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Abstract

Accurate positioning is crucial for the safe operation of autonomous vehicles,
particularly in urban environments where Global Navigation Satellite System
(GNSS) signals are degraded due to signal blockages, multipath errors, and
environmental obstructions. Inertial Navigation Systems (INS) can provide
an alternative positioning solution when GNSS is unreliable by integrating
measurements from Inertial Measurement Units (IMUs) to determine the ve-
hicle position, velocity, and attitude. However, low-cost and commercial-
grade IMUs found in land vehicles suffer from inherent inertial sensor errors,
including bias drift and scale factor instability. These errors cause INS to
be reliable only over the short term and require external corrections to re-
main reliable over mid- to long-term GNSS outages. Exteroceptive sensors
such as cameras, lidar, and radar can enhance positioning by providing ad-
ditional environmental references. Among these, automotive radar operating
at 77 GHz is advantageous due to its resilience to adverse weather and vary-
ing lighting conditions, as well as its ability to provide radar cross-section
(RCS) and Doppler velocity measurements. In particular, positioning sys-
tems based on registering radar scans to prior maps of the environment have
shown promise as an alternative positioning solution. However, radar-based
positioning presents challenges, as low-cost automotive radars are suscepti-
ble to noise, ghost detections, and a limited number of detections per scan, all
factors which can potentially degrade the performance of radar-based posi-
tioning algorithms. This study develops radar point cloud filtering techniques
designed to remove dynamic objects and noise from radar data, thereby im-
proving the accuracy of radar scan-to-map registration. The point cloud pre-
processing techniques developed in this work employ machine learning and
classical filtering techniques, such as velocity-based filtering, geometric clus-
tering, and support vector machine (SVM) classification, to enhance the static
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environment detected by the radar using Doppler, RCS, and positional infor-
mation. Furthermore, the study evaluates the performance of two state es-
timation techniques, the Error State Extended Kalman Filter (ES-EKF) and
the Unscented Kalman Filter (UKF), across multiple real-world urban driv-
ing scenarios, analyzing their robustness and accuracy. Experimental results
demonstrate that the proposed filtering approach improves radar-based posi-
tioning in urban environments, improving the reliability of autonomous vehi-
cle navigation in Urban and GNSS-denied conditions.
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Résumé

Un positionnement précis est essentiel pour assurer la sécurité des véhicules
autonomes, en particulier dans les environnements urbains où les signaux
du Global Navigation Satellite System (GNSS) sont dégradés en raison des
obstructions, des erreurs de trajets multiples et des interférences environ-
nementales. Les systèmes de navigation inertielle (INS) offrent une solu-
tion alternative lorsque le GNSS est indisponible, en intégrant les mesures
des unités de mesure inertielle (IMU) pour estimer la position, la vitesse
et l’orientation du véhicule. Cependant, les IMU à bas coût et de qualité
commerciale, couramment utilisées dans les véhicules terrestres, souffrent
d’erreurs inhérentes aux capteurs inertiels, notamment la dérive du biais et
l’instabilité du facteur d’échelle. Ces erreurs rendent les INS fiables unique-
ment à court terme, nécessitant des corrections externes pour maintenir leur
précision lors d’interruptions du GNSS de moyenne à longue durée. Les cap-
teurs extéroceptifs, tels que les caméras, le lidar et le radar, peuvent améliorer
le positionnement en fournissant des références environnementales supplémentaires.
Parmi eux, le radar automobile fonctionnant à 77 GHz présente plusieurs
avantages, notamment sa résistance aux conditions météorologiques défavorables
et aux variations de luminosité, ainsi que sa capacité à fournir des mesures de
section efficace radar (RCS) et de vitesse Doppler. En particulier, les systèmes
de positionnement basés sur l’enregistrement des scans radar avec des cartes
préexistantes de l’environnement se révèlent être une solution prometteuse
pour le positionnement autonome. Cependant, le positionnement basé sur le
radar présente plusieurs défis, car les radars automobiles à bas coût sont sensi-
bles au bruit, aux fausses détections (ghost detections) et à un nombre limité
de détections par balayage. Ces facteurs peuvent potentiellement dégrader
la performance des algorithmes de positionnement radar. Cette étude pro-
pose le développement de techniques de filtrage des nuages de points radar
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conçues pour éliminer les objets dynamiques et le bruit, améliorant ainsi la
précision de l’alignement des scans radar avec la carte de l’environnement.
Les techniques de prétraitement des nuages de points développées dans ce
travail combinent des approches classiques et de l’apprentissage automatique,
notamment le filtrage basé sur la vitesse, le clustering géométrique et la clas-
sification par machine à vecteurs de support (SVM). Ces méthodes permettent
d’améliorer la représentation de l’environnement statique détecté par le radar,
en exploitant les informations Doppler, RCS et de position. De plus, cette
étude évalue la performance de deux techniques d’estimation d’état, le fil-
tre de Kalman étendu en état d’erreur (ES-EKF) et le filtre de Kalman non
linéaire (UKF), à travers plusieurs scénarios réels de conduite urbaine, en
analysant leur robustesse et leur précision. Les résultats expérimentaux mon-
trent que l’approche de filtrage proposée améliore la précision du position-
nement radar en milieu urbain, renforçant ainsi la fiabilité de la navigation
des véhicules autonomes dans des environnements urbains et en l’absence de
GNSS.
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Chapter 1

Introduction

1.1 Background and Problem Statement

Autonomous vehicles (AVs) rely on accurate and robust positioning to ensure
safe navigation, particularly in urban environments where positioning uncer-
tainty can result in navigation errors and potential hazards. Positioning, the
process of determining a vehicle’s position and orientation within its envi-
ronment, is fundamental to path planning, obstacle avoidance, and decision-
making in AVs. Traditional positioning systems, such as those based on the
Global Navigation Satellite System (GNSS), are employed due to their global
coverage and ease of implementation. However, GNSS-based positioning
faces significant limitations in urban environments, where high-rise build-
ings, tunnels, and dense foliage can block or reflect satellite signals, leading
to multipath interference and degraded accuracy [1]. In such scenarios, GNSS
alone cannot provide the sub-meter positioning accuracy required for safe and
reliable autonomous navigation.

To address these limitations, Inertial Navigation Systems (INS) are often
integrated into vehicle positioning frameworks. INS relies on Inertial Mea-
surement Units (IMUs) encompassing three mutually orthogonal accelerome-
ters and gyroscopes, as well as other onboard motion sensors, such as vehicle
speedometers, to estimate vehicle motion through dead reckoning [1]. Al-
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though INS provides short-term positioning accuracy, it suffers from drift and
bias accumulation over time, necessitating external corrections to maintain
long-term reliability [2].

Exteroceptive sensors such as Lidars, cameras, and radar are increasingly
integrated into positioning systems to compensate for these challenges. Lidar-
based positioning offers high-resolution 3D mapping, but its performance de-
teriorates in adverse weather conditions such as rain and fog. Camera-based
positioning is cost-effective but suffers from low visibility in extreme lighting
conditions and environmental occlusions [3, 4, 5]. In contrast, automotive
radar operating around the 77 GHz range provides a robust alternative for po-
sitioning estimation in urban environments. Unlike Lidar and cameras, radar
is unaffected by lighting conditions and can operate in rain, fog, and dust
[6, 7]. Additionally, radar provides unique measurement capabilities, such as
Doppler velocity and Radar Cross-Section (RCS), which can be leveraged for
motion estimation and object classification.

Despite its advantages, radar-based positioning presents several challenges
that must be addressed to achieve reliable and accurate positioning. First,
radar generates a sparse point cloud compared to Lidar, making feature ex-
traction and map registration significantly more challenging [8, 9]. Second,
radar signals are prone to multipath interference and ghost detections, where
signals reflect off metallic surfaces, leading to false detections and degraded
positioning accuracy [7, 10]. These challenges highlight the need for ad-
vanced radar point cloud filtering techniques to refine radar data before it is
used in a radar-based positioning solution. Pre-processing the point cloud
enhances the representation of static environments, which is critical for accu-
rate map registration by removing dynamic objects and reducing noise. False
detections and moving objects in radar scans can lead to incorrect velocity
estimates and erroneous scan matching, introducing positioning errors. To
mitigate these issues, filtering techniques are necessary to refine radar data,
ensuring more accurate scan-to-map alignment and improving overall posi-
tioning reliability. This research explores pre-filtering techniques for remov-
ing noise and dynamic objects in urban environments to achieve robust and
accurate radar-based positioning.

Multi-sensor fusion further enhances positioning estimation robustness by
integrating radar with onboard motion sensors and map-based corrections.
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While Iterative Closest Point (ICP) algorithms are commonly used for scan
registration, their performance degrades when non-static detections introduce
registration errors. This research aims to improve map-matching accuracy,
reduce positioning drift, and enhance radar-based positioning reliability in
GNSS-denied urban environments through the development of advanced radar
filtering approaches.

1.2 Objectives

This research aims to improve radar-based positioning accuracy in urban en-
vironments by developing and evaluating the proposed radar point cloud fil-
tering techniques. It refines radar point clouds by removing noise, dynamic
objects, and non-landmark detections, thereby enhancing scan-to-map regis-
tration for vehicle positioning.

The specific objectives of this study are:

• Develop and evaluate classical and machine learning-based filtering
techniques to eliminate dynamic objects and noise from radar-generated
point clouds.

• Integrate filters into existing radar-based positioning algorithms and
evaluate positioning performance.

• Compare the performance of the existing Error State Extended Kalman
Filter (ES-EKF) algorithm with the developed Unscented Kalman Filter
(UKF) for fusing radars with vehicular onboard motion sensors.

• Analyze the impact of radar filtering on vehicle positioning in urban
environments utilizing vehicular road tests involving automotive radars
and IMUs.

By achieving these objectives, this research aims to enhance the robust-
ness and reliability of radar-based positioning, making it more suitable for
autonomous navigation in GNSS-denied urban environments.
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1.3 Thesis Contribution

This thesis contributes to addressing the challenges faced by radar-based po-
sitioning estimation for autonomous vehicles by integrating onboard motion
sensors with radar map registration, developing radar point cloud filtering
techniques, and comparing the performance of two sensor fusion algorithms:
ES-EKF and UKF. The contributions of this research are:

• Development of a Radar Point Cloud Filtering Framework: De-
velop velocity and geometric filters to remove dynamic detections and
noise and use machine learning-based classification to further refine
radar point clouds for map-matching algorithms.

• Integration of Radar Scan Pre-Processing Methods into Positioning
Algorithm: Filtering techniques are applied to an existing ICP-based
positioning framework, demonstrating their impact on trajectory esti-
mation accuracy.

• Validation on Real-World Urban Datasets: The proposed algorithms,
including radar point cloud filtering and sensor fusion using ES-EKF
and UKF, are validated on multiple urban trajectories, demonstrating
significant improvements in positioning performance compared to raw
radar point cloud data.

1.3.1 Thesis Outline

This thesis is structured as follows:

• Chapter 2: Literature Review - Discusses the challenges of GNSS-
based positioning in urban environments and reviews existing radar-
based positioning techniques, sensor fusion strategies, and radar point
cloud filtering methods.

• Chapter 3: Methodology - Presents the proposed radar filtering frame-
work, detailing the velocity filter, geometric filter, and SVM classifica-
tion approach, followed by a positioning solution using both ES-EKF
and UKF implementations.
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• Chapter 4: Results and Discussion - Analyzes the experimental find-
ings, discusses the limitations of each point cloud filter, and evaluates
their effectiveness. It also provides a comparative analysis of UKF and
ES-EKF positioning solutions for different urban trajectories.

• Chapter 5: Conclusion - Summarizes the key findings, discusses lim-
itations of radar-based positioning, and proposes future research direc-
tions for enhancing radar-based vehicle positioning.
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Chapter 2

Literature Review

2.1 Core Positioning Technologies for Land Vehi-
cles

Accurate vehicle positioning is essential for autonomous navigation, enabling
safe and reliable operation in various environments. Core positioning tech-
nologies for land vehicles include various methods, each having unique ad-
vantages and limitations. This section explores the primary techniques used
for vehicle positioning, including Global Navigation Satellite Systems, and
dead reckoning (DR). While GNSS provides absolute positioning, its perfor-
mance degrades in urban environments due to signal blockages and multipath
effects. Alternative solutions are offered by DR, to which category INS be-
longs, which estimate position states using onboard motion sensors but suffer
from cumulative drift in positioning errors over time.

2.1.1 Global Navigation Satellite Systems (GNSS)

GNSS is utilized for a broad range of positioning applications, with vehi-
cle positioning being one of the primary users. It is reliable for most condi-
tions, but its performance deteriorates in urban environments and is suscepti-
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ble to jamming. Jamming occurs when signals from GNSS satellites are over-
whelmed by stronger signals, effectively preventing the receiver from acquir-
ing or maintaining satellite lock, thereby degrading positioning accuracy. For
civilian applications, GNSS is accurate to 10 meters for most environmental
conditions [1]. However, this is considered insufficient for safe autonomous
driving.

GNSS Error Sources

In urban areas, GNSS positioning can be significantly impacted by the fol-
lowing errors [1]:

• Ionospheric and Tropospheric Error: The ionospheric and tropo-
spheric layers of the Earth’s atmosphere cause delays in the GNSS sig-
nals due to refraction, changing the signal’s transit time.

• Multipath Error: A major source of error in urban environments where
GPS signals take multiple paths to the receiver due to reflection off
high-rise buildings and other structures.

• Dilution of Precision: A measure of the geometric distribution of satel-
lites visible to the receiver, which, if unfavourable, can lead to inaccu-
rate position measurements.

GNSS Augmentation Methods

To improve accuracy and reliability, various augmentation techniques have
been developed to mitigate GNSS errors:

• Differential GPS: Uses a network of well-surveyed ground stations to
broadcast the error between GPS position and its known position.

• Wide Area Augmentation System (WAAS): Used by the US Federal
Aviation Administration to eliminate errors caused by ionospheric de-
lay to aid aviation navigation, requires additional geostationary satel-
lites.
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• Real Time Kinematic (RTK): Uses Ground stations to correct GPS
errors in real-time by measuring the carrier cycles. It is capable of
centimetre-level accuracy, but achieving this precision requires addi-
tional resources, like higher quality receivers and increased compu-
tational processing to handle real-time corrections. The receiver also
needs to be within range of a base station.

• Precise Point Positioning (PPP): Requires a network of ground sta-
tions to measure and generate a PPP solution, which depends on the
satellite clock and orbital corrections, and the solution is broadcast to
users via the internet.

