
AN APPLICATION OF NETWORK

SECURITY MONITORING TO THE

MIL-STD-1553B DATA BUS

UNE APPLICATION DES TECHNIQUES

DE SÉCURITÉ RÉSEAUTIQUE AU BUS

DE DONNÉES MIL-STD-1553B

A Thesis Submitted to the Division of Graduate Studies
of the Royal Military College of Canada

by

Charles Bernard, BEng, P.Eng.

Second Lieutenant

In Partial Fulfillment of the Requirements for the Degree of
Master of Applied Science in Computer Engineering

September, 2019
c© This thesis may be used within the Department of National Defence
but copyright for open publication remains the property of the author.

Pour Memere.

ii

Acknowledgements

I would like to thank my supervisor, Dr. Sylvain Leblanc for his unwavering
commitment in guiding me to success throughout my studies at RMC.

To my spouse Katherine, our family and our friends, thank you for your
ongoing support. This work would not have been possible without your love
and sacrifice (and gentle nudging).

To the professors, staff and my fellow students in the Electrical and Com-
puter Engineering department, particularly in the Computer Security Labora-
tory, thank you for your support, camaraderie and encouragement throughout
the years.

To my colleagues at the Aurora Incremental Modernization Project, 36
Signal Regiment and 415 Long Range Patrol Force Development Squadron,
thank you for recognizing the value in this research. Your encouragement and
enthusiasm for this space provided motivation to carry on.

Finally, I would like to acknowledge the invaluable contribution of the
Directorate of Technical Airworthiness and Engineering Support, both for
supporting this research, and offering me the opportunity and flexibility to
pursue it. Special thanks to Stephen Sterling and Patrice Bélanger, and the
entire team in DTAES 8.

iii

Abstract

The objective of this thesis is to demonstrate that the application of signature-
based network security monitoring techniques to the MIL-STD-1553B data
bus can be used to identify signs of undesirable or otherwise abnormal sys-
tem activity. Detection of such traffic is critical to ensuring that data bus-
connected devices continue to operate as designed, and are free from compro-
mise or faults.

In addition to signature-based detection two anomaly-based detection tech-
niques were selected for implementation: word repetition analysis and RT
frequency analysis. Each of these has roots in techniques used to monitor
IP-based networks for signs of compromise. Software implementing each of
these functionalities was written in Python, including functions to provide
dissection of MIL-STD-1553B data, as well as a command line user interface.

Initial functionality testing was conducted using a commercially-available
MIL-STD-1553B data bus simulator commonly used for bus prototyping. The
effectiveness of the detection techniques was demonstrated against data bus
attack scenarios postulated by Stan et al. Two additional cases were stud-
ied, representing scenarios where a bus-connected device could be faulty or
misconfigured.

In two of six cases, a successful detection was made using signature-based
analysis. In two other cases, anomaly-based detection uncovered initial signs of
compromise, which were further investigated using signature-based detection.
In the final two cases, signature-based detection was not effective.

While many opportunities for future work exist in further refining and au-
tomating these techniques, implementing new detection strategies, and testing
against different attacks, it was ultimately demonstrated that the application
of signature-based network security monitoring techniques is a viable means
of detecting indicators of undesirable activity on the MIL-STD-1553B data
bus.

iv

Résumé

L’objectif de cette thèse est de démontrer que l’application des techniques de
sécurité réseautique du type détection de signatures au bus de données MIL-
STD-1553B peut servir à identifier la présence d’activités non-désirables ou
autrement anormales dans le système. La détection de ce trafic est critique
pour assurer que les composantes se servant du bus opèrent tels que conçues,
sans faute ou compromis.

En plus de la détection de signatures, deux méthodes de détection d’anomalies
ont été sélectionnées et mises en oeuvre : l’analyse de répétition des mots, et
l’analyse de la fréquence des RT. Chacune de celles-ci sont dérivées à par-
tir de techniques servant à surveiller les réseaux IP. Un programme a été
rédigé en Python pour implémenter ces fonctions ainsi que le support requis :
la décortication du data MIL-STD-1553B ainsi qu’une interface d’utilisateur
basée sur la ligne de commande.

Des tests de fonctionnement ont été conduits avec l’aide d’un simulateur
de bus de données MIL-STD-1553B disponible sur le marché commercial.
L’efficacité des techniques de détection ont été mises à l’épreuve contre des
scénarios d’attaque proposés par Stan et al. Deux cas additionnels ont été
étudiés, traitant de scénarios ou un RT serait touche par une faute technique
ou mal configure.

Dans deux des cas étudiés, la détection par signature a réussi à découvrir
des indices claires de compromise. Dans deux autres cas, la détection primaire
était faite par l’analyse à base d’anomalies, mais la détection par signature a
servi d’outil d’enquête. Dans les deux derniers cas, la détection par signature
s’est avérée inefficace.

En utilisant des combinaisons des trois méthodes proposées, des indices
claires de compromise ou de faillite technique ont été observées dans tous les
scénarios sauf un. En fin de compte, ce travail démontre que l’application
des techniques de sécurité réseautique est efficace pour trouver des indices
d’activité anormale ou non-désirable sur le bus de données MIL-STD-1553B.

v

Contents

Acknowledgements iii

Abstract iv

Résumé v

List of Tables xi

List of Figures xiii

1 Introduction 1
1.1 Motivation . 2
1.2 Aim and Scope . 3
1.3 Potential Impact . 3
1.4 Document Outline . 4

2 Background 5
2.1 MIL-STD-1553B Data Bus . 5

2.1.1 Bus Architecture . 5
2.1.2 Signaling and Word Composition 6

2.1.2.1 Signaling Characteristics 6
2.1.2.2 Command Words 7
2.1.2.3 Data Words 7
2.1.2.4 Status Words 7

2.1.3 Message Formats . 8
2.1.3.1 BC-RT Data Transfer 9
2.1.3.2 RT-BC Data Transfer 9
2.1.3.3 RT-RT Data Transfer 9
2.1.3.4 Mode Messages 10

2.2 Network Security Monitoring 10

vi

Contents

2.2.1 Signature-based Detection 10
2.2.2 Anomaly-based Detection 12
2.2.3 Intrusion Prevention Systems 13

2.3 Aircraft System Security Engineering 13
2.4 Previous Work . 14

2.4.1 MIL-STD-1553B . 15
2.4.2 Other Aviation Buses and Systems 17
2.4.3 Automotive Systems . 18

3 MIL-STD-1553B Security Concerns and Detection Methods 19
3.1 Scenarios . 19

3.1.1 Transmission Timings Denial of Service (Behaviour Ma-
nipulation) . 21
3.1.1.1 Criticality and Feasibility 22
3.1.1.2 Attack Indicators 22

3.1.2 Status Word Data Integrity (Message Manipulation) . . 23
3.1.2.1 Criticality and Feasibility 23
3.1.2.2 Attack Indicators 23

3.1.3 Command Word Denial of Service (Behaviour Manipu-
lation) . 24
3.1.3.1 Criticality and Feasibility 24
3.1.3.2 Attack Indicators 25

3.1.4 Status Word Data Leakage (Message Manipulation) . . 25
3.1.4.1 Criticality and Feasibility 26
3.1.4.2 Attack Indicators 26

3.1.5 Malfunctioning RT . 26
3.1.5.1 Malfunction Indicators 27

3.1.6 Unassigned RT Address 27
3.1.6.1 Malfunction Indicators 27

3.2 Detection Methods . 28
3.2.1 Signature-based Detection 28

3.2.1.1 Command Words 28
3.2.1.2 Data Words 29
3.2.1.3 Status Words 29
3.2.1.4 Metadata . 30

3.2.2 Word Repetition Analysis 31
3.2.3 RT Address Frequency Analysis 32

3.3 Conclusion . 33

vii

Contents

4 Automated Detection System Design, Implementation and
Testing 34
4.1 Design Considerations . 35

4.1.1 Real-Time Detection vs Post-Mission Analysis 35
4.1.2 Data Source . 35

4.1.2.1 UDP Packet Construction 35
4.1.2.2 Data Collection 38

4.1.3 Hardware . 38
4.1.4 Software . 39

4.1.4.1 Development Language 39
4.1.4.2 Operating System 39

4.2 Execution Flow . 40
4.2.1 User Configuration . 40
4.2.2 Packet Parsing . 41
4.2.3 Signature-Based Detection 42

4.2.3.1 Signature Definition 42
4.2.3.2 Signature Loading 43
4.2.3.3 Traffic Comparison 44

4.2.4 Word Repetition Analysis 44
4.2.5 RT Address Frequency Analysis 45
4.2.6 Final Reporting . 46
4.2.7 Detection Handling . 46

4.3 Structural Design . 47
4.3.1 Overview . 47
4.3.2 main . 47
4.3.3 loadcommandsig, loadstatussig, loaddatasig 47
4.3.4 parsePCAP . 48
4.3.5 cwsiglogic, swsiglogic, dwsiglogic 49
4.3.6 cwrepeatdetector, swrepeatdetector 49
4.3.7 rtFreqAnalysis . 49
4.3.8 detection . 50

4.4 Testing . 50
4.4.1 Experiment Setup . 50

4.4.1.1 Data Bus Traffic Generation 51
4.4.1.2 Traffic Capture 52
4.4.1.3 Physical Layout 53

4.4.2 Signature-Based Detection 54
4.4.2.1 ONE RT . 54
4.4.2.2 FOUR RT . 59

4.4.3 Word Repetition Analysis 61

viii

Contents

4.4.3.1 ONE RT . 61
4.4.3.2 FOUR RT . 62

4.4.4 RT Address Frequency Analysis 66
4.4.4.1 ONE RT . 66
4.4.4.2 FOUR RT . 67

4.5 Conclusion . 68

5 Validation 70
5.1 Transmission Timing DoS (Behaviour Manipulation) 71

5.1.1 Scenario . 71
5.1.2 Expected Detection Mechanism 71
5.1.3 Experimentation . 72

5.1.3.1 Command Word Flooding 72
5.1.3.2 Status Word Flooding 74

5.1.4 Discussion . 76
5.1.4.1 Command Word Flooding 76
5.1.4.2 Status Word Flooding 76

5.2 Status Word Data Integrity (Message Manipulation) 77
5.2.1 Scenario . 77
5.2.2 Expected Detection Mechanism 77
5.2.3 Experimentation . 77
5.2.4 Discussion . 80

5.3 Command Word DoS (Behaviour Manipulation) 80
5.3.1 Scenario . 80
5.3.2 Expected Detection Mechanism 80
5.3.3 Experimentation . 81
5.3.4 Discussion . 82

5.4 Status Word Data Manipulation (Message Manipulation) . . . 83
5.4.1 Scenario . 83
5.4.2 Expected Detection Mechanism 83
5.4.3 Experimentation . 83
5.4.4 Discussion . 84

5.5 Malfunctioning RT . 85
5.5.1 Scenario . 85
5.5.2 Expected Detection Mechanism 85
5.5.3 Experimentation . 85

5.5.3.1 FOUR RT FASTER 87
5.5.3.2 FOUR RT SLOWER 88

5.5.4 Discussion . 89
5.6 Unassigned RT Address . 90

ix

Contents

5.6.1 Scenario . 90
5.6.2 Expected Detection Mechanism 90
5.6.3 Experimentation . 91
5.6.4 Discussion . 92

5.7 Discussion of Validation Results 92
5.7.1 Effectiveness of Signature-Based Detection 93
5.7.2 Effectiveness of Word Repetition Analysis as a Detector 94
5.7.3 Traffic Capture . 94

5.7.3.1 Capture Length 95
5.7.3.2 System Conditions 95
5.7.3.3 Capture Format 96

5.7.4 Timing Attacks . 96
5.7.5 Attack Feasibility and Effectiveness 96
5.7.6 Prevention vs Detection 97

6 Conclusion 98
6.1 Future Work . 98
6.2 Conclusions . 100

References 102

Appendices 105

A Detailed Structural Design 106
A.1 Modules . 106
A.2 Global Variables . 107
A.3 Classes . 107
A.4 Functions . 108

A.4.1 main . 108
A.4.2 parsePCAP . 109
A.4.3 loadcommandsig, loadstatussig, loaddatasig 109
A.4.4 cwsiglogic, swsiglogic, dwsiglogic 110
A.4.5 cwrepeatdetector, swrepeatdetector 111
A.4.6 detection . 112
A.4.7 rtFreqAnalysis . 113

x

List of Tables

2.1 Adapted from the Threats and Attack Categorization proposed by
Stan et al. 17

3.1 MIL-STD-1553B Command Word Fields 29
3.2 MIL-STD-1553B Status Word Fields 30

4.1 Sample Command Word Signature File 43
4.2 ONE RT Command Word Signature File 55
4.3 ONE RT Status Word Signature File 58
4.4 FOUR RT Command Word Signature File 59
4.5 FOUR RT Status Word Signature File 60
4.6 Distribution of Command and Status Words for RT Frequency

Analysis (ONE RT) . 67
4.7 Distribution of Command and Status Words for RT Frequency

Analysis (FOUR RT)) . 68

5.1 Baseline Traffic Capture for Experimental Scenarios 71
5.2 Distribution of Command and Status Words for Command Word

Flooding . 73
5.3 Distribution of Command and Status Words for Status Word Flood-

ing . 75
5.4 Distribution of Command and Status Words for Status Word Data

Integrity . 78
5.5 Distribution of Command and Status Words for Status Word Data

Integrity (Second Capture) . 79
5.6 Transmitter Shutdown Command Word Signatures 81
5.7 Non-Zero Reserved Bit Status Word Signatures 84
5.8 Distribution of Command and Status Words for the FOUR RT

Capture (Reproduction of Table 4.7) 86

xi

List of Tables

5.9 Distribution of Command and Status Words for the FOUR RT LONG
Capture . 86

5.10 Distribution of Command and Status Words for the FOUR RT FASTER
Capture . 87

5.11 Distribution of Command and Status Words for the FOUR RT SLOWER
Capture . 88

xii

List of Figures

2.1 MIL-STD-1553 Command Word Format 7
2.2 MIL-STD-1553 Data Word Format 8
2.3 MIL-STD-1553 Status Word Format 8

4.1 Alta Passive Monitor Protocol Packet Format 36
4.2 Common Data Packet Format . 37
4.3 Otto High-Level Execution Flow 40
4.4 User Configuration . 40
4.5 Packet Parsing . 41
4.6 Signature Detection Routine . 42
4.7 Word Repetition Analysis Routine 45
4.8 RT Frequency Analysis Routine and Final Reporting 45
4.9 Diagram of Function Calls Within Otto 48
4.10 Abaco (formerly GE) R15-USB. 52
4.11 Experimental Setup Layout . 54
4.12 Command word signature loading for ONE RT 56
4.13 Command word signature detection results for ONE RT 57
4.14 Status word signature loading for ONE RT 59
4.15 Command word signature detection results for FOUR RT 60
4.16 Status word signature detection results for FOUR RT 61
4.17 Command Word Repetition Analysis for ONE RT 62
4.18 Status Word Repetition Analysis for ONE RT 63
4.19 Command Word Repetition Analysis for FOUR RT 64
4.20 Status Word Repetition Analysis for FOUR RT 65

5.1 RT Histogram for Command Word Flooding 72
5.2 RT Histogram for Status Word Flooding 74
5.3 Histogram of Suspicious Bus Traffic (sw data integrity.pcap) . . . 78
5.4 Detection of Transmitter Shutdown and Override Transmitter Shut-

down Mode Commands . 82

xiii

List of Figures

5.5 Histogram of Known Good Traffic Capture (FOUR RT LONG.pcap) 91
5.6 Histogram of Suspicious Bus Traffic (unassigned rt.pcap) 91

xiv

1 Introduction

From the earliest days of powered flight, aircraft avionics have been designed
based on a presumed environment of trust — that every device connected to
the system belongs, that each device does only the task it was designed to do,
and that the device would not deliberately produce misleading information.
This notion is largely a byproduct of the careful design required to success-
fully implement such a complex system such as an aircraft. Historically, each
avionic component was crafted to carry out a single specific function, and when
two devices needed to exchange data, they were connected with a discrete wire
line.

The history of networked computing followed much the same model. As
computers first began to exchange data in a systemic fashion within small local
area networks, similar assumptions were made: there would be no reason for a
computer within the network to deliberately have an adverse effect on a peer.
However, these small networks began to grow and interconnect, expanding
beyond the point of being administered by a single person or organization.
This lack of direct administrative control rapidly eroded the assumed trust
between connected devices. The connection of even a single device controlled
by a careless or malicious user would have the potential to cause havoc, with
administrators powerless to stop it.

Many of the networking protocols underpinning computer communications
today were developed during the period where networks were still relatively
small. Replacing these with more modern protocols that consider security
from the outset would require a herculean effort and a considerable amount
of resources. Instead, computer and network operators have developed and
deployed a number of products and procedures with the goal of adding a
measure of security to the existing protocols. Programs such as firewalls,
intrusion detection systems and anti-virus are today considered de rigueur for
networked computer operations.

Avionics saw similar growth, evolving rapidly in the period between World
War II and the Vietnam era. Single-function devices displaying information

1

1.1. Motivation

directly to a user began to be replaced with more complex equipment capable
of sharing data with other devices as required. This data exchange can be
seen as analogous to the dawn of the networked computing era.

Eventually, the web of discrete lines required to interconnect avionic de-
vices became unsustainable. To remedy this, the United States Air Force
published a standard in 1973 for a serial data bus to be used to intercon-
nect military aircraft avionics: MIL-STD-1553 [1]. This bus would provide a
single data line connecting every avionic device to a central computer. This
standard, published in 1973, was first implemented on the General Dynamics
F-16 Falcon and has since become commonplace in both military and civilian
aircraft.

From the 1990s to the present day, there has been an increasing overlap
in the worlds of avionics and computing. The ubiquitousness of communi-
cation systems in modern life and the increased availability of high-speed,
low-cost data processing have led to the opening of data exchanges between
the previously-isolated avionics network aboard aircraft, and the wider net-
worked world. The Global Positioning System (GPS) and seatback enter-
tainment displays are introducing external data into the previously sheltered
aircraft system, while systems such as Automatic Dependant Surveillance -
Broadcast (ADS-B) open data paths from the aircraft to the outside world.
Systems such as Aircraft Communications Addressing and Reporting Sys-
tem (ACARS) and passenger Wi-Fi offer bidirectional communications, while
general purpose computing devices such as tablet computers are increasingly
pressed into service as Electronic Flight Bags (EFBs) and system maintenance
tools.

While aircraft information systems are no longer isolated from external
data systems, the MIL-STD-1553 data bus and its assumption of trust persist.
As was the case for computer networking, a wholesale replacement of the
data bus would require considerable effort and expense to re-engineer every
bus-connected component currently in service. Instead, the development of
security functionality that can be applied to the existing bus would be a
simpler and more cost-effective option.

This thesis seeks to investigate the effectiveness of signature-based intrusion
detection on the MIL-STD-1553B data bus.

1.1 Motivation

The motivation behind this thesis stems from work done to study the vul-
nerabilities inherent to the MIL-STD-1553B data bus. Two primary works

2

1.2. Aim and Scope

in particular have demonstrated the need for a method to detect attempts to
exploit these vulnerabilities.

The first of these is the work done by Captain Jeremy Paquet to study
the vulnerabilities inherent to the MIL-STD-1553B data bus [2]. This study
of the bus provided an initial insight into the MIL-STD-1553B protocol’s lack
of rigorous security features.

The second is the work of Stan et al., presenting a security analysis of
the MIL-STD-1553B protocol, including an enumeration of assets, an attacker
profile and a taxonomy of potential MIL-STD-1553B attack methods [3]. Stan
et al. go on to demonstrate a sequence-based statistical detection method to
identify anomalies in bus transmissions.

1.2 Aim and Scope

The aim of this thesis is to demonstrate an application of signature-based
detection to MIL-STD-1553B data bus traffic to identify signs of undesirable
system activity.

The undesirable activity to be detected is that which can be absolutely
defined, such as the appearance of a data bus word matching specified param-
eters. While signature-based detection is a strong tool, it is not universally
useful. Undesirable activity can also be defined in more relative terms, relying
on an assessment of bus activity against a baseline. While this work focuses
on the former, examples of the latter will also be studied for comparison.

While this work focuses on the MIL-STD-1553B data bus, the signature-
based detection technique demonstrated could potentially be applied to other
similar data buses, such as ARINC 429, STANAG 3910 or the Controller Area
Network (CAN) bus.

The scope of this work is to produce a proof of concept implementing a
signature-based detection routine tailored to the MIL-STD 1553 data bus.
Elementary anomaly detection methods are also implemented in order to pro-
vide insight into scenarios where the signature-based detection is not suitable
for purpose. Detailed implementation, including the actions to be taken upon
detection, is beyond the scope of this work.

1.3 Potential Impact

The primary impact of this thesis is a method for detection of undesirable
data bus activity, which could be an indication of a compromise of one or
many data bus connected devices.

3

1.4. Document Outline

A potential secondary application of this work is in aircraft maintenance.
With the ability to search through large amounts of data bus traffic for specific
events or departures from a known baseline, maintainers could study the bus
traffic for specific faults or failures.

1.4 Document Outline

The remainder of this document will be broken down as follows:
Chapter 2 will provide background information and will cover aspects

of the MIL-STD-1553 data bus, the concept of network security monitoring
and the current state of systems security engineering within the context of
aerospace. This chapter concludes with an overview of the existing literature
on the topic.

Chapter 3 will present a number of scenarios in which the MIL-STD-1553B
data bus may be susceptible to abuse, and discuss methods to detect such
tampering.

The design and implementation of an automated system for detecting signs
of undesirable data bus activity will be discussed in Chapter 4. This will
include design assumptions and constraints, algorithmic implementation of the
signature detection method proposed in the previous chapter, and a summary
of the development process. This chapter will conclude with a discussion of
the testing done on the prototype software prior to proceeding.

Chapter 5 will evaluate the effectiveness of the proposed automated detec-
tion system against the scenarios defined in Chapter 3, followed by a discussion
of the results observed.

Chapter 6 will discuss potential avenues for future work as well as make
concluding remarks.

4

2 Background

As this work involves a combination of concepts from two distinct fields,
namely the MIL-STD-1553B data bus and network security monitoring, back-
ground elements from each will be presented in this chapter. A third section
discussing the concept of System Security Engineering in aviation will provide
context for the importance of this work within the broader aerospace systems
engineering field. This chapter will conclude with a review of the security
work previously done in the data bus space and underscore the potential ap-
plications for this work.

2.1 MIL-STD-1553B Data Bus

The MIL-STD-1553 data bus standard was originally published in 1973, and
later revised as MIL-STD-1553A in 1975 and again as MIL-STD-1553B in
1978. MIL-STD-1553B has also been adopted for commercial use as SAE AS-
15531 [4]. While the differences between revisions are minor, this work will
focus on the more recent revision B. Extensions and modifications to MIL-
STD-1553B, such as FAST-1553, are outside the scope of this work, as they
typically do not adhere to the MIL-STD-1553B signaling scheme. However,
as discussed in section 1.2, the work presented herein is likely to be adaptable
to other data bus types and signaling conventions.

2.1.1 Bus Architecture

All devices connected to a MIL-STD-1553B data bus are assigned one of three
possible functions.

The role of the bus controller (BC) is to coordinate all bus activity by
commanding other devices to send data to, or read data from the bus or
report on their status [4]. The BC is also capable of sending its own data, or
reading data from other devices for processing.

5

2.1. MIL-STD-1553B Data Bus

Remote terminals (RTs) are generally connected to, or embedded within,
various aircraft components to enable bus communications [5]. Each is as-
signed a unique address, allowing the BC to direct actions to specific RTs.
The concept of addressing will be discussed further in Section 2.1.2. An RT
can either write the requested data to the bus to make it available to other
bus-connected devices, or it can read the bus to consume data generated by
other devices [4].

