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You’ll have plenty of CFD to do. Let’s see if you still like it in a year...

To my sister, I miss you every day.
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Abstract

Nayman, Maurice Noah. M.A.Sc. Royal Military College of Canada, March 2024. Automo-
tive Aerodynamic Design Using Sensitivity-Based Methods. Supervised by Ruben E. Perez,
B.Eng., M.A.Sc., Ph.D., P.Eng., Professor.

With the shift towards electrification in the automotive industry, aerodynamic drag has a
larger influence on a car’s range as compared to internal combustion vehicles. Automotive
aerodynamic design is largely aesthetic driven, but manufacturers are beginning to shift to-
wards more drag-friendly concepts, driven by computational fluid dynamics simulations. With
advances in computational fluid dynamics-driven optimization techniques, the continuous ad-
joint method has shown the ability to be a computationally efficient method of calculating de-
sign sensitivities. This research explores a two-pronged approach for applying the continuous
adjoint method to automotive aerodynamic design, using the canonical DrivAer Estateback.
This is achieved using computational fluid dynamics models validated against existing exper-
imental data. The first method is using the continuous adjoint to define a Reynolds-Averaged
Navier Stokes (RANS)-based Momentum Contribution Field, which informs the user how the
momentum around a car contributes to its drag. Additionally, improvements to this RANS-
based methodology are provided through Delayed Detached Eddy Simulations (DDES). The
RANS Momentum Contribution Field information is then used to guide design modifications.
From these modifications, an improved variant of the Estateback model was produced, with
8.8% less drag than the baseline model. The second approach makes use of unconstrained
gradient-based optimization of the base and improved Estateback models, for multiple areas
on the cars, using multiple optimization algorithms. Relative improvements in drag up to
7% were predicted with the optimizer, with limitations in optimizer efficacy noted in areas
dominated by adverse pressure gradients. DDES post-optimality simulations confirmed the
efficacy of the RANS-based optimizer in areas with weaker adverse pressure gradients, as well
as the inaccuracy of the optimizer in areas of high separation. This two-pronged approach
led to a unified design methodology, where expert-driven, followed by computer-driven con-
tinuous adjoint methods, can be used to yield drag reductions in automotive applications.

Keywords: automotive aerodynamics, aerodynamic shape optimization, con-
tinuous adjoints, computational fluid dynamics, open-source, applied aerodynam-
ics
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Résumé

Nayman, Maurice Noah. M.A.Sc. Collège militaire royal du Canada, Mai 2024. Concep-
tion Aérodynamique Automobile à l’Aide de Méthodes Basées sur le Gradient. Supervisé par
Ruben E. Perez, B.Eng., M.A.Sc., Ph.D., P.Eng., Professeur.

Avec le passage à l’électrification dans l’industrie automobile, la trâınée aérodynamique a
une plus grande influence sur l’autonomie d’une voiture que sur les véhicules à combustion
interne. La conception aérodynamique automobile est en grande partie axée sur l’esthétique,
mais les manufacturiers commencent à s’orienter vers des concepts plus respectueux de la
trâınée, pilotés par des simulations numériques de dynamique des fluides. Avec les progrès
des techniques d’optimisation numérique basées sur la dynamique des fluides, la méthode des
adjoints continus a montré qu’elle pouvait être une méthode efficace de calculer des sensibilités
de conception. Cette recherche explore une approche à deux volets pour l’application de la
méthode de l’adjoint continu à la conception aérodynamique automobile, en utilisant le dos
de domaine canonique DrivAer. Ceci est réalisé à l’aide de modèles numériques de dynamique
des fluides validés par rapport aux données expérimentales existantes. La première méthode
consiste à utiliser l’adjoint continu pour définir un champ de contribution de Navier Stokes
basé sur la moyenne de Reynolds (RANS), qui informe l’utilisateur de la façon dont la vitesse
autour d’une voiture contribue à sa trâınée. De plus, des améliorations à cette méthodologie
basée sur RANS sont apportées par le biais de simulations de tourbillons détachés retardés
(DDES). Les informations du champ de contribution à la vitesse RANS sont ensuite utilisées
pour guider les modifications de conception. À partir de ces modifications, une variante
améliorée du modèle Estateback a été produite, avec 8,8 % de trâınée moins que le modèle
baseline. La deuxième approche fait appel à l’optimisation sans contrainte basée sur le gra-
dient du modèle baseline et à des modèles de succession améliorés, pour plusieurs zones des
voitures, à l’aide de plusieurs algorithmes d’optimisation. Trâınée réduite de 7 % on été
prédite, avec des limitations de le rendement de l’optimiseur notées dans les zones dominées
par des gradients de pression défavorables. Les simulations post-optimales du DDES ont
confirmé que le rendement de l’optimiseur basé sur RANS sont plus faibles dans les zones où
les gradients de pression défavorable, ainsi que l’imprécision de l’optimiseur dans les zones de
forte décollement. Cette approche à deux volets est rendi à une méthodologie de conception
unifiée, où des méthodes d’adjoint continu pilotées par des experts, suivies d’une méthode
d’adjoint continu pilotée par ordinateur, peuvent être utilisées pour réduire la trâınée dans
les applications automobiles.

Mots-clés: aérodynamique automobile, optimisation de la forme aérodynamique,
adjoints continus, simulations numériques de dynamique des fluides, logiciels li-
bres, aérodynamique appliquée

v



Contents

Acknowledgements iii

Abstract iv
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1 Introduction

With the rise of global emissions causing an increase in global temperatures, the United Na-
tions Framework Convention on Climate Change set a goal of limiting the average global
temperature increase to 1.5◦C at the Paris Climate Accords in 2015. The Intergovernmental
Panel on Climate Change then released a report from their 2018 conference with the assess-
ment that emissions would have to be reduced by 45% by 2030, and be net-zero by 2050 [1].

Figure 1.1: Existing emission trends across various transportation industries, as well as future
projections [2].

As shown in Figure 1.1, passenger vehicles make up 41% of global emissions in the transporta-
tion sector, growing from approximately 2.2 billion metric tons of carbon dioxide in 2000, to
3.2 billion metric tons in 2019 [2]. As a result, many leading original equipment manufacturers
(OEM’s) have developed or are developing electric vehicles (EV) to reduce their fleet-averaged
carbon dioxide emissions. This is being driven by new regulations and government require-
ments, such as the European Union’s target for fleet-averaged carbon dioxide emissions of 95
g CO2/km [3].

Current EV ranges are largely limited by battery technology. As of 2024, the longest range
EV based on Environmental Protection Agency estimates is the Lucid Air Dream Edition
R at 835 km. While this value rivals typical internal combustion figures, the average range
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for the ten highest range EV, sits at approximately 575 km [4]. During the development of
the Porsche Taycan, Porsche found that 29% of an EV total losses were due to aerodynamic
drag, compared to 8% for traditional internal combustion vehicles [5]. As such, aerodynamics
has become a more important factor in determining EV range, with manufacturers seeking
to minimize drag. This has led to greater investments in aerodynamic simulation tools such
as computational fluid dynamics (CFD), given its cost-advantage over wind tunnel testing,
which can cost thousands of dollars per hour. With CFD methods with a focus on automotive
applications being offered by more software vendors, more extensive optimization techniques
are also becoming more prevalent. Leading software vendors such as Engys, ANSYS, Siemens,
and more have all started offering optimization packages that can be paired with their CFD
codes.

The nature of automotive design is largely aesthetic-driven, with each manufacturer trying
to communicate a given design language, promoting brand recognition. This can be in direct
competition with aerodynamic performance, especially for brands with traditionally sharp
or angular car designs (Lamborghini, for instance). For internal combustion cars, this was
less impactful, due to a smaller proportion of their losses from aerodynamic drag than that
of EV. Therefore, manufacturers are beginning to shift their design language to be more in
line with low aerodynamic drag concepts, such as more bluff and rounded bodies, removal of
door handles, antennas, and more. Despite this, aerodynamics can still become compromised
because of a desired styling theme.

In automotive design, aerodynamic shape optimization has been explored in CFD, with much
of the literature focused on gradient-based methods, which will be explored in Chapter 2.
Existing methods do not have a provision for styling-based constraints, as this can be largely
subjective and unable to be analytically described. As such, traditional aerodynamic shape
optimization can not always be implemented, as it could violate the styling theme of the car.
It would therefore be more valuable to have a sensitivity method to extract information on
the various design variables of the global car design, to be used in manual design routines.
This would act as a supplement to traditional flow field information available from CFD
computations, such as pressure and velocity fields. Optimization methods could then be
used at later points in the design cycle, to improve local features of the car, extracting more
performance from the platform.

1.1 Research Objectives

The aim of this research is to investigate the application of sensitivity approaches and opti-
mization methods for improving automotive aerodynamic design practices. The first is the
qualitative use of sensitivity information to allow for human-guided guided design modifica-
tions, that would be applicable to the early phases of a car’s design cycle. The second is
to apply traditional gradient-based optimization methods to a car geometry to evaluate the
efficacy of different update methods within an automotive lens. The specific objectives are:

� Perform CFD analyses of a canonical automotive geometry to provide an understanding
of the accuracy of CFD modelling methods, which will be subsequently applied to this
research.

� Define a field that shows how local flow momentum contributes to a given objective func-
tion, called the Momentum Contribution Field (MCF). In this research, the MCF will
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be computed using the continuous adjoint method to understand how flow momentum
contributes to the aerodynamic drag of the canonical geometry.

� Using the results of the MCF, investigate design modifications on specific areas of the
car, evaluated using the validated CFD models. Limitations of and improvements to
the MCF method are also presented.

� Using the baseline and MCF-modified geometries, investigate the effect of different
unconstrained gradient-based RANS optimizers with respect to aerodynamic drag, in
key locations on the cars. This will characterize the efficacy of different algorithms,
as well as the effect of the initial design vector on the results. Futhermore, this will
highlight the efficacy of combined MCF/optimization approaches compared to gradient-
based optimization alone.

� Perform higher-fidelity post-optimality CFD of key design vectors from the optimiza-
tion models to evaluate the accuracy of the RANS optimizer. This will characterize
regions in which the optimization fidelity is limited, as well as detail what magnitude
of improvement is feasible from the optimizer.

1.2 Thesis Layout

This thesis is organized into six chapters. Following this Introduction, Chapter 1, Chapter 2
presents a literature review of the current state of automotive aerodynamic shape optimization
research. This includes direct optimization of automotive geometries, methods pertaining
to the evaluation and accuracy of continuous adjoint computations, and an exploration of
the literature on the canonical automotive body studied, the DrivAer geometry. Chapter 3
presents CFD studies of the DrivAer geometry in various configurations, with mesh and time
step dependency studies performed for a DDES approach. This is supplemented with an in-
depth analysis of the simulation accuracy and differences between RANS and DDES results.
Chapter 4 presents a novel approach using a proposed Momentum Contribution Field around
the DrivAer Estateback to guide modifications shape modifications based on its information,
to reduce drag. Limitations and improvements to the evaluated MCF methodology will also
be discussed. Chapter 5 investigates the application of gradient-based optimization methods
to the DrivAer Estateback base and improved variants. This will characterize the efficacy of
different optimizers in regions with different flow physics, with post-optimality CFD presented
to confirm the accuracy of optimization predictions. This chapter will also examine the
effectiveness of combined MCF/optimization design methods. Finally, Chapter 6 summarizes
key findings of this thesis, and provides recommendations for further investigations on this
topic.

1.3 Contributions

The contributions of this thesis include:
� Validation of a DDES CFD approach for predicting the flow around largely separated
automotive bodies.

� A thorough examination of an expert-guided methodology to develop aerodynamic de-
sign using a Momentum Contribution Field stemming from continuous adjoint solutions
in a qualitative manner. This research investigates areas where the method is feasible
and infeasible, along with proposed improvements to the sensitivity calculations that
have not been previously presented.
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� A study comparing the efficacy of different gradient-based optimizers when applied
to a realistic automotive geometry, and a variant modified using the MCF method.
Optimization is investigated for areas with small and large adverse pressure gradients,
which will detail where optimization performance is most effective, and if prior expert-
driven modifications affects this efficacy.

� Verification of the RANS optimizers’ accuracy using higher-fidelity DDES CFD for
key design vectors. This will verify the reliability of any predicted improvements in
aerodynamic drag by the optimizers.

� A proposal for a unified, generic automotive aerodynamic design development map,
employing both Momentum Contribution Fields and optimization methods to show
how the drag of a car can be minimized more effectively when combining expert-driven
design modifications with computer-driven optimization. This is based on the results of
the MCF and optimization work.

4



2 Literature Review

This chapter examines the latest state of research surrounding automotive aerodynamic shape
optimization. The first section covers current methodologies and results for automotive aero-
dynamic shape optimization. The second section summarizes existing research on continuous
adjoints, as well as the state of adjoint turbulence modelling.

2.1 Automotive Aerodynamic Shape Optimization

Automotive design is largely styling driven, since each manufacturer has their own brand iden-
tity, conveyed through their products. As such, while aerodynamic performance is of concern,
it can often be compromised by constraints from styling departments. As such, shape opti-
mization is typically focused on the rear decklid/tailgate spoiler area and underfloor devices,
since these pose the least impact on styling.

Current gradient-free automotive optimization methods largely focused on Design of Exper-
iments (DOE) simulations, combined with response-surface methods, for optimization prob-
lems characterized by few design variables [6]. These methods tend to be useful in the automo-
tive industry, since DOE solutions provide sensitivities to the design variables, which can then
be communicated to the design studio for integration into an aesthetically-pleasing design. In
certain studies, drag on a passenger hatchback was able to be reduced by approximately 10%
using DOE and response surface methods, by modifying the front and rear fascias of the car,
with the design variable ranges limited by styling desires [7]. These DOE/response-surface
methods tend to be more costly than adjoint simulations, since a greater number of flow so-
lutions are required to characterize parameter sensitivities. However, these methods provide
more information on the effect of different geometric parameters, for use in later designs. In
these DOE approaches, optimization fidelity is also limited by the number of design variables
chosen, which also govern the computational cost of objective sensitivity calculations.

The use of gradient-based shape optimization routines in the aerospace industry has occurred
since the 1980’s [8]. These initial methods focused largely on simple airfoil optimization for
potential flow solutions. In the 1990’s, the practice evolved into the use of continuous adjoints
for sensitivity derivative estimation for more complex geometries [9,10]. These methods were
compared against traditional finite-differences sensitivity derivative calculations to validate
the accuracy of continuous adjoints. While the continuous adjoint method has existed for
approximately three decades, it was not used widely in the automotive industry until the
mid 2010’s, largely led by the Parallel CFD & Optimization Unit (PCOpt) at the National
Technical University of Athens [11, 12]. Additional work was carried out by Hare, where she
investigated the applicability of adjoint-based shape optimization to the front wing of a mod-
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ern Formula One car [13]. This work stands out as one of the few applications of the adjoint
method in an effort to reduce the lift, or increase the downforce of a car.

PCOpt’s initial work largely focused on rear decklid optimization using a steepest descent
update method for directing surface deformation. When applied to a low-drag concept vehi-
cle, drag was reduced by more than 2%, with corresponding reduction in lift of 30%. Drag
improvements were realized in less than five equivalent flow solutions, with an equivalent flow
solution being the time it took to generate a single, converged CFD model. This highlights
that objective function minimization is possible for a relatively low equivalent cost. The pa-
rameterized deformation box and resultant optimized shape for the model are shown below
in Figure 2.1.

(a) Deformation Box Parameterization (b) Baseline and Optimized Rear Decklid

Figure 2.1: Parametric deformation box defined and optimized surface results for a low-drag
concept vehicle [11].

Further use of the adjoint method employed pseudo-transient primal solutions to provide more
accurate adjoint computations [11]. This used time-averaged velocity fields from transient
CFD simulations to provide more accurate field information, used in the adjoint calculations.
This resulted in a more accurate resolution of the surface sensitivities near the rear, more sep-
arated areas on an Audi A7 [14]. The difference in surface sensitivities of drag with respect
to the normal displacement were compared, which showed that the surface should be moved
to create a rear spoiler-like device, as is seen on the Audi A7. These differences in surface
sensitivities are shown below in Figure 2.2. Audi has performed additional research using
sensitivity maps, validating the effect of outward displacements to minimize drag on their Q5
model in the wind tunnel [15]. They also employed DDES simulations for the primal fields
to improve the adjoint sensitivity maps.
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Figure 2.2: Differences in RANS vs. approximate DES surface sensitivities in the rear spoiler
area, where red indicates moving the surface inwards to reduce drag and blue indicates
moving the surface outwards to reduce drag [14].

Papoutsis-Kiachagias et al. further employed the adjoint method to approximate wind-noise
calculations to optimize side mirrors. This used a surrogate objective function derived from
the square of the turbulent viscosity acting in a volume around the vehicle’s driver-side win-
dow. In unconstrained optimization routines, the objective function was improved by approx-
imately 25%, suggesting that adjoints could be used to minimize wind noise in automotive
applications [12].

Through the use of commercial CFD codes, such as Simcenter Star-CCM+, shape optimiza-
tion has been applied to passenger cars using the discrete adjoint method [16]. This work
found similar results to Papoutsis-Kiachagias, in that drag could be reduced on the order of
5% for a passenger hatchback vehicle. In the case of that research, solution accuracy was
determined using post-optimality transient CFD simulations.

In most of the existing literature, a single-objective optimization function was used. Papoutsis-
Kiachagias et al. examined the effects of using multiple operating points for the primal so-
lution, including the vehicle’s yaw moment in the objective function [17]. Post-optimality
transient CFD for select optimization results along the Pareto frontier showed that RANS-
based optimization routines predicted the correct trends for improvement, but tended to
overestimate moment improvements compared to the transient CFD results. This study was
useful in showing the how stability metrics such as the yaw moment can be minimized, will
also showing the effectiveness of drag optimization.

What that body of work did not fully examine is the role the optimization algorithm and
optimized region have on the results. Most of the published work in this area focuses on the
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optimization of the rear spoiler region of the car to show that optimization is an effective
method for reducing aerodynamic drag. However, left unexamined were other regions of the
car that are dominated by more complex flow features, such as around the front tires. This
region of the front fascia is also of great importance, since better shrouding of the front tires
leads to a smaller tire wake, and consequently reduced drag. Therefore, it is valuable to under-
stand if gradient-based optimizers are robust in these regions. Furthermore, it is beneficial to
determine which gradient-based optimizers are most favourable for automotive applications,
since the more complex flow fields can result in poorer primal solution convergence, which
can lead to less accurate sensitivity calculations.

2.1.1 DrivAer Geometry

Most automotive research tends to rely on partnerships with OEM’s, whereby computer-aided
design (CAD) geometry of actual, or concept vehicles is provided. This has two effects on the
literature. The first being that reported results are limited to maintain confidentiality and
protect the OEM’s intellectual property, and the second is the limited public availability of
research, since few OEM’s are willing to publish their own data. As such, in collaboration
with Audi and BMW, TU Munich’s Institute of Aerodynamics and Fluid Mechanics created
the DrivAer model in 2011 [18]. This car is meant to be a modular platform, allowing for
different body configurations, such as the Notchback, Fastback, and Estateback configurations,
shown below in Figure 2.3. Given the modularity and suite of existing experimental data,
the DrivAer platform has been used previously by automotive aerodynamic optimization re-
searchers to examine the efficacy of optimization algorithms [19,20].

Figure 2.3: Fastback (F), Estateback (E), and Notchback (N) configurations of the DrivAer
model [18].

The DrivAer model has advantages over existing canonical models such as the Ahmed body
[21] and the SAE body [22], since it can investigate more complex flow patterns, including
along the underfloor, and wheelwell regions, as well as the tire-body interactions. Different
configurations of the DrivAer model additionally allow for engine bay flow and cooling mod-
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2.1. Automotive Aerodynamic Shape Optimization

elling to occur, allowing detailed investigations. Furthermore, the DrivAer model allows for
more robust aerodynamic investigations and optimization, given the readily available config-
urations, each with different flow characteristics. The Ahmed and SAE notchback models are
shown below in Figure 2.4, highlighting the simplicity of these models.

(a) Ahmed Body [21]

(b) SAE Notchback Body [22]

Figure 2.4: Existing canonical models, which did not feature as many complex flow structures
and geometry as the DrivAer model

Given the greater availability of this modular platform, the DrivAer geometry has been used
in shape optimization routines. Using a simplified fastback model, He et al. implemented a
discrete adjoint solver within OpenFOAM [19], which predicted a drag improvement of ap-
proximately 12% compared to baseline. It is important to note that while this is valuable,
exempting key flow structures such as tire and mirror wakes can lead to unrealistic results.
The use of a generic model had similar results when compared to OEM models such as the
Audi A7, in that the development of a rear spoiler to reduce the low-pressure region behind
the car was generated by the optimization algorithm. This shows that a generic model that
is representative of similar vehicle platforms can be used to develop effective optimization
methods, without requiring direct OEM support.

Karpouzas et al. found further use of the DrivAer model for aerodynamic shape optimiza-
tion routines, relying on continuous adjoints [23]. Drag improvements were predicted when
deforming the spoiler area of a more detailed fastback variant, using a volumetric B-spline
based mesh displacement tool.

Based on the existing literature, the DrivAer model has proven that it can be an informative
geometry substitute for vehicle investigations, when real vehicle models are not available. To
extend the use of the DrivAer geometry and to reflect the move towards more SUV’s in the
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passenger sector, the AeroSUV model was released in 2019, derived from the DrivAer car [24].
This model has not been used for much optimization research, but it has the potential to pro-
vide a better indication of RANS-based optimization accuracy for flows with larger regions
of separation.

2.2 Continuous Adjoints

Since gradient-based optimizers are explored in this research since they tend to be more effi-
cient than gradient-free methods. As such, the CFD code of choice must have a method with
which sensitivities can be computed, the most common method being the adjoint method
(continuous or discrete). The adjoint method is favourable over other methods such as finite-
differencing, since it calculates the Jacobian (i.e. gradient) vector in fewer function evaluations
for a large number of design variables than does finite-differencing. In CFD, where flow evalu-
ations are costly, such efficiency is required. Analytic methods are not feasible for automotive
applications due to the absence of an exact solution for automotive flows.

In the vast majority of existing literature, automotive aerodynamic shape optimization makes
use of the continuous adjoint method. Continuous adjoints are derived from the continuous
governing equations for a given problem: the Navier-Stokes equations for fluid flow. This is
contrasted to discrete adjoints, where the adjoint equations are derived from the discretized
flow equations, typically using an automatic or algorithmic differentiation approach [25].
Aerospace research has shown that discrete adjoints tend to be more robust than continuous
adjoints for difficult problems, since they can handle discontinuities in the flow solution, due
to the discretized approach [25,26]. This tends not to be an issue for automotive applications,
due to lower freestream velocities, reducing the magnitude of velocity and pressure gradients.
The existing research landscape confirms that continuous adjoints are sufficiently robust to
be suitable for automotive applications. There is however a lack of openly-available research
regarding how robust continuous adjoint solutions are for different optimization algorithms
(Conjugate Gradient, Quasi-Newton methods) when applied to automotive applications.

Discrete adjoints have also been used to explore how flow momentum around a body con-
tributes to an objective function of interest (aerodynamic lift, drag, moments), which can be
extended to the continuous adjoint method [27]. This was used to study what areas around a
Formula Student car contribute most to its downforce. In that presentation, the qualitative
use of adjoints was only to understand the flow around the car. This research will take the
method one step further, by using the information contained within that field to develop
modifications to the DrivAer platform. This allows for a qualitative, expert-guided use of
the adjoint method, where design variable information can be synthesized during a car’s de-
velopment. In early phases of a car’s design, this design variable information is important to
communicate to the design studio, such that certain design features can be integrated into a
car’s styling. This tends to be more valuable than finding an optimal solution for different
areas on a car, when styling constraints could invalidate that optimization activity.

