

A COMPARISON OF TWO STOCHASTIC

GLOBAL OPTIMIZATION METHODS

FOR THE GENERATION OF ELECTRONIC

COUNTERMEASURES TECHNIQUES

UNE COMPARAISON DE DEUX MÉTHODES

STOCHASTIQUES D’OPTIMISATION GLOBALE

POUR LA PRODUCTION DE TECHNIQUES DE

CONTRE-MESURES ÉLECTRONIQUES

A Thesis Submitted to the Division of Graduate Studies

of the Royal Military College of Canada

by

Dean Theodore Vogelsang, CD, MSc, BEng, rmc

Captain

In Partial Fulfillment of the Requirements for the Degree of

Masters of Applied Science in Electrical Engineering

September, 2019

© This thesis may be used within the Department of National Defence but

copyright for open publication remains the property of the author.

 ii

To my wife, Susan, whose unwavering support over the last two years

made this work possible. Her strength, humour, and inspiration

are what pushed me across the finish line.

 iii

Acknowledgements

This thesis was made possible through the unwavering support and guidance of my

supervisor, Dr. Joey Bray. His expertise in the fields of electromagnetics and radar

were complemented by an uncanny ability to provide just the right balance of

motivation and praise to keep me moving forward. I would also like to thank

Dr. Vincent Roberge, whose instruction and troubleshooting in the areas of global

optimization and parallelization was crucial to the success of this work. Also

deserving of my thanks is Major Randy Hartmann, whose experience in the field of

airborne electronic warfare was vital to my understanding of key concepts. Finally,

I would like to thank the Royal Canadian Air Force Aerospace Warfare Centre,

whose sponsorship made this thesis possible.

 iv

Abstract

Choosing the optimal set of parameters of an electronic countermeasures technique

from the vast solution space provided by modern deception jamming systems is time

consuming and non-trivial. Optimization algorithms can be used to find the optimal

parameter set to a given problem in a fraction of the time required of direct-search

methods. Both the genetic algorithm and particle swarm optimization have been shown

to be effective when dealing with electromagnetic engineering problems. Previous

attempts to improve electronic countermeasures techniques have used a genetic

algorithm in a limited fashion to generate range gate pull-off and velocity gate pull-off

techniques using a hardware-in-the-loop simulation. In the public domain, the particle

swarm optimization has never been used for this specific problem.

This thesis compares the effectiveness and efficiency of the genetic algorithm

and the particle swarm optimization when applied to the problem of electronic

countermeasure technique parameter selection. To do so, the MATLAB® Global

Optimization Toolbox and Tactical Engagement Simulation Software (TESS™) were

integrated to provide a fitness evaluation of each candidate solution generated via the

iterative process. Multiple optimizations were conducted for engagement scenarios

between a ground-based radio-frequency command-guided surface-to-air missile

system and an airborne target aircraft using a self-protection deception jammer.

Simulation results show that effective electronic countermeasures deception jamming

techniques can be generated using both optimization algorithms. However, the particle

swarm optimization found effective techniques more often and in less time than the

genetic algorithm.

 v

Résumé

Les systèmes modernes de brouillage déceptif exigent plusieurs paramètres d’entrée.

L’optimisation des paramètres d’une technique de contre-mesure électronique s’avère

alors d’une tâche longue et difficile. Des algorithmes d’optimisation sont souvent plus

rapides que la méthode de recherche directe pour estimer la solution optimale d’un

problème à paramètres multiples. L’algorithme génétique et l’optimisation des essaims

particulaires se sont révélés efficaces pour traiter certains problèmes de génie

électromagnétique. Des tentatives précédentes visant à améliorer les techniques de

contre-mesures électroniques ont utilisé l’algorithme génétique de manière limitée pour

générer des techniques de déréglage des portes de distance et de vitesse dans une

simulation de matériel incorporé. Cependant, les sources publiées ne mentionnent pas

l’optimisation des essaims particulaires pour cette tâche.

Dans cette thèse, l’efficacité et l’efficience de l’algorithme génétique et de

l’optimisation des essaims particulaires sont comparées pour l’estimation des

paramètres optimaux des techniques de brouillage déceptif. Pour ce faire, la boîte à

outils d’optimisation globale MATLAB® et le logiciel de simulation d’engagement

tactique (TESS™) ont été intégrés pour évaluer les solutions candidates générées lors

des itérations. De multiples optimisations ont été effectuées pour des engagements

simulés entre un système de missile sol-air guidé par commande radiofréquences et un

aéronef cible auto-protégé par un brouilleur de déception. Les résultats démontrent que

les deux algorithmes d’optimisation sont capables de générer des techniques de

brouillage déceptif efficaces. Cependant, l’optimisation des essaims particulaires a

identifié des techniques efficaces plus souvent et plus rapidement que l’algorithme

génétique.

 vi

Contents

Acknowledgements iii

Abstract iv

Résumé v

Contents vi

List of Tables x

List of Figures xii

List of Acronyms xiv

1 Introduction 1

1.1 Background .. 1

1.2 Problem Statement ... 3

1.3 Thesis Statement .. 3

1.4 Scope .. 4

1.5 Methodology .. 4

1.5.1 Software Integration .. 4

1.5.2 Fitness Function .. 5

1.5.3 Parallelization .. 5

1.5.4 Simulation, Analysis, and Comparison ... 5

1.6 Risks and Mitigations... 6

1.7 Thesis Outline .. 7

2 Literature Review 9

2.1 Electronic Countermeasures .. 9

2.1.1 Jamming .. 9

Contents

 vii

2.1.2 Range Gate Pull-Off .. 12

2.1.3 Range Gate Pull-In .. 14

2.1.4 Velocity Gate Pull-Off .. 15

2.1.5 Technique Modelling and Parameter Selection 17

2.1.6 Technique Scoring .. 18

2.2 The Genetic Algorithm .. 19

2.2.1 Terminology .. 19

2.2.2 Algorithm Description .. 21

2.3 The Particle Swarm Optimization .. 23

2.3.1 Algorithm Description .. 23

2.4 MATLAB® Global Optimization Toolbox™... 27

2.5 Tactical Engagement Simulation Software™ .. 27

3 Optimization Algorithm Validation and Comparison 29

3.1 Test Functions .. 30

3.1.1 Rosenbrock Function .. 30

3.1.2 Rastrigin Function ... 32

3.1.3 Hölder Table Function .. 33

3.2 Validation Test Results .. 34

3.3 MATLAB® Implementation Comparison .. 38

3.4 Summary .. 40

4 ECM Technique Generation Methodology 41

4.1 Integration of TESS™ with the Global Optimization Toolbox™ 41

4.1.1 User Input .. 43

4.1.2 Main Program.. 43

4.1.3 TESS™ Simulink® Model .. 44

4.1.4 Simulation Management and Scoring ... 48

4.1.5 Program Output ... 53

4.2 Parallelization... 53

4.2.1 Serial versus Parallel Benchmark Comparison 55

Contents

 viii

4.3 Deception Jamming Technique Design ... 57

4.3.1 Range Deception ... 57

4.3.2 Frequency Deception .. 60

4.4 Summary .. 62

5 Simulation Setup and Results 63

5.1 Optimization Setup .. 63

5.1.1 Optimization Options .. 64

5.1.2 Optimization Bounds .. 65

5.2 Engagement Scenario Design .. 68

5.2.1 Scenario Setup ... 68

5.2.2 Scenario Variations ... 70

5.3 Simulation Results ... 71

5.3.1 Non-Jamming Targets ... 71

5.3.2 Generated ECM Techniques ... 73

5.3.3 Target Approach Angle ... 75

5.3.4 Algorithm Performance ... 75

5.3.5 Algorithm Speed and Execution Time .. 77

5.3.6 Algorithm Convergence .. 81

5.3.7 Frequency Coordinated Techniques .. 85

5.3.8 Jammer Pulse Width Effects ... 86

5.3.9 Jammer Pulse Power Reduction .. 90

5.3.10 Target Manoeuvring .. 91

5.4 Summary .. 93

6 Conclusion 96

6.1 Summary .. 96

6.2 Conclusions .. 97

6.3 Contributions .. 98

6.4 Future Work ... 99

Contents

 ix

Bibliography 101

A MATLAB® Global Optimization Toolbox™ Algorithm Implementations 105

A.1 Genetic Algorithm.. 105

A.2 Particle Swarm Optimization ... 113

B ECM Technique Generation Results 119

B.1 Fighter vs. Non-Coherent TTR .. 120

B.2 Fighter vs. Coherent TTR .. 122

B.3 Rotary-Wing vs. Coherent TTR ... 125

 x

List of Tables

Table 3.1: Rosenbrock function optimization results ... 35

Table 3.2: Rastrigin function optimization results .. 36

Table 3.3: Hölder Table function optimization results ... 36

Table 3.4: Bounded Rosenbrock function optimization results 37

Table 3.5: Bounded Rastrigin function optimization results 38

Table 4.1: Serial vs. parallel benchmark comparison results 56

Table 4.2: TESS™ jammer range program parameters .. 58

Table 5.1: Optimization variable bounds .. 66

Table 5.2: Non-jamming fighter engagement results .. 71

Table 5.3: Non-jamming rotary-wing engagement results 71

Table 5.4: Optimization algorithm mean execution time 77

Table A.1: GA input variables [18] .. 106

Table A.2: GA optimization options [18] ... 107

Table A.3: GA output arguments [18] .. 110

Table A.4: GA exitflag descriptions [18] .. 111

Table A.5: GA output structure descriptions [18]... 112

Table A.6: PSO input variables [19] ... 113

Table A.7: PSO optimization options [19] ... 114

Table A.8: PSO output arguments [19] ... 116

Table A.9: PSO exitflag descriptions [19] .. 117

Table A.10: PSO output structure descriptions [19] ... 118

Table B.1: GA optimization results – fighter vs. non-coherent TTR, 0 degrees .. 120

List of Tables

 xi

Table B.2: PSO optimization results – fighter vs. non-coherent TTR, 0 degrees . 121

Table B.3: GA optimization results – fighter vs. coherent TTR, 45 degrees 122

Table B.4: GA optimization results, mutationuniform with mutation rate 0.05 ... 123

Table B.5: PSO optimization results – fighter vs. coherent TTR, 45 degrees 124

Table B.6: GA optimization results – rotary-wing vs. coherent TTR, 90 degrees 125

Table B.7: PSO optimization results – rotary-wing vs. coherent TTR, 90 degrees

 .. 126

 xii

List of Figures

Figure 2.1: RGPO jammer operation (reproduced from [14]) 13

Figure 2.2: Delayed, amplified pulses of RGPO (reproduced from [14]) 13

Figure 2.3: RGPI jammer operation (reproduced from [14]) 14

Figure 2.4: VGPO jammer operation [11] .. 16

Figure 2.5: Range and velocity tracking gates of coherent pulse-Doppler radars .. 17

Figure 2.6: GA flowchart [15] .. 22

Figure 2.7: PSO algorithm flowchart [4] .. 24

Figure 2.8: PSO velocity and position updates (reproduced from [17]) 26

Figure 2.9: TESS™ engagement simulation display .. 28

Figure 3.1: Plot of the Rosenbrock function of two variables 31

Figure 3.2: Plot of the Rastrigin function of two variables 32

Figure 3.3: Plot of the Hölder table function .. 33

Figure 4.1: ECM technique generation software architecture 43

Figure 4.2: TESS™ SAMCGAAA Simulink® model [29] 45

Figure 4.3: 9K33AKM Osa AKM / SA-8B Gecko TELAR vehicle [31] 47

Figure 4.4: Simulation management and scoring flowchart 52

Figure 4.5: Parallelization of the simulation and scoring functions 54

Figure 4.6: Range deception walk-off profile (single pulse) 59

Figure 4.7: Frequency deception walk-off profile (single pulse) 61

Figure 5.1: Engagement geometry (left: side view, right: horizontal view) 70

Figure 5.2: Radar mode for no missile launch (typical) ... 73

Figure 5.3: Radar mode for large missile miss distance (typical) 74

List of Figures

 xiii

Figure 5.4: GA convergence to 0 (typical) ... 79

Figure 5.5: PS convergence to 0 (typical) ... 79

Figure 5.6: GA stall at 0.1 (typical) .. 80

Figure 5.7: PS stall at 0.1 (typical) ... 80

Figure 5.8: GA mean fitness changes between generations 82

Figure 5.9: GA mean fitness changes between generations with uniform mutation

rate 0.05 .. 83

Figure 5.10: GA convergence for rotary-wing at 90 degrees (typical) 84

Figure 5.11: PSO convergence for rotary-wing at 90 degrees (typical) 85

Figure 5.12: Radar range tracking for 0.1 µs jammer PW 87

Figure 5.13: Radar azimuth tracking for 0.1 µs jammer PW 87

Figure 5.14: Radar elevation tracking for 0.1 µs jammer PW 88

Figure 5.15: Radar Doppler frequency tracking for 0.1 µs jammer PW 88

Figure 5.16: Radar mode for 0.1 µs jammer PW .. 89

Figure 5.17: Radar tracking cell power levels for an unreduced jammer pulse 90

Figure 5.18: Fighter manoeuvre profile, 0 degree initial approach, 3 g left turn 92

Figure 5.19: Fighter manoeuvre profile, 45 degree initial approach, 3 g left turn .. 93

 xiv

List of Acronyms

CG Command-Guided

CPU Central Processing Unit

dB Decibel

dBW Decibel Watt

DECM Defensive Electronic Countermeasures

ECCM Electronic Counter-Countermeasures

ECM Electronic Countermeasures

GA Genetic Algorithm

GPU Graphics Processing Unit

GUI Graphical User Interface

JSR Jamming-to-Signal Ratio

LORO Lobe-On-Receive-Only

PRI Pulse Repetition Interval

PSO Particle Swarm Optimization

PW Pulse Width

RAM Random Access Memory

RCS Radar Cross Section

RF Radio Frequency

RGPI Range Gate Pull-In

RGPO Range Gate Pull-Off

RMC Royal Military College of Canada

SAM Surface-to-Air Missile

SAMCGAAA Command Guided Surface-to-Air Missiles and Anti-Aircraft

Artillery

List of Acronyms

 xv

SWC Scan-With-Compensation

TELAR Transporter Erector Launcher And Radar

TTI Tactical Technologies Incorporated

TTR Target Tracking Radar

TESS™ Tactical Engagement Simulation Software™

VGPO Velocity Gate Pull-Off

 1

1 Introduction

1.1 Background

The search for methods with which to deceive or defeat threat radar systems has

been ongoing since World War II when chaff (referred to as window) was dropped

to jam and spoof radar and navigation signals [1]. Technological advances have

resulted in progress on both fronts, leading to a constant cycle of innovation. As

radar systems have advanced, so too have the electronic countermeasures (ECM)

designed to defeat them. Today, the most important aspects of the ECM

development process are the acquisition of information about threat systems and

the speed at which that information can be exploited. Although technology has

provided greater flexibility in the production and use of highly effective ECM

techniques, a vast solution space also exists from which to find suitable techniques.

The manual development of the jamming waveforms for ECM techniques

can take considerable time and is often non-trivial in terms of parameter selection

and technique validation. The setup, configuration, and evaluation of a particular

system’s circuit design and operation can require a large number of resources,

including test sets, test facilities, and indoor/outdoor range space and time

allocation. ECM waveforms are described by a large number of independent

parameters that must be carefully selected and tuned to maximize the overall

effectiveness against a threat radar system. Although it is possible to select these

parameters based on experience regarding the applicable systems along with a trial

and error approach, such a method is by no means optimal and is susceptible to

1.1 Background

 2

human error and the availability of suitable personnel. In theory, the use of

signal-processing platforms designed to use evolutionary heuristic search methods

and integrated with existing ECM test systems could offer an alternative approach

to the development of optimized deception jamming waveforms and ECM

techniques.

Evolutionary heuristics such as the genetic algorithm (GA) and the particle

swarm optimization (PSO) have been proven effective across multiple disciplines

when applied to complex, multi-objective optimization problems, and have been

demonstrated to be more efficient than other more exhaustive search algorithms

[2]–[4]. Each optimization technique is based on completely different philosophies,

leading to strengths and weaknesses that are unique to each. Recent work has

demonstrated that the GA and the PSO can be successfully applied to

electromagnetic applications such as antenna design, radiation patterns, and

waveform optimization [5]–[7]. Although there is no evidence (in the public

domain) that the PSO has been applied to ECM technique development, the GA

has been used recently to select optimal ECM parameters in a laboratory

hardware-in-the-loop ECM simulation environment using MATLAB® and the

Lab-Volt™ Radar Training System [8]. However, the GA was found to be

time-consuming due to its serial implementation in MATLAB® [8]. Furthermore,

the simulations used limited target motion profiles such as constant velocity,

constant acceleration, and linear acceleration. The profiles did not address more

realistic flight paths of a target such as changes from constant velocity to linear

acceleration, nor did they use both range and velocity techniques concurrently for

false target generation.

Other, more computationally simplistic stochastic global optimization

methods, such as the PSO, which have not been used for ECM optimization, might

be faster and more effective. The relative performance of the GA and the PSO

should be compared based on their computational time and the effectiveness of the

solutions they produce.

1.2 Problem Statement

 3

The computer-based simulation of threat and target engagements using a

commercial off-the-shelf product such as the Tactical Engagement Simulation

Software™ (TESS) [9] developed by Tactical Technologies Inc. (TTI) could prove

to be useful for optimizing ECM waveforms in more realistic scenarios. The

TESS™ product, being MATLAB®/Simulink® based, is an ideal platform to use as

an evaluation tool.

1.2 Problem Statement

The sophisticated waveforms provided by modern jammer systems imply that a

vast solution space exists from which to find optimal ECM techniques. Manual

searches for effective techniques can be time consuming and non-trivial in nature.

Although previous research has shown the feasibility of using the GA to develop

ECM techniques, the work focussed on a hardware-in-the-loop simulation using a

radar system that was scaled-down to a laboratory environment and which used

non-manoeuvring target profiles. No publicly published work has documented the

use of evolutionary heuristics, such as the GA or PSO, to optimize ECM

techniques for more realistic threat and target platforms. The GA and PSO have the

potential to reduce the workload associated with ECM technique development and

may also lead to the discovery of new, previously unidentified techniques.

1.3 Thesis Statement

Effective electronic countermeasures deception jamming techniques can be

generated by using evolutionary heuristics such as the genetic algorithm and the

particle swarm optimization. A comparison of both methods is required to

determine the best optimization method in terms of ECM effectiveness and

efficiency.

1.4 Scope

 4

1.4 Scope

Two evolutionary heuristics, specifically the GA and the PSO, will be used for

global optimization. The study is limited to computer-based simulations using the

software products MATLAB®/Simulink® and TESS™. Simulated engagements

will be restricted to command-guided (CG) surface-to-air missile (SAM) threat

systems with pulsed target tracking radars (TTRs) and either fighter or rotary-wing

aircraft using a self-protection jammer. Only ECM deception jamming techniques

that provide false range and velocity information will be generated.

1.5 Methodology

Building upon concepts previously explored using the GA [8], but using a purely

software simulation, ECM technique candidate solutions will be generated through

the global optimization algorithms GA and PSO and evaluated through simulated

engagements between a representative threat system and a defensive target

platform. Each optimization algorithm will be assessed based on effectiveness (i.e.

how close the algorithm approaches the defined global optimum solution) and

efficiency (i.e. the computational effort and time required for the algorithm to

converge to the defined global optimum solution).

1.5.1 Software Integration

The first requirement is to integrate the MATLAB® Global Optimization

Toolbox™, specifically, the GA and PSO functions, with the proprietary TESS™

product. This step includes configuring a two-way transfer of data; the candidate

solution values generated by the optimization algorithm must be transferred to

TESS™ as jammer parameters and the engagement simulation results must be

returned to the optimization algorithm to compute a fitness score.

1.5 Methodology

 5

1.5.2 Fitness Function

The fitness function is a user-defined mathematical expression, or algorithm, that

evaluates the effectiveness of a candidate solution (e.g. an ECM technique). The

fitness function must be carefully chosen because it defines the metrics against

which effectiveness is evaluated, and thereby influences the evolution of the

optimization algorithms. TESS™ generates effectiveness measures in the form of

scalar output variables for each engagement simulation including: missile miss

distance, probability of kill, and probability of survival. In addition, a number of

time-series output variables that characterize the engagement are generated,

including: threat radar boresight angles, waveform power values (e.g. target and

covering pulse amplitudes at the receiver), radar mode (i.e. search, acquisition, and

track), and missile parameters. The fitness function may use some, or all of these

variables as inputs to evaluate effectiveness.

1.5.3 Parallelization

Although a single TESS™ engagement simulation takes less than a minute to

complete (depending on the scenario setup), the large number of candidate

solutions imposes a significant time expense on the convergence rate of each

algorithm. Parallelization using the MATLAB® Parallel Computing Toolbox™ is

essential to reduce the total execution time of each optimization algorithm by

conducting multiple engagement simulations concurrently rather than sequentially.