The availability of augmented GNSS cannot be relied upon due to the
service’s cost and the range to a reference station. Additionally, if GNSS
signals are obstructed or absent, any form of augmentation methods would
also be absent.

2.1.2 Dead Reckoning (DR)

DR is a broad category of positioning methods that estimate a vehicle’s cur-
rent position based on a previously determined position, speed, and heading
direction. Unlike GNSS, which relies on external signals, DR methods are
an independent positioning systems that use onboard motion sensors such as
odometers and IMUs. While DR operates independently regardless of the
external environment, its accuracy deteriorates over time due to cumulative
sensor errors, necessitating error mitigation techniques.
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Figure 2.1: Dead Reckoning illustration

The fundamental principle of dead reckoning involves estimating a vehi-
cle’s position based on the previous location and motion parameters, shown
in Figure 2.1. The positional update at time k + 1 can be mathematically
described by:

xk+1 = xk + v∆t ∗ cosϕk ∗ cos θk (2.1)

yk+1 = yk + v∆t ∗ sinϕk ∗ cos θk (2.2)

zk+1 = zk + v∆t ∗ sin θk (2.3)

Where:

• xk, yk, zk are the vehicle’s coordinates at time k,

• ϕk is the heading direction,

• θk is the pitch angle,

• ∆t is the time difference between sampling periods,

• v is the velocity of the vehicle.
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For intelligent vehicle navigation, DR is a key component of local posi-
tioning systems. One approach utilizes a sensor fusion filter to correct odome-
ter errors, while a linear error model compensates for gyroscope drift [11].
The vehicle speed estimation is refined by fusing the odometer data with IMU
acceleration readings, reducing cumulative errors in position estimation.

Dead Reckoning Limitations

The main challenges faced by DR include:

• Sensor noise and biases: IMUs and odometers introduce errors that
grow over time.

• Wheel slip and environmental effects: Uneven terrain and slippage
will affect odometry accuracy.

• Lack of external reference: Unlike GNSS, DR lacks absolute posi-
tioning, requiring periodic corrections from external sources like map-
matching or GNSS when available.

2.2 Inertial Navigation Systems (INS) and Onboard
Motion Sensors

Onboard motion sensors, including odometry sensors, wheel encoders, and
vehicle speedometers, provide valuable proprioceptive data for vehicle po-
sitioning, particularly when integrated with an INS. An INS mounted on a
vehicle can estimate the position, velocity, acceleration, and heading using an
IMU [1]. The measurements are gathered by monitoring the linear and an-
gular acceleration observed by the IMU. The accelerometers and gyroscopes
measure the Earth’s gravitational and rotational forces, and the vehicle’s own
motion.

INS mechanization begins with attitude determination, where the gyro-
scopes measure angular rates around the roll, pitch, and yaw axes. These an-
gular rates are integrated over time to update the vehicle’s orientation. Once
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Figure 2.2: Inertial Navigation System Mechanization Flow
Chart

orientation is established, the velocity is updated by transforming the ac-
celerometer readings from the body to the navigation frame while compen-
sating for gravitational effects. The final step involves integrating velocity
over time to determine position changes, shown in Figure 2.2. This allows the
vehicle to estimate its trajectory without reliance on external signals. Over
time, small errors in gyroscope and accelerometer measurements accumulate,
leading to position drift that increases exponentially without external correc-
tions [1].

2.2.1 Reduced Inertial Sensor System (RISS)

To mitigate the high computational cost and hardware complexity of a full
INS, RISS provides a more practical alternative for land vehicle navigation.
Instead of using a full three-axis gyroscope setup, RISS simplifies the system
by replacing two gyroscopes with an odometer sensor, which provides direct
velocity measurements, shown in Figure 2.3. The system consists of three ac-
celerometers for measuring linear acceleration, a single gyroscope along the
z-axis for attitude estimation, and an odometer sensor that provides forward
velocity measurements. This configuration significantly reduces the number
of gyroscope error sources while maintaining sufficient accuracy for land ve-
hicle applications.
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Figure 2.3: Reduced Inertial Sensor System Flow Chart

One of the key advantages of RISS over a full INS is its ability to re-
duce drift accumulation. In a traditional INS, errors accumulate in all three
gyroscope axes, leading to rapid position degradation over time. By using
only a single gyroscope for yaw measurements and relying on odometry for
velocity estimation, RISS limits the rate at which angular drift grows. Addi-
tionally, instead of integrating acceleration to derive velocity, RISS directly
incorporates odometry readings, which are less prone to cumulative errors.
The critical difference is that instead of two integrations required to obtain
position updates, only one integration is needed. This also improves compu-
tational efficiency, as a full INS requires complex sensor fusion algorithms
to compensate for errors, simplifying the estimation process. The accelerom-
eters measure the gravitational force effect along the three axes, providing
pitch and roll, while the gyroscope measures the Earth’s rotation rate and the
vehicle’s turn rate to determine the azimuth. The odometer provides forward
velocity, which allows for continuous estimation of position, velocity, and
acceleration when integrated with other sensor data. However, long-term re-
liance on dead reckoning without external corrections leads to error growth,
making periodic updates from GNSS or map-based positioning necessary.

The procedure to transform the IMU measurements to obtain an updated
position and attitude estimate is given in the following equations.

Rl
b provides the transformation matrix from the body frame to the local
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level frame. It transforms sensor data from the vehicle’s coordinate system to
the local navigation frame.

Rl
b =

cos(y) cos(r)− sin(y) sin(p) sin(r) − sin(y) cos(p) cos(p) sin(r)
sin(y) cos(r) + cos(y) sin(p) sin(r) cos(y) cos(p) sin(p)

− cos(p) sin(r) sin(p) cos(p) cos(r)

 (2.4)

Where p is the pitch angle (rotation around the y-axis), r is the roll angle
(rotation around the x-axis), and y is the yaw angle (rotation about the z-axis).

The accelerations read by the accelerometers can be described by:fxfy
fz

 =

− cos(p) sin(r)
sin(p)

cos(p) cos(r)

 [
−g

]
= (Rl

b)
T

 0
0
−g

 (2.5)

Where fx, fy, and fz are the specific forces measured by the acceleration
along the body-frame, and g is the local gravitational acceleration. Rearrang-
ing the above equations provides the vehicle’s p and r.

The Azimuth or Yaw can then be obtained using the gyroscope’s measured
rate of turn, the Earth’s rotation, and the last known latitude:

Azi = −
(
cos(p) cos(r)ωz − ωe sin(ϕ)− Ve tan(ϕ)

R+h

)
= −Y aw (2.6)

Where Azi is the azimuth rate in the local level frame, wz is the yaw rate
measured by gyroscope, we is the Earth’s rotation rate, R is the Earth radius,
and h is the altitude above the Earth’s surface.

The vehicle’s speedometer data is transformed into velocities in the local
level frame below: Ve

Vn

Vu

 = Rl
b

 0
V(od)
0

 (2.7)

Once the velocity of the vehicle in the local level frame is known, the
changes in Latitude(ϕ̇), Longitude(λ̇), and Altitude(ḣ) can be determined:
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ϕ̇λ̇
ḣ

 =

 0 1
R+h

0
1

(R+h)cos(ϕ)
0 0

0 0 1

Ve

Vn

Vu

 = D−1V l (2.8)

For conversion to the cartesian coordinate frame:XY
Z

 =

 (RN + h) cosϕ cosλ
(RN + h) cosϕ sinλ

(RN(1− e2) + h) sinϕ

 (2.9)

where: RN is the normal radius and h is the elipsoidal height [1].

2.2.2 Common INS Error Sources

Common INS errors include [1]:

• Bias: Variations in gyroscope and accelerometer bias that accumulate
over time.

• Noise: Measurement noise that introduces random variations to the
measurements.

• Misalignment: If there is a misalignment between the axes of the IMU
and the body frame of the vehicle which is not properly calibrated, er-
rors will be present in the transformation of accelerations and velocities
from sensor to body frame.

• Integration: INS estimates position by integrating the acceleration
measurement twice, with the result that small biases become large po-
sitional errors over time.

2.3 Exteroceptive Sensors

Exteroceptive sensors provide environmental perception capabilities essential
for autonomous vehicle positioning and navigation. Unlike proprioceptive
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sensors, which measure internal motion and dynamics, exteroceptive sensors
gather external information about the vehicle’s surroundings. These sensors
include cameras, Lidar, and radar, each offering unique advantages and lim-
itations. Cameras capture high-resolution visual data for feature recognition
and object detection, while Lidar generates detailed 3D point clouds for pre-
cise mapping. Conversely, radar excels in all-weather conditions and provides
Doppler velocity measurements for motion estimation. By integrating these
sensors, situational awareness and positioning accuracy can be enhanced.

2.3.1 Camera

Cameras provide a cost-effective and widely available solution for vehicle po-
sitioning by capturing visual information from the surrounding environment.
Monocular and fisheye cameras are commonly used for positioning and map-
ping. A monocular camera-based vision system estimates vehicle position
by detecting key environmental features and comparing them to pre-existing
maps [12] or through Visual Odometry (VO), which tracks feature points be-
tween consecutive frames to estimate motion without requiring a prior map.
However, depth estimation with a single camera is challenging and requires
additional processing or stereo camera setups. Fisheye cameras are particu-
larly useful in constrained environments such as indoor parking lots, where
they offer wide-angle coverage for accurate vehicle tracking [13]. These sys-
tems use image segmentation and distortion correction techniques to improve
position estimation. Despite their advantages, camera-based positioning sys-
tems are highly sensitive to lighting conditions, occlusions, and dynamic en-
vironmental changes. Vision-based positioning is often combined with Lidar
or radar data to enhance accuracy, leveraging the strengths of each sensor to
improve overall positioning performance.

2.3.2 Light Detection and Ranging (Lidar)

Lidar is widely recognized for its high-precision environmental mapping ca-
pabilities. Lidar sensors generate dense 3D point clouds that enable accurate
positioning and obstacle detection. Unlike radar, which primarily measures
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range and velocity, Lidar provides detailed spatial information, allowing ve-
hicles to map and interpret their surroundings with centimetre-level accuracy.
Recent developments in Lidar-based positioning involve multi-sensor fusion
with inertial sensors and high-resolution 3D digital maps to enhance position-
ing accuracy [14]. This approach enables precise vehicle positioning in urban
environments where GNSS signals may be unreliable. Point cloud compres-
sion techniques further improve computational efficiency, making real-time
processing feasible for autonomous driving applications. Despite its high ac-
curacy, Lidar faces several challenges. The cost of Lidar sensors remains rel-
atively high compared to other positioning technologies, limiting widespread
adoption. Additionally, Lidar’s performance can degrade in adverse weather
conditions such as heavy rain or fog. Lidar is often used in conjunction with
radar and vision-based systems to mitigate these limitations and improve ro-
bustness.

2.3.3 Radar

Radar point cloud-based positioning methods have emerged as a robust method
for vehicle positioning, offering resilience in challenging environmental con-
ditions such as low visibility, fog, rain, and darkness [15]. Unlike Lidar and
camera-based approaches, radar sensors use radio waves, which penetrate
through obstructions like fog and precipitation, making them highly reliable
for all-weather positioning [16]. Automotive radar systems, primarily based
on Frequency-Modulated Continuous Wave (FMCW) technology, generate
point clouds by measuring the distance, velocity, and angle of surrounding
objects [15]. The radar transmits frequency-modulated signals, which reflect
off objects in the environment and return to the receiver. By analyzing the
time delay, frequency shift (Doppler effect), and phase differences of these
signals, the system constructs a sparse but informative point cloud represen-
tation of the vehicle’s surroundings [17].
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2.4 Radar-Based Positioning

Radar-based positioning has emerged as an alternative for vehicle position-
ing, particularly in GNSS-denied environments. Automotive radar systems
measure range, azimuth, Doppler velocity, and RCS, providing valuable mo-
tion and object classification data. However, radar-based positioning presents
challenges [18], including sparse point clouds, multipath reflections, and dy-
namic object interference, which must be addressed through filtering and sen-
sor fusion techniques.

Radar-Based Mapping and Positioning

To utilize radar point clouds for vehicle positioning, several processing steps
are applied:

1. Preprocessing and Filtering: The raw radar returns often contain noise
due to multipath reflections [16]. Signal processing techniques such as
thresholding, clustering, and outlier rejection are used to filter out irrel-
evant or spurious reflections.

2. Feature Extraction: Radar systems extract key environmental features
from the point cloud, such as road boundaries, static structures, and
moving objects. Unlike Lidar, which captures dense point clouds, radar
generates sparser but motion-sensitive data valuable for dynamic object
tracking [17].

3. Multi-Frame Integration: By integrating radar data over multiple frames,
a more comprehensive environmental model is built, improving spatial
consistency [16].

4. Registration and Map Matching: Radar point clouds can be matched
against prebuilt high-definition radar maps or combined with Simulta-
neous Localization And Mapping (SLAM) algorithms [17] to provide
positioning updates. Since radar is less affected by environmental vari-
ations, radar maps are highly stable over time, making them ideal for
long-term positioning.
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5. Sensor Fusion for Enhanced Localization: Radar point cloud map-
ping is often combined with Lidar, cameras, and inertial sensors to im-
prove positioning accuracy [14]. The system achieves robust and re-
dundant localization by integrating Lidar’s high-resolution spatial data,
camera-based feature recognition, and IMU/GNSS information.

2.4.1 Radar Odometry Techniques

RO is a method of estimating a vehicle’s motion to obtain updated positioning
estimates over time. The concept is to measure changes in position by ana-
lyzing radar data over consecutive scans. The changes in position can be de-
termined through different approaches, some of which involve using Doppler
velocity, and others rely on associating consecutive radar scans to identify the
translation and rotation.

Saussard et al. [19] proposed a method to estimate the vehicle’s 2D mo-
tion using radar odometry to enhance ego-motion estimation. The authors
highlighted the limitations of wheel-based odometry with wheel slip in ad-
verse environmental conditions. The proposed method uses two front-facing
FMCW radars mounted on the left and right corners of the vehicle to detect
objects. The algorithm includes data association, linear regression, and out-
lier rejection to determine the vehicle’s motion. The radar data is fused with
proprioceptive sensors to increase the vehicle’s position estimation accuracy.
Relative velocity must be taken from static objects to determine the vehicle’s
velocity.

