLS C/C++ also
includes limitations that prevent synthesisation from occurring. These lim-
itations include no operating system calls such as file reading/writing, the
algorithm cannot contain unbounded or unambiguous loops, and the entire
functionally of the code must be contained within the component [30].

20

3.5. Video Format

Designers can place hardware instructions into their code which can guide
various hardware aspects using SDSoc and HLS PRAGMAs. When using
SDSoc PRAGMAs a designer can control the overall function and communi-
cations of the hardware component such as data movement from the software
side to the hardware side, limit utilisation of board resources, and force cer-
tain memory types and communication buses to be used for the function. You
can also choose from HLS PRAGMAs which are designed to control the inter-
nal aspects and optimizations of the hardware function, including controlling
loop parallelism, inducing simultaneous execution operations, linking depen-
dencies, setting required latencies, etc.

Once hardware orientated C/C++ is written with the desired PRAGMAs
inserted, the SDSoC design suite is able to convert the written high level code
into the hardware languages VHDL or Verilog. The designer is also required
to provide the specific FPGA’s board files which allows this hardware trans-
lation to be specifically compatible with the target board type. Without this
board file, it would not be possible to produce an implementable design from
the synthesised project.

3.5 Video Format

One of the greatest disadvantages that was discovered in the baseline ref-
erence design was the video format used. The original system was designed
around a 24-Bit Per Pixel (BPP) RGB format, which was relatively easy to
conduct computer vision operations with. This reference design on the other
hand employs a YUY2 format which is in the family of YUV 4:2:2 formats,
whereas each of the U and V values are only sampled every second pixel [32].
This compressed video format had an effective rate of 16 BPP, which taken
with the reduced sampling rate meant the design already started off with a
lower quality image than the original MATLAB RGB design. The issues that
arose and the applied solutions for this non-ideal colourspace will be discussed
in later chapters.

21

3.6. Computer Vision

Figure 3.7: Memory Allocation of YUY2 Format [33](modified)

Given the provided colour-space details, and the resolution specifications
of the embedded vision kits camera, the size of the image arrays that are used
in this design can be determined. With the reference design, imaging from the
camera is streamed to an array from the 1280x1024 pixel resolution camera.
This stream contains a large amount of stride which equates to 2048, making
the effective storage size of the image array 2048x1024 which results in a total
of 2,097,152 pixels. With an effective depth of 16 BPP, this means that each
image array consisting of a single frame takes up 4 Megabytes of storage space.

3.6 Computer Vision

Both the proposed and original crack detection solutions incorporate a
substantial amount of computer vision to ensure accurate detection of the
cracks. Specifically, the main element of these designs are an edge detector.
While the original uses a Canny Edge detection filter, the research of this
paper uses a Sobel Edge detection filter.

The Sobel edge detection filter is less complex than the original MATLAB
design which was based on a canny filter. The first step of conducting the
Sobel Edge detection on an image is usually to convert the RGB image to a
grey scale image. However, with the design using a YUY2 format, the Y value
already provides the intensity values, so no greyscale conversion is actually
required. The next step is to apply the Sobel masks (shown in figure 3.8) in
both the vertical and horizontal directions [34]. The vertical Sobel mask will
detect vertical orientated edges and result in a picture as shown in figure 3.9
(b). Likewise, Figure 3.9 (a) is then passed with the horizontal sobel mask
and shows the horizontal edges are shown in Figure 3.9 (c). The two edge de-
tection orientation results are then combined using Equation 3.1. This results
in the final produce of a grey-scale edge map.

22

3.6. Computer Vision

Figure 3.8: Sobel Mask Matrices

Figure 3.9: Application of the Sobel Masks [34]

E =
√
Ex + Ey (3.1)

Where:
• E: Gradient Magnitude
• Ex: Convolution of Vertical Sobel Mask and Image
• Ey: Convolution of Horizontal Sobel Mask and Image

Although Equation 3.1 is ideal, it is slow to compute on hardware, so an
alternative approximation is shown in Equation 3.2, and it is the one used by
the proposed system’s Sobel edge detection.

E = |Ex|+ |Ey| (3.2)

23

3.6. Computer Vision

The original design’s edge detection process on the other hand used a
Canny Filter which was a much more involved and complex algorithm. The
Canny Filter is a multi-step process which generally includes the following (or
form of) [35]:

1. Remove the noise with a Gaussian filter
2. Find edge gradient and direction
3. Non-maximum suppression
4. Hysteresis thresholding

The first step of the Canny Filter is to smooth the image with a Gaus-
sian filter to reduce noise. Several Sobel-like operators are then applied to the
smoothed image which results in the edge gradients and directions of potential
edges. The results are then scanned to ensure that potential candidates form
local maximums, and if not, they are suppressed. The next process of hys-
teresis thresholding is based off gradient values minVal and maxVal. In this
process, any candidates with gradient above the maxVal are considered edges,
while any candidates with values below minVal are suppressed. For those
candidates between minval and maxVal, they are determined to be edges if
they form a continuous connection of candidates that are above minVal to a
candidate that has been determined an edge by being above maxVal. This
process is visually shown in Figure 3.10. Candidate edge C can be confirmed
an edge because it is connected to edge A, which is confirmed an edge by it
being greater than maxVal. Candidate edge B does not connect to any can-
didate above maxVal, so it is not considered a confirmed edge.

24

3.7. Crack Measurement Algorithm

Figure 3.10: Hysteresis Thresholding [35](modified)

3.7 Crack Measurement Algorithm

The crack measurement algorithm is designed to estimate both the width
and the length of detected cracks to give the user the ability to store this
data later to ensure that crack propagation can be monitored [21]. Although
this algorithm will not be incorporated into the design, it will still be used to
evaluate the crack data resulting from the design.

Each of the cracks are classified based off their formation characteristics.
Figure 3.11 shows the three different types that are used in our research and
by the program. The first two types are classified as either Horizontal/Vertical
or diagonal. It can be imagined that measuring these types of cracks are rela-
tively straightforward and they are certainly possible with available software.
As is indicated by the original work, these two classifications should cover
approximately 94% of all cases [21].

25

3.7. Crack Measurement Algorithm

Difficulties arise when the third type of classification is approached, the
complex crack. With this type of crack, there are multiple branch cracks
spreading in all directions, and even connecting back to itself several times
as shown in Figure 3.11 (3) . This crack type is infeasible to measure as the
length of the crack is not in a single continuous run.

Figure 3.11: Crack Types [36], [37]

26

4 Solution Design

4.1 Overall Design Strategy

To ensure that the design could be built in manageable steps, this design
was first fully implemented as a pure software solution. This means that first
the entire design was built as C/C++ source code which ran through Peta-
linux on the APU side. This method was chosen for several reasons, the first
being that with early development there are many bugs and errors which re-
sult in numerous attempts at compiling the design. The difference between
compiling for hardware and software is that a software design can compile in
a few minutes while a hardware design can take over an hour to compile. The
testing and configuration of the program was much quicker when the com-
pile time is shorter as was the case in software. The second reason is that
in using HLS C/C++, the hardware portion is based mostly from the soft-
ware portion, so the effort is generally applicable when optimising the code
for hardware. The third reason is to provide baseline of function run-times
to calculate speed-ups. This is useful comparing the speeds, but also, it en-
sure things have actually moved to hardware. If developed onto hardware
right away, there is potential that components unknowingly did not transfer
to hardware, but having run-time references showing a large acceleration is a
quick indicator that it had successfully moved over to hardware.

The interaction of the various components for the pure software solution is
shown in Figure 4.1, where all crack detection elements are shown to be pro-
cessed through Linux on the ARM Cortex-A9 APU. As shown, the hardware
programmable logic is not used in this first solution.

27

4.1. Overall Design Strategy

Figure 4.1: High Level Overview of Software Design

Once the software solution is working, certain components will be moved
over to the FPGA to produce the final hardware accelerated design as shown
in Figure 4.2. Section 4.3 discusses the steps that were taken to move the
desired portions of the system over to hardware to produce the final product.

28

4.2. Software Implementation

Figure 4.2: High Level Overview of Hardware Design

4.2 Software Implementation

To implement the redesigned algorithm, the code was manually converted
to C/C++ from the original MATLAB based design. Although MATLAB
offers plug-ins to automatically convert MATLAB code to C/C++, it was as-
sumed that manually conversion would present a clearer and more optimised
code. This held true for a couple of instances, for example, the elimination
of the gray filter as it was already incorporated into the Sobel edge detection
filter and the elimination of many of the video access functions which were
replaced by stream reading processes.

Specifically built for the embedded vision kit that was purchased, AVNet
also provided reference designs to serve as starting point for this design. That
reference design came with a pre-configured version of Petalinux which in-

29

4.2. Software Implementation

cluded a workable command-line interface (CLI), drivers for all components
including the Python-1300-C camera, and C/C++ platform/library. The in-
cluded Petalinux was designed to be operated on the APU side using the ARM
Cortex processor. This OS was built for the Zynq boards and has the ability
to communicate to the developer’s hardware accelerated components on the
FPGA side.

As indicated, this design operates from a software application through an
ARM Cortex compatible OS called Petalinux. Developers are given access to
Petalinux while it is running on the development board through the use of a
USB UART port. While connecting a PC to this port using a conventional
micro-USB cable, a virtual terminal is able to be established in order to receive
OS information as well as input user commands into the CLI, as is shown in
Figure 4.3 using the video control application.

30

4.2. Software Implementation

Figure 4.3: Command-line Interface for the Video Control Application

The software CDPF portion of the design was mainly developed within
two C/C++ source files with their associated header files. These files are
shown marked with a red box in Figure 4.4 along with the rest of the files
that made up the design. The files that were not marked on Figure 4.4 came
with the reference design and are an essential part of the overall build that
control aspects such as video or CLI.

31

4.2. Software Implementation

Figure 4.4: Design C/C++ Source Code and Header Files

The research consisted of several user designed components that work to-
gether with the rest of the system to allow for the overall operation of the
design. The main sections of the design are listed as follows:

• Image Acquisition
• Sobel Edge Detection Filter
• Particle Map Initiation
• YUY2 to RGB Conversion
• Uncertainty Calculation
• Likelihood Calculation
• Resampling
• Analysis and/or Data Saving

Most of these sections have been based on the original MATLAB design
and hence hold similar, if not exactly, the same role. With MATLAB coding
running on a Windows PC being different than the C/C++ coding on a Petal-
inux device, there were several challenges that had to be overcome. Figure 4.5
shows the interaction and flow of these sections in the overall design. Each of
the individual sections will be discussed in detail.

32

4.2. Software Implementation

Figure 4.5: Software Design Component Interaction

4.2.1 Image Acquisition

The image used for detection is introduced to the system by either the
on-board camera or reading a BMP file from the system’s SD Card. For the
camera, the reference design gave the framework to simply extract the image
from a video stream, as shown in Figure 4.6. It also enabled the overlay of the
crack associated particles back into the video stream once the crack has been
detected. The obtained image is stored as local data array in the YUY2 data
format to allow for local manipulation. Given the resolution of the camera
(1280x1024) and the BPP (24-Bit), these data arrays would take up at least
3.9 MBs each.

