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Abstract

Components of Cyber Physical Systems (CPS), which affect real-world processes, are
often exposed to the internet. Replacing conventional control methods with Deep Re-
inforcement Learning (DRL) in energy systems is an active area of research, as these
systems become increasingly complex with the advent of distributed energy resources
integration and the desire to improve the energy efficiency. Artificial Neural Networks
(ANN) are vulnerable to specific perturbations of their inputs or features called adversar-
ial examples. These perturbations are difficult to detect when properly regularized, but
have significant effects on the ANN’s output. Since DRL relies on artificial neural net-
works to link optimal actions with observations, they are also susceptible to adversarial
examples in a similar manner. While Adversarial RL (ARL) has been explored in energy
distribution, research is lacking in Demand Response (DR). Furthermore, the ARL lit-
erature lacks research into the stealth of adversarial attacks. This work proposes a novel
attack technique for continuous control using Group Difference Logits (GDL) loss with
a bifurcation layer. By combining aspects of targeted and untargeted attacks, it signif-
icantly increases the impact compared to an untargeted attack, with drastically smaller
distortions than an optimally targeted attack. This thesis demonstrates the impacts of
powerful gradient-based attacks in a realistic smart energy environment, measures how
the impacts change with different DRL agents and training procedures, and uses statisti-
cal and time series analysis to evaluate attacks’ stealth. It finds that adversarial attacks
can have significant impacts on DRL controllers in DR, and constraining an attack’s
perturbations makes it difficult to detect. However, certain DRL architectures are far
more robust, and robust training methods can further reduce the impact.

Index Terms - Deep Reinforcement Learning, Adversarial Examples, Smart
Energy, Cyber Physical Systems, Load Altering Attacks
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Résumé

Les composants des systèmes cyberphysiques qui affectent les processus du monde
réel sont souvent exposés à l’Internet. Le remplacement des méthodes de contrôle con-
ventionnelles par l’apprentissage par renforcement profond (aussi connu sous le nom de
Deep Reinforcement Learning, DRL) dans les systèmes énergétiques est un domaine de
recherche actif, car ces systèmes deviennent de plus en plus complexes et connectés avec
l’avènement des ressources énergétiques distribuées et la volonté d’améliorer l’efficacité
énergétique. Les réseaux de neurones artificiels (aussi connus sous le nom de Artifi-
cial Neural Networks, ANN) sont vulnérables à des perturbations spécifiques de leurs
entrées. Ces perturbations aux entrées permettent de créer des exemples antagonistes.
Ces derniers sont difficiles à détecter lorsqu’ils sont correctement régularisés, en plus
d’avoir des effets significatifs sur la sortie de l’ANN. Étant donné que le DRL utilise les
ANN pour mapper les actions optimales aux observations, il est également vulnérable
aux exemples antagonistes. Bien que l’Adversarial RL (ARL) ait été exploré dans le
domaine de la distribution d’énergie, il existe peu de recherche sur le sujet dans le do-
maine de la Réponse à la Demande (RD). De plus, la littérature de l’ARL manque de
recherches sur la furtivité des attaques adverses. Ce travail propose une nouvelle tech-
nique d’attaque sur un système de contrôle en continu utilisant la différence de groupe de
logits dans la fonction de coût suivi d’une couche de bifurcation. En combinant les aspects
des attaques ciblées et non ciblées, cette technique augmente considérablement l’impact
par rapport à une attaque non ciblée, avec des distorsions considérablement plus faibles
qu’une attaque optimale ciblée. Cette thèse démontre les impacts d’attaques puissantes
basées sur le gradient dans un environnement énergétique intelligent réaliste. On mesure
comment les impacts changent avec différents agents DRL et procédures d’entrâınement.
On utilise des analyses statistiques et des analyses de données temporelles pour évaluer
la furtivité des attaques. Il a été également démontré que les attaques contradictoires
peuvent avoir des répercussions significatives sur les contrôleurs DRL en RD, et restrein-
dre les perturbations d’une attaque les rend difficiles à détecter. De plus, il s’avère que
certaines architectures DRL sont bien plus robustes que d’autres, et que des méthodes
d’entrâınement robustes peuvent réduire encore davantage l’impact d’une attaque.

Index Terms - Apprentissage par Renforcement Multi-Agent, Exemples
Antagonistes, Systèmes Cyberphysique, Attaques Altérant la Charge, Systèmes
Énergétiques Intelligents
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Glossary

ACG - Auto-Conjugate Gradient. A maximum confidence attack using the conjugate
gradient first order optimization method, which automatically adjusts the size of its
search step.

Adversarial Budget - The proportion of perturbed observations, the features per-
turbed, and the perturbation size ϵ (if applicable).

Adversarial Regret - The effects of the adversary measured either as the percentage
of time in adversarial state during an attack or the reduction of total rewards in testing,
depending on whether the adversarial goal is state- or reward-based. Adversarial regret
measures how much an attack degrades performance.

ART - Adversarial Robustness Toolbox. A Python library of adversarial attacks.
AMI - Advanced Metering Infrastructure.
ANN - Artificial Neural Network.
ASR - Adversarial Success Rate. The proportion of successful adversarial examples,

i.e., where an observation perturbation results in the victim deviating from its policy.
ATLA - Alternating Training with Learned Adversary. A robust training method

where an agent is trained with an adversary perturbing its observations. In alternations
the agent is trained to adapt to the adversary, then the adversary trains to adapt to the
agent.

CI - Critical Infrastructure.
Classifier - A machine learning algorithm which maps samples to a discrete set of

labels.
CPPS - Cyber Physical Power System.
CPS - Cyber Physical Systems. Networks of OT.
DER - Distributed Energy Resources.
DL Loss - Difference Logit loss.
DoS - Denial of Service.
DR - Demand Response. A smart grid technique where a grid operator modifies the

load or demand on the grid in response to the power available.
DRL - Deep-Reinforcement Learning.
Evasion Attack - An adversarial attack on a trained ANN, which aims to find small

changes to its input which changes the output.
Features - The inputs to a machine learning algorithm such as an ANN. In RL,

observations are a set of features.
FDI - False Data Injection.
FGM/FGSM - Fast Gradient Method/Fast Gradient Sign Method. Both are used

interchangeably. This is the original adversarial attack.
IBR - Inverter Based Resources.
KPI - Key Performance Indicator. One of several cost functions for evaluating per-

formance in the CityLearn gym environment. The KPIs are normalized by the cost
functions for an environment with no smart controller. So, the KPI is the relative per-
formance compared to a scenario with no controller. This means lower KPIs are better,
and KPIs less than one mean that the controller is better than the baseline.

LA - Learned Adversary. A DRL agent which is trained to degrade the performance
of a victim agent by adding perturbations to its observations.

LAA - Load Altering Attack.
Label - The classification or value assigned to a sample by a machine learning algo-

rithm such as an ANN.
Logit - The non-normalized output of an ANN.
Maximum-Confidence Attack - Method for maximizing the loss caused by an

ANN’s output by changing its input within a specified boundary. The loss function can
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be the same as that used to train the ANN, or a specialized function chosen by the
attacker.

MDP - Markov Decision Process.
Minimum-Norm Attack - An adversarial attack which aims to find the smallest

perturbation for an ANN’s input which changes output.
MLP - Multi-Layer Perceptron, synonymous terms include feed forward or fully

connect network.
MMD - Maximum Mean Discrepancy.
OT - Operational Technology. Technology used to control or monitor a physical

process.
Policy Induction - Manipulating the observations of a DRL agent so its actions

follow an adversarial policy.
PGD - Projected Gradient Descent. A maximum confidence attack which iteratively

follows the gradient of a loss function.
Regressor - Machine learning algorithm, such as an ANN, which maps input features

to label from a continuous range of values.
RES - Renewable Energy Systems. Electrical generation from sources such as wind

turbines, solar panels, and hydro-electric dams.
SB3 - Stable Baselines 3. A Python library for DRL.
SCADA - Supervisory Control and Data Acquisition.
Snooping Attack - Black box attack which uses historical data to train a proxy

model of the victim RL agent, to enable gradient-based adversarial attacks.
SoC - State of Charge. This is shorthand for the CityLearn feature electrical storage

SoC, which is the charge state of a battery.
ST Attack - Strategically-Timed attack. An observation perturbation attack in

DRL which aims to only perturb the victim at key moments, and not to cause any
perturbations when their effect is insignificant.

UFLS - Under Frequency Load Shedding. Contingency for maintaining the frequency
on a power grid, where non-essential loads are disconnected when the frequency drops.
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1 Introduction

Cyber Physical Systems (CPS) are networked Operational Technology (OT), which con-
trol processes in the real world [9]. Thus, actions in cyberspace can have physical con-
sequences. There are many precedents for cyber attacks on Critical Infrastructure (CI),
using a variety of vectors [1]. Smart grids are a prominent example of critical CPS. They
leverage Distributed Energy Resources (DER), which provide a significant attack surface
for bad actors to disrupt a power grid.

Reinforcement Learning (RL) including Deep-Reinforcement Learning (DRL) is per-
vasive in CPS control research, including smart energy systems [10, 11]. These sys-
tems require fine grained management to instantaneously match power generation with
the load, by controlling several variables and safety systems. As energy systems are a
component of CI, efficiency and reliability is broadly consequential. RL addresses the in-
creasing complexity of integrating multiple energy sources, rising demand, and non-linear
behaviour. Unlike conventional control methods, RL agents can learn optimal actions
without knowing the environmental dynamics, through interactions with historical data,
simulations, or live systems. In contrast, conventional control methods require a known
model before the optimal actions can be determined. RL applications are successfully
studied in many power systems applications, from the operational control of energy gen-
eration and distribution, to the efficient use on the load side, and determining market
prices. More research is required to ensure that RL agents are sufficiently robust to
enable these applications.

Although OT is used for control, it is rife with security concerns given its safety-
first focus, which prioritizes uninterrupted communication and continuous operation over
security[9, 1]. OT’s exposure to the internet as a part of modern CPS creates additional
vulnerabilities. In fact, a variety of threats exist, ranging from ransomware gangs to
state-sponsored actors. Thus, protecting these systems and exploring their vulnerabilities
is an important area of research. With the numerous applications for RL, adversarial
examples, in concept, provide another exploit to adversaries [12]. This type of attack
may be particularly difficult to detect using conventional Intrusion Detection Systems
(IDS) given that the examples are designed to resemble normal traffic and IDS struggle
to identify novel attacks.

As Artificial Neural Networks (ANN) are used in supervised learning to associate
features with labels, they are used in RL to associate observations with optimal actions
[13]. ANN allow DRL agents to store and update a number of weights far smaller
than the number of possible observations. While this improves the algorithms, it also
makes them vulnerable to adversarial examples. Specifically, an adversarial example is a
specially designed perturbation that describes the smallest changes to the input values
of the algorithm that changes the prediction to a predefined output. The same gradient-
based methods used to optimize the ANN’s parameters can be used to find the smallest
perturbation to the inputs which changes the output. With an adversarial example, an
attacker can lure a victim towards a state or action of their choosing with only access to
the means of communication between the agent and its sensors [12]. This attack to the
model’s integrity is a type of evasion attack. Evasion attacks at test time are a breach of
model input integrity where the end result is a compromise to the model’s performance.
Attackers can send perturbed data to the trained model. Even when the victim algorithm
is a black box to the attacker, this threat still exists because of the transferability principle
[14]. Moreover, attacks are becoming less computationally expensive and increasingly
difficult to detect because several techniques try to optimize the size and number of
perturbations used in the attacks [12, 15]. The techniques also have been demonstrated
to reduce the time required to generate the perturbations [16, 5, 17, 18].
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1.1 Motivation

Protecting CI as the technology evolves is a primary motivator of this research. As CI is
an attractive target for hackers, all potential vulnerabilities should be explored and ad-
dressed [9]. The security vulnerabilities of every component in a CPS must be understood
to protect it, which may soon include DRL agents. Renewable Energy Systems (RES)
and rising demand are increasing the complexity of modern energy systems [19]. As the
power outputs of renewable generation depend on environmental conditions, they cannot
be controlled like conventional generators. Electricity demand increases the peak load
generation, and distribution networks must be capable of supporting it. Both of these
are requirements for grid operators, as the electrical grid must instantaneously match de-
mand while maintaining tight tolerances for voltage, frequency, and phase. Thus, smart
grids are becoming a popular concept for improving grid stability and reducing peak
demand, and DRL controllers are expected to become integral to CPS in CI. Adopting
DRL in control offers superior optimizations compared to conventional control techniques
for increasingly complex energy systems. This is due to the fact that DRL effectively
optimizes non-convex functions, doesn’t require physical models, and handles larger ac-
tion and state spaces [11]. DRL agents learn an optimal policy during training, which
maps its observations to actions. Determining optimal control actions in smart grids is
increasingly difficult, making DRL an attractive alternative.

In terms of attacks, targeted observation perturbations of a victim DRL agent are
capable of controlling its actions and coercing it into following an adversarial policy,
instead of the policy it learned during training. As in classification tasks wherein an
adversarial example can be generated from a sample to correspond to a label of the
attacker’s choice, an observation can be perturbed towards a target action. In each
case, an attacker can use gradient ascent to discover small changes to the ANNs’ inputs
which result in a different output. These changes can be constrained such that they are
imperceptible to the human eye and impractical to discern from unperturbed observations
[20]. These attacks are enabled by the gradient methods used to optimize the ANN,
making this vulnerability an inherent property. Thus, DRL controllers present an exploit
to attackers, which is difficult to detect.

This means that attackers only need to manipulate a DRL controller’s observations
to gain control of the entire system. Furthermore, the attacks are difficult to detect,
concealing the attack vector from network defenders. Sensors observing the environment
cannot always be physically co-located with the controller. This is the case for a large
building or distribution network for example, which increases the attack surface [9].
While the controller might be stored in a secure and isolated location, it may not be
practical to do the same for remote sensors. Furthermore, if communication between the
controller and sensors is over a network, the traffic must be secured. However, secure
traffic is not often a primary concern in OT. This is particularly true of smart grids
managing energy distribution and demand, as these require dispersed sensor networks.
These sensors can be in isolated locations on distribution networks or inside private user
buildings where the smart grid operator cannot access or protect them. These factors
complicate managing and securing sensors and their communications.

This research seeks to motivate the designers of smart energy systems to conduct
robustness testing and build robust algorithms. In fact, unlike conventional control
techniques, DRL is vulnerable to adversarial examples. An attacker using adversar-
ial examples could effectively control the DRL victim and destabilize the CI [21, 22].
Demonstrating a successful attack in the area provides future researchers with a frame-
work to assess their own DRL agents and shows why agents used in this area of control
must be robust. Understanding the scope and limitations of such attacks enables risk
assessments when DRL technologies are implemented in CI. Such research is necessary to
demonstrate the importance of robust DRL agents, which are not easily exploited with
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adversarial techniques.
The factors above motivate four primary research questions:

1. Can observation perturbations using adversarial examples significantly degrade the
performance of a DRL agent in a smart energy system?

2. Can adversarial attacks be used to apply an adversarial policy for a DRL victim in
a smart energy environment?

3. Are adversarial examples statistically distinguishable from normal samples?

4. Are there general training or architectural designs which make DRL agents more
robust to observation perturbations?

1.2 Statement of Deficiency

Current research into evasion attacks on DRL smart energy systems is limited, as most
attack techniques are demonstrated against agents in video game gyms. Some works have
shown how smart energy distribution networks controlled with DRL are vulnerable to
evasion attacks, but research is lacking in attacks on DRL used for energy demand man-
agement [12]. Demand management involves controlling the power consumed by a user to
avoid stressing the power distribution and generation infrastructure, and includes smart
buildings. DRL has shown superior performance to conventional control for maintaining
a building’s temperature while reducing power consumption; however the security and
robustness of DRL to evasion attacks in this application remains to be evaluated [11].

The reviewed works which study the robustness of DRL control to adversarial observa-
tion perturbations do not evaluate the magnitude of the perturbations. While significant
distortions to the inputs of any controller will change its output, adversarial examples
are remarkable for the small size of their perturbations. To fully assess the threat posed
to DRL controllers, both the degradation of the victim’s performance and the size of the
perturbations should be considered. The threat posed by these perturbations is greater
if they are non-trivial to detect, and this must be assessed with domain specific samples.

Moreover, few tools to conduct robustness testing in DRL exist. No smart energy RL
gym includes the capability to add observation perturbations during training or testing,
which is necessary for testing model robustness or vulnerability to attacks. While libraries
exist for crafting adversarial examples, they are designed for classifiers, meaning they are
incompatible with continuous action spaces in DRL, and do not directly interface with
DRL agents. Adversarial example crafting techniques must be interfaced with both the
victim agent and the environment to conduct the security and robustness research.

1.3 Aim

This research aims to Demonstrate evasion attacks and defensive techniques on DRL
algorithms in a simulated smart energy environment . We hypothesizes that statistically
undetectable input perturbations can significantly degrade the performance of a DRL
smart energy system. We test this hypothesis by asking these 4 sub-questions:

1. Can false data injection using adversarial examples significantly degrade the per-
formance of a DRL agent? Testing the potential impact of adversarial samples as
the payload of a cyber attack in a realistic application. This tells us adversarial
examples are a significant threat to performance.

2. Can adversarial attacks be used to apply an adversarial policy for a DRL victim?
Adding on to question one, can such an attack control a CPS, rather than just
degrade its performance? Previous research has demonstrated targeted adversarial
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attacks inducing agents into following an adversarial policy, but is it practical in
this setting?

3. Can statistically indistinguishable adversarial examples be crafted? The most sig-
nificant aspect of adversarial examples is that they only require small changes to
the inputs, making them difficult to distinguish for normal data. To show that
adversarial attacks are a threat worth mitigating, we must validate that detection
is non-trivial.

4. Are there general training or architectural designs which make DRL agents more
robust to observation perturbations? Once adversarial attacks are demonstrated
as a significant threat, mitigations will be tested. Algorithm agnostic techniques
are important, since they can be adopted in existing systems, making them easier
to implement.

The attacker’s goal in a demand management environment is to perturb the victim’s
observations to increase energy demand. Increased demands when a power grid is near
its capacity can result in outages, with the impact dependant on the size of the spike. To
achieve our aim, the attacker would have read and write access to the victim DRL agent’s
observations but only read access to the victim’s model, simulating an intermediary
attack between the victim and its sensors, akin to an Adversary-in-the-Middle scenario.
This setup represents a white box attack.

A white box attack represents the worst-case scenario for a defender as it allows the
attacker to craft the strongest attacks. Studying the worst case scenario is appropriate in
this sparsely studied area, as exploring attacks with greater constraints is sensible once
the threat and its impacts are shown to be credible. Knowing the maximum impact of
an adversarial attack in this area will contextualize future research on more constrained
attacks, and provide data for comparing the effect of constraints and defences on the
attacker.

This research will be conducted in RL gym environments, which are distinguished
from other simulations by their interface for RL agents. An RL gym’s input at each
timestep is a selection from predefined actions called the action space. The gym returns
an observation and reward based on the action. Through this process, the agent receives
feedback on its action from the reward and learns to choose the optimal action for a given
observation. The same setting will be used to train an adversarial policy, which selects the
target for adversarial observation perturbations used to change the victim agent’s actions.
The adversarial policy can be a trained DRL agent with a reward function specific to
the attacker’s goal, e.g. a negation of the victim’s reward. Training, attacking, and
defending a DRL agent in an existing smart building gym will demonstrate the threat of
adversarial attacks in this application.

By simulating the effects of manipulating sensor observations to determine the sever-
ity of the threat of DRL algorithms controlling smart energy systems, this research hopes
to inform the future design of algorithms under an adversarial setting. To that end it will
demonstrate that adversarial examples are an attack vector for control systems and val-
idate that they are difficult to distinguish from normal samples. For this demonstration,
an environment with a realistic application and data has be selected, and the attack will
be compared to clean data with statistical tests. Given the lack of research in this area,
the goal is to show the design of robust and adversary-aware machine learning systems.

A SotA victim agent is not required to fulfill the aim, and developing one is out-of-
scope. The agent must be sufficiently capable to demonstrate an attack. The victim is
designed such that it is compatible with strong adversarial attacks, to test their impacts.
This limits which ANN architectures may be used.
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1.4 Research Activities

The following research activities will be conducted in order to demonstrate evasion at-
tacks and defensive techniques on DRL algorithms controlling smart energy systems, as
shown in Figure 1:

1. Demand Response Environment:

(a) Selecting the tool set for the experiments requires compatible DRL algorithms,
a Cyber Physical Power Systems gym environment, and adversarial attacks.

(b) Training a victim agent for testing adversarial attacks.

2. White Box Attacks: White box attacks are the best case scenario for the at-
tacker, which allows the most powerful attacks to be assessed. Various types of
adversarial attacks are tested and the reduction in the victim agents’ performance
is measured. Initial attacks will aim to force the victim agent into taking any sub-
optimal action. Targeted attacks will then be used to force the victim into following
an adversarial policy of the attacker’s choosing. Finally, a novel attack called the
bifurcation attack is proposed. The timing of attacks are explored to test if the
attack frequency can be reduced without reducing its impact.

3. Defences: In this activity we experiment with two defence paradigms: Detection
and correction.

(a) Detection: To defend against attacks, one paradigm is to detect the adversarial
example in order to potentially generate an alarm about this anomaly. In this
activity, we experiment with two detection approaches not to defend against
our proposed attacks but rather to determine if the adversarial observations
produced by our attacks resemble typical observations and are thus plausible.
The attacks will be modified as needed to test if they can be both stealthy
and impactful.

i. Analysis of the original and adversarial observations to test if the adver-
sarial observations can be detected by comparing the changes between
subsequent observations.

ii. Model agnostic statistical tests to determine if the original and adversarial
observations are drawn from the same distribution.

(b) Correction: Defence methods that are based on the correction paradigm
change how training or inference is done. A ”protective layer” is added to
make the system more robust by changing the input data. We experiment
with adversarial training as a robust training method to reduce the impact of
adversarial attacks.

4. Black Box Attack: The black box attack restricts the information known to
the attacker, decreasing their impact. This type of attack is easier to execute.
The efficacy of black box attacks is compared to the prior attacks, in terms of the
attacks’ impact and the amount of distortion required.

1.5 Summary of results

Agents with different architectures were trained in the CityLearn gym environment to
reduce energy usage by controlling the charging and discharging of a battery. These
agents were used to test three types of white box attacks: untargeted, optimally targeted
using an adversarial agent, and using a novel attack called the bifurcation attack. All
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Figure 1: Figure showing, from left to right, how the aim was achieved. Starting with a realistic
gym environment, victim agents are trained to establish a baseline for performance. Then
conducting strong attacks with perfect information to determine the extent of the threat, using
SotA techniques. The defense section tested algorithm agnostic mitigations for the previous
section’s strong attacks and validates that the attacks are stealthy by trying to detect them.
Finally, the agents and mitigations are tested against black box attacks, where the attacker
cannot access the victim’s parameters or environment.

attacks used the agent’s parameters to craft strong adversarial observations. The success
of these attacks was measured by how much distortion the attack introduced to the
observations, how successful the attack was in changing the agent’s actions, and how
much the power usage increased.

The untargeted attacks had relatively small effects on power consumption, but were
successful in changing the agent’s action for nearly every observation. The optimally
targeted attack more than tripled the power consumption, but introduced obvious dis-
tortions. The novel attack more than doubled the effects of the untargeted attack with
similar distortions to the observations.

The adversarial observations produced during these tests were analyzed during the
detection phase. The attacker’s budget was reduced until the adversarial observations
appear indistinguishable from the originals. This constraint reduced the performance of
the adversarial attack, making the effect insignificant for one of the two types of agents
tested. These results indicated that stealthy adversarial attacks are possible and that
simple changes can be made to the DRL agent to increase its robustness.

A DRL agent’s action space significantly affects the impact of attacks. Comparing
the same DRL algorithm with discrete and continuous action spaces showed that the
former reduced the attacks effect by approximately three fourths.

The black box attack was successful in significantly increasing power usage without
access to the agent’s parameters. It involved training a proxy model using the agent’s
historical observations and actions, and using the proxy’s parameters to enable a simple
attack. This attack is more feasible in practice as this type of historical data would be
available to an attacker with access to the agent’s observations. The compromise is that
larger distortions are required for the black box attack to achieve a similar effect as a
white box attack.
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1.6 Organization

Chapter 2 of this thesis will provide a background of DRL and cyber security in energy
systems, and adversarial attacks and defences. Chapter 3 discusses related works in
adversarial and robust RL. Chapter 4 provides the threat model. Chapter 5 is on the
implementation of a demand response environment for this research. Chapter 6 shows
the impact of adversarial attacks from the strongest adversary. Chapter 7 demonstrates
how attacks can be detected or mitigated. Chapter 8 repeats the methodology of chapter
6 for a limited adversary. Chapter 9 discusses this thesis’ contributions and future work.
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2 Background

This chapter will introduce the core concepts of Deep-Reinforcement Learning (DRL)
in energy systems. We then discuss the cyber security of energy systems. Finally, we
introduce adversarial examples because evasion attacks on deep neural networks are done
through adversarial examples.

2.1 RL in Energy Systems

Modern energy systems include a variety of Distributed Energy Resources (DER) and
load devices, where generators must meet the load’s energy demand in real-time with
narrow margins. Supplying too much can damage the load and distribution systems and
too little results in brown or blackouts. Thus, energy systems can be described by their
reactive and active powers, current, phase, voltage, and frequency where:

1. Power is proportional to current and voltage.

2. Reactive power corresponds to ripples or feedback in an energy system caused by
the difference in phase between the current and voltage.

3. The frequency in a power system affects the impedance of a system, which in turn
affects the phase and reactive power.

4. The system components have frequency, voltage and current limits, and can phys-
ically fail if exceeded. For example, synchronous machines like generators and in-
duction motors rotate at the frequency of the power grid and are damaged by large
deviations, and the operations of power electronics like rectifiers and transformers
change with the input frequency.

Keeping the system within tolerance limits is a control problem where grid operators
need to take optimal actions like changing the frequency on generators or varying the
number online for the safe and efficient operation of energy systems.

Grid operators make daily and hourly predictions based on historical usage and
weather data to ensure that enough generation capacity is available, and that the system
has sufficient inertia [7]. The operator computes the power flow in high voltage trans-
mission lines, which carry electricity from generators to local distribution networks, in
advance to ensure generation supply will match demand.

Conventional generation involves a mechanical input (e.g., hydro-dams or steam) pow-
ering generators’ rotors, and the load on the grid is proportional to the energy required
to turn connected rotors’ (in the same way it’s harder to peddle a bicycle up hill). Be-
cause the rotors rotational frequency is analogous to the frequency of Alternating Current
(AC), changes in demands affect the operating frequency. Deviations on the order of Hz
can damage generation equipment. Thus, operators’ primary response to small frequency
deviations is to change the mechanical inputs. Note that the primary response is limited
for Renewable Energy Systems (RES), because the operator cannot control the energy
input of solar and wind generation. As the primary response can exceed demand, a
secondary response involves connecting additional generators, changing the active power
target, and/or adding controllable loads, which requires reserve generation capacity, per-
haps provided by another entity, a reserve of reactive power, and/or inactive controllable
loads. If these responses fail to stabilize the grid, possibly from insufficient reserves, the
operator must shed load and possibly disconnect generators to protect equipment. Such
failures occur when the operator is unable to determine a feasible control action for the
state of the power grid. Over current protection, which disconnects transmission lines
to prevent exceeding their thermal limits, is one of the most common occurrences in
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cascading failures [23]. Lines can be overloaded when generation exceeds demand, and
once a line is disconnected, power must flow through the remaining lines, triggering their
current protections.

Similarly, voltage protections involve disconnecting loads to protect generators from
damage caused by large deviations of the voltage profile. Once a generator is discon-
nected, a cascading failure can follow from insufficient generation capacity. Thus, grid
operators must select optimal primary and secondary responses based on system mod-
els to maintain power flow within safe margins. Protecting generation and transmission
equipment in contingency situations involves localized blackouts from loads shedding or
widespread power loss from cascading failures.

The complexity of modern energy systems is increasing in terms of operating states
and control actions [10]. This makes determining the feasible power flows more difficult.
The causes include the introduction of RES and rising demand [19]. It is increasingly
difficult to optimally control energy systems, due to uncertainties in supply and demand.
This leads to more disturbances and must be addressed with better methods of monitor-
ing the dynamic security, which is defined as transient, voltage, and frequency stability
[19]. While legacy power systems were designed for unidirectional power flow from cen-
tralized generators to remote loads, RES employ Distributed Energy Resources (DER)
throughout the power grid [6]. Users operating RES will, at times, consume and generate
power from the grid’s perspective, making their power flow bidirectional. This requires
additional monitoring and communication between DER and grid operators to maintain
power flows.

Conventional control methods struggle to model or apply heuristics for complex and
distributed power grids [22]. Such algorithms require robust models of their environ-
ments, which are ever more difficult to produce and maintain or update. Both supervised
and DRL methods can learn to model complex and uncertain systems from historical data
or environmental interactions, and model-free DRL algorithms can learn optimal control
policies. These properties of DRL algorithms enable them to act optimally in environ-
ments where the global optimal policy is unknown [10]. Due to uncertainties in renewable
energy generation and demand, DRL outperforms other techniques by addressing three
major issues [11]:

1. Non-linear systems and non-convex optimization functions in modeling. DRL al-
gorithms are able to operate without a world model and can learn to approximate
their environment.

2. Nonexistence of physical models, using model-free learning as above. This is a com-
mon issue with building energy management systems which typically lack practical
models.

3. Operating in large state and action spaces is less challenging for RL, for example,
using weighted function approximations can learn a set of weights which is much
smaller than the set of the state or action spaces.

Research on DRL for energy systems has steadily increased in the last decade, whereas
works on model predictive control (which does not use reinforcement learning) have
peaked. DRL is alluring to researchers because of its model-free approach to optimizing
control, as opposed to model predictive control which requires a model of physical prin-
ciples to relate control inputs to outputs. Model dependencies make extending the latter
techniques to complex energy systems impractical. This is also true of fuzzy control
systems as the decision space explodes with increased energy system complexity [11].

There are at least four major categories of energy systems management where DRL
has been successfully applied in research as identified in [10, 11], these reviews cited 68
and 84 works in these categories respectively:
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1. Smart energy distribution (dispatch): Optimal supply of electricity, heat, or cooling
to match demand. Dispatch for power grids includes voltage regulation. It is
influenced by demand, grid conditions, energy market, and performance of the
system components.

2. Grid operational control: Operational controllers maintain stable operations for
power systems, including transient stability and power flow. In this domain, the
optimal control strategies for energy storage, dispatch sources, and demand fluctu-
ations are found with RL. These strategies are necessary for the grid’s secure and
stable operation, particularly when using DER.

