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Abstract

The increasing adoption of Automatic Dependent Surveillance-Broadcast (ADS-
B) has contributed to more efficient air traffic management by allowing aircraft to 
autonomously broadcast their flight parameters to Air Traffic Control (ATC) [1]. 
Despite these benefits, ADS-B remains vulnerable to attacks that threaten data 
integrity, such as message injection, modification, and deletion [2]. While various 
mitigation techniques exist, many either require significant modification to existing 
infrastructure or major changes to the current ADS-B protocol, failing to protect the 
integrity of ADS-B in a practical way. 

This thesis introduces a novel solution for enhancing ADS-B integrity using 
Format-Preserving Encryption (FPE) implemented on a low-cost embedded system. 
By installing an in-line device between the aircraft’s ADS-B equipment and the 
ADS-B antenna, ADS-B messages are encrypted before being broadcast using an 
FPE algorithm, which preserves the format and length of ADS-B messages. 
Consequently, once the encrypted ADS-B messages are decrypted, they remain 
compatible with existing decoding tools used by ATC. Three FPE algorithms were 
implemented in this thesis: FF3, FFX, and AES-CTR. The embedded computer and 
the three FPE algorithms were also evaluated for encryption and decryption times, 
standard deviation of encryption times, CPU and memory usage, and thermal 
performance. 

All three FPE algorithms successfully preserved the ADS-B message structure 
which resulted in correctly decoded messages once decrypted by the receiver. 
Simulation of message injection and modification attacks demonstrated that non-
encrypted or tampered messages failed to decrypt and were therefore rejected. The 
findings confirm that FPE can be practically applied to protect the integrity of ADS-
B communications with minimal disruption to the current infrastructure. 
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1 Introduction

The integration of Automatic Dependent Surveillance-Broadcast (ADS-B) 
technology for aviation tracking has transformed Air Traffic Control (ATC) and 
management by allowing aircraft to automatically transmit their location and flight 
data [1]. This technology has been crucial in the transition from ground-based radar 
systems to a satellite-based system, enhancing real-time visibility, airspace 
efficiency, and safety [3]. The technology’s importance is further underscored by 
mandates from aviation authorities, such as Transport Canada and the Federal 
Aviation Administration (FAA), requiring aircraft to be equipped with ADS-B Out 
in certain airspace classes [4, 5]. The introduced mandates will undoubtedly result in 
an ever-increasing reliance on ADS-B, making it a critical part of modern aviation. 
The global push for ADS-B reflects its significant role in achieving next-generation 
air traffic management objectives, including real-time aircraft tracking, reduced fuel 
consumption, and lower carbon emissions [3].

Despite its efforts to improve the safety and efficiency of flight, ADS-B is not 
immune to cyberattacks. Its unencrypted signals are vulnerable to a variety of 
security threats, including eavesdropping, jamming, and message manipulation 
attacks, which could be exploited to compromise ATC operations [2]. Given the 
critical nature of ADS-B data for ATC and the potential consequences of 
compromised ADS-B integrity, developing robust security measures is essential to 
prevent potential exploitation that could endanger safety, especially as the reliance 
on ADS-B grows due to mandated adoption. 

This thesis addresses the integrity issue in ADS-B communications by proposing 
a practical solution: the use of Format-Preserving Encryption (FPE) algorithms 
implemented on an embedded system. By encrypting critical portions of ADS-B 
messages without altering the message format, the solution preserves compatibility 
with existing ADS-B infrastructure while enhancing data integrity. The solution 
presented here is evaluated through a series of performance tests, including measures 
of encryption and decryption times, standard deviation of encryption times, Central 
Processing Unit (CPU) and memory usage, and thermal behaviour monitoring. This 
approach aims to strike a balance between enhanced integrity whilst requiring 
minimal modifications to existing systems.
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1.1 Problem Overview

Although ADS-B greatly improves the efficiency and safety of aviation, it lacks 
integrity protection mechanisms. As outlined in [2], the ADS-B protocol relies on the 
transmission of unencrypted messages over 1090 MHz. This makes eavesdropping 
trivial by allowing any receiver within range to capture and decode these messages 
using one of the many open-source ADS-B decoder tools available online and in the 
market. This nature of openness is likely why ADS-B was not designed with 
encryption in mind. Consequently, apart from eavesdropping, a malicious actor could 
modify existing ADS-B messages while in transit by changing the aircraft speed, 
altitude, or position shown in the message resulting in inaccurate aircraft data being 
received by ATC [2]. They could also inject a fake ADS-B message resulting in a 
non-existing aircraft appearing on ATC screens. Both these scenarios pose 
significant safety risks in air traffic management.

The vulnerabilities of ADS-B are not limited to risks in the safety of air travel, 
but they could also result in disruptions to air operations caused by the injected or 
modified messages which can lead to delays, diversion, and increased workload for 
ATC. Additionally, these vulnerabilities could have an economic impact due to 
delays and inefficiencies resulting in financial losses for airlines and regulatory 
bodies. Given the critical role of ADS-B in air traffic management, addressing these 
vulnerabilities is essential. Enhancing the integrity of ADS-B without compromising 
system compatibility is a key challenge that this thesis seeks to address. 

1.2 Thesis Aim

The aim of this thesis is to propose a solution that enhances the integrity of ADS-
B messages using FPE while respecting the structure and transmission constraints of 
the ADS-B protocol, and ensuring it can be implemented on an embedded computer. 
To achieve this, the solution utilizes an embedded computer that can be installed on 
an aircraft equipped with ADS-B Out. The embedded computer captures the ADS-B 
messages before they are broadcast by the antenna and applies encryption using an 
FPE algorithm. It then transmits the encrypted messages to ATC which will decrypt 
them. Using an FPE algorithm will ensure that the format of the ciphertext remains 
the same as that of the plaintext. This guarantees that the encrypted ADS-B messages 
remain compatible with the current ADS-B infrastructure. 

Three FPE algorithms are implemented and evaluated in this study: FF3, FFX, 
and AES-CTR. Each algorithm is assessed based on its compatibility with the ADS-
B format, as well as its performance impact on the embedded system. Performance 
metrics were measured and include encryption and decryption times, encryption time 
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standard deviation, CPU and memory usage, and the thermal behaviour of the 
embedded computer. These metrics provide a comprehensive understanding of the 
trade-offs associated with each FPE algorithm as well as an assessment of the 
selected embedded system as a suitable encryption system.

In addition to performance evaluation, the thesis also provides an analysis of the 
security characteristics of the selected FPE algorithms. Several journal and 
conference proceeding articles outlined the advantages and vulnerabilities of the 
three FPE algorithms used in this thesis. These papers will be referenced to highlight 
the differences between the FPE algorithms from a security perspective. The thesis 
also discusses the key management and distribution (KMD) challenge and suggests 
potential mitigating solutions. One proposed solution is the use of a hybrid 
encryption model which uses asymmetric encryption for key exchange and 
symmetric encryption using an FPE algorithm for message encryption as potential 
future work. Additionally, the thesis explores the feasibility of leveraging existing 
aviation communication systems for secure key distribution. 

1.3 Organization of Thesis

The remainder of this thesis is organized as follows: Chapter 2 provides a 
comprehensive background on the ADS-B protocol, the ADS-B mandate, and a 
literature review of some of the existing ADS-B security vulnerabilities and 
mitigation techniques. It also introduces FPE and discusses its relevance to 
enhancing ADS-B integrity. Chapter 3 details the methodology used in this research, 
including the system design, the implementation of each FPE algorithm and the 
performance evaluation criteria. Chapter 4 presents the results of the performance 
evaluation and includes a conceptual analysis of the security characteristics of the 
FPE algorithms. This chapter also discusses KMD challenges and provides insights 
into the feasibility of the proposed solution. Finally, Chapter 5 offers 
recommendations for future research, summarizes the findings, and highlights the 
contributions of the proposed solution.
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2 Background

Modern aviation has seen a transformation thanks to the ADS-B system, which 
provides real-time tracking of aircraft, enhancing safety and operational efficiency 
[3]. This chapter examines the technical structure of the ADS-B protocol, identifies 
some of its vulnerabilities and explores some mitigation techniques proposed by 
researchers. A detailed discussion of FPE is also provided, emphasizing its 
applicability in safeguarding the integrity of ADS-B. 

2.1 ADS-B System Overview

ADS-B is an aircraft surveillance technology that utilizes Global Navigation 
Satellite Systems (GNSS) along with on-board avionics and ground or space-based 
systems for the accurate and real-time relay of flight data between aircraft and ATC 
[6]. Flight data includes aircraft identification, position, altitude, and velocity. ADS-
B is divided into two key components: ADS-B Out, which is installed onboard the 
aircraft and autonomously transmits its flight data, and ADS-B In, which receives 
this data using ground-based receivers, space-based receivers, or other aircraft [6]. 
Unlike a transponder, which utilizes a secondary surveillance radar that requires an 
interrogation pulse to transmit aircraft data, ADS-B Out transmits aircraft data 
autonomously without an interrogation request or intervention from the flight crew, 
hence the term ‘Automatic’ in ADS-B [1]. Similarly, ADS-B depends on the 
aircraft’s sensors and systems to transmit its velocity, altitude, and position [1]. 
Figure 1 shows a functional overview of the ADS-B Out system when fitted on an 
aircraft [6]. It demonstrates that the ‘ADS-B Equipment’ on the aircraft uses the data 
captured from other aircraft systems (GNSS, air data, etc.) and then broadcasts this 
information via the antenna to an ADS-B In receiver, whether ground or space-
based. This data is used by ATC for airspace control. Although not depicted in 
Figure 1, the data can also be received by other aircraft equipped with ADS-B In.
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ADS-B transmits messages over 1090 MHz and its range depends on several 
factors such as the curvature of the earth, the ADS-B out transmit power, and the 
antenna characteristics. For a typical ADS-B Out system with a ground-based 
receiver, the average range is around 400 km, assuming the aircraft and receiver are 
within line of sight [7]. When the receiver is space-based, the range and coverage 
area are much greater, which is one of the benefits of switching to satellite-based 
ADS-B receivers. An ADS-B message consists of the frame format shown in Figure 
2 [8]. An ADS-B Out frame is comprised of two primary sections: an 8 µs preamble 
section, used for synchronization, and a 112 µs payload section, for a total of 120 µs 
per message [8]. Since data in ADS-B Out is transmitted at a rate of 1 Mbps, this 
equals 120 bits per message. J. Sun recorded the different segments of the payload 
section in [7] as shown in Table 1.