Similar work has been done by Kellner et al. [6, 20]. The difference is
how they obtained the stationary targets. The unique solution for their method
is that the exact position and radar cross section (RCS) are not required to de-
tect stationary targets. They proposed that if the sensor moves, all stationary
objects have the same movement in the opposite direction. A Random Sam-
ple Consensus (RANSAC) algorithm is used to classify the stationary and
non-stationary objects as inliers and outliers, respectively. In each iteration
of the RANSAC algorithm, two targets are randomly chosen to determine the
sensor velocity Vs and heading direction α. The Vs, α are fitted to all radar
points to determine the best fit. After a certain amount of iterations, the best-
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fit model of Vs, α is taken to be the sensor’s velocity and heading angle. In
their experiment with standalone RO within a parking lot, they had an error
standard deviation (SD) of 0.029m/s for velocity and 0.56 deg/s. However,
this method yielded a less desirable result for an urban environment, resulting
in a velocity SD of 5m/s. The results show this method’s efficiency in con-
trolled conditions while showing that further enhancements must be made to
improve its functionality in diverse environments.

The typical process for determining the speed of the vehicle using an au-
tomotive radar mounted on the vehicle is described below.

When the radar point clouds are received, they contain the position in
cartesian coordinates relative to the sensor, angle, signal-to-noise ratio, Doppler
velocity, and elevation. Only the Doppler velocity and arrival angle are used.
Critically, only the information from static environmental objects contain use-
ful information for the estimation of the velocity of the vehicle.

The speed of the sensor, vs, mounted on the vehicle is the negative of the
relative velocity Vr of the static objects around the moving sensor. Thus, the
radial velocities of the static objects with respect to the sensor are equal to the
negative Doppler velocities which are measured by the radar.

−Vr = VD (2.10)

For a radar scan with N object detections, Equation 2.11 demonstrates the
relationship between detected radial velocities vr,N and the sensor’s motion in
the x and y directions, vsx, vsy. θ represents the azimuth angle of the detected
object relative to the vehicle.vr,1

...
vr,N

 =

 cos(θ1) sin(θ1)
...

...
cos(θN) sin(θN)

[
vsx
vsy

]
(2.11)

RANSAC can be used to solve Eq. 2.11 for the sensor velocities vsx
and vsy, represented in the vehicle frame. RANSAC will be successful in
resolving the sensor velocity if the largest velocity group belongs to static
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objects. This could fail, for example, if a large percentage of the radar’s
returns came from a fleet of vehicles moving at the same speed. Using the
Ackermann steering model, the sensor velocities can be transformed into the
vehicle frame:

vs =
√

v2sx + v2sy (2.12)

α = arctan (Vsy/Vsx) (2.13)

vx = −cos(α)vs and vy = −sin(α)vs (2.14)

v = (cos(α + β)− b

l
sin(α + β))vs (2.15)

ω =
sin(α + β)

l
vs (2.16)

In these equations, vx, and vy represent the vehicle’s velocity in the x and
y directions in the vehicle frame. v is the forward velocity of the vehicle,
and ω is its rate of turn. α is the azimuth angle of the sensor velocity in
the vehicle frame, β is the sensor’s mounting angle, l and b are the sensor’s
mounting position relative to the vehicle’s rear axle [21].

Kellner et al. [6] proposed a Doppler-based RO method that estimates
the vehicle’s velocity and yaw rate from a single radar scan. This method
leverages the radial velocities of detected objects within the radar’s field of
view. For accurate motion estimation, a sufficient number of detected objects
must be stationary, providing reliable reference points for determining the
vehicle’s motion.
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2.4.2 Map Registration

Iterative Closest Point (ICP), a foundational algorithm for point cloud regis-
tration, was first introduced by Besl and McKay [22]. The algorithm aligns
two point clouds by iteratively minimizing the difference between their corre-
sponding points. ICP can be used to provide position corrections by aligning
a pre-existing environmental map with a current radar or Lidar scan from the
vehicle as it travels through the environment. While ICP is robust in static and
controlled environments, its performance degrades significantly when applied
to noisy or sparse point clouds, such as those generated by automotive radar.
Recent work for radar scan-to-map registration in covered parking garages
proposed by Dawson [23, 18]. The proposed navigation system achieved
an accuracy of under 50 centimetres 66% of the time, and 97% of the time
the accuracy was within one meter. The proposed solution uses a forward-
mounted radar to perform radar odometry, four electronic scanning radars
(ESR) mounted on each vehicle corner to perform map matching with the
generated point cloud, and a dead reckoning solution from the inertial sen-
sors. Automotive radars provide sparse point clouds. To bypass this limita-
tion, radar scans are aggregated over time to increase point cloud density for
map registration using the ICP algorithm [24, 23].

The general Algorithm for ICP [22] is:

• Initial Alignment: Collect radar scans, remove dynamic objects, and
take an initial pose guess.

• Nearest Neighbour Search: Match each point in the scan to the closest
point in the reference map, setting the correspondence based on prox-
imity.

• Error Minimization: Calculate the distance, or error, between each
corresponding point in the radar point cloud and the reference map.
Adjust the translation and rotation of the point cloud to minimize the
error. Further optimization is performed at this stage, like singular value
decomposition.

• Iterate: Repeat the process until the error falls below an acceptable
threshold.
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• Position Estimation: Interpret the transformation between the two point
clouds and apply it to the vehicle’s position estimation as a correction.

L. Narula et al. [24] proposed a solution that demonstrated sub-50cm ac-
curacy at 95% of the time. The authors first created a geo-referenced radar
map of the environment for positioning. During simulation, 5s batches of
radar data are aggregated, creating a dense point cloud matched to the pre-
existing radar map using a global optimization algorithm. Their solution is
computationally efficient once the a priori maps have been generated, and it
avoids local minima caused by repeating patterns in the urban radar environ-
ment.

E. Ward et al. [9] proposed a solution using an ICP algorithm for radar
positioning fused with INS, showing sufficiently accurate results. In their
experimentation, the Root Mean Square (RMS) lateral and longitude errors
over a 5.4km long path were 7.4cm and 37.7cm, respectively. The novel
aspect of their work is using a solid-state monopulse short-range radar fused
with a high-precision GPS/IMU unit. The authors created their own reference
map by driving the experiment route using RTK-GPS for ground truth; the
radar point cloud is generated by aggregating 10 scans and converting them
into Universal Transverse Mercator (UTM) coordinates.

S.H. Cen et al. [25] proposed a robust solution using a mechanically scan-
ning radar that does not rely on an a priori map. Their unique approach is to
find the largest subset between two point clouds that have overlap. This al-
lows for comparing the overlap areas to determine the motion of the vehicles.
They introduced a method that processes power-range spectra from the raw
radar data to identify landmarks and reject noise. Data association between
two consecutive scenes allows for the pose estimation. This process uses their
novel algorithm that uses unary descriptors and pairwise compatibility scores.
The output of the data association step is the largest subset of the landmarks
between two scans for the computation of relative motion. During their sim-
ulation over a 10km route through Oxford, UK, the error in translation was
0.106 m/s and 0.321 deg/s in rotation [25].
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2.4.3 Challenges in Radar Based Positioning

Sparse Radar Returns

The main challenge with using FMCW radars for automotive positioning is
the sparsity of radar point returns, especially in low-speed scenarios. This
problem is exacerbated in urban environments where map matching of the
landmarks is required for positioning. In urban environments with dense
buildings, static and dynamic vehicles, pedestrians, and other obstacles exist.
The automotive radar returns can have an unevenly distributed point cloud
because of the obstacles, making it more difficult for the map-matching al-
gorithm to achieve reliable positioning. One approach to mitigate this issue
is to aggregate successive radar scans to increase the density of detections.
However, aggregating too many scans can introduce motion distortion, where
errors accumulate due to the vehicle’s movement between scans.

Motion Distortion

As the sensor moves, the returns from objects are distorted due to the relative
motion of the vehicle, which can lead to inaccuracies in position estimation.
Motion distortion is more pronounced in mechanically scanning radars, where
the sensor sweeps across the scene over time, causing misalignment in the col-
lected data. In contrast, automotive FMCW radars operate at a higher update
rate, capturing more frequent scans, which helps reduce distortion. However,
when multiple scans are aggregated, some distortion may still occur, espe-
cially at higher vehicle speeds, where rapid motion increases misalignment
between consecutive scans. To correct for this, INS or odometry sensors can
be used to compensate for motion. However, since INS is subject to drift over
time, aggregating scans over an extended period can degrade accuracy.

Low Vertical Resolution

Automotive sensors typically have high horizontal range resolution but suffer
from low vertical resolution. High horizontal resolution allows it to identify
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objects in the vehicle’s path for ADAS. The low vertical resolution would
hinder the ability to perform 3D map matching for positioning; this can be
mitigated by using machine learning or projecting the points onto a 2D frame
by removing the elevation.

Limited Field of View

The field of view of a single radar is also limited and cannot detect 360 de-
grees. Multiple radars are used to achieve a full field of view to mitigate this
limitation. The placement of radars must be carefully selected to avoid blind
spots. O. Schumann et al. [26] place the four radars to be focused on the front
of the car and have sufficient overlap between each radar.

Environmental Interference

Environmental factors like rain and fog can affect radar performance by at-
tenuating signals at certain frequency ranges. By using a higher-frequency
radar, attenuation effects can be minimized, but range is reduced. In urban ar-
eas surrounded by dense metallic structures and other vehicles operating with
automotive radar in the same frequency range, multipath and false detection
errors can occur. This phenomenon can lead to ghost objects being detected
by the radar.

2.5 Point Cloud Filtering

Point cloud filtering is a crucial preprocessing step in radar-based position-
ing. It enhances the quality of raw radar data by removing noise, dynamic
objects, and irrelevant detections. Automotive radar generates sparse and of-
ten noisy point clouds, which can degrade the performance of scan-to-map
registration techniques. The following subsections discuss several radar point
cloud filtering techniques.
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2.5.1 Neural Networks

With advancements in AI, mmW-radars can now be integrated with machine
learning to perform detection, tracking, and classification tasks. This was
demonstrated by X.Cai et al. [27], who present an algorithm that can be
applied to both static and dynamic objects at all ranges for classification. Us-
ing convolutional neural networks and artificial neural networks, the authors
achieved >98% detection for pedestrians and vehicles and >94% for other
objects, including stationary targets. The authors presented four classification
algorithms: statistical RCS, distributed RCS, range-azimuth angle radar im-
ages, and 3D radar images. The performance of the classification algorithm
shows great accuracy, which is extremely beneficial to the localization prob-
lem because the dynamic and static objects can be removed from the point
cloud and only leave the landmarks for map matching.

D. Niederlohner et al. [28] proposed a self-supervised method to esti-
mate the full Cartesian velocity of detected objects in automotive radar data.
Their approach extends an object detection network to predict velocity with-
out requiring labelled velocity measurements. Pre-training is conducted using
single-frame-oriented bounding box (OBB) labels without velocity annota-
tions. The network then leverages its own OBB predictions on unlabeled data
to refine velocity estimation. Specifically, the predicted OBBs from an earlier
frame are updated to a later timestamp using the network’s estimated veloci-
ties, and the alignment error is used as a training signal for velocity learning.

J. Rock et al. [29] used a convolutional neural network (CNN) to reduce
the interference an automotive radar may face during operation in a dense
urban environment. Cross-sensor interference becomes inevitable when mul-
tiple radars in the same frequency range are used in proximity. The author
used the CNN on the radar spectra data and obtained the Range and Doppler
information of the target after each Discrete Fourier Transform. During the
experimentation, they set up two data sets, one simulated and one collected
in the real world; this allowed them to first train and fine-tune the CNN with
controlled data and test the robustness with real-world datasets.

K. Patel et al. [30] proposed a deep CNN that identifies the region of
interest in automotive radar spectra to classify objects in a scene. Unlike
traditional point cloud-based methods, their approach directly processes the

40



radar spectra rather than working with radar detections.

Like [29], the 2D-FFT is performed on the range and velocity spectrum,
followed by a constant false alarm rate detector to identify targets. With the
targets identified, the region of interest is passed to the CNN for classifica-
tion. The CNN Architecture consists of three layers, each with 32, 64, and
128 filters, and after each filter, it is followed by an average pooling layer.
The authors successfully classified using a prediction filter over a single four-
second window during their experimentation.

S. Lu et al. [31], introduced a method called 4DRO-Net, which is de-
signed for position estimation using deep learning of sparse radar data. Dur-
ing their experimentation and performance evaluation, the authors compared
4DRO-Net to classical positioning algorithms like ICP and NDT; they also
compared the sparse radar results with Lidar-based methods and showed their
algorithm had better performance. The 4DRO-Net first takes in the 4D radar
data, which includes its position in X, Y, Z, and a velocity measurement. A
custom feature extractor is then used on the point cloud before passing it to
the pose generation module. The algorithm will then use the extracted point
features to correct the pose from the feature-extracting module and ultimately
perform pose refinement from course to fine. When the authors trained their
neural network, they also considered the Radar Cross Section and the Doppler
Velocity of radar targets.

2.5.2 Support Vector Machine (SVM)

SVMs are supervised machine learning models used for complex classifica-
tion tasks. SVMs operate by separating classes using a hyperplane in multiple
dimensions. Figure 2.4 shows the SVM classifier separating two classes by
finding the optimal decision boundary, or hyperplane, that maximizes the mar-
gin between the closest points from each class. These critical points, which
directly influence the position of the hyperplane, are known as support vec-
tors. In more complex scenarios, SVM uses different functions to map the
data into higher dimensional spaces, allowing the creation of a nonlinear de-
cision boundary that effectively separates different classes.

SVM can be applied to multi-class classification problems using differ-
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Figure 2.4: Illustration of SVM Decision Boundary

ent kernel functions, which can help optimize the decision boundary. Kernel
functions such as Radial Basis Function, Polynomial, and Sigmoid handle
nonlinear data by transforming the input spaces into higher dimensions, al-
lowing the SVM to create more complex decision boundaries. When apply-
ing SVM to radar point cloud classification, parameters like Doppler velocity,
range, azimuth, velocity of the ego vehicle, and RCS can aid in distinguishing
points between different classes.

Zhao et al. [32] presents a method for classifying humans and vehicles us-
ing millimetre-wave radar. Zhao uses 11 training features derived from radar
point clouds, focusing on shape, velocity, and echo intensity. Zhao conducted
multiple tests using different SVM kernels, finding that the polynomial kernel
achieved the best result. The results show that the proposed method outper-
forms traditional approaches, especially in complex scenarios with objects
in different orientations and distances. Although Zhao’s approach can effec-
tively differentiate between pedestrians and vehicles, the data collected for
the training and simulation is very controlled. The dataset detects radar sig-
nals from either a pedestrian or a vehicle directly in front of the radar without
other interference.