3. Demand Side Management (DSM): Managing the amount of power used by con-
sumers. System stability is improved by reducing peak loads. This includes building
energy management systems, which aims to increase comfort or energy efficiency,
improve air quality, and/or decrease energy bills. The vast majority of publications
concern optimal Heating Ventilation and Cooling (HVAC) control in buildings. De-
mand Response (DR) is a related technique where the system operator responds to
grid conditions by modifying user loads [24]. DR can work through price incentives,
communication between grid operators and large consumers, or automated and di-
rect control over consumer loads[23]. The latter applies to both large commercial
users and residential users alike.

4. Energy Markets: The review provided by [10] references 9 works which use DRL
for: automatic bidding by generation companies, electricity market modeling, or
dynamic pricing.

Research is particularly promising for applying DRL to HVAC systems, where mod-
eling the system dynamics is particularly difficult due to the system’s complexities, and
uncertainties in environmental conditions like occupancy and weather. DRL can outper-
form conventional techniques by up to 20 %, which stands out compared to research in
other applications [11]. A Multi-agent Actor-Critic (MAAC) MARL algorithm has shown
56.50% and 75.25% increases in energy efficiency compared to heuristic and rules-based
set-point control respectively, for a large building with 30 zones, simulated in EnergyPlus
with real world traces [25]. This demonstrates the scalability of DRL for applications
where modeling an increasing number of uncertainties has diminishing returns. Such
models are difficult to generalize and controllers using them are limited by the model’s
accuracy, and require near-exhaustive searches of the action space to act optimally [26].

As determined from the aforementioned works, DRL will be critical for managing
future energy systems, both for increased efficiency and reliability. There is a wide variety
of applications for RL, from top-down grid level control to user level energy management
systems. The complexity for the system is proportional to the difficulties in modeling it
for conventional control, and it is feasible that conventional methods will be impractical
for selecting optimal actions. This problem is addressed with model-free RL.

2.2 Cyber Security in Energy Systems

The digitization of Operational Technology (OT) into Cyber Physical Systems (CPS)
enables threat actors to disrupt OT systems because of increased connectivity, including
Critical Infrastructure (CI) [9]. OT is hardware and software integrated with devices for
monitoring and changing the physical world, and CPS are smart systems incorporating
information, analytic, and OT infrastructure. OT in critical infrastructure experiences
the same cyber threats as any large organization, in addition to state-sponsored actions
during geopolitical tensions.
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Figure 2: Figure 2 from [1]: ”Timeline of cyberattacks targeting the energy sector and other
CI sectors” ©2023 IEEE.

The lifespan of OT is measured in decades and, unlike in Information Technology
(IT), the personnel maintaining OT tend not to have security backgrounds or prioritize
security. These factors lead to OT devices remaining unpatched in the face of new threats.
Because OT is designed to maintain safe operating parameters at all times, it often
eschews secure communication protocols and Intrusion Detection Systems (IDS) which
could delay or disrupt communications. Early systems instead relied on segregation or
air-gaping, but modern CPS tend to be permanently connected and internet-facing [27][9].
In 2021, the Canadian Centre for Cyber Security identified 128 000 ports associated with
OT and 13% were unpatched; this included 24 000 from utilities and 6000 for building
control and automation [9].

OT is used to monitor four major threat categories for energy systems [19]:

1. Power Quality Disturbance (PQD)

2. Supervisory Control and Data Acquisition (SCADA) Network Vulnerabilities and
Threats

3. Transient Stability Assessment (TSA)

4. Voltage Stability Assessment (VSA)

Transient instability causes disruptions like islanding and wide area blackouts. TSAs
guide operator decisions in contingency scenarios, but conventional methods’ compu-
tational requirements mean that assessments often fail to meet the demands of modern
power systems [19]. Voltage stability is the system’s capacity to maintain bus voltages af-
ter deviations, which can be caused by load dynamics. Voltage stability includes reactive
power management. It requires continuous monitoring of loads and generator dynamics.
Voltage instability causes blackouts and can also damage generators and induction mo-
tors with rapid deceleration. SCADA networks are not designed for security and tend
to rely on IDS when security measures are present. Because of their inflexibility, they
struggle to protect modern heterogeneous systems. Like IDS in other fields, they struggle
with imbalanced and outdated training data. DRL is one solution to control problems
like transient and voltage stability, however the scope of the cyber security challenge is
greater.

In [28], the authors identify principal types of cyber attack on Cyber Physical Power
Systems (CPPS), which can be categorized as service degradation or spoofing. On a
networked system, spoofing can be conducted via an intermediary attack (also called
Man-in-the-middle (MITM)) where a malicious node inserted between devices, allows
the attacker to read, block, or modify traffic. The typical implementation of this attack
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involves spoofing the hardware addresses of the devices the attacker inserts themselves
between. This tricks devices into forwarding traffic to the attacker, who can choose what
data to forward to its destination. This is accomplished by abusing the Address Resolu-
tion Protocol (ARP) used to map Ethernet Medium Access Control (MAC) addresses to
Internet Protocol (IP) addresses. An intermediary attack can enable False Data Injection
(FDI) to change the system operator’s estimation of the CPPS’ state, which impedes the
operator’s decision process. To cope with noise from interference and meter malfunc-
tions, CPPS often employ detectors to reject measurement outliers. Thus, the false data
injected must be within the detector’s tolerance. A special case of FDI is a replay attack,
where an attacker delivers a deliberate sequence of historical measurements to disrupt
the target system. A service can be degraded using delay or Denial-of-Service (DoS)
techniques. A delay attack is used to desynchonize the measurements and operational
action of a system, and a DoS prevents any communications between devices. A typical
DoS attack saturates the means of communication between nodes of a network, to the
point no data can be transferred or processed. This denies the attacked service to users,
which in the context of CPPS could prevent the flow of measurements to the system op-
erator or commands from the operator to the system’s components. Table 1 summarizes
the different attack vectors for DER, and figure 2 shows a timeline of cyber attacks on
CPPS.

Attack vector Description Threat
Interoperability of DER
assets

Requirements crucial in
implementation communi-
cations (e.g., security and
control messages)

Denial of legitimate mes-
sages and control com-
mands

Data integrity violations Stored, transmitted, or re-
ceived unauthorized access
to control information

Malicious modification of
control parameters

Implementation errors Security flaws within DER
systems and communica-
tion modules enabling the
remote control

C2 of demand/load side
devices

Supply-chain compromises Hardware-based eaves-
dropping, worms, and
oversights during manu-
facturing of components,
devices, or systems

Sensitive information dis-
closure

Insecure firmware Digital signatures of
firmware updates are not
always verified, granting
malware (viruses, trojans,
worms, etc) access, to
otherwise, secure systems

DER systems privilege es-
calation

Table 1: Attack vector description and potential threats for DER assets [1].

More sustainable grid architectures with RES has also boosted the adoption of a class
of OT called DER [1]. Global DER generation capacity is expected to reach 528.4 GW
by 2026 with the US contributing 7.5 GW of Battery Energy Storage Systems (BESS).
DER are interconnected, interoperable, and remotely controllable devices throughout the
electrical distribution network. They can be categorized as:

1. storage: BESS, Inverter-Based Resources (IBR) and EV batteries.
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2. generation: IBR, solar Panels, wind farms, local or backup generators.

3. controllable loads: HVAC, smart thermostats, smart appliances, EV charging, elec-
tric water heaters.

DER reduce both distribution costs and transmission losses as they provide power in
proximity to its consumption [1]. They also buffer the grid from unforeseen demands and
extreme weather events. The flexibility and autonomy of DER makes them invaluable to
CPPS CI. Because most DER are derived from renewables rather than a mechanical input
like turbines, their frequency cannot be modulated. Instead, the grid operator defines
modes of operations and set points for each DER to integrate them with the power grid,
which increases the cyber attack surface [6]. Because they are distributed by nature, DER
must be remotely accessible over a network, thus providing attackers with a method of
interacting with power flow. Attacks on CI are becoming increasingly popular. Energy,
government IT communications, public utilities, and healthcare systems have recently
been targeted by state and non-state actors [1]. The vulnerability of communications of
a CPPS were demonstrated in Utah, US on 5 March 2019 where attackers conducted a
DoS attack by exploiting vulnerable firewall devices [1].

Published works have shown that in CPPS, both SCADA networks and smart substa-
tions are vulnerable to FDI attack [28]. Where SCADA is used to monitor and control
systems, a smart substation leverages SCADA for real-time control on a larger scale.
Attacks on these system components allow an attacker to affect the wider grid without
detailed or real-time knowledge of its state.

The following wired and wireless protocols enable monitoring and control between
DER and management systems of utility aggregators [1]:

1. IEEE 1815-DNP3: Interoperable communication framework for secure informa-
tion exchange in industrial systems (e.g., SCADA).

2. Sunspec Modbus: Modbus protocol extension for DER parameters (e.g., power
and voltage) and ancillary services monitoring and control.

3. OpenADR: Energy market management standard regulating demand-response
via signals to DER and other controllable devices.

4. IEEE 2030.5: Smart energy profile application standard and default protocol for
DER management.

Embedded OT handles these communications using the above protocols for monitor-
ing and executing remote commands, and of those protocols, the IEEE 2030.5 is the
only protocol to be originally designed with strict cryptography requirements [1]. Table
2 highlights the vulnerabilities of DER communication protocols. However, it is still
vulnerable to DoS and attackers can brute-force user-level credentials to reconfigure con-
nected DER [6]. DNP3, which is used by 75% of utilities in the USA, and Modbus have
data interruption, interception, modification, and fabrication vulnerabilities [1]. The lat-
ter two vulnerabilities could allow an attacker to reconfigure devices, issue commands, or
present false measurements of the system’s state. Both the Modbus and DNP3 protocols
lack any encryption, authentication or error correction, allowing packet sniffing malware
on the client or an intermediary to modify the contents of packets [29][27]. The open-
source CERT Java-based implementation of OpenADR has documented data integrity
vulnerabilities, which permit attackers to access sensitive user data [1].

While the latest standards for all these protocols functionally comply with IEEE
2030.5, limitations in the existing infrastructure inhibits the deployment of secure proto-
cols and the entire system is only as strong as its weakest link. Operators are hesitant to
replace otherwise functional legacy systems. Operation or device constraints may prevent
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Protocol SunSpec
Modbus

IEEE 1815
(DNP3)

IEEE 2030.5
(SEP2)

Intermediary X X
Replay X X
DoS X X X

Data Capture X X
SSL Spoofing X X

Data/Parameter
Modification

X X X

Table 2: Vulnerabilities of DER communication protocols[6]

firmware updates to support encrypted communications, and vendor-specific protocol im-
plementations don’t necessarily include the latest security measures. These systems may
be one or two decades old, and designed a decade before that [29]. Nor would replacing
these devices address the issue, as the remaining vulnerable devices still provide footholds
for an attacker. Encryption algorithms are designed to be irreversible, meaning the en-
cryption computations are many orders of magnitude easier than brute force, however,
quantum computers could remove this property for all but the most recent algorithms
[1]. Even those legacy devices that could be upgraded to support encryption may not
support the Quantum Key Distribution (QKD) schemes required for quantum-resistant
encryption. Furthermore, false-positives may affect healthy DER, negatively impacting
system operation [6]. Consequently, some utilities disable DER security functions for
simplicity sake.

Additionally, DER devices are Commercial-Off-The-Shelf (COTS) devices, so multi-
ple companies in different countries contribute to their intellectual property, design, or
manufacture [1]. This makes DER devices vulnerable to supply chain attacks, because
the supply chain is difficult to verify and other states may add security back doors. A
recent precedent was 2020’s SolarWinds attacks [1]. Some DER still rely on the plain-
text User Datagram Protocol (UDP) traffic, which makes manipulating their data trivial.
Not only can the attack read and replay the packet’s contents, but also enables ARP
poisoning and port stealing attacks. In these attacks the adversary inserts themselves
as an intermediary between two CPPS devices, and modify, repeat, or drop packets sent
between them. In microgrids, particularly during autonomous operation, disturbances
caused by an intermediary attack could result in relays tripping, equipment damage, and
load shedding events.

Renewable DER generators, i.e., solar and wind generation, are remotely operated
by Internet-of-Things (IoT) devices to coordinate frequency and voltage deviations after
transient events, and have controllers to match local user demand [1]. These devices are
often owned by end-users, connected to user networks, and remotely operated by third-
party and/or consumer applications, which is an impediment to a grid-wide security
policy and increases the attack surface of the network. IoT devices typically compete on
cost, leading vendors to prioritize that over security. This leads to a lack of host-based
security like firewalls and antivirus, encryption, and firmware updates to patch exploits
and add security function. Researchers have discovered commercial devices which expose
user and device data and credentials in plaintext, or allow adversaries to authenticate by
brute force. Additionally, [7] note that Honeywell controllers have known authentication
vulnerabilities, Nest thermostats lack hardware protections to prevent the installation
of malicious software, and Ardunio Yun controllers are similarly vulnerable to malware.
Furthermore, smart thermostats are common IoT DER devices in demand side manage-
ment/demand response schemes, as they learn user habits and limit demand during peak
loads. In [1], the authors have documented that an attacker can toggle the state of con-
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nected heaters and coolers, which modifies instantaneous demand and can lead to black
or brown outs. In large-scale demand-side attack scenarios, grid operators are forced to
shed non-critical loads and will also affect demand-response schemes. Vulnerabilities in
IoT CPPS connected devices give attackers a vector to attack the wider network.

Similarly, Advanced Metering Infrastructure (AMI) involves IoT smart meters, which
can be used to provide demand data to the system operators or demand response [28].
As an AMI network can span a neighborhood, they are generally connected through fixed
wireless networks making them vulnerable to intermediary attacks. This vulnerability
can enable an attacker to control the demand response by conducting a Load Altering
Attack (LAA). A LAA overwhelms grid infrastructure by changing remotely controlled
loads and causes a PQD such as a large frequency or voltage deviation, and may trip safety
systems [24]. Demand response and demand side management are used to reduce peak
loads, by deactivating high power devices or providing locally stored energy during peak
demands while activating or charging these devices during low demand: for example, only
running air conditioning during off peak hours. If an attacker can control these systems
to increase the grid load at peak times, this is a LAA. LAAs can be classified as static
(SLAA) or dynamic (DLAA), where the former’s effect is proportional to the volume
of altered load while the latter also aims to steer the system on a particular trajectory.
DLAAs can use open or closed loop control: where an open loop could involve a replay
FDI attack corresponding to a predetermined trajectory; a closed loop DLAA monitors
and adapts to current measurements. Any type of LAA is contingent on a critical mass of
vulnerable loads for any effect, which may affect the local network or have a ripple effect
across the wider grid. Vulnerable loads in the literature include consumer appliances,
HVAC devices, server farms, and electric vehicles.

The effects of a LAA include: frequency instability, cascading failures, or increased
operating costs [7]. A significant and sudden change in load can result in an abrupt change
in the CPPS operating frequency as generation is unable to match the load. Increased
loads decrease the operating frequency and vice versa. For sufficiently large frequency
drops, the operator may shed nonessential loads, which is called Under Frequency Load
Shedding (UFLS) [23]. While a smaller change in load may be stabilized using reserve
generation capacity, this increase in power may lead to line overloads and even cascading
failures [7]. If the altered load slowly increased, the result may simply be that the operator
must purchase additional power from a reserve supplier at an increased price. There is
a possibility that a supplier would use such an attack to create a business opportunity,
but far more insidious would be the use of such an attack in hybrid warfare, wherein a
nation state may seek to increase its influence of a neighbor, or a central government
over a breakaway or independent region. Table 3 shows the relative proportion of loads
an attack must harness to achieve different goals; note the relatively small proportion of
load required to cause a cascading failure. While 1% of a large national power grid may
still be a tall request, this may be far more feasible on a regional or isolated CPPS. Note
that this data is based on simulations of the Polish power grid, which is the largest and
most detailed real-world power grid available for academic study [7].

Further research in [23] determined that a cascading failure was unlikely on a well con-
figured North American regional system with additional protections. It assumes that all
grid operators satisfy the N-1 security criterion, while noting that blackouts have occurred
on such systems without malicious interference, due to mis-configurations of protections.
The criterion specifies that the loss of a single component (generator or transmission line)
does not reduce operational capacity or safety. Another prominent protection was load
shedding, which automatically drops predetermined customers, meaning the larger grid
is protected at the cost of localized blackouts, so this approach is a trade off. This can
be triggered by low frequencies or declining voltage profiles. An attacker can manipulate
the UFLS response with a DLAA that deactivates the controlled load once the frequency
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Goal Action Impact Load
Frequency devia-
tion

Synchronously tog-
gle loads

Generation trip-
ping

20-30%

Blackout recovery
disruption

Synchronously
toggle loads after
restart

Generation trip-
ping

10-20%

Cascading line fail-
ures

Synchronously
toggle loads dis-
tributed through-
out the grid

Overload or trip
transmission lines

0.4-1.0%

Increased operat-
ing costs

Slowly activate
loads during peak
demand

Increase reserve
generation utiliza-
tion

3-5%

Table 3: Selection of LAAs with the percentage of loads the adversary must control, based on
detailed simulations of the Polish power grid [7].

stabilizes to cause frequency overshoot and take a generator offline. If the attacker can
avoid detection, this attack can be repeated to force UFLS several times until no more
loads can be shed and the generator must be disconnected. Neither study considers a
power grid with a high penetration of RES, which would limit the operator’s primary
response. These rigorously simulated LAAs[7] demonstrate that an attacker who controls
a sufficient load can degrade the performance of a CPPS, and cause cascading failures
if safety mechanisms are absent or mis-configured. These works simulated an attacker
controlling IoT loads. Widespread automated DR schemes would increase the attack
surface.

DRL like any ANN has an inherent exploit called adversarial examples, where small
and specific perturbations to their inputs cause large and possible targeted changes to
their outputs [30]. As discussed in the previous section, DRL provides many advantages
over conventional control in CPPS and may see wider adoption in CI. An attacker could
use this property of ANNs to perturb the victim towards a target state, such as an uncom-
fortable temperature for a building environment system or unsafe operating frequencies
for a power grid node. Research has demonstrated attacks that: minimize a DRL voltage
regulator’s reward (reward-based attack) by tricking it into taking sub-optimal actions;
and lure it to a target failure state [21, 22]. The attack budget was constrained by an
L2 distance of 5%, meaning no input was more than 5% different from the unperturbed
input, making the attack stealthy in a field where IDS is already a challenge. In a grid
operational control simulation, a reward-based attack was sufficient to cause a critical
failure [22]. The vulnerability of systems such as AMI to intermediary attacks makes
this type of FDI feasible in the real world. Thus, adversarial examples represent an open
exploit in a potentially valuable model-free control technique for CPS in increasingly
complex environments.

Given the safety requirements of energy systems, physical constraints should be built
directly into the DRL model, rather than as penalties in the reward function [10]. Because
real-world data is often incomplete due to jamming, malfunctions, or attacks, control
systems must be robust under these conditions [19]. Systems would be more robust if
their controllers are incapable of unsafe actions, particularly in the face of cyber threats
and adversarial examples.
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Figure 3: Figure 6 from [1]: ”Overview of DER-integrated electric grid that illustrates how
the layered architecture expands the threat surface” ©2023 IEEE.

2.2.1 Summary

OT is the foundation of CPPS and is not subject to the same security considerations as
IT, causing it to lag in that domain. At present, CPPS rely on unsecure legacy devices
or IoT devices which can provide a foothold for attackers or leave devices vulnerable
to FDI through intermediary attacks. The capital investments often make upgrading
these systems infeasible. There are numerous and well resourced threat actors interested
in compromising CI, and the exposure of CPPS to the open internet provides ample
opportunity. Finally, because ANNs are fundamentally exploitable, it’s conceivable that
adversarial samples present a stealthy payload for FDI.

2.3 Adversarial Examples

An evasion attack is used in this work instead of a poisoning attack that happens during
training time. This is because there is no timing restriction for the attacker, i.e., the
evasion attack could happen anytime the control system is operating. Furthermore,
during inference, the victim must be exposed to the real world, while its training can
be isolated. Because any algorithm must observe the real world to make decisions,
observation perturbations are always a potential attack vector. For example, an attacker
could manipulate the sensors’ environment, compromise their firmware, or alter their
transmissions through adversarial examples.

Adversarial examples are specially crafted samples which are misclassified by ANNs,
where small perturbations are added to samples. An adversarial example closely re-
sembles the sample used to create it, and may be indistinguishable. For example, an
adversarial example of an object in an image would be recognizable to a human but not
to an ANN classifier [31]. Since the technique was first discovered by the authors in [30],
creating adversarial examples with higher Adversarial Success Rates (ASR) has been a
topic of research for several years. While generating adversarial examples is possible
for both classification and regression tasks, most techniques were developed for image
classification so many implementations do not support regression. These two tasks use
different loss functions, and regression networks have only one output per ”head” of the
network. This means implementations for generating adversarial examples for classifiers
are not directly compatible with regressors.

ML classification predicts the class of samples of some distribution D. Supervised
training uses samples x ∈ Rd with known labels y ∈ {Y } (where Y is the set of all
possible labels) to find parameters θ which minimize the prediction loss L(x, y, θ) [31].
In this way, supervised training is formulated as a minimization:

min
θ

E(x,y)∼DL(x, y, θ) (1)

which can be solved through iterative gradient descent, typically Stochastic Gradient
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Descent (SGD). This problem can be reformulated as a maximization to find perturbation
δ which maximize loss within some boundary ϵ ⊆ Rd :

max
δ∈ϵ

E(x+δ,y)∼DL(x, y, θ) (2)

As above, this problem can also be solved through gradient-based methods. These meth-
ods for producing perturbations are known as adversarial attacks, which generate samples
called adversarial examples (or samples). Consequently, human imperceptible changes
to a model’s input can result in high confidence mis-classifications. The simplest method
is the Fast Gradient or Fast Gradient Sign Method (FGM/FGSM), which adds a fixed
perturbation ϵ with the sign of the loss function’s (L) gradient to the original sample
[32]:

xadv = x+ ϵ× sign(∇L(x, y, θ)) (3)

This method adds a perturbation in the direction of increased loss by taking only one
step. More advanced attacks use multiple iterations to maximize the loss by taking
multiple steps.

Multiple metrics exist to measure the success of attacks, precisely [33]:

1. Adversarial Success Rate (ASR): the proportion of successful adversarial examples,
i.e., where an observation perturbation results in the victim deviating from its
policy. ASR is best for discrete action spaces, whereas Mean Absolute Error (MAE)
will be used for continuous action spaces. MAE measures how much a continuous
action has changed, whereas ASR is used to measure if a sub-optimal discrete action
was selected.

2. Adversarial regret: the effects of the adversary measured either as the percentage
of time in adversarial state during an attack or the reduction of total rewards
in testing, depending on whether the adversarial goal is state- or reward-based.
Adversarial regret measures how much an attack degrades performance.

3. The ASR ratio between untargeted adversarial examples and random noise shows
the relative efficacy of adversarial examples.

4. The statistical distance between training and perturbed observation distributions,
which measures their resemblance. This metric demonstrates if the attack is trivial
to detect.

5. Adversarial budget: the proportion of perturbed observations, the features per-
turbed, and the perturbation size ϵ (if applicable). Generally, smaller perturbations
are harder to detect, as large perturbations can distort the original observation.

Attacks can be divided into black and white box attacks, where the former allows the
attacker only the ability to query the victim ANN, while the latter provides read access to
the ANN’s weights and architecture. Most white box attacks are iterative methods which
use a gradient of the loss function to guide their searches. White box attacks generally
have higher ASRs, as access to the victim ANN allows them to follow the gradient of
the loss function. However, this advantage over black-box attacks disappears when the
gradient is masked [34].

Attacks are also categorized as maximum-confidence or minimum-norm [35]. A
maximum-confidence attack finds adversarial examples which maximize loss within a
given boundary, whereas a minimum-norm attack finds the smallest perturbation which
causes mis-classification. Figure 4 visualizes this concept. A variety of techniques exist
for crafting adversarial examples which are difficult to separate from the original data
when properly constrained.
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Figure 4: A visualization of minimum norm and maximum-confidence attack scenarios. The
upper quadrants consider samples near the decision boundary, and far away in the lower ones.
The minimum norm attacks on the left find the closest adversarial sample, which are just past the
closest point on the decision boundary. The maximum-confidence attacks on the right attempt
to find the furthest point on the opposite side of the decision boundary, within the attack budget.
Because of this budget, the maximum-confidence attack is successful in the green quadrant, but
not in yellow because the original sample is too far from the decision boundary. Both min
norm attacks are successful, with the adversarial sample in the blue quadrant closer to the
original than the maximum-confidence attack in yellow. The minimum norm attack in red is
successful with an adversarial sample that is far from the original, demonstrating that minimum
norm attacks sometimes result in adversarial samples that are further from the originals than a
maximum-confidence attack.
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Figure 5: A brief timeline of open source adversarial attacks.

2.3.1 White Box Evasion Attacks

Several open source modules are available for generating adversarial examples, this review
focused on tools which were compatible with PyTorch models:

1. Adversarial Robustness Toolbox (ART) [36]

2. AdverTorch[37]

3. Clever Hans [38]

4. Foolbox [39]

5. TorchAttacks [40]

ART, TorchAttacks, and Foolbox are actively maintained and implement a large number
of attacks. ART was the only module to include adversarial defences. These tools limit
the loss functions and types of models which can be attacked, meaning they are limited
to attacking classifiers. Some AdverTorch attacks do allow arbitrary loss and prediction
functions, but these are restricted to older attacks because the library has not been
updated in years.

Different attack techniques are optimized for maximum-confidence or minimum-norm
perturbations. See figure 5 for a brief chronology of adversarial attacks. Maximum-
confidence white box attacks designed for the highest ASRs, such as Projected Gradient
Descent (PGD), Auto-PGD (APGD), or ACG, are given perturbation budgets ϵ which
represent the largest deviations for the original sample. These are constrained by the L1,
L2, or L∞ distances, which are the number of perturbed features, the distance in space
between the original and adversarial example, and the maximum perturbation which can
be added to any feature.

Minimum-norm white box attacks like Fast Adaptive Boundary (FAB) and the older
Brendle and Bethge (BB) don’t have this constraint as they are designed to minimize the
size of successful perturbations. FAB is a notable omission from ART as it’s the most
recent minimum-norm attack implemented in any of the libraries listed above. However,
it’s limited to use with image data and therefore not relevant to this research. The BB
attack is used instead.
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2.3.2 Maximum-Confidence Attacks

Recent gradient-based attacks like PGD methods and ACG iteratively step away from the
starting point (normal sample) to a point which maximizes the loss function (adversarial
example), requiring a value for the step-size and a non-zero gradient to follow:

x(k+1) = PS(x
(k) + η(k)s(k)) (4)

Where PS is a projection onto the region S, η(k) is the step-size, which can be constant
or vary by iteration, and s(k) is a vector which determines the direction of the step.
s(k) incorporates the loss function’s gradient at point x(k), with the exactly calculation
varying by attack. The search space S = {x ∈ D, ||xinit− xadv||s < ϵ} is the input space
constrained by a regularization function, typically the L∞, L2, or L1 distance between
the sample and the adversarial example. s(k) is calculated differently for different attacks,
but each method iteratively calculates x over k iterations.

The simplest and original gradient-based attack, the Fast Gradient Sign Method,
uses s(k) = sign(∇L(x(k))), while the improved PGD attack uses s(k) = ∇L(x(k)).
These methods of gradient-based updates require that s(k) ̸= 0 and an appropriately
selected η(k), either constant or variable by iteration. With the auto-stepsize η chosen
automatically rather than manually tuned as in [34], accurate robustness assessments are
simpler. The APGD attack improves upon the widely used PGD method for assessing
model robustness, by automatically scaling the step size along the gradient of the loss
function [34]. The strongest open source white box attack is the Auto Conjugate Gradient
(ACG) method, only available through the ART [41].

In [34], the authors introduce the Difference Logits Ratio (DLR) loss function to
replace Cross Entropy (CE) loss, widely used with PGD and for training models on
multi-classification problems. The gradient of CE loss approaches 0 when the victim is
nearly certain of its prediction for sample x with the correct class y:

∇xCE(x, y) = (py − 1)∇xzy +
∑
i ̸=y

pi∇xzi (5)

py ≈ 1 when the victim has learned to label x as y, meaning the probability of predicting
another class pi ̸=y ≈ 0 and both terms of the CE loss are near 0. Following the example
above, if s(k) ≈ 0, then x(k+1) ≈ 0. DLR loss solves this issue because the difference
between logits can always be measured, as each logits indicates the model’s preference
for the corresponding label and a prediction is made based on the largest logit [34].

DLR(x, y) = −zy −maxi ̸=y zi
zπ1 − zπ3

(6)

Untargeted DLR loss is only positive when any logits greater than the logit of the original
class zy [34]. DLR Loss is regularized by the difference between the largest and third
largest logits zπ1

− zπ3
, which pushes the original label’s logit to be the second largest

zy ≈ zπ2 .

Targeted−DLRT (x, y) = −
zy − zt

zπ1 −
zπ3+zπ4

2

(7)

Targeted-DLR loss only uses the difference between the original and target class logits,
rather than any logit but the target [34]. The regularization in the denominator is
modified to prevent the loss from becoming constant.

The ”Auto in APGD represents The automatically scaling the step-size η over a
finite number of iterations, which allows the algorithm to explore, then exploit within
the adversarial example space S [34]. The large initial step-size is effective for exploring
S, and when one of two conditions is met, η is halved to explore a smaller space with
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increasing resolution. These conditions are checked at predetermined checkpoints: if a
predefined proportion of iterations between the current and previous checkpoints don’t
show improvement (I) or neither the step-size nor the best result has changed since the
last checkpoint (II) η = η

2 . Together these conditions will change η when little or no
improvement is shown with the current value. This is valuable because a large η will
efficiently find areas of high and low losses, but smaller values are needed to exploit this
knowledge and avoid skipping of a maxima.

PGD calculates the search direction s(k) in which to take a step of size η using
s(k) = ∇f(x(k)), and APGD uses the same method in addition to a momentum term
[34]. This is a projection of the loss function’s gradient. ACG incorporates auto-step-size
and DLR loss, while defining s(k) using the conjugate gradient method, as defined using
the equations below. The Conjugate Gradient (CG) method is an iterative solution to
optimization problems [41].

y(k−1) = ∇f(x(k−1))−∇f(x(k)), (8)

βHS =
∇f(x(k−1)) · (y(k−1))

(s(k−1) · y(k−1))
, (9)

s(k) = ∇f(x(k)) + βHSs(k−1), (10)

x(k+1) = PS(x
(k) + η(k) · σ(s(k))) (11)

The CG update parameter β incorporates past search information into the current step,
and this parameter is the primary distinction between APGD and ACG [41]. Seven of the
methods for computing the CG parameter in [42] were tested in [41]. The HS method
was most performant in all test cases. Though no theoretical analysis was provided,
it’s notable that the 3 best methods share the same numerator. These methods are not
susceptible to jamming when the distance between search points x(k)−x(k−1) approaches
0, because the y also becomes 0 so the direction of the next update is s(k) = ∇f(x(k))+0
[42]. Where other methods get jammed making insignificant search updates, methods
like HS exhibit a restarting behaviour because the initial update is also s(0) = ∇f(x(0)).
ACG differs from typical CG methods by using the auto stepsize η from [34] instead of
a linear search.