5

Figure 1: Overview of ADS-B Out system [6]

Figure 2: ADS-B Out message frame format [8]



Arguably, the most critical segment of the ADS-B frame is the Message Extended 
Squitter (ME) block. The ME block stores the flight-specific data like aircraft 
position, velocity, or altitude [7]. Due to its limited size of 56 bits (split into 5 bits of 
Type Code and 51 bits of Data), only one message type can be transmitted at a time. 
For example, the aircraft velocity will be sent in a single ADS-B message, and the 
aircraft identification will be sent in another message. The 5 bits of Type Code will 
determine which message type is being sent. J. Sun recorded the different ADS-B 
message types and their codes in Table 2 [7].

Table 2 shows the type codes for the various ADS-B message types. Each 
message type requires a single frame to be sent by ADS-B Out, with the exception of 
airborne position and surface position messages [7]. These position messages require 
two separate frames – referred to as even and odd messages – due to the size 
constraints of the ME block. For these messages, a flag bit within the ME block 
indicates whether the message is even or odd. All this is processed and transmitted 
autonomously by ADS-B Out and the pairs of messages get decoded by the receiver. 
Table 2 also shows the transmission rates for each message type. For example, ADS-
B Out automatically transmits airborne position messages every 0.5 seconds (2 Hz), 
while aircraft identification messages are transmitted every 5 seconds (0.2 Hz), if the 
aircraft is airborne, and every 10 seconds (0.1 Hz) if the aircraft is stationary on the 
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ground. Each ADS-B message, regardless of its Type Code, always contains the 
aircraft’s unique 24-bit ICAO address, as shown in Table 1. This allows the receiver 
to match all ADS-B messages to the correct aircraft even though aircraft 
identification messages are transmitted less frequently. 

Another critical segment of the ADS-B message is the Parity/Interrogator (PI) 
block. The PI block is 24 bits long and is responsible for error detection, primarily 
through a Cyclic Redundancy Check (CRC), though other types of error detection 
exist depending on the version of ADS-B used [7]. ADS-B Out applies CRC by 
performing calculations on the bits of the ADS-B message excluding the PI segment, 
and the resulting remainder is placed in the PI block before transmission. The 
receiver will then perform the CRC calculation on the entire ADS-B message, 
including the PI segment. Since the PI block already contains the remainder from the 
initial CRC computation, a correctly received message will always yield a remainder 
of zero when recalculated at the receiver. This confirms that the ADS-B message was 
received without error. Otherwise, if any bit gets corrupted during transmission, the 
recalculated CRC will result in a nonzero remainder, indicating an error, and the 
message is, therefore, discarded [7].

Many decoders exist to interpret ADS-B messages. One such decoder is 
Dump1090, a widely recognized open-source ADS-B decoder which is available on 
GitHub [7]. This tool converts ADS-B messages formatted in hexadecimal into a 
human-readable format. For example, a raw ME segment of 202CC371C32CE0 
(shown in hex) is decoded to KLM1023 (aircraft call sign) using Dump1090 [7].

2.2 ADS-B Mandate

In February 2022, the Canadian air navigation service provider, NAV Canada, 
mandated the requirement for aircraft to be fitted with an ADS-B Out capability in a 
phased approach [4]. This mandate currently applies to aircraft flying in Class A 
Airspace (aircraft flying over 18,000 ft) and Class B Airspace (aircraft flying over 
12,000 ft), and will apply in Classes C, D, and E no sooner than 2028. ADS-B has 
many benefits when compared to primary/secondary radar systems:

• Safety: Aircraft equipped with ADS-B equipment provide ATC with an 
increased area of surveillance coverage, thus enhancing ATC’s situational 
awareness [4]. This is also applicable to pilots in other aircraft fitted with an 
ADS-B In system. Additionally, ADS-B offers better tracking of aircraft in 
distress, which improves search and rescue response times  [4].

• Efficiency: Due to ADS-B’s improved accuracy compared to primary and 
secondary radar, ATC can maintain aircraft separation more efficiently [1]. 
Additionally, the increased positional accuracy can offer more efficient 
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flight routing which often uses direct and shorter routes, resulting in a 
reduction of greenhouse carbon emissions [4].

• Cost: ADS-B can greatly reduce the cost of maintenance of ATC radar 
equipment and offers a longer service life [9]. Additionally, fuel savings are 
also a benefit of ADS-B due to the ability of providing shorter and more 
direct routes [1].  

Transport Canada is not the only regulatory body to impose such a mandate. In 
fact, the FAA in the United States mandated ADS-B Out for most controlled airspace 
classes starting in January 2020 [10]. Similarly, the European Union Aviation Safety 
Agency released a similar mandate requiring ADS-B Out compliance starting 
December 2020 [11]. These efforts align with the International Civil Aviation 
Organization’s (ICAO) vision of seamless air operations around the globe [12]

2.3 Security Vulnerabilities in ADS-B

Numerous studies have focused on various attack vectors targeting ADS-B 
systems. Each attack tackles one or more of the three main computer security goals: 
Confidentiality, Integrity, and Availability [13]. This section will provide a brief 
overview of key attacks and vulnerabilities that exist in ADS-B. A detailed survey of 
existing ADS-B vulnerabilities and mitigation techniques was conducted in [2].

2.3.1 Eavesdropping

Eavesdropping tackles the confidentiality of ADS-B by exploiting the 
unencrypted nature of ADS-B messages. It involves the interception of ADS-B 
messages, allowing an adversary to gather sensitive flight information such as 
aircraft position, speed, and identity [9]. An eavesdropping attack can be achieved by 
using a Software Defined Radio (SDR) and the appropriate antenna for 1090 MHz. 
Then, an ADS-B decoder, such as dump1090, can be used to decode received ADS-
B messages.

2.3.2 Jamming

Jamming, in the context of ADS-B systems, refers to the deliberate transmission 
of radio frequency (RF) signals that interfere with the normal operation of ADS-B, 
effectively preventing the reception of legitimate ADS-B messages [9]. Unlike 
eavesdropping, which mainly targets the confidentiality pillar of ADS-B, jamming 
actively targets the availability pillar by denying its service. Leonardi et al. 
demonstrated that jamming using a low-cost ground-based transceiver is effective in 
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diminishing the reception of ADS-B messages [14]. They transmitted RF signals at 
1090 MHz at a power of 20 dBm with an emulated distance of 1 km from the ADS-
B receiver and were able to reduce the coverage of the receiver from 400 km to 35 
km [14]. Their results are summarized in Table 3.

In Table 3, the jammer outputs a signal at a constant power of 20 dBm while 
varying the distance from the jammer to the ADS-B receiver (indicated as ‘Simulated 
range of the jammer’). Prx is the power of the jamming signal that is received at the 
ADS-B. The results show that the closer the jammer is to the ADS-B receiver, the 
greater its effect in diminishing the maximum range of ADS-B Out [14]. Therefore, 
ADS-B coverage can be further diminished using jammers with higher output power.

2.3.3 Message Manipulation

Message manipulation refers to attacks where adversaries insert (message 
injection), alter (message modification), or delete (message deletion) ADS-B 
messages, thereby compromising the system’s integrity [9, 15]. The complexity of 
these attacks varies. However, all message manipulation types pose significant safety 
risks, including loss of situational awareness for both aircrew and ATC, potential for 
mid-air collisions due to missing aircraft, or disruption of air traffic management due 
to unnecessary diversion. This section will explore the three types of message 
manipulation attacks.

2.3.3.1 Message Injection

Message injection, also referred to as spoofing, is an attack that involves 
transmitting fabricated ADS-B messages to simulate non-existent aircraft, thereby 
compromising air traffic data [15]. This attack creates a “ghost aircraft”, 
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undermining the integrity of ATC systems by leading to false air traffic data. Schäfer 
et al. illustrated the effects of message injection using their experimental setup shown 
in Figure 3. Their setup consisted of the attacker’s machine (Linux) that targeted the 
SBS-3, a commercially-available ADS-B receiver that receives real aircraft ADS-B 
Out messages via the connected Antenna and displays the input in a radar-
visualization software on the Windows machine. The attacker generates fake, but 
correctly formatted, ADS-B out messages using the Linux machine, which are 
transmitted using the Universal Software Radio Peripheral (USRP), an off-the-shelf 
SDR.  Schäfer et al. physically connected the USRP (A) to the SBS-3 receiver. A 
real attacker would likely not have this opportunity and would need to have a setup 
similar to USRP (M) shown in Figure 3.

Schäfer et al. performed two message injection experiments: a single ghost 
aircraft injection (injecting one ADS-B message) and ghost aircraft flooding 
(injecting multiple ADS-B messages) [15]. Both experiments were successful in 
displaying the ghost(s) aircraft on the radar-visualization software. The results of the 
single ghost aircraft injection are found in Figure 4 which shows the injected ghost 
aircraft as C0FFEE, while the ghost aircraft flooding can be seen in Figure 5 which 
shows the effectiveness of flooding ghost aircraft on the radar-visualization software. 
Both attacks pose significant risks to air traffic safety and have the potential to cause 
confusion among ATC and aircrew, forcing unnecessary diversions to avoid 
collisions, and increasing the workload in the aircraft unnecessarily. Additionally, 
they can undermine confidence in the ADS-B system affecting its reliability and 
future adoption in airspace management. Although the two injection attacks are 
performed in the same manner, they differ by targeting different computer security 
pillars; a single-injected ghost aircraft targets the integrity of ADS-B, while flooding 
many ghost aircraft also targets the availability of ADS-B in addition to its integrity.
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Figure 4: Single ghost aircraft injection with ICAO ID C0FFEE (top right) [15]

Figure 5: Ghost aircraft flooding injection using 100 randomly distributed aircraft [15]



2.3.3.2 Message Deletion

Message deletion does the opposite of a message injection attack; it aims to 
remove an ADS-B Out message of a legitimate aircraft so it is no longer detectable 
by ATC [9].  Schäfer et al. outlined two methods for executing ADS-B message 
deletion: through destructive interference, and through constructive interference [15]. 
In destructive interference, the attacker tries to nullify the legitimate ADS-B message 
by broadcasting its inverse, with the aim for both signals to cancel each other out at 
the receiver. This nullification demands precise timing and phase alignment, which is 
difficult to achieve with moving targets. Constructive interference introduces enough 
bit errors to the legitimate ADS-B Out message to exceed the error correction limits 
of the ADS-B system, leading to message rejection. Constructive interference is 
more feasible because it has less stringent synchronization requirements when 
compared to destructive interference. 