While a BC and one or more RTs are required for the bus to function, a
bus monitor (BM) is entirely optional [4]. A BM is used to passively monitor
the bus and capture data for later processing. The standard forbids a BM
from writing data to the bus, and it is therefore not assigned an address [1].

The devices are interconnected using copper wiring. Two separate runs
of wiring are typically used, providing redundancy in case of failure of one
line. These two buses, referred to as A and B in most implementations, are
independent: messages are sent over one bus or the other.

A version of the standard implemented over optical fibre exists, docu-
mented as MIL-STD-1773. The standard also includes instructions for inter-
connection between the two bus types [5, 6]. The standard will not be further
discussed in this work as it is out of scope.

2.1.2 Signaling and Word Composition

In order to better understand the security concerns described in Chapter 3
and the implementation described in Chapter 4, some fundamental knowledge
of how the MIL-STD-1553B standard passes information is required.

2.1.2.1 Signaling Characteristics

The data carried over the MIL-STD-1553B data bus is Manchester-encoded
binary at a rate of 1 Mbps. These binary signals are organized into 20-bit
words. Each word begins with the three-bit synchronization pattern defined
by the standard, and ends with a single parity bit, leaving a 16-bit payload for
the transmission of information. Transmissions requiring more than 16 bits
can be sent as a series of words, which is referred to as a message [1].

Time-division multiplexing is used to structure bus communications by
carving 20-bit time slots for each word. Given the data rate of 1 Mbps,
this translates to a nominal 50,000 slots per second [5]. The true number
of available slots will be slightly less, as a four microsecond gap is required
between messages. This intermessage gap is not required, however, between
words in the same message [1].

6

2.1. MIL-STD-1553B Data Bus

There are three types of words defined by MIL-STD-1553B, each with a
specific function: command words, data words, and status words. These word
types can be distinguished by the format of the synchronization pattern at the
start of each. Within the context of this work, this distinction is automatically
made by the hardware, as will be discussed in Chapter 3.

2.1.2.2 Command Words

Command words are used by the BC to pass instructions to RTs. Only the
BC may issue command words [1].

The bit format of a command word is illustrated in Figure 2.1.

Figure 2.1: MIL-STD-1553 Command Word Format. Adapted from [1].

2.1.2.3 Data Words

Data words are used to pass data to other bus-connected devices. The stan-
dard does not define a structure for data words; all 16 payload bits are available
to carry data and the formatting is left up to the designer of the RT [1]. The
bus designer must take care to ensure that any device consuming data from a
particular RT is able to interpret the data according to the defined scheme.

Figure 2.2 shows the breakdown of data words by bit time.

2.1.2.4 Status Words

Status words are generated by RTs to inform the BC or other RTs of the
device’s state. Status words are used to confirm receipt of commands, to
indicate errors, or to otherwise demand the attention of the bus controller [5].

Aside from the RT address field, the status word consists almost entirely
of single-bit flags. The breakdown is illustrated in Figure 2.3.

7

2.1. MIL-STD-1553B Data Bus

Bit times

Figure 2.2: MIL-STD-1553 Data Word Format. Adapted from [1].

Bit times

Figure 2.3: MIL-STD-1553 Status Word Format. Adapted from [1].

2.1.3 Message Formats

As mentioned previously, MIL-STD-1553B words are grouped to form mes-
sages. The bus standard uses the term “message formats” to describe the
types of interactions between BCs and RTs [1]. As discussed earlier, all bus
transmissions are commanded by the BC, regardless of the message source or
destination.

There are four possible message formats. Three of these formats are used
to govern data transfers between devices, and the fourth, the mode message,

8

2.1. MIL-STD-1553B Data Bus

is used for data bus management.

2.1.3.1 BC-RT Data Transfer

The transfer of data from the BC to an RT is a three-step process [1, 5].
1. The BC sends a command word addressed to the RT, with the T/R bit

set to “receive”, and the data word count set to the number of data
words to be transmitted. The targeted RT will now listen to the bus
and capture the number of words indicated in the word count.

2. Immediately after sending the command word, the BC will send the
specified number of data words, which will be captured by the RT.

3. Upon receiving the specified number of data words, the RT will send
a status word to confirm receipt. If required, the status word will also
indicate any errors by using the appropriate flags.

2.1.3.2 RT-BC Data Transfer

Data transfer from the RT to the BC is similar to the previous example, but
in reverse [1, 5].

1. The BC sends a command word addressed to the RT, with the T/R bit
set to “transmit”, and the data word count set to the number of words
it expects to receive.

2. Upon receipt of the command word, the RT will reply with a status
word. This status word may be used to indicate any validation errors.

3. Immediately after sending the status word, the RT will send the number
of status words requested in the original command word.

2.1.3.3 RT-RT Data Transfer

Because the BC must manage both a data transmission and data reception,
RT-RT data transfers are slightly more complex than the previous cases [1, 5].

1. The BC sends a command word to the receiving RT (RTR), with the
T/R bit set to “receive” and the data word count set to the number of
words to be received.

2. The BC sends a second command word to the transmitting RT (RTT)
with the T/R bit set to “transmit”, and the data word count set to the
same number of words.

3. RTT replies with a status word, followed immediately by the requested
number of data words. These words are captured by RTR, which is still
waiting in receive mode.

4. When it has received all specified data words, RTR will confirm receipt
with a status message of its own.

9

2.2. Network Security Monitoring

2.1.3.4 Mode Messages

As alluded to in Section 2.1.2, mode messages are used by the BC to com-
mand RTs to “communicate with the multiplex data bus hardware, and to
assist in the management of information flow, and not to extract data from
or feed data to a functional subsystem” [1]. Examples include “Initiate Self
Test”, “Transmit Status Word”, “Reset Remote Terminal” and “Transmitter
Shutdown”.

Mode messages take the form of command words with the subaddress/mode
field set to either of the mode values: 0b00000 or 0b11111. When either of
these values are detected, RT will interpret the word count field as a mode
code. These codes correspond to actions defined in the standard [1].

2.2 Network Security Monitoring

Network Security Monitoring (NSM) is defined as “the collection, analysis, and
escalation of indications and warnings to detect and respond to intrusion” [7].
This definition has a number of practical implications: we must be able to see
the traffic, understand it and make a determination as to whether or not an
escalation is warranted — is the traffic benign, or is it anomalous or possibly
malicious? [5].

Techniques for monitoring and interpreting MIL-STD-1553B bus traffic in
order to conduct the analysis will be discussed in detail in Chapter 4; this
section will provide some context for the techniques discussed therein.

There exists two broad families of analysis and detection algorithms: signature-
based and anomaly-based [5]. While there have been attempts to further sub-
divide these into taxonomies of algorithms, there is no general consensus on
a single breakdown [8, 9, 10, 11]. Rather than delving too deeply into any
one taxonomy, this section will broadly present characteristics and examples
within the context of the two large families.

2.2.1 Signature-based Detection

Signature-based intrusion detection is the most simplistic and intuitive de-
tection method available. It compares the bus traffic observed to samples
of traffic known to be associated with undesirable activity. Any traffic that
matches the sample, known as a signature, results in an action, typically an
alert to the operator or a log entry. [8]

10

2.2. Network Security Monitoring

Signature-based detection is implemented using one of two methods: string-
matching and state modeling [8]. While state modeling can be a powerful tool,
string-matching is more relevant to the present work.

In a string-matching implementation, the intrusion detection system (IDS)
is given a list of strings of interest, and searches for them in the traffic travers-
ing the network. This is useful in cases where the analyst has knowledge of
what signs they are looking for.

Rigidly defined signatures can be used to detect traffic that exactly matches
the string of interest. For network traffic that is known to contain defined con-
stituent portions, e.g. header fields, flags, payloads, signatures can be defined
parametrically. For example, a signature can be crated to raise a detection
against any traffic containing a specified source addresses. If supported, the
use of wildcards and regular expressions can further enhance the versatility of
signatures.

Due to its relative simplicity, signature-based detection has the advantage
of being easy to implement without requiring the more intensive computational
resources of anomaly-based detection routines. This is particularly relevant if
the detection engine is to be run in a resource-constrained environment, e.g.
added to existing hardware or where power consumption is a critical design
factor.

Computational simplicity means detection can be fast: high-speed data
processing coupled with powerful pattern matching algorithms allow a signature-
matching routine to process data on the order of tens of gigabits per sec-
ond [12]. The comparatively slow 1 Mbps speed of MIL-STD-1553B can easily
be analyzed.

Despite the advantages, signature-matching techniques have two major
disadvantages. The first is the requirement for prior knowledge, both of the
system’s configuration and of the attacker’s exploitation tactics. While known
attack patterns are often well documented, novel attacks would not be de-
tected. Because the focus is strictly on the traffic observed, and not the
behaviour of the system as a whole, no alert will be raised if an attacker is
able to compromise the system without using any of the strings in the list.
This is true even if the system is showing obvious signs of compromise [5, 8].

To counter this, near-constant upkeep is required to ensure that the latest
attack methods are characterized and added to the signature database. Active
research into methods of compromise is also valuable in the effort to stay one
step ahead of the attacker.

11

2.2. Network Security Monitoring

2.2.2 Anomaly-based Detection

While signature-based detection generally performs well in detecting known
traffic characteristics, anomaly-based detection can be powerful in finding
signs of compromise without the need for prior knowledge of the attacker’s
methodologies.

Rather than rely on a list of pre-written signatures, anomaly-based systems
attempt to detect possible intrusions by determining whether or not the traffic
observed is “normal” [8].

Normalcy can be defined by a number of metrics, such as overall traffic
volumes, number of occurrences of a specific message, or frequency of messages
addressed to or from a particular address. A wide range of metadata can be
used to define a model for normal activity.

As traffic is observed, an anomaly-based IDS compares the selected pa-
rameters to the model. Deviations from the model cause the IDS to generate
an alert. The IDS can be tuned by setting thresholds on the deviation, for
example as a percentage above or below normal, or a number of deviations in
a given time frame.

The main advantage of anomaly-based IDS is the elimination of the re-
quirement for prior knowledge of the attacker’s behaviour in order to generate
a signature. Because alerts are generated based on deviations from systemic
normalcy rather than detection of a specific signature, it can be possible to
detect attacks not previously seen, or defend against attackers deliberately
avoiding the use of strings likely to be part of the signature set.

Conversely, the traffic sample used to generate the initial model must
absolutely be free of attack traffic. If malicious traffic is included in the initial
model, it will not be seen as anomalous. It can be difficult to confirm that a
traffic sample contains only non-malicious traffic, especially when capturing
traffic from systems already in operation, where there is a risk that the system
may have been compromised.

Anomaly-based IDS are also susceptible to defeat by slow-moving multi-
step attacks, where each step deviates only slightly from the model. While any
one of these deviations may not raise an alert, the sum total of their actions
will result in malicious activity. These types of attack can be particularly
insidious for IDS using machine-learning techniques, as the algorithms may
actually roll attack traffic into the model used by the system, as discussed
above.

12

2.3. Aircraft System Security Engineering

2.2.3 Intrusion Prevention Systems

While IDS detect undesirable network activity and generate alerts for action
by an analyst, Intrusion Prevention Systems (IPS) go one step further, at-
tempting to automatically stop the detected intrusion [13].

Upon detection of a potential compromise through either a signature- or
anomaly-based technique, an IPS will attempt to interrupt the attack. On
IP-based networks, this can be done by creating a firewall rule to block the
malicious traffic, or logging off the user. In some cases, an IPS can also
attempt to shut down the affected system before the compromise can spread.

The deployment of an IPS introduces a large amount of risk to system
availability. While false alarms on an IDS are a minor inconvenience, the
consequences of a false alarm on an IPS means blocking legitimate traffic [13].
IPS are therefore only suitable for systems where there confidentiality is highly
prized above availability.

Because an aircraft’s MIL-STD-1553 data bus is typically mission- or
flight-critical, maintaining high availability is essential. The potential avail-
ability risks introduced by an IPS-style solution are unacceptable. A IDS
system conducting passive monitoring and alert generation, however, intro-
duces minimal risks to the system and would be the preferred option for a
data bus application.

2.3 Aircraft System Security Engineering

The rapid emergence of data transmission paths to and from aircraft, coupled
with the increasing demand for real-time data within the aircraft, from ad-
vanced flight systems to passenger entertainment systems, have brought the
topic of security of aircraft systems to prominence in recent years [5]. This
section briefly summarizes the state of the field of Aircraft System Security
Engineering, where the impacts of this work may ultimately be felt.

As briefly discussed in the introductory remarks in Chapter 1, aircraft
systems have evolved from discrete data lines to multiplexed high-speed data
buses, but the security model has remained unchanged. The most commonly
cited turning point in aviation system security is the design of the Boeing
787, which sought to combine previously isolated subsystems for aircraft con-
trol, maintenance. and passenger entertainment into a single network. The
concern of interconnecting a public-facing system with one carrying flight-
critical data such as the data bus gave rise to concerns surrounding safety and
airworthiness.

13

2.4. Previous Work

In evaluating this portion of the 787’s design, the United States Federal
Aviation Administration issued Special Condition (SC) 25-356-SC, to address
the issue of data separation [14]. SCs are raised to address “novel or unique
design features”, and and are intended to “contain such safety standards for
the aircraft, aircraft engine or propeller as the FAA finds necessary to establish
a level of safety equivalent to that established in the regulations” [15].

This SC is notable as the first instance of information security require-
ments being codified. Continued development of this concept has led to the
issue of standards for aeronautical systems security by the Radio Technical
Commission for Aeronautics (RTCA) and European Organization for Civil
Aviation Equipment (EUROCAE).

In October 2018, the United States Government Accountability Office
(GAO) made public a report to the U.S. Senate Committee on Armed Ser-
vices describing the state of cybersecurity as it applies to weapon systems,
including ships, aircraft and land vehicles. This document provides a detailed
look into the threats and vulnerabilities of platforms, and the potential effects
of poor cybersecurity practice [16]. While this report provides no definitive
recommendations, it does highlight a number of concerns with regards to the
challenges encountered by the U.S. Department of Defense in identifying plat-
form vulnerabilities and mitigating the associated risks.

While these efforts are certainly laudable, FAA, RTCA and EUROCAE’s
requirements primarily apply to new and heavily modified designs. This does
not apply to the thousands of aircraft currently in service around the world,
nor does it provide much guidance on the use of legacy systems such as MIL-
STD-1553B devices. Although the GAO’s report does provide some retro-
spective and hints at the importance of considering legacy systems, it does
not contain recommendations or practical guidance.

With the emphasis on new aircraft and weapons systems coming online,
there is a clear lack of guidance on the implementation of security features for
platforms already in service, many of which contain systems designed decades
ago. The ability to apply network security monitoring functionality to a crit-
ical communication pathway such as the MIL-STD-1553B data bus has the
potential of going a long way towards closing this gap.

2.4 Previous Work

The concept of adapting network security monitoring techniques to an aircraft
data bus is a fairly new one, and the body of directly relevant previous work is
small. There are however a number of works related to the study MIL-STD-

14

2.4. Previous Work

1553B as well as to the concept of security applied to aviation systems are
relevant to this space. Additionally, the study of embedded systems, particu-
larly as applied to the automotive industry, can lend inspiration to aerospace
applications. The principal works in these areas are discussed below.

2.4.1 MIL-STD-1553B

As discussed in Section 1.1, the work to study the inherent vulnerabilities
of the MIL-STD-1553B data bus by Captain Jeremy Paquet is the starting
point to the exploration of this research space and a primary motivation to
this work [2].

Captain Blaine Losier has also undertaken efforts to implement a system
to automatically detect tampered MIL-STD-1553B bus communications by
measuring a number of parameters describing the bus’s activity and comparing
these observations to baseline data measured on the same bus in a known-
good state. These parameters are RT response time, inter-message gap, data
throughput, bus utilization and periodicity [17].

Losier’s preliminary findings motivated the work of Lieutenant Sebastien
Genereux, Lieutenant Alvin Lai and Sub-Lieutenant Craig Fowles in develop-
ing MAIDENS: a MIL-STD-1553 Anomaly-based Intrusion Detection System.
MAIDENS improves on Losier’s work by reducing the false alarm rate and pro-
viding more accurate information on the time of detection. This was done by
optimizing the width of the bins used to sort the buffered data and adding a
sliding window to the bus data parser to improve time resolution [18]. While
this anomaly-based detection approach was demonstrated to be successful in
detecting signs of compromise, it discounts signature-based detection.

Thuy D. Nguyen’s paper on MIL-STD-1553 covert channel analysis presents
a threat model and hypothetical attack scenarios where the data bus’s vul-
nerabilities can be used to create a covert channel to surreptitiously store and
extract information [19]. Nguyen identifies several data storage and transmis-
sion paths enabled by “the lack of security requirements for hosted payload
space applications”.

Nguyen’s work was the inspiration for the work of Orly Stan et al., where
they conduct a security analysis of the MIL-STD-1553B data bus. This work
was discussed previously in Section 1.1 and is this work’s other primary mo-
tivation.

While the objective of Stan et al.’s paper is to present a sequence-based
statistical detection method to identify anomalies in bus transmissions, they
also present a detailed security analysis of the MIL-STD-1553B protocol. The

15

2.4. Previous Work

evaluation begins by enumerating assets and grouping them into three cate-
gories [3]:

Connectivity Assets: Transceivers, couplers, and physical bus wiring.
Data Assets: Data in transit over the bus, data stored in the memories of

the transceivers and subsystem (i.e. firmware), and subsystem data (e.g.
the aircraft position as derived by a GPS system).

Computational Units: The physical computing devices generating and con-
suming data.

For examples of each asset, Stan et al. present a list of potential con-
sequences, should the asset suffer a loss of either confidentiality, integrity or
availability. In doing so, this common triad is reframed into the narrow effect
categories of data leakage, data integrity violation, and DoS attack [3].

The attack vectors are also grouped into two broad categories [3]:

Message Manipulation: Modification of legitimate command, status, and
data words transmitted over the bus.

Behaviour Manipulation: Altering the behaviour of a compromised com-
ponent, e.g. transmitting arbitrary messages of the attacker’s choosing,
including using unusual timings or sequences.

Stan et al. go on to postulate a number of attack methods, grouped by
attack vector and effect, with attack vectors broken down even further into
categories by asset. While this categorization process could be seen as some-
what convoluted, it does culminate in a table of threats and attack methods,
showing the attack vectors for each. An adapted version of this table is shown
in Table 2.1.

16

2.4. Previous Work

Table 2.1: Adapted from the Threats and Attack Categorization proposed by
Stan et al.

DoS Attack Data Leakage Data Integrity
Violation

Command
Word

2 (Message and
Behaviour)

2 (Message and
Behaviour)

1 (Message)

Status Word 1 (Message) 2 (Message and
Behaviour)

1 (Message)

Data Word 1 (Message) 1 (Message) 1 (Message)

Transmission
Timings

1 (Behaviour) 1 (Behaviour) 0 (None
Reported)

BM
Impersonation

0 (None
Reported)

1 (Behaviour) 0 (None
Reported)

TEMPEST 0 (None
Reported)

1 (Behaviour) 0 (None
Reported)

Table 2.1 summarizes the possible attacks proposed by Stan et al. For
example, there are two proposed DoS attacks using command words: one
using message manipulation and one using behaviour modification. Of the
sixteen attacks identified, four will be revisited in detail in Chapter 3 and fur-
ther developed into scenarios to validate the detection system implementation
described in Chapter 4.

Stan et. al. go on to propose and demonstrate a statistically driven
anomaly-based detection method, applying Markov models to predict changes
in the state of the bus [3]. As with MAIDENS, this approach is successful,
but does not consider the utility of a signature-based approach.

2.4.2 Other Aviation Buses and Systems

The concept of applying network security monitoring techniques to an air-
craft data bus has been postulated before by the team of Nagaraja Thantry
and Ravi Pendse. However, this work is focused on ARINC 664 data bus
standard, which effectively an implementation of the IEEE 802.3 Ethernet
standard. While Thantry and Pendse do make a compelling argument in
favour of applying security controls to the aircraft data bus, the attacker pro-
file, bus vulnerabilities and mitigations proposed are specific to a data bus
implementation based on TCP/IP over Ethernet. The paper also proposes

17

2.4. Previous Work

a network monitoring solution, but one informed by additional data sources,
such as the cockpit voice recorder or other strategically-placed sensors [20].
While the specific technologies proposed in that work may not be applicable
to MIL-STD-1553B, the arguments and conclusions made do further illustrate
the relevance of information security applications to data buses.

2.4.3 Automotive Systems

Looking beyond the context of aviation, parallels can be drawn with other
embedded systems, particularly those related to transportation. Some of the
most compelling work done in this space has been in the automotive sector.

The Controller Area Network (CAN) bus is present on nearly every modern
passenger vehicle and serves as the primary data bus. Much like MIL-STD-
1553B, it has no native security features, assuming instead that all messages
on the bus are legitimate.

A frequently cited example of automotive hacking is the work done by
Charlie Miller and Chris Valasek, which gained mainstream attention when it
was presented in Wired Magazine in July 2015 [21]. By exploiting an exposed
mobile data connection, they were ultimately able write data to the vehicle’s
CAN bus. This gave them remote control of nearly every electronic device in
the car, from windshield wipers and climate control to throttle position and
braking. Miller and Valasek replicated their initial work a year later, this time
using a compromised bus-connected device to send spoofed commands [22].

Similar work by Julien Savoie takes this a step further, discussing the po-
tential for attacks specifically intending to damage the vehicle by exceeding the
design limits of components, or to injure the vehicle occupants by tampering
with throttle, brake and steering inputs [23].

On the defensive side, the work of Adrian Taylor et al. more formally char-
acterizes attacks against the CAN bus into a cyberattack framework [24]. This
framework was devised in order to provide a structure for attack simulation,
which enables comprehensive development and testing of a CAN bus-specific
IDS. This IDS uses recurrent neural networks and multivariate Markov chains
to identify malicious traffic.

While the present work does not specifically consider the CAN Bus, these
attacks underline the potential gravity of data bus compromise. It also presents
a potential alternate application for this work in the future.

18

3 MIL-STD-1553B Security
Concerns and Detection
Methods

This chapter will first outline six scenarios affecting the security of the MIL-
STD-1553B data bus: four derived from the work of Stan et al. [3], and two
developed by the author [25]. A brief overview of each scenario will be given
accompanied by a discussion of the potential impact on the MIL-STD-1553B
data bus.

The second portion of this chapter will propose three methods for detecting
signs of compromises flowing from these scenarios. The chapter will conclude
by revisiting each of the scenarios and illustrating how they can be detected
using one or many of the proposed detection methods.

While this chapter proposes methods for detecting possible attacks, the
design and implementation of these into an automated system will be discussed
in Chapter 4.

3.1 Scenarios

As discussed in Chapter 2, Stan et al. have conducted a security analysis of
the MIL-STD-1553B communication protocol [3]. Their work includes asset
enumeration, attacker profiling, identification of attack vectors and a list of
potential attack methods.

In their paper, Stan et al. classify their proposed attack methods into three
broad categories: Denial of Service (DoS), Data Leakage, and Data Integrity
Violation. These attacks are further subdivided by attack vector: Message
Manipulation and Behaviour Manipulation [3]. This work was discussed in
detail in Section 2.4 of this document.

19

3.1. Scenarios

Message manipulation attacks are predicated on the attacker’s ability to
modify values in the MIL-STD-1553B words sent by a device. This implies
that the attacker must compromise a bus-connected device. Taking control of
a BC allows the attacker to modify command words, while compromising an
RT would primarily affect data or status words [3].

Behaviour manipulation attacks leverage features of the bus’s design in
order to cause an adverse effect. This includes the generation of false command
words, as opposed to the modification of otherwise legitimate command words
seen in message manipulation attacks. An attacker could also adjust message
response times to cause word collisions on the bus, or exploit covert data
transmission channels [3].

Of the sixteen attack methods proposed by Stan et al., we selected a num-
ber of these to support the development of an automated detection method.
While the paper contains a brief conceptual description of each attack, no
comparisons are made between them [3]. We used three factors to categorize
these attacks: criticality, feasibility, and diversity in vectors and effect.