33

4.2. Software Implementation

Figure 4.6: Hardware Block Diagram of Image Acquisition [38](modified)

For the image acquisition from an SD card, the CDPF reads the SD card
directly as required in the form of a 24-bit RGB BMP file as shown in Figure
4.6. The video stream still exists, but is ignored as an input. Instead, the
video stream is used only as an output to overlay both the crack associated
particles and the entire image from the SD Card. The obtained image is still
stored in a local data array in the format YUY2, but undergoes several extra
steps including BMP image data extraction and YUY2 conversion, at which
point it is used in the identical manner as the image originating from the
camera.

4.2.2 Sobel Edge Detection Filter

The Sobel edge filter is a high speed edge detection algorithm that displays
good detection results. This particular filter for the design accepts a YUY2
image array as an input, while providing the results as a greyscale intensity
Edge Map for an output.

The original and this design’s edge detection algorithms shared little in
common for parameters. While the Canny filter allowed for adjustment of
minval & maxval thresholds and the sigma value, the Sobel filter generally
only allowed for the adjustment of the Sobel operator. The effects of adjusting
the Sobel operator are shown in figure 4.7. As inferred from the images, in-
creasing the Sobel operator increased the amount of potential edges detected,
but also increased the noise and the amount of potentially incorrect edges.

34

4.2. Software Implementation

The most generally used Sobel operator is the [1 2 1] map and will be used
throughout the design as it was shown to produce good particle spread results.

Figure 4.7: Effects of Sobel Operator Adjustments

4.2.3 Particle Map Initiation

The purpose of this section is to initiate the position and velocity matrix
for the particles. The particles for this design are small points (the size a
pixel), that are able to be moved throughout the image whose location is used
to both store the current most likely locations of cracks, and also to allow for
further probability estimations at those locations. In this design, 4,000 par-

35

4.2. Software Implementation

ticles are uniformly distributed randomly throughout the image as a starting
point while particle motion is initialised to 0, as is shown in Code Block 4.1.
4,000 Particles were chosen as an ideal compromise between performance and
accuracy, as was also decided in the original design [21]. A two-dimensional
array, shown in Equation 4.1 is used throughout the entire design and contains
all data of the particles and therefore stores the location of the detected cracks.

particles =

Y particle#1
pos Y particle#2

pos ... Y particle#4000
pos

Xparticle#1
pos Xparticle#2

pos ... Xparticle#4000
pos

Y particle#1
vec Y particle#2

vec ... Y particle#4000
vec

Xparticle#1
vec Xparticle#2

vec ... Xparticle#4000
vec

 (4.1)

Where:
• Ypos: position of particle in Y direction (in Euclidean space)
• Xvec: velocity of particle in X direction
• Ypos: position of particle in Y direction
• Xvec: velocity of particle in X direction

1 for (x = 0; x < NUM_PARTICLES; x++) {

2 particles[x][0] = rand() % height;

3 particles[x][1] = rand() % width;

4 particles[x][2] = 0;

5 particles[x][3] = 0;

6 }

Code Block 4.1: Particle Map Initialisation C/C++ Code

4.2.4 YUY2 to RGB Conversion

When extracting an image from the on-board camera, it is received in
YUY2 format as per the configuration of the reference design. The image was
decided to be converted from YUY2 to RGB for the following reasons:

1. Solution is based on the RGB colour-space, keeping the YUY2 colour-
space would mean requiring different solution;

36

4.2. Software Implementation

2. Original design was based on RGB colour-space, keeping with the same
colour-space allows for an easier functionally equivalent comparison;

3. RGB colour-space is easier to analyse individual pixels, as each pixel
has it’s own colour data, unlike the shared blue-difference (Cb) and
red-difference (Cr) chroma component values of the YUY2 colour-space
pixels; and

4. RGB is easier to save in BMP file format.

The simplified code used to convert the YUY2 image into RGB is given in
Code Block 4.2. The actual full code includes a loop so that a single call of
the converter function converts an entire image frame, and therefore requires
an unsigned char image array as the input, while producing an unsigned char
image array as an output.

1 image.r = Y + (1.402525 * Cr);

2 image.g = Y - (0.343730 * Cb) - (0.714401 * Cr);

3 image.b = Y + (1.769905 * Cb) + (0.000013 * Cr);

Code Block 4.2: Simplified Code for YCbCr to RGB Conversion [39]

4.2.5 Particle Filter Calculations

The particle filter itself is comprised of three main calculations: the un-
certainty Calculation, the likelihood calculation, and the re-sampling. the
uncertainty calculation is designed to add noise to each of the particles’ posi-
tion and movement aspects. these particles with their noise are then passed
through the likelihood calculation which uses both the edge map results from
the Sobel filter and user defined target colour values to assign weights to each
particle which follow a Gaussian distribution. These weights represent the
likelihood of a particle being contained in a crack. The re-sample phase then
assigns new particles at the locations of the old particles which were assigned
high weights in the likelihood calculation. For more algorithmic design de-
tails, the exact C/C++ code used to implement the particle filter is shown in
Appendix B.

37

4.2. Software Implementation

4.2.6 Uncertainty Calculation

In this step of the process, randomness is added to both the position and
velocity of each particle guided by two parameters, standard deviation of the
position (Xstdpos) and standard deviation of the velocity (Xstdvec). While
these parameters were also used in the original MATLAB based design, this
design uses unique values to reflect the camera/image resolution, camera prop-
erties, and differences in the systems including colour-space converters. The
specific parameters for the design are as follows:

Xstdpos = 10
Xstdvec = 50

The Uncertainty Calculation C/C++ code is shown in Code Block 4.3. As
discussed, the first two elements of each particles[x] array represent the x and
y position, while the second two elements represent the x and y velocity. The
randomness is calculated by multiplying the associated SD value (position or
velocity) and a normally distributed random number, which is then added to
each particle. As C/C++ does not natively support the generationg of nor-
mally distributed random numbers, a custom function randn(Mean, SD) was
created to meet this requirement [40].

1 for (x = 0; x < NUM_PARTICLES; x++) {

2 particles[x][0] = particles[x][0] + (Xstd_pos * randn(0,1));

3 particles[x][1] = particles[x][1] + (Xstd_pos * randn(0,1));

4 particles[x][2] = particles[x][2] + (Xstd_vec * randn(0,1));

5 particles[x][3] = particles[x][3] + (Xstd_vec * randn(0,1));

6 }

Code Block 4.3: Uncertainty Calculation Code

With each particle having four individually tracked properties and each
property requiring a distinct normally distributed random number, 4,000 par-
ticles result in the generation of 12,000 normally distributed random numbers
for each Uncertainty Calculation. While this section contains only a small
amount of code, the generation of 12,000 random numbers per Uncertainty
Calculation is the bulk of computation in this step.

38

4.2. Software Implementation

4.2.7 Likelihood Calculation

This step is used to determine the weight of each particle for the re-
sampling phase. This weight is a combination of several factors including
the correspondence to the target colour, proximity to a confirmed edge, and
being within the actual image. The output of this step is an array of likeli-
hoods associated with each particle. The Input/Output diagram is shown in
Figure 4.8.

Figure 4.8: IO Diagram of the Likelihood Calculation

The likelihood calculation is based on Equation 4.2 from the original re-
search [21]. It computes the particle weight of each particle based on a Gaus-
sian distribution.

Wi =
1√
2πσ

exp

(
−‖h(rgb)− h(Pxy)‖2

2σ2

)
(4.2)

Where:
• Wi: weight assigned to each particle i
• σ: colour spread around crack, referred to as Xstd rgb in this research.

This design used a value of 5
• h(rgb): colour spectrum histogram of the target colour of RGB[5,5,5]
• h(Pxy): histogram of colour intensity with pixels at column x and row y

39

4.2. Software Implementation

4.2.8 Re-sampling

In this section of the algorithm, the system uses the likelihood array along
with the particle positions to draw new particles towards the old particles
with high weights. The Input/Output diagram for this calculation is shown
in Figure 4.9. The re-sampling section occurs twice for each frame, along
with additional Uncertainty and Likelihood Calculations, as it provides the
best particle spread. If only a single re-sampling is done, the particles are
too sparsely spread. If the re-sampling is done too many time, the particles
start to condense away from the extremities of the crack and into the centre.
These results are shown in Figure 4.10, where the red dots represent particle
locations.

Figure 4.9: IO Diagram of the Re-Sample Calculation

Figure 4.10: Particle Spread with Different Re-sample Amounts

The first step in the design’s re-sampling stage is the weights are normal-
ized as per Equation 4.3 [21].

N∑
n=1

π(n) = 1 (4.3)

40

4.2. Software Implementation

Where:
• N : number of particles
• π: particle sampling weights (Gaussian Distribution)

The particles probabilities are then calculated into a cumulative distribu-
tion function (CDF), where each element of the CDF is given by Equation 4.4
[41].

CDFj =

j∑
i=1

πi (4.4)

For each old particle, given a random number r|(0 < r < 1), the old parti-
cle is redistributed to the location of particle j, such that Equation 4.5 holds
true [41].

CDFj−1 ≤ r < CDFj (4.5)

4.2.9 Analysis and/or Data Storage

This section quickly touches on the data available after conducting crack
detection. Although not extensive, provided below is a list of various data
that can be extracted for future analysis, if required.

• camera image
• image with the particle map superimposed over
• particle locations
• particle likelihood data
• edge image
• run-time lengths of program and components

41

4.3. Hardware Implementation

In this design, all the above data can be saved using an SD card installed
in the embedded vision kit, where 273 frames can be saved per GB of SD Card
space. In addition, all imagery data can also be displayed through the HDMI
out port, while text-based data can be displayed on a virtual console through
the UART port.

4.3 Hardware Implementation

4.3.1 General

With the design having been successfully implemented as a pure software
version, the design was then altered to be implemented onto hardware. Seg-
ments of the algorithm were assessed for those that can benefit from parallel
processing and programming onto the FPGA. Figure 4.2 provided a block di-
agram overview of the interactions between the various aspects of the board
including the APU and FPGA. With components being moved to hardware,
Linux continues to be the main processing point, and when required, Linux
will send data over to the FPGA to be processed.

4.3.2 Sections for Hardware Acceleration

To determine which components to accelerate through hardware, the vari-
ous software components first require to be ranked on their run-time compared
to the total run-time of the entire design. Focus will be put on accelerating
those components which take up the bulk of the design’s run-time. To accom-
plish this, each software component must be tested on speed, in which the
testing process will be explained in this section.

The software version tests of the crack detection algorithm running on the
Zynq 7030 were conducted on Figure 4.11. This test image was used for this
baseline run-time experiment, and will be used throughout the research to
compare to the hardware accelerated run-times. For these baseline, timers
were set-up throughout the code and run-times were captured in Table 6.6.
For the timers, the clock() function was employed and relied on a compari-
son to the CLOCKS PER SEC definition to obtain accurate timings for the
target APU. This baseline, and future run-time experiments, are based of the
computational time required to analyse a single frame, and reflect the average
of at least 10 frames timed. Sections such as Uncertainty Calc, Likelihood

42

4.3. Hardware Implementation

Calc, and Re-sampling are actually conducted twice, as discussed in Subsec-
tion 4.2.8 for a single frame. As such, the time given for each of these sections
are the total time accumulated for the entire frame.