Algorithm 1 shows the ACG algorithm. Its parameters can be divided into three
categories:

1. Computational Constraints:

(a) The number of random restarts, with a default of 5.

(b) Maximum iterations per restart, 100 by default.

2. Distortion Constraints:

(a) ϵ: The maximum perturbation magnitude, which is the distance between the
input observation and adversarial example.

(b) Normalization method to constrain the distance between the sample and ad-
versarial example. The options are:

i. L1 known as Manhattan or taxi-cab distance, is the most restrictive and
least common in this work’s review.

ii. L2 is the Euclidean distance.

iii. L∞ is often referred to as a box around the input observation, and allows
each feature to change ±ϵ and is the least restrictive and most common
of these normalizations.
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3. Search parameters:

(a) The initial step-size η(0) determines how far the search explores, with lower
values favoring exploitation: η(0) = ϵ

3 is ART’s default, however both [34, 41]

set η(0) = 2ϵ.

(b) Loss function: The search for adversarial examples is formed as an optimiza-
tion problem using the loss function. Changes are iteratively made to the in-
put sample in the direction of the loss function’s gradient. CE loss is used for
training ML algorithms in multi-classification problems and is used in AML.
However, Difference Logits Ratio (DLR) loss has been shown improved per-
formance in producing adversarial examples for classifiers [34]. Both CE and
DLR are compatible with ART’s implementation of ACG, but all experiments
will use DLR loss.

(c) The search can be either targeted or untargeted. An untargeted attack search
for an adversarial example leads to a prediction of any class but the original.
This is analogous to forcing a DRL agent to choose any action which is not the
learned action. A targeted attack seeks an adversarial example which leads to
the prediction of a specific class. A targeted attack can be used to choose the
victim’s actions.

Where PGD calculates the step direction using only the current input’s loss gradient,
ACG adds the product of the previous step and the CG update parameter. Compared
to APGD, ACG’s search travels further in the early stages of the attack when the auto
step size is large, which increases the diversification/explorations of its search [41]. This
can be explained by projection loss from APGD’s steps taking the search outside the
boundaries. Wherein, projecting the search step back to the feasible region S reduces
the update’s magnitude and confines the APGD search close to the initial point. With
this advantage, ACG outperformed APGD in terms of adversarial regret for SotA image
classifiers, often using a fifth of the computation budget. ACG with a single random
restart and 100 iterations outperformed APGD with 5 restarts and 100 iterations each.
From these results, ACG is the most powerful white box attack available in an open
source tool like ART. However, this review did not find any work using ACG or APGD
for robustness testing of a DRL agent.

The perturbation boundaries make maximum-confidence attacks useful when the goal
is ensuring that a model is robust to perturbations of a specific size. Because these
attacks will fail if a sample of sufficient loss does not exist within the boundary, the
boundary’s size is a useful robustness metric. Conversely, minimum-norm attacks have
no such constraints in searching for adversarial examples. Their goal is finding adversarial
samples close to the decision boundary, minimizing the distance between the adversarial
and clean samples, even when this distance is, in fact, relatively large. Thus, a minimum-
norm attack can demonstrate higher ASRs than a maximum-confidence attack because
their searches are not so constrained.

2.3.3 Minimum-Norm Attacks

The Brendle and Bethge attack is the most recent open source minimum-norm attack
which supports tabular data [2]. As shown in Algorithm 2, BB begins with a sample x̃ of
the adversarial class, and uses the gradient of an adversarial loss function adv(.) to step
towards a local estimate of the decision boundary b and minimize the distance to the
original sample x. Figure 6 provides a visual explanation. In the ART implementation,
adv(.) can be DLR [34] or CE loss [36].

The authors of BB show that the algorithm is not sensitive to changes to its hy-
perparameters, suggesting the default values should be used in most cases [2]. These
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Algorithm 1 ACG [41]

1: Input: f , feasible region S, initial sample x(0), initial stepsize η(0), Niter, checkpoints
W = {w0, . . . , wn}

2: Output: xadv

3: xadv ← x(0);β(0) ← 0; s(0) ← ∇f(x(0))
4: xpre ← x(0); spre ← s(0)

5: Nx−update, fmax ← 0
6: for k = 0 to Niter − 1 do
7: Compute x(k+1) using equation (11)
8: if f(x(k+1)) > f(xadv) then
9: xadv ← x(k+1);xpre ← x(k); spre ← s(k)

10: Nx−update ← Nx−update + 1
11: end if
12: η(k+1) ← η(k)

13: if k ∈W then //checkpoint reached
14: if (Nx−update < ρ) or ([η(k) ≡ η(k−1)] and [f(x(k)) ≡ fmax]) then
15: η(k+1) ← η(k)/2;
16: x(k+1) ← xadv;x

(k) ← xpre; s
(k) ← spre

17: end if
18: Nx−update ← 0 //reset count for next checkpoint
19: fmax ← f(xadv)
20: end if
21: Compute β(k+1) using equation (9) and s(k+1) using equation (10)
22: end for

Figure 6: Fig 1 from [2]: ”Schematic of our approach. Consider a two-pixel input which a
model either interprets as a dog (shaded region) or as a cat (white region). Given a clean dog
image (solid triangle), we search for the closest image classified as a cat. Standard gradient-
based attacks start somewhere near the clean image and perform gradient descent towards the
boundary (left). Our attacks start from an adversarial image far away from the clean image
and walk along the boundary towards the closest adversarial (middle). In each step, we solve
an optimization problem to find the optimal descent direction along the boundary that stays
within the valid pixel bounds and the trust region (right)”. bk is the normal vector of the
decision boundary at the current adversarial sample x̃k.
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Algorithm 2 BB Generate Algorithm [2].

1: Inputs: clean sample x, the min and max values for x, momentum M , learning rate
lr, learning rate decay interval , learning rate decay decay, differentiable adversarial
criterion adv(·) (the difference between the model logits for the clean and the target
class, where the target is any but the clean class for untargeted attacks)

2: Optional Inputs: adversarial starting point x̃0

3: Result: adversarial example x̃ such that the distance d(x, x̃k) = ∥x− x̃k∥p is mini-
mized

4: k ← 0
5: b0 ← 0
6: If no x̃0 is given: x̃0 ∼ U(0, 1) s.t. x̃0 is adversarial (or sample from the target class)
7: for k < maximum number of steps , k ← k + 1 do
8: bk := ∇x̃k−1adv(x̃k−1) // estimate local geometry of adversarial boundary
9: if k > 1 then

10: bk ← (1−M)× bk−1 +M × bk // update estimate with momentum
11: end if
12: if lr decay interval reached then
13: lr ← lr × decay
14: end if
15: ck = adv(x̃k−1) // estimate distance to local boundary, where ck = 0
16: rk ← lr × (max−min) //the max step for each iteration
17: δk ← LpOptimizer(x, x̃k−1, bk,min,max, ck, rk)
18: x̃k ← x̃k−1 + δk

19: end for

hyperparameters can be divided into two categories:

1. Initialization:

(a) Number of random samples: the number of times x̃0 is sampled from U(0, 1)
to produce a starting point of the adversarial class. The class is the target for
a targeted attack, or any class but the predicted class for untargeted attacks.

(b) Binary search steps: The number of search iterations used to locate the deci-
sion boundary between x the original sample and starting point x̃0.

2. Optimization:

(a) Trust Region (TR): like the learning rate, this value specifies how large of a
step the search takes at each iteration.

(b) Number of TR decays: the number of times the TR is reduced during a search.

(c) TR decay rate: proportion the TR is reduced.

(d) Momentum: Specifies the proportion of the current and previous search di-
rection used to determine the next perturbation δ.

(e) Number of iterations: number of steps taken to find the smallest distance
between x and x̃.

(f) Overshoot: specifies how far x̃ should be from the decision boundary, ensuring
the class is adversarial.

2.4 Defences

In terms of defences, several methods for defending against adversarial examples have
been proposed. In this thesis we focus on two defense paradigms: Detection and cor-
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rection, knowing that the State of the Art (SotA) is to build models robust to attacks
rather than detecting the attacks directly [20].

2.4.1 Detection

Detection techniques can roughly be categorized as statistical or built-in to a model.
Statistical detection is model agnostic as it determines if the distribution of model in-
puts matches that of the training data. The underlying assumption is that adversarial
examples are statistically distinct from the training data, as they would otherwise be
correctly classified [43]. While this assumption only holds for relatively weak attacks,
the two works cited above demonstrate Maximum Mean Discrepancies (MMD) for com-
paring inputs during training and inference. Thus, MMD is a measure of the attacker’s
stealth, showing that attacks can be indistinguishable from normal inputs.

MMD is used to determine if randomly drawn samples belong to the same underlying
distribution. Consider the samples X = {x0, ...xn} and Y = {y0, ...yn}, for a sample
X drawn from a distribution p, X ∼ p , and Y ∼ q. The purpose of the MMD test
is to determine if p = q. This test can be applied in high dimension spaces using the
kernel trick, where the kernel function is denoted as f(x). Thus the distance between
two probabilities represented by X and Y is [43, 44]:

MMD[X,Y ] = (
1

n

n∑
i=0

f(xi)−
1

m

n∑
i=0

f(yi)) (12)

In addition to the distance, the p-value that p = q can be calculated by repeating the
test many times while sub sampling X and Y with replacement, is called bootstrapping.

An attacker can generally bypass methods which add preprocessing to the input
pipeline by mimicking that step during the attack, and crafting new loss functions to
ensure models with an adversarial example class are still fooled, although, some defences
require an increased adversarial budget to be bypassed [20]. Semi-successful methods
rely on the unique property of adversarial examples: small changes have large effect on
the model’s output. For example, using an ensemble of predictions from a model with
dropout layers, or testing if additional noise changes the classification [20, 45].

Notably, these techniques do not rely on some underlying structure of the original
training dataset. Because adversarial examples rely on small and specific perturbations
to the victim’s input, they themselves are fragile to perturbations which interrupt their
delicate structure. The goal of model training is generalization. It should be robust to
noise, but this does not hold for adversarial examples which are crafted using gradient’s
from the ANN’s weights.

2.4.2 Correction

Robust training of an ANN can be formulated as a saddle or min-max problem, where
the goal is to produce training samples which maximize loss then learn model parameters
which minimize loss in the worst case scenario [3]:

min
θ

[max
δ∈ϵ

E(x+δ,y)∼DL(x, y, θ)] (13)

If the inner maximization is satisfied with an adversarial attack, i.e., no greater loss is
possible in the boundary ϵ surrounding the input x, and the model parameters satisfy
the outer minimization such that loss nearly vanishes, the model is perfectly robust [3].
In practice, it cannot be certain that the inner maximization is satisfied as future attacks
may introduce greater losses. By combining minimum-norm FAB, maximum-confidence
APGD, and black box Square attacks, the auto-attack demonstrated significant reduc-
tions in the robust accuracy of SotA image classifiers [34]. Square Attack is a black-box
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Figure 7: Illustration of standard and robust decision boundaries [3]. The leftmost figure shows
a collection of points which can be separated by a linear decision boundary. The middle figure
shows that the linear decision boundary does not separate points by the distance represented by
the circles. The circles represent the ϵ boundary for a maximum-confidence adversarial attack.
The yellow stars represent potential adversarial examples, which would be mis-classified. The
right figure shows that separating the points outside the boundary for the attack requires a
more complicated decision boundary. Using the decision boundary on the right, the classifier is
robust to attacks within ϵ.

maximum-confidence attack for image classifiers, which uses a random search instead
of gradient-based optimizations. Compared to other black-box attacks, it has a higher
success rate using the same or a smaller numbers of queries, and approaches the perfor-
mance of white box attacks [46]. FAB and Square attack increase the ASR for masked
gradients, and APGD with DLR loss improves upon the previous SotA attack for robust
training, PGD with CE loss. Furthermore, ACG has since surpassed the performance of
APGD [41]. Hence, this method of adversarial training can guarantee that an ANN is
robust to the attack model.

Model capacity is a factor for successful robust training, as the model must not only
learn the boundary between different classes, but learn a boundary which is far enough
from every sample that the attack model cannot find a perturbation δ ∈ S that results
in misclassifcation as shown in Figure 7 [3].

2.5 Summary

None of the literature covered has tested the latest white box attacks on an DRL agent,
with the most recent being PGD. This review finds no work on detecting adversarial
inputs for DRL agents as most research concerns image classification. While the most
successful detection techniques include an output for adversarial perturbation detection,
it is unclear what action should be mapped to this output. Because statistical methods
are algorithm agnostic, they could be employed with DRL agents. This makes statistical
techniques a reasonable starting point for adversarial example detection for RL.

27



3 Related Work

Supervised learning models are trained to correctly label features in tasks like classifi-
cation and regression. The former is categorizing input from a finite set of categories
like pictures of cats and dogs for example, while the latter outputs a continuous value
like the value of a house. DRL agents are trained to perform the optimal sequence of
actions in a given environment. Where supervised models require labeled training data
to associate a label with the given features, DRL agents learn with feedback provided
from the environment. Thus, DRL agents do not need a dataset to train from but need
an environment to train in. DRL problems are generally structured in terms of a Markov
Decision Processes (MDP), which has four components [13]:

1. The state st ∈ S is a description of the current environment at time t, where S
is the set of all possible states. The present state can be denoted as s, and the
following state s′. It contains all relevant information of previous states such that
knowledge of the previous state is unnecessary.

2. The action at ∈ A, where A are the actions available to an agent and at is the
chosen action at time t.

3. The transition function (also called dynamics) T (s, a) or p(s′, r|s, a) indicates the
environment’s next state s′ and the agent’s reward r:∑

s′∈S

∑
r∈R

p(s′, r|s, a) = 1 (14)

4. The reward r(s, a), r ∈ R where R is the set of all rewards. The reward is a function
of the current state and action, and normally a scalar:

r(s, a) =
∑
s′∈S

r
∑
r∈R

p(s′, r|s, a) (15)

The environment is deterministic if there is a unique value for each state-action
pair, or stochastic if it’s a probability distribution function. Following from the
transition function is the state-transition function:

p(s′|s, a) =
∑
r∈R

p(s′, r|s, a) (16)

The reward can also be understood in terms of the state-action pair s, a and the
next state s′:

r(s, a, s′) =
∑
r∈R

r
p(s′, r|s, a)
p(s′|s, a)

(17)

An DRL agent may observe s and choose an action, but T is often unknown. The
strength of DRL is its efficacy when the state transitions are unknown and conventional
control fails. DRL agents learn to act optimally by estimating the rewards for their
given states and/or actions, and updating those estimates as training progresses using
the following concepts:

1. An agent’s policy π(a|s) maps a probability for taking a given action for the given
state. Like T , where the policy returns a single non-zero value corresponding to an
action if it’s deterministic, and otherwise a probability if it’s stochastic. Since a
deterministic policy corresponds to a single action for any state, it can be written
as π(s). The policy is how the agent behaves in a given situation.
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2. The value function vπ(s) is the expected value of all future rewards for a given
state following π:

vπ(s)
.
=

∑
a∈A

π(a|s)
∑
s′∈S

∑
r∈R

p(s′, r|s, a)[γvπ(s′) + r] (18)

Where γ ∈ [0, 1) is the discount factor, which dictates the importance of rewards
of future states.

3. The action-value function qπ(s, a) is the reward for taking action a in state s then
following π for all subsequent states:

qπ(s, a)
.
=

∑
s′∈S

∑
r∈R

p(s′, r|s, a)[γvπ(s′) + r] (19)

4. The optimal policy is denoted π∗ which corresponds to the optimal value and
action-value functions v∗ and q∗ defined as:

v∗(s)
.
= max

π
vπ(s) (20)

q∗(s, a)
.
= max

π
qπ(s, a) (21)

and π∗ itself is:
π∗(a|s) .

= argmax
a

q∗(s, a) (22)

such that there is no state in which another policy would obtain a higher value:

v∗(s) > v(s) for all s ∈ S (23)

It is impractical to store all the possible policy and values for every state and action
of complex environments. Instead, π(a|s), q(s, a) and v(s) can be parameterized as
π̂(a|s, θ), q̂(s, a, θ) and v̂(s, θ) where |θ| << |S| [13]. Note that the actual functions are
q(s, a) and v(s), whereas Q(s, a) and V (s) are estimates and often used as shorthand for
q̂(s, a, θ) and v̂(s, θ). Often, non-linear functions are approximated with neural networks,
for example the v̂(s, θ) would have features representing the state and approximate the
state’s expected value. The features used to represent s are called the agent’s observation
as it is impractical to perfectly capture and represent all aspects of the state.

There are two DRL algorithms which are particularly relevant to this work, the
Proximal Policy Optimization (PPO) [47], and Soft Actor-Critic (SAC) [48]. Both are
actor-critic algorithms, which use separate policy πθ and critic V (s) networks rather
than an action-value network Q(s, a).

PPO is an on-policy policy-gradient algorithm which can operate with continuous
and discrete action spaces. As a policy-gradient algorithm, PPO improves its policy (the
actor) πθ using gradient ascent of an advantage function. The advantage function is
loosely defined as the difference between the model’s expected and actual rewards at a
given timestep, as predicted by the critic V (s). The PPO is unique for the surrogate
loss function used to train its policy, which prevents large changes during each update.

An on-policy algorithm like PPO learns from experiences of actions sampled from
its current policy alone, while an off-policy algorithm like SAC learns from the stored
experiences of previous policies. The SAC is unique for its combination of off-policy
actor-critic training, with a stochastic actor with an entropy maximization objective
to encourage exploration. While the SAC outperforms the PPO on various continuous
control tasks, it’s limited to continuous action spaces [48].
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3.1 Adversarial DRL

With the use of ANN heuristics, DRL agents are vulnerable to adversarial examples, as
are ANNs. However, the optimal approach is different. Maximizing the loss function
for a supervised network only guarantees that a victim DRL agent will mis-classify its
observation of the current state. This will lead to a sub-optimal action but might be
insignificant over the course of an episode. Other methods are required to select the
worst possible actions [12]. In fact, the attacker must first choose a goal for optimization.
The following goals have been used in adversarial DRL literature [8] :

1. Untargeted: Randomly altering the victim’s behaviour.

2. Action: Altering the victim’s behaviour towards specific actions.

3. Reward-based: Maximizing the adversary’s or minimizing the victim’s rewards.

4. State-based: Luring the victim to a target state.

For example, [49] shows that untargeted attacks can produce sub-optimal performance,
demonstrating that the victim performs worse than a conventional control algorithm
when attacked. Here, untargeted refers to perturbations of the observed state where
there was no targeted classification, while the attacker’s goal was reward-based.

On the other hand, to attain its goal, the attacker can use different attacks vectors.
DRL attack space can be taxonomized as [12]:

1. Reward perturbations: An attacker can perturb or flip the rewards of the victim
agent. These attacks are conducted during training (poisoning attack), where the
victim uses the reward signal to learn its policy. Perturbations to the reward during
training cause the victim to learn a sub-optimal policy. Because the reward function
is integrated with the victim, poisoning generally requires more access to the victim
than other methods.

2. Action perturbations: A rare attack type which changes the action executed by the
victim. Altering the actions of an agent, leading it to an unexpected state. For
example, physically perturbing an actuator.

3. State or observation perturbation: This is the perturbation of the victim’s per-
ception of its environment, by changing the environment itself or modifying the
victim’s observations. An attacker can perturb the environment of an autonomous
vehicle, for example, by defacing traffic signs, or its observations through an in-
termediary attack between the victim and its sensors. These methods are effective
during training and inference as both poisoning and evasion attacks. As the at-
tacker is limited in their access to the victim, securing the environment occupied
by the agent presents a greater challenge for the defender than preventing access to
the victim’s instance. Similarly, sensors observing the environment may be isolated
from the victim or communicate by unsecured means.

Note that these vectors are not mutually exclusive, e.g., observation perturbations
can target specific actions as action perturbations [50]. Vectors are compatible with
multiple goals, wherein observation perturbations can have state-based goals as in [51]
or reward-based goals as in [50]. This means that both attacks change how the victim
perceives the environment. The victim is either lured into making poor decisions, which
reduces its reward, or the victim is lured into interacting with the environment such that
it transitions into a state chosen by the attacker. Table 4 provides an overview of the
different frameworks classified as described above.
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RL Framework Applications

Framework Agents Definition Tuple Modeled Attack Vectors

MDP[52] Single (S,A,T,R) None

POMDP
[52]

Single (S,A,T,Ω,O,R) None

DEC-
POMDP
[53]

Multi (I,S,{Ai},T,{Ωi},O,R) None

SG [54] Multi (I,S,{Ai},T,{Ri}) Malicious Communications, Nat-
ural Adversarial Examples

POSG [55] Multi (I,S,{Ai},T,{Ωi},O,{Ri}) Malicious Communications, Nat-
ural Adversarial Examples

PR-MDP
[56]

Single (S,A,T,R,ν,α) Action Perturbations

NR-MDP
[56]

Single (S,A,T,R,ν,∆) Action Perturbations

SA-MDP
[57]

Single (S,A,T,R,ν) Observation Perturbations

S Set of states

A Set of actions

T The state transition function that stochastically maps a state s’ ∈ S
and action a ∈ A to a next state s’ ∈ S such that T (s, a) = s’

R Set of rewards

Ω Set of observations

O The observation probability function that maps a state s ∈ S and
action a ∈ A to an observation o ∈ Ω such that O(s, a) = o

I The set of agents with i ⊂ I and {.i} representing joint values

ν Probability Robust (PR), Noisy Robust (NR), or state-permutation
(for State Adversarial (SA)) function

∆ Perturbation magnitude

α Probability of an adversarial action replacing the victim’s

Table 4: Overview of DRL frameworks [8]. Here are the abbreviations which are not explained
in the table: Markov Decision Process (MDP), Partially Observable (PO), Decentralized (DEC),
and Stochastic Game (SG).

3.1.1 Evasion Attacks in DRL

Training in a controlled setting allows the defender to prevent poisoning attacks, however
victims must be exposed to their environment during inference. This presents opportuni-
ties for evasion attacks on the state or observation space. A properly constrained attack
is imperceptible to human observers, and threatens virtually any DRL agent much like a
software exploit, where the defender must detect intrusions and deny the attacker access.
While most attacks require knowledge of the victim’s model and testing environment,
this can be bypassed with the transferability principle [14]. The principle stipulates that
with sufficient knowledge to train a surrogate victim model, the attacker can generate
adversarial examples that are then transferable and effective on the intended victim.
In a supervised setting, this entails either training with the victim’s training data or
generating training data through queries.

Transfer attacks are also possible in DRL, without training a surrogate agent in the
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victim’s training environment, using the snooping attack [58]. Prior works assumed that
similarities in the victim and surrogate model’s decision boundaries enabled transfer
attacks, however, similarities in the input feature extractors between models can enable
adversarial attacks. An ANN can be considered to consist of two parts: the earlier layers
of the network which encodes the inputs as intermediate features, and the head which
chooses an output based on the intermediate features. The authors in [58] propose three
threat models for the snooping attack where the attacker uses limited information on the
victim’s performance to train a proxy victim using supervised learning:

1. SA: The attacker can use the victim’s state (S) (or observations) and action (A)
to train an imitator model, which follows the victim’s policy π(a|s). Typically
this produces the best performance of any threat model, approaching that of the
surrogate trained in the victim’s environment.

2. S: The attacker can only access the victim’s state. This can be used to train a
psychic which models the environmental dynamics, predicting the following state
from the present. The psychic attempts to infer the victim’s policy from the state
transitions, but learning this is much noisier as aspects of the state can change
independent of the victim’s actions. As the scenario provides the attacker with the
least information, it’s unsurprising that it’s the least effective in terms of adversarial
regret.

3. SR: With access to the state and reward (R), the attacker can train an assessor
which approximates the value function for the victim’s policy Vπ(s).

4. SRA: Using all the information provided by the environment, a psychic, assessor
and imitator can be trained, enabling the attacker to predict possible next states,
assess their expected value, and produce stronger adversarial examples. This pro-
vides the requirements for the strategically timed attack which is explained below.

These proxies vary from the victim in terms of their loss, decision boundary, and output
shape, yet still enable an attacker to craft adversarial examples, even without knowing the
victim’s goal. All the attacker must know is how the victim behaves in its environment.

However, only simple attacks effectively transfer from the proxy to the victim, as
highly optimized adversarial samples (maximum-confidence or minimum norm) are closely
fit to the loss topology of the ANN used to craft it. Difference between the victim and
proxy makes iterative methods less effective than the single step Fast Gradient Method
(FGM) [32]. Because of differences between the proxy and victim parameters, the bet-
ter an adversarial example is optimized for one, the less likely its to be effective on the
other. Finally, because noise is several orders of magnitude less effective than adversarial
examples, crafting adversarial examples increases the threat of adversarial DRL [16].

3.1.2 Attack Optimizations

In a relatively simple and early example of an optimized evasion attack on an DRL victim,
it was demonstrated that an attacker with access to a similar training environment can
coerce the victim to follow an adversarial policy with targeted observation perturbations
[15]. Their attack involved training an agent in the victim’s environment with inverted
rewards, such that its policy would minimize the victim’s score. This is an adversarial
policy. Each of the victim’s observations were subject to targeted perturbations, which
induce the victim into taking the actions selected by the adversarial policy. The targeted
perturbations allow the attacker to select each of the victim’s actions, which were chosen
by an agent trained to minimize the victim’s reward. As with supervised learning, these
perturbations are most effective when crafted using the victim ANN, though it was shown
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that a second victim agent trained in the same environment was approximately 70% as
susceptible to the same perturbations [15].

As noted above, it’s imperative that observation perturbations are made in real time
for the victim, which makes optimizing their generation significant for executing an at-
tack. In [16], reusing the perturbation for multiple frames or only perturbing frames with
V (s, θ) > c, where c is a constant representing a threshold of the value function, for a vic-
tim trained on the Pong game had similar performance to perturbing every frame while
generating a tenth of the perturbations [16]. This reduces the computational overhead for
the attacker, making their threat more realizable. On five Atari games, the Strategically
Timed (ST) attack achieves parity with uniform perturbations (every observation) with
a quarter of the perturbations [5]. States are perturbed based on the difference between
the maximum and minimum values of Q or π, so states where all actions have similar
values are unperturbed. This means that the agent doesn’t have a strong preference for
any action, so no action in this state had a large effect on the reward during training.
Note that the victim action-value or policy function were known, and the attack was not
tested on a surrogate model in a black box setting.

The CopyCat attack addresses the issue of producing observation perturbations in
real time with pre-computed universal masks using [17]:

argmax
δa

E
okt ∈D

[logπvictim(a|f(okt + δa, o
k
1:t−1) + α||δa||2] s.t.||δa||∞ < ϵ

where,

1. the subset of observations D = (okt )
k∈(1:k)
t∈(1,Tk)

is collected from K episodes used for

generating universal perturbations.

2. δa is the universal perturbation corresponding to the action a ∈ A.

3. α||δa||2 is a regularization parameter of the L2 distance between the original and
perturbed observations weighted by the parameter α ∈ R+.

Equation (3.1.2) is solved for all a ∈ A for each okt ∈ D so there is a universal mask for
each observation. The masks are used to perturb the victim’s observations and as above,
allow the attacker to coerce the victim into following an adversarial policy, in both black
and white box settings.

The Decoupled Adversarial Policy (DAP) attack uses elements of both CopyCat and
ST attacks [18]. DAP uses an adversarial policy selecting universal masks to perturb the
victim’s observations and a second agent trained to select when to attack. DAP limits the
number of perturbations allowed in an episode and learns the optimal timing to change
the victim’s state observations. In contrast with the ST attack, DAP learns the optimal
threshold for the target environment, rather than treating it as a hyperparameter.

The number of perturbed observations can be optimized with increasingly complex
modeling and additional computations. As the techniques above were tested in simple
Atari gym environments, additional research on their feasibility in CPS is required. The
same is true for calculating universal masks, as the computations to produce them and
memory to store them may be prohibitive for CPS applications with larger state and
action spaces.

Evaluating the trade-off between the optimization and simplicity of the attacks can
be understood in terms of adversarial regret and budget, as the results are not presented
identically in every study [33]. Adversarial regret is the difference in reward between the
victim’s ideal performance and in the presence of an attack, for a given period T. The
adversarial budget considers the number of features and observations perturbed, and the
probability of perturbing an observation. Comparing the adversarial regret and budget
for different attacks provides a meaningful comparison of test-time performance.

33



The framework proposed by [33] does not include training and implementation re-
sources, or computation time delays. Certain attacks may be infeasible based on the time
or resources required for training, or only possible for specific threat actors. A model
could be considered more robust if effective attacks are difficult to train, and modeling
the threat actor is influenced by the resources required to build the attack. Additionally
the resources required to run the attack affect how it can be deployed. Consider an attack
launched from an infected host, if the adversarial process consumes a significant portion
of the available memory or computation, the attack becomes easier to detect. Finally,
the delay between when an observation is taken and a perturbation is generated must
conform to the victim’s sampling rate.

The enchanting attack determines the action sequence required to transition from st
to a goal state sg and applies observation perturbations to lure the victim into performing
those actions [5]. This method allows the attack to target a specific fail state for the
victim rather than minimizing its rewards as above. The target state could be the power
factor of an electrical grid or the temperature in an environmental system which would
lead to critical failures. The enchanting attack requires a state prediction model M
to determine the end state of an action sequence, so the sequence which corresponds
with the closest end state to sg can be selected. M models the environment’s transition
function, which is independent of the victim, meaning the attacker only needs access to
the environment. The computational difficulty increases with the length of the action
sequence, and the outcomes are sensitive to the accuracy of the prediction model M .

Additional information on adversarial MARL is available in annex A.

3.1.3 Summary

RL agents are similarly vulnerable to evasion attacks as supervised ANNs and well crafted
adversarial examples are far more effective than random noise. Targeted perturbations
of the victim’s perception of the environment allow an attacker to enforce an adversarial
policy without changing the majority of samples. An adversarial policy can cause a
greater reduction in rewards than naively perturbing every observation and allows the
attacker to control the victim’s behaviour. By modeling the environmental dynamics, an
attacker can also lure the victim to a target state. Whenever the environment is exposed
to the attacker, there exists a threat from observation perturbations.

3.2 Robust RL

In terms of defending against adversarial examples, while adversarial training is popular
and effective for supervised learning [31], the results of experiments using adversarial
training in DRL are at best mixed [59, 57]. Supervised learning directly trains an ANN
as a function approximator or model, whereas DRL learns a policy optimized for a reward
function, implemented with a function approximator like an ANN. Supervised algorithms
learn by minimizing a loss function based on the difference between their predictions and
the training label, whereas DRL agents train on a surrogate loss function based on their
reward. Unlike supervised learning, the function approximator is not trained directly.