Sasaki et al. [33] present a LiDAR-based system designed for night-
time sidewalk operations during snow removal, where poor visibility limits
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cameras’ effectiveness. The authors use a SVM to classify pedestrians from
other objects, incorporating noise removal and clustering to preprocess the
LiDAR point cloud data. Although this is a LiDAR-based approach, it re-
mains relevant to radar-based classification research because it demonstrates
the effectiveness of SVM in handling noisy, cluttered environments. Similar
challenges exist in automotive radar applications, where detecting and distin-
guishing pedestrians from other objects is crucial. The study highlights the
adaptability of SVM for point cloud classification, making it a valuable refer-
ence for sensor-agnostic machine learning techniques in adverse conditions.

2.5.3 Density Based Clustering

Density Based Clustering, is a clustering technique that involves grouping
points based on their spatial proximity. Clustering aims to identify and isolate
distinct objects or features within a point cloud, making it easier to interpret
the data and apply further analysis. Clustering a radar point cloud aims to
separate meaningful objects, such as vehicles or static structures, from noise
and irrelevant data points.

Zhang et al. [34] introduced Radar Elliptical Density-Based Spatial Clus-
tering and Labeling (REDBSCAN), a variant of the DBScan algorithm de-
signed to handle the unique challenges posed by millimetre-wave radar point
clouds. The proposed method uses an elliptical instead of a traditional circle
to cluster points together. REDBSCAN adjusts the clustering process based
on the density and the shape of the radar returns, allowing for more accurate
clustering and labelling in complex environments. However, the added com-
plexity of REDBSCAN would require increased computational resources. It
may be limited to post-processing only as it takes too many resources for real-
time applications. Testing is also completed on proprietary datasets, and the
authors did not show the performance of REDBSCAN on a public dataset.

Jingjie et al. [35] presented a clustering algorithm for traffic targets for
radar point clouds. The proposed method combines DBScan with a Kalman
Filter (KF) to refine the cluster results. The KF allows for the accumulation of
predicted errors over multiple frames, which is used to improve the clustering
of targets. Jingjie demonstrated that this approach enhanced the accuracy of
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correctly identifying traffic clusters in large and sparse datasets.

Xie et al. [36] explored the use of DBScan clustering over multiple frames
to enhance the detection and tracking of targets. The developed algorithm
maintains target consistency and reduces false detection due to noise and envi-
ronmental factors. The authors demonstrated that their inter-frame algorithm
improves the accuracy and target detection, particularly in scenarios with high
noise levels.

Raj et al. [37] address the challenges of removing static clutter in automo-
tive radar-generated point clouds prior to using the DBScan algorithm. Raj
optimized the algorithm by removing static objects using a low-complexity
static clutter removal method. This increases the algorithm’s performance in
grouping radar detection and classification. This approach is insightful as Raj
et al. successfully removed static detections while clustering dynamic objects.

2.6 Sensor Fusion

Sensor fusion has become an essential component in autonomous navigation
and vehicle positioning, enabling data integration from multiple sensors such
as radar, Lidar, IMU, and GPS. By fusing complementary sensor modali-
ties, positioning accuracy is significantly enhanced, particularly in GNSS-
degraded environments [38, 39, 40].

For instance, Dawson et al. [38] demonstrated radar-based multi-sensor
fusion, improving positioning reliability in covered parking garages. Simi-
larly, Chen et al. [39] implemented Lidar-radar fusion, utilizing ICP-based
registration to enhance environmental sensing and map-based positioning.
These studies highlight the necessity of multi-sensor integration for precise
vehicle positioning.

State estimation techniques such as Kalman filters play a fundamental role
in sensor fusion. The Extended Kalman Filter (EKF) has been widely used for
multi-sensor integration, providing real-time state estimation by linearizing
system models [41, 40, 42]. However, in highly nonlinear environments, the
Unscented Kalman Filter (UKF) has emerged as a more reliable alternative
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due to its ability to capture system dynamics without requiring linearization.

2.6.1 Extend Kalman Filter (EKF)

Traditional implementations often rely on the Extended Kalman Filter (EKF),
which linearizes nonlinear system models for state estimation. In vehicle
positioning, EKF has been extensively applied to integrate data from IMUs,
GNSS, Lidar, and radar, compensating for the weaknesses of individual sen-
sors. For example, Noureldin et al. [42, 40, 23] successfully applied an
EKF to integrate radar and IMU data for vehicle positioning, mitigating long-
term drift in GNSS-denied environments. One of the major drawbacks of
the EKF is its reliance on the Jacobian matrix for linearization of the system
dynamics and measurement models, which introduces approximation errors
in highly nonlinear systems. To address this limitation, the Error-State Ex-
tended Kalman Filter (ES-EKF) has been developed as an alternative frame-
work. Unlike traditional EKF, ES-EKF estimates small error perturbations
around a nominal trajectory, which reduces the impact of linearization errors
and improves state estimation accuracy, particularly in inertial navigation sys-
tems [41, 43]. Aravind et al. [41] demonstrated that ES-EKF provides better
localization accuracy when integrating multiple sensors in GNSS-degraded
environments. The ES-EKF formulation enables efficient error propagation
and correction by estimating small deviations from the predicted trajectory
rather than the full state vector. Marković et al. [43] further validated the ef-
fectiveness of ES-EKF for multi-sensor fusion, showing sub-meter accuracy
in vehicle localization by integrating Lidar, IMU, and radar data.

2.6.2 Unscented Kalman Filter (UKF)

UKF is an alternative to the EKF that overcomes some of its limitations by
avoiding linearization altogether. UKF employs a sigma point transforma-
tion, which more accurately captures the true mean and covariance of the
state distribution in nonlinear systems [44, 45]. This makes the UKF particu-
larly beneficial for applications where system dynamics are highly nonlinear
and where sensor fusion involves complex state interactions. Several studies
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have demonstrated the superiority of UKF over EKF in sensor fusion applica-
tions. Ryu et al. [46] conducted a comparative analysis of EKF and UKF in
GPS-INS sensor fusion and found that UKF consistently outperformed EKF
in low-observability conditions. The UKF provided more accurate estimates
when sensor updates were sparse or when rapid vehicle maneuvers introduced
high system nonlinearity. Pan et al. [47] extended these findings by applying
UKF in multi-sensor fusion for vehicle positioning, particularly in urban envi-
ronments where GNSS signals are frequently blocked. Their results indicated
that UKF provided more reliable state estimation, particularly in scenarios
where the EKF struggled due to system nonlinearities and sensor noise. The
sigma-point-based approach enabled UKF to handle better abrupt changes in
vehicle motion, such as sharp turns or sudden acceleration.

2.6.3 Multi-Sensor Integration with Radar

Radar-based Simultaneous Localization and Mapping (SLAM) uses the vehi-
cle’s radar for positioning and map creation in adverse environments with no
pre-existing map. Loop closure in radar SLAM is a crucial part of the algo-
rithm that enables the system to recognize and correct any error that occurs
over a revisited area and refine the vehicle trajectory and map over time.

J.Levinson et al. [48] proposed a map-based SLAM technique for high-
accuracy localization of moving vehicles in urban areas, achieving positional
accuracy of around 10 cm. Their approach integrates GPS, IMU, wheel odom-
etry, and Lidar data to generate offline high-resolution environment maps.
Although they do not use radar as their primary sensor, building and main-
taining a point cloud map is similar to radar-based localization methods. The
authors first defined a goal function to optimize. The algorithm is designed
to be robust in dynamic environments by focusing on static objects like the
road surface and disregarding moving objects. This allows the map to be
reliable for overall environmental conditions. To perform localization, the au-
thors use a particle filter that compares the real-time inferred measurement of
the ground with the built map. This is then tightly coupled with the onboard
IMU to determine the vehicle’s position. Based on their experiments, the lat-
eral error was around 10cm except when the vehicle turned, which had 30cm,
demonstrating sub-50cm accuracy.
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I.Belhajem et al. proposed a novel approach to enhance vehicle local-
ization using low-cost sensors and machine learning [49]. The authors used
SVM to increase the accuracy of the IMU for dead reckoning during a GNSS
outage. This approach modifies and improves the traditional EKF for fusing
the GNSS and IMU data. The EKF performance depends on the vehicle’s dy-
namic variations and can change quickly based on environmental conditions.
During the author’s experimentation, using the SVM improved the position-
ing accuracy by 94%. When the GNSS signals are available, and the EKF is
integrating its data with the IMU, an SVM is used to learn the dynamics and
stochastic errors of the vehicle. When the GNSS signal is lost, the SVM uses
the learnt characteristic to predict the errors based on the vehicle dynamics.
The errors are used with the EKF to refine the position estimations.

Chen et al. [39] demonstrated a radar-Lidar fusion system, leveraging
ICP-based registration for accurate environmental reconstruction. Beyond
scan filtering improvements, sensor fusion techniques combining radar with
IMU, Lidar, and GPS have significantly enhanced localization accuracy.

Overall, radar-based positioning is an evolving area of research for AV
navigation. It aims to address the limitations of GNSS and INS in challeng-
ing urban environments. While advancements have been made in map reg-
istration and radar odometry, several challenges remain. The primary open
research challenges include handling sparse returns, improving vertical reso-
lution limitation, effectively managing environmental interferences, and sen-
sor fusion with other exteroceptive sensors. Addressing these issues through
advanced sensor fusion methods and machine learning techniques is essential
for developing robust and accurate vehicle positioning solutions suitable for
autonomous navigation applications.
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Chapter 3

Methodology

This chapter details the methodology used to develop and evaluate radar-
based positioning, focusing on scan filtering and sensor fusion methods for
autonomous navigation. The proposed framework integrates radar point cloud
filtering, map registration, and sensor fusion to improve positioning accu-
racy in GNSS-denied urban environments. The methodology is structured
into key components, beginning with sensor-to-vehicle frame transformation,
which ensures that raw radar detections are correctly aligned for subsequent
processing. Next, radar point cloud filtering techniques are applied to elim-
inate dynamic objects, ghost detections, and noise, refining the data before
scan-to-map registration. The filtered radar scans are then matched against
a reference map using ICP, providing position updates. Finally, a sensor fu-
sion framework is implemented, comparing UKF and ES-EKF for integrating
radar-based positioning with onboard motion sensors.

3.1 Sensor-to-Vehicle Frame Transformation

Radar detections are recorded in the sensor frame, meaning the detected ob-
jects’ positions are relative to each radar’s coordinate system. To ensure an
accurate point cloud representation of the surrounding 2D environment, these
detections must be transformed into the vehicle’s local frame. This transfor-
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mation includes both rotation and translation. The transformation matrix for
each radar is given by:

T =

cos θ − sin θ xs

sin θ cos θ ys
0 0 1

 (3.1)

where θ is the mounting angle of the radar and xs, ys are the relative positions
of each radar with respect to a chosen reference point on the vehicle.

Applying this transformation ensures that radar measurements are cor-
rectly mapped to the vehicle frame, enabling accurate sensor fusion and en-
suring that the radar point cloud is correctly aligned for ICP-based map reg-
istration.

3.2 Radar Point Cloud Filtering

Both classical and machine learning-based methods are designed and evalu-
ated for radar point cloud filtering. The goal is to eliminate dynamic objects,
ghost detections, and static vehicles from the radar point cloud. Eliminating
non-static environment radar returns would allow map-matching algorithms
to minimize false matches and improve the positioning of the ego vehicle.
Additionally, reducing the number of points may potentially lead to increased
processing speed.

Two different classical filtering methods and an SVM classifier are pro-
posed. Like RO, a velocity filter can remove dynamic objects from radar
scans. The geometric filter, utilizing DBScan, is applied for clustering and re-
moving ghost detections and noise, a common issue in radar point clouds. The
SVM classifier performs the final classification of these points, distinguishing
between vehicles and static environments.
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3.2.1 Velocity Filtering

We implemented a velocity filter to differentiate between static and dynamic
objects in the radar point cloud, similar to the approach in [6]. This filter uti-
lizes the vehicle’s odometry to estimate the radial velocity of detected objects
relative to the radar sensor. The estimated radial velocity is computed using
the vehicle’s instantaneous forward velocity and the detected object’s azimuth
angle, derived from the radar measurements. By comparing this estimated ra-
dial velocity with the Doppler velocity detected directly by the radar sensor,
points are classified based on their motion characteristics. This comparison
helps identify objects whose motion aligns with or deviates from the vehicle’s
motion. Static points, such as those corresponding to buildings or other sta-
tionary objects, are isolated as they exhibit a consistent relationship between
their estimated and detected radial velocities.

For a static object, the detected Doppler velocity and the estimated radial
velocity depend on the direction of the vehicle’s motion. For a forward-facing
radar, if the vehicle is moving forward:

vrad = −vd. (3.2)

If the vehicle is moving in reverse:

vrad = vd. (3.3)

These relationships arise because the Doppler effect measures the relative
motion between the radar and the object. The sign reversal accounts for the
change in the vehicle’s direction.

This relationship holds because the radar measures the velocity of an ob-
ject’s motion relative to its motion, Figure 3.1. A static object’s Doppler
return reflects the sensor’s motion, while a dynamic object’s Doppler return
contains a combination of the sensor’s and object’s motion.

To account for the mounting angle of each radar sensor, we adjusted the
detected azimuth angle (θ) to compute the corrected angle (α) using:

α = θ + β, (3.4)
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Figure 3.1: Illustration of vehicle forward speed vs detected ob-
ject’s Doppler measurement.

where β is the mounting angle specific to each radar sensor. Using this cor-
rected angle, we estimated the radial velocity (vradial, est) as:

vrad,est = |vodo ∗ cos(α)|. (3.5)

Next, we calculated the velocity difference (vdiff) by comparing the esti-
mated radial velocity with the detected radial velocity (vd):

vdiff = |vrad,est − vd|. (3.6)

Points with vdiff below a predefined threshold were classified as static,
while points exceeding the threshold were classified as dynamic.

This velocity filter forms the foundation for further processing by isolating
relevant static points, contributing to an improved positioning solution.
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3.2.2 Geometric Filtering

Geometric filtering was performed using a density-based clustering algorithm
(DBScan). This process can remove radar ghost detections, which often ap-
pear as isolated or sparse points in the point cloud. Points that are closely
packed together are grouped by DBScan, while isolated points are identified
as noise. The algorithm has two parameters, ϵ and Minimum Points (MinPts).
ϵ is the maximum distance between two points to be considered to be part
of the same cluster. Used on radar parameters, this is the spatial proximity
required for radar detections to be grouped together. MinPts is the minimum
number of points required to form a cluster. If the number of points within the
radius of ϵ meets or exceeds the MinPts threshold, that point is considered a
core point, and a cluster is formed around it. The point is labelled as noise if
it does not meet that threshold. A core point is essential for cluster growth, as
it has enough neighbouring points within its radius to continue the clustering
process. There are also secondary points that do not meet the qualification to
be a core point but are reachable by the core point. Secondary points deter-
mine the boundary of the cluster. If a point is neither a core nor a secondary
point, it will be classified as noise.