Since protecting against message deletion attacks lies beyond the scope of this 
work, and the proposed solution is not designed to defend against such attacks, no 
further details about message deletion will be discussed in this work.

2.3.3.3 Message Modification

Message modification is similar to message injection, but instead of transmitting 
a ghost aircraft ADS-B message, it modifies messages from aircraft before they are 
received by ADS-B In [3]. Schäfer et al. described that ADS-B Out message 
modification can be performed using two methods: overshadowing and bit flipping 
[15]. Overshadowing involves overpowering the legitimate ADS-B Out message 
with a malicious one, making the legitimate message appear as noise. The receiver 
would accept the malicious message, which would have been crafted by the attacker 
with inaccurate aircraft information. Bit flipping changes specific bits of the ADS-B 
Out message in order to alter aircraft information [15]. While both methods require 
precise timing, overshadowing is generally more feasible than bit flipping. This is 
because overshadowing only requires the attacker to transmit at a higher signal 
strength during the message’s reception window to ensure that the receiver locks 
onto the malicious message instead of the legitimate one. On the other hand, bit 
flipping requires precise synchronization with the legitimate transmission at the 
carrier phase level and must introduce just enough power at the precise moment to 
alter specific bits without corrupting the ADS-B message entirely. This is difficult to 
accomplish, especially with moving targets such as aircraft. For overshadowing to be 
successful, the malicious signal needs to be transmitted during the period when the 
receiver is actively processing an incoming signal and must be strong enough to 
dominate the legitimate transmission. Schäfer et al. calculated that an attacker could 
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successfully modify ADS-B messages by overshadowing using low-cost off-the-
shelf equipment when they are within 10 km of the receiver ground station [15].

2.4 ADS-B Attack Mitigation Techniques

Researchers have dedicated substantial efforts to developing mitigation strategies 
against the ADS-B vulnerabilities discussed earlier. These strategies aim to safeguard 
the integrity, confidentiality, and availability of ADS-B communications, ensuring 
correct and secure ATC data. This section will explore some of the mitigation 
techniques developed and tested by researchers.

2.4.1 Timestamp Authentication

One defensive strategy that was proposed by Kim et al. is the use of precise 
timestamp and position information as a way to authenticate ADS-B messages [16]. 
This can be effective against message spoofing as it allows for filtering out of 
malicious messages without significant delay. To implement this strategy, Kim et al. 
proposed an authentication process that compares the timestamp and location 
information contained within the ADS-B message against expected values, as shown 
in equation (1). 

                    Tpropagation (Ls1, Lr1) = dist(Ls1, Lr1) / c (1) 

where Tpropagation (Ls1, Lr1) is the time it takes the ADS-B message to propagate from 
ADS-B Out (transmitter at location Ls1) to ADS-B In (receiver at location Lr1), 
dist(Ls1, Lr1) is the distance from ADS-B Out (transmitter at location Ls1) and ADS-B 
In (receiver at location Lr1), and c is the propagation speed of the message. If 
Tpropagation (Ls1, Lr1) exceeds a threshold value, then it would indicate a message 
injection attack and the message in question would be rejected [16]. Figure 6 
illustrates the propagation time of an ADS-B message as indicated by equation (1). It 
depicts an example where the receiver is another aircraft utilizing ADS-B In, but the 
same concept can be applied if the receiver was a ground station at ATC, as 
demonstrated earlier in Figure 1.

Standard ADS-B messages do not include timestamp data in their frame structure. 
To overcome this, the researchers in [16] propose modifying the ADS-B protocol to 
embed an 8-bit timestamp within the message. This is achieved by reducing the PI 
block from 24 to 16 bits and using the remaining 8 bits to store the timestamp. The 
researchers justify this modification by demonstrating that a 16-bit PI block still 
provides sufficient error-detection capability for ADS-B messages. 
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To evaluate the defence, the researchers simulated 100 legitimate aircraft and 100 
ghost aircraft sending spoofed ADS-B messages. Using the criteria outlined in 
equation (1), 99% of the ghost aircraft were detected and their ADS-B messages 
were discarded, while all of the legitimate aircraft ADS-B Out messages were 
successfully received, achieving a 0% false positive rate [16]. 

2.4.2 Multilateration

Another defensive strategy that was proposed utilizes multilateration. This 
technique relies on multiple independent receivers and sensors (at least three for two-
dimensional positioning, and at least four for three-dimensional positioning) to 
calculate the aircraft’s position [17]. It does so by analyzing the Time Difference of 
Arrival (TDOA) of signals from the aircraft to these receivers and sensors. The 
receivers/sensors do not need to be the same; one can be primary radar, another can 
be secondary radar, or a Traffic Collision Avoidance System [17, 18], as shown in 
Figure 7. This technique analyzes and compares the signals from each receiver to 
verify the location of an aircraft and determine if a message injection, modification, 
or deletion attack is suspected. Multilateration complements ADS-B systems to 
enhance the integrity of aircraft surveillance. This can be implemented by utilizing 
the existing ground station used to track aircraft position, conducting time difference 
and calculation, and conducting the position calculation using the TDOA 
measurements [17]. 
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Figure 6: Propagation time of ADS-B message [16]



2.4.3 Multichannel Receiver

Using a multichannel receiver is another strategy that was proposed by 
researchers to defend against jamming attacks in ADS-B systems. Leonardi et al. 
proposed the use of algebraic manipulation using singular value decompression 
(SVD) to effectively differentiate and filter out jamming signals from legitimate 
ADS-B transmissions by utilizing Angle of Arrival (AOA) [9]. The researchers 
consider several independent sources, such as different ADS-B messages and 
potential jamming signals, being received by an antenna array connected to the 
receiver.

The researchers evaluated the multichannel’s ability to mitigate jamming on 
ADS-B signals in [9] by conducting trials with four different types of jammers, 
ranging from a signal-to-interference-ratio (SIR) of -23 dB to 6 dB, over several 
hundred real ADS-B signals. The jamming signals were then injected along with 
clean signals, the Extended Projection Algorithms (EPA) decoding algorithm was 
applied, and the results were compared to the clean ADS-B signals [9]. The results 
are shown in Figure 8.
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Figure 7: Multilateration implementation [17]



The results show that at SIR of 0 dB, the EPA algorithm was able to differentiate 
the ADS-B signal (Figure 8 (d)) from the jamming signal (Figure 8 (c)). Also, the 
researchers evaluated the results at the most challenging scenario, where the SIR was 
-26 dB, and found that without utilizing EPA, the receiver lost the ability to decode 
ADS-B signals with any jammer type [9]. When the EPA was applied, the loss rate 
was reduced to 22.7%, meaning that 77.3% of messages were successfully 
recovered.

2.4.4 Message Encryption

Several encryption techniques have been proposed by researchers as a defensive 
strategy against eavesdropping and some forms of message manipulation in ADS-B 
systems. This section will discuss works that proposed or applied encryption 
algorithms specifically for ADS-B systems. 

2.4.4.1 Advanced Encryption Standard

Zhang et al. utilized Advanced Encryption Standard-128 (AES-128), a widely-
recognized symmetric encryption algorithm known for its balance of robustness and 
low computational effort, to encrypt ADS-B messages as shown in Figure 9. 
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Figure 8: Evaluation results of utilizing multichannel receivers against a square wave jammer with 
SIR = 0 dB: (a) ADS-B signal with no jamming, (b) jammed signal envelope, (c) first separated 

source envelope using EPA, (d) second separated source envelope using EPA [9]



In Figure 9, ADS-B Out uses the aircraft’s velocity, position, and message 
timestamp, denoted by Vʹ1, Pʹ1, and D1, respectively, and passes them through the 
AES algorithm, denoted by Enc. The AES algorithm uses an encryption key, KAB, 
resulting in a 128-bit ciphertext, M, containing the payload. The goal is to fit the 
ciphertext into the ME block. However, since the ME block is only 56 bits, M is split 
into two messages, M1 and M2, each holding 64 bits of encrypted text, and sent using 
the two ME blocks from two separate ADS-B messages. Zhang et al. proposed to 
reduce the PI block down to 16 bits to allow the ME block to increase to 64 bits [8]. 
ADS-B Out will then transmit the two encrypted messages, where an ADS-B In 
receiver can decrypt the messages using the same key, KAB, after reassembly in order 
to read the payload. While the paper does not discuss the impact of reducing the size 
of PI block to 16 bits, this change would likely decrease ADS-B’s error detection 
capability, potentially increasing the number of dropped messages, albeit enhancing 
message security. 
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Figure 9: AES encryption of ADS-B messages [8]



2.4.4.2 Stage Identity-Based Encryption

Baek et al. proposed the use of Staged Identity-Based Encryption (SIBE) as a 
method to secure ADS-B communications that utilizes both symmetric and 
asymmetric encryption techniques [19]. This scheme relies on the Public Key 
Infrastructure where the public key is derived from publicly known information, such 
as an aircraft’s ICAO address, registration number, or flight details. A private key 
generator is responsible for generating the corresponding private keys. The use of 
SIBE eliminates the need for a traditional certificate authority and reduces the 
overhead associated with public key lookup.

In this approach, SIBE is used to establish a session key between aircraft, which 
is then employed for symmetric message authentication [19]. The symmetric key is 
used in conjunction with a Message Authentication Code (MAC) to ensure the 
integrity and authenticity of each ADS-B message broadcast. Baek et al. highlight 
that this scheme adds minimal computational overhead to ADS-B messages while 
improving protection against message injection and spoofing attacks. However, 
challenges related to the distribution and management of private keys, especially on a 
global scale, remain an area for further research. 