2.2.1 Adjoint Turbulence Modelling

The majority of literature regarding the use of continuous adjoints revolves around turbulence
closure models to the adjoint equations. In the existing literature, there are two approaches
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to account for turbulence in adjoint models. This first is to assume that the turbulence is
”frozen” and does not affect any of the sensitivity derivatives, and the second is to have a
fully-differentiated adjoint model for a given turbulence model. The second option is currently
limited to the adjoint Spalart Allmaras model, which is offered in all major CFD codes with
adjoint capabilities. While the k − ω Shear Stress Transport (SST) model is more frequently
used in automotive applications, due to its ability to better predict adverse pressure gradi-
ents [28], it is not available in many CFD codes. Furthermore, the adjoint variant of the k−ω
SST model can be less robust than the adjoint Spalart Allmaras (SA) model, due to poorer
convergence of the primal solution.

Kavvadias et al. developed an adjoint k−ω turbulence model, that was used in optimization
routines and compared to the frozen turbulence assumption [29]. They found that using the
frozen turbulence assumption resulted in incorrectly signed sensitivity derivatives compared
to finite differences results and the use of an adjoint turbulence model. The magnitude of the
sensitivity derivatives tended to be up to an order of magnitude larger than those calculated
using finite differences or an adjoint turbulence model. An example of these differences is
presented in Figure 2.5 for flow over a NACA 0012 airfoil at 3◦ angle of attack, parameter-
ized by Bézier polynomials with 12 control points on the suction and pressure surfaces, each.
Control points are numbered from the leading edge to the trailing edge for the suction side,
followed by the pressure side. The first 24 design points represent the x coordinate of each
control point, and the second 48 design points are for the y coordinate. Additionally, the
model that assumed frozen turbulence predicted less improvement in the objective function
in an internal flow test case.

(a) Control Points and Airfoil Profile

Figure 2.5: Examination of sensitivity derivatives for each control variable for flow over
a NACA 0012 wing, with control point parameterization shown. Sensitivity calculations
include finite differences, frozen turbulence adjoints, and adjoint k − ω SST models [29].
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(b) Calculated Sensitivities

Figure 2.5: Examination of sensitivity derivatives for each control variable for flow over
a NACA 0012 wing, with control point parameterization shown. Sensitivity calculations
include finite differences, frozen turbulence adjoints, and adjoint k − ω SST models [29].

Similar results were found by Zymaris et al. during the development of the adjoint SA turbu-
lence model [30]. It was found that an adjoint turbulence model better matched the sensitivity
derivatives calculated from direct differentiation methods, when compared to frozen turbu-
lence models. This was exacerbated in cases whose objective functions were heavily dependent
on shear stresses within the fluid, such as the minimization of total pressure losses in a duct.

When developing the surrogate objective function to minimize noise, Papoutsis-Kiachagias
et al. noted that an adjoint turbulence model was necessary to compute sensitivity deriva-
tives [12]. Since this objective function was dependent on primal turbulent viscosity, a frozen
turbulence approach would suggest zero sensitivity to turbulent viscosity. This is a case where
neglecting turbulent sensitivities would result in no change of a model’s geometry.

From the existing body of research, it is made evident that including the effects of turbulence
in adjoint sensitivities is imperative for accurate optimization studies. This is most important
for models where the results are driven by shear stresses, such as minimization of pressure
loss, noise, and drag. As such, all use of continuous adjoints will employ the SA turbulence
model for primal computations, and its corresponding adjoint turbulence model for continuous
adjoint computations. This would help improve the accuracy of sensitivity analyses, while
still be as robust as using the k−ω SST model for primal calculations, with frozen turbulence
for the adjoint calculation. It is important to note that reliance on the SA turbulence model
for primal computations would limit the accuracy of the CFD solution. A one-equation SA
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approach was less favourable than the two-equation approach of the k − ω SST model for
separation predictions, but the desire to have a robust adjoint turbulence model necessitated
the use of the primal SA model.

2.3 Concluding Remarks on the State-of-the-Art

While automotive design is largely aesthetics driven, more focus is being placed on aero-
dynamic performance to achieve desired range targets since OEM’s seek to meet efficiency
targets. Automated shape optimization routines have as a result been more popular, to extend
the effectiveness of existing designs. It should be noted that these methods are performed at
later stages in a design to enhance late-stage performance from the car. Published literature
also emphasizes the importance of including turbulence contributions in sensitivity deriva-
tives, for shear-driven objectives, such as drag. Save for some work by Papoutsis-Kiachagias,
automotive aerodynamic shape optimization has been focused on minimizing drag in a straight
line. Furthermore, the majority of existing work has focused on the optimization of the spoiler
region of a car, where the flow structures tend to be relatively well-behaved. The robustness
of optimizers in regions dominated by strong adverse pressure gradients has not been fully
explored, such as around the front fascia of a car, where such flow has a significant effect on
the front tire wakes. Additionally, the efficacy of different gradient-based optimizers such as
Conjugate Gradient methods and Quasi-Newton methods have not been examined for auto-
motive applications. This is an important gap in the literature, since traditionally efficient
optimization algorithms may suffer from inaccuracies that can arise in the adjoint equations
due to insufficient convergence of the primal flow solution. These are often driven by struc-
tures such as the front tire wakes, evidencing the lack of optimization performed in these
areas. The accuracy of predictions in these areas would be impacted by the reliance on the
SA turbulence model, but this was a limit of existing methodologies.

Finally, any RANS-based optimization routines influenced by separated wakes and should
use post-optimality CFD models with greater fidelity to determine more realistic changes in
aerodynamic performance; this is under-documented in the automotive landscape. The use
of DDES has been a favourable high-fidelity method for the automotive industry, resolving
turbulent structures at a fraction of the cost of a Large Eddy Simulation (LES).
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3 CFD Model Validation Using the
DrivAer Geometry

This chapter presents an evaluation of two modelling approaches on a canonical automotive ge-
ometry using the open-source computational fluid dynamics (CFD) package, OpenFOAM [31].
The simulation approach described in this chapter was used to evaluate different designs in-
spired from the Momentum Contribution Field, discussed in Chapter 4. The two methods
are the use of a k − ω DDES unsteady simulation approach, and a SA RANS steady-state
simulation approach. The DDES model is used to perform the mesh and timestep dependency
studies, that will govern the final automated meshing approach, and the desired simulation
timestep. The RANS approach is evaluated, since this is the solver employed in the compu-
tation of an adjoint’s primal solution, that will be discussed in Chapter 4. This chapter will
highlight the accuracy in CFD modelling approaches in terms of absolute force differences
to the existing experimental data of the canonical geometry [18], as well as the accuracy of
changes in the design of this geometry. It is for this reason that the DrivAer geometry is
chosen for the canonical model, since it is modular, with a range of vehicle configurations,
and it has experimental data against which results can be validated.

3.1 Canonical Automotive Geometry - DrivAer

The canonical DrivAer geometry is used in this research as a representative test case on which
the proposed gradient-based methods can be applied. This geometry has the advantage of
being publicly available, and has well-documented wind tunnel results for CFD validation.

The naming conventions for the DrivAer model is as follows: the first letter denotes the body
style (F, E, N) shown in Figure 3.1, the second letter denotes the floor being simple or de-
tailed (S, D), the third portion denotes if mirrors are used or not (wM, woM, respectively),
and finally, if wheels are used or not (wW, woW, respectively). In this work, the DrivAer
Estateback model with mirrors and a simple floor (E S wM wW) will be the base geometry.
These models are shown in Figure 3.2. The E S wM wW model is more representative of
current electric vehicles, since they tend to have flat underfloors due to the battery tray.
This means that different design modifications would be needed to reduce drag, compared
to the underbody of internal combustion vehicles, which contain more complex details, such
as exhaust pipes, driveshafts, transmission tunnels, and more. Additional validation will be
performed on the Estateback model with and without mirrors, as well as with a simple and
detailed underfloor. Naming conventions for different areas of interest in this work are pre-
sented in Table 3.1 and Figure 3.3.
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3.1. Canonical Automotive Geometry - DrivAer

Figure 3.1: Fastback (F), Estateback (E), and Notchback (N) configurations of the DrivAer
model [18].

(a) With Mirrors (b) Without Mirrors

Figure 3.2: DrivAer Estateback configurations used for model validation
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(c) Detailed Floor (d) Simple Floor

Figure 3.2: DrivAer Estateback configurations used for model validation

The configurations used in the validation study will be designated as E D wM wW, E D woM wW,
E S wM wW, E S woM wW, with the E D wM wW model used for the mesh and time step
dependency studies. Table 3.1 shows the components used in each of these four models.

Table 3.1: DrivAer configurations used in this study

Configuration Roof Style Floor Mirrors Wheels

E D wM wW Estateback (E) Detailed (D) With (wM) With (wW)
E D woM wW Estateback (E) Detailed (D) Without (woM) With (wW)
E S wM wW Estateback (E) Simple (S) With (wM) With (wW)
E S woM wW Estateback (E) Simple (S) Without (woM) With (wW)

(a) Top View

Figure 3.3: Naming conventions used for key components of the Estateback
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(b) Underbody View

Figure 3.3: Naming conventions used for key components of the Estateback

3.2 Meshing

To generate the meshes used for all CFD analyses, OpenFOAM’s built-in, hex-dominant, au-
tomated mesher snappyHexMesh was employed. This mesher was an automated, fully-parallel
utility, that generated axis-aligned, hex-dominant meshes to model triangulated input geom-
etry [32]. The mesher first relied on the creation of a background mesh, which was typically
made using the OpenFOAM utility blockMesh. This background mesh would be comprised
solely of hexahedral elements with aspect ratios as close to unity as possible (cubic elements
are preferred).

Meshing then proceeded with the castellation phase, where the background mesh is subdi-
vided by feature edges, which can be sharp edges generated using the OpenFOAM utility,
surfaceFeatureExtract, and by the input triangulated surfaces. When the mesh was refined,
it was broken into cell levels, with an initial mesh size from the block mesh called level 0.
If marked for refinement, each cell was divided into four, meaning the length of each edge
of the hexahedral element halved. This then increased the cell level by one every time a
cell was divided. This also meant that mesh refinement occurred in factors of two, rather
than having a continuous growth rate defined for the surface and volume meshes. Once the
mesh had been refined based on the defined feature edges and the input surfaces, cells were
removed based on a defined point which should have lived within the finite-volume mesh.
Then any additional refinement regions, such as wake boxes, volumes created by offsetting
the input geometry, etc. are used to provide additional refinement around the input geometry.

Next, the refined mesh was snapped to the input geometry, to match the input surface. The
mesher attempted to snap the cell faces to the input geometry within a given quality criteria.
In the presence of particularly complex or low-quality geometry, snappyHexMesh could not
capture the input geometry perfectly.
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The final step for snappyHexMesh was to generate layers on the surface, used in viscous calcu-
lations to resolve the wall-normal boundary layer gradients. This stage worked by projecting
the existing mesh away from the surface based on the specified layer thicknesses. If quality
criteria were met, layers will be added in this area. If not, the outward projection would
be retracted, and layers were not grown on the surface. It was important to note that this
retraction of layers could happen on each mesh face along the surface, meaning total layer
coverage is not guaranteed by snappyHexMesh. A flowchart of this process, along with the
different OpenFOAM dictionaries and supporting utilities is presented in Figure 3.4. Figure
3.5 presents the intermediate meshes for a sample two-dimensional case that would be gener-
ated by snappyHexMesh.

Figure 3.4: Full flow chart, with supporting dictionary files and utilities to run snappy-
HexMesh on an input triangulated geometry file: geometry.stl [32]
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(a) Input geometry (b) Castellated mesh refinement

(c) Snapped mesh (d) Layer addition

Figure 3.5: Sample two-dimensional meshing problem using snappyHexMesh [33]

Since snappyHexMesh generated the local mesh sizing by progressively dividing the cells of
the background mesh in powers of two, the final cell count could be modified easily by chang-
ing the size of the cells in the background mesh. For the DrivAer geometry, the background
mesh size was chosen to be a 153.6 m long (51.2 m upstream, 102.4 m downstream), 51.2 m
wide, and 25.6 m high computational domain, resulting in a blockage ratio of 0.16%, based
on industry practices and experience. This meant that to maintain an aspect ratio of unity
in all cells in the blockMesh, increasing or decreasing the height breakup by one cell resulted
in the addition of two cells in the width, and 6 cells in the streamwise direction.

Using snappyHexMesh, specific regions (cellZones in OpenFOAM ) could be defined for volume
sources to be added, such as porosity models for heat exchangers or moving reference frames
for rim spokes. This was done for each of the four wheels, just around the rim spokes, to avoid
adding artificial rotation to the flow that was not caused by the rims’ motion. Layer addition
was controlled using the local aspect ratio of the mesh faces for the height of the anisotropic
cells. This results in a high-y+ meshing approach, for which three layers are placed on all
vehicle surfaces, and five layers placed on all tire and rim surfaces. The goal of the high-y+

meshing approach was to have the first cell centre across the mesh at a non-dimensional wall-
normal spacing between 30 and 300. This meant wall functions were applied for modelling
viscous walls, rather than integrating the boundary layer to the wall when computing wall
shear stresses. A sample mesh along vehicle centreline is shown, along with the overall refine-
ment on the car in Figure 3.6.

The level 0 size of the mesh was computed by dividing the length of the domain in each
direction by the number of subdivisions in each direction. The blockMesh generated made
use of the simpleGrading division scheme in the blockMesh utility, resulting in each element
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(a) Mesh along car centreline, with a closeup of the rear liftgate

(b) Surface mesh on the vehicle, with a closeup of the side mirror

Figure 3.6: Sample meshes of the DrivAer Estateback generated using snappyHexMesh

in a direction being of equal length. The specific division schemes that were employed in the
mesh dependency study will be covered in Section 3.5.

3.3 Reynolds-Averaged Navier Stokes Simulations

The RANS equations are derived by decomposing the velocity field of the Navier Stokes
equations into a mean and fluctuating component:

U = Ū + u (3.1)

Where U is the total velocity field, Ū is the mean value of that field as a function of time, and
u is the fluctuating component of the velocity. This decomposition has the property that the
average of the mean value is the mean value, and the average of the fluctuating component is
zero. Using this decomposition for the field and taking the time-average of the Navier Stokes
equations leads to the following equations for continuity and momentum [34]:

20



3.3. Reynolds-Averaged Navier Stokes Simulations

∂
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(
ρŪ
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= 0 (3.2)
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ρŪ⊗ Ū

)
= g +∇ · τ̄ −∇ · (ρR) (3.3)

In Equation 3.3, g is the gravity vector, τ̄ is the averaged stress tensor (pressure and viscous
stresses), and R is the Reynolds stress tensor, which arises due to fluctuating velocity fields.
These equations as shown are the Unsteady-RANS (URANS) equations, with the steady-state
RANS equations forgoing the partial derivatives with respect to time in the continuity and
momentum equations. Additionally, for incompressible simulations, it is convenient to divide
both equations by the density, ρ, leading to the dynamic viscosity, ν being used in the av-
erage stress tensor. This also causes the calculated pressure to actually be p/ρ, which is the
calculated pressure variable for incompressible simulations in OpenFOAM.

When representing the Reynolds stress tensor, it can be broken into its isotropic and deviatoric
components. In OpenFOAM’s convention, the isotropic component: 2

3kI is added to the mean
pressure term, yielding a p̄′ term. The deviatoric term, Rdev is left on its own, due to the
additional terms created by these Reynolds stresses. This yields a final momentum equation
of:
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ρŪ⊗ Ū
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(3.4)

The dev2 operator in Equation 3.4 calculates the deviatoric component of a tensor, in this
case being the mean velocity gradient tensor.

The deviatoric components of the Reynolds stress tensor leads to the closure problem of
the RANS equations, where there are an insufficient number of equations for the number of
unknown variables. This led to the creation of different turbulence models, which seek to
model these stresses using different, semi-empirical models. Two eddy-viscosity models will
be discussed, both of which model these stresses through a turbulent viscosity term, νt (for
incompressible solutions). The first of the two turbulence models to be discussed is the SA
model [35], which is employed in the continuous adjoint solutions due to the available adjoint
SA turbulence model. The second is the k − ω SSST model [28, 36], which will be developed
into the DES variant in Section 3.4.

3.3.1 Spalart Allmaras Model

The SA turbulence model was initially developed for attached turbulent flows, with appli-
cations in the aerospace industry. The model itself is not based on a physical quantity, but
it attempts to solve for a transport equation of a modified eddy (turbulent) viscosity. This
model was developed empirically and using dimensional analysis, rather than being based on
a known quantity. The SA model as used in OpenFOAM (excluding the non-implemented
ft2 terms) is given by Equation 3.5 [37]:
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D
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(3.5)

Equation 3.5 represents the material derivative of the transformed eddy viscosity (left side)
being equal to the turbulent diffusion of the eddy viscosity (first two right side terms), plus the
production of eddy viscosity (third right side term) minus the dissipation of turbulent viscosity
(fourth right side term). The final term of the right side, Sν̃ , represents any additional user-
defined turbulence sources to the simulation. The eddy viscosity, νt is calculated by Equation
3.6:

νt = ν̃fv1 (3.6)

where fv1 is given by Equation 3.7:

fv1 =
χ3

χ3 + C3
v1

(3.7)

The χ term in this equation is the ratio of turbulent viscosity to the local molecular viscosity.
This model has a number of coefficients, which were determined empirically based on different
basic turbulent flows. All model coefficients were set to their default values in OpenFOAM
v2206. In general, the SA model is at most applicable to mildly separated flows, given its
calibration for the aerospace industry. As such, it can often underpredict points of separation,
which mostly affects drag predictions in highly-separated flows. These types of flows are
more common around the wakes of cars, which typically contain a great deal of separation.
Despite this, the SA equation is favourable for adjoint computations given the stability of the
adjoint SA model. Therefore, the SA model allows for more accurate resolution of turbulence
contributions to the adjoint equations compared to a frozen turbulence assumption, while
still being robust. Furthermore, unsteady adjoint computations were far too computationally
expensive to allow the Detached Eddy Simulation variant of the SA model to be used, so
RANS models are typically used for adjoint solutions.

3.3.2 k − ω SST Model

The k − ω SST model is a modification to the original two-equation k − ω model, first
proposed by Menter [28]. This turbulence model solves for the turbulent kinetic energy, k,
and the specific dissipation rate of turbulent kinetic energy ω. The specific dissipation rate
is given by the following equation, as used in OpenFOAM [38]:

D

Dt
(ρω) =∇ · (ρDω∇ω) + ργ

G

ν
− 2

3
ργω

(
∇ · Ū

)
− ρβ∗ω2 − ρ (F1 − 1)CDkω + Sω

(3.8)

Equation 3.8 represents the material derivative of the dissipation on the left side. On the right
side, the term involving the gradient of the dissipation is the viscous dissipation diffusion,
with the G term being the dissipation production due to the mean velocity shear along with
the divergence of the velocity field term. The ω2 term is the dissipation of the dissipation
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(generates k), the Dkω term being the cross-diffusion. The SST model correction is through
the (F1 − 1) term [36]. This behaves like the traditional k−ω model near walls, where F1 = 1,
and transitions to a k−ϵ model away from the wall, when F1 = 0, meaning the cross-diffusion
term will be included. This modification was made to reduce the standard k − ω model’s
sensitivity to freestream turbulence, leading to a more stable model. The Sω term allows
for any user-defined turbulence sources to be added to the simulation. The other terms are
model coefficients, which have been derived semi-empirically based on the calibration of the
turbulence model with different test cases. All model coefficients were set to their default
values in OpenFOAM v2206. The k equation is given by Equation 3.9 [36]:

D

Dt
(ρk) =∇ · (ρDk∇k) + ρG− 2

3
ρk
(
∇ · Ū

)
− ρβ∗ωk + Sk

(3.9)

As with the dissipation equation, the left side of Equation 3.9 represents the material deriva-
tive of the turbulent kinetic energy. On the right side, there is turbulent diffusion of turbulent
kinetic energy in its gradient term. Additionally, kinetic energy production due to the mean
velocity shear is the G term and additional production is governed by the divergence of the
mean velocity term, as with the dissipation equation. The ωk term is a model for the dis-
sipation of the turbulent kinetic energy, and the Sk term are any additional user-defined
turbulence sources in the simulation.

To model the Reynolds stresses, an eddy viscosity is calculated, as with the SA model, which
is given by Equation 3.10 [28]:

νt = a1
k

max{a1ω, b1F23S}
(3.10)

The F23 term is given by Equation 3.11 [38]:
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The reason for the maximum operation in the denominator of the eddy viscosity equation is
to limit the production of cross fluctuations in the velocity field in adverse-pressure gradient
boundary layers. This is one of the modifications that makes the SST model particularly
effective for more separated flows than the SA model. Like the SA model, the SST model is
still overly-dissipative, suggesting there is less turbulent kinetic energy than is realistic. This
can result in delayed reattachment of separated boundary layers. This makes RANS models
less effective for highly separated automotive flows, compared to Detached Eddy Simulations.
However, for automotive RANS modelling, the SST model tended to outperform the SA
model in areas of separated flow. Furthermore, full understanding of the RANS SST model
is required in the derivation of the associated DES variant.
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3.4 Delayed Detached Eddy Simulations

As noted, RANS models can perform poorly in automotive applications, since the majority
of the aerodynamics involve thin shear layers, with large regions of separation. Using LES
would therefore prove to be an advantage, whereby the eddy content in the highly separated
wakes would be resolved by the solver. However, LES faces a large grid requirement within
the boundary layer, even for Wall-Modelled LES (WMLES) computations. As such, hybrid
RANS/LES models are extremely attractive for automotive purposes, where the thin bound-
ary layers can be modelled using a RANS approach, and the large separation regions can be
modelled using a LES approach. This is where DES is an extremely useful purpose to the
automotive industry, and also the reason why these models are used in this research.

Since the Reynolds-Averaged and Filtered (used in LES) Navier Stokes equations take the
same form, it is possible to solve a simulation containing both RANS and LES regions, using
a unified turbulence model that can switch between RANS solutions and LES solutions [39].
Depending on the turbulence model chosen, the behaviour of the model will have different
characteristics. For example, the SA-DES model was calibrated to perform like a traditional
WMLES solution, whereas k − ω SST-DES models behave more like a hybrid RANS/LES
solution. For this research, only the k − ω SST DES and DDES models will be discussed.

3.4.1 k − ω SST Detached Eddy Simulation

The SST-DES equations are generated by modifying the turbulent kinetic energy equation of
the RANS SST model, shown in Equation 3.9. This DES turbulence model is then described
by Equation 3.12 for the turbulent kinetic energy [40]:

D

Dt
(ρk) =∇ · (ρDk∇k) +min (ρG, c1β

∗ρkω)− 2

3
ρk
(
∇ · Ū

)
− ρ

k1.5

d̃
+ Sk

(3.12)

In Equation 3.12, the important term is the k1.5/d̃ term, where the RANS or LES behaviour
is controlled by the d̃ parameter. This is a modified length scale given by Equation 3.13:

d̃ = min

{
CDES∆LES ,

√
k

β∗ω

}
(3.13)

With a RANS length scale lRANS being given by Equation 3.14:

lRANS =

√
k

β∗ω
(3.14)

The ∆LES term is a measure of the local grid sizing, or the LES length scale. The calculation
of this term in OpenFOAM simulations is the cubeRootVol method, which computes the grid
filter size as the cube root of each cell’s volume. This means that the spacing requirement
is calculated once per simulation, and is not dependent on flow conditions. While this is
a computationally inexpensive approach, it is a model for the actual flow spacing, and can
become skewed for highly anisotropic cells. In the case where the local grid sizing is larger
than the RANS length scale, the turbulence model will operate as a RANS model. In the
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case where the DES length scale is smaller than the RANS scale, the solution will act as an
LES computation, where the sub-grid (or sub-filter) viscosity is calculated using a turbulent
kinetic energy equation. In the regions where the solution uses an LES computation, the
resolved turbulent kinetic energy is still subject to the local grid spacing, which determines
the size of the spatial filter.