3.2.3 SVM Classification

The proposed method involves training an SVM classifier using annotated
radar point clouds. Figure 3.2 shows the testing and training iterations of the
proposed method. The SVM classifier is trained using features such as range,
azimuth, Doppler velocity, RCS, and ego-vehicle velocity to classify detected
objects into three classes. The multi-class SVM classifies the objects into
vehicles, static environments, and others. However, the primary objective is
to remove vehicles.

The SVM classifier can be tuned using several parameters, including C,
Kernel Function, and Gamma. C controls the balance between a low misclas-
sification error on the training data and minimizing the model’s complexity. A
smaller C value allows for larger margins of error between classes, allowing
misclassifications in the training data. A larger C value reduces misclassifi-
cation by tightening the margins and lowering the training error. However,
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Figure 3.2: Support Vector Machine training and testing scenar-
ios
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Figure 3.3: Different testing Scenarios with a combination of
classical and machine-learning approaches

this comes at the cost of generalization, making the model less effective on
unseen test data. This can lead to overfitting, where the model performs well
on training data but struggles with using testing data. A high C value may
lead to overfitting, as the model becomes excessively complex and captures
noise rather than meaningful patterns [50]. Kernel functions transform the in-
put data into higher dimensional space, allowing SVMs to handle non-linear
datasets. Gamma is the last tuning coefficient, and it influences the deci-
sion boundary with the kernels [50]. Low gamma allows a smoother deci-
sion boundary. A high gamma is more sensitive to the individual data points,
capturing more details. The disadvantage of high gamma is that the model
becomes too sensitive to noise and anomalies in the training data. Like high
C, it reduces the model’s ability to generalize to the unseen data, resulting in
poor performance on new test samples.

The different testing scenarios are detailed in Figure 3.3.

3.3 Position Estimation

To test the benefit of the developed radar point cloud filtering techniques
to radar-based positioning, dead reckoning and map registration positioning
pipelines are implemented with the point cloud filters as pre-processing steps.
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3.3.1 Dead Reckoning

In these experiments, DR is employed to estimate the vehicle’s trajectory,
serving as a baseline for comparison against radar-based positioning methods.
The computation of DR states is updated as follows:

States =
[
xk yk θk

]
(3.7)

The time interval between the current and previous epoch is calculated:

∆t = t− tprev (3.8)

State update:
θk+1 = θk + wz∆t

xk+1 = xk − v sin(θ)∆t,

yk+1 = yk + v cos(θ)∆t.

(3.9)

The DR approach is efficient and operates independently without external
sensors. However, without external corrections, the solution drifts and suffers
from cumulative errors over time.

3.3.2 Map Registration

Radar-based positioning using scan-to-map registration relies on matching
real-time radar scans with a previously generated reference map [52, 22]. For
testing, we have two separate reference maps: one generated using Open-
StreetMaps [53] and a Lidar scan map publicly generated by the city of Kingston.
The reference maps will be discussed in the following section.

The processing of radar scan-to-map registration is detailed in Figure 3.4.
Due to the sparsity of radar returns, multiple scans are aggregated to create
a sufficiently dense point cloud for map registration. These scans are then
compared against a pre-existing reference map using an ICP algorithm, which
estimates the transformation needed to align the scan to the reference map
[22]. This transformation provides a relative position estimate that can be
fused with other sensor data for improved accuracy.
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Figure 3.4: Positioning Pipeline [18, 51]

Figure 3.5 illustrates the filtering steps applied to radar point cloud data
before map registration. The velocity filter removes stationary objects or de-
tections outside the vehicle’s expected movement range. The scan aggrega-
tion process collects multiple radar scans to enhance robustness. The geo-
metric filter refines the point cloud by filtering out outliers before feeding
the processed data into the ICP module, which aligns the radar scan with the
reference map.

3.4 Sensor Fusion

A basic ES-EKF was implemented using a unicycle model. The best results
were achieved using a radar buffer size of four seconds and an ICP update rate
of two seconds. To ensure a fair comparison, identical model parameters were
applied across all test scenarios for both the ES-EKF and the UKF. Specifi-
cally, the radar buffer size and ICP update rate were initially tuned for the
ES-EKF and then transferred to the UKF without further modification. This
approach ensures that any differences in performance are attributed solely to
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Figure 3.5: Radar Point Cloud Filtering to ICP [51]

the filtering methodologies rather than to differences in parameter optimiza-
tion.

Tuning the UKF was challenging due to the unscented transform’s sen-
sitivity to sigma point selection. Poorly chosen sigma point weights could
negatively impact the filter’s stability and accuracy. To ensure the UKF func-
tioned correctly, the predicted state trajectory needed to closely match the
dead reckoning solution before any external corrections were applied. This
was achieved by carefully adjusting the sigma point distribution weights, the
state covariance matrix, and the process noise covariance matrix. The specific
values for these matrices are detailed in the following sections.

To evaluate the performance of ES-EKF and UKF in urban segments, both
filters were executed using the same dataset, ensuring identical start and end
indexes for a fair comparison. The filters were applied separately to analyze
their performance before assessing their combined impact on sensor fusion
accuracy. Additionally, we evaluated the filters with fewer ICP iterations to
examine the trade-off between positioning accuracy and computational effi-
ciency.
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3.4.1 UKF

UKF for these experiments is set up to estimate the vehicle’s position, head-
ing, and velocity by integrating the odometer, ωz sensor from the IMU, and
radar point cloud based ICP measurements.

The UKF state vector is defined as:

X =
[
x y θ v bωz

]
(3.10)

where:

• x, y: represent the vehicle’s position,

• θ: is the heading angle or azimuth,

• v: is the velocity from the odometer,

• bωz : gyroscope bias for heading rate correction.

The state transition function propagates the vehicle state forward in time
using IMU and odometer measurements:

θk+1 = θk + (wz + bwz)∆t (Heading-position update)
xk+1 = xk − v sin(θ)∆t (X-position update)
yk+1 = yk + v cos(θ)∆t (Y-position update)
vk+1 = vk (Velocity update)

(3.11)

The UKF measurement model incorporates radar-based ICP positioning
measurements, which provide position and heading corrections:

z = h(x) =
[
x y θ

]
(3.12)

The UKF uses the following covariance matrixes to propagate noise, errors,
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and sigma points. State covariance matrix P :

PU =


0.0012 0 0 0 0

0 0.0012 0 0 0
0 0 (0.01◦)2 0 0
0 0 0 0.12 0
0 0 0 0 0.0052


Process noise covariance matrix Q:

QU =


0 0 0 0 0
0 0 0 0 0

0 0 (0.1◦)2 0 0

0 0 0 5.8e−52 0

0 0 0 0 2.9e−92


Measurement noise covariance matrix R:

RU =

0.22 0 0
0 0.22 0

0 0 (2◦)2



3.4.2 ES-EKF

The ES-EKF used in this research is a basic Extended Kalman Filter imple-
mentation, relying on a unicycle model to propagate the system states. The
error states are:

δX =
[
δx δy δθ

]
(3.13)

The ES-EKF also uses the same state transition functions as the UKF. How-
ever, it differs in the measurement model on how the measurement model is
applied:

z = h(x) =
[
x y θ

]
δX = K(z − x)

Xk+1 = X + δX

(3.14)

where:

59



• K: Kalman Gain

• X: is the nominal state, containing the position and heading

The ES-EKF propagates noise, errors, and gains using the following covari-
ance matrixes: State covariance matrix P :

PE =

0.12 0 0
0 0.12 0
0 0 0.12


Process noise covariance matrix Q:

QE =

0.001 0 0
0 0.001 0
0 0 0.001


Measurement noise covariance matrix R:

RE =

0.01 0 0
0 0.01 0
0 0 0.01



3.5 Reference Map

A prior map of the environment is essential for evaluating radar-based po-
sitioning within a scan-to-map registration framework. Accurate reference
maps provide a static representation of the surroundings, allowing radar scans
to be aligned with known landmarks using ICP algorithms. This study utilizes
multiple reference maps, including publicly available maps such as Open-
StreetMap, high-resolution Lidar maps, and custom radar-generated maps for
scenarios where no pre-built maps exist. These maps serve as the baseline
for positioning evaluation, ensuring that the radar scan alignment process is
robust across different urban environments.
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Figure 3.6: Kingston Downtown with OSM [53]

3.5.1 Public Reference Maps

The reference maps utilized in this study were sourced from two open datasets:
OSM Figure 3.6 and Kingston Lidar Maps Figure 3.7. These publicly avail-
able datasets serve as a baseline for radar scan positioning and provide valu-
able structural details for ICP-based positioning. The choice of which refer-
ence map to use for each segment depends on the environmental character-
istics, which will be further analyzed in the results and discussion section.

OSM [53] is a widely used vector-based open-source mapping service that
provides geographic information on road networks, building footprints, and
static infrastructure. The OSM dataset used in this study was extracted for the
Kingston downtown region, where the street network and building outlines
serve as static landmarks for positioning.

The Kingston Lidar map provides high-resolution 3D point cloud data,
which offers precise structural details of the environment. Lidar maps cap-
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Figure 3.7: Kingston Suburb with Lidar map

ture fine-grained surface features, including elevation, building facades, and
obstacles. To ensure the Lidar reference map was suitable for radar-based po-
sitioning, we performed preprocessing using CloudCompare [54] to remove
all detected vehicles, pedestrians and erroneous detections determined to be
noise. The resulting point cloud represented static environment features only.

3.5.2 Radar-based Reference Map

A limitation of some open-source datasets aimed towards research in posi-
tioning and perception is the lack of maps and trajectory location data for
privacy reasons. This limitation prevents the direct use of open-source maps
for testing, because the actual location is not known. To address this limita-
tion and still benefit from the publicly available dataset, its possible to create
a custom reference map using the radar point cloud data from the dataset and
aligning it using a ground truth solution. However, this approach introduces a
challenge: the same radar points used to build the reference map are also part
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of the testing process. This overlap could potentially bias the results, which
would pose a risk to the testing data, resulting in an inflated performance
metric. To minimize the impact of this limitation, we implemented several
strategies to ensure the integrity of the evaluation process. The generation of
a radar-based reference map is described in the Experimental setup section in
the following chapter.

3.5.3 Radar Point Cloud Preprocessing Tuning Parameters

Each point cloud filtering method contains several tuneable parameters, which
can be adjusted to improve the performance of the algorithm. The implemen-
tation details for each filtering method are described in the following subsec-
tions.

Velocity Filter

The threshold for classifying objects as static or dynamic was set to 0.29 m/s,
which corresponds to the expected accuracy of the radar Doppler velocity
measurements as given by the sensor datasheet. This value was selected to
ensure that minimal sensor noise would incorrectly classify static objects as
dynamic. Additionally, through visual inspection, this threshold proved to be
strict enough to effectively filter out moving objects while retaining sufficient
static detections for accurate map matching.

Geometric Filter

The primary setting for the geometric filter is 0.5m for ϵ and 5 for MinPts.
These values were chosen to account for the sparsity of radar point clouds
after the initial filtering stage. A more restrictive setting could risk removing
too many static points, which are crucial for improving the accuracy of the
ICP process. An additional validation step was implemented to prevent ex-
cessive filtering. If the geometric filter removed more than 30% of the points,
the filtered result was discarded, and the original point cloud was used in-
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stead. This safeguard ensured that the filtering process did not overly reduce
the number of useful detections.

SVM Classification

Five features—range, azimuth, radar cross-section, measured Doppler, and
vehicle speed—were sent to the SVM for training. The SVM was trained
to classify three classes: vehicles, static environments, and others. From the
RadarScenes annotated data, vehicles (0) include passenger cars, large vehi-
cles, trucks, buses, and trains. Static environments (1) retain their original
labels, and others (2) contain bicycles, pedestrians, animals, and other dy-
namic objects encountered while driving.
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Chapter 4

Results and Discussion

This chapter discusses the results and analysis of the proposed radar point
cloud filtering methods within a radar-based positioning framework. It as-
sesses the effectiveness of radar point cloud filtering, scan-to-map registra-
tion, and sensor fusion in enhancing positioning accuracy in urban and GNSS-
denied environments.

This chapter is broken down into the following sections:

1. Public Datasets: Describes the datasets used for evaluation, including
RadarScenes and NavINST.

2. Experimental Setup: Details the selected test sequences, reference
map construction, and preprocessing steps applied to radar point clouds.

3. Evaluation Metrics: Defines the error metrics used to assess the per-
formance of different filtering and positioning techniques.

4. Radar Processing Analysis: Examines the impact of velocity filtering,
geometric filtering, and SVM classification on improving radar data
quality.

5. Trajectory Estimation: Compares estimated vehicle trajectories against
ground truth data, highlighting improvements from the proposed filter-
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ing methods. Analyzes the performance of UKF and ES-EKF sensor
fusion frameworks, evaluating their accuracy and robustness.

6. Real-Time Performance Analysis: Investigates the computational ef-
ficiency of the proposed approach and its feasibility for real-time im-
plementation.

4.1 Public Datasets

The performance of the proposed radar-based positioning framework was
evaluated using publicly available datasets. Real-world radar sensor mea-
surements from these datasets were analyzed to investigate various driving
conditions, thereby facilitating a comprehensive assessment of point cloud
filtering, scan-to-map registration, and sensor fusion techniques. The datasets
selected for this study include RadarScenes, which was developed with an
emphasis on radar perception and object detection, and the NavINST dataset,
which offers multi-sensor data for high-precision positioning.

4.1.1 RadarScenes

The RadarScenes dataset is a large-scale dataset designed for automotive
radar perception and positioning [55]. It includes data from four automotive
radar sensors, enabling research in ego-motion estimation, object detection,
and radar odometry. Key features of RadarScenes include:

• 158 driving sequences: in urban, suburban, and highway environ-
ments;

• Automotive-grade radar sensors: capturing range, azimuth, eleva-
tion, and Doppler velocity;

• IMU sensor data: included for ego-motion estimation and odometry
correction;
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Figure 4.1: Front View of NavINST Sensor Rack [56]

• Radar-based object detection annotations: point-wise labelling for
training and evaluating perception models.

Maps of the environment are not available for the RadarScenes dataset,
and nor is its geographic location known.