Criticality is the impact of the attack on the bus, and ultimately the
system. While it would be difficult to definitively rank these without thorough
testing, the attack description gives a reasonable first-order approximation of
the impact on the safe operation of the aircraft. The objective was to select
attacks with high criticality to ensure the detection system is effective against
potent threats.

Feasibility refers to the ease with which an attacker could implement the
attack. This was evaluated by estimating the level of effort required to repli-
cate the attack in a laboratory setting using commercial MIL-STD-1553B
simulation equipment. Attacks that do not require particularly deep technical
knowledge to implement, or that do not rely on a precise set of conditions are
more versatile. Feasible attacks would likely be an adversary’s tools of first
choice. While Stan et al. do demonstrate only three attacks in their paper (two
DoS attacks and one spoofing attack), little is offered in the way of implemen-
tation guidance [3]. Instead, the implementation of previous MIL-STD-1553
work was used as a reference point [2].

Finally, diversity was used as a selection factor in order to demonstrate the
effectiveness of the detection system against a variety of attack types, not only
variants of a single type. The three scenarios implemented by Stan et al. were
also set aside, in favour of selecting scenarios not previously implemented [3].

20

3.1. Scenarios

Ultimately, four of the scenarios were identified for further development
and study, one of which has two distinct variants:

• Transmission Timings Denial of Service (Behaviour Manipulation):
– Command word flooding variant;
– Status word flooding variant;

• Status Word Data Integrity (Message Manipulation);
• Command Word Denial of Service (Behaviour Manipulation); and
• Status Word Data Leakage (Message Manipulation);

In addition, two other scenarios were developed by the author to reflect
situations where anomalous bus activity could be the result of a configuration
error or a maintenance issue; such anomalous behaviour was not considered
by Stan et al. They are:

• Malfunctioning RT; and
• Unassigned RT Address.

3.1.1 Transmission Timings Denial of Service (Behaviour
Manipulation)

Stan et al. propose that an attacker with the ability to transmit words over
the bus can time transmissions to collide with legitimate traffic, and that
these collisions may lead to errors or degraded performance of bus-connected
components [3].

The proposed attack can be taken one step further by sending a continuous
stream of words, thereby flooding the bus. Such an attack would certainly be
expected to cause collisions with legitimate traffic, but it would also fill any
otherwise available time slot, restricting the opportunities for legitimate traffic
to pass, eventually leading to data starvation.

This work will examine flooding scenarios involving both command and
status words. Stan et al. make no distinction between the types of words that
can be used to cause flooding, but this decision does have knock-on effects [3].

Status words are used to confirm the receipt of a command word and to
indicate errors to the BC. Depending which flags are set, the status words used
to flood the bus could cause the BC to take an unnecessary action such as
repeating the previous command. While this may not appear to be detrimen-
tal, the repeated messages do consume additional bus time slots and further
exacerbate the congestion.

Command words are used to order actions from RTs. Because of this,
flooding with arbitrary command words would not only congest the bus, but
could also cause RTs to take unexpected action. If an arbitrarily-formatted

21

3.1. Scenarios

command causes a critical RT to consume data at the wrong time, or if it
causes the RT to enter an undesired mode, the effect could be catastrophic.
Moreover, most command words will cause the receiving RT to return some
amount of traffic, either data or a status word. This return traffic adds to the
congestion, amplifying the attack.

Due to the arbitrary formatting of data words, the data word flooding
scenario has not been studied further. While this could be examined in future
work, it is expected that data word flooding would simply congest the bus,
while occasionally providing erroneous information to any RTs who might be
consuming the data words.

3.1.1.1 Criticality and Feasibility

The criticality of this attack is sufficiently high to warrant further examination.
The dual-faceted effects of data starvation as a direct result of the denial of
service as well as the potential execution of arbitrary commands make this
case particularly interesting.

In terms of feasibility, an attacker would simply need to introduce a device
to the bus (or compromise an existing one) and have it continuously transmit
command or status words. These words can be sent at any time and do not
depend on timing or require a particular bus state.

3.1.1.2 Attack Indicators

Detection of a transmission timings DoS is complicated by the fact it can be
carried out using any word type, at a rate selectable by the attacker, and that
it does not necessarily require the use of legal words, i.e. words in compliance
with the standard. Therefore, any proposed detection method must have the
flexibility to cope with this [25].

Let us first consider the case where the bus is flooded by repetition of a
single word. The repeated appearance of identical command or status words
in a short time frame could be an indicator of anomaly. Tracking the number
of times any single word appears on the bus over a given period and raising
an alert when it exceeds a given threshold could detect such an attack [25].

Additionally, if the composition of the word used in the flood is known
from intelligence or is discovered in the course of analysis, monitoring the bus
and raising an alert if this word is seen would be desirable [25]. This approach,
however, may only be feasible in cases where all flooding words are identical.

22

3.1. Scenarios

If the flooding is caused by multiple different words, either randomly gen-
erated or following a prescribed pattern, the appearance of large volumes of
traffic containing unassigned RT addresses could also be an indicator [25].

3.1.2 Status Word Data Integrity (Message Manipulation)

In this scenario, Stan et al. posit that “any threat agent connected to the bus
[with BC or RT capabilities] can corrupt status words transmitted back to the
real BC and send fake statuses as if it is the transmitting RT” [3].

In normal bus operations, the BC gathers data by sending a command
word to a specific RT. For most commands, the RT will reply with a status
word to confirm receipt of the command and return any requested data. If
this status word is corrupted by an attacker and followed by a spoofed status
word, the BC would accept the latter as being legitimate. While Stan et al.
do not further discuss the ramifications of this, it is reasonable to assume that
this false status word can be crafted to show errors, which could then cause
the BC to assume communication has failed and drop any received data.

3.1.2.1 Criticality and Feasibility

The criticality of this attack depends entirely on which RT’s communication
is being disrupted and the frequency of the disruption. However, because it
can be used to target critical RTs for an indefinite period, this method merits
further investigation.

While the attacker would be required to monitor the bus for a target status
word to disrupt and spoof, this attack is still very much feasible using standard
bus-connected equipment.

3.1.2.2 Attack Indicators

The hallmark of this scenario is the appearance of two status words sent in
response to a command: one from the RT, and a second one sent by the
attacker as a fake, after corrupting the legitimate status word [3].

For the attack proposed by Stan et al. to be effective, the false status
word would be expected to appear soon after the legitimate status word.
Monitoring the bus in search of this double status word, the real one and the
falsely generated one, could successfully detect such an attack [25]. It should
be noted that this method might be prone to false alarms if the RT targeted
typically generates a relatively large number of status words in a short period
of time.

23

3.1. Scenarios

A second possible detection method is a statistical analysis of the fre-
quency of RT addresses seen on the bus. The difference between the number
of command and status words containing the targeted RT address would be
expected to deviate from the traffic pattern observed in the known-good base-
line traffic [25].

3.1.3 Command Word Denial of Service (Behaviour
Manipulation)

The scenario postulated by Stan et al. suggests that bus communications can
be disrupted by issuing a “fake command” [3]. While a number of possible
commands are suggested, shut-down commands are particularly powerful.

Transmitter shutdown commands are implemented as mode messages,
which can be addressed to any RT by the BC. Upon receipt of the com-
mand, the RT will simply stop transmitting. For an attacker with bus access,
this attack is both simple, requiring only one command word, and precise, as
it is directed at a specific RT. Depending on which system is targeted, the
impact of such an attack can range from benign to catastrophic.

The command word flooding discussed in Section 3.1.1 can also be seen
as a form of Command Word Denial of Service attack through Behaviour
Modification. If the command words used to flood the bus contain an assigned
RT address, the RT will attempt to react as if the message was legitimate. This
may have detrimental effects on the bus’s operation, including the shut-down
command example above [3]. If the command word is not properly formatted,
the RT will attempt to send a status word with an error flag, consuming yet
another time slot and adding to the flooding.

As command word flooding was examined as part of the Transmission
Timings scenario presented in Section 3.1.1, this scenario will focus on targeted
attacks using the shut-down command directed to a specific RT.

3.1.3.1 Criticality and Feasibility

Of all the attacks proposed by Stan et al., this attack is perhaps the most
dangerous. The ability to specifically target individual RT addresses or sub-
addresses for shutdown at the time of an attacker’s choosing is a very powerful
tool. In addition, the RT’s transmitter function can be restored by simply is-
suing a second mode message, offering some measure of cover to the attacker.

This is particularly concerning when one considers its sheer simplicity: a
single command word is all that is required to potentially shut down a critical
system, with absolutely no dependencies on the state of the bus or need to

24

3.1. Scenarios

consider timing. For an attacker assumed to already have a foothold on the
bus, this is as easy as it gets.

3.1.3.2 Attack Indicators

The obvious sign of this particular implementation of the command word DoS
scenario is the appearance of the transmitter shutdown command targeting a
particular RT, as suggested by Stan et al. [3]. The shutdown command consists
of a command word formatted as a mode message, with the corresponding
mode code. The attacker may also choose to send a second mode message to
re-enable the targeted RT’s transmitter and end the DoS [25].

Transmitter shutdown and start-up commands are rarely seen. The in-
tended use of these commands is to shut down an RT that is malfunctioning
or damaged and producing unintelligible data. This is expected to be an
uncommon occurrence in normal bus operations.

By monitoring the bus for the appearance of transmitter shutdown and
start-up commands, it would be possible to detect this attack. By detecting
both shutdown and start up, an analyst would be able to identify a specific
period during which communications from the targeted RT were impaired.

Even in the case where the commands are the result of normal bus opera-
tions and rather than an attack, transmitter shutdown commands are signif-
icant enough that an analyst should be informed of their occurrence. They
may be the only indication that a component has malfunctioned and requires
a maintenance action. Therefore, no distinction will be made between mali-
cious traffic from benign traffic in this scenario. The study of this distinction
may be an avenue for future work.

3.1.4 Status Word Data Leakage (Message Manipulation)

As described in Chapter 2, the status word bitfield contains three bits reserved
for use in future revisions of MIL-STD-1553. Until then, MIL-STD-1553B
dictates that these bits must be set to zero in order for the status word to be
valid [1]. Stan et al. suggest that these three bits can be used to leak data
surreptitiously between “cooperating threat agents” [3].

Interestingly, Stan et al. also highlight “a lack of status word monitoring”
as an enabler for this attack [3]. While status words with non-zero reserved
bits are not compliant with the standard and should be rejected, this may not
necessarily be enforced in the design of the BC. Acceptance of these words as
valid would allow bus operations to continue uninhibited, without indication
of data leakage.

25

3.1. Scenarios

3.1.4.1 Criticality and Feasibility

In terms of criticality, this method gives the attacker a comparatively high
bandwidth channel (3 of 16 bits per status word) to pass arbitrary data.
Moreover, because the data contained reserved field is routinely discarded by
bus-connected devices, there is not likely to be a disruption to regular bus
traffic or an obvious effect on the system. The existence of such a covert
communication channel is a serious threat to confidentiality and also provides
the attacker a dedicated communication path between bus-connected devices.

This attack does require some specialized knowledge to implement, but
is by no means beyond the capacities of a dedicated adversary. Presuming
the attacker has control of an RT, some reprogramming would be required to
allow setting the reserved bits before the word is transmitted. This could also
be done as part of a supply chain attack, building such capabilities in to an
RT before it is installed. Also, because no monitoring of the reserved field is
done, this routine need not be especially elegant in order to succeed.

Diversity was also considered in selecting this attack. While the other at-
tacks selected from Stan et al.’s list focus on denial of service or data integrity,
this one provides a covert path for the attacker to pass or extract data. Be-
cause the reserved bits are not typically processed by MIL-STD-1553 devices,
there is not likely to be an obvious indication that something is awry, making
detection even more critical.

3.1.4.2 Attack Indicators

This scenario will assume that the BC accepts status words that are not
compliant to the standard without raising an alert of its own.

An examination of all status words traversing the bus to confirm that the
reserved bits are indeed set to zero would make it possible to generate an alert
for words where this is not the case. Successfully doing so would eliminate
a key enabler to this scenario, namely the “lack of status word monitoring”
mentioned by Stan et al. [3].

3.1.5 Malfunctioning RT

While the scenarios proposed by Stan et al. highlight potential vulnerabilities
in the MIL-STD-1553B protocol that can be exploited to carry out a deliberate
attack, malicious actors are not the sole source of threats. Accidental or
negligent actions by well-meaning individuals such as technicians or operators
may also cause undesirable bus activity.

26

3.1. Scenarios

In the malfunctioning RT scenario, a notional bus-connected device is
stricken by a fault. This error causes the device to transmit words either
more or less frequently than it would ordinarily be expected to under similar
conditions.

3.1.5.1 Malfunction Indicators

In order to detect a malfunctioning RT exhibiting this behaviour, its traffic
volume must be compared to traffic observed on the bus prior to the suspected
malfunction.

The number of command and status words containing the RT’s address as
a ratio of overall bus traffic can be calculated for the baseline and compared
to the ratio present in a captured traffic sample. A significant deviation in the
ratios of the two samples may be indicative of a malfunctioning RT, producing
either more or fewer words than ordinarily expected [25].

A change in the RT’s response rate, i.e. command words without a cor-
responding status word, may also be considered indicative of anomalous be-
haviour [25].

3.1.6 Unassigned RT Address

The misconfiguration of a bus-connected device is a second example of poten-
tial bus disruption from an accidental threat source.

This scenario proposes a situation where a bus-connected device is ob-
served utilizing an RT address that is not assigned in the design of the bus.
This could be the result of an RT configuration error, of anomalous BC be-
havior, or of a device surreptitiously added to the bus in order to gain access,
as postulated by Stan et al. [3].

3.1.6.1 Malfunction Indicators

The detection of an unassigned RT can be made by observing all bus traffic
and capturing the RT address field of all command and status words. This
list can be compared to one yielded by the same bus in a known-good state
under similar conditions. Addresses appearing in the traffic sample but not
in the baseline state would be suspect [25].

If the analyst has a list of the assigned RT addresses, the task is simplified.
Rather than tracking each RT address seen, an observer can simply raise an
alert if a word is seen bearing an RT address not on the known list [25]

27

3.2. Detection Methods

3.2 Detection Methods

In reviewing the attack and malfunction indicators listed for each of the sce-
narios presented in Section 3.1, it becomes clear that signature detection is
not useful in all cases. A number of attack scenarios are more likely to be
detectable using anomaly-based methods.

In addition to a signature-based detection routine, two rudimentary anomaly-
based detection algorithms were implemented as part of this work. These are
Word Repetition Analysis and RT Frequency Analysis. If a detection is made
using either of these techniques, it can be assumed that richer implementations
such as MAIDENS would also be successful.

Further, although signature-based IDS may not able to make an initial
detection, anomaly-based techniques may provide information that can then
be used to guide the creation of a signature for secondary analysis.

This section will present a description of each of these three detection
methods, with the objective of implementing them as part of the automated
detection system described in Chapter 4. These functionalities are:

3.2.1 Signature-based Detection

Recall from Chapter 2 that signature-based detection involves comparing net-
work traffic to a list of signatures, or traffic patterns known to be indicative
of undesirable or malicious activity.

In the modern signature-based IDS used on IP-based networks, these sig-
natures are defined parametrically. Parameters for an IP packet could include,
for example, source and destination IP addresses, source and destination ports,
various flags implemented in the protocol, and the actual payload content. An
example of such an implementation is the ruleset of the popular Snort IDS,
where users define parameters in an ASCII text file, along with the action to
be taken if a detection is made [26].

In order to apply signature detection to MIL-STD-1553B data bus traffic, a
similar taxonomy of parameters must be defined. Fortunately, as discussed in
Section 2.1.2, the format of MIL-STD-1553B words is codified by the standard.
While command, status and data words have different layouts, the order and
size of these parameters is consistent within each word type.

From these defined field contents, it is possible to define parameters, similar
to those used for IP-based IDS, that can then be used to define signatures.

28

3.2. Detection Methods

3.2.1.1 Command Words

The parametric breakdown of command words is shown in Table 3.1. The
remarks column highlights any special values used to indicate alternate func-
tions.

Table 3.1: MIL-STD-1553B Command Word Fields

Name Bits Remarks

RT Address 5 0b11111 is the broadcast address.
T/R Bit 1 0b1 indicates transmit, 0b0 indicates receive.
Subaddress 5 A value of 0b00000 or 0b11111 indicates that

the command word is a mode message.
Word Count 5 If the mode function is used in the Subaddress

field, the Word Count field will contain a mode
code.

3.2.1.2 Data Words

As outlined in Section 2.1.2, the structure of data words is not codified in
the standard and is left to the discretion of the equipment manufacturer.
While it may be possible to parametrize the contents of a given data word
implementation in order to create signatures, this must be done on a case-by-
case basis.

Without a defined parametric structure, signatures can instead be created
at the level of individual bits.

3.2.1.3 Status Words

Table 3.2 lists the fields contained in a MIL-STD-1553B status word, along
with their lengths. All one-bit flags are set to 0b0 by default, or 0b1 if the as-
sociated condition is met. Any special considerations are noted in the remarks
column.

29

3.2. Detection Methods

Table 3.2: MIL-STD-1553B Status Word Fields

Name Bits Remarks

RT Address 5
Message Error 1
Instrumentation 1
Service Request 1
Reserved 3 Always set to 0b000.
Broadcast Command
Received

1

Busy 1
Subsystem Flag 1
Dynamic Bus Control
Acceptance

1

Terminal Flag 1

3.2.1.4 Metadata

In addition to the information contained in the words, there are a number
of other parameters that can be used to define signatures. This is typically
information about the word itself, which we will refer to as metadata.

Metadata can be collected by quantifying various aspects of the message
other than the message content itself. For example, gathering data on message
length will give an approximation of the amount of data a given RT normally is
normally asked to produce or consume. Collecting information about whether
any RTs are using the backup B bus to communicate can also shed light on
the system’s operation.

There are also multiple parameters relating to timing that can provide
useful information. Intermessage gap gives an approximation of bus usage,
with long gaps suggesting unused capacity. This can be used to determine
whether periods of high or low bus activity are cyclical or spurious. Because
the bus’s bitrate is a known constant, transmission length can be used to
approximate the number of words sent in a message without the need to
monitor the bus clock or to count bits1.

Some commercial data bus monitors will track and report on a number
of metadata parameters, enabling signatures based on metadata. Metadata
can also be generated through post-processing of recorded data, potentially

1Disregarding collisions, where two words attempt to occupy the same time slot.

30

3.2. Detection Methods

leading to richer data analysis than may be possible in near-real time aboard
an aircraft.

The use of metadata-based signature parameters will be further discussed
in Chapter 4.

3.2.2 Word Repetition Analysis

In typical bus operations, it would be rare to see two identical command or
status words appear sequentially. Other words may not be expected more than
a certain number of times within a defined time span. However, some of the
scenarios given in Section 3.1 depend on an attacker impersonating a device
by sending status words close in time to the legitimate ones. By monitoring
the bus for such occurrences, it may be possible to reliably detect an attack.

By maintaining a running list of all command and status words seen on
the bus, each subsequent command or status word observed can be compared
to the list to determine whether it has been seen previously.

This technique may be susceptible to false alarms, primarily from bus
operations depending on scheduled words. In such cases, it would not be
unusual to observe recurring data transfers. This risk can be reduced by
selecting a reasonable threshold for how recently a word has been seen: a
word last seen 50 words ago may be normal while one last seen only five
words ago may be suspicious. The selection of this threshold will depend on
the configuration data bus being observed.

Limiting the length of the word list also has the benefit of eliminating
performance issues in analyzing traffic over long periods of time. As more data
is observed and the list grows longer, it becomes increasingly computationally
expensive to compare new incoming words to the entire list. By setting a
threshold, the oldest word can be dropped when the most recent one is added
to the list, keeping the list at a set length.

Another parameter that can be adjusted to reduce the false alarm rate is
the number of matches required in order to raise an alert. For example, if two
identical words are indeed expected to be seen within the defined threshold,
the number of required matches that will raise an alarm can be set to three.

By adjusting both the length of the word list and number of matches
required to generate an alert, the analyst is able to fine-tune this detection
system to match the bus under observation. The selection of matches required
and list limit can be informed by the analyst’s knowledge of the bus, or simply
by trial and error against a data set known not to contain attack traffic.

While this technique is expected to be effective against command and
status words, data words have been excluded from this discussion. Because

31

3.2. Detection Methods

the structure of data words is at the sole discretion of each device’s designer,
the frequency of appearance of a given data word does not necessarily imply
anomalous activity. However, with knowledge of the data communications
scheme of each device of the bus, this analysis technique may be useful in
some cases.

3.2.3 RT Address Frequency Analysis

A number of the attack scenarios presented in Section 3.1 are expected to be
detectable by analyzing the frequency with which certain RT addresses appear
in traffic samples. Because RT addresses are contained in both command and
status words, their aggregation can provide insight into the bus’s operation.

By creating a list of every RT address observed in all command words
sent over the bus, and noting their frequency of use, the analyst can build a
picture of which devices the BC calls upon, and how frequently each is queried
relative to the others. The same is true for status words, providing insight
into which RTs are most responsive. Tallies for command and status words
can also be compared to determine how many command words for each RT
go unanswered by a status word.

This frequency data could also potentially be compared across multiple
traffic samples. In the case of a bus where data transfers occur on a periodic
basis according to a defined schedule, the traffic proportions for each RT would
be expected to be relatively stable.

A deviation from the established baseline could imply a change to the
system. If this change is unexpected, it could be indicative of a defective
device or of an attack. In either case, further investigation would certainly be
warranted.

A potential disadvantage of this technique is the requirement for configu-
ration stability. If the bus’s configuration has been altered in any way between
traffic captures, the traffic ratios for each RT may differ, invalidating compar-
isons between the two samples. Aperiodic data transfers may also introduce
some amount of variation if some legitimate bus actions appear in one data
set but not the other. A common source of these are crew actions, such as
lowering the landing gear or manually querying a sensor.

Careful consideration of external factors is also paramount, as both traffic
samples must reflect a comparable aircraft state. For example, a histogram
of words per device sampled during an active electronic warfare engagement
would be expected to show increased traffic to the RTs governing the sensors
than would be seen during routine cruise.

32

3.3. Conclusion

3.3 Conclusion

This section identified bus attack scenarios and proposed methods for detect-
ing these.

Section 3.1 identified six scenarios where vulnerabilities in the MIL-STD-
1553B protocol could have adverse effects. Four of these were direct reflections
of the work of Stan et al., while the remaining two were devised by the author
to reflect general bus malfunctions.

Building on these scenarios, Section 3.2 proposed three detection methods
adapted from the broader NSM context. While the focus of this work is
on signature-based detection, two anomaly-based methods were proposed for
scenarios where signature-based detection may not be useful.

Chapter 4 will discuss how the detection methods discussed in Section 3.2
were implemented in software. The scenarios proposed in Section 3.1 will be
revisited in Chapter 5, where the software implementation will be validated
against each one.

33

4 Automated Detection System
Design, Implementation and
Testing

Starting from the scenarios and detection methods outlined in Chapter 3, this
chapter will discuss the design and implementation of a prototype automated
detection system, to be called Otto.

Recall that Section 3.1 introduced six scenarios where the operation of the
MIL-STD-1553B data bus could be impaired, either accidentally or by delib-
erate means. From these scenarios, three detection methods were identified
and presented in Section 3.2. This chapter will document the implementation
of these three detection methods into an semi-autonomous detection system,
capable of analyzing bus data and alerting an analyst to the presence of traffic
that may be indicative of undesirable activity.

In the field of IP-based networking, such automated detection systems are
typically referred to as Intrusion Detection Systems, or IDS, as discussed in
Section 2.2. While the creation of a fully featured IDS is beyond the scope
of this work, this chapter will describe a proof of concept to demonstrate the
feasibility of the detection methods proposed in Chapter 3.

