
LARGE LANGUAGE MODEL

INTEGRATION WITH

REINFORCEMENT LEARNING TO

AUGMENT DECISION-MAKING IN

AUTONOMOUS CYBER OPERATIONS

A Thesis Submitted to the
Department of Electrical and Computer Engineering

by
Konur Tholl

Supervisor: Dr. Ranwa Al Mallah
Co-supervisor: Dr. Mariam El Mezouar

In Partial Fulfillment of the Requirements for the Degree of
Master of Applied Science in Computer Engineering

June, 2025

© This thesis may be used within the Department of National Defence
but copyright for open publication remains the property of the author.

Acknowledgements

I would like to express my sincere gratitude to my supervisors, Dr. Ranwa Al
Mallah and Dr. Mariam El Mezouar, for their unwavering support, continuous
guidance, and insightful feedback throughout this entire process. I am also
deeply thankful to Dr. François Rivest for generously offering his expertise
and time at a critical juncture.

To my parents, my brother, and the roomies - thank you for the constant
motivation that helped carry me through. Finally, I want to give a shoutout
to the guy who broke my finger in Jiu Jitsu, forcing me to focus on writing.

ii

Abstract

Previous work has demonstrated the significant benefits of using Reinforcement
Learning (RL) to solve complex problems in the cybersecurity domain. In
particular, RL has great potential for real-world applications where agents can
learn by directly interacting with an environment. This approach eliminates
the need to prepare large datasets to train a model; however, it requires a
suitable environment in which an agent can learn. The environment must
simulate realistic cybersecurity conditions and provide the appropriate signals
for an agent to learn an optimal policy.

Another significant advance in Artificial Intelligence (AI) is the development
of Large Language Models (LLMs). An LLM’s unique ability to recognize
patterns in language makes it an invaluable asset for Autonomous Cyber
Operations (ACO), where the goal is to incorporate autonomous decision-
making in the cyber domain. Integrating an LLM provides simulated human
reasoning in the RL process, allowing trained professionals to apply their
invaluable skills elsewhere, greatly enhancing the scalability of cybersecurity.

Currently, the work done in ACO consists of RL agents that must begin
learning from scratch in order to converge on a policy. Moreover, the knowledge
of these agents is limited to the specific rules of the environment they are
trained in. The purpose of this thesis is to introduce external knowledge in the
RL pipeline to enhance decision-making and optimize training. This external
knowledge will be in the form of an LLM that has already been trained in the
cybersecurity domain.

Index Terms - Autonomous Cyber Operations; Large Language Model;
Reinforcement Learning; Cybersecurity; LLM-RL Integration.

iii

Résumé

Des travaux antérieurs ont démontré les avantages de l’utilisation de l’apprent-
issage par renforcement pour résoudre des problèmes complexes dans le domaine
de la cybersécurité. En particulier, l’apprentissage par renforcement présente
un grand potentiel pour les applications réelles où les agents peuvent apprendre
en interagissant directement avec un environnement. Cette approche élimine le
besoin de créer de grands jeux de données pour entrâıner un modèle; cependant,
elle nécessite un environnement dans lequel l’agent peut apprendre. Cet envi-
ronnement doit simuler des conditions de cybersécurité réalistes et générer les
signaux appropriés pour qu’un agent puisse apprendre une stratégie optimale.

Un autre avancée majeure en intelligence artificielle est le développement des
grands modèles de langage. La capacité unique de ces modèles à comprendre le
langage humain les rend pertinents pour les opérations cybernétiques autonomes
où l’objectif est de considérer la prise de décision autonome dans le domaine
cybernétique. L’intégration d’un grand modèle de langage offre une simulation
du raisonnement humain dans le processus d’apprentissage par renforcement,
permettant ainsi aux professionnels qualifiés d’appliquer leurs compétences
précieuses ailleurs, ce qui améliore grandement l’évolutivité de la cybersécurité.

Actuellement, la recherche effectuée en opérations cybernétiques autonomes
consiste en des agents d’apprentissage par renforcement qui doivent commencer
à apprendre à partir de zéro afin de converger vers une stratégie optimale.
De plus, la connaissance de ces agents est limitée aux règles spécifiques de
l’environnement dans lequel ils sont entrâınés. L’objectif de cette thèse est
d’introduire des connaissances externes dans le processus d’apprentissage par
renforcement pour améliorer la prise de décision et optimiser l’entrâınement.
Ces connaissances externes prendront la forme d’un grand modèle de langage
déjà entrâıné dans le domaine de la cybersécurité.

Mots-clés – Opérations cybernétiques autonomes; Grand modèle de langage;
Apprentissage par renforcement; Cybersécurité; Intégration AML-GML.

iv

Contents

Acknowledgements ii

Abstract iii

Résumé iv

List of Tables x

List of Figures xi

1 Introduction 1
1.1 Motivation . 1
1.2 Statement of Deficiency . 3
1.3 Aim . 3
1.4 Research Activities . 4
1.5 Organization . 5

2 Background 6
2.1 Large Language Models . 6

2.1.1 Self-Attention . 6
2.1.2 LLM Architecture . 8
2.1.3 Pretraining . 10
2.1.4 Fine-Tuning . 11

Supervised Fine-Tuning 11
Reinforcement Learning with Human Feedback 11
Direct Preference Optimization 12
Full Fine-Tuning vs Partial Fine-Tuning 12

2.1.5 Prompt Engineering . 13
X -Shot Learning . 13
Chain-of-Thought Prompting 14

v

Contents

Retrieval-Augmented Generation 14
2.2 Reinforcement Learning . 15

2.2.1 Model-Based vs Model-Free RL 16
2.2.2 Policy Convergence . 16
2.2.3 Monte Carlo and Temporal Difference 17
2.2.4 On-Policy vs Off-Policy RL 18

Off-Policy Learning . 18
On-Policy Learning . 19

2.3 Autonomous Cyber Operations 20
2.3.1 CybORG Overview . 21
2.3.2 Cage Challenge 2 . 22

Environment Interaction 22
Wrappers . 24

3 Related Work 27
3.1 Teacher-Guided RL . 27
3.2 LLMs and RL Integration . 30
3.3 LLMs in Cybersecurity . 36
3.4 Autonomous Cyber Operations 38
3.5 Artificial General Intelligence 39

3.5.1 Generalized Nature . 40
3.5.2 Computational Requirements 40
3.5.3 Transparency . 40
3.5.4 Ethical Concerns . 41

3.6 Discussion . 41
3.6.1 Research Opportunities 41

4 Methodology 42
4.1 Selecting an LLM . 43
4.2 Environment Modification . 47

4.2.1 Block Action . 48
4.2.2 Patch Action . 49
4.2.3 Isolate Action . 51
4.2.4 Action Removal . 52
4.2.5 Preprocessing . 53

4.3 Baseline Agent Development 54
4.3.1 DQN Agent . 55
4.3.2 PPO Agent . 57
4.3.3 Baseline Agent Evaluation 62

4.4 Teacher-Guided Algorithm Development 63

vi

Contents

Action Masking . 64
Reward Shaping . 66
Feature Space Modification 67
Auxiliary Loss . 69
Combining Implementations 71

4.5 Integration of the LLM into the RL pipeline 72
4.5.1 Prompt Design . 72
4.5.2 Extracting LLM Recommendations 73
4.5.3 Transition from LLM-Guided to Independent RL 75

4.6 Evaluation Design . 76
4.6.1 Selecting the RL Algorithm 76
4.6.2 Comparing Teacher-Guided Algorithms 77

Feature Space Modification 78
4.6.3 Evaluating LLM Integration 79

Explained Variance . 80
Evaluating on Different Scenarios 80

5 Evaluation 81
5.1 Selecting an LLM . 81

5.1.1 Initial Prompt Development 82
5.1.2 Automated Evaluation 83
5.1.3 Manual Evaluation . 86

5.2 Choosing the RL Algorithm . 87
5.3 Environment Modifications . 90

5.3.1 Adding Actions . 90
Removal of the Block Action 92

5.3.2 Signal Modifications . 92
5.4 Optimizing PPO . 93
5.5 Comparing Teacher-Guided Methods 96

5.5.1 Action Masking . 96
Masking Actions via Softmax 97
Masking Hosts via Softmax 100
Masking Actions via Logits 102
Comparing Masking Techniques 104

5.5.2 Feature Space Modification 105
5.5.3 Reward Shaping . 107
5.5.4 Auxiliary Loss . 108
5.5.5 Combining Implementations 110

Reward Shaping and Feature Space Modification 110
Action Masking and Feature Space Modification 112

vii

Contents

Action Masking and Auxiliary Loss 114
5.5.6 Evaluating the Best Technique 115

5.6 LLM Integration . 116
5.6.1 Prompt Engineering . 116
5.6.2 Standard Prompt Evaluation 118
5.6.3 Optimized Prompt Evaluation 122
5.6.4 Fundamental Limitation 133
5.6.5 Discussion . 134

6 Conclusion 135
6.1 Contributions . 135
6.2 Limitations . 136

6.2.1 Selecting an LLM . 136
6.2.2 Environment Limitations 136
6.2.3 Agent Evaluation Limitations 137
6.2.4 Teacher-Guided Integration Limitations 138
6.2.5 Parsing CybORG’s Output 138
6.2.6 Final Prompt Design . 138
6.2.7 LLM Resource Requirements 139
6.2.8 LLM Integration Limitations 139
6.2.9 Insufficient Testing for Transferability 139

6.3 Future Work . 140

Bibliography 141

Appendices 150

A CybORG Sequence Diagrams 151

B Django Application for Agent Evaluation 161
B.1 Application Overview . 161
B.2 Running a Round . 161
B.3 Analyzing Results at the Episodic Level 162
B.4 Analyzing Results at the Timestep Level 163

C Prompts used for Study 165
C.1 Initial Prompt . 165
C.2 Standard Prompt . 167
C.3 Optimized Prompt . 169

D Encoder-Only LLMs 172

viii

Contents

E Mapping the LLM to a Distribution 174
E.1 Optimized Prompt . 176
E.2 Standard Prompt . 180
E.3 Discussion . 183

F Evaluating LLM-Integration for Different Scenarios 185

ix

List of Tables

3.1 Comparison of Cybersecurity Environments. 39

4.1 LLMs used in the Evaluation. 43
4.2 Final Hyperparameters used for the Baseline PPO Agent. 77
4.3 Hyperparameters for LLM Integration using Standard Prompt. . . 79
4.4 Hyperparameters for LLM Integration using Optimized Prompt. . 80

5.1 LLM Evaluation using JSON Format. 84
5.2 LLM Evaluation using Sentence Format. 85
5.3 Deficiencies of Relying Solely on BERTScore. 86
5.4 LLM Selection - Manual Validation. 87
5.5 PPO Evaluation Results. 88
5.6 DQN Evaluation Results. 89
5.7 Updated Hyperparameters for PPO. 96
5.8 LIME Results for Recommendation as Float. 106
5.9 LIME Results for Recommendation as One Hot Encoded. 106
5.10 LIME Results for Recommendation as Binary. 107
5.11 LIME Results with Reward Shaping - Float. 111
5.12 LIME Results with Reward Shaping - One-Hot Encoded. 111
5.13 LIME Results with Reward Shaping - Float. 113
5.14 LIME Results with Action Masking - One Hot Encoded. 113
5.15 Comparison of Teacher-Guided Techniques. 116
5.16 Comparing Probability Distributions with LLM-Guided Agent. . . 133

E.1 Effect of Temperature Scaling on Probabilities. 176

F.1 Hyperparameters for LLM-Integration on Different Scenarios. . . . 185

x

List of Figures

2.1 Self-Attention Overview. 7
2.2 Transformer Overview. 9
2.3 DPO vs RLHF. 12
2.4 Chain-of-Thought Example . 14
2.5 Retrieval-Augmented Generation (RAG) Overview. 15
2.6 RL Process Overview. 16
2.7 Cage Challenge 2 Network . 22
2.8 Cage Challenge 2 Action Effects. 24
2.9 Cage Challenge 2 Default Feature Mapping. 26

3.1 VirtualHome Action Mapping. 30
3.2 Using a Transformer as an RL Agent. 34
3.3 Decomposing LLM Instructions. 35
3.4 Primitive MLP used in Study. 37

4.1 Prompt Design. 44
4.2 Parsing the Raw CybORG Output. 45
4.3 LLM Selection Overview. 47
4.4 Design of the Block Action. 49
4.5 Design of the Patch Action. 50
4.6 Design of the Isolate Action. 52
4.7 Modifying the Default Feature Space Mapping. 54
4.8 DQN Design. 57
4.9 Effects of Log Probabilities. 59
4.10 PPO Design - Sampling. 60
4.11 PPO Design - Training . 62
4.12 Structure of the Django Database. 63
4.13 Action Masking Design. 66
4.14 Reward Shaping Design. 67
4.15 Appending Recommendation to Feature Space. 68

xi

List of Figures

4.16 Feature Space Design. 69
4.17 Auxiliary Loss Design. 71
4.18 Flowchart for LLM Interaction. 74
4.19 LLM Integration Design. 75
4.20 LIME Analysis Scenario. 79

5.1 LLM Response to Raw CybORG Output. 82
5.2 LLM Response to Parsed CybORG Output. 83
5.3 PPO and DQN Comparison. 89
5.4 Nuances with the Patch Action. 91
5.5 Impact of Reward Normalization and Feature Space Modification. 93
5.6 Improved PPO Performance. 95
5.7 Results for Softmax-Based Action Masking. 99
5.8 Softmax-Based Host Masking Results. 102
5.9 Logit-Based Action Masking Results. 103
5.10 Results for an Extended Action Mask. 104
5.11 Feature Space Modification Results. 105
5.12 Reward Shaping Results. 108
5.13 Auxiliary Loss Results. 109
5.14 Feature Space Modification with Reward Shaping. 110
5.15 Feature Space Modification with Action Masking. 112
5.16 Auxiliary Loss with Action Masking. 115
5.17 Prompt Engineering Nuances. 117
5.18 LLM Performance with Different Prompts. 118
5.19 LLM-Guided Performance with Standard Prompt. 120
5.20 Comparing LLM as Teacher against Pretrained Agent as Teacher. 121
5.21 LLM-Guided Performance using Optimized Prompt. 123
5.22 Distilling the LLM’s Knowledge into an RL Agent. 125
5.23 Comparing LLM-Guided using Optimized Prompt to Baseline. . . 127
5.24 Attempts to Facilitate Smoother Transition to Independent RL. . . 130
5.25 Comparing Optimized Prompt against PPO Baseline. 132

A.1 Cage Challenge 2 Environment Initialization. 151
A.2 Cage Challenge 2 Environment Interaction. 154
A.3 Cage Challenge 2 Wrapper Initialization. 158

B.1 Django Run Game Interface. 162
B.2 Django Analysis Section. 162
B.3 Django Episode View Interface. 163
B.4 Django Timestep View Interface. 164

xii

List of Figures

D.1 Attempt to Use Encoder-Only LLM. 173

E.1 Extracting Probability Distribution from LLM. 175
E.2 LLM-Guided Performance with Distribution - Optimized Prompt. 177
E.3 Other Metrics for LLM-Guided Performance with Distribution -

Optimized Prompt. 179
E.4 LLM-Guided Performance with Distribution - Standard Prompt. . 181
E.5 Comparing Metrics for Single Action vs Distribution - Standard

Prompt. 183

F.1 LLM Integration Results in the 4-Host Environment. 187
F.2 LLM Integration Results in the 5-Host Environment. 188
F.3 LLM Integration Results in the 6-Host Environment. 189
F.4 LLM Integration Results in the 7-Host Environment. 190
F.5 LLM Integration Results in the 8-Host Environment. 191
F.6 LLM Integration Results in the 9-Host Environment. 192
F.7 LLM Integration Results in the 10-Host Environment. 193
F.8 LLM Integration Results in the 11-Host Environment. 194
F.9 LLM Integration Results in the 12-Host Environment. 195

xiii

1 Introduction

The extent to which offensive cyber operations have increased in recent years
is substantial. To counteract this, cybersecurity must be able to scale at a
proportional rate in a sustainable manner. Due to the sheer volume of data
involved in cybersecurity, manually defending systems is not feasible. To
address this concern, tools such as Intrusion Detection Systems (IDS) [1] have
been created to assist analysts in detecting malicious activity; however, this still
requires individuals to manually inspect each alert and act accordingly. Ideally,
these tools would be capable of autonomously making decisions and executing
actions, which would directly support cyber operators and greatly increase the
scalability of cybersecurity. This is the primary goal of Autonomous Cyber
Operations (ACO) [2]. Current applications of ACO are made possible through
Reinforcement Learning (RL), a branch of Machine Learning (ML). However,
traditional RL has its limitations including the following:

• The RL agent must learn from scratch for each task, increasing training
time; and

• The agent’s knowledge is scoped to the environment in which it is trained,
limiting transferability.

These limitations can be mitigated by incorporating external knowledge into
the RL process, which the agent can leverage to make decisions.

This study explores how a Large Language Model (LLM) can be integrated
into the RL pipeline to enhance the agent’s decision-making capabilities. This
will reduce the training time required for an RL agent to converge onto an
optimal policy in ACO.

1.1 Motivation

The sophistication and volume of offensive cyber operations have increased
immensely over the past years. A Forbes study shows that the number of data
breaches increased by 72% between 2021 and 2023 [3]. Cyber operators are no

1

1.1. Motivation

longer able to manually defend their systems from these vast and increasingly
complex attacks. It is imperative that tools are implemented to help defend
these systems.

One of the first approaches to defend against these threats involves storing
signatures of known attacks in a database [4]. Any new samples are compared
against these stored signatures to determine if they are malicious. However,
this reactive approach means that systems will be completely vulnerable to any
new attack whose signature is not already in the database. This makes it very
easy for adversaries to bypass defense systems by making minor modifications
to their attacks (e.g., adding non-executable code to malware).

ML was introduced in cybersecurity to address these shortcomings due to
its data-centric nature where it is able to recognize anomalies that do not
need to explicitly exist in a database [5]. However, traditional supervised
approaches rely on vast historical datasets to make effective predictions in
complex environments. Furthermore, these models are still susceptible to
zero-day vulnerabilities, where the attack has no “learned” patterns found in
the historical data.

Recent research has shown the success of RL in overcoming these deficiencies
by allowing an agent to learn through direct environment interaction [6, 7].
This has proven beneficial in ACO; however, these agents start as “bare-bone”
models that have to be trained from scratch. This is inefficient as the agent
will initially be just as likely to choose an unfavorable action as a favorable one
- it will inevitably make poor decisions before it can learn to select optimal
ones. As a result, more training is needed before the agent can converge on an
optimal policy.

Furthermore, the knowledge of these agents is only limited to the reward
signals generated by the environment, making the development of transferable
agents a challenge. There are two possible solutions to overcome this:

1. Create a perfect environment that represents all possible states and
transitions that can be encountered in the cyber domain; or

2. Create an RL agent that can leverage an external source with “real-world”
knowledge to assist in the decision-making process.

.
This research focuses on the latter of these two options. It should be noted

that the first option is considerably challenging due to the complexities and
rapidly evolving nature of cybersecurity.

The real-world knowledge is provided by an LLM for this study. An LLM’s
ability to recognize patterns in language is particularly helpful in cybersecurity,
where samples are generally textual by nature (e.g., log files, event messages,

2

1.2. Statement of Deficiency

etc). Integrating an LLM into the pipeline enables the RL agent to leverage
this knowledge from the beginning, optimizing its decision-making capability.

The motivation behind this thesis is to demonstrate the advantages of
integrating an LLM, trained in the cybersecurity domain into the RL process
for ACO. The RL agent can augment its decision-making capabilities by
directly leveraging the LLM’s knowledge of cybersecurity threat response
[8, 9, 10] and pattern recognition [11]. By demonstrating the positive impact of
LLM integration with the CybORG environment [2], this thesis highlights the
potential real-world implications. CybORG is the cybersecurity environment
used in this study, which is described in detail in Chapter 2.

1.2 Statement of Deficiency

Current RL algorithms employed in ACO require substantial training before
converging onto an optimal policy. Initially, RL agents assign equal weights
to all actions, meaning they are just as likely to select unfavorable actions as
favorable ones during the early stages of training. In cybersecurity, the conse-
quences of performing undesired actions can be severe, potentially resulting
in the compromise of entire IT systems. This also leads to longer training
periods, during which the agent must learn which actions to take based solely
on the feedback signals from the environment.

Furthermore, the data used for responding to cybersecurity incidents is
typically textual (e.g., logs, events, etc) and intended for human operators. RL
agents require this information to be mapped into a numerical state space to
extract meaningful patterns. However, this feature engineering process may
miss critical information that is necessary for making informed decisions.

1.3 Aim

The aim of this thesis is to augment decision-making in ACO by integrating
external knowledge in the form of an LLM into the RL pipeline, in order to
reduce the training time required for an agent to converge to an optimal policy.

To evaluate the success of the thesis, an optimized RL agent is created
to serve as a baseline. The performance of the baseline is then compared
directly against the LLM-guided agents. Specifically, the success of this thesis
is measured by:

• How quickly the LLM-guided agent converges onto an optimal policy
compared to the baseline. This convergence is considered successful
if it occurs more rapidly than the baseline in terms of timesteps. A

3

1.4. Research Activities

timestep is a single interaction in which the agent performs an action in
the environment and receives both a reward and next state in response.

• How accurate the LLM-guided agent is within the RL environment. The
evaluation of the agent’s accuracy is considered successful if its policy
yields equal or better performance than the baseline in terms of reward
signals.

• The initial performance of the LLM-guided agent at the start of training
in terms of the environment’s reward signals. The initial performance
criteria is considered successful if the LLM-guided agent outperforms the
baseline early on, demonstrating the ability to learn without having to
perform obviously unfavorable actions.

1.4 Research Activities

The following activities were performed for integrating an LLM into the RL
pipeline for ACO. These are discussed at length in Chapter 4.

1. Selecting an LLM. Existing open-source LLMs pretrained in cyber-
security were evaluated using a dataset of manually created question
and answer pairs. These pairs were contextually relevant to CybORG,
containing states that closely resemble those returned directly from the
environment. The validation of responses was initially facilitated through
BERTScore [12]; however, manual evaluation across the responses was
ultimately used to determine the best LLM.

2. Environment Modification. The CybORG environment was modified
to better reflect realistic cybersecurity conditions and support RL training.
These modifications include:

• Modifying the action-space of the RL agent; and

• Adjusting the reward signals returned by CybORG; and

• Changing how the environment’s raw output is transformed into
engineered features.

3. Baseline Agent Development. This activity was done in parallel with
environment modifications due to their interdependencies. An agent was
required to validate the environment modifications, and the environment
modifications were necessary to enable more realistic training for the
agent. Both value-based and policy-based RL agents were evaluated
during this phase.

4. Developing a Teacher-Guided Algorithm. Multiple algorithms
(and combinations thereof) for integrating a teacher into the RL pipeline
were developed and assessed to determine which is the most effective for
CybORG. These were based on existing work [13, 14, 15, 16, 17, 18, 19].

4

1.5. Organization

5. LLM Integration into the RL Pipeline. This involved integrating the
best-performing LLM with the best-performing teacher-guided technique.

6. Evaluation of Results. The LLM-integrated RL pipeline was eval-
uated against the baseline agent. The primary metrics used in this
evaluation were the reward signals outputted by the environment and
the convergence speed measured in timesteps.

1.5 Organization

The remainder of this thesis is organized as follows. The Background chapter
provides all relevant information on LLMs, RL and ACO. The Related Work
chapter presents previous research in this field. The Methodology chapter
elaborates on the research activities. The Evaluation chapter describes how
well techniques performed, and the rationale behind their implementation. The
Conclusion summarizes the study’s contributions, discusses its limitations
and presents ideas for future work.