Figure 4.11: Baseline Test Image

Section Avg Time (s)

Edge Filter 0.369641
Particle Map Init 0.002001

RGB Convert 0.048694
Uncertainty Calc 0.011638
Likelihood Calc 0.002361

Resample 0.005665

Table 4.1: Computational Performance - Zynq-7030 (Software)

With the data compiled in Table 4.1 from the design running solely on

43

4.3. Hardware Implementation

the ARM processor, the data was ranked based off the average combined time
that each section took to run. This new ranking is shown in Table 4.2 and
provided two algorithms that consume the bulk of the run-time. Factoring
only the edge filter and the RGB conversion equates to 95.08% of the entire
run-time of the design and hence will be the focus of the acceleration process.

Ranking Section Proportion of Total Time (%)

1 Edge Filter 84.01
2 RGB Convert 11.07
3 Uncertainty Calc 2.65
4 Resample 1.29
5 Likelihood Calc 0.54
6 Particle Map Initiation 0.45

Table 4.2: Computational Performance (Ranked) - Zynq-7030 (Software)

4.3.3 Edge Detection Filter Acceleration

Table 4.2 showed the edge detector taking up 84.1% of the total run-time.
As discussed, the Sobel Edge detector is an excellent choice for an accelerated
design as it provides good detection rates while superior computational per-
formance. The Sobel filter has several characteristics that make it ideal for
acceleration through parallelism. The entire function is contained in a double
loop, meaning that given the non-recusive structure of the filter, multiple edge
detection windows can be applied to the image simultaneously. Fortunately,
the AVNET Embedded Vision Kit Reference Design [38] already provides a
hardware optimized Sobel Filter to met our exact requirements.

The Zynq-7030 contains enough resources to implement this algorithm
with plenty to spare. The detailed post-implementation utilization report is
shown in Table 4.3. As indicated in previous discussions, the IO blocks are
by far the highest utilised resource, which is due to having both an input and
output of the unsigned short size, which is relatively large data size at 16 bits
each.

44

4.3. Hardware Implementation

Resource Total Utilised % Utilised

Look-up Tables 78600 261 0.33
LUTRAM 26600 2 0.01

FF 157200 325 0.21
BRAM 265 1.5 0.57
DSP 400 0 0.00
IO 150 34 22.67

BUFG 32 1 3.13

Table 4.3: FPGA Resources Utilised - Sobel Edge Filter

4.3.4 YUY2 to RGB Converter Acceleration

Due to the colour-space requirements indicated in subsection 4.2.8, the
YUY2 to RGB Converter was required for the current research and was cho-
sen to be accelerated due to consuming the second largest amount of total
run-time. While not as high as the Sobel edge detector, the converter is still
a substantial amount of the total run-time as 11.07%.In order to implement
the converter into hardware, the resources shown in Table 4.4 were used.

Resource Total Utilised % Utilised

Look-up Tables 78600 1689 2.15
LUTRAM 26600 36 0.14

FF 157200 2070 1.32
DSP 400 14 3.50
IO 150 26 17.33

BUFG 32 1 3.13

Table 4.4: FPGA Resources Utilised - YUY2 to RGB Conversion

Similar to the accelerated Sobel edge detection algorithm, this hardware
accelerated YUY2 to RGB converter utilised a small amount of the Zynq
7030’s resources. Similarities continue with the highest total percentage of
a component utilised being 17.33% of the 150 IO Blocks which equate to 26
IO Blocks. 14 DSP blocks are consumed with this module, which is not sur-
prising considering the component mostly involves floating point math calcu-
lations which the floating point math DSPs are certainly optimised to conduct.

45

4.4. Hardware Issues/Potential of Remaining Components

4.4 Hardware Issues/Potential of Remaining
Components

While conducting research to determine the potential of the other sections
of the design being accelerated, a few issues arose that prevented acceleration
without more research. These non-accelerated sections are covered in detail
as follows.

Uncertainty Calculation: As described previously, this function makes use
of 12,000 normally distributed random numbers in order to add uncertainty to
the particles. This is the bulk of the computational effort used by this compo-
nent. The issue is that HLS is unable to make certain library calls including
the rand() function. It becomes increasingly more difficult to make a C/C++
normally distributed random number without using the rand() function as a
base. Further issues arose when implementing a fully standalone Normally
Distributed Random Number Generator (RNG) as HLS also does not allow
unbounded loops which many RNGs rely on. Additionally, Xilinx does not
provide a hardware random number generator, but has provided background
info through several papers [42]. Although this issue could have been eventu-
ally overcome, the small 2.65% component run-time compared to the rest of
the design would not equate to substantial acceleration.

Re-sample: The Re-sample section was actually able to be fully converted
into hardware but was not feasible to implement into the design due to the
amount of resources it consumed. As shown in Table 4.5, this component
used too many IO blocks. While the board has enough IO blocks for this
component alone to be implemented onto hardware, it does not have enough
to also implement the YUY2 to RGB converter and the Sobel Edge Filter,
meaning that one of the other hardware accelerated functions would have to
be dropped, With the re-sampling section only taking up a small fraction of
the total run-time, it did not make sense to implement onto hardware.

46

4.4. Hardware Issues/Potential of Remaining Components

Resource Total Utilised % Utilised

Look-up Tables 78600 3591 4.57%
LUTRAM 26600 286 1.08%

FF 157200 4184 2.66%
DSP 400 28 7.00%
IO 150 108 72.00%

BUFG 32 1 3.13%

Table 4.5: FPGA Resources Utilised - Re-sample Section

The reason this component took up so much IO blocks was due to the
size of the arguments, as shown in Code Block 4.4. The re-sample component
required an input of a 32-bit (float data type) likelihood array and a 32-bit
(float data type) array of random numbers while outputting an updated 16-bit
(int data array) re-sample histogram. With the amount and size of the argu-
ments required to make this component work, it is not feasible for hardware
implementation.

1 int Resample(float *likelihood, float *random_numbers)

2 {

3 //Re-sample Code Here

4 }

Code Block 4.4: Re-sample Function Arguments

Likelihood Calculation: While the likelihood function has little preventing
it from being hardware accelerated, due to the large size of the code and the
small 0.54% total run-time amount, it was not worthwhile to accelerate.

Particle Map Initiation: Similar to the uncertainty calculation, this com-
ponent also required the use of random numbers. The RNG issue coupled with
the tiny 0.45% of the total run-time of the component, it was not worthwhile
to accelerate.

As a result of these issues, the only two components to be moved to hard-
ware will be the Sobel Edge Detector and the RGB converter. Given that
those two components took up the vast majority of the total runtime, moving
other components over would have little effect on computational performance.

47

4.5. Other Accelerations

4.5 Other Accelerations

Besides the use of hardware to accelerate the design, there were also a few
software optimizations that resulted in substantial performance improvements.
The most beneficial included a speed-up for the re-sample section through the
use of a binary search method to replace the MATLAB hist() function used
to create the histogram plot. Compared to a simple linear search, this specif-
ically designed binary search provides an approximately 67% faster re-sample
running on software alone. Another benefit of this binary search, is that as the
particle count is known to be 4000, the worst-case time for the search can be
calculated as Log24000 = 11.97. If the re-sample component would have been
feasible to implement onto hardware, this known fixed loop limit allowed ideal
HW conversion, as it meets the requirement of having a known loop limit at
compile time. This binary search loop limit must be manually adjusted when
substantially changing the particle count.

48

5 Testing Methods

5.1 General

In order to confirm the results of this research, the proposed approached is
tested in four distinct areas: detection and measurement accuracy, computa-
tional performance, physical footprint, and energy efficiencies. The first area,
detection and measurement accuracy, is required to ensure a functional system
meeting at minimum the detection accuracy given by the original design. The
remaining three areas are highly desired properties for the system to possess,
especially for implementation on resource limited platforms, such as UAVs.

To ensure consistency throughout the experiments, all accuracy and run-
time analysis was conducted on Figure 4.11, the same as which was discussed in
Subsection 4.3.2. This image demonstrates good crack characteristics (colour,
visibility, and spread) and contains a distracting object in places (the hand)
for better testing of adaptability. Furthermore, this picture will be set at the
resolution of 1280 by 1024 pixels for all experiments, whether through the
FPGA or MATLAB.

5.2 Detection and Measurement Accuracy

5.2.1 General

One of the key tests in this research was ensuring the accuracy of this
research’s design was comparable to the original design. Porting the original
MATLAB version to the hardware version resulted in many of the components
being redesigned and no longer operating the exact same way as before. The
list of major redesign work that was conducted and therefore may alter the
detection and measurement accuracy is listed as follows:

49

5.2. Detection and Measurement Accuracy

• Edge detector was changed from a Canny based edge detector to a Sobel
edge detector for greater hardware efficiency and increased speed.
• A normal distributed RNG was created as C/C++ does not have a

standard library for this function unlike MATLAB.
• Image processing involves both YUY2 and RGB vice just RGB used by

the original design. Conversion from these colour-spaces will affect the
image quality and therefore accuracy. This was due to the reference
design set-up.
• Differences in the properties of the different cameras used in both solu-

tions.
• Many of the parameters were adjusted due to the reasons listed above,

or simply to obtain increased performance, and as such, will affect the
detection rate.

While these changes were required to allow the system to operate on the
new target platform, this resulted in different accuracy calculations compared
to the original design. The accuracy goal for this research’s design will be to
achieve a comparable accuracy of the original design. Detection accuracy will
be measured using the same method proposed in the original design [21]. In
this, the particle data will be used in order to produce the measurements of
the crack in terms of width measured in mm. Width will be the primary met-
ric to determine the level of accuracy between the solutions, as the error rates
become more substantial when comparing the relatively small width compared
to the length. The calculations to determine the width of the crack are not
part of the board’s design, as the design scope is limited to crack detection,
and as such, these calculations were accomplished separately.

The test compared only two platforms, the EVGA S17 and the Zynq-7030
(Hardware). The Acer Netbook does not need to be tested as it it is being
manually inserted the same image and also running the same MATLAB code,
it is assumed to produce the same accuracy rate as the EVGA S17. The Zynq-
7030 (Software) is also not tested as it should also have the same accuracy
rate as the Zynq-7030 (Hardware), but also does not need to be tested as it
was not indented as the final product.

Each test variety was ran 10 times each for the following conditions:

• Zynq-7030 (Hardware) - 4000 particles
• Zynq-7030 (Hardware) - 8000 particles

50

5.2. Detection and Measurement Accuracy

• EVGA MATLAB - 4000 particles
• EVGA MATLAB - 8000 particles

The test compared the detected cross-sectional thickness of 3 user chosen
sections of the crack, as shown in Figure 5.1. These sections are identified by
the y coordinate value that the cross-section runs along, section 1 is located
along y = 110, section 2 is along y = 495, and section 3 is along y = 790. As
this crack is considered to be classified as vertical, Equation 5.1 was used to
determine the crack width at those locations, just as proposed in the original
research [21]. Equation 5.1 works by comparing the two most distant particles
that are along the cross-section of the crack to determine the width in pixels.
Equation 5.1 is valid only for vertical cracks, where different equations are
required to measure cracks of horizontal or diagonal orientation as detailed in
[21].

Figure 5.1: Test Crack Sections

51

5.2. Detection and Measurement Accuracy

wp = x2 − x1 (5.1)

Where:
• wp: crack width in pixels
• x2/x1: horizontal locations of the extremity particles within the target

sub-blocks.