2.5 Gaps in Existing Defensive Strategies

While the surveyed defensive strategies for ADS-B systems –  timestamp 
authentication, multilateration, multichannel receivers, AES encryption, and SIBE – 
show promise in mitigating specific vulnerabilities, certain gaps persist. For instance, 
as shown in Table 4, timestamp authentication, despite its effectiveness in 
identifying spoofed messages, does not address the potential for eavesdropping, 
replay, or message modification attacks. This limitation underscores the need for a 
layered security approach that incorporates additional measures to mitigate a wide 
range of threats. Similarly, multilateration and the use of multichannel receivers, 
while effective in enhancing location verification and jamming mitigation, require 
substantial infrastructure investments and their implementation may face challenges 
in scalability and integration with existing ATC systems. ADS-B message encryption 
using AES, though robust in safeguarding message confidentiality, necessitates 
additional bandwidth for the transmission of encrypted messages, potentially 
complicating implementation within the current ADS-B framework. Both encryption 
methods, AES and SIBE, raise concerns as to the computational burden associated 
with the selected cryptographic operations, which can affect system performance, 
especially in terms of latency. 

Table 4 summarizes the effectiveness of the defensive techniques discussed in 
this literature review against each vulnerability along with the implementation 
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difficulty. The implementation difficulty was assessed by the author based on the 
complexity of applying the defensive technique, the required changes to existing 
ADS-B infrastructure, and the associated cost of implementation.

2.6 Format Preserving Encryption

Format-Preserving Encryption (FPE) is a type of encryption where the ciphertext 
maintains the same size and format as the plaintext [20]. This is particularly useful 
for applications such as encrypting credit card numbers or other fixed-format data in 
legacy systems and protocols where the data structure must remain unchanged. 
Traditional encryption methods like AES and RSA do not preserve the format, 
resulting in ciphertext that may be incompatible with existing systems that expect 
data in a specific format. Given the limitations of many existing ADS-B attack 
mitigation techniques, FPE presents a promising alternative by enhancing security 
without altering the ADS-B framework. 

Agbeyibor et al. state that FPE can be highly beneficial for securing legacy 
critical infrastructure systems that were not originally designed with modern security 
measures in mind [21]. The study highlights three FPE algorithms recommended by 
the National Institute of Standards and Technology (NIST): FF1, FF2, and FF3. 
These algorithms are derived from AES and are designed to encrypt data without 
altering its format, making them suitable for use in systems with strict format 
requirements. The evaluation conducted in [21] shows that these FPE algorithms 
provide high levels of security while maintaining operational efficiency. FF1 
supports the widest range of data lengths, FF2 provides additional protection against 
side-channel attacks, and FF3 is the simplest and fastest encryption method, making 
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it suitable for resource-limited environments. In this research, FF1 and FF2 were not 
considered as potential FPE algorithms because FF3’s lower computational 
complexity and reduced hardware requirements make it more suitable for resource-
constrained systems like an embedded computer. 

FPE provides an effective way to enhance ADS-B integrity without requiring 
modifications to its structure by preserving the message format and length. The use 
of FPE also ensures that encryption can be implemented using resource-limited 
environments. This makes its application in real-world aviation more feasible.

2.6.1 FF3

FF3 is a symmetric FPE algorithm derived from AES and standardized by NIST 
in [22]. It employs a Feistel network to achieve FPE which allows FF3 to maintain 
the same size and structure of the plaintext in the resulting ciphertext. Figure 10 
outlines the general Feistel structure where the plaintext is divided into two halves, 
denoted as A and B, before encryption begins [22]. The number of characters in 
these halves is represented as u and v, with their sum denoted as n. Each round 
applies a round function, FK(n,T,i), which derives its transformation from the 
encryption key, a 64-bit tweak T, and the round number i. The output of each round 
influences the subsequent round. At the end of each round, the roles of the left and 
right halves are swapped before the next iteration begins. This process gets repeated 
which ensures that every part of the plaintext contributes to the final ciphertext. FF3 
uses eight rounds which is reduced from the 10 that FF1 uses. This achieves a 
balance between security and computational efficiency [22]. 

A critical component in FF3 is the radix, which refers to the base of the numeral 
system used to represent the plaintext and ciphertext. The radix will determine the 
length requirements of the plaintext according to the below requirements [22]:

                                          radix  [2 ... 2∈ 16]                                      (2)

                                           radixminlen ≥ 100                                       (3)

                         2 ≤ minlen ≤ maxlen ≤ 2   log radix (296)                   (4)

These three equations determine the minimum length (minlen) and the maximum 
length (maxlen) of the plaintext and ciphertext depending on the radix value. As 
shown in equation 4, the minlen is always 2 as FF3 requires at least two halves to 
function. For a radix of 2 (binary), the maxlen must satisfy equation 4 which yields a 
maxlen of 96 characters, and for a radix of 10 (decimal), the maxlen is 28 characters. 
As for the key length, FF3 supports key lengths of 128, 192, or 256 bits [22].

Another key feature in FF3 is the use of a tweak, which is a user-defined 
parameter. The tweak adds variability into the encryption process, which ensures that 
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even if the same plaintext is encrypted multiple times with the same key, the 
resulting ciphertext will be different [22]. The tweak, therefore, prevents patterns in 
the ciphertext that could otherwise be analyzed to find weaknesses in the encryption 
algorithm. It is important to note that the tweak should not necessarily be kept secret, 
like the encryption key. Instead, it could be combined with the plaintext and fed into 
the encryption algorithm in a manner similar to the use of password salt. FF3 
requires that the tweak length be 64 bits.

21

Figure 10: Feistel Structure of FF3 [22]



2.6.2 FFX

FFX is also a symmetric FPE algorithm, but unlike FF3, it is designed as a 
flexible framework where some parameters (number of rounds, tweak length, etc.) 
can be customizable by the user to meet specific security and performance 
requirements [23]. For example, selecting 8 rounds and a 64-bit tweak aligns with 
the specifications for FF3, while using 10 rounds will result in an algorithm similar 
to FF1. This makes FFX highly flexible which allows it to be tailored to various 
applications.  

2.6.3 AES-CTR

Advanced Encryption Standard in Counter Mode (AES-CTR) is a symmetric 
encryption algorithm that uses a stream cipher [24]. AES-CTR is not an FPE 
algorithm, but it does preserve the length of the plaintext if it was less than 128 bits 
long, unlike other modes of AES. This is because AES-CTR does not require 
padding of plaintexts to match the fixed block size of AES. 

The encryption process in AES-CTR starts with the initialization of a 128-bit 
counter block, composed of a nonce and an Initialization Vector (IV). The nonce, 
similar to a tweak in FPE, ensures the encryption process produces unique outputs 
even when the same plaintext and key are used multiple times. The IV should be 64 
bits long. The counter block is incremented for each subsequent block of plaintext, 
and each block is processed through AES encryption to generate the keystream. The 
keystream is then XORed with the plaintext to produce the ciphertext. AES-CTR 
supports key sizes of 128, 192, and 256 bits with the number of rounds being 10 
when a 128-bit key is used. 
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3 Methodology

This chapter outlines the experimental setup, implementation, and evaluation of 
the three FPE algorithms for enhancing the integrity of ADS-B messages. The 
methodology is structured to reflect the design and execution of the experiment, 
beginning with an overview of the system architecture and components, followed by 
the encryption and decryption processes. It then details the performance evaluation 
criteria used to assess the computational feasibility of the selected algorithms and 
embedded computer. Additionally, KMD challenges are discussed along with 
conceptual solutions for securely transmitting keys in a real-world aviation 
environment. 

3.1 System Design

This section outlines the proposed architecture, intended as a future onboard 
solution, and the experimental setup that was implemented to evaluate the 
effectiveness of the selected FPE algorithms in enhancing the integrity of ADS-B 
messages. The design consists of two main components: an in-line device as the 
embedded computer onboard the aircraft used for encrypting ADS-B messages, and 
a Windows-based virtual machine (VM) simulating ATC. These two components 
were placed in the same network to enable real-time encryption, transmission, 
decryption and validation of ADS-B messages. 

3.1.1 Proposed Architecture

Unlike the setup shown in Figure 1, where the data flows directly from the ADS-
B Equipment to the antennas to be broadcast, the proposed architecture places an in-
line device as the embedded computer between the ADS-B Equipment and the ADS-
B Out antennas as shown in Figure 11. This allows the in-line device to intercept all 
outgoing ADS-B messages. Our solution treats the ADS-B Equipment as a black 
box, meaning it does not require any modifications or any detailed understanding of 
its internal workings. This approach ensures compatibility with existing ADS-B 
systems while simplifying integration. This is possible because all ADS-B systems 
adhere to the same protocol. Therefore, as long as the protocol is understood, the 
solution can be applied.

Figure 12 provides a closer look at the overall architecture of the in-line device. 
In this design, the raw ADS-B message first passes through an analogue-to-digital 
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converter (ADC) which digitizes the analogue output of the ADS-B Equipment to 
enable further processing and encryption. Next, the ME Extraction and Encryption 
Module (highlighted in yellow in Figure 12) identifies and extracts the ME block and 
applies FPE. Then, the message is reassembled with the encrypted ME block and the 
checksum is recomputed and stored in the PI field. Finally, it is passed to the digital-
to-analogue converter (DAC) before being broadcast using the ADS-B Out Antenna. 

In this thesis, the primary focus is on the ME Extraction and Encryption Module. 
While the overall in-line device includes other components (ADC, Reassembler, 
Checksum calculator, and DAC), the key research question addressed here focuses 
on how to extract and encrypt the ME block using FPE in order to enhance the 
integrity of ADS-B while respecting the structure and transmission constraints of the 
ADS-B protocol.
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Figure 11: Proposed solution of placing in-line device between ADS-B Equipment and ADS-B Out 
Antenna for encryption of outgoing ADS-B messages. Adapted from [6] 

Figure 12: In-line device architecture



3.1.2 Experimental Setup and Hardware

The experimental setup and hardware of the ME Extraction and Encryption 
Module include the following components: 

1. Software Defined Radio (SDR): An SDR dongle was used to capture actual 
ADS-B messages which were logged to a file in hexadecimal format for use 
during the encryption process.

2. Raspberry Pi (RP): A RP 5 with 4 GB of RAM and an Arm Cortex-A76 
quad-core processor was used as the embedded computer. The selection of 
the embedded computer was based on the need for a compact, low-power, 
and cost-effective embedded system capable of performing encryption in 
real time without introducing significant latency. Several embedded 
computers were considered but the RP was selected for its computational 
efficiency, compatibility with Python-based encryption libraries, small form-
factor, and affordability, making it suitable for an embedded computer that 
could be deployed in real-world aviation to encrypt ADS-B messages. The 
RP was configured with RP OS, a Debian-based operating system, to 
provide an adequate environment for running custom scripts.