5

2 Background

2.1 Large Language Models

Fundamentally, a Large Language Model is a Deep Neural Network (DNN)
designed to recognize patterns in language [11]. The vast number of parameters
and the unique transformer architecture [20] enable LLMs to identify complex
patterns in language, and generate contextually relevant responses for a wide
range of Natural Language Processing (NLP) tasks.

2.1.1 Self-Attention

A key component of the transformer architecture is the self-attention mechanism
[20], which computes a vector signifying how each token in the input sequence
relates to others. This vectorized representation allows the model to process
input sequences in parallel, eliminating the need to parse tokens sequentially, as
required in earlier architectures such as the Recurrent Neural Network (RNN)
[21].

Figure 2.1 illustrates how self-attention is applied to the phrase “AI is cool”.
As shown, the output (Ax) is computed using the current token (Xi) and all
its predecessors (Xi, Xi−1...X0). Fundamentally, this is a weighted sum [22]:

ai =
∑
j≤i

αijxj

where αij is the weight that token j has on the attention score for token i.

6

2.1. Large Language Models

Attention
Layer

AI

is

cool

Preprocess

A1

A2

A3

Figure 2.1: Overview of the self-attention mechanism [20]. The original tokens are
shown on the left with their associated attention scores shown on the right. Specifically,
this represents masked self-attention, where each token’s score is calculated using only
itself and preceding tokens.

In practice, the transformer model uses three weight matrices to project
each token, effectively assigning three distinct “roles” [22]:

• Query. A matrix representing the input as the current element being
compared to the preceding ones. It is calculated using qi = xiW

Q where
WQ is the query weight vector.

• Key. A matrix representing the input as a preceding input being
compared to the current element. It is calculated using ki = xiW

k where
W k is the key weight vector.

• Value. A matrix representing the input as the value of a preceding
element that gets weighted to calculate the output of the current element.
It is calculated using vi = xiW

v where W v is the value weight vector.

An attention score is then calculated by taking the dot product of each query
and key value. This score is scaled down by the root of the dimensionality of
the key vector [22] to discourage sporadic updates:

score(xi, xj) =
qi·kj√
dk

A softmax activation function is then applied to convert these scores into
the weights that determine how much token i attends to token j:

αij = softmax(score(xi, xj))

Finally, a weighted sum is applied to compute the self-attention output for
token i, using the value vector:

7

2.1. Large Language Models

ai =
∑

αijvj

Having a vectorized representation of how each element in an input sequence
relates to each other allows the model to perform computations in parallel - it
does not need to wait for the previous token, as is the case for RNNs. This
greatly improves training efficiency and increases the model’s ability to capture
contextual information across entire input sequences. However, while more
efficient, this approach increases memory and CPU requirements due to its
parallelized nature.

2.1.2 LLM Architecture

The preceding subsection provided an overview of the self-attention mechanism;
however, it did not explain how this fits into the full transformer architecture.
The original transformer architecture consists of the following components [20]:

1. Tokenization. Before a sequence is fed into the model, it is tokenized
- split into smaller units that can be easily mapped into a numerical
feature space. These units are typically the words from the prompt, but
can be as small as individual characters.

2. Embedding Layer. This layer converts the tokens into continuous,
numerical representations, enabling the neural networks to recognize and
process patterns across tokens.

3. Positional Encoding. This adds additional information to the embed-
dings that represents in which order each token appears. This is critical
in language where the order of words can completely alter semantic
meaning. Positional encoding enables the transformer to capture these
sequential dependencies, even though processing occurs in parallel.

4. Encoding. The encoder creates a set of hidden representations to capture
contextual relationships among the input tokens. It consists of two
primary layers: a self-attention layer and a feed-forward layer. Unlike the
masked self-attention shown in Figure 2.1, the encoder uses bidirectional
self-attention, where the tokens’ attention scores are calculated using
both preceding and future tokens. This enables the model to form a
complete representation of the input. The feed-forward layer enables
the model to form complex, non-linear dependencies between features,
essential for extracting patterns from the complex semantics associated
with language. The output of the encoder is a vector for each token that
reflects its relationship to all other tokens in the input sequence.

5. Decoding. The decoder takes the encoded output and uses it to predict
the next token, comparing this prediction to the actual next token to

8

2.1. Large Language Models

compute the loss. For example, if the input sequence is “AI is cool”,
the decoder will use the hidden state for “AI” to predict the next token
(“is”). The actual prediction is a vector of logits whose size equals the
number of possible tokens. Each of these logits is passed through a
softmax activation function to create a probability distribution across
the tokens (stochastic output). To prevent the decoder from accessing
future tokens, masked self-attention is applied. This is implemented by
setting all elements greater than i to −∞, causing them to be effectively
0 after passing through the softmax activation function, ensuring they
do not influence the output [20].

Figure 2.2 depicts the above process for which a transformer predicts the
next token from the input: “The coolest field is”.

Tokenization"The coolest
field is" Embedding Positional Encoding

...

["The","coolest","field", "is"] [0.4,...],[0.1,...],[0.9,...],[0.2,..]

[1,0.4,...],[2,0.1,...],[3,0.9,...],[4,0.7

Self-Attention

Feed Forward

Feed Forward

Self-Attention

Encoding

...
...

Masked Self-Attention

Self-Attention

Decoding

Feed Forward

Masked Self-Attention

Self-Attention

Feed Forward Softmax "AI"

[0.32,...],[0.48,...],
[0.23,...],[0.36,...]

Logit for each
possible token

Figure 2.2: Illustration of the components in the transformer architecture and the
order in which they are used to generate a prediction. This figure is kept at a higher
level than the original transformer architecture [20] to emphasize the core functionality
and components.

It should be noted that the decoder and encoder consist of multiple layers.
This allows the model to consider different “meanings” of the input [20]. For
example, one layer might be focused on the grammar of the input sequence
whereas another might be focused on the intent.

The process described above outlines the original transformer architecture,
which is used for encoder-decoder type models. The T5 introduced by Raffel et
al. [23] is among the most popular family of LLMs that use this architecture.

9

2.1. Large Language Models

There are two other primary types of LLMs with minor deviations from the
original transformer architecture:

1. The decoder-only model [24]. This type of model does not have the
encoder block shown in Figure 2.2. It is designed for auto-regressive
tasks such as text generation, where the decoder predicts the next token
based on previously generated tokens and the input sequence. Masked
self-attention is essential to ensure that future tokens are not used for its
prediction. The Generative-Pretrained Transformer (GPT) is the most
popular family of LLMs that use this model [25].

2. The encoder-only model [24]. This type of model does not have the
decoder block shown in Figure 2.2. As a result, there is no masked self-
attention, permitting the model to use both past and present tokens in the
input sequence for making a prediction. This bidirectional representation
of the input makes it ideal for classification tasks such as sentiment
analysis. These models are not suitable for text generation tasks because
they lack the auto-regressive mechanism of a decoder and are instead
designed to encode the input. The Bidirectional Encoder Representations
from Transformers (BERT) is the most popular family of LLMs that use
this model [26].

It should be noted that the majority of recent achievements in LLMs [27, 28]
are not due to modifications in the transformer architecture, but to an increase
in the amount of data and parameters used to train these models.

2.1.3 Pretraining

The training of an LLM generally occurs in two phases: the pretraining phase
and the fine-tuning phase.

The pretraining phase requires the most time and resources. This involves
collecting vast amounts of data (up to petabytes) and feeding it to the model.
The model then adjusts its parameters to predict tokens based on the patterns
identified in the data it has been exposed to. The goal of this phase is to
have a model that can recognize patterns in language and use this contextual
representation to predict the next token (or masked token) in a sequence.
This learning is considered “self-supervised”, a subcategory of unsupervised
learning where the model generates its own labels from the input data. For
decoder-only models, the LLM masks the last token in the input sequence and
uses all preceding ones to make a prediction. It then compares this prediction
with the real last token to calculate the loss, which is used to adjust the model’s
parameters to improve performance (typically done in batches). An identical

10

2.1. Large Language Models

concept is applied to encoder-only models; however, a random token is masked
instead of the last one, and it uses all tokens in the input sequence to make its
prediction. The pretraining phase can take weeks and cost millions of dollars
for larger LLMs [29].

2.1.4 Fine-Tuning

Once the pretraining phase is complete, and the LLM can predict subsequent
tokens, fine-tuning can begin. Unlike the self-supervised pretraining phase,
fine-tuning involves conducting targeted training focused on specific tasks
rather than just predicting the next token based on contextual patterns in
language. Examples of tasks that an LLM can be aligned to include: answering
questions, code generation and sentiment analysis. The following subsections
discuss the various ways alignment can be achieved after pretraining.

Supervised Fine-Tuning

Supervised Fine-Tuning (SFT) is standard supervised training that involves
creating a dataset of samples and their corresponding labels [30]. As in
traditional supervised learning, the LLM adjusts its parameters to minimize the
loss between the true labels and its predictions. While the dataset constructed
for this has to be fairly substantial to get the LLM to adjust its output, it
is still significantly smaller than the amount of data used for the pretraining
phase. SFT is generally combined with other fine-tuning methods to align
LLMs to a specific task.

Reinforcement Learning with Human Feedback

Reinforcement Learning with Human Feedback (RLHF) is a fine-tuning tech-
nique typically conducted after SFT [31]. The goal is to incorporate human
feedback into the model’s learning process to generate more relevant outputs.
This process involves presenting multiple (generally two) outputs from the
same prompt and having a human select the preferred one. These outputs are
then fed into a reward model that calculates a corresponding score for each -
ensuring that the preferred outputs receive higher scores than the unpreferred
ones.

Once the reward model has been trained, it is used to provide numerical
scores for new outputs generated by the LLM. RL is then used to adjust the
LLM’s parameters to maximize the score given by the reward model.

11

2.1. Large Language Models

Direct Preference Optimization

One of the disadvantages of RLHF is that it requires training a new neural
network to generate the reward signals used to fine-tune the LLM. Direct
Preference Optimization (DPO) addresses this by directly aligning the LLM
based on human feedback [32]. Similar to RLHF, multiple responses are
generated from the same input, and the preferred one is selected. The loss is
then computed by directly comparing the raw probably distributions (logits)
of the preferred and non-preferred responses, effectively bypassing the RL
process. The loss is calculated using Binary Cross-Entropy (BCE) - the same
loss function used in binary classification. The advantages of this approach
include: simpler implementation, increased computational efficiency and more
stable updates [32]. Figure 2.3 shows the differences between using RLHF and
DPO for fine-tuning an LLM.

LLM

LLM

Update to min loss

Reward Model

Prompt

Output
1

Output
2

+=dataset Dataset

Pick Preferred

Same prompt
with 2 outputs
judged by
human

Rew
O1

Rew
O2

Loss

Prompt Output

Update to max reward

Reward Model

Sample

LLM

Update to min loss

LLM

Prompt

Output
1

Output
2

+=dataset Dataset

Pick Preferred

Same prompt
with 2 outputs
judged by
human

Prob(O1)

Prob(O2)

BCE LossSample

RLHF DPO

Calculates
reward based

on human
preference

Directly adjust
LLM
parameters
with loss - no
RL required

Figure 2.3: Difference between Reinforcement Learning with Human Feedback (RLHF -
left) and Direct Preference Optimization (DPO - right) [31, 32]. DPO has no separate
reward model and generates its loss directly from the preferred and unpreferred
outputs.

Full Fine-Tuning vs Partial Fine-Tuning

During fine-tuning using one of the above techniques, the LLM’s parameters
are adjusted to optimize its output for a specific task. There are two methods
of adjusting these parameters:

1. Full fine-tuning. In full fine-tuning, all of the LLM’s parameters are

12

2.1. Large Language Models

updated. The advantage of this approach is that the original LLM can
be significantly modified; however, this comes at the cost of increased
training time. Another disadvantage is that the LLM could lose some of
the knowledge it gained from the pretraining phase.

2. Partial fine-tuning. In partial fine-tuning, only a subset of the LLM’s
parameters is adjusted. This allows the LLM to retain more of its
baseline knowledge and improves training efficiency. The most common
partial-fine tuning technique is Parameter-Efficient Fine-Tuning (PEFT)
[33], where parameters are kept frozen during training. Typically, the
focus is on adjusting parameters in the later layers to have the greatest
effect on the output; however, any parameter can be adjusted.

2.1.5 Prompt Engineering

The fine-tuning techniques discussed above optimize an LLM by physically
changing the model through adjusting its parameters. In contrast, with prompt
engineering, the model remains static and the input (the prompt) is modified
to create an output that better aligns with the user’s intent [34]. Providing
clear instructions, specifying constraints and including examples are some ways
users can improve their prompts to achieve more effective and accurate outputs
from an LLM.

Since prompt engineering does not modify the underlying LLM, it is most
effective for models that already have some knowledge on the task’s domain.
The following subsections discuss various methods for optimizing prompts.

X -Shot Learning

X -shot learning modifies the prompt to include examples that illustrate the
user’s intent for completing a task [35]. The X signifies the number of ex-
amples included with the prompt. A simple example of one-shot learning for
cybersecurity is:

Select the action to defend my system given the following
example:
State: Outbound traffic from Host A to known malicious IP
Action: Isolate Host A
State: Stuxnet.exe file present on Host B
Action:

By providing explicit examples, this method guides the LLM’s output to
better-align with the user’s intent.

13

2.1. Large Language Models

Chain-of-Thought Prompting

This technique involves asking the LLM to provide steps explaining how it
reached its answer [34]. One considerable benefit of this approach is the
increased transparency between the user and the LLM’s decision-making
process. This has also shown general improvement in the quality of the
generated outputs [36, 37]. An example of chain-of-thought prompting for
cybersecurity is shown in Figure 2.4. The ChatGPT-4o LLM was used for this
example [38].

Select the action to defend my system given the following.
Explain your reasoning step by step.

State: Stuxnet.exe file present on Host B

Action:

Let's think step by step:

1. Stuxnet is a known malicious file associated with
targeted attacks on industrial systems.

2. The presence of this file indicates that Host B is likely
compromised or in the process of being exploited.

3. Allowing it to remain on the network could lead to
further propagation or damage.

4. Immediate containment is critical to prevent lateral
movement or execution of payloads.

Action: Isolate HostB

Select the action to defend my system given the following:

State: Stuxnet.exe file present on Host B

Action:

Action: Isolate HostB

Figure 2.4: Comparing the results of a prompt that uses chain-of-thought reasoning
(right) against a prompt that does not (left).

This step-by-step reasoning can also be achieved by dividing the task into
multiple sub-prompts, enabling the model to gather additional context from
previous prompts to enhance the quality of future ones.

Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) involves leveraging existing knowledge
in conjunction with the model’s learned parameters to complete a task [39].
This requires access to an external data source with domain-specific knowledge
related to the task. This external knowledge is incorporated into the prompt
to guide the model to generate a response that better aligns with the user’s
intent. By accessing the external knowledge base, the model can significantly
reduce hallucinations and outdated responses [39].

14

2.2. Reinforcement Learning

Conceptually, RAG is few-shot learning, but with the examples being added
automatically, transparent to the end-user. Figure 2.5 shows the process of
RAG: Retrieving the information from the external database, Augmenting
the current prompt and Generating the optimized response.

LLM
User

CVE-1111

RAG Program

What is CVE-1111?

CVE-1111
is PHP bug

that can lead to
CSS

Augment
Prompt

What is CVE-1111?
It is PHP bug that
can lead to CSS

Prompt

Augmented Response

CVE DB

Figure 2.5: Overview of the Retrieval-Augmented Generation (RAG) process [39]. An
external database is queried to augment the prompt and provide the Large Language
Model (LLM) additional context to generate a response.

2.2 Reinforcement Learning

Reinforcement learning is its own machine learning paradigm, alongside super-
vised and unsupervised learning [40]. In supervised learning, each sample in
the dataset has a corresponding label, allowing for direct calculation of loss
to adjust a model’s parameters. In unsupervised learning, there are no labels,
and the model groups samples based on identified patterns.

However, RL is fundamentally different as it does not rely on a predefined
dataset [41]. Instead, the agent directly interacts with the environment by
taking actions. The environment then outputs a state and corresponding
reward that the agent can use in a trial-and-error like fashion until it can learn
to select the actions that maximize the cumulative reward. The following
terminology is used throughout RL:

• An agent is the entity that actually interacts with the environment by
selecting actions. This generates a new state and corresponding reward
that it uses to optimize its actions.

• The environment is the “world” that the agent interacts with. It
generates new states and rewards based on the actions that the agent

15

2.2. Reinforcement Learning

takes.
• States are current scenarios or situations of the environment. An

example of a state in the cybersecurity context is a network that has just
been exposed to malware. The agent uses the state to ultimately decide
what action to take.

• Rewards are scalar values returned by the environment to determine
how favorable an action was.

• The policy is the strategy that the agent uses to decide what action to
select.

A high-level overview of the RL process is shown in Figure 2.6 [41].
Formally, an environment that outputs the next state and reward based on

a given action is known as a Markov Decision Process (MDP).

Action

Agent Reward

State

Environment Next
State

Figure 2.6: High-level overview of the Reinforcement Learning (RL) process [41]. An
agent interacts with the environment by selecting an action, which generates a reward
signal and next state.

2.2.1 Model-Based vs Model-Free RL

There are two primary types of RL: model-based and model-free RL [42].
In model-based RL, the agent uses the environment’s output signals to con-
struct its own representation of it. It can then use this representation to
predict future states and rewards without direct environment interaction. In
model-free RL, the agent learns directly from the the environment’s signals
without constructing its own internal model of it. For this study, all RL will
be model-free. This choice is due to the complexities and dynamic nature
of the cybersecurity domain, where the environment cannot be realistically
represented by an agent’s internal model. For the remainder of this thesis,
model-free RL will be referred to simply as RL.

2.2.2 Policy Convergence

In RL, there are two main functions an agent can use to converge onto an
optimal policy (i.e., its strategy for selecting actions): the value function and

16

2.2. Reinforcement Learning

the policy function [43]. The value function estimates the expected return from
a state when following a given policy. There are two types of value functions:

• State-value function. This estimates the expected reward starting
from a specific state and following the same policy until the end of the
episode.

• Action-value function. This estimates the expected reward for taking
an action in a given state and then following a policy until the end of
the episode.

The policy function, in contrast, is fundamentally different. Rather than
predicting the expected reward of an action in a given state, it directly returns
the action an agent should take. There are two primary ways to achieve this:

• Deterministically where the same state will always map to the same
action. This is conceptually similar to nested if statements in program-
ming.

• Stochastically where there is an element of randomness introduced into
the selection of an action. Typically, the output of a stochastic policy
function is a probability distribution across all possible actions. While
the action with the highest probability is the most likely to be selected,
it will not always be the one chosen.

2.2.3 Monte Carlo and Temporal Difference

The reward signal received from the environment is the main indicator that an
RL agent uses to determine how favorable an action is. However, the immediate
reward of a step cannot be used as the only indicator for how favorable an
action is for a given state, as this approach completely ignores potential future
rewards. For example, if winning a chess game requires sacrificing the queen,
the immediate reward will be negative; however, the future reward will be
substantial (getting checkmate). Future rewards must be accounted for when
selecting an action in a given state. There are two main methods in RL to
account for future rewards: Monte Carlo (MC) and Temporal Difference (TD)
[41].

In MC, the agent uses the total reward collected over an entire episode to
estimate the current value of a state. Future rewards are given less weight by
applying a discount factor that decays exponentially. This is primarily because
immediate rewards are more certain than future rewards; however, there are
also directly applicable scenarios for this - such as in intrusion detection, where
an immediate response yields more reward than a delayed one, since early
intervention can prevent further propagation or escalation.

17

2.2. Reinforcement Learning

The main advantage of MC is that the value function is updated based
on the actual returns from following a given policy throughout an episode.
However, this comes at the cost of requiring the agent to wait for an entire
episode before updating its parameters. Furthermore, the unbiased estimate
results in higher variance, as the agent always uses the full return from an
entire episode for training.

In TD, the value of a state is updated at each timestep by taking an estimate
of the future rewards using the current value function. This bootstrapping
technique allows the agent to learn without waiting for an episode to complete,
resulting in quicker training and lower variance, as updates are made more
frequently. However, this also introduces bias, as the values are estimates and
will never be as accurate as methods that use complete trajectories, such as
MC.

2.2.4 On-Policy vs Off-Policy RL

As described above, an RL agent learns by directly interacting with an envi-
ronment to learn the best actions to take (i.e., an optimal policy). There are
two primary ways the agent can converge to an optimal policy: on-policy and
off-policy learning [43].

Off-Policy Learning

In off-policy learning, the agent can learn from data that was generated using
different policies. This is generally more sample-efficient, as the agent can
incorporate past data into its learning process. This past data does not have
to be generated by the agent itself, but can be from any source, such as other
agents. This is especially important in environments where direct interactions
are costly or reward signals are sparse. This method is sample-efficient because
the agent does not require new data for each update. The primary disadvantage
of off-policy learning is instability, as the agent’s parameters are adjusted using
data generated from a different policy than the one used to interact with the
environment.

Furthermore, the output of an off-policy approach is generally an action that
yields the highest Q-value, rather than a distribution across multiple actions.
This requires manual strategies to balance exploration versus exploitation,
ensuring the agent does not get stuck in a local minimum.

One of the most notable off-policy methods for RL is Q-learning [44]. In
Q-learning, a table is used to record values for every action in every state
(Q-values). The Q-values are initialized to 0 and updated as the agent interacts

18

2.2. Reinforcement Learning

with the environment. TD is typically used, where the Q-value is updated
based on the immediate reward and the Q-value of the next state-action pair
(multiplied by a discount factor). Multiple iterations are run to ensure that
the Q-values incorporate all potential future rewards. For example, if action
A in state A yields an immediate substantial reward, but results in losing a
game, the Q-value will initially be large for that given state. As updates are
performed, the agent will eventually encounter the action that leads to losing
the game, which will be backpropagated, greatly reducing the once favorable
Q-value for performing action A in state A.

To decide what action to take, the agent can always select the highest Q-value
for its current state; however, this eliminates exploration of the environment
and the agent will continue to exploit what it perceives to be the most favorable
action. The most common technique to prevent the agent from continuously
exploiting a small subset of actions is the epsilon-greedy approach. This means
that for each step in the environment, the agent has an epsilon probability of
choosing a random action instead of acting greedily by selecting the action with
the highest Q-value. Generally, this epsilon value is decayed over time to ensure
that the probability of the agent acting randomly is inversely proportional to
its ability to select favorable actions.

In most environments, having a table that contains a mapping between every
possible state and every possible action is not feasible. Instead, the Q-table
can be replaced by a DNN. This is referred to as a Deep Q-Network (DQN)
[44]. Instead of looking up the value directly in the table, the agent passes
the state to the DNN, which returns the Q-values for all the actions. The
same epsilon-greedy approach can be applied to ensure the agent explores the
environment while still selecting the best possible action.

On-Policy Learning

In on-policy learning, the agent learns from data that was generated by the same
policy. In other words, the policy the agent uses to decide what action to take
is the same policy used to adjust its parameters to obtain the maximum reward.
This typically results in more stable training as the agent’s parameters are
updated directly based on data collected by the current policy. Typically, the
output of an on-policy agent is stochastic, which naturally balances exploration
and exploitation during the learning process.

The disadvantage of on-policy learning is that it is less sample-efficient, as
samples generated from past policies are discarded. Additionally, because
the agent learns only from data collected by its current policy, it is difficult
to incorporate data generated from other sources into the learning process.

19

2.3. Autonomous Cyber Operations

This poses challenges for the emerging multi-agent methods [6] used to solve
complex problems.