The true width of the crack cross-sections were measured in pixels and
shown in Table 5.1. A camera calibration parameter of 1.19375 was then cal-
culated in accordance with Reference [43] and then factored into the thickness
measurements to determine the thickness in millimetres, which is cross-checked
using a vernier calliper. As shown in the table, each chosen cross-section of
the crack measures between 7.16-9.55mm. These are the measurements that
will be used in comparing the two solutions in Chapter 6.

Crack Location Thickness (mm)

Section 1 (Y110) 9.55
Section 2 (Y495) 7.16
Section 3 (Y790) 7.16

Table 5.1: Test Crack Measurements

The results will be in the form of the following two metrics:

• Avg Uncertainty (mm): Detected width difference from true measure-
ment in mm.
• Avg Error (%): Error percentage comparing true crack width to de-

tected crack width.

The test will be considered successful if the accelerated hardware design
produces measurement data that is at least functionally equivalent to the mea-
surements of the original MATLAB design in terms of cross sectional thickness.

52

5.2. Detection and Measurement Accuracy

5.2.2 Camera vs SD Card

In order to compare the results of the proposed design to that of the orig-
inal, it was required to ensure that identical imagery was being fed into both
solutions. This makes the camera solution not feasible for direct comparison.
To elevate this issue, both solutions were fed the same image through man-
ual implementation of a BMP file. For the FPGA, the image file was loaded
through the SD Card which was previously shown in Figure 4.6.

While the camera itself was not used in this accuracy test, the full design
is still fully functional. Figure 5.2 shows the FPGA using the camera in a test
environment. These results come from the FPGA design fully implemented
and obtaining actual imagery from it’s on-board camera. The results show
excellent particle spread within all five test cracks.

Figure 5.2: Results from Camera

While the camera is an important component in the design, it is an accept-

53

5.3. Computational Performance

able testing alternative to allow manual feeding of a BMP file. It shows the
flexibility of the design with crack detection being conducted from multiple
video sources and not locked onto a single camera type.

5.3 Computational Performance

To meet the computational performance objectives of this research, an
increase in crack detection speed must be observed compared to the original
design. The original design was programmed through MATLAB on a conven-
tional Acer Netbook, which was installed on a ground mobile robot. Usually
both platforms would have cameras of different resolutions, but to ensure test-
ing consistency, images of the same resolution were manually fed into both
systems as opposed to obtaining the image from their cameras. This allowed
the performance metric of runtime alone to have been used as a comparison,
vice having to resort to a resolution-neutral metric such as MegaPixels com-
puted per second.

Computational performance of the crack detection particle filter will be
compared between the original MATLAB implementation, the embedded vi-
sion kit software version, and the full accelerated hardware implementation
on the Xilinx Zynq Board. As the Netbook is meant for portability rather
than power, a performance laptop is also included as a benchmark. The 4 test
cases are as follows

• Acer Aspire ONE D250 - Atom N270 1.6 GHz - 1 GB DDR2 RAM -
MATLAB
• EVGA S17 - Intel Core-i7 6820HK 2.70 GHz - 32 GB DDR4 RAM -

MATLAB
• Xilinx Xynq 7030 - ARM Cortex-A9 1.0 GHz - 1 GB DDR3 RAM -

Software
• Xilinx Xynq 7030 - ARM Cortex-A9 1.0 GHz - 1 GB DDR3 RAM -

Hardware

The computational performance test will be passed if the Zynq-7030 (Hard-
ware) obtains a lower runtime for the same image compared to that of the Acer
Netbook computer employed for crack detection on a mobile robot.

54

5.4. Footprint

5.4 Footprint

In many applications, such as UAV implementation, physical footprint is
a key metric to show suitability. The following metrics are compared between
the platforms:

• Weight (g)
• Dimensions (LxWxH) (mm)
• Volume (mm2)

Weight is a useful metric in many cases as a lower weight reduces the
payload burden on mobile or aerial platforms and is generally preferred. The
dimension and volume metrics are also beneficial aspects of a platform, where
a smaller platform taking up less volume is generally more desirable, especially
when with a restricted area where smaller dimensions are actually required.

While the dimension and volume will be roughly measured using a stan-
dard mm ruler, the weight will be assessed using a standard utility scale. The
weight will not include items such as batteries or power adapters to ensure
consistency of the measurements, but also to factor in the likely possibility
that the platforms could be wired into the pre-exist mobile or aerial vehicles
and run on their batteries without the need for internal batteries or 120V
power adapters.

This test is considered successful if it can be shown that the embedded
vision kit possesses beneficial footprint aspects compared to the other alter-
native platforms. Although no specific criteria are put in place for this test,
it will be argued that one platform holds an ideal footprint over the other two.

5.5 Energy Analysis

Energy efficiency is tested by measuring the entire system’s power con-
sumption. In order to properly show improvement in power consumption over
the original design, energy efficiency will be measured using the following two
metrics:

• Total Power Consumption (Watts)

55

5.5. Energy Analysis

• Power Efficiency (Frames Per Watt)

The total power consumption is a useful metric as it allows the solutions
to be compared on the energy requirements to simply employ the platform.
Even though one option might be more power efficient, the overall energy re-
quirements might make it infeasible for many implementations such as UAVs.

In order to measure the total power consumption in Watts, an energy me-
ter shall be used to monitor the wattage consumed by the device at various
operating times. The energy monitor chosen for this task is the P3 Interna-
tional Kill-A-Watt P4400 model as shown in Figure 5.3. This meter connects
between the device desired to be measured and a standard 120V household
electrical outlet. The meter is able to measure several useful measurements
including voltage, current, power, line frequency, and power factor. For the
purposes of this work, there is a focus on the power (watts) as the main metric
being measured using this tool. The primary reason for this model being the
chosen solution for this testing is the 0.2% accuracy on measuring this quan-
tity. Other meters on the market have error margins as high as 3%, which is
much higher than the Kill-A-Watt.

Figure 5.3: Kill A Watt (R) P4400 Energy Meter

The second metric of power efficiency is useful in comparing the power
consumption based on performance. Frames Per Watt (FPW) is utilised for
this purpose and is calculated using Equation 5.2. Given that all frames from

56

5.5. Energy Analysis

the various platforms are set at a 1240 by 1024 resolution, this metric will be
consistent throughout the test.

Frames per Watt =
3600

runtime(seconds per frame) ·Watts
(5.2)

For this test, all batteries will be removed from the laptops, so that power
from or to the battery will not alter the results. The laptop screens will also
be turned off during this test, as they are usually not used during actual im-
plementation. Most other non-required items will be turned off as well, like
Bluetooth and WiFi. This test will be considered successful if the FPGA has
the largest power efficiency measured in Frames per Watt compared to the
other platforms.

57

6 Results and Discussion

6.1 Detection Accuracy

The accuracy section will be started with a brief look at the performance
of the edge maps. The results from the Zynq-7030 (Hardware), which is Sobel
filter based, is shown in Figure 6.1. The resulting edge map from the MAT-
LAB design, which is Canny filter based is shown in Figure 6.2. The Sobel
filter outputs a grey-scale edge map, while the Canny filter produces a black
& white edge map.

58

6.1. Detection Accuracy

Figure 6.1: Edge Image from the Sobel Edge Detection

59

6.1. Detection Accuracy

Figure 6.2: Edge Image from the Canny Edge Detection

While the Sobel filter does output a grey-scale edge map, the Likelihood
Calculation end up eliminating non-maximum values, which results in a large
reduction of noise. This refined Figure is shown in 6.3, and has been inverted
for easier visual comparison to the Canny filter. As expected, even after the
refinement, the Canny filter still produces cleaner edges with less noise.

60

6.1. Detection Accuracy

Figure 6.3: Refined Edge Image from Sobel Edge Detection

These edge filters are a key component to producing the final crack de-
tection map for both the Zynq-7030 and the MATLAB designs. The crack
detection results from the Zynq-7030 is shown in Figure 6.4, while the results
from the original MATLAB design is shown in Figure 6.5. Both solutions
show similar ability to fill the length of the crack, while differences are seen
in the ability to fill the thickness of the crack. The MATLAB design (Canny
filter) in Figure 6.5 shows reasonable spread across the width of the crack, but
the Zynq-7030 (Sobel filter) shows an even better thickness spread. This is
likely due to one (or both) of the following reasons:

• The parameters (colour target, colour spread, particle position SD, and
particle velocity SD) of the original MATLAB design were kept at default
values while the Zynq-7030 had to be re-tuned due to different edge
filter, and hence was specifically tuned for optimal results on subject
test image.

61

6.1. Detection Accuracy

• The Canny Filter produced distinct edge boundaries which may limit
particle movement, resulting in thinner particle spread. The Sobel filter
produced more ”fuzzy” boundaries, which may have allowed for greater
tendency for spread creep, and hence making the detection thicker.

Figure 6.4: Crack detection using the Sobel Edge Detection (FPGA Design)

62

6.1. Detection Accuracy

Figure 6.5: Crack Detection using the Canny Edge Detection (Original De-
sign)

The accuracy results of the crack measurements for the MATLAB and
Zynq-7030 solutions using 4,000 and 8,000 particles are shown in Tables 6.1,
6.2, 6.3, and 6.4. Both the average uncertainty and the average error are calcu-
lated based on the crack detection results against the measured cross-sectional
widths given in Table 5.1. Both solutions show significant measurement un-
certainty, but perform substantially better at the higher 8,000 particle count,
which is expected.

63

6.1. Detection Accuracy

Crack Location Avg Uncertainty (mm) Avg Error (%)

Section 1 (Y110) 0.5458 13.75
Section 2 (Y495) 0.2804 20.00
Section 3 (Y790) 0.6209 16.67

Overall 0.4823 16.81

Table 6.1: Detection Accuracy - Zynq 7030 - 4,000 Particles

Crack Location Avg Uncertainty (mm) Avg Error (%)

Section 1 (Y110) 0.1252 6.25
Section 2 (Y495) 0.1051 11.67
Section 3 (Y790) 0.2203 11.67

Overall 0.1502 9.86

Table 6.2: Detection Accuracy - Zynq 7030 - 8,000 Particles

Crack Location Avg Uncertainty (mm) Avg Error (%)

Section 1 (Y110) 2.4284 31.25
Section 2 (Y495) 1.8076 31.67
Section 3 (Y790) 0.9463 21.67

Overall 1.7274 28.19

Table 6.3: Detection Accuracy - MATLAB - 4,000 Particles

Crack Location Avg Uncertainty (mm) Avg Error (%)

Section 1 (Y110) 0.2053 21.25
Section 2 (Y495) 1.9027 23.33
Section 3 (Y790) 0.1001 23.33

Overall 0.7360 22.64

Table 6.4: Detection Accuracy - MATLAB - 8,000 Particles

Table 6.5 shows the difference in accuracy rates of the two solutions. The
Zynq-7030 had shown great results compared to the original MATLAB based
solution. At 4,000 particles, the Zynq-7030 provides a 16.81% accuracy, which
is 11.38% better than the MATLAB design. At 8,000 particles, the Zynq-7030
performs even better at a 9.86% accuracy, a 12.78% improvement over the orig-

64

6.2. Computational Performance

inal design, for this test case.