1.5.4 Simulation, Analysis, and Comparison

The TESS™ Air RF Master Interface provides a wide range of customization for

engagement simulations, including threat and defensive platform selection,

engagement flightpath characteristics, and jammer settings. The simulated threat

system will be based on a realistic CG surface-to-air weapon system. A limited

1.6 Risks and Mitigations

 6

number of engagement scenarios will be defined and simulated; variables such as

target altitude, airspeed, and approach angle relative to the threat will be held

constant. Simulations will also involve modifications to the optimization

parameters of each algorithm to explore the suitability of each algorithm in dealing

with the problem of ECM technique generation and to compare the two algorithms

in their performance.

1.6 Risks and Mitigations

A number of risks have been identified that could influence the successful

generation of ECM techniques through global optimization methods. First, the

software integration of the MATLAB® Global Optimization Toolbox™ with the

proprietary TESS™ product is not a trivial task, as TESS™ has not been used in

this context before. Fortunately, as previously mentioned, the fact that TESS™ is

based on MATLAB®/Simulink® suggests the integration is feasible.

The process of parallelization, which could significantly decrease the

execution time for the optimization process, poses additional risks. TESS™ may

require licensing for multiple instances of the program to be run simultaneously.

Furthermore, the integration of TESS™ with the Parallel Computing Toolbox™

has not been done before. TESS™ does support multicore computing, which

indicates that parallel computing should be possible.

The limited public availability of threat and jammer system specifications

for definition in TESS™ poses another risk, since the TESS™ interface requires a

number of system parameters to define a system model. These parameters include

transmitter and receiver specifications, waveform operating characteristics, and

physical features. Fortunately, TESS™ comes pre-loaded with a limited number of

default threat, target platform, and jammer systems that should be sufficient for use

in engagement scenarios.

1.7 Thesis Outline

 7

Finally, the large number of optimization parameters and simulation

variables that can be modified for each algorithm threaten to increase the scope,

and consequently, the time required to collect sufficient data for a comparison of

each algorithm. To assess the effect of a single algorithm option change or

simulation variable may require multiple optimization runs, which imposes a time

constraint risk for this thesis. Only a limited number of simulation variables should

be modified between engagement scenarios; the majority of optimization

parameters should be held at their default values with only a limited number

modified to improve the optimization process, if required.

1.7 Thesis Outline

Chapter 2 provides a high-level overview of ECM deception jamming techniques,

focussing on the general concepts of jamming and more specifically on the

deception techniques used in this work. Additionally, a brief overview of the ECM

waveform parameters is provided. The global optimization algorithms, GA and

PSO, are introduced, along with the MATLAB® Global Optimization Toolbox™

[10] in which these algorithms are implemented. Finally, the TESS™ software

product is introduced.

 Chapter 3 describes the initial validation conducted on the GA and PSO

algorithms using a series of test functions to analyze algorithm setup, convergence

rates, and their suitability for application to the ECM technique generation

problem. The GA and PSO implementations in MATLAB® are also reviewed and

compared.

 Chapter 4 presents the design process used in the development of the

simulation system, including the software architecture chosen for the

implementation. The integration of TESS™ with the MATLAB® Global

Optimization Toolbox™ is explained, and each of the program blocks required for

system operation are described. The requirements for and integration of the

1.7 Thesis Outline

 8

MATLAB® Parallel Computing Toolbox™ are discussed. Finally, the design of the

deception jamming techniques, in the context of the TESS™ jammer

implementation, is covered.

 Chapter 5 presents the results of the software simulations. First, the selection

of optimization options and solution space bounds used during the simulation

process is discussed. Engagement scenario design and simulation conditions are

also examined. The optimization results are then presented and analyzed, with a

focus on the effects of each deception technique parameter, or optimization

variable, on the performance of the generated ECM techniques against the threat

system and their resulting fitness. The performance of the two optimization

algorithms is compared, concentrating on the complexity of the algorithm, its

convergence speed, and the generation of suitable ECM techniques by comparing

the fitness scores.

 Chapter 6 concludes the thesis and discusses areas of future research for the

use of global optimization algorithms in the development of ECM techniques.

 9

2 Literature Review

2.1 Electronic Countermeasures

ECM, in the context of the radio frequency (RF) spectrum, can be defined as the

systems, tactics, and techniques used to interfere with the operation of radars

through the denial of information sought by the radar or to surround the desired

radar returns with so many false targets that the true information is unresolvable

[11], [12]. ECM can be classified as either active or passive and includes both

noise and deception jamming [12].

2.1.1 Jamming

The intentional transmission or re-transmission of amplitude, frequency, phase, or

otherwise modulated intermittent or continuous RF signals to interfere with,

exploit, deceive, mask, or degrade the reception of radar returns is called jamming

[12]. A jammer can interfere with a victim radar either by injecting artificial noise

or deceptive signals into the receiver. The strength of the jamming signal is

normally quantified as the ratio of the effective jammer power, (the jammer signal

power at the radar receiver) to the signal power, (the original target echoes the

victim radar wants to receive), otherwise known as the jamming-to-signal ratio,

𝐽𝑆𝑅 [11]. For a monostatic radar tracking a target with a self-protection jammer,

the power received at the victim radar from the jammer, 𝐽, may be represented by

the one-way radar range equation [13]:

2.1 Electronic Countermeasures

 10

 𝐽 =
𝑃𝑗𝐺𝑗𝐺𝑟𝜆2

(4𝜋)2𝑅2
 (2.1)

where

𝑃𝑗 is the peak transmitted power from the jammer in watts;

𝐺𝑗 is the gain of the transmit antenna of the jammer;

𝐺𝑟 is the gain of the receive antenna of the victim radar;

𝜆 is the wavelength of the transmitted signal in meters; and

𝑅 is the range from the target platform/jammer to the victim radar in meters.

The power of the target echo received at the victim radar, 𝑆, may be represented by

the two-way radar range equation [13]:

 𝑆 =
𝑃𝑡𝐺𝑡𝐺𝑟𝜆2𝜎

(4𝜋)3𝑅4
 (2.2)

where

𝑃𝑡 is the peak transmitted power from the radar in watts;

𝐺𝑡 is the gain of the transmit antenna of the radar; and

𝜎 is the radar cross section (RCS) of the target in square meters.

The 𝐽𝑆𝑅 can then be derived by combining (2.4) and (2.2) to give:

 𝐽𝑆𝑅 =
𝑃𝑗𝐺𝑗4𝜋𝑅2

𝑃𝑡𝐺𝑡𝜎
 . (2.3)

The 𝐽𝑆𝑅 is usually specified in decibels (dB), which is obtained as follows:

 𝐽𝑆𝑅𝑑𝐵 = 10𝑙𝑜𝑔(𝐽𝑆𝑅) . (2.4)

The range at which the jammer power equals the signal power is called the

crossover range, 𝑅𝐽=𝑆, given by [13]:

 𝑅𝐽=𝑆 = √
𝑃𝑡𝐺𝑡𝜎

𝑃𝑗𝐺𝑗4𝜋
 . (2.5)

2.1 Electronic Countermeasures

 11

The distance from the tracking radar to the target at which adequate desired signal

strength is available to track the target, despite the jammer signal, is called the

burn-through range, 𝑅𝐵𝑇 [13]. Although burn-through may occur at the crossover

range, effective jamming usually requires a 𝐽𝑆𝑅𝑑𝐵 that is greater than 0 dB, called

𝐽𝑆𝑅𝑚𝑖𝑛 (in linear form). The burn-through range, 𝑅𝐵𝑇, is therefore given by [13]:

 𝑅𝐵𝑇 = √
𝑃𝑡𝐺𝑡𝜎𝐽𝑆𝑅𝑚𝑖𝑛

𝑃𝑗𝐺𝑗4𝜋
 . (2.6)

In spite of jamming, a target is detectable by the radar when the target’s range is

less than RBT.

Equation (2.6) can be used in the design of ECM techniques when the victim

radar characteristics are known. Often, radar systems may be designed with higher

than necessary power to increase the range at which burn-through occurs against

jamming targets [13]. Accurate threat system intelligence can enable selection of

the jammer power, 𝑃𝑗, in order to decrease the burn-through range.

Deception jamming is a more advanced type of jamming. Whereas

traditional jamming involves the active transmission of noise, deception jamming

uses sophisticated waveforms designed to provide false range or velocity

information to a victim radar system [11]. Deception jammers are more

sophisticated than noise jammers since the waveform parameters are directly

related to the performance parameters and modes of operation of the victim system.

As a result, deception jammers consist of more complex hardware and software to

generate the desired signals. When successful, the victim radar improperly accepts

the jamming signal as a target with a false range, velocity, or angle. Prime

examples of deception jamming against tracking radars include the range gate

pull-off (RGPO), range gate pull-in (RGPI) and the velocity gate pull-off (VGPO).

2.1 Electronic Countermeasures

 12

2.1.2 Range Gate Pull-Off

A tracking radar maintains and updates estimates of a target’s range, velocity,

and/or angle. These estimates are often bounded by a narrow window of values

known for historical reasons as a gate. Typically, a radar tracks a target in range

through the use of early and late gates. The gates are moved in unison to constantly

equalize the energy of a return pulse between the early and late gate, which centers

the target between the gates. During an RGPO attack, the jammer transmits a false

return pulse similar to the reflected pulse that the target would produce (i.e. its skin

return), but at a higher power, which captures the radar’s range gate. The

transmission of the jammer pulse is then delayed by a gradually increasing amount,

as depicted in Figure 2.1 [14]. By capturing the range gates of the victim radar with

a stronger delayed pulse, the gates are pulled away from the true radar return, as

shown in Figure 2.2 [14]. The increase in power in the late gate causes the victim

radar, which determines range to the target based on the arrival time of reflected

pulses, to incorrectly calculate a range to target that is greater than the true target

range [11], [13], [14]. Increasing the delay time either parabolically or

exponentially will make it appear to the victim radar that the target is turning away

from the radar [14].

Careful consideration is required when determining the speed at which the

range gates will be pulled away from the target. If the rate of pull-off exceeds the

tracking rate of the victim radar, the jamming will be ineffective. Selection of the

pull-off rate requires either technical knowledge of the victim radar or

consideration of the task the radar was designed to carry out [11]. The use of an

improper pull-off rate may also lead some radar systems to detect the presence of

jamming leading to the use of electronic counter-countermeasures (ECCM).

2.1 Electronic Countermeasures

 13

Figure 2.1: RGPO jammer operation (reproduced from [14])

Figure 2.2: Delayed, amplified pulses of RGPO (reproduced from [14])

2.1 Electronic Countermeasures

 14

2.1.3 Range Gate Pull-In

A similar form of range deception involves tracking the pulse repetition frequency

of the victim radar to anticipate the arrival time of each pulse and transmitting

subsequent false return pulses at a higher power and in advance of the true skin

return, as shown in Figure 2.3 [14]. By leading the true skin returns by an

increasing amount with each jamming pulse, the RGPI makes it appear as though

the target is turning toward the radar. The increase in power in the early gate of the

victim radar causes the victim radar to pull its range estimate away from the target.

 Since the timing of future pulses must be calculated, RGPI is effective only

against tracking radars with fixed or staggered pulse repetition intervals (PRI) [14].

Radars that use randomly jittered PRI are not susceptible to RGPI jamming since

the PRI cannot be predicted.

Figure 2.3: RGPI jammer operation (reproduced from [14])

2.1 Electronic Countermeasures

 15

2.1.4 Velocity Gate Pull-Off

Radar targets reflect the transmitted energy back at a shifted frequency

proportional to the relative radial speed between the radar and the reflecting object.

The frequency offset, known as the Doppler frequency, 𝑓𝑑, is given by [14]:

 𝑓𝑑 =
2𝑓𝑇𝑥𝑣𝑡

𝑐
 (2.7)

where 𝑓𝑇𝑥 is the transmitter frequency, 𝑣𝑡 is the radial target velocity relative to the

receiver, and 𝑐 is the speed of light. A negative frequency corresponds to a target

receding from the receiver (i.e. a negative velocity) whereas a positive frequency

corresponds to a target closing on the receiver (i.e. a positive velocity). The

Doppler frequency is the basis for the target radial velocity estimation that is

performed by both continuous wave and pulse-Doppler (coherent) tracking radars.

A frequency filter, or velocity gate, isolates the desired target return based

on its frequency shift, corresponding to a relative velocity. The VGPO jamming

technique generates a false radar return with the same frequency offset as that of

the target, but at a higher power to capture the gate [11], [13]. The false return is

then swept away from the frequency of the true target return, breaking the victim

radar’s velocity track, as shown in Figure 2.4. As with RGPO, the rate of pull-off is

an important consideration because the radar tracking circuitry will be designed to

track only up to the maximum rate of change in velocity of a known class of

targets.

2.1 Electronic Countermeasures

 16

Figure 2.4: VGPO jammer operation [11]

Use of a single range or frequency deception jamming technique is not

sufficient to deceive a radar system that tracks in both range and velocity, as shown

in Figure 2.5. Therefore, deception jamming techniques must attack both range and

velocity gates to be effective against coherent radar systems. A jamming technique

that targets both range and velocity (frequency) is said to be a coordinated attack.

2.1 Electronic Countermeasures

 17

Figure 2.5: Range and velocity tracking gates of coherent pulse-Doppler radars

2.1.5 Technique Modelling and Parameter Selection

A deception jamming technique that creates a false target (i.e. RGPO, VGPO, or a

combination of the two) has several parameters. The duration of the attack, during

which the gate is walked-off of the true target, is referred to as the false target

walk-off time. The initial distance between the true target and false target, referred

to as initial delay, may be some value greater than or equal to zero, given in units

of distance or time. Similarly, the maximum distance between the true and false

targets is referred to as maximum delay. The rate at which the false target moves

away from the true target may be defined as constant velocity, constant

acceleration, or linear acceleration. Finally, the 𝐽𝑆𝑅 must be defined for the

walk-off, including the rate of amplitude increase and the maximum 𝐽𝑆𝑅 value.

Techniques may also include a dwell time at the beginning and/or end of the

walk-off. Although many more parameters may be defined for a given technique,

these seven parameters are the focus of this research.

2.1 Electronic Countermeasures

 18

2.1.6 Technique Scoring

Determining the effectiveness of a given ECM technique in simulation normally

involves pitting a model of the target platform and its self-protection jammer

against a modelled threat radar and weapon system. The effectiveness measures of

such simulations are often given as scalar outputs in terms of: the likelihood that

the weapon system would disable or destroy the target (i.e. probability of kill,

𝑃𝑘𝑖𝑙𝑙), the likelihood that the target would survive the engagement (i.e. probability

of survival, 𝑃𝑠𝑢𝑟𝑣), and the shortest distance measured between the weapon system

and target platform during an engagement (i.e. miss distance, 𝐷𝑚𝑖𝑠𝑠). In addition to

the programmed parameters of the ECM technique, a number of external factors

can also affect the scoring, including target/threat relative orientation and distance,

target manoeuvring, and relative velocity. The effectiveness or fitness of a given

ECM technique can be calculated using the simulation output data as input to a

function. This fitness function generates a scalar value between 0 and 1

representing the score for the ECM technique, where 0 is defined as the ideal

solution and 1 is a completely ineffective technique.

2.2 The Genetic Algorithm

 19

2.2 The Genetic Algorithm

Relying on random variation and selection, evolutionary algorithms mimic nature’s

tendencies towards competition and innovation to solve optimization problems [2].

GAs, first proposed in the 1960’s, are a class of evolutionary algorithms inspired

by natural selection whereby a system learns and adapts to the surrounding

environment [2]. GAs are set apart from other evolutionary algorithms by three

distinguishing features [5]:

1. the representation of data is typically via bit-strings;

2. the probability of selection is proportional to the relative fitness of an

individual; and,

3. the creation of new individuals is primarily performed through crossover

between population members.

Exploitation of the above distinguishing properties can achieve parameter

optimization; however, a clear understanding of the search environment is

required. When the fitness function is properly defined such that suitable

population members can be identified, the fitness function performs in much the

same way as nature when selecting the fittest of a species.

2.2.1 Terminology

As the name would imply, the GA draws many parallels with that of biological

genetics. The fundamental building blocks in biology, known as genes, are

represented in the GA as data bit-strings, or a binary encoding of a parameter. An

array of parameter values then forms a chromosome. For an N-dimensional

optimization of 𝑁 parameters (given by 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑁), the chromosome would

be defined as [5]:

 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 = [𝑝1𝑝2𝑝3 … 𝑝𝑁] . (2.8)

2.2 The Genetic Algorithm

 20

The parameters can be defined as discrete or continuous. Continuous parameters

necessitate the application of limits (representing physical properties or other

bounds) or the restriction of the parameters to a subset of possible values. The

population takes the form of a matrix in which each row is represented by a

chromosome [6]:

 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = [

𝑐ℎ𝑟𝑜𝑚1

𝑐ℎ𝑟𝑜𝑚2

⋮
𝑐ℎ𝑟𝑜𝑚𝑁

] . (2.9)

A fitness function f takes each chromosome as an input and calculates the fitness

associated with each one [6]:

 𝑓 {[

𝑐ℎ𝑟𝑜𝑚1

𝑐ℎ𝑟𝑜𝑚2

⋮
𝑐ℎ𝑟𝑜𝑚𝑁

]} = [

𝑓𝑖𝑡𝑛𝑒𝑠𝑠1

𝑓𝑖𝑡𝑛𝑒𝑠𝑠2

⋮
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑁

] . (2.10)

Through natural selection, only the fittest members of a population may

survive, which is accomplished in the GA via one of two main methods. One

involves sorting the population by fitness and then discarding all but a certain

number of members. Another sets a threshold fitness and discards all those

members that fail to meet the threshold fitness value. After selection for survival,

only some members of the population will be selected for mating. The selection of

mates can be carried out via either a roulette wheel or tournament. In the roulette

wheel, also known as a proportionate selection, each chromosome is assigned a

probability of selection based on its fitness. Conversely, tournament selection

randomly divides the population into subsets and then selects the chromosome with

the best fitness in each group to breed [6].

The generation of offspring, or new potential solution sets, is normally

carried out by some form of crossover. Crossover operates on two of the selected

parents, randomly selecting portions of each parent chromosome and splicing the

2.2 The Genetic Algorithm

 21

data together to form one or more offspring [2]. Chromosome mutation involves

the replacement at random of a parameter, or portion of the chromosome with

some other value during breeding. Through mutation, the algorithm continues to

explore diverse areas of the solution-space [6].

2.2.2 Algorithm Description

The generalized flow chart of a GA is shown in Figure 2.6. The initial population,

or starting matrix of chromosomes, is normally generated via a random guess at the

optimal solution [6]. During algorithm design, the initial population size must be

carefully considered, taking into account the desired computational complexity and

the tendency towards premature convergence. A large population size will

thoroughly explore the solution-space, but convergence to the desired end state will

take longer. Smaller population sizes will perform a coarse search of the solution

space and will tend to converge on local maxima/minima rather than the global

maxima/minima. Selection then begins via the previously discussed means.

Application of the fitness function will determine what intermediate population

will move on to selection for the mating pool. Both the number of crossover points

in the mating process along with the mating pairs are chosen via probabilistic

processes. Careful definition of the crossover probability will help to prevent exact

replication between population generations, which is normally undesirable.

Random mutation within the offspring helps to prevent premature convergence;

however, it should be used to alter only a small portion of the total population. For

electromagnetic applications the mutation rate is normally accepted to be on the

order of 0.1 to 1 % of all genes [5].

2.2 The Genetic Algorithm

 22

Start

Generate

Initial Population

(chromosomes)

Selection Process

(extract individual genes)

Mating Pool

(parents)

Crossover Process

(offspring)

Mutation Process

(mutants)

Evaluate Fitness

(survival of fittest)

Population

Fitness Meets

Termination

Criteria?

End

Initialize

GA Parameters

(Options)

Yes

No

Figure 2.6: GA flowchart [15]

2.3 The Particle Swarm Optimization

 23

Once the offspring have been created, the fitness function is applied to

determine how well each offspring satisfies the conditions for optimization. The

assignment of fitness values follows, after which the offspring and parents are

grouped as the current generation and a check for solution conditions completes the

cycle. The exit criteria for the algorithm may be based on any number of different

tests. Examples include a minimum average fitness, a best performance achieved,

or some other tolerance level in which the majority of the chromosomes settle

within a given error of one another. When the exit criteria are met, the optimized

chromosome represents the desired solution.

2.3 The Particle Swarm Optimization

The PSO was first proposed in 1995 in an attempt to simulate the social behaviour

and movement of flocking birds, schools of fish, or swarming bees [4], [16]. The

initial swarm consists of a set of randomly generated candidate solutions which

then propagate in the pre-defined solution space towards the optimal solution over

a number of iterations [17]. The members of the swarm assimilate and share

information about the solution space amongst each other through consecutive

iterations. The inspiration for the PSO is “the ability of flocks of birds, schools of

fish, and herds of animals to adapt to their environment, find rich sources of food,

and avoid predators by implementing an “information sharing” approach, hence,

developing an evolutionary advantage.” [17]

2.3.1 Algorithm Description

The principle of the algorithm is that each candidate solution may be represented

by a particle in a swarm [4]. Each particle has a position and velocity vector, where

the position coordinate represents a parameter value. For an N-dimensional

optimization, each particle will have a position in N-dimensional space

2.3 The Particle Swarm Optimization

 24

representing a candidate solution [4], [16]. The PSO algorithm consists of three

steps: generation of the particles’ positions and velocities, velocity update, and

position update. The generalized flow chart of the PSO algorithm is shown in

Figure 2.7.