3.4.2 k − ω SST Delayed Detached Eddy Simulation

Despite DES solutions providing a computational cost advantage over pure LES models,
this initial model was highly susceptible to a phenomenon know as Grid-Induced Separation
(GIS) [41]. There are three types of grids that can be used in a DES simulation. The first
type are grids with a thin boundary layer, where the local spacing tangent to the wall will
exceed the wall-normal spacing. This causes the boundary layer to be solved with a RANS
formulation, with the transition to an LES solution occurring outside of the boundary layer,
which is the optimal operation regime for DES. The second type is one for which the grid
spacing within the boundary layer is sufficiently small, such that most of the boundary layer
is solved using a turbulent kinetic energy sub-grid scale model, with a RANS model very
close to the wall, and a small transition region in between. This type of solution is a form
of WMLES, but is not inline with the initial purpose of DES solutions, which sought to re-
duce the computational cost of scale-resolving simulations. The third type of grid, which was
most problematic was one for which the application of a RANS or LES model was ambiguous
through much of the boundary layer. This tends to occur when the transition to the LES
model is in the upper two-thirds of the boundary layer. This results in a dissipation of the
RANS eddy viscosity, due to the model transition, but the grid is not fine enough to fully
resolve the boundary layer fluctuations that the LES model seeks to capture. As such, there
is a rapid decrease in shear stress due to the loss of eddy-viscosity, which creates non-physical
GIS [41].

With this overarching problem noted in initial DES models, a modification to the calculation
of the DES length scale was proposed, to delay the point at which the simulation would
transition from a RANS to a LES model. Equation 3.15 is a modification to Equation 3.13
proposed by Menter and Kuntz to delay this transition [42]:

d̃ = lRANS − fdmax{0, lRANS − CDES∆LES} (3.15)

This equation makes use of a delaying function, fd, to delay the onset of the activation of the
LES model. The full activation of the LES model would therefore only occur in areas where
the grid spacing was sufficiently smaller than the RANS length scale. The delaying function
used in this computation is given by Equation 3.16 [42]:

fd = 1− tanh
(
[8rd]

3
)

(3.16)

With the independent variable of this function being given by Equation 3.17 [42]:

rd =
νt + ν√

∇U∇Uκ2l2RANS

(3.17)

The inclusion of the molecular dynamic viscosity helps ensure that near the wall, this term
remains non-zero reducing the likelihood of full activation of the LES model. This change
to the switch between the RANS and LES models was the key differentiation in the DDES
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approach, while also making it more robust to traditionally ambiguous grids. The other
benefit of the DDES model is the transition from RANS to LES is more abrupt, resulting in
a smaller ambiguous interpolation region between the two modelling approaches [41].

3.4.3 Grid Refinement in DDES Models

Since DDES models resolve turbulent content when in their LES mode, the amount of re-
solved content is dependent on the local grid size (the spatial filter). As such, not all DDES
simulations are ”created equal”, with finer grids resolving more of the eddies in the flow. A
sample of the effect of different turbulence models and the grid resolution on DES modelling
is shown in Figure 3.7. As the grid is refined from coarse to fine, the smallest turbulent
structures in the wake decrease in size due to the spatial filter size decreasing.

Figure 3.7: Effects of turbulence model and mesh resolution on DES flow field, a) Coarse
SA-DES, b) Fine SA-DES, c) Fine SST-DES. Adapted from [43]

As the mesh resolution increases, turbulent structures become finer, due to fewer length scales
being smaller than the spatial filter. In automotive applications, additional resolution of these
eddies will yield a better representation of the car wakes, primarily around the wheels, mir-
ror, and rear fascia. This is most influential on drag predictions, which are highly dependent
on the separation points and pressure within these separated regions. The typical industrial
approach of automotive CFD is to generate the grids to be as coarse as reasonably possible,
to maintain the maximum amount of computational throughput. As such, the upper limit
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of a DES simulation approaching a full LES simulation is infeasible for industrial automotive
applications.

As a final remark on DDES turbulence modelling: for automotive flows with large regions of
separation, they will outperform comparable RANS models in terms of wake predictions, and
turbulent content resolution. However, the time-dependent nature of the LES equations makes
DES unfeasible for most adjoint computations. Therefore, the RANS turbulence models are
still of value to the automotive industry.

3.5 DDES Mesh and Timestep Dependency Studies

In the experimental data first generated by Heft, a 40% scale model of the DrivAer Estateback
was used. The force and pressure data presented in that research was for a Reynolds number
of 4.87 million. The velocity at this Reynolds number was determined to be 40 m/s based
on freestream conditions for a dry environment at 20◦ C. [18]. Since the full-scale DrivAer
Estateback was used for validation, the freestream velocity was set to 16 m/s (40% of 40 m/s),
to preserve the Reynolds number when comparing data.

The DrivAer model was found to have a blockage ratio, ϕ, of 8% in a wind tunnel with an
effective cross-section of 1.74 m x 2.4 m. Therefore, the frontal area of the scale model was
found with Equation 3.18:

A = ϕAeff (3.18)

Therefore, the frontal area of the 40% scale model was 0.334 m2, which translates to a frontal
area of 2.088 m2 for the full-scale car. This value was used for normalizing drag and lift.

For the mesh and timestep dependency studies, the DDES equations were solved using Open-
FOAM’s pimpleFoam solver, which is a combination of the Pressure-Implicit with Splitting
of Operators (PISO) [45] and Semi-Implicit Method for Pressure Linked Equations (SIM-
PLE ) [46] algorithms, for time-stepping solutions. The combined PISO-SIMPLE algorithm
is abbreviated as the PIMPLE algorithm [47]. Both the PISO and SIMPLE algorithms solve
the discretized RANS equations through an initial momentum equation solution, that is then
corrected through a pressure equation. These classes of solvers are typically known as a seg-
regated solver. These algorithms are in contrast to block-coupled solvers, where pressure and
velocity would be solved simultaneously in a single matrix.

The benefit of the PIMPLE algorithm over the standard PISO algorithm is it does not require
the maximum Courant number to not exceed one, as it uses SIMPLE -based inner pressure
correction iterations to allow for higher Courant numbers at each time step. Second-order
spatial and temporal schemes are employed with the PIMPLE algorithm to ensure simulation
accuracy. The simulation is allowed to run for five seconds, with averaging of the flow fields
and forces occurring over the last two and a half seconds. While some of the Estateback
configurations are symmetric, an averaging window sufficiently long to remove time-averaged
asymmetries due to wake vortex shedding would require too long an averaging window to
be feasible. The k − ω SST DDES turbulence model is used for modelling the eddy and
sub-grid scale eddy viscosities. Boundary conditions used for both the farfield and the car
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are presented in Figure 3.8. The inlet-outlet scheme used employs a velocity specification
on the inlet, with a static pressure on the outlet. The ground is modelled using a tangential
wall velocity. Further details on the specific boundary conditions used are shown in Figure 3.8.

(a) Farfield boundary conditions

(b) Car boundary conditions

Figure 3.8: Boundary conditions for farfield and car surfaces

To understand the sensitivity of the results with respect to the mesh and unsteady time
step, two studies were performed. The first varied the mesh sizing and time step simulta-
neously on the E D wM wW configuration, and the second varied just the time step using
a constant mesh sizing, for all four DrivAer Estateback configurations presented in Table
3.1. This was done to first understand if the drag trends were consistent for different time
steps as a function of cell count. This study allowed for a mesh sizing to be chosen, which
was used to analyze the time step sensitivity for the four Estateback configurations of interest.

To vary the mesh refinement, five background mesh sizes were chosen, such that all cells in
the initial mesh had an aspect ratio of unity, with characteristic lengths of 1.4222 m, 1.5059
m, 1.6000 m, 1.7067 m, 1.8286 m. A larger characteristic length resulted in a coarser mesh.
The specific division of the background mesh, which was 153.6 m long, 51.2 m wide, and
25.6 m high are shown in Table 3.2. It was noted that modifying the level 0 size to change
the mesh resolution was a limitation of the snappyHexMesh process. Further modifications
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to this could have involved changing the size of the domain to get larger changes in level
0 size, but this was not desired, due to the impact this would have on the blockage ratio.
This would have had additional affects on the results that could not be isolated from changes
in the mesh. The results of the initial mesh and time step sweep are shown in Figure 3.9.
Supplemental images showing the effect of the divisions on the surface volume meshes are
available in Appendix A.

Table 3.2: blockMesh divisions used to generate E D wM wW meshes

Mesh Divisions (x x y x z) Base Length [m] Cells (M)

Very Coarse 84 x 28 x 14 1.8286 33.0
Coarse 90 x 30 x 15 1.7067 38.3
Medium 96 x 32 x 16 1.6000 43.6
Fine 102 x 34 x 17 1.5059 49.9

Extra Fine 108 x 36 x 18 1.4222 56.2

Figure 3.9: Drag coefficient as a function of cell count and time step

Figure 3.9 shows that as the cell count increases (decrease in the base length), the drag co-
efficient oscillated for all three time step sizes. This oscillation was most similar for the 2
ms and 1 ms time steps, with the 0.5 ms time step oscillating more slowly. All three curves
tended to converge however, around 50 million cells in the mesh. This mesh sizing has the
best agreement among the three time steps, as well as the best overall agreement with the
experimental data for the E D wM wW configuration. In general, it is expected that the
drag coefficient should decrease with a smaller timestep, due to better resolution of higher
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frequency eddy content. This also helps to reduce temporal numerical dissipation.

As such, the Fine mesh sizing was chosen for subsequent analyses, since it had the best agree-
ment in the 2 ms and 1 ms time steps, and the 0.5 ms time step followed a consistent trend.
The three timesteps tested were then used with this mesh sizing to evaluate the remaining
three DrivAer Estateback configurations. These results are shown in Figure 3.10.

Figure 3.10: DrivAer configuration drag coefficient as a function of timestep

From Figure 3.10, the 2 ms timestep had the lowest average absolute percent difference to the
experimental data at 3.1%. The 1 ms and 0.5 ms time steps have a slightly greater average
absolute error of 3.3%. The 2 ms time step data had the lowest standard deviation in the
absolute error across the four configurations at 0.8%, compared to 1.7% and 2.2% for 1 ms
and 0.5 ms, respectively. Despite the 0.5 ms timestep having the lowest absolute error for
the E S wM wW configuration, it was valuable to have consistent trends for different, but
similar geometries. The smaller standard deviation across the different designs for the 2 ms
timestep, means it will be more consistent across different design modifications, as discussed
in Chapter 4.

3.6 DDES Validation Against Experimental Data

Using the results presented in Figure 3.10, this is re-plotted to examine the residuals in the
CFD simulations with respect to the experimental drag of the four tested configurations,
shown in Figure 3.11. It was found that the simulations underpredicted the drag of the ve-
hicle by around 4%. While detailed flow surveys of the tire wakes were not performed in
Heft’s work [18], it is expected that the drag discrepancies stem from inaccuracies within the
tire wake regions. Since the tires are within close ground proximity and rotate, they have
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highly turbulent and complex wakes, which can be difficult to predict accurately with CFD.
However, since CFD drag predictions were within 5% of the experimental results, the DDES
models were deemed to be sufficiently accurate for the purpose of this research.

Figure 3.11: Drag coefficient comparisons between CFD and experimental results for the
four tested Estateback configurations

Using the Fine mesh approach outlined in Table 3.2 and a 2 ms timestep, the DDES sim-
ulations of the E D wM wW configuration could be compared to the existing experimental
data. For the scale model wind tunnel results, pressure probes were placed along car cen-
treline on the top and bottom surfaces, as well as along the z = 60 mm plane [18]. For the
full-scale model, this plane was sampled at z = 150 mm. These pressure results as well as
the errors (residuals) between CFD and experimental data are presented in Figures 3.12 - 3.14.
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Figure 3.12: Comparison of pressure coefficient between CFD and experimental results along
the top of the car in the y = 0 mm plane. Absolute residuals between CFD and wind tunnel
results in the right image

Figure 3.12 shows that there is very good agreement between CFD and experimental results
along the top of the car on the centreline, with the error mostly in the range of |∆Cp| ≤ 0.05.
There is an over-prediction of suction at the junction between the seam at the windshield
and body as it transitions to the roof line, between 40% and 50% of the car’s length. This
was not of concern, since the geometry in this region has particularly tight curvature. It
was expected that CFD would overpredict the suction in this region. Furthermore, the scale
model likely had simpler features in this area that would result in a smaller suction peak.
There was particularly good agreement along the rear window and liftgate, which is one of
the most important contributors to vehicle drag.

Figure 3.13: Comparison of pressure coefficient between CFD and experimental results along
the bottom of the car in the y = 0 mm plane. Absolute residuals between CFD and wind
tunnel results in the right image

Figure 3.13 shows that agreement deteriorated in the underfloor results between CFD and
experimental data. Since the test article was a 40% scale model, it is possible some of the
detail and divots in the vehicle’s underside were not well captured, explaining many of the
differences between the 30% and 60% vehicle length. There was however good overall resolu-
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tion of the underfloor pressure trends.

Figure 3.14: Comparison of pressure coefficient between CFD and experimental results along
the left side of the car in the z = 150 mm plane. Absolute residuals between CFD and wind
tunnel results in the right image

Examining the surface pressures along the z = 150 mm plane for the full-scale vehicle in
Figure 3.14 shows there was very good agreement between CFD and experimental results.
There was a slight under-prediction of surface pressures between 30% and 60% vehicle length.
This suggests that the tire wake is slightly inaccurate, hence the under-prediction of pressure
along the body. This could be due to the rims not being modelled using mesh motion. When
applying source terms to model rim motion, there is some error associated with the results
due to rotation being added artificially to more of the flow than is realistic. However, the
additional computing and memory requirements for solid body rotation for rotating rim sim-
ulations were too expensive for the computing resources available.

Furthermore, the CFD simulations tended to underpredict the pressure around the separated
region of the rear fenders and fascia. This area is difficult to obtain accurate predictions, due
to the rear tire wake interactions with the geometry and the overall amount of separation.
This again, was a result of the mesh resolution, rim modelling approach, and the eddy content
that is resolved by the LES model, that is not able to be captured fully due to computational
limits.

All three pressure slices show that there was acceptable agreement between the CFD results
and experimental results. As such, this meshing and modelling approach was deemed ap-
propriate in evaluating the performance the DrivAer model. Despite CFD results tending to
under-predict vehicle drag, there were no suspension arms modeled, which will also contribute
to this error between CFD and experimental results. There is strong overall agreement be-
tween numerical and experimental results and supplemental images examining the surface
pressures on the different Estateback configurations tested are presented in Appendix B.

3.7 Comparison of DDES and RANS Simulations

When comparing the DDES (denoted SST-DDES) simulations to the RANS modelling ap-
proach, to be representative of highway speeds, the freestream and ground speeds shown in
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Figure 3.8 were increased to 120 km/h, with a corresponding increase in the tire rotational
speed. Since the freestream velocity roughly doubled, the timestep for DDES simulations was
decreased to 1 ms to match the average Courant number from the validation simulations.
Mesh settings were not changed from the validation study, since wake sizes did not become
larger at higher Reynolds number. Furthermore, the meshing approach chosen was shown
to predict consistent drag changes for different designs. This behaviour was assumed to be
consistent at the higher freestream speed as best practices were followed.

These comparisons were performed on the E S wM wW configuration, since this configuration
had the adjoint solver applied to it, which makes use of the RANS equations. As with the
DDES simulations, RANS models employed second-order spatial schemes to compute gradi-
ents and divergence terms. The RANS model employed the SA turbulence model (denoted
SA-RANS) to close the RANS equations. Comparisons of the surface pressures on the car
are presented in Figures 3.15 - 3.17.

Figure 3.15: Comparison of pressure coefficient between SST-DDES modeling and SA-RANS
modeling on the front of the car

In Figure 3.15, it is clear the CFD predictions in areas with little separation were quite simi-
lar. In fact, the pressure distributions over the front fascia and fronts of the side mirrors are
almost identical. This is expected in these areas, as the flow will be mostly attached. As such,
the SA model should be accurate in these areas. The main area that was different was the
pressure distribution at the base of the windshield. The SA results predicted lower pressures,
which suggests that it is not able to resolve the separation off the edge of the hood as well as
the SST-DDES model was. Based on the results shown in Figure 3.12, the SST-DDES model
slightly underpredicted the pressure in this area, which meant the SA-RANS model would
under predict the pressure in this area more.
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(a) Surface Pressure Coefficient

Figure 3.16: Comparison of pressure coefficient between SST-DDES modeling and SA-RANS
modeling on the rear of the car

(b) ∆Cp SA-RANS - SST-DDES

Figure 3.16: Comparison of pressure coefficient between SST-DDES modeling and SA-RANS
modeling on the rear of the car

Moving towards the rear of the car, shown in Figure 3.16, it was evident there are greater
differences in the highly separated wake. Since this was a separated region, it was expected
that the SA model would not have as accurate a prediction. As such, it tended to predict
higher pressures on the rear fascia, which meant it had a lower drag prediction than did
the SST-DDES model. This effect is also seen on the back of the side mirrors, which also
had higher pressures for the SA model than the SST-DDES model. This suggested that the
RANS modeling overpredicted the flow attachment before separating off the side mirrors. A
quantitative investigation of the differences between these two methods was also shown in
Figure 3.16. This shows direct differences in surface pressure between the RANS and DDES
models, with areas of low magnitude having the greatest agreement.

At the rear of the car, the main region where the SA model overpredicted the pressure coeffi-
cient compared to the SST-DDES model tended to be a |∆Cp| = 0.05 - 0.125 overprediction.
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A similar margin was seen on the back of the rear tires. This meant the SA model had a
lower drag prediction, since the suction on the rear fascia and the backs of the rear tires con-
tributes significantly to the drag. It was found that the SA model predicted the drag of the car
to be 6.8% lower than the SST-DDES model did, most of which stemmed from the rear fascia.

(a) Surface Pressure Coefficient

(b) ∆Cp SA-RANS - SST-DDES

Figure 3.17: Comparison of pressure coefficient between SST-DDES modeling and SA-RANS
modeling on the underside of the car

For the underside of the car, highlighted in Figure 3.17, the main areas that differed between
the two models were the splitter region and front wheelwell region. The SST-DDES model
predicted a larger suction peak than the SA model did at the splitter leading edge, suggesting
that the SA model was unable to capture the leading edge separation as effectively as the
unsteady solution. Since there tended to be lower pressure over more of the splitter region
for the SA model, as more of the flow is attached in this region. In the front wheelwell area,
the SST-DDES results tended to predict less suction than the SA model did. This was likely
a result of the different upstream conditions between the two models. Floor devices on a
vehicle are highly sensitive to the energy in the airflow, meaning that the differences in the
splitter predictions will affect the wheelwell predictions. Some asymmetries were noted in the
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surface pressures on the floor of the SST-DDES model. This was attributed to cross-body
velocity fluctuations due to the front tire wakes. Despite the large averaging window used,
these oscillations had a low frequency, meaning the averaging period was not long enough to
fully average these fluctuations. Existence of features like this contributed to the error in the
DDES solutions. A further look at the differences is also presented in Figure 3.17.

For the direct differences between the SA model and the SST-DDES model shown in Figure
3.17, the wheelwell region tended to have a pressure coefficient that was 0.05 - 0.125 lower in
the SA model. Around the edge of the wheelwells, this rose to about 0.2, where the separation
at this edge was not predicted as well by the SA model. At the front splitter, the leading edge
had a pressure coefficient more than 0.3 larger for the SA prediction than the SST-DDES
prediction. This then extends to the SA model tending to predict a pressure coefficient more
than 0.3 lower than the SST-DDES model. This is characterized by the SA model not fully
capturing the leading-edge separation on the splitter, which cause the high suction peak and
loss of suction seen in the SST-DDES model. There are some additional discrepancies in
the diffuser region, with the tendency to be slight over-prediction of the pressure coefficient
around the edges of the geometry, where there will be more separation. This is on the order
of a difference of |∆Cp| = 0.05. Further asymmetries were noted on the rear diffuser, which
are attributed to insufficient time-averaging of the rear tire wakes.

In summary, the surface pressure fields between the SST-DDES and SA-RANS modeling were
similar, primarily in the regions without much flow separation. In the areas of higher flow
separation such as the rear fascia, the results began to differ more, typically by a |∆Cp| of
0.05-0.125.

The velocity fields were also compared for SST-DDES and SA-RANS simulations. Four planes
were chosen for this purpose: the y = 0 mm and -700 mm planes, and the z = -90 mm and
-15 mm planes. The y = 0 mm plane highlighted the flow features along the centreline of the
car: the flow coming off the front splitter, spoiler, and rear diffuser. The y = -700 mm plane
highlighted flow features around the left-hand side wheels and their wakes. The z = -90 mm
and -15 mm planes highlight not only the flow downstream of the tires, but also that from
the front bumper and around the rear fenders.

Figure 3.18 presents flow field differences on the centreline plane of the car, for the two pri-
mal computation methods. The key differences occurred in the areas around which separation
was expected: the hood, splitter, and roofline. At the hood’s leading edge, there were lower
velocities for the DDES case, which meant there was less flow attached to the hood than in
the RANS case, which was accelerated more by the hood’s curvature. Under the car, the
DDES model predicted more separation around the splitter, since there were lower velocities
underneath the car, indicative of increased losses at the leading edge. The overall wake size
behind the car was smaller for the RANS results, suggesting that there was a smaller separa-
tion region behind the car, largely being dominated by better-attached diffuser flow, reducing
the size of the counter-rotating vortex system behind the car. As such, in all areas of great
separation, the DDES model predicted there would be larger wakes for this vehicle, which
will have a noticeable impact on subsequent adjoint flow sensitivity solutions.
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Figure 3.18: Normalized velocity contours on the y = 0 mm plane for the two primal solution
methods

The flow on the y = -700 mm plane for the two primal computation methods is shown in
Figure 3.19. At the front of the vehicle, the velocity fields were quite similar, since this flow
was largely dominated by the attached regions around the front bumper, which DDES and
RANS would predict to be similar. The main differences occurred downstream of the front
and rear tires: downstream of the front tires, the DDES model predicted higher velocities
in the wake of the front tire than did the RANS model. In the DDES case, there was no
noticeable attachment around the front wheelwells. It can be seen there was some partial
attachment of the flow to the front wheelwell in the RANS model, before separating, reducing
downstream velocities. Behind the rear tires, the DDES model predicted more loss and sep-
aration than the RANS model did, which was expected. The DDES model had a larger low
velocity region, which would further impact an adjoint computation for the areas interacting
with the front and rear tire wakes.

Figure 3.19: Normalized velocity contours on the y = -700 mm plane for the two primal
solution methods

The flow on the z = -90 mm provides useful insight into the limitations of the RANS model,
which is shown in Figure 3.20. Around the front tires, the DDES model predicted a smaller
wake than the RANS model did. Since the DDES fields used the k − ω turbulence model,
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there wwould be a more accurate prediction of the pressure gradients in this region. It is note-
worthy that around the rear tires, the DDES model predicted less flow attachment than the
RANS model, since there was greater flow acceleration and higher velocities. This suggested
that while there was early separation in the RANS model around the front tires, the turbulent
content dissipated too quickly, whereas the DDES model propagated that turbulence farther
downstream. This reduced the flow energy around the rear wheels, indicated by the wider
wake in the DDES model. While there were lower velocities downstream of the rear wheels for
the RANS model, the wake structures were narrower than the DDES structures, suggesting
the RANS model was predicting the car to be more streamlined than it was.