A number of initial design considerations will be presented, including meth-
ods for collecting bus data for analysis. These will give way to a high-level
functional overview of Otto, followed by detailed discussions of each of the
program’s key components. The chapter will close with a discussion of path-
ways for future development to add features to the prototype and increase its
robustness.

34

4.1. Design Considerations

4.1 Design Considerations

4.1.1 Real-Time Detection vs Post-Mission Analysis

This work will consider a post-mission analysis construct, where recorded data
bus traffic is replayed and searched for indicators of compromise. This decision
enabled the independent development of the proof of concept implementation,
without reliance on physical access to an aircraft or a high-fidelity data bus
simulator.

Post-mission analysis is also a more likely use case. Data is routinely
captured on missions for later processing. There is little advantage to in-flight,
as the operator’s immediate action options are limited, and such actions may
be to the detriment of the overall mission.

4.1.2 Data Source

The first consideration in designing the detection system is the source of the
data to be examined. There are a number of data bus monitors on the market,
each with features and capabilities beyond the basic recording of raw data.

The ENET2-1553, manufactured by Alta Data Technologies, is a com-
mercially available MIL-STD-1553 data bus monitor. The feature that sets
the ENET2-1553 apart is its ability to translate MIL-STD-1553B traffic to
Ethernet packets. While the primary intended use of this device is to add
MIL-STD-1553B communication capability to modern computing devices us-
ing Ethernet, it also includes a fairly robust bus monitor mode [27].

In brief, the ENET2-1553 in bus monitor mode observes the bus and listens
for the types of bus interactions described in Section 2.1.3, such as data trans-
fers or mode messages. It then generates a representation of each interaction
in its entirety, adds other potentially relevant metadata about the interaction,
wraps this payload in a UDP/IP packet and sends the packet over Ethernet to
a user-specified IP address and port. The end user can then process this UDP
stream to recover the words from the bus as well as the metadata [28, 29].

4.1.2.1 UDP Packet Construction

As mentioned in the previous section, the ENET2-1553 constructs a UDP
packet from the data it gathers from each bus interaction. The payload of
this packet is formatted using the Alta Passive Monitor Protocol (APMP),
whose structure is illustrated in Figure 4.1 [28].

The APMP adds a header containing a sequence number, a server status
word, a field containing the ASCII representation of the word “ALTA” to

35

4.1. Design Considerations

Figure 4.1: Alta Passive Monitor Protocol Packet Format. Reproduced from
[28].

be used as a data integrity check, and payload size (fixed at 196 bytes for
MIL-STD-1553 data) [28]. While the remainder of the APMP header largely
consists of reserved fields, it also provides confirmation that the payload con-
tains MIL-STD-1553 data, as this protocol is also used to packetize ARINC
429 data.

At the end of the APMP packet lies a 196 byte payload structured accord-
ing to a second protocol known as the “APMP 1553 Common Data Packet”,
or CDP. The format of CDP is shown in Figure 4.2 [29].

The CDP is segmented into 32-bit fields containing different information,
but the ones of interest in this case are the CDP 1553 Words. Each CDP
contains up to 36 CDP 1553 words: two command words, two status words
and 32 data words. The requirement for multiple command and status words is
driven by RT-RT data transfers. Recall from Section 2.1.3 that such transfers
require two command words: one to order the receiving RT to listen, and one
to order the sending RT to send. Each RT will also generate a status word,
requiring the CDP to contain two status words. Unused CDP 1553 words are
assigned a value of 0xFFFFFFFF.

The first 16 bits of the CDP 1553 word contain the 16-bit representation
of the word observed on the MIL-STD-1553B data bus. The following 16
bits contain assorted metadata: gap time value, flags for errors observed by
the ENET2-1553, and an A/B bus flag [29]. This latter flag is useful for

36

4.1. Design Considerations

Figure 4.2: Common Data Packet Format. Reproduced from [29].

determining whether the word was observed on the primary (A) or backup
(B) bus in a dual-redundant bus configuration.

While not used in this prototype implementation, the CDP status word –
not to be confused with the MIL-STD-1553 status word – contains a number of

37

4.1. Design Considerations

flags used to indicate various errors as well as the observed bus communication
regime, e.g. BC-RT, RT-RT, spurious message. This information may be
useful for future work.

4.1.2.2 Data Collection

While the stated intent of the APMP is to provide a UDP packet stream
to an end user for processing by their preferred means, the transmission of
packetized bus data enables the use of network packet capture and replay
tools. Capturing the transmission of APMP packets allows the bus data to
be preserved for processing at a later time.

By parsing the recorded packet captures, it is possible to extract the orig-
inal bus data and the metadata. This information is sufficient to implement
each of the three detection methods proposed in Section 3.2. Packet cap-
tures also have the advantage of abstracting away the actual MIL-STD-1553B
data bus: once recorded, the traffic capture can be replayed and analyzed as
required, eliminating the need for a running bus. This is an important con-
sideration as recorded traffic can be used in offline analysis, including forensic
investigation.

For these reasons, Otto will source its data from packet capture files col-
lected by recording the output of the ENET2-1553. In the future, it should
be possible to adapt the system to process incoming UDP data in realtime
rather than from a packet capture but this is beyond the scope of the current
work.

4.1.3 Hardware

As this work focuses entirely on constructing a proof of concept implementa-
tion, the initial prototyping of Otto was done using standard desktop com-
puters.

It is anticipated that a detection system monitoring an active MIL-STD-
1553B bus in real-time aboard an aircraft will most likely need to run in a
resource-limited environment. Because space, weight and power are typically
at a premium aboard aircraft, the system could be expected to run on a low-
power, lightweight computing platform such as a Raspberry Pi, or to share
existing hardware. While these considerations are beyond the scope of the
development of a prototype, they may influence future design decisions.

38

4.1. Design Considerations

4.1.4 Software

As Otto will be designed as a software solution, the choice of language and
operating system will influence the architecture and implementation of the
system.

4.1.4.1 Development Language

The decision to use packet capture files as a data source led to the selection
of Python for Otto’s development. Python’s scapy library is commonly used
to automate packet analysis functions. It is well documented and there are a
multitude of examples available for study.

4.1.4.2 Operating System

The choice of operating system for the development of Otto was also guided
by the potential for migration to an embedded system. As many embedded
systems commonly run a variant of Linux, Otto was developed to run on
this. Specifically, a Kali Linux 2016.1 virtual machine provided the primary
development and test environment.

An artifact of the selection of Python for development of Otto is that
Python interpreters are available for a wide variety of operating systems. OS
interoperability was tested in an informal manner toward the end of the devel-
opment process. Otto ran with no discernible errors within Microsoft Windows
Subsystem for Linux using Ubuntu 14.04.5 LTS on Windows 10. No attempt
was made to run Otto in a native Microsoft Windows environment.

39

4.2. Execution Flow

4.2 Execution Flow

This section will discuss the details of Otto’s operations from a dynamic per-
spective, broken down by functional block. Section 4.3 will present each of
these blocks and how data is passed between them.

The flowchart shown in Figure 4.3 illustrates Otto’s execution flow.

Figure 4.3: Otto High-Level Execution Flow

4.2.1 User Configuration

Figure 4.4: User Configuration

Otto is run from the command line. A path to a packet capture (pcap)
file containing APMP-formatted packets is required as an argument.

Upon running Otto, the user is presented with options for the configuration
of the signature detection and word repetition analysis functions.

For signature analysis, the user is asked to provide a path to files containing
signatures for each of command, status and data words. Each signature file
is parsed and loaded into Otto, and the parsed contents are displayed to the
user as confirmation of successful loading. While signature parsing occurs at
this time, a detailed explanation of the process will be given alongside the
description of the signature detection routine in Section 4.2.5. Specifying an
invalid file name raises a warning message and disables that portion of the
signature detector.

The user is then prompted on whether or not to enable word repetition
analysis. If so, the user is queried for the size of the window and number of

40

4.2. Execution Flow

matches to trigger detection. The introduction of the word repetition analysis
concept in Section 3.2.2 provides context for the selection of these options.

4.2.2 Packet Parsing

Figure 4.5: Packet Parsing

Otto’s packet parsing function takes place automatically without user in-
teraction. The intent of this function is to read the APMP UDP packets
recorded in the pcap file specified and extract the data for analysis by the
other software functions.

Otto is written such that this parsing function can be easily replaced by
another, should APMP-formatted data not be available. Other possible op-
tions include a real-time data bus parser, or the ingestion of data captured by
other bus monitoring solutions.

The packet capture is assumed to be formatted according to the Alta
APMP. Otto does provide an elementary measure of filtering by discarding
any non-UDP packets contained in the packet list imported from the pcap file.
While it may be possible to integrate more advanced filtering into Otto, this
is beyond the scope of this prototype.

MIL-STD-1553 words are extracted by converting the UDP payload into
a string, slicing it down, converting the ASCII-encoded data into a binary
string, and adding leading zeroes as required. The end result of this process
is a 32-character string of ones and zeroes: the 16 bit word and 16 bits of
metadata, including the A/B bus flag. The words are further sliced to extract
the values of each word’s constituent fields (refer to Figures 2.1, 2.3 and 2.2).

The first packet is now parsed and ready for analysis.

41

4.2. Execution Flow

4.2.3 Signature-Based Detection

Figure 4.6: Signature Detection Routine

Otto’s signature detection functionality is implemented across two separate
functions. The first function reads the signature file prepared by the user and
loads the contents. The second compares values between the word observed
in the pcap and the signature and reports any matches.

4.2.3.1 Signature Definition

Recall from Section 3.2.1 that signatures were defined as parametrically-defined
MIL-STD-1553B words and metadata that the operator wishes to be alerted
to.

Otto ingests signatures in the form of comma-separated value (CSV) files.
CSV files were selected as a medium as they are commonly used in configu-
ration files, are easy to work with, and can be managed using a number of
common software tools.

The CSV files are organized with each row representing a signature, while
each column represents a parameter. The signature files provided with Otto
include a header row specifying each parameter and a range of valid values.
Table 4.1 is a representation of a command word signature CSV file, loaded
with sample data.

42

4.2. Execution Flow

Table 4.1: Sample Command Word Signature File

Address
(0-31)

TR Bit
(T or R)

Subaddress / Mode
(0 to 31)

Word Count / Mode
Code (0 to 31)

Bus (A or B)

5 T 12 3 A

18

R B

T 0 19

T 31 19

In this example, the operator has defined five signatures.
The first signature will flag any command words seen on the primary (A)

bus directing subaddress #12 on RT #5 to transmit 3 data words. If any one
of these parameters does not match, no alert is to be generated.

The second signature is much more general. This one calls for the reporting
of any command words sent to RT #18, regardless of the rest of the content,
or what bus it was seen on. Because blank values are treated as wildcards, an
RT address match will result in a detection.

The third signature also employs wildcards, but defines two parameters
that must be matched: Receive commands sent over the backup (B) bus.
Any combination of defined values and wildcards can be used in to define a
signature.

The fourth and fifth signatures demonstrate an example of the care that
must be taken when the operator is creating signatures. Both of these signa-
tures are intended to search for mode messages instructing any RT to transmit
a BIT word. However, as previously discussed in Section 2.1.3, there are two
values used in the command word Subaddress/Mode field to indicate a mode
message: 0b00000 (0) or 0b11111 (31). In order to cover both possible cases,
two signatures are required. It is important that the operator consider whether
multiple methods are possible to achieve an effect, and create signatures ac-
cordingly.

4.2.3.2 Signature Loading

Signatures from the CSV files are loaded into Otto using functions from the
CSV library for Python. With the file open, each row is read into a Python
list, skipping the first containing the headers.

43

4.2. Execution Flow

The user-readable values entered in the CSV file are converted into their
binary representation and stored. In addition to the ones and zeroes, x char-
acters are used to represent wildcard values. For values normally five bits in
length such as RT address and Word Count, a wildcard would be represented
as xxxxx, while simple flags take only x.

Some error-checking has been added to the binary conversion logic to reject
invalid values for the single-bit flags. In the future, this could be expanded
to provide more rigorous error-checking, including prompting the user for cor-
rected parameters.

As each signature is parsed, it is added to a global list variable. Once
all signatures are loaded, Otto is ready to begin comparing signatures to the
observed bus traffic.

4.2.3.3 Traffic Comparison

The objective of the traffic comparison functions is simple: to compare the
MIL-STD-1553B word to the list of signatures. If a match is detected, the
details are passed off to a detection handling function for verification and
reporting. This function will be discussed in Section 4.2.7.

A first test is done to verify if all fields of command word and the bus flag
contain all ones. Recall from Section 4.1.2.1 that 0xFFFFFFFF is the null-value
for a CDP 1553 word [29]. While this check effectively skips null-value CDP
words, it will also skip over a malformed MIL-STD-1553B command word
containing all ones broadcast on the A bus.

The first comparison is made between the RT address fields in the traf-
fic and the signature. If they match, a secondary verification is done on the
remaining signature fields. If all remaining signature fields either match the
command word under evaluation, or are set to the wildcard value of x, a de-
tection is confirmed and the detection handling function is called. Otherwise,
there is no match and the traffic comparison function carries on.

The T/R bits are then compared in the same way. This process contin-
ues until each of the fields in the word has been compared, with secondary
verification of the remaining fields in the case of a match.

4.2.4 Word Repetition Analysis

The word repetition analysis function’s purpose is to make a list of words
seen on the bus, and to consult that list for duplicate entries. While the
command word repetition analysis function is discussed here, a nearly identical
function carries out the same task for status word repetition analysis. Data

44

4.2. Execution Flow

Figure 4.7: Word Repetition Analysis Routine

word repetition analysis is not done, as, due to their arbitrary makeup, the
repetition of identical data words is not necessarily suspicious.

The command word repetition analysis function is called after each packet
is parsed, with the two extracted command words and the sequential packet
ID number as parameters.

Using the data contained in the command word parameters, a string of zero
and one characters is built to create a single string representing the command
word. This string is then tested for the null value. Should the data be null,
the command word is not added to the list and the function moves on.

If the command word is non-null, the list is searched and instances of the
same string are counted. If the number of matches equals or exceeds the
user-defined limit, the detection handler is called to raise an alert. This same
process is carried out for the second command word in the packet.

The final action taken by the function is to cull the command word list
down to the maximum length specified by the user, i.e. the window size.

4.2.5 RT Address Frequency Analysis

Figure 4.8: RT Frequency Analysis Routine and Final Reporting

The implementation of RT address frequency analysis is relatively simple
but nonetheless powerful. After each packet is parsed, the binary representa-

45

4.2. Execution Flow

tion of all RT addresses seen in both command and status words is appended
to a global list.

After all packets have been parsed and analyzed, the number of occurrences
for each unique address is tallied in preparation for the final reporting phase,
discussed in the next section.

4.2.6 Final Reporting

After all packets have been parsed, the final reporting stage is used to carry
out any analysis requiring an overview of the complete data set. In the current
prototype implementation, this is limited to reporting the output of the RT
address frequency analysis built in the previous section.

The global lists of RT addresses are used to count the instances of each
RT address and order them by frequency, constructing histograms of the RT
addresses observed in both command and status words. For ease of interpre-
tation, the RT addresses are converted from their binary representation to a
decimal value for reporting. Each address is displayed in order from most to
least frequent, along with the count for each.

4.2.7 Detection Handling

The detection handling function exists to centralize Otto’s alerting. It is
called when a detection is made by the signature-matching and word repetition
detection functions.

Otto alerts the user of detections by displaying text in the terminal. Writ-
ing these to a log would only require a simple modification.

The detection handling function takes a large number of parameters. The
first of these is is used to indicate the type of detection, which in turn governs
the output produced. Five possible cases are implemented: command, status
and data word signature matching, command and status word repetition.

The rest of the parameters are the fields that compose MIL-STD-1553B
command and status words, and the bus discriminator flag. The packet ID
number is passed, as well as the signature that triggered the detection, if
applicable.

Signature match reports begin with the Packet ID number and the Signa-
ture ID number, allowing the user to identify which packet contains a match to
what signature. The content of the MIL-STD-1553B word parameters match-
ing the fields in the signature are then displayed.

Word repetition detections are more straightforward, reporting the full
content of the word causing the detection, and the packet ID of the word that

46

4.3. Structural Design

caused the threshold to be exceeded. This information can be used by an
analyst to begin further investigation.

4.3 Structural Design

While Section 4.2 discussed Otto’s functioning at a conceptual level, this sec-
tion will provide a brief overview of the software’s structure. A more detailed
discussion, including imported modules, variables, classes, and the arguments
passed in function calls, is available in Appendix A.

4.3.1 Overview

As discussed in Section 4.1, Otto is written in Python. Figure 4.9 illustrates
each of the functions in the program and the call relationships.

4.3.2 main

The main function is both the starting point for the program and where it
eventually terminates. It has three main purposes: user configuration, calling
the packet parsing function, and final reporting.

The first few lines of the function display details such as the program
name, version number and authorship statements. Next the user is prompted
to enter paths to command, status and data word signature files, which are
passed to the signature loading functions: loadcommandsig, loaddatasig,
and loaddatasig. The user is also prompted for the parameters that govern
the command and status word repetition detection routines.

The main function then calls the parsePCAP function, which governs packet
parsing. This function is explained in Section 4.3.4.

Once packet parsing is complete, the function’s final action before the
program terminates is to generate and display the command and status word
histograms generated through RT frequency analysis.

4.3.3 loadcommandsig, loadstatussig, loaddatasig

The loadcommandsig, loadstatussig, and loaddatasig functions are simi-
lar, with each designed to interpret command, status and data signature files
respectively.

In each, the user-specified CSV file is opened and the data is extracted
row by row. The human-readable information in each cell row is converted to

47

4.3. Structural Design

Figure 4.9: Diagram of Function Calls Within Otto

a representative string of binary ones and zeroes according to the MIL-STD-
1553 protocol.

Once the final cell in the row is parsed, the resulting strings are concate-
nated and the new string is written as an element in a list variable. These
elements are what is ultimately compared to the data bus traffic.

4.3.4 parsePCAP

The parsePCAP function is where MIL-STD-1553 data is extracted from the
APMP-formatted CDP packets. These packets are parsed one at a time.

Using imports from the scapy library, the UDP payload of each packet is
extracted and sliced to extract the CDP fields: command word 1, command
word 2, status word 1, status word 2 and data words 1 to 32. Each of these

48

4.3. Structural Design

are further sliced to extract each of the applicable MIL-STD-1553 fields as
well as the A/B bus flag. These are all converted into binary strings, as with
the command word signatures.

With the words now extracted from the packet, the signature detection
and word repetition detection functions are called. A final call is made to a
function that logs all command and status words for RT frequency analysis.

After all function calls have returned, the parsePCAP function carries out
the same operation on the next packet. After the last packet has been parsed,
the function returns to main.

4.3.5 cwsiglogic, swsiglogic, dwsiglogic

As the names imply, these functions are responsible for carrying out compar-
isons between the data extracted from the current packet and the signatures
previously loaded. These are called in order by the /codeparsePCAP function.

Starting with the first signature in the list, the MIL-STD-1553 fields are
compared to the same fields in the packet. There is logic in place to reject the
CDP null value and to account for wildcards.

If a match is observed, the detection handling function is called. This
function will be described in Section 4.3.8.

After all signatures have been compared to the packet data, these functions
return to the parsePCAP function.

4.3.6 cwrepeatdetector, swrepeatdetector

After all three signature detection functions have run, the parsePCAP function
will call the two word repetition detection functions.

The command or status word will first be compared to a list of words pre-
viously observed on the bus. If the number of matches exceeds the threshold
specified by the user, an alert is generated using the detection function.

The word is then appended to the aforementioned list, the length of which
is then checked. If the length exceeds the maximum number of words specified,
i.e. the “window size”, the oldest word on the list is culled.

As with the signature detection functions, once the repetition analysis is
complete, these functions return to the parsePCAP function.

4.3.7 rtFreqAnalysis

This function exists to tally all command and words seen on the bus. It simply
generates a string of binary characters representing the word and appends it
to a global list variable.

49

4.4. Testing

These list variables are ultimately used to generate the histogram at the
end of the main function, as discussed in Section 4.3.2.

4.3.8 detection

The detection function’s purpose is to generate alerts when detections are
raised by the signature or word repetition detection logic.

If the detection is a signature match, the packet number is displayed, along
with which word caused the detection, e.g. “Packet #: 36, Command Word
1”. The value of each matched MIL-STD-1553 fields is also displayed.

For word repetition detections, the packet and word numbers are displayed,
along with the values in each MIL-STD-1553 word field.

While this function was designed to print alerts to the console, it was
intended to be adaptable to perform other functions such as writing to a log.

Once the alert has been displayed, the function returns and the detection
logic carries on where it left off.

4.4 Testing

Before applying Otto against the scenarios discussed in Chapter 3, a brief
testing phase is required to ensure that the detection functions operate as
designed. To confirm this, each of the three main detection functions will be
exercised using two packet capture files containing MIL-STD-1553B data bus
traffic: one from a simple bus to test basic functionality, and one from a more
complex bus for testing in a more realistic environment.

This section will discuss the setup used to generate and capture data for
analysis, and the experiments used to test the signature-based detection, word
repetition analysis and RT address frequency analysis functionalities. The
experiment setup used in this chapter will also be applied to the validation
phase discussed in Chapter 5.

4.4.1 Experiment Setup

Before Otto can be used, establishing a reliable source of MIL-STD-1553B
data bus traffic is essential. The quality of the data analyzed is a fundamental
requirement before detection work can begin.

While traffic captured from a live data bus is the ideal source, and indeed
a reasonable end state for Otto, a simulated data bus is used to produce traffic
for analysis within the context of this work. The experimental setup described

50

4.4. Testing

in this section will also be used in the validation phase, as will be discussed
in Chapter 5.

The experiment setup phase covers of two key topics: the generation and
capture of MIL-STD-1553B traffic, and conversion of the captured information
to a format usable by Otto.

4.4.1.1 Data Bus Traffic Generation

A commercial data bus simulator is used to generate MIL-STD-1553B data
bus traffic suitable for testing. BusTools by Abaco Systems (formerly Gen-
eral Electric Intelligent Platforms) is normally used for prototyping buses and
testing new configurations. While the software itself is intuitive and user-
friendly, BusTools can be used to accurately represent even the most complex
bus arrangements.

The bus is designed using a drag-and-drop interface to place and connect
BCs, RTs and bus monitors. The behaviour of each device can then be in-
dividually configured. For instance, RTs can be made to return pre-scripted
data when polled, including different streams depending on the subaddress
requested.

The bus controller’s interactions are also configurable: mode messages and
data transfers are scripted, including polling frequency and the amount of data
to be transferred for each RT. Aperiodic commands are also supported, relying
on conditions rather than strict timing.

On the hardware side, BusTools interfaces with a number of devices to
provide a breakout to standard data bus connectors. These can be used to
incorporate actual MIL-STD-1553B devices for hardware-in-the-loop testing.2

They also provide a convenient connection point for an external data bus
monitor. Figure 4.10, adapted from [31] shows the Abaco R15-USB, a USB-
connected breakout device used in this experiment.

BusTools is useful for prototyping data buses or reproducing existing sys-
tems in a laboratory environment, the software also ships with a number of
pre-configured bus scenarios. These are intended to be used for demonstra-
tions and functional testing. Two of these pre-configured scenarios will be
used in the testing phase, as they are conveniently available data sets, and
produced independently of the experiment.

The selected scenarios are:

2Hardware interfaces for other bus types, including ARINC 429, are available from the
manufacturer.

51

4.4. Testing

Figure 4.10: Abaco (formerly GE) R15-USB.

ONE RT The simplest possible bus configuration: a bus controller connected
to a single RT. The bus controller periodically requests a data transfer
from the RT. Due to its simplicity, this scenario is ideal for initial tests.

FOUR RT This scenario is slightly more complex: the bus now consists of
a bus controller requesting data from four RTs. RT-BC, and RT-RT
data transfers are present, both periodic and aperiodic, as well as mode
messages. This scenario is designed to represent aircraft instruments
reporting data to a mission computer, as well as a representation of the
housekeeping mode messages typically seen on a bus.