One of the most effective on-policy methods for RL is Proximal Policy
Optimization (PPO) [45]. PPO directly updates the policy function using
stochastic gradient ascent, meaning that there is inherent randomness in the
policy’s output, and the parameters are adjusted to maximize the reward
(gradient ascent). To ensure stable training, PPO applies a clipping mechanism
to prevent policy updates from being too drastic. PPO consists of two neural
networks:

• An actor that outputs a probability distribution across all possible
actions.

• A critic that outputs a scalar estimate of a state’s return. PPO does not
use the output of the value function directly, but leverages a Generalized
Advantage Estimate (GAE), which balances TD and MC for accounting
for future rewards using a smoothing parameter.

Both PPO and DQN are explored in this study for selecting a baseline RL
agent. Details of their implementation are discussed further in Chapter 4.

2.3 Autonomous Cyber Operations

Autonomous Cyber Operations (ACO) refers to conducting cybersecurity tasks
with minimal or no human intervention. This approach has significant benefits
due to the increasing scale and complexity of cyber threats, where manually
defending systems is no longer feasible. The goal of ACO is not to replace
cyber operators, but to work alongside them to enhance the effectiveness of
cybersecurity.

Previous work [7, 36, 6, 46] has shown that RL is an effective way to achieve
ACO. This requires an environment that is interactive and provides meaningful
signals. Such an environment must reflect the complexities of real-world
cybersecurity, to ensure the agent is training on relevant data. Typically, this
environment is simulated or emulated.

• In an emulated environment, a physical system is created to mirror
the real world. A virtual network with actual virtual machines would
be an example of an emulated environment for cybersecurity. The main
drawback is the high resource usage and the difficulty of replicating
complex environments.

• In a simulated environment, the real world is not physically replicated;
instead, a model of it is created. This approach is less resource intensive,

20

2.3. Autonomous Cyber Operations

more scalable, and easier to implement than an emulated environment;
however, it may not be as realistic.

The following subsection discusses CybORG, one of the most popular envi-
ronments used in previous work for ACO. The decision for selecting CybORG
for this study is discussed further in Chapter 3.

2.3.1 CybORG Overview

CybORG [47] is a platform created by The Technical Cooperation Program
(TTCP) for developing RL tactics in a cybersecurity setting. TTCP is a
collaborative forum between UK, USA, Canada, Australia and New Zealand,
comprising of roughly 1,000 defense scientists [48].

CybORG releases various open-source challenges (Cage Challenges) that
contain scenarios representing a blue team’s system. The purpose of these
challenges is to provide a realistic environment for implementing RL techniques
for cybersecurity. The Cage Challenges typically support both simulated and
emulated modes; however, due to the high resource costs and lack of scalability
associated with emulation, simulation was used for this study. Since these
environments are simulated, every component is represented by a Python
object. For example, instead of having a VM that contains files, connections
and processes, an object with instance variables is used to represent the state
of the host. As the scenario progresses, these variables are modified to simulate
the actual changes that would occur in real life.

At the time of writing, there are four Cage Challenges:

1. Cage Challenge 1 [49] is a scenario designed to defend a simple network
from an attacker.

2. Cage Challenge 2 [50] is the same as Cage Challenge 1, but implements
more frequent reward signals and expands the action space.

3. Cage Challenge 3 [51] introduces a new scenario using autonomous
drones instead of standard workstations.

4. Cage Challenge 4 [52] is the same as Cage Challenge 1 and 2, but
introduces additional complexities. For example, the number of hosts in
the network is randomized with each run. This challenge is designed for
multi-agent scenarios.

The multi-agent support that Cage Challenge 4 offers is not applicable to
the objectives of this thesis, and could introduce complexities in the debugging
and development process. Moreover, although the autonomous drone-based
network in Cage Challenge 3 is interesting, it does not represent the typical
cybersecurity scenario. Given these factors, Cage Challenge 1 and Cage

21

2.3. Autonomous Cyber Operations

Challenge 2 better align with the goals of this thesis. Since Cage Challenge 2
is an improvement on Cage Challenge 1, it is the challenge used in this thesis.

2.3.2 Cage Challenge 2

Cage Challenge 2 [50] is designed to support blue ACO by providing a network
that a red agent is attacking. The goal is to create a blue agent capable of
successfully defending the network against the attacker. The challenge also
includes green agents, which represent standard network users. Cage Challenge
2’s original simulated network contains three subnets:

1. A user subnet that the attacker always has an initial foothold in; and
2. An operational subnet containing the operational server the attacker

ultimately wants to compromise; and
3. An enterprise subnet that connects the user and operational subnets.

Figure 2.7 shows the original network used for Cage Challenge 2. The
attacker’s goal is to compromise the operational server by moving laterally
from the user subnet [50].

User0 User1 User2 User3 User4

Ent1 Ent2 Ent3

Defender

Op Server

OpHost0 OpHost1 OpHost2

Legend

Host

Firewall

Server

Router

Switch

User
Subnet

Enterprise
Subnet

Operational
Subnet

Figure 2.7: Overview of the simulated network used for the Cage Challenge 2 scenario
[50] Ent and Op are short for Enterprise and Operational, respectively.

Environment Interaction

Agents interact with the CybORG environment by selecting actions. These
actions are Python objects whose impact is simulated by modifying attribute

22

2.3. Autonomous Cyber Operations

variables associated with the overall scenario (also represented by Python
objects). At every timestep, each agent performs an action on the environment,
starting with the blue agent, followed by the red agent. The blue agent’s action
space is designed to defend the network, whereas the red agent’s action space
is designed to compromise it. The blue agent’s action space can be categorized
into three types [47]:

• Reconnaissance actions. These include the monitor action to gather
information about the overall environment and the analyse action to
obtain additional information about a specific host.

• Restorative actions. These include the remove action to eliminate an
attacker’s user-level presence and the restore action to return a host to
its original state (at a penalty).

• Deception actions. These include actions to create fake processes to
slow down the attacker.

Similarly, the red agent’s action space can be described as:

• Reconnaissance actions. These include actions to find hosts on a
network and discover vulnerable services running on a specific host.

• Exploitation actions. These include actions to exploit a vulnerable
service to gain a foothold and a privilege escalation action to escalate to
root access on a host.

• Effects. This includes an impact action that simulates the attacker
executing their objective, such as data exfiltration or disruptions to
network functionality. The goal of the attacker is to execute this action
on the operational server.

The blue agent’s action space is discrete, meaning the agent can always
perform the same action on every target. In contrast, the red agent’s action
space is dynamic, because many actions depend on the knowledge gained from
previous ones (e.g., the attacker must first discover a service before exploiting
it). Figure 2.8 is taken directly from Cage Challenge 2’s GitHub repository
and shows the effect of blue and red actions on the environment’s state [50].

23

2.3. Autonomous Cyber Operations

Figure 2.8: Diagram depicting the effect that actions available to the red and blue
agents have on the environment [50].

Similar to all RL environments, executed actions in CybORG yield a reward
signal. This reward is a non-positive (i.e., zero or negative) float that is
calculated from the current state of the environment. For example, if a host
is compromised, the blue agent will receive a lower reward each timestep
compared to when the host is not compromised. The reward signal also
depends on the last actions performed by both the red and blue agents. The
blue agent is penalized for selecting the restore action, while the red agent
is rewarded if it successfully executes the impact action on the operational
server.

The environment includes two red agents whose goals are to exploit the
network:

1. A meander agent that randomly selects available actions; and
2. A B-line agent that consistently follows the fastest path to reach the

operational server. It does this by following a trajectory of predefined
actions, simulating an attacker with inside knowledge of the network.
This is the agent used predominantly throughout this study.

Wrappers

In Cage Challenge 2, the observations returned are Python dictionaries con-
taining key-value pairs with information related to each host (e.g., its processes

24

2.3. Autonomous Cyber Operations

and files). Cage Challenge 2 includes a wrapper class (BlueTableWrapper)
that converts these to discrete states. It does this by saving the default files
and processes each host has at the start of an episode, and comparing them
against those in the agent’s observation space. If the observation contains
processes or files that are not part of the baseline image, they are flagged
as potentially malicious and stored in a list. These lists are then parsed to
extract a compromised and activity state for each host, where the activity state
signifies the red agent’s current activities on the host and the compromised
state reflects the level of access the red agent has achieved. The activity state
can be:

• Exploit if the number of connections is greater than 2 for a single port.
• Scan if there are more than 0 connections across 1 or more ports.
• None if there are no new connections, or if the connection includes

a recognized service name (CybORG simulates recognized services by
including Service Name in the connection string).

The compromised state can be:
• Privileged if a file with a density score (score signifying how likely a file

is to be malicious) greater than 0.9 exists that is not part of the baseline
image.

• User if the corresponding availability state (from above) is set to exploit.
• Unknown if the remove action was performed on the host that was

previously identified as compromised. This is because the remove action
only works on user-level processes (i.e., simulating uncertainty about
whether the adversary has a system-level presence).

• No if there are no new files contained in the observation space.
These states are then converted to numerical features that can be processed

by an RL agent. The state values are mapped to binary encodings of 1s and 0s
for each host, in which the activity and compromised state are each represented
by 2 bits. These are aggregated into an array, where the index of the encoding
corresponds to that particular host. This is the feature space that is fed into
the RL agent. Figure 2.9 shows the default mapping between the hosts’ states
and their numerical representation.

25

2.3. Autonomous Cyber Operations

Activity Mapping

None [0,0]

Scan [1,0]

Exploit [1,1]

Compromised Mapping

No [0,0]

Unknown [1,0]

User [0,1]

Privileged [1,1]

[1,1,1,1,1,0,0,0,1,0,0,0]

Host A

Activity: Exploit
Compromised: Privileged

Host B

Activity: Scan
Compromised: No

Host C

Activity: Scan
Compromised: No

Figure 2.9: Default feature mapping for Cage Challenge 2. Each host is assigned an
activity and compromised state, each represented by a 2-bit value.

This section covered the high-level functionality of CybORG’s Cage Challenge
2, but did not include the underlying complexities. Appendix A includes
sequence diagrams illustrating all the objects and methods involved for standard
functionality, such as performing a single step.

26

3 Related Work

The purpose of this chapter is to critique studies in the fields described in the
background and synthesize insights into a new approach for enhancing cur-
rent applications in Autonomous Cyber Operations (ACO). A comprehensive
understanding of the relevant fields is essential for effectively identifying the
limitations and potential improvements of existing work.

3.1 Teacher-Guided RL

One consideration for using traditional Reinforcement Learning (RL) is that
agents start as “bare-bone” models that must be trained from scratch. This is
inefficient because initially, the agent is just as likely to choose an obviously
unfavorable action as a favorable one. As a result, it will inevitably make poor
decisions before it can learn to select optimal ones, increasing the training time
required to converge on an optimal policy.

M. Pfeiffer et al. [13] proposed a method to decrease training time and
improve sample efficiency for mapless navigation. Their approach leverages
a pretrained agent (i.e., the teacher) to create a dataset of state-action pairs
used to initialize a student agent via standard supervised learning. The
student then undergoes the RL process, ultimately surpassing the teacher’s
baseline performance. The main RL algorithm employed is Constrained Policy
Optimization (CPO) [13], an actor-critic method where the actor outputs a
probability distribution over possible actions and the critic returns a scalar
indicating how favorable the chosen action is.

The methodology is as follows [13]: the pretrained agent generates a dataset
of state-action pairs:

D = {(si, ai)
n=1
i=1 }where ai ∼ πT (a | s)

where πT is the teacher’s policy used to generate actions ai from the corre-

27

3.1. Teacher-Guided RL

sponding states si. The new agent is then trained on this dataset:

θ∗ = min
θ

E(s,a)∼D

[
L(πθ(a | s), π∗(a | s))

]
where L represents the loss function comparing the agent’s predictions to the

teacher’s labels. After initialization, traditional RL is used to further optimize
the student:

θRL = maxθEτ∼πθ
[
T∑
t=0

γtrt]

where γt is the discount factor that controls how much future rewards contribute.
The agent’s goal is to maximize its cumulative reward across T timesteps.

This method successfully reduced training time for simulated navigation
tasks of varying difficulty compared to a baseline CPO implementation. As
expected, there was no noticeable improvement in the final policy - rather, the
benefit was in faster convergence.

One limitation of this approach is that the teacher’s feedback is generated
in isolation from the environment. In dynamic and stochastic environments,
such as those modeling cybersecurity, there is a risk that the environment will
generate signals that are misaligned with the teacher’s policy. The immediate
transition from learning on a dataset generated in isolation by the teacher, to
learning directly from the environment’s signals could present challenges. The
agent may become overly reliant on the teacher, potentially increasing training
time rather than reducing it. Additionally, creating a comprehensive dataset
that captures all possible edge cases for complex environments is challenging
and requires significant effort.

A. Beikmohammadi and S. Magnusson [14] proposed incorporating the
teacher’s feedback within the RL environment rather than using it in a separate
pretraining phase. This is achieved through reward shaping [14], where the
teacher’s recommendation is integrated into the environment’s reward signal.
Proximal Policy Optimization (PPO) [14] (the actor-critic method described
in Chapter 2) is the RL algorithm used in this study. The influence of the
teacher’s feedback on the reward signal starts high, and gradually decreases as
training progresses. Specifically, they proposed the following [14]:

Re(st, at, st+1) = β(e)RA(st, at, st+1)+

(1 − β(e))RT (st, at, st+1)

where Re is the reward signal the agent receives, computed as a weighted
sum of the environment’s original reward (RA) and the teacher’s reward (RT).

28

3.1. Teacher-Guided RL

The weight β(e) decays over time, gradually reducing the teacher’s influence
as training progresses.

This study demonstrated increased training efficiency, showing faster con-
vergence in the Random Walk, Optimal Temperature Control, and Coupled
Four-Tank System environments [14] compared to a baseline PPO agent. By
incorporating the environment’s reward signals alongside the teacher’s guid-
ance, the approach helps align the agent’s behavior with the environment.
The decaying influence of the teacher facilitates a smoother transition from
teacher-guided RL to independent RL.

One limitation of this approach is inconsistency in the reward structure. The
agent may receive a different reward for the same state-action pair, potentially
destabilizing training.

Z. Wang et al. [15] proposed an action masking technique to improve training
efficiency across different environments. Unlike the reward-shaping approach
[16], where the agent can select any action and learn from the resulting signal,
this method directly limits the agent’s action space. The teacher model outputs
a binary action mask, where each bit corresponds to a possible action. This
mask is applied to the agent’s output, preventing it from selecting certain
actions (i.e., setting their probability to 0).

This study’s approach was evaluated in three environments: a simple maze
environment, MinAtar (scaled down version of Atari) and µRTS2 (a simple
real-time strategy game). The RL algorithms used were PPO and Deep Q-
Network (DQN) - the value-based algorithm described in Chapter 2. The
action-masking approach resulted in noticeably more efficient training (i.e.,
convergence in fewer timesteps) compared to the baseline PPO and DQN agents
in all environments except for MinAtar, where performance was comparable.

One missed opportunity in this study was the lack of exploration into a
gradually decaying mask rather than a strictly binary one. However, the paper
does mention “the primary role of an action mask is to prevent the agent from
sampling invalid actions, necessitating a binary mask” [15].

The guided approaches discussed above require a pretrained agent or specific
rules scoped to the exact environment to act as the teacher. This restricts the
teacher’s usefulness to the environment’s specific state and action space, signif-
icantly limiting transferability and scalability. Additionally, the features being
fed into these agents must be manually engineered, which can be problematic
in data-rich environments like cybersecurity, where vital information may be
missed in the feature engineering process.

A potential solution is to use an LLM as the external knowledge source. Tex-
tual environment data can be fed directly into the LLM, alleviating concerns
about missing vital information due to manual feature engineering. Further-

29

3.2. LLMs and RL Integration

more, since the LLM is not trained on the specific environment, it can be
applied across multiple RL environments, enhancing overall scalability and
transferability.

3.2 LLMs and RL Integration

As discussed in the background, an LLM is fundamentally a Deep Neural
Network (DNN) designed to recognize patterns in language [11]. The vast
number of parameters and the unique transformer architecture [20] enable
LLMs to recognize complex patterns in language, and generate contextually
relevant responses for a wide range of Natural Language Processing (NLP)
tasks.

One of the challenges of integrating an LLM into the RL pipeline is that
the LLM’s textual response cannot be directly executed in the environment.
W. Huang et al. [53] proposed a solution to this problem using a pretrained
LLM to perform actions in the VirtualHome environment [53], which simulates
basic human household activities and returns a boolean indicating whether
the task was completed successfully. This study demonstrated how an LLM’s
textual output can be mapped to an executable action using RoBERTa [54], an
encoder-only type LLM. The process of this mapping is illustrated in Figure
3.1 [53].

Figure 3.1: Mapping of LLM-generated text to executable actions in the VirtualHome
environment [53].

One limitation with this work is that the environment is very simplistic, and
the study did not conduct any testing in a more realistic, complex setting.
Additionally, while the study referred to this method as zero-shot learning, it
is actually few-shot learning, since examples are attached to the prompt to
provide the LLM with additional context.

30

3.2. LLMs and RL Integration

The study also stated that “repetitive trial-and-error is equivalent to probing
the environment for privileged information, which should not be considered
viable in our setting” [53]. However, this concept is the basis of RL and would
have been very beneficial to explore, as improvement could occur through
direct interaction with the environment. This lack of learning is the study’s
most significant limitation.

This deficiency is addressed in the solution proposed by M. Kwon et al. [16],
which uses GPT-3 [55], a decoder-only LLM to compute rewards for the RL
process. The method involves including the user’s intent (i.e., the objectives)
in the LLM’s prompt, which is then compared to the outcome of an episode.
The LLM evaluates whether the outcome of the episode aligns with the user’s
intent and outputs a boolean (yes or no). The RL algorithm used in this study
was DQN.

One limitation of this approach is that the agent must wait for the entire
episode to complete before updating its policy. Additionally, this system
struggles with capturing the details of complex, dynamic environments (like
those modeling cybersecurity), where actions often exist on a spectrum of
favorability, which is best captured by a continuous reward signal.

Another limitation is that the objective must remain static throughout an
episode, whereas, in complex environments, objectives can change dynamically.
Moreover, the user must manually create a prompt for the LLM to evaluate
whether the objective was met. This not only adds extra effort, but also requires
the user to have knowledge on prompt engineering to effectively convey their
intent.

This study’s testing was limited to short-horizon games with very small
step sizes. While it effectively demonstrates how an LLM can enhance reward
signals, ultimately yielding a better policy, it misses the opportunity to explore
how LLMs could improve RL training efficiency.

A similar approach is proposed by S. Tu et al. [17], in which the RL agent
outputs two possible actions, and the LLM selects the best one. The preferred
action is then used to train a separate reward model (or fine-tune an existing
one), which in turn helps guide the RL process.

The study evaluated this method using the MetaWorld [17] benchmark,
which consists of multiple simulated robotic manipulation tasks. The Soft
Actor-Critic (SAC) [17] RL algorithm was used - an off-policy actor-critic
method that combines value-based and policy-based approaches. In SAC,
the actor network outputs a probability distribution across actions, while the
critic assigns a value indicating how favorable the selected action is. This
combination typically improves stability due to the critic’s guidance, but is
more complex to implement and tends to have higher variance than purely

31

3.2. LLMs and RL Integration

value-based methods like DQN, as the actor’s stochastic policy introduces
randomness.

This study used GPT-4o-Mini [17], a decoder-only LLM to critique the RL
agent’s outputs. Their methodology outperformed or matched the performance
of a baseline SAC agent in terms of policy convergence across most MetaWorld
scenarios. These results demonstrate superior policy convergence and further
highlight the benefits of LLM integration in RL environments. It should be
noted that the time required to train the reward model does not appear to
be included in the evaluation metrics; however, the study does not explicitly
confirm this.

The biggest disadvantage of this approach is the overhead of training a
reward model, which increases overall training time. However, this idea of
distilling the LLM’s output into a smaller reward model provides a resource-
efficiency benefit - once trained, the reward model can guide training without
the expensive computational costs associated with an LLM. The authors also
noted that this approach works well for commercial use cases, where users may
have limited access to an RL environment’s underlying code.

L. Chen et al. present RLingua [18], which uses GPT-4 to generate an
initial policy that an RL agent can leverage for robotic tasks. The policy is
generated in the form of a Python script that guides the robot’s actions. A
one-shot learning approach is used, where an example template is included in
the prompt to ensure relevance.

RLingua uses the Twin-Delayed Deep Deterministic Policy Gradient (TD3)
RL algorithm [56], a hard actor-critic method that converges onto a deter-
ministic policy - meaning that the actor outputs a single action rather than a
probability distribution. The critic in TD3 is similar to DQN [44], but consists
of two separate networks that each output a Q-value. The lowest Q-value is
selected as the final output to mitigate the overestimation bias, a common
issue in standard value-based RL algorithms [56].

To balance exploration and exploitation, RLingua uses an epsilon-greedy
approach, where the agent has a probability of ϵ to select a random action.
However, instead of choosing an arbitrary action, RLingua selects an action
from the LLM-generated policy. The probability of sampling from the LLM’s
policy decays over time, gradually shifting toward exploitation as the agent
becomes optimized for the environment.

Panda Gym and RLBench [18] were the initial simulated robotic environ-
ments used for this evaluation. The study then extended testing to an emulated
environment where a real robot performed tasks such as placing cubes in a
bucket. The approach successfully reduced training time in both simulated
and emulated environments.

32

3.2. LLMs and RL Integration

RLingua effectively leverages an LLM to accelerate training; however, similar
to M. Pfeiffer et al., the LLM guidance is provided in isolation from the
environment. This means the LLM’s advice will be independent of the observed
state, potentially providing suboptimal recommendations for edge cases. This
issue is particularly concerning in stochastic environments like cybersecurity,
where conditions change dynamically.

Additionally, the study could have experimented with LLMs specialized in
the robotics domain instead, rather than relying on GPT-4, a general-purpose
model. An LLM that has been explicitly trained on robotics data could have
produced more relevant and accurate recommendations.

Another limitation is the deterministic policy to which the agent converges.
In complex environments like cybersecurity, multiple actions may be equally
valid for a given state (e.g., isolating or restoring an infected system). A
stochastic policy, where actions are sampled from a probability distribution,
would allow for more efficient exploration. This approach eliminates the need
to manually integrate exploration techniques like the epsilon-greedy method.

Z. Zhou et al. [19] proposed LLM4Teach, a method where a pretrained
LLM acts as a teacher to guide an RL agent’s training. The RL agent is
trained using PPO [19]. A stochastic policy is outputted by the LLM, which
is compared to the agent’s policy to compute a “teacher loss”, representing
the agent’s deviation from the LLM.

Specifically, the agent learns by minimizing the following loss function [19]:

Ltot(θ) = LA(θ) + λLLLM (θ)

where LA(θ) is the original actor loss and LLLM (θ) is the loss calculated by
comparing the RL agent’s policy to the LLM’s policy. λ is decreased over time,
reducing the LLM’s impact on the agent’s loss. Two decoder-only type LLMs
are used in this study: ChatGLM-Turbo [57] and Vicuana [58].

To generate a distribution over possible actions, the LLM was queried multiple
times for each action. The authors noted this inefficiency, and suggested the
possibility of directly accessing the model’s logits to map these to a distribution
across possible actions, ultimately requiring a single forward pass.

Additionally, blending the LLM’s probability distribution with the RL agent’s
policy could slow convergence if any misalignment is present, as the LLM
directly impacts the agent’s policy gradient. This presents an opportunity to
explore alternative integration methods, such as action masking or feature
space modification.