Figure 3.20: Normalized velocity contours on the z = -90 mm plane for the two primal
solution methods

The z = -15 mm plane, shown in Figure 3.21 further shows that the DDES model was pre-
dicting a less streamlined wake than did the RANS model, along with some asymmetry in
the wake, driven by periodic vortex shedding. As with the z = -90 mm plane, there were
higher velocities within the rear tire wake predicted by the DDES model. However, the wake
of the RANS model was narrower and smoother than the DDES predicted. This meant there
was more turbulent content within the wake of the DDES model, while the RANS model
was dissipating the turbulent content much faster. There was also less attachment along the
rear fenders predicted by the DDES model. The flow in this region was less aligned with the
fender geometry than in the RANS model, meaning there was less separation off the rear tires
in the latter case. This reduced the effect that this wake had on the rear fender flow, which
the RANS model could not predict as accurately as the DDES model could.
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Figure 3.21: Normalized velocity contours on the z = -15 mm plane for the two primal
solution methods

The SA-RANS model predicted a higher total pressure in the wake of the car, which did
not extend as close to the ground plane as the SST-DDES model. This suggested that there
was less loss within the wake, explaining the higher pressures on the rear of the car in the
SA-RANS approach. The smaller overall wake also suggests that there was less loss from
the rear tire wake oscillating across car centreline. Both of these effects are consistent with
the SA-RANS model being less suited to computing regions of separation than SST-DDES.
This would affect the ability for adjoint solutions to provide accurate sensitivities in regions
with great adverse pressure gradients due to modelling errors in both the primal and adjoint
solutions. The effect of primal turbulence modelling approaches on adjoint computations will
be discussed in Chapter 4.
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4 Momentum Contribution Field
Analysis and Design Modifications

This chapter examines a method with which a continuous adjoint solution can be used to
provide the user with a measure of how the momentum around a body contributes to a given
objective function. This field, dubbed the Momentum Contribution Field, will be examined
for the aerodynamic drag around the DrivAer Estateback. This chapter extends the work pre-
sented in Chapter 3, by using the validated RANS and DDES models and meshing approach
for the continuous adjoint solutions.

The information from the MCF will then be used to develop design modifications to the car,
to reduce its drag. This is a novel demonstration of the ability of a RANS-based MCF to
provide sufficient information to yield design modifications that reduce the Estateback drag,
and introduces the use of DDES simulations to improve the accuracy of the RANS-based
MCF. Furthermore, discussions on the limitations of the RANS-based MCF are presented.
The application to the test geometry is then used to outline how the MCF method can be
applied to industrial design routines in its most effective form, along with the areas where
MCF information alone may not be sufficient in yielding design improvements. This is novel
to the automotive field, with previous qualitative applications of continuous adjoint solutions
being focused on surface sensitivity maps. These do not show how the volumetric flow solution
can cause interactions on the car’s surface. A sensitivity map only provides the user with
a relative measure of how the surface should be deformed along or against the local surface
normal to reduce the objective function. While this information is valuable, it does not
contain the same physical phenomenological information that a MCF contains.

4.1 Continuous Adjoint Model

In order to compute the MCF around a body for a given objective function, a method with
which the sensitivity of the objective function with respect to the flow momentum/velocity at
each grid point can be computed. For traditional numerical sensitivity analysis, such as the
finite difference method, this would require n+1 CFD evaluations, where n is the number of
points in the mesh. Since this would be prohibitively expensive for a mesh of practical size,
a cost-effective method with which the sensitivity analysis can be performed is the use of the
continuous adjoint method. The adjoint method computes the sensitivity of the main flow
variable fields (pressure, velocity, etc.), providing a measurement of the objective function’s
sensitivity with respect to those fields, at each grid point. This allows a full sensitivity anal-
ysis to be performed for the cost of two flow solutions, for any number of grid points, n. As
such, for a large number of design variables (mesh points in this instance), the continuous
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adjoint method is preferred to finite differences.

The evaluation of continuous adjoints within OpenFOAM is performed using the adjointOpti-
misationFoam solver, which was implemented by the National Technical University of Athens’
(NTUA) Parallel Computing and Optimization Unit (PCOpt) [48]. The solution is computed
using the SIMPLE algorithm, to solve the governing equations iteratively. This acts similarly
to the simpleFoam solver for incompressible RANS flows within OpenFOAM.

In their derivation, the continuous adjoint equations stem from the differentiation of the con-
tinuous RANS residual equations for some objective function, J (drag, lift, moment, etc.),
which has been fully described in the literature [23,29,48]. They have also provided differen-
tiation of the SA and k − ω SST equations [29], with the differentiated SA model shown in
Equation 4.3 below. These give rise to the following equations:
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In these equations, the residual, R, of the main adjoint variables pa, Ua,i, ν̃a, and ∆a are used
to generate a system of partial differential equations (PDE’s) that can be solved using the
SIMPLE algorithm. In these equations, q refers to the adjoint pressure, ui is the ith compo-
nent of the adjoint velocity vector, ν̃a is the adjoint to the SA turbulence quantity, and ∆a is
the adjoint to the wall distance. The P and D terms in Equation 4.3 are the production and
dissipation of the primal modified eddy viscosity. All other unlisted variables are model coef-
ficients. A more detailed derivation of these equations has been previously presented [23,48].
These residual equations then form the governing equations for the continuous adjoint model,
which are discretized for use by a CFD solver.

The solution of the continuous adjoint equations was performed using OpenFOAM’s ad-
jointOptimisationFoam solver [48]. Since the SA turbulence model was used for the primal
solution, the corresponding adjoint SA model was included to evaluate the differentiated tur-
bulence equations. The adjoint SA model was included because of the improved sensitivity
derivative approximation accuracy when including the differentiated turbulence model. Using
a frozen turbulence approach for the adjoint solution has been shown to produce inaccurate
and sometimes incorrect sensitivities [49]. The primal equations are solved using second-order
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4.2. Momentum Contribution Field

spatial schemes for the momentum and turbulence variables. In contrast, the adjoint equa-
tions are solved using a first-order upwind spatial scheme, which was found to provide better
solution stability.

4.2 Momentum Contribution Field

The adjoint field variable of particular interest to this research is the adjoint velocity, which is
defined in Equation 4.5, given by the symbol Ua. It is comprised of the components Ua,x, Ua,y,
and Ua,z. Each component of the adjoint velocity can be thought of as the sensitivity of an
objective function, J, with respect to the local momentum, meaning the physical phenomenon
described by the adjoint velocity is:

Ua = ∇UJ

=
∂J

∂Ux
î+

∂J

∂Uy
ĵ +

∂J

∂Uz
k̂

(4.5)

Equation 4.5 shows that contours of the adjoint velocity field, Ua will provide the user with
information as to how the primal velocity, U , contributes to the objective function, J . Based
on OpenFOAM’s implementation of continuous adjoints, each component takes on a positive
value when momentum at some point in space reduces the cost function and a negative value
when it increases the cost function.

This feature of the adjoint velocity field has given rise to the definition of a MCF that turns
the adjoint velocity into a scalar measure of the local flow momentum’s contribution to the
adjoint’s objective function [27]. This MCF for a given objective function, J , can be defined
by:

MCF = −U · Ua

= −
(
Ux

∂J

∂Ux
+ Uy

∂J

∂Uy
+ Uz

∂J

∂Uz

)
(4.6)

In Equation 4.6, the negative dot product of the primal velocity, U , and the adjoint velocity,
Ua, is taken to scale the adjoint sensitivities by the local primal velocity. This means that areas
of low primal magnitude, will show less of an overall MCF contribution. Furthermore, the dot
product turns these two fields into a scalar product that represents the total flow velocity’s
contribution to the objective function. The negative sign in Equation 4.6 is incorporated such
that the following behaviour is achieved: positive areas in the flow increase the cost function,
and negative areas decrease the cost function. In problems where the objective function is to
be minimized, such as for aerodynamic drag, momentum should be decreased within positive
MCF regions, and increased in negative MCF regions. The magnitude of the MCF is of little
physical meaning, but the relative scale of different areas around a body provide insight as
to which regions contribute the most to the objective function (aerodynamic drag in this
research). This allows for key areas where the drag can be minimized to be determined,
and provides guidance on the types of modifications to the flow field that would reduce
aerodynamic drag.
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4.3. DDES-Based Improvements to Momentum Contribution Field Predictions

4.3 DDES-Based Improvements to Momentum Contribution
Field Predictions

In an industrial setting, the MCF of a vehicle would likely not be calculated without first
performing a full CFD evaluation of the geometry using the modelling approach chosen for
the program. As such, prior to performing the adjoint solution, it would be expected that
if the program was using DDES simulations (as is common in passenger car development),
time-averaged velocity and pressure fields would already be available.

Within adjointOptimisationFoam, users can compute the primal solution with constant ve-
locity, face flux, and pressure fields, from which the turbulence fields are calculated. This
allows the user to make use of time-averaged velocity and pressure fields calculated from
a DDES simulation as the constant velocity, pressure, and face flux fields, which would be
more accurate than their RANS counterparts. Therefore, the MCF calculation can be sped
up, and made more accurate by employing the RASTurbulenceModel keyword for the primal
solution, instead of the simple keyword in system/optimisationDict, which solves the turbu-
lence model’s PDE’s on the constant velocity, face flux, and pressure fields. This yields the
following simulation approach:

Perform a DDES
Simulation

Time-average:
velocity (U),

pressure (p), and
face flux (ϕ) fields

Copy the mesh and
time-averaged fields for
initial primal conditions

Define adjoint
boundary conditions

Solve the primal
turbulence equations

Solve adjoint
equations

Post-process
MCF

Since a DDES simulation better resolves the large-scale turbulent structures, this modification
to the RANS-based MCF approach would yield a more accurate prediction of the sensitiv-
ities around the body. Additionally, since the primal calculation only computes turbulence
quantities it is on average, two to three times faster than computing the full RANS primal.
Applying this methodology to the DrivAer Estateback studied would highlight where inaccu-
racies in the RANS solution affects the MCF. When computing the MCF, it is important to
note that the DDES simulations only used the SST model to calculate time-averaged velocity,
face flux, and pressure fields. The primal computation for both MCF approaches relied on
the SA turbulence model, so the adjoint SA equations may be solved.
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Computing the MCF using a RANS-based method is approximately 50% of the cost of a DDES
simulation. Using time-averaged DDES fields, computing the MCF takes approximately 10%
of the time it would take to run a DDES simulation, being five times faster than the RANS-
based method, assuming the DDES fields were already computed. In the case that a geometry
has not yet had a DDES simulation run, it would cost 110% that of a DDES simulation to
compute the MCF using this improved method. This means that using this improved method
is on the order of the cost of a RANS-based MCF, if not faster, depending on the workflow
in which the method is employed.

4.4 RANS MCF Evaluation

Using the continuous adjoint formulation described in Section 4.1 and the MCF described in
Section 4.2, OpenFOAM was used to compute a drag MCF for the DrivAer Estateback, using
a RANS primal solution. This provided a number of areas that were isolated for having a high
positive or negative MCF value around the E S wM wW configuration. From this solution,
the key areas of drag contribution can be visualized along three distinct planes: the y = 0
mm plane (car centreline), the z = -115 mm plane, and the z = -15 mm plane. The y = 0
mm plane will highlight how the different stagnation regions contribute to the vehicle’s drag
as well as how the wake behind the car could be modified to reduce drag. The z = -115mm
plane will show how the flow around the front fascia and into the front tires contributes to
drag. Finally, the z = -15 mm plane will highlight the interaction between the rear tires and
the rear fascia.

Figure 4.1: Drag MCF on the y = 0 mm plane. The top right view is zoomed in on the front
fascia and splitter and the bottom right view is zoomed in on the rear fascia and diffuser

The MCF images in Figure 4.1 highlight how the momentum is contributing to drag. There
is a positive region around the stagnation streamline that leads to the front fascia. Further-
more, there is a negative region underneath the vehicle. This suggests that moving mass flow
from the front fascia underneath the car will reduce drag. It is important to note the positive
zone near the leading edge of the splitter means that momentum in this separation region is
increasing the drag of the vehicle. As such, it will be important to reshape the front splitter to
reduce this separation. This will require a larger radius and gentler curvature at the leading
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edge region to reduce adverse pressure gradients.

The top right image of Figure 4.1 shows that there is a positive region (drag increasing) aris-
ing as the flow goes over the hood. This stems from the pressure buildup on the windshield
to which this flow contributes. As such, it could be beneficial to add a small raised flick here
to get the incoming flow better aligned to the curvature of the windshield. This would reduce
pressure buildup in this region, thereby reducing drag. The flow in this area is one that has a
high amount of downstream interactions, since the windshield flow helps dictate the amount
of air that spills over the A-pillars down the side of the car, which subsequently affects the
pressure behaviour there.

The bottom right image of Figure 4.1 shows that filling in the wake behind the car will be
beneficial in reducing drag. By increasing the energy of the flow behind the car, the base
pressure there can be increased, reducing pressure drag. There is a strong negative MCF re-
gion along the rear spoiler of the car, suggesting that extending this feature, or even curving
it downwards would increase the local flow velocity. This would contribute to filling in the
rear wake more effectively, reducing car drag by increasing base pressure. The positive MCF
region around the diffuser also suggests that a more gradual expansion angle would reduce
drag, by reducing suction buildup, and leaving more attached flow.

Figure 4.2: MCF for the drag of the car on the z = -115 mm plane

The MCF field shown in Figure 4.2 highlights the drag contribution stemming from the flow
that moves alongside the front fascia towards the front wheels, over what is known as the
front bumper cheek. There is a clear area of positive MCF, since the cheek flow not only hits
the front of the tires, but also gets entrained in the wheelwell, generating drag. As such,
there would be a benefit from adding a small flick feature to this portion of the cheek to
help outwash the flow in front of the front tires. This would help reduce the amount of air
that hits the front of the front tires, reducing front tire drag, but will also help reduce the
amount of flow that is drawn inwards towards the wheelwells. This can also help inject more
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momentum alongside the front tires, which is shown to be a negative MCF region. This
additional momentum would help decrease the size of the front tire wake, decreasing loss.
In the stagnation region, there were some asymmetries in the MCF solution. These were
numerical artifacts, rather than physical phenomena. The primal computation for both the
SST-DDES and SA-RANS approaches were similar and showed symmetry in Figure 3.21.
This highlighted that there were some numerical instabilities in the underlying adjoint solver,
regardless of the primal solution method.

Figure 4.3: MCF for the drag of the car on the z = -15 mm plane

Figure 4.3 shows how the momentum from the rear tires’ wakes contributes to drag, on the
z = -15 mm plane. Behind the rear tires, there is a low pressure region, due to their wake
losses. Since the rear bumper does not extend out towards the edge of the rear tires, it is
unable to mitigate this wake by encouraging flow to remain attached to the bodywork. This
leads to separation and a suction buildup on these surfaces, increasing the drag of the car.
The positive MCF region does not extend all the way around the car, which is important to
note. This means that the rear fender should likely be filled in within this positive region.
As such, a sharper edge will be placed at the trailing end of this infill region, leading to a
defined separation region. In automotive designs, these trip features can be beneficial to cause
the rear wake to become fully turbulent earlier, rather than generating Von Karman vortex
streets behind the car. This specific region will be of interest in determining the efficacy of
the MCF, since this is a region of greater separation, which will suffer in accuracy due to the
RANS turbulence closure model being used.

4.5 DDES-Based Improvements to the MCF

To analyze the changes in the MCF due to the primal solution method, the same four planes
used in the primal velocity field comparisons from Chapter 3 will be used. This will highlight
the effect the noted changes in the primal velocity fields had on the adjoint solution.
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The differences in MCF predictions for the y = 0 mm plane are shown in Figure 4.4, for the
DDES and RANS primal methods. The key differences occur around the splitter, diffuser,
and hood. In the splitter region, the DDES predicted that most of the flow was creating drag
on the vehicle, whereas the RANS model predicts a near-zero region just perpendicular to
the surface (annotated in Figure 4.4). This is representative of the additional separation pre-
dicted by the DDES solution, which would lead to additional drag on the car, something the
RANS model did not fully capture. Additionally, there was more positive drag contribution
predicted by the DDES model on the underfloor. Part of this was likely due to the interactions
of the tire wakes with the underfloor, which are quite different between the two models. This
difference in MCF was propagated to the diffuser, with the DDES model predicting a much
smaller positive MCF region than the RANS model did. This stems from the differences in
the wakes between the DDES and RANS models. While the diffuser does create drag due to
the local suction and its orientation, it helps to reduce the size of the wake. Since the RANS
model predicted a smaller overall wake, it is expected that the diffuser contributes a larger
proportion of the wake drag.

Along the hood, the DDES model predicted a larger negative MCF region. This can be
attributed to the lower primal velocities in this region due to greater leading edge separa-
tion of the hood in the DDES model, compared to that of the RANS model. This negative
MCF region also extended along the hood in the DDES-based solution, while it did not in
the RANS solution. Therefore, a hood flick that would reduce the velocities in this area, as
will be shown in Section 4.7 would not necessarily reduce drag. This effect was predicted by
the design evaluation CFD models. This area further highlights the importance of employing
more accurate simulation methodologies to compute the velocity, face flux, and pressure fields
for an adjoint computation.

Despite the differences in the roofline flow between the primal solutions, the two resultant
MCFs predict very similar negative MCF regions there. Since this area is particularly well-
conditioned, attached flow, it was expected that the downstream wake differences would have
less of an effect on the adjoint, and would create more similarity in the solutions.

Figure 4.4: Momentum Contribution Field contours on the y = 0 mm plane for the two
primal solution methods
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The MCF contours on the y = -700 mm plane shown in Figure 4.5 show the differences largely
occurred around the tires. Within the barrels of the wheels, the MCF results were completely
different, indicative of the extremely turbulent nature of this flow, which was resolved very
differently using the DDES approach compared to the RANS approach. Upstream of both
the front and rear tires, the MCF tended to be more positive for the DDES primal than it
did for the RANS model. For the front tires, this difference was caused by the interaction
of the splitter flow and the wheelwell. This was a significant region of separation, that is
better resolved by the DDES approach. This was supported by the contribution within the
top of the wheelwell, being nearly zero for the DDES model compared to the RANS model.
Resolution of this turbulent content is imperative to effective sensitivity prediction in these
areas where numerous components interact.

For the rear tires, there was a more consistent trend in the MCF, with a distinct positive re-
gion downstream of the tires and a distinct negative region downstream of the positive region
in the DDES model, in contrast to the inconsistent results for the RANS model. Since the
DDES model would resolve the rear tire wake more effectively, it is expected that it would be
better suited to capturing the drag contribution from the adjoint solution.

Figure 4.5: Momentum Contribution Field contours on the y = -700 mm plane for the two
primal solution methods

Due to the differences in the front tire wakes on the z = -90 mm plane shown in Figure 3.20,
the resultant MCF was quite different around the rear tires. These contours are shown in
Figure 4.6. Since the primal DDES solution predicted more separation off the front tires, it
is expected that more momentum would contribute to the drag of the vehicle in this region,
propagating farther downstream. While there was a thinner positive region between the axles
in the DDES model, the positive MCF region stems from the front bumper cheek, all along
the car. This suggests that the turbulent content getting resolved in this region was having a
greater effect on the sensitivities than the dissipated turbulent content in the RANS model.
From Figure 3.20, there were higher velocities along the rear tire sidewalls in the RANS model,
suggesting better flow attachment in this area, than the larger wake predicted by the DDES
model. This results in a further increase in the positive MCF region around the rear tires in
the DDES model than in the RANS model.
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Figure 4.6: Momentum Contribution Field contours on the z = -90 mm plane for the two
primal solution methods

Figure 4.7 compares the MCFs for the two primal solutions on the z = -15 mm plane. The key
differences between the two solvers occurred around the front bumper cheeks and along the
rear fenders, behind the rear tires. The DDES solution predicted there was a positive MCF
region from the momentum along the front bumper cheeks, whereas the RANS model did not.
The positive MCF region stems from the air that would impinge on the tires and separate
off the tires’ sidewalls. Therefore, if flow velocity were to be increased as the RANS solution
suggests, it would impinge more air on the tires, increasing drag. It has been shown that the
effective modification in this area is to outwash this tire flow, reducing the impingement and
the tire wake. Along the rear fenders, the overall trend is similar between the two solutions,
with a positive region perpendicular to the car’s surface, then a negative region, then another
positive region further outboard. However, the positive region in the DDES solution is larger
perpendicular to the wall, suggesting that a trip tab that encouraged the fender flow to sep-
arate would be beneficial to the design. The RANS solution also suggests a trip tab, but the
position of maximum contribution is more vague, meaning the DDES solution carries more
information regarding the placement of a trip tab.

Figure 4.7: Momentum Contribution Field contours on the z = -15 mm plane for the two
primal solution methods
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In summary, these results highlight the importance of using primal calculation methods that
better capture the turbulent eddies in complex automotive flows, primarily around the tires,
and behind the car. RANS primal solutions can be valid in some areas of the car, primarily
in regions with little to no separation, such as along the upper door region and along the
roof. Furthermore, in industrial settings, the MCF would likely be computed for a geometry
that has already been evaluated. As such, if this program used DDES simulations for design
evaluations, the desired geometry would already have the time-averaged fields available. As
such, computing the MCF from ti me-averaged fields was roughly five times faster than
computing a full RANS-based MCF based on testing for the DrivAer Estateback. This makes
the method not only more accurate, but faster to compute than the initial RANS-based
methodology.

4.6 RANS MCF-Inspired Design Modifications

From the RANS MCF, a number of areas on the vehicle were isolated on which design mod-
ifications were created. Four areas were chosen to be modified, the front splitter/lower front
bumper leading edge, the front bumper cheeks, the rear fender, and the roof spoiler. For each
area on the car, post-processing images will only be presented for the best design in each
region. All post-processing images can be found in Appendix C.

4.6.1 Front Splitter Modifications

Modifications to the front splitter were largely focused on increasing the curvature between
the front bumper and floor, helping to reduce the adverse pressure gradient in this region.
Three geometries were developed to improve the flow in this region, presented in Figure 4.8.
Not only was the radius between the front bumper and underbody increased, but the panel
was then blended into the flat floor, yielding a single, tangent profile. Between the different
splitter options, the size of the leading-edge splitter radius, and the blending profile of the
splitter into the flat floor was varied to create the different designs.
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(a) Splitter Region of Interest

Figure 4.8: Splitter profiles, baseline and the three options

(b) Baseline Splitter (c) Splitter Option 1

(d) Splitter Option 2 (e) Splitter Option 3

Figure 4.8: Splitter profiles, baseline and the three options
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From the splitter modifications, the overall design goal was not only to increase the leading-
edge radius, but to also flatten the geometry. This was done without modifying the approach
angle of the vehicle. On the baseline splitter, a sharp transition existed between the splitter
and the flat floor. This was made more gentle in its curvature, to reduce any separation and
loss of energy being fed to the floor. The effect these modifications had on the drag of the
car is shown in Table 4.1.

Table 4.1: Splitter designs and their drag contribution

Splitter Option Description ∆CD [%]

1 Larger Splitter Radius +0.2
2 Option 1 with Downstream Blending -1.6
3 Option 2 with Outboard Blending -1.9

Of the three models, Splitter Option 3 performed the best, reducing drag by 1.9%, compared
to a 1.6% reduction for Option 2 and no improvement from Option 1. The majority of im-
provement stemmed from the splitter having more attached flow, which helped reduce losses
to the front tires. Figure 4.9 shows how the pressure coefficient on the underside of the car
changed between the baseline splitter to Option 3. For the baseline splitter, there was a region
just downstream of the splitter’s leading-edge where the pressure coefficient was close to zero,
while the upstream pressure coefficient was lower than -1. This suggests that there was a
sharp suction peak at the leading edge due to the sharp curvature, that caused separation
over the majority of the splitter surface. For Splitter Option 3, this region produced suction,
which suggests that the majority of separation has been mitigated. As such, the MCF has
correctly informed drag contribution stemming from this separation, which was able to be
successfully mitigated, thereby reducing the drag of the car by 2.1%.