Particle Count Zynq-7030 Avg MATLAB Avg 4 Error (%)
Error (%) Error (%)

4,000 16.81 28.19 +11.38
8,000 9.86 22.64 +12.78

Table 6.5: Detection Accuracy - Zynq 7030 vs MATLAB

Given the resulting accuracy rates given in Table 6.5, the detection accu-
racy of the Zynq-7030 is considered to successful pass the test. While the Zynq-
7030 has successfully passed for this particular test image at the determined
parameters, it is likely that the MATLAB based design could out-perform
in other sceneries based off different crack types, image/camera properties,
or parameters. As such, while the Zynq-7030 drastically out-performed the
MATLAB design in this scenario, the goal of this test is not to prove a sus-
tainable improved accuracy rate of the accelerated solution over the original
design, but rather it is functionally able to detect cracks comparable to the
original design, which this example has suggested.

6.2 Computational Performance

The run-time performance of the Zynq-7030 (Software) is shown in Table
6.6. This is essentially the same data that is given in the hardware implemen-
tation chapter previously, but is reiterated to show the improvements that
are being yielded converting both the Edge detector and RGB converter to
hardware. This software version already shows a good total run-time at 0.44
seconds per frame.

65

6.2. Computational Performance

Section Avg Run-time (s) Std Dev (s) Time (%)

Edge Filter 0.369641 0.000225 84.01%
Particle Map Init 0.002001 0.000010 0.45%

RGB Convert 0.048694 0.001640 11.07%
Uncertainty Calc #1 0.005820 0.000032 1.32%
Likelihood Calc #1 0.001313 0.000029 0.30%

Resample #1 0.002785 0.000039 0.63%
Uncertainty Calc #2 0.005818 0.000022 1.32%
Likelihood Calc #2 0.001047 0.000051 0.24%

Resample #2 0.002881 0.000040 0.65%

Total 0.440000 - 100.00%
FPS 2.27

Table 6.6: Computational Performance - Zynq 7030 (Software)

Table 6.7 shows the run-time of both the edge detector and the RGB con-
verter after being converted to hardware and showed an incredible speed-up.
While previously consuming 95.08% of the total time, these two components
are able to drastically improve the run-time of the entire program. With the
program previously running at 2.27 FPS utilising only software components,
with the accelerated hardware components, the program is now able to run at
15.00 FPS.

Section Avg Run-time (s) Std Dev (s) Time (%)

Edge Filter 0.030747 0.000043 46.10%
Particle Map Init 0.002004 0.000015 3.00%

RGB Convert 0.014184 0.000016 21.27%
Uncertainty Calc #1 0.005823 0.000029 8.73%
Likelihood Calc #1 0.001316 0.000034 1.97%

Resample #1 0.002818 0.000033 4.23%
Uncertainty Calc #2 0.005822 0.000034 8.73%
Likelihood Calc #2 0.001034 0.000028 1.55%

Resample #2 0.002950 0.000041 4.42%

Total 0.066698 - 100.00%
FPS 15.00

Table 6.7: Computational Performance - Zynq 7030 (Hardware)

Table 6.8 shows the speed-up percentages of each of the accelerated com-

66

6.2. Computational Performance

ponents. The edge detector increased by a factor of 1210.19%. As that previ-
ously made for 84.01% of the entire program run-time when on software, this
huge speed-up benefits the entire program nearly as much. With the RGB
converter also being sped-up by 343.31%, it can be confirmed that both of
these component have been successfully accelerated using hardware.

Section Software Hardware Speed-up (%)
Run-time (s) Run-time (s)

Edge Filter 0.3696411 0.0307473 1202.19%
Particle Map Init 0.0020008 0.0020036 0%

RGB Convert 0.0486935 0.0141835 343.31%
Uncertainty Calc 0.0058202 0.0058232 0%
Likelihood Calc 0.0013134 0.001316 0%

Resample 0.0027846 0.0028183 0%
Uncertainty Calc 0.005818 0.005822 0%
Likelihood Calc 0.0010473 0.0010342 0%

Resample 0.0028808 0.00295 0%

Total 0.4399997 0.0666981 659.69%

Table 6.8: Computational Performance - Zynq 7030 (Software) vs Zynq 7030
(Hardware)

With the hardware accelerated design being confirmed, the MATLAB ver-
sions will be analysed next to gather total run-times. The first run-time shown
in Table 6.9 represents the results from running the original design on the Acer
Netbook. As expected, the edge filter stands out as one of the most compu-
tationally heavy items in the list, especially considering it is Canny filter based.

67

6.2. Computational Performance

Section Avg Run-time (s) Std Dev (s) Time (%)

Edge Filter 1.288425 0.005714 67.36%
Particle Map Init 0.002863 0.000028 0.15%

RGB Convert 0 0 0%
Uncertainty Calc #1 0.004274 0.000528 0.22%
Likelihood Calc #1 0.281040 0.002697 14.69%

Resample #1 0.005967 0.000150 0.31%
Uncertainty Calc #2 0.003744 0.000140 0.20%
Likelihood Calc #2 0.320083 0.005541 16.73%

Resample #2 0.006316 0.000200 0.33%

Total 1.912711 - 100.00%
FPS 0.52

Table 6.9: Computational Performance - Acer Netbook

The results of the Acer Netbook are relatively slow compared to even the
Zynq-7030 (Software) version. This is most likely due to the following reasons:

1. Unlike the Zynq which runs as straight C/C++ source code on an ex-
tremely minimal Petalinux OS, the MATLAB experiments run on high
level MATLAB code through the actual MATLAB program on Windows
7/10 OS. These programs are full of features and tie up many computer
resources which result in a slow run time.

2. The Sobel filter is much simpler and faster than the Canny filter.
3. It is not exactly clear why the likelihood calculation is so much faster on

the Zynq’s APU then through MATLAB, but through analysis, it seems
that the entire component is generally slower throughout its entire op-
eration and not slowed down by a single function or operation in the
component. If anything, this would be due to the component running
on a low level C/C++ source code vice MATLAB.

Table 6.10 shows the speed-up of the accelerated design compared to
that of the netbook. The accelerated designed scored an overall speed-up
of 2867.71%, which is quite remarkable and meets the criteria for the compu-
tational test to be marked as successful.

68

6.2. Computational Performance

Section Netbook Zynq 7030 (Hardware) Speed-up (%)
Run-time (s) Run-time (s)

Edge Filter 1.2884253 0.0307473 4190.37%
Particle Map Init 0.0028634 0.0020036 142.91%

RGB Convert 0 0.0141835 0.00%
Uncertainty Calc 0.0042739 0.0058232 73.39%
Likelihood Calc 0.2810397 0.001316 21355.60%

Resample 0.0059673 0.0028183 211.73%
Uncertainty Calc 0.0037435 0.005822 64.30%
Likelihood Calc 0.3200827 0.0010342 30949.79%

Resample 0.0063155 0.00295 214.08%

Total 1.9127113 0.0666981 2867.71%

Table 6.10: Computational Performance - Acer Netbook vs Zynq 7030 (Hard-
ware)

To further show the acceleration potential of the FPGA board accelera-
tion, refer to the results of Table 6.11 to show the timings from the EVGA
S17 Gaming Laptop. Similar to all other versions of crack detection systems
analysed, again the edge filter remains at the top of the list for computational
time. But the results from this computer are much faster then the Acer Net-
book, which was expected.

Section Avg Run-time (s) Std Dev (s) Time (%)

Edge Filter 0.085978 0.003390 73.25%
Particle Map Init 0.000300 0.000079 0.26%

RGB Convert 0 0 0%
Uncertainty Calc #1 0.000464 0.000055 0.40%
Likelihood Calc #1 0.013994 0.000507 11.92%

Resample #1 0.000562 0.000041 0.48%
Uncertainty Calc #2 0.000503 0.000070 0.43%
Likelihood Calc #2 0.014894 0.000910 12.69%

Resample #2 0.000684 0.000044 0.58%

Total 0.117379 - 100.00%
FPS 8.52

Table 6.11: Computational Performance - EVGA S17

Although the EVGA S17 shows excellent improvement over both the Acer

69

6.3. Footprint

Netbook and the Zynq-7030 (Software), it still runs slower than the hardware
accelerated design of the Zynq-7030 (Hardware) as shown in Table 6.12. The
hardware design is able to out perform the EVGA S17 by 175.99%. With the
EVGA S17 being a high performance laptop, it is remarkable for the Zynq-
7030 (Hardware) to out-perform it. This additional comparison shows that
in these certain scenarios, an FPGA can be a better choice for computational
performance compared to even the fastest PCs.

Section EVGA Zynq 7030 (Hardware) Speed-up (%)
Run-time (s) Run-time (s)

Edge Filter 0.085978 0.0307473 279.63%
Particle Map Init 0.0003003 0.0020036 14.99%

RGB Convert 0 0.0141835 0.00%
Uncertainty Calc 0.0004639 0.0058232 7.97%
Likelihood Calc 0.0139937 0.001316 1063.35%

Resample 0.0005622 0.0028183 19.95%
Uncertainty Calc 0.0005031 0.005822 8.64%
Likelihood Calc 0.0148942 0.0010342 1440.17%

Resample 0.0006838 0.00295 23.18%

Total 0.1173792 0.0666981 175.99%

Table 6.12: Computational Performance - EVGA S17 vs Zynq 7030 (Hard-
ware)

6.3 Footprint

The results of measuring and weighing each platform is shown in Table
6.13. The embedded vision kit is the lightest platform and also takes up the
least volume, both of which are ideal. Although, due to the irregular shape
of the embedded vision kit, some dimensions end up being larger than both
the netbook and the laptop, and therefore, not ideal in all footprint aspects
compared to the other two.

70

6.4. Energy Analysis

Platform Weight(g) Dimensions (LxWxH) (mm) Volume (cc)

FPGA 388 280 x 113 x 35 1,107
Netbook 906 278 x 184 x 26 1,329

EVGA S17 4,100 408 x 295.5 x 27.18 3,276

Table 6.13: Platform Footprints

The height of the devices measured in Table 6.13 were calculated with
each platform having no camera (screen closed and FPGA on-board camera
removed) due to the high likelihood of these platforms employing an external
camera. This is true for the FPGA as well, as it has a PCIe based camera,
which can be more optimally placed using a PCIe extension cable. Without
this extension cable relocation, the camera attached to the FPGA kit mea-
sured at a height of 96mm.

In most sceneries, based on the weight and volume alone, the embedded
vision kit is a more ideal choice for most aerial and ground base vehicles
due to payload and space limitations. The embedded vision kit holds greater
footprint aspects than the other two platforms and is considered to pass the
footprint test.

6.4 Energy Analysis

The results of the FPGA energy analysis is shown in Table 6.14. While
consuming only 7.6 watts while operating the crack detection system, the
FPGA shows low power usage. Vivado also provides the breakdown of power
consumption of each hardware component. While these values are not a di-
rect measurement of the components actual power consumption, they still
represent a reasonable estimation based on the implementable design, and are
the most reasonable way to measure individual hardware components. The
Crack Detection portion of the Programmable Logic (PL), consumed a total
of 0.164 Watts based on the Vivado estimation, as shown in Figure 6.6. The
YUY2 to RGB Converter as shown in Figure 6.7 was estimated at 0.222 Watts.