This study included a comprehensive evaluation, comparing the LLM-
enhanced RL agent (LLM4Teach) against both a baseline RL agent and

33

3.2. LLMs and RL Integration

the LLM’s standalone performance. Their implementation was evaluated in
the MiniGrid and Habitat environments [19]. MiniGrid is a simple environ-
ment where the agent learns to navigate a grid world, whereas Habitat is more
complicated and involves performing robotic tasks such as navigating to and
picking up an object. Their method successfully reduced training time in both
environments.

L. Chen et al. [59] proposed using a transformer - the same architecture
used for LLMs to process actions, states, and rewards across timesteps. This
approach eliminates the need to compute the Bellman equation, which accounts
for future rewards [41]. Instead of RL, the self-attention mechanism allows the
transformer to leverage past experiences, encoded within the input sequence
to select actions. Figure 3.2 illustrates how the transformer is used across
timesteps [59].

Figure 3.2: Replacing traditional RL agents with a transformer-based model for
decision-making [59].

This method was evaluated against value-based, offline approaches as base-
lines. In simpler environments such as Key-to-Door [59], the transformer-based
method outperformed traditional RL. However, in more complex environments
like Atari [59], performance declined compared to baseline RL implementations.
Performance was measured as final convergence rather than training efficiency
in this work.

This study proposed a novel implementation; however, one major issue
with this approach is the transformer’s limited context length. In simple
environments, the model can be fed the entire state, action, and reward sequence
across an episode; however, this is rarely the case for complex environments,
such as those that model the cybersecurity domain.

J. Wang et al. [60] present another novel approach for integrating LLMs
into the RL pipeline. The scenario for this study requires an RL agent to

34

3.2. LLMs and RL Integration

navigate a photo-realistic environment using textual instructions that describe
the desired actions.

The RL agent is trained using the Advantage Actor-Critic (A2C) method
[60], where it receives positive rewards for progressing to the destination and
negative rewards for diverging from the destination. Since the environment
provides an abundance of reward signals, this study focused on instruction
comprehension rather than reward shaping. This was achieved by having
the ChatGLM-6B LLM [60] break down the complex initial instructions, into
shorter, more concise ones which were then fed into the agent. This idea is
illustrated in Figure 3.3 [60].

RL Agent

Exit the kitchen and go right. At
the end of the hall turn right and
go into the bedroom and wait
there next to the guitar.

LLM

1. Exit the kitchen and go right.
2. At the end of the hall, turn right.
3. Go into the bedroom.
4. Wait there next to the guitar.

RL Agent

This is so hard!

This is easier!

Figure 3.3: An LLM decomposing instructions into sub-tasks for improved processing
by an RL agent [60].

The study demonstrates that their technique outperforms baseline PPO and
A2C implementations, achieving more successful navigations while requiring
fewer steps to achieve a successful outcome.

Their approach of modifying the feature space is unique, as it does not
directly alter the agent’s policy gradient; rather, it modifies the information
available for making an effective decision. In theory, this should result in more
stable learning; however, it may be slower than the above approaches as the
agent must learn how to map the modified feature space to executable actions
recommended by the LLM.

Furthermore, this study only integrates the LLM’s guidance into the critic’s
feature space - the actor’s feature space is produced solely from the environ-

35

3.3. LLMs in Cybersecurity

ment’s visual and orientation information. An interesting extension would
be to incorporate the LLM guidance into the actor’s feature space, allowing
the agent to directly learn actions corresponding to the LLM’s instructions.
However, this could also introduce a risk of over-reliance on the LLM.

Another unexplored approach in this study is having the LLM augment the
existing information provided by the environment. Instead of simply being fed
raw navigation instructions, the LLM could be fed additional environment-
specific details to help it generate more contextually relevant responses. This
existing information could include the agent’s recent actions and its proximity
to objects, enabling the LLM to create more tailored instructions to the agent’s
current state.

Previous work on LLM-RL integration has primarily focused on overcoming
sparse reward signals in their respective environments. However, in cybersec-
urity, the frequent feedback signals present an opportunity to focus on how
LLMs can directly augment the agent’s decision-making capabilities rather
than being used to compensate for environmental limitations.

Furthermore, most of these studies have used generic LLMs, trained on
broad, multi-domain knowledge. This presents an opportunity to experiment
with LLMs that have been pretrained in a particular domain (i.e., an LLM
pretrained in the cybersecurity domain).

Finally, decoder-only LLMs were the predominant focus in these studies.
Experimenting with encoder-only models where the input is processed bidirec-
tionally could be beneficial. This is particularly relevant in network security,
where the order of hosts does not hold particular importance. For example, if
the hosts for User1 and User2 are compromised, their position in the prompt
should not influence the LLM’s decision.

3.3 LLMs in Cybersecurity

The LLM integration discussed in the previous section focused on RL, but was
not directly related to cybersecurity. This section explores how LLMs can be
leveraged for cybersecurity applications, particularly threat detection.

M. Guastalla et al. [61] demonstrate how LLMs can be leveraged to detect
Distributed Denial of Service (DDoS) attacks, one of the most common cyber
threats. This study explores prompt engineering techniques (specifically few-
shot learning) on baseline GPT-3.5 and GPT-4 models, as well as a fine-tuned
Ada model [61]. The Ada model is another decoder-only type model with
significantly fewer parameters than the GPT-based models. The Ada model

36

3.3. LLMs in Cybersecurity

was fine-tuned on the CICIDS 2017 and Urban IoT datasets [61], which contain
classified DDoS attack samples.

To evaluate performance, a baseline Multilayer Perceptron (MLP) shown in
Figure 3.4 was trained using the same datasets [61].

Input

OutputReLU

Dense: 10 Neurons

Figure 3.4: Basic Multilayer Perceptron (MLP) used for performance evaluation [61].

Findings show that both the pretrained and fine-tuned LLMs outperform
the baseline MLP in DDoS detection. However, a limitation of this study was
the choice of a very basic MLP as the baseline. A more advanced MLP with
multiple dense layers and more parameters could have provided a more realistic
benchmark for comparison.

Tarek Ali and Panos Kostakos’ HuntGPT [62] provides another example of
how LLMs can be applied to cybersecurity. Unlike previous studies where the
LLMs acted as black box models, HuntGPT aims to increase transparency by
providing explanations for why a specific sample is deemed malicious and what
mitigation measures can be employed.

A random forest classifier trained on the KDD99 dataset [62] is used to
detect anomalies, while HuntGPT provides explanations for why a specific
sample is deemed malicious and recommends countermeasures. The KDD99
dataset is a popular benchmark dataset containing labeled data for intrusion
detections and general network security.

HuntGPT’s baseline model is ChatGPT-3.5 [62]. Instead of fine-tuning the
model, the study employs Retrieval-Augmented Generation (RAG) to tailor
the LLM’s response to cybersecurity.

This study demonstrates that HuntGPT can effectively and accurately pro-
vide insights into cybersecurity-related actions. However, a missed opportunity
was integrating HuntGPT into the detection process itself, which could have
potentially increased performance compared to their random forest implemen-
tation.

37

3.4. Autonomous Cyber Operations

J. Loevenich et al. [63] proposed leveraging external knowledge by integrating
an LLM into the CybORG [2] environment. However, similar to Tarek Ali
and Panos Kostakos’ HuntGPT [62], this approach was used to increase
transparency rather than impact decision-making. As discussed in Section 2.3,
CybORG is a cybersecurity environment designed for ACO.

The study used ChatGPT-3.5 [63] as the baseline model, without any fine-
tuning. Similar to HuntGPT [62], RAG was used to transparently augment
prompts with knowledge from MITRE’S ATT&CK framework [63]. The
findings reinforce that LLMs can recognize patterns in cybersecurity data,
highlighting their potential benefit in improving training efficiency for ACO.

These examples illustrate how LLMs can be applied to cybersecurity; however,
they rely on the LLM’s static configuration to make (or explain) decisions.
This lack of adaptability is not ideal in the dynamic, ever-evolving cyber
environment, where new threats continuously emerge.

Integrating RL with LLMs offers significant advantages for cybersecurity.
It mitigates the concerns about novel threats that may not be present in the
potentially outdated data used during LLM training, allowing these systems
to dynamically adapt to emerging threats in a scalable manner. Furthermore,
these studies highlight how LLMs can increase transparency in decision-making,
a crucial aspect in cybersecurity, where the impact of actions can be immense.

3.4 Autonomous Cyber Operations

RL is the main technique employed for modern ACO applications, which offers
an alternative solution to signature-based approaches by allowing ACO agents
to learn through direct interaction with the environment. Unlike the Machine
Learning (ML) approach proposed by A. Bhagalaskmi et al. [64], RL eliminates
the need to manually create datasets, making it effective for ACO. As discussed
in Section 2.3, CybORG [2] is a cybersecurity environment designed to train
both blue (defensive) and red (offensive) RL agents. Previous environments
have been created to simulate the cyber domain, but many were either not
scalable or not designed for RL, where sufficient signals are required to guide
training. Table 3.1 outlines key differences between various cybersecurity
environments [2].

38

3.5. Artificial General Intelligence

Table 3.1: Comparison of cybersecurity environments [2].

Environment Scalable Flexible Efficient Designed for RL

DETERlab Low Yes Low No

VINE Med Yes Med No

SmallWorld Med Yes Med No

BRAWL Med Windows Med Limited

Galaxy Low Debian-based High Yes

Insight High Yes Med Yes

CANDLES High Yes High Yes

Pentesting Simulations High Yes Med Yes

CyAMS High Yes High Yes

CybORG High Yes High Yes

The most significant limitation of the original CybORG environment is its
sparse reward system, where the agent only receives a win or loss signal at
the end of an episode. This is not representative of real-world cybersecurity,
where rewards should be obtained throughout episodes. For example, the red
agent should be rewarded for intermediate steps such as establishing an initial
foothold on the network, not just for achieving the ultimate target.

This issue was addressed in CybORG’s Cage Challenge 2 [47], where rewards
are received after each timestep, allowing for more stable RL training.

While significant work has leveraged CybORG to develop ACO [7, 6, 65],
existing approaches require agents to learn optimal policies from scratch.
Incorporating external cybersecurity knowledge could reduce training time and
potentially lead to more effective policies.

Furthermore, it should be noted that Cage Challenge 2 [50] still has limita-
tions, including a lack of realistic actions for the blue agent, a state represen-
tation that does not fully capture the complexities of an enterprise network,
and simplistic preprocessing of CybORG’s state into a numerical feature space
for RL agents. The open-source nature of Cage Challenge 2 presents a great
opportunity to optimize these aspects.

3.5 Artificial General Intelligence

This section discusses Artificial General Intelligence (AGI) and argues that its
emergence will not render research in the described fields obsolete.

The concept of AGI was first introduced by Ben Goertzel in 2006 [66] and
is anticipated to emerge by 2029 [67]. S. Bubeck et al. define AGI as ”a
brilliant oracle, for example, that has no agency or preferences, but can provide
accurate and useful information on any topic or domain” [68].

39

3.5. Artificial General Intelligence

The idea behind AGI is to create an agent that does not just generate
responses by altering inputs through a series of weights, but is able to reason
like a human and generate responses on domains it has not been explicitly
trained on. It should be noted that popular LLMs like ChatGPT are still
considered Artificial Narrow Intelligence (ANI) due to their limitations in areas
such as confidence calibration, long-term memory, personalization, reasoning
and planning [68].

The current leading approach to achieving AGI is through integrated cogni-
tive architectures [69], which combine neural networks with other cognitive
systems to simulate the human thought process.

At first glance, one might assume that an AGI agent, capable of reasoning
across all domains would outperform any method produced by this research.
However, several fundamental limitations of AGI ensure research in these fields
remains relevant, even if AGI emerges in the near future.

3.5.1 Generalized Nature

Due to its generalized nature, AGI would struggle in specialized environments
such as cybersecurity. Tailoring an AGI agent to produce domain-specific
responses would require extensive fine-tuning and computational resources,
reducing the effectiveness of existing fine-tuning techniques [31].

This challenge is particularly critical in cybersecurity, where new and emerg-
ing threats evolve rapidly. An AGI agent may struggle to adapt quickly enough
without continuous retraining, limiting its real-world adaptability.

3.5.2 Computational Requirements

The computational resources required to support AGI are immense, estimated
at 1016 computations per second [70]. For comparison, this is approximately
2.5 million times more powerful than a 4 GHz processor, which represents the
higher end of commercially available processors at the time of writing.

3.5.3 Transparency

Due to its underlying complexities, AGI would likely suffer from a lack of ex-
plainability, making it a black-box system with limited transparency regarding
how it arrives at decisions. In particular, this poses issues in cybersecur-
ity, where auditing and debugging are essential. Without clear insights into
the decision-making process, it would be difficult to trust its assessments,
potentially limiting its adoption in critical systems like cybersecurity.

40

3.6. Discussion

3.5.4 Ethical Concerns

Beyond the transparency issues, ethical considerations could hinder the adop-
tion of AGI. One major concern is AGI’s potential impact on the global
workforce [67]. Automation at an unprecedented scale could lead to job dis-
placement, prompting governments to implement regulations that may limit
or even halt the deployment of AGI.

The technical and ethical challenges outlined above demonstrate that method-
ologies developed in this research will remain relevant, even in the presence of
AGI.

3.6 Discussion

There has been substantial progress in integrating RL into ACO [64, 2, 47,
7, 6, 65]. However, current approaches require agents to learn from scratch,
ultimately leading to longer training times and the need to perform suboptimal
actions to learn their consequences - a critical limitation in dynamic, adversarial
environments. Prior studies [13, 14, 15] have demonstrated that guiding the
RL process using a teacher model can increase training efficiency, but these
techniques have yet to be applied within the ACO domain.

Existing research [61, 62, 63] has shown that LLMs can recognize patterns in
data pertaining to cybersecurity and generate contextually relevant responses.
This makes LLMs a strong candidate for the teacher role in the RL process for
ACO.

Despite the promising overlap of LLMs, RL, and ACO, limited research has
been conducted in this area. J. Lovenich et al. [63] integrated an LLM into the
CybORG environment [2], but this was used to increase transparency between
the end-user and the RL agent’s decisions. The LLM had no impact on the
training process.

3.6.1 Research Opportunities

These unresolved issues present a valuable opportunity to explore LLM inte-
gration in RL for ACO, with the primary goal of augmenting decision-making.

Furthermore, the discussed teacher-guided techniques have mostly been
studied in isolation of each other, presenting an opportunity to combine
methodologies (e.g., using auxiliary loss alongside action masking).

41

4 Methodology

This chapter outlines the phased approach used to integrate a Large Language
Model (LLM) into the Reinforcement Learning (RL) process to augment
decision-making in Autonomous Cyber Operations (ACO).

These phases correspond to those described in Section 1.4 and include:
• Selecting an LLM. The LLMs were systematically reviewed using a

dataset of predefined CybORG-specific questions, enabling the selection
of the most suitable model.

• Environment Modification. CybORG’s Cage Challenge 2 [50] envi-
ronment was modified to better reflect realistic cybersecurity conditions
and facilitate more efficient agent development. This included:

– Altering the action space.

– Updating the existing wrapper functionality.

– Modifying the RL agent’s feature space.
• Baseline Agent Development. Baseline agents were developed for

direct comparison against the LLM-guided ones. This was achieved by
developing Deep Q-Network (DQN) and Proximal Policy Optimization
(PPO) agents and comparing their performance.

• Teacher-Guided Algorithm Development. Various teacher-guided
algorithms were developed and compared using the ideas and techniques
discussed in Section 3.1.

• LLM Integration into the RL Pipeline. The best-performing LLM
from Phase 1 was incorporated into the existing RL pipeline to augment
decision-making. This involved:

– Refining prompt engineering beyond the techniques developed in
Phase 1 for the selected LLM.

– Implementing a method to reliably extract an executable action
from the LLM.

– Integrating the LLM into the decision-making process using the
best-performing teacher-guided technique.

42

4.1. Selecting an LLM

4.1 Selecting an LLM

To identify an LLM capable of generating responses that are contextually
relevant to CybORG, six open-source LLMs pretrained on cybersecurity-
related data were selected for evaluation. These were chosen based on open-
source availability, baseline architecture, and existing reviews. The evaluation
process involved validating the performance of these LLMs on a dataset of
cybersecurity-related question-answer pairs. Table 4.1 shows the LLMs involved
in the evaluation process.

Table 4.1: LLMs involved in the evaluation process.

LLM Name Baseline Architecture LLM Source

CyberBase [8] Vicuana-13B Hugging Face

Cyberdost2b [9] Navarasa-2.0-2B Hugging Face

HackMentor [71] Llama-13B GitHub

Lily7B [10] Mistral-7B Hugging Face

Cyber-Risk-Llama8B [72] Meta-Llama-8B Hugging Face

Z7sec [73] Zephyr-7B Hugging Face

To ensure the LLMs were provided with input that could be effectively
analyzed to generate a relevant response, initial prompt engineering was
conducted based on existing best practices [74, 34]. This evaluation focused
on the LLM’s baseline knowledge, requiring prompts to be generic rather
than task-specific. For example, the definition of an action in the context of
CybORG was not included in the prompt - the evaluation was to determine the
capabilities of the LLMs’ existing training. To ensure an unbiased assessment,
the prompt format was identical for each evaluated LLM and is illustrated in
Figure 4.1.

43

4.1. Selecting an LLM

• You are defending a network at timestep X. Your goal is
to keep the network fully functional. Choose an action
from Restore, Patch, Isolate, Unisolate, Remove,
Analyse, Block, Allow. Only select actions that disrupt
functionality if essential. Respond with <Action>
<Host> only. Current network state:

• <Network State>
• Best Action:

Situation

Objective

Limitation

Cueing

Figure 4.1: Initial prompt design for evaluating LLMs. For clarity, the components of
the prompt are color-coded.

Initial testing showed that including the raw CybORG output directly into
the prompt (denoted by Network State in Figure 4.1) yielded poor responses -
this will be discussed further in the subsequent chapter. To augment the LLM’s
ability to extract meaningful patterns from the environment, CybORG’s state
was parsed into a condensed JavaScript Object Notation (JSON) form and a
condensed sentence form, both of which were included in each question for the
evaluation dataset. These formats are shown in Figure 4.2.

44

4.1. Selecting an LLM

"Enterprise0": {"Processes": [{"Connections": [{"local_port": 22, "remote_port": 57474, "local_address": "10.0.179.156", "remote_address": "10.0.104.214"}]}],
"Interface": [{"IP Address": "10.0.179.156"}], "System info": {"Hostname": "Enterprise0", "OSType": "LINUX", "OSDistribution": "UBUNTU", "OSVersion":
"U18_04_3", "Architecture": "x64"}, "Isolated": False},

"Enterprise1": {"Processes": [{"Connections": [{"local_port": 22, "remote_port": 53406, "local_address": "10.0.179.147", "remote_address": "10.0.104.214"}]},
{"Connections": [{"local_port": 135, "remote_port": 52580, "local_address": "10.0.179.147", "remote_address": "10.0.104.214"}]}, {"Connections": [{"local_port":
3389, "remote_port": 50435, "local_address": "10.0.179.147", "remote_address": "10.0.104.214"}]}, {"Connections": [{"local_port": 445, "remote_port": 51786,
"local_address": "10.0.179.147", "remote_address": "10.0.104.214"}]}, {"Connections": [{"local_port": 139, "remote_port": 58258, "local_address": "10.0.179.147",
"remote_address": "10.0.104.214"}]}, {"Connections": [{"local_port": 80, "remote_port": 49897, "local_address": "10.0.179.147", "remote_address":
"10.0.104.214"}]}, {"Connections": [{"local_port": 443, "remote_port": 59506, "local_address": "10.0.179.147", "remote_address": "10.0.104.214"}]}], "Interface":
[{"IP Address": "10.0.179.147"}], "System info": {"Hostname": "Enterprise1", "OSType": "WINDOWS", "OSDistribution": "WINDOWS_SVR_2008", "OSVersion":
"W6_1_7601", "Architecture": "x64"}, "Isolated": False}

"Enterprise0": {"ip": "10.0.179.156", "Processes": [{"remoteAddress": "10.0.104.214", "localPort": 22, "count": 1}], "Files": [], "Isolated": False, "LastAnalysed": -1,
"Priority": "Medium"},

"Enterprise1": {"ip": "10.0.179.147", "Processes": [{"remoteAddress": "10.0.104.214", "localPort": 22, "count": 1}, {"remoteAddress": "10.0.104.214", "localPort":
135, "count": 1}, {"remoteAddress": "10.0.104.214", "localPort": 3389, "count": 1}, {"remoteAddress": "10.0.104.214", "localPort": 445, "count": 1},
{"remoteAddress": "10.0.104.214", "localPort": 139, "count": 1}, {"remoteAddress": "10.0.104.214", "localPort": 80, "count": 1}, {"remoteAddress": "10.0.104.214",
"localPort": 443, "count": 1}], "Files": [], "Isolated": False, "LastAnalysed": -1, "Priority": "Medium"}

Enterprise0 | IP: 10.0.179.156, Priority: Medium, Isolated: No, Last Analysed: -1, Processes: [1 process with: (Remote IP: 10.0.104.214 and Port: 22)]

Enterprise1 | IP: 10.0.179.147, Priority: Medium, Isolated: No, Last Analysed: -1, Processes: [1 process with: (Remote IP: 10.0.104.214 and Port: 22), 1 process with:
(Remote IP: 10.0.104.214 and Port: 135), 1 process with: (Remote IP: 10.0.104.214 and Port: 3389), 1 process with: (Remote IP: 10.0.104.214 and Port: 445), 1
process with: (Remote IP: 10.0.104.214 and Port: 139), 1 process with: (Remote IP: 10.0.104.214 and Port: 80), 1 process with: (Remote IP: 10.0.104.214 and Port:
443)]

Raw CybORG State

Condensed JSON State

Condensed Sentence State

Figure 4.2: Illustration of the same CybORG scenario parsed in three different ways.
The first is the raw output of the CybORG environment. The second and third are
the corresponding condensed JavaScript Object Notation (JSON) and sentence forms,
respectively. For clarity, only 2 of the 13 hosts’ states are shown.

Questions of varying difficulty, following the prompt structure of Figure 4.1
were created to evaluate the selected LLMs. The difficulty was determined by
the number of hosts involved:

• Easy: 1-2 hosts.
• Medium: 3-7 hosts.
• Hard: 8-13 hosts.

A Python script was developed to generate these questions, incorporating
stochasticity to cover a variety of scenarios while implementing predefined
rules to ensure the constraints of the CybORG environment were respected.
For example, a scenario would not have a compromised operational server at
timestep 0. These scenarios were converted to both the JSON and sentence
formats denoted in Figure 4.2, and parsed into corresponding questions using
the generic prompt structure described in Figure 4.1. A total of 100 questions
were created, consisting of 20 easy, 40 medium, and 40 hard.

Each question was assigned a corresponding answer by manually selecting
the most contextually relevant action in CybORG’s predefined action-space.
Emphasis was placed on selecting the action that would yield the highest
reward for the episode, not necessarily the individual timestep.

For evaluating the LLMs, a script was developed to compare their responses
against the manually selected answer. This comparison utilized BERTScore

45

4.1. Selecting an LLM

[12], an encoder-only type LLM that computes a relevance score between two
pieces of text using cosine similarity. The relevance score consists of a precision,
recall, and F1 (metric that balances precision and recall) component.