4.4.1.2 Traffic Capture

As previously discussed, the ENET2-1553 is used to capture MIL-STD-1553B
traffic, packetize it into a UDP/IP format and send it out over Ethernet. A
detailed overview of how this is done was presented in Section 4.1.2. This sec-

52

4.4. Testing

tion will focus on the setup of the ENET2-1553, and the process for capturing
the data from the network and saving it to a packet capture (pcap) file.

The ENET2-1553 is configured using AltaView. This software provides
a number of features, but the most relevant to this work is the ability to
select bus monitor mode, used to generate APMP packets [32]. The AltaView
computer is connected to the ENET2-1553 over Ethernet, as will be shown in
Section 4.4.1.3.

The traffic generated by the ENET2-1553 is passively captured using
tcpdump, using the following arguments:

tcpdump -ns 0 -i eth0 ‘src host 192.168.0.128’ -w filename.pcap

For ease of physical configuration, the packet capture is executed on the
AltaView computer. While both AltaView and the traffic capture are run-
ning on the same machine, the two functions are entirely independent of one
another.

Once the packet capture is complete, a verification of the resulting pcap
file is done using Wireshark. The APMP plugin is used to confirm that all
traffic in the capture is actually APMP traffic. This was indeed the case for
all packet captures made in the course of this work. If the ENET2-1553 was
to have generated any non-APMP traffic, further filtering would be required.
This could be done manually within Wireshark, or by modifying the tcpdump

filter attributes.
Using this setup, 36 packets were captured for the ONE RT scenario, and

341 for FOUR RT.

4.4.1.3 Physical Layout

Figure 4.11 illustrates the physical layout of the experimental setup. A USB
connection is shown from the ENET2-1553 to the AltaView computer. This
connection is simply to provide 5V power, and no data is exchanged over it.

The physical connection to the data bus is made using the Abaco R15-
USB. It provides a standard physical breakout of the MIL-STD-1553B data
bus simulated by BusTools. The ENET2-1553’s bus leads are connected to
this, taking care to properly connect the primary and backup bus. Swapping
these will result in the observed traffic being tallied against the wrong bus.

Ethernet network connectivity is also required for the ENET2-1553 to
output the packetized data. The built-in Ethernet cable was connected to a
standard Ethernet switch.

53

4.4. Testing

Figure 4.11: Experimental Setup Layout

The final item in the test setup is the AltaView computer, which is con-
nected to the same network switch via Ethernet.

4.4.2 Signature-Based Detection

Signatures are entered into the command or status word signature file and
Otto is run to process the pcap. Alerts are expected from signatures where the
entered characteristics are known to be present in the data, while signatures
not present should never raise alerts. Additionally, no false alarms should be
observed.

4.4.2.1 ONE RT

Because the ONE RT scenario is fairly basic, there are a limited number of
signatures that can be expected to generate alerts. However, this basic test is
a good starting point for ensuring functionality.

Studying the ONE RT pcap file in Wireshark reveals that the command
word sent is identical in every case: a transmit request to RT #1, subaddress
#2 for four words of data, sent over the A bus. Similarly, the status word
is always RT #1 replying with no flags prior to sending the data, again over
the A bus. Because every packet is similar, a signature crafted to detect any
of these parameters is expected to return 36 detections, one for each packet.
Conversely, signatures containing none of these parameters will generate no
detections.

54

4.4. Testing

Command Word Signature-Based Detection Table 4.2 shows the com-
mand word signatures chosen to test the ONE RT scenario. Recall the signa-
ture definition described in Section 4.2.3.1: each line contains a signature, and
each column represents a different parameter. While signature numbers have
been added to the table for ease of reading, these are not defined in the CSV
file. Rather, they are assigned automatically by Otto during the signature
loading phase described in Section 4.2.3.2

Table 4.2: ONE RT Command Word Signature File

Number Address
(0-31)

T/R Bit
(T or R)

Subaddress /
Mode (0 to 31)

Word Count / Mode
Code (0 to 31)

Bus
(A or B)

1 1

2 2

3 T

4 R

5 2

6 3

7 4

8 5

9 A

10 B

11 1 A

12 1 B

The command word signature file was crafted to test each individual pa-
rameter with both a matching and non-matching value. It is expected that odd
numbered lines will raise alerts, while even lines will not. The final two lines
test the ability to match multiple parameters in single signature. Again, the
first of these should result in matches, while the second should never appear.

Figure 4.12 illustrates a typical Otto session. Once invoked from the com-
mand line, some boilerplate information is displayed, including title, version
number, a brief description and an ownership statement.

The user is then prompted to enter a command word signature file name,
with a default option of command.csv. Upon loading the file, Otto prints each
signature to console, starting with a sequentially assigned signature number,
followed by the 17-bit string representation of each signature. In this string,

55

4.4. Testing

Figure 4.12: Command word signature loading for ONE RT

the x character denotes an unspecified parameter, which is treated as a wild-
card. This string is what is ultimately compared to the data lifted from the
pcap file. By grouping the bits according to the word layout and converting
the binary representation of the numerical fields to decimal, these strings can
be compared to the signatures defined in Table 4.2. In this case, these strings
are confirmed to have been correctly generated.

Status and data word signatures are loaded in a similar fashion. Provid-
ing an invalid signature file path opts out of doing signature detection. The
subsequent inputs toggle command and status word repetition detection.

Figure 4.13 shows a sample of the output produced when a signature match
is detected. The user is shown the packet where the detection is made, which
of the two command words within the packet triggered the detection, which
signature was detected, and a short summary of the detection.

56

4.4. Testing

Figure 4.13: Command word signature detection results for ONE RT

Combing through the output, the results matched the initial expectation,
with only odd-numbered signatures raising alerts and no even-numbered sig-
nature alerts observed.

In order to check for false alarms, a random sample of alerts were manually
analyzed, comparing each to the raw packet dissected in Wireshark using the
Alta CDP plugin. For all alerts investigated, the signature and packet data
were a match, confirming the validity of the alert. Another random sampling
of packets for manual analysis revealed no false negatives. While we realize
that this is not exhaustive testing, we are able to confirm that there are no
programmatic reasons why alerts would not be raised.

Status Word Signature-Based Detection Table 4.3 shows the contents
of the status word signature file, with signature numbers added for clarity.

57

4.4. Testing

Table 4.3: ONE RT Status Word Signature File

Number Address E I SR Reserved BC B SF DBCA T Bus

1 1

2 3

3 N

4 Y

5 N

6 Y

7 N

8 Y

9 0

10 1

11 N

12 Y

13 N

14 Y

15 N

16 Y

17 N

18 Y

19 N

20 Y

21 A

22 B

23 1 A

24 2 B

The status word signature file was designed similarly to the command word
signature file, with odd lines generating alerts and even lines generating none.

This was indeed the case: Otto produced a long list of detections against
odd-numbered signatures, and no even-numbered signatures to be seen. This
test can therefore be deemed successful.

The partial output shown in Figure 4.14 illustrates alerting for single-
parameter signatures (#21) and multiple-parameter signatures (#23).

58

4.4. Testing

Figure 4.14: Status word signature loading for ONE RT

4.4.2.2 FOUR RT

As mentioned, the traffic contained in the FOUR RT scenario is more diverse
than the ONE RT capture, containing a number of data transfers to and
from different RTs, as well as mode messages and messages sent over the B
bus. With the ONE RT testing confirming basic detection functionality, the
FOUR RT tests focused on exercising the detection of these more complex
events.

Command Word Signature-Based Detection The command word sig-
nature file used in this test is replicated in Table 4.4.

Table 4.4: FOUR RT Command Word Signature File

Number Address
(0-31)

T/R Bit
(T or R)

Subaddress /
Mode (0 to 31)

Word Count / Mode
Code (0 to 31)

Bus
(A or B)

1 5

2 B

3 0

4 31

In this file, the first rule is never expected to generate an alert, as only
RT addresses 1 to 4 are present on the bus. The second rule should generate
occasional alerts, as the traffic sample is known to contain some B-bus activity.
The third and fourth rules work together to detect mode messages. Two rules
are required, as both 0 and 31 in the subaddress/mode field indicate a mode
message.

59

4.4. Testing

A sample of the alerts yielded by this ruleset against the FOUR RT traffic
sample is shown in Figure 4.15.

Figure 4.15: Command word signature detection results for FOUR RT

Manually reviewing each alert confirmed the expected behaviour described
above. No alerts generated by the first rule were seen. A number of B-
bus traffic mode message alerts were generated, which were confirmed using
Wireshark. A random sampling of packets were dissected in Wireshark to
search for false negatives, none of which were noted.

Status-Word Signature-Based Detection The status word signature file
used is similar to the one used against the ONE RT scenario, pared down to
avoid repeating tests done against the previous data file. The contents of the
file are shown in Table 4.5.

Table 4.5: FOUR RT Status Word Signature File

Number Address E I SR Reserved BC B SF DBCA T Bus

1 7

2 Y

3 Y

4 7

5 Y

6 Y

7 Y

8 Y

9 Y

10 B

11 7 B

60

4.4. Testing

The output generated is shown in Figure 4.16. As expected, no detections
were made: Otto proceeds directly from the “Loading...” indicator to the RT
frequency analysis output, which will be further discussed in Section 4.4.4

Figure 4.16: Status word signature detection results for FOUR RT

With both the ONE RT and FOUR RT scenarios producing the expected
results, the status word signature detection mechanism was deemed to be
correctly implemented.

4.4.3 Word Repetition Analysis

The ONE RT and FOUR RT pcap files lend themselves well to testing of the
word repetition analysis function. Both scenarios cycle through a scripted
sequence of bus interactions, and this cycle causes words to be repeated. This
assures repetition in the files which can be detected.

4.4.3.1 ONE RT

As the ONE RT scenario consists entirely of one RT-BC data transfer on a
loop, it is an ideal cast for a basic functionality test.

Command Word The only command word expected to be seen in this
capture is the RT-BC data transfer command. Therefore, any threshold set
to 2 or greater should yield a detection, regardless of the selected command
word set size.

Figure 4.17 shows the result when the threshold is set to 2. As expected,
alerts were generated for every command word in the capture from the second
packet onward.

This test was repeated with thresholds of 3, 4 and 7 with arbitrary com-
mand word set sizes in order to verify this behaviour. As expected, detections

61

4.4. Testing

Figure 4.17: Command Word Repetition Analysis for ONE RT

were made on every packet, starting from the third, fourth and seventh re-
spectively.

This test successfully demonstrates the basic functioning of command word
repetition analysis.

Status Word As in the previous test case, every interaction captured con-
tains the same status word. The expectation is therefore the same: a detection
on every packet beginning from the user-selected threshold.

Figure 4.18 shows the partial output of the test with the threshold set to
5. As expected, an alert is generated for each packet from the fifth onward.3

This test was again repeated with arbitrary threshold values, and in each
case, the packet number of the first alert coincided with the selected threshold.
This test is also deemed successful.

4.4.3.2 FOUR RT

Rather than containing a single repeated bus interaction, the FOUR RT cap-
ture contains a number of data transfers between multiple RTs and the BC, as
well as mode messages. The scenario is cyclical, however, repeating the same

3For clarity, reporting of the full packet content in Figure 4.18 has been suppressed, with
only the RT address shown in the output.

62

4.4. Testing

Figure 4.18: Status Word Repetition Analysis for ONE RT

script of operations on a loop. Given the length of the capture, 341 packets
containing up to two command words each, some repetition is expected.

Command Word The starting point for the test was a set size of 50 words
and a threshold of 5. With these settings, Otto will generate an alert if the
same word is seen five times in the previous fifty words. Figure 4.19 shows
the output generated.

The first alert is generated on the second command word of packet #30,
for a command word requesting the transmission of nine words of data from
RT #1, subaddress #1. This same word generates an alert on the second
command word of packets #31, #40 and #41. If packet #30 is the fifth
time this word was seen, it would be reasonable to hypothesize that the four
previous times were on the second command words of packets #10, #11, #20
and #21.

Verification of this hypothesis using Wireshark shows that this is indeed
the case for packets #20 and #21 and #10, but packet #11 does not contain
the word. Instead, packet #9 does. This implies that either the word does not
appear at strict intervals, the words are cyclical but irregularly, or the end of
the BusTools script cycle was captured somewhere between packet #10 and
#20, throwing off the stagger interval. Further analysis would be required to
verify this, but is beyond the scope of this functional test.

63

4.4. Testing

Figure 4.19: Command Word Repetition Analysis for FOUR RT

Another notable item is that the command word repeated appears in the
second command word of the packet. This would most likely mean that the
first command word is used to order another RT to receive traffic, which would
make these RT-RT data transfers. Because the first command word doesn’t
trip the detector, we can surmise that not all the associated receive commands
are the same. Therefore, RT #1 is likely feeding data to multiple RTs.

Again turning to Wireshark to analyze the capture file, this supposition
is confirmed. The first command words in packets #9, #20, #30 and #40
instruct RT #3 to receive nine words of data, while #10, #21, #31 and #41
give the receive instruction to RT #2.

Continuing to plot the gaps between these pairs of packets, it could be
possible to work out the periodicity of the capture and narrow down the
range where the script loops back to the start. While this could be developed
into an additional analysis technique, this investigation is beyond the scope
of this test.

Elsewhere in the Otto output, similar patterns can be found. Packets #42,
#43, #44 and #45 all contain the synchronize mode message. However, the

64

4.4. Testing

RT addresses for each are different: RT #1, #2, #3 and #4 respectively.
The same string of messages is seen again in packets #53-56, #64-67, #74-77,
and so on. Working backwards through Wireshark, this string is repeated on
packets #32-35, #22-25, #11-14 and #1-4.

It would appear that this sequence appears every 10th or 11th packet.
Again, more analysis would likely reveal clues about the periodicity of these
transfers and insight into the bus’s function. These clues may also inform
attempts to determine each RT’s function.

While much of this analysis goes beyond the scope of the testing in this
chapter, it does demonstrate how word repetition analysis can be used to
characterize a data bus. The data obtained through repetition analysis can
also be used to craft signatures to obtain even more focused information.

Returning to the functional testing, further analysis of other alerts gener-
ated reveals similar repeating behaviours, all of which is confirmed by compar-
ing the alerts to the packet content using Wireshark. While this analysis was
not exhaustive, the accuracy with which patterns are detected demonstrates
the expected function of the command word repetition analysis module.

Status Word Taking the same parameters used in the command word ex-
ample, namely a 5 repetition threshold in a set size of 50 words, generates
another long string of alerts. A truncated representation of the output is
shown in Figure 4.20.

Figure 4.20: Status Word Repetition Analysis for FOUR RT

65

4.4. Testing

Upon investigating content of the first status words flagged, it becomes
clear that these are basic acknowledgment status words: the ones sent by
the RT in response to a command, containing only the RT address and no
flags. With a set size as large as 50 and a relatively low threshold of 5, these
detections are to be expected as these acknowledgment messages are somewhat
common. Combing through the previous packets in Wireshark, it is confirmed
that the status words flagged are indeed the fifth occurrence of the word, as
well as any subsequent occurrences.

Interestingly, the second status words in packets #20 and #21 have also
generated detections. These packets correspond to the RT-RT data transfer
discussed in the previous section. This stands to reason, since the command
words that caused a detection would appear alongside the corresponding status
words, and the same detection parameters were specified.

Overall, the word repetition analysis function appears to work as designed.
However, the FOUR RT status word test revealed that a large number of
detections were made on the acknowledgment status words generated by RTs.
Since these are not uncommon, the alerts are not unexpected, but they do
create clutter in the console. Having Otto outright ignore matches for these
simple status words may not be desirable, as they may be important to an
analyst, particularly when trying to detect status word flooding. Careful
adjustment of the set size and threshold may minimize these benign alerts.
A toggle feature for disabling repetition alerts for these types of status words
(either entirely or selectively by RT address) could be valuable for future
implementation.

4.4.4 RT Address Frequency Analysis

Because the RT address frequency analysis generates a histogram of the com-
mand and status words seen, the functionality can be confirmed simply by
studying the histogram generated after processing each traffic sample.

4.4.4.1 ONE RT

Because the ONE RT scenario contains only a single RT, the histograms gen-
erated by Otto should contain only a single RT address: #1. Furthermore,
because the bus traffic consists of RT-BC data transfers, the number of com-
mand words should equal the number of status words. Finally, because each
packet is known to contain only one command word and one status word, the
number of packets should correspond to the number of command and status
words seen.

66

4.4. Testing

Upon inspecting the ONE RT.pcap file in Wireshark, it is shown to contain
36 packets, recorded over a duration of 8.75 seconds. Therefore, we would
expect to see 36 command words and 36 status words.

The data compiled by Otto is reproduced in Table 4.6. Also indicated is the
difference in the number of command and status words observed, calculated
as command words - status words. While the number of command and status
words will not always necessarily be equal, this can be a useful metric in
characterizing the bus.

Table 4.6: Distribution of Command and Status Words for RT Frequency
Analysis (ONE RT)

RT Address Command
Words (CW)

% of total Status
Words (SW)

% of total CW - SW

1 36 100.00% 36 100.00% 0

Total 36 100.00% 36 100.00% 0

As expected, 36 command words and 36 status words were observed, all
containing RT address #1. This corresponds to both the size of the pcap file
and simulated bus configuration.

4.4.4.2 FOUR RT

While the FOUR RT capture is more complex than the previous example, the
results are still predictable.

Only four RT addresses are expected to be present: RT #1 to RT #4.
Because the bus traffic in the FOUR RT sample contains a wider variety of
traffic, e.g. RT-RT and RT-BC data transfers as well as mode messages, the
traffic will not necessarily be equally distributed between all RTs.

Table 4.7 shows Otto’s results from the FOUR RT sample.

67

4.5. Conclusion

Table 4.7: Distribution of Command and Status Words for RT Frequency
Analysis (FOUR RT))

RT Address Command
Words (CW)

% of total Status
Words (SW)

% of total CW - SW

1 121 29.88% 121 30.17% 0
2 90 22.22% 88 21.95% 2
3 97 23.95% 95 23.69% 2
4 97 23.95% 97 24.19% 0

Total 405 100.00% 401 100.00% 0

The most striking result from the table is the difference in the number
of command and status words for RT #2 and #4. In order to verify this,
the FOUR RT pcap file was examined in Wireshark using the Alta-provided
APMP plugin to determine whether or not the discrepancy is present in the
actual data.

Upon inspection, it was noted that four packets (#73, #153, #229 and
#312) contained parity errors in the 9th data word sent from RT #1 to RTs #2
and #4. While RT #1 sends the expected status word prior to transmitting
the data, the receiving RTs appear to fail silently, and generate no status
word at all. This error may be attributable to the R15-USB. Consultation with
colleagues revealed that similar errors have been observed in experiments using
a comparable equipment configuration, but the cause has not been conclusively
identified. Nevertheless, as the observed discrepancy is present in the data,
this is not a fault with the RT frequency analysis function.

Overall, the RT address frequency analysis function appears to behave as
designed: the resulting data contains only assigned RT addresses, the number
of observed words aligns with the 341 packets contained in the pcap file, and
the percentage of total traffic for each RT appears reasonable, with no one
device dominating the traffic.

In addition to passing the basic functional check, RT address frequency
analysis also enabled the detection of errors in the FOUR RT traffic sample,
illustrating the usefulness of this feature.

4.5 Conclusion

This chapter’s objective was to lay out the design and implementation of the
detection methods discussed in Chapter 3, and to test Otto’s functionality in

68

4.5. Conclusion

preparation for validation.
Each detection method addressed in Section 3.2 was implemented in Python,

along with the supporting infrastructure required to configure Otto, load sig-
natures, parse data bus traffic, and raise alerts.

The method for capturing data bus traffic using the ENET2-1553 described
in Section 4.4.1.2 was found to be suitable. All pcap files recorded were
readily detected and interpreted by Wireshark’s Alta CDP plugin, with no
data corruption noted.

The signature-detection analysis function operated correctly after correc-
tion of some minor bugs. Alerts were generated only where expected based
on prior knowledge of the traffic sample, with no false negatives observed in
random sampling.

Word repetition analysis functionality also performed as expected, with
alerts confirmed by manually processing the pcap files in Wireshark. The test
also demonstrated how this form of analysis can be used to gain insight into
the overall bus design and function.

Otto’s RT address frequency analysis component also performed as de-
signed, and uncovered a number of parity errors in the traffic generated from
the FOUR RT scenario.

Testing of each module did rely on varying degrees of random sampling
rather than exhaustive test coverage. Nonetheless, the testing conducted con-
firmed that Otto’s performance is sufficient to proceed. Within these random
samples of alerts, no discrepancies were observed, nor were false negatives
noted.

Overall, the implementation of the traffic analysis functionalities in Otto
were found to be implemented correctly, and the results of the testing phase
provide sufficient confidence to proceed with validation experiments.

69

5 Validation

In order to validate the effectiveness of the proposed design, the six scenarios
discussed in Chapter 3 were recreated for testing in Otto. It should be noted
that the intent of these experiments is to detect the presence of the bus activity
associated with each scenario, and not to test the effectiveness of the attacks
against the MIL-STD-1553B bus.

Four aspects of each scenario will be discussed, as follows:
• a brief summary of the scenario;
• the mechanism expected to make a required detection;
• experimentation description; and
• a discussion of the effectiveness of the detection method, as well as any

other observations.
For each experiment proposed by Stan et al. in [3], the scenario was repro-

duced using a high-fidelity commercial MIL-STD-1553B data bus simulator
as discussed in [25]. Whereas the previous chapter relied on the BusTools
bus prototyping software to provide basic simulations suitable for testing, the
simulator used in this chapter is of the calibre used for development of avionic
components and software. This provides a more realistic traffic capture, con-
taining large amounts of traffic generated by a multitude of bus-connected
devices.

In order to characterize the bus and to provide a baseline for comparison,
a traffic capture was made with the simulator in a known good configuration,
i.e. unaffected by any sort of attack. Table 5.1 shows a breakdown of the
traffic observed, as well as the CW - SW metric introduced in Section 4.4.4.

70

5.1. Transmission Timing DoS (Behaviour Manipulation)

Table 5.1: Baseline Traffic Capture for Experimental Scenarios

RT Address Command
Words (CW)

% of total Status
Words (SW)

% of total CW - SW

1 3,753 35.61% 3,745 35.62% 8
2 2,739 25.99% 2,735 26.01% 4
3 1,537 14.58% 1,525 14.50% 12
4 1,208 11.46% 1,208 11.49% 0
5 1,144 10.85% 1,144 10.88% 0
6 158 1.50% 158 1.50% 0

Total 10,539 100.00% 10,515 100.00% 24

Based on this capture, the bus has six RTs, addressed #1 through #6.
These addresses also correspond to how much traffic each generates, with RT
#1 responsible for over 35% of command and status words, while RT #6
handles a mere 1.50% of each.

In all cases throughout this chapter, recording of the bus traffic was done
using following the method described in Section 4.4.1: connecting the ENET2-
1553 to the bus simulator’s breakout ports and capturing the resulting network
traffic using tcpdump.

5.1 Transmission Timing DoS (Behaviour
Manipulation)

5.1.1 Scenario

This scenario involves flooding the data bus with traffic in order to consume
available time slots on the bus and impede the transmission of legitimate
traffic.

As Stan et al. make no distinction between the word types used to flood
the bus, two separate experiments were conducted within this scenario: one
focusing on command word flooding, and the other on status word flooding [3].

5.1.2 Expected Detection Mechanism

Detection of a transmission timings DoS is complicated by the fact it can be
carried out using any word type, at a rate selectable by the attacker, and does
not necessarily require the use of legal words, i.e. words in compliance with

71

5.1. Transmission Timing DoS (Behaviour Manipulation)

the standard. However, the detection methods described in Chapter 3 have
the flexibility to cope with this [25].