Figure 4.9: Comparison between the baseline splitter and Splitter Option 3 of pressure
coefficient on the floor

4.6.2 Front Bumper Cheek Modifications

As was shown in Figure 4.2, there was an area of positive drag contribution from the air
moving around the bumper cheek, impinging on the front tires, as well as getting trapped
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within the wheelwell. The focus in this region was the addition of a 5 mm flick, perpendicular
to the wheel arch surfaces outwashing the bumper cheek flow around the front tires. Three
different heights of the 5 mm flick were tested, as presented in Figure 4.10.

(a) Front Bumper Cheek Region of Interest

(b) Baseline Front Bumper Cheek (c) Cheek Flick 1

(d) Cheek Flick 2 (e) Cheek Flick 3

Figure 4.10: Front bumper cheek geometry, baseline and three options

The three modifications are described, and their performance changes are highlighted in Table
4.2. This table shows that there is a balance between the height of the cheek flick and the
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drag reduction. Too small a flick, such as Option 1, and the drag saved on the front tires is
gained on the flick itself and within the wheelwell. Option 3 had the tallest flick, meaning
there was the largest drag gain on the flick’s surface and the front wheelwell, greater than
the drag savings on the front wheels. Option 2 had intermediate drag gain on the flick itself,
while having the greatest drag reduction on the front tires. Option 2 reduced the front wheel
drag by 33.2% compared to 17.5% for Option 1, and 16.6% for Option 3.

Table 4.2: Front bumper cheek flick designs and their drag contribution

Flick Option Height ∆CD [%]

1 Smallest +0.2
2 Medium -2.1
3 Tallest +0.5

Figure 4.11 highlights the pressure drag coefficient around the front tires, which was the area
of interest for the baseline vehicle, and Front Bumper Cheek Option 2. Around the front of
the tires, Front Bumper Cheek Option 2 helped generate more suction around the sidewall
of the tire, which created a local thrust effect, due to the sidewall’s surface normal. This
additional suction on the sidewall also reduced the pressure buildup on the forwards-facing
portion of the tires. However, this had a negative effect of increasing drag within the front
wheelwells, which was noticed for this model. However, this gain in drag did not outweigh
reduced tire drag.

Considering the rear of the front tires in Figure 4.11, the improved outwash from Option 2
helped reduce suction on the aft surfaces of the tires, reducing pressure drag in this region.
Like the change on the forwards surfaces, the reduction of suction in this area reduced the
suction in the rear faces of the wheelwell, further increasing drag in this area. As such, there
was a balance between the amount of drag saved on the wheels themselves, and the amount
of drag gained within the wheelwells.

The MCF around the front bumper cheek was able to provide additional information regarding
how flow should be manipulated. Specifically, it showed that the key area was the trailing
edge condition of the front bumper cheek, which governed how the air would interact with
the front tires. The outwash generated by Front Bumper Cheek Option 2 helped increase
momentum around the sidewalls of the front tires, which is shown in Figure 4.2 to be an area
of negative contribution. It is valuable to note that the front bumper cheek is a region of
low separation, so for RANS-based sensitivities it was expected to provide a more accurate
prediction of the primal and adjoint flow fields.

55



4.6. RANS MCF-Inspired Design Modifications

(a) Front Three Quarter View

(b) Rear Three Quarter View

Figure 4.11: Comparison of pressure drag coefficient around the front tires for the baseline
and Option 2 front bumper cheeks

4.6.3 Rear Fender Modifications

In the slices of the MCF field in the z direction, there was a prediction of positive drag
contribution arising from the rear fender, behind the rear tires. In automotive applications,
trip features tend to be added to these areas to ensure that the wake behind the car is made
turbulent. A more laminar, oscillating wake tends to induce more drag behind the vehicle
than a turbulent wake due to the pressure fluctuations. As such, a number of rear fender
infill components were designed to create this trip effect. Two widths were tested, with two
different infill heights per width, for a total of four different concepts. The taller of the two
heights was designed to be taller than the region of positive drag contribution to determine
the accuracy of the MCF prediction. The narrow width infills were designed to be closer to
the fender than the MCF suggested an infill should be. These geometries are presented in
Figure 4.12.
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(a) Rear Fender Region of Interest (b) Baseline Rear Fender

(c) Rear Fender Infill Option 1 (d) Rear Fender Infill Option 2

(e) Rear Fender Infill Option 3 (f) Rear Fender Infill Option 4

Figure 4.12: Rear fender geometry, baseline and four infill options

The results of the rear fender infills are presented in Table 4.3. The trend from these data
was that the best-performing designs were those that were wider and shorter, matching the
prediction from the MCF results. For both the short and tall infills, the narrow width con-
cepts tended to generate more than 4% more drag relative to their baseline, when compared
to their counterparts. The drag improvements predicted for Infill Option 2 stemmed from a
reduction in drag on the rear fascia and the rear wheels. All four models tended to increase

57



4.6. RANS MCF-Inspired Design Modifications

the drag on the front wheels, however. In the case of Option 4, a reduction in body and rear
wheel drag was predicted, but the gain in drag on the front wheels offset this reduction in drag.

Table 4.3: Rear fender infill designs and their drag contribution

Infill Option Description ∆CD [%]

1 Narrow Width, Half Height +3.8
2 Wide Width, Half Height -1.6
3 Narrow Width, Full Height +9.9
4 Wide Width, Full Height +1.6

Figure 4.13 presents a comparison in the pressure drag coefficient on the rear fascia of the car,
for the baseline and Infill Option 2 designs. A noticeable reduction in pressure drag occurred.
Additionally, the pressure drag on the rear fascia was more symmetric, suggesting that there
was weaker vortex shedding within the wake behind the car. This effect is shown in Figure
4.14 by examining the total pressure coefficient in the wake of the car. In the left image, the
wake of the baseline fender infill is more asymmetric than the right image. This suggests that
there are larger vortices being shed by the car without the trip features, generating larger
pressure fluctuations. These fluctuations are then reduced with the introduction of the fender
modifications, generating a more uniform wake structure, with equal counter-rotating vortices
stemming from the separation of the rear fenders. The rotation direction can be seen by the
line integral convolution on the z = 310 mm plane for Infill Option 2.

Figure 4.13: Pressure drag coefficient on the rear fascia: baseline fender versus Infill Option
2

The predictions by the MCF in the rear fender region of the car generated a reduction of
drag, with the highest performing concepts being those that were placed most consistently
within the positive region predicted by the MCF. The narrower and taller options that were
designed to deviate from the MCF prediction, performed worse in CFD, showing the efficacy
of these MCF predictions to drive design modifications, even in areas of separated flow.
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Figure 4.14: Total pressure coefficient on the z = 310 mm plane: baseline fender versus Infill
Option 2

4.6.4 Roof Spoiler Modifications

The MCF around the rear spoiler suggested that the momentum around the spoiler was an
area of negative drag contribution (this momentum decreases the drag). As such, increasing
the momentum as the flow comes off the spoiler should be an appropriate method to reduce
drag. To test this hypothesis, four spoiler variations were generated. Two were focused on
increasing the curvature of the spoiler at its trailing edge, thus accelerating the flow prior
to departing the roof. The second of these two modifications also featured a fairing around
the D-pillar of the car to help provide a cleaner trip surface for the flow in this area. The
increased curvature was achieved by translating the trailing edge rearwards and downwards
from its original position. The other two designs were a simple tangent extension of the
roofline along car centreline in two increments of 50 mm. These tested if a longer roofline
would help increase the energy injected into the car’s wake, reducing the base pressure behind
the car. The spoiler modifications examined are presented below in Figure 4.15.

A summary of the performance changes from the spoiler modifications is presented in Table
4.4. The only design that predicted an improvement in drag was the second spoiler option,
which increased the roofline curvature with an extension on the D-pillar. Spoiler Options 1
and 2 both predicted a decrease in drag on the body of the car due to the additional curvature
of the spoiler. Notably, Spoiler Option 1 predicted an increase in drag on the front wheels,
which was the resulted in the net drag gain. The simple tangent extension of the roof spoiler
in Spoiler Options 3 and 4 both predicted an increase in the drag on the body of the vehicle.
This suggests that the increased curvature was necessary to accelerate the roof flow before
departing from the spoiler’s trailing edge.
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(a) Baseline Spoiler (b) Spoiler Option 1

(c) Spoiler Option 2 (d) Spoiler Option 3

(e) Spoiler Option 4 (f) Spoiler Profile on Car Centreline

Figure 4.15: Baseline roof spoiler geometry, along with the four proposed trailing edge
modifications and the spoiler profile on car centreline (Spoiler Options 1 and 2 share the
same profile)
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Table 4.4: Summary of rear spoiler modifications and their performance

Spoiler Option Description ∆CD [%]

1 Downwards Spoiler Extension +4.0
2 Downwards Spoiler and D-Pillar Extensions -1.0
3 50 mm Tangent Spoiler Extension +3.3
4 100 mm Tangent Spoiler Extension +6.1

Investigating the pressure drag coefficient on the rear fascia of the car showed the effect that
Spoiler Option 2 had on the flow field, presented in Figure 4.16. As with the rear fender
infills, modifying the roof spoiler had the effect of reducing pressure drag. This was most no-
ticeable on the rear window of the car, which required the greatest decrease in suction. This
means the spoiler was effectively adding momentum into the wake behind the car, increasing
the base pressure as the MCF had suggested. Looking at the normalized velocity along the
y = 0 mm slice (car centreline) in Figure 4.17 shows that the local airspeed increased over
the roofline. Therefore, the lowered roof spoiler is accelerating the roof flow as desired, more
effectively filling in the void behind the car.

Figure 4.16: Comparison of pressure drag coefficient on the rear fascia between the baseline
spoiler and Spoiler Option 2

For the roofline area, the MCF provided further correct guidance to reduce drag. When
designing modifications that improved drag, it was important to guide the design based on
the information of the high negative MCF area, rather than the area downstream that was
around zero contribution. The MCF results were most effective in areas where the MCF had
a large magnitude, either positive or negative. This could arise due to modeling error in the
CFD code, which could result in the near-zero contributions not necessarily having the correct
sign. Despite this, the roof spoiler was another area where the most effective change came
from exploiting the regions of high MCF magnitude.
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Figure 4.17: Comparison of normalized velocity on the y = 0 mm plane between the baseline
spoiler and Spoiler Option 2

4.6.5 Final Design

Through modifications of the splitter, front bumper cheeks, rear fender, and roof spoiler of
the DrivAer Estateback, an 8.8% improvement in drag was achieved using the expert-driven
MCF method, compared to the baseline model. CL went from -0.231 to -0.236 (downforce
produced in both cases), representing a 2.2% increase in downforce. This modified Estateback
geometry will now be referred to as the improved variant, which will be one of the subjects
of the gradient-based optimization presented in Chapter 5. Using the improved variant for
the gradient-based optimization will allow for comparisons of the effect of optimization alone,
and optimization paired with the MCF method. This will highlight the importance of expert-
driven modifications in automotive design routines.

Figures 4.18 and 4.19 present the comparisons of pressure drag coefficient between the base
model and the improved design. The key improvements in this model stem from the improved
suppression of the tire wake, reducing tire drag, as well as the reduction in suction on the rear
fascia. It was found that the most effective designs were those that directly followed the guid-
ance provided by the MCF. This was particularly seen in the rear fender infill and roof spoiler.

The centre of pressure shifted from 75.1% of the downforce on the front axle to 92.2% from the
base to the improved variant. This was due to the additional suction generated at the front of
the underbody for the improved variant, shown in Figure 4.9. With a centre of pressure like
this, neither the base nor the improved variants would be stable dynamically. However, should
these variants be made more realistic with underbody panel gaps and tire air deflectors, there
would be less suction at the front of the underbody. Therefore, these variants of the DrivAer
Estateback were insufficiently effective for determining the stability of the platform based on
centre of pressure metrics.

Nonetheless, this work highlighted that despite employing a RANS-based MCF, it was still
able to yield improvements in aerodynamic drag. However, the improvements proposed in
Section 4.5 could have yielded information that allowed the car’s drag to be decreased further.
This was not explored however, and is considered outside the scope of this research.
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Figure 4.18: Front isometric comparison of pressure drag coefficient between the baseline
and improved Estateback models

Figure 4.19: Rear view comparison of pressure drag coefficient between the baseline and
improved Estateback models
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4.7 Limitations of the RANS MCF

Section 4.5 highlighted two areas where the MCF suggested improvement could be made, the
trailing edge of the hood, and the diffuser profile. These two areas had a number of complex
interactions that can be difficult to resolve using a RANS simulation approach, as employed
in the MCF methodology. As such, the initial examination of the MCF-guided designs that
did not reduce the car’s drag. Select designs in each area will be presented to discuss how
the MCF information could be reinterpreted to produce designs that did reduce the drag of
the Estateback.

4.7.1 Hood Modifications

From the drag MCF presented in Figure 4.1, there was a suggestion of drag reduction where
the flow on the hood separated at its trailing edge, and reattached on the windshield, causing
a pressure buildup. As such, a flick of various heights (3 mm, 6 mm, 10 mm) at the trailing
edge was added in an attempt to divert this air further up the windshield, reducing the size
of this pressure buildup region. The geometries for these flicks are shown below in Figure 4.20.

(a) Baseline Hood (b) 3 mm Flick

(c) 6 mm Flick (d) 10 mm Flick

Figure 4.20: Hood geometry, baseline with the three trailing edge flick geometries tested

CFD computations then predicted that none of the designs reduced drag, since the flick led
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to higher velocities downstream of the hood. It resulted in less flow acceleration along the
hood, which had the effect of reducing the thickness of the boundary layer at the hood’s
trailing edge. This in turn led to an increase in flow speed at the trailing edge of the hood.
This increased impingement on the windshield, yielding an increase in pressure on the front
windshield. A sample of this pressure increase is shown below in Figure 4.21 for the 3 mm
tall trailing edge flick.

Figure 4.21: Pressure coefficient around the windshield for the baseline hood trailing edge,
and the 3 mm tall trialing edge flick

The guidance from the MCF in this location was that the flow velocity around trailing edge
of the hood increased the drag of the car, and moving the flow velocity upwards would have
yielded less drag. While gentle flicks tangent to the hood surface were tested, it may have
been more beneficial to use a tab perpendicular to the hood’s surface. This would have
allowed for the airflow to have been given more upwash, while still permitting boundary layer
growth that reduced the velocities at the hood’s trailing edge. Since this region has a number
of downstream interactions: the windshield and A-pillars, accurate sensitivity information
is paramount. As such, using the improvements detailed in Section 4.5 will help improve
guidance in this area.

4.7.2 Diffuser Modifications

The MCF information around the rear diffuser, shown in Figure 4.1 shows there is a region of
negative MCF along the diffuser just off the surface, ahead of the trailing edge. Downstream
of this is a large positive MCF region, caused by the diffuser flow creating a shear layer off
the rear bumper. This MCF information was therefore taken to advise that reducing the ve-
locities in this area could be beneficial, which could be achieved with a larger radius diffuser
profile. Having less curvature yields less flow acceleration, reducing the strength of the shear
layer off the rear bumper, reducing the local flow velocities around this region. The diffuser
concepts tested are presented in Figure 4.22.
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(a) Baseline Diffuser (b) Diffuser Iteration 1

(c) Diffuser Iteration 2 (d) Diffuser Iteration 3

(e) Diffuser Profiles on Car Centreline

Figure 4.22: Diffuser geometry, baseline with the three modifications to the diffuser profile
tested

All of the diffusers tested increased drag on the car. Examining the third diffuser iteration
in Figure 4.23 helps explain why. In general, the diffusers resulted in a higher peak velocity
underneath the car, but a smaller region of high velocity. As such, the underbody shear layer’s
strength was reduced. However, this imbalanced the counter-rotating vortex system between
the roof shear layer and the diffuser shear layer. When these vortex systems are imbalanced,
there tends to be a greater fluctuation in pressure on the rear fascia, which yields a lower
time-averaged base pressure, increasing drag.

While the MCF did inform that the flow from the diffuser contributed to the drag on the
car, it was not able to correctly inform how modifying the velocity in this area should be
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Figure 4.23: Normalized velocity contours on the y = 0 mm plane for the baseline and
Diffuser Iteration 3

balanced with the rest of the structures in the rear wake. This area was particularly sensitive
to the interactions with neighbouring regions around the rear fascia, and the shear layers they
generated. What could have been a more effective modification based on the MCF would be
to have a trip feature on the diffuser generating early separation. This would have decreased
the flow velocity in this region due to the separation, while still creating a strong vortex sys-
tem to balance the flow coming off the roof and the rear fenders. While this information was
available within the MCF, it was not as immediately apparent as the MCF guidance was for
the roof spoiler or the rear fender infills. As such, in areas of high interaction, a larger number
of iterations may be required to use the MCF information effectively. Additionally, it may be
more effective in some areas to incorporate trip features that will decrease the downstream
flow velocity and energy, rather than just diverting air away from these regions.

In general, the MCF tended to perform better in regions where a negative sensitivity was
being exploited to reduce the objective function. This resulted in a need to increase flow
velocities, rather than divert air away from the region. In the case of the rear fender infills,
this came from adding in material towards the edge of the negative MCF region along the
rear fenders. In areas where high positive MCF needed mitigation, design modifications were
less effective. It becomes evident that areas of high positive MCF tend to be involved in more
flow interactions with other components on the car, where simply slowing down the local flow
velocity or moving air away from the positive MCF region may not improve the objective
function. These are areas where supplementing the MCF with traditional methods, such as
examining the velocity, pressure, and total pressure fields will be more effective than the MCF
alone.

67



5 Drag Shape Optimization of the
DrivAer Estateback

Results from the MCF-derived modifications to the DrivAer Estateback showed that drag
could be reduced. However, tested modifications were relatively simple geometrically, and fo-
cused on a few key design changes in each area that were isolated from the MCF. Therefore,
making use of freeform deformation boxes within a gradient-based optimization loop could
yield more detailed deformation of the surface, which could reduce drag further.

This chapter makes use of the baseline DrivAer Estateback model (referred to as the base vari-
ant), as well as the improved Estateback variant, as presented in Chapter 4. Using these two
variants, gradient-based optimization will be performed on the roof spoiler and front bumper
cheek areas, using three different unconstrained gradient-based optimizers. These two loca-
tions were targeted because of the variation in flow physics between the roof spoiler and front
bumper cheek. Both the base and improved variants are used to examine the effect of the
initial design vector on the optimization results, as well as to understand theoretical limits of
improvements to the Estateback. This is to evaluate the potential efficacy of a unified design
approach, combining initial MCF-driven design modifications, followed by computer-driven
optimization.

To expedite the optimization simulations, a half-car model was employed, since the base and
improved variants of the Estateback were symmetric. The effect of a half-car on the CFD
predictions will be discussed first in this chapter. Then optimization methods, problems, and
results will be discussed, alongside post-optimality CFD of the optimized designs. This chap-
ter is a detailed investigation into the effect of initial design vector and optimizer algorithm
on optimization results for automotive applications, with design improvements verified by
post-optimality CFD.

5.1 Half-Car Models

This section investigates the effect modelling the Estateback as a half-car symmetric DDES
model has on the drag and flow field predictions. These results are compared to a full-car
DDES modelling approach for both the base and improved variants. This will detail areas in
which the post-optimality CFD predictions will be affected by the numerics enforced by the
symmetry condition.
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5.1.1 Drag Comparisons

The symmetry plane was placed at y = 0, with a symmetry condition imposed on all fields,
which forced gradients perpendicular to the wall to be zero. Therefore, this limited the effects
of periodic vortex shedding, since these vortices can no longer migrate across the symmetry
plane. This could have the greatest significance on two of the modifications that were made
to the improved variant: the rear fender infills and roof spoiler, which both sought to reduce
asymmetries in the wake. Since this effect was artificially removed due to the symmetry plane,
it is expected that the improved variant will not reduce as much drag as was predicted by the
full car models. Table 5.1 highlights the effect the half-car simulations had on the predicted
drag of each variant.

Table 5.1: Comparison of drag predictions for both Estateback variants for full-car and half-
car simulation approaches

Variant CD,Full−Car CD,Half−Car ∆CD [Counts (CD = 0.001)]

Base 0.295 0.293 -2
Improved 0.269 0.285 +16

For the base variant, the difference between the full-car and half-car models is small, with the
drag being 0.7% lower for the half-car model. For the improved variant, this trend is greatly
different, with the half-car model predicting 5.9% more drag than the full-car model. The
higher drag prediction for the half-car model on the improved variant stemmed from higher
drag being predicted on the upper and lower body surfaces, as well as on the front tires. Since
the improved model had the front bumper cheek flicks, this would alter the tire wake region,
and work to create a larger area of separation upstream of the tire. This wake structure had
some cross-body oscillations, which could not be resolved by the half-car model. Therefore,
it is expected that some of the advantage predicted for the front bumper cheek flick was not
realized by the half-car model.

5.1.2 Surface Pressure Drag Comparisons

Investigating pressure drag for the full- and half-car models helps highlight where discrepan-
cies in the flow field lay, as well as why the improved half-car variant is predicted to have
considerably higher drag than the full-car model. Figure 5.1 shows the pressure drag coeffi-
cient for the two modelling approaches, for the both variants of the Estateback.
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(a) Base Variant

(b) Improved Variant

Figure 5.1: Surface pressure drag coefficient on the full-car and half-car (mirrored for clarity)
Estateback

The effect of the symmetry plane can be clearly seen on the rear fascia, where there is less
pressure drag on car centreline. This supports the idea that there were cross-body fluctu-
ations in the wake that are not getting captured by the half-car model. These oscillations
would create a lower base pressure, increasing pressure drag on the rear fascia for the full-car
model. For the base variant, this had the effect of reducing drag on the rear fascia, which
explains the corresponding decrease in predicted drag by the half-car model. Considering at
the results for the improved variant in Figure 5.1 show a different behaviour.

As with the base variant, the effect of the symmetry boundary condition on the improved
variant can be clearly seen on the rear fascia, denoted by a reduction in pressure drag coeffi-
cient. However, the improved variant predicted there would be more pressure drag on the rear
fascia for the half-car model, than for the full-car model. Furthermore, there was increased
pressure drag on the rear fender infill surfaces. The rear fender infill and spoiler modifications
were both shown to help reduce asymmetries in the rear wake, but that did not mean there
were no cross-body oscillations present in these designs. Therefore, not having the full flow
field modelled resulted in these modifications not contributing as much to drag reduction.
Furthermore, there is more pressure drag on the rear of the tires, likely due to a phenomenon
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not being captured at the front of the car, where the front tires generate cross-body flow
fluctuations.

5.1.3 Half-Car Modelling Conclusions

Despite the inaccuracies from the half-car modelling approach, it was still deemed acceptable
to use these models for optimization. The regions chosen for optimization should be unaf-
fected by the symmetry plane, since their flow fields are not driven by upstream, cross-body
fluctuations. For the front bumper cheeks, the initial flow comes from the stagnation region
on the car, which contains mostly steady flow features. For the roof spoiler, the roof flow is
also mostly steady, with cross-body fluctuations occurring in the wake. While the half-car
models would not resolve these features, drag changes across different designs would be re-
solved. This would not have prevented the optimizer from reducing drag for both variants of
the Estateback. Therefore, since both regions upstream flow conditions were mostly symmet-
ric, a half-car approach was deemed suitable.

For applications that have large regions of cross-body flow, it would be more accurate to use
a full-car model to capture any oscillations. However, given computational costs, this was
not feasible for this research. Nevertheless half-car methodology, the optimization algorithms
and problems could still be defined.