71

6.4. Energy Analysis

Condition Avg Power (Watts) SD (Watts)

FPGA idle 6.2 0.1
FPGA processing CDPF on HW Side 7.6 0.1

Table 6.14: Power Consumption - Zynq 7030 (Hardware)

Figure 6.6: PL Power Estimation - Sobel Edge Detector

72

6.4. Energy Analysis

Figure 6.7: PL Power Estimation - YUY2 to RGB Converter

Table 6.15 shows the power consumption of the Acer D250 Netbook. At
12.6 Watts, it consumes more energy than the Zynq-7030 (Hardware). This
result is expected due to the older technology of the Netbook coupled with
the general purpose design that results in a trade-off in energy consumption.
There is also extra hardware on the Netbook which consume energy includ-
ing the video card, sounds card, wifi, and other components that while not
actively used, can potentially cause a standby drain.

Condition Avg Power (Watts) SD (Watts)

Netbook Idle 8.2 0.1
Netbook processing MATLAB CDPF 12.6 0.6

Table 6.15: Power Consumption - Acer Netbook

The results of the EVGA S17 performance laptop are shown in table 6.16.
This platform consumes far more energy then either the FPGA or the netbook,
with it taking 52.3 Watts to process the MATLAB crack detection system.
This is not surprising considering it is a gaming laptop with a Intel i7-6820HQ
rating at a TDP of 45 Watts [44] and also containing a NVidea Geforce 980M
chip also consuming a considerable amount of energy if at all utilised during

73

6.4. Energy Analysis

experiment.

Condition Avg Power (Watts) SD (Watts)

EVGA S17 Idle 30.8 0.1
EVGA S17 processing MATLAB CDPF 52.3 0.3

Table 6.16: Power consumption - EVGA S17

The resulting power consumptions are shown in Figure 6.8 with the FPGA
being the lowest energy consuming platform. As mentioned in Chapter 5, this
metric was obtained by measuring the overall energy consumption of the board
using an energy meter. The most desired result of this metric is to consume
the least amount of energy. The second metric, energy efficiency in Frames per
Watt (FPW), was also calculated and shown in Figure 6.9. This number was
calculated by using the total runtime determined in section 6.2 and compar-
ing it to the total power consumption. This metric represents the platforms
ability to detect cracks using the least amount of energy per frame. With the
FPGA out-performing in both computational performance and energy con-
sumption, this led to the difference in power efficiency becoming even greater
than what was seen in the power consumption results. The FPGA was calcu-
lated running at 7105.26 Frames/Watt compared to the EVGA S17 at 586.46
Frames/Watt and the netbook at 149.38 Frames/Watt.

74

6.4. Energy Analysis

Figure 6.8: Energy Consumption Comparison (Lower is Better)

Figure 6.9: Energy Efficiency Comparison (Higher is Better)

75

6.5. Results Summary

These energy values show promising ability for this device to be imple-
mented onto an actual UAV. Using the DJI Inspire 2 drone as a test example,
it’s 22.8v 6000 mAh LiPo battery would allow the FPGA to be operated for
12 hours and 50 minutes if the battery solely ran the FPGA [45]. But when
factoring in the power consumption rate by flight (approx 254 Watts), the
UAV equipped FPGA could fly up to 22 minutes, down from the UAV’s spec-
ified 23 minute maximum flight time. As value is based on the UAV using
it’s 449g camera system, the 388g FPGA replacing this camera system is also
achievable weight-wise, and will not consume additional energy due to any
further weight load.

It has been shown that the hardware accelerated design displays superior
energy consumption and efficiency characteristics compared to the other plat-
forms. Given this result, the FPGA design is successful in regards to the
energy analysis test.

6.5 Results Summary

Table 6.17 summarises the results from each area of testing. In each of
these areas, the best score is underlined to allow the best performing platform
to be emphasised. As shown in Table 6.17, the Zynq-7030 achieves the best
scores in all areas except length and height.

Area Zynq-7030 (Hardware) Acer Netbook EVGA S17

Error Rate (4000 Particles) 16.81% 28.19% 28.19%
Error Rate (8000 Particles) 9.86% 22.64% 22.64%

Computational Performance 0.067s 1.913s 0.117s

Weight 388g 906g 4,100g

Length 280mm 278mm 408mm
Width 113mm 184mm 296mm
Height 35mm 26mm 27mm
Volume 1,107cc 1,329cc 3,276cc

Power Consumption 7.6 W 12.6 W 52.3 W
Power Efficiency 7105 FPW 149 FPW 586 FPW

Table 6.17: Summary of Results

76

7 Future Areas of Work

This research’s design provides a functional baseline work for a crack de-
tection particle filter system. While it serves its purpose well, there are sev-
eral areas that can be further developed to improve the capabilities of this
system including further FPGA optimizations, colour-space standardization,
increased accuracy, and further reduction in footprint.

In the areas of FPGA optimizations, more work could be conducted on
the actual programmable logic side of the design. This research relied mostly
on the automatic conversion between C/C++ to VHDL/Verilog and therefore
there are likely many optimizations that could be further employed to pro-
duce additional speed-up of the design. With the design using only 10% of the
board resources (besides IO blocks), additional work could also be applied to
move other sections onto the PL side. Additional work for acceleration could
also be potentially applied to further accelerate the existing components by
using additional FPGA resources.

Another area of development that would further improve this research is
the standardization of colour-space throughout the design. As the original
design used RGB, but the reference design which our proposed solution was
based on YUY2, there had been a computational loss on the conversion be-
tween these colour-spaces in order to follow the original design. This may oc-
cur several times depending on the requirement to load and save BMP images
from the device. In addition to the computational (and therefore accelera-
tion loss), there is also the loss in image quality from the original image that
devolves the image upon every conversion that occurs. Further work could
investigate the optimal colour-space to run a CDPF on and either change
the underlying system of the device to operate using RGB, or convert all al-
gorithms and image file loading/saving operations to YUY2 or any similar
colour-spaces such as YCbCr.

77

While this work has shown that the crack detection solution proposed is
functionally equivalent to the original design, the accuracy of the crack de-
tection system can be further worked on to exceed both designs. Given the
amount of board resources still available after implementing the accelerated
design, additional work can be applied to research a more functional edge de-
tection algorithm, which could utilise the parallel nature of the FPGA even
further, leading to a more accurate and faster solution.

Another limitation of this design was the relatively low 1280x1024 reso-
lution of the FPGA camera. A higher resolution camera would offer several
advantages in this research including less computational overhead of calcula-
tions between frames, less images required to be taken, greater quality, and/pr
the ability to increase the UAV range from subject.

This list touches on the many area of opportunities in the field of FPGA-
based CDPF systems. With better FPGAs (and other hardware based so-
lutions) becoming more affordable, better systems can be developed in the
future that are potentially more accurate and faster, all while being a fraction
of the size.

78

8 Conclusion

A feasible solution to conduct on-board crack detection for resource-limited
platforms such as UAVs was developed in this research. This was accomplished
by implementing a hardware design onto a Xilinx Zynq-7030 based embedded
vision kit, which optimised the crack detection system into a parallel compu-
tational architecture allowing it to be greatly accelerated.

This FPGA research and design showed excellent results when compared
to both a small portable Netbook and a performance gaming laptop. The
FPGA design was shown to be a more desirable selection in terms of in-
creased computational performance, greater overall energy efficiency, smaller
footprint and having the same functional accuracy as the original MATLAB
based crack detection system.

The results from Chapter 6 have concluded that this hardware accelerated
design performs 1.76x to 28.7x faster than the original MATLAB based design
running on a conventional PC while also consuming 1.66x to 6.88x less energy.
These two metrics equate to the FPGA solution having an energy efficiency
(Frames/Watt) 12.1x to 47.5x higher. With the drastically superior compu-
tational and energy performance, coupled with the low device footprint, this
design is a comprehensible solution for many robotic platforms.

Compared to much of the literature discussed in Chapter 1, the run-time of
0.067 seconds per frame that this design achieved shows that this Sobel filter
based crack detection technique has far greater computational performance
then many other techniques.

This research has contributed to the field of hardware computer vision
with the unique and substantial construction of a hardware version of a Sobel
based particle filter crack detection system. In addition, the hardware YUY2
to RGB converter made to support this work is also a unique design.

79

80

Bibliography

[1] G. P. Bu, S. Chanda, H. Guan, J. Jo, M. Blumenstein, and Y. C. Loo,
“Crack Detection using a Texture Analysis-based Technique for Visual
Bridge Inspection,” p. 8, 2015.

[2] A. Coppe, R. T. Haftka, Nam-Ho Kim, and C. Bes, “A statistical model
for estimating probability of crack detection,” in 2008 International
Conference on Prognostics and Health Management, Denver, CO, USA:
IEEE, Oct. 2008, pp. 1–5, isbn: 978-1-4244-1935-7. doi: 10.1109/PHM.
2008.4711418. [Online]. Available: http://ieeexplore.ieee.org/
document/4711418/ (visited on 11/14/2018).

[3] Alberta, Bridge Inspection & Maintenance (BIM) Manual v3.1, Mar.
2018. [Online]. Available: http : / / www . transportation . alberta .

ca/Content/docType30/Production/BIMMnlv3.1.pdf (visited on
11/14/2018).

[4] R. G. Lins, S. N. Givigi, A. D. M. Freitas, and A. Beaulieu, “Autonomous
Robot System for Inspection of Defects in Civil Infrastructures,” IEEE
Systems Journal, vol. 12, no. 2, pp. 1414–1422, Jun. 2018, issn: 1932-
8184. doi: 10.1109/JSYST.2016.2611244.

[5] J. P. Z. D. Paz, E. C. Castañeda, X. Y. S. Castro, and S. M. R. Jiménez,
“Crack detection by a climbing robot using image analysis,” in CONI-
ELECOMP 2013, 23rd International Conference on Electronics, Com-
munications and Computing, Mar. 2013, pp. 87–91. doi: 10 . 1109 /

CONIELECOMP.2013.6525765.

[6] H. Yu, W. Yang, H. Zhang, and W. He, “A UAV-based crack inspec-
tion system for concrete bridge monitoring,” in 2017 IEEE Interna-
tional Geoscience and Remote Sensing Symposium (IGARSS), Jul. 2017,
pp. 3305–3308. doi: 10.1109/IGARSS.2017.8127704.

81

https://doi.org/10.1109/PHM.2008.4711418
https://doi.org/10.1109/PHM.2008.4711418
http://ieeexplore.ieee.org/document/4711418/
http://ieeexplore.ieee.org/document/4711418/
http://www.transportation.alberta.ca/Content/docType30/Production/BIMMnlv3.1.pdf
http://www.transportation.alberta.ca/Content/docType30/Production/BIMMnlv3.1.pdf
https://doi.org/10.1109/JSYST.2016.2611244
https://doi.org/10.1109/CONIELECOMP.2013.6525765
https://doi.org/10.1109/CONIELECOMP.2013.6525765
https://doi.org/10.1109/IGARSS.2017.8127704

Bibliography

[7] A. Mohan and S. Poobal, “Crack detection using image processing:
A critical review and analysis,” Alexandria Engineering Journal, Feb.
2017, issn: 11100168. doi: 10.1016/j.aej.2017.01.020. [Online].
Available: https : / / linkinghub . elsevier . com / retrieve / pii /

S1110016817300236 (visited on 07/06/2018).