3. ATC VM: A Windows-based VM, running Windows 11, simulated the ATC 
environment. The VM was equipped with Python libraries such as pyffx,  
ff3, and pyModeS for decrypting and decoding ADS-B messages. 

The RP and ATC VM were configured within the same local network. This 
allowed the RP to communicate with the ATC VM wirelessly, using the built-in Wi-
Fi module on the RP.

3.1.3 Experiment Workflow

The experimental setup followed a structured workflow to evaluate the encryption 
and decryption process, as shown in Figure 13:

1. Message Capture and Processing: Actual ADS-B messages from local air 
traffic were captured over several hours using the SDR dongle. The 
messages were filtered to ensure a mix of different types of ADS-B 
messages and stored in a log file. This allowed the RP to read the messages 
from this log, simulating the role of an onboard encryption system without 
relying on live message capture during the experiment. The log file 
contained 1,000 different ADS-B messages, which we considered sufficient 
for our experimental purposes.
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2. Encryption on the RP: The RP read the pre-recorded ADS-B messages from 
the log file, identified the ME block, and applied encryption using one of 
three FPE algorithms: FF3, FFX, and AES-CTR as discussed in section 3.2. 
The algorithms ensured the ME block maintained the same length and 
format required by the ADS-B protocol. The encrypted ME blocks were then 
transmitted to the ATC VM via a Transmission Control Protocol (TCP) 
connection.

3. Decryption and Validation on the ATC VM: The ATC VM received the 
encrypted ME blocks along with the original unencrypted ADS-B messages 
from the RP and decrypted the ME block using the corresponding FPE 
algorithm and encryption key. The decrypted ME block was compared with 
the original to verify the integrity of the message. The decrypted messages 
were also decoded and analyzed for correctness. 

During the experiment, key performance metrics were recorded to evaluate the 
computational feasibility of each FPE algorithm. These will be discussed in section 
3.3.

3.1.4 Limitations and Assumptions

The experimental setup aimed to simulate real-world conditions, as much as 
practicable, with some limitations. The use of pre-recorded ADS-B messages instead 
of live capture of ADS-B messages is one such limitation. This limitation means that 
the experimental setup loses some variability and unpredictability of real-time 
message transmission, but it did ensure a consistent dataset for testing. 

Another limitation was the use of a TCP connection for the transmission of 
encrypted ADS-B messages from the RP to the ATC VM. This does not replicate the 
broadcast nature of the 1090 MHz radio frequency used in real-world ADS-B 
systems, but it did provide a reliable communication channel for a controlled 
evaluation. In a live implementation, where the encrypted messages are transmitted 
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via an antenna over the air, factors such as signal interference and range limitations 
would exist, which were not accounted for in this experiment. In a traditional ADS-B 
system broadcasting messages over 1090 MHz, corrupted messages are handled by 
the PI block, as explained in section 2.1, where any errors in the received ADS-B 
message result in that message being discarded. This is usually not a significant issue 
since aircraft continuously send ADS-B messages multiple times per second, 
ensuring that even if some messages are lost or corrupted, subsequent transmissions 
provide the necessary information to ATC and other aircraft.

Finally, the experimental setup did not include real ADS-B equipment, a real or 
simulated aircraft environment, or real antennas for transmission and reception (apart 
from the antenna in the SDR used to capture ADS-B messages for the data set). The 
RP simulated an embedded system onboard the aircraft for encryption, but without 
integration into actual aircraft systems. Similarly, the ATC VM used custom scripts 
and open-source tools for decryption and decoding ADS-B messages, rather than 
official ATC software. Therefore, the results may not fully reflect the performance or 
feasibility of deployment in real-world aviation scenarios. 

The experiment also assumed secure KMD, which is likely more challenging to 
implement in a real-world scenario. Section 3.4 will discuss KMD in more detail and 
propose some solutions to overcome this challenge. 

3.2 Implementation of FPE Algorithms

The implementation of FPE algorithms in this experiment was carried out on an 
RP simulating the onboard embedded system for encryption, and a Windows-based 
VM simulating an ATC environment.  This  section discusses  the implementation 
details of each of the three FPE algorithms, including the encryption and decryption 
processes and how messages were validated for correctness. 

3.2.1 FF3 Implementation

The FF3 algorithm was implemented to encrypt the ME block of ADS-B 
messages while preserving the length and format of the original message. The 
implementation involved two main components: the RP, which handled the 
encryption, and the ATC VM, which handled the decryption and validation 
processes. 

3.2.1.1 FF3 Raspberry Pi Implementation

The RP processes pre-recorded ADS-B messages from the log file, simulating 
real-world message capture. The encryption process included the following steps:
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1. Message Capture: The RP read ADS-B messages from the log file, which 
contained 1,000 valid messages, one message at a time. Each message 
consisted of 28 hex characters, representing 96 bits including the ME block 
(14 hex characters representing 56 bits), which was extracted for encryption.

2. Encryption: The FF3 algorithm was implemented using the ff3 Python 
library from [25]. The ff3 library only accepts a decimal input so the ME 
block was converted to a decimal string for encryption. The FF3 cipher was 
initialized using a 256-bit key and a 64-bit tweak.

3. Transmission to ATC VM: The encrypted ME block was transmitted to 
ATC VM, as a decimal string, along with the original unencrypted ADS-B 
message (for validation purposes). The transmission was done using a TCP 
connection.

The encryption and transmission steps continued until all 1,000 ADS-B messages 
from the log were processed. 

3.2.1.2 FF3 ATC VM Implementation

The ATC VM received the encrypted messages from the RP and was responsible 
for the decryption and validation of the ADS-B messages. The decryption and 
validation processes included the below steps for all 1,000 messages received from 
the RP. 

1. Message Reception: After a connection was established with the RP, the 
ATC VM received the original ADS-B message and the encrypted ME 
block, one message at a time. 

2. Decryption: The decryption process used the same FF3 cipher configuration 
as on the RP during encryption (key and tweak). After decrypting the ME 
block, it was converted back to hexadecimal to reconstruct the full ADS-B 
message.

3. Message Reconstruction and Validation: The decrypted ME block (now in 
hexadecimal) was reintegrated into the rest of the ADS-B message using the 
remaining characters from the received original ADS-B message. The 
reconstructed ADS-B message was then compared with the original plaintext 
message to validate the encryption/decryption process. Any discrepancies 
were flagged as validation failures. 

4. Message Decoding: In addition to decryption and validation, every ADS-B 
message was also decoded using the pyModeS library from [26] to verify the 
message types and fields (aircraft identification, position, and velocity). 
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3.2.2 FFX Implementation

The FFX algorithm was implemented to encrypt the ME block of ADS-B 
messages while preserving the length and format of the original message. The 
encryption, decryption, and validation process followed a similar process to that of 
FF3, with some notable differences which will be explained below.

3.2.2.1 FFX Raspberry Pi Implementation

Similar to the FF3 implementation, the RP processed the pre-recorded ADS-B 
messages from the log file and followed the encryption process shown below. 

1. Message Capture: The same 1,000 ADS-B messages were processed, similar 
to the process used in FF3 from section 3.2.1.1.

2. Encryption: The FFX algorithm was implemented using the pyffx Python 
library from [27]. Unlike the ff3 library, pyffx accepts the input as 
hexadecimal strings. Therefore, the ME block captured was directly 
encrypted using a 256-key configuration and without using a tweak. As 
explained in section 2.6.2, FFX allows for custom parameters such as 
number of rounds. 10 rounds were used in this implementation to have a 
balance between increased security when compared to the eight rounds used 
in FF3 and high efficiency during the encryption process.

3. Transmission to ATC VM: Similar to that of FF3 from section 3.2.1.1.

3.2.2.2 FFX ATC VM Implementation

Similar to the FF3 implementation, the ATC VM received the encrypted 
messages from the RP and was responsible for the decryption and validation of the 
ADS-B messages. This process continued until all 1000 messages were processed as 
per the steps below: 

1. Message Reception: The same 1,000 ADS-B messages were processed, 
similar to the process used in FF3 from section 3.2.1.2.

2. Decryption: The decryption process used the same FFX cipher configuration 
as on the RP during encryption (256-bit key).

3. Message Reconstruction and Validation: Similar to that of FF3 from section 
3.2.1.2.

4. Message Decoding: Similar to that of FF3 from section 3.2.1.2.

29



3.2.3 AES-CTR Implementation

The AES-CTR algorithm was implemented to encrypt the ME block of ADS-B 
messages. As discussed in section 2.6.3, AES-CTR is not a true FPE algorithm, 
however, it does preserve the length of the plaintext in this implementation since the 
ME block is smaller than 128 bits. The encryption, decryption, and validation 
processes followed a similar structure to that of FF3 and FFX, with some notable 
differences as explained below:

3.2.3.1 AES-CTR Raspberry Pi Implementation

The RP handled the encryption process for ADS-B messages as follows:

1. Message Capture: The same 1,000 ADS-B messages were processed, similar 
to the process used in FF3 from section 3.2.1.1.

2. Encryption: The AES-CTR encryption was implemented using the 
cryptography.hazmat Python library from [28]. The ME block was 
converted to bytes for compatibility with the library. A 256-bit key and a 
128-bit nonce were used.

3. Transmission: Similar to that of FF3 from section 3.2.1.1.

3.2.3.2 AES-CTR ATC VM Implementation

The ATC VM received the encrypted messages and handled the decryption and 
validation processes as follows: 

1. Message Reception: The same 1,000 ADS-B messages were processed, 
similar to the process used in FF3 from section 3.2.1.2.

2. Decryption: The decryption process used the same AES-CTR cipher 
configuration as on the RP during encryption (256-bit key). After 
decryption, the key was converted back to hex to preserve its format.