Manually assigned scores were chosen as the primary evaluation criterion;
however, precision was prioritized over recall for BERTScore’s output. This
is because precision is inversely proportional to the number of false positives
- meaning that to achieve a high precision score, the LLM must minimize
the number of irrelevant tokens. This is contrary to recall, which is inversely
proportional to the number of false negatives. A high recall score requires the
LLM to maximize the number of correct tokens, even if it includes irrelevant
ones. For example, if the ground truth label is: ’Isolate Host A’, but the LLM
outputs ’Isolate, Patch, Restore, Remove Host A Host B Host C ’, the recall
would be high because the LLM captured all relevant tokens; however, the
precision would be low since it generated many unrelated tokens. Encouraging
this behavior is problematic, since it prevents the extraction of a single, concrete
action from the LLM’s output, making it inefficient for decision-making.

To facilitate manual validation, the LLM’s textual output for the JSON-
based and sentence-based questions was recorded in addition to BERTScore’s
metrics. The complete process of selecting an LLM is illustrated in Figure 4.3.

46

4.2. Environment Modification

Step 1. Create
Dataset

Generate
Scenarios

Condensed
JSON Form

Condensed
Sentence Form

Parse to
Prompts

Dataset

Create
Labels

Questions

Step 2. Evaluate
LLMs

Step 3. Select
LLM

Q

Dataset

for LLM in LLMs (iterate through each LLM)

LLM Output

A

LLM ScoresBERTScoreLLMi

LLM Responses

LLM Output

LLM Scores

LLM Responses

Select Best LLM

Figure 4.3: Process used for selecting an LLM. In Step 1, a dataset of questions and
corresponding answers was created to evaluate the LLMs. In Step 2, each of these
LLMs was evaluated against this dataset, using BERTScore to compute a precision,
accuracy, and F1-score for each prediction. In Step 3, the results from Step 2 were
manually evaluated and the best-performing LLM was selected.

4.2 Environment Modification

To better reflect realistic cybersecurity conditions, certain actions were added
to the Cage Challenge 2 environment used for this research [50]. The actions
include:

• Block. Prevents communication between two hosts.
• Patch. Decreases the chance of an attacker’s exploit succeeding on a

host.
• Isolate. Simulates unplugging the host from the network - no connectivity

to or from any host.

47

4.2. Environment Modification

4.2.1 Block Action

The block action was derived from Cage Challenge 4 [52], one of CybORG’s
environments, which is designed for multi-agent development. The action was
implemented to enable the blue agent to deny new connections between two
hosts, simulating typical Intrusion Prevention System (IPS) [1] functional-
ity. This action does not disrupt existing sessions, and only applies to new
connections originating from the source host to the destination host.

Additionally, to ensure a consistent action space - where the same set of
actions is available across all hosts and timesteps, the block action is applied
across all ports. Since each host runs different services, the available ports to
block would vary between hosts, unless every possible port was included as
its own option. Alternatively, ports not available on a specific host could be
masked (i.e., made impossible to select) during training; however, blocking
individual ports would be too slow in the context of CybORG, rendering this
action ineffective compared to others. The corresponding iptables rule, one of
Linux’s utilities for managing firewalls, for “Block HostA, HostB” is described
as:

iptables -A INPUT -s HostA -d HostB -m state --state NEW -j DROP

Blocked hosts are tracked using a Python dictionary, where each key rep-
resents the source host, and each value is a list of blocked destination hosts.
When the block action is executed, the corresponding source (first argument)
and destination (second argument) hosts are added to the dictionary. Block is
the only action that takes two hosts as an argument.

To enforce blocking, the behavior of certain red actions was modified:
• DiscoverNetworkServices (discover services on a host) and ExploitRemote-

Service (gaining foothold on host) were modified to not execute if the
source and destination hosts are present in the block list.

• DiscoverRemoteSystems (discover hosts on a subnet) was modified to
not return any hosts present in the block list.

• PrivilegeEscalate (escalating to admin-level privileges) and Impact (at-
tacker’s end goal - e.g., data exfiltration) remained unaffected because
they typically leverage existing sessions rather than create new ones.

A negative reward was implemented for each blocked host to discourage
the blue agent from simply blocking connectivity from the beginning, which
would significantly degrade network functionality. This negative reward is
applied consistently at every timestep that the block is in place. The penalty
is proportional to the importance of the blocked hosts, ensuring that low-value

48

4.2. Environment Modification

disruptions are interpreted differently than high-value ones. For example, block-
ing connectivity from a user host to an enterprise host yields a lower penalty
than blocking connectivity between an enterprise host and the operational
server. The corresponding rewards for block with respect to the destination
host’s priority are:

• -0.1 for user hosts; and
• -0.2 for enterprise servers and operational hosts; and
• -0.3 for the operational server.

An overview of the block action is depicted in Figure 4.4.

HostA HostB

1. Red Agent Executes Exploit on
HostB

HostA HostB HostA HostB

2. Blue Agent Executes Block
from HostA to HostB

3. Red Agent Executes Another
Exploit on HostB

Established
Red Session

Connection
Allowed

Connection
Blocked

Legend

Figure 4.4: Illustrating the functionality of the block action. The red agent
propagates from HostA to HostB (left); the blue agent blocks communications from
HostA to HostB (middle), the red agent’s existing session is uninterrupted, but
cannot initiate new connections to HostB (right).

An unblock action was also implemented that takes two hosts as parameters.
Rather than adding hosts to the block list, it removes them, effectively re-
enabling connectivity between the source and destination. At the start of
an episode, no host is in the block list; the only rules enforced are from the
environment’s configuration file.

4.2.2 Patch Action

The patch action was implemented to simulate updating vulnerable services on
a host, effectively decreasing the red agent’s ability to exploit a service. Similar
to the block action, patch is scoped at the host level rather than targetting
individual services. This design ensures a consistent action space across

49

4.2. Environment Modification

hosts and maintains relevance within CybORG by ensuring that patch has a
comparable impact to the other actions. If patch were applied to individual
services, its scope would be smaller than that of the other host-based actions,
potentially making it less desirable.

Patching is tracked by assigning a patch score to each host; the higher the
score, the less likely the host is to be exploited. It was implemented as a
one-dimensional list of floats between 0 and 1, where the index corresponds
to the host. When the patch action is executed, the patch score for that host
is increased, simulating updating/upgrading its services. At the start of an
episode, each host’s patch score is initialized to 0.

To enforce the effectiveness of patching, the red agent’s PrivilegeEscalate and
ExploitRemoteService were modified to have an X percent chance of failing
where X corresponds to the host’s patch score. This reflects the fact that these
actions typically rely on exploiting vulnerabilities in services, which may not
always be present. This randomness also helps mimic the stochastic nature of
cybersecurity.

To simulate reconnaissance and prevent the blue agent from repeatedly
exploiting the patch action, the red ExploitRemoteService and PrivilegeEscalate
actions decrease the patch score of the corresponding host (i.e., the host the
action is being performed on). Furthermore, the rate at which the red agent
decreases the patch score is higher than the rate at which the blue agent can
increase it. This is to prevent early overuse of the patch action and maintain
its effectiveness relative to other possible actions. The patch score is decreased
regardless of whether the attack succeeds. Specifically, red actions decrease
the score by 35%, whereas the patch action increases it by 30%. An overview
of the patch action’s functionality is illustrated in Figure 4.5.

Patch: 0.45

HostB

Patch: 0.0

HostA

1. Blue Agent Executes Patch on
HostB

2. Red Agent Executes Exploit
on HostB

3. Red Agent Executes Exploit on
HostB again

Patch: 0.8

HostB

Patch: 0.0

HostA

Patch: 0.1

HostB

Patch: 0.0

HostA

Figure 4.5: Diagram illustrating the functionality of the patch action. The blue agent
patches HostB (left), increasing its patch score. The red agent attempts to exploit
HostB (middle), failing the exploit, but decreasing the patch score. The red agent
attempts to exploit HostB again, this time successfully establishing a session.

50

4.2. Environment Modification

4.2.3 Isolate Action

The isolate action was implemented to simulate unplugging a host from the
network, preventing any connectivity to or from that host. Unlike the block
action, isolate disrupts existing sessions, rendering future attacks originating
from or targeting that host ineffective.

Isolated hosts are tracked using a one-dimensional list of bits (1 for isolated,
0 for not isolated), where the index of each bit corresponds to the host. When
the isolate action is executed, the bit for the corresponding host is set to 1.
At the start of an episode, each host has an isolated value of 0, signifying full
connectivity to the network.

The red agent’s actions were modified to enforce isolate’s functionality. In
particular, DiscoverNetworkServices, ExploitRemoteService, PrivilegeEscalate
and Impact are set to fail if the source (where the red session is) or destination
host is isolated. DiscoverRemoteSystems (scanning a subnet for hosts) was
modified to return nothing for isolated hosts and to return a failure if the host
performing the scan is isolated.

To discourage the blue agent from significantly impeding network function-
ality, a negative reward is applied every timestep for each isolated host. This
negative reward is proportional to the value of the host:

• -0.2 for user hosts; and
• -0.4 for enterprise servers and operational hosts; and
• -0.5 for the operational server.

Furthermore, the isolate action does not eliminate any of the red agent’s
existing sessions, it just prevents them from being used for future actions. This
is to simulate the attacker establishing persistence on the machine. Isolating
a host, does not remove any artifacts placed by the attacker, they must be
removed via the remove or restore action. While technically unrealistic (since
the attacker should not be able to access the host at all), it simulates the
required functionality - preventing the red agent’s use of an isolated box to
further its attack.

An unisolate action was also implemented that sets the host’s bit in the
isolate list to a 0, simulating reconnecting the host back to the network. This
action does not remove any artifacts on the host, any modifications by the
red agent remain. Figure 4.6 illustrates the functionality of the isolate and
unisolate actions.

51

4.2. Environment Modification

Isolated: 0

HostB

Isolated: 1

HostA

1. Blue Agent Executes Isolate on
HostA

2. Red Agent Executes Exploit
on HostB

3. Blue Agent Executes Unisolate
on HostA

Isolated: 0

HostB

Isolated: 1

HostA

Isolated: 0

HostB

Isolated: 0

HostA

Figure 4.6: Illustration of the isolate action’s functionality. The blue agent isolates
HostA (left), disconnecting it from the network. The red agents attempts to exploit
HostB from HostA (middle), but cannot connect since it is isolated. The blue agent
unisolates HostA (right), but the red agent’s session remains, as it was not explicitly
removed.

4.2.4 Action Removal

The original Cage Challenge 2 environment includes six-deception based attacks,
each of which sets up its own decoy service (e.g., Apache, Tomcat) on the
specified host (honeypots). These actions were removed from this research
because, while relevant in cybersecurity, they are not directly relevant from an
ACO perspective.

In practice, honeypots are used by intelligence teams to gain information on
adversaries’ behaviors and techniques to facilitate the design of more robust
future defenses [75]. However, the establishment of these decoy services does
not provide any immediate value for defending a network compared to actions
considered more proactive, like isolate and remove. To be used effectively,
the network of these honeypots (i.e., a honeynet) should be pre-established
as a dedicated environment for training these agents, rather than included as
available actions.

Another action that was removed from this implementation was the monitor
action. The reason for this is that the monitor action is automatically called
at the end of every timestep to provide the blue agent with information on any
new connections and processes. Because it is already called every timestep, it
was removed to avoid redundancy.

Altogether, the action-space used for this research consists of seven distinct
actions:

• Analyse: to collect further information on the host, specifically any new
files on the host not contained in the baseline image.

• Remove: to destroy user-level malicious processes and services running
on the host without disrupting network functionality.

52

4.2. Environment Modification

• Restore: to revert the host back to its original state at the start of the
episode, while disrupting network functionality.

• Block: to deny new connectivity between two hosts.
• Isolate: to unplug the host from the network, preventing the adversary

from moving laterally in the network.
• Unisolate: to rejoin a previously isolated host to the network.
• Patch: to update the services running on a host, decreasing the chance

of success for future adversary exploits.

4.2.5 Preprocessing

The preprocessing techniques used for this implementation build upon the
default ones discussed in Chapter 2. The original CybORG environment
converts the textual state of each host into an encoded representation of 4 bits,
where the first 2 bits represent its activity state (i.e., the red agent’s activity
on the host) and the last 2 bits represent its compromised state (i.e., the red
agent’s presence on the host).

One modification in this implementation is that the activity and compromised
states were converted into single floats, rather than pairs of bits. An advantage
of using bits is that the RL agent will process the features as their own distinct
categories without inherently prioritizing any of them based on their value;
however, this comes at the cost of a larger feature space and the agent needing
to learn which states map to which bit representation.

Because the preferred functionality is to typically prioritize more severely
compromised hosts over less severely compromised ones, representing these
states as a float is acceptable, because the agent will naturally treat certain
categories more seriously due to their increased impact on the gradient during
backpropagation. For example, if an attacker having root-level access on a host
is represented by a 1.0 and user-level access is represented by 0.66, the blue
agent will implicitly prioritize the root-level access, as its value contributes
more strongly to the agent’s training and the resulting action selection.

To enable the RL agent to utilize the patch and isolate states for action
selection, these were appended as individual features for each host. The isolate
state was appended as a 1 or a 0, where 1 means the host is isolated and 0
means the host is not isolated. Since patch is already a float between 0 and 1,
representing how likely an exploit is to succeed, it was appended directly to
the feature space.

Finally, two global features were appended: the total number of isolated
hosts and the total number of compromised hosts. The number of compromised
hosts includes both user-level and root-level compromises. To ensure that

53

4.3. Baseline Agent Development

these are not inherently prioritized over the other features, both of these were
normalized by the total number of hosts:

totalIsolatednormalized =
totalIsolated

totalHosts

and

totalCompromisednormalized =
totalCompromised

totalHosts
Figure 4.7 shows the updated feature space mapping employed in this study.

Activity Mapping

None 0.0

Scan 0.3

Exploit 1.0

Compromised Mapping

No 0.0

Unknown 0.3

User 0.6

Privileged 1.0

[1.0,1.0,0,0.6,0.3,0.6,0,0.0,0.3,0.0,1,0.3,0.33,0.67]

Host A

Activity: Exploit
Compromised: Privileged

Isolated: No
Patch Score: 0.6

Host B

Activity: Scan
Compromised: User

Isolated: No
Patch Score: 0.0

Host C

Activity: Scan
Compromised: No

Isolated: Yes
Patch Score: 0.3

Total Isolated & Total
Compromised

Figure 4.7: Modified feature space mapping used for this research.

4.3 Baseline Agent Development

As discussed in Chapter 2, there are two fundamental types of RL algorithms:
value-based and policy-based approaches. For value-based, the agent outputs an

54

4.3. Baseline Agent Development

expected value for every possible action in a given state. Additional techniques
are required to incorporate exploration, ensuring the agent explores sufficient
possibilities.

For policy-based, the agent outputs a probability distribution across possible
actions and samples directly from this distribution. This direct sampling
eliminates the need for additional exploration techniques, since distributions
are stochastic by nature.

Baseline value-based and policy-based RL algorithms were developed to
evaluate the performance of the LLM integration. The intention behind this
was to ensure that sufficient experimentation was conducted to identify the
best baseline to compare against. In particular, Deep Q-Network (DQN) was
used for the value-based agent, and Proximal Policy Optimization (PPO)
was used for the policy-based agent. One of the reasons behind developing,
rather than simply calling existing libraries, was to ensure the agent was
implemented in such a way that a teacher could be integrated, and to gain
a greater understanding of the underlying details for optimizing the LLM
integration.

Ultimately, PPO was selected as the chosen RL algorithm due to its stability
in training and faster convergence time. The details of these evaluations are
discussed in the following chapter.

4.3.1 DQN Agent

Previous work [6, 7, 50] has primarily used PPO for the CybORG environment;
however, DQN was also explored in this study due to the environment’s discrete
action and state space. DQN typically performs well on these discrete spaces,
because they are easily represented in a table format of state-action pairs (i.e.,
a Q-table). For continuous spaces, there could be infinite possible Q-values
making this approach less effective.

The DQN agent was based heavily on existing implementations [76, 77, 44]
and is one of the most notable off-policy, value-based RL algorithms at the time
of writing. As discussed in Section 2.2, DQN uses a Multi-Layer Perceptron
(MLP) in place of the Q-table.

The MLP’s input space consists of the numerical feature-space representing
each host’s state, while its output is an array of values indicating how favorable
each action is for the given state (Q-values). The MLP contains three hidden
layers with 256, 128 and 64 neurons, respectively. The decrementing choice was
implemented because, typically in RL, only a subset of features are relevant
for action selection. This ensures that the network does not overfit to features
that may be irrelevant to the decision. For example, if Host A is compromised,

55

4.3. Baseline Agent Development

the network should typically prioritize the features for Host A rather than
overfitting to Host B’s and C’s features. Having this decreasing structure,
enables the model to filter out irrelevant information, leading to a more
generalizable network.

Epsilon-greedy is employed to balance exploration and exploitation, where
the RL agent has an ϵ chance of selecting a random action rather than the one
with the highest Q-value. The value of epsilon decays as the game progresses,
increasing the chances of selecting the highest Q-value as the model becomes
more tuned to the environment.

A buffer was implemented that keeps track of the states, rewards, actions
and next states. The size of this buffer is larger than the length of the training
interval, allowing the agent to leverage data produced by previous policies in
training. This is ultimately what makes this an off-policy algorithm.

For training, a separate target MLP with an identical architecture to the
main one is used. This target MLP computes Q-values that are used for
the loss calculation. The target Q-value for the sampled action is calculated
by incorporating Temporal Difference (TD), where it is computed using the
immediate reward and the target MLP’s prediction for the next state, multiplied
by a discount factor. In particular, the target Q-value is calculated with [41]:

Qtarget(s, a) = r + γ ∗maxQθ(s
′, a′)

Where:
• s, a, r, s′, a′ are the current state, current action, current reward, next

state and next action respectively.
• γ is the discount factor used to prioritize immediate rewards over future

rewards.
• The maximum Q-value is chosen from the target network to get an

estimate of the next state’s value.
Once the corresponding label is calculated, Mean Square Error (MSE) is

used to calculate the loss between the sample and the prediction. This loss is
then backpropagated to adjust the agent’s parameters. To stabilize training,
the target MLP that is used to calculate the labels is updated less frequently
than the main MLP.

Figure 4.8 shows the DQN algorithm that was implemented.

56

4.3. Baseline Agent Development

CybORG

Q-Network

Target
Q-Network

BufferQ-Values

Eps Greedy

Action

State

State, Reward
Action,

Next State

Collecting Data

Training

State

ActionBuffer

Q-Network

Next State

Reward,Action

Q-Values

TD-0

Target Q-Value

Loss for Backpropagation

MSE
Loss

Predicted
Q-Value

Select Q-
Value for

Action
Q-Values

Figure 4.8: The DQN implementation used for this research. The data collection
process is shown at the top, where the agent interacts with the environment to gather
training samples. The training process is shown at the bottom, where the agent uses
the collected data to compute the Mean Square Error (MSE) loss between its
prediction and the actual returns to optimize its parameters. In reality, the training
is done in batches; however, this is omitted from the diagram for readability.

4.3.2 PPO Agent

Unlike DQN, PPO is a policy-based algorithm that outputs a probability
distribution from which actions can be directly sampled. The stochastic nature
of these distributions eliminates the need for implementing custom techniques
to encourage exploration such as epsilon-greedy. PPO is an on-policy algorithm,
meaning it discards any data generated using a different policy - deleting all
previously collected data every training interval. This is less sample-efficient,
but typically results in more stable training as the agent’s parameters are
updated directly from data collected using the current policy.

57

4.3. Baseline Agent Development

The PPO implementation used for this research was based heavily on existing
work [78, 45, 79]. It consists of two MLPs:

• An actor MLP that outputs a probability distribution across actions; and
• A critic MLP that outputs a scalar representing the expected value of

the given state.
With the exception of the output, the architecture of these two neural

networks is identical and consists of three hidden layers with a decreasing
number of neurons. As with DQN, this design encourages generalization and
discourages overfitting to potentially irrelevant features.

A buffer is used to store data as the agent interacts with the environment,
which is then used for future training. Every timestep, the following data is
stored in the buffer:

• The sampled action; and
• The natural log probability of selecting the sampled action in the actor’s

policy; and
• The critic network’s output for the selected action; and
• The reward returned from the CybORG environment; and
• The next state.

The log probability [78] is used (instead of just the raw probability) mainly
to prevent the numerical instability that can come from having potentially tiny
probabilities, which could cause the gradients to become decreasingly small
(i.e. vanishing gradients). Figure 4.9 illustrates the difference between using
log and raw probabilities. There is a concern that the amplified values from
lower probabilities could lead to gradient explosion; however, PPO’s clipping
mechanism (discussed later in this section) mitigates this risk.

58

4.3. Baseline Agent Development

Probability

Upper probability
bound
Raw probability
loss
Log-probability
loss

Legend

Loss

Figure 4.9: Visualization of -ln(x) vs. x to illustrate why log probabilities are used
instead of raw probabilities. The amplified values for lower probabilities, greatly
mitigate the risk of vanishing gradients during training.

The data collection process for the PPO implementation is illustrated in
Figure 4.10.

59

4.3. Baseline Agent Development

CybORG

Buffer Action, State, Reward

Sample
from Prob

Dist

Critic Network

State

Log Prob of
Action in Dist

Prob Dist

Log Probs

Critic Val

ActionActor Network

Figure 4.10: The data collection process for this study’s implementation of PPO. At
every timestep, it stores the corresponding log probability, critic value, reward, action,
and state.

Once data has been collected for x timesteps, where x corresponds to the
steps per training interval, the actor and critic parameters are updated. The
rewards and critic values are used to compute advantage estimates, which
represent how favorable an action was in a state. This implementation employs
Stable Baseline3’s version of the Generalized Advantage Estimate (GAE) [78].
Monte Carlo (MC) accounts for future rewards using returns for the full episode,
which results in a low bias (since it uses only the actual rewards); however,
it has high variance. Conversely, Temporal Difference (TD), which estimates
future values using bootstrapped values, has lower variance, but higher bias
due to future rewards being estimated. GAE balances these two approaches,
allowing a tradeoff between variance and bias. In particular, GAE is computed
as [78, 45]:

At =

T−1∑
k=t

(γλ)k−t(rk + γV (sk+1)(1 − donek) − V (sk))

where:
• At is the estimated advantage at timestep t.
• γ is the discount factor.
• λ is the GAE smoothing parameter.

60

4.3. Baseline Agent Development

• rk is the reward received at timestep k.
• V (sk) is the value function (the critic’s estimate of state sk).
• donek is 1 if the episode ends at step k, otherwise 0.

Once the advantages are calculated, probability distributions are generated
from the actor network using the saved states. Similar to at inference, the log
probability of selecting the sampled action is stored. A ratio between these log
probabilities and the ones gathered during sampling is computed to calculate
the actor loss [45]:

rt(θ) =
πθ(at|st)

πθold(at|st)
where:

• πθ(at|st) is the log probability of selecting the action in the new policy,
and πθold(at|st) is the log probability of selecting the action in the old
policy.

To ensure that updates to the gradient are not too drastic, the ratio is
clipped between a lower and upper bound. This is then multiplied by the
advantage to account for the rewards and the critic’s feedback [45]:

LA(θ) = E[min(rt(θ)At, clip(rt(θ), 1 − ϵ, 1 + ϵ)At)]

where:
• ϵ is the policy clipping value; and
• At represents the advantage values

From here, values are outputted from the critic network using the stored
states. These are then compared directly with the aggregation of the computed
advantages and stored critic values to compute the critic’s loss. The Mean
Squared Error (MSE) is the loss function used for this. In particular [45]:

Lc(ϕ) = E[((Vold(st) + At) − Vnew(st))
2]

where:
• Vold(st) are the old critic values; and
• Vnew(st) are the new critic values

Once the critic and actor’s loss is computed, this is backpropagated to
update their respective parameters. Unlike DQN, after the training interval
has completed, all previously generated data is removed (i.e., the buffer is
reinitialized to empty). The training process for this implementation of PPO
is illustrated in Figure 4.11.