Start

Generate

Initial Swarm

(particles)

Evaluate Fitness

(all particles)

Record Personal

Best Fitness

(all particles)

Determine Global Best

Fitness

(single particle)

End

Initialize

PSO Parameters

(Options)

Swarm

Fitness Meets

Termination

Criteria?

Update Velocity

(all particles)

Update Position

(all particles)

Yes

No

Figure 2.7: PSO algorithm flowchart [4]

2.3 The Particle Swarm Optimization

 25

The positions and velocities of the initial swarm of particles are usually

randomly generated using upper and lower bounds 𝐱𝑚𝑎𝑥 and 𝐱𝑚𝑖𝑛 on the

parameter values. For the ith particle at time k = 0, the position 𝐱𝑘
𝑖 and velocity 𝐯𝑘

𝑖

are given by [17]:

 𝐱0
𝑖 = 𝐱𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑1(𝐱𝑚𝑎𝑥 − 𝐱𝑚𝑖𝑛) (2.11)

and

 𝐯0
𝑖 =

𝐱𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑2(𝐱𝑚𝑎𝑥 − 𝐱𝑚𝑖𝑛)

∆𝑡
=

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑡𝑖𝑚𝑒
 . (2.12)

The terms 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are uniformly distributed random variables having

any value between 0 and 1. The initialization process therefore ensures that the

swarm is randomly distributed across the solution space.

The second step is to update the velocities of all particles at time k + 1 using

the particles’ fitness values, which are functions of the particles’ current positions

in the solution space at time k. The fitness value of a particle determines which

particle has the best global value in the current swarm, 𝐩𝑘
𝑔

, and also determines the

best position of each particle over time, 𝐩𝑖. The velocity update formula uses these

two pieces of information for each particle in the swarm along with the effect of

current motion, 𝐯𝑘
𝑖 , to provide a search direction, 𝐯𝑘+1

𝑖 , for the next iteration. The

velocity update formula is given by [16], [17]:

 𝐯𝑘+1
𝑖 = 𝑤𝐯𝑘

𝑖 + 𝑐1𝑟𝑎𝑛𝑑3

(𝐩𝑖 − 𝐱𝑘
𝑖)

∆𝑡
+ 𝑐2𝑟𝑎𝑛𝑑4

(𝐩𝑘
𝑔

− 𝐱𝑘
𝑖)

∆𝑡
 (2.13)

which includes two random parameters, represented by the uniformly distributed

variables, 𝑟𝑎𝑛𝑑3 and 𝑟𝑎𝑛𝑑4, to ensure appropriate coverage of the solution space

and avoid entrapment in local optima. The first term represents the current motion,

the second term represents the particle memory influence, and the third term

represents the swarm influence, all of which affect the new search direction. Three

weight factors, namely, inertia factor, 𝑤, self-confidence factor, 𝑐1, and swarm

2.3 The Particle Swarm Optimization

 26

confidence factor, 𝑐2, control the rate of convergence of the algorithm. Although

the original PSO algorithm used the values of 1, 2, and 2 for 𝑤, 𝑐1, and 𝑐2,

respectively [16], [17], it has been suggested that setting them to 0.5, 1.5, and 1.5,

respectively, provides the best convergence rate for a range of test problems

considered [17].

Finally, each iteration requires a position update for each particle in the

swarm, as depicted in Figure 2.8. The position update formula is given by [16],

[17]:

 𝐱𝑘+1
𝑖 = 𝐱𝑘

𝑖 + 𝐯𝑘+1
𝑖 ∆𝑡 . (2.14)

Figure 2.8: PSO velocity and position updates (reproduced from [17])

2.4 MATLAB® Global Optimization Toolbox™

 27

2.4 MATLAB® Global Optimization Toolbox™

The Global Optimization Toolbox™ comprises a series of functions that search for

global solutions to single and multi-objective problems [10]. The toolbox provides

options for algorithm behaviour, tolerances, and stopping criteria. In addition,

intermediate results of an optimization can be accessed using output functions,

including plotting functions. The toolbox allows the user to define the fitness

function, which can use data from an external simulation. In this case, simulations

within TESS™ can generate the engagement results used by the fitness function to

generate a fitness score for each candidate solution.

 Both the GA and PSO toolbox functions accept lower and upper bounds;

these bounds limit the components of the solution 𝐱 and can be used to obtain

faster and more reliable solutions. For example, bounds can be used to restrict the

minimum and maximum delay, velocity, and acceleration rate of a range deception

technique pulse.

Detailed descriptions of the MATLAB® implementations of the GA and

PSO may be found at [18] and [19], respectively, with summaries included in

Appendix A.

2.5 Tactical Engagement Simulation Software™

TESS™ is a commercial physics-based software simulator for modelling guided

missile engagements [20]. The Air RF Master Interface is specifically designed for

RF guided systems and includes tools for simulating combinations of defensive

countermeasures such as chaff and decoy deployment, active jamming, and

platform manoeuvres in a realistic electromagnetic and physical environment. The

interface provides for full customization of both the threat system and target

platform, including waveform parameters of threat radars and target jammers. With

a capability to perform either single engagements or sequential batch runs, the

2.5 Tactical Engagement Simulation Software™

 28

interface captures and stores the miss distance, probability of kill, probability of

survival, and radar mode (as a percentage of engagement time) for each

engagement simulation. TESS™ generates a series of output plots during

simulation execution, including: signal power levels at the threat radar, radar

boresight, target, and jammer pulse positions (azimuth, range, elevation, Doppler),

radar mode, and missile lateral acceleration. In addition, a display of the

engagement simulation space is provided, an example of which is shown in Figure

2.9. Since TESS™ is MATLAB®/Simulink® based, integration with the

MATLAB® toolboxes is feasible. Detailed descriptions of the TESS™ software

package may be found in [20] and [21].

Figure 2.9: TESS™ engagement simulation display

 29

3 Optimization Algorithm Validation and

Comparison

This chapter describes the validation process of the two chosen stochastic global

optimization algorithms. Before using the optimization algorithms for the problem

of ECM technique generation, a validation was conducted to analyze algorithm

setup, convergence rates, and suitability in dealing with single-objective

optimization problems. An initial comparison of the two algorithms was performed

to aid in optimization parameter selection and setting solution space bounds for the

intended problem of ECM technique generation.

The GA and PSO algorithms were applied to a series of test functions to

validate their overall utility and suitability for their application to the ECM

technique generation problem. In addition, the MATLAB® implementations of the

optimization algorithms were compared by addressing the capabilities of each

function, the flexibility of user customization through options and input

parameters, and the complexity associated with parameter selection to tailor the

optimization process to a specific problem.

3.1 Test Functions

 30

3.1 Test Functions

A number of test functions, referred to as artificial landscapes or benchmark

functions, can be used to evaluate the performance of optimization algorithms [22].

The convergence rate, accuracy, and overall performance of a given optimization

algorithm can be characterized and compared to other optimization methods. Test

functions provide different situations that optimization algorithms may have to deal

with when applied to optimization problems, such as a single global minimum

among multiple local minima spread throughout a wide search space, a single

global minimum within a steep, narrow valley, or multiple global minima

interspersed among local minima. The use of test functions with known solutions

also permits the tuning of optimization parameters to increase the convergence rate

and accuracy of each optimization algorithm, although there is no guarantee that

the settings will apply to other solution spaces.

3.1.1 Rosenbrock Function

The Rosenbrock function [23], [24], also known as Rosenbrock’s valley or

Rosenbrock’s banana function, is a non-convex (i.e. neither convex nor concave: it

curves up and down), multimodal (i.e. having multiple local minima) function with

a single global minimum within a long, narrow, parabolic-shaped valley. Although

finding the valley is trivial, convergence to the global minimum is difficult. In

2-dimensional space, the function is defined by

 𝑓(𝑥, 𝑦) = (𝑎 − 𝑥)2 + 𝑏(𝑦 − 𝑥2)2. (3.1)

The global minimum is located at (𝑥, 𝑦) = (𝑎, 𝑎2), where 𝑓(𝑥, 𝑦) = 0.

Normally the parameters are set as 𝑎 = 1 and 𝑏 = 100 such that the global

minimum is at (1, 1). A plot of the Rosenbrock function of two variables is shown

in Figure 3.1.

3.1 Test Functions

 31

Figure 3.1: Plot of the Rosenbrock function of two variables

The Rosenbrock function may be defined in n-dimensional space. The

multidimensional generalization of the Rosenbrock function is

 𝑓(𝐱) = ∑ [(𝑎 − 𝑥𝑖)2 + 𝑏(𝑥𝑖+1 − 𝑥𝑖
2)

2
]

𝑛−1

𝑖=1

 (3.2)

where 𝐱 = [𝑥1, 𝑥2, . . . , 𝑥𝑛] ∈ ℝ𝑛. When the parameters are set to 𝑎 = 1 and

𝑏 = 100, the global minimum 𝑓(𝐱) = 0 is at (𝑥1, 𝑥2, . . . , 𝑥𝑛) = (1, 1, . . . ,1); for

4 ≤ 𝑛 ≤ 7 a local minimum also occurs near (𝑥1, 𝑥2, . . . , 𝑥𝑛) = (−1, 1, . . . ,1).

3.1 Test Functions

 32

3.1.2 Rastrigin Function

The Rastrigin function [25]–[27] is a non-convex multimodal function defined in

n-dimensional space. Since the Rastrigin function covers a large search space and

has a large number of local minima, finding the global minimum is difficult. For an

n-dimensional domain, the function is defined by

 𝑓(𝐱) = 𝐴𝑛 + ∑[𝑥𝑖
2 − 𝐴 cos(2𝜋𝑥𝑖)]

𝑛

𝑖=1

 (3.3)

where 𝐴 = 10 and 𝑥𝑖 ∈ [−5.12, 5.12]. The global minimum is at 𝐱 = 0 where

𝑓(𝐱) = 0. A plot of the Rastrigin function of two variables is shown in Figure 3.2.

Figure 3.2: Plot of the Rastrigin function of two variables

3.1 Test Functions

 33

3.1.3 Hölder Table Function

The Hölder table function [22] is another example of a non-convex multimodal

function. This function, defined on 2-dimensional space, has many local minima

and four global minima. The function is defined by

 𝑓(𝑥, 𝑦) = − |sin(𝑥) cos(𝑦) 𝑒𝑥𝑝 (|1 −
√𝑥2 + 𝑦2

𝜋
|)|. (3.4)

The function can be defined on any input domain but is usually evaluated on

𝑥 ∈ [−10,10] and 𝑦 ∈ [−10,10]. The four global minima are at

𝐱 = (±8.05502, ±9.66459) where 𝑓(𝐱) = −19.2085. A plot of the Hölder table

function is shown in Figure 3.3.

Figure 3.3: Plot of the Hölder table function

3.2 Validation Test Results

 34

3.2 Validation Test Results

Both the GA and PSO were initially executed using the default optimization

options [18], [19] for each of the three test functions with two input variables. The

Rosenbrock and Rastrigin functions were not bounded, whereas the Hölder table

function was bounded to 𝑥 ∈ [−10,10] and 𝑦 ∈ [−10,10]. The default population

size for the GA was 50; the PSO had a default swarm size of 20. As each algorithm

used randomly generated values when initializing the population/swarm, the

random number generation was controlled using the function rng and the input

default (the default settings were the Mersenne Twister [28] with seed 0).

A round was one complete optimization from generation of the initial

population/swarm to termination of the algorithm at convergence. Each algorithm

was called within a for loop and 101 rounds were performed for each. The

random number generator was reset prior to each for loop such that each

algorithm started with the same random seed but results varied between each

round. The first round of each algorithm always took longer by an order of

magnitude or more than subsequent rounds. The results from the first round of each

algorithm were documented separately, the results of rounds 2 through 101 were

averaged, and the best result was noted. The results of the optimization for each of

the three test functions are shown in Table 3.1, Table 3.2, and Table 3.3,

respectively.

Neither algorithm performed particularly well for the Rosenbrock function.

The best solution achieved by the PSO was better than the GA, but the average

solution of the GA was better. In fact, the average of the solutions found by the

PSO was so poor that it was not even located within the valley of the Rosenbrock

function. The PSO achieved the exact solution of the Rastrigin function on three

rounds and multiple rounds came within 1 × 10−10 or better of the solution;

however, the average was not sufficient to be considered solved. Although the GA

3.2 Validation Test Results

 35

converged to within 2.1 × 10−3 of the solution, this was not considered close

enough to be a solution to the unbounded Rastrigin function. Both algorithms

found one of the four minima of the bounded Hölder table function the majority of

the time. In most cases the optimization terminated because the change in the

objective value was less than the function tolerance (exit flag 1), where the default

value was 1 × 10−6 for both algorithms. Some optimizations terminated when the

maximum number of generations/iterations was reached (exit flag 0). Following

the first round, in which the PSO was consistently slower than the GA, the PSO

consistently terminated the optimization faster than the GA, having performed

fewer function evaluations; however, the number of iterations of the PSO was

usually greater than the number of generations of the GA. Although a direct

comparison of speed is possible, the results are skewed by the population/swarm

sizes.

Table 3.1: Rosenbrock function optimization results

Algorithm

Rosenbrock (Unbounded)

Round
Execution

Time (s)
Solution Value

Generations

/ Iterations

Function

Evaluations

Exit

Flag

GA

1 0.3622
[0.345440,

0.144399]
0.491302 119 6000 1

Best

(69)
0.04623

[0.980075,

0.962232]
6.808183e–04 91 4600 1

Average 0.04567
[1.075226,

2.361244]
2.161397 86.7 4386

1 (95)

0 (5)

PSO

1 1.0308
[–7.398292,

54.749688]
70.553699 124 2500 1

Best

(99)
0.03734

[1.000178,

1.000358]
3.191513e–08 170 3420 1

Average 0.03029
[–3.038250,

448.406533]
495.185175 132.8 2676

1 (97)
0 (3)

3.2 Validation Test Results

 36

Table 3.2: Rastrigin function optimization results

Algorithm

Rastrigin (Unbounded)

Round
Execution

Time (s)
Solution Value

Generations

/ Iterations

Function

Evaluations

Exit

Flag

GA

1 0.3379
[0.978493,

0.944311]
2.546291 56 2850 1

Best
(67)

0.1034
[0.000823973,

–0.00313809]
0.00208832 200 10050 0

Average 0.05886
[0.00166144,

0.0799611]
1.214550 104.5 5274

1 (90)

0 (10)

PSO

1 1.0316
[1.919633e–06,

–6.562464e–07]
8.165131e–10 127 2560 1

Best (32,
45, 64)1

0.02485
[5.471364e–10,

1.387164e–09]
0 107 2160 1

Average 0.02193
[0.0199385,

0.0197586]
0.139830 90.6 1831

1

(100)

Note: 1. Where multiple rounds tied for best, the first round to reach the best minimum is included.

Table 3.3: Hölder Table function optimization results

Algorithm

Hölder Table [–10,10]

Round
Execution

Time (s)
Solution Value

Generations

/ Iterations

Function

Evaluations

Exit

Flag

GA

1 0.4422
[8.0550341,

–9.664599]
–19.208503 71 3600 1

Best 1

Average 0.08721
[±8.055446,

±9.633054]
–19.112425 67.5 3425

1

(100)

PSO

1 1.0240
[8.0550253,

–9.664583]
–19.208503 54 1100 1

Best 2

Average 0.01463
[±8.093156,

±9.704444]
–19.010340 49.8 1017

1

(100)

Notes: 1. Only one round did not converge to the solution; the remaining 100 rounds tied for best.

2. Only 12 rounds did not converge to the solution.

Next, the search spaces for the Rosenbrock and Rastrigin functions were bounded

to 𝑥𝑖 ∈ [−2, 2] and 𝑥𝑖 ∈ [−5.12, 5.12], respectively, and the optimizations were

rerun with default options. The results for the bounded Rosenbrock and Rastrigin

functions are shown in Table 3.4 and Table 3.5, respectively.

3.2 Validation Test Results

 37

Bounding the Rosenbrock and Rastrigin functions improved the results for

both algorithms, which were able to converge to the known solutions multiple

times. The solutions generated by the PSO, when evaluated to at least four

significant figures, were more accurate than those generated by the GA; the PSO

also took less time (by an order of magnitude in the case of the Rosenbrock) to find

the solutions. Clearly, bounding the search space had an influence on the

optimization process; however, the data also indicated that a single execution of

either optimization algorithm was not sufficient to draw the conclusion that the

optimal solution had been achieved. This suggested that multiple rounds of each

optimization algorithm with different random seeds for each round would be

required to achieve a reliable solution.

The default optimization options for each algorithm resulted in convergence

to known solutions when applied to the selected test functions; however, the

optimization parameters might need to be modified or ‘tuned’ in order to better

address the unique problem of ECM technique generation.

Table 3.4: Bounded Rosenbrock function optimization results

Test

Function

Rosenbrock [–2,2]

Round
Execution

Time (s)
Solution Value

Generations

/ Iterations

Function

Evaluations

Exit

Flag

GA

1 0.6059
[1.272954,

1.620862]
0.0745241 200 10050 0

Best

(97)
0.07984

[0.999496,

0.998977]
2.772922e–07 68 3450 1

Average 0.2064
[1.011465,

1.030856]
0.00796079 180.1 9055

1 (20)

0 (80)

PSO

1 1.0399
[1.022435,
1.045581]

5.076459e–04 58 1180 1

Best
(75)

0.02798
[0.999982,
0.999964]

3.315381e–10 128 2580 1

Average 0.02303
[0.998285,

0.996755]
3.052633e–04 96 1940

1

(100)

3.3 MATLAB® Implementation Comparison

 38

Table 3.5: Bounded Rastrigin function optimization results

Test

Function

Rastrigin [–5.12,5.12]

Round
Execution

Time (s)
Solution Value

Generations

/ Iterations

Function

Evaluations

Exit

Flag

GA

1 0.4520
[0.994964,

9.627379e–06]
0.994959 83 4200 1

Best

(3)
0.1034

[6.164289e–07,

–5.736482e–07]
1.406697e–10 84 4250 1

Average 0.09810
[0.0492594,

0.0394104]
0.325086 79.2 4008

1

(100)

PSO

1 1.0485
[0.978493,

0.944311]
2.546291 48 980 1

Best

(75, 77)
0.01712

[–1.476723e–09,

–2.689717e–09]
0 71 1440 1

Average 0.01882
[–0.0295536,

–3.020851e–07]
0.108362 72.2 1463

1
(100)

3.3 MATLAB® Implementation Comparison

Review of the available documentation immediately identified key differences

between the MATLAB® implementations of the GA and PSO. In terms of

capability, the most significant difference is that only the GA can accept

constraints on the optimization problem. To accomplish a direct comparison of the

two algorithms the candidate solutions they generate should be restricted by the

same bounds and constraints. Since constraints are not possible for the PSO,

control of the candidate solutions, when applied to real-world scenarios, will be

limited to the application of lower and upper bounds on each variable of the

candidate solution.

 A number of MATLAB® GA and PSO optimization options influence the

execution time of each function. The default values for the population/swarm size,

maximum number of generations/iterations, and maximum number of stall

generations/iterations are different for each, making a direct comparison difficult

without changes to the default settings.

3.3 MATLAB® Implementation Comparison

 39

 The GA function has 28 unique options that can be user-modified. The three

options that most significantly control GA operation are selection, crossover, and

mutation. The options provide user-selectable selection, crossover, and mutation

functions, along with modifiable parameters for each function; however, there are a

number of available built-in functions for each option, plus the ability to write

custom functions. There are also two reproduction options: elite count and

crossover fraction. Elite count specifies the number of individuals that are

guaranteed to survive to the next generation, and crossover fraction specifies the

fraction of the next generation, other than elite children, that are produced by

crossover [18]. Depending on the functions chosen for selection, crossover, and

mutation, as many as nine options and parameter settings are available to modify.

Modifications to the default GA options would be time-consuming and require a

number of simulations to determine the best combination of settings.

 The PSO function has 20 unique options that can be user-modified. There

are four options that directly control PSO operation: inertia range, minimum

adaptive neighborhood size, self-adjustment weight, and social-adjustment weight.

Since these options are either a two-element vector or a scalar value, the total

number of parameter settings to control the algorithm is much lower for the PSO

when compared to the GA.

The optimization options for each algorithm, along with their default values

and those values used in this thesis, are described in detail in Appendix A.

3.4 Summary

 40

3.4 Summary

The GA and PSO optimization algorithms were validated using three test

functions: the Rosenbrock, the Rastrigin, and Hölder table. Both algorithms were

shown to converge to the known solutions of each test function; however,

bounding the search space was required to achieve an acceptable result. In

addition, a single optimization run was not sufficient to converge to the known

solution. Instead, multiple optimization runs, each beginning with a different

random seed, will provide an indication of the tendency for the algorithm to

approach the known solution.

 For a bound solution space, the PSO consistently achieved solutions closer

to the known solution, when compared to the GA. The PSO also took less time to

converge; however, this was due to the default swarm size being significantly

smaller than the GA population size (20 vs. 50, for the PSO and GA, respectively).

This indicates that the PSO is capable of converging to a better solution while

testing fewer candidate solutions at each iteration. The PSO would appear to be

more efficient when solving the test functions used; however, the problem of ECM

technique generation may prove different.