5.2 Gradient-Based Optimizers

For all gradient-based optimizers, the derivative of the objective function is used to define a
search direction to either maximize or minimize the objective function, J . For CFD solutions,
an efficient method with which the Jacobian (∇J) and the Hessian (∇2J) could be approxi-
mated was the adjoint method, as previously described in Chapter 4.

When developing the aerodynamic surfaces of a car to reduce its drag, there tend to not be any
aerodynamic constraints. Some aerodynamic considerations such as lift balance play a role
in the dynamic behaviour of a vehicle, this was noted in Chapter 4 that the Estateback with
a simple floor would be unsuitable for effectively evaluating these types of metrics.. As such,
unconstrained gradient-based optimization is sufficient for automotive applications, and they
are easier to converge than constrained methods. In contrast, aerospace applications require
constrained optimizers for aerodynamic development, as there are a number of performance
requirements, such as lift and pitching moment, which constrain drag optimization. In the
case of the unconstrained gradient-based optimizers available in OpenFOAM, freeform defor-
mation box constraints and total displacement constraints are possible, through the choice of
active design variables.

Should stability metrics be of interest, these can be incorporated into the objective function
by considering lift balance or yaw moment about the car’s centre of gravity when experiencing
some side slip at an operating point with a small sideslip angle, which is not compatible with
a half-car model. These could have been implemented as a multi-objective function, where
a weighted sum of drag and these stability metrics should be minimized, or they could have
been considered as constraints. Since these stability metrics would have required a full-car
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model for the optimization cases, these stability metrics were out of the scope of this research.

Unconstrained gradient-based optimizers in adjointOptimisationFoam are applied in the fol-
lowing steps, with an initial major iteration, K = 0, and an initial design vector: xK :

1. Convergence is tested, by evaluating the objective function value at the current design
vector, xK , and comparing it to the previous major iteration’s objective function value
(if available). If convergence criteria are met, the solution is stopped.

2. A search direction, pK , is computed using gradient information from the objective
function. A number of search direction methods can be chosen to compute this vector.

3. Compute the step length to find a positive scalar, αK , such that the Armijo conditions
are met as implemented in adjointOptimisationFoam [50].

4. The design vector is updated such that, xK+1 = xK + αKpK .
K = K + 1, and steps 1 - 4 are repeated if K is less than the maximum number of
desired iterations.

As mentioned, adjointOptimisationFoam employs the Armijo condition for the line search,
which is an inexact line search method. It is formulated such that the line search converges
when Condition 5.1 is satisfied:

J (xK + αKpK) ≤ µ1αK∇J (xK)T pK (5.1)

In Condition 5.1, µ1 is a small scaling factor, which is 10-4 by default in adjointOptimisation-
Foam [50]. This ensured that some minimum improvement is required for the line search to
have converged. It should be noted that the line search in adjointOptimisationFoam can be
limited to a certain number of iterations, which could result in line search termination before
an improvement is found. As such, this implementation within adjointOptimisationFoam was
not guaranteed to result in an improvement in the objective function at each major optimiza-
tion iteration. For all optimization simulations in this work, the line search was allowed to
run for up to five function evaluations before terminating, to balance computational expense
with finding an improved solution.

Since the line search method implemented does not make use of any curvature conditions,
each subsequent iteration of the line search is computed through backtracking by the following
method:

1. The initial step length ᾱ is set to one, and some reduction ratio, 0 < ρ < 1 is chosen
2. If the Armijo condition outlined in Equation 5.1 is met, αK = ᾱ, and the line search is

terminated
3. If the condition is not met, set ᾱ = ρᾱ and repeat step two until convergence is met, or

the maximum number of line search iterations is reached

In this paper, three search direction computation methods are explored: Conjugate Gradi-
ent (CG), the Broyden-Fletcher-Goldfarb-Shanno (BFGS), and the Damped-BFGS (DBFGS)
algorithm.

5.2.1 Conjugate Gradient

The Conjugate Gradient method is a modification to a steepest descent method, whereby
the gradient search direction is pushed towards the solution more rapidly by using previous
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optimization iterations’ gradient information [51]. It can be formulated by assuming that the
objective function space can be represented by a quadratic function:

J(x) =
1

2
xTQx− xT b,Q = QT (5.2)

Therefore, the gradient of the objective function becomes:

∇J = Qx− b (5.3)

Using this function and its gradient, when applying the typical steepest descent search direc-
tion, which is the negative gradient, the search direction for a Conjugate Gradient problem
can be formulated as:

pK+1 = −∇J(xK+1) + βKpK (5.4)

The computation of βK requires it to be Q-conjugate at every optimization iteration, K. To
negate the need to compute Q, so the search direction is solely dependent on the gradient of
the objective function, the Fletcher-Reeves approximation is applied. This approximation is
given by [52]:

βK = −∇J(xK+1)
T∇J(xK+1)

∇J(xK )T∇J(xK )
(5.5)

This allows for curvature information to be approximated, without the need for computing
the Q matrix.

5.2.2 BFGS

The BFGS method is a quasi-Newton method, whereby the Hessian matrix is approximated,
to try and represent the curvature of the design space [52]. Since the inverse Hessian matrix
is what will actually be needed, instead of solving for HK(x), the inverse Hessian, VK(x) is
directly solved for at each major iteration, K. Assuming that a Taylor-series expansion of
the gradient of a function can be written as:

∇J(xK + sK ) = ∇J(xK ) +HK sK + ... (5.6)

In Equation 5.6, sK = αKpK , and yK = ∇J(xK + sK )−∇J(xK ). The Hessian can then be
given by:

HKsK = yK (5.7)

Which then places a requirement for the inverse Hessian to meet the following criterion:

VK+1yK = sK (5.8)

Using this information, the inverse Hessian matrix is solved for by attempting to minimize
the norm of the difference between the inverse Hessian at iteration K + 1 and the inverse
Hessian at iteration K. The inverse Hessian is then solved using the following equation:

VK+1 =

[
I − sKyK

T

sK TyK

]
VK

[
I − yK sK

T

sK TyK

]
+

sK sK
T

yK
T sK

(5.9)
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Using this approximation for the inverse Hessian matrix, the search direction for a BFGS
problem can then be defined by:

pK = −VK∇J(xK ) (5.10)

By using the approximated Hessian matrix, the BFGS algorithm leverages curvature infor-
mation about the design space, leading to larger steps across the objective function topology.
This makes the accuracy of BFGS dependent on how well-behaved the objective function’s
topology is, as well as how accurately the sensitivity derivatives can be computed, since it
directly impacts the inverse Hessian calculation.

5.2.3 DBFGS

The Damped BFGS algorithm was developed to act as a more stable version of the BFGS
algorithm [53]. It is similar to the presented BFGS algorithm, except it is derived from a
BFGS algorithm that computes the Hessian directly and takes its inverse, rather than solving
for the inverse Hessian problem that BFGS does. This makes the DBFGS algorithm more akin
to the Davidon-Fletcher-Powell (DFP) algorithm, which also directly computes the Hessian,
then inverts it to compute the new search direction. The damping of the Hessian is performed
to maintain the positive-definiteness of the matrix, and occurs by examining the net curvature
at the current design vector. For some user-defined scalar γ, if the following inequality is met,
the solution will proceed in its damped form:

sKyK
T < γsK

THK sK (5.11)

Whether the solution is in its damped form or not, the solution of the Hessian matrix takes
the same form as the DFP algorithm, being:

HK+1 = HK − HK sK sK
THK

sK THK sK
+

rK rK
T

sK T rK
(5.12)

The rK in Equation 5.12 is a damped version version of the change in the gradient, yK . This
damped term is computed by the following equation:

rK = θyK + (1− θ)sKHK (5.13)

When the inequality shown in Equation 5.11 is not met, θ is equal to unity, returning a typical
DFP solution. When the inequality is met, θ is given by the following:

θ =
(1− γ)sK

THK sK
sK THK sK − yK

T sK
(5.14)

Through this process, the DBFGS algorithm helps maintain positive-definiteness of the Hes-
sian matrix, but it still requires the Hessian to be inverted. This can become numerically
ill-conditioned, resulting in inaccurate or poorly conditioned search directions. When applied
to adjointOptimisationFoam, this could lead to extremely large deformations of the geom-
etry, resulting in mesh quality violations. For the DBFGS method, the search direction is
calculated as:

pK = −H−1
K ∇J(xK ) (5.15)
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5.3 Freeform-Deformation Boxes

For shape optimization problems, freeform deformation boxes (FFD) are an efficient means of
defining the design variables for an optimization problem. For a three-dimensional problem,
each control point of an FFD has three design variables, for each of its three axes. Therefore,
for an FFD with n points, it will comprise 3n design variables in three-dimensional space. An
example of how an FFD can be used to displace a triangulated surface is shown in Figure 5.2.
A similar approach is implemented in OpenFOAM.

Figure 5.2: Example surface displacement that can be achieved with an FFD, from [54]

Within OpenFOAM, the FFD method is derived from NURBS B-spline radial basis func-
tions [50]. Rather than using a global coordinate system-aligned parameterization for an
FFD, a local cartesian coordinate system is created, aligned to be orthogonal to the rect-
angular box, such that a new coordinate system with axes u, v, w is defined. The FFD is
therefore comprised of Cartesian points in x, y, z that can then be parameterized in u, v, w
space, with radial basis functions U , V , W . For OpenFOAM’s implementation of the FFD
boxes, the box must be an orthogonal rectangular prism. An example of the u, v, w space
for a non-global axis aligned freeform deformation box is shown in Figure 5.3.

The degree of each radial basis function U , V , W can then be described as pu, pv, and pw.
For an FFD with a number of points in the u, v, w directions of: I + 1, J + 1, and K + 1,
the mth component of a mesh point, x, can be calculated by Equation 5.16.

xm(u, v, w) =

I∑
i=0

J∑
j=0

K∑
k=0

Ui,pu(u)Vi,pv(v)Wi,pw(w)b
ijk
m (5.16)

Using the initial mesh, a mapping is found for each mesh point x (x, y, z) in u, v, w space.
Using the known knot vectors r = (xr, yr, zr), each internal and boundary point of the finite
volume mesh that lives within the FFD can be parameterized in u, v, w space by iteratively
solving the following system of linear equations:
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Figure 5.3: Side view of a non-global axis aligned FFD. The y/v directions are shared in this
example, and pass into the page

R(u, v, w) =

x(u, v, w)− xr = 0
y(u, v, w)− yr = 0
z(u, v, w)− zr = 0

 (5.17)

This mapping is independent for each mesh point and as such, the B-spline implementation
within OpenFOAM solves for these parameterization using parallel computations for decom-
posed problems [50]. At the end of each optimization iteration, displacements are computed

for each point within the FFD(s). Once the updated points bijkm are known, Equation 5.16 is
used to update all of the mesh points within the FFD. When using adjointOptimisationFoam
in double-precision, these parameterizations can be calculated to machine precision, allowing
for accurate deformations of complex geometries.

When FFD points are used as the design variables of an optimization problem, a search
direction will be computed at each point, in each of its three directions. Once a step length
is then computed from the line search, each control point is displaced. This displacement is
then mapped back to the mesh points within the FFD, which are displaced according to the
NURBS radial basis functions.

5.4 Numerical Setup

This section describes the specific setup operations employed within OpenFOAM’s optimiza-
tion solver. As with the MCF evaluation, all optimization models make use of the same
meshing approach and boundary conditions, just modified to yield a half-car model.
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When performing an automated optimization loop in adjointOptimisationFoam, a RANS pri-
mal solution is performed to compute the primal velocity, pressure, and turbulence fields. For
bluff bodies with significant areas of areas of separation, RANS models tend to underpredict
the amount of separation along the body, but give reliable changes in results between dif-
ferent designs. Both the primal and adjoint RANS equations are solved using the SIMPLE
algorithm, with the RANS equations closed using the SA turbulence model. Averaging of
the primal fields and objective function occurs over the final 1000 iterations of each objective
function evaluation.

Since adjointOptimisationFoam stores the previous optimization iteration’s fields to initialize
the current optimization iteration (other than the initial function evaluation), fewer SIMPLE
iterations are needed to find a suitable solution for the flow field. As such, the initial func-
tion evaluation solves for 2500 iterations, with each subsequent function evaluation solving
for 1500 iterations. This allows for accelerated computation of each objective function eval-
uation, reducing the total cost of the simulation. The adjoint equations are solved for 1000
iterations every time the continuous adjoint fields are computed.

RANS models can be insufficient for the prediction of automotive aerodynamics. As such,
DDES are used on select geometries from the various optimization runs to perform post-
optimality CFD simulations. The deformed mesh from the optimization runs are used for
these simulations, reducing the grid-dependence on the DDES simulations. The DDES setup
was described in Section 3.5.

5.5 Optimization Problem

For a given FFD around a portion of the geometry, the optimization problem will be formu-
lated as:

minimize CD

w.r.t. x = (x11, x12, x13, ..., xn3)
T

(5.18)

In Equation 5.18, xi1 represents the u-component of the ith active design variable, xi2 repre-
sents the v-component of the ith active design variable, and xi3 represents the w-component
of the ith active design variable. While minimizing CD

2 may improved the conditioning of
the optimization problem by enforcing additional convexity in the design space, it would have
required the derivation and coding of a unique force squared objective function within ad-
jointOptimisationFoam. Deriving this objective function and its sensitivity derivatives was
outside the scope of this research.

When defining a deformation box within OpenFOAM, the user has the ability to deactivate
certain design variables within the box. It is typically required to constrain all of the design
variables on the boundary of an FFD, which prevents the deformed mesh from moving through
points that are outside the FFD. Since a half-car model is used for the optimization, any FFD
points that pass through the symmetry plane are only constrained in the parameterized v/y
direction. This allows for motion in the symmetry plane, while constraining plane-normal
displacements, representative of a symmetry deformation constraint.
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For this problem, two different FFD’s were evaluated, one around the front bumper cheeks,
and one around the rear spoiler. The positions of which are highlighted in Figures 5.4 - 5.5.
The FFD’s are coloured by their activation of the u and w degrees of freedom (red for active,
blue for inactive). This shows that on the symmetry plane of the vehicle, these points of the
FFD are only constrained in the y/v direction. As previously described, this means these
points cannot move through the symmetry plane, but they can move on the plane, ensuring
a proper symmetry displacement constraint.

The front bumper cheek FFD was made to be relatively wider than the surface geometry to
allow for sufficient deformation of the surface, without artificially constraining the results.
These boxes were evaluated for each of the two Estateback variants, for each of the three
optimization algorithms described in Section 5.2.

Figure 5.4: Freeform deformation box placed around the rear spoiler. The car is shown in
its symmetric state to highlight the FFD points on the symmetry plane

Figure 5.5: Freeform deformation box placed around the left front bumper cheek

The number of points in the u, v, w directions as well as the degree of the NURBS radial basis
function for each FFD is shown below in Table 5.2. All directions were defined with a third
degree NURBS radial basis function. This ensured that there can be curvature continuity
within the deformed surface, while preventing artificial damping of the deformations due to
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a high-degree radial basis function.

Table 5.2: Number of points and degree of the NURBS radial basis function in the u, v, w
directions for each FFD

FFD u Points v Points w Points Degree U , V , W

Rear Spoiler 6 9 7 3
Front Bumper Cheek 6 7 10 3

Convergence of the optimization problem is monitored for both the L2-norm of the gradient,
as well as the change in objective function value for successive iterations. These criteria are
defined as follows:

||∇J(xK)|| ≤ ϵg (5.19)

|J(xK+1)− J(xK)| ≤ ϵabs + ϵrel|J(xK)| (5.20)

The convergence criterion in Equation 5.19 can be met at each iterations, whereas the con-
vergence criterion in Equation 5.20 must be met for two successive major iterations before
it is considered as having been met. The solver reaching either of these two convergence
metrics is sufficient for the optimization loop to be concluded. For all models, ϵg was set
to 0.001, ϵabs was set to 0.0005, and ϵrel was set to 0.0005. Since a half model is employed,
this means the relative change in objective function should be CD = 0.001 + 0.1% of the
previous iteration’s value. This limit was placed as drag improvements of less than 0.001 CD

are typically considered to be within the error of the CFD simulation, for automotive purposes.

In some cases, poor numerical conditioning of the gradient at some control points of the FFD
results in extremely large deformations of the mesh, violating the mesh quality criteria. This
can be caused by from a number of reasons. Some of the control points can live within the ge-
ometry, therefore not being a part of the active flow region. Mapping the external flow solution
to these points can then result in large gradients, due to large flow gradients that are present
around the mesh points that influence the control point(s). Furthermore, scaling of the design
variables only occurs at the first optimization iteration. For complex industrial problems, not
scaling the design variables more frequently can yield large displacements, for which the local
search direction is an inaccurate approximation over such a large step. Furthermore, poor
conditioning of the Jacobian can be caused by the aforementioned numerical convergence
issues of both the primal and adjoint solvers. In the previous chapter, inaccuracies in the
sensitivity analysis were not quantitatively identified, since the adjoint information was used
qualitatively, with engineering judgment employed in its interpretation. The optimization al-
gorithms used do not have this same judgment and are susceptible to these convergence issues.

These mesh quality violations can cause the following optimization iteration to fail, since
the simulation cannot compute a proper solution. In these cases, an improved, rather than
minimized, solution can be isolated prior to the mesh quality violation occurring. While this
is not strictly an optimized geometry, it can still be valuable from an industrial standpoint.
The main purpose of applying shape optimization to automotive applications is to search for
further improvements on the design. If an improvement was realized, this could still be useful
for a car’s development, despite it not being a rigorously optimized geometry.
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5.6 Roof Spoiler Optimization

The results of the roof spoiler optimization will be presented by first investigation the evolution
of the objective function (drag) as a function of optimization iteration, K, for the base and
improved variants of the Estateback. These results of each variant will then be compared to
each other, and the resultant geometry deformations will be compared.

5.6.1 Base Variant Results

The evolution of aerodynamic drag normalized to the initial function evaluation as a function
of optimization iteration is presented in Figure 5.6 for the three optimization algorithms. It
is noteworthy that the DBFGS did not make it past the first optimization iteration. This
means that the first iteration for which the inverse Hessian matrix was calculated, resulting in
a poorly-conditioned search direction, yielding non-physical mesh deformations, violating the
mesh quality. This poor conditioning was likely due to the inversion of the Hessian matrix,
which was discussed in Section 5.2.3. Since the DBFGS algorithm yielded mesh quality viola-
tions after the first optimization iteration, all three optimization algorithms would have had
the same Jacobian vector calculated, because they all perform a steepest descent evaluation
for the first optimization iteration. Since neither the CG, nor the BFGS algorithm yielded
mesh quality issues, and OpenFOAM did not report the damping term being activated for
the DBFGS solver, the problem in the search direction had to stem from the inversion of the
Hessian matrix performed by the DBFGS algorithm. This indicates that the problem was
poorly-conditioned in nature, and was non-convex/multimodal.

Figure 5.6: Optimization results for the three optimization algorithms. The objective func-
tion is normalized to the drag of the base variant at the initial optimization iteration
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The BFGS trace is of interest, as it results in an increase in the objective function at the
second optimization iteration, as well as at the fourth and fifth optimization iterations. This
increase is feasible, due to the maximum number of iterations that are specified for the line
search. It is also interesting to note that the solution converged, despite it being to a value
greater than the initial objective function value. This suggests that there was some degree of
multi-modality in the objective function’s topology, with this being a local minimum. This
multi-modality will be further discussed in the results of the improved variant’s optimization
results.

To understand if the problem with the BFGS solution was due to the line search, this case
was repeated with a maximum of ten line search iterations, instead of five. By increasing the
maximum number of line search iterations, the objective funciton was not forced to decrease
at each iteration, but when it did increase, it was on the order of half a drag count. In this
optimization however, the model had not converged, having failed on the fifth optimization
iteration, due to mesh quality violations. The progression of this optimization run com-
pared to the initial Conjugate Gradient and BFGS runs is shown in Figure 5.7. This figure
shows that while additional line search iterations improved the BFGS algorithm’s predicted
improvement, it was still not as effective and required more function evaluations than CG.
Furthermore, additional line search iterations did not improve the robustness of BFGS.

Figure 5.7: Optimization results for the 10-line search iteration BFGS case, compared to the
initial CG and BFGS cases

Moreover, the fact that an improvement could not be achieved, suggests that there was poor
conditioning of the Hessian matrix for this problem. This was likely due to multi-modality
within the design space, despite areas of local convexity. Since the Conjugate Gradient method
converged asymptotically towards a local minimum, this shows the local convexity is present,
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which was able to be found because of small total displacements. The BFGS algorithm caused
larger displacements, which led to it finding regions of local concavity, highlighted by the in-
crease in drag in some objective functions. That being said, an improved design vector was
predicted at iteration 3 for the BFGS algorithm, suggesting an improvement of 1.2%. This
design could still be valuable in terms of directional understanding of how to improve the
spoiler region of the car.

The Conjugate Gradient trace shows that there was constant improvement in the objective
function, and a converged solution could be found. A maximum improvement in the objective
function of 7.0% was predicted from the optimization algorithm, relative to the initial design
vector. Since the Conjugate Gradient method largely relies on gradient information, with
slight ”steering” of the search direction from the β term, it is less sensitive to numerical error
in the sensitivity derivatives, and will be a more robust method. The Conjugate Gradient
method takes longer to yield an improvement since it will suggest smaller displacements at
each optimization iteration, but this is favourable in the presence of a more complex objective
topology, as is clearly exhibited.

5.6.2 Improved Variant Results

The evolution of aerodynamic drag normalized to the initial function evaluation, as a function
of optimization iteration is presented in Figure 5.8, for the improved Estateback variant. As
with the base variant, the DBFGS optimizer failed after the first optimization iteration, which
would be due to a poorly conditioned search direction. It is evident that for industrial cases,
the inversion step of the DBFGS algorithm yields numerical instabilities in the sensitivities.

Figure 5.8: Optimization results for each of the three optimization algorithms
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The BFGS trace differed from the base variant, since its converged solution reduced the car’s
drag. However, in the process the objective function was increased and subsequent iterations
oscillated around this value, before converging to a solution with its drag reduced. This once
again highlights that for industrial automotive applications, the BFGS algorithm is less ro-
bust, likely due to insufficient convergence of the primal equations, as well to the possibility
of large displacements at each iteration, degrading the accuracy of the local Jacobian and
inverse Hessian approximations. The fact that it converged for the improved variant and
not the base variant is not indicative of the user-defined modifications resulting in a more
favourably conditions objective function topology, but to rather to the change in the initial
design vector that was sufficient to place the car in a more favourable region of the objective
function’s topology, such that it could be guided towards a local minimum.

The Conjugate Gradient trace shows that a converged, improved objective function value
could be reached. It is also valuable to note that this converged objective function value
predicts greater improvement than the BFGS’ converged solution. As with the base variant,
the Conjugate Gradient method was not only more robust, but it was also more effective at
reducing the drag of the car. It is also valuable to note that the Conjugate Gradient op-
timization of the improved variant only resulted in a 4.7% improvement in drag, compared
to 7.0% for the base variant. This is likely due to the user-driven modifications, that would
have moved the initial design vector closer to the converged minimum. As such, a smaller
total step was needed to reach that minimum, leading to a more accurate Jacobian prediction
due to staying within the region of space in which the adjoint approximation is valid (convex).

The results of the spoiler optimization for the improved variant hint at more global multi-
modality in the design space. Both the Conjugate Gradient and BFGS solutions yielded a
converged solution, however the predicted drag reduction was different for both points. This
suggests that the design space was not truly convex, which would likely extend to the base
Estateback variant. These local minima were verified by performing an additional optimiza-
tion run on the converged geometries. The repeat of the Conjugate Gradient model converged
immediately due to insufficient change in the objective function. This showed that the Con-
jugate Gradient method found a local minimum, with less than 0.5% change in the drag when
the optimizer was restarted using the new initial design vector. In the case of the BFGS re-
peat, it converged to a new solution after five major iterations, predicted an additional 2.5%
reduction in drag. Since the BFGS mapping was capable of finding a new, stronger minimum
than previously found, this further highlights the multi-modality of the design space, and
suggests that the Conjugate Gradient algorithm is better suited to finding stronger minima
in automotive applications.