Adversarial training works by maximizing loss as per Equation (13), and gradient-
based search methods provide reasonable solutions for maximum loss. Finding an analo-
gous loss for DRL is less effective, as taking a sub-optimal action based on an adversarial
example is not guaranteed to minimize the agent’s reward. Simply adding adversarial
perturbations during training can prevent the agent from learning or converging, while
in many cases this training method does not provide significant protection [59]. In most
cases, even the adversarial agents had scores near or below zero, depending if scores could
be negative. A further limitation was that adversarial observations were crafted with the
comparatively weak FGSM, which both caused training to collapse and was still effective
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Figure 8: High level representation of ATLA training.

against adversarially trained agents. Stronger attacks could further degrade performance
during training, and result in lower scores during testing. Further experiments in [57]
showed adversarial training with 50% and 100% adversarial examples lead to natural
rewards far lower than the naturally trained agent under any of the tested attacks.

Other approaches summarized in [57] showed similarly mixed results or required new
DRL algorithms. Instead, [60] proposes the Alternating Training with Learned Adver-
sary (ATLA) method for improving model robustness to a hostile environment. This
involves training an DRL Learned Adversary (LA) which adds optimal perturbations to
the agent’s observations, in a reward-based attack. Figure 8 provides a basic depiction of
ATLA training, and Algorithm 3 shows more detail. Taking turns training the adversary
and agent ensures that the newly learned policy is not easily exploitable by some new
policy, where neither adversary nor agent has any incentive to change their policy lest the
other exploit it. ATLA involves training with multiple agents, which are not described
by MDP or Partially Observable (PO)MDPs[52] used for single agents. Instead, frame-
works like Decentralized (DEC)-POMDPs[53], Stochastic Games (SG)[54] and Partially
Observable (PO)SGs[55] are typically used in multi-agent settings, though these do not
model the adversary. Probability Robust (PR), Noisy Robust (NR), or State Adversar-
ial (SA) MDPs can model the adversary in single agent settings. These frameworks are
described in Table 4.

The framework for ATLA is the SA-MDP which adds the adversary’s perturbation
ν to the standard MDP [57]. Unlike a SG with two players whose actions affect the
environment, the adversary ν is only able to change the perception of the state. Without
any restrictions on ν, the adversary’s task becomes trivial and the agent may fail to learn
during training. Instead, a task specific boundary B(s) is defined where ν(s) ∈ B(s).
From the adversary’s perspective, for a fixed policy π, the SA-MDP collapses to an MDP.
Both V (s) and Q(s, a) must be redefined to account for both the state (s) and adversarial
state (ν(s) = s̃):

Ṽπoν(s) =
∑
a∈A

π(a|ν(s))
∑
s′∈S

p(s′|s, a)[R(s, a, s′) + γṼπoν(s
′)] (24)

Q̃πoν(s, a) =
∑
s′∈S

p(s′|s, a)[R(s, a, s′) + γ
∑
a′∈A

π(a′|v′(s′))Q̃πoν(s
′, a′)] (25)
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Note that instead of inputting the state s into the policy π, it is replaced with the
adversary’s perturbation ν(s), making the optimal value function:

Ṽ ∗
πoν(s) = min

s̃∈B(s)

∑
a∈A

π(a|s̃)
∑
s′∈S

p(s′|s, a)[R(s, a, s′) + γṼ (s′)] (26)

The optimal adversary (ν∗) selects adversarial states which minimize the current and
future rewards of the agent’s policy (π), and such a ν is trained by setting the reward to
r̂ = −r where r is the agent’s reward:

ν∗(s) = argmin
s̃∈B(s)

∑
a∈A

π(a|s̃)
∑
s′∈S

p(s′|s, a)[R(s, a, s′) + γṼ (s′)] (27)

There is no corresponding definition of π∗ with the presence of the adversary [57]. By (23)
π∗ must outperform every other policy in every other state, but the adversary’s influence
forces π to take an action which does not maximize v(s) in some states. This is a trade-off
between maximizing value and reducing the effects of adversarial perturbations, where
the agent becomes less exploitable at the cost of decreased values. This approach lowers
the ceiling of clean performance, but raises the floor of performance under attack. This
is much like the trade-off between an all-terrain vehicle and a racecar; the racecar will
be much faster under good conditions, but almost useless on a dirt road.

The definitions above hold only for a fixed policy π, so the adversary ν can be trained
through an MDP. Alternating training between fixed policies allows the problem to be
treated as a single agent POMDP, rather than a multi agent SA-MDP [60]. During
training, either the LA or agent’s policy is static, and effectively part of the training
environment, making the optimization problem stationary for each policy during training.
For the adversary ν as shown above, training is an MDP, however, it’s a POMDP for
the agent. The fixed ν(s) in the SA-MDP is equivalent to the observation probability
function O(s, a), and the set of observations Ω are akin to a combination of the set of
states S and perturbation space surrounding those states B(s):

Ω = S ∪B(s), s ∈ S (28)

Thus our SA-MDP (S,A,T,R,ν) becomes the POMDP (S,A,T,S∪B(S),ν(s),R) for a static
adversary ν [60]. A POMDP can still be solved with conventional DRL algorithms, albeit
with more difficulty. As function approximators (i.e., ANNs) are used to parameterize the
optimal mapping of states to values and actions, they can similarly learn the mapping
of observations to states [13]. However, there are no formal proofs to guarantee this
property. Incorporating a fixed-length history of observations and actions can improve
performance, such as using a Long Short-Term Memory (LSTM) or similar Recurrent
Neural Network (RNN) in place of the Multi-Layer Perceptron (MLP) more common in
control tasks [60].

To demonstrate the method’s effect, ATLA was benchmarked against several gradient-
based attacks which are unique to RL[57]:

1. The Critic attack: this attack uses the gradient of the agent’s action-value func-
tion to generate perturbations of a fixed size, similar to the FGSM in supervised
learning:

s̃ = s− η∇Q(s, π(s)) (29)

The method can be iterated for an arbitrary number of steps. However it requires
that the victim algorithm uses an action value function, which excludes policy-
gradient and actor-critic algorithms.

2. The Maximal Action Difference (MAD) attack: This is a similar attack to the Critic
attack, except the loss gradient is generated from the Kullback-Leibler Divergence
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Algorithm 3 Alternating Training with Learned Adversaries (ATLA) [60].

Inputs Transition function T(s,a) for the environment, number of alternations Nalt,
number of pre-training iterations Npre, agent training iterations Nπ , adversary train-
ing iterations Nν

Initialize θ0 and ϕ0 to parameterize π and ν
if Npre > 0 then //optional agent pre-training

for i = 0 to Npre do
θi+1 ← train(T (π(s, θi), s))

end for
θ0 ← θNpre

end if
for i = 0 in Nalt do

for j = 0 to Nν do
ϕj+1 ← train(T ((π(ν(s, ϕj), θ0)), s) //note that θ is constant

end for
ϕ0 ← ϕNν

for j = 0 to Nπ do
θj+1 ← train(T ((π(ν(s, ϕ0), θj)), s)

end for
θ0 ← θNπ

end for

(DKL), which measures the distance between probability distributions, between
the policy’s output for the original and adversarial state. Because it does not rely
on the action-value function, it often outperforms the critic attack.

3. The Robust SARSA (RS) attack: Like a combination of the critic and snoop-
ing attacks, RS uses the agent’s trajectory to train a State-Action-Reward-State-
Action (SARSA) algorithm using the Temporal Difference (TD) error to generate
an action-value function which can be used in a critic attack. The SARSA model
can be augmented with a robust object to further increase the adversarial regret
caused by the attack.

4. Hybrid RS-MAD attack: Combines the RS and MAD loss functions to conduct an
MAD attack, where:

L = αLMAD + (1− α)LRS (30)

α is chosen to balance the losses in cases where they are normalized differently. It
typically outperforms either attack individually.

5. Learned Adversary (LA) or Optimal attack: ν∗(s) is approximated using a model-
free RL, in this case a PPO.

Of the five attacks, the Optimal/LA attack had the largest adversarial regret in four
MuJoCo [51] continuous control environments. ATLA was not tested against adversarial
observations generated from the function approximator, such as those discussed in the
adversarial DRL section.

The greatest advantage of ATLA is that it does not require a unique or modified
DRL algorithm to ensure robustness, because it’s purely a training method. This makes
it particularly interesting to study, as the cost of adding it to an existing agent or training
system is relatively small compared to using a different robust algorithm. Essentially,
ATLA can be applied to any off-the-shelf algorithm from existing libraries. This is im-
portant because while robust algorithms like the State Adversarial (SA)-PPO, State Ad-
versarial Deep Deterministic Policy Gradient (SA-DDPG), and State Adversarial Deep Q
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Network (SA-DQN) [57], and the Robust Student Deep Q Network (RS-DQN) exist [61],
their adoption is not widespread and they are not implemented in popular libraries. This
approach aims to train a robust policy (π) rather than a robust function approximator
or ANN.
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4 Threat Model

Vulnerabilities in Artificial Neural Networks (ANN)s are akin to unpatched exploits
in software. This research is a proof-of-concept for exploiting these vulnerabilities in
Deep-Reinforcement Learning (DRL) specific techniques to conduct Load Altering At-
tack (LAA)s. The primary threat model for the attack is a DRL agent that is a white-box,
meaning that the attacker can read its parameters, and is able to modify sensor readings
sent to the agent. The white-box model demonstrates the strongest attacks available,
which establishes the risk ceiling. Knowing the ceiling informs smart energy designers
the level of risk they are accepting by using vulnerable models. Furthermore, analyzing
such strong attacks can suggest mitigation techniques and quantifying risk is an impor-
tant step towards mitigation. A well resourced attacker could obtain the victim agent
parameters without the privileges required to compromise the entire DR system. Pos-
sible methods would be compromising a back-up server, compromising an employee to
exfiltrate the model, or obtaining a low level of access on the host or server running
the controller DRL which is able to read the model’s parameters. Enabling a black-box
snooping attack [58] is even simpler, the attacker only needs historical data to train a
proxy model. There are precedents for poor security in CI, and security DR infrastruc-
ture would be even more fraught when it is maintained by the user, who may lack the
resources of a utility to secure it.

CPPS rely on distributed sensors to transmit measurements to a controller. Injecting
observation perturbations can be accomplished using multiple vectors depending on the
exact application. Both the Sunspec Modbus and IEEE 1815 (DNP3) protocols are vul-
nerable to intermediary attacks, which allow an attacker with a LAN presence to capture
and modify data in transit [6]. Many consumer smart energy devices have known soft-
ware vulnerabilities [7], some of which have already been exploited to form bot nets [1].
The diverse manufacturing stages for smart devices also make them vulnerable to supply
chain attacks. Attacks might physically access sensors or the means of transmission in
insecure public or isolated locations. These vulnerabilities can give attackers a foothold
to modify traffic, or compromise sensor firmware to add perturbations. Given the vul-
nerabilities and precedents discussed above, an attacker could gain the access to conduct
a LAA using adversarial observations. This level of access is less than what would be
needed to compromise the DRL controller itself. Furthermore, adversarial observations
have the potential to conceal the cause of the attack. For this research, the attacker
is assumed to have write access to the observations of a DRL agent, and in some cases
access to the agent ANN’s parameters.
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5 Demand Response (DR) Environment

A trained Deep-Reinforcement Learning (DRL) victim is required in order to eventually
measure the adversarial regret that is going to be caused by observation perturbations.
This means that each observation returned by the environment will be modified using a
gradient-based attack before the victim receives it. This simulates an intermediary attack
between the victim and the smart building sensors. The observation perturbations will
cause the victim to deviate from its learned policy. In Figure 10, the trained DRL
agent should have selected the optimal action a∗, but under attack, will select another
action. The proportion of deviations will be measured as the ASR, and the reduction
in score is the adversarial regret. The distortions added to the original observations by
the adversarial attack can be measured from the observation data generated from such
attacks. The size of the distortions and adversarial regrets illuminate the threat of such
attacks.

There are three tools required for this experiment: a DR gym environment, a compat-
ible DRL library, and an adversarial attack toolkit. The rational for the toolset selected
is discussed below.

5.1 DR Gym Environment - DRL Library - Attack Toolkit

CityLearn has been selected as it is a well documented and actively maintained smart
energy DR gym, following the OpenAI Gym standards [4]. Several DRL algorithm li-
braries compatible with OpenAI Gym are available, including Stable-Baselines3 (SB3)
[62], Tianshou, and Ray-RLLib. CityLearn’s own examples use SB3. Its environments
feature districts with customizable quantities and types of buildings who’s energy de-
mands are set using historical data. Figure 9 visualizes CityLearn.

The DRL agents are tasked with charging and discharging energy storage units, given
rules-based restrictions such as preventing discharging when there is no demand. Agents’
performance is normalized against this simple rules-based controller. Each agent’s action
space is the proportion of each storage device the agent controls that can be charged
or discharged. Multiple buildings are supplied by the same energy storage, and the
number of such units determines if the environment is single-agent or multi-agent. User-
defined reward functions allow agents to train towards a variety of goals. The observation
space consists of up to 42 features characterized as date, weather, building, or district
observations, though the exact number varies with the number of buildings. One timestep
is one hour within the simulation.

A smart energy gym adds value as both the ASR and detection of adversarial examples
varies with the application, thus threats must be assessed in a variety of applications
where DRL is applicable. The greatest assets of CityLearn are its use of real-world
data, compatibility with RL libraries, and low computation requirements, making it a
perfect choice for preliminary research. It however still has some limitations, mainly that
is does not dynamically calculate energy pricing nor does it simulate the wider power
grid. These limitations are imposed by its reliance on recorded data rather than dynamic
calculations, which reduces its computational cost. Despite its inability to simulate the
effects of an Load Altering Attack (LAA) on a large scale power grid, the realism in
the data enables realistic analysis of the significance of the distortions introduced by
adversarial observations. On the balance it is the best environment for this research.

40



Figure 9: Visual depiction of CityLearn [4]. The left side shows the loads and storage devices
which can be controlled by the agent, and the features dynamically calculated by the environ-
ment. The right shows a network of buildings, with their respective loads and storage devices,
that could be controlled by a single or multi agent algorithms.

Figure 10: DRL agent acting in CityLearn, where a∗ is the learned optimal action and s and
r are the state and reward returned by the environment.

Because there is no publicly available library for adversarial attacks on DRL agents, a
supervised learning library was used as an interface. This means that the policy network
of the victim algorithm must be treated as a supervised learning network, which maps
states to actions, to generate adversarial examples. This requirement constrains the
selection of DRL libraries as the agents’ neural networks must be accessible through its
API. The action and value networks of SB3 agents are accessible in this fashion, so they
can be copied and adapted for generating adversarial examples.

The Adversarial Robustness Toolbox (ART) is a library of adversarial techniques
for robustness testing, compatible with Tensorflow and Torch, actively maintained, and
implements the largest attack variety of any available option [36]. The Auto-Conjugate
Gradient (ACG) attack is the most powerful maximum-confidence white box attack avail-
able in any open source library; it is remarkable for its ASR on image datasets and small
number of parameters [41].

The use of any recent adversarial attack imposes a significant restriction on the type
of agent which can be attacked, and by extension its environment. Because robustness
testing began as attacks on image classifiers, the open source attacks reviewed expect
a single label which corresponds to a one dimension action space for a DRL agent.
The loss functions used, Cross-Entropy (CE) or Difference Logits Ratio (DLR), suppose
that there is only one correct label and corresponding logit, whereas a DRL agent with a
multidimensional action space would have groups of outputs corresponding to each action
or action space dimension. The adaptations for classification problems also restricts the
use of these attacks on regression problems, which are analogous to DRL agents with
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continuous action spaces. While a single SB3 DRL agent could control multiple buildings
with multiple energy storage devices, the use of ACG requires a one-dimensional action
space, thus the victim can only control a single building with a single storage device.
Multiple victims of this type are akin to component agents in Multi-Agent Reinforcement
Learning (MARL) environment, where each agent is assigned a different building. To
meet these constraints this work uses building 6 of CityLearn’s (version 2.0.0) 2022
challenge phase 2 environment. Compatibility with this gym environment requires SB3
version 1.8.0, which is stable with the deep learning library torch version 1.12.1. Finally,
the latest version of ART when this project began, 1.16.0, was used.

5.2 Victim Agent Training

Here the goal is to train an agent with performance significantly better than CityLearn’s
baseline, and who’s architecture is compatible with ART. The performance must be suf-
ficient to make the adversarial regret from an attack evident, but this does not require
State of the ART (SotA) performance. RL in DR is a significant sub-field for research, so
perfecting the victim is out of scope. This research will use a Proximal Policy Optimiza-
tion (PPO) algorithm [47], which is among the most advanced algorithms for discrete
action spaces in the SB3 library.

In the 2022 challenge environment, one or more agents learn to charge and discharge
building electrical storage to reduce and smooth demand from the electrical grid. It
includes up to 5 residential buildings each with their own battery. The observations
are generated using real-world data from a California study on residential photo-voltaic
integration [63, 64]. Because the victim’s observations are generated from recorded data,
the attack’s observation perturbations will be generated is a realistic setting. This realism
enables testing of the hypothesis that adversarial examples would be a difficult payload
to detect during a real attack. Due to the restrictions of the ACG attack , the victim
agent controls the battery’s State of Charge (SoC) of a single building so that the action
space remains one-dimensional. This frames the RL task as a classification problem, with
Figure 11 representing the agent’s policy network.

With the CityLearn environment selected, there are three major factors for the agent’s
performance: action space, reward function, and RL algorithm-specific hyperparameters.
These factors are evaluated using CityLearn’s eight cost functions called Key Performance
Indicators (KPIs) [63]:

1. The district-level KPIs use the aggregated district-level hourly net electricity con-
sumption (kWh), Edistrict

h to calculate:

(a) average monthly/annual peak,

(b) ramping,

(c) daily/monthly average (1 - load factor).

2. The building-level KPIs that are calculated use the building-level hourly net elec-
tricity consumption (kWh), Ebuilding

h , and are reported at the grid level as the
average of the building-level values:

(a) electricity consumption,

(b) cost,

(c) carbon emissions.

3. Electricity consumption is the sum of electricity consumed from the grid Ebuilding
h :

electricity consumption =

n−1∑
h=0

max
(
0, Ebuilding

h

)
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Figure 11: Example of the Multi-Layer Perceptron (MLP) actor network for a CityLearn
agent. It has 31 inputs, 2 hidden 256 layers, and 10 outputs each corresponding to an action.
The images above the network each correspond to a category of features. There are 6 sinusoidally
encoded temporal features, 17 weather features, and 8 building specific features. The 10 outputs
correspond to the desired (dis)charge level of the building’s electrical storage. The logits on the
left indicate the minimum level to which the battery can be discharged (0-100%), while those
on the right indicate the max level of charge. At any timestep the agent will choose a single
charge or discharge action.

4. Cost is the sum of building-level electricity cost, Ebuilding
h ×Th ($), where Th is the

electricity rate at hour h:

cost =

n−1∑
h=0

max
(
0, Ebuilding

h × Th

)
5. Carbon emissions are the sum of building-level carbon emissions (kgCO2e), E

building
h ×

Oh, where Oh is the carbon intensity (kgCO2e/kWh) at hour h:

carbon emissions =

n−1∑
h=0

max
(
0, Ebuilding

h ×Oh

)
6. Average daily peak is the mean of the daily Edistrict

h peak where d is the day index
and n is the total number of days:

average daily peak =

∑n−1
d=0

∑23
h=0max

(
Edistrict

24d+h , . . . , Edistrict
24d+23

)
n

7. Ramping is defined as the absolute difference of consecutive Edistrict
h measurements,

which is the district’s load profile’s rate of change. High ramping indicates abrupt
changes in grid load that increase strain on the power grid, and blackouts may
result from supply deficit:

ramping =

n−1∑
h=0

|Edistrict
h − Edistrict

h−1 |
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8. Load factor is defined as the average ratio average and peak Edistrict
h for a period of

a day or month, where m is the month index, d is the number of days in a month
and n is the number of months. Load factor represents the efficiency of electricity
consumption with a value between 0 and 1. 1-load factor is a cost to be minimized,
while the load factor alone should be maximized:

1 - load factor =
( n−1∑

m=0

1−

(∑d−1
h=0 E

district
d·m+h

)
÷ d

max
(
Edistrict

d·m , . . . , Edistrict
d·m+d−1

))÷ n

CityLearn reports agents’ KPIs normalized to the outcome of buildings not equipped
with batteries or a controller.

KPI =
KPIcontrolled
KPIuncontrolled

The most important KPI for assessing impact of an attack on grid stability is electricity
consumption, as blackouts result when power consumption exceeds grid capacity. This
would require a large-scale attack, either on many victims or a high consumption victim
like an industrial park. Peak consumption is the second most important KPI, as a
significant peak during peak grid demand could also cause a blackout. Ramping is an
important KPI as the grid must instantaneously match demand, so large fluctuations
therein are challenging for the grid operator. However, if the ramping is not accompanied
by significant energy consumption or high peaks it is unlikely to affect grid stability. Cost
is also considered a useful KPI in this work, as a consideration for cost-based LAAs. If
the electricity price was dynamically calculated based on grid demand this would be a
valuable signal for the attacker, as it would be a surrogate for the total load on the grid.
However, CityLearn uses historical prices and the power grid has infinite capacity.

5.2.1 Action Space

Because ACG has not been implemented for regression tasks, the victim must choose
from a discrete number of actions which resemble a classification problem. CityLearn’s
action space can be continuous or divided into a series of bins, which is a parameter that
can be tuned. Generally, more actions give the agent finer control, but also increase the
action space it must explore. Thus, too many actions increases the challenge in training,
while too few results in imprecision actions. Given the necessary training times, an
exhaustive search of action spaces is superfluous.

5.2.2 Reward Function

With the action space defined, the reward function is the next victim parameter explored.
To frame CityLearn as an optimization problem, reward functions are crafted to penalize
energy use, cost, carbon emissions etc. These measurements are negated to penalize
the agent for larger amounts, so it learns to reduce those values. Custom rewards in
CityLearn v2 must be calculated from the current observation, so rewards cannot use
information from past states, nor include ramping or peak values as found in the KPIs.
Five rewards were considered from defaults in CityLearn and those found in the literature,
which penalize energy usage.

The default reward in CityLearn is the energy consumption penalty:

min(−Ebuilding
h , 0) (31)
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The solar penalty is built into CityLearn and is designed to reward the agent for changing
its battery with solar energy:

n∑
i=0

−((1 +
Ebuilding

h

|Ebuilding
h |

storageSoCi )× |Ebuilding
h |) (32)

Cost penalty:
C = min(0,−Ebuilding

h × Th) (33)

Cost-SoC penalty is designed to minimize electricity cost, C [63]. It encourages net-zero
energy use by penalizing grid energy consumption when there is energy in the battery,
and net export when the battery is not fully charged. The agent is penalized in proportion
to the energy stored when power is consumed from the grid, encouraging charging when
grid demand is low and discharging when it is high :

−
(
1 + sign(C)× storageSoCi

)
× |C| (34)

The energy-SoC penalty is adapted from the cost-SoC penalty by removing the price
signal:

−
(
1 + sign(Ebuilding

h )× storageSoCi

)
× |Ebuilding

h | (35)

5.2.3 Hyperparameters

With the reward function selected the victim agent can be tuned, as the optimal hy-
perparameters are correlated with environmental factors: action space and reward func-
tion. Hyperparameter tuning for the victim was conducted using Optuna version 3.5.0,
a Python library which uses heuristic searches of the user defined hyperparameter search
space to select the best values based on the performance of previous trials [65]. Other au-
tomated popular hyperparameter tuning methods are grid and random searches. A grid
search exhaustively tests every combination of the candidate hyperparameters, which
requires more time and computation than other methods. A random search randomly
samples the candidate hyperparameters for a set number of trials.

Optuna’s heuristic search, like the random search, does not require sampling the
entire candidate space. However, the heuristic search will only trial the hyperparameter
combinations which demonstrate the best performance, improving the probability of
finding an optimal combination. Optuna will also stop trials early, when evaluations
during a trial perform significantly worse than the best trial. Hyperparameter tuning used
50 episode Optuna trials With the Tree-structured Parzen Estimator (TPE) sampling
algorithm, which is recommended when parallelization resources are limited.

5.3 Results

5.3.1 Action Space Tuning

A coarse search of possible action spaces was conducted. Figure 12 shows that perfor-
mance is significantly reduced below the default of 10 bins while performance peaks near
20 bins. Agents were trained for up to 300 episodes with early stopping enabled, meaning
that training would end when there was no improvement for four evaluations. The other
hyperparameters were identical for all agents, and they were trained using the default
reward function. Both the 20 and 24 bin models performed similarly, indicating that
increasing the number of bins further would not meaningfully improve the results. The
20-bin model was chosen based on its slightly better performance with the daily peak
average, and the difference in power consumption was considered negligible. Given that
the goal of this research is to demonstrate the performance reduction achieved with an
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Figure 12: KPIs compared between agents with varied discrete action spaces. This data was
used to select the optimal number of bins for discretizing CityLearn’s continuous action space.

adversarial attack, merely a competent rather than an optimal victim is required. Figure
13 shows how the agent’s action changes the SoC. The agent’s action corresponds to the
change in SoC at the following time step. Thus an action of 0.25 would charge 25% of
the storage capacity for the following hour, while −0.10 would discharge 10% of the total
capacity. Charging at full capacity or discharging when empty has no effect.

5.3.2 Reward Tuning

The five rewards introduced in the previous section were used to train PPO victims, with
20 discrete actions for 300 episodes. The results are found in Figure 14. Several KPIs were
identical for all the agents when rounded to 3 digits, so the differences were considered
insignificant. As discussed above, the four most important KPIs are energy consumption,
average peak, ramping for grid stability, and cost for cost-based attack. Where significant
differences existed between the agents, the agent trained with the energy consumption
penalty performed best in terms of electricity consumption and average daily peaks,
though it exhibited the worst ramping by a small margin. In contrast, the victim trained
with the solar penalty was worst in the first two metrics but best for ramping, and the
other two were in the middle for all three. Because the energy consumption performed
best in terms of the two most important metrics, it was selected as the victim for the rest
of this research. It was also the second best for cost, which is important for evaluating the
effects of potential cost-based LAAs, and makes the system more economically viable.

5.3.3 Hyperparameter Tuning

The Optuna search found that a 2-by-256 dense network outperformed narrower networks
and that additional depth did not improve performance. Also, the Tanh activation
function outperformed Relu. The energy consumption during the final evaluation episode,
in the same CityLearn environment used for training with a different random seed, was
the metric used for comparison. Changing other hyperparameters from the default values
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Figure 13: Line plots comparing an agent’s actions with it is electrical storage SoC observation
at each timestep. The agent had 20 discrete actions. The left plot shows 2 day period, while the
right plot zooms in to illustrate the relationship between actions and the SoC. The latter shows
that the agent’s action corresponds to the slope of the SoC at the following time step (hour).
These values are not perfectly aligned, this is likely an artifact of translating discrete actions
numbered 1-19 to [-1, 1].

Figure 14: These select cost functions are the most relevant to LAA and are used to select the
victim. Cost is relevant for cost-based attacks, and the other three are the most relevant to grid
stability. The annual peak average was omitted due to the limited variation between agents.
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did not improve performance on agents trained for 300 or more episodes. While agents
converged after training for 300 to 500 episodes, this would have been time prohibitive
when varying 13 different hyperparameters, so 50 episodes were used.

5.4 Summary

In this section the toolset for this research was selected, and the decisive factors were re-
alism and compatibility. CityLearn’s use of recorded weather and electrical consumption
data enables the study of detection later in this work. Its compatibility with OpenAI
gym allows the use of SB3 agents, which provides two major advantages: the variety of
algorithms implemented and the API access to agent parameters. The latter minimizes
the amount of glue logic required to interface SB3 with ART, which uses the model
parameters for gradient-based attacks. The second major accomplishment of this sec-
tion was training a victim agent, which enables all future experiments. Because ART is
designed to attack classifiers, this victim needed a discrete and one-dimensional action
space. So, the victim is only given control of a single building, and different action spaces
were tested, along with reward functions, neural network architectures, and PPO spe-
cific hyperparameters. The trained victim reduced power use by over 10% compared to
a scenario with no controller, which is large enough to show if an attack has a significant
effect on the victim agent’s performance.
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6 White-Box Attacks

This phase demonstrates the effects of a State of the ART (SotA) observation-perturbation
attack on a single DRL agent in a demand response gym using real world data. This
environment simulates a Cyber Physical Power System (CPPS). In this white box set-
ting, the attacker has access to the victim’s training environment and model parameters,
enabling the most powerful attacks. The goal of this phase is to maximize the attacker’s
impact, and learn the greatest threat posed by adversarial attacks.

6.1 Untargeted Attacks

6.1.1 Methodology

We start by conducting SotA untargeted gradient-based attacks on the agents trained
in the previous section. The attack’s success is measured in terms of its Adversarial
Success Rate (ASR), and adversarial regret for the electricity consumption, ramping,
daily peak, and cost Key Performance Indicator (KPI)s. The attacks employed are
the maximum-confidence Auto-Conjugate Gradient (ACG) and minimum-norm Brendle
and Bethge (BB). All attacks are conducted using L∞ regularization, where both attack
demonstrate the best performance. For a maximum-confidence attack, L∞ regularization
clips the perturbation for each feature in the range [−ϵ, ϵ] and is the least restrictive
regularization method.

ACG will be the first attack tested. The boundary ϵ for a maximum-confidence
attack may exceed the value required for a successful adversarial example, meaning the
same ASR could be achieved with a smaller boundary, but this can vary by sample.
As proposed in [50], a maximum-confidence attack can be restarted with different ϵ to
find the minimal distortion boundary which results in a successful attack. While [50]
tested a list of ϵ starting with the smallest, this work attempts to improve the algorithm
using a binary search rather than a simple for loop to minimize the number of restarts.
First the middle ϵ is tested, and depending on its success either a larger or smaller value
is subsequently tested as shown in Algorithm 4. The approach improves computation
time for samples which require larger ϵ and is only less efficient where the lowest ϵ are
most effective. The dynamic distortion algorithm is implemented for the ACG attack to
minimize the size of its perturbations.

The inputs for this algorithm are a list of initialized Adversarial Robustness Toolbox
(ART) attack objects in ascending order of ϵ (atk list), the victim’s policy network (π),
and the Keyword Arguments (kwargs) for generating the adversarial sample. The kwargs
include the input sample to attack (x), a mask specifying which feature not to change,
and a target if applicable.