If the bus is flooded using a single word repeated, it can be detected using
word repetition detection. Additionally, if the composition of the flooding
word is previously known to the analyst or discovered in the course of analysis,
a signature can also be written to detect it [25].

If the flooding is caused by multiple different words, either randomly gen-
erated or following a prescribed pattern, the flooding can be detected using
the RT histogram, as irregular traffic patterns and unassigned RT addresses
are likely to appear [25].

5.1.3 Experimentation

5.1.3.1 Command Word Flooding

As illustrated in Figure 5.1, more RT addresses were observed in this capture
than were present in the baseline data (Table 5.1).

Figure 5.1: RT Histogram for Command Word Flooding

The data from the histogram is reproduced in Table 5.2, along with rela-
tive percentages of overall traffic, and the discrepancy between command and
status words. This is immediately indicative of questionable traffic on the bus,
as most of these addresses have not been assigned.

72

5.1. Transmission Timing DoS (Behaviour Manipulation)

Table 5.2: Distribution of Command and Status Words for Command Word
Flooding

RT Address Command
Words (CW)

% of total Status
Words (SW)

% of total CW - SW

1 6,732 36.56% 6,726 36.66% 6
2 4,650 25.25% 4,633 25.25% 17
3 2,660 14.44% 2,631 14.34% 29
4 2,086 11.33% 2,089 11.38% -3
5 1,958 10.63% 1,948 10.62% 10
6 272 1.48% 273 1.49% -1
7 10 0.05% 1 0.01% 9
8 5 0.03% 0 0.00% 5
9 4 0.02% 3 0.02% 1
10 4 0.02% 0 0.00% 4
11 4 0.02% 1 0.01% 3
12 3 0.02% 0 0.00% 3
13 3 0.02% 0 0.00% 3
14 3 0.02% 1 0.01% 2
15 3 0.02% 1 0.01% 2
16 3 0.02% 1 0.01% 2
17 3 0.02% 0 0.00% 3
18 3 0.02% 1 0.01% 2
19 2 0.01% 3 0.02% -1
20 1 0.01% 3 0.02% -2
21 1 0.01% 3 0.02% -2
22 1 0.01% 0 0.00% 1
23 1 0.01% 0 0.00% 1
24 1 0.01% 0 0.00% 1
25 1 0.01% 7 0.04% -6
26 1 0.01% 4 0.02% -3
27 0 0.00% 5 0.03% -5
28 0 0.00% 4 0.02% -4
29 0 0.00% 3 0.02% -3
30 0 0.00% 3 0.02% -3
31 0 0.00% 3 0.02% -3
32 0 0.00% 2 0.01% -2

Total 18,415 100.00% 18,349 100.00% 66

73

5.1. Transmission Timing DoS (Behaviour Manipulation)

Although the attack involves command word flooding, a number of status
words bearing suspicious RT addresses were also observed. These may have
been generated by the BC to indicate an error, i.e. the RT does not exist.

The number of command words for each suspicious RT address is also
notable, ranging between 1 and 10. If the addresses were randomly generated,
a more uniform distribution would be expected. The flooding routine most
likely follows a set RT distribution rather than randomly generating an RT
address each time. While this may provide some insight into the attacker’s
tactics and could be used as a fingerprint for attribution, detection is not
impacted by the degree of randomness in RT address selection for flood traffic.

While RT frequency analysis identified the flooding, signature detection
can be used to gain further insight into the attack. The RT addresses observed
can be used to craft signatures to detect the unexpected command word traffic.

From the signature detection alerts raised, there appear to be two distinct
waves of flooding involving the suspect RT addresses. The first begins at
packet 18,414 and ends at 19,855, with a suspicious packet appearing roughly
every 50th to 100th packet observed. The second wave begins at packet 47,407
and ends at packet 47,489, with a detection occurring on nearly every packet.
This may represent a second wave of flooding, shorter but more aggressive.

Opening the pcap file in Wireshark and searching for these packet numbers,
allowed us to determine that the first wave begins 22.63 seconds into the
capture and ends 0.49 seconds later at the 23.12 second mark. The second
wave begins at 32.30 seconds and ends with a detection on the last packet
of the file, at 32.36 seconds. It is possible that the second wave of flooding
continued past the end of the capture.

5.1.3.2 Status Word Flooding

Similarly to command word flooding, the RT histogram for the capture con-
taining status word flooding in Figure 5.2 shows status word activity from
unassigned RT addresses 15, 16 and 10. These figures are also presented in
Table 5.3.

Figure 5.2: RT Histogram for Status Word Flooding

74

5.1. Transmission Timing DoS (Behaviour Manipulation)

Table 5.3: Distribution of Command and Status Words for Status Word Flood-
ing

RT Address Command
Words (CW)

% of total Status
Words (SW)

% of total CW - SW

2 6,958 34.12% 5,055 29.30% 1,903
1 6,222 30.51% 5,874 34.05% 348
3 2,667 13.08% 2,354 13.65% 313
5 2,164 10.61% 1,812 10.50% 352
4 2,011 9.86% 1,862 10.79% 149
6 368 1.80% 253 1.47% 115
13 1 0.00% 0 0.00% 1
15 0 0.00% 29 0.17% -29
16 0 0.00% 7 0.04% -7
10 0 0.00% 4 0.02% -4

Total 20,391 100.00% 17,250 100.00% 3,141

The status word flooding attack appears to use a smaller number of unas-
signed RT addresses than the command flooding attack. This could be by
design, with the attacker favouring the use of assigned RT addresses to blend
into the background.

Table 5.3 also shows the effectiveness of the flooding, with a large deficit
of status words sent in reply to command words for legitimate RT addresses,
as compared to the baseline traffic sample.

Once again using the suspicious RT addresses to craft signatures, only a
single wave of flooding was observed. The flooding occurred between packets
12,361 and 17,931, with anywhere from 10 to 300 legitimate packets between
each detection. As with command word flooding, some of the flood traffic
may contain legitimate RT addresses and can be difficult to separate from the
legitimate traffic.

Cross-referencing the packet ID numbers to the packet capture, the first
detection was made 15.18 seconds into the packet capture, and the last oc-
curred at the 23.92 second mark, for a total of 8.74 seconds of disruption. The
total duration of the capture is 29.27 seconds.

75

5.1. Transmission Timing DoS (Behaviour Manipulation)

5.1.4 Discussion

5.1.4.1 Command Word Flooding

It should be noted that the maliciously generated command words may con-
tain legitimate RT addresses. Through statistical analysis of multiple traffic
captures, it may be possible to estimate the number of spoofed command
words containing legitimate RT addresses and to specifically identify them.
This analysis has not been done, as it falls outside the scope of the current
work.

Should the attacker have previous knowledge of the data bus’s construc-
tion, it may be possible to carry out command word flooding using only RT
addresses that would ordinarily appear in the traffic. In this instance, the
attack might not be detectable using the RT histogram method. This could
also aid the attacker in flooding the bus more effectively, as each RT receiving
a command word typically generates some amount of bus traffic in response.
A more detailed statistical analysis of the variations in traffic generation rates
of each RT would be required in order to detect this attack variant.

There is also a marked difference in the number of command words for the
valid RT address with the lowest rate of incidence (RT #6 with 252 command
words) and the malicious RT with the highest rate of incidence (RT #7 with
10). Through the observation of multiple traffic captures containing various
lengths of flooding attacks, it may be possible to correlate this gap to the
duration of the flooding attack relative to the total length of the capture.
Further work would be required to study this.

5.1.4.2 Status Word Flooding

In contrast with the command word flooding technique, no corresponding
command words are generated in response to the status words used to flood
the bus. Interestingly, this capture does contain a single command word to
RT #13. Further investigation is required to determine whether this is part
of the attack, a misconfiguration issue, or simply an infrequently transmitting
RT present on the bus whose traffic does not appear in the baseline traffic
sample.

As with command word flooding, the requirement for statistical analysis
in cases where the attacker only uses assigned RT addresses holds, as does
the potential correlation between traffic volumes seen for both assigned and
unassigned RT addresses and duration of attack.

Also notable is the fact that the first detection has a value other than 000

in the reserved bit field. This is not permitted by the standard. This could

76

5.2. Status Word Data Integrity (Message Manipulation)

be another signature usable to detect flooding traffic, or to help differentiate
between legitimate and non-legitimate traffic containing the same RT address
where flooding is suspected. Stan et al. also posit that these reserved bits
could be used as a covert data transmission channel [3]. This concept will be
further explored in the Status Word Data Manipulation scenario in Section 5.4.

5.2 Status Word Data Integrity (Message
Manipulation)

5.2.1 Scenario

The Status Word Data Integrity (Message Manipulation) scenario presents
a case where an RT sends a status word in response to a command word
addressed to a different RT.

Recall from Section 2.1.2.4 that status words can be used to signal an error.
Sending a false status word could, for instance, cause the BC to potentially
discard valid data.

5.2.2 Expected Detection Mechanism

The hallmark of this scenario is the appearance of two status words sent in
response to a command: one from the RT, and a second one sent by the
attacker as a fake, after corrupting the legitimate status word [3].

This double status word, the real one and the falsely generated one, should
be detectable through Otto’s word repetition analysis function. For the attack
proposed by Stan et al. to be effective, the false status word would be expected
to appear relatively soon after the legitimate status word. However, this
method might be prone to false alarms if the RT targeted typically generates
a large number of status words in a short period of time.

A secondary possible detection method is a statistical analysis of the RT
addresses appearing in the RT histogram. The difference between the number
of command and status words containing the targeted RT address would be
expected to deviate from the pattern observed in the known-good baseline
traffic.

5.2.3 Experimentation

Upon conducting the experiment, it was realized that Stan et. al.’s description
of this scenario was misunderstood. As noted in Section 3.1.2, Stan et. al.
remark that the duplicate status word corrupts the legitimate status word [3].

77

5.2. Status Word Data Integrity (Message Manipulation)

This corruption is most likely achieved by attempting to transmit within the
same time slot as the legitimate status word. The result would be unintelligible
and would not be parsed as a status word by the ENET2-1553. Had Otto been
designed to read raw bus data and perform its own interpretation and parsing,
it may have been possible to detect this scenario.

Because of this, the proposed detection mechanism, capturing the dupli-
cate status word, cannot work, as there are in fact zero intelligible status words
observed as a result of the attack. For the same reason, signature detection
is not an option in this scenario as there are no words to compare against the
signature list.

RT frequency analysis, however, might be useful in this scenario. Since the
status words are quashed, we might see a higher number of command words
without reply than was observed in the baseline.

Figure 5.3 shows the histogram generated by Otto, while the compiled
distribution of command and status words by RT is displayed in Table 5.4.

Figure 5.3: Histogram of Suspicious Bus Traffic (sw data integrity.pcap)

Table 5.4: Distribution of Command and Status Words for Status Word Data
Integrity

RT Address Command
Words (CW)

% of total Status
Words (SW)

% of total CW - SW

1 12,809 37.10% 12,788 37.47% 21
2 9,096 26.35% 9,084 26.61% 12
3 4,279 12.39% 3,933 11.52% 346
4 4,030 11.67% 4,029 11.80% 1
5 3,781 10.95% 3,772 11.05% 9
6 526 1.52% 526 1.54% 0
12 1 0.00% 0 0.00% 1
15 0 0.00% 1 0.00% -1

Total 34,522 100.00% 34,133 100.00% 3,895

78

5.2. Status Word Data Integrity (Message Manipulation)

This is indeed the case. The baseline traffic characterized in Table 5.1
shows 12 of 1,537 RT #3 command words not having a corresponding status
word. In other words, 0.78% of all RT #3 command words go unanswered.

In the capture containing the malicious traffic, however, RT #3 has 346
command words out of 4,279 without a status word, or 8.08%. This represents
a more than tenfold increase in the relative rate of non-responsiveness for RT
#3. Meanwhile, with the CW-SW count for other RTs appears to scale linearly
with the overall traffic volumes. These observations suggest something is amiss
with RT #3 and further investigation is merited.

To confirm this observation, a second packet capture containing the attack
traffic was made. The data from the RT histogram along with the distribution
of command and status words is shown in Table 5.5.

Table 5.5: Distribution of Command and Status Words for Status Word Data
Integrity (Second Capture)

RT Address Command
Words (CW)

% of total Status
Words (SW)

% of total CW - SW

1 9,320 37.61% 9,305 37.98% 15
2 6,449 26.03% 6,437 26.28% 12
3 2,965 11.97% 2,704 11.04% 261
4 2,908 11.74% 2,908 11.87% 0
5 2,756 11.12% 2,753 11.24% 3
6 380 1.53% 380 1.55% 0
12 1 0.00% 0 0.00% 1
13 1 0.00% 0 0.00% 1
15 0 0.00% 10 0.04% -10

Total 24,780 100.00% 24,497 100.00% 283

In the second capture, the CW-SW metric for RT #3 again sticks out dra-
matically, with 261 of 2,965 command words without a corresponding status
word, or 8.80%. This is consistent with the observations in the first capture.
The CW-SW count for all other RTs again remain consistent with the baseline,
scaling linearly with the overall traffic volume.

79

5.3. Command Word DoS (Behaviour Manipulation)

5.2.4 Discussion

The initial approach of detecting this scenario by flagging the duplicate status
word associated with the attack proved not to be possible. It was incorrectly
assumed that these status words would appear on the bus, when the scenario
in fact relies on corrupting the status word specifically so that it cannot be
interpreted.

Because of this word corruption, signature detection is also not a valid
approach. Anomaly detection proved to be useful in this scenario, detecting
the increase in the delta of command and status words observed.

5.3 Command Word DoS (Behaviour
Manipulation)

5.3.1 Scenario

Command word DoS through behaviour manipulation is a straightforward
attack. By using “fake commands [...] that are not part of the system’s
normal operation”, an attacker can have an effect on the bus [3].

Stan et al. mention that these commands can be ones defined by the
standard, or meaningless, and that the anticipated results can include word
collisions, clock synchronization errors and targeted transmitter shutdowns [3].

Of these cases, the scenario involving the use of a transmitter shutdown
command was selected for further development. This method is both deliber-
ate and targeted at a specific RT, while the other proposed mechanisms rely
more on fortuitous timings to produce effects such as collisions. Further, the
concept of using fake commands to cause collisions and affect bus timings was
discussed in the Transmission Timings DoS attack discussed in Section 5.1.

5.3.2 Expected Detection Mechanism

Stan et al. suggest that most readily recognizable feature of this command
word DoS scenario is the transmitter shutdown command targeting a partic-
ular RT [3]. The shutdown command consists of a command word formatted
as a mode message, with the corresponding mode code. The attacker may
also choose to send a second mode message to re enable the targeted RT’s
transmitter at the conclusion of the DoS. [25].

Transmitter shutdown and start-up commands are not typically seen on
the data bus in normal operations. The most common use of these commands
is to shut down an RT that is malfunctioning or damaged and producing

80

5.3. Command Word DoS (Behaviour Manipulation)

unintelligible data. This would require the bus designer to build logic into the
BC to verify the output of the RT and take the shutdown action if required.

With this knowledge of how the DoS is performed, it is possible to write
signatures to detect occurrences of transmitter shutdown and start-up com-
mands on the bus. By detecting both, an analyst can identify a specific
period of time during which communications from the targeted RT have been
impaired. As these occurrences are expected to be rare, they can be reliably
used as indicators of this form of attack.

5.3.3 Experimentation

The transmitter shutdown and start-up commands utilize the command word’s
mode functionality. Recall from Section 2.1.3.4 that mode messages are in-
dicated by using a reserved value in the subaddress field, and the mode is
determined by the value in the word count field.

There are two command words that will initiate a transmitter shutdown:
one for the entire RT, and one that selectively targets a particular subaddress
on the specified RT. Similar general and selective mode messages exist for the
transmitter shutdown override commands. These command words are shown
parametrically, in order, in Table 5.6.

Table 5.6: Transmitter Shutdown Command Word Signatures

Address
(0-31)

TR Bit
(T or R)

Subaddress / Mode
(0 to 31)

Word Count / Mode
Code (0 to 31)

Bus (A or B)

1 0/314 4

1 0/31 20

1 0/31 5

1 0/31 21

Running Otto against the baseline traffic sample using these command
word signatures raises no detections. However, when the same signatures
are run against the traffic during an active command word DoS session, two
detections are made, shown in Figure 5.4.

4Both mode indicators are shown here for brevity. Two separate signature lines are
required to cover both mode indicators when crafting signatures for Otto.

81

5.3. Command Word DoS (Behaviour Manipulation)

Figure 5.4: Detection of Transmitter Shutdown and Override Transmitter
Shutdown Mode Commands

The first detection is a transmitter shutdown command in packet #33,451
of the capture, addressed to RT #3. The second is an override transmitter
shutdown command in packet #51,225 again sent to RT #3.

The detection can be confirmed by loading the same packet capture file
into Wireshark, filtering on the identified packet and using the Alta-provided
Wireshark plugin to interpret the Alta CDPs.

The timing data from Wireshark can also be used to identify the duration
of the disruption. The shutdown command occurred 41.41 seconds into the
capture, while the override command followed at the 63.41 second mark, for
a total disruption lasting 22.27 seconds.

5.3.4 Discussion

Otto’s signature detection functionality was successful in identifying the hall-
marks of the command word-initiated DoS. The packet number data reported
by Otto was also useful in pinpointing the precise times the targeted RT’s
communications were impaired.

While this experiment focused on the transmitter shutdown and shutdown
override commands, Stan et al. also suggest that other commands can be used
to affect the system’s proper operation. The examples provided include using
legal or illegal commands to cause collisions and impair the bus functional-

82

5.4. Status Word Data Manipulation (Message Manipulation)

ity, improperly synchronizing clocks to create incorrect timings [3], or issuing
other commands. If the makeup of the command word used (legal or not) is
known, a signature can be written to detect it, as was done in this experi-
ment. However, consideration must be given to the potential for false alarms.
While transmitter shutdown and shutdown override commands are rarely seen
on a normally functioning bus, some of these other commands suggested by
Stan et al. may be more commonplace. Separating attack events from regu-
lar traffic may require an additional level of triage, done either manually by
an operator or automatically by a new Otto function. Detection of the use
of command words to flood the bus was covered in the transmission timings
scenario discussed in Section 5.1.

Actions related to timing, including skewed clock synchronization are not
currently supported in Otto, but it may be possible to expand Otto’s func-
tionality to cover these (see Section 5.7).

5.4 Status Word Data Manipulation (Message
Manipulation)

5.4.1 Scenario

MIL-STD-1553B explicitly states that the reserved bits in a status word are
to be set to zero for a word to be valid [1]. However, it is not compulsory
for this to be checked. Stan et al. suggest that these three bits are ideal for
surreptitiously passing data over the bus. This would most likely be done by
an RT that has been somehow compromised by an attacker.

5.4.2 Expected Detection Mechanism

As discussed earlier, the MIL-STD-1553B standard requires the reserved bits
in every status word to be set to zero. As status words with any other value in
the reserved bits are non-compliant with the standard and suspicious, signa-
ture detection can be used to flag such cases. This check effectively eliminates
a key enabler to this scenario, namely the “lack of status word monitoring”
mentioned by Stan et al. [3, 25].

5.4.3 Experimentation

In order to test the proposed detection mechanism, bus data containing status
words with non-zero values in the reserved field is required. Fortunately, the

83

5.4. Status Word Data Manipulation (Message Manipulation)

packet capture used to study Status Word Denial of Service in Section 5.1 was
found to contain such traffic.

In order to detect these values, status word signatures are required. As
this is a three-bit field with only one acceptable value, seven signatures are
required to cover the illegal cases we seek to detect. These are shown in
Table 5.7.

Table 5.7: Non-Zero Reserved Bit Status Word Signatures

Address E I SR Reserved BC B SF DBCA T Bus

1

2

3

4

5

6

7

Running these signatures against the capture file confirms that the file
does indeed contain status words with a non-zero reserved bit. A total of 489
detections were made, with 488 having a value of 7 (0b111) and one with a
value of 5 (0b101).

5.4.4 Discussion

Ordinarily, detecting the presence of non-zero bits in the reserved field would
be the starting point of a deeper investigation to determine what data is being
sent by which RT. However, because the data used in this scenario contains
randomly generated status words, there is no further usable information to
extract. However,the successful detection of the non-zero words is enough to
detect signs of data exfiltration by this method.

This scenario also raises a potential future improvement to Otto, namely
value whitelisting. While Otto’s current signature detection logic reports
matches between the signature file and the bus traffic, this example demon-
strates a case where it would be simpler to raise a detection on any traffic
that does not match a given value. In such a case, only one signature would

84

5.5. Malfunctioning RT

be required to detect non-zero traffic, instead of seven to detect all possible
scenarios for illegal use of the three-bit reserved field.

5.5 Malfunctioning RT

5.5.1 Scenario

This scenario aims to detect a case where an RT simply malfunctions with-
out having been compromised by an attacker. Automated detection of mal-
functioning RTs would be useful to aircraft maintenance organizations as a
troubleshooting tool. It could also serve bus designers by confirming that all
bus-connected devices are behaving as expected [25].

This scenario will demonstrate a detection based on a comparison to known
good baseline traffic. Changes in the number of command or status words
observed for a given RT address, or changes in the RT response (i.e. command
words without a corresponding status word) can be used as indicators of a
malfunctioning RT [25].

5.5.2 Expected Detection Mechanism

In this scenario, detection will be based on a comparison to a baseline traffic
capture. The number of command and status words for each RT as a function
of the total number of command and status words observed in the baseline
capture will be calculated. The same will be done for the traffic capture
under test. Variations in the ratios of command and status words to total
words observed may be indicative of a malfunctioning RT. Changes in the RT
response, i.e. command words without a corresponding status word, may also
be considered indicative of anomalous behaviour [25].

5.5.3 Experimentation

The FOUR RT scenario from Section 4.4 was used as a starting point for this
experiment. In order to have a baseline for comparison, Otto was used to
gather baseline data for the command and status words seen in the capture.
This breakdown was previously presented in Table 4.7 and is reproduced below
in Table 5.8.

85

5.5. Malfunctioning RT

Table 5.8: Distribution of Command and Status Words for the FOUR RT
Capture (Reproduction of Table 4.7)

RT Address Command
Words (CW)

% of total Status
Words (SW)

% of total CW - SW

1 121 29.88% 121 30.17% 0
2 90 22.22% 88 21.95% 2
3 97 23.95% 95 23.69% 2
4 97 23.95% 97 24.19% 0

Total 405 100.00% 401 100.00% 4

As the FOUR RT capture made in Section 4.4 is short (8 seconds), a second
capture of traffic generated by the FOUR RT scenario was taken, lasting 497
seconds and called FOUR RT LONG. This longer traffic capture was similarly
analyzed and the results are shown in Table 5.9 [25].

Table 5.9: Distribution of Command and Status Words for the
FOUR RT LONG Capture

RT Address Command
Words (CW)

% of total Status
Words (SW)

% of total CW - SW

1 7,458 30.20% 7,458 30.53% 0
2 5,470 22.15% 5,337 21.85% 133
3 5,966 24.16% 5,834 23.88% 132
4 5,802 23.49% 5,802 23.75% 0

Total 24,696 100.00% 24,431 100.00% 265

In comparing the traffic volumes for each RT address to the total traffic
observed for each word type, no large deviations were noted. While the per-
centages observed vary by up to approximately 0.5%, this can be explained
by the random start and stop times of the data capture. Packet captures were
launched while the BusTools scenario was running and stopped after an ar-
bitrary amount of time, rather than launched simultaneously to the scenario
start and stopped after a prescribed number of cycles. The partial cycles
observed are the likely cause of this discrepancy [25].

86

5.5. Malfunctioning RT

Given its longer run time, the effects of partial cycles can be assumed to be
less significant in the FOUR RT LONG capture. Therefore, FOUR RT LONG
will be used as the baseline for comparison in the experimentation [25].

Simulation of a malfunctioning RT was done by modifying the FOUR RT
BusTools script. Two new scenarios were created to represent cases where an
RT generates both more and less traffic than expected [25].