This multi-modality is partly an artifact of the lack of wake resolution within the RANS solver,
but is also likely due to the wake interactions between the roof flow and the underbody/rear
fender flow. Minimizing with respect to CD

2 could help improve the convexity of the design
space to reduce some of these problems.

5.6.3 Comparing Optimization Results

This section details how the optimization of both variants compared to each other, normalized
by the initial objective function value for the base variant, denoted by J0,Base. The objective
function evolution traces for each algorithm and variant are presented in Figure 5.9. As ex-
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pected, the value of the objective function at optimization iteration one is the same for all
algorithms for a given variant, since all three algorithms employed a steepest descent initial
step, and were therefore limited to the same maximum initial displacement.

Figure 5.9: Optimization results for each of the three optimization algorithms, for both
Estateback variants. Both variants’ drag is normalized by the drag of the base variant at the
initial optimization iteration (J0,Base)

Comparing the Conjugate Gradient traces for both Estateback variants highlights that there
was a noticeably larger net improvement in the base variant’s drag, but the optimized im-
proved variant is still predicted to have less drag than the optimized base variant. At the
initial optimization iteration, the improved variant was predicted to have 4.8% less drag than
the base variant, but the converged design vector was only predicted to have an improvement
of 2.2%. This therefore shows the importance of using expert-driven design to reduce the net
drag of a car. While the optimizer was capable of improving the base variant more than the
improved variant, the optimized improved variant was still better than the optimized base
variant. Since the MCF method that was used to drive the modifications of the improved
variant, it is more favourable to use this method during the early phases of a design cycle
to respect styling constraints, with optimization being reserved for later stages, when further
improvements would be desired.

Table 5.3 highlights the performance of all of the optimizers for the two variants. The min-
imized objective function value relative to the initial objective function value for a variant
(J∗/J0), as well as the minimized objective function value relative to the base variant’s initial
drag (J∗/J0,Base) are presented to highlight the relative and net improvements found from
each algorithm. JK/J0 is the normalized value of the aerodynamic drag for the final opti-
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mization iteration, K. If J∗/J0 and JK/J0 differ, this is not an indication of a converged
solution not being found, but that the converged solution was not the minimal solution found
during the optimization process. For the equivalent number of flow solutions, k, this value is
in relation to the number of iterations the initial primal solution took. All subsequent primal
evaluations cost 0.6 equivalent flow solutions, and all adjoint solutions cost 0.4 equivalent flow
solutions.

Table 5.3: Summary of optimization progress for each algorithm and variant studied, for the
spoiler FFD

Algorithm Variant K k J∗/J0 J∗/J0,Base JK/J0 Converged

CG
Base 9 13.4 0.930 0.930 0.930 Yes

Improved 9 10.4 0.953 0.908 0.953 Yes

BFGS
Base 6 16.2 0.988 0.988 1.038 Yes

Improved 12 27.2 0.979 0.932 0.979 Yes

DBFGS
Base 1 2.4 0.993 0.993 0.993 No

Improved 1 2.4 0.997 0.949 0.997 No

From Table 5.3, the most improved optimization iteration results for the base and improved
variants were predicted to be from the Conjugate Gradient optimization. Furthermore, the
Conjugate Gradient evaluations were able to perform reduce drag in fewer equivalent function
evaluations than the BFGS algorithm did. This was because the BFGS optimization loops
required many line search iterations before either the iteration limit, or an improved design
was found. The Conjugate Gradient models tended to require only one function evaluation
per line search execution, which further supports the Conjugate Gradient’s search direction
being more robust, but also more efficient than the other tested methods.

To understand the modifications to the base and improved variants, the deformed geometry
for the base variant at optimization Iteration 9 and the deformed geometry of the improved
variant at optimization Iteration 9 are presented in Figure ??, for the Conjugate Gradient
models. When examining the displacement, a positive displacement means the surface was
deformed inwards, along the surface normal, and a negative displacement is outwards, against
the surface normal. The BFGS and DBFGS models will not be presented as they did not
produce a comparable reduction in drag.

For both the base and improved variant, the outboard end of the spoiler was flared downwards
more than the inboard end, creating more downward curvature on the outboard end of the
roofline, leading to more outboard flow acceleration. Additionally, having the trailing edge
lower on the outboard end of the roof can help contract the overall size of the wake. This
would require validation with higher fidelity methods, as RANS tends to underpredict the
amount of separation on the rear fascia. Thus, it would likely perform relatively accurately
up until separation occurred on the roofline.
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(a) Base Variant

(b) Improved Variant

Figure 5.10: Deformed surfaces, subject to the spoiler FFD

On the base variant, upstream of the spoiler, a bump was added to the roof, allowing for
more flow acceleration upstream of the spoiler. This bump was not present on the improved
variant, likely due to previous modifications that were guided by the MCF. Since the MCF
yielded information that increasing flow acceleration at the trailing edge of the roof would help
decrease drag, the roof was already given additional downwards curvature. As such, a bump
was not needed to be generated to achieve this effect. It is also interesting to note that this
bump was present on the base variant, since this was information that was directly distilled
from the MCF guidance. However, the bump being developed was likely a result of the
optimizer exploiting the geometry of the spoiler FFD, rather than being a physical solution.
It can be seen that the bump present in the base variant was not tangent to the rest of the
roofline. This suggested that the roofline should have been raised higher to accommodate for
the additional curvature generated downstream of the bump. Having the bump present would
create a local pressure buildup and potential thickening of the boundary layer, that would
not be desired. Nonetheless, this highlights that the MCF and optimization should be used
in tandem, whereby the MCF information guides early work in a car’s design cycle to target
key areas where drag can be minimized, with optimization extracting the final performance
from the design.
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5.7 Roof Spoiler Post-Optimality CFD

The designs on which post-optimality CFD was performed were: Conjugate Gradient opti-
mization Iteration 9 and BFGS Iterations 4 and 6 for the base variant, as well as Conjugate
Gradient Iteration 9 and BFGS Iteration 12 for the improved variant. The BFGS iterations
were chosen to determine the accuracy of the RANS solver employed in the optimization pro-
cess when large deformations were generated between optimization iterations, which is one
of the hallmarks of the BFGS method. Additionally, BFGS Iterations 3 and 6 for the base
variant were chosen to see if Iteration 3 actually resulted in reduced drag, and if Iteration
6 resulted in increased drag. The remaining options were chosen to verify if the predicted
improvement was able to be replicated within a DDES model. The DBFGS iterations were
not chosen for either variant, since only one optimization iteration was completed in these
cases.

Figure 5.11 presents the percent difference between the post-optimality and optimizer’s predic-
tion of J/J0 for the spoiler optimization. For the base variant, the change direction predicted
by the optimizer was different than the direction calculated by the DDES model. In all three
cases, if the optimizer predicted a change that increased drag, post-optimality CFD suggested
it decreased drag, and vice versa. This trend was not present in the improved variant’s opti-
mization, with both analyzed designs predicting a reduction in drag with the post-optimality
CFD also predicting a drag reduction. It is also valuable to see that in both cases of the im-
proved variant’s post-optimality analysis, they predicted roughly 1.4% more drag reduction in
the post-optimality CFD, compared to the optimization value. It was not expected that the
post-optimality CFD would provide the actual drag savings from an optimization design vec-
tor, but rather a more accurate sense of the improvement predicted. However, drag reduction
predicted by post-optimality CFD was trusted, given the consistency across different designs
shown when validating the DDES models. Experimental validation of the designs would be
required to understand the true drag savings achieved.
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Figure 5.11: Percent difference in J/J0 from post-optimality CFD to optimizer predictions,
for the spoiler design vectors chosen

It is possible that the optimizer was more in line with the post-optimality results, because
the geometry had already been modified. The modifications to the improved variant were
all made with the goal of reducing large separation points and making wakes more uniform.
This would cause the SA turbulence model to perform more effectively in the optimizer, which
explains why there was better agreement to the post-optimality DDES solution.

To understand the differences in predicted improvement between the post-optimality CFD
and the optimizer, it is valuable to look at the surface pressures resulting from both method-
ologies. Figures 5.12 - 5.14 present comparisons of surface pressures for select post-optimality
runs. All comparisons not presented here can be found in Appendix F.

Figure 5.12 presents the surface pressures for the base variant’s Conjugate Gradient, Itera-
tion 9 point. The key difference between the two flow fields is the significantly higher suction
predicted by the post-optimality CFD around the bump that was created in the roof, and
along the D-pillars. As noted, the bump generated by the optimizer for the Conjugate Gra-
dient results was meant to exploit the negative MCF region that was previously discussed for
the base variant. It is likely that the optimizer generated too much curvature in this region
however, for which the flow acceleration could not be adequately refined, especially around
the D-pillar. Based on the post-optimality results, the additional curvature along the D-pillar
seems to have created a more noticeable separation region, which was not resolved in the
optimization’s RANS model. This had the effect of increasing suction on the upper half of
the rear glass, which explains why a drag increase was predicted in the post-optimality CFD,
but not in the optimization.
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Figure 5.12: Comparison of surface pressures for between the post-optimality CFD and
optimization CFD for the Conjugate Gradient, Iteration 9 design point of the base variant

Figure 5.13 presents the surface pressures for the base variant’s BFGS, Iteration 6 point. This
point showed the opposite trend in post-optimality that the Conjugate Gradient point had.
In this design, areas that the RANS model predicted to be high suction, resulted in less suc-
tion in the post-optimality CFD. The BFGS algorithm produced less D-pillar curvature than
the Conjugate Gradient algorithm had, which means the post-optimality CFD predicting less
suction in this region is reasonable. Furthermore, there was not as high a suction peak on the
top of the roof, since the BFGS optimizer did not generate the distinct hump the Conjugate
Gradient method did. This resulted in a higher base pressure, leading to a drag improvement
being predicted, instead of the drag increase predicted by the optimizer.

Figure 5.13: Comparison of surface pressures for between the post-optimality CFD and
optimization CFD for the BFGS, Iteration 6 design point of the base variant

Figure 5.14 presents the surface pressures for the improved variant’s BFGS, Iteration 12 point.
For this geometry, the post-optimality and optimization results were far more consistent than
the base variant’s results. In general, there was less deformation of the improved variant’s
surface, leading to smaller adverse pressure gradients on the roof’s surface. Other than the
different base pressure predicted by the DDES model, which was inherent due to its ability
to predict separation more accurately, the two models showed strong agreement.
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Figure 5.14: Comparison of surface pressures for between the post-optimality CFD and
optimization CFD for the BFGS, Iteration 12 design point of the improved variant

In summary, the post-optimality CFD had better agreement with the optimizer for the im-
proved variant simulations. This was due to the modifications that defined the improved
variant, which sought to reduce the size of the rear wake and make it uniform. As a result,
the optimizer’s underlying RANS solver was better able to deform the geometry in a manner
that would yield a drag reduction. This further highlights the importance of expert-driven
design modifications prior to the application of optimizers for automotive purposes.

5.8 Front Bumper Cheek Optimization

The results of the front bumper cheek optimization will be presented in the same manner as
the spoiler optimization.

5.8.1 Base Variant Results

The evolution of aerodynamic drag normalized to the initial function evaluation as a function
of optimization iteration is presented in Figure 5.15 for the front bumper cheek of the base
variant. In contrast to the base variant’s spoiler optimization, none of the algorithms showed
a clear path of improvement by deforming the front bumper cheek. There was a consider-
able amount of zig-zagging by the various algorithms, with a clear improvement being elusive.
This was likely due to the more complex flow physics which occurred around the front bumper
cheek, compared to the spoiler region. The flow that comes off the front bumper cheeks was
largely dominated by the interactions it had with the front tires and their wake. Since the
optimizer makes use of a SA RANS model, the ability to predict these wakes was susceptible
to significant modelling errors due to the lack of resolved turbulent kinetic energy. As such,
the sensitivities in this area may not only be incorrect, but the resultant primal evaluations
may not have given a reasonable evaluation of the flow field.
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Figure 5.15: Optimization results for each of the three optimization algorithms. The objec-
tive function is normalized to the drag of the base variant at the initial optimization iteration

In the case of the BFGS optimization, large deformations were generated for the front bumper
cheek, which would likely not be acceptable from a styling perspective. However, the BFGS
algorithm was capable of yielding more improvement than the Conjugate Gradient approach,
as it converged early due to small surface displacements. This is in contrast to the spoiler
optimization where the BFGS algorithm was not as effective as Conjugate Gradient.

5.8.2 Improved Variant Results

The evolution of aerodynamic drag normalized to the initial function evaluation as a function
of optimization iteration is presented in Figure 5.16 for the improved Estateback variant.

It is noteworthy that the BFGS and DBFGS traces differed so significantly. This can be be
attributed to the inversion of Hessian matrix, occurring in the DBFGS algorithm causing
variations in the search direction. These will not occur for the BFGS algorithm, as the
OpenFOAM implementation directly solves for the inverse Hessian matrix. As with the base
variant, the BFGS algorithm predicted greater improvement in drag than the Conjugate
Gradient algorithm, largely driven by larger surface displacements. As with the base variant,
little improvement was found by modifying the front bumper cheek region, due to the complex
flow physics that are difficult to model using a RANS solver. This further highlights that
optimization was likely best suited to areas in which the RANS solver could yield reasonable
predictions: in areas that are not dominated by unsteady flow phenomena.
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Figure 5.16: Optimization results for each of the three optimization algorithms

5.8.3 Comparing Optimization Results

This section details how the optimization of both variants compared to each other, normalized
by the initial objective function value for the base variant, denoted by J0,Base. The objective
function evolution traces for each algorithm and variant are presented in Figure 5.17. As with
the optimization of the spoiler, the improved variant displayed less relative drag reduction
when deforming the front bumper cheeks. This should be expected, since the purpose of
the improved variant was to push the DrivAer Estateback closer to a minimal drag design,
meaning it should result in less reduction in drag from the optimization routine than the
base variant. However, significantly less improvement was predicted by deforming the front
bumper cheeks, since the maximum relative improvement was less than 0.5% compared to
up to 7% relative improvement by deforming the spoiler. This is once again due to the more
complex flow physics in this region, which can be difficult for a RANS-based optimizer to
yield a reduction in drag.
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Figure 5.17: Optimization results for each of the three optimization algorithms, for both
Estateback variants. Both variants’ drag is normalized by the drag of the base variant at the
initial optimization iteration (J0,Base)

Table 5.4 highlights the performance of all the optimizers for the two variants for the front
bumper cheek optimization, similar to the spoiler optimization. Unlike the spoiler optimiza-
tion, the BFGS algorithm resulted in the most improvement in drag for both the base and
improved variants. However, it did not find a converged solution, meaning these designs can
only be considered improvements, rather than optima. Part of the reason the Conjugate
Gradient method did not yield a noticeable improvement, is because the first few iterations
result in little total displacement of the surface with the maximum displacement being around
three millimeters. Since this region was dominated by complex flow physics, these small dis-
placements were difficult to resolve with a RANS solver. Even though the drag reduction
was predicted from deformations of similar magnitude in Chapter 4, these designs were eval-
uated using DDES models which were better suited to resolving the front tire wakes. As
such, the Conjugate Gradient evaluations converged early due to the convergence criteria
used. Therefore, it could be more valuable to perform a BFGS optimization sweep first, on
which the best iteration could then have a Conjugate Gradient optimization sweep performed.
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Table 5.4: Summary of optimization progress for each algorithm and variant studied, for the
front bumper cheek FFD box

Algorithm Variant K k J∗/J0 J∗/J0,Base JK/J0 Converged

CG
Base 2 3.4 0.998 0.998 0.998 Yes

Improved 2 5.8 1.000 0.952 1.000 Yes

BFGS
Base 5 11.8 0.996 0.996 0.998 No

Improved 3 9.2 0.997 0.949 0.997 No

DBFGS
Base 2 5.8 0.998 0.998 1.005 No

Improved 3 9.2 1.000 1.000 1.005 No

One aspect of the results that was consistent between the spoiler and front bumper cheek
results was that the BFGS algorithm takes consistently more function evaluations when per-
forming an optimization routine. As with the spoiler optimization, the BFGS algorithm
resulted in a search direction where an improvement in the objective function required more
than one line search iteration. This can be attributed to the additional curvature information
that the BFGS algorithm provided the solver, compared to the Conjugate Gradient case.
This allows for a larger traversal of the objective function topology, but it may then require
additional line search iterations to meet the Armijo conditions.

From Table 5.4, the most improved optimization iteration results for the base and improved
variants were predicted to be from the BFGS algorithm. The deformed geometry for the base
variant at optimization Iteration 3 and the deformed geometry of the improved variant at
optimization Iteration 3 are presented in Figure 5.18.

(a) Base Variant

Figure 5.18: Deformed surfaces, subject to the front bumper cheek FFD
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(b) Improved Variant

Figure 5.18: Deformed surfaces, subject to the front bumper cheek FFD

The base improvement showed roughly three times as much deformation than the improved
variant did in their most improved forms. The deformation realized for the base variant
would not be practical however, from neither a manufacturing nor an aesthetics perspective.
However, it is interesting to note that on the lower portion of the front bumper cheek, the
optimizer sought to grow a tire air deflector, to push air outwards around the lower portion of
the tire. The optimizer also tried to push the bumper cheek outwards, which would generate
some local thrust due to the additional curvature, but would also help align the flow to be
more parallel to the face of the front tires. This was present on the improved variant as well,
but to a lesser degree.

The inwards deformation on the upper half of the front bumper cheek for the base variant
is likely an effect of the RANS solver being unable to resolve the flow physics due to the
front bumper cheek’s interactions with the tires. While some inward curvature would help
generate suction and local thrust, the bumper cheek was pushed in too much, causing some of
the front tires to be exposed. There was some inwards deformation of the improved variant,
however it was far more subtle, seeming to reduce the height of the flick. When this flick was
initially generated, only the flick length along the front bumper cheek was changed, with all
tested variants being 5 mm tall. Based on these deformations, it is evident that a RANS-
driven gradient-based optimizer will perform more poorly in areas where the flow is not well
behaved and features large areas of separation.

5.9 Front Bumper Cheek Post-Optimality CFD

The front bumper cheek designs on which post-optimality CFD was performed were: were
Conjugate Gradient optimization Iteration 2 and BFGS Iterations 3 and 5 for the base vari-
ant, as well as Conjugate Gradient Iteration 2, BFGS Iteration 3, and DBFGS Iteration 3
for the improved variant. The DBFGS result for the improved variant was analyzed since the
search direction for BFGS and DBFGS should have been similar, but there was a noticeable
difference in their objective function values.
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Figure 5.19 highlights how the chosen optimization iterations performed in the post-optimality
DDES model for the front bumper cheek deformations. For both variants, there was no real
trend in the post-optimality results, largely due to the complex flow physics around the front
bumper cheek, which were less prevalent around the roof spoiler. Since the drag in this region
was largely dominated by the front wheel drag, these are features that the RANS-based
optimizer could not resolve with sufficient fidelity to yield effective change. However, as with
the spoiler, the improved variant saw better drag correlation between the post-optimality
CFD and the optimzation results.

Figure 5.19: Percent difference in J/J0 from post-optimality CFD to optimizer predictions,
for the front bumper cheek design vectors chosen

Investigating the surface pressures for the base variant’s BFGS, Iteration 3, and the improved
variant’s DBFGS, Iteration 3 helped identify where the disagreement occured in the opti-
mization and post-optimaltiy results. Figures 5.20 and 5.21 present these comparisons, with
additional post-processing images available in Appendix F.

For the base variant’s front bumper cheek optimization in Figure 5.20, the results show that
there was agreement in the pressure predictions on the front faces of the wheelwell. However,
the post-optimality CFD predicted more suction on the front bumper cheek, as a result of the
additional curvature for the deformed geometry, that the RANS model does not. The largest
discrepancy however was the pressure on the rear of the front tires and fender. For these
areas, the post-optimality model predicted more suction, with the difference on the front tires
being greater than ∆Cp = -0.3. These two regions were key contributors to the drag of the
vehicle, and were the source of one of the most dominant wake structures for the vehicle.
Underpredicting the drag in these areas was a key contributor to why the negligible change
in the optimization results yielded an increase in drag in the post-optimality CFD.
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Figure 5.20: Comparison of surface pressures for between the post-optimality CFD and
optimization CFD for the BFGS, Iteration 3 design point of the base variant

Figure 5.21 shows there was better agreement between the optimizer and post-optimality,
since the improved model had smaller deformations. Without the large surface curvature
that was present in the base variant’s results, there were fewer regions where the RANS and
DDES solutions were likely to differ. Furthermore, the deformation of the improved variant
focused deformations on how the flow was jetted off the front bumper cheek flick, rather than
growing a complex flick as the base variant had. As such, the pressure gradients in this area
were less severe, and less air impinged on the front tires, leading to a smaller separation region.
This yielded better pressure agreement between the DDES and RANS models, especially on
the back of the front tires and fender.

Figure 5.21: Comparison of surface pressures for between the post-optimality CFD and
optimization CFD for the DBFGS, Iteration 3 design point of the improved variant

In summary, since the front bumper cheek region was dominated by complex flow structures,
the optimizer did not reduce drag measurably, and did not agree with the post-optimality
CFD. This highlights the importance of the solver fidelity in the optimization routine. In areas
where the flow physics are complex, it would be more effective to use a gradient-free optimizer,
which could use DDES models for its drag evaluation, instead of a gradient-based RANS
optimizer. This negates inaccuracies in a RANS model around adverse pressure gradients,
and remove the need for post-optimality CFD.
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6 Conclusions and Recommendations

The aim of this research project was to investigate the applicability and efficacy of gradient-
based methods to reduce the aerodynamic drag of a canonical automotive geometry. An
expert-driven Momentum Contribution Field (MCF) approach, followed by gradient-based
optimization was used to achieve the drag savings. This found that the combined method
was more effective than the using each method on their own. This chapter provides the
conclusions reached along with suggestions and recommendations to improve the research
performed and to inspire future research on this topic.

6.1 Conclusions

This research studies a new, unified design approach using continuous adjoint-based methods
for automotive aerodynamics. Through adjoint-based sensitivity analyses, expert-guided and
computer-guided approaches were investigated to determine their individual and combined
efficacy when applied to the canonical DrivAer Estateback geometry. Both RANS and DDES
simulations were applied to the Estateback model, with validation of the vehicle’s drag and
surface pressures performed using the DDES model. Drag calculations for four variations of
the DrivAer Estateback showed the DDES models to be accurate within 4% of wind tunnel
values, with a consistent drag underprediction.

Using the RANS-based continuous adjoint methodology, the MCF with respect to drag could
be calculated for the DrivAer Estateback. Modifications to the car guided by this field’s in-
formation predicted an 8.8% reduction in drag compared to the baseline model. This was
achieved through modifications to the front splitter, front bumper cheeks, rear fenders, and
roof spoiler. It was consistently found that using the MCF information resulted in more im-
provement than ignoring it.

Areas in which the RANS-based information yielded designs that consistently increased drag
were also highlighted: around the hood’s trailing edge and the rear diffuser. Drag increases
around the hood were noted due to inaccurate sensitivities from the RANS MCF. A method-
ology was described where these MCF predictions could be improved using time-averaged
velocity, pressure, and face flux fields from a DDES simulation. These time-averaged fields
could be used for the primal computation of the adjoint solver, providing higher accuracy in
these primal quantities, than from a pure RANS solution.