61

4.3. Baseline Agent Development

Actor Network

Critic Network

New Critic Vals

Action
Old Probs

Critic Vals,
Rewards

Critic Vals

State

State

Buffer

GAE

Log Prob of
Action in Dist

Weighted Probs
(New/Old)*A

Advantage

Clipped Probs Actor
Loss

Returns

Advantage Returns

Critic Loss
(MSE)

Figure 4.11: The training process for this PPO implementation. This illustrates how
the critic loss and actor loss are computed using the sampled data. For readability,
the backpropagation process is not shown.

4.3.3 Baseline Agent Evaluation

A Django web application [80] was created to evaluate the performance of
the baseline agents and the environment modifications. The individual runs
were saved in a SQLite3 database [81], from which data could be extracted in
a structured way. In particular, the Chart.js library [82] was used to create
figures showing action diversity, rewards, and convergence.

Additionally, a Graphical User Interface (GUI) was created to enable in-
depth analysis of individual timesteps. This works by storing the following
information for every timestep:

• The current true state of the environment; and
• The blue agent’s observation; and
• The last blue action taken; and
• The last red action taken; and
• The resulting reward.

Due to the immense number of timesteps in a game (tens of thousands), a
separate table in the database was used to store the mapping between the
numerical and textual representations of certain attributes. For example,
instead of storing “Analyse User0” for every timestep, the mapping of 0 to
“Analyse User0” was stored once, and only the numerical representation was
used thereafter. Alternatively, instead of having these mappings all stored in a

62

4.4. Teacher-Guided Algorithm Development

single table, they could have each been stored in separate tables and referenced
via their respective primary keys. The database structure for this Django
application is shown in Figure 4.12.

Game
*id
* name
* date
*numEps
*numSteps
*batchSize

Subnet
*id
*gameID

Host
*id
*name
*ip
*subnetID

Episode
*id
*episodeNumber
*totalReward
*gameID

Step
*id
*redActionTaken
*blueActionTaken
*reward
*trueState
*blueState
*stepNumber
*episodeID

Mapping

*id
*blueActionMapping
*redActonMapping
*blueStateMapping
*numHosts
*gameID

Figure 4.12: The database design for the Django web application. The design consists
of six tables that are linked using their respective primary keys. For example, every
timestep is linked to a particular episode, and every episode is linked to a particular
game run. Bolded fields represent foreign keys that directly or indirectly reference the
Game table via its primary key (id), which is also bolded.

Further information on the Django application can be found in Appendix
B. It should be noted that due to the limited functionality available from
working through a GUI, the requirement to consistently modify the Django
application to work with some of the LLM integration methods (e.g., modifying
feature-space mappings), and because most of the experiments were run from a
network-gaped computer using a textual SSH session, this application was only
leveraged for the baseline agent development and environment modification
phases.

4.4 Teacher-Guided Algorithm Development

This section discusses the different techniques that were implemented and
evaluated to incorporate the LLM into the RL agent’s decision-making process.
Because of an LLM’s substantial computational requirements, a pretrained RL
agent was used for testing the different teacher-guided techniques. Furthermore,
because the RL agent was trained on the same environment, problems with

63

4.4. Teacher-Guided Algorithm Development

the LLM could be ruled out, enabling the selection of the most favorable
integration method. The best-performing implementation in terms of training
efficiency and final policy was then selected as the algorithm for the LLM
integration.

As discussed in Section 3.2, there are different ways to integrate exter-
nal knowledge into the RL pipeline to augment an agent’s decision-making
capability. The primary implementations in this thesis included:

• Action masking. This included hard masking where the probabilities of
actions not recommended by the teacher were set to 0, and soft masking
where the probabilities were reduced.

• Reward shaping. This involved incorporating the teacher’s recommen-
dations to compute the final reward given to the RL agent.

• Feature-space modification. The teacher’s recommendation was
appended to the agent’s feature space to give it additional information
for selecting an action.

• Auxiliary loss. The loss function was modified to account for the
teacher’s recommendation, encouraging the RL agent to mimic its be-
havior.

Since the external knowledge is initially in the form of a pretrained agent
to facilitate effective testing, the terms “pretrained agent” and “teacher” are
used interchangeably throughout this section.

Action Masking

Action masking incorporates the external guidance by modifying the agent’s
probability distribution based on the teacher’s recommendation [15]. This
was done by having the teacher output an action (or host), and reducing the
probabilities of selecting any non-recommended action. In particular:

πmaskedθ(at) = πθ(at) ∗Mt(at)

where:
πmaskedθ(at) is the masked policy, πθ(at) is the original policy, and:

Mt(a) =

{
1, if a ∈ ALLM (LLM-recommended actions)

c, otherwise

The value of c was set to zero, making non-recommended actions impossible
to select (i.e., hard action masking) as well as to a positive float less than
one, decreasing the probability of selecting non-recommended actions (i.e., soft
action masking). For the latter implementation, the value of c was gradually

64

4.4. Teacher-Guided Algorithm Development

increased, facilitating a smoother transition from teacher-guided to traditional
RL.

To make the updated probability distribution still valid, it was normalized
to ensure that the sum of the elements was equal to 1. In particular, each
probability was divided by the sum of all probabilities, denoted as:

πmaskedθ(at) =
πmaskedθ(at)∑
a πmaskedθ(a)

As discussed in the previous section, the PPO’s actor network is updated by
taking a ratio between its old probability distribution (the one obtained by
interacting with the environment) and its new probability distribution (the one
calculated at each epoch). Different methods were implemented to incorporate
masking during learning.

The old and the new probabilities were both masked. In particular:

rt(θ) =
πθmasked(at|st)

πθmaskedold(at|st)

Just the new probabilities were masked:

rt(θ) =
πθmasked(at|st)
πθold(at|st)

And none of the probabilities were masked (i.e., masking only occurred at
inference):

rt(θ) =
πθ(at|st)

πθold(at|st)
The discussed implementations for action masking all occurred after the

softmax activation function (i.e., after the probability distribution was cal-
culated), necessitating re-normalization to a valid distribution. To avoid
this re-normalization requirement, masking was also implemented before the
softmax activation function (i.e., at the logits level):

πmaskedθ(at) = softmax(z(at) + Mt(at))

Where z(at) are the raw logits outputted by the actor network and

Mt(a) =

{
0, if a ∈ ALLM (LLM-recommended actions)

−∞, otherwise

It should be noted that when the masking is applied directly to the logits,
−∞ is added to non-recommended actions rather than being multiplied by 0.

65

4.4. Teacher-Guided Algorithm Development

This is due to how softmax exponentiates each of the logits, before normalizing
them to a distribution [83]:

softmax(zi) =
ezi∑N
j=1 e

zj

e−∞ is effectively 0, making it impossible to sample the corresponding action.
An overview of the implemented action-masking process and how it fits into

CybORG is shown in Figure 4.13.

CybORG

State

Masking
Function

RL Agent

Dist

Masked Dist

Dist

ActionSample

State

Sample

Pretrained
RL Agent
(Frozen)

Action(s)

Figure 4.13: An illustration of the action masking process that was implemented.
The actions recommended by the pretrained RL agent (i.e., the teacher) are used to
modify the student’s probability distribution prior to sampling. Only post-softmax
masking is shown for clarity.

Reward Shaping

Reward shaping incorporates the teacher’s guidance by modifying the reward
signal outputted by the environment. If the agent selects an action that closely
aligns with the teacher’s recommendation, the reward signal is increased. In
particular:

rt(a) =

{
renvt(a) + c, if a ∈ ALLM (LLM-recommended actions)

renvt(a), otherwise

66

4.4. Teacher-Guided Algorithm Development

where renvt(a) is the original reward returned by the environment for selecting
action a. Two implementations of reward shaping were used, where c is kept
constant and where c is decreased every training interval.

A high-level overview of the reward shaping implementation is shown in
Figure 4.14.

CybORG

RL Agent

Dist

State

New Reward Env Reward,
Action

Sample Action

Sample

Dist

State

Teacher Action

Rew Shaping
Function

Pretrained
RL Agent
(Frozen)

Figure 4.14: Overview of the implemented reward shaping process. If the agent
selects an action that is recommended by the teacher, the reward signal is increased.
For clarity, the new reward is shown as being fed directly into the agent; however, it
is only used during the training stage to update the policy, not for action selection.

Feature Space Modification

Feature-space modification indirectly impacts the agent’s action-selection pro-
cess by providing additional information it can leverage to make a more
informed decision. In contrast to action masking, the agent’s probability
distribution is not modified - only its input.

67

4.4. Teacher-Guided Algorithm Development

In this implementation, the teacher outputs a recommended action that is
appended to the RL agent’s feature-space vector, enabling it to leverage the
teacher’s guidance in the decision-making process. The principle of this idea is
shown in Figure 4.15.

Activity Mapping

None 0.0

Scan 0.3

Exploit 1.0

Compromised Mapping

No 0.0

Unknown 0.3

User 0.6

Privileged 1.0

[1.0,1.0,0,0.6,0.3,0.6,0,0.0,0.3,0.0,1,0.3,0.33,0.67,1,0,0,1,0,1,0]

Host A

Activity: Exploit
Compromised: Privileged

Isolated: No
Patch Score: 0.6

Host B

Activity: Scan
Compromised: User

Isolated: No
Patch Score: 0.0

Host C

Activity: Scan
Compromised: No

Isolated: Yes
Patch Score: 0.3

Total Isolated & Total
Compromised

Pretrained
RL Agent
(Frozen)

Figure 4.15: The pretrained RL agent’s action is appended to the feature space
(right). The entire vector is what is inputted into the agent. In this example, the
teacher’s recommendation is appended in binary form.

Figure 4.15 has the teacher’s guidance appended in binary format:

st = [sti, binary(atTeacher)]

where sti is the state outputted by the environment, and binary(atTeacher) is
the binary encoding of the teacher’s recommendation.

Two additional methods were used for mapping the pretrained RL agent’s
action before appending it to the feature space:

• One-hot encoding; and
• Normalizing to a float between 0 and 1.

For one-hot encoding, a vector of n zeroes is appended to the state space,
where n is the size of the action space. The index corresponding to the

68

4.4. Teacher-Guided Algorithm Development

recommended action is set to 1. In particular:

st = [sti, onehot(atTeacher)]

For the guidance as a float, the pretrained RL agent’s recommendation is
normalized to a float between 0 and 1, as denoted by:

st = [sti,
atTeacher

max(a)
]

where max(a) is the action with the highest value (i.e., if there are 78 actions,
then max(a) = 78).

As previously discussed, the reason the raw integer value of the action is not
appended is to keep all features within the same range (0 to 1) for gradient
stability. If a feature has a significantly larger value than others, it can produce
a disproportionate gradient, where that feature is overemphasized, resulting in
the network becoming biased towards it.

An overview of incorporating feature-space modification into the RL pipeline
for CybORG is depicted in Figure 4.16.

CybORG

RL Agent

Pretrained
RL Agent
(Frozen)

Teacher
Action

Sample

Dist
Modified
Feature
Space

Feature
Augmentation

Dist

State

ActionSample

Figure 4.16: Illustration of how feature-space modification was integrated into the RL
pipeline. The pretrained RL agent outputs an action that is appended to the RL
agent’s state to help with decision-making. For clarity, the mapping of the pretrained
RL agent’s recommendation is abstracted away by the Feature Augmentation block.

Auxiliary Loss

Similar to reward shaping, the auxiliary loss technique incorporates the
teacher’s guidance by modifying the agent’s decision-making process indi-
rectly. Rather than modifying the reward signals returned by the environment,
the loss is updated to include the teacher’s recommendation.

69

4.4. Teacher-Guided Algorithm Development

This is done by computing the teacher’s loss as the log probability of selecting
its recommended action in the agent’s distribution. In particular:

Lteacher(θ) = −logπθ(a
teacher
t |st)

The teacher’s loss is then added to the actor network’s loss. To ensure the
agent receives consistent signals across training intervals, the magnitude of
the environment’s loss and the teacher’s loss are scaled by a factor of σ. This
approach was based on the gradual decay incorporated in the work by A.
Beikmohammadi and S. Magnusson [14]:

Ltot(θ) = σ ∗ LA(θ) + (1 − σ) ∗ LTeacher(θ) + cS(πθ(·|st))

Where increasing σ reduces the impact of the teacher, while increasing the
environment’s impact. Two similar implementations were used for auxiliary
loss, with the difference being:

• σ remained constant for x episodes before being entirely removed, fa-
cilitating a steep transition from teacher-guided to environment-only
learning.

• σ increased during the initial stages of training, facilitating a smoother
transition from teacher-guided to independent learning.

Furthermore, the cS(πθ(·|st)) shown above represents the entropy of the
agent’s distribution. This is used to quantify the agent’s uncertainty when
sampling an action in state st. C represents the entropy coefficient - a higher
value encourages the agent to increase its randomness, favoring exploration.

During the teacher-guided phase of training, the entropy coefficient was
gradually increased, inversely proportional to the teacher’s impact. This is
intended to encourage exploration as soon as the agent begins its transition
to independent RL, helping it surpass the teacher. After the transition to
independent RL, the entropy coefficient was gradually decayed encouraging
convergence onto a policy.

The overview of the teacher integration using auxiliary loss is shown in
Figure 4.17.

70

4.4. Teacher-Guided Algorithm Development

Actor Network

New Dist

New Dist

State

State

Old Dist, Reward, Action

Buffer

Actor
Loss Function

Teacher
Loss Function

Dist

Actor Loss

Teacher Loss
Teacher
ActionSample

Total
Loss

Pretrained
RL Agent
(Frozen)

Figure 4.17: Overview of the implemented auxiliary loss process. The loss is adjusted
to take into account the probability of selecting the teacher’s recommendation given
the agent’s policy.

Combining Implementations

The four implementations discussed in this section focus on a single technique
for incorporating the teacher’s feedback into the decision-making process.
Combinations of these techniques were also explored. Given the four possible
options, the number of distinct combinations with more than one technique is:

4∑
k=2

(
4

k

)
= 6 + 4 + 1 = 11

To keep this thesis within a reasonable scope, only three combinations that
made logical sense were evaluated. In particular:

• Feature-space modification with reward shaping. This provides additional
incentive to the agent to better map the teacher’s recommendation into
an executable action.

• Action masking with feature-space modification. This is similar to the
above, but forces the agent to select the teacher’s recommendation. The
direct influence is intended to help the agent map its feature space to
the corresponding action.

• Action masking with auxiliary loss. This approach combines the direct
impact of masking - where the agent’s distribution is modified prior to
sampling - with the indirect effect of auxiliary loss, where the agent’s

71

4.5. Integration of the LLM into the RL pipeline

policy is shifted towards the teacher’s recommendation during training. In
this configuration, inference-only masking is applied, in which the masking
is exclusively used for sampling actions, while unmasked probabilities
are used to compute the actor’s loss.

4.5 Integration of the LLM into the RL pipeline

This section describes how the LLM was integrated into the RL pipeline.

4.5.1 Prompt Design

The generic prompt design that was used to evaluate the LLMs was modified
and optimized specifically for Cyber-Risk-Llama8B [72]. Two prompts ended
up being used for the evaluation, where both included the role of the LLM,
the hosts’ priorities, action definitions, the state of the network and execution
instructions. The second prompt additionally included step-by-step instructions
for selecting an action, with explicit constraints (e.g., disallowing the “remove”
or “restore” action for hosts without suspicious processes or files). The complete
prompts are listed in Appendix C.

For both prompts, the actions and hosts were defined using generic names
as there appeared to be inconsistencies between the data Cyber-Risk-Llama8B
was trained on and CybORG’s definitions. For example, it would favor hosts
with “enterprise” in the name over the operational server, despite explicitly
specifying otherwise in the prompt.

The priority of hosts was represented by the minimum number of hops
required to reach the operational server along the critical path. This was done
by parsing the YAML file for the scenario and implementing a breadth-first
search from the operational server. The direct neighbors were assigned a
priority value of 1, their neighbors were assigned a value of 2, and so on. It
should be noted that this was only applied to hosts on the critical path from
the red agent’s starting point (i.e., User0). An example of the hosts’ priorities
for the 13 host scenario (with 0 being the highest priority) is:

{‘Op_Server0’: 0,

‘Enterprise2’: 1,

‘Enterprise1’: 2, ‘Enterprise0’: 2,

‘User1’: 3, ‘User2’: 3, ‘User3’: 3, ‘User4’: 3}

72

4.5. Integration of the LLM into the RL pipeline

4.5.2 Extracting LLM Recommendations

As decoder-only LLMs output tokens rather than a distribution over actions,
their textual outputs must be mapped into executable actions within CybORG.
In order to achieve this, regex was used to extract the first host and action
found within the prompt. If a host and action were not found using regex
alone, BERTScore was then used to compute similarity scores between the
LLM’s response and all possible hosts and actions. The host and action with
the highest similarity score (using precision as the metric) were then selected
as the recommended executable action. Figure 4.18 illustrates the process of
mapping CybORG’s raw state into an engineered prompt for the LLM and
mapping the LLM’s response into an executable action.

73

4.5. Integration of the LLM into the RL pipeline

Agent Performs
Action

Format Network State

CybORG Raw
Output

Convert to Generic
Hosts and Actions

Construct Prompt

Generate LLM
Response

Extract Action with
Regex

Yes NoAction
Found?

Provide Recommended
Action

Map Generic Action
to Real One

Extract Action with
BERTScore

Figure 4.18: Overview of formatting CybORG’s raw output into a coherent prompt,
using this to generate a response from the LLM, and extracting the corresponding
action.

The LLM was integrated into the RL pipeline using a combination of the
discussed action masking and auxiliary loss techniques. In particular, inference-
only masking was applied, where only the action selection was changed, and
the original probability distributions were used for training. A diagram of
this setup is shown in Figure 4.19. Unlike the previous figures illustrating
the implementation of various teacher-guided algorithms, this one shows the

74

4.5. Integration of the LLM into the RL pipeline

wrapper object - the interface between the CybORG environment and the
agents.

New Dist

New Dist
Actor NetworkState

LLM Recommended Action

Old Dist, Reward, Action

Buffer

Actor
Loss Function

Actor Loss

LLM Loss

Total
Loss

CybORG

Masking
Function

RL Agent
Dist

Masked
Dist

Rec

Action
Int

Sample

Raw State, Reward

LLM
(Frozen)

Raw State

Processed State

Prompt

Regex/
BertScore

Recom
Action

Sampling with Action Mask

Training with Auxiliary Loss

Buffer

LLM Recommended
Action

Dist

Wrapper

Wrapper

Processed State, Normalized Reward, Action Int

Action
Obj

LLM
Loss Function

Figure 4.19: Diagram illustrating the integration of the LLM into the RL pipeline. It
was integrated using a combination of action masking at inference and by
incorporating the LLM’s guidance as an auxiliary loss signal during training. To keep
the diagram concise, the critic network is omitted, and some terms are presented in
an abbreviated form.

4.5.3 Transition from LLM-Guided to Independent RL

In order to facilitate a smoother transition from LLM-guided to independent RL,
various techniques were employed, including adding the LLM’s recommendation
as an auxiliary critic loss.

Adding the LLM’s recommendation to the critic loss is similar to the auxiliary
loss approach discussed above; however, it is intended to impact the critic
instead of the actor network. This was implemented in an almost identical
way to the existing MSE loss that the PPO critic follows [45]; however, it was
applied only if the generated state was the result of the LLM’s recommended
action.

75

4.6. Evaluation Design

In particular, the auxiliary loss provided by the LLM for the critic network
can be described as:

LLLM (ϕ) = E[
1

n

n∑
i=1

Mt(ai) ∗ (reti − V ϕ(si))
2]

where:
n is the number of samples in the batch;
ret is the returns calculated using the GAE; and
Vϕ(si) are the critic values for state i.
The masking, Mt(ai) ensures that only critic parameters associated with the

LLM recommendations are impacted by setting the masking to:{
1, if a ∈ ALLM (LLM-recommended actions)

0, otherwise

.
The results of this and other techniques are discussed further in Chapter 5.

4.6 Evaluation Design

This section describes how the teacher-guided algorithms and the success of
the LLM integration were evaluated. Unless stated otherwise, all evaluations
were performed on the 13-host, 3-subnet scenario.

4.6.1 Selecting the RL Algorithm

To ensure a robust baseline for evaluating the success of this thesis, the
performance of the PPO and DQN agents were evaluated across a range of
hyperparameters using a grid search. Following this, PPO was selected and
further tuned using Optuna [84], a Bayesian optimizer that learns the best
combination that yields the best results, rather than just following a grid search
approach where every combination is evaluated. The best results for this were
measured as the mean return of the last 30 episodes over 10 independent runs
of 500 episodes. The final configuration for the PPO agent is shown in Table
4.2.

76

4.6. Evaluation Design

Table 4.2: Final hyperparameters used for the baseline PPO agent.

Hyperparameter Final PPO Agent
Episode Size 32
Batch Size 256
Training Interval Size 256
Critic LR 0.0016
Policy LR 0.0016
Epochs 30
Policy Clip 0.2
Entropy Coef 0.005
Entropy Decay 0.99
Critic Grad Clip 0.1
Policy Grad Clip 0.5
Actor Hidden Layers 256,128,64
Critic Hidden Layers 256,128,64

4.6.2 Comparing Teacher-Guided Algorithms

The evaluation of the various teacher-guided algorithms was conducted using
a pretrained RL agent instead of an LLM. The reason for this is twofold:

• The RL agent is much less resource intensive, enabling a more efficient
and comprehensive test that covers more combinations.

• The RL agent is trained explicitly on the CybORG environment, using
identical signals. This guarantees relevance to the environment and
enables the ruling out of problems with the LLM, focusing solely on
adopting the best teacher-guided technique for CybORG.

The pretrained RL agent (i.e., the teacher) was trained using the same
configurations as the baseline. The teacher’s parameters were saved at episodes
30, 60, 70 and 100 across three different runs. All of these checkpoints were
saved before the pretrained RL agent converged onto an optimal policy, ensuring
that the baseline could surpass its teacher to evaluate the best teacher-guided
approach, rather than simply emulating the teacher’s behavior. Stability was
assessed through manual inspection of reward plots over episodes.

In each of the techniques, the teacher’s influence was gradually decayed,
facilitating a smoother transition to independent RL, and abruptly stopped
after a certain number of training intervals, facilitating a steeper transition to
independent RL.

The evaluation of the different techniques was conducted over 10 independent
runs of 500 episodes each. Standard Error (SE) was used as the metric to
quantify variability around the mean [85]. SE was chosen over Standard Devi-
ation (SD) since the focus was to compare variance across different algorithms

77

4.6. Evaluation Design

rather than the variance between runs of the same algorithm; however, both
are valid measurements of variability.

Feature Space Modification

In addition to measuring performance against the baseline, Local Interpretable
Model-agnostic Explanations (LIME) [86] was used to evaluate the impact of
the teacher’s features on the agent’s final policy.

LIME functions by training a model to predict the impact features have on
an agent’s output, by training on many states while making small perturbations
on individual features to determine which have the greatest effect on the agent’s
prediction. In particular, the training of LIME can be described by [86]:

ξ(x) = arg min
g∈G

L(f, g, πx) + Ω(g)

where:
ξ(x) is the explanation generated by LIME for state x.
G is the set of explainable models and g is the model chosen within the

set (training the explainability model to produce the most accurate feature
weights).
L(f, g, πx) is the loss between the explainable model, g and its approximation

of the original model f in the locality πx.
Ω(g) is the measurement of model complexity - whose value is inversely

proportional to interpretability.
Once the explainable model was trained using many perturbations of ob-

servations sampled from CybORG, it was used to estimate the impact of the
teacher’s features for a particular state. For consistent evaluation, the same
state was used for all variations of feature-space modification and is illustrated
in Figure 4.20. This is considered a critical state as the red agent is a single
hop away from compromising the operational server.