[8] P. Wang and H. Huang, “Comparison analysis on present image-based
crack detection methods in concrete structures,” in 2010 3rd Inter-
national Congress on Image and Signal Processing, vol. 5, Oct. 2010,
pp. 2530–2533. doi: 10.1109/CISP.2010.5647496.

[9] Z. Qu, F.-R. Ju, Y. Guo, L. Bai, and K. Chen, “Concrete surface crack
detection with the improved pre-extraction and the second percolation
processing methods,” PLoS ONE, vol. 13, no. 7, Jul. 26, 2018, issn:
1932-6203. doi: 10.1371/journal.pone.0201109. pmid: 30048514.
[Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC6062087/ (visited on 11/14/2018).

[10] V. Baltazart, P. Nicolle, and L. Yang, “Ongoing tests and improvements
of the MPS algorithm for the automatic crack detection within grey level
pavement images,” in 2017 25th European Signal Processing Conference
(EUSIPCO), Aug. 2017, pp. 2016–2020. doi: 10.23919/EUSIPCO.2017.
8081563.

[11] K.-Y. Liu, L. Tang, S.-Q. Li, L. Wang, and W. Liu, “Parallel particle
filter algorithm in face tracking,” in 2009 IEEE International Conference
on Multimedia and Expo, Jun. 2009, pp. 1817–1820. doi: 10.1109/ICME.
2009.5202876.

[12] S. Liu, G. Mingas, and C. S. Bouganis, “Parallel resampling for par-
ticle filters on FPGAs,” in 2014 International Conference on Field-
Programmable Technology (FPT), Dec. 2014, pp. 191–198. doi: 10 .

1109/FPT.2014.7082775.

[13] F. C. Pereira and C. E. Pereira, “Embedded Image Processing Systems
for Automatic Recognition of Cracks using UAVs,” IFAC-PapersOnLine,
vol. 48, no. 10, pp. 16–21, 2015, issn: 24058963. doi: 10 . 1016 / j .

ifacol . 2015 . 08 . 101. [Online]. Available: https : / / linkinghub .

elsevier.com/retrieve/pii/S2405896315009684 (visited on 01/14/2019).

[14] P. Prasanna, K. J. Dana, N. Gucunski, B. B. Basily, H. M. La, R. S. Lim,
and H. Parvardeh, “Automated Crack Detection on Concrete Bridges,”
IEEE Transactions on Automation Science and Engineering, vol. 13,
no. 2, pp. 591–599, Apr. 2016, issn: 1545-5955, 1558-3783. doi: 10.

82

https://doi.org/10.1016/j.aej.2017.01.020
https://linkinghub.elsevier.com/retrieve/pii/S1110016817300236
https://linkinghub.elsevier.com/retrieve/pii/S1110016817300236
https://doi.org/10.1109/CISP.2010.5647496
https://doi.org/10.1371/journal.pone.0201109
30048514
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062087/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062087/
https://doi.org/10.23919/EUSIPCO.2017.8081563
https://doi.org/10.23919/EUSIPCO.2017.8081563
https://doi.org/10.1109/ICME.2009.5202876
https://doi.org/10.1109/ICME.2009.5202876
https://doi.org/10.1109/FPT.2014.7082775
https://doi.org/10.1109/FPT.2014.7082775
https://doi.org/10.1016/j.ifacol.2015.08.101
https://doi.org/10.1016/j.ifacol.2015.08.101
https://linkinghub.elsevier.com/retrieve/pii/S2405896315009684
https://linkinghub.elsevier.com/retrieve/pii/S2405896315009684
https://doi.org/10.1109/TASE.2014.2354314
https://doi.org/10.1109/TASE.2014.2354314

Bibliography

1109/TASE.2014.2354314. [Online]. Available: http://ieeexplore.
ieee.org/document/6917066/ (visited on 01/15/2019).

[15] M. S. Chelva and S. V. Halse, “A Performance Study of GPU, FPGA,
DSP, and Multicore Processors For Embedded Vision Systems,” ITSI
Transactions on Electrical and Electronics Engineering (ITSI-TEEE),
vol. 3, no. 5, p. 6, 2015.

[16] AnySilicon, “FPGA vs ASIC, What to Choose?,” Jan. 30, 2016. [Online].
Available: https://anysilicon.com/fpga-vs-asic-choose/ (visited
on 07/06/2018).

[17] X. Tian and K. Benkrid, “Mersenne Twister Random Number Gen-
eration on FPGA, CPU and GPU,” IEEE, Jul. 2009, pp. 460–464,
isbn: 978-0-7695-3714-6. doi: 10.1109/AHS.2009.11. [Online]. Avail-
able: http://ieeexplore.ieee.org/document/5325420/ (visited on
07/06/2018).

[18] Xiaoyin Ma, J. R. Borbon, W. Najjar, and A. K. Roy-Chowdhury,
“Optimizing hardware design for Human Action Recognition,” IEEE,
Aug. 2016, pp. 1–11, isbn: 978-2-8399-1844-2. doi: 10 . 1109 / FPL .

2016.7577311. [Online]. Available: http://ieeexplore.ieee.org/
document/7577311/ (visited on 07/06/2018).

[19] A. Mohanty, N. Suda, M. Kim, S. Vrudhula, J. s Seo, and Y. Cao,
“High-performance face detection with CPU-FPGA acceleration,” in
2016 IEEE International Symposium on Circuits and Systems (ISCAS),
May 2016, pp. 117–120. doi: 10.1109/ISCAS.2016.7527184.

[20] G. van der Wal, D. Zhang, I. Kandaswamy, J. Marakowitz, K. Kaighn,
J. Zhang, and S. Chai, “FPGA acceleration for feature based process-
ing applications,” in 2015 IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), Jun. 2015, pp. 42–47. doi:
10.1109/CVPRW.2015.7301365.

[21] R. G. Lins and S. N. Givigi, “Automatic Crack Detection and Measure-
ment Based on Image Analysis,” IEEE Transactions on Instrumentation
and Measurement, vol. 65, no. 3, pp. 583–590, Mar. 2016, issn: 0018-
9456, 1557-9662. doi: 10.1109/TIM.2015.2509278. [Online]. Avail-
able: http://ieeexplore.ieee.org/document/7377063/ (visited on
06/14/2018).

[22] National-Instruments, “FPGA Fundamentals,” May 3, 2012. [Online].
Available: http://www.ni.com/white-paper/6983/en/ (visited on
06/22/2018).

83

https://doi.org/10.1109/TASE.2014.2354314
https://doi.org/10.1109/TASE.2014.2354314
http://ieeexplore.ieee.org/document/6917066/
http://ieeexplore.ieee.org/document/6917066/
https://anysilicon.com/fpga-vs-asic-choose/
https://doi.org/10.1109/AHS.2009.11
http://ieeexplore.ieee.org/document/5325420/
https://doi.org/10.1109/FPL.2016.7577311
https://doi.org/10.1109/FPL.2016.7577311
http://ieeexplore.ieee.org/document/7577311/
http://ieeexplore.ieee.org/document/7577311/
https://doi.org/10.1109/ISCAS.2016.7527184
https://doi.org/10.1109/CVPRW.2015.7301365
https://doi.org/10.1109/TIM.2015.2509278
http://ieeexplore.ieee.org/document/7377063/
http://www.ni.com/white-paper/6983/en/

Bibliography

[23] C. Adams, “FPGA or GPU? - The evolution continues,” in Military
Embedded Systems, Sep. 16, 2014. [Online]. Available: http://mil-

embedded.com/articles/fpga-gpu-evolution-continues/ (visited
on 11/14/2018).

[24] Xilinx, “UltraFast High Level Productivity Design Methodology Guide
- UG1197 (v2018.2),” Jun. 6, 2018. [Online]. Available: https://www.
xilinx.com/support/documentation/sw_manuals/ug1197-vivado-

high-level-productivity.pdf.

[25] ——, “Zynq-7000 SoC Data Sheet: Overview - DS190 (v1.11.1),” Jul. 2,
2018. [Online]. Available: https://www.xilinx.com/support/documentation/
data_sheets/ds190-Zynq-7000-Overview.pdf.

[26] D. Benson, “Getting Started with FPGAs: Lookup Tables and Flip-
Flops,” Jun. 9, 2017. [Online]. Available: https://www.allaboutcircuits.
com/technical-articles/getting-started-with-fpgas-look-up-

tables-and-flip-flops/ (visited on 10/09/2018).

[27] Xilinx, “7 Series DSP48E1 Slice User Guide - UG479 (v1.10),” Mar. 27,
2018. [Online]. Available: https://www.xilinx.com/support/documentation/
user_guides/ug479_7Series_DSP48E1.pdf.

[28] F. Hussein, “Hexarray: A Novel Self-Reconfigurable Hardware System,”
Mar. 2017. doi: 10.13140/RG.2.2.25809.02406.

[29] Xilinx, “Vivado Design Suite User Guide: Getting Started - UG910
(v2018.1),” Apr. 4, 2018. [Online]. Available: https://www.xilinx.
com/support/documentation/sw_manuals/xilinx2018_1/ug910-

vivado-getting-started.pdf.

[30] ——, “Vivado Design Suite User Guide: High-Level Synthesis - UG902
(v2016.2),” Jun. 8, 2016. [Online]. Available: https://www.xilinx.
com/support/documentation/sw_manuals/xilinx2016_2/ug902-

vivado-high-level-synthesis.pdf.

[31] ——, “SDSoC Environment User Guide - UG1027 (v2017.4),” Jan. 26,
2018. [Online]. Available: https://www.xilinx.com/support/documentation/
sw_manuals/xilinx2017_4/ug1027-sdsoc-user-guide.pdf (visited
on 11/14/2018).

[32] Fourcc, “YUY2 yuv pixel format.” [Online]. Available: https://www.
fourcc.org/pixel-format/yuv-yuy2/ (visited on 08/05/2018).

84

http://mil-embedded.com/articles/fpga-gpu-evolution-continues/
http://mil-embedded.com/articles/fpga-gpu-evolution-continues/
https://www.xilinx.com/support/documentation/sw_manuals/ug1197-vivado-high-level-productivity.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug1197-vivado-high-level-productivity.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug1197-vivado-high-level-productivity.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.allaboutcircuits.com/technical-articles/getting-started-with-fpgas-look-up-tables-and-flip-flops/
https://www.allaboutcircuits.com/technical-articles/getting-started-with-fpgas-look-up-tables-and-flip-flops/
https://www.allaboutcircuits.com/technical-articles/getting-started-with-fpgas-look-up-tables-and-flip-flops/
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://doi.org/10.13140/RG.2.2.25809.02406
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug910-vivado-getting-started.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug910-vivado-getting-started.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug910-vivado-getting-started.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1027-sdsoc-user-guide.pdf
https://www.fourcc.org/pixel-format/yuv-yuy2/
https://www.fourcc.org/pixel-format/yuv-yuy2/

Bibliography

[33] S. Estrop and G. Sullivan, “Recommended 8-Bit YUV Formats for Video
Rendering,” Microsoft, Nov. 2008. [Online]. Available: https://docs.
microsoft.com/en-us/windows/desktop/medfound/recommended-8-

bit-yuv-formats-for-video-rendering (visited on 11/27/2018).