3. Message Reconstruction and Validation: Similar to that of FF3 from section 
3.2.1.2.

4. Message Decoding: Similar to that of FF3 from section 3.2.1.2.

3.3 Performance Evaluation Criteria

This section outlines the criteria used to evaluate the performance of the three 
selected FPE algorithms: FF3, FFX, and AES-CTR. Each metric forming this criteria 
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was chosen to assess the feasibility of implementing these algorithms on the RP 
embedded system, simulating an on-board encryption system, and on the Windows-
based ATC VM, simulating an ATC environment. The evaluation metrics included 
encryption and decryption times as well as the standard deviation of encryption 
times, CPU and memory usage, and the thermal behaviour of the RP. This 
performance evaluation served two purposes: to assess the selected embedded 
system in encrypting ADS-B messages, and to determine the most suitable FPE 
algorithm for encrypting ADS-B messages. The following sections describe the setup 
and methodology used for measuring each metric. Each performance metric 
discussed in this section was calculated using a dedicated script or set of scripts. For 
example, encryption and decryption times along with the standard deviation of 
encryption times were all measured separately using a single set of scripts, and CPU 
and memory usage metrics were measured through another set of scripts 
independently. This approach ensured accurate and independent measurements for 
each metric, without risking interference in measurements due to the recording of 
multiple metrics all at once. 

3.3.1 Encryption and Decryption Times

Encryption and decryption times are critical metrics in evaluating the latency 
introduced by the encryption process. As shown in Table 2, ADS-B messages are 
transmitted as frequently as every 0.5 seconds. Therefore, it is essential to ensure that 
encryption and decryption of the ME block do not introduce delays that could 
compromise the system’s performance. The RP handled the encryption time 
measurement, while the ATC VM handled the decryption time measurement. 

3.3.1.1 Encryption Time on the Raspberry Pi

The encryption time was measured on the RP during the encryption of the ME 
block of each ADS-B message. The Python library time.perf_counter was used to 
record the start and end times of the encryption, just before and just after the 
encryption function of each FPE algorithm. This was done for every one of the 1,000 
ADS-B messages. However, to simulate the transmission rate of a real aircraft, a 
delay of 0.5 seconds was introduced between each message. After each message was 
encrypted and the encryption time recorded, the encrypted ME block, the original 
ADS-B message, and the encryption time were transmitted to the ATC VM via TCP 
for further processing.
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3.3.1.2 Decryption Time on the ATC VM

On the ATC VM, the decryption time was measured using the same method as in 
encryption; when an encrypted ADS-B message was received, the ATC VM 
recorded the start time just before decryption, decrypted the message, then recorded 
the end time right after the decryption process ended. 

In addition to measuring decryption time, ATC VM also received the encryption 
time for each message from the RP. The encryption times, decryption times, and total 
time were all recorded in a CSV file for analysis. This was done for all 1,000 
messages from the log. 

3.3.1.3 Standard Deviation of Encryption Times

In addition to the encryption and decryption times, the standard deviation of the 
encryption time was also calculated to measure the variability in the time taken to 
encrypt ADS-B messages. A low standard deviation is desirable for maintaining 
consistent message delivery, as it ensures that the encryption process done by the 
embedded system does not introduce significant variability, which would impact 
system performance in a real-world deployment. 

The standard deviation of encryption was calculated on the ATC VM by using the 
statistics.stdev function in Python with all the encryption times received from 
the RP. To ensure the reliability of this metric, the experiment was executed 25 
times, which resulted in 25 values of standard deviation. The final standard deviation 
value of encryption time was calculated as the average of these 25 values. 

3.3.2 CPU and Memory Usage

The CPU and memory usage were recorded to evaluate the computational 
overhead introduced by the encryption process on RP. These metrics are important 
for evaluating the feasibility of using the selected embedded system for encrypting 
ADS-B messages using an FPE algorithm. The CPU and memory usage 
measurements were only done on the RP during the encryption phase; the ATC VM 
was not involved in these measurements. This is justifiable because the system 
design assumed that the ATC equipment would have sufficient computational 
resources to handle the decryption of FPE algorithms.

The CPU usage was measured using the resource Python library to capture both 
user and system times of the encryption process on the RP. The user time represents 
the total time spent executing the encryption logic, while the system time represents 
the total time spent executing in kernel mode to support the encryption process [29]. 
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The script recorded both the user and system times at the beginning and at the end of 
the encryption process. The difference between these two values provided the total 
CPU time used for encrypting all 1,000 ADS-B messages. Also, the runtime was 
recorded to allow the calculation of CPU utilization as a percentage of single-core 
capacity by dividing the total CPU time by the total runtime. This procedure was 
executed 25 times, and the final CPU usage value was calculated as the average of 
these 25 measurements. 

Memory usage was recorded using the psutil Python library using the 
memory_info().rss function, which returns the memory the encryption process has 
used [30]. During the encryption of each ADS-B message, the script checked the 
current memory usage value and updated the peak memory usage value if the current 
value exceeded the previous peak. This ensures that the peak memory used during 
the entire encryption process is recorded. The peak memory was captured in 
megabytes (MB) and also displayed as a percentage of the total system memory. 
Similar to the CPU measurement, this procedure was executed 25 times, and the final 
memory usage value was calculated as the average of these 25 measurements.

3.3.3 Thermal Behaviour of the Raspberry Pi

The thermal behaviour of the RP during encryption was evaluated to ensure the 
selected embedded system could sustain the continuous encryption operations 
without overheating. Excessive heat could lead to failures and/or thermal throttling 
which would affect performance. This metric is important to measure, especially for 
a device intended to be installed on aircraft.

To ensure accurate temperature measurements, the RP was first powered on and 
left to idle without any load for 60 minutes to allow the temperature to stabilize. 
Additionally, before starting temperature monitoring, the RP was confirmed to be at 
room temperature. For each FPE algorithm, a Python script was executed on the RP 
to encrypt ADS-B messages continuously without delay. The script simulated an 
extreme case of load by encrypting 1,000,000 ADS-B messages as quickly as the RP 
could do so while measuring the RP CPU temperature every second. The 1,000,000 
messages were sourced by repeating the 1,000 messages from the ADS-B log file. 
Each temperature reading was logged to a CSV file along with corresponding 
timestamps and the message count for later analysis. This experiment was conducted 
at room temperature and all FPE algorithms were tested in the same manner (ensure 
RP is at room temperature, power on and idle for 60 minutes, then encrypt 1,000,000 
messages while recording the temperature every second). The temperature of the RP 
CPU was recorded using the get_cpu_temperature() function. All measurements 
were done exclusively on the RP; the ATC VM was not involved in the temperature 
monitoring. 
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3.4 Key Management and Distribution

KMD is a challenge with many symmetric encryption algorithms, including in the 
proposed solution of using an FPE algorithm. The experimentation or testing on a 
KMD solution is outside the scope of this work, but this section does present a 
conceptual framework for addressing KMD using a hybrid encryption model and 
also explores the potential of leveraging existing aviation communication systems for 
the distribution of encryption keys securely.

3.4.1 Hybrid Encryption Model

The hybrid encryption model proposed to solve the KMD challenge is similar to 
the encryption model used in [19], known as the SIBE, with one key difference. 
After relying on asymmetric encryption to exchange the symmetric key, SIBE 
proposes the use of AES-128 to encrypt the ADS-B messages. The issues with using 
AES-128 have already been outlined in section 2.5, which was the need to use two 
ADS-B messages to transmit information required in one. The proposed embedded 
system could alleviate this issue by the use of an FPE algorithm. 

Similar to the SIBE, in this hybrid framework, each ATC would have a public-
private key pair, and the public keys would all be preloaded on all aircraft via the 
Flight Management System (FMS) as explained in [19]. When an aircraft enters an 
airspace managed by a certain ATC, the aircraft, more specifically the RP, generates 
a symmetric key and encrypts it using the ATC’s public key. The encrypted session 
key is then transmitted to that ATC, which decrypts it using its private key. One 
viable channel for key transmission is the Aircraft Communications Addressing and 
Reporting System (ACARS), which is described in section 3.4.2. The session key, 
which is now shared with ATC, would then be used by the RP to encrypt ADS-B 
messages using an FPE algorithm as demonstrated earlier. The ATC, now in 
possession of the decrypted key, would be able to decrypt all ADS-B messages. This 
process can be repeated as the aircraft enters other airspaces managed by other ATCs 
until the aircraft lands. 

The use of this hybrid asymmetric-symmetric encryption model addresses the 
challenge of KMD. By having the embedded system randomly generate a new 
session key each time it enters a new airspace, and by safeguarding all private keys, 
the framework mitigates the risks of key compromise.

3.4.2 Leveraging Aircraft Communication Systems

Another possible solution to the KMD challenge is the use of existing/new 
aircraft communication systems to securely distribute keys from aircraft to ATC. 
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Systems such as the Aircraft Communications Addressing and Reporting System 
(ACARS) and satellite internet may be viable solutions for the distribution of 
encryption keys.

ACARS is a data link protocol that provides communication between aircraft and 
ground stations [31]. The communications include sharing weather updates, flight 
plans, and maintenance reports. ACARS messages are sent over Very High 
Frequency (VHF) or via Satellite Communication (SATCOM), which are susceptible 
to interception and security breaches. However, ACARS over IP (AoIP) has been 
introduced as a more secure alternative [32]. AoIP transmits ACARS messages over 
packets, which are transmitted over broadband cellular or satellite networks with 
enhanced encryption and Virtual Private Network (VPN) capabilities. This makes 
AoIP a viable solution for the secure transmission of the encryption keys used by the 
on-board embedded system for the encryption of ADS-B messages. 

Satellite internet is another viable solution for the secure transmission of 
encryption keys. A key player in satellite internet networks is Starlink, which 
operates thousands of satellites in low-earth orbit (550 km) [33]. This allows Starlink 
to achieve lower latency (25 ms) compared to other satellite internet operators, who 
generally operate their satellites in geostationary orbit (35,786 km). Starlink already 
provides/will provide internet services to several airlines, including United Airlines, 
Air France, Air New Zealand, and Qatar Airways [34]. An aircraft using the 
proposed embedded system to encrypt ADS-B messages could utilize Starlink’s 
high-speed, low-latency internet connection to transmit the encryption key to ATC.