78

4.6. Evaluation Design

User0 User1 User3 User4

Enterprise0 Enterprise1 Enterprise2

Defender

Op Server

OpHost0 OpHost1 OpHost2

Activity: None
Comp: No
Isolated: No
Patch Score: 0

Activity: None
Comp: No
Isolated: No
Patch Score: 0

Activity: None
Comp: No
Isolated: No
Patch Score: 0.3

Activity: Exploit
Comp: Privileged
Isolated: Yes
Patch Score: 0

Activity: None
Comp: No
Isolated: No
Patch Score: 0.6

Activity: None
Compromised: No
Isolated: No
Patch Score: 0.6

Activity: Scanned
Compromised: No
Isolated: No
Patch Score: 0.3

Activity: Exploit
Comp: Privileged
Isolated: No
Patch Score: 0

Activity: None
Comp: No
Isolated: No
Patch Score: 0.3

Activity: Exploit
Comp: Privileged
Isolated: No
Patch Score: 0

Activity: None
Comp: No
Isolated: No
Patch Score: 0.3

Activity: None
Comp: No
Isolated: No
Patch Score: 0

Activity: None
Comp: No
Isolated: No
Patch Score: 0

User2

Figure 4.20: CybORG state used for LIME analysis. The red agent has a privileged
presence on three hosts in the critical path and has scanned the operational server.
Due to the small font size, red dots were added to represent compromised hosts.

4.6.3 Evaluating LLM Integration

The LLM integration was evaluated using a combination of action masking at
inference and auxiliary loss. The standard prompt and the optimized prompt,
which included step-by-step instructions with explicit constraints, were used
for the evaluation.

The final hyperparameters used for the LLM integration with the standard
prompt and optimized prompt are listed in Tables 4.3 and 4.4, respectively.

Table 4.3: Hyperparameters used for the LLM implementation with the standard
prompt.

Hyperparameter Value

Auxiliary Loss Decay 0.25

Auxiliary Loss Decay Start After 32 episodes

Auxiliary Loss Decay Interval Every 8 episodes

Entropy Increase 5e−4 per auxiliary loss decay

Entropy Decrease 2.5e−4 once teacher impact is 0

Action Masking Decay 0.25

Action Masking Start After 32 episodes

Action Masking Decay Interval Every 8 episodes

79

4.6. Evaluation Design

Table 4.4: Hyperparameters used for the LLM implementation with the optimized
prompt.

Hyperparameter Value

Auxiliary Loss Decay 0.1

Auxiliary Loss Decay Start After 240 episodes

Auxiliary Loss Decay Interval Every 8 episodes

Entropy Increase 2e−4 per auxiliary loss decay

Entropy Decrease 1e−4 once teacher impact is 0

Action Masking Decay 0.1

Action Masking Start After 240 episodes

Action Masking Decay Interval Every 8 episodes

Explained Variance

One of the key metrics that is used in the evaluation of the LLM integration is
explained variance. Explained variance is a measurement of how well the critic
is able to approximate actual returns [87]. In particular, it is defined as [87]:

ExplainedV ariance = 1 −
V ar(Vϕ − ret)

V ar(Vϕ)

where a value closer to 1 indicates better predictions from the critic network.

Evaluating on Different Scenarios

LLM integration was tested on other simulated networks of varying complexities,
ranging from 4 to 12 hosts. An associated red agent (modified B-line agent [50])
was developed for each of these to ensure an optimized path was followed to
the operational server. Other than the number of hosts and a slightly modified
trajectory, these scenarios and agents were identical to the standard 13-host
scenario used throughout this study. The results of the evaluation are shown
in Appendix F.

80

5 Evaluation

This chapter presents, analyzes, and interprets the results related to the
integration of a Large Language Model (LLM) into the Reinforcement Learning
(RL) pipeline for cybersecurity. In particular, this chapter covers:

• Selecting the LLM that generates the most contextually relevant responses
for CybORG.

• Selecting and optimizing the baseline RL agent.
• Evaluating the performance of the environment modifications.
• Evaluating the results of the teacher-guided techniques using a pretrained

RL agent.
• Detailing the development process for the prompts used in the evaluation.
• Evaluating the most successful teacher-guided technique using an LLM.

5.1 Selecting an LLM

The six selected LLMs were initially evaluated using BERTScore to compute
the similarity between the LLMs’ predictions and labels; however, it was found
that the scores were not necessarily indicative of good performance - this is
discussed in more detail later in this section. As such, manual validation of the
LLM’s predictions against the created label was used to select the LLM that
produced the most contextually relevant responses with respect to CybORG.

It should also be noted that the CyberBase [8] and HackMentor [71] LLMs
were omitted from the testing due to their dependency on libraries that are
not compatible with the version of the Compute Unified Device Architecture
(CUDA) installed on the High Performance Computer (HPC) cluster used
throughout this study. Because of the LLMs’ respective sizes (13 billion
parameters), it was simply not feasible to run these solely on Central Processing
Units (CPUs).

81

5.1. Selecting an LLM

5.1.1 Initial Prompt Development

It was observed that none of the LLMs produced contextually relevant responses
when fed the raw CybORG output directly. As shown in Figure 5.1, the LLM
outputs a response that is not relevant to CybORG (i.e., not an executable
action or host). This occurred using the same prompt design described in
Figure 4.1.

"Enterprise0": {"Processes": [{"Connections": [{"local_port": 22, "remote_port": 57474, "local_address": "10.0.179.156", "remote_address": "10.0.104.214"}]}],
"Interface": [{"IP Address": "10.0.179.156"}], "System info": {"Hostname": "Enterprise0", "OSType": "LINUX", "OSDistribution": "UBUNTU", "OSVersion":
"U18_04_3", "Architecture": "x64"}, "Isolated": False},

"Enterprise1": {"Processes": [{"Connections": [{"local_port": 22, "remote_port": 53406, "local_address": "10.0.179.147", "remote_address": "10.0.104.214"}]},
{"Connections": [{"local_port": 135, "remote_port": 52580, "local_address": "10.0.179.147", "remote_address": "10.0.104.214"}]}, {"Connections": [{"local_port":
3389, "remote_port": 50435, "local_address": "10.0.179.147", "remote_address": "10.0.104.214"}]}, {"Connections": [{"local_port": 445, "remote_port": 51786,
"local_address": "10.0.179.147", "remote_address": "10.0.104.214"}]}, {"Connections": [{"local_port": 139, "remote_port": 58258, "local_address": "10.0.179.147",
"remote_address": "10.0.104.214"}]}, {"Connections": [{"local_port": 80, "remote_port": 49897, "local_address": "10.0.179.147", "remote_address":
"10.0.104.214"}]}, {"Connections": [{"local_port": 443, "remote_port": 59506, "local_address": "10.0.179.147", "remote_address": "10.0.104.214"}]}], "Interface":
[{"IP Address": "10.0.179.147"}], "System info": {"Hostname": "Enterprise1", "OSType": "WINDOWS", "OSDistribution": "WINDOWS_SVR_2008", "OSVersion":
"W6_1_7601", "Architecture": "x64"}, "Isolated": False}

LLM Response:
Remove Intrusion Detection/Prevention System: Disabling the
IDS/IPS to prevent further unauthorized access

Figure 5.1: Response generated when feeding unfiltered CybORG output to the LLM.
For clarity, only 2 of the 13 hosts’ states are shown.

As such, the raw CybORG output was parsed into different forms to make
it easier for the LLM to extract and recognize patterns. These included a
condensed JSON form and a condensed sentence form. Figure 5.2 shows the
improvement in the LLMs’ responses when fed these parsed formats. Unlike
the response from Figure 5.1, these outputs can be mapped into executable
actions.

82

5.1. Selecting an LLM

"Enterprise0": {"ip": "10.0.179.156", "Processes": [{"remoteAddress": "10.0.104.214", "localPort": 22, "count": 1}], "Files": [], "Isolated": False, "LastAnalysed": -1,
"Priority": "Medium"},

"Enterprise1": {"ip": "10.0.179.147", "Processes": [{"remoteAddress": "10.0.104.214", "localPort": 22, "count": 1}, {"remoteAddress": "10.0.104.214", "localPort":
135, "count": 1}, {"remoteAddress": "10.0.104.214", "localPort": 3389, "count": 1}, {"remoteAddress": "10.0.104.214", "localPort": 445, "count": 1},
{"remoteAddress": "10.0.104.214", "localPort": 139, "count": 1}, {"remoteAddress": "10.0.104.214", "localPort": 80, "count": 1}, {"remoteAddress": "10.0.104.214",
"localPort": 443, "count": 1}], "Files": [], "Isolated": False, "LastAnalysed": -1, "Priority": "Medium"}

LLM Response:
Isolate Enterprise1
{‘Action’: ‘Isolate’, ‘Host’: ‘Enterprise1’}

Enterprise0 | IP: 10.0.179.156, Priority: Medium, Isolated: No, Last Analysed: -1, Processes: [1 process with: (Remote IP: 10.0.104.214 and Port: 22)]

Enterprise1 | IP: 10.0.179.147, Priority: Medium, Isolated: No, Last Analysed: -1, Processes: [1 process with: (Remote IP: 10.0.104.214 and Port: 22), 1 process with:
(Remote IP: 10.0.104.214 and Port: 135), 1 process with: (Remote IP: 10.0.104.214 and Port: 3389), 1 process with: (Remote IP: 10.0.104.214 and Port: 445), 1
process with: (Remote IP: 10.0.104.214 and Port: 139), 1 process with: (Remote IP: 10.0.104.214 and Port: 80), 1 process with: (Remote IP: 10.0.104.214 and Port:
443)]

LLM Response:
<Analyse> Enterprise1
Input:
You are defending a network at timestep 30

Figure 5.2: Response generated when feeding filtered CybORG output to the LLM.
For clarity, only 2 of the 13 hosts’ states are shown.

5.1.2 Automated Evaluation

After refining the prompt to a point where each LLM was able to generate
at least some contextually relevant responses for CybORG, BERTScore [12]
was used to evaluate their performance against the manually created answers.
Tables 5.1 and 5.2 show the results from BERTScore using the JSON and
sentence formats, respectively, for each LLM.

83

5.1. Selecting an LLM

Table 5.1: Evaluation of LLMs using JSON-structured questions. Metrics are generated
using BERTScore and include: precision, recall, and F1. Best values per row are
bolded.

LLMs
CyberDost Z7sec Llama8B Lily7B

Easy
(1–2 hosts)

Time (s)
Average 0.3218 0.4079 3.9368 0.6461
Total 6.4352 8.1577 78.7350 12.9225

Precision
Average 0.7777 0.7896 0.7762 0.8032
Total 15.5538 15.7929 15.5240 16.0640

Recall
Average 0.8451 0.8109 0.8562 0.8535
Total 16.9027 16.2186 17.1234 17.0695

F1
Average 0.8096 0.7996 0.8141 0.8272
Total 16.1913 15.9122 16.2813 16.5448

Medium
(3–7 hosts)

Time (s)
Average 0.2871 0.4810 2.6275 0.6245
Total 11.4821 19.2779 113.1097 24.9728

Precision
Average 0.7690 0.7993 0.8010 0.8086
Total 30.7603 31.9715 32.0408 32.3421

Recall
Average 0.8280 0.8296 0.8646 0.8659
Total 33.1182 33.1839 34.5855 34.6366

F1
Average 0.7972 0.8140 0.8312 0.8360
Total 31.8868 32.5584 33.2480 33.4400

Hard
(8–14 hosts)

Time (s)
Average 0.2886 0.2894 3.6865 1.5617
Total 11.5451 39.5762 155.4608 55.2602

Precision
Average 0.7806 0.7952 0.8081 0.8162
Total 31.2247 31.8080 32.3254 32.6476

Recall
Average 0.8237 0.8364 0.8536 0.8676
Total 32.9863 33.4549 34.1430 34.7022

F1
Average 0.8014 0.8152 0.8299 0.8409
Total 32.0560 32.6074 33.1974 33.6360

Total
(across all)

Time (s)
Average 0.2946 0.6701 3.4731 0.9316
Total 29.4694 67.0116 347.0553 93.1556

Precision
Average 0.7754 0.7953 0.7998 0.8105
Total 77.5384 79.7532 79.8897 81.0537

Recall
Average 0.8295 0.8327 0.8552 0.8641
Total 82.9675 82.8579 85.1384 86.4084

F1
Average 0.8013 0.8116 0.8273 0.8362
Total 80.1314 81.1571 82.7266 83.6218

84

5.1. Selecting an LLM

Table 5.2: Evaluating LLMs using sentence structure. Metrics are generated using
BERTScore and include: precision, recall and F1. Best values per row are bolded.

LLMs
CyberDost Z7sec Llama8B Lily7B

Easy
(1–2 hosts)

Time (s)
Average 0.2854 0.5064 0.6494 0.5519
Total 5.7071 10.1274 12.9885 11.0388

Precision
Average 0.7731 0.7754 0.7797 0.7717
Total 15.4619 15.5085 15.5938 15.4330

Recall
Average 0.7985 0.7968 0.7965 0.7955
Total 15.9709 15.9369 15.9294 15.9107

F1
Average 0.7852 0.7857 0.7876 0.7830
Total 15.7048 15.7131 15.7520 15.6607

Medium
(3–7 hosts)

Time (s)
Average 0.2862 0.5102 0.6926 0.5825
Total 11.4461 20.4097 27.7050 23.2984

Precision
Average 0.7687 0.7754 0.7727 0.7728
Total 30.7474 31.0172 30.9064 30.9131

Recall
Average 0.8148 0.8153 0.8131 0.8145
Total 32.5909 32.6118 32.5246 32.5812

F1
Average 0.7908 0.7946 0.7922 0.7929
Total 31.6335 31.7832 31.6862 31.7169

Hard
(8–14 hosts)

Time (s)
Average 0.2874 0.4861 0.7861 0.6031
Total 11.4957 19.4434 31.4428 24.1255

Precision
Average 0.7668 0.7722 0.7709 0.7704
Total 30.6739 30.8861 30.8364 30.8168

Recall
Average 0.8270 0.8275 0.8251 0.8278
Total 33.0801 33.1006 33.0049 33.1119

F1
Average 0.7957 0.7988 0.7970 0.7980
Total 31.8276 31.9517 31.8787 31.9198

Total
(across all)

Time (s)
Average 0.2865 0.4998 0.7214 0.5846
Total 28.6489 49.9805 72.1363 58.4628

Precision
Average 0.7688 0.7741 0.7734 0.7716
Total 76.8832 77.4118 77.3367 77.1629

Recall
Average 0.8164 0.8165 0.8146 0.8160
Total 81.6419 81.6493 81.4589 81.6038

F1
Average 0.7917 0.7945 0.7932 0.7930
Total 79.1658 79.4480 79.3170 79.2973

Table 5.1 shows Lily7B scoring the highest across the metrics using the JSON-
formatted prompts, and Z7sec scoring highest using the sentence-formatted
ones. Overall, Lily7B scored higher than Z7sec across all three metrics; however,
it was not selected as the LLM for this study.

Upon analyzing the LLMs’ responses, it was observed that high metrics from
BERTScore were not always proportional to the contextual relevance of the
answers. An example of this is shown in Table 5.3.

85

5.1. Selecting an LLM

Table 5.3: Illustrating deficiencies of relying solely on BERTscore for evaluating the
performance of the LLM responses.

Label LLM Response Precision Recall

Restore Operation1 Allow Enterprise1 80 0.8675 0.8899

Analyse User1
Patch Host: User1

{’Action’: ’Patch’, ’Host’: ’User1’} 0.7564 0.8203

Row 1 yields significantly higher metrics despite outputting an action that
is suboptimal (wasting a timestep to allow connectivity to a host while the
operational server is compromised). In contrast, row 2 produces a response that
is contextually relevant and easily extractable; however, it receives noticeably
lower metrics.

5.1.3 Manual Evaluation

Due to the potential problems of relying solely on BERTScore, manual valida-
tion was used to ultimately decide the best-performing model. Each response
for the JSON and sentence-formatted questions was manually evaluated and
assigned the following:

• 0 if an answer could not be extracted or was not contextually relevant to
the scenario.

• 0.5 if the answer contained the correct action, host, or was partially
relevant to the scenario.

• 1 if the answer matched the label or was equally relevant. For example,
if two equal priority hosts were exhibiting similar behavior and the LLM
recommended the same action on the host not included in the answer.

A summary of the results for the manual validation is shown in Table 5.4.
Overall, Cyber-Risk-Llama-8B [72] performed the best and was selected for
this study.

86

5.2. Choosing the RL Algorithm

Table 5.4: Manually scoring of each LLM across 20 easy, 40 medium, and 40 hard
questions in both JSON and sentence formats. The best scores for each row are
bolded.

LLMs
Cyberdost2b Z7sec Llama8b Lily7B

Easy Scores
(JSON)

Total 8 4.5 12 9.5
Average 0.40 0.225 0.60 0.475

Medium Scores
(JSON)

Total 7 10 19.5 14
Average 0.175 0.250 0.4875 0.350

Hard Scores
(JSON)

Total 4 7.5 14 12
Average 0.10 0.1875 0.35 0.30

Easy Scores
(Sentence)

Total 1 6 6 9
Average 0.05 0.30 0.30 0.45

Medium Scores
(Sentence)

Total 2.5 16 8 13.5
Average 0.0625 0.40 0.20 0.3375

Hard Scores
(Sentence)

Total 1 13 4 13
Average 0.025 0.325 0.10 0.325

Total Scores
(JSON)

Total 19 22 45.5 35.5
Average 0.19 0.22 0.455 0.355

Total Scores
(Sentence)

Total 4.5 35 18 35.5
Average 0.045 0.35 0.18 0.355

5.2 Choosing the RL Algorithm

Proximal Policy Optimization (PPO) and Deep Q-Network (DQN) were the
policy-based and value-based RL algorithms used for this study.

To compare their performance, many runs were evaluated with different
hyperparameters. The possible values for the various hyperparameters were
based on those in existing work in CybORG and other PPO and DQN imple-
mentations [77, 76, 79, 7, 6]. In particular, 162 iterations were trialed, with
PPO consisting of combinations of the following:

• Batch size: 8, 16
• Training interval: 16, 32, 64
• Critic Learning Rate: e−4, 5e−4, e−3

• Actor Learning Rate: e−4, 5e−4, e−3

• Policy Clip: 0.1, 0.15, 0.2
486 iterations were trialed for DQN, using combinations of:
• Batch size: 8, 16
• Queue size: 100, 200, 300
• Learning rate: e−4, 5e−4, e−3

• Discount factor: 0.85, 0.9, 0.95
• Epsilon: 0.9, 0.95, 0.99

87

5.2. Choosing the RL Algorithm

• Epsilon decay rate: 0.98, 0.99, 0.995
The reason that DQN has approximately three times as many iterations

is that it includes a larger number of hyperparameters. As a result, more
iterations were required to evaluate all possible combinations.

The mean of the last 10 episodes over five iterations was used as the metric to
determine the best-performing model. 150 episodes were run for each iteration.
These tests were done in both a simpler 4-host network and the standard
13-host network.

The results of the comparison, along with their associated hyperparameters,
are shown in Table 5.5 and Table 5.6. To keep the tables concise, only the best
10 combinations are shown for DQN and PPO.

Table 5.5: PPO hyperparameters and corresponding mean reward in a simulated
13-host and 4-host network. Only the top 10 results are shown, ordered by their
respective mean reward.

Env Batch Size Train Int. Critic LR Actor LR Policy Clip Mean Reward

13 Host

16 16 0.0010 0.0010 0.15 -48.484
8 16 0.0005 0.0010 0.10 -50.278
8 32 0.0010 0.0005 0.15 -53.390
8 32 0.0010 0.0005 0.10 -54.738
16 64 0.0010 0.0010 0.20 -55.788
16 32 0.0005 0.0005 0.10 -56.820
8 32 0.0010 0.0005 0.20 -58.260
16 32 0.0010 0.0010 0.10 -60.694
8 32 0.0001 0.0010 0.20 -61.328
8 16 0.0010 0.0010 0.15 -61.982

4 Host

8 32 0.0010 0.0010 0.15 -4.380
16 16 0.0010 0.0005 0.15 -5.380
16 32 0.0010 0.0005 0.10 -5.549
8 32 0.0010 0.0010 0.20 -6.150
8 16 0.0010 0.0001 0.10 -6.300
16 32 0.0005 0.0005 0.15 -6.370
16 16 0.0010 0.0005 0.10 -9.100
8 64 0.0005 0.0005 0.10 -9.730
8 32 0.0010 0.0005 0.20 -10.060
8 16 0.0005 0.0001 0.15 -10.440

88

5.2. Choosing the RL Algorithm

Table 5.6: DQN Hyperparameters and corresponding mean reward in a simulated
13-host and 4-host network. Only the top 10 results are shown, ordered by their
respective mean reward.

Env Batch Size Queue Size LR Discount Epsilon Decay Mean Reward

13 Host

8 300 0.0010 0.90 0.95 0.995 -107.74
8 200 0.0010 0.90 0.95 0.995 -136.00
8 300 0.0010 0.85 0.95 0.99 -141.28
8 300 0.0010 0.85 0.90 0.99 -142.96
16 300 0.0001 0.95 0.99 0.995 -144.35
16 300 0.0001 0.95 0.90 0.99 -147.01
8 100 0.0005 0.85 0.90 0.99 -151.50
16 300 0.0010 0.95 0.90 0.995 -153.17
8 300 0.0010 0.85 0.99 0.99 -157.03
8 100 0.0005 0.95 0.95 0.99 -157.59

4 Host

8 200 0.0010 0.85 0.90 0.99 -5.37
8 300 0.0005 0.90 0.95 0.99 -5.77
8 100 0.0010 0.85 0.99 0.99 -5.91
8 200 0.0010 0.85 0.99 0.98 -5.98
8 200 0.0010 0.85 0.99 0.99 -5.99
8 300 0.0010 0.85 0.95 0.98 -6.12
8 200 0.0010 0.95 0.99 0.98 -6.14
8 300 0.0005 0.85 0.95 0.99 -6.20
8 200 0.0005 0.85 0.95 0.99 -6.26
8 300 0.0010 0.90 0.90 0.99 -6.26

As shown in the above tables, the PPO algorithm consistently yielded higher
rewards than DQN despite having less than half the iterations. Furthermore,
after manually analyzing the plots for both algorithms, PPO consistently
demonstrated smoother convergence to a policy.

Figure 5.3 shows the plots of the best performing DQN implementation
against the best performing PPO implementation for the 13-host simulated
network. Because of the superior performance demonstrated by the PPO agent,
it is the RL algorithm used for this research.

Figure 5.3: Comparing the performance of a PPO agent (left) and a DQN agent
(right) based on environment rewards. Results show the mean over five runs with 150
episodes per run. It should be noted that these plots are on different y-scales as the
intention is to compare general convergence trends.

89

5.3. Environment Modifications

The initial randomness exhibited by the DQN algorithm in Figure 5.3
is expected due to the nature of using epsilon to balance exploration with
exploitation. For this implementation, it starts with a 95% chance of selecting
a random action, which is decayed by 0.05% every batch. However, by episode
100, there is a 12.79% chance of selecting a random action, and by episode 150,
there is a 4.69% chance. This makes the continued stochasticity and lack of
convergence not solely attributable to the epsilon-greedy strategy implemented.