Selection of options that control algorithm operation needs to follow an

iterative trial and error process to determine their effect on the optimization

outcome. The wide degree of customization afforded by the MATLAB®

implementations of the GA and PSO, although flexible, imposes a significant time

cost in ‘tuning’ the algorithms to a specific problem. The problem of ECM

technique generation may not require significant deviation from the option default

values to achieve the generation of effective ECM techniques.

 41

4 ECM Technique Generation Methodology

This chapter presents an overview of the design of the software architecture that

bridges the existing TESS™ proprietary software with the task-specific

MATLAB® toolboxes. The combined system is designed to generate ECM

techniques using global optimization, which can be faster than direct-search

methods. The following sections detail the design process, challenges, and

considerations, including development of the fitness function, parallelization of the

process for reduced computation time, and the definition of deception jamming

techniques compatible with the TESS™ product.

4.1 Integration of TESS™ with the Global

Optimization Toolbox™

The TESS™ product is based in MATLAB®/Simulink® and is normally accessed

via a graphical user interface (GUI). TESS™ permits the modification of a number

of threat, target platform, and environmental parameters for either single

engagements or batch runs (in which multiple engagements with different

parameter values are run either sequentially or in parallel). Engagement parameters

are normally modified in dialog boxes of the GUI by the user. Such manual

parameter updates are sufficient for simulating engagements with pre-planned

conditions and techniques; however, global optimization randomly generates initial

candidate solutions, updating the candidate solution parameters through multiple

4.1 Integration of TESS™ with the Global Optimization Toolbox™

 42

iterations in which subsequent populations are based on the results of previous

populations.

Global optimization algorithms have not previously been used to provide

input parameters to TESS™, which presents a number of challenges. The TESS™

GUI does not provide direct access to parameters, which are stored either as

variables in the MATLAB® base workspace or as Simulink® mask parameters.

Fortunately, the core component of TESS™, the Simulink® model, can be run

directly from the MATLAB® environment without the requirement to access

TESS™ via its GUI. This feature is essential since the optimization algorithms in

the MATLAB® Global Optimization Toolbox™, which are functions called from

the MATLAB® command line, require that a candidate solution be passed as an

input argument to a MATLAB® function and the computed fitness be passed back

to the optimization algorithm as an output argument.

Candidate solution parameters generated by the optimization algorithm must

be mapped to the TESS™ Simulink® model variables stored in the MATLAB®

base workspace and engagement simulation output variables must be accessed to

permit fitness function computation. The hierarchical structure of the MATLAB®

workspaces (i.e. a separate workspace is created for each function, with a base

workspace for the command line), combined with the MATLAB® implementations

of the GA and PSO (in which all subsequent processes are executed from a

function instantiated by the GA or PSO function), require that the process flow

include the following steps:

1. Initialize the program with user inputs (defined below);

2. Call the optimization function (GA or PSO);

3. Transfer the input parameters to the TESS™ Simulink® model base

workspace variables;

4. Simulate the engagement using the TESS™ Simulink® model;

5. Compute a fitness score based on the TESS™ Simulink® model output

variables and a user-defined fitness function;

4.1 Integration of TESS™ with the Global Optimization Toolbox™

 43

6. Iteratively continue the process until convergence to a solution is

achieved; and

7. Output the parameters of the generated ECM technique.

The resulting high-level software architecture is shown in Figure 4.1. Each block is

described in the following subsections.

Main Program (Optimization Routine)

TESS™

Simulink
®

Model

Simulation

Management

and Scoring

User Input Output

Figure 4.1: ECM technique generation software architecture

4.1.1 User Input

The user input includes a number of user-selectable options for the program: the

optimization algorithm to be used, optimization algorithm options (e.g.

population/swarm size, maximum number of iterations, search space upper and

lower bounds, number of optimization variables), airborne target type and initial

conditions (e.g. altitude, velocity, approach angle relative to the threat), and target

manoeuvre profiles. User inputs were hard-coded variables in the main MATLAB®

script that could be modified prior to program execution.

4.1.2 Main Program

The main program serves as the user interface of the ECM technique generation

program. The program includes settings for the simulation conditions and

optimization options (user input), initialization routines for loading variables and

4.1 Integration of TESS™ with the Global Optimization Toolbox™

 44

opening the TESS™ Simulink® model, the function call for the optimization

algorithm, and functions for viewing and saving the results. The optimization

function call (GA or PSO) enters an iterative loop in which all simulation and

scoring functions are executed until the optimization ends, due to one of several

exit criteria (as detailed in Appendix A).

4.1.3 TESS™ Simulink® Model

The threat system, RF channel, transmit and receive environments, and target

platform, are simulated entirely within TESS™. The core TESS™ component

includes a Simulink® model designed to simulate engagement scenarios for a

specific class of weapon system. The Command Guided Surface-to-Air Missiles

and Anti-Aircraft Artillery (SAMCGAAA) model was chosen because it provides

a threat system capability conducive to the evaluation of range and frequency

deception jamming techniques. The top-level block diagram of the TESS™

Simulink® model is shown in Figure 4.2 [29].

4.1 Integration of TESS™ with the Global Optimization Toolbox™

 45

Figure 4.2: TESS™ SAMCGAAA Simulink® model [29]

Each block has a series of system parameters that are modifiable either

through dialog boxes within Simulink® or through the MATLAB® command line.

Within the Threat System blocks are the transmit and receive systems as well as the

missile system. The Target Platform block includes the target aircraft and its

self-protection systems, including the jammer and other ECM systems such as

chaff, towed decoys, and expendable active decoys.

The TESS™ SAMCGAAA Simulink® model was delivered with generic

pre-programmed systems, including: one threat system, an airborne target

represented by a fighter or rotary-wing aircraft, and one self-protection jammer

system. Although unclassified publicly-available specifications were used in the

programming of these systems, it is understood that TTI made a number of

4.1 Integration of TESS™ with the Global Optimization Toolbox™

 46

educated assumptions and extrapolations of specific systems to populate the system

block parameters. As a result, the TESS™ product is considered Controlled Goods

under the Defence Production Act [30] and the system parameters of the particular

threat and jammer systems that were simulated cannot be disclosed herein. The

threat, airborne target, and self-protection jammer system parameters were verified,

where possible, against unclassified data widely available on the internet.

Although generic pre-programmed systems were used in this thesis, the

generic system blocks are customizable and can be altered to better represent

specific military systems, should this intelligence be made available to the user.

4.1.3.1 Ground-Based Threat System

The threat system is based on unclassified system specifications for the 9K33 Osa

(NATO reporting name SA-8 Gecko) [31]. The SA-8 is an anti-aircraft SAM

system that provides missile tracking via an RF command guidance system (i.e.

missile guidance is provided solely through the ground-based radar system).

Although early versions of the SA-8 had limited range and altitude performance,

the SA-8 was shown to be effective against low-flying fixed and rotary-wing

aircraft [32]. Upgrades have increased system performance to a maximum

engagement altitude of 12 km and maximum range of 15 km [33]. Use of a pulsed

TTR make this system appropriate for evaluating the effectiveness of range and

frequency deception techniques in protecting fixed and rotary-wing aircraft. The

generic threat used both non-coherent and coherent receiver modes for evaluating

range-only (i.e. RGPO/RGPI) and range and frequency coordinated

(i.e. RGPO/RGPI and VGPO) deception jamming techniques. A photograph of the

SA-8B transporter erector launcher and radar (TELAR) vehicle is shown in Figure

4.3. The rotating parabolic dish antenna mounted on top of the vehicle is for

surveillance and acquisition whereas the flat-panel arrays (tan coloured) are those

used for target tracking, fire control, and command guidance of the missile.

4.1 Integration of TESS™ with the Global Optimization Toolbox™

 47

Figure 4.3: 9K33AKM Osa AKM / SA-8B Gecko TELAR vehicle [31]

4.1.3.2 Airborne Target Platform

The airborne target platform can be selected as either a fixed or rotary-wing

aircraft, modelled as a cylinder. The aircraft dimensions are used by TESS™ in the

calculation of miss distance [20]. The model also includes a parameter called

vulnerable area, given in square meters, which is used in the probability of kill and

probability of survival calculations [20]. The default values for radius, length, and

vulnerable area are: 5 m, 14 m, and 50 m2. The default dimensions were retained

since they are representative of either a fighter aircraft (e.g. the F-16 is

approximately 15 m long and 4.9 m high [34]) or an escort/attack helicopter

(e.g. the Bell CH-146 is approximately 17.1 m long and 4.6 m high [35]), which

are examples of airborne targets likely to be engaged by the SA-8 threat system.

4.1 Integration of TESS™ with the Global Optimization Toolbox™

 48

4.1.3.3 Self-Protection Jammer

The self-protection jammer is based on unclassified system specifications for the

AN/ALQ-126B Airborne Defensive Electronic Countermeasures (DECM) set [36].

This legacy system, still carried on the CF-18 fighter aircraft, is primarily designed

to jam TTRs [37] and is capable of a number of deception jamming techniques,

including both RGPO/RGPI and VGPO. The jammer provides coverage up to the

I/J RF bands and is capable of emitting in excess of 1 kW power per band. Fore

and aft high-band antennas provide 60-degree beam width with a 15-degree

lookdown angle for ground threat coverage.

4.1.4 Simulation Management and Scoring

The optimization algorithms included in the Global Optimization Toolbox™

require that all simulation and scoring functions take place within a function

(referred to in MATLAB® documentation as a fitness or objective function) called

by the optimization algorithm function. Once the optimization function is called

from the MATLAB® command line, all subsequent function calls take place within

this objective function or a custom output function, typically used to save or plot

intermediate optimization states and results at the completion of each iteration of

the optimization. Simulation management and scoring includes the following tasks:

1. Transfer the ECM technique candidate solution variable set generated by

the optimization algorithm to the base workspace jammer parameters of

the TESS™ Simulink® model;

2. Set the target platform initial flight path approach angle in the base

workspace target platform parameters of the TESS™ Simulink® model;

3. Simulate the engagement via the TESS™ Simulink® model; and

4. Evaluate the engagement results and generate a fitness score that is

passed back to the optimization algorithm.

4.1 Integration of TESS™ with the Global Optimization Toolbox™

 49

4.1.4.1 Fitness Function

No publicly available guidance, either theoretical or experimental, exists for an

optimal ECM fitness function. Therefore, the fitness function was designed based

on the available performance output parameters from the Simulink® model and the

desired engagement outcomes resulting from an effective ECM technique.

Effective ECM outcomes include:

1. Prevention of a missile launch;

2. Maximizing the missile miss distance; and

3. Minimizing the engagement time in which the threat radar is tracking the

real target.

The fitness function contains a series of conditional statements that evaluate

the airborne target’s ability to survive the missile engagement. The fitness score is

computed using a series of equations that are solved sequentially based upon the

values of select output parameters. Five distinct conditions are evaluated to arrive

at the final fitness score of the ECM technique candidate solution.

 TESS™ computes the probability of kill, 𝑃𝑘𝑖𝑙𝑙, and probability of survival,

𝑃𝑠𝑢𝑟𝑣, such that:

 𝑃𝑘𝑖𝑙𝑙 + 𝑃𝑠𝑢𝑟𝑣 = 100 . (4.1)

Although a number of engagement simulation parameters (such as target

vulnerable area) are used in computing 𝑃𝑘𝑖𝑙𝑙, it is largely based on the missile miss

distance, 𝐷𝑚𝑖𝑠𝑠, between the target aircraft and the missile.

When 𝑃𝑘𝑖𝑙𝑙 is greater than or equal to 90 percent, the ECM candidate

solution is deemed ineffective and the fitness score is set to 1. If multiple target

platform flight path approach angles are undergoing evaluation for the current

candidate solution, the optimization is terminated, the candidate solution is

dismissed, and the remaining approach angles are not evaluated.

4.1 Integration of TESS™ with the Global Optimization Toolbox™

 50

 If a missile launch does not occur, the candidate solution is deemed 100

percent effective and the fitness score is set to 0. If multiple target platform flight

path approach angles are undergoing evaluation for the current candidate solution,

the remaining approach angles are evaluated.

 If 𝐷𝑚𝑖𝑠𝑠 is greater than 100 m but less than 500 m, the fitness is computed as

a linear function of 𝐷𝑚𝑖𝑠𝑠 from 0.3 to 0.1:

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 0.35 − 0.0005 × 𝐷𝑚𝑖𝑠𝑠 . (4.2)

If 𝐷𝑚𝑖𝑠𝑠 is less than or equal to 100 m, the fitness is computed as a weighted

sum of the probability of survival, 𝑃𝑠𝑢𝑟𝑣, 𝐷𝑚𝑖𝑠𝑠, and percent of engagement time

that the threat radar is not in track mode, where 𝑇𝑡𝑟𝑎𝑐𝑘 is the percent of time that

the radar is in track mode:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 1 −

1

100
(𝑊𝑠𝑢𝑟𝑣𝑃𝑠𝑢𝑟𝑣 + 𝑊𝑚𝑖𝑠𝑠𝐷𝑚𝑖𝑠𝑠

+ 𝑊𝑡𝑟𝑎𝑐𝑘(100 − 𝑇𝑡𝑟𝑎𝑐𝑘))
(4.3)

The weights were chosen as follows:

Probability of survival weight, 𝑊𝑠𝑢𝑟𝑣 = 0.1;

Miss distance weight, 𝑊𝑚𝑖𝑠𝑠 = 0.5; and

Percent of time not in track mode weight, 𝑊𝑡𝑟𝑎𝑐𝑘 = 0.4.

These weight values were chosen for two reasons: since 𝑃𝑘𝑖𝑙𝑙 and 𝑃𝑠𝑢𝑟𝑣 are based

on 𝐷𝑚𝑖𝑠𝑠, they provide limited value in determining the fitness for small miss

distances; and, using the above weights, for a 𝑃𝑠𝑢𝑟𝑣 of 100 percent, a 𝐷𝑚𝑖𝑠𝑠 of

100 m, and the threat radar in track mode 75 percent of the engagement time, the

computed fitness using (4.3) is 0.3. This value aligns with the linear function from

(4.2) and provides continuity, rather than a step change, between (4.2) and (4.3).

 Where multiple target platform flight path approach angles are evaluated for

a single ECM candidate solution, the overall fitness score is computed as the

maximum fitness (worst case) value for all approach angles evaluated.

4.1 Integration of TESS™ with the Global Optimization Toolbox™

 51

Simulation management and scoring, which includes the fitness function, is

displayed as a flowchart in Figure 4.4.

4.1 Integration of TESS™ with the Global Optimization Toolbox™

 52

Start

Conduct Engagement

Simulation

Pkill ≥ 90%

End

Set Candidate Solution

Jammer Parameters

Yes

Determine Missile

Launch Time

Missile Launch

Set Fitness to 1

Set Fitness to 0

Miss Distance

≥ 500 m
Set Fitness to 0.1

Miss Distance

< 500 m, > 100 m

Compute Fitness Using

Eqn 4.1

Miss Distance

≤ 100 m

Compute Fitness Using

Eqn 4.2

Return Candidate

Solution Fitness

Yes

Yes

Yes

Yes

No

No

No

No

Set Target Flight Path

Approach Angle

All Approach

Angles Evaluated

Yes

No

Compute Overall

Fitness for all

Approach Angles

Figure 4.4: Simulation management and scoring flowchart

4.2 Parallelization

 53

4.1.5 Program Output

Each optimization algorithm provides as output a data set after each

iteration/generation. Included in the data set are the values of each candidate

solution in the swarm/population along with the fitness score of each member.

From this information the best and average fitness scores can be computed for each

iteration/generation. A history of the entire optimization process is recorded by the

main program for later analysis. At the completion of the optimization process the

candidate solution with the best fitness score along with various metrics (such as

execution times and exit flags) are also recorded.

4.2 Parallelization

Parallelization refers to the execution of similar or iterative processes

simultaneously rather than in a sequential manner [38]. The MATLAB® Parallel

Computing Toolbox™ permits the use of multicore central processing units

(CPUs), graphics processing units (GPUs), and computer clusters to solve

computationally and data-intensive problems [39].

The Global Optimization Toolbox™ allowed for parallelization of the

optimization via the Parallel Computing Toolbox™. However, the addition of the

TESS™ Simulink® model and its associated parameters and hidden internal

variables, when combined with the customized fitness scoring process, made

parallelization a non-trivial endeavour. Modifications to the initialization of the

optimization routine were required to enable a parallelized fitness function.

Taking advantage of the processing power of multicore computing,

MATLAB® computational engines, or workers can be run locally with one worker

per core available. The function that carries out simulation management and

scoring is instantiated once per worker with each one using its own workspace and

executing its own instance of the TESS™ Simulink® model. Since a directory of

4.2 Parallelization

 54

files in support of the TESS™ Simulink® model is dynamically updated during

each simulation, it is necessary to copy the entire directory, along with the model

file and MATLAB® script and functions, to a temporary directory for each worker

in the parallel pool. The parallelization, where 𝑛 is the total number of CPU cores

available, is depicted in Figure 4.5.

Parallel Processes

. . .

Main Program (Optimization Routine)

User Input Output

Worker 1

Simulation

Management

and Scoring

TESS™

Simulink
®

Model

Worker 2

Simulation

Management

and Scoring

TESS™

Simulink
®

Model

Worker n

Simulation

Management

and Scoring

TESS™

Simulink
®

Model

Figure 4.5: Parallelization of the simulation and scoring functions

4.2 Parallelization

 55

4.2.1 Serial versus Parallel Benchmark Comparison

The serial and parallel implementations of the simulation and scoring functions

were compared using an engagement simulation to determine the speed increase

obtained via parallelization. The simulated engagement was conducted between the

TESSTM generic fighter aircraft and threat system (with a non-coherent receiver).

Optimizations of a six-variable range-only technique (i.e. initial position, final

position, initial dwell time, final dwell time, velocity, and acceleration) were

conducted using both the GA and PSO, each using their default options and a

population/swarm size of 20. All optimization variables and bounds were held

constant for the serial and parallel executions and the same initial random seed was

used.

Simulations were run on a computer with the Windows 7 Enterprise (with

Service Pack 1) 64-bit operating system. Two Intel® Xeon® CPU E5-2650 v4

processors, rated at 2.20 GHz, were installed. The computer had 32 GB of random

access memory (RAM) installed. Due to computer memory constraints at the time

of benchmark testing, a maximum of 16 parallel workers were used.

 The results of the benchmark comparison are shown in Table 4.1. Execution

overhead is the time required by the program to conduct the setup and initialization

of the simulation, including opening the TESSTM Simulink® model, loading

initialization variables, and closing the model upon completion of the optimization.

The parallel implementation includes the additional tasks of starting the parallel

pool, creating temporary directories, copying the model files, and loading the

Simulink® model for each worker, as well as closing the model, removing model

files and temporary directories, and shutting down the parallel pool. Although this

additional execution overhead was greater for the parallel implementation, it did

not have a significant impact on the overall execution time given the time required

to run a single optimization round.

4.2 Parallelization

 56

Table 4.1: Serial vs. parallel benchmark comparison results

 Overhead
GA

Execution Time

PSO

Execution Time

Total

 Execution

Time

Serial 0.75 847.48 465.59 1313.82

Parallel 3.51 145.04 81.21 229.76

Overall Speedup 5.72x

Note: All times are in minutes.

 The results (i.e. the ECM techniques and associated fitness scores) for the

serial and parallel implementations were identical. For both serial and parallel

implementations, the GA required 68 generations and 1380 function evaluations to

converge to a solution, whereas the PSO required 37 iterations and 760 function

evaluations to converge. Although the parallel implementation demonstrated

increased overhead associated with initialization, for the specific variable set,

simulation parameters, and population/swarm size, it was 5.72 times faster than the

serial implementation. The parallelization of the simulation and scoring functions

allowed ECM technique generation to be performed in hours instead of days. The

increase in speed can be used to intensify the optimizations, either by increasing

the population/swarm size and the number of individual rounds for each

optimization algorithm (each with a unique random seed), or by using multiple

engagement geometries.

 Each worker uses approximately 2 to 2.5 GB of RAM when running the

parallelized optimization routine. As a result, to maximize the use of all available

CPU cores, the available RAM should be no less than 2.5 times the number of

cores. Subsequent simulations were performed on the same computer as described

above, but with a total of 64 GB of RAM installed. This permitted the use of all 24

CPU cores when running the parallelized optimization routine.

4.3 Deception Jamming Technique Design

 57

4.3 Deception Jamming Technique Design

The deception jamming techniques introduced in Chapter 2, namely the

RGPO/RGPI and VGPO, are used for the engagement simulations. TESS™

provides options for programming single techniques or combinations of multiple

techniques for the generation of false targets. The design of range and frequency

deception jamming techniques was limited to the parameters available within the

TESS™ jammer system.

4.3.1 Range Deception

In TESS™, the jammer range deception program is defined via ten parameters,

defined in Table 4.2. For a given single pulse range technique, the pulse is assumed

to be On for the duration of the engagement. Thus, the parameters Pulse On and

Pulse Off are excluded from the variable set. Therefore, any single pulse range

technique is defined by the eight remaining variables.