4.1.2 NavINST

The second dataset used for testing was provided by the Navigation and In-
strumentation (NavInst) Laboratory at the Royal Military College of Canada
[56]. The test vehicle was equipped with a comprehensive suite of sensors,
including Lidar, radar, cameras, IMUs, and GNSS receivers, as shown in Fig-
ure 4.1, enabling multi-modal data fusion for high-precision positioning and
mapping. The NavINST dataset contains a diverse set of sensors, each con-
tributing to different aspects of vehicle positioning and navigation:

• Camera: includes both monocular and stereo cameras, which provide
visual perception for autonomous navigation

• Lidar : solid-state and mechanical Lidar sensors, generating high-resolution
3D point clouds for mapping and positioning

• Radar: dataset includes four electronically scanning radars (ESRs),
offering 360-degree coverage. These radars provide Doppler velocity
measurements, range estimation, and object detection, enabling radar-
based positioning in GNSS-denied environments.
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• IMU: dataset incorporates multiple IMUs, including both tactical-grade
and commercial-grade sensors, allowing for inertial navigation and sen-
sor comparison.

• GNSS: provides high-precision GNSS data with RTK corrections, al-
lowing for centimeter-level ground truth positioning. GNSS data is cru-
cial for benchmarking sensor fusion algorithms, validating positioning
performance, and providing a reference for map-based positioning sys-
tems.

Additionally, the NavINST dataset includes trajectories for both indoor and
outdoor environments, recorded under various lighting conditions. These tra-
jectories span urban streets, parking garages, and complex GNSS-challenged
environments.

The geographic locations of the NavINST trajectories are known, enabling
the use of publically available maps of the corresponding regions.

4.2 Experimental Setup

The experimental setup defines the testing framework used to evaluate radar-
based positioning performance. This includes selecting test segments, pre-
processing radar data, and constructing reference maps for scan-to-map reg-
istration. The proposed filtering techniques and sensor fusion algorithms are
rigorously evaluated in diverse urban environments.

4.2.1 RadarScenes Setup

Sequences 112–117, 125, 131, 138, 139, and 142–145 were selected from
the RadarScenes dataset for trajectory testing. These sequences were selected
based on manual inspection of corresponding camera images, confirming that
the trajectory is within urban environments. This setting provided a challeng-
ing and realistic test environment for evaluating our radar-based positioning
and filtering methodologies.
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Because the RadarScenes dataset is in an unknown geographic lcoation,
a reference map had to be constructed to test the radar to amp registration
pipeline. The map creation is described in the following subsection.

RadarScenes Map Creation

The reference map was built exclusively using radar detections labelled as the
static environment (label ID = 11), stitched together using the ground truth
solution. To reduce the bias effect of using the test data in reference map
construction, we also implemented the following measures:

1. Downsampling: The static landmarks were randomly downsampled by
80%, significantly reducing the overlap between the reference map and
radar data used for registration.

2. Geometric Filtering: The remaining reference points were processed
through an additional geometric filter to remove noise and clusters.
This step ensures that only points corresponding to significant static
landmarks, such as buildings, are preserved. Noise points, along with
smaller clusters, were filtered out as they are unlikely to represent mean-
ingful landmarks. By reducing the number of overall points, the result-
ing dataset is cleaner and more representative of the static environment.

3. Gaussian Noise Injection: Random Gaussian noise with a standard
deviation of 15 cm was added to the x and y coordinates of the remain-
ing reference points. This value was chosen based on the radar sensor’s
range error. This noise was introduced to add uncertainty to the refer-
ence map, preventing the ICP algorithm from achieving perfect overlap
between radar data and the reference map. Ensuring the points in the
reference map do not align exactly helps to reduce the bias in the test-
ing process and provides a more realistic representation of real-world
segments.

Figure 4.2 illustrates two reference maps constructed using the aforemen-
tioned approach. The reference maps demonstrate the effectiveness of filter-
ing and isolating meaningful static landmarks. By removing small clusters
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and noise, the geometric filter retains the most prominent static structures,
which are then used to construct the reference map. This map will be eval-
uated for its reliability during the ICP alignment process. Although some
smaller clusters remain along the outer edges of the maps, limiting the radar
point cloud range minimizes their impact on the registration process.

To focus on relevant points for positioning, radar detections from all four
sensors within a range of 30 meters were included. The resulting point cloud
underwent two stages of filtering to improve the data quality: velocity filter-
ing and geometric filtering. These filters effectively isolate static objects and
eliminate noise, improving radar data quality for accurate map registration.

Filtered radar data was then aligned with the pre-constructed reference
map using the ICP algorithm. To achieve accurate alignment, ICP employed a
search window with a 50-meter radius centred around the vehicle’s estimated
position. This was chosen to ensure the algorithm focuses on the relevant
sections of the point cloud and prevents any over-corrections due to irrelevant
points. By constraining the search to a localized area, ICP could identify cor-
responding points between the radar and reference map more effectively, even
in dense urban environments. The radar point cloud was used to iteratively
refine the vehicle’s pose, improving its position and orientation estimates. Fi-
nally, we compared the estimated trajectory to the ground truth to determine
the proposed filtering methods’ performance in enhancing the quality of the
radar point cloud for ICP-based positioning.

4.2.2 NavINST Setup

Sensor ID X(mm) Y(mm) Mounting Angle(degree)
Radar 1: Front Left -413.8 308.3 306.7

Radar 2: Front Right 413.8 308.3 53.3
Radar 3: Rear Left 413.7 -328.7 216.7

Radar 4: Rear Right -413.7 -328.7 126.7

Table 4.1: Radar Mounting Parameters for NavINST sensor rack
[56]

The vehicle was fitted with four electronically scanning radars (UMRR-
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(a) RadarScenes Sequence 139 Reference Map.

(b) RadarScenes Sequence 113 Reference Map.

Figure 4.2: Reference map built using downsampled, clustered,
and Gaussian noise-injected static points.
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Figure 4.3: Illustration of the radar sensors’ field of view, demon-
strating the 360-degree coverage provided by the four electroni-
cally scanning radars mounted on the test vehicle.

96 Type 153) positioned at each corner to provide 360-degree coverage, as
shown in Figure 4.3, mounting parameters in Table 4.1. The radars operate
at 20 Hz in short-range mode, with a maximum detection range of 20 me-
ters. Additionally, the system includes an odometer sensor operating at 3 Hz,
which is synchronized with the radar data to maintain consistency in motion
estimation. These sensors provide the necessary data for radar-based posi-
tioning in urban environments. The collected radar scans are processed to
filter dynamic objects and noise, ensuring that only meaningful static features
are retained for positioning.

NavINST Reference Maps

The reference maps used in NavINST testing were gathered from two open-
source datasets: OpenStreetMap (Figure 3.6) and Kingston Lidar Maps (Fig-
ure 3.7). These maps serve as the baseline for estimating radar scan position-
ing. The choice of map for each segment is highly dependent on the static
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Figure 4.4: Five urban segments located in the City of Kingston,
ON [53]

environment, which will be further analyzed in the results and discussion sec-
tion.

Figure 3.6 are used for segment 1/2/3/5, and Figure 3.6 are used for seg-
ment 4.

NavINST Test Segments

Five urban driving segments are chosen from the NavINST dataset on which
to test the point cloud filtering and positioning pipeline. The segments are
shown in Figure 4.4. The statistics for each segment are detailed in Table 4.2.

Table 4.2: Trajectory Statistics

Driving Segments 1 2 3 4 5
Distance Travelled (m) 1040 361 473 401 769

Duration (Secs) 270 72 180 90 180
Average Speed (km/h) 13.86 18.07 8.50 16.04 15.44

To evaluate the performance of ES-EKF and UKF in urban segments, both
filters were executed using the same dataset, ensuring identical start and end
indices for a fair comparison. The radar point cloud filters were applied for
point cloud preprocessing. After which the two sensor fusion were indepen-
dently applied and evaluated for positioning accuracy. Additionally, we eval-
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uated the filters with fewer ICP iterations to examine the trade-off between
positioning accuracy and computational efficiency. Reducing the number of
iterations lowers overall processing time, making real-time implementation
more feasible while potentially affecting positioning accuracy.

Segments 1 & 5

Due to their distinct traffic and environmental characteristics, Queen Street
and Princess Street were selected as test segments within downtown Kingston.
Queen Street is a two-lane, bidirectional road, whereas Princess Street is a
one-way street with two lanes. Both streets feature several sections with on-
street parking. Both segments pass through areas with significant pedestrian
activity, parked vehicles, and urban obstructions. The primary difference be-
tween these segments is the time of data collection. Segment 1 was conducted
in the early morning, when traffic congestion was low, while Segment 5 was
conducted in the evening when traffic and pedestrian activity were higher. By
comparing these two segments, we can evaluate the performance and robust-
ness of radar-IMU fusion across varying lighting and environmental condi-
tions.

Segment 2

Segment 2 continues along the remainder of Princess Street before turning
onto a bidirectional four-lane road. At the end of this segment, it passes
through a park and a large open parking structure with minimal static de-
tections, making radar-based positioning more challenging. This section pro-
vides an opportunity to evaluate how the radar-IMU fusion performs in low-
feature environments where fewer landmarks are available for positioning.

Segment 3

Segment 3 covers another section of downtown Kingston, where a significant
portion of the trajectory is spent on a two-lane, one-way street in front of
a hospital. This area experiences high traffic volumes, frequent intersection
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stops, and pedestrian activity, making it a challenging environment for sensor
fusion.

Segment 4

Segment 4 is located in a residential neighbourhood with wide, two-lane
streets. The primary challenge in this segment is the abundance of parked
vehicles, dense tree coverage, and enclosed yards with fences, which can
obstruct radar detections and limit the number of reliable static features for
positioning.

4.3 Evaluation Metrics

To evaluate the proposed filtering methods’ performance on radar-based ICP
positioning estimation accuracy, we analyzed the results in terms of filtering
effectiveness, trajectory alignment accuracy, and error analysis. The metrics
for each trajectory were selected to quantify the alignment between the es-
timated vehicle trajectory and the ground truth, providing insights into the
overall accuracy and consistency of the positioning estimation.

The first metric is the Maximum Error (Max Error), which represents the
most significant Euclidean distance between any point on the estimated trajec-
tory and the corresponding point on the ground-truth trajectory. This metric
highlights the worst-case segment and is critical for understanding the maxi-
mum deviation that may occur.

The Root Mean Square Error (RMSE) is calculated as the square root of
the mean of the squared Euclidean distances between the estimated trajec-
tory points and the ground truth points. It provides an overall measure of
positioning accuracy by emphasizing the larger errors more significantly than
the smaller ones, offering insight into the system’s performance. The Mean
Square Error (MSE), which is the mean of the squared Euclidean distances
between the estimated and ground truth, is helpful in analyzing the variance
in positioning errors and assessing consistency. While RMSE provides a com-
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parable scale of errors, MSE retains the squared error values, making it more
sensitive to larger deviations.

We also evaluate the percentage of trajectory points within specific error
thresholds to assess the algorithm’s performance at different levels of preci-
sion. These thresholds are within three meters and one meter.

By analyzing these metrics collectively, we can quantify each filtering
method’s improvements to the radar-based positioning system. This compre-
hensive evaluation allows for a detailed assessment of both the effectiveness
of the filtering approaches and the robustness of the positioning algorithm
under various urban segments.

4.4 Radar Point Cloud Filter Analysis

Radar data requires preprocessing to enhance its reliability for map registra-
tion and sensor fusion. This section evaluates the impact of the point cloud
filtering techniques presented in this work on improving radar data quality
when applied to radar-based positioning methods. The goal is to refine the
radar point cloud by removing dynamic objects, reducing noise, and isolating
meaningful static landmarks, ensuring more accurate and robust positioning.
The effectiveness of these filtering methods is analyzed based on trajectory
alignment accuracy and the improvements achieved in overall positioning.
The following subsections describe the performance of the velocity filtering,
geometric filtering, and SVM classification methods.

4.4.1 Velocity Filter

As demonstrated in Figure 4.5a, as the vehicles are passing through a major
intersection, the proposed method could identify two incoming vehicles based
on their detected Doppler velocity as well as small moving objects at the street
corners, most likely corresponding to pedestrians or cyclists in the area. In
Figure 4.5b, the vehicle is stopped at a traffic light, observing the crossing
vehicle. Interestingly, when the vehicle is stationary, as seen in Figure 4.5b,
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the number of total detected points decreases significantly compared to when
the vehicle is moving in Figure 4.5a. This reduction occurs because radar
systems rely heavily on relative motion and Doppler shifts to detect objects
effectively. When the vehicle is stationary, the radar struggles to generate
sufficient returns from objects in the environment, resulting in fewer detected
points. This limitation directly impacts the system’s overall performance.
With fewer points available, the lack of sufficient data for ICP alignment can
lead to errors in trajectory estimation and pose refinement. This highlights
a key challenge in radar-based systems, where the effectiveness of detection
and alignment is influenced by the vehicle’s motion.

These two figures demonstrate the velocity filter’s effectiveness in sepa-
rating static points from dynamic objects by applying the proposed threshold.
Computational efficiency is demonstrated by the velocity filter, achieving an
average processing time of 1.2 ms per radar frame, compatible with real-time
processing.

4.4.2 Geometric Filter

Figure 4.6 demonstrates the results of the geometric filter applied to the static
points identified by the velocity filter. The red points represent dynamic ob-
jects that were filtered out by the velocity filter, while the black points cor-
respond to noise or small clusters with fewer than 10 points, rejected by the
geometric filter. The coloured clusters represent the meaningful static land-
marks retained by the geometric filter, which strongly correlate with the static
environment when compared to the preprocessed map.

Visual inspection was utilized to carefully tune the geometric filter, bal-
ancing sensitivity and accuracy. Overly strict filter parameters risk removing
meaningful points from the point cloud, whereas overly loose constraints al-
low noise to persist, introducing errors in the registration process. Despite
this fine-tuning, the geometric filter remains computationally efficient, with
an average processing time of 2.1 ms per radar frame, ensuring real-time pro-
cessing capabilities for autonomous applications.
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(a) Scene within Sequence 145.

(b) Scene within Sequence 113.

Figure 4.5: Velocity filter with a threshold of 0.3 m/s applied.
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(a) Scene within Sequence 145.

(b) Scene within Sequence 113.

Figure 4.6: Geometric filter applied static points returned from
the velocity filter, dynamic detection and noise are also plotted
for visualization.
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4.4.3 SVM Classification

As shown in table 4.3, the model achieved an accuracy of 80% during the
training phase, with precision, recall, and F1-scores above 0.75 for the two
major classes. The meaning of the performance metrics is described below:

• Precision: ratio of correctly predicted positive observations to the total
predicted positive observations

• Recall: ratio of correctly predicted positive observations to all observa-
tions in the actual class

• F1 Score: combination of Precision and Recall

Training time was extensive, highlighting the computational intensity and the
complexity involved in predicting vehicles, static environments, and other
classes. The model’s ability to distinguish between vehicles, static environ-
ments, and other objects was validated through its performance metrics. Bal-
ancing the data points for each class was a crucial step during the training pro-
cess, as SVM models struggle with the classification of unbalanced datasets.
An unbalanced dataset can lead to a bias in the model towards the larger class.
In this case, class 1 was much larger than class 0, and both were much larger
than class 2. To balance the dataset, the total number of detections from class
0 was used to randomly sample class 1 to ensure equal representation between
the two classes. Class 2, being much smaller, was left unchanged.