When the RANS-based optimization methodology was used, the base and improved variants
of the Estateback were optimized, using freeform deformation boxes to constrain surface dis-
placement. For this optimization, the roof spoiler and front bumper cheek regions of both
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variants were modified, using the Conjugate Gradient, BFGS, and DBFGS algorithms. For
the spoiler region optimization, a relative drag reduction of up to 7% was predicted for the
base variant, and up to 4.7% for the improved variant. The baseline variant predicted greater
drag reduction, since the MCF-guided modifications of the improved variant placed it closer
to a local minimum. However, the improved variant predicted a greater net improvement in
drag when combining the MCF and optimization methods than just MCF or optimization
modifications made to the base variant. For both variants of the Estateback, the Conjugate
Gradient algorithm was found to be the fastest and most robust for reducing drag.

Optimization of the front bumper cheek highlighted the inaccuracies of the RANS solver and
subsequent sensitivities in areas dominated by separation. Negligible relative improvement
was predicted for either Estateback variant, due to the complex flow physics around and down-
stream of the front tires. For both regions, it was noted that the BFGS algorithm tended to
yield more displacement earlier in the optimization routine, which tended to cause oscillatory
changes in drag because of the inexact line search method used. Additionally, the BFGS and
DBFGS algorithms tended to yield poorly conditioned sensitivities, due to the curvature in-
formation contained in their Hessian approximations, which caused the optimization routine
to fail due to mesh quality violations. Poorer convergence of the primal solver in the front
bumper cheek region directly impacts the adjoint computation, which informed the condition-
ing of the gradients used to update the search direction. This highlights that RANS-based
gradient optimizers are likely to be insufficient for realistic automotive geometries in regions
dominated by adverse pressure gradients and separation. This restricts the regions on the car
where the optimizer will be effective.

Post-optimality CFD of key designs for the roof spoiler and front bumper cheek optimiza-
tion routines highlighted areas in which the RANS-based optimizer suffered in accuracy. For
the roof spoiler optimization, the base variant’s predicted change did not show a consistent
trend with the post-optimality CFD, influenced by adverse pressure gradients that were not
effectively resolved by the RANS solver. The improved variant’s post-optimality CFD agreed
much better with the RANS model, with the same direction of change consistently predicted
and the post-optimality solution tending to predict a consistent 1.4% additional drag reduc-
tion. Post-optimality CFD for the front bumper cheek optimization further emphasized the
inability of effective drag minimization from a RANS-based solver. Greater disagreement
was found in both the drag change direction and magnitude between the post-optimality and
optimization CFD.

This research highlights the importance of using both expert-guided and computer-guided
methodologies to reduce drag and to improve the efficacy of automotive aerodynamic design.
Optimization results yielded greater improvement, and were more stable when applied to the
improved expert-guided design variant of the Estateback. This shows that the two methods
complement each other, with the expert-guided method being better suited to early phases
of a car’s design cycle. For example, it can be used to identify key areas where drag can
be reduced as well as guide large initial changes to the design. Gradient-based optimization
can then be applied to this developed variant of the car to yield additional drag reduction.
It was concluded that caution is warranted when optimizing regions with high separation.
The gradient-based optimizers had poorer performance in these regions due to sensitivity
inaccuracies and poorer local primal solution convergence.
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6.2 Recommendations for Future Work

In this work, a number of areas were identified that could yield additional validation of the
results, as well as methods to improve the efficacy of the outlined design approach, along with
additional areas in which this design framework can be applied.

Despite the DDES models used to evaluate design changes being validated against existing
experimental data, the various stages of the Estateback’s design modifications were not veri-
fied. Wind tunnel evaluation of the designs conceptualized in this work would be valuable to
provide additional CFD and MCF validation.

A number of improvements to the tested optimizer were noted: the first would be the ability to
place restrictions on the total displacement of the freeform deformation box in each direction.
Large displacements generated by the BFGS algorithm caused the gradient approximation
to suffer accuracy. Limiting the total displacement could still yield an optimzation iteration
where the objective function increases due to the inexact line search, but it could damp con-
trol point displacement such that the optimizer could guide the solution back towards a local
minimum. Furthermore, being able to rescale the design variables at each iteration would
be valuable. This could work with total displacement limitations to damp certain control
points that lead to excessive deformations. Both of these improvements would help improve
optimizer robustness.

Having more objective functions with their corresponding adjoint derivations could improve
the robustness of the solution. It was noted that minimizing the square of drag could be ad-
vantageous, since the squared term helps modify the design space to become more convex. It
is not guaranteed to remove multi-modality, but it could improve the numerical conditioning
of the problem.

While the gradient-based optimization yielded design improvements for the spoiler region, it
was limited by the underlying RANS solver. It would be worthwhile to explore gradient-free
methods such as response surface methods, which can make use of DDES models for design
evaluations. Exploiting methods that use higher-fidelity CFD simulations should also allow
for more effective design exploration in regions dominated by separation, such as the front
bumper cheek. The penalty of using gradient-free methods however, is they are limited to
a fewer number of design variables to be computationally feasible. Therefore, a high-fidelity
freeform deformation box would be too expensive to optimize an area of a car. Therefore,
more accurate results could be achieved, but the deformation would have larger changes than
a comparable gradient-based optimizer. Furthermore, making use of gradient-free methods
using DDES solvers negates the need for post-optimality CFD.

Finally, an extension of this work should apply the MCF method to a high-downforce vehicle,
with the MCF computed with respect to lift. This can be used to evaluate the method’s
efficacy over a broader range of objective functions, for vastly different design concepts. Par-
ticular interest should be paid as to how the MCF can be used to guide interactions between
different downforce-generating devices, as well as to help guide the placement of additional
devices. Furthermore, since downforce-generating cars do not need to produce a set amount
of downforce, it would be worthwhile to investigate if there are the same limitations on the
MCF’s guidance in positive MCF regions.
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A Supplemental Mesh Dependency
Study Images

Additional plots showing the divisions for a sample background mesh and the resultant effect
the number of background mesh divisions had on the surface and volume mesh are presented
in this section.

A.1 Sample blockMesh Output

The output of the blockMesh utility for the very coarse mesh sizing used in the mesh depen-
dency study is presented in Figure A.1. This highlights the number of divisions in the length,
width, and height directions (x, y, and z).

Figure A.1: Background blockMesh used for the 84 x 28 x 14 Very Coarse mesh

A.2 DrivAer Estateback Surface Meshes

This section presents images showing the overall surface mesh around the DrivAer Estateback
for each of the five meshes. When defining the refinement of the surface in snappyHexMesh-
Dict, the car’s surfaces were meshed between cell level 8 - 11. Table A.1 summarizes what the
corresponding length in mm of each of the cell levels corresponds to for each of the surface
meshes. Figure A.2 provides additional close-ups of the mesh around the mirror are shown
to highlight the effect of the mesh refinement on the different details.
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A.2. DrivAer Estateback Surface Meshes

Table A.1: Summary of surface cell level lengths in mm for each of the mesh dependency
meshes

Mesh Level 8 Level 9 Level 10 Level 11

Very Coarse 7.14 3.57 1.79 0.89
Coarse 6.67 3.33 1.67 0.83
Medium 6.25 3.13 1.56 0.78
Fine 5.88 2.94 1.47 0.74

Very Fine 5.56 2.78 1.39 0.69

(a) Region of interest

(b) Very Coarse

Figure A.2: Surface mesh samples for the different background meshes
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A.2. DrivAer Estateback Surface Meshes

(c) Coarse

(d) Medium

(e) Fine

Figure A.2: Surface mesh samples for the different background meshes
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A.3. DrivAer Estateback Volume Meshes

(f) Very Fine

Figure A.2: Surface mesh samples for the different background meshes

A.3 DrivAer Estateback Volume Meshes

This section presents images investigating the effect of the blockMesh sizing on the volume
mesh, being investigated on the centreline plane of the car, and around the tires. Since the
layer sizes are defined as relative aspect ratios of the local surface sizing, as the level 0 size
decreases, the size of the boundary layer also changes, adding refinement to the geometry.
The sample volume meshes are presented in Figures A.3 - A.7.

Figure A.3: Volume mesh images resulting from the 84 x 28 x 14 Very Coarse mesh
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A.3. DrivAer Estateback Volume Meshes

Figure A.4: Volume mesh images resulting from the 90 x 30 x 15 Coarse mesh

Figure A.5: Volume mesh images resulting from the 96 x 32 x 16 Medium mesh

Figure A.6: Volume mesh images resulting from the 102 x 34 x 17 Fine mesh
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A.3. DrivAer Estateback Volume Meshes

Figure A.7: Volume mesh images resulting from the 108 x 34 x 18 Very Fine mesh
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B Additional Post-Processing of
DrivAer Estateback Variants

In this section, additional post-processing highlighting the differences in the flow field around
the four tested Estateback configurations are discussed. This serves as supplemental inves-
tigation regarding the effects the floor and mirror configurations have on the global flow
field. These differences are examined through the DDES simulations performed during model
validation, with wake structures and the surface pressure fields being investigated.

B.1 Wake Structures

The wake structures of the different configurations explained in Table 3.1 were examined
through slices along the car’s length, contoured to total pressure coefficient. The slice was
clipped to a maximum total pressure coefficient of 0.9, such that the downstream structures
would be visible. The notable change in the wake structures came from the deletion of the
side mirrors, which remove their low energy wake content from the slices. The omission of
the mirrors resulted in a strengthening of the A-pillar vortex, which resulted in greater loss
along the top of the car. These images are presented in Figures B.1 to B.4.

Figure B.1: Wake structures of the E D wM wW configuration. Surface contoured by pres-
sure coefficient
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B.1. Wake Structures

Figure B.2: Wake structures of the E D woM wW configuration. Surface contoured by
pressure coefficient

Figure B.3: Wake structures of the E S wM wW configuration. Surface contoured by pres-
sure coefficient

Figure B.4: Wake structures of the E S woM wW configuration. Surface contoured by pres-
sure coefficient
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B.2. Surface Pressure Coefficient

B.2 Surface Pressure Coefficient

The surface pressures of the different Estateback configurations are examined in this section.
Figures B.5 to B.8 present the pressure distribution on the front and rear of each model, with
Figures B.9 to B.12 presenting the underbody distributions. In general, the removal of the
mirrors leads to lower pressure on the rear fascia. This stems from the higher energy wake at
the back of the car, leading to a stronger shear layer at the separation point.

Figure B.5: Front and rear views of the surface pressure coefficient of the E D wM wW
configuration

Figure B.6: Front and rear views of the surface pressure coefficient of the E D woM wW
configuration
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B.2. Surface Pressure Coefficient

Figure B.7: Front and rear views of the surface pressure coefficient of the E S wM wW
configuration

Figure B.8: Underbody surface pressure coefficient of the E S woM wW configuration

Figure B.9: Underbody surface pressure coefficient of the E D wM wW configuration
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B.2. Surface Pressure Coefficient

Figure B.10: Underbody surface pressure coefficient of the E D woM wW configuration

Figure B.11: Underbody surface pressure coefficient of the E S wM wW configuration

Figure B.12: Underbody surface pressure coefficient of the E S woM wW configuration
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C Additional Post-Processing of
DrivAer Estateback Modifications

This section provides supplemental images for the geometries not discussed in Section 4.6.
The geometries already presented in Section 4.6 will not be presented again.

C.1 Additional Splitter Post-Processing

This section presents post-processing for Splitter Options 1 and 2, showing the underbody
pressure coefficient for both designs in Figures C.1 and C.2.

Figure C.1: Comparison between the baseline splitter and Splitter Option 1 of pressure
coefficient on the floor
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C.2. Additional Front Bumper Cheek Post-Processing

Figure C.2: Comparison between the baseline splitter and Splitter Option 2 of pressure
coefficient on the floor

C.2 Additional Front Bumper Cheek Post-Processing

This section presents post-processing for Front Bumper Cheek Options 1 and 2, showing the
pressure drag coefficient around the tires for the two designs in Figures C.3 and C.4.
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C.2. Additional Front Bumper Cheek Post-Processing

(a) Front Three Quarter View

(b) Rear Three Quarter View

Figure C.3: Comparison of pressure drag coefficient around the front tires for the baseline
and Option 1 front bumper cheeks
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C.2. Additional Front Bumper Cheek Post-Processing

(a) Front Three Quarter View

(b) Rear Three Quarter View

Figure C.4: Comparison of pressure drag coefficient around the front tires for the baseline
and Option 2 front bumper cheeks
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C.3. Additional Rear Fender Post-Processing

C.3 Additional Rear Fender Post-Processing

This section presents post-processing for the Rear Fender Infill Options 1, 3 and 4. Both pres-
sure drag coefficient on the rear fascia, as well as a slice showing the total pressure coefficient
in the wake will be presented for these designs in Figures C.5 - C.10.

Figure C.5: Pressure drag coefficient on the rear fascia: baseline fender versus Infill Option
1

Figure C.6: Pressure drag coefficient on the rear fascia: baseline fender versus Infill Option
3
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C.3. Additional Rear Fender Post-Processing

Figure C.7: Pressure drag coefficient on the rear fascia: baseline fender versus Infill Option
4

Figure C.8: Total pressure coefficient on the z = 310 mm plane: baseline fender versus Infill
Option 1

Figure C.9: Total pressure coefficient on the z = 310 mm plane: baseline fender versus Infill
Option 3
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C.4. Additional Roof Spoiler Post-Processing

Figure C.10: Total pressure coefficient on the z = 310 mm plane: baseline fender versus Infill
Option 4

C.4 Additional Roof Spoiler Post-Processing

This section presents post-processing for the Roof Spoiler Options 1, 3 and 4. Both pressure
drag coefficient on the rear fascia, as well as a slice showing the normalized velocity along car
centreline will be presented for these designs in Figures C.11 - C.16.

Figure C.11: Comparison of pressure drag coefficient on the rear fascia between the baseline
spoiler and Spoiler Option 1
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C.4. Additional Roof Spoiler Post-Processing

Figure C.12: Comparison of pressure drag coefficient on the rear fascia between the baseline
spoiler and Spoiler Option 3

Figure C.13: Comparison of pressure drag coefficient on the rear fascia between the baseline
spoiler and Spoiler Option 4

Figure C.14: Comparison of normalized velocity on the y = 0 mm plane between the baseline
spoiler and Spoiler Option 1
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C.4. Additional Roof Spoiler Post-Processing

Figure C.15: Comparison of normalized velocity on the y = 0 mm plane between the baseline
spoiler and Spoiler Option 3

Figure C.16: Comparison of normalized velocity on the y = 0 mm plane between the baseline
spoiler and Spoiler Option 4
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D Mesh Deformation Images for the
Spoiler Optimization

In this section, images showing the progression of the mesh deformation for both the base and
improved variants roof spoiler will be presented. This serves as supplemental data regarding
the direction each algorithm took when deforming the spoiler region of the Estateback. As
mentioned, negative displacement indicates that the mesh was deformed outwards, against
the surface normal, and a positive displacement is inwards, along the surface normal.

D.1 Conjugate Gradient Optimization

When applying the Conjugate Gradient method to the two variants, similar deformations
were predicted. For both the base and improved variant, the outboard end of the spoiler
was flared downwards more than the inboard end, creating more downward curvature on the
outboard end of the roofline, leading to more outboard flow acceleration. On the base variant,
upstream of the spoiler, a bump was added to the roof, allowing for more flow acceleration.
As mentioned, this bump feature was likely not driven by actual flow physics, but the opti-
mizer exploiting the geometry of the FFD. This feature was not as prominent on the improved
variant, which showed that maintaining roof tangency upstream of the FFD was desired, as
discussed in Section 5.6.3. Figures D.1 and D.2 show how the surface evolved during the
optimization iterations.
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D.1. Conjugate Gradient Optimization

(a) Optimization Iteration 0 (b) Optimization Iteration 1

(c) Optimization Iteration 2 (d) Optimization Iteration 3

(e) Optimization Iteration 4 (f) Optimization Iteration 5

(g) Optimization Iteration 6 (h) Optimization Iteration 7

Figure D.1: Base variant Conjugate Gradient spoiler deformation progression
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D.1. Conjugate Gradient Optimization

(i) Optimization Iteration 8 (j) Optimization Iteration 9

Figure D.1: Base variant Conjugate Gradient spoiler deformation progression

(a) Optimization Iteration 0 (b) Optimization Iteration 1

(c) Optimization Iteration 2 (d) Optimization Iteration 3

Figure D.2: Improved variant Conjugate Gradient spoiler deformation progression
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D.1. Conjugate Gradient Optimization

(e) Optimization Iteration 4 (f) Optimization Iteration 5

(g) Optimization Iteration 6 (h) Optimization Iteration 7

(i) Optimization Iteration 8 (j) Optimization Iteration 9

Figure D.2: Improved variant Conjugate Gradient spoiler deformation progression
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D.2. BFGS Optimization

D.2 BFGS Optimization

The BFGS algorithm lead to similar mesh deformation patterns as the Conjugate Gradient,
namely the outboard end of the roof being lower than the inboard end. One key difference
for the base variant, is it was not given downwards curvature along the roofline, which would
result in less flow acceleration. This helps explain why the base BFGS optimization sweep
tended to result in designs with a higher predicted drag. For the improved variant, since
there was already downwards curvature along the roofline, this was exploited. It is valuable
to note that the BFGS algorithm tended to result in larger displacements between each iter-
ation compared to Conjugate Gradient. Figures D.3 and D.4 show the surface evolution for
the two variants.

(a) Optimization Iteration 0 (b) Optimization Iteration 1

(c) Optimization Iteration 2 (d) Optimization Iteration 3

Figure D.3: Base variant BFGS spoiler deformation progression
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D.2. BFGS Optimization

(e) Optimization Iteration 4 (f) Optimization Iteration 5

(g) Optimization Iteration 6

Figure D.3: Base variant BFGS spoiler deformation progression

(a) Optimization Iteration 0 (b) Optimization Iteration 1

Figure D.4: Improved variant BFGS spoiler deformation progression
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D.2. BFGS Optimization

(c) Optimization Iteration 2 (d) Optimization Iteration 3

(e) Optimization Iteration 4 (f) Optimization Iteration 5

(g) Optimization Iteration 6 (h) Optimization Iteration 7

(i) Optimization Iteration 8 (j) Optimization Iteration 9

Figure D.4: Improved variant BFGS spoiler deformation progression
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D.3. DBFGS Optimization

(k) Optimization Iteration 10 (l) Optimization Iteration 11

(m) Optimization Iteration 12

Figure D.4: Improved variant BFGS spoiler deformation progression

D.3 DBFGS Optimization

Since the DBFGS algorithm tended to yield mesh deformations that violated mesh quality
criteria, it tended to not deform the surface much, being limited to 1 mm of maximum dis-
placement. These images are therefore equivalent to optimization iterations zero and one for
the Conjugate Gradient and BFGS methods. The ranges are however scaled down to show
what displacement did occur. Furthermore, the base variant shows the surface deformation
that led to the mesh quality issues, which entailed large, nonsensical surface deformations.
Figures D.5 and D.6 present the mesh deformation for the DBFGS algorithm.
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D.3. DBFGS Optimization

(a) Optimization Iteration 0 (b) Optimization Iteration 1

(c) Optimization Iteration 2

Figure D.5: Base variant DBFGS spoiler deformation progression

(a) Optimization Iteration 0 (b) Optimization Iteration 1

Figure D.6: Improved variant DBFGS spoiler deformation progression
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E Mesh Deformation Images for the
Front Bumper Cheek Optimization

In this section, images showing the progression of the mesh deformation for both the base
and improved variants’ front bumper cheek will be presented, serving as supplemental data
for the optimization routines.

E.1 Conjugate Gradient Optimization

When applying the Conjugate Gradient method to the two variants, minimal total deforma-
tion was predicted. Small initial displacements yielded insufficient change in the objective
function to prevent early convergence. Figures E.1 and E.2 show how the surface evolved
during the optimization iterations.

(a) Optimization Iteration 0 (b) Optimization Iteration 1

Figure E.1: Base variant Conjugate Gradient front bumper cheek deformation progression
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E.2. BFGS Optimization

(c) Optimization Iteration 2

Figure E.1: Base variant Conjugate Gradient front bumper cheek deformation progression

(a) Optimization Iteration 0 (b) Optimization Iteration 1

(c) Optimization Iteration 2

Figure E.2: Improved variant Conjugate Gradient front bumper cheek deformation progres-
sion

E.2 BFGS Optimization

The BFGS algorithm lead to very different deformations for the base and improved variants.
The base variant saw significantly more deformation of the region, with more waviness in the
result. The improved variant showed significantly less displacement. Furthermore, the base
variant saw more inward deformation of the upper half of the bumper cheek than the improved
variant. Both variants saw the cheek flared outwards however, as discussed in Section 5.8.3.
Figures E.3 and E.4 show the surface evolution for the two variants.
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E.2. BFGS Optimization

(a) Optimization Iteration 0 (b) Optimization Iteration 1

(c) Optimization Iteration 2 (d) Optimization Iteration 3

(e) Optimization Iteration 4 (f) Optimization Iteration 5

Figure E.3: Base variant BFGS front bumper cheek deformation progression
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E.3. DBFGS Optimization

(g) Optimization Iteration 6

Figure E.3: Base variant BFGS front bumper cheek deformation progression

(a) Optimization Iteration 0 (b) Optimization Iteration 1

(c) Optimization Iteration 2 (d) Optimization Iteration 3

Figure E.4: Improved variant BFGS front bumper cheek deformation progression

E.3 DBFGS Optimization

Since the DBFGS algorithm tended to yield mesh deformations that violated mesh quality cri-
teria, it tended to not deform the surface much for the base variant, as with the spoiler region.
However, the improved variant showed larger total deformations and progressed through more
optimization iterations before violating mesh criteria. It then resulted with a deformation field
similar to the BFGS optimization. Figures E.5 and E.6 present the mesh deformation for the
DBFGS algorithm.
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E.3. DBFGS Optimization

(a) Optimization Iteration 0 (b) Optimization Iteration 1

(c) Optimization Iteration 2

Figure E.5: Base variant DBFGS front bumper cheek deformation progression
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E.3. DBFGS Optimization

(a) Optimization Iteration 0 (b) Optimization Iteration 1

(c) Optimization Iteration 2 (d) Optimization Iteration 3

Figure E.6: Improved variant DBFGS front bumper cheek deformation progression
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F Additional Post-Processing of
Post-Optimality CFD

In this section, further images comparing the surface pressures for the roof spoiler and front
bumper cheek’s post-optimality CFD campaign will be presented, serving as supplemental
comparisons between the DDES and RANS models.

F.1 Additional Roof Spoiler Images

Figures F.1 and F.2 present the surface pressures for the base variant’s BFGS Iteration 4 and
the improved variant’s Conjugate Gradient Iteration 9 designs.

Figure F.1: Comparison of surface pressures for between the post-optimality CFD and opti-
mization CFD for the BFGS, Iteration 4 design point of the base variant
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F.2. Additional Front Bumper Cheek Images

Figure F.2: Comparison of surface pressures for between the post-optimality CFD and opti-
mization CFD for the Conjugate Gradient, Iteration 9 design point of the improved variant

F.2 Additional Front Bumper Cheek Images

Figures F.3 - F.5 present the surface pressures for the base variant’s Conjugate Gradient It-
eration 3 and BFGS Iteration 5, as well as the improved variant’s Conjugate Gradient 2 and
BFGS Iteration 3 design points.

Figure F.3: Comparison of surface pressures for between the post-optimality CFD and opti-
mization CFD for the Conjugate Gradient, Iteration 3 design point of the base variant
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F.2. Additional Front Bumper Cheek Images

Figure F.4: Comparison of surface pressures for between the post-optimality CFD and opti-
mization CFD for the BFGS, Iteration 5 design point of the base variant

Figure F.5: Comparison of surface pressures for between the post-optimality CFD and opti-
mization CFD for the Conjugate Gradient, Iteration 3 design point of the improved variant
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