4.3 Deception Jamming Technique Design

 58

Table 4.2: TESS™ jammer range program parameters

Parameter Units Description

Pulse On s
Elapsed time from jammer turn-on time until

the pulse sequence commences

Pulse Off s
Elapsed time from Pulse On until the pulse

turns off

Initial Position, 𝑅0
μs

(1 μs = 150 m)

Initial position of the pulse false range target,

relative to the aircraft position

Final Position, 𝑅𝑚𝑎𝑥
μs

 (1 μs = 150 m)

Final position of the pulse false range target,

relative to the aircraft position

Initial Dwell Time, 𝑇𝑖 s
Time that the pulse false range target dwells

over the Pulse Initial Position

Final Dwell Time, 𝑇𝑓 s
Time that the pulse false range target dwells

over the Pulse Final Position

Velocity, 𝑣 m/s

Velocity with which the pulse false range

target moves from the Pulse Initial Position to

the Pulse Final Position

Acceleration, 𝑎 m/s2 Acceleration of the pulse false range target

Cover Pulse Reduction dB
Attenuation relative to the jammer’s full

power

Pulse Width, 𝑃𝑊 μs
Pulse width used by the pulse false range

target

The TESS™ implementation models the most common range deception

profile: constant acceleration. The resulting walk-off profile for a single pulse of

the range deception technique is shown in Figure 4.6.

4.3 Deception Jamming Technique Design

 59

Figure 4.6: Range deception walk-off profile (single pulse)

4.3 Deception Jamming Technique Design

 60

The jammer pulse starts at or near the real target, at 𝑅0, dwells (stays with

the target aircraft) for some period of time, 𝑇𝑖, and then accelerates at a constant

rate, 𝑎, away from the target until the maximum velocity, 𝑣, is reached (or the

maximum range, 𝑅𝑚𝑎𝑥, is reached; whichever occurs first). The pulse then

continues to move away from the target at constant velocity until reaching the

maximum range, 𝑅𝑚𝑎𝑥 (if 𝑅𝑚𝑎𝑥 was not reached prior to achieving the maximum

velocity). The pulse dwells in position for some period of time, 𝑇𝑓, before

transmission ceases and the cycle begins again. The constant acceleration and

combined linear/constant velocity profile result in a combined parabolic/linear

position profile.

4.3.2 Frequency Deception

In TESS™, frequency deception programs are defined by waveform type

(programmable, sinusoid, and noise) and then by a corresponding set of

parameters. To achieve a frequency deception technique (i.e. VGPO), coordinated

with a given range technique, the programmable type is used. The programmable

frequency deception program accepts two vectors, each containing up to 50 values.

A vector of time values, in seconds, corresponds to a vector of frequency values, in

kHz. Together, the time and frequency vectors form a single period of a piece-wise

linear periodic sequence. The frequency profile corresponding to a false target

turning away from the threat radar (i.e. negative Doppler frequency shift, RGPO) is

shown in Figure 4.7.

4.3 Deception Jamming Technique Design

 61

Figure 4.7: Frequency deception walk-off profile (single pulse)

The frequency technique can be coordinated with a given single-pulse range

technique using the initial and final positions, 𝑅0 and 𝑅𝑚𝑎𝑥, initial and final dwell

times, 𝑇𝑖 and 𝑇𝑓, velocity, 𝑣, and acceleration, 𝑎, of the range technique pulse. The

basic equations of motion [40] can then be used to compute the instantaneous

velocity corresponding to the programmed range technique. Recalling that the

frequency program can only use up to 50 discrete frequency values, the Doppler

frequency, 𝑓𝑑, required for a defined time step is computed using (2.7). Since the

frequency technique uses the range technique parameters to generate the time and

frequency values, only one additional parameter is required for a coordinated

range/frequency technique: a binary number where a 0 indicates frequency

coordination is not used and a 1 indicates frequency coordination is active.

Therefore, a frequency coordinated range technique is defined by nine variables.

When both range and frequency deception programs are executed

concurrently, the false target pulse will inject coordinated false range and velocity

information into the receiver of a coherent pulse-Doppler radar system. The

technique, if effective, will either force the victim radar to lose target track

(break-lock) so frequently that a missile launch will be prevented, or the false

range and velocity information will lead a launched missile off course to miss the

target aircraft.

4.4 Summary

 62

4.4 Summary

This chapter presented the design of the software architecture that bridges the

proprietary TESS™ Simulink® model with the MATLAB® Global Optimization

Toolbox™ and Parallel Computing Toolbox™. The design process, challenges,

and considerations, including development of the fitness function and

parallelization of the process for reduced computation time, were covered. Details

of the TESS™ Simulink® model, such as the default parameter settings for the

threat system, airborne target, and self-protection jammer, were introduced. The

definition of deception jamming techniques that meet the programming

requirements of TESS™ was also explored.

 The final design of the software architecture was dictated by the TESS™

Simulink® model, the MATLAB® optimization functions, and the resulting storage

and transfer of data between each software block. Despite these constraints,

integration of the proprietary TESS™ Simulink® model with the MATLAB®

Global Optimization Toolbox™ was achieved for the first time. Parallelization of

the simulation and scoring processes was also accomplished, and was demonstrated

to significantly decrease the execution time for the optimization process when

compared to the serial implementation in benchmark testing.

 Successful integration of the required software elements was a significant

milestone in the development of a system capable of generating ECM techniques

using global optimization, which can be faster than direct-search methods.

However, each optimization algorithm has a series of parameters and options that

must be carefully selected to achieve convergence in minimal execution time.

Finally, a series of engagement simulations with specific conditions such as threat-

target geometry, target type, altitude, and airspeed, and both non-manoeuvring and

manoeuvring profiles, must be defined.

 63

5 Simulation Setup and Results

This chapter begins with a discussion of the optimization setup, which includes

optimization options and solution space bounds, focussing on the reasoning behind

selecting specific values and their effect on the optimization process. Engagement

scenario design, including the simulation conditions and their role in scoping the

overall execution, is also examined.

The results from each engagement scenario are presented and analyzed, with

a focus on the effects of each deception technique parameter, or optimization

variable, on the performance of the generated ECM techniques against the threat

system and their resulting fitness. The performance of each optimization algorithm

is compared, concentrating on the convergence speed and the generation of suitable

ECM techniques by comparing the fitness scores.

5.1 Optimization Setup

The optimization setup involves defining all parameters required to carry out the

optimization with each algorithm function. Each algorithm is run with the same

optimization options, where possible and appropriate (e.g. options that affect total

execution time or termination criteria). Other options unique to each algorithm

must be set accordingly if the default value is not to be used. Setup also involves

selecting upper and lower bounds on each optimization variable in the problem.

Finally, each optimization algorithm must be initialized with a random seed, which

is a number used to generate a pseudo-random sequence of numbers that are in turn

5.1 Optimization Setup

 64

used by the algorithm at each generation/iteration. Each algorithm is run ten times

per simulation, where each run is referred to as a round. Each round is seeded with

the number sequence of the round (e.g. round one is seeded with ‘1’, round two is

seeded with ‘2’, etc.); this is done for reproducibility. At the end of each

simulation, ten rounds using GA and ten rounds using PSO are completed,

resulting in a total of 20 ECM techniques and their associated fitness score.

5.1.1 Optimization Options

Only a limited number of available optimization options were modified for each

algorithm. All simulations were run using the parallelized simulation and scoring

functions, using 24 CPU cores. This permitted 24 candidate solutions to be

evaluated simultaneously. The population/swarm size was limited to 48 for all

simulations. Choosing a multiple of 24 meant that all CPU cores were used to

evaluate the population/swarm at each generation/iteration, maximizing the

efficient use of the available computing capability. Keeping this number at 48 also

provided the best trade-off in terms of overall execution time and search of the

bounded solution space.

 The fitness limit (referred to as objective limit by the PSO algorithm), was

set to 0, since this was the minimum value that the fitness function was designed to

find. Once the scoring system found a candidate solution with a fitness of 0 the

simulation would end. The function tolerance was used to determine whether the

average relative change in the best fitness score was changing between

generations/iterations. Initially, the function tolerance was kept at its default value

of 1 × 10−6; however, this was later changed to 1 × 10−3 since the fitness

function only provided fitness scores measured to more than one significant figure

if the miss distance was less than 500 m. The maximum number of

generations/iterations was limited to 100; however, no simulation was observed to

reach this maximum. The maximum stall generations/iterations were options that

5.1 Optimization Setup

 65

were found to significantly influence the execution time of each algorithm. The

default value for the GA is 50; however, the default value for the PSO is only 20. If

a simulation did not converge to the minimum fitness score of 0 it would usually

stall at a fitness score of 0.1 and continue until reaching the maximum stall

generations/iterations. Initially, the GA option was kept at the default of 50, which

resulted in the GA always taking much longer to complete a simulation when

compared to the PSO. In these cases, observing the scores at each generation

indicated that function evaluations beyond 20 generations, when the fitness score

had stalled, had no effect on improving the fitness score. Thus, for subsequent

simulations, the value was set to 20 generations for the GA.

 Optimization options that influence crossover and mutation rates for the GA

were modified from the default values once during testing. The results of those

changes are discussed in the results section of this chapter.

5.1.2 Optimization Bounds

Since constraints could not be defined for the PSO algorithm implemented in

MATLAB®, only optimization bounds were used to provide an equal basis of

comparison between the two algorithms. The upper and lower bounds for each

optimization variable are chosen to limit the solution space. Limiting the solution

space reduces the number of candidate solutions, decreasing the execution time

required to converge to an optimized solution. However, the chosen bounds may

also exclude potential global solutions. The bounds imposed on each optimization

variable must be logical when considering the problem and should consider the

capabilities and limitations of the jammer system being simulated. The

optimization variable bounds chosen for ECM technique generation are shown in

Table 5.1.

5.1 Optimization Setup

 66

Table 5.1: Optimization variable bounds

Optimization

Variable
Units Lower Bound Upper Bound

Initial Position, 𝑅0 μs –5 5

Final Position, 𝑅𝑚𝑎𝑥 μs –15 15

Initial Dwell Time, 𝑇𝑖 s 0 5

Final Dwell Time, 𝑇𝑓 s 0 5

Velocity, 𝑣 m/s
200 (Fighter)

5 (Rotary)

600 (Fighter)

90 (Rotary)

Acceleration, 𝑎 m/s2
10 (Fighter)

10 (Rotary)

60 (Fighter)

30 (Rotary)

Frequency Coordination - 0 1

Cover Pulse Reduction –dB 0 3

Pulse Width, 𝑃𝑊 μs 0.5 2

 The pulse positions are defined in units of μs, where 1 μs equals 150 m. For

a RGPO/RGPI technique, the pulse initial position is normally expected to be

directly over or very close to the actual target position. The chosen bounds permit

the initial pulse position to be within 750 m of the target, which is greater than the

range resolution of the threat system (the SA-8 has a published acquisition radar

accuracy of 300 m and an engagement radar range resolution accuracy of 55 m).

The pulse final position is expected to be some distance from the target, either

closer to the threat (a pull-in), or further from the target (a pull-out). The chosen

bounds permit the final pulse position to be within 2250 m of the target.

 The dwell times are limited to 5 s. The earliest launch time of a missile is 4 s

after simulation start (this is due to threat system settings described in the next

section). An initial dwell time of 5 s permits a scenario in which a missile launch

occurs before the pulse accelerates away from its initial position.

5.1 Optimization Setup

 67

The maximum fighter velocity of 600 m/s is equivalent to 1,166 knots or

approximately Mach 1.75 (at sea level), which is typical of fourth generation

fighter aircraft. The minimum velocity of 200 m/s or 389 knots is near the lower

end of cruise speeds for fighter aircraft. The maximum rotary-wing velocity of

90 m/s is equivalent to 175 knots, which is typical of military helicopters. Since

helicopters can hover (zero velocity) the minimum velocity is 5 m/s or

approximately 10 knots (the pulse must be able to move during the pull-off

technique).

Although fighter aircraft are capable of higher lateral accelerations (up to

9 g), the pulse acceleration is limited to approximately 6 g since the acceleration of

the pulse should simulate the turn-in or turn-out of the target with respect to the

threat; evasive manoeuvres above 6 g are uncommon due to the rapid energy loss

associated with high load factors. Pulse acceleration for the rotary-wing aircraft

was initially limited to approximately 3 g, since the design standard load factor

limit for helicopters is 3.5 g, and helicopters rarely reach load factors above 2 g.

The velocity and acceleration limits for rotary-wing simulations were later changed

to match those of the fighter aircraft since the simulated threat system does not

have the ability to distinguish between aircraft types when tracking the target or

jamming pulse.

Since frequency coordination is a binary selection (it is either on or off) the

variable is limited as such. Generated values less than 0.5 are rounded to 0 and

values 0.5 or greater are rounded to 1.

Pulse attenuation is limited to a maximum of 3 dB, or half the maximum

transmit power of the jammer.

The pulse width (PW) of the jamming pulse is limited to between 0.5 and

2 μs. The PW of the radar transmitter is 0.5 μs, and a reflected signal would be

expected at the same PW. As discussed further in the results, PWs approaching

0.1 μs resulted in unexpected threat radar system behaviour.

5.2 Engagement Scenario Design

 68

5.2 Engagement Scenario Design

A series of engagement scenarios were developed to test the ability of the

integrated system to generate suitable ECM techniques. The design involved

consideration of realistic flight profiles for the target aircraft, including altitude,

airspeed, flight orientation relative to the threat, and range to the threat.

 The time required to conduct a single optimization round dictated that a

limited number of variables could be considered when developing the engagement

scenarios. As a result, the altitude and airspeed of the fighter and rotary-wing

targets were held constant and only the direction of flight, or approach angle

relative to the threat, was varied between optimizations. Due to time constraints,

only two scenarios used a target manoeuvring at constant altitude and airspeed.

5.2.1 Scenario Setup

The threat system TTR consisted of a radar transmitter in the Ku band with a fixed

PRI and a receiver type called scan-with-compensation (SWC), a form of

monopulse tracking. A SWC system uses two Lobe-On-Receive-Only (LORO)

signals, 180 degrees out of phase with each other, which are fed into separate

receiver channels. Target tracking techniques such as SWC and LORO are

described further in [21]. Except where noted otherwise, the radar was a coherent

system (i.e. pulse-Doppler). TESS™ offers ECCM options for the threat system;

by default, the track on jam option was enabled.

 For all engagements, the threat platform was located due North from the

target platform at a range of 9260 m (5 nautical miles) and an altitude of 5 m above

sea level. The default setting for missile launch time was 0.5 s (i.e. the time

required for the missile to launch). TESS™ provides an option to require the threat

system to have a tracking lock for a minimum period of time before missile launch.

Although the SA-8 has a published reaction time (from target detection to launch)

5.2 Engagement Scenario Design

 69

of 26 s [32], the simulated threat system would immediately launch upon

simulation start since the target was within the engagement envelope of the threat

system. To prevent immediate launch and provide for the generation of ECM

techniques that may generate a repetitive break-lock condition, the post lock-on

delay before launch was set to 3 s. This value was chosen since it provided an

appropriate delay for the threat system. Longer delays would be unrealistic and

unfairly inhibit the threat system; shorter delays resulted in a missile launch for

every engagement, regardless of the ECM technique in use.

 At the start of each engagement, the target platform was located due South

from the threat system. The fighter target platform was at an altitude of 4572 m

(15,000 feet), at a velocity of 309 m/s (600 knots). The rotary-wing target platform

was at an altitude of 152 m (500 feet), at a velocity of 77 m/s (150 knots). The

target platform direction of flight was defined as an approach angle relative to the

threat system at the start of the simulation (i.e. an approach angle of 0 degrees

indicated that the target platform was travelling due North directly toward the

threat system; an approach angle of 90 degrees indicated that the target platform

was travelling due East, perpendicular to the threat system). The engagement

scenario geometry, showing both the side view and horizontal plan view, is

depicted in Figure 5.1. Engagements ended when the missile reached its point of

closest approach to the target. When no missile launch occurred, simulations were

limited to a maximum of 40 s; this provided sufficient time for the threat to engage

the target and resulted in the target flying directly over the threat if its approach

angle was set to 0 degrees.

5.2 Engagement Scenario Design

 70

Note: Figure not to scale.

Figure 5.1: Engagement geometry (left: side view, right: horizontal view)

5.2.2 Scenario Variations

Some engagement scenarios were run with one or more simulation variables

changed from the standard scenario setup. Engagements were run with the jammer

turned off to collect baseline data between the threat system and target at each

approach angle. Engagements against coherent and non-coherent TTRs were

conducted to analyze the effect of frequency coordination on the generation of

effective ECM techniques.

5.3 Simulation Results

 71

5.3 Simulation Results

For each engagement scenario, ten optimization rounds with unique random seeds

were run for each algorithm. Individual ECM techniques generated during the

optimization process were also analyzed through single engagements to confirm

the results and to compare the algorithm performance. The simulation results are

summarized in the following sections and included in tabular form in Appendix B.

5.3.1 Non-Jamming Targets

The engagement scenario was first run with each target flying the defined flight

profile but with the jammer turned off. The engagements were run individually,

thus no optimization was performed. The results of each engagement are given in

Table 5.2 and Table 5.3, for the fighter and rotary-wing aircraft, respectively.

Table 5.2: Non-jamming fighter engagement results

Approach

Angle (deg)
Miss Distance (m) Pkill Psurv % Radar Track % Radar Search

0 5.52 95.57 4.43 95.55 0.21

45 15.96 31.13 68.87 96.08 0.16

90 175.13 0 100 75.31 21.86

135 2447.10 0 100 25.93 71.77

180 920.52 0 100 98.43 0.075

Table 5.3: Non-jamming rotary-wing engagement results

Approach

Angle (deg)
Miss Distance (m) Pkill Psurv % Radar Track % Radar Search

0 3.92 100 0 96.02 0.16

45 4.11 100 0 96.13 0.15

90 5.31 100 0 96.39 0.14

135 3.39 100 0 96.64 0.13

180 1.70 100 0 96.74 0.13

5.3 Simulation Results

 72

 In the case of the fighter engagement, the probability of kill quickly dropped

off when the target was not directly in-bound to the threat. At an approach angle of

90 degrees the threat radar lost its target track at 16.59 s and entered search mode,

unable to re-acquire the target for the remainder of the engagement (which ended at

40 s). The target track loss occurred when the target reached a horizontal range of

10,584 m (a slant range of 11,530 m) from the threat. At 135 degrees the threat

radar lost track at 7.39 s, entered search mode, and was unable to re-acquire the

target. The target track loss occurred at a horizontal range of 11,538 m (a slant

range of 12,411 m). At 180 degrees the target track was maintained for the duration

of the engagement but the missile was unable to catch up to the target before 40 s

had elapsed. The published acquisition and tracking ranges for the SA-8 are 30 km

and 20 km, respectively, although the engagement range and altitude of the missile

is much lower (estimated to be 10 to 12 km in altitude and up to 15 km in range).

The low probability of kill was likely associated with the target moving away from

the threat at high speed and at the upper altitude range of the threat’s engagement

range.

 The threat system achieved a 100 percent probability of kill against the

rotary-wing aircraft for all approach angles simulated. This is hypothesized to be

due to the fact that the target was travelling at relatively low speed at a low

altitude, well within the engagement range of the threat system.

 Although the simulated threat system is not particularly effective against a

fast-moving, medium to high altitude target, the ability of the ECM technique

generation system can still be evaluated. Techniques that either prevent missile

launch or increase the miss distance may exist which improve upon the benefit of

altitude and airspeed against the threat system. The initial engagement results

indicate that only approach angles from 0 through 90 degrees require further study

when using the fighter target platform; whereas approach angles from 0 through

180 degrees should be explored with the rotary-wing target platform.

5.3 Simulation Results

 73

5.3.2 Generated ECM Techniques

Jammer range techniques generated by both algorithms converged to one of two

forms: short-duration pulses, or long-duration pulses. Pulses with a total duration

of less than 8 s (i.e. the total time inclusive of dwell times and the time required to

move from the initial position to the final position using the technique acceleration

rate) captured the TTR range and velocity gates (for a coherent threat) and forced

the threat radar to continually cycle between its search, acquisition, and track

modes, as shown in Figure 5.2. For approach angles between 0 and 45 degrees and

135 and 180 degrees, pulses of this type prevented a track lock of sufficient time to

permit a missile launch (i.e. no-launch condition) and received fitness scores of 0.

However, the threshold of 8 s for pulse duration was not observed to be fixed; for

ten unique engagement scenarios there were six individual techniques that had a

total duration longer than 8 s (up to 14.01 s) and yet prevented a missile launch.

Figure 5.2: Radar mode for no missile launch (typical)

 Technique pulses with a total duration greater than 8 s were still able to

capture the TTR range and velocity gates; however, since the threat radar

5.3 Simulation Results

 74

maintained a track (on the false target pulse), missile launch occurred. Such

techniques resulted in the missile reaching its point of closest approach to the target

while the TTR was in search mode, as shown in Figure 5.3. This implies that the

command guidance control to the missile was providing incorrect tracking, which

is a desirable result. In this case, techniques that were able to maximize the missile

miss distance received fitness scores of 0.1 (for miss distances greater than 500 m).

However, as with the short duration pulses above, the 8 s threshold was not fixed,

since for the same ten unique engagement scenarios there were three individual

techniques that had a total duration shorter than 8 s (as low as 4.1 s) that did not

prevent a missile launch.