RadarScenes sequences 1 through 126 and 146 through 153 were used for
training, with 90% of the detected points used for training and 10% for test-
ing. Sequences 141 to 145 were allocated for validation only and were not
seen by the model during training. These four sequences provide a challeng-
ing environment in which to test the algorithm’s performance in urban areas.
Sequences 127 through 145 were not used due to computational limitations.

Table 4.4 shows the results of this testing phase. Recall that class 1 is de-
fined as static environments, while class 0 corresponds to vehicles. Observing
the F1-Score for both class 0 and 1 achieved an accuracy of 70% and 71%,
respectively, indicating that the SVM performs well, but additional improve-
ments can be made.
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The testing was completed with balanced data between the two major
classes to ensure that the SVM model’s performance could be accurately
gauged. By maintaining a balanced dataset during testing, the model’s true ca-
pabilities in distinguishing between vehicles and static environments in com-
plex urban settings can be evaluated.

Table 4.3: Classification Report for SVM Training

Class Precision Recall F1-score Support

0 0.85 0.76 0.80 515,953
1 0.77 0.83 0.80 515,230
2 0.78 0.81 0.80 410,595

Accuracy 0.80 1,441,778
Macro Avg 0.80 0.80 0.80 1,441,778

Weighted Avg 0.80 0.80 0.80 1,441,778

Table 4.4: Classification Report for SVM Testing on a Balanced
Trajectory

Class Precision Recall F1-score Support

0 0.71 0.68 0.70 810,337
1 0.73 0.69 0.71 810,337
2 0.28 0.40 0.33 175,896

Accuracy 0.66 1,796,570
Macro Avg 0.57 0.59 0.58 1,796,570

Weighted Avg 0.68 0.66 0.67 1,796,570

Table 4.5: Classification Report for SVM Model on an Unbal-
anced Trajectory

Class Precision Recall F1-Score Support

0 0.16 0.46 0.24 203728
1 0.95 0.53 0.68 2256456
2 0.06 0.64 0.11 67760

Accuracy 0.53 2527944
Macro Avg 0.39 0.54 0.35 2527944

Weighted Avg 0.86 0.53 0.63 2527944

The final comparison between the raw point cloud, geometric filtering,
and SVM prediction for a sequence is shown in Figure 4.7. The left plot
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Figure 4.7: SVM prediction for vehicles, the left plot is the raw
point cloud, the middle is when geometric filtering is applied, and
the right plot is using SVM Predicted data.

displays the original radar detections, highlighting vehicles in red and all
other returns in blue. The middle plot shows the results of geometric fil-
tering, where distinct clusters are identified. The right plot shows the SVM
prediction, where vehicles and static environments are classified based on the
training model.

While the SVM model can accurately identify the two main vehicle clus-
ters, it suffers from overclassification due to the high density of static environ-
ment points. This issue arises from the model’s attempt to generalize across
an imbalanced dataset, where the number of static points significantly out-
weighs dynamic vehicle detections. As shown in Table 4.5, the classification
report highlights the limitations of the SVM model in handling such an un-
balanced trajectory. The precision and recall values indicate that the model
struggles to correctly classify all classes, particularly for Class 0 and Class 2,
which have significantly lower F1 scores compared to Class 1.

Due to these limitations, we ultimately did not use the SVM for classifi-
cation in the final trajectory estimation. Instead, the filtering approach relied
on velocity and geometric filtering techniques to ensure robustness in radar-
based positioning, avoiding the inconsistencies introduced by the SVM’s in-
ability to handle the dataset imbalance effectively.
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4.5 The Effect of Point Cloud Filtering on Tra-
jectory Estimation

Accurate trajectory estimation is essential for evaluating the effectiveness of
radar-based positioning. This section compares the estimated vehicle trajec-
tories obtained through scan-to-map registration and sensor fusion against
ground truth data. It analyzes the impact of different filtering techniques on
trajectory accuracy, highlighting improvements achieved through velocity fil-
tering and geometric filtering. The results demonstrate how radar point cloud
refinement enhances pose estimation in urban environments.

The outcomes are first presented using the RadarScenes dataset, show-
casing the effectiveness of the proposed filtering and positioning methods
in diverse urban conditions. These findings are then further validated using
NavINST data, demonstrating improvements across a different dataset.

4.5.1 RadarScenes

The performance of the proposed filtering approach was further evaluated for
a land vehicle navigation problem by comparing the estimated trajectories
generated by the ICP-based pipeline presented in [38] to the ground truth
trajectories for two test sequences.

The estimated trajectories are presented in Figures 4.8 and 4.9, along with
its error metrics detailed in Tables 4.6 and 4.7. For the first trajectory, Fig-
ure 4.8, both filtering approaches improved positioning accuracy compared to
the raw point cloud. The velocity filter reduced the RMS error from 1.319
m to 1.131 m, representing an approximate 14% improvement. Applying the
geometric filter to the static points achieved the lowest RMS error of 0.902 m,
corresponding to a 31.6% improvement compared to the raw point cloud (see
Table 4.6).

Significant improvements were also observed in the proportion of trajec-
tory points falling within specific error thresholds. For example, with the
geometric filter applied, 76.78% of trajectory points had errors within 1 m,
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Figure 4.8: Comparison of Estimated and Ground Truth for Tra-
jectory 1.

compared to only 27.73% for the unfiltered point cloud. Similarly, the pro-
portion of trajectory points with errors within 50 cm increased dramatically,
from 2.84% for the raw point cloud to 51.10% with the geometric filter ap-
plied (see Table 4.6).

The second trajectory, Figure 4.9, shows excellent improvements for the
velocity filter only, while the geometric filter on the static points reduced po-
sitional accuracy, which can be attributed to multiple factors, including the
number of radar returns, removal of static points that were classified as noise,
and environmental challenges like on road obstruction due to traffic. Velocity
filtering reduced the RMS error from 3.986 m to 0.643 m, achieving approx-
imately 84% improvement. Using the raw point cloud for ICP resulted in
positional accuracy being within 1 m only 3.8% of the time, whereas the ve-
locity filter increased this metric dramatically to 89.06% of the time, demon-
strating its ability to isolate meaningful static points in urban environments
((Table 4.7)). The geometric filter resulted in reduced positional accuracy
compared to the velocity filter, which can be attributed to several factors. For
instance, vehicles moving at high speeds can distort the spatial positioning
of static points, making it challenging for the geometric filter to cluster them
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Table 4.6: Error Metrics for Trajectory 1 across raw, velocity-
filtered, and geometric-filtered point clouds.

Filter Error Metric Raw Point Cloud Velocity Filtered Velocity + Geometric Filtered

Trajectory 1

Max Error (m) 2.740 2.384 2.385
Within 2m (%) 92.18 90.28 91.47
Within 1m (%) 27.73 66.11 76.78

Within 50cm (%) 2.84 44.55 51.10
RMS Error (m) 1.319 1.131 0.902

MSE (m) 1.741 1.280 0.960

accurately. Conversely, when the vehicle slows down or comes to a complete
stop, such as at a road crossing, the radar experiences minimal returns from
the environment. This lack of radar detections causes the geometric filter to
classify many points as noise, further reducing the point cloud available for
registration. The surrounding environment can also be challenging; if the
static features are too far apart or large groups of parked vehicles are parked
closely together, this can cause misclassification within the point cloud. In
areas where static features are spaced too far apart or large groups of parked
vehicles are closely clustered, the geometric filter may struggle to differenti-
ate meaningful static landmarks from noise. High-traffic areas can introduce
additional challenges, such as large moving vehicles obstructing the radar’s
line of sight and limiting its ability to capture static environments.

Table 4.7: Error Metrics for Trajectory 2 across raw, velocity-
filtered, and geometric-filtered point clouds.

Filter Error Metric Raw Point Cloud Velocity Filtered Velocity + Geometric Filtered

Trajectory 2

Max Error (m) 6.286 1.517 3.628
Within 2m (%) 18.33 100.00 78.63
Within 1m (%) 3.84 89.06 48.37

Within 50cm (%) 0.00 49.36 24.83
RMS Error (m) 3.986 0.643 1.638

MSE (m) 15.892 0.414 2.683

The velocity filter processes data at an average speed of 1.2 ms per frame,
while the geometric filter takes 2.1 ms per frame. The ICP processing time per
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Figure 4.9: Comparison of Estimated and Ground Truth for Tra-
jectory 2.

Table 4.8: Processing times for ICP computation on velocity-
filtered and geometric-filtered point clouds for Trajectories 1 and
2.

Trajectory ICP for Velocity (s) ICP for Velocity & Geometric (s)

Trajectory 1 0.016 0.016
Trajectory 2 0.030 0.010

epoch, as detailed in Table 4.8, highlights the computational efficiency of the
proposed filtering methods. With the velocity filter applied, ICP achieves a
maximum processing time of 0.031 s (32 Hz), whereas the addition of the ge-
ometric filter further reduces it to 0.019 s (52 Hz). These results demonstrate
that the filtering pipeline operates well within the update rate of automotive
radars, providing additional computational headroom for real-time applica-
tions.

Experimental results indicate that radar-based positioning accuracy is sig-
nificantly enhanced in urban environments using the proposed velocity and
geometric filtering methods. However, their effectiveness varies depending
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on specific environmental conditions, the characteristics of the radar point
cloud, and both the radar sensor’s detection rate and the number of detections
per scan. When the radar sensor has a high detection rate and captures more
detections per scan, the filters perform better due to the abundance of data
available for processing. This increased data density allows for more accurate
identification and classification of objects, improving the overall positioning
accuracy. In situations where the radar detection rate is low, either sensor-
related or when the vehicle is stationary, the filters have less data to work
with, which can reduce the filter’s effectiveness and accuracy of the overall
positioning solution.

The velocity filter consistently improved positioning accuracy across dif-
ferent trajectories by effectively removing dynamic objects. By utilizing Doppler
velocity measurements and the vehicle’s motion, the filter distinguishes be-
tween static and dynamic objects with high efficiency. The computational
simplicity of the velocity filter ensures it can operate in real-time applications
without imposing significant processing overhead. However, the geometric
filter’s performance is more sensitive to the density and distribution of the
radar point cloud. In segments where the point cloud is dense, the geometric
filter can refine the data by eliminating noise and small irrelevant clusters.
This refinement enhances the performance of the ICP algorithm, leading to
more accurate positioning. When the point cloud is sparse, which can occur
when the vehicle is stationary or moving slowly, the geometric filter may in-
advertently remove too many points. This over-filtering results in insufficient
data for accurate ICP alignment. Ultimately reducing positioning accuracy.

An additional challenge arises from the presence of large clusters of parked
vehicles along the curbsides. These parked cars often produce radar point
clouds similar to static structures like building edges. This issue becomes
particularly pronounced when the vehicle is turning at intersections. In these
segments, the parked cars at these locations can be misinterpreted as build-
ing edges. As a result, the ICP alignment process could incorrectly adjust
the vehicle’s trajectory, causing an offset or preventing the turn from being
fully completed. This misclassification highlights the need for more sophis-
ticated object differentiation methods within the filter to distinguish between
parked vehicles and true static structures, especially during maneuvers such
as turns. Another major factor affecting the filter’s performance is the radar
sensor’s reliance on relative motion between the sensor and the detected ob-
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ject. When the vehicle is stopped or moving slowly, the radar registers fewer
returns from static objects due to the lack of relative motion, leading to an
even sparser point cloud. This limitation shows the importance of vehicle
motion in radar-based positioning systems.

The proposed filtering methods show significant promise for improving
radar-based positioning in urban environments. The approach can be further
improved by addressing these identified challenges through adaptive filtering
strategies, fusion with additional onboard motion sensors, and filter refine-
ment to adjust to real-time environmental changes.

4.5.2 NavINST

This section presents the trajectory estimation results and performance anal-
ysis across five different segments from the NavINST dataset. Unlike the
RadarScenes evaluation, which focuses on assessing the effectiveness of ve-
locity filtering and geometric filtering on raw radar-based positioning, the
NavINST dataset extends the analysis by incorporating multi-sensor fusion.
Specifically, the UKF and ES-EKF frameworks are used to integrate radar-
based ICP positioning with onboard motion sensors, including IMU and odome-
ter data.

The comparison between UKF and ES-EKF highlights key differences
in terms of accuracy, robustness, and computational efficiency under varying
urban conditions. Additionally, an analysis of the impact of filtering tech-
niques—including velocity filtering and geometric filtering—on sensor fusion
accuracy is conducted. The influence of ICP iteration reduction is also as-
sessed to understand its trade-off between positioning performance and com-
putational efficiency.

Radar ICP-based positioning was fused with IMU and odometry mea-
surements during this evaluation. The results provided insights into how pre-
filtered radar data improves state estimation when combined with onboard
motion sensors, offering a more robust and accurate positioning framework
for GNSS-denied environments.
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Segment 1

Figure 4.10: Trajectory estimation for segment 1

For this urban trajectory segment, failed estimations were observed for
ES-EKF when using 500 ICP iterations and 100 iterations with raw radar
point clouds for both ES-EKF and UKF (Table 4.9). The results, as shown
in Figure 4.10, demonstrate that applying the velocity filter significantly im-
proves performance. In contrast, the geometric filter primarily acts as a fine-
tuning step rather than a critical component in the filtering process. A key ob-
servation is that UKF demonstrates robust estimation capability even without
extensive preprocessing, while ES-EKF, although less robust under challeng-
ing conditions, often provides higher accuracy when it functions correctly.
The ability to preprocess the radar point cloud enhances overall estimation
accuracy and improves the algorithm’s computational efficiency, allowing for
a reduction in ICP iterations without compromising positioning performance.
One challenge observed in this segment was related to the reference map.
Certain areas contained gaps between buildings when, in reality, non-building
structures such as parking lots were present. Additionally, while navigating
Princess Street, the trajectory exhibited zig-zag behaviour, which required
more corrections. This effect was likely influenced by large clusters of parked
vehicles, causing occlusions and inconsistencies in the radar-based position-
ing. This segment was recorded during daytime off-peak hours, resulting in
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Table 4.9: Error Metrics for UKF and EKF for Segment 1
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Vel 2.123 27.171 83.197 4.035 19.654 52.203

50
Both 2.065 27.019 84.622 2.990 6.328 57.084
Vel 2.057 27.797 84.320 4.035 19.654 52.203

100
Both 2.104 26.485 84.467 2.874 6.352 59.571
Vel 2.101 27.803 84.381 2.817 6.351 64.442
Raw 118.263 5.528 36.375 249.1 6.610 41.521

500
Both 2.095 25.988 84.489 2.969 6.330 59.667
Vel 2.092 26.312 84.295 2.911 6.351 62.275
Raw 54.545 5.513 36.401 2.895 7.445 61.028

lower traffic density and minimal pedestrian activity. The reduced number of
dynamic obstacles likely contributed to more stable sensor fusion, improving
trajectory estimation accuracy.