5.5.3.1 FOUR RT FASTER

The FOUR RT FASTER scenario sees an additional command word added
to the scripted bus interactions: a mode message requesting a status word,
sent to RT #3. This should result in one additional command word and one
additional status word containing the RT #3 address for every iteration of
the script [25].

Table 5.10 shows the breakdown of the traffic observed in this capture.

Table 5.10: Distribution of Command and Status Words for the
FOUR RT FASTER Capture

RT Address Command
Words (CW)

% of total Status
Words (SW)

% of total CW - SW

1 1,553 29.58% 1,553 29.89% 0
2 1,141 21.73% 1,114 21.44% 27
3 1,347 25.66% 1,319 25.39% 28
4 1,209 23.03% 1,209 23.27% 0

Total 5,250 100.00% 5,195 100.00% 55

For both command and status words, the expected increase in traffic for
RT #3 is observed. The percentage of total traffic observed for RT #3’s com-
mand and status words increased by approximately 1.5% (recall proportions
of 24.16% and 23.88% respectively from the original FOUR RT LONG cap-
ture). The corresponding decrease in traffic observed was shared equally by
the remaining RTs, with each showing a drop of approximately 0.5% [25].

The relative increase in traffic for RT #3 suggests that this RT is function-
ing differently than in the baseline. Given the increase is observed for both
command and status words, it can be assumed that the RT is being issued
additional commands resulting in the generation of status words. This infor-
mation can help the analyst better pinpoint the cause of the additional traffic.

87

5.5. Malfunctioning RT

An increase in command words only points to these command words not re-
quiring a status word response, while an increase seen only for status words
suggests additional status words are being generated without a corresponding
command word [25].

5.5.3.2 FOUR RT SLOWER

To simulate an RT generating less traffic than expected, the FOUR RT script
was modified to delete a status word from RT #3 used to signal the results
of a power-on built-in test (PBIT). The expected effect is fewer status words
seen containing RT address #3 [25].

The traffic observed in this capture is broken down in Table 5.11.

Table 5.11: Distribution of Command and Status Words for the
FOUR RT SLOWER Capture

RT Address Command
Words (CW)

% of total Status
Words (SW)

% of total CW - SW

1 1,835 30.19% 1,835 31.80% 0
2 1,346 22.14% 1,313 22.76% 33
3 1,346 22.14% 1,192 20.66% 154
4 1,420 23.52% 1,430 24.78% 0
0 122 2.01% 0 0.00% 122

Total 6,079 100.00% 5,770 100.00% 309

There is one other apparent deviation from the baseline: 122 command
words destined for RT #0. This RT was not assigned in the scenario, and no
traffic with this address was observed in the baseline traffic captures [25].

In baselining, the difference in the number of command words and the num-
ber of status words for RT #2 and RT #3 are typically similar. Meanwhile,
in this scenario, RT #2 showed 33 command words without corresponding
status words, while RT #3 showed 154. However, if the 122 command words
for RT #0 are subtracted from RT #3’s tally, the total is 32, which is nearly
identical to RT #3, matching the baseline [25].

Further analysis is required to understand this and confirm that it is an
artifact of the removal of the PBIT status word from the FOUR RT SLOWER
script, but this hypothesis appears valid [25].

88

5.5. Malfunctioning RT

Moving on to the total number of status words seen, there is a drop from
23.88% to 20.66%. There is also a corresponding drop in the number of RT #3
command words seen, from 24.16% of total traffic to 22.14%, however if the
hypothesis surrounding RT #0 is correct, the share would increase to 24.15%,
which does match the baseline [25].

5.5.4 Discussion

In the malfunctioning RT scenario, two cases were presented. The first was
of an RT generating more traffic than what was observed in the baseline
(Section 5.5.3.1), and the second was for an RT generating less traffic (Sec-
tion 5.5.3.2). In each case, the deviation was slight, with one command addi-
tion or removal from a script of approximately 35 actions [25].

The extra command added in the FOUR RT FASTER capture at Sec-
tion 5.5.3.1 actually resulted in two additional words being generated: the
actual command word, and a status word generated as a reply to the former.
The impact was readily noticeable in the comparison to the baseline, with
the affected RT showing an increase in both command and status word traffic
of 1.5% over the baseline. The proportion of traffic observed for all other
RTs had a corresponding drop totaling 1.5%, suggesting that they continued
to perform as expected while RT #3 generated additional traffic. This data
would provide a sufficient starting point for a data bus designer or aircraft
maintainer to begin investigating the issue [25].

The FOUR RT SLOWER capture at (Section 5.5.3.2) had an unexpected
result from the outset, with 122 command words generated containing the
RT #0 address. While further investigation is required, it appears that this
was an unintended consequence of removing the status word used to report
the result of the PBIT. Putting this observation aside, the analysis shows a
readily noticeable decrease in the relative number of RT #3 status words to
20.66% against the 23.88% observed in the baseline. This deviation should
again provide an indication to analysts that RT #3’s characteristics no longer
match the baseline observations [25].

All data sets used in this experiment were simulations of fairly small data
buses following a repeating script. Actual aircraft data buses are expected to
be more saturated and less predictable in nature. The concept demonstrated
in this experiment should scale to these larger buses, but additional care may
be required to compare data from similar conditions, e.g. similar phases of
flight, aircraft attitude, and equipment configuration [25]. This notion will be
further expanded upon in Section 5.7.

89

5.6. Unassigned RT Address

The analysis conducted in this scenario was conducted manually using the
histogram data reported by Otto in order to prove the concept. In future
versions of Otto, this baseline comparison could be automated in order to
generate clear alerts to the user when the traffic under study deviates signifi-
cantly from the baseline. This could also present an opportunity to implement
more advanced statistical analysis and detailed reporting [25].

5.6 Unassigned RT Address

5.6.1 Scenario

The unassigned RT address scenario posits a case where an RT is added to the
bus without the knowledge of the bus operator. Because the MIL-STD-1553B
standard has no provisions for device authentication, such a device would be
able to freely send and receive data over the bus.

This scenario presumes that the rogue RT actively communicates over the
bus without attempts to conceal its identity or spoof other devices: it does
not send command words, only responds to commands addressed to it, and
does not provide a false RT address in the status words it sends out. Attacks
carried out by an RT using deception techniques to blend into the normal bus
traffic would fall into other scenarios, such as the Status Word Data Integrity
(Message Manipulation) attack discussed in Section 5.2.

While the first four scenarios presented in this chapter deal in activity that
could be malicious in nature, this scenario is more likely to be a configuration
error. Potential causes could include an RT being replaced with the wrong
component, or an RT configured with the wrong address.

5.6.2 Expected Detection Mechanism

The aim of this scenario is to detect MIL-STD-1553B data bus traffic contain-
ing an RT address that is not known to exist on the bus. Such traffic could
be a result of a misconfiguration, or of an RT added to the bus without the
designer’s knowledge [25].

The detection of the unassigned RT will be made using the RT histogram
method. As the histogram tallies all command and status word traffic on the
bus for each RT, it can be used as a record of all RT addresses appearing in
the traffic capture [25].

90

5.6. Unassigned RT Address

5.6.3 Experimentation

As with the malfunctioning RT scenario, this scenario was developed on a
simulated data bus, using the FOUR RT example from GE BusTools as a
starting point. A capture of data bus traffic was taken to use as a baseline:
the same FOUR RT LONG.pcap capture used in the previous section.

The FOUR RT script was copied as UNASSIGNED RT and modified in
order to add an extra RT, given the address #12. This represents the scenario
where a device is unexpectedly added to the bus [25].

The interaction script for the scenario was also modified to cause the RT
to issue a command word to RT #12. This command is a mode message,
requesting a status word as a reply. This scenario was then played and traffic
was captured to unassigned rt.pcap [25].

The FOUR RT scenario is known to only contain RT #1, #2, #3, and #4.
This is shown in Figure 5.5, where the output of Otto’s histogram contains
only the expected addresses [25].

Figure 5.5: Histogram of Known Good Traffic Capture
(FOUR RT LONG.pcap)

Using Otto to generate the RT histogram for the UNASSIGNED RT sce-
nario (Figure 5.6), it is readily apparent that both command and status words
were observed containing the RT #12 address [25].

Figure 5.6: Histogram of Suspicious Bus Traffic (unassigned rt.pcap)

This raw information should be sufficient for a technician to conclude that
something is amiss. More detailed analysis could include correlating the num-

91

5.7. Discussion of Validation Results

ber of command words to status words, or searching through the capture file
to understand what is happening. However, this more detailed analysis is
beyond the scope of this proof of concept focusing on detection [25].

5.6.4 Discussion

In the unassigned RT scenario, a detection was made based on knowledge of
the addresses of all RT addresses present on the bus. As the bus can contain
a maximum of 32 bus connected devices, a bus designer could reasonably be
expected to include an RT address list in the system documentation [25].

In the case of a black box system where no design information is known
prior to analysis, a baseline analysis can be done. By observing the bus traffic
with the system in a known-good state, a picture of the bus is formed. This
includes a list of present RTs, the ratio of command words to status words,
and the relative frequency of command and status words for each RT [25].

It may be possible for baselining to miss a given RT, such as one that re-
ceives very infrequent traffic, or is only queried in a particular phase of flight.
Such an RT could cause a false positive if it appears in the sample under anal-
ysis but not the baseline. Care must be taken to either gather comprehensive
baseline data across all flight regimes and a sufficiently long time period, or
to compare traffic samples only from similar phases of flight [25].

With knowledge of the system’s design, another possible detection method
would be the use of Otto’s signature matching functionality to generate alerts
when command and status words containing unassigned RT addresses appear
on the bus. The baseline comparison method was selected for this experiment
as it is a more flexible option, not requiring prior knowledge of the bus’s
composition [25].

Finally, a baseline analysis function to flag new RTs could be used to
automate some of the comparisons, either as a standalone function or as part
of an existing mechanism.

5.7 Discussion of Validation Results

While previous sections of this chapter contained detailed discussions of each
of the demonstrated scenarios, this section will present a more general dis-
cussion of points applicable to the application of network security monitoring
techniques to the MIL-STD-1553B data bus.

The work presented thus far in this chapter demonstrates that while signature-
based detection is valuable, it is not a perfect solution. Some scenarios were

92

5.7. Discussion of Validation Results

only detectable using anomaly-based techniques. Though tools such as MAID-
ENS use more advanced techniques than those implemented in this work, there
is still a valuable role for signature-based detection techniques in this space.

5.7.1 Effectiveness of Signature-Based Detection

Signature-based detection was the primary detection method used in two sce-
narios: Command Word DoS (Behaviour Manipulation) and Status Word
Data Leakage (Message Manipulation).

In the former case, anomaly-based methods such as RT frequency analysis
could have picked up on the fact the targeted RT was producing comparatively
less data than expected. However, basic RT frequency analysis would not have
yielded an exact time the bus was disrupted. Even though more advanced
anomaly detection tools such as MAIDENS are able to estimate the disruption
time, detecting the transmitter shutdown and override commands the moment
they are sent gives a more accurate picture.

Detecting the mode commands would also produce clear detections in cases
where the RT is only disabled for very short periods of time. Very short
disruptions may not cause a significant enough deviation from the baseline for
an anomaly-based solution to raise a detection, particularly if these blanking
periods are spread out over time.

In the case of Status Word Data Leakage (Message Manipulation), sig-
nature detection can provide a clear and unambiguous alert whenever the
reserved bits are set to non-zero values.

The first case, Transmission Timings DoS (Behaviour Manipulation), gives
an example of how signature detection can be used in support of other detec-
tion methods as an investigative tool. RT frequency analysis was the primary
means of detection for this scenario, uncovering traffic to RT addresses not
present on the bus. These RT addresses were then used to produce signa-
tures, allowing the analyst to determine when the attacks began and ceased,
and how long they lasted.

This is also true of the Unassigned RT Address scenario, where RT fre-
quency analysis and comparison to the baseline was the primary detection
method. However, signature detection can also be applied by creating signa-
tures to alert on addresses known not to be in use. Such alerts would be clear
and unambiguous, but require advance knowledge of the bus’s configuration
and signature updates if the bus layout changes.

In the Malfunctioning RT scenario, there is nothing for signature detection
to offer. The scenario proposed an RT producing the expected traffic, but at

93

5.7. Discussion of Validation Results

increased or decreased time intervals. In this case, anomaly detection is the
only means of making a conclusive definition.

Similarly, signature detection is ineffective against the Status Word Data
Integrity (Message Manipulation) technique. Even if the duplicate status word
followed a known pattern that could be used to create a signature, it would
not be detected as the result of a successful attack is an unintelligible word
that cannot be interpreted.

5.7.2 Effectiveness of Word Repetition Analysis as a
Detector

Word repetition analysis was proposed as a method for making a detection
in the Status Word Data Integrity (Message Manipulation) scenario, where
a duplicate status word was expected. Since there is in fact no status word
interpreted by the ENET2-1553, this approach was not feasible.

Although attempting to apply this method yielded no success, it was noted
that the false alarm rate was far higher than was observed in testing. While
the bus configurations used in testing the detector were lightly loaded with
only a handful of RTs transmitting in slow time, the test data was captured
on a far busier bus, with much more traffic and therefore many more routine
acknowledgment status words.

It was incorrectly assumed that the expected double status word was de-
tectable, but it is lost in the sea of routine acknowledgment status words.
Even with the knowledge that the double status word does not appear, the
false alarm rate observed was unexpectedly high.

The word repetition analysis routine added all status words to a single
list, regardless of source address. Trying to measure repetition in this list is
not viable, as some RTs are polled more frequently than others. To catch
word repetition from a relatively quiet RT, many more repetitions would be
observed from RTs broadcasting more frequently.

To solve this, a number of lists would need to be maintained: one for each
RT. This would result in a more reasonable comparison, looking only for word
repetition in a single RT’s traffic, and discounting other RTs that may be
repeating frequently by design.

5.7.3 Traffic Capture

This work identified three main considerations for capturing bus traffic: cap-
ture length, system conditions and format.

94

5.7. Discussion of Validation Results

5.7.3.1 Capture Length

When capturing traffic either as a baseline or for analysis, every effort should
be made to ensure the capture is comprehensive enough to accurately represent
normal bus activities. The best way to maximize the chance of this is to
take a long capture. The threshold for a long capture may be situationally
dependent, but several minutes of data is more likely to be representative than
a few seconds.

Taking longer captures also reduces the prominence of the start and stop
points. For instance, starting a capture at the precise moment after a com-
mand is sent but before the RT has replied would produce an imbalance in the
number of command and status words recorded, with one more status word
seen. If only ten command/reply pairs are observed, this extra status word is
significant. But if hundreds or thousands of iterations are recorded, a single
extra word becomes much more negligible.

5.7.3.2 System Conditions

Another important aspect to consider when taking a traffic capture is ensuring
the captures were taken during representative phases of the system’s operation.

Over the course of a typical flight, the type of traffic that appears on
the bus will vary depending on conditions. For instance, takeoffs and climb
outs require changing throttle settings and control surface actuation, while
cruise typically requires less frequent control input. What is “normal” and
“expected” therefore varies depending on the regime of flight. An analyst (or
automated tool) may need to account for this in making a determination.

Similarly, when an analyst compares a traffic sample to a baseline, knowing
the phase of flight in which each was captured may be relevant. For instance,
a command to the RT and subaddress responsible for landing gear deployment
will most likely only appear on samples captured during the climb or approach
phases. If the command appears in the sample under analysis but not the
baseline, is it suspicious, or was the baseline recorded during cruise?

As an example, recall that in the Transmission Timing DoS (Behaviour
Manipulation) scenario discussed in Section 5.1, a command word for RT #13
was observed in what was otherwise status word flooding. While this might
be a result of the flooding, it is also possible that it was a legitimate command
word appearing so infrequently that it was only observed once. While this is
unlikely, it cannot be discounted without knowing the exact layout of bus.

In the traffic samples used to test Otto in Section 4.4 and some of the
cases used to validate the tool in Chapter 5, the traffic samples generated

95

5.7. Discussion of Validation Results

using BusTools was scripted, repeating the same known sequence of actions.
Such cases lend themselves well to baselining, as the conditions are the same
for both the baseline and the suspect capture. The Malfunctioning RT and
Unassigned RT Address scenarios demonstrate the utility of the technique
when this is properly done.

5.7.3.3 Capture Format

A more fundamental issue related to bus traffic recording is the format of
the capture. While the simplest method is to directly monitor the bus’s elec-
trical activity and record the bits as they are observed, this work exploited
the Alta ENET2-1553’s bus monitoring feature, which is able to translate
MIL-STD-1553B traffic into a packetized format. Leveraging this existing
technology provided advantages such as metadata generation and compatibil-
ity with existing IP protocol analysis tools. However, this convenience came
at the cost of added implementation complexity, requiring Otto to interpret
UDP/IP packets and extract data from a payload structured according to an
obscure protocol. With the concept now proven, future projects in this domain
may opt to capture traffic differently. Capturing raw data from the bus has
the advantage of being more direct, but may require additional development
work to create tools required to support further analysis.

5.7.4 Timing Attacks

When selecting a subset of the attacks proposed by Stan et al. to test Otto’s
effectiveness, attacks involving timing were not considered. Examples of these
include asynchronous messages, non-respect of the intermessage gap and im-
proper clock syncing [3].

While these attacks may be as insidious as any other discussed in Chap-
ter 5, an emphasis was placed on attacks requiring the words transmitted over
the bus to be analyzed and interpreted. This investigation of command and
status words at the bit level was judged to be more directly linked to the net-
work security monitoring techniques proposed. However, observing, tracking
and correlating event timings on a busy bus, while complex, can yield valuable
investigative information and presents a good opportunity for future study.

5.7.5 Attack Feasibility and Effectiveness

Early in this work, an underlying assumption was made that an attacker would
be able to gain any prerequisite foothold to carry out the attacks studied.
While it is possible to hypothesize vectors for initial compromise, the feasibility

96

5.7. Discussion of Validation Results

of these was not considered. This was a deliberate decision, as there can be
many ways for an adversary to inject data onto the bus. The absence of
device authentication in the MIL-STD-1553B standard makes it as simple
as connecting a rogue device to a data bus port. As prevention of attacks is
strongly preferable to their detection, the study of initial compromise methods
is ripe for further development.

Similarly, this work presents no evaluation of the effectiveness of the at-
tacks proposed by Stan et al., or the likelihood of such attack occurring [3].
While some work has been done in this realm, the attacks proposed were
assumed to be effective and all equally likely to be used by an attacker. As
attack tactics, techniques and procedures (TTPs) are further developed, detec-
tion techniques will need to be similarly refined in order to increase detection
rates, reduce false alarms, and further automate analysis. This underscores
the importance of studying the “offensive” side of security in order to better
prepare the defensive side.

5.7.6 Prevention vs Detection

Finally, it bears noting that this work focuses on the detection of an attack or
malfunction in progress. In the case of recorded traffic, the methods discussed
provide a forensic capability for determining what occurred.

With a focus squarely on detection, this work does not provide any pre-
ventative measures to avoid undesired effects on the bus, nor does it take
action to stop any actions it detects. While detection is certainly important,
the importance of prevention should not be understated. It is suggested that
methods for protecting the MIL-STD-1553B data bus from unauthorized ac-
cess be considered as an important avenue for future work in this domain.

97

6 Conclusion

Throughout the development of this work, numerous opportunities for future
work have presented themselves. While these are beyond the scope of a proof
of concept, they can be used to guide the way forward in this space.

This chapter will summarize these potential areas for advancement, and
will end with concluding remarks recapitulating the work done.

6.1 Future Work

While Otto is a sufficiently functional proof of concept, a number of avenues
for future work have been identified over the course of the development. While
they are discussed within the context of the proof of concept tool developed
in the course of this work, many of these enhancements have applicability to
more general MIL-STD-1553 network security monitoring concepts.

Firstly, while some cursory testing has been done on different operating
systems, Otto was designed to run on its development station, namely the
default Python installation from Kali Linux 2018.1 running on x64 architec-
ture. Some incompatibility with other platforms was noted in the testing
phase, likely due to unmet dependencies. While such issues are acceptable
for a proof of concept, these should be addressed if Otto is to be developed
further.

Notwithstanding the discussion on traffic capture format presented in Sec-
tion 5.7.3.3, it is possible to better leverage the existing APMP CDP-formatted
data. Specifically, there is a considerable amount of metadata contained within
each packet. While Otto uses the CDP’s A/B bus flag as a signature parame-
ter, it may be possible to use other fields such as CDP error detection flags or
intermessage gap times to create richer signatures, or to devise new detection
methods.

While the prototype does some basic checking to reject null-value CDPs,
these tests could stand to be made more robust. Firstly, the current checking

98

6.1. Future Work

only tests the fields extracted from the CDP 1553 word, and not the entire
CDP word. While this is not expected to impact any of the test cases studied
in Chapter 5, it could result in falsely rejected command words that, though
invalidly formatted, might be generated by an attacker. Re-implementing the
check to compare the full 32-bit CDP 1553 word to the 0xFFFFFFFF null value
rather than a selection of fields would eliminate this possibility. This checking
could also more efficiently be performed at the packet parsing stage, rather
than within both the signature detection and word repetition analysis phases.

On a related note, Otto’s current structure assumes that the pcap files
provided contain only APMP CDP-formatted data, and parses all packets
accordingly. Pre-filtering is done manually using tcpdump to include only
UDP traffic from the ENET2-1553’s IP address and specified port. Building
this filtering functionality into Otto would eliminate the need to manipulate
pcap files, and would be required to ingest a stream in near-real time to ensure
only APMP-formatted data is parsed.

Near-real time processing of MIL-STD-1553 data is also a highly desirable
option. While it should be feasible to do this using the packet stream pro-
duced by the ENET2-1553, successful implementation may require improved
efficiency. This is especially important for analysis of a bus over a long period
of time, as even small delays will agglomerate into noticeable lag. Alternate
methods for capturing MIL-STD-1553 bus traffic may also lead to better per-
formance.

Related to this, as mentioned in Section 4.2.3.3, the signature detection
logic used in the prototype version of Otto was designed to be human-readable,
and not for computational efficiency. Additional work to better streamline this
algorithm, along with enhancements elsewhere in software, has the potential
to improve Otto’s performance.

Improvements to Otto’s detection handling function could also improve
computational efficiency. Currently, every available MIL-STD-1553 word field
is passed as an individual argument to the function. Those fields not relevant
to the detection are still passed, filled with throwaway values. Instead, passing
the packet as a single variable of an appropriate class would make this more
intuitive. Improvements to the user output are also possible, giving more data
to aid in deeper analysis. However, the alerts currently generated are sufficient
to prove the concept.

In the same vein, a mechanism for the operator to fine-tune the generation
of alerts could improve detection rates by eliminating clutter. An example
of this was discussed at the end of Section 4.4.3, where routine status words
were frequent enough to raise word repetition alerts. Such an improvement
may have also been beneficial in the Status Word Data Integrity (Message

99

6.2. Conclusions

Manipulation) scenario, where the failure to detect may have been due in part
to such alerts.

In addition to the requirement for conducting the analysis on a per-RT
address basis, the RT frequency analysis function could also be enhanced
by automating baseline comparisons. Currently, the user must compare the
results of two traffic captures manually. By adding the ability to input multiple
packet capture files, it would be possible to conduct the required calculations
and present a side-by-side comparison. Multiple file input could also be used
to conduct signature detection on multiple files in a single operation, and
generate a unified report.

The signature detection logic was designed to use blacklisting: if a value ap-
pears in the signature, it generates an alert. The implementation of whitelist-
ing, i.e. raising an alert on any value except the one in the signature, would
eliminate the need for the analyst to list every possible anomalous value when
only a single value is valid. An example of this is the reserved field in the
MIL-STD-1553 status word. This concept was illustrated in the Status Word
Data Manipulation (Message Manipulation) scenario discussed in Section 5.4.