Figure 5.3: Radar mode for large missile miss distance (typical)

 The short-duration and long-duration pulse types described above consist of

very different pulse parameters. In terms of the defined solution space and fitness

function, techniques capable of preventing a missile launch exist near a global

minimum (within the bounded solution space); whereas, techniques that maximize

miss distance exist near a local minimum. These global and local minima are far

apart within the solution space (e.g. short duration pulses vs. long duration pulses).

5.3 Simulation Results

 75

5.3.3 Target Approach Angle

The approach angle between the target aircraft direction of flight and the threat

system was varied from 0 to 180 degrees at 45 degree increments between

optimization runs. Since the probability of kill for the fighter at 135 and 180 degree

approach angles was zero, with associated large miss distances, engagements at

those angles were not run for the fighter.

 ECM techniques generated for both the fighter and rotary-wing aircraft

indicate that prevention of a missile launch is possible at approach angles of 0 and

45 degrees. In addition, rotary-wing techniques indicate that prevention of a missile

launch is also possible at approach angles of 135 and 180 degrees. Neither

algorithm found ECM techniques that prevent a missile launch at approach angles

of 90 degrees. This is likely due to the geometry of the jammer antenna patterns,

which are forward and aft facing with 60 degree beamwidths. At a 90 degree

approach angle, very little jammer transmitted energy would be received at the

threat radar.

5.3.4 Algorithm Performance

For the engagement scenarios and system specifications tested, the PSO was

consistently better at converging to solutions with fitness scores of 0

(i.e. converging to 0), requiring fewer iterations, on average, than the GA for the

same scenarios. Of twelve unique engagement scenarios, ten yielded a no-launch

result (i.e. a fitness score of 0) from either algorithm. The GA converged to 0 for

seven of the scenarios, whereas the PSO converged to 0 for nine scenarios. Given

that there are ten rounds per scenario, per algorithm, out of 100 optimization

rounds, the PSO converged to 0 a total of 65 times; the GA converged to 0 only 36

times.

5.3 Simulation Results

 76

The PSO algorithm methodology likely lends itself better to this problem

type, when compared to the GA. Using the default PSO options, the PSO

performed well when searching the solution space. The fact that every particle has

its velocity and position updated based on both its own performance and the

performance of the swarm means that every particle will improve over time;

however, with particles moving about the solution space there is also a good

chance that the global best position can change if a single particle nears a global

minimum.

The GA is limited to random changes in a portion of the population based on

the previous performance of selected population members. If the population begins

to converge to a local minimum there is less chance that convergence to the global

minimum will be achieved. The mutation function is a GA option intended to

prevent premature convergence to a local minimum and allow for a wider search of

the solution space. The default function in MATLAB® is called mutationgaussian,

which as the name implies, generates mutation from a Gaussian distribution with a

standard deviation that is scaled by a recursive formula between generations [41].

The level of mutation provided by the default option is likely insufficient for this

problem.

One scenario in which the PSO converged to 0 in five of ten optimization

rounds, but where the GA never converged to 0, was rerun for the GA with

different mutation options. Five optimization rounds were run using the GA

mutation function mutationuniform with a mutation rate of 0.05 (i.e. 5 percent).

The GA converged to 0 in only one of the five rounds (requiring 4 generations). A

higher mutation rate may improve the performance of the GA; however, the

requirement to optimize the mutation rate is one of the weaknesses of the GA.

Performance may improve as a function of mutation rate, but assessing such an

improvement consumes time; this process is unnecessary with the PSO.

5.3 Simulation Results

 77

5.3.5 Algorithm Speed and Execution Time

In terms of algorithm speed in completing each generation/iteration, the GA and

PSO were equivalent. The mean time required per generation for the GA was only

slightly shorter (around 1 to 2 min) than the mean time required per iteration for

the PSO, as shown in Table 5.4. This is likely due to the standard time required to

conduct a single engagement simulation via the TESS™ Simulink® model, which

is significantly longer than any other individual process carried out by each

optimization algorithm (such as initialization, population/swarm creation, and

candidate solution updates at each generation/iteration).

Table 5.4: Optimization algorithm mean execution time

Scenario Type
GA – Mean Time Per

Generation (min)

PSO – Mean Time

Per Iteration (min)

Fighter vs Coherent Threat

(0, 45, 90 deg)
3.401 3.791

Fighter vs Non-Coherent Threat

(0, 45 deg)
12.33 13.48

Manoeuvring Fighter vs Coherent Threat

(0, 45 deg)
13.68 15.55

Rotary-Wing vs Coherent Threat

(0, 45, 90, 135, 180 deg)
14.11 15.20

Note: 1. Following a software license extension for TESS™, issued by TTI, execution times

inexplicably increased by a factor of about 4 to 5 times for both algorithms.

The total execution time required to converge to a solution is a better

measurement to perform a comparison. As stated in the previous section, the PSO

converged to 0 more often and required fewer iterations to do so, on average, than

the GA. Thus, the PSO consistently took less time to converge to 0, despite the fact

that the mean time per iteration for the PSO was 1 to 2 min longer than the mean

time per generation for the GA. For example, for the ten unique scenarios where a

no-launch result was found (by either algorithm), the mean number of iterations

required for the PSO to converge to 0 (in the 65 optimization rounds that did so),

5.3 Simulation Results

 78

was 3.9 iterations; whereas, the GA required a mean of 4.5 generations to converge

to 0 (in the 36 optimization rounds that did so). The PSO reveals itself to be the

faster of the two algorithms. Examples of the algorithms converging to 0 are shown

in Figure 5.4 and Figure 5.5, for the GA and PSO, respectively.

Where the algorithm stalled and converged to 0.1, and the number of stall

generations/iterations (a user-defined optimization option) was equal, both

algorithms took, on average, the same amount of time. Examples of the algorithms

stalling at fitness scores of 0.1 are shown in Figure 5.6 and Figure 5.7, for the GA

and PSO, respectively. The best fitness score in the current population/swarm is

shown for each generation/iteration, along with the mean fitness of all the

candidate solutions in the current population/swarm for each generation/iteration.

5.3 Simulation Results

 79

Figure 5.4: GA convergence to 0 (typical)

Figure 5.5: PS convergence to 0 (typical)

5.3 Simulation Results

 80

Figure 5.6: GA stall at 0.1 (typical)

Figure 5.7: PS stall at 0.1 (typical)

5.3 Simulation Results

 81

5.3.6 Algorithm Convergence

As previously stated, the PSO performed better in terms of the number of approach

angles for which a no-launch condition was achieved (i.e. 9 for the PSO vs. 7 for

the GA), the number of individual ECM techniques generated that achieved a

no-launch condition (i.e. 65 for the PSO vs. 36 for the GA), and the number of

iterations required to converge (thus the total execution time). However, both

algorithms demonstrate interesting behaviour when the convergence process is

analyzed more closely.

 In general, when conducting an optimization with the PSO, the mean fitness

score of the swarm would decrease quickly (within five to ten iterations) to a value

near 0.1 (mean fitness scores between 0.11 and 0.15). The mean fitness score

would then remain stable between 0.1 and 0.11 for the remaining iterations until

either the best fitness score decreased further to 0 or the maximum number of stall

iterations was reached. Figure 5.7 provides an example of this typical behaviour of

the PSO algorithm.

 Conversely, when conducting an optimization with the GA, the mean fitness

score of the population would initially decrease (normally at a lower rate than the

PSO) from its starting value but then continue to randomly change by as much as

±0.11 between generations. This suggests that the process of mutation between

generations continues the random search of the solution space while the algorithm

is stalled near a local minimum. This is an example of how the GA might be better

at exploring the solution space while at a local minimum; however, despite this

quality, it performed worse than the PSO. It is hypothesized that a larger stall limit

may provide a better chance for the GA to escape from the local minimum than the

PSO has, but at the expense of a longer simulation time. Figure 5.6 provides an

example of this typical behaviour of the GA; Figure 5.8 is an example of an

extreme case of the mean fitness changing between generations.

5.3 Simulation Results

 82

Figure 5.8: GA mean fitness changes between generations

 As presented previously, five optimization rounds were run using the GA

mutation function mutationuniform with a mutation rate of 0.05 (i.e. 5 percent).

Use of this mutation function for the optimization process generated convergence

to 0 for one round, where the default mutation function was unable to do so for the

same scenario in ten rounds. Both optimizations had a maximum of 50 stall

generations. The four rounds that stalled at a best fitness score of 0.1 showed less

random oscillation in the mean fitness score between generations; however, these

results are not sufficient to draw a conclusion regarding the change in mutation

rate, since only one round converged to 0, which could be considered luck for the

GA. An example of the GA optimization using the mutation function

mutationuniform with a mutation rate of 0.05 is shown in Figure 5.9.

5.3 Simulation Results

 83

Figure 5.9: GA mean fitness changes between generations with uniform mutation rate 0.05

 The convergence behaviour of both algorithms was markedly different for

one engagement scenario when compared to all other scenarios. An engagement

between the rotary-wing aircraft and the coherent threat radar system was

simulated at an approach angle of 90 degrees, using the fighter velocity and

acceleration rate upper and lower bounds. In ten optimization rounds for each

algorithm, neither algorithm was able to converge to fitness scores of either 0.1 or

0.

The lowest fitness score achieved by the GA was 0.303, which corresponded

to a missile miss distance of 93.35 m. That same round also took the greatest

number of generations (25) to converge for this scenario. The nine other rounds

took between 21 and 24 generations to converge to fitness scores between 0.321

and 0.340. An example of the GA convergence behaviour is shown in Figure 5.10.

5.3 Simulation Results

 84

Figure 5.10: GA convergence for rotary-wing at 90 degrees (typical)

The lowest fitness score achieved by the PSO was 0.279, which

corresponded to a missile miss distance of 142.44 m. Surprisingly, the PSO

required between 26 and 81 iterations to converge during the ten optimization

rounds; the worst fitness score achieved was 0.334 in 26 iterations. For most of the

optimization rounds, the mean fitness score remained relatively high (between 0.8

and 1.0) for as many as 50 iterations and never came any closer than 0.25 above

the best fitness score. Therefore, the majority of candidate solutions generated by

the PSO were ineffective. An example of the PSO convergence behaviour is shown

in Figure 5.11.

5.3 Simulation Results

 85

Figure 5.11: PSO convergence for rotary-wing at 90 degrees (typical)

Although the GA performed better than the PSO for this scenario, this is

likely an example of a scenario for which the jammer offers very limited

protection. In this case, one algorithm is not favoured over the other. However, for

the vast majority of engagement scenarios investigated, the PSO provided better

convergence rates and more optimal results.

5.3.7 Frequency Coordinated Techniques

Against the threat system with a coherent TTR, ECM techniques, with two

exceptions, were generated with frequency coordination included. Where

techniques did not include frequency coordination, the techniques were normally

unable to prevent a missile launch (i.e. fitness scores greater than or equal to 0.1).

Two techniques were generated without frequency coordination that were able to

prevent a missile launch (i.e. fitness scores of 0) (rotary-wing at 45 and

5.3 Simulation Results

 86

180 degrees approach angle with fighter optimization bounds; PSO algorithm).

Techniques that included frequency coordination and were able to prevent missile

launch were subsequently unable to achieve the same result if frequency

coordination was disabled. This indicates that frequency coordination is an

important parameter in the optimization process against this particular threat.

 Against the non-coherent threat, frequency coordination had no influence

over the technique fitness scores (i.e. techniques that were generated with

frequency coordination could have that parameter disabled and still achieve the

same fitness score).

5.3.8 Jammer Pulse Width Effects

By not bounding the search space, or using bounds larger than one would normally

assign to a given problem, the GA and PSO are capable of finding novel solutions

that may not be assumed to exist. An example that highlights this benefit follows.

Initially, the lower bound on PW was set to 0.1 µs. During initial

optimization rounds, using both the GA and PSO, generated techniques with PWs

approaching the lower bound (0.1 µs) did not require frequency coordination to

prevent missile launch (i.e. fitness score of 0). Such a narrow PW would not

usually be considered as a potential solution, as the radar is tuned to expect echoes

having the same PW as that which are emitted. Visual analysis of the radar range,

azimuth, elevation, and Doppler traces for one such engagement, shown in Figure

5.12, Figure 5.13, Figure 5.14, and Figure 5.15, respectively, show that although

the threat radar attempted to track the false target pulse, the tracking position

oscillated around the pulse position in range, azimuth, and Doppler. In elevation,

the radar position oscillated around a gradually decreasing elevation, tracking

neither the target nor the false target pulse. This resulted in the threat radar

continually cycling between its search, acquisition, and track modes, as shown in

Figure 5.16, preventing a track lock of sufficient time to permit a missile launch.

5.3 Simulation Results

 87

Figure 5.12: Radar range tracking for 0.1 µs jammer PW

Figure 5.13: Radar azimuth tracking for 0.1 µs jammer PW

5.3 Simulation Results

 88

Figure 5.14: Radar elevation tracking for 0.1 µs jammer PW

Figure 5.15: Radar Doppler frequency tracking for 0.1 µs jammer PW

5.3 Simulation Results

 89

Figure 5.16: Radar mode for 0.1 µs jammer PW

This characteristic may be related to the design of the TESS™ Simulink®

model threat system and the resonance frequency of one of its tracking loops. At

such a small PW, the resulting bandwidth may have overwhelmed the modelled

receiver tracking circuit, causing the oscillation. This result is an example of

stochastic optimization techniques finding unexpected solutions, since such

effective jamming would not be anticipated from use of such a short PW. Since this

was likely a limitation of the model, the PW lower bound was set to 0.5 µs for all

subsequent simulations.

5.3 Simulation Results

 90

5.3.9 Jammer Pulse Power Reduction

Within the defined bounds, where the pulse power reduction ranged from 0 dB

(i.e. full jammer transmit power) to 3 dB (i.e. half the jammer transmit power),

there was no correlation between the generated value and effectiveness of the

associated technique. In a number of cases, techniques with similar values for all

other parameters had pulse power reduction values at the extremes of the defined

range, with equal fitness scores. Techniques capable of preventing missile launch

were re-simulated under the same conditions with only the pulse power reduction

value varied; technique performance was unchanged.

 With the target beginning at 5 nautical miles and flying directly toward the

threat, the unreduced jammer power in the radar tracking cell remained in the range

of –70 to –80 dBW; the power of the target return ranged from –120 to –100 dBW,

as shown in Figure 5.17. Burn-through occurred between 25.8 and 26.2 s into the

engagement, when the target was between 1.16 and 1.29 km (horizontal range)

from the threat. Burn-through occurred at such a close range to the threat that the

TTR was unable to reacquire and track the target.

Figure 5.17: Radar tracking cell power levels for an unreduced jammer pulse

5.3 Simulation Results

 91

5.3.10 Target Manoeuvring

Due to time limitations, only two engagement scenarios with a manoeuvring target

aircraft were simulated against a threat system with a coherent TTR. The fighter

aircraft conducted a 3 g level left turn for 10 s, starting at 1 s after the engagement

start. The target aircraft flight profiles are shown in Figure 5.18 and Figure 5.19 for

initial approach angles of 0 and 45 degrees, respectively.

 For both scenarios, both algorithms generated ECM techniques capable of

preventing a missile launch. At 0 degrees, the PSO converged to 0 for all 10

optimization rounds, whereas the GA only converged to 0 for two rounds. At 45

degrees, the PSO converged to 0 for all but one round, whereas the GA converged

to 0 in seven out of ten rounds. As with previous scenarios, the PSO converged

faster, requiring fewer iterations, on average, than the GA. Both algorithms are

therefore capable of generating ECM techniques for manoeuvring target profiles.

Further research into various manoeuvring profiles combined with jamming

techniques is recommended.

5.3 Simulation Results

 92

Figure 5.18: Fighter manoeuvre profile, 0 degree initial approach, 3 g left turn

5.4 Summary

 93

Figure 5.19: Fighter manoeuvre profile, 45 degree initial approach, 3 g left turn

5.4 Summary

This chapter discussed the optimization setup, including the optimization options

and solution space bounds. The selection of specific values and their effect on the

optimization process was highlighted. Commonalities between each unique

engagement scenario, including the simulation conditions and their role in scoping

the overall execution, was also examined.

 The simulation results were presented, beginning with the engagement

scenario outcomes for a non-jamming target aircraft. Those simulations indicated

that the threat system was ineffective against a fighter aircraft at typical speeds and

5.4 Summary

 94

altitudes, when the approach angle between the target and threat was between 90

and 180 degrees. The results of early engagement scenarios helped to limit the

number of scenarios required for the comparison and contributed to the selection of

solution space bounds and optimization options.

 It was shown that jammer range techniques generated by both algorithms

took on one of two forms: those that prevented a missile launch or those that

maximized the missile miss distance. The way in which the fitness function was

defined for this thesis meant that the optimization algorithms were judged based on

their ability to find a no-launch solution (i.e. a single objective). The distance

between the two solution types, within the solution space, tested each algorithm’s

ability to explore a wide range of the solution space in a minimal amount of time.

 The effect of each ECM technique parameter on the overall performance of

the technique was also analyzed. The nine parameters that defined a combined

range and frequency deception jammer program in TESS™ were shown to have

varying levels of importance when implemented against the defined threat system.

Initial and final positions were of less importance as long as the initial and final

dwell times, velocity, and acceleration were of appropriate values to generate a

short, fast pulse. Frequency coordination was crucial against coherent threat

systems, as expected. Cover pulse attenuation was not a significant factor in

technique performance unless it was of sufficient magnitude to permit

burn-through while the TTR was still tracking the target aircraft or false target. The

jammer PW, if set relatively close to the TTR PW, played no discernable roll in

technique performance; however, as the PW approached 0.1 µs, an oscillation in

the target tracking system of the TTR appeared, resulting in the threat radar

continually cycling between its search, acquisition, and track modes. Although this

method was effective in jamming the threat radar, it remains to be determined

whether this was a characteristic of the TESS™ Simulink® model or whether an

actual system would be similarly affected.

5.4 Summary

 95

 Finally, the flight dynamics of the target aircraft were found to have a

significant effect on the ECM techniques generated and the time required to carry

out the optimization. The distance from the threat system, as well as the approach

angle relative to the threat, determined whether sufficient jammer power was

received at the TTR so as to have an effect on the threat radar receiver and target

tracking system. Level flight manoeuvring (i.e. level, constant-speed turns) did not

reduce the ability of either algorithm to converge to a solution; ECM techniques

that prevented missile launch were found for engagement scenarios with

manoeuvring aircraft. Further investigation into more dynamic target manoeuvring

is recommended.

 96

6 Conclusion

6.1 Summary

As radar systems continue to evolve and adapt, so too must ECM techniques to

remain effective against modern threats. Stochastic global optimization has

provided an alternative to direct-search methods when searching for solutions to

complex problems. However, evolutionary heuristics such as the GA and PSO have

not previously been used to generate ECM range and frequency deception jamming

techniques.

 Through the use of test functions, the GA and PSO algorithms were

compared for overall speed, accuracy (i.e. convergence to known solutions), and

simplicity of use. The PSO was shown to be more efficient, in that it converged to

solutions closer to the known function values, and in less time than the GA. The

PSO also had fewer options to control the optimization process, making it more

simplistic and easier to use.

 The software integration of the MATLAB® Global Optimization Toolbox™

with the proprietary TESS™ product was not a trivial task, as TESS™ had not

been used in this context before. Fortunately, the fact that TESS™ is based on

MATLAB®/Simulink® allowed for a successful integration, which had not

previously been accomplished. Without the availability of guidance or experience

from previous work, a fitness function capable of determining the effectiveness of

a candidate solution ECM technique was developed. The fitness function, when

combined with the simulation and scoring system and the TESS™ Simulink®

6.2 Conclusions

 97

model, generated a fitness score based on the ability of the ECM technique to

either prevent a missile launch or maximize the missile miss distance. Successful

parallelization of the simulation and scoring functions allowed ECM technique

generation to be performed in hours instead of days. The increase in speed

permitted an increase in the population/swarm size and the number of individual

rounds for each optimization algorithm, as well as the use of multiple engagement

geometries.

 Optimization options and solution space bounds were chosen to maximize

convergence speed while maintaining a large solution space from which to draw

effective ECM techniques. The engagement scenarios were designed to simulate a

CG SAM threat system with a pulsed TTR and either fighter or rotary-wing aircraft

using a self-protection jammer. Only ECM deception jamming techniques that

provide false range and velocity information were generated.

6.2 Conclusions

Both the GA and PSO were successful in finding effective ECM techniques for the

simulated jammer to use against the threat radar system. The ECM range and

frequency deception jamming techniques generated by both the GA and PSO

algorithms took on one of two forms: those that prevented a missile launch or those

that maximized the missile miss distance. For this thesis, the fitness function was

defined such that the optimization algorithms were judged based on their ability to

find a no-launch solution, with less-favourable fitness scores based on the missile

miss distance produced by the ECM technique. The distance between the two

solution types, within the solution space, required each algorithm to explore a wide

range of the solution space in a minimal amount of time. Although both algorithms

were successful in finding ECM techniques capable of preventing a missile launch,

the tendency for both algorithms to stall in local minima resulted in the algorithms

6.3 Contributions

 98

failing to find the (bounded) global minimum on a number of optimization rounds

where the global minimum existed in the bounded solution space.