3.5 Summary

This chapter outlined the methodology used to evaluate the feasibility of 
implementing FPE on ADS-B messages. The system was designed to simulate real-
world conditions as closely as possible, using an RP as the embedded computer and a 
virtual ATC environment for decryption and validation. The experimental workflow 
ensured a controlled evaluation of the three FPE algorithms while key performance 
metrics provided details into their computational impact on the RP. Despite the 
limitations outlined in section 3.1.4, the methodology demonstrates a practical 
approach to enhancing ADS-B integrity without altering its structure. 
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4 Results and Discussion

This chapter presents the performance analysis and security evaluation of the 
proposed solution for enhancing ADS-B integrity using FPE. It begins with an 
assessment of how well the encryption algorithms preserve the format of ADS-B 
messages and their ability to support accurate message decoding. The chapter then 
evaluates the effectiveness of the solution in protecting against eavesdropping, 
message injection, and message modification attacks. Performance metrics such as 
encryption and decryption times, CPU and memory usage, and thermal behaviour are 
analyzed to determine the computational feasibility of implementing FPE in an RP. 
Finally, a security analysis of the three FPE algorithms is provided, followed by a 
discussion on challenges related to real-world implementation in the aviation 
industry.

4.1 Performance Analysis of FPE Algorithms

4.1.1 Format Preservation and Decoding

All three FPE algorithms – FF3, FFX, and AES-CTR – were successful in 
preserving the length/format of the ME blocks throughout the encryption and 
decryption processes. This was confirmed by comparing the decrypted ADS-B 
message by ATC VM with the original unencrypted ADS-B message to see if they 
were identical. All 1,000 messages passed this validation check for all three FPE 
algorithms. 

Additionally, the preserved format of the ADS-B message enabled the proper 
decoding of all ADS-B messages using the pyModeS Python library in [26], which 
only decodes correctly formatted ADS-B messages. Decoding ADS-B messages 
extracts aircraft parameters such as aircraft callsign, speed, and position. As shown in 
Figure 14, the encrypted ME block (in decimal to satisfy the FF3 library 
requirements) gets decrypted and converted back to a hexadecimal string. Once 
reconstructed with the rest of the ADS-B message, it is compared with the original 
ADS-B message, and the validation check passes if the two are identical. The sample 
ADS-B message shown in Figure 14 shows a decoded message containing the 
callsign CGBLQ. All 1,000 messages were successfully and correctly decoded after 
being decrypted using all three FPE algorithms.
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4.1.2 Validation of ADS-B Integrity Protection

To validate whether the proposed solution enhanced the integrity of ADS-B, the 
integrity of the proposed system was evaluated through targeted attack simulations. 
These simulations were designed to validate the system’s ability to reject fabricated 
or tampered messages i.e. protection against message injection and modification 
attacks. 

As explained in section 2.3.3.1, a message injection attack involves transmitting 
fabricated ADS-B messages to simulate non-existent aircraft, thereby compromising 
air traffic data [15]. To evaluate the ability of the proposed solution to protect against 
this type of attack, two ADS-B messages were transmitted to the ATC VM without 
encryption. The assumption here is that an attacker would not be aware of the 
encryption key. The two ADS-B messages used in this simulation were collected 
from the ADS-B log file of 1,000 messages. They were legitimate and correctly 
formatted ADS-B messages that would have been decoded correctly when using the 
pyModeS library. However, since the ATC VM was setup to first decrypt the ADS-B 
message before decoding it, the injection attack failed. 

The results, shown in Figure 15, demonstrate that the decryption process failed 
for both injected messages. The first message resulted in an error because the 
received ME block contained a non-decimal character ‘c’, and the second message 
failed because its type code ‘0’ is not a valid type code. Both errors were due to 
decrypting a non-encrypted ADS-B message.
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Similarly, the proposed solution also successfully protected against message 
modification attacks, which modify messages from aircraft before they are received 
by ADS-B In [3]. This test was conducted by having the RP script encrypt an ADS-B 
message as designed, but then modify some characters in the encrypted ME block 
before transmitting the messages to the ATC VM, simulating a message modification 
attack. Once the message is received by the ATC VM, it attempts to decrypt and 
decode it. However, as shown in Figure 16, it fails to do so since the modification 
either introduced invalid characters or resulted in an improperly formatted ADS-B 
message for decoding. Additionally, even if the decryption and decoding process had 
succeeded, the modification would have resulted in a failed validation check which 
would have discarded the message. A sample output of the message modification 
simulation is shown in Figure 16.

The results of the message injection and modification attacks show that the 
proposed solution is successful in enhancing the ADS-B integrity. Fabricated or 
modified messages are easily rejected by the proposed solution which could also 
alert the ATC to such errors, possibly indicating an attack. The applied FPE 
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Figure 15: Output of message injection attack with proposed solution

Figure 16: Output of message modification attack with proposed solution



algorithms for ADS-B messages also have the added benefit of protecting against 
eavesdropping attacks, though this is not the main purpose of the proposed solution.

4.1.3 Encryption and Decryption Times

As discussed in section 3.3.1, encryption and decryption times are critical metrics 
to measure to assess the feasibility of the FPE algorithms for ADS-B systems. ADS-
B messages are transmitted as often as every 0.5 seconds so any delay introduced by 
the encryption or decryption processes must not impact this transmission frequency. 

The encryption and decryption times for FF3, FFX, and AES-CTR were 
evaluated over 1,000 ADS-B messages with an introduced inter-message delay of 0.5 
seconds to simulate a real-world ADS-B system. After encrypting each ME block, 
the reconstructed ADS-B message, now with an encrypted ME block, was 
transmitted to the ATC VM for decryption. Results of the encryption times on the RP 
are shown in Figure 17 and the results of the decryption times on the ATC VM are 
shown in Figure 18. Additionally, Figure 19 shows the combined encryption and 
decryption times. 
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Figure 17: Encryption time with 0.5 s delay on the RP using all three FPE algorithms
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Figure 19: Combined encryption and decryption time with 0.5 s delay using all three FPE algorithms

Figure 18: Decryption time with 0.5 s delay on the ATC VM using all three FPE algorithms



Figure 17 shows that using AES-CTR resulted in the lowest encryption time with 
an average encryption time of 0.09 ms, while FFX resulted in an average of 0.18 ms 
and FF3 resulted in the highest encryption time with an average of 0.19 ms. Similar 
results can be seen for decryption times, where AES-CTR resulted in the lowest 
times with an average of 0.11 ms, followed by FFX with an average of 0.15 ms and 
finally FF3 with the highest decryption time with an average of 0.21 ms. 
Additionally, both FF3 and AES-CTR resulted in some variability where some 
encryption times were as high as 0.36 ms and 0.19 ms, respectively. The results are 
summarized in Table 5.

Table 5: Summary of encryption, decryption, and combined times for FF3, FFX, and AES-CTR

FPE 
Algorithm

Average 
Encryption 
Time (ms)

Average 
Decryption Time 

(ms)

Average 
Combined Time 

(ms)

Max Combined 
Time (ms)

FF3 0.19 0.21 0.41 1.30

FFX 0.17 0.15 0.33 0.57

AES-CTR 0.09 0.11 0.20 0.46

The standard deviation of encryption times was also calculated for all FPE 
algorithms and the results are shown in Figure 20. FFX resulted in the least standard 
deviation of 0.012 ms, while FF3 resulted in the highest standard deviation of 0.017 
ms. However, the differences between all three are negligible and all resulted in very 
low encryption time variability given the highest transmission frequency of ADS-B 
of 2 Hz (0.5 seconds). 

As shown in Table 2, there could be times where multiple ADS-B messages are 
transmitted at the same time. In the worst-case scenario, an aircraft may 
simultaneously transmit up to six different ADS-B messages: Aircraft Identification, 
Airborne Position, Airborne Velocity, Aircraft Status, Target States and Status, and 
Operational Status messages. Using the maximum combined time from Table 5 
(achieved by FF3 at 1.30 ms), the worst-case scenario where six messages are 
transmitted within the same 500 ms period would be 7.8 ms. This would account for 
a 1.56% increase to the processing time. This scenario represents the absolute worst 
case as it not only assumes the highest recorded encryption and decryption time but 
also considers the worst-performing FPE algorithm (FF3) and aligns with the ADS-B 
Out system transmitting the maximum number of messages simultaneously. 
However, this scenario is uncommon and a more realistic scenario would result in an 
even lower encryption and decryption overhead, making the time introduced by the 
encryption and decryption processes negligible. 
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The results confirm that AES-CTR is the most efficient algorithm in terms of 
encryption and decryption times, making it the most suitable FPE algorithm for 
encrypting ADS-B messages. That said, both FF3 and FFX also did well in terms of 
encryption/decryption times. The results of the standard deviation of encryption 
times were also very similar for all three FPE algorithms. Therefore, any of the three 
tested FPE algorithms would be an acceptable solution for encrypting ADS-B 
messages. 

4.1.4 CPU and Memory Usage

Evaluating the CPU and memory usage is important for determining the 
computational demands of the FPE algorithms when implemented on the selected 
embedded system. The results of the CPU usage are shown in Figure 21. They show 
that all three FPE algorithms performed similarly with AES-CTR using the least 
CPU resources at 24.58% while FF3 and FFX used 24.96% and 25.0%, respectively. 
The results indicate that the encryption process runs on a single core while the RP 
used is a quad-core computer. This confirms that the encryption workload is 
primarily CPU-bound rather than memory-bound, but does not saturate the entire 
processor. The marginally lower CPU utilization of AES-CTR aligns with the 
observed encryption and decryption time results discussed in section 4.1.3. We 
therefore conclude that all three FPE algorithms are suitable for ADS-B message 
encryption using the selected embedded system. Figure 22 shows the memory usage 
results for all three FPE algorithms. Again, all algorithms used little memory making 
any of them suitable for encrypting ADS-B messages using the selected embedded 
system. 
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Figure 20: Standard deviation of encryption times for all three FPE algorithms
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Figure 21: RP CPU usage of all three FPE algorithms

Figure 22: RP memory usage of all three FPE algorithms



4.1.5 Thermal Behaviour of RP

As explained in section 3.3.3, the temperature of the RP CPU was measured 
during a stress test where each FPE algorithm was used to encrypt 1,000,000 ADS-B 
messages after having the RP idle for 60 minutes to get a stable baseline temperature. 
Encrypting 1,000,000 messages only took approximately nine minutes for each FPE 
algorithm. As shown in Figure 23, the three FPE algorithms performed similarly, 
with AES-CTR resulting in the lowest maximum temperature of 81.8°C, followed by 
FFX and FF3 with a maximum CPU temperature of 85.1°C and 85.6°C, respectively. 