Different computational constraints will be tested for a default number of total iter-
ations of 500. This involves changing the number of random restarts while scaling the
number of iterations per restart accordingly. The literature review covers several value-
based timing attacks, with the simplest being the threshold based Strategically-Timed
(ST) attack [16, 5]. A threshold c is set based on the distribution of V (s) during a clean
episode, with the percentile of the threshold corresponding to the desired perturbation
frequency. The ST attack is combined with an adversarial attack (ACG in this case), the
threshold determines which obersvations will be attacked, then the attack generates the
adversarial observation. To validate the efficacy of the ST attack, the adversarial regret
will be compared to an attack with random timing at a similar frequency. If the ST
attack proves successful, an agent could be trained to learn the optimal time to attack
as in [18].

The results of the maximum-confidence attack ACG will be compared with the
minimum-norm BB attack. As a minimum-norm attack, it does not use a perturba-
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Algorithm 4 Dynamic Distortion Algorithm.

Inputs : atk list, π, kwargs

2: idx← ⌊ length(atk list)
2 ⌋

best candidate idx← list of atk list indices
4: atk idx← 0

eps idx← 1
6: min eps← None

min eps sample← sample
8: a← a min eps← π(sample)

while atk list ̸= empty do
10: adv sample← atk candidates[idx][atk idx].generate(∗ ∗ kwargs)

a adv ← π(adv sample)
12: if a ̸= a adv then ▷ adversarial example successful

min eps← ϵ for the successful attack
14: atk list← list of attacks with smaller ϵ

min eps sample← adv sample
16: a min eps← a adv

else ▷ no adversarial sample found
18: atk candidates← list of attacks with larger ϵ

best candidate idx← next highest index
20: end if

idx← ⌊ length(atk list)
2 ⌋

22: end while
return min eps sample, a min eps,min eps

tion boundary ϵ and instead finds the minimum L∞ distance for a successful attack.
This distance must be measured directly, so it, along with the ASR and adversarial
regret, can be compared to the results with ACG.

6.1.2 Untargeted ACG Attack

The goal in this section was to generate a significant reduction in the victim’s performance
using ACG with the smallest possible distortion ϵ. It demonstrates that ACG can degrade
a victim’s performance with minuscule perturbations.

Attack Parameters Different combinations of random restarts and iterations per
restart were tested, while fixing the product of both (the total number of iterations
per attack) to the default value of 500. Meaning that as one increased the other de-
creased and the maximum number of iterations does not increase, so the computational
budget was constant. Between tests the ASR remained consistent, however the individ-
ual samples where the attack failed changed. This implies that some of the successes and
failures can be attributed to random factors between runs. Given that the CityLearn
environment is deterministic and most features are generated from recorded data, ACG’s
random restarts is the most significant source of randomness. This reasoning was sup-
ported by the fact that increasing the number of restarts while number of search steps
per restart decreased, increased the ASR.

The optimal number of random restarts was correlated with the initial step size, but
ranged from approximately 30 to 40 restarts, with 16 to 12 iterations each. With ART’s
default initial step-size of ϵ

2 the ASR increased from 97% to 98.7% by increasing the
number of random restarts from 5 to 40. An initial step-size of 2ϵ increases the ASR
further to 99.3%. Both random restarts and larger initial steps diversify the search,
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Figure 15: The average KPIs over 5 runs with the untargeted ACG attack are compared to
those with no attack. The x-axis represents normalized performance without a smart controller,
and larger values indicate stronger attacks. Values less than one indicate the improvement
provided by the DRL agent for the particular cost function.

Figure 16: Mean ϵ values of 5 runs, with the the untargeted ACG attack using the dynamic
distortion.

ensuring the attack explores a larger space, while decreasing the number of iterations
per restart reduces the amount of exploitation or intensification. However, no benefit
was found for increasing the number of restarts past 50. Due to the computation time
required, many restart values were tested for 100 timesteps; the best were tested with
1000, and finally 1-2 were tested on full episodes.

ACG with Dynamic Distortion Because the ACG is a maximum-confidence attack
it will always maximize loss within the given budget ϵ. However, the minimum budget
for a successful adversarial sample varies with the input. While ϵ = 0.07 achieved a 99%
ASR it is also unnecessarily large in 97.7% of cases as seen in Figure 16. By conducting
the ACG attack multiple times with different ϵ, the successful adversarial observation
with the smallest perturbation can be selected. A multi-threaded implementation was
tested, with each thread assigned an attack with a different value of ϵ. However, this did
not reduce the computation time, as the results from each thread were not returned until
all had finished. Attacks with smaller ϵ have lower ASRs, and will expend their entire
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Figure 17: Heatmaps comparing the clean and adversarial observations over the course of one
day in CityLearn. All features are min-max normalized, making them unit-less values between
0 and 1. Note from the bottom (absolute difference) sub-figure one observation had a large
change to the electrical storage SoC, but the changes to other features appear minimal.

52



Figure 18: Line plot of the agent’s actions over one week in CityLearn, during normal operation
and subject to an untargeted ACG attack. The y-axis denotes the proportion of electrical storage
to charge or discharge. An new action is selected every hour.

computational budget in failed searches. The multi-threaded approach could not return
an adversarial sample in less time than a full search, which made it on average slower
than the single threaded sequential binary search.

Figure 17 visualizes the size of the perturbations introduced by the attack. discerning
the original and adversarial observations seems infeasible without a direct comparison.
The absolute difference shows the size of the difference between the two, and it is appar-
ent that ACG can craft adversarial examples by both making small changes to several
features, or making a larger change to one or two. Note the large changes to the electrical
storage SoC without obvious changes to other features.

Figure 18 shows the agent’s actions under this attack compared to its normal actions.
The attack is inducing the agent into taking sub-optimal actions, which are on average
2-3 actions away from the optimal. Note that the two lines have similar shapes, and
that the sub-optimal actions rarely cause the battery to be discharged when the original
action was to charge (and vice versa). This only happened for 6.36% of time steps in the
episode depicted below. The adversarial actions typically oscillate around or translate
the optimal actions, which only has a small effect on power consumption. Despite a 99%
ASR, this is the reason the adversarial regret shown in Figure 15 is relatively small.

6.1.3 Strategically-Timed Attack

The strategically timed attack uses the estimated value of a state V (s) to reduce the
frequency of perturbations without reducing performance, by only perturbing high value
states where V (s) > c [5]. The purpose of this technique is making the perturbations gen-
erated with ACG more difficult to detect, as they are diluted with unperturbed samples
or states.

To assess the ST attack in CityLearn, several thresholds c were compared to randomly
timed perturbations. Values of c were chosen to include the first, second, and third
quantiles of V (s) for a clean evaluation, and compared to random perturbations with
equal probability. For an ST attack with a second quantile c = −70, the KPIs were
similar to randomly perturbing the observation 50% of the time as per Figure 19. The
same results were obtained for the 25% and 75% quantiles. There was no significant
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Figure 19: These are the resulting average KPIs after subjecting an agent to intermittent
adversarial attacks generated from untargeted ACG. This test was performed with c = −70,
which is the 50% quantile of the V (s), compared to random perturbations 50% of the time. The
ST attack [5] fails to outperform the randomly timed attacks in terms of adversarial regret by
a notable margin.

ST Random Timing
ASR 98.8%± 0.2% 98.0%± 1%

Perturbation Rate 49.8%± 0.1% 49.6%± 0.6%

Table 5: Mean ASR and perturbation rates over 5 runs each of ST and randomly timed attacks.
The ASRs and number of perturbations per episode between ST and random timing untargeted
ACG attacks were nearly identical.

difference in either the ASRs or number of perturbations per episode between attacks
as shown in Table 5. This indicates that the ST attack does not provide a significant
advantage in this environment. CityLearn did not present critical moments when any
but the optimal action results in a significant failure. In the Atari Pong environment
where the ST attack was first implemented, a well timed sub-optimal action causes the
paddle to miss the ball. However, there is no analogous situation in CityLearn, where
the worst actions result in less stored power when it is needed or charging during periods
of high demand, because the power grid has infinite capacity. This would be different if
the environment considered the load on the entire power grid, where a well timed LAA
could cause localized or cascading blackouts. Thus, future works in environments which
include the load on the power grid can find the ST attack useful in their threat models.

6.1.4 Untargeted BB Attack

As a minimal-norm attack, BB typically achieves a higher ASR than ACG. As the feature
space is the only boundary on its solutions, unlike maximum-confidence attacks which
are bounded by ϵ, BB achieves an ASR of 100%. The goal of the BB algorithm is
to find the closest adversarial sample to the input sample, but this can still result in
large distortions. The L∞ distance between the clean and adversarial observations for
this attack had a mean of 2.7 × 10−2 and a standard deviation of 3.4 × 10−2, but the
maximum was 0.41. The adversarial regrets are shown in Figure 22.

BB generally takes longer to generate adversarial examples for an equal number of
iterations. Each iteration in BB involves iteratively solving a dual Lagrangian opti-
mization for each update of xadv, and the complexity of this optimization can affect
computation times. Unlike ACG, BB lacks an early stopping mechanism, so it always
takes the maximum allowed number of steps when finding an adversarial sample.

The clean and adversarial actions in Figure 20 show adversarial actions which share
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Figure 20: Line plot of the agent’s actions over one week in CityLearn, during normal operation
and subject to an untargeted BB attack. The y-axis denotes the proportion of electrical storage
to charge or discharge. A new action is selected every hour.

the basic form of the clean actions, but oscillate or appear spikier. While this at-
tack changed the victim’s action at every time-step, it only reverses the victim agent’s
(dis)charge decision in 7.51% of cases. The adversarial actions are again on average 2-3
away from optimal.

Figure 21 shows the adversarial distortions introduced by the untargeted BB attack.
While the absolute differences generally appear smaller than those for ACG in Figure
17, the adversarial observations at hours 6 and 15 stand out. The BB attack is not
constrained to any distance from the original observation, it found a sub-optimal solution
outside the ACG attack’s boundary. Both attacks were successful at this time step, as
both Figures 18 and 20 show that the original and adversarial actions don’t match.

No hyperparameter tuning was required for the BB attack. Its creators note that the
attack is insensitive to the changes in its hyperparameters, and it achieved an ASR of
100% with the default hyperparameters.

6.1.5 Comparison of ACG and BB results

Now we can compare the results of the ACG and BB adversarial attacks. BB had a
higher ASR, adversarial regret, and smaller perturbations than ACG, even with the
dynamic distortion algorithm minimizing the ϵ used. Table 6 shows the differences in
mean perturbation size between the two attacks. Given the differences in attack methods,
where ACG maximizes loss given a budget while BB searches for adversarial samples close
to the decision boundary, the smaller norms for BB are predictable. Figure 23 shows
the adversarial regrets for both attacks, which is the performance reduction cause by
the attacks. It shows BB performed better for all relevant KPIs. The performance can
be explained by comparing the adversarial actions for both attacks, as shown in Figure
24. The BB actions tend to oscillate more, appearing spikier than those for ACG. BB
also changed the sign of the agents action, reversing its discharge decision, 1.18 as many
times as ACG. These observations help to explain the increased electrical consumption
under the BB attack.
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Figure 21: Heatmaps comparing the clean and adversarial observations over the course of one
day in CityLearn. All features are min-max normalized, making them unitless values between
0 and 1. From the absolute difference plot, it appears that the measured L∞ norm exceeds the
maximum ϵ = 0.07 for the ACG attack for hours 6 and 15.
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Figure 22: The KPIs with the untargeted BB attack are compared to those with no attack.
Because smaller KPIs indicate better performance in CityLearn, the larger KPIs associated
with the attack indicate that it reduced the victim agent’s performance. The x-axis represents
normalized performance without a smart controller

L∞ Perturbation Distances
Attack Mean Standard Deviation (STD)

Dynamic Distortion ACG 5.2× 10−2 8.2× 10−2

BB 2.7× 10−2 3.4× 10−2

Table 6: Statistics on the measured perturbation sizes for different adversarial attacks, smaller
distances indicate a better attack. Note that the STD for the ACG attack exceeds the maximum
ϵ = 0.07, which indicates that it does not correspond to the maximum L∞ perturbation.

Figure 23: Adversarial regrets for the BB and ACG attacks, which is the difference in KPIs
with and without the attacks. Larger regrets indicate a stronger attack. BB produces a larger
regret for all the relevant cost functions.

57



Figure 24: Line plot of the agent’s actions over one week in CityLearn, clean and subject to
untargeted ACG and BB attacks. The y-axis denotes the proportion of electrical storage to
charge or discharge. A new action is selected every hour.

6.1.6 Untargeted Attack Summary

In this section, untargeted adversarial attacks were applied to the victim agent and the
adversarial regret was measured. The attacks used were the maximum-confidence attack
ACG and the minimum-norm attack BB. The dynamic distortion attack was implemented
for ACG in order to improve its ASR while reducing the size of its perturbations. An
ST attack was attempted, but its results were worse than random timing. This result
indicates a lack of critical state where a sub-optimal action has a significant effect on an
agent’s performance in CityLearn. Because sub-optimal actions do not result in a failure
state for CityLearn, such as a power outage, this type of attack requires an environment
which simulates the wider power grid for future research. This continuous control problem
is like steering a car, in that randomly changing the steering input by a few degrees has
an insignificant effect on its driving performance. Unlike driving a car, there is no way
to crash into something in Citylearn. The L∞ norms of these adversarial attacks suggest
they would be difficult to detect, but their effect may not be significant. The adversarial
regrets are around 5% and the ST attack did not identify any key moments where the
victim would be totally disrupted. This leads to the conclusion that attempting to detect
these attacks may not be cost effective. Although, even a 5% increase in demand across
a large percentage of users could cause cascading outages under a high grid load [7], but
this is not modeled in CityLearn.

6.2 Optimally Targeted Attacks

6.2.1 Methodology

The previous section studied untargeted adversarial attacks whose goal is making the
victim choose any sub-optimal action. While this requires a small adversarial budget,
particularly in terms of distortion size, the adversarial regret was proportionally small.
By instead inducing the victim to take the worst possible action at any timestep, the
adversarial regret will significantly increase. To select the optimal worst action, a DRL
agent was trained to choose the action which minimized rewards in CityLearn. This
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represents a targeted attack. The adversarial policy was another A Proximal Policy Op-
timization (PPO) trained independently of the victim agent, for a reward based attack.
It’s hyperparameter’s were identical to the victim’s with the exception of the reward,
which was the negative of the victim’s reward. In this case the adversarial policy maxi-
mizes power usage, rather than minimizes it. For each observation, the adversarial policy
selects the optimally worst action, and this is the target for the adversarial attack. This
is called policy induction. Thus a successful attack induces the victim into taking the
optimally worst action, which increases the adversarial regret compared to an untargeted
attack.

6.2.2 Results

Even with ϵ = 0.7, the targeted ACG demonstrated an ASR of 2̃5%, which produced a
smaller adversarial regret than the untargeted attack. There were not enough changes
to the victim’s actions to meaningfully increase power consumption. Since ACG is the
strongest open source maximum-confidence attack and increasing the adversarial budget
was unsuccessful, a minimum-norm attack was used instead (recall that minimum-norm
attacks are not confined to a boundary). The BB attack starts from a sample of the
target class and steps towards the decision boundary, minimizing the norm. The BB
attack had an ASR of 100% over an evaluation episode, however it required 4-16 seconds
for each timestep compared to less than 3 seconds for ACG.

Though the iterative optimizations performed by BB are inherently slower than ACG,
the majority of computation time was spent in a random search for samples of the target
class. ART’s documentation suggests initializing targeted attacks with a starting sample
to avoid random searches, but the results were inconsistent and resulted in lower ASRs.
The initializations were selected from clean samples of the target class or action, either
for the minimal L2 distance from the input sample or for the highest softmax confidence.
L2 distance was used to mimic a binary search step BB performs on random samples to
begin them closer to the decision boundary. Upon finding an adversarial starting point,
BB uses a binary search to minimize the L2 distance between the stating point and
the decision boundary. Softmax confidence was calculated using the logits of the victim
agent’s actor network. Given the reduced ASR observed with the min L2 samples, it was
hoped that selecting max confidence samples would remedy the issue, but was no more
successful.

Since initialiations were less successful than random search, optimizing the search
was the best method for reducing the computation time. BB as implemented in ART,
uses an inefficient for loop which generates and predicts single samples. The search is
successful when the prediction matches the target (or is different from the original for
untargeted attacks). This implementation, shown in algorithm 5, is entirely sequential;
it does not employ vectorized Numpy operations despite using Numpy, and uses batches
of a single sample for ANN predictions. The Numpy library is a fast C library for
Python, which can perform sequential operations much faster than native Python, using
a technique called vectorization. Thus, a large batch of random samples can be produced
faster in a single Python instruction than by generating the same number in a Python
for loop. For ML libraries like PyTorch, larger batch sizes allow more samples to be
loaded onto the computation device (CPU or GPU) for faster predictions than passing
them individually. This is particularly important when the prediction is generated on a
separate device (GPU) as performing singular operations in a for loop results in more
latency from communication between devices. Through iterative testing, generating 10
000 random samples, and predictions in batches of 10 000 was up to 4 times faster than the
original implementation, and never slower. This improvement is described by algorithm
6. Unfortunately this was the only simple optimization to be made. The optimizers in
BB are sequential searches which do not significantly benefit from parallelism. They are
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ran using the Python Just in Time (JiT) compiler Numba.

Algorithm 5 BB Random Initialization Algorithm.

for Init size steps do
Generate random sample
Predict sample class
if Prediction matches target class then

return sample
end if

end for

Algorithm 6 Improved BB Random Initialization Algorithm.

for Init size steps do
Generate 10 000 random samples
Predict classes for all samples
if One or more prediction match target class then

choose sample of target class with minimal L2 distance to the original
return sample

end if
end for

Having reduced the computation time for the BB attack, the results of the attack
were collected. The impact of the optimally targeted BB attack was enormous, as shown
in Figure 26. The electricity consumption and cost, and the size of the daily peaks, were
approximately tripled. Figure 25 shows how the optimally targeted adversarial actions
differ from the originals. The adversarial policy is to alternate between large charge
and discharge actions to drastically increase power consumption. These results show the
potential threat posed by a white box adversarial attack on a DR system, as a LAA
which triples power consumption is significant.

From Figure 27, note that the distortions from the optimally targeted BB attack
are clearly visible in the data. While the attack succeeds in quickly crafting adversarial
observations which effectively control the victim and impose an arbitrary policy, they
could be discerned from normal data. The mean L∞ norm for this optimal attack was
0.29, with a standard deviation of 0.09, and a maximum of 0.8. This means that for
most observations, each feature was changed by approximately one third of its spread.
Perturbations of this size cannot be considered stealthy.

6.2.3 Perturbation Reduction Methodology

Given the excessively large perturbations from the optimally targeted BB attack, three
experiments will be run to see if the perturbations can be reduced:

1. BB parameter tuning,

2. Attacking models with less training time, and

3. Using an adversarial policy more similar to the victim’s.

The parameter space is searched first so the results may be used in the subsequent
experiments. An Optuna study is used to search the BB parameter space as shown in
Table 7, for values which reduced the L∞ for adversarial samples without decreasing
the ASR. To reduce the computation time, the unperturbed observations and targets
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Figure 25: Actions induced by optimal adversary using the BB attack, plotted with the original
actions over one week in CityLearn.

Figure 26: Comparison of the KPIs for the optimally targeted BB attack, with previous
untargeted attacks, and clean performance. While the other attacks have a small but noticeable
effect, the optimally attack drastically increases all KPIs. The targeted ACG attack was not
included because it was not a successful attack, the difference in KPIs from clean performance
was negligible compared to the clean performance.
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Figure 27: Heatmaps comparing the clean and adversarial observations in a targeted BB attack
over the course of one day in CityLearn. All features are min-max normalized, making them
unit-less values between 0 and 1.
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Parameter Learning
Rate (LR)

LR Decay Number of
LR Decays

Momentum Binary
Search
Steps

Search
Range

[1 × 10−4,
1× 10−2]

0.3-0.7 20-50 0.5-1.1 10-30

Table 7: Optuna search space for optimal BB attack parameters.

stored from an episode of CityLearn under the optimal BB attack will be fed to the BB
attack with varied parameters. These stored observations for one episodes are stored as
a dataset, so that BB can produce and adversarial observation for each using the stored
targets. This allows BB to produce batches of adversarial samples instead of doing so
sequentially in CityLearn. This also removes the overhead of running the environment,
and the predictions of both the victim agent and adversary. Because BB had an ASR of
100% for targeted attacks, the next action in the sequence of observations is known, so
nothing is gained from running the environment for the BB parameter search. The best
search parameters alone would best tested in the CityLearn environment. Computation
time is a significant factor since the BB attack may be run for all observations during
hundreds of trials. A trial in CityLearn with optimally targeted BB takes approximately
24 hours, while using the method described for the parameter search takes less than one
hour per trial.

The study also uses initialized adversarial starting points, which removes the need for
the random search. While this did slightly reduce the ASR during the untargeted attack,
the trade-off is necessary to enable a larger search of the parameter space. Designing
the study objective was nuanced, as the goal is to maximize ASR while minimizing the
norm. This is further complicated because BB does return the original sample when
it does not succeed, making its norm from the original 0. Thus, the objective function
replaced the norms of unsuccessful samples with a multiple of the maximum norm among
all adversarial samples, and returns the mean norm as the value to minimize over the
course of the study. The objective algorithm is written out in Algorithm 7 with a penalty
P scaling the penalty for unsuccessful attacks. For a successful attack the score is equal
to its L∞ norm, and P ×Lmax otherwise. This scoring method combines both objectives
into a minimization problem.

Algorithm 7 Optimized BB Attack Hyperparameters Objective Function.

Inputs: original samples: x, targets yt, initialization samples: xinit, parameters: p,
agent actor network: A, penalty multiplier: P
x̃← BB(x, yt, xinit, p)
ỹ ← A(x̃) //Actor networks predictions for the adversarial samples
L← ||x− x̃||∞
for each index i in L do

if ỹ ̸= yt then
Li ← max(L)× P

end if
end for
Return mean(L)

Next, targeted BB attacks are tested against a variety of victim agents, trained be-
tween 50-500 episodes using optimal adversary (used for the optimally targeted attack)
and helpful (described in the following paragraph) policies . Attacking agents with
shorter training times will test if a stealthy attack is possible for a victim which has not
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Figure 28: Density plot of the L∞ distances between the original and adversarial observations
during a targeted BB attack using the optimal adversary. Note that the distance is proportional
to the duration of the victim agent’s training, however these distances are significantly larger
than for the untargeted attack.

yet learned the best action. The untargeted attacks showed that smaller perturbations
can change the victim’s action, but the adversarial actions were 2-3 bins from the orig-
inals. The optimal adversarial actions for the targeted attacks were typically at either
extreme of the action space, and thus further from the original, while also requiring much
larger perturbations. This suggests that the perturbation required is loosely proportional
to the distance between the original and adversarial action.

Finally, using the helpful policy, that of a PPO trained for 500 episodes in CityLearn,
this experiment will test if an adversarial policy similar to the victim’s requires smaller
perturbations. The helpful policy is used to improve the scores of agents trained for 50
and 100 episodes, instead of reducing them. If inducing a similar policy to the victim’s
using a target BB attack can be stealthy, this will at least demonstrate that stealthy
policy induction is possible. Conversely, if stealthy policy induction is not poosible with
such a similar policy, then it is unlikely to be possible with an adversarial policy.

6.2.4 Perturbation Reduction Results

The outcome of the Optuna parameter space search is sensitive to penalty P , as too
large a values will skew towards high ASRs at the expense of the L∞ norm. P = 1.1
was used for the final trial. The outcome of these trials was that the parameters have a
limited effect on the ASR as the authors note in [2]. Though poor choices lead to larger
norms, no parameters improved upon the default values. Both decreasing the overshoot
parameter to 1.01 and double the number of steps to 2000 had an insignificant effect on
the distortion size. Thus, modified hyperparameters did not improve the distortion size
during the optimal targeted BB attack. The performance of BB was not improved for
optimally targeted attack through a hyperparameter search.

The results of optimally targeted attacks on victims with less training do show a
significant but insufficient reduction in the perturbation size as can be seen in Figure 28.
These results show that agents with less training are easier to induce into adversarial
actions. without the benefit of additional training, these agents act sub-optimally. With
less training, the agent’s actions are closer to the worst action in the feature space,
so smaller distortions are required. The mean L∞ norm for 50 training episodes is two
thirds of the norm for 500. However, even with this reduction the data is still significantly
distorted.

Figure 29 shows the results of the targeted BB attack using the helpful policy for a
victim trained for 100 episodes. Again, there is a significant but insufficient reduction
in the L∞ norm. The victim trained for 100 episodes was selected because agents with
less training were more susceptible to policy induction in the previous experiment, but
the victim trained for 50 episodes had a policy too dissimilar from the helpful policy.
This is effectively the best case for the adversary. Because this test was unsuccessful, no
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Figure 29: Density plot of the L∞ distances between the original and adversarial observations
during a targeted BB attack using helpful and optimal adversarial policies. The helpful policy
is that of the PPO trained for 500 episodes, with the victim agent in both cases trained for 100
episodes.

optimally target BB attack is likely to be stealthy.

6.2.5 Optimal Attack Summary

In this section an adversarial policy was trained for a reward-based attack designed to
maximize the victim agent’s power usage. The attack was successfully conducted using
the BB attack after ACG’s ASR was too low to produce a significant adversarial regret,
and the victim’s power usage was more than tripled. However, the L∞ distance between
the clean and adversarial observations reached 0.8 in the worst cases, making the ad-
versarial distortions evident. Hyperparameter tuning of the BB attack was attempted,
to test if different parameters resulted in a more efficient search for adversarial pertur-
bations closer to the original inputs. This was unsuccessful which indicates the large
distortions are not the result of an inefficient search for the minimum adversarial pertur-
bation. While attacks on victims with less training time and using adversarial policies
closer to the victim’s reduced the L∞ distance, the change was insufficient to make the
attack stealthy.

These results show that an attacker can induce a victim DRL controller to follow an
arbitrary adversarial policy, while minimizing the perturbation size through the use of
the minimum-norm BB attack. The fact that an adversary can quickly and effectively
generate false data which allows them to control a victim model makes investing in de-
tecting this false data worthwhile. An LAA which can increase the power consumption
of a large industrial user by three times could have a significant effect on grid stability.
However, given the size of perturbations required, detecting and flagging such pertur-
bations would be an effective means of mitigating SotA attack algorithms. Given the
service lives of energy infrastructure, considerations should be given to future attacks
which have yet to be developed and could prove more difficult to detect.

6.3 Bifurcation and Target Group Methodology

The optimally targeted attack had an extraordinarily high adversarial regret, with un-
acceptably large distortions. Training it also requires access to the victim’s training en-
vironment, which is not guaranteed for black box settings, like the snooping attack. The
optimal targeting policy oscillates between maximum charging and discharging, while
the much less effective (in terms of adversarial regret) untargeted attacks only change
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the action by an average of three positions and rarely changed the direction of the action
(∼7%). This effect is described by Figure 30. Could a similar effect be achieved by tar-
geting the furthest action in the opposite direction with a maximum confidence attack,
to force the agent to charge when it would discharge and vice versa?

Algorithm 8 Furthest Action Algorithm.

Inputs agent parameters θ, environment, attack function atk()

amid ← ||A||
2 //boundary for (dis)charge decision

for Each observation o in episode for environment do
a← π(o, θ)
if a < amid then

searchmin ← amid

searchmax ← max(A)
else

searchmin ← min(A)
searchmax ← amid

end if
while dosearchmin < searchmax //Binary search

yt ← searchmin + ⌊ searchmax−searchmin

2 ⌋
õ← atk(o, yt, θ)
ã← π(õ, θ)
if a ≡ ã then

õbest ← õ
searchmin ← yt

else
searchmax ← yt

end if
end while

end for

Using Algorithm 8, iteratively targeting the closest opposite action was entirely un-
successful with ϵ ≤ 0.1. This approach was not able to flip the agent’s decision, meaning
that ACG was unable to solve the optimization for a single target. While this method
could be improved by duplicating the observation to form a batch of observation-target
pairs for different targets, the lack of success for the iterative method made further test-
ing unattractive. Furthermore, making each observation into a batch linearly increases
the necessary computation. The problem is a mix of a targeted and untargeted attack,
where a subset of labels are acceptable, which will be referred to as the target group.

6.3.1 Grouped Difference Logit Loss

Consider this simple function, Difference Logit (DL) loss, which is similar to the loss
used in [2]:

DL(x, y) = zy −max
i̸=y

zi (36)

An attacker can use this loss function to craft an adversarial sample corresponding to
any label excluding the original (y). But this is not helpful for the problem at hand, as
the untargeted attacks demonstrated that small changes to the agent’s actions do not
significantly affect its performance. But as above, nor is a targeted attack helpful, as
there are multiple acceptable adversarial labels or actions. Consider the group G which
is a subset of the agent’s actions, a loss function which maximized any label in G over
the original would be applicable to the problem at hand. This Grouped DL (GDL) loss
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Figure 30: Example of an adversarial attack on a discrete actor network trained in CityLearn.
The original observations and actions are represented by elements in blue, and adversarial in
orange. The bars on the left represent features in an observation, and the curves on the right
represent the value of each logit (which correspond to actions). The upper five logits represent
different levels of charge actions, and the bottom five discharge. In this example, small changes
to the original observation result in an adversarial action different from the original. But, the
result is only slightly more charging than is optimal, so the impact on power consumption is
limited.

can be written as:
GDL(x, y) = zy −max

i∈G
zi (37)

Like the target, the group G changes over the duration of an attack on a DRL agent.
Specifically, when the agent would choose one of the charge actions, all discharge attacks
are added to the target group. ART[36] does not include the proposed GDL loss (nor
does any other library reviewed), so the most direct way of implementing GDL in ART’s
framework is by modifying the ANN provided to it.

Using DL or GDL instead of Difference Logit Ratio (DLR) also removes the regular-
izing effect of the denominator, which aims to keep the original class as the second most
likely. This may contribute to the proximity of the original and adversarial samples. This
approach is ideal for control tasks where an adversarial action’s distance from the opti-
mal action is proportional to the adversarial regret it causes. Consider a steering input
for a vehicle, the further the input is from optimal, the further it will stray off course.
In classification tasks generally, any label but the correct one has an equal adversarial
regret in terms of accuracy. However, there are circumstances where certain groups of
mis-classifications result in a larger adversarial regret than others. Consider an image
classifier used by an autonomous vehicle: causing a Sedan to be misclassified as a truck
or bus might have some effect on the vehicle’s behaviour, but mis-classifying it as any
non-vehicle could have an even greater effect.