 The PSO demonstrated superior performance both in terms of the number of

ECM techniques that reached the defined global optimum (65 for the PSO vs. 36

for the GA), and the total time to converge to those solutions. In most cases, the

PSO converged faster to the defined optimal solution, doing so in an average of

3.88 iterations, as compared to 4.5 generations for the GA, or stabilized much more

quickly to a solution with a large missile miss distance. However, the GA was still

capable of generating effective ECM techniques. The GA continues to explore the

solution space in a stalled state depending on the mutation options selected;

however, no discernable improvement in performance during a stalled state was

shown in this work. The ECM technique generation system developed for this

thesis was most effective when using the PSO algorithm.

6.3 Contributions

The most important contributions of this thesis are:

1. The design and implementation of an automated system, bridging the

proprietary TESS™ Simulink® model with the MATLAB® Global

Optimization Toolbox™, capable of generating effective ECM range and

frequency deception jamming techniques through stochastic global

optimization.

2. Successful parallelization of the above process via the MATLAB®

Parallel Computing Toolbox™, permitting a reduction in computation

time by 5.72 times for this specific problem.

3. Definition of a single-objective fitness function and implementation of a

scoring system for determining ECM technique effectiveness against CG

SAM threat radar systems.

6.4 Future Work

 99

4. Scenario-based comparison of the GA and PSO global optimization

algorithms when generating ECM range and frequency deception

jamming techniques.

5. Validation of the GA and PSO algorithms for the generation of effective

ECM techniques, and identification of suitable optimization parameters

for algorithm performance.

6. Identification of the most important ECM technique parameters when

generating techniques through stochastic global optimization.

The successful integration of the proprietary TESS™ Simulink® model with

the MATLAB® Global Optimization Toolbox™ and Parallel Computing

Toolbox™ was shown to be effective in automatically generating ECM techniques

through stochastic global optimization. The resulting system may be useful in

discovering new or previously unrealized ECM techniques, in less time than

conventional means.

6.4 Future Work

Through the completion of this thesis, three areas of study requiring future work

were identified. First, the definition of the fitness function used to score

engagement scenario results and to determine the effectiveness of a given

technique should be further explored. Other simulation outputs such as the angular,

range, and Doppler error of the TTR may provide further valuable information for

the scoring process.

 Second, the performance of the GA may be significantly improved through

better selection of optimization options. For example, changes to the mutation

function and mutation rate may increase the probability of the GA converging to

the optimal solution faster, if the defined global optimum exists. Although the PSO

was shown to be faster and more simplistic in its use, the GA provides additional

optimization options not available from the PSO.

6.4 Future Work

 100

 Finally, use of the ECM technique generation system developed for this

thesis should be demonstrated using the specifications and system parameters of

actual threat systems, target aircraft, and self-protection jammers. Such simulations

would be of a classified nature, but may demonstrate the suitability of the

developed system for application to the processes of technique generation,

validation, and DECM system programming.

 101

Bibliography

[1] N. Polmar, “The U. S. Navy: Electronic Warfare (Part 2),” U.S. Naval

Institute | Proceedings Magazine, vol. 105, no. 921, Nov-1979.

[2] T. Bäck, D. B. Fogel, and Z. Michalewicz, Eds., Evolutionary Computation

1: Basic Algorithms and Operators. Philadelphia, PA: Institute of Physics

Publishing, Ltd., 2000.

[3] C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen, Evolutionary

Algorithms for Solving Multi-Objective Problems, 2nd ed. New York, NY:

Springer Science+Business Media, LLC, 2007.

[4] Y. Rahmat-Samii and D. Gies, “Genetic algorithm (GA) and particle swarm

optimization (PSO): powerful paradigms for unconventional designs,” in

Proceedings of 2004 URSI – EMTS, International Symposium on

Electromagnetic Theory, Pisa, Italy, 2004, pp. 957–959.

[5] R. L. Haupt, “An Introduction to Genetic Algorithms for Electromagnetics,”

IEEE Antennas and Propagation Magazine, vol. 37, no. 2, pp. 7–15, Apr.

1995.

[6] R. L. Haupt and D. H. Werner, Genetic Algorithms in Electromagnetics.

Hoboken, NJ: John Wiley & Sons, Inc., 2007.

[7] Y. Rahmat-Samii, “Genetic algorithm (GA) and particle swarm optimization

(PSO) in engineering electromagnetics,” in 17th International Conference

on Applied Electromagnetics and Communications, 2003. ICECom 2003.,

Dubrovnik, Croatia, 2003, pp. 1–5.

[8] J. D. Townsend, “Improvement of ECM Techniques through

Implementation of a Genetic Algorithm,” M.S. thesis, Dept. Elect. and

Comp. Eng., AFIT, Wright-Patterson AFB, OH, 2008.

Bibliography

 102

[9] Tactical Engagement Simulation Software (TESSTM), Air RF v18.10.0,

Multifunction Surveillance Radar and Surface-to-Air/Air-to-Air RF Guided

Missile. Ottawa, ON: Tactical Technologies Inc. - a Leonardo Company,

2018.

[10] MATLAB Global Optimization Toolbox, Release 2018b. Natick, MA: The

MathWorks Inc., 2018.

[11] D. Adamy, EW 101: A First Course in Electronic Warfare. Norwood, MA:

Artech House, Inc., 2001.

[12] A. Farina, “Electronic Counter-Countermeasures,” in Radar Handbook, 3rd

ed., M. I. Skolnik, Ed. New York, NY: McGraw-Hill, 2008, pp. 24.1-24.67.

[13] Avionics Department, Electronic Warfare and Radar Systems Engineering

Handbook, 4th ed. Point Mugu, CA: Naval Air Warfare Center Weapons

Division, 2013.

[14] G. W. Stimson, H. D. Griffiths, C. J. Baker, and D. Adamy, Introduction to

Airborne Radar, 3rd ed. Edison, NJ: SciTech Publishing, 2014.

[15] M. McGrath and P. Marshall, “ECM techniques generator,” in 48th Midwest

Symposium on Circuits and Systems, 2005., Covington, KY, USA, 2005, pp.

1749-1752 Vol. 2.

[16] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings

of ICNN’95 - International Conference on Neural Networks, Perth,

Australia, 1995, vol. 4, pp. 1942–1948 vol.4.

[17] R. Hassan, B. Cohanim, O. de Weck, and G. Venter, “A Comparison of

Particle Swarm Optimization and the Genetic Algorithm,” in 46th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials

Conference, Austin, TX, 2005, pp. 1–13.

[18] “Find minimum of function using genetic algorithm - MATLAB ga.”

[Online]. Available: https://www.mathworks.com/help/gads/ga.html.

[Accessed: 29-Jan-2019].

[19] “Particle swarm optimization - MATLAB particleswarm.” [Online].

Available: https://www.mathworks.com/help/gads/particleswarm.html.

[Accessed: 29-Jan-2019].

Bibliography

 103

[20] “Air RF v18.10.0, Multifunction Surveillance Radar and Surface-to-Air/Air-

to-Air RF Guided Missile, Master Interface User’s Guide.” Tactical

Technologies Inc. - a Leonardo Company, 19-Oct-2018.

[21] “SAM(CG)/AAA v18.10.0, Command Guided Surface-to-Air Missiles and

Anti-Aircraft Artillery, User’s Guide.” Tactical Technologies Inc. - a

Leonardo Company, 19-Oct-2018.

[22] S. K. Mishra, “Some new test functions for global optimization and

performance of repulsive particle swarm method,” SSRN Electronic Journal,

Aug. 2006.

[23] H. H. Rosenbrock, “An automatic method for finding the greatest or least

value of a function,” The Computer Journal, vol. 3, no. 3, pp. 175–184, Jan.

1960.

[24] “Rosenbrock function,” Wikipedia. 18-Jun-2018.

[25] R. A. Rastrigin, Systems of extremal control. Nauka, Moscow, 1974.

[26] “Rastrigin function,” Wikipedia. 05-Nov-2018.

[27] H. Mühlenbein, M. Schomisch, and J. Born, “The parallel genetic algorithm

as function optimizer,” Parallel Computing, vol. 17, no. 6, pp. 619–632,

Sep. 1991.

[28] “Mersenne Twister,” Wikipedia. 30-Jan-2019.

[29] ECM Effectiveness Simulator, SAM(CG)AAA Command Guided Surface-to-

Air Missiles and Anti-Aircraft Artillery. Ottawa, ON: Tactical Technologies

Inc. - a Leonardo Company, 2018.

[30] Legislative Services Branch, “Consolidated Federal Laws of Canada,

Controlled Goods Regulations, SOR/2001-32.” Minister of Justice, 22-Jun-

2016.

[31] C. Kopp, “9K33 Osa/Romb Self Propelled Air Defence System / SA-8

Gecko,” Air Power Australia, APA-TR-2009-0704, Jul. 2009.

[32] “9K33 Osa,” Wikipedia. 05-Jun-2019.

Bibliography

 104

[33] “SA-8 Gecko 9K33 OSA Ground-to-air missile system.” [Online].

Available:

https://www.armyrecognition.com/russia_russian_missile_system_vehicle_u

k/sa-8_gecko_9k33_osa_ground-to-

air_missile_system_technical_data_sheet_specifications_information_uk.ht

ml. [Accessed: 13-Jun-2019].

[34] “General Dynamics F-16 Fighting Falcon,” Wikipedia. 22-Aug-2019.

[35] “Bell CH-146 Griffon,” Wikipedia. 30-May-2019.

[36] “Electronic Warfare Forecast, ALQ-126B - Archived 04/2002,” Forecast

International, Jul. 2001.

[37] J. Loo and S. Labeaume, “CF-18 AN/ALQ-126B-MG 13 IIP Interface to the

DREO Electronic Warfare Engagement Simulation Facility,” Defence

Research Establishment Ottawa, Ottawa, ON, Technical Note 93-4, Nov.

1992.

[38] G. S. Almasi and A. Gottlieb, Highly Parallel Computing. Redwood City,

CA: Benjamin-Cummings Publishing Co., Inc., 1989.

[39] “Parallel Computing Toolbox Documentation.” [Online]. Available:

https://www.mathworks.com/help/parallel-computing/index.html.

[Accessed: 14-May-2019].

[40] P. M. Fishbane, S. Gasiorowicz, and S. T. Thornton, Physics For Scientists

and Engineers, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1996.

[41] “Genetic Algorithm Options - MATLAB & Simulink.” [Online]. Available:

https://www.mathworks.com/help/gads/genetic-algorithm-

options.html#f6633. [Accessed: 23-Aug-2019].

 105

A MATLAB® Global Optimization Toolbox™

Algorithm Implementations

This appendix provides a summary of the GA and PSO algorithm implementations

in MATLAB®, with a focus on the input variables, optimization options, and

output arguments as they are used in this thesis.

A.1 Genetic Algorithm

The MATLAB® Global Optimization Toolbox™ [10] implements the GA as

ga.m, which finds the local constrained or unconstrained minimum in a defined

fitness (objective) function [18]. A 1 × 𝑁 vector argument is accepted as the input

to the fitness function. The variable inputs for optimization are given in Table A.1

and are listed in the order in which they are included when calling the GA function.

For this thesis, the fitness function performs both the processes of simulation of the

TESS™ Simulink® model and scoring of the results to generate a fitness score for

the candidate solution. This thesis did not use constraints, thus the input variables

to the GA function were the fitness function, the number of variables, lower and

upper bounds, and the options.

A.1 Genetic Algorithm

 106

Table A.1: GA input variables [18]

Variable Definition

fun Fitness (objective) function to evaluate

nvars Number of design variables in the fitness function to evaluate (dimension)

A Matrix for inequality constraints (𝐴 · 𝑥 ≤ 𝑏)

b Vector for inequality constraints (𝐴 · 𝑥 ≤ 𝑏)

Aeq Matrix for equality constraints (𝐴𝑒𝑞 · 𝑥 = 𝑏𝑒𝑞)

beq Vector for equality constraints (𝐴𝑒𝑞 · 𝑥 = 𝑏𝑒𝑞)

lb Lower bounds on design variables

ub Upper bounds on design variables

nonlcon Nonlinear constraint function

Intcon Integer constraints (Note: When there are integer constraints, ga does not

accept linear or nonlinear equality constraints, only inequality constraints)

options Options structure (set using optimoptions)

The options structure contains the user-customizable parameters that define

the operation of the GA. If required, select options are modified in the main

program script prior to calling the GA function. Table A.2 provides a summary of

the options available for the GA, their default values, and the values for this thesis

(where modified from the default values). The reasoning for each option value

modification is described in Chapter 5.

A.1 Genetic Algorithm

 107

Table A.2: GA optimization options [18]

Option Description Default / Modified Value

ConstraintTolerance Determines the feasibility

with respect to nonlinear

constraints.

Positive scalar | {1e-3}

CreationFcn Function that creates the

initial population.

{‘gacreationuniform’}

CrossoverFcn Function that the algorithm

uses to create crossover

children.

{‘crossoverscattered’}

CrossoverFraction The fraction of the

population at the next

generation, not including

elite children, which the

crossover function creates.

Positive scalar | {0.8}

Display Level of display returned to

the command line.

{‘final’}

EliteCount Number of individuals in

the current generation that

are guaranteed to survive to

the next generation.

Positive integer |

{ceil(0.05*

PopulationSize)}

FitnessLimit If the fitness function attains

the value of FitnessLimit,

the algorithm halts.

Scalar | {-Inf}

Modified: {0}

FitnessScalingFcn Function that scales the

values of the fitness

function.

{‘fitscalingrank’}

FunctionTolerance The algorithm stops if the

average relative change in

the best fitness function

value over

MaxStallGenerations

generations is less than or

equal to FunctionTolerance.

Positive scalar | {1e-6}

Modified: {1e-3}

HybridFcn Function that continues the

optimization after ga

terminates.

{[]}

A.1 Genetic Algorithm

 108

Option Description Default / Modified Value

InitialPopulationMatrix Initial population used to

seed the genetic algorithm.

Has up to PopulationSize

rows and N columns,

where N is the number of

variables.

Matrix | {[]}

InitialPopulationRange Matrix or vector specifying

the range of the individuals

in the initial population.

Applies to
gacreationuniform

creation function. ga shifts

and scales the default initial

range to match any finite

bounds.

Matrix or vector |

{[-10;10]} for unbounded

components,

{[-1e4 + 1; 1e4 + 1]} for

unbounded components of

integer-constrained

problems, {[lb;ub]} for

bounded components,

with the default range

modified to match one-

sided bounds.

InitialScoresMatrix Initial scores used to

determine fitness. Has up to

PopulationSize rows.

Column vector | {[]}

MaxGenerations Maximum number of

iterations before the

algorithm halts.

Positive integer |

{100*nvars}

Modified: {100}

MaxStallGenerations The algorithm stops if the

average relative change in

the best fitness function

value over

MaxStallGenerations

generations is less than or

equal to FunctionTolerance.

Positive integer | {50}

Modified: {20}

MaxStallTime The algorithm stops if there

is no improvement in the

objective function for

MaxStallTime seconds, as

measured by tic and toc.

Positive scalar | {Inf}

MaxTime The algorithm stops after

running for MaxTime

seconds, as measured

by tic and toc. This limit

is enforced after each

iteration, so ga can exceed

the limit when an iteration

takes substantial time.

Positive scalar | {Inf}

A.1 Genetic Algorithm

 109

Option Description Default / Modified Value

MutationFcn Function that produces

mutation children.

{‘mutationgaussian’}

Modified:

{‘mutationuniform’,

rate: 0.05}

NonlinearConstraintAlgorithm Nonlinear constraint

algorithm.

{‘auglag’}

OutputFcn Functions that ga calls at

each iteration.

Function handle or cell

array of function handles |

{[]}

Modified to use function

handle of user-defined

output function

PlotFcn Function that plots data

computed by the algorithm.

Function handle or cell

array of function handles |

{[]}

PopulationSize Size of the population. Positive integer |

{50} when

nvars <= 5, {200}

otherwise

Modified: {48}

PopulationType Data type of the population. {‘doubleVector’}

SelectionFcn Function that selects parents

of crossover and mutation

children.

{‘selectionstochunif’}

UseParallel Compute fitness and

nonlinear constraint

functions in parallel when

true.

Boolean | {false}

Modified: {true}

UseVectorized Compute functions in

vectorized fashion when

true.

Boolean | {false}

A.1 Genetic Algorithm

 110

The output arguments generated by the GA, all of which were used for this

thesis to record algorithm performance and results, are given in Table A.3 and are

listed in the order in which they can be requested.

Table A.3: GA output arguments [18]

Variable Definition

x Solution, returned as a real vector. x is the best point that ga located during

its iterations.

fval Objective function value at the solution, returned as a real number.

exitflag Reason that ga stopped, returned as an integer.

output Information about the optimization process, returned as a structure.

population Final population, returned as a 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 × 𝑛𝑣𝑎𝑟𝑠 matrix. The rows

of population are the individuals.

scores Final scores, returned as a column vector.

The first two and last two output arguments provide the results of the

optimization problem; the best solution and score values were printed to the

command window and stored for later analysis. The population and scores were

saved using a custom output function at the end of each generation. The exitflag

variable provides a scalar integer indicating the reason for algorithm termination.

The exitflag values and their descriptions are summarized in Table A.4.

A.1 Genetic Algorithm

 111

Table A.4: GA exitflag descriptions [18]

Exit

Flag

Meaning

1 Average cumulative change in value of the fitness function over

MaxStallGenerations generations is less than FunctionTolerance, and the

constraint violation is less than ConstraintTolerance.

3 Value of the fitness function did not change in MaxStallGenerations generations

and the constraint violation is less than ConstraintTolerance.

4 Magnitude of step smaller than machine precision and the constraint violation is

less than ConstraintTolerance.

5 Minimum fitness limit FitnessLimit reached and the constraint violation is less

than ConstraintTolerance.

0 Maximum number of generations MaxGenerations exceeded.

–1 Optimization terminated by an output function or plot function.

–2 No feasible point found.

–4 Stall time limit MaxStallTime exceeded.

–5 Time limit MaxTime exceeded.

For this thesis, the best fitness score attainable by a candidate solution was 0

(i.e. the FitnessLimit). Thus, the ideal reason for algorithm termination was if the

minimum fitness limit was reached, indicated by exit flag 5 for the GA. Only exit

flags 1 and 5 were encountered during this thesis, indicating that the algorithm

either stalled at a local minimum (exit flag 1) or converged to the global minimum

(exit flag 5).

The output variable provides performance specifications as a result of each

execution of the algorithm. The parameters from the output structure are described

in Table A.5. The rngstate variable permits re-creation of the results by using the

same seed variables when executing the optimization algorithm. This was useful

when validating the parallelized implementation with the serial program to ensure

identical results were generated. The number of generations and function

evaluations was useful when comparing the GA to the PSO in terms of

optimization efficiency and execution time.

A.1 Genetic Algorithm

 112

Table A.5: GA output structure descriptions [18]

Variable Definition

problemtype Problem type, one of: unconstrained, boundconstraints,

linearconstraints, nonlinearconstr, or integerconstraints.

rngstate State of the random number generator, just before the algorithm started.

generations Number of generations computed.

funccount Number of evaluations of the fitness function.

message Reason the algorithm terminated.

maxconstraint Maximum constraint violation, if any.

A.2 Particle Swarm Optimization

 113

A.2 Particle Swarm Optimization

The MATLAB® Global Optimization Toolbox™ [10] implements the PSO as

particleswarm.m, which finds the local unconstrained minimum in a defined

fitness (objective) function [19]. A 1 × 𝑁 vector argument is accepted as the input

to the fitness function. The variable inputs for optimization are given in Table A.6

and are listed in the order in which they are included when calling the PSO

function. Unlike the GA implementation, the PSO cannot accept constraints as

variable inputs. The fitness function, number of variables, and bounds were

identical for both the GA and PSO.

Table A.6: PSO input variables [19]

Variable Definition

fun Fitness (objective) function to evaluate

nvars Number of design variables in the fitness function to evaluate (dimension)

lb Lower bounds on design variables

ub Upper bounds on design variables

options Options structure (set using optimoptions)

As with the GA, the PSO options structure contains user-customizable

parameters that define the algorithm’s operation. If required, select options are

modified in the main program script prior to calling the PSO function. Table A.7

provides a summary of the options available for the PSO, their default values, and

the values for this thesis (where modified from the default values). The reasoning

for each option value modification is described in Chapter 5.

A.2 Particle Swarm Optimization

 114

Table A.7: PSO optimization options [19]

Option Description Default / Modified Value

CreationFcn Function that creates the initial

swarm.

{‘pswcreationuniform’}

Display Level of display returned to the

command line.

{‘final’}

FunctionTolerance Iterations end when the relative

change in best fitness function

value over the last

MaxStallIterations iterations is

less than FunctionTolerance.

Positive scalar | {1e-6}

Modified: {1e-3}

HybridFcn Function that continues the

optimization after

particleswarm terminates.

{[]}

InertiaRange Two-element real vector with

same sign values in increasing

order. Gives the lower and upper

bound of the adaptive inertia. To

obtain a constant (non-adaptive)

inertia, set both elements of

InertiaRange to the same value.