Looking away from Otto and to the broader state of the art, a number
of other detection techniques could be adapted to MIL-STD-1553 data. For
instance, the Markov modeling proposed Stan et al. has promise for automated
anomaly detection [3]. State monitoring, as briefly discussed in Section 5.2 is
another option, albeit one that may be computationally expensive.

Overall, while the present work does prove the concept of applying signature-
based network security monitoring techniques to the MIL-STD-1553B data
bus, there are a number of opportunities for future work. Development of
new detection techniques and improved implementation of existing ones are
two broad avenues for ongoing research and development.

6.2 Conclusions

As initially presented in Section 1.2, this work set out to demonstrate an
application of signature-based detection to MIL-STD-1553B data bus traffic
to identify signs of undesirable system activity. Detection of such traffic is
critical to ensuring that data bus-connected devices continue to operate as
designed, and are free from compromise or faults.

Starting with samples of bus traffic encoded using the Alta Common Data
Packet protocol, a tool called Otto was written in Python to implement sig-
nature detection, as well as the required packet dissection functions and user
interfaces. Two anomaly-based detection techniques, word repetition analysis

100

6.2. Conclusions

and RT frequency analysis, were implemented for use in cases where signature-
based detection may not be effective.

The testing phase revealed a number of coding and logic errors, which
were corrected. The updated version of Otto performed as expected and
was ultimately used to carry out testing against sample traffic demonstrating
attacks postulated by Stan et al. [3].

As demonstrated in Chapter 5, signature-based analysis was ultimately
successful at making detections in two of the selected scenarios. In two others,
signature-based detection was used to support the investigation of an anomaly-
based detection. In the two remaining scenarios, signature detection was not
useful.

The success of this work further opens the door to further research in
this space. Opportunities exist to continue the refinement and automation
of the detection techniques demonstrated, or to develop and implement new
techniques. There is also a need for continued research into implementing
attacks against the bus, in order to better inform the development of detection
techniques. Finally, there are also opportunities to continue research into
incident handling and active bus defense.

Although MIL-STD-1553 is an aging standard, it continues to be in service
in both legacy and new aeronautical platforms. The inherent design of the
data bus can make it a potential target for malicious actors. While much of
the regulatory activity surrounding aircraft systems has been prompted by the
introduction of more modern computing and network technologies, continued
work in this domain is important to help ensure safe flight.

101

References

[1] Aircraft internal time division command/response multiplex data bus.
Technical Report MIL-STD-1553B, United States Department of Defense,
September 1978.

[2] Jeremy Paquet. Uncovering MIL-STD-1553 vulnerabilities: Exploitabil-
ity of military aircraft networks. Master’s thesis, Royal Military College
of Canada, 2014. [SECRET].

[3] Orly Stan, Yuval Elovici, Asaf Shabtai, Gaby Shugol, Raz Tijochinski,
and Shachar Kur. Protecting military avionics platforms from attacks
on MIL-STD-1553 communications bus. Technical report, Ben-Gurion
University of the Negev and Astronautics C.A. ltd., July 2017.

[4] Cary R. Spitzer. The Avionics Handbook. CRC Press, Williamsburg, VA,
2001.

[5] Charles Bernard. Application of network monitoring concepts to the
MIL-STD-1553B data bus. Technical report, Royal Military College of
Canada, Kingston, ON, 2015.

[6] Fibre optics mechanization of an aircraft internal time division com-
mand/response multiplex data bus. Technical Report MIL-STD-1773,
United States Department of Defense, 1988.

[7] Richard Bejtlich. The Practice of Network Security Monitoring: Under-
standing Incident Detection and Response. No Starch Press, San Fran-
cisco, CA, 2013.

[8] Stefan Axelsson. Intrusion detection systems: A survey and taxonomy.
Technical report, Department of Computer Engineering, Chalmers Uni-
versity of Technology, Goteborg, Sweden, March 2000.

[9] Monowar H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita. Network
anomaly detection: Methods, systems and tools. In IEEE Communica-
tions Surveys & Tutorials, volume 16, pages 303–336, 2014.

102

References

[10] T. T. T. Nguyen and G. Armitage. A survey of techniques for internet
traffic classification using machine learning. In IEEE Communications
Surveys & Tutorials, volume 10, pages 56–78, 2008.

[11] P. Garcia-Teodoroa, J. Diaz-Verdejo, G. Macia-Fernandez, and
E. Vazquez. Anomaly-based network intrusion detection: Techniques,
systems and challenges. In Computers & Security, volume 28, pages 18–
28. Elsevier, 2009.

[12] George Khalil. Open Source IDS High Performance Shootout. Whitepa-
per, SANS Institute InfoSec Reading Room, Bethesda, MD, February
2015.

[13] Nick Ierace, Cesar Urrutia, and Richard Bassett. Intrusion prevention
systems. ACM Ubiquity Magazine, page 2, June 2005.

[14] Special conditions: Boeing model 787-8 airplane; systems and data net-
works security — isolation or protection from unauthorized passenger
domain systems access. In Federal Regsiter, volume 73, pages 27–29, Ren-
ton, VA, January 2008. Federal Aviation Administration, United States
Department of Transportation.

[15] United States Code of Federal Regulations. 14 CFR 21.16 — Special
conditions, September 1980.

[16] Cristina Chaplain. Weapon system cybersecurity. Technical Report
GAO-19-128, Government Accountability Office, Washington, DC, Oc-
tober 2018.

[17] Blaine Losier, Ron Smith, and Vincent Roberge. Design of a time-based
intrusion detection algorithm for the MIL-STD-1553. Technical report,
Royal Military College of Canada, Kingston, ON, January 2019.

[18] Sebastien J.J. Genereux, Alvin K.H. Lai, Craig O. Fowles, Vincent R.
Roberge, Guillaume P.M. Vigeant, and Jeremy R. Paquet. MAIDENS:
MIL-STD-1553 anomaly-based intrusion detection system using time-
based histogram comparison. IEEE Transactions on Aerospace and Elec-
tronic Systems, Early Access, April 2019.

[19] Thuy D. Nguyen. Towards MIL-STD-1553B covert channel analysis.
Technical report, Naval Postgraduate School, Monteray, CA, January
2015.

[20] Nagaraja Thanthry and Ravi Pendse. Aviation data networks: security
issues and network architecture. In 38th Annual 2004 International Car-
nahan Conference on Security Technology, pages 77–81, October 2004.

103

References

[21] Andy Greenberg. Hackers remotely kill a Jeep on the highway — with
me in it. Wired Magazine, July 2015.

[22] Andy Greenberg. The Jeep hackers are back to prove car hacking can get
much worse. Wired Magazine, August 2016.

[23] Julien Savoie. Software Defined Murder. Halifax, NS, April 2017. Pre-
sented at Atlantic Security Conference.

[24] Adrian Taylor, Sylvain Leblanc, and Nathalie Japkowicz. Probing the
limits of anomaly detectors for automobiles with a cyberattack frame-
work. IEEE Intelligent Systems, 33(2):54–62, March 2018.

[25] Charles Bernard and Sylvain P. Leblanc. Application of network security
monitoring to the MIL-STD-1553 data bus. Technical Report ECE-2017-
02, Royal Military College of Canada Computer Security Laboratory,
Kingston, ON, November 2017.

[26] Rapid7. Understanding and Configuring Snort Rules. Technical report,
December 2016.

[27] Richard Wade. Avionics appliances for ethernet networks: Real-time
MIL-STD-1553B and ARINC 429 appliances bridge to ethernet networks.
Technical report, Alta Data Technologies, May 2011.

[28] Alta Data Technologies, Rancho Rio, NM. AltaAPI Software User’s Man-
ual, November 2014.

[29] Alta Data Technologies, Rancho Rio, NM. AltaCore-1553 MIL-STD-1553
Protocol Engine Specifications/Users Manual, September 2014.

[30] Suzanne J. Matthews and David R. Raymond. Packet sniffing in python
(cs1). Technical report, United States Military Academy, 2015.

[31] GE Intelligent Platforms. R15-USB RoHS Dual port MIL-STD-1553 USB
Adapter. Technical report, GE Intelligent Platforms, Charlottesville, VA,
2012.

[32] Alta Data Technologies, Rancho Rio, NM. AltaView Software User’s
Manual, November 2014.

104

Appendices

105

A Detailed Structural Design

This appendix provides a detailed breakdown of the code behind Otto, in-
tended as an accompaniment to Section 4.3, which provides a high-level overview
of the program’s structural design.

As discussed in Section 4.1, Otto is implemented in Python. This appendix
will first discuss the imported Python modules used, the selection and use of
global variables, the variable classes implemented. Armed with this knowl-
edge, this appendix will then describe the implementation of each function.

A.1 Modules

Otto takes advantage of a number of Python modules.
scapy scapy is used to ingest APMP-formatted pcap files
csv The csv module is used to process the comma-separated value files used

to define signatures.
os.path This module enables file imports, namely pcap and CSV files.
binascii During the packet processing routine, the data extracted from each

of the payload fields is stored in decimal format by default. binascii

functions are used to convert these into an ASCII string of 0s and 1s to
represent the bitfield.

logging Functions from logging are used in conjunction with scapy in order
to log any errors in packet manipulation.

time.sleep Used to provide a brief pause between the completion of the
user configuration and result reporting. While not strictly required, the
pause does make the user experience more pleasant by not bombarding
the user with information.

collections The results of the RT frequency analysis are presented as part
of the final reporting stage. This is done by way of a histogram, which
is powered by the collections module.

sys sys is used to allow the software to accept arguments from the command
line, namely the packet capture file to be analyzed.

math Used to provide various mathematical functions.

106

A.2. Global Variables

A.2 Global Variables

Otto uses three global list variables to store the signatures provided in the
user-defined CSV files and make them available to all functions. These are
called cwsiglist, swsiglist, and dwsiglist, for command, status and data
words respectively.

Three more global variables are also used to store parameters for both
command and status word repetition analysis. These are set by the user in
the main function and taken up in the relevant repetition analysis functions.
Using command words as an example, the cwrepeat variable is a boolean value
that stores whether or not the user has requested word repetition analysis. If
so, cwsetsize is used to define the number of previous words used to form
the analysis set and cwthreshold is the number of identical words within that
set that would trigger a detection.

Finally, two global variables are used to store the binary representation
of the RT addresses of every command and status word observed on the bus:
cwhistogram and swhistogram. As their names imply, these are used to
collect data to generate the RT frequency analysis histogram displayed to the
user before the program terminates. This will be further discussed in the
rtFreqAnalysis portion of Section A.4.

A.3 Classes

Three classes are defined in Otto, used to structure the various fields from the
ingested signatures into single variables. These variables are CWSig, SWSig,
and DWSig.

Listing A.1 shows how the CWSig class is structured. This is done similarly
for command, status and data words respectively, with the appropriate field
names for the type of word in question.

c l a s s CWSig :
i n s t ance = 1
de f i n i t (s e l f , address , tr , subaddress , wordcount , bus) :
s e l f . address = address
s e l f . t r = t r
s e l f . subaddress = subaddress
s e l f . wordcount = wordcount
s e l f . bus = bus
s e l f . id = CWSig . i n s t ance
CWSig . i n s t ance += 1

Listing A.1: CWSig Class

107

A.4. Functions

Each time a new variable is created using one of these classes, the “in-
stance” parameter is used to assign a unique serial ID number, and is incre-
mented to prepare a new number for the next variable.

There are also some occasions where the use of a variable class could have
been useful. Classes were overlooked as an option in the early stages of this
work, and this artifact carried on through the development cycle.

A.4 Functions

A.4.1 main

Parameters Packet capture file location passed as a command line argument
Returns None
User Inputs User settings, including signature file locations and word repe-

tition thresholds and windows.
User Outputs Text prompting the user for inputs, errors for invalid inputs,

command and status word histograms
Function Calls loadcommandsig, loadstatussig, loaddatasig, parsePCAP

Otto’s main function is where the user interaction occurs. The user is
prompted to provide paths to signature files and options to enable or dis-
able command and status word repetition detectors. There is also a measure
of input error detection that occurs, including validating integer inputs and
verifying whether the specified signature file paths are valid.

The contents of the pcap file specified in the path is loaded into a list vari-
able called pcap, with one packet per list item. This functionality is provided
by the scapy module. Some simple packet filtering is done here, with only
UDP packets added to the list.

The signature file paths are passed as arguments to the respective signature
loading functions: loadcommandsig, loadstatussig, and loaddatasig.

After all required user input is gathered, the parsePCAP function is called,
with the pcap variable as argument.

This function is also responsible for some of the final reporting, namely
the generation of the RT frequency analysis histogram. This is done using
the collections.counter function. A detailed explanation of the output is
given in the rtFreqAnalysis function description, as the output is directly
related to that function’s actions.

108

A.4. Functions

A.4.2 parsePCAP

Parameters pkts variable containing the pre-filtered packets from the main

function
Returns None
User Inputs None
User Outputs None
Function Calls cwsiglogic, swsiglogic, dwsiglogic, cwrepeat, swrepeat,

rtFreqAnalysis

The parsePCAP function serves to extract the useful data from the APMP
packets contained in the user-specified pcap file.

The crux of this function is a for loop, which iterates through each packet
in the file. For each packet, two command words, two status words and 32
data words are extracted. This is accomplished by slicing the string containing
packet data at the appropriate bit offsets for each word. As the words are
stored as a string of 0s and 1s, some additional manipulation is done to convert
hexadecimal values into binary and to ensure any leading 0s are not dropped.

A packet ID is then defined, incrementing one each time through the loop
to create sequential packet numbers. This is ultimately used to identify which
packet causes a detection.

Once a packet is fully broken down, the relevant words are passed to the
signature analysis functions (cwsiglogic, swsiglogic, dwsiglogic). If the
user has requested command word or status word repetition analysis, those
functions are invoked next. Finally, the rtFreqAnalysis function is called
to ensure the command and status words are counted in the RT frequency
analysis.

With the analysis of the first packet complete, Otto then repeats the cycle
with the next packet, until the end of the capture file.

A.4.3 loadcommandsig, loadstatussig, loaddatasig

Parameters Path to the applicable signature file
Returns None
User Inputs None
User Outputs Prints the ID number and content of each line in the signa-

ture file in a binary format, displays error messages if the signature file
contains improperly formatted parameters.

Function Calls open

The signature loading functions are similar for command, status and data
words and can be discussed as a group. Command word signature detection
will be the example discussed.

109

A.4. Functions

These functions are used to parse the comma-separated value signature
files, check that the defined parameters are correctly formatted, convert the
human-readable parameters into binary strings for further processing, assign
signature ID numbers and load the signature strings into the appropriate
signature list variable, as discussed in Section A.2.

Using Python’s regular file manipulation functions, the signature file path
passed as a parameter is used to open the CSV file and extract the contents.
Then, row by row, the human-readable parameters are converted into their
binary string equivalents. Prior to each conversion, basic input validation is
done to ensure the value given is correctly formatted, e.g. the T/R bit field
should only contain a T or an R. Any input validation test failures are reported
as errors and the program exits.

Each parameter is loaded into a temporary CWSig, SWSig or DWSig-
class variable, along with a sequentially generated signature ID number. The
contents of that temporary variable are then appended to the global cwsiglist,
swsiglist or dwsiglist variable for later use.

A.4.4 cwsiglogic, swsiglogic, dwsiglogic

Parameters Relevant words extracted from the current packet, packet ID
number

Returns None
User Inputs None
User Outputs None
Function Calls detection

As with the previous functions, the signature logic functions can be discussed
as one.

The function is centered around a for loop, iterating for each command
word signature held in the global variable list.

Nested inside is an if statement, which skips the logic if the word under
analysis is a null-value (defined by the APMP as all 1s).

If this test is passed, the comparison of the command word to the signature
begins, testing each word parameter-by-parameter. If a match is detected in
the RT address field for example, all other word parameters are checked to
see if they match the signature, or the “don’t care” value (all xs). This is
done to avoid a detection if multiple matching parameters are required for a
detection.

If a detection is made, the detection function is called to handle the
reporting. It is passed the type of detection made (“command”, “status”,

110

A.4. Functions

or “data”), along with the value of each word parameter, the signature that
triggered the detection, and the packet ID number.

This check is done for both command word 1 and command word 2, and
the loop repeats with the next signature on the list. Once all signatures
are exhausted, the function returns to the calling parsePCAP function, which
parses the next packet.

It should be noted that in the case of data words, signature checking is done
at the word level since there are no standard parameters for this word type.
Therefore, a check of the full word against the full signature is done. Since
none of the scenarios presented are expected to require data word signature
detection, this basic functionality is sufficient for this proof of concept.

A.4.5 cwrepeatdetector, swrepeatdetector

Parameters Command and status words, packet ID
Returns None
User Inputs None
User Outputs None
Function Calls detection

If requested by the user in the configuration phase, the word repetition
detection functions are called. The command word repetition analysis function
will be discussed as the example.

Firstly, the command word parameters are concatenated to form a 17
character string (16 bits plus one bit to indicate the bus). This string is
tested for the null string discussed previously to ensure the null string is not
saved to the set as this would result in a high number of false alarms.

The .count attribute of the cwrepeatlist list variable is then used to count
the number of occurrences of the string in the set. If this count is equal to or
greater than the user-defined threshold, the detection function is called.

Once the test is complete, the string is then added to the set by simply
appending it to the cwrepeatlist variable.

This is done a second time using the string from command word 2.
Finally, the length of the set is checked using a while loop. While the length

of the set exceeds the set size defined by the user, the oldest list element is
dropped. This ensures that only the most recent values are retained, up to
the maximum number defined by the user.

111

A.4. Functions

A.4.6 detection

Parameters The content of the word causing the detection and the bus on
which it was observed, the type of detection (command, status or data
word signature match, or command or status word repetition thresh-
old exceeded), the packet ID number, and the signature matched for
signature-based detections.

Returns None
User Inputs None
User Outputs Text containing details of the detection.
Function Calls None

The detection function is perhaps the most versatile one in the program,
handling the generation of alerts for both the signature detection or word
repetition analysis functions.

A single detection function ensures a consistent output for all detections.
It also provides the analyst with a single location to modify the detection
handling, including changing the outputs displayed to the user, implementing
a logging feature, or passing specific alerts to other functions or programs.

An if statement is first used to check the detection type passed. Valid
options are “command”, “status” and “data” for signature detections, and
“commandrepeat” and “statusrepeat” for detections made by word repetition
analysis.

Command, status and data signature detections are handled nearly iden-
tically, by displaying the packet ID number where the detection was made,
which word within that packet raised the detection, the ID number of the
signature matched, and the parameters of that signature, e.g. T/R bit set
to transmit, RT# 17 and subaddress 13. For data words, the parameters are
replaced by the full word.

Signature detection also includes a check to verify that the parameters in
the word do indeed match those in the signature. If no match is observed, an
error message is displayed. Initially written as a debugging feature, this check
was kept as part of the final code as a backstop against erroneous detection or
incorrect variables being passed to the detection function. However, this error
has never been observed during the development or experimentation phases
of this work.

112

A.4. Functions

A.4.7 rtFreqAnalysis

Parameters cw1, cw2, sw1, sw2
Returns None
User Inputs None
User Outputs None, though the information compiled by this function in

global variables is presented to the user by the main function.
Function Calls None

The rtFreqAnalysis function is used to keep track of the command and
status words observed. It is called by the parsePCAP function every time an
APMP packet is parsed.

The function is passed the contents of both command and status words in
the packet as binary strings. It performs a first-order check to ensure the value
is not the null value, i.e. all 1s: if the check passes, the content is appended
to either cwhistogram or swhistogram. After the last packet is parsed, these
two variables will contain a list of all command and status words observed on
the bus.

These global variables are used by the main function immediately before
the program terminates. Histograms are constructed for command and status
words observed, using the RT address as the key. The results are reported as
lists of the RTs ordered by frequency, along with the number of total words
containing that RT address.

113

	Acknowledgements
	Abstract
	Résumé
	List of Tables
	List of Figures
	Introduction
	Motivation
	Aim and Scope
	Potential Impact
	Document Outline

	Background
	MIL-STD-1553B Data Bus
	Bus Architecture
	Signaling and Word Composition
	Signaling Characteristics
	Command Words
	Data Words
	Status Words

	Message Formats
	BC-RT Data Transfer
	RT-BC Data Transfer
	RT-RT Data Transfer
	Mode Messages

	Network Security Monitoring
	Signature-based Detection
	Anomaly-based Detection
	Intrusion Prevention Systems

	Aircraft System Security Engineering
	Previous Work
	MIL-STD-1553B
	Other Aviation Buses and Systems
	Automotive Systems

	MIL-STD-1553B Security Concerns and Detection Methods
	Scenarios
	Transmission Timings Denial of Service (Behaviour Manipulation)
	Criticality and Feasibility
	Attack Indicators

	Status Word Data Integrity (Message Manipulation)
	Criticality and Feasibility
	Attack Indicators

	Command Word Denial of Service (Behaviour Manipulation)
	Criticality and Feasibility
	Attack Indicators

	Status Word Data Leakage (Message Manipulation)
	Criticality and Feasibility
	Attack Indicators

	Malfunctioning RT
	Malfunction Indicators

	Unassigned RT Address
	Malfunction Indicators

	Detection Methods
	Signature-based Detection
	Command Words
	Data Words
	Status Words
	Metadata

	Word Repetition Analysis
	RT Address Frequency Analysis

	Conclusion

	Automated Detection System Design, Implementation and Testing
	Design Considerations
	Real-Time Detection vs Post-Mission Analysis
	Data Source
	UDP Packet Construction
	Data Collection

	Hardware
	Software
	Development Language
	Operating System

	Execution Flow
	User Configuration
	Packet Parsing
	Signature-Based Detection
	Signature Definition
	Signature Loading
	Traffic Comparison

	Word Repetition Analysis
	RT Address Frequency Analysis
	Final Reporting
	Detection Handling

	Structural Design
	Overview
	main
	loadcommandsig, loadstatussig, loaddatasig
	parsePCAP
	cwsiglogic, swsiglogic, dwsiglogic
	cwrepeatdetector, swrepeatdetector
	rtFreqAnalysis
	detection

	Testing
	Experiment Setup
	Data Bus Traffic Generation
	Traffic Capture
	Physical Layout

	Signature-Based Detection
	ONE_RT
	FOUR_RT

	Word Repetition Analysis
	ONE_RT
	FOUR_RT

	RT Address Frequency Analysis
	ONE_RT
	FOUR_RT

	Conclusion

	Validation
	Transmission Timing DoS (Behaviour Manipulation)
	Scenario
	Expected Detection Mechanism
	Experimentation
	Command Word Flooding
	Status Word Flooding

	Discussion
	Command Word Flooding
	Status Word Flooding

	Status Word Data Integrity (Message Manipulation)
	Scenario
	Expected Detection Mechanism
	Experimentation
	Discussion

	Command Word DoS (Behaviour Manipulation)
	Scenario
	Expected Detection Mechanism
	Experimentation
	Discussion

	Status Word Data Manipulation (Message Manipulation)
	Scenario
	Expected Detection Mechanism
	Experimentation
	Discussion

	Malfunctioning RT
	Scenario
	Expected Detection Mechanism
	Experimentation
	FOUR_RT_FASTER
	FOUR_RT_SLOWER

	Discussion

	Unassigned RT Address
	Scenario
	Expected Detection Mechanism
	Experimentation
	Discussion

	Discussion of Validation Results
	Effectiveness of Signature-Based Detection
	Effectiveness of Word Repetition Analysis as a Detector
	Traffic Capture
	Capture Length
	System Conditions
	Capture Format

	Timing Attacks
	Attack Feasibility and Effectiveness
	Prevention vs Detection

	Conclusion
	Future Work
	Conclusions

	References
	Appendices
	Detailed Structural Design
	Modules
	Global Variables
	Classes
	Functions
	main
	parsePCAP
	loadcommandsig, loadstatussig, loaddatasig
	cwsiglogic, swsiglogic, dwsiglogic
	cwrepeatdetector, swrepeatdetector
	detection
	rtFreqAnalysis