6.3.2 Bifurcation Layer

The actor network for a discrete agent in CityLearn will have symmetrically graduated
actions for various level of (dis)charge, e.g. charge to 75% capacity, or discharge until you
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Figure 31: Example of an adversarial attack on a discrete actor network trained in CityLearn,
using the bifurcation method. The original observations and actions are represented by elements
in blue, and adversarial in orange. The bars on the left represent features in an observation,
and the curves on the right represent the value of each logit (which correspond to actions). The
upper five logits represent different levels of charge actions, and the bottom five discharge. The
output of the bifurcation layer is the maximum logit value for each of these groups of logits. In
this example, small changes to the original observation result in a discharge action instead of the
original charge action. Inducing the victim agent to reverse its (dis)charge decisions increases
electricity consumption.

have 8% charge left. These can be combined into target groups for GDL loss by modifying
the network used by ART to return only a pair logits, corresponding to the maximal
charge and discharge logits. This binary maximum layer makes DL loss equivalent to
GDL loss. We call this layer the bifurcation layer, which is described by Figure 31.
Unlike GDL, DL is easily implemented in ART using PyTorch. By implementing GDL
through the input network, the method is practical for most adversarial frameworks and
methods, rather than restricting it to a single library or attack. Note that DL Loss
must be used in place of DLR as shown in equation (6), since the latter requires more
than 2 logits to compute the loss. Cross-Entropy (CE) loss could also be used, but it is
both more difficult to illustrate the concepts above with it, and the issues of vanishing
gradients (see Section 2.3.2) lower its ASR compared to other loss functions. Compared
to DL, CE Loss resulted in 8 fewer percentage points in the ASR for otherwise identical
ACG attacks.

6.3.3 Continuous Action Spaces

Using the bifurcation method an adversary changes the victim model’s outputs to suit
their objective. Above, logits are grouped to surrogate targets, but the same can be done
to add logits to a regressor with only a single output. The majority of adversarial attacks
are designed for classifiers, for which one logit corresponds to a label and the largest
logit value is the model’s decision. A regressor has a single output with a continuous
range of values. These correspond to discrete and continuous action spaces in DRL, and
continuous action spaces are typically used for control tasks such as the DR simulated
in CityLearn. This limitation in adversarial example research significantly limits their
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application to DRL controllers. However, a logit layer can be added to a regressor as
glue logic between the ANN and attack algorithm. The simplest bifurcation layer tested
consists of two outputs, one is the same as regressor’s original output, and the other its
negative. Instead of returning a single prediction value, the network is made to return
a tuple of two values. The output y becomes the vector (y,−y). Thus the greater of
the two logits is treated as the ANN’s prediction. The loss gradient will be used to
reduce the original logit while increasing the the negative logit. It does not matter
if the greatest logit changes during the attack, as the attacker’s goal is to find inputs
which significantly changes the regressor’s or agent’s prediction. Other bifurcation layer
configurations were explored, using various exponential and linear functions, but none
were found to outperform this method in preliminary experiments.

Minimum-norm attacks are inappropriate for this task because they rely on a classi-
fier’s decision boundary, the boundary is crossed when the logit with the largest value
changes. There is no analogous concept for a regressor with a single output. Maximum-
confidence attacks simply maximize an arbitrary loss function with a boundary, so they
are easily adapted for regression. Instead of maximizing the value of a logit other than
the original, they maximize the difference between the original and adversarial outputs
within their budget. The attacker can change the adversarial budget to balance adver-
sarial regret and stealth.

To compare the bifurcation method to a direct attack on an agent with a continuous
action space, an attack is required which is compatible both with the continuous output
of the agent and the bifurcated output. ACG can only do the latter as it amounts to
a classification. To this end, a simple Projected Gradient Descent (PGD) attack for
arbitrary loss functions is implemented, which is shown in Algorithm 9. This same al-
gorithm is an improvement of the Fast Gradient Method (FGM) (3), and is a simplified
version of ACG (auto-stepsize selection and a CG coefficient could be added to improve
performance, though this is outside the scope). Furthermore, the simplicity of this im-
plementation reduces the computation time, which enables more test iterations. This
PGD implementation allows attacks using loss functions such as Mean Squared Error
(MSE), Mean Absolute Error (MAE), and Huber loss, which are compatible with the
regression networks used by continuous action agents. This attack is used to compare
the adversarial regrets for the Soft Actor Critic (SAC) agent with and without the bifur-
cation layer, and between the SAC and discrete PPO. In addition to adversarial regret,
there are several metrics which are useful in comparing the effects of these attacks:

1. Because there is no discrete boundary between the decisions of a regressor or con-
tinuous agent, MAE will be used instead. The discrete agent’s actions are mapped
onto a continuous action space, so the MAE can be calculated for both. MAE is
linear and does not alter the unit of the inputs, so it can be intuitively understood
as the distance between the original and adversarial actions.

2. The (dis)charge reversal is proportional to the adversarial regret, and the goal
of the bifurcation method. The early untargeted attacks had a limited effect on
this metric, and similarly limited adversarial regrets. By comparing the signs of
the original and adversarial actions, the proportion of timesteps where the victim
agent’s decision is reversed can be counted.

6.4 Bifurcation and Target Group Results

To test the bifurcation layer on an agent with a continuous action space, a SAC was
trained for 500 episodes using the energy consumption reward. Its training environment
was identical to the discrete PPO, except the action space was not discretized, so A ∈
[0, 1]. The µ network, analogous to the policy net for the PPO, has a single output with a
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Algorithm 9 PGD with Decaying Stepsize [66].

Inputs: model θ, sample x, model prediction y, loss function L, ϵ, stepsize η, iterations
Niter, decay rate α, number of decays Nα

δ0 ← 0
kα ← ⌊Niter

Nα
⌋

for k = 1 to Niter do
sk ← sign(∇L(x+ δ(k−1), y, θ))
δk ← Pϵ(δ

(k−1) + ηsk)
if k mod kα = 0 then

η ← ηα
end if

end for
return δ

ϵ Initial Stepsize Iterations Number of Stepsize Decays Decay Rate
0.05 0.01 100 4 0.5

Table 8: Parameters for the PGD attack used in this section, ϵ varies in the following section.

linear activation function. This function does not constrain the network’s output, instead
it is mapped to the action space by the SB3 SAC algorithm. So the µ network extracted
to craft adversarial observations has a continuous and unconstrained output, despite the
agent as a whole having a constrained action space. Using this simple PGD algorithm,
both the robustness of the SAC and Discrete PPO agents, and the performance of direct
and bifurcation attacks, were compared. All tests are conducted using PGD with the
same hyper parameters shown in Table 8, except the loss function for compatibility
reasons. There was no variation in adversarial regret or MAE between the MAE, MSE,
and Huber loss functions for the PGD attack on the SAC. DLL was used for PGD on
the discrete PPO. All these loss functions are continuously differentiable, and do not
exhibit the gradient masking behaviour of CE loss. The discrete PPO and SAC are
best compared using the direct PGD attack because it minimizes the variation of test
conditions between them. In contrast, using the bifurcation involves adding different
layers to each agent’s actor output.

6.4.1 Comparison of Direct and Bifurcation Attack performance

Figure 32 demonstrates a significantly larger adversarial regret from the bifurcation
method compared to attacking the SAC directly. This shows that using the bifurca-
tion method not only interfaces adversarial classification attacks to regression tasks, but
also improves their performance in continuous control settings, which is consistent with

Attack SAC Discrete PPO
MAE (Dis)Charge reversal MAE (Dis)Charge reversal

PGD 0.583 27.4% 0.126 4.2%
Bifurcated PGD 0.957 95.7% 0.226 26.1%

Table 9: Metrics for comparing direct and bifurcated PGD on discrete and continuous agents.
MAE can be applied to both the discrete and continuous agents when their actions are trans-
formed to the same action space A ∈ [−1, 1], making them directly comparable. The (dis)charge
decision measures the proportion of adversarial observations which changed the sign of the
agent’s action by reversing the decision to (dis)charge the battery.
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Figure 32: Graphs comparing KPIs of episodes with no attack, PGD, and PGD using the
bifurcation method. Because the PGD attack had identical parameters (besides the loss func-
tion), and the figure shows the increased adversarial regret of the bifurcation attack over PGD
alone, it demonstrates the superiority of the bifurcation method.

Figure 33: Plot of the clean and adversarial actions from a PGD attack for a SAC, over one
week. Note how frequently the sign changes during this period, showing that the attack reversed
the agent’s (dis)charge decision.

the findings comparing the bifurcation method to direct attacks on the discrete PPO.
The PGD bifurcation attack reversed the SAC’s (dis)charge decision 3.5 times more than
PGD alone, and the MAE was 1.8 times larger. The differences in the adversarial ac-
tions are visualized in Figure 33 for the direct PGD attack, and Figure 34 for bifurcated
PGD. Note that for both figures the clean and adversarial actions rarely overlap. While
the PGD actions share a similar plot to the clean actions, those corresponding to the
bifurcated attack appear somewhat mirrored as this attack was designed to reverse the
sign of the agent’s action. Success here explains the increased adversarial regret.

6.4.2 Relative Robustness Between SAC and Discrete PPO

There are several metrics which explain the discrepancy in adversarial regret between the
SAC and discrete PPO as shown in Figure 35, which are summarized in Table 9. When
transformed to the same action space A ∈ [−1, 1], the MAE between the unperturbed
and adversarial actions can be computed as a measure of the change imposed by the
adversary. The SAC’s MAE is 4 times larger than the discrete PPO’s, demonstrating
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Figure 34: Plot of the clean and adversarial actions from a bifurcated PGD attack for a SAC,
over one week. Note how the sign changes more frequently for this attack than the direct PGD.

Figure 35: Adversarial regret of select KPIs for the PGD attack on a SAC and discrete PPO.
The adversarial regret is calculated as the difference between the KPIs during the attack and
with no attack, and lower is better. The figure shows that the Discrete PPO is more robust to
this attack than the SAC.
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Figure 36: Clean and adversarial actions from a PGD attack for a discrete PPO, over one week.
Note how they resemble each other, which is consistent with their small MAE. In this period
the signs of both actions match, meaning the attack hasn’t reversed the (dis)charge decision.

Figure 37: KPIs for select cost functions for the SAC agent under bifurcation attacks using
ACG and PGD. The adversarial regret from PGD has outperformed ACG.

that the adversarial observations had a larger effect on its actions. This resulted in
the SAC reversing its (dis)charge decision 6.5 times more than the discrete PPO under
the same attack. The difference between the SAC and discrete PPO’s performance are
apparent by comparing Figure 36 and Figure 33, which illustrate the metrics discussed
above. There is significantly more overlap between the clean and adversarial actions for
the discrete PPO, which corresponds to a smaller adversarial regret.

Figure 38 shows the different distributions of the adversarial actions from bifurcated
ACG and PGD attacks. The ACG distribution vaguely resembles the clean distribution
and is clustered near 0, with less density near the extremes. This means the adversarial
ACG actions in this scenario cause a nearly even amount of charging and discharging, and
rarely fulling charge or discharge the battery. PGD exhibits a much less even distribution
clustered near the maximum of 1, meaning these adversarial observations do cause the
agent to fully charge, which consumes more energy.

Curiously, the ASR of 36.6% for bifurcated ACG on the discrete PPO was barely
more than half the ASR of 62.8% from bifurcated PGD. These were identical for the
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Attack SAC Discrete PPO
MAE (Dis)Charge reversal MAE (Dis)Charge reversal

Bifurcated ACG 0.568 92.0% 0.178 21.2%
Bifurcated PGD 0.957 95.7% 0.266 26.1%

Table 10: Comparing bifurcated ACG and PGD on discrete and continuous agents. MAE can
be applied to both the discrete and continuous agents when their actions are transformed to
the same action space A ∈ [−1, 1], making them directly comparable. The (dis)charge decision
measures the proportion of adversarial observations which changed the sign of the agent’s action
by reversing the decision to (dis)charge the battery.

Figure 38: Kernel density estimation comparing the clean and adversarial actions of a SAC
under bifurcated PGD and ACG attacks. In contrast to the PGD actions, those for ACG are
concentrated near 0, and its distribution is not entirely dissimilar to the clean actions.

attacks on the SAC, and higher for ACG for direct attacks on the discrete PPO (ART’s
implementation of ACG is incompatible with the SAC, as discussed above). Table 10
shows that also PGD performed better that ACG, and that once again the discrete PPO
is more robust then the SAC. Figure 39 shows that the metrics in Table 10 correspond
to a higher adversarial regret for PGD. As with the SAC, the KDE of the actions taken
during attack from Figure 41 shows that the action distribution of the ACG attack
resembles the clean distribution more than the actions from PGD. Comparing the action
distributions for these attacks between the discrete PPO and SAC shows how much more
robust the PPO is compared to the SAC.

Experimentation with ART’s ACG and Auto-PGD hyperparameters did not have a
significant effect on their ASRs. Removing the feature mask, which is not implemented
for the PGD attack, only improved ACG’s ASR by ∼2%. An effect similar to ART’s
feature mask was achieved using a feature-specific ϵ and using ϵ = 0 for temporal features,
which had a negligible effect on adversarial regret. ACG was found to perform best in the
dynamic distortion attack with 50 restarts and 20 iterations, each while the PGD attack’s
values were 1 and 100. Both ACG and APGD performed similarly with the former
hyperparameters, but using only 1 restart with 100 iterations, ACG’s ASR decreased by
∼2% and APGD’s by ∼8%. The purpose of using APGD with the same hyperparameters
as ACG was to test if the ACG algorithm was ill-suited to this task. Because ACG and
APGD initially performed similarly, the ACG algorithm alone is not responsible for the
difference in adversarial regret from this work’s PGD implementation. The auto step-size
updates and early stopping are also not present in the PGD attack, which always runs for
the allotted number of iterations and the step-size is reduced at a fixed number of times.
These differences in the two algorithms could explain the ASR discrepancy, but testing
this hypothesis requires significantly modifying the ART library for these attacks. ART
is otherwise more complex and feature-rich than the simple PGD implementation used is
this work, but exhaustively testing how the ART implementation affects the performance
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Figure 39: KPIs for select cost functions for the discrete PPO agent under bifurcation attacks
using ACG and PGD. The KPIs are significantly lower than for the SAC, demonstrating the
discrete PPO’s robustness. As with the SAC, the adversarial regret from PGD has outperformed
ACG.

Figure 40: Adversarial actions from bifurcated ACG and PGD attacks on the discrete PPO.
The PGD actions appear spikier, which visualizes the significantly larger ASR for that attack.

of bifurcated attacks is outside the scope of this work.
The PGD attack achieved a higher adversarial regret than ACG with a smaller com-

putational budget for the SAC. This implies that the GDL function is not optimal, as
maximizing it is not entirely proportional to adversarial regret, which is demonstrated by
the inferior performance of the superior adversarial attack algorithm. Given that direct
ACG outperforms PGD and that the work in [41] shows that ACG outperforms PGD,
it seems that the GDL does not provide the optimal loss function to maximize power
consumption and suggests a different bifurcation layer would perform better. In this case
the ACG attack was allowed 10 times more steps and benefited from the auto stepsize
adjustment proposed in [34], so it could be concluded that the ACG attack’s inferior
adversarial regret did not result from an inability to maximize the loss function. This
suggests that another attack could be more effective with the same budget.

6.4.3 Toggle-Bifurcation Attack

Because the results for the untargeted bifurcation attack suggests that it is not the
optimal approach, the following experiment attempts to improve it. The bifurcation
method results in a network with two outputs, and using it with an adversarial attack
attempts to reverse the victim’s (dis)charge decision. Figure 34 shows how this results in
alternating periods of charge and discharge, lasting several timesteps. Figure 25 shows
the adversarial actions under the optimally targeted attack, where the (dis)charge action
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Figure 41: Kernel density estimation comparing the clean and adversarial actions of the
discrete PPO under bifurcated PGD and ACG attacks. The deviations between the clean and
adversarial distributions are relatively small, with ACG almost overlapping them. The larger
deviation with PGD corresponds to its larger adversarial regret.

Figure 42: Clean and adversarial actions from a toggle-targeted bifurcated PGD attack for a
SAC, over one week. Note how the action’s sign changes more frequently for this attack than
bifurcation alone in Figure 34.

reverses every timestep. Because the optimal attack targeted actions the victim agent
was unlikely to take, at the extremes of its action space, it required an impractical
budget. The bifurcation method addresses the issue of budget by targeting a group of
actions, but does not reverse the action at every timestep, which would use more energy.
So, instead of merely reversing the victim agent’s action, leading to similar actions for
multiple timesteps, the toggle attack alternates between targeting the first and second
output of the bifurcated network. The goal is for the agent to take a charge action on one
timestep and a discharge on the next e.g. charging on even timesteps and discharging on
odd. Figure 42 show how the actions look during a successful attack.

The toggle bifurcation method is effective within a much smaller L∞ constraint than
the optimally targeted attack; it does not require training an adversarial policy so it
does not require access to the victim agent’s environment for training. However, as a
targeted attack, it requires a larger adversarial budget than an untargeted bifurcated
attack. When the budget is too small the latter attack will provide a larger adversarial
regret as shown in Figure 43. This effect is further demonstrated for the SAC in Figure
48 as the adversarial budget is reduced in section 6: Detection.

6.4.4 Bifurcation Method Summary

The bifurcation method is a novel technique which enables a gradient-based attack to
target a group of outputs in a single attack. It can be applied regardless of the number
of outputs on the victim neural net, meaning it can be used on continuous and discrete
action spaces in DRL, and regression or classification in deep learning. With this prop-
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Figure 43: Adversarial regrets for bifurcated PGD attacks on Discrete PPO and SAC agents,
which shows the effects of toggle-targeting. higher regrets indicate a better attack. The latter
method is more effective for the SAC with the adversarial budgets tested. Because the ASR for
the toggled attack on the PPO is only 36%, while it is 62% for bifurcation alone, the former
performs worse. While the toggled attack can outperform a bifurcated attack, it requires a
larger adversarial budget.

erty, a bifurcation layer can interface maximum-confidence classification attacks with
regressors without altering the attack, which is valuable as this work did not find any
adversarial attack libraries which explicitly supported attacks on regressors. The bifur-
cation method is also attack agnostic, and it will work with any attack using DL or CE
loss. Though the former is more effective, the latter was included in every library found
in this work’s literature review.

The bifurcation method requires a smaller adversarial budget than conventional tar-
geted attacks, and provides higher adversarial regrets than conventional untargeted at-
tacks. Adversarial regrets are higher because the attack restricts which adversarial class
or actions are chosen by the victim, which increases the effect of the attack. For smaller
budgets, the attack exhibits higher ASRs than conventionally targeted attacks because
it is successful for more than one adversarial output, and it is computationally more
efficient than sequentially targeting each desired output or class. This new method sits
between conventional untargeted and targeted attacks in terms of adversarial budget
and regret, and represents a simple method for robustness testing for continuous control
agents in DRL. The latter was entirely absent from the studies reviewed in this work, no
study in the review used adversarial examples for a continuous action space.

The bifurcation method was validated for the SAC by comparing the results of bi-
furcated attacks to direct attacks with ACG and PGD. A custom PGD implementation
was written to allow direct PGD attacks on an agent with a continuous action space.
A SAC was trained in CityLearn and the attack using bifurcated PGD showed that the
bifurcation method produces larger adversarial regrets.

This section shows that a discrete PPO is far more robust to adversarial attacks than
a SAC, which had significantly higher adversarial regrets for all attacks. This was shown
with bifurcated attacks, where the only difference was the bifurcation layer, and direct
PGD attacks where the only difference was the loss function. These results suggest that
DRL in critical infrastructure, including CPPS, should test the robustness of multiple
algorithms and action spaces before choosing one for implementation. In this case, the
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discrete PPO enhanced robustness with no loss of performance.
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7 Defences

The goal of this phase is to demonstrate simple and model agnostic methods in which the
threat of gradient-based adversarial attacks could be mitigated. The rationale is that
defensive techniques are most useful when they can be applied to existing algorithms
and pipelines and use open sources tools. Theoretical solutions are not useful if they are
never implemented. This work will explore two types of defences: detection and robust
training.

7.1 Detection Methodology

The purpose of detection in this work is to determine if the set of adversarial examples
during one episode of an attack are plausible in aggregate. Determining if an individual
sample or observation is adversarial is outside the scope of this work. Detection has dual
purposes, both in defending against adversarial observation and proving if an attack is
feasible. While the literature reviewed in this work suggests several novel methods for
attacking DRL agents, none tested if their attacks were in fact stealthy. The aim of
this section is to determine if gradient-based adversarial attacks can generate plausible
adversarial observations.

To do so, we take a two pronged approach to ensure the plausibility of adversarial
observations. First, the Maximum Mean Discrepancy (MMD) Gaussian kernel detector
[67] is used to evaluate if the set of adversarial observations are plausible. Then, ag-
gregated time-series analysis is used to analyze the variations in features over time. In
this way both the construction of individual samples, and their relationship with the
preceding sample is analyzed. We use model agnostic statistical techniques to identify
outlying features of adversarial observations, and statistical testing to determine if the
original and adversarial observations form distinct distributions.

This analysis is enabled by the real world measurements used to generate CityLearn’s
observations, because detection is tested in a realistic control setting. This section will
determine if the adversarial attacks developed in previous sections are feasible. An attack
is only considered feasible when the adversarial observations it generates are plausible,
and the attack causes a significant adversarial regret. Unlike the image classification set-
ting where adversarial attacks were first developed and are typically studied, observations
in a Deep-Reinforcement Learning (DRL) environment have the following characteristics
which enable detection:

1. Correlated features: the weather conditions are dependant on the time or day and
are loosely periodic. e.g., temperatures and solar irradiance peak at mid day and
drop at night. Adversarial observations which fail to follow these patterns could
be detected simply by plotting them.

2. Observations in a DRL environment are a time series, which means there is a re-
lationship between subsequent observations. So, adversarial observations must not
only be individually plausible, but also be plausible given the previous observation.
e.g., Weather features for a particular climate will vary within a particular range
over time, so larger temperature variations between measurements could indicate
FDI. The mean rate and range of inter observation changes for clean observations
will be compared to those for adversarial observations, to test if they can be sepa-
rated by some threshold value.

3. CityLearn has several modules which predict weather and electricity prices 6, 12,
and 24 hours ahead. So, the change in prediction accuracy due to the perturbations
and the final values of the features can be measured.
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Based on this analysis of adversarial observations, the attack’s adversarial budget will
be reduced until the observations it produces appear plausible. Attacks in this work
use an L∞ boundary, which restricts the maximum perturbation for individual features.
This size of ϵ directly affects the amount of distortion between original and adversarial
observations, so reducing it can improve an attack’s stealth.

MMD is a statistical method of identifying if two sets of samples are drawn from the
same distribution. The MMD test as used in [43] will determine is the distribution of
adversarial observations is plausible compared to the originals. Because it is made for
sets rather than individual samples, it does not detect individual adversarial samples.
However, it can be used as a metric to assess the significance of the adversary’s distortions
by comparing the clean and adversary observations generated during an episode. This
represents the best case scenario for detecting the adversary’s distortions, because the
”correct answer” is used in the form of original observations. This would not be the
case in a production system, as present observations can only be compared to historical
data, and changing patterns in weather and electricity demand can also cause drift which
increases MMD.

The purpose of this test is to suggest a threshold of distortion which is likely to be
detectable with model agnostic statistical methods. If an attack exhibits a low MMD
in this ideal setting, then it is unlikely to be detected statistically. In [20], the authors
demonstrate that MMD will not detect strong minimum norm attacks, while [43] showed
it is effective for weak attacks like FGM. These results make MMD valuable for deter-
mining if the SotA attacks are indeed plausible, because the test can be evaded by a
strong adversary.

Using the same methodology as [43], the MMD is calculated using 10 000 bootstraps
with a Gaussian kernel. The test provides the MMD value which quantifies the difference
between two distributions, and a probability that both distributions are the same. Due
to the correlated nature of CityLearn’s time series observations, finding a clean MMD
threshold is more complicated than simply randomly sampling a clean distribution as
done in previous work. Through experimentation, the observations of a clean episode
are divided into two representative samples, and the results of this test will be used as
a baseline for clean data. If the MMD test results between the original and adversarial
observations in an episode are outside the baseline range, the adversarial observations
are considered implausible.

7.2 Detection Results

7.2.1 Time Series Feature Variation Analysis

While the purpose of MMD is determining if each individual adversarial observation is
plausible, i.e. from the same distribution as clean observations, this does not suffice. Un-
like Independent and Identically Distributed (IID) images where MMD was previously
used, CityLearn produces time series data, so other methods are required to learn the ef-
fects of adversarial attacks on the relationships between samples. Even with insignificant
MMDs, the variations between observations are significantly greater during adversarial
attacks, and current attacks are not constrained based on the distance from the previous
sample. Furthermore, adversarial samples do not conform to periodic observations, e.g.,
will show solar generation occurring at night. This specific behaviour could be avoided
by only perturbing the solar generation feature during the day. Since many CityLearn
features predict the values of others, perturbing them will affect the accuracy of their pre-
dictions, especially when future attacks don’t consider prior perturbations, these changes
to prediction features are self-inconsistent.

The attack has a delicate balance with the adversarial budget; a large budget leads to
more successful attacks, but also larger distortions. The possible range of distortions must
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Feature Maximum Perturbation for L∞ ϵ
ϵ = 0.07 ϵ = 0.05 ϵ = 0.03 ϵ = 0.01

Outdoor Dry Bulb Temperature
(◦C)

1.86 1.33 0.8 0.27

Outdoor Relative Humidity (%) 6.3 4.5 2.7 0.9
Diffuse Solar Irradiance
(W/m2)

71.2 50.9 30.5 10.2

Direct Solar Irradiance (W/m2) 66.7 47.7 28.6 9.53
Carbon Intensity (kgCO2

/kWh) 1.5× 10−2 1.1× 10−2 6.3× 10−3 2.1× 10−3

Non-Shiftable Load (kWh) 0.48 0.34 0.2 6.8× 10−2

Solar Generation (kWh) 61.6 44.0 26.4 8.8
Electrical Storage SoC (%) 7 5 3 1
Net Electricity Consumption
(kWh)

62.7 44.8 26.9 9.0

Electricity Pricing ($/kWh) 2.3× 10−2 1.6× 10−2 1.0× 10−2 3.3× 10−3

Table 11: List of CityLearn features, and the variation introduced by different ϵ perturbation
boundaries. Each feature is min-max normalized to [0,1], so the maximum perturbation is the
product of ϵ and the feature’s spread. This table omits prediction features, since their values
are not significantly different from those listed.

be chosen such that distribution of adversarial observations is plausible, which is detected
by MMD, and that the observations don’t change drastically between two timesteps as
they are also simple to detect. Table 11 lists the maximum distortion caused to each
feature for a given ϵ value. Ideally the attacker can use an ϵ which will be lost in the
noise of normal readings, or at least would not be apparent to a human. To that end,
ϵ must be similar to the natural variation between samples, as listed in Table 12. From
this data, it is apparent that ϵ = 0.03 is less than or at least similar to the inter-sample
variation for most features. Solar generation and Net Electricity consumption are outliers
with variations, which is caused by improper min-max normalization in CityLearn. The
maximum observed value for solar generation is 0.004, while this should be 1 if it is
min-max normalized. In practice ϵ = 0.03 is a 75% of it is spread, making a value
like ϵ = 0.004 × 0.03 more appropriate. This normalization also skews net electricity
consumption, which combine solar generation with the non-shiftable load and energy
charged or discharged from storage.

Through reducing the adversarial budget and observing the adversarial regret, the
parameters for a stealthy attack were selected. The adversarial budget was reduced
to decrease the relative proportion of the adversarial mean absolute feature variation
compared to the original. The absolute feature variations were analyzed because the
changes in mean feature variations and values are negligible with this attack and unlikely
to be detected. The absolute feature variation is the absolute difference between a feature
and the values from the previous observation. Negative and positive changes can negate
each other’s effect on the mean, so absolute values are used to measure the magnitude
of the variation.

An attack is used to assess the detectibility of adversarial observations. An attack on
the Soft Actor Critic (SAC) was chosen as it quickly became apparent that the adversarial
regret dropped significantly faster for the discrete Proximal Policy Optimization (PPO)
for similar budgets. Curiously, masking a feature with Auto-Conjugate Gradient (ACG)
in Adversarial Robustness Toolbox (ART) using their API as documented did not reduce
the absolute variation in the associated feature. This is likely a bug, so instead, the
Projected Gradient Descent (PGD) attack was used as it allows an ϵ to be assigned
individually for each feature. ϵ was reduced for the solar generation and net electricity
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Mean Normalized Inter-Observation Feature Variation
Feature Mean Normalized Varia-

tion
Standard Error

Outdoor Dry Bulb Tempera-
ture (◦C)

2.6× 10−2 3.0× 10−4

Outdoor Relative Humidity
(%)

4.9× 10−2 6.8× 10−4

Diffuse Solar Irradiance
(W/m2)

6.3× 10−2 8.9× 10−4

Direct Solar Irradiance
(W/m2)

0.07 1.3× 10−3

Carbon Intensity
(kgCO2/kWh)

2.6× 10−2 2.7× 10−4

Non-Shiftable Load (kWh) 0.06 8.4× 10−4

Solar Generation (kWh) 2.6× 10−4 4.0× 10−6

Electrical Storage SoC (%) 8.2× 10−2 9.3× 10−4

Net Electricity Consumption
(kWh)

6.4× 10−4 7.0× 10−6

Electricity Pricing ($/kWh) 7.2× 10−2 2.6× 10−4

Table 12: Mean Normalized Inter-Observation Feature Variation. This is the mean variation of
normalized features between time-steps of a clean episode of CityLearn, and the Standard Error
of the Mean (SEM). When ϵ is significantly larger than the mean variation for an adversarial
attack, the perturbations may manifest with increased variation.

consumption features because they were not normalized in the same way as other features.
This resulted in perturbations many times larger then the feature’s value when a uniform
ϵ was used. Using ART, features were also found outside the boundaries of [0,1], so the
PGD attack was modified to keep features in this range. Thus, the stealthy PGD attack
had the following characteristics, and its perturbations are visualized in Figure 44:

1. PGD was used with the bifurcation method on a SAC victim agent

2. ϵ = 0.03 for all features except:

(a) Solar generation and all temporal features had ϵ = 0, and

(b) Net electricity consumption has ϵ = 4.8 × 10−4, which is the product of its
spread and the ϵ for all other features

3. Each feature was constrained between [0,1]

This bifurcation method improves the adversarial regret by 50% compared to a direct
PGD attack with the same parameters. Constraining the adversarial features to [0,1]
reduced the adversarial regret by over one third, which was larger than the reduction
for masking or scaling the solar generation and net electricity consumption features.
However, the lack of such constraints makes adversarial observations obvious, particularly
when a value like solar irradiance or generation becomes negative. Figure 48 shows the
relationship between adversarial regrets and budget.