{[0.1,1.1]}

InitialSwarmMatrix Initial population or partial

population of particles. M-by-

nvars matrix, where each row

represents one particle. If

M < SwarmSize, then

particleswarm creates more

particles so that the total number

is SwarmSize. If M > SwarmSize,

then particleswarm uses the

first SwarmSize rows.

Matrix | {[]}

InitialSwarmSpan Initial range of particle positions

that pswcreationuniform

creates. Can be a positive scalar

or a vector with nvars elements.

The range for any particle

component is

-InitialSwarmSpan/2,

InitialSwarmSpan/2, shifted and

scaled if necessary to match any

bounds. InitialSwarmSpan also

affects the range of initial particle

velocities.

Positive scalar or vector |

{2000}

A.2 Particle Swarm Optimization

 115

Option Description Default / Modified Value

MaxIterations Maximum number of iterations

before the algorithm halts.

Positive integer |

{200*nvars}

Modified: {100}

MaxStallIterations The algorithm stops if the

average relative change in the

best fitness function value over

MaxStallIterations iterations is

less than or equal to

FunctionTolerance.

Positive integer | {20}

MaxStallTime The algorithm stops if there is no

improvement in the objective

function for MaxStallTime

seconds, as measured by tic and

toc.

Positive scalar | {Inf}

MaxTime The algorithm stops after running

for MaxTime seconds, as

measured by tic and toc.

Positive scalar | {Inf}

MinNeighborsFraction Minimum adaptive neighborhood

size, a scalar from 0 to 1.

Positive scalar | {0.25}

ObjectiveLimit If the fitness function attains the

value of ObjectiveLimit, the

algorithm halts.

Scalar | {-Inf}

Modified: {0}

OutputFcn Function handle or cell array of

function handles. Output

functions can read iterative data,

and stop the solver.

{[]}

Modified to use function

handle of user-defined

output function

PlotFcn Function name, function handle,

or cell array of function handles.

Plot functions can read iterative

data, plot each iteration, and stop

the solver.

{[]}

SelfAdjustmentWeight Weighting of each particle’s best

position when adjusting velocity.

Finite scalar | {1.49}

SocialAdjustmentWeight Weighting of the neighborhood’s

best position when adjusting

velocity.

Finite scalar | {1.49}

SwarmSize Number of particles in the

swarm.

Positive integer greater than

1 | {min(100,10*nvars)}

Modified: {48}

A.2 Particle Swarm Optimization

 116

Option Description Default / Modified Value

UseParallel Compute fitness function in

parallel when true.

Boolean | {false}

Modified: {true}

UseVectorized Compute fitness function in

vectorized fashion when true.

Boolean | {false}

The output arguments generated by the PSO are given in Table A.8 and are

listed in the order in which they can be requested.

Table A.8: PSO output arguments [19]

Variable Definition

x Solution, returned as a real vector that minimizes the objective function

subject to any bound constraints.

fval Objective value, returned as the real scalar fun(x).

exitflag Algorithm stopping condition, returned as an integer identifying the reason

the algorithm stopped.

output Solution process summary, returned as a structure containing information

about the optimization process.

Unlike the GA, which returns the values of the entire population as well as

each member’s fitness, the PSO only returns the position and fitness of the global

best particle in the swarm at function exit. A custom output function was used to

save all the swarm positions and fitness scores at the end of each iteration. Similar

to the GA, an exitflag variable is provided, as described in Table A.9.

A.2 Particle Swarm Optimization

 117

Table A.9: PSO exitflag descriptions [19]

Exit Flag Meaning

1 Relative change in the objective value over the last MaxStallIterations

iterations is less than FunctionTolerance.

0 Number of iterations exceeded MaxIterations.

–1 Iterations stopped by output function or plot function.

–2 Bounds are inconsistent: for some 𝑖, 𝑙𝑏(𝑖) > 𝑢𝑏(𝑖).

–3 Best objective function value is at or below ObjectiveLimit.

–4 Best objective function value did not change within MaxStallTime seconds.

–5 Run time exceeded MaxTime seconds.

As with the GA, the best fitness score attainable by a candidate solution was

0 (i.e. the ObjectiveLimit). Thus, the ideal reason for algorithm termination was if

the minimum fitness limit was reached, indicated by exit flag –3 for the PSO. Only

exit flags 1 and –3 were encountered during this thesis, indicating that the

algorithm either stalled at a local minimum (exit flag 1) or converged to the global

minimum (exit flag –3).

Finally, the output variable is included to provide information about the

optimization process. The parameters from the output structure are described in

Table A.10. As with the GA, the rngstate variable permits re-creation of the results

by using the same seed variables when executing the optimization algorithm. This

was useful when validating the parallelized implementation with the serial program

to ensure identical results were generated. The number of iterations and function

evaluations was useful when comparing the PSO to the GA in terms of

optimization efficiency and execution time.

A.2 Particle Swarm Optimization

 118

Table A.10: PSO output structure descriptions [19]

Variable Definition

iterations Number of solver iterations.

funccount Number of objective function evaluations.

message Reason the algorithm stopped.

rngstate State of the default random number generator just before the algorithm

started.

 119

B ECM Technique Generation Results

This appendix presents the results of each optimization round for select

engagement scenarios conducted during this thesis, in table form. Each

engagement scenario is briefly described and variables unique to the scenario are

stated. The results from each optimization round are provided in separate tables for

the GA and PSO. An analysis of the simulation results is provided in Chapter 5.

B.1 Fighter vs. Non-Coherent TTR

 120

B.1 Fighter vs. Non-Coherent TTR

The fighter airborne target was flown at an approach angle of 0 degrees against the

threat system with a non-coherent TTR. The optimization bounds were those listed

in Table 5.1. The results of the optimization are in Table B.1 and Table B.2 for the

GA and PSO, respectively.

Table B.1: GA optimization results – fighter vs. non-coherent TTR, 0 degrees

Round 1 2 3 4 5 6 7 8 9 10

Exit Flag1 1 1 1 1 1 1 1 1 1 1

Time [min] 299.16 270.17 270.90 270.90 270.88 270.33 270.69 269.76 270.31 270.95

Generations 21 21 21 21 21 21 21 21 21 21

Mean

Time Per

Generation

[min]

13.60 12.28 12.31 12.31 12.31 12.29 12.30 12.26 12.29 12.32

Function

Evaluations
1056 1056 1056 1056 1056 1056 1056 1056 1056 1056

Fitness 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

𝑹𝟎 [μs] 1.80 -4.42 -0.41 2.54 -2.72 -3.60 0.35 -0.45 3.87 1.98

𝑹𝒎𝒂𝒙 [μs] -14.64 -14.48 -14.47 -14.68 -14.86 -14.86 -14.79 -13.84 -13.39 -14.95

𝑻𝒊 [s] 0.42 3.09 2.30 0.48 2.85 2.15 0.43 1.41 1.69 0.12

𝑻𝒇 [s] 4.51 0.18 0.65 4.82 3.91 1.13 2.82 3.41 2.55 3.14

𝒗 [m/s] 405 380 340 425 540 380 445 275 445 595

𝒂 [m/s2] 55 30 50 35 35 35 50 40 45 30

Frequency

Coord
1 0 0 0 0 1 0 0 0 1

Power

Reduction

[–dB]

2.21 2.01 2.04 1.90 2.34 1.53 2.90 0.37 0.18 2.79

𝑷𝑾 [μs] 1.50 1.90 1.10 0.60 1.20 1.40 1.10 1.40 0.60 2.00

Note: 1. GA exit flag definitions may be found in Appendix A, Table A.4.

B.1 Fighter vs. Non-Coherent TTR

 121

Table B.2: PSO optimization results – fighter vs. non-coherent TTR, 0 degrees

Round 1 2 3 4 5 6 7 8 9 10

Exit Flag1 1 1 1 1 1 1 1 1 1 1

Time [min] 270.09 269.82 269.91 270.23 270.09 270.34 269.98 269.51 270.38 270.41

Iterations 21 21 21 21 21 21 21 21 21 21

Mean

Time Per

Iteration

[min]

12.28 12.26 12.27 12.28 12.28 12.29 12.27 12.25 12.29 12.29

Function

Evaluations
1056 1056 1056 1056 1056 1056 1056 1056 1056 1056

Fitness 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

𝑹𝟎 [μs] -5.00 3.12 -5.00 2.73 -5.00 -5.00 0.47 -1.73 -4.86 4.85

𝑹𝒎𝒂𝒙 [μs] -15.00 -14.40 -13.42 -15.00 -15.00 -15.00 -15.00 -14.88 -15.00 -15.00

𝑻𝒊 [s] 2.75 0.14 1.30 1.67 1.38 1.85 1.49 4.73 0.00 1.47

𝑻𝒇 [s] 4.56 4.09 2.68 4.90 4.37 5.00 5.00 4.93 3.32 0.00

𝒗 [m/s] 600 270 465 600 345 600 360 600 365 365

𝒂 [m/s2] 50 50 35 40 25 25 40 60 30 60

Frequency

Coord
1 0 1 0 1 1 0 1 1 1

Power

Reduction

[–dB]

0.34 0.97 0.00 0.00 3.00 2.32 0.00 2.70 1.49 2.47

𝑷𝑾 [μs] 1.40 0.80 0.80 1.20 1.00 0.80 1.20 0.50 0.70 1.00

Note: 1. PSO exit flag definitions may be found in Appendix A, Table A.9.

B.2 Fighter vs. Coherent TTR

 122

B.2 Fighter vs. Coherent TTR

The fighter airborne target was flown at an approach angle of 45 degrees against

the threat system with a coherent TTR. The optimization bounds were those listed

in Table 5.1. The PW was held constant at 0.5 μs. Five additional optimization

rounds of the GA were completed using the mutation function mutationuniform

with a mutation rate of 0.05. The results of the optimization are in Table B.3 and

Table B.4 for the GA, and Table B.5 for the PSO, respectively.

Table B.3: GA optimization results – fighter vs. coherent TTR, 45 degrees

Round 1 2 3 4 5 6 7 8 9 10

Exit Flag 1 1 1 1 1 1 1 1 1 1

Time [min] 148.99 151.03 149.16 152.51 149.12 153.65 154.61 150.95 150.78 151.05

Generations 51 51 51 51 51 51 51 51 51 51

Mean

Time Per

Generation

[min]

2.87 2.90 2.87 2.93 2.87 2.95 2.97 2.90 2.90 2.90

Function

Evaluations
2496 2496 2496 2496 2496 2496 2496 2496 2496 2496

Fitness 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

𝑹𝟎 [μs] -3.42 4.77 -2.25 -1.97 2.31 -0.82 -3.59 -3.6 0.95 2.71

𝑹𝒎𝒂𝒙 [μs] -4.79 -9.09 -9.81 -14.73 -13.21 7.23 -14.65 -6.11 -9.63 -14.55

𝑻𝒊 [s] 0.83 1.42 0.85 2.34 3.35 1.37 0.49 0.49 1.1 0.61

𝑻𝒇 [s] 0.25 0.13 0.41 4.8 0.94 4.83 1.09 2.72 1.31 4.29

𝒗 [m/s] 525 500 450 500 385 235 245 410 505 335

𝒂 [m/s2] 45 40 50 15 45 50 25 40 50 60

Frequency

Coord
1 1 1 1 1 1 1 1 1 1

Power

Reduction

[–dB]

1.02 2.76 1.83 2.55 0.86 1.39 1.75 1.07 1.06 1.58

B.2 Fighter vs. Coherent TTR

 123

Table B.4: GA optimization results, mutationuniform with mutation rate 0.05

Round 1 2 3 4 5

Exit Flag 1 5 1 1 1

Time [min] 149.40 19.07 151.91 155.33 148.86

Generations 51 4 51 51 51

Mean

Time Per

Generation

[min]

2.87 3.81 2.92 2.99 2.86

Function

Evaluations
2496 240 2496 2496 2496

Fitness 0.1 0 0.1 0.1 0.1

𝑹𝟎 [μs] -0.63 2.44 0.23 3.33 1.8

𝑹𝒎𝒂𝒙 [μs] -12.74 4.03 -10.05 -12.83 -7.38

𝑻𝒊 [s] 2.89 0.4 3.13 2.94 4.22

𝑻𝒇 [s] 1.35 0.09 3.75 4.96 4.06

𝒗 [m/s] 460 305 535 390 515

𝒂 [m/s2] 15 60 55 60 25

Frequency

Coord
1 1 1 0 1

Power

Reduction

[–dB]

1.66 0.79 0.97 1.74 1.72

B.2 Fighter vs. Coherent TTR

 124

Table B.5: PSO optimization results – fighter vs. coherent TTR, 45 degrees

Round 1 2 3 4 5 6 7 8 9 10

Exit Flag 1 1 -3 1 -3 -3 1 1 -3 -3

Time [min] 67.44 66.33 12.07 67.18 11.25 25.35 67.19 67.21 31.13 37.18

Iterations 21 21 1 21 1 6 21 21 8 10

Mean

Time Per

Iteration

[min]

3.07 3.02 6.04 3.05 5.62 3.62 3.05 3.06 3.46 3.38

Function

Evaluations
1056 1056 96 1056 96 336 1056 1056 432 528

Fitness 0.1 0.1 0 0.1 0 0 0.1 0.1 0 0

𝑹𝟎 [μs] 3.83 -5 5 -3.82 3.79 5 -5 -2.08 3.02 2.57

𝑹𝒎𝒂𝒙 [μs] -12.18 -15 7.06 -9.74 4.87 5.43 -9.82 -15 3.98 1.88

𝑻𝒊 [s] 0 4.62 0 4.58 0 0 4.92 4.59 0 0

𝑻𝒇 [s] 0 0 2.33 0 0.74 3.84 2.3 5 0.2 5

𝒗 [m/s] 200 480 200 230 200 200 280 200 325 200

𝒂 [m/s2] 60 20 60 40 60 60 60 55 60 60

Frequency

Coord
1 1 1 1 1 1 1 0 1 1

Power

Reduction

[–dB]

2.05 3 2.52 1.63 0 0 2.41 1.38 0 3

B.3 Rotary-Wing vs. Coherent TTR

 125

B.3 Rotary-Wing vs. Coherent TTR

The rotary-wing airborne target was flown at an approach angle of 90 degrees

against the threat system with a coherent TTR. The optimization bounds were those

listed in Table 5.1, with fighter velocity and acceleration bounds. The results of the

optimization are in Table B.6 and Table B.7 for the GA and PSO, respectively.

Table B.6: GA optimization results – rotary-wing vs. coherent TTR, 90 degrees

Round 1 2 3 4 5 6 7 8 9 10

Exit Flag 1 1 1 1 1 1 1 1 1 1

Time [min] 364.96 321.21 321.55 378.98 320.43 321.05 321.57 364.34 321.34 321.03

Generations 24 21 21 25 21 21 21 24 21 21

Mean

Time Per

Generation

[min]

14.60 14.60 14.62 14.58 14.57 14.59 14.62 14.57 14.61 14.59

Function

Evaluations
1200 1056 1056 1248 1056 1056 1056 1200 1056 1056

Fitness 0.3399 0.3268 0.3234 0.3032 0.3308 0.3258 0.3272 0.3206 0.3321 0.3268

𝑹𝟎 [μs] -3.58 -0.83 -0.58 -1.12 -1.84 -0.09 -1.00 -1.08 -0.85 -2.75

𝑹𝒎𝒂𝒙 [μs] 11.73 0.85 -2.05 10.28 12.89 -1.51 5.54 0.76 -8.40 0.20

𝑻𝒊 [s] 0.25 0.09 4.58 1.37 1.80 0.08 2.76 4.78 0.20 1.11

𝑻𝒇 [s] 0.86 1.06 2.86 1.75 0.69 1.31 4.08 1.81 0.00 1.04

𝒗 [m/s] 575 505 545 355 560 200 220 240 500 295

𝒂 [m/s2] 35 10 50 25 40 40 40 20 10 15

Frequency

Coord
0 0 0 1 0 0 1 1 0 0

Power

Reduction

[–dB]

0.81 0.23 0.10 0.10 0.04 0.00 0.45 2.63 0.25 0.13

𝑷𝑾 [μs] 2.00 1.60 1.30 1.40 1.90 1.20 1.30 1.50 1.20 1.60

B.3 Rotary-Wing vs. Coherent TTR

 126

Table B.7: PSO optimization results – rotary-wing vs. coherent TTR, 90 degrees

Round 1 2 3 4 5 6 7 8 9 10

Exit Flag 1 1 1 1 1 1 1 1 1 1

Time [min] 851.26 391.13 1182.6 636.51 1007.8 679.06 782.44 1040.5 666.51 1001.4

Iterations 58 26 81 43 61 46 53 71 45 64

Mean

Time Per

Iteration

[min]

14.43 14.49 14.42 14.47 16.25 14.45 14.49 14.45 14.49 15.41

Function

Evaluations
2832 1296 3936 2112 2976 2256 2592 3456 2208 3120

Fitness 0.3228 0.3336 0.323 0.325 0.3171 0.327 0.2788 0.2901 0.3278 0.3278

𝑹𝟎 [μs] 4.66 -1.92 -1.21 -0.87 3.74 3.05 -1.45 -1.40 -1.00 -0.78

𝑹𝒎𝒂𝒙 [μs] -9.48 -1.26 -3.31 -2.66 -7.15 -2.64 5.06 14.73 -3.66 -6.12

𝑻𝒊 [s] 0.91 2.49 0.38 0.61 0.14 1.90 0.88 0.14 4.23 2.85

𝑻𝒇 [s] 1.08 3.04 1.83 0.54 4.06 0.83 0.00 3.37 3.60 2.01

𝒗 [m/s] 460 600 385 395 410 405 455 525 410 255

𝒂 [m/s2] 60 10 60 40 60 40 10 30 55 35

Frequency

Coord
0 0 0 0 0 0 1 1 0 0

Power

Reduction

[–dB]

0.66 0.71 0.05 0.14 0.05 0.41 1.24 0.01 0.35 0.63

𝑷𝑾 [μs] 1.80 1.90 1.90 1.70 1.40 1.40 1.60 2.00 1.70 2.00

	Acknowledgements
	Abstract
	Résumé
	Contents
	List of Tables
	List of Figures
	List of Acronyms
	1 Introduction
	1.1 Background
	1.2 Problem Statement
	1.3 Thesis Statement
	1.4 Scope
	1.5 Methodology
	1.5.1 Software Integration
	1.5.2 Fitness Function
	1.5.3 Parallelization
	1.5.4 Simulation, Analysis, and Comparison

	1.6 Risks and Mitigations
	1.7 Thesis Outline

	2 Literature Review
	2.1 Electronic Countermeasures
	2.1.1 Jamming
	2.1.2 Range Gate Pull-Off
	2.1.3 Range Gate Pull-In
	2.1.4 Velocity Gate Pull-Off
	2.1.5 Technique Modelling and Parameter Selection
	2.1.6 Technique Scoring

	2.2 The Genetic Algorithm
	2.2.1 Terminology
	2.2.2 Algorithm Description

	2.3 The Particle Swarm Optimization
	2.3.1 Algorithm Description

	2.4 MATLAB® Global Optimization Toolbox™
	2.5 Tactical Engagement Simulation Software™

	3 Optimization Algorithm Validation and Comparison
	3.1 Test Functions
	3.1.1 Rosenbrock Function
	3.1.2 Rastrigin Function
	3.1.3 Hölder Table Function

	3.2 Validation Test Results
	3.3 MATLAB® Implementation Comparison
	3.4 Summary

	4 ECM Technique Generation Methodology
	4.1 Integration of TESS™ with the Global Optimization Toolbox™
	4.1.1 User Input
	4.1.2 Main Program
	4.1.3 TESS™ Simulink® Model
	4.1.3.1 Ground-Based Threat System
	4.1.3.2 Airborne Target Platform
	4.1.3.3 Self-Protection Jammer

	4.1.4 Simulation Management and Scoring
	4.1.4.1 Fitness Function

	4.1.5 Program Output

	4.2 Parallelization
	4.2.1 Serial versus Parallel Benchmark Comparison

	4.3 Deception Jamming Technique Design
	4.3.1 Range Deception
	4.3.2 Frequency Deception

	4.4 Summary

	5 Simulation Setup and Results
	5.1 Optimization Setup
	5.1.1 Optimization Options
	5.1.2 Optimization Bounds

	5.2 Engagement Scenario Design
	5.2.1 Scenario Setup
	5.2.2 Scenario Variations

	5.3 Simulation Results
	5.3.1 Non-Jamming Targets
	5.3.2 Generated ECM Techniques
	5.3.3 Target Approach Angle
	5.3.4 Algorithm Performance
	5.3.5 Algorithm Speed and Execution Time
	5.3.6 Algorithm Convergence
	5.3.7 Frequency Coordinated Techniques
	5.3.8 Jammer Pulse Width Effects
	5.3.9 Jammer Pulse Power Reduction
	5.3.10 Target Manoeuvring

	5.4 Summary

	6 Conclusion
	6.1 Summary
	6.2 Conclusions
	6.3 Contributions
	6.4 Future Work

	Bibliography
	A MATLAB® Global Optimization Toolbox™ Algorithm Implementations
	A.1 Genetic Algorithm
	A.2 Particle Swarm Optimization

	B ECM Technique Generation Results
	B.1 Fighter vs. Non-Coherent TTR
	B.2 Fighter vs. Coherent TTR
	B.3 Rotary-Wing vs. Coherent TTR