Segment 2

Segment 2 evaluates the filter performance in an environment consisting of
one long straight segment followed by two right-hand turns. This segment
highlights ICP alignment challenges, particularly in areas with large clus-
ters of parked cars, as shown in Figure 4.11. These parked vehicles, when
processed by ICP, can be misclassified as static building edges, leading to
misalignment errors in the estimated trajectory.

During the first right-hand turn, the radar’s ability to detect static objects
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Table 4.10: Error Metrics for UKF and EKF for Segment 2
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10
Both 5.821 14.367 48.377 4.918 5.925 29.545
Vel 5.845 14.773 48.052 4.933 5.925 29.942

50
Both 7.836 14.169 48.812 4.175 5.979 32.187
Vel 8.122 14.169 49.631 4.179 6.143 30.958

100
Both 14.606 14.951 34.477 4.125 8.252 30.310
Vel 3.299 18.522 63.688 4.107 8.252 30.310
Raw 3.744 25.305 70.220 3.994 7.925 31.699

500
Both 3.239 17.384 67.994 4.060 8.205 30.382
Vel 3.264 17.628 68.075 4.062 10.154 30.138
Raw 3.753 20.911 69.894 3.917 9.098 32.413

decreases due to the limited field of view and occlusions. However, the po-
sitioning solution remains accurate as the combination of building corners
and structural edges provides reliable reference points for correction and re-
alignment. This highlights the importance of environmental features in aiding
radar-based positioning, even in complex urban settings.

A significant source of error in this segment occurs just before the sec-
ond right turn. On the right side of the vehicle, there is a large open parking
lot enclosed by concrete road barriers, spanning nearly half a block. Since
these barriers are not represented in the OSM reference map, this section is
left open, leading to inconsistencies in map matching and positioning estima-
tion. Additionally, this road segment consists of four lanes, further reducing
radar point cloud density, making positioning more difficult. These factors
contribute to position estimation failures at this corner.
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Figure 4.11: Trajectory estimation for segment 2

By observing Table 4.10, we observe that applying the geometric filter
reduced the effectiveness of the positioning solution. This is likely due to
the higher vehicle speed in this segment, where even minimal point removal
in the geometric filter reduces the availability of important structural features
for ICP alignment. Consequently, the geometric filter, while beneficial in
some segments, may negatively impact positioning accuracy in high-speed
environments where radar scan density is already sparse.

Segment 3

For this segment, the percentage of trajectory error is lower with UKF com-
pared to ES-EKF, as shown in Table 4.11. However, the robustness of the
UKF positioning solution fails at the second right-hand turn, Figure 4.12. The
key landmarks at the intersection include a building to the right of the vehi-
cle. At the same time, the left side is an open parking lot for a nearby hospital,
lacking any structural barriers. This environment increases the likelihood of
incorrect ICP matches, leading to a trajectory break in UKF estimations.

Examining the RMS values for successfully completed UKF estimations,
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Table 4.11: Error Metrics for UKF and EKF for Segment 3
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Both 3.020 9.637 50.909 3.020 19.143 57.203
Vel 2.945 9.342 50.178 3.038 19.143 57.690

50
Both 4.943 8.652 42.385 264.510 19.054 66.591
Vel 4.935 8.522 43.616 308.167 19.054 66.688

100
Both 5.013 7.615 43.195 394.433 19.054 66.850
Vel 4.700 9.170 44.524 53.44 19.054 66.559
Raw 5.272 14.841 42.093 2.791 19.054 62.378

500
Both 4.921 11.666 46.047 115.713 19.054 66.818
Vel 4.639 11.925 46.111 1442.607 19.054 66.494
Raw 59.917 13.970 39.214 2.793 19.504 62.281

it is evident that preprocessing the radar point cloud contributed to estima-
tion errors. Additionally, running ICP for only 10 iterations as a fine-tuning
step for UKF prediction improved the overall estimation accuracy. This sug-
gests that a lower number of ICP iterations prevents incorrect feature associa-
tions, ensuring the algorithm aligns the radar point cloud to the nearest correct
matches rather than searching for alternative, less reliable alignments.

One important observation in this segment is that UKF’s reliance on ICP
corrections affects its performance, particularly in areas with fewer distinct
environmental features. Since UKF does not predict error states but instead
estimates the full position, any incorrect ICP correction can significantly shift
the trajectory, leading to positioning errors. In contrast, ES-EKF does not
estimate absolute position but instead predicts the error in the estimated state.
If ES-EKF receives a large correction from ICP, the fusion filter is designed to
moderate the correction, preventing drastic position shifts that could degrade
positioning stability. This behaviour makes ES-EKF more resilient to large
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Figure 4.12: Trajectory estimation for segment 3

ICP errors, as the filter smooths out sudden position changes, reducing the
risk of significant trajectory deviations.

Segment 4

Segment 4 is located within a suburban environment characterized by wide
streets, large trees, and residential homes with front yards and fences. As
observed in Figure 4.13 and Table 4.12, all ES-EKF positioning estimations
failed except the trajectories with 10 ICP iterations, whereas UKF was able to
maintain a valid trajectory estimation except the 50 ICP iteration.

In suburban areas, OSM reference maps lack sufficient structural detail,
leading to failures in ICP-based positioning. The radar detects parked cars,
trees, and fences, which can be misclassified as building edges, causing ICP
misalignment and positioning errors. However, when switching to a higher-
resolution LiDAR-based reference map, positioning accuracy improved sig-
nificantly. The Lidar map better represents the suburban environment, allow-
ing UKF to maintain a stable trajectory, even though ES-EKF failed in most
cases.
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Table 4.12: Error Metrics for UKF and EKF for Segment 4
IC

P
It

er
at

io
ns

Fi
lte

r

E
S-

E
K

F
R

M
SE

(m
)

E
S-

E
K

F
E

rr
or

1m
(%

)

E
S-

E
K

F
E

rr
or

3m
(%

)

U
K

F
E

rr
or

R
M

SE
(m

)

U
K

F
E

rr
or

1m
(%

)

U
K

F
E

rr
or

3m
(%

)

10
Both 3.599 8.339 73.449 3.661 6.426 42.746
Vel 3.566 12.342 72.515 3.660 6.437 42.724

50
Both 30.886 4.536 9.139 19.111 5.992 43.646
Vel 34.517 4.536 9.206 19.108 5.992 43.635

100
Both 147.220 4.485 4.485 3.633 8.004 40.411
Vel 121.323 4.450 4.450 3.216 9.313 48.217
Raw 147.714 4.491 4.491 3.179 8.312 49.738

500
Both 114.270 4.536 4.536 3.633 8.004 40.411
Vel 114.246 4.536 4.536 3.630 6.581 40.411
Raw 148.201 4.536 4.536 3.563 6.276 40.430

For ES-EKF, reducing ICP iterations improved positioning accuracy. A
lower iteration count resulted in closer point matches, preventing the ICP
algorithm from converging to incorrect local minima [40]. This effect was
particularly pronounced in LiDAR maps, where increased point density led to
the ICP algorithm searching for alternative matches rather than aligning with
the true motion correction required for IMU drift compensation.

Pre-filtering the radar point cloud did not significantly improve perfor-
mance in this segment. The likely reason is that suburban environments con-
tain fewer dynamic objects, meaning the velocity filter removed fewer points,
limiting its effectiveness. Furthermore, geometric filtering removed crucial
static features, reducing point cloud density and negatively impacting ICP ac-
curacy. These results suggest that while pre-filtering techniques benefit urban
environments with dynamic obstacles, they may not always be advantageous
in suburban settings with sparse but critical static features.
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Figure 4.13: Trajectory estimation for segment 4

Segment 5

Segment 5 takes place in the same location as Segment 1 but under conditions
with increased vehicle and pedestrian activity. This segment evaluates the per-
formance of both filters in a more dynamic urban environment. As observed
in Table 4.13 and Figure 4.14, the ES-EKF outperformed UKF, achieving sig-
nificantly lower RMS errors across multiple configurations.

The failed UKF solutions at 500 ICP iterations for both pre-filters applied
suggest that the geometric filter removed a significant number of static en-
vironmental points, leading to misalignment in ICP-based corrections. This
highlights a key limitation in radar-based positioning: Over—filtering can
reduce the number of available features for ICP registration, negatively im-
pacting positioning accuracy.

Interestingly, the best performance for both fusion filters was observed
at 50 ICP iterations. Limiting the number of ICP iterations may have con-
strained the registration process to focus on the closest matching points, re-
ducing the likelihood of ICP converging to an incorrect local minimum. This
finding suggests that a carefully tuned ICP iteration count can enhance stabil-
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Table 4.13: Error Metrics for UKF and EKF for Segment 5
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Both 2.347 21.304 74.708 3.388 5.347 58.814
Vel 2.284 17.563 77.900 3.400 5.156 58.490

50
Both 1.878 31.108 85.224 2.948 4.213 65.975
Vel 1.866 34.349 84.738 2.973 4.083 65.360

100
Both 1.893 24.368 85.256 3.221 4.213 45.748
Vel 1.870 23.914 85.450 3.401 4.106 43.239
Raw 31.606 19.420 58.553 2.941 3.532 36.390

500
Both 1.911 20.642 70.706 65.029 4.213 12.897
Vel 1.879 23.882 71.905 3.426 4.083 42.968
Raw 27.570 19.426 58.540 2.921 3.532 57.129

ity and robustness, particularly in environments with dynamic obstacles such
as moving vehicles and pedestrians.

4.6 Real Time Performance Analysis

Beyond accuracy and robustness, computational efficiency is crucial for real-
world implementation. The ES-EKF has already been demonstrated to oper-
ate in real-time, ensuring seamless integration into high-frequency sensor fu-
sion pipelines. Experimental evaluation indicates that the combined UKF and
ICP correction process operates comfortably within real-time constraints. In
our updated results, the velocity update—responsible for efficiently filtering
dynamic radar returns—requires only 0.965 ms per frame. Although the geo-
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Figure 4.14: Trajectory estimation for segment 5

metric filtering stage is more computationally intensive, it averages 47.392 ms
per frame, while the subsequent UKF update itself is highly efficient at just
0.131 ms on average. These timings confirm that even when incorporating
ICP-based corrections, the overall processing remains fast enough for real-
time automotive radar applications. Further analysis of the ICP processing
reveals a clear trade-off between iteration count and processing time. Specif-
ically, when running 500 iterations, the average processing time is 136.003
ms; reducing the count to 100 iterations brings the time down to 94.236 ms;
50 iterations require 76.592 ms on average; and a further reduction to 10 it-
erations results in only 25.690 ms per frame. Notably, while higher iteration
counts can offer marginal alignment improvements, accuracy gains beyond 50
iterations become negligible. Thus, significantly reducing the number of ICP
iterations can dramatically enhance computational efficiency without com-
promising positioning accuracy.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This study developed a radar-based positioning system using a combination of
velocity and geometric filtering techniques designed to improve scan-to-map
registration in urban areas. The proposed point cloud filtering methods were
tested using the RadarScenes and NavINST datasets, demonstrating their ef-
fectiveness in improving trajectory estimation through radar point cloud re-
finement.

The velocity filter, leveraging Doppler velocity and odometry data, effec-
tively removed dynamic objects from radar scans while maintaining a high
processing speed suitable for real-time applications. The geometric filter, us-
ing DBScan, further improved the radar point cloud by removing additional
ghost detections and noise. These two filters significantly improved the qual-
ity of radar data for ICP alignment, thereby improving positioning perfor-
mance.

Experiments conducted on the RadarScenes dataset showed substantial
accuracy improvements when applying the velocity filter. However, the ge-
ometric filter’s impact was dependent on environmental conditions and pro-
vided mixed results in sparse environments with low numbers of static fea-
tures. The NavINST dataset verified these findings, confirming the filters’
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ability to enhance positioning accuracy across different urban landscapes.

Two sensor fusion approaches, an Error-State Extended Kalman Filter
(ES-EKF) and an Unscented Kalman Filter (UKF), were compared to fuse
radar scan to map positioning updates with INS in the NavINST dataset. The
ES-EKF demonstrated greater robustness to ICP errors, effectively moder-
ating large corrections and improving trajectory stability. The UKF, while
offering a more direct estimation approach, was more susceptible to incorrect
ICP updates in feature-sparse environments. The analysis of different ICP
iteration counts revealed that reducing iterations could maintain or even im-
prove positioning accuracy by preventing over-corrections and convergence
to false local minima while also significantly reducing computational costs.

The experiment shows that using pre-processing techniques on radar point
clouds can improve positioning estimation. The combination of velocity fil-
tering, geometric filtering, and sensor fusion techniques provides a robust
framework for positioning, particularly in GNSS-denied urban environments
where traditional positioning systems struggle.

5.2 Future Work

While the proposed filtering and sensor fusion techniques demonstrated promis-
ing results, several areas for improvement and future research remain.

1. Adaptive Filtering Strategies: Future work could investigate adaptive
filtering strategies that dynamically adjust parameters based on the en-
vironment, traffic conditions, and sensor confidence levels.

2. Multi-Sensor Fusion for Enhanced Positioning: While this study fo-
cused on radar-based positioning, integrating complementary sensors
such as Lidar, cameras, and GNSS could provide more reliable posi-
tioning in urban environments. Future research could explore sensor
fusion frameworks that leverage radar’s resilience in adverse conditions
while utilizing Lidar and vision for enhanced feature association and
landmark-based positioning.
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3. Large-Scale Real-World Evaluation: Expanding the evaluation to a
more diverse set of urban and highway environments, including differ-
ent weather conditions, would provide deeper insights into the general-
izability of the proposed approach.

4. Real-Time Implementation and Computational Efficiency: Given
the real-time constraints of autonomous driving, optimizing the com-
putational efficiency of radar-based positioning is crucial to achieving
a higher refresh rate and ensuring timely updates.
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