Table 13 shows how a stealthy PGD attack affects the absolute variation of each fea-
ture categories between timesteps. Despite the adversarial observations being very close
to the originals used to craft them, the difference between two adversarial observations is
greater than the originals. The stealthy PGD attack increases the adversarial regret for
power consumption compared to a direct attack by 50%, but is limited by the adversarial
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Relative Absolute Feature Variation for the Stealthy PGD Attack
Normalized Feature Difference in Mean Ab-

solute Variation
Proportion of Clean
Variation

Outdoor Dry Bulb Tem-
perature (◦C)

0.34 1.49

Outdoor Relative Humid-
ity (%)

0.88 1.2

Diffuse Solar Irradiance
(W/m2)

4.67 1.09

Direct Solar Irradiance
(W/m2)

6.83 1.09

Carbon Intensity
(kgCO2

/kWh)
2.6× 10−3 1.47

Non-Shiftable Load (kWh) 3.7× 10−2 1.09
Solar Generation (kWh) 0 1
Electrical Storage SoC (%) 4.5× 10−3 1.07
Net Electricity Consump-
tion (kWh)

0.29 1.5

Electricity Pricing
($/kWh)

1.5× 10−2 1.2

Table 13: Feature Variations during bifurcated PGD attack on a SAC, where neither the
temporal or solar generation features were perturbed, the ϵ for net electricity consumption was
reduced, and all observations were projected to [0,1]. This attack was chosen for comparison
because of issues with ART’s feature mask. Also, the SAC was chosen because an attack with
these restrictions has a negligible adversarial regret for the discrete PPO. This is the most
powerful attack given the perturbation restraints. The variations in SoC, carbon intensity,
and net electricity consumption are also affected by the agent’s suboptimal actions, not the
perturbations alone. Absolute variation was used because the mean variation is at most four
orders of magnitude smaller, making it negligible.
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Figure 44: Observation heatmap for Bifurcation PGD Attack, with ϵ = 0.03, Masked Temporal
and Solar Generation Features, and scaled ϵ for Net Electricity Consumption. From top to
bottom are the clean then adversarial observations, followed by the difference between them.
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Figure 45: Comparison of clean and adversarial periodic weather features over one week. Ad-
versarial features were generated with the stealthy PGD attack. Because these features depend
on the time, perturbations may be evident, e.g., temperature or solar irradiance increasing dur-
ing the night. Unlike carbon intensity or net electrical consumption, the plotted features are
not affected by the agent’s actions.

Figure 46: KDE of high variation features, and the L∞ norm between observations. Both
temperature and total electricity consumption had mean absolute variations 1.5 times more for
the stealthy PGD attack than clean episodes. The left two plot show that while the distribution
of variations is different for clean and adversarial episodes, they overlap and cannot be separated
in this dimension. The L∞ norm plot shows that in terms of distances between observations,
those with adversarial observations are not outliers.
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budget as the regret scale with ϵ. Further decreasing the budget would nearly eliminate
the advantages from the bifurcation method. Because the budget cannot be decreased
further, this section will analyze if the stealthy PGD attack is easily identified.

Figure 45 plots periodic features, which the adversarial observations manage to follow
with a reasonable fidelity. These are weather related features which vary throughout the
day and are correlated with the hour. Of these, the adversarial temperature readings
had the highest variation. While the adversarial readings appear noisier, the clean ones
also exhibit a similar shape at times. Without knowing how the clean plot looks it would
be difficult to identify the adversarial perturbations. The adversarial measurements for
solar irradiance closely follow their clean counterparts, though spikes are visible at night.
To avoid these the attack should assign ϵ = 0 to such features when their values are
0. To understand if features with relatively high variations can distinguish adversarial
observations from originals, Figure 46 plots their distributions. While it is clear that each
plot shows two distinct distributions, they entirely overlap. The adversarial features have
single digit outliers. 97.6% of absolute inter-adversarial observation difference are within
the original range, and only 15.3% have more than one outlying feature. This indicates
that the distributions are difficult to separate, though it may be possible in higher di-
mensional space using Machine Learning (ML) with each features’ absolute variation.
Variations of the sizes introduced by the stealthy PGD attack would be non-trivial to
detect, but the changes in observations are distributed differently from the originals.
Further analysis on the difference between the original and adversarial distributions will
be conducted in a later section.

CityLearn contains features which predict the outdoor temperature and humidity,
direct and diffuse solar irradiance, and electricity price, 6, 12, and 24 hours/timesteps
into the future. The accuracy of these predictions is affected both by the perturbation
applied to the prediction but also the future measurement. Since adversarial attacks do
not consider previous perturbations when generating adversarial examples, the distortion
can be magnified. After analyzing the change in prediction accuracy over the course of
attack episodes compared to a clean episode, the maximum reduction in accuracy is equal
to 2ϵ. This is intuitive because ϵ could be subtracted from the prediction then added to
the measurement several timesteps later. The mean reduction in accuracy tends to be
slightly less than ϵ, because iterative attacks may change a feature by less than ϵ and for
every time an ϵ is added to a prediction and subtraction from the measurement (or vice
versa) it is equally likely to be added or subtracted from both. Table 14 shows the changes
in prediction error for the stealthy PGD attack. While prediction accuracy can be used
to detect adversarial attacks, an appropriately selected ϵ can make it imperceptible. A
significant decrease in prediction accuracy accompanied by a decrease in performance
could indicate adversarial observation perturbations.

7.2.2 MMD Gaussian Kernel Detector

The baseline for normal MMD was determined using the data from a clean evaluation
episode. Due to the seasonality in CityLearn observations, where both weather and
usage feature vary by season, MMD will indicate that different fractions of observations
from a clean episode are not drawn from the same distribution, e.g., winter observations
follow a different distribution than summer. Because the MMD is a comparison of two
distributions, this clean data needed to be split into two representative samples. Multiple
episodes could not be used because the majority of CityLearn’s features are deterministic,
and the others are influenced by the deterministic policy of the agent, meaning there is
no significant variation between episodes. Due to the fact that an episode spans the
course of a year, there are seasonal changes in the weather features, electricity use on
weekdays is distinct from weekends, and both solar and temperatures vary periodically
by hour. For these reasons, random separation is unlikely to generate two representative
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Prediction Error for Stealthy PGD Attack
Normalized Feature Mean Error Increase Max Error Increase
Outdoor Dry Bulb Tem-
perature (◦C)

0.75 1.6

Outdoor Relative Humid-
ity (%)

2.6 5.4

Diffuse Solar Irradiance
(W/m2)

19.9 61.0

Direct Solar Irradiance
(W/m2)

18.0 57.2

Electricity Pricing
($/kWh)

6.5× 10−3 0.02

Table 14: Mean prediction error grouped by feature category.

distributions. Comparing consecutive months, weeks, or days often results in excessively
large MMDs with low probability values, and so did splitting the data into even and odd
time steps (hours). The MMD test indicated that the samples were from two distinct
distributions, with p values below 0.05. This means that the previous methods of splitting
the data were not producing representative distributions. These separation methods
biased the data. Instead, randomly splitting the samples for each day equally produced
two representative sets, which MMD indicates are of the same distribution with large
p values. This entails assigning 12 random indices from each day to one distribution,
and those remaining to another distribution. This ensures that each distribution has an
identical number of samples from each day, and randomly sampling each day reduced
bias in the selection. Repeating this for 100 pairs of distributions provides a distribution
of MMDs and probability values P for comparing clean and adversarial observations. For
an attack to pass the test, the MMD must be within or below this baseline distribution
of MMDs, and within the distribution of probability values. For the latter, we can
calculate the percentile of a probability value in the baseline distribution. The results of
this analysis are shown in Table 15.

The results of the MMD test for the SAC are shown in Figure 47, and the associated
adversarial regrets in Figure 48. With the stealthy PGD attack exhibiting non-negligible
power consumption increase of nearly 10%, while the MMD is lower than any baseline
value and the p-value is high, the SAC is not robust to stealthy attacks. Note how the
adversarial regret decreases significantly when the adversarial budget is restricted. This
effect is even more pronounced in the results of the discrete PPO, with Figure 49 showing
the MMD results and Figure 50 displaying the adversarial regrets. The only attack which
both have an MMD lower than the baseline and high p-values only increased power
consumption by 3%. However, the ACG attack using ART was detectable for having
features improperly masked and outside the range of [0,1] in the previous section. These
results show that the discrete PPO is robust to stealthy attacks.

Of the attacks which pass the MMD, only the stealthy PGD attack had both a
significant adversarial regret and had mean absolute feature variations less than twice
the original. The ACG attack as implemented with ART incorrectly masked features and
does not allow ϵ to be set for individual features, so these attacks were obvious from their
absolute feature variations. The analysis so far suggests that the stealthy PGD attack is
unlikely to be detected. The MMD test assigned a value of 3.5× 10−3 and a probability
value of 0% when comparing the adversarial and original absolute feature variations.
This suggests that attacks with such limited budgets produced convincing adversarial
observations, but could be identified by comparing them to earlier observations in a
time series. SotA adversarial attacks are not designed to be consistent between samples.
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MMD Detector results for different attacks on different victims

Attack MMD p-Value p-Value Per-
centile

Discrete PPO with Masked Temporal Features
ACG with Dy-
namic Distortion

1.5× 10−4 1.0 1.0

Untargeted BB 6.0× 10−4 0.0 0.0
Untargeted BB
(excluding Electri-
cal Storage SoC)

1.0× 10−4 1.0 1.0

Bifurcated ACG
ϵ = 0.05

9.1× 10−4 0.02 2.0

Bifurcated ACG
ϵ = 0.1

1.1× 10−3 0.0 0.0

Discrete PPO with Masked Temporal Features, Solar Generation, and Net
Electricity Consumption

Bifurcated PGD
ϵ = 0.03

1.7× 10−4 0.98 88.0

Bifurcated ACG
ϵ = 0.03

7.8× 10−4 0.98 88.0

SAC
Bifurcated PGD
ϵ = 0.05

5.4× 10−4 1.0× 10−5 0.0

SAC with Masked Temporal Features
Bifurcated PGD
ϵ = 0.05

3.8× 10−4 4.7× 10−3 0.0

Bifurcated PGD
ϵ = 0.03

1.7× 10−4 1.0 88.3

Bifurcated Toggle
PGD ϵ = 0.03

1.7× 10−4 1.0 87.4

SAC with Masked Temporal Features and Solar Generation, and Scaled ϵ
for Net Electricity Consumption

Bifurcated PGD
ϵ = 0.03

2.3× 10−4 0.39 18.4

Bifurcated Toggle
PGD ϵ = 0.03

2.1× 10−4 0.57 25.2

Table 15: Results of the MMD Gaussian Kernel Detector, which provides the MMD as a
measure of the similarity between two sets of samples, and the probability that both are drawn
from the same distribution. The Percentile of the p-values were calculated from the baseline
distribution for the observations of a clean episode. Note that the MMD and probability values
are not directly correlated.
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Figure 47: Scatter plot of MMD and Probability values from the MMD test for observations
from clean and various attack episodes. Attacks which had relatively small MMDs and adver-
sarial regrets were selected. The baseline points were generated from 100 random splits of clean
observations for comparison. Sets of observations with MMDs smaller than this distribution
and comparable p-values are considered plausible and difficult to detect. Note that attacks with
higher budgets tend to be easier to detect. The blue line is the minimum p-value for the baseline
distribution of 6%.
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Figure 48: Plot of adversarial regrets for the low MMD attacks from Figure 47. This is the
difference between the clean KPIs and those for the attack. Note that as the adversarial budget
is decreased in terms of the perturbation size and available features, so does the adversarial
regret. The ramping value for the attack in pink is 3.5, but was truncated so that the rest of
the data becomes more visible.

However, there are caveats:

1. The MMD test was run under perfect conditions, where the original data was
known. A defender could only compare the current distribution to historical data,
and the current and past distributions can change for benign reasons. E.g., changing
power consumption habits from the proliferation of EVs, and shifts in local weather
patterns.

2. The MMD test only compares two distributions, and Figure 46 shows that this
distribution for high variation adversarial features overlap with the originals. This
makes identifying individual or small set of adversarial observations a promising
subject for future research. Furthermore, a Load Altering Attack (LAA) may
not require many altered observations to cause a power consumption spike which
affects the grid. Because CityLearn does not model loads on the wider power grid,
exploring the number of adversarial observations required for such an LAA is out of
scope. Thus, the defender must detect a small number of adversarial observations
for detection to be a viable defense.

These results show that adversarial observations can be detected in aggregate from a
time series. There are clear statistical differences in the absolute feature variations be-
tween adversarial observations. Exploiting this for an effective defence requires detecting
a small number of individual observations, and a high confidence model of how clean
observations should behave. High confidence is critical because a detection system with
a large false positive rate risks of being ignored. As a white box attack requires a well re-
sourced adversary, the defender must be similarly well resourced to detect the adversarial
perturbations.
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Figure 49: Scatter plot of MMD and Probability values from the MMD test for observations
from clean and various attack episodes. Attacks which had relatively small MMDs and adver-
sarial regrets were selected. The baseline points were generated from 100 random splits of clean
observations for comparison. Sets of observations with MMDs smaller than this distribution
and comparable p-values are considered plausible and difficult to detect. The blue lines indicate
the maximum MMD 8.2× 10−4, and minimum p-value 3.0× 10−3 for the baseline distribution.
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Figure 50: Plot of adversarial regrets for the low MMD attacks from Figure 49. This is the
difference between the clean KPIs and those for the attack. Note that as the adversarial budget
is decreased in terms of the perturbation size and available features, so does the adversarial
regret.

7.3 Robust Training Methodology

Two methods of agent robustness are explored tested in this section: Alternating Training
with Learned Adversary (ATLA) [60], and binning continuous action spaces.

7.3.1 Alternating Training with Learned Adversary

To test the defence of the ATLA, which is a training method which teaches an agent
a robust policy (π). It was chosen for testing this work because it can be applied to
any DRL algorithm, potentially making it an accessible method for defending against
adversarial attacks. This work’s literature review found no evaluation of resistance to
adversarial attacks targeting a DRL agent’s function approximator, so that is the goal
of this experiment. Preparations for ATLA requires that CityLearn is modified so that
the observations returned by the environment can be modified by the adversary during
training, unlike the previous evasion attacks that happen during inference.

The environments for the adversary and victim use identical CityLearn parameters
but have different action spaces and rewards. The adversary receives a clean observation
from CityLearn and its action is adding a perturbation, then the victim’s static policy
in the adversary’s environment selects an action based on the adversarial observation.
Conventionally, the adversary’s action space is constrained by a function Aadv ∈ B(s),
where s is the current state. To avoid violating the Markov property and be consistent
with the L∞ constraint from previous attacks, B(s) is a static boundary for each feature.
This boundary will be generated using typical variations between observations during a
clean episode. B(s) is a training hyperparamenter, and must be selected such that the
adversary is capable of a significant adversarial regret without preventing the agent from
learning.
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The Learned Adversary (LA) is the first step in implementing an ATLA training en-
vironment. A successful attack validates both the adversary’s environment and later the
success of ATLA training. Training a learned adversary requires modifying the CityLearn
environment. Rather than providing observations for an agent to choose an action, the
adversary is an intermediary adding perturbations to the observations. Training the LA
involves adding the victim agent to the environment, so the LA can add a perturbation to
every observation and receive a reward based on the agent’s action. Because the agent’s
policy is static, it is effectively part of the environment. Its job is to map the perturbed
observation provided by the adversary to an action which is understood by CityLearn.
In this way the adversary learned which observations lead to the worst outcome. As dis-
cussed in the background, this is an SA-MDP because the agent’s policy is static during
training. The action space for the LA is a subset of the observation space, which changes
the original observation from the CityLearn environment. This means the LA has 31
features and up to 31 continuous actions, with each of the LA’s actions corresponding to
one of the agent’s features. The boundary for each action could match each feature or
be restricted to limit the perturbation size, and the number of actions can be reduced so
some features are not perturbed.

With the adversarial environment implemented, a LA can be trained for an LA attack.
This attack can be used as a black box attack, as the adversary is trained without access
to the victim’s parameters [60]. These are the objectives of studying the LA attack before
proceeding to ATLA:

1. Demonstrating that it can produce a significant adversarial regret. The reduction
of regret following ATLA is the metric for its success.

2. Assessing the B(s) required for a successful attack, so it can be used in ATLA.

3. Comparing the LA as a standalone attack to gradient-based attacks, in terms of
adversarial budget and regret. The LA would be preferable to white box attacks if
it can increase the adversarial regret for the same perturbations size, measured as
the L∞ distance between the adversarial and original observations.

To assess the minimum adversarial budget or B(s) required in order to achieve objectives
2 and 3, the LA has the dual objectives of minimizing its perturbations and the victim
agent’s rewards, given the maximum budget B(s) = Ωagent using the notation for a
Partially Observable Markov Decision Process (POMDP) from Table 4. Because the
adversarial observation is the LA’s action, its task is to produce the smallest reward
with the smallest action. This requires a reward function affected by both the victim’s
reward and the size of the perturbations. The norm-scaled reward (38) calculates the
adversarial reward as the negative of the agent’s reward with a penalty for the distance
between the original and adversarial observations. The smaller the distance, the larger
the proportion of the reward received by the LA. The exponent b adjusts the importance
of this distance penalty.

r̃ = −r(1− ||o− õ||∞
||max(Ω)−min(Ω)||∞

)b (38)

Both the rewards and L∞ distances are measured during training, and this experiment is
successful when the LA reward and distances converge. With the adversary’s environment
validated and action space determined, the last step is implementing the victim agent’s
environment. It must be configured to perturb every CityLearn observation according to
the adversary’s policy before it is provided to the agent. After these preparations ATLA
can be conducted. The major hyperparameters for ATLA are:

1. Number of pre-training episodes for the agent. The authors in [68] found that pre-
training improve the outcomes for ATLA in CityLearn. Since earlier experiments
showed reward curves flattening after 50 epsiodes, this will be the initial value.
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2. Number of episodes per alternation. The starting value will be 20 as per [68].

3. Number of alternations. The initial value will be 10, for 200 episodes of ATLA
with 50 for pre-training. This will provide enough training to demonstrate if the
agent is learning.

7.3.2 Robust Action Space

In addition to robust training with ATLA, the discrepancy in robustness between the
SAC and discrete PPO will be investigated. The discrete action space seemed to make
the discrete PPO more robust than the soft actor critic in Chapter 6. Because there are
two variables between these agents, the learning algorithm and action space, they will be
isolated by evaluating the robustness of a continuous action space PPO. The adversarial
regret of all three agents for the stealthy attack defined in the detection section will be
compared.

7.4 ATLA Results

This subsection presents the results for training agents using ATLA, including developing
an environment for ATLA, followed by a comparison of robustness between a conven-
tionally trained PPO and a PPO using ATLA.

7.4.1 Preparations and Training

Training a SAC LA with the norm-scale reward was ineffective for choosing B(s) and
showed no potential as a stealthy black box attack. Because the perturbation space is
continuous and following the methodology in [60], a SAC was selected as the algorithm
for the LA, using a Multi-Layer Perceptron (MLP) ANN with two hidden layers of 256
perceptrons. The LA had 31 actions with values between 0 and 1, which each replaced
a feature in the original observation. The victim was the discrete PPO. Training was
conducted for up to 600 episodes with the exponent b up to 3. No LA converged to a small
distortion size as shown in Figure 52, though, they continuously were able to improve
their rewards as Figure 51 shows. The perturbation sizes were an order of magnitude
larger than those required for the bifurcation attack. This suggested that while a SAC is
capable of producing distortions that minimize the victim’s reward, learning to minimize
these distortions is a more difficult task to grasp. Even the smallest distortions were
twice the size of the optimal adversarial BB distortions, which were far too large for
stealth.

Instead the focus became developing an attack that could be used to train a robust
agent using the ATLA framework. Without success in training the adversary agent to
constrain its perturbation size, a plausible B(s) was selected based on the difference
between sequential observations in a clean evaluation episode in Table 16.

Conducting ATLA is not directly possible with Stable Baselines 3 (SB3) agents,
because training is not complete after each alternation. An SB3 agent will train until
its budget of timesteps is exhausted, and further training will be unsuccessful unless the
agent is reset. SB3 algorithms are not designed to learn once their training is complete, so
if training continues without resetting training variables the agent may behave randomly
and will not update its policy. While this can be done when loading an agent from
storage, SB3’s API does not provide another means. Instead, the most effective method
was providing agents the maximum amount of timesteps they would train over the course
of ATLA, and using a custom callback function to end training after each alternation
but before the maximum timestep was reached. In this manner, ATLA training becomes
uninterrupted from the agents perspective, rather than being a series of training and
resets, which allows SB3 agents to train as intended.
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Figure 51: Evaluation rewards during LA training with the norm-scale reward and b = 3. An
evaluation occurred every 10 episodes, and the scores appear to flatten by 600 episodes.

Figure 52: Mean L∞ between original and adversarial observation for each training episode
1
T

∑T
t=0 ||o− õ||∞, for the LA with the norm-scale reward and the exponent b = 3. The pertur-

bation size did not converge over 300 or 600 episodes, and is 10 times higher than the ϵ used for
untargeted and bifurcated attacks.

ATLA Adversarial budget B(s) by Feature Category
Feature Max-Mean Intersample Variation Reduced

Outdoor Dry Bulb Temperature 0.26 0.16
Outdoor Relative Humidity 0.62 0.36
Diffuse Solar Irradiance 0.53 0.33
Direct Solar Irradiance 0.75 0.45

Carbon Intensity 0.28 0.17
Non-Shiftable Load 0.61 0.37
Solar Generation 2.5× 10−3 1.5× 10−3

Electrical Storage SoC 0.47 0.32
Net Electricity Consumption 5.2× 10−3 3.3× 10−3

Electricity Pricing 0.90 0.52

Table 16: The perturbation space for each category of features in ATLA. This is the absolute
amount the adversary can change each feature or the adversarial budget. Agents were most
successful with the reduced B(s), with the other listed being too large for the agent to learn a
useful policy. Agents trained with a larger B(s) were stuck in a local minima, and learned to
never charge or discharge the battery. While the adversary cannot make this policy any worse,
it also removes any benefit of the agent.
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Figure 53: Line plot of early training and evaluations rewards, using the max-mean variation
B(s). The LA is a SAC and the agent a discrete PPO. The agent is evaluated after its turn
training (denoted with an ’x’). With only 20 pre-training episodes, the agent is able to adapt to
the adversary and regain its initial performance, but stops improving from there. The adversary
has a much larger effect on the saved agent which had trained for 300 episodes, the minimum
reward of ∼-9200 is significantly lower than for the first agent at ∼-8100. Its policy converged
to a local minima, which does not charge and discharge stored electricity, and does not improve
over 4 alternations.

ATLA was successfully conducted with a discrete PPO agent and SAC LA. The first
ATLA agent was trained with the LA having a B(s) equal to the difference between the
mean and maximum change between clean observations over a clean episode (max-mean
intersample variation from Table 16). Both 50 and 300 pre-training episodes were tested,
since it was not certain if longer pre-training slowed learning with the adversary. For
10 alternations of 20 episodes, it seemed that increasing the pre-training time reduced
performance, since the latter agent did not converge. Instead its reward curve formed a
U-shape. With the number of alternations increased for 10 to 15, the agent converged to
a policy of inaction. This is minimally exploitable since a powerful adversary can achieve
much worse outcomes, but also useless during normal operations. Figure 53 shows the
training curves which demonstrate these effects. This suggests that the adversary’s action
space should be restricted, and roughly (but not exactly) halving it improved on the first
ATLA agent. The reduced B(s) is also shown in Table 16. Halving the LA action space
again produced too weak an attack to reduce the agent’s reward, and the training and
evaluation curves were flat. The training curves for a reduced adversarial budget are
shown in Figure 54.

While [68] found alternating every 20 episodes to be effective, that study used a SAC
for both the agent and LA. Furthermore the PPO agent did not seem to converge during
each alternation in Figure 54, with training reward curves so steep they were nearly
linear. With 100 episodes for the PPO agent, these curves began to flatten before each
alternation, showing that the PPO needs more time to converge then the SAC LA. To
ensure that both the agent and LA had a trained opponent, ATLA began with the LA
so it would train against the pre-trained agent. Pre-training was always used as previous
work found it most effective [68]. However, beginning ATLA with the agent training
against a random LA policy actually improved performance and lead to the best ATLA
agent. Random perturbations helped the agent adapt to optimal perturbations later
on. These effects are shown with the training curves in figure 55. This suggests that
augmenting the environment with random noise could improve training performance in
CityLearn. CityLearn is deterministic for an agent with a deterministic policy, which
suggests future work could improve agent training with random data augmentation.

Figure 56 compiles the KPIs from post training evaluations for each agent, with a

96



Figure 54: Line plot comparing the training curves for different adversarial budgets B(s). The
LA is a SAC and the agent a discrete PPO. The final evaluation rewards indicate that both
agents reduce power consumption, however the attack using B(s)/2 does not have a significant
effect on the agent. Reducing the adversarial budget produces more capable agents than those
plotted in figure 53.

Figure 55: Line plot comparing the training curves for agents with longer training alternations.
The LA is a SAC and the agent a discrete PPO. The increase from 20 to 100 episodes allows
the agent to converge before the adversary is updated. This change increases agent performance
for the same adversarial budget. Performance further improved by allowing the agent to train
in the ATLA environment before the adversary, meaning the agent begins training with the
perturbations of an untrained adversary. This further improved performance, and training was
restarted for an additional 2 alternations following the first 5. This produced the best training
and evaluation scores for an ATLA agent, though the improvement in evaluation scores was
slight.
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Figure 56: KPIs for the ATLA agents shown in Figures 53-54-55. The LA is a SAC and the
agent a discrete PPO. Note that KPIs near 1 indicate that the agent has a negligible effect on
the environment. Continued training shown in Figure 55 only slightly increased the performance
of the agents, so further training was not attempted.

training curve above. This is roughly a third of the agents trained in the course of this
work; those displayed illustrated decisions on ATLA parameters for the best agent. Tun-
ing hyperparameters of the DRL algorithm used in ATLA could further improve their
performance, but the scope of this work is simply training an ATLA agent with compa-
rable performance to the conventional agent. Training discrete PPOs conventionally and
with ATLA whose performance is similar, enables the comparison of their robustness to
gradient-based attacks.

To understand the differences in the conventional and ATLA agent policies, Shapley
Value Sampling (SVS) [69] was used for both agents. Figure 57 shows the mean of
the absolute SVS values for the observations and actions of a clean evaluation episode.
Because the goal is to understand feature importance, only the magnitude of the value
is required. Otherwise, the mean SVS value for features which increase and decrease the
output for different observations will be smaller, as the positive and negative values cancel
each other out. A limitation of SVS, like any explainability method which permutes
different feature values, is that the permuted samples are implausible when features
are correlated. CityLearn’s weather features are correlated both with each-other and the
time, as the temperature depends on sunlight and sunlight varies by the time of day. This
is detrimental to explaining either model individually, but does not prevent comparing
the two, and the purpose of SVS in this work is simply understanding how the feature
importances change with ATLA.

Feature Permutation (FP), which randomly substitutes a feature value and measures
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Figure 57: Comparison of feature importance between conventionally and ATLA trained
agents, using the mean absolute Shapley Value Sample (SVS) for each action in one evalua-
tion episode. The ATLA agent generally increases its reliance on temporal features, which were
not perturbed, and significantly decreases its reliance on the SoC and non-shiftable loads. Given
that loads are loosely correlated with the time and that the time was more reliable, the ATLA
agent relies less on the current load which might be perturbed. Because solar generation is
improperly normalized, changing it has very little effect on the agent’s decision.

the change in output, was tested as an alternative to SVS. However, its results were
not useful as all the features for ATLA were proportionally lower than those for the
conventional agent. It turns out training an agent to be robust to perturbations to its
inputs means perturbing its input makes the output change less, and this is what FP
measures. Figure 57 shows that the ATLA agent relies more on temporal features and
less on the SoC and non-shiftable load. The latter two are among the top three most
important features for the conventional agent, which is understandable because it is hard
to decide if you should charge your battery if you don’t know how charged it is or how
much power is being used. Because the temporal features were not perturbed during
ATLA and they are loosely correlated with power usage, it makes sense that the ATLA
agent is able to trade some performance for making decisions based on more reliable
features.

7.4.2 ATLA Agent Robustness

The KPIs shown in Figure 58 demonstrate that ATLA nearly eliminated the effects of
an LA attack, indicating that ATLA was successful in training an agent with a robust
policy. The question of interest was then if the robust policy decreased the adversarial
regret for gradient-based attacks, and if ATLA is a viable defense against such attacks.
Figure 59 shows the adversarial regrets for both the conventional and ATLA agents for
various attacks:
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Conventionally Trained ATLA
Dynamic ACG 99.1% 99.0%

Stealthy Bifurcated PGD 39.0% 44.7%
Optimally Targeted BB 100% 93.4%

Table 17: ASRs for ATLA and conventionally trained agents for various attacks.

1. The stealthy bifurcated PGD attack will expose the performance of both agents
under an attack that is difficult to detect in terms of both feature variations and
MMD.

2. Optimally targeted BB represents the most powerful, though detectable, attack.

3. The dynamic distortion ACG attack is included as a direct (non-bifurcated) attack,
which also has a low MMD.

4. LA attack, which ATLA is specifically designed to resist [60]. It outperforms meth-
ods which do not attack the neural network function approximator, like those above,
and instead exploit weaknesses in the victim agent’s policy.

This plot also shows the difference in clean performance between the ATLA and conven-
tional agents, to contextualize the adversarial regrets. While in all cases the ATLA agent
loses less performance from attacks, in the case of power consumption it is negated by
the ATLA agent’s inferior clean performance. Despite this, the ATLA agent performs
better in terms of the other KPIs while attacked. Table 17 shows that the differences in
adversarial regret are not caused by a reduced ASR for the untargeted attacks. Because
ATLA provides a robust policy rather than a robust function approximator, it makes
sense that the ATLA agent makes better decisions while subject to attacks but does not
make the attacks less successful.

The optimally targeted attack induces the victim to follow an adversarial policy, the
agent’s original policy is less relevant. For this attack there is a reduction in both ASR
and adversarial regret, though the effects are not significant. Here the reduced ASR can
explain the ATLA agent’s improved performance. The ATLA agent seems less likely
to take the extreme actions imposed by the adversarial policy, making it slightly more
resistant to the attack. it is harder to find a perturbation which makes the ATLA agent
fully charge or discharge in certain states.

These results show that ATLA’s usefulness for defending against attacks is nuanced,
and depends on the threat environment in which the system operates. Using ATLA on
a single agent in CityLearn does reduce the costs, ramping, and peaks during attacks,
however these KPIs are larger during normal operation. Based on these results, ATLA
is not recommended in general to defend against these white box gradient-based attacks
in CityLearn. Because these results show some improvements to robustness, future work
may find ATLA useful in different continuous control environments.

ATLA was not similarly successful with a SAC agent. As with the gradient-based
attacks, the SAC was more sensitive to observation perturbations, and training with the
reduced B(s) made the learning collapse. While the SAC could adapt to attacks half this
size, it would collapse after the next alternation once the LA had updated. Given the
mixed results from ATLA with the discrete PPO and the large hyperparameter search
space for both the SAC and ATLA, this effort was abandoned.