According to [35], the Arm Coretx A76 CPU on the RP begins thermal throttling 
at 80°C and reaches severe throttling at 85°C. This can affect the RP’s performance 
by reducing the CPU speeds from 2.4 GHz to about 1.5 GHz, potentially impacting 
the RP’s performance in encrypting and transmitting ADS-B messages. However, it 
is important to note that this test was designed to push the RP far beyond what it 
would realistically experience in an operational setting. In an actual deployment, the 
RP would encrypt and transmit ADS-B messages at a much lower rate, resulting in a 
significantly lower computation load and, therefore, lower peak temperatures. 
Consequently, the thermal test conducted above should not be interpreted as a 
representation of operational conditions. Instead, this test serves as an initial 
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Figure 23: Thermal performance of RP during stress test for all three FPE algorithms



exploration of the RP’s temperature response under extreme loads and highlights the 
need for further study under more realistic conditions. 

4.2 Security Analysis of FPE Algorithms

This section provides a qualitative security analysis of the three FPE algorithms 
used in this thesis: FF3, FFX, and AES-CTR. The analysis is based on existing 
literature rather than the conduct of specific experiments. The section discusses 
security characteristics, advantages, and potential vulnerabilities of these algorithms. 

4.2.1 FF3

As discussed in sections 2.6.1 and 3.2.1, a 256-bit key was used along with a 64-
bit tweak and eight Feistel rounds. According to Agbeyibor et al., FF3 builds on AES 
as its core block cipher, like other FPE algorithms [21]. Therefore, its cryptographic 
strength is closely tied to AES. The publication at [21] showed that all three NIST-
recommended FPE algorithms (FF1, FF2, and FF3) demonstrate high ciphertext 
entropy and no major exploitable weaknesses. 

One difference of FF3 when compared to other FPE algorithms is the use of an 
eight-round Feistel structure, which is fewer than the number of rounds used in FF1 
and FF2. Consequently, Agbeyibor et al. saw that FF3 required the least hardware 
resources and offered faster encryption compared to FF1 and FF2. Despite its fewer 
rounds, FF3 also achieved comparable entropy to the other FPE algorithms. 

4.2.2 FFX

As discussed in sections 2.6.2 and 3.2.2, a 256-bit key was used with 10 Feistel 
rounds and without any tweak. Given these parameters, the FFX implementation 
mimics the behaviour of FF1 which also uses 10 Feistel rounds and no tweak. 
Therefore, the findings in [21] on FF1 are relevant to the FFX implementation in this 
thesis. In theory, using 10 rounds in FF1 should offer more resilience against attacks 
than eight rounds, though the results in [21] showed that the entropy when using FF1 
and FF3 were almost identical. However, the results also showed that FF1 is the 
slowest of the three NIST-recommended algorithms, while still respecting the timing 
requirements of the ADS-B protocol.

4.2.3 AES-CTR

As explained in section 2.6.3, AES-CTR is not a true FPE algorithm but it does 
preserve the format for smaller data blocks, such as the ME block which is 56 bits. 
Ketata et al. highlighted how AES-CTR can be efficiently parallelized in software 
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underscoring its high throughput and relatively low computational overhead when 
used on multi-core systems [36]. However, the literature also discusses several 
considerations when using AES-CTR.

One limitation of AES-CTR is its inability to provide authenticity or integrity 
checks on its own [37]. This is because the CTR mode transforms AES into a stream 
cipher, which means that any malicious modifications of the ciphertext can be 
undetected unless the implementation is combined with a separate MAC or digital 
signature. However, as was discussed in section 4.1.2, any modification to the 
encrypted ADS-B message should result in an error when ATC tries to decrypt and 
decode the message. Hence, ADS-B integrity is still protected when using AES-
CTR.

Another limitation of AES-CTR is reusing the same nonce and counter 
combination under the same encryption key [37]. Reusing the same combination 
could allow an attacker to detect repeating keystream segments and recover plaintext 
data. This highlights the importance of robust KMD as well as nonce/tweak and key 
generation to mitigate this vulnerability. 

4.3 Implementation Challenges

While the proposed embedded system solution enhances the integrity of ADS-B 
by encrypting ADS-B messages using an FPE algorithm, there are still some 
challenges in implementing this solution in a real-world aviation environment. These 
challenges include regulatory, financial, and operational considerations that will be 
discussed in this section.

4.3.1 Regulatory and Certification Challenges

The aviation industry is one of the most regulated industries worldwide, with 
national and international aviation authorities such as Transport Canada, the FAA, 
and ICAO enforcing certification requirements [38]. Therefore, proposing the 
installation of new hardware and software requires comprehensive design reviews, 
documentation, and formal testing. These factors, in addition to the delays associated 
with this process, might discourage the airline industry from upgrading the ADS-B 
system, especially when protecting its integrity is not mandated. 

4.3.2 Financial and Operational Constraints

The airline industry might also be discouraged by this proposed solution due to 
the added financial and operational burdens. Even though the hardware proposed is 
of relatively low cost, it does not account for the cost of the required research, 
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development, acquisitions, installation, and aircraft downtime. Additionally, the 
installed hardware and software will require maintenance staff training and changes 
to maintenance procedures and documentation. Upgrades to ATC and training for 
ATC personnel would also be required.

From an operational perspective, the industry must also consider a mechanism to 
deal with embedded system failure to encrypt messages, such as reverting back to 
transmitting unencrypted ADS-B messages. In such a case, the aircraft system would 
need to fail safe and notify ATC to also discontinue the decryption process (with the 
use of a flag in the ADS-B message for example). A similar safeguard mechanism 
must exist if the decryption hardware or software fails, ensuring that air traffic 
management is not compromised. These mechanisms must occur automatically with 
minimal human intervention to have the least impact on air traffic management.

Despite these regulatory, financial, and operational challenges, the proposed 
solution demonstrates that FPE can be implemented efficiently on a low-cost 
embedded computer such as the RP without altering the structure of ADS-B 
messages. This makes the proposed solution viable for enhancing ADS-B integrity. 
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5 Conclusion

5.1 Recommendations for Future Work

This thesis focused specifically on the ME Extraction and Encryption Module of 
the in-line device. The complete in-line device described in section 3.1.1 includes 
additional components such as the ADC, Reassembler, Checksum Calculator, and 
DAC which were not part of the experimental setup. As a result, the potential 
processing time added by these components was not accounted for in the evaluation. 
Future research should focus on integrating and testing these components to assess 
the feasibility of a fully operational system. 

The results shown in this thesis were based on experiments conducted in a 
laboratory environment using an RP and an ATC VM simulating an ATC receiver. 
Future studies could conduct real-world trials involving live ADS-B transmissions on 
an actual aircraft, or replicate the setup in a laboratory using aircraft and ATC 
equipment. Such trials would mimic a real-world application and introduce 
environmental factors such as radio frequency interference and distance limitations 
which would provide more accurate results on how the encryption system behaves 
under real operational conditions. 

While the thermal performance of the RP was evaluated under extreme 
conditions, a more detailed analysis is needed to fully characterize its thermal 
performance under realistic operating conditions. Future work should investigate the 
RP’s temperature response under expected ADS-B transmission rates in a controlled 
environment. This is especially important when considering that the RP would be 
fitted onboard an aircraft, likely in the avionics bay, where the ambient temperature 
would be higher than room temperature due to all the other avionics emitting heat. 
Understanding the RP’s thermal characteristics in such an environment is essential 
for assessing its long-term stability for real-world ADS-B encryption. 

The thesis focused on three FPE algorithms: FF3, FFX, and AES-CTR. Future 
studies could examine other FPE variants, such as FF1 or FF2, or develop a novel 
asymmetric FPE algorithm. An asymmetric FPE algorithm would solve the KMD 
challenge by relying on public/private keys instead of a shared encryption key while 
preserving the format and length of ADS-B messages as to not require major 
alterations to the current ADS-B framework. 
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5.2 Summary of Findings

This research demonstrates that enhancing ADS-B integrity through FPE can be 
accomplished with minimal disruption to existing aviation infrastructure. By placing 
an embedded system, such as the proposed RP, between the ADS-B equipment in the 
aircraft and the ADS-B antenna, the ME blocks of ADS-B messages were 
successfully encrypted without altering their format or length. On the receiving end, 
ATC was also successful in decrypting and decoding the encrypted ADS-B 
messages. Three encryption algorithms – FF3, FFX, and AES-CTR – were 
implemented and evaluated for encryption/decryption time, standard deviation of 
encryption times, CPU and memory usage, and thermal behaviour on the selected 
embedded system.

All tested FPE algorithms successfully preserved the structure of ADS-B 
messages, ensuring that existing decoding software (such as the pyModeS library) 
could decode the decrypted data. Additionally, the proposed solution was successful 
in enhancing ADS-B integrity by simulating message injection and modification 
attacks. In these attacks, non-encrypted messages that were injected and modified 
messages failed to decrypt or validate correctly. The proposed solution also protects 
against eavesdropping due to the added encryption. Table 6 demonstrates the attacks 
mitigated by the proposed FPE solution while maintaining a relatively low-medium 
implementation difficulty compared to other cryptographic solutions.

The performance metrics measured using the selected embedded system included 
encryption and decryption times, CPU and memory usage, and thermal behaviour of 
the RP. For encryption and decryption times, all three algorithms resulted in minimal 
latency, with AES-CTR having the least encryption and decryption times, followed 
closely by FFX and FF3. Even in the worst case, the maximum combined encryption 
and decryption time was 1.3 ms, which is negligible compared to the highest ADS-B 
message transmission rate of every 0.5 seconds. The RP’s CPU and memory usage 
was within acceptable ranges for all three algorithms. As for the thermal behaviour 
of the RP, it never failed to encrypt messages during the stress test of encrypting 
1,000,000 messages.
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From a security evaluation perspective, FF3, FFX, and AES-CTR all 
demonstrated strong cryptographic properties. The aim of this thesis was to propose 
a solution that enhances the integrity of ADS-B messages using FPE while 
respecting the structure and transmission constraints of the ADS-B protocol and 
ensuring it can be implemented on an embedded computer. The results of this work 
confirm that this aim was met. The proposed encryption system successfully 
protected ADS-B messages against injections and mortification attacks while 
maintaining compatibility with existing decoding tools. Additionally, the 
performance evaluation demonstrated that the selected embedded system could 
handle the encryption workload without introducing significant latency, making this 
solution practical for real-world deployment. 
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vulnerabilities and implementation difficulty
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