[34] TutorialsPoint.com, “Sobel Operator.” [Online]. Available: https://

www . tutorialspoint . com / dip / sobel _ operator . htm (visited on
08/06/2018).

[35] OpenCV, “Canny Edge Detection,” Dec. 22, 2017. [Online]. Available:
https://docs.opencv.org/3.4.0/da/d22/tutorial_py_canny.html

(visited on 09/08/2018).

[36] CivilDigital.com, “Diagonal Cracks in Foundation and Walls,” Jul. 8,
2014. [Online]. Available: https : / / civildigital . com / diagonal -

cracks-foundation-walls/ (visited on 09/09/2018).

[37] Andersal, “Strata Managers Guide to Building Defects.” [Online]. Avail-
able: https://www.andersal.com.au/services/concrete-cancer-
spalling-repair/guide-to-building-defects/ (visited on 09/09/2018).

[38] AVNet, “PicoZed Embedded Vision Kit PYTHON-1300-C SDSoC Plat-
form Version 2016 2,” Jan. 3, 2017. [Online]. Available: http://picozed.
org/support/design/14961/111.

[39] Microsoft, “Color Conversion (YCbCr to RGB).” [Online]. Available:
https://msdn.microsoft.com/en- us/library/ff635267.aspx

(visited on 10/08/2018).

[40] S. K. Park and K. W. Miller, “Random Number Generators: Good Ones
Are Hard to Find,” Commun. ACM, vol. 31, no. 10, pp. 1192–1201, Oct.
1988, issn: 0001-0782. doi: 10.1145/63039.63042.

[41] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005, isbn: 0-262-
20162-3.

[42] C. Baetoniu, “High Speed True Random Number Generators in Xilinx
FPGAs,” p. 11,

[43] R. G. Lins, S. N. Givigi, and P. R. G. Kurka, “Vision-Based Measure-
ment for Localization of Objects in 3-D for Robotic Applications,” IEEE
Transactions on Instrumentation and Measurement, vol. 64, no. 11,
pp. 2950–2958, Nov. 2015, issn: 0018-9456. doi: 10.1109/TIM.2015.
2440556.

85

https://docs.microsoft.com/en-us/windows/desktop/medfound/recommended-8-bit-yuv-formats-for-video-rendering
https://docs.microsoft.com/en-us/windows/desktop/medfound/recommended-8-bit-yuv-formats-for-video-rendering
https://docs.microsoft.com/en-us/windows/desktop/medfound/recommended-8-bit-yuv-formats-for-video-rendering
https://www.tutorialspoint.com/dip/sobel_operator.htm
https://www.tutorialspoint.com/dip/sobel_operator.htm
https://docs.opencv.org/3.4.0/da/d22/tutorial_py_canny.html
https://civildigital.com/diagonal-cracks-foundation-walls/
https://civildigital.com/diagonal-cracks-foundation-walls/
https://www.andersal.com.au/services/concrete-cancer-spalling-repair/guide-to-building-defects/
https://www.andersal.com.au/services/concrete-cancer-spalling-repair/guide-to-building-defects/
http://picozed.org/support/design/14961/111
http://picozed.org/support/design/14961/111
https://msdn.microsoft.com/en-us/library/ff635267.aspx
https://doi.org/10.1145/63039.63042
https://doi.org/10.1109/TIM.2015.2440556
https://doi.org/10.1109/TIM.2015.2440556

Bibliography

[44] Intel, “Intel R© CoreTM i7-6820HQ Processor Specifications,” 2015. [On-
line]. Available: https://ark.intel.com/products/88970/Intel-
Core-i7-6820HQ-Processor-8M-Cache-up-to-3-60-GHz- (visited on
11/27/2018).

[45] DJI, “Inspire 2 – Specs, Videos, Downloads and FAQ.” [Online]. Avail-
able: https : / / www . dji . com / ca / inspire - 2 / specs (visited on
01/16/2019).

86

https://ark.intel.com/products/88970/Intel-Core-i7-6820HQ-Processor-8M-Cache-up-to-3-60-GHz-
https://ark.intel.com/products/88970/Intel-Core-i7-6820HQ-Processor-8M-Cache-up-to-3-60-GHz-
https://www.dji.com/ca/inspire-2/specs

Appendices

87

A Zynq-7000 and Zynq-7000S
SoCs

Feature Summary [25]

Table A.1: Zynq-7000 and Zynq-7000S SoCs

88

Table A.2: Zynq-7000 and Zynq-7000S SoCs (Cont’d)

Notes:
1. Restrictions apply for CLG225 package. Refer to the UG585, Zynq-7000 SoC Technical

Reference Manual (TRM) for details.

2. Security is shared by the Processing System and the Programmable Logic.

3. Refer to PG054, 7 Series FPGAs Integrated Block for PCI Express for PCI Express support
in specific devices.

89

Table A.3: Device-Package Combinations: Maximum I/Os and GTP and GTX
Transceivers

Notes:
1. All packages listed are Pb-free (FBG and FFG with exemption 15). Some packages are

available with a Pb option.

2. The Z-7012S and Z-7015 devices in the CLG485 package and the Z-7030 device in the SBG485
package are pin-to-pin compatible.

3. PS I/O count does not include dedicated DDR calibration pins.

4. HR = High Range I/O with support for I/O voltage from 1.2V to 3.3V.

5. HP = High Performance I/O with support for I/O voltage from 1.2V to 1.8V.

90

Table A.4: Device-Package Combinations: Maximum I/Os and GTP and GTX
Transceivers (Cont’d)

Notes:
1. All packages listed are Pb-free (FBG and FFG with exemption 15). Some packages are

available with a Pb option.

2. PS I/O count does not include dedicated DDR calibration pins.

3. HR = High Range I/O with support for I/O voltage from 1.2V to 3.3V.

4. HP = High Performance I/O with support for I/O voltage from 1.2V to 1.8V.

91

92

B Particle Filter Code

1

2 // Start of Uncertainty Calculation

3

4 for (x = 0; x < NUM_PARTICLES; x++) {

5 particles[x][0] = randn(particles[x][0],(float) Xstd_pos);

6 particles[x][1] = randn(particles[x][1],(float) Xstd_pos);

7 particles[x][2] = randn(particles[x][2], (float) Xstd_vec);

8 particles[x][3] = randn(particles[x][3], (float) Xstd_vec);

9 }

10

11 // Start of Likelihood Calculation

12

13 // Xstd_rgb is the SD of Target Colour

14 Inacc_A = -log(sqrt(2 * M_PI) * (float) Xstd_rgb);

15 Inacc_B = -0.5 / ((float) (Xstd_rgb ^ 2));

16

17 for (x = 0; x < NUM_PARTICLES; x++) {

18 m = particles[x][0];

19 n = particles[x][1];

20 i = (m >= 1 && m <= height);

21 j = (n >= 1 && n <= width);

22

23 if (i && j) {

24 if ((char)(img_edg[((m-1)*stride)+(n-1)])==255) {

25 F = 2;

26 }

27 else {

28 F = 1;

29 }

93

1 D[0] = img_rgb2[(m*3*1280)+(n*3)] - Xrgb_trgt[0];

2 D[1] = img_rgb2[(m*3*1280)+(n*3)+1] - Xrgb_trgt[1];

3 D[2] = img_rgb2[(m*3*1280)+(n*3)+2] - Xrgb_trgt[2];

4

5 //Create Tendency of particle to target color

6 //(Lower value corresponds to greater tendency)

7 float D2 = pow(D[0],2) + pow(D[1],2) + pow(D[2],2);

8 //Determine Possible Range for the Target Colour

9 likelihood[x] = Inacc_A + Inacc_B * D2 / (float)F;

10 }

11 else {

12 //Delete particles outside image area

13 likelihood[x] = -INFINITY;

14 }

15 }

16

17 // Start of Resample section

18

19 // Generating Random Numbers

20 for (x = 0; x < NUM_PARTICLES; x++) {

21 T[x] = ((float)rand_int()/32767.0);

22 }

23

24 for (x = 0; x < NUM_PARTICLES; x++) {

25 local_likelihood[x] = resample_likelihood[x];

26 if (local_likelihood[x] > max_likelihood) {

27 max_likelihood = local_likelihood[x];

28 }

29 }

30

31 for (x = 0; x < NUM_PARTICLES; x++) {

32 local_likelihood[x] = exp(local_likelihood[x] - max_likelihood);

33 }

34

35 for (x = 0; x < NUM_PARTICLES; x++) {

36 sum_likelihood = sum_likelihood + local_likelihood[x];

37 }

94

1 for (x = 0; x < NUM_PARTICLES; x++) {

2 local_likelihood[x] = local_likelihood[x] / sum_likelihood;

3 }

4

5 // Cumulative summation

6 for (x = 1; x < NUM_PARTICLES; x++) {

7 local_likelihood[x] = local_likelihood[x]+local_likelihood[x-1];

8 }

9

10 for (x=0;x<NUM_PARTICLES;x++){

11 int first = 0;

12 int middle = NUM_PARTICLES/2;

13 int last = NUM_PARTICLES-1;

14 float T_local = T[x];

15 for(y=0;y<HISTO_LOOP;y++){

16 if (local_likelihood[middle] <= T_local){

17 first = middle +1;

18 }

19 else{

20 last = middle - 1;

21 }

22 middle = (first + last)/2;

23 }

24 resample_histo[x] = first+1;

25 }

26

27 for (x = 0; x < NUM_PARTICLES; x++) {

28 for (y = 0; y < 4; y++) {

29 temp_particles[x][y] = particles[x][y];

30 }

31 }

32

33 for (x = 0; x < NUM_PARTICLES; x++) {

34 for (y = 0; y < 4; y++) {

35 particles[x][y] = temp_particles[histo_copy[x] - 1][y];

36 }

37 }

95

	Acknowledgements
	Abstract
	Résumé
	List of Tables
	List of Figures
	List of Code Blocks
	List of Acronyms
	Introduction
	Introduction
	Literature Review

	Problem and Thesis Statement
	Technical Background
	FPGA Technical Background
	General
	Resources

	FPGA Selection
	Design Tools
	HLS Background
	Video Format
	Computer Vision
	Crack Measurement Algorithm

	Solution Design
	Overall Design Strategy
	Software Implementation
	Image Acquisition
	Sobel Edge Detection Filter
	Particle Map Initiation
	YUY2 to RGB Conversion
	Particle Filter Calculations
	Uncertainty Calculation
	Likelihood Calculation
	Re-sampling
	Analysis and/or Data Storage

	Hardware Implementation
	General
	Sections for Hardware Acceleration
	Edge Detection Filter Acceleration
	YUY2 to RGB Converter Acceleration

	Hardware Issues/Potential of Remaining Components
	Other Accelerations

	Testing Methods
	General
	Detection and Measurement Accuracy
	General
	Camera vs SD Card

	Computational Performance
	Footprint
	Energy Analysis

	Results and Discussion
	Detection Accuracy
	Computational Performance
	Footprint
	Energy Analysis
	Results Summary

	Future Areas of Work
	Conclusion
	Bibliography
	Appendices
	Zynq-7000 and Zynq-7000S SoCs
	Particle Filter Code