7.5 Robust Action Space Results

Here the results of comparing the robustness of continuous and discrete action PPOs, and
the SAC are presented. Training a continuous action space PPO proved far more difficult
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Figure 58: Adversarial regret of a SAC Learned Adversary (LA) attack on both conventionally
and ATLA trained discrete PPO agents. This specific adversary was not used during ATLA
training, so neither agents were trained against its policy. While the LA induces a significantly
larger adversarial regret than untargeted attacks in previous sections (albeit with over twice the
adversarial budget), the adversarial regret for the ATLA agent is insignificant.

than either the discrete action space PPO and SAC, and success required collaboration
with another student. The continuous PPO tended to get stuck in a local minima where
it learned never to fully charge than discharge the battery, so it had no effect on the
environment. Achieving a similar electricity consumption KPI required 80 times as many
training episodes and a different reward function. The solar penalty reward penalizes the
agent for storing energy when consumption is high [63]. Figure 60 demonstrates that
the action space makes the discrete PPO robust to adversarial attacks, as the continuous
PPO and SAC exhibit significantly higher adversarial regrets. Furthermore, the attack’s
effect on the discrete PPO’s power consumption was relatively small. This is particularly
useful for defenders because by testing for the optimal number of bins, the discrete PPO’s
performance was nearly identical to the SAC for identical training times. There was no
compromise in performance for the robustness gained from the discrete action space.

7.6 Defences Summary

Stealth is a significant advantage from adversarial examples, but evading detection sig-
nificantly constrains the adversarial budget. Limits on budget similarly limit adversarial
regret. This section shows that a well constrained attack produces adversarial observa-
tions which are statistically indistinguishable from the originals, according to the MMD
test. The perturbation boundary ϵ can be selected for each feature such that: observa-
tions appear plausible, the mean variation between observations does not significantly
increase, and the maximum mean absolute variation does not exceed the original max-
imum value. Detecting such an attack is non-trivial, but MMD test results on the dis-
tribution of the absolute differences between sequential observations do not exclude the
possibility of detection. While the the adversarial observations themselves are match the
distribution of original samples, the distributions of the absolute differences between the
original observations form a distinct distribution compared to the absolute differences
between the adversarial observations.

Overall, the stealthy attack only reduced the benefit of the DRL controller but failed
to remove it, as the stealthy attack did not cause the electricity consumption, cost,
or daily peak KPIs to exceed one. However, the PGD attack could be improved by
using momentum, Adam, or conjugate gradients to calculate the δ, and the auto stepsize
proposed by [34]. Re-engineering SotA gradient-based attacks is outside the scope of
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Figure 59: Histogram comparing the adversarial regrets of agents trained conventionally and
with ATLA under various attacks. The black bar represents the difference in clean performance
between the ATLA and non-ATLA agent, which indicates instances where the regret is smaller
for the ATLA agent, but its reduced clean performance means the non-ATLA agent still performs
better for that KPI. While the ATLA agent’s adversarial regret is smallest in all cases, it still
consumes more energy than the conventionally trained agent when attacked with untargeted
adversarial examples. The stealthy attack is the bifurcated PGD attack, with ϵ = 0.03 masked
temporal and solar generation features, and scaled ϵ for net electricity consumption.

102



Figure 60: Adversarial Regret of Stealthy Bifurcated PGD Attack for Different Agents. These
results how that regardless of the RL algorithm, a continuous action space is less robust than
discrete.

this work. Implementing a simple attack demonstrated that regressors can be directly
attacked and that the bifurcation method is more effective in continuous control than a
direct attack. Due to limitations with ART, this custom PGD implementation was also
used for attacks with limited features which could be perturbed. Future attacks could
have greater adversarial regrets with smaller adversarial budgets.

ATLA does reduce the adversarial regret experienced by a victim discrete PPO agent,
but the trade-off in clean performance did not justify the additional robustness for this
task. Thus the decision to use ATLA is application specific and should reflect the model
in which the agent would operate. While ATLA may not be beneficial in a domestic
setting, it could be sensible for a hydro-electric or mass energy storage facility who’s
energy consumption could significantly affect the power grid. ATLA was unsuccessful
for a SAC agent.

Discretizing or binning a the action space increased the agent’s robustness without
reducing performance. This is a simple technique which could be widely applied for DRL
in continuous control. These findings suggest is should be adopted for any applicable
DRL agent in a CPS.
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8 Black-Box Attack

This section tests the impact of the black-box snooping attack on agents trained in Chap-
ter 6, to show that adversarial attacks can decrease the performance of a DRL controller
without access to its ANN parameters. It begins with the methodology, followed by the
results.

8.1 Methodology

The snooping attack [58] allows an attacker to leverage adversarial attacks with no knowl-
edge of the victim agent’s algorithm or architecture. Unlike previous white box attacks
which assume the attacker was able to copy the Artificial Neural Network (ANN) pa-
rameters. This is also distinct from training a surrogate model, which is done using
the victim agent’s environment. Instead, the attacker is only able to observe the victim
agent acting in its environment, which is a requisite level of access for conducting an
observation perturbation attack. If the attacker can change the victim’s observations, it
is probable that they can also observe them. Like the snooping attack, a replay attack
can also be conducted with access to historical data and the ability to modify the victim’s
observations. There are several advantages to the snooping attack:

1. Adversarial examples can be crafted when some features cannot be changed. This
is an advantage when the attacker can perturb most but not all features e.g. is
able to change sensor readings but not the internal time on the controller.

2. The attacker must collect observations which correspond to the desired actions to
conduct a replay attack. This is an issue when an agent seldom takes the desired
action, or only takes it in a state very different from the present. The snooping
attack can craft adversarial observations on the fly.

3. Using the snooping attack, perturbations can be constrained to suit the target en-
vironment. Despite being statistically distinguishable from normal samples, Fast
Gradient Method (FGM) perturbations can still be relatively small and could fea-
ture smaller inter-sample changes compared to disjointed replay samples.

Using the SA threat model, a ANN proxy imitator was trained which enabled FGM
attacks. Like previous white-box attacks, the bifurcation method is compatible with a
proxy and the FGM attack. A bifurcation layer was appended to the trained proxy, in
the same fashion it was added to a trained agent’s policy network. The proxy used no
prior architectural knowledge of the agent, instead hyperparameters were chosen during
an Optuna trial which maximized the mean time series split validation over one episode
of data. This means the training starts with the first 1

k of data, and is validated with
the second, then trains on the first 2

k to validate on the third etc. The study chose
hyperparameters to optimize accuracy over k = 10 splits. The search space and results
are shown in Table 18, which were selected using a Tree-structured Parzen Estimator
(TPE) sampler paired with a hyperband pruner [70] over 400 trials. The imitator was
trained using the best parameters on the entire dataset. Given the seasonality in one
episode representing a year of data, reserving any data for testing would prevent the
imitator from seeing a portion of a season conducted with no more knowledge of the
victim than how it behaves in its environment.

8.2 Results

Snooping attacks were conducted using ART’s FGM attack, which is similar to a sin-
gle step of Projected Gradient Descent (PGD). Iterative methods like PGD and Auto-
Conjugate Gradient (ACG) which search for the best local maxima performed worse
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Hyper-
parameter

Search Space Discrete Best
Value

Continuous Best
Value

Optimizer Adam, RMSProp,
or SGD

RMSProp SGD

Learning Rate [1× 10−5, 1× 10−1] 3.3× 10−4 6.2× 10−2

Batch size 2n, n ∈ Z, 3 ≤ n ≤
10

64 8

Layers 1,2, or 3 2 2
Activation Func-
tion

Relu or Tanh Tanh Tanh

Number of Units 64-512 300, 493 464, 192
Dropout [0, 0.5] 0.388, 0.145 0.25, 0.45
Output Linear or Softmax

(discrete only)
Linear Linear

Loss (Continuous) MAE, MSE, Huber - Huber

Table 18: Optuna study search space and optimal hyperparameters for the imitator used in
the snooping attack. The abbreviations are: Root Mean Squared Propagation (RMSprop),
Stochastic Gradient Descent (SGD), Mean Absolute Error (MAE), and Mean Square Error
(MSE). Only CE loss was used for the discrete case, and only linear outputs for continuous.

than FGM, as per the results of [58], because the imitator and victim do not share
identical decision boundaries or loss topology. Because FGM is a weaker attack com-
pared to ACG, it requires a larger ϵ for a similar adversarial regret. The relationship
between the adversarial budget and regrets for the snooping attack on the discrete Prox-
imal Policy Optimization (PPO) are shown in Figure 62. The Adversarial Success Rate
(ASR)s of this attack are compared to random noise in Figure 61, which shows that a
random attack requires almost 10 times the adversarial budget for a similar ASR. The
Random attack did not have a significant adversarial regret for any perturbation size
tested. With ϵ = 0.05 the power consumption for bifurcated FGM is comparable to the
white-box ACG dynamic distortion attack. The discrete PPO is robust in that it requires
ϵ ≈ 0.13 before power consumption is equivalent to no controller, and is increased by
over 10%. By comparing the slope of the direct and bifurcated attacks, the impact of the
former becomes apparent. The bifurcation method significantly increases the cost and
power consumption for the conventionally trained agent, though the Alternating Training
with Learned Adversary (ATLA) trained agent sees a much smaller difference. Unlike
the white-box attacks of the previous section, ATLA provides a significant resistance to
the most powerful technique used in this section. The bifurcated snooping attack pro-
duced a significantly higher adversarial regret for the conventional agent compared to
the ATLA agent. This is the same to a smaller extent for the direct snooping attack, and
this was partially counteracted by the ATLA agent’s lower clean performance. Because
black box attacks require fewer prerequisites for the attacker, they are more likely to be
encountered. These attacks are also easier to detect, as previous works have shown that
adversarial samples crafted with FGM are detectable through statistical techniques [43].
Furthermore, this work found that attacks with ϵ > 0.03 are statistically detectable in
CityLearn, while snooping attacks require 4 times that to undo the benefit of the DRL
controller for a discrete agent.

The performance of the discrete and continuous PPO, and Soft Actor Critic (SAC)
under a bifurcated snooping attack are compared in Figure 63. While ϵ ≈ 0.13 is required
to remove the benefit of the discrete PPO in terms of power consumption, the same
happens for the SAC for ϵ ≈ 0.06 and ϵ ≈ 0.05 for the discrete PPO. At this smaller
value of ϵ the adversarial regret for the discrete PPO is only 0.03. Even without ATLA
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Figure 61: Line plot comparing the ASRs for random and imitator snooping attacks on conven-
tionally and ATLA trained agents. It shows that the ASR is roughly doubled for the snooping
attack compared to random noise, demonstrating the effectiveness of the snooping attack. The
random noise requires approximately 10 times the perturbation size to match the ASR of the
snooping attack. Note that the ASR is slightly lower for the ATLA agent for the snooping
attack.

training, the discrete action space significantly improves the robustness of the PPO to
the black-box snooping attack.

8.3 Summary

An adversary can achieve a significant reduction in performance, while only observing
how the victim behaves in their environment and exploiting vulnerable sensor systems.
Unlike the finding in [60] where the LA outperformed the snooping attack, combining
the snooping attack with the bifurcation method outperforms the LA attack while using
a smaller adversarial budget. The snooping attack is gradient-based like a white box
attack, which typically outperform black box attacks when a gradient is available. The
bifurcation method enhances the loss function for gradient-based attacks, improving the
ratio of the adversarial regret to budget. The bifurcated snooping attack had comparable
power consumption to the LA attack with ϵ = 0.07, which is far smaller than the reduced
B(s), shown in Table 16, for all but solar generation and net electricity consumption
features. Designers should invest in detection systems to counter such methods, and
ATLA could be useful depending on the trade-off between performance and robustness.
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Figure 62: Comparison of electricity consumption, ramping, daily peak, and cost KPIs for
direct and bifurcated FGM snooping attacks with a range of ϵ, for discrete PPO agents trained
conventionally and with the ALTA method. The line symbols indicate the agent, while the
colour indicates the attack. These plots show the trend between adversarial budget and regret.
KPIs were chosen as the former is relevant to LAAs affecting grid stability, and the cost for
cost based attacks. Solid lines represent ATLA training. While the robustness offered by ATLA
is insignificant compared to its reduction in clean performance for energy consumption, the
corresponding adversarial regret for bifurcated attacks is significantly reduced. For all other
KPIs the ATLA agent performs best under attack.
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Figure 63: Comparison of KPIs for bifurcated FGM snooping attacks with a range of ϵ, for
discrete and continuous PPO, and SAC agents. This figure compares the trend of adversarial
budget and regret between various DRL algorithms and action spaces. This figure demonstrates
that the discrete PPO is significantly more robust than either agent with a continuous action
space, even without ATLA training.
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9 Conclusion

This chapter will conclude the thesis by emphasizing what this research contributes to
smart energy systems. As well, it will highlight some open research questions that were
encountered during this process and could be the aim of future work in the domain.

9.1 Contributions

1. In Chapter 6 this work proposes a novel adversarial attack technique for continuous
control. By implementing the Grouped Difference Logit (GDL) loss with a bifur-
cation layer, the adversarial regret for SotA attacks was doubled for continuous
control agent in CityLearn. The bifurcation method can be used for continuous
and discrete outputs, even for attacks which only support Artificial Neural Net-
works (ANN) with multiple outputs. This technique was validated using identical
attacks without the bifurcation layer for both classification/discrete actions and re-
gression/continuous actions. To the best of the author’s knowledge, no other work
has used this or a similar technique. To validate the bifurcation method for con-
tinuous action spaces, this work implemented Projected Gradient Descent (PGD)
for a regressor, which no reviewed work had done.

2. Chapter 7 shows that with a carefully selected budget, distributions of adversarial
observations, which are not significantly different from the originals, cause a large
adversarial regret. These adversarial observations were produced using PGD with
the bifurcation method. Conversely, adversarial observations form a distinct distri-
bution when considering the absolute difference between subsequent observations
in a time-series. The latter result could be leveraged in the detection of adversarial
observations. To the best of the author’s knowledge, no other work has studied the
detection of adversarial observations (adversarial examples) in a Cyber Physical
System (CPS) gym which uses real world data.

3. In Chapter 7 Alternating Training with Learned Adversary (ATLA) is an effective
defence against strong black box attacks targeting the ANN function approximator.
Combining the bifurcation method with the snooping attack significantly increased
the adversarial regret for the conventionally-trained PPO, but the increase was less
than half for the PPO trained using ATLA.

4. In Chapter 7 Using novel robustness testing techniques, this work found that the
choice of off-the-shelf Deep-Reinforcement Learning (DRL) algorithm and action
space can significantly affect the agent’s robustness. When the adversarial budget
was decreased to the point that the perturbations were considered stealthy, the
attack had a minimal effect on the discrete Proximal Policy Optimization (PPO)
but still caused a significant adversarial regret for the Soft Actor Critic (SAC) and
continuous PPO. The effects of adversarial observations, even in the best case white
box scenario, are significantly reduced using a discrete action space with a PPO.
There wasn’t a significant difference in clean performance between the PPO and
SAC, meaning there was no concession for the additional robustness.

9.2 Future Work

The greatest limitation of CityLearn for studying Load Altering Attack (LAA)s was the
absence of the wider power grid, limiting this work to reward based attack goals. The only
effect of the adversarial observation perturbations is to increase power usage and other
KPIs. An environment which simulates frequency instability and line overloads in a power
grid would enable an end-to-end LAA with adversarial observation perturbations. Such
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an environment could simulate if adversarial observations could cause Under Frequency
Load Shedding (UFLS), localized, or wide area blackouts.

Though this work explored attacks and detection for single agent environments,
CityLearn also supports MARL. The MARLISA [71] algorithm is an independent SAC
algorithm with inter-agent communications, integrated with CityLearn. The attacks for
continuous action space RL developed and demonstrated in this work could be used on
the independent SAC agents. MARLISA sequentially estimates the power consumption
for each agent’s action using decision trees , and the estimate is communicated to the
next agent in the district. These decision trees are also vulnerable to observation per-
turbations, which could be used to enable a communication attack. An adversary might
instead modify the communications between agents.

The decayed PGD attack implemented in this work for attack on regressors could be
improved with the following recent developments to build a SotA gradient-based attack
which is compatible with regressors/continuous action spaces:

1. Auto-stepsize [34] for Auto-PGD, which reduces the number of parameters requiring
tuning.

2. Using the conjugate gradient [41] instead of the projected gradient to maximize
loss.

3. Early stopping, so computation ceases when the loss function stops increasing.

4. Random restarts, instead of only starting from the original sample.

A PPO using Long Short-Term Memory (LSTM), instead of MLP networks, was
more robust to the LA attack in [60]. Because an LSTM considers previous observations
in its current decision, it may also increase the robustness to gradient-based adversarial
samples. Additionally, SB3 has an LSTM PPO agent.

This work demonstrated that a discrete action space significantly reduced the ad-
versarial regret for an agent in CityLearn. This experiment should be reproduced in a
variety of continuous control environments.

Increased differences between observations was the strongest indicator of adversarial
observations. Future attacks for time-series data could account for the previous observa-
tion in the boundary for current perturbation.

SotA adversarial attacks are designed for ANNs with a single label, or a one-dimensional
action space in DRL. However, agents in CityLearn can control multiple energy storage
devices, resulting in multi-dimensional action spaces. Future research could devise new
loss functions or attacks which are effective when the victim has multiple outputs.

9.3 Summary and Closing Remarks

Adversarial attacks are a fascinating aspect of ANNs because they exploit the funda-
mental methods used to train them, to fool them. DRL is poised to solve many future
control problems in Cyber Physical Power System (CPPS), but the research in how DRL
controllers could be affected by adversarial attacks is limited. This work addresses the
gap.

The first research question was if adversarial attacks are a significant threat to DRL in
Demand Response (DR). In Chapter 6 initially the answer seemed to be no. In fact, unlike
other types of DRL applications in CPPS, like dispatch and operations control, one wrong
move from a CityLearn agent won’t cause frequency instability, disrupt power quality, or
overload a relay. A LAA requires a significant increase in power draw, exceeding what
the power grid can provide. CityLearn’s continuous action space makes agents more
robust to attack, even when it is discretized into bins as for the discrete PPO. Small
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changes to the action, like (dis)charging slightly more or less, do not significantly affect
overall power consumption. Thus, high Adversarial Success Rate (ASR)s do not lead
to large adversarial regrets. The ASR would directly correspond to power consumption
or adversarial regret in DR environments with more discrete or binary actions, such as
controlling a load (air conditioners, water heaters, EV chargers, etc.) which is either on
or off, rather than energy storage. Using CityLearn made the attacks harder, but has
the advantage of realistic observations.

Early experiments showed that untargeted attacks had small effects on electricity
consumption, and the State of the Art (SotA) maximum-confidence attack ACG was
ineffective for an optimally targeted attack. Broadening the search for attacks lead to
success with a minimum-norm attack, at the cost of large distortions to the victim’s
observations, which demonstrate the victim’s robustness. This optimally targeted attack
induced the victim into following an arbitrary policy. The novel bifurcation method
was devised, which not only enabled adversarial attacks with larger impact than the
untargeted attacks with much smaller distortions that the optimally targeted attack, but
also interfaced SotA maximum-confidence attacks with ANNs they were never designed
to work with.

Initially, this work only considered DRL agents with discrete action spaces, because
that made their decisions akin to the classification problems adversarial attacks are de-
signed for. The bifurcation method allowed some of these same attacks to work on agents
with continuous action spaces. By implementing a simple adversarial attack which could
attack both continuous and discrete agents, this work proved that the bifurcation method
significantly increases adversarial regrets for both types of agent, compared to direct at-
tacks.

In Chapter 7, having shown the impacts of adversarial attacks, this work studied if
the adversarial observations were obviously fake. This was enabled by CityLearn’s use of
recorded environmental and power consumption data for many of its features. It provided
realistic observations which could be perturbed then analyzed. This analysis took three
approaches: do the changes between observations make sense, how is the accuracy of
weather predictions affected, and do the adversarial and original observations belong
to the same statistical distribution? As the attacker was given every advantage in the
attacks, the original clean observations were used during the statistical analysis. In actual
usage, the detector would only have access to historical data. If the distributions appear
identical under these conditions, then they are unlikely to be separated in practice. This
analysis found that an attack could be devised for which: the distribution of adversarial
observations was identical to the originals, the increase in prediction error was less that
5%, and the variations between observations were within the original spread.

However, the distribution of changes between adversarial observations was distinct
from the original. These results show that adversarial attacks are capable of crafting
adversarial observations which are nearly indistinguishable from the originals, but do
not account for the time-series of sequential observations. Because these adversarial
observations closely resemble the originals, DRL in Critical Infrastructure (CI) must be
robustly designed and validate the integrity of observations during observation. The
results suggest that such validation will be more successful by analyzing the changes
between observations.

In Chapter 7 ATLA was chosen as a model-agnostic robust training method, which
could be integrated with the training of virtually any DRL algorithm. Results comparing
agents trained conventionally and with ATLA showed that the ATLA agent had less
adversarial regret for all adversarial attacks. However, there is a trade-off between clean
performance and robustness, and the reduction in clean performance meant that the
ATLA-trained agent still consumed more energy than its counterpart, even though the
effect of the attack was lessened. These results indicate that ATLA alone does not address
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the threats posed by adversarial attacks, given the performance compromise. Because
the exact trade-off and risk tolerance varies by application and environment, ATLA is
worth testing when training DRL agents for CI.

In Chapter 7 simple architectural choices can make a DRL controller more robust.
Both a PPO with discrete actions and a continuous action SAC were trained to the same
level of performance with the same training budget. However, the SAC was far more
vulnerable to attacks. A stealthy attack was demonstrated on the SAC, but a similarly
restrictive adversarial budget had a one third of the effect on power consumption for
the discrete PPO. By comparing the adversarial regret between continuous and discrete
PPOs, this work shows that the discrete action space is responsible for the increased
robustness. This was discovered through robustness testing with the newly proposed
attack techniques in this work. Robustness testing with adversarial attacks in continuous
control was absent in the literature reviewed. Similar testing should be conducted for
DRL agents in CI among different algorithms and architectures to select the most robust
agents. The additional robustness provided by the discrete action spaces suggests it
should be the default for DRL agents in CPS.

In Chapter 8 the snooping attack, enhanced with the novel bifurcation technique,
demonstrated that an attacker with the means of injecting observation perturbations is
also capable of a gradient-based adversarial attack. While the previous white box at-
tacks required access to the victim agent parameters, the snooping attack only needed
historical observations and actions. The assumption is that if an adversary is capable of
modifying the victim’s observations, the adversary could also collect them. The adver-
sarial budget for these attacks was proportionally larger than that required of white-box
attacks which achieved the same adversarial regrets, so the snooping attack could be de-
tected from distortions in the adversarial observations. These aspects make the snooping
attack comparable to a replay attack, where both have similar requirements and each
with advantages and disadvantages. Additionally, the agent trained with ATLA was ap-
proximately twice as robust to the most powerful black box attack, bifurcated snooping.
This is significant because a snooping attack is far simpler for an attacker to execute
than a white box attack.

Overall, adversarial attacks must make a significant compromise between stealth and
their impact. Robustness to sub-optimal actions caused by adversarial attacks is an
attribute of the CityLearn’s implementation of a DR environment. These actions will
reduce efficiency but do not easily cause the system to fail in this environment. Stealthy
attacks are possible, but with a high set-up cost and only for some victims. However, as
the development of more powerful attacks progresses, there’s no reason for this conclusion
to hold. The risk-potential of adversarial attacks should be mitigated with robust designs.
To this end, the product of this research is the importance of conducting robustness
testing, and novel techniques for testing with stronger attacks. Nearly undetectable
adversarial attacks are possible, and this work contributes tools to mitigate them.
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A Adversarial MARL

This section contains additional background information on adversarial MARL. MARL
was removed from this work’s scope, but the information below is still valuable.

A.1 RL vs MARL Frameworks

This research found few studies has explored adversarial attacks on Cooperative (c)-
MARL algorithms compared to RL, where multiple RL agents cooperate to achieve a
common goal. Fewer still target a specific fail state or cause the victim to follow an
adversarial policy, rather than simply degrading the algorithm’s performance. This dis-
tinction is important as some c-MARL algorithms present unique challenges when com-
pared to single agents [8]. MARL algorithms described by MDP or Partially Observable
(PO)MDPs[52] as in the single agent case, complicate adversarial tasks. Instead, frame-
works like Decentralized (DEC)-POMDPS[53], Stochastic Games (SG)[54] and Partially
Observable (PO)SGs[55] are used, though these do not model the adversary.

Probability Robust (PR), Noisy Robust (NR), or State Adversarial (SA) MDPs model
the adversary only in single agent settings. Interactions between cooperative agents
increases complexity in predicting team rewards and can reduce the impacts of a single
agent’s sub-optimal action [50]. This makes the attacker’s job more difficult as simple
misinterpretations of the observed state may be insufficient to significantly reduce the
victim algorithm’s performance. There is no demonstrated and accepted method for
optimizing adversarial MARL, but the Observations Adversarial (OA) and Action Robust
(AR) POSG frameworks have been proposed [8].

In [8], the attacker must chose a goal for optimization, and the following have been
used in adversarial RL literature [8]:

1. Untargeted: Randomly altering the victim’s behaviour.

2. Action: Altering the victim’s behaviour towards specific actions.

3. Reward-based: Maximizing the adversary’s or minimizing the victim’s rewards.

4. State-based: Luring the victim to a target state.

For example, [49] shows that untargeted attacks can produce sub-optimal performance,
demonstrating that the victim performs worse than a conventional control algorithm
when attacked. Here, untargeted refers to perturbations of the observed state where
there was no targeted classification, while the attacker’s goal was reward-based.

Attacks are also classified by their vector [8]:

1. Action Perturbations: Altering the actions of an agent, leading it to an unexpected
state. For example, physically perturbing an actuator.

2. Observation Perturbations: Changes to the environment or the perceptions of the
agent’s sensors, to alter the victim’s behaviour. They are one way of executing an
action perturbation and could be called an evasion attack.

3. Communication Perturbations alter the messages between agents and can be con-
sidered observation perturbations if the agents share observations or intermediate
features. This can be enacted with an intermediary attack, where the attacker
intercepts and alters all messages to and from an agent.

4. Malicious communications: New messages can be sent to the victim, rather than
altered messages as above.
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5. Natural Adversarial Examples: States and observations which have an adversarial
effect on victims, that naturally occur in the environment.

In the example above, the vector is an observation perturbation because the victim’s per-
ception of the state is changed [49]. Note that these vectors are not mutually exclusive,
e.g. communication perturbations could also perturb observations as in [72] or observa-
tion perturbations can target specific actions as action perturbations [50]. Vectors are
compatible with multiple goals, wherein observation perturbations can have state-based
goals as in [51] or reward-based goals as in [50]. This means that both attacks change
how the victim perceives the environment. The victim is either lured into making poor
decisions, which reduce its reward or the victim is lured into interacting with the envi-
ronment such that it transitions into a state chosen by the attacker. The following Table
provides an overview of the different frameworks classified as described above.

A.2 Selection of Adversarial MARL Literature

Some works have shown that a victim subset of agents can be coerced with perturbations
of state observations into following an adversarial policy[68][50][73]. One approach is
training an adversarial policy to minimize the team reward, then producing adversarial
perturbations which lead one victim agent in a QMIX algorithm to take the actions
specified by the adversarial policy [50]. The authors demonstrate that their approach
results in lower scores than naively perturbing the victim’s observations. In sum, this
attack uses an adversarial policy which minimizes score. On the other hand, in [73], the
authors propose modeling the state transition dynamics to optimize perturbations based
on the distance between the current and target state. Together, these papers demonstrate
that targeted adversarial examples can be optimized with either a trained policy or state
transition model for a c-MARL victim. Training either is possible given a white-box
setting (where both the environment and victim models are visible). Furthermore, the
attacks are more effective than naive attacks without optimization. Both attacks can be
optimized to influence fewer of the victim’s actions using a trained agent with a modified
reward function which penalizes adversarial actions [74]. The purpose of reducing the
number of perturbed samples is evading detection, though it was not attempted in this
work.

While these results are useful, they are applied in RL gyms (StarCraft Multi-Agent
Challenge (SMAC)) [75] and MuJuCo respectively [51]) which do not resemble any CPS,
leaving room for future research in CPS simulations or settings. Additionally, all these
examples required access to the victim agents and environment, which is not guaranteed
in real world applications. These techniques would be more threatening if they prove
effective in black-box settings, such as using surrogate models or querying the victim
agents and environment to duplicate the models. These attacks used the DEC-POMDP
framework which does not model an adversary because it lacks a competitive reward
signal, meaning the potential for optimization exists using different frameworks [8].

Communication between agents is a distinction between RL and MARL algorithms, as
the former typically concerns agents in isolation. These communications enable an attack
vector not present for independent agents where a malicious agent can influence others.
One such attack involves a malicious agent in a networked actor-critic algorithm, wherein
agents share the parameters of their value and policy functions [76]. Sharing parameters
allows agents to maximize the collective score without disclosing sensitive information.
However when the malicious agent fails to update its functions with parameters from the
group, the group will instead maximize the reward of the malicious agent. The use of a
pre-trained agent leaves room for researching if the same effect could be achieved with
adversarial perturbations towards an adversarial policy which ignores updates from other
agents. Because the attack was demonstrated in a simple grid world, a more complex
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testing environment would both be useful to explore CPS applications and provide more
complex observations for the generation of adversarial examples. A limited feature space
presents an additional challenge to the attacker as perturbations are confined to a smaller
state space [50]. As of this writing, no framework models adversarial perturbations in a
networked MDP.

Instead of parameters, [72] shows how ANNs sharing intermediate features are still
vulnerable to adversarial attacks. While the victims are networked image classifiers on
drones and self driving vehicles rather than RL agents specifically, this exemplifies how
an agent’s observations are vulnerable to targeted perturbations. Since a malicious agent
modifies and transmits adversarial features of its observations which alter the victim’s
classification decisions, the attacker modifies observed features without changing the
physical environment seen by the cameras. While c-MARL algorithms can be more robust
to adversarial examples, inter-agent communications present another attack vector. This
attack is best classified as an untargeted observation-communication perturbation as the
attacker only aimed to change the observation of the state. Using these perturbations
with action, state, or reward-based goals is promising for future work given previous
successes with observation perturbations in MARL. However this attack does not induce
an adversarial policy on the victim, making it similar to an untargeted attack.

A.3 Summary

There is much space for future research in the adversarial MARL field. The literature
on adversarial RL includes many methods of reducing the number of samples generated
and reducing the number of perturbed observations which have yet to be explored in
adversarial MARL. Fewer studies still consider adversarial MARL for a CPS, and as
found in this review, only consider adversarial communications as the attack vector.
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