5.3 Environment Modifications

5.3.1 Adding Actions

It is important that actions are fine-tuned to ensure that there is a balance
between being consistently exploited and never chosen. For example, with the
patch action, it is important that it decreases the likelihood of a host being
exploited, but does not completely eliminate the possibility of the red agent
gaining a foothold, and progressing through the unified kill chain.

Figure 5.4 illustrates the fine-tuning process for the patch action. The top
plot shows the patch action decrease the chance of an exploit succeeding by
20% with the red agent increasing the chance of success by 20%. It can be
seen that the blue agent ends up repeatedly patching the operational server,
making it impossible for the attacker to exploit.

When the parameters are adjusted to the blue agent decreasing the chance
of a successful exploit by 30% and the red agent increasing it by 35%, blue
stops only exploiting patch for a single host, since red has a bigger impact.

90

5.3. Environment Modifications

(a) Patch of 0.2 for Blue and Red

Episode 1

Analyse User0
Restore User0
Patch User1
Remove Op_Server0
Analyse Op_Server0
UnisolateHost Defender
Patch Defender

Analyse User1
Restore Defender
UnisolateHost User1
Patch Op_Server0
Patch User0
IsolateHost User1

Remove User1
Analyse Defender
Remove Defender
Monitor
IsolateHost Defender
IsolateHost Op_Server0

Episode 100

Patch Op_Server0
Restore Op_Server0
Analyse Defender

(b) Patch of 0.3 for Blue and 0.35 for Red

Episode 1

Patch User1
Analyse Op_Server0
Restore User1
Remove User0
Remove Op_Server0
IsolateHost Op_Server0

Patch User0
Restore User0
UnisolateHost Op_Server0
Patch Op_Server0
Monitor
Restore Op_Server0

IsolateHost Defender
Analyse User1
Analyse Defender
UnisolateHost Defender
Patch Defender
Remove Defender

Episode 100

Remove Defender
Restore Op_Server0
Remove Op_Server0

Patch Op_Server0
Analyse Defender
Patch User0

Figure 5.4: Comparing hyperparameters for the patch action on episode 1 (left) and
episode 100 (right). The top configuration shows the blue agent’s patch action
decreasing likelihood of the exploit succeeding by 20% and the red agent’s exploit
action increasing the likelihood of exploit success by 20%. The bottom configuration
shows blue decreasing the likelihood by 30% and red increasing it by 35%.

A similar process was applied for the isolate and block actions. Patch
required the most tuning to make it effective, but not dominate over the other
actions. For the patch action, the configuration was as follows:

• Performing the patch action: increases the host’s patch score by 30%.

91

5.3. Environment Modifications

• Performing the exploit or privilege escalate action: decreases the host’s
patch score by 35%.

For the block action:
• Each timestep a low-valued host is blocked: -0.1 to the reward.
• Each timestep a medium-valued host is blocked: -0.2 to the reward.
• Each timestep a high-valued host is blocked: -0.3 to the reward.

For the isolate action:
• Each timestep a low-valued host is isolated: -0.2 to the reward.
• Each timestep a medium-valued host is isolated: -0.4 to the reward.
• Each timestep a high-valued host is isolated: -0.5 to the reward.

Removal of the Block Action

The block action was excluded from this study due to its inconsistent input size
compared to the rest of the actions. Unlike the other actions, which operate on
a single host, the block action requires two hosts. This difference introduced
complications when integrating the LLM - it would either output a single
host for the block action, or two hosts for the other actions. Basic prompt
engineering was insufficient to consistently resolve this problem, so the block
action was omitted from the action space.

5.3.2 Signal Modifications

As discussed, the feature space and the reward signals were modified. The
feature space was changed from having 7 bits to represent each host to 4 floats
between 0 and 1, with 2 additional floats representing the total number of
compromised and isolated hosts.

Additionally, the reward signal was changed to be normalized between -2.5
and +2.5 rather than always being negative. This was to enable the PPO
agent to better distinguish between good and bad actions.

The difference between the new and old signals using the same PPO agent
is illustrated in Figure 5.5. The updated signals show slightly improved
convergence with respect to stability and yield roughly the same results.

92

5.4. Optimizing PPO

Figure 5.5: Comparing the performance of learning using the original reward schema
and feature space (left), to learning with normalized rewards and the updated feature
space (right). Results are averaged over 10 independent runs with 500 episodes each.
Kept as two separate graphs due to the difference in the y-scale.

Figure 5.5 shows that the agent converges to ≈-70 when using the old
configuration, and ≈54 when using the updated reward signals and feature
space.

Converting these into the average reward per timestep becomes:

−180

32
= -5.625 and

54

32
= 1.6875

where 32 is the number of timesteps in an episode.

Normalizing the former between -2.5 and 2.5:

−2.1875 + 13.1

13.1
∗ 5 − 2.5 = 1.665

where 13.1 is the magnitude of the lowest reward for a single timestep in the
13-host scenario (0 is the highest score for a single timestep, and -13.1 is the
lowest).

This small difference between a reward of 1.6875 and 1.665 is not sufficient
evidence to claim the benefits of modifying the feature space and normalizing
the reward signal; however, Figure 5.5, illustrates a superior convergence trend
with the modified rewards. There are no apparent dips in performance that
are present under the old configuration (e.g., the dip at ≈episode 400).

5.4 Optimizing PPO

The PPO agent’s configuration showed quick improvement and convergence;
however, after further analysis, it appeared to converge to a local minimum
and exhibited some unstable behavior. In particular:

93

5.4. Optimizing PPO

• The episode reward quickly converges and plateaus at roughly episode
100; and

• The explained variance, a metric measuring how good the critic is at
estimating returns [87] decreases to a negative amount; and

• The critic quickly converges to 0 at around the same time rewards plateau
- an indication of early over-fitting; and

• The entropy quickly converges to almost 0 at roughly the same time,
signifying a highly deterministic policy very early in training.

One of the main reasons for this behavior appears to be the low number
of samples used for each training interval, resulting in the models overfitting
to a subset of the possible states. Furthermore, comparing the PPO agent’s
implementation to Stable Baseline3’s [78], certain optional components are
missing, such as the addition of entropy to the loss signal and gradient clipping
for both the critic and actor. Gradient clipping sets a threshold on the steepness
of gradients during backpropagation, ensuring that parameter updates are
contained, which contributes to overall stability.

To rectify these potential deficiencies, Optuna [84], an open-source Bayesian
optimization framework, was used for additional hyperparameter tuning. In
particular, it was configured to discover the best combinations with respect to
policy convergence using the following parameters:

• Batch size of 64, 128 and 256, timesteps
• Training interval size of 256, 512, and 1024 timesteps
• Critic and actor learning rates between 1e−5 to 3e−3
• Epochs between 10 and 30
• Critic gradient clip between 0.1 and 0.5
• Policy gradient clip between 0.1 and 0.5
• Entropy coefficient between 0.0001 and 0.01
• Entropy decay between 0.95 and 0.9995

Three hundred trials were conducted where each trial consisted of the average
of 300 episodes over 10 independent runs. The success criteria for tuning was
the average reward over the last 20 episodes.

Unlike the previous hyperparameter tuning for comparing PPO with DQN,
the chosen configuration was not based solely on the performance of Optuna.
Manual adjustments were made to the parameters in an attempt to achieve
the most stable implementation. The difference in performance between the
old PPO implementation and the updated one is shown in Figure 5.6.

94

5.4. Optimizing PPO

Episode
0

10

20

30

40

50

60

Ep
is

od
e

R
ew

ar
d

Episode Reward ± 1 SE

Episode

1500

1000

500

0

Ex
pl

ai
ne

d
Va

ria
nc

e

Explained Variance ± 1 SE

0 100 200 300 400 500
Episode

0

50

100

150

200

C
rit

ic
 L

os
s

Critic Loss ± 1 SE

0 100 200 300 400 500
Episode

0

1

2

3

4
En

tro
py

Entropy ± 1 SE

Archived PPO Updated PPO

Figure 5.6: Comparing the performance of the old PPO implementation with the new
one across episode rewards, explained variance, critic loss, and entropy. These results
are the mean of 10 independent runs across 500 episodes, with a standard error of ±1.

As illustrated in Figure 5.6, the new PPO implementation converges to a
higher reward. Furthermore, its explained variance remains positive, with a
steadily decreasing entropy as the agent prioritizes exploitation over exploration.
Similarly, the critic loss does not overfit and converge to zero abruptly, but
actually increases. This is concerning in traditional supervised applications,
where the goals is to minimize loss across fixed targets; however, in PPO - and
RL in general - the target is a function of the actor network, which is also
improving. Because of this moving target, the observed increase in the critic’s

95

5.5. Comparing Teacher-Guided Methods

loss signals is not necessarily indicative of a poorly performing agent.
Table 5.7 summarizes the differences in hyperparameters between the old

and new PPO implementations.

Table 5.7: Comparison of hyperparameters between the old and new PPO agents.
“N/A” indicates that particular parameter was not applied.

Hyperparameter Old PPO Agent New PPO Agent
Episode Size 32 32
Batch Size 16 256
Training Interval Size 16 256
Critic LR 0.001 0.0016
Policy LR 0.001 0.0016
Epochs 30 30
Policy Clip 0.15 0.2
Entropy Coef 0 0.005
Entropy Decay 0 0.99
Critic Grad Clip N/A 0.1
Policy Grad Clip N/A 0.5

5.5 Comparing Teacher-Guided Methods

This section evaluates the performance of the various teacher-guided imple-
mentations against the baseline PPO agent. These techniques include action
masking, feature space modification, reward shaping, auxiliary loss, and com-
binations thereof.

The purpose of this evaluation is to determine the most effective teacher-
guided algorithm with respect to training efficiency and learning stability. The
most effective algorithm is then used to incorporate the LLM into the RL
pipeline. The main metric used for the evaluation is the rewards outputted by
the CybORG environment.

5.5.1 Action Masking

Action masking integrates the teacher into the RL pipeline by having it modify
the actor’s probability distribution, increasing the likelihood of its recommended
action being sampled.

Different implementations were attempted with action masking. In particu-
lar:

• Softmax masking for actions; and
• Softmax masking for hosts; and

96

5.5. Comparing Teacher-Guided Methods

• Logit masking for actions.
Different methods were explored within these implementations, including:
• Inference-only, where the masking is only applied during the agent’s data

collection phase, and the ratio between the original and new probability
distribution during training remains unchanged.

• New probabilities, where the masking is applied at inference and to the
new probability distribution during training. The purpose of this is to
encourage the agent to converge onto the masked policy.

• New and old probabilities, where the masking is applied during inference,
and to the old and new probability distributions during training. The
purpose of this is to encourage the agent to converge onto the masked
policy, while maintaining a stable ratio between the old and new policies.

Masking Actions via Softmax

One way action masking can be performed is to directly modify the actor’s
probability distribution to favor the teacher’s recommendation. For these
implementations, masking is applied based on the single recommendation from
the teacher, reducing the probability of selecting any other action.

The three methods for softmax-based action-masking were implemented and
the results are as follows:

• Inference only (Figure 5.7a); and
• New probabilities (Figure 5.7b); and
• New and old probabilities (Figure 5.7c).

Two different implementations were tested for each technique: a gradual
decay, where the teacher’s influence is reduced incrementally, and a hard stop,
where the teacher’s impact is completely removed. The intention of the gradual
decay was to facilitate a smoother transition to independent RL. In contrast,
the hard stop was meant to create a clear separation between the teacher-
guided and independent RL phases, enabling an evaluation of policy robustness
and the potential benefits of a steeper transition. The two implementations
were the same across all algorithms:

• The gradual decay reduced the impact of masking by 25% every training
interval (eight episodes); and

• The hard stop fully removed the masking after four intervals (32 episodes).

97

5.5. Comparing Teacher-Guided Methods

(a) Inference-Only Masking

0 100 200 300 400 500
Episode

0

10

20

30

40

50

60

70

R
ew

ar
d

Running Mean - 10 Episodes

0 100 200 300 400 500
Episode

Per-Episode Mean ± 1 SE

Baseline
Pretrained RL Agent

Action Masking with Gradual Decay
Action Masking with Hard Stop

(b) Inference with New-Policy Masking

0 100 200 300 400 500
Episode

0

20

40

60

R
ew

ar
d

Running Mean - 10 Episodes

0 100 200 300 400 500
Episode

Per-Episode Mean ± 1 SE

Baseline
Pretrained RL Agent

Action Masking with Gradual Decay
Action Masking with Hard Stop

98

5.5. Comparing Teacher-Guided Methods

(c) Inference with Old & New-Policy Masking

0 100 200 300 400 500
Episode

0

10

20

30

40

50

60

70

R
ew

ar
d

Running Mean - 10 Episodes

0 100 200 300 400 500
Episode

Per-Episode Mean ± 1 SE

Baseline
Pretrained RL Agent

Action Masking with Gradual Decay
Action Masking with Hard Stop

Figure 5.7: Masking actions via softmax modification against the PPO baseline for 10
independent runs. The vertical dashed line indicates the point at which the teacher
guidance is abruptly removed for the hard stop configuration (the green curve).
Left: 10-episode running mean.
Right: Per-episode mean reward with ±1 standard-error.

Figures 5.7a-c demonstrate that masking actions has an initial positive impact
on performance. For inference-only, it outperforms the baseline for the first ≈50
episodes, demonstrating the teacher’s potential to eliminate the requirement
of selecting obviously unfavorable actions to learn. All implementations show
a noticeable drop in performance during the transition from teacher-guided
to independent RL. The lowest of these drops is the the gradually decaying
impact for inference-only masking (Figure 5.7a), and the highest is the abrupt
stop for old and new policy masking, where performance dips lower than the
baseline’s at episode ≈40. (Figure 5.7c).

The gradually decaying mask for inference-only shows the best results in
terms of having the smallest dip in performance (episode reward of ≈50 to
≈40) and the most stable transition to independent RL, where at no point
does it drops below the baseline agent’s performance.

This demonstrates that gradually decaying the effect of the masking for
inference-only facilitates a smoother and quicker transition to independent
learning from the environment, converging to stable behavior approximately

99

5.5. Comparing Teacher-Guided Methods

50 episodes earlier than the hard stop implementation. While masking actions
via softmax modification typically shows a positive impact on the early stages
of training, it does not result in earlier convergence on an optimal policy.

Masking Hosts via Softmax

Similar to the above, this implementation incorporates the teacher’s feedback by
directly modifying the softmax; however, it alters the probability distribution
based on a set of actions instead of a single one. In particular, the teacher
recommends a host, and the probability of selecting any action not pertaining
to that host is decreased. The intention here is to give the agent more freedom
to explore actions, potentially outperforming the teacher during the guided
phases.

The same three methods were implemented, but applied to hosts instead of
actions.

• Inference-only masking (Figure 5.8a); and
• Inference-only masking and masking the new probabilities during training

(Figure 5.8b); and
• Inference-only masking and masking both the new and old probabilities

during training (Figure 5.8c).

The gradual decay and hard stop were the same across the three algorithms:
• Gradual decay of 10% every training interval (eight episodes); and
• Complete removal of LLM-guidance after six training intervals (48

episodes) with no decay (hard stop).

100

5.5. Comparing Teacher-Guided Methods

(a) Inference-Only Masking

0 100 200 300 400 500
Episode

0

10

20

30

40

50

60

70

R
ew

ar
d

Running Mean - 10 Episodes

0 100 200 300 400 500
Episode

Per-Episode Mean ± 1 SE

Baseline
Pretrained RL Agent

Action Masking with Gradual Decay
Action Masking with Hard Stop

(b) Inference with New-Policy Masking

0 100 200 300 400 500
Episode

0

20

40

60

R
ew

ar
d

Running Mean - 10 Episodes

0 100 200 300 400 500
Episode

Per-Episode Mean ± 1 SE

Baseline
Pretrained RL Agent

Action Masking with Gradual Decay
Action Masking with Hard Stop

101

5.5. Comparing Teacher-Guided Methods

(c) Inference with Old & New-Policy Masking

0 100 200 300 400 500
Episode

0

10

20

30

40

50

60

70

R
ew

ar
d

Running Mean - 10 Episodes

0 100 200 300 400 500
Episode

Per-Episode Mean ± 1 SE

Baseline
Pretrained RL Agent

Action Masking with Gradual Decay
Action Masking with Hard Stop

Figure 5.8: Masking hosts via softmax modification against the PPO baseline for 10
independent runs. The vertical dashed line indicates the point at which the teacher
guidance is abruptly removed for the hard stop configuration (the green curve).
Left: 10-episode running mean.
Right: Per-episode mean reward with ±1 standard-error.

Figures 5.8a-c demonstrate a noticeable impact on initial training compared
to the baseline PPO agent; however, this impact is less pronounced than that of
masking actions. Inference-only with an abrupt transition from teacher-guided
to independent RL (ref Figure 5.8a) shows the best initial performance and
transition to independent RL; however, it falls short of the action masking
technique described above. It does have a smaller dip during the transition to
independent RL; however, this is relative to its lower initial performance - it
drops to ≈30 during the transition whereas masking based on a recommended
action only drops to ≈40.

Overall, masking hosts and enabling the RL agent to explore within this
masked subset does not yield much benefit with respect to initial training
efficiency compared to masking actions.

Masking Actions via Logits

Another way to incorporate the teacher’s guidance with masking is to modify
the probability distribution at the logit level before the softmax activation

102

5.5. Comparing Teacher-Guided Methods

function is applied. This was only evaluated using the masked new and old
probabilities configuration. This is because masking only at inference changes
the action that is sampled from the distribution - it does not matter how this
occurs, whether through the modification of logits or softmax. The effect of
masking actions through logit modification is illustrated in Figure 5.9.

The same hard and gradual decay approaches were taken with:
• The hard approach added a value of -500 to the logits corresponding to

non-recommended actions for the first six training intervals (48 episodes).
• The decay started after one training interval and added -1, decreasing

in magnitude by 0.2 every interval (-1 for interval two, -0.8 for interval
three, etc).

0 100 200 300 400 500
Episode

0

10

20

30

40

50

60

70

R
ew

ar
d

Running Mean - 10 Episodes

0 100 200 300 400 500
Episode

Per-Episode Mean ± 1 SE

Baseline
Pretrained RL Agent

Action Masking with Gradual Decay
Action Masking with Hard Stop

Figure 5.9: Comparison of masking actions via logit modification against the PPO
baseline across 10 independent runs. The vertical dashed line indicates the point at
which the teacher guidance is abruptly removed for the hard stop configuration (the
green curve).
Left: Mean reward after applying a 10-episode running average.
Right: Per-episode mean with a ±1 standard error.

Figure 5.9 shows no noticeable improvement over the baseline PPO perfor-
mance, with the hard stop implementation dropping below the baseline agent’s
performance at ≈episode 45.

103

5.5. Comparing Teacher-Guided Methods

Comparing Masking Techniques

Overall, action-masking shows promise in its demonstration of superior perfor-
mance in early training compared to the PPO baseline; however, it exhibits
noticeable drops during the transition from teacher-guided to independent
RL. Masking actions during sampling (inference-only) showed the best results
across all masking techniques in terms of initial performance and transition
stability.

It should be noted that the hyperparameter tuning for these techniques was
not as extensive as in previous stages of this research; however, minimal tuning
did occur. For example, Figure 5.10 shows the combination of the masking
with a gradual decay approach, where actions are completely masked until
episode 48 and decayed by 25% per training interval thereafter.

0 100 200 300 400 500
Episode

0

10

20

30

40

50

60

70

R
ew

ar
d

Running Mean - 10 Episodes

0 100 200 300 400 500
Episode

Per-Episode Mean ± 1 SE

Baseline
Pretrained RL Agent
Action Masking with Gradual Decay

Action Masking with Hard Stop
Longer Action Mask

Figure 5.10: Illustrating the effects of an extended teacher-guided action masking
phase before transitioning to independent RL.
Left: Mean reward after applying a 10-episode running average.
Right: Per-episode mean with a ±1 standard error.

Figure 5.10 shows that if the masking is applied for too long, it ultimately
decreases the agent’s performance, requiring more time to become stable and
align with the baseline’s performance. This illustrates the importance of bal-
ancing the exploitation of the teacher with the exploration of the environment
for all of these teacher-guided implementations.

104

5.5. Comparing Teacher-Guided Methods

5.5.2 Feature Space Modification

Unlike action masking, which directly impacts the agent’s distribution, the
intent of feature space modification is to incorporate the teacher by providing
the agent with additional information to make a decision. This additional
information takes the form of a recommended action that is appended to its
feature space. Figure 5.11 shows the performance of three different ways the
teacher’s recommendation can be appended to the agent’s state space:

• As a binary value; and
• As a one hot encoded value; and
• As a float.

0 100 200 300 400 500
Episode

0

20

40

60

R
ew

ar
d

Running Mean - 10 Episodes

0 100 200 300 400 500
Episode

Per-Episode Mean ± 1 SE

Baseline
Pretrained RL Agent
Recommendation as Binary

Recommendation as Float
Recommendation as One Hot Encoded

Figure 5.11: Comparison of Feature Space Modification against the PPO baseline
across 10 independent runs.
Left: Mean reward after applying a 10-episode running average.
Right: Per-episode mean with a ±1 standard error.

Figure 5.11 demonstrates that there is no noticeable improvement in perfor-
mance with any of the various feature space implementations.

Local Interpretable Model-agnostic Explanations (LIME) was then used
to verify the impact that the teacher’s features had on the agent’s decision.
Tables 5.8, 5.9 and 5.10 show the LIME results for the recommendation being
appended as a float, one-hot encoded, and as a binary value respectively. The
Reco in Top 4 column indicates whether the teacher’s recommendation is in
the RL agent’s top 4 most likely actions to choose. The Direction column

105

5.5. Comparing Teacher-Guided Methods

indicates whether the feature pushed the RL agent towards its policy or away
from it. The Ranking column indicates how strong the teacher’s feature is with
respect to every other feature. The number of features for each implementation
is:

• 55 total features for the recommendation as a float; and
• 132 total features for the one-hot encoded recommendation; and
• 61 total features for the recommendation as a binary.

The LIME results for the one-hot encoded implementation only illustrate
the impact of the one-hot encoded feature (the feature that is 1) on the agent’s
decision.

The same state described in Figure 4.20 was used across all implementations
to produce the LIME results.

Table 5.8: LIME results for appending the LLM recommendation to the feature space
as a float. Reco in Top 4 shows if the teacher’s recommendation is in the top 4
actions from the RL agent’s policy, with its associated ranking if it is.

Episode Weight Max Weight Ranking Direction Reco in Top 4
1 -5.58E-06 8.54E-05 40 Away No
8 -1.46E-04 2.63E-03 33 Away No
16 -1.32E-03 8.10E-03 25 Away No
50 -2.14E-04 1.31E-02 44 Away No
100 -2.03E-03 -6.65E-02 44 Away No
200 1.00E-02 -2.04E-02 40 Towards No
300 -1.51E-02 2.12E-01 35 Away No
500 -7.62E-02 2.87E-01 20 Away Yes/1

Table 5.9: LIME results from appending the teacher’s recommendation to the feature
space as a a one-hot encoding. Only the weights for the one-hot encoded feature are
included. Reco in Top 4 shows if the teacher’s recommendation is in the top 4 actions
from the RL agent’s policy, with its associated ranking if it is.

Episode Weight Max Weight Ranking Direction Reco in Top 4
1 1.22E-05 -8.39E-05 36 Towards No
8 -6.90E-05 1.48E-03 71 Away No
16 2.78E-03 -1.06E-02 30 Towards No
50 6.56E-03 -3.22E-02 18 Towards No
100 2.66E-02 -9.29E-02 24 Towards No
200 4.84E-02 -2.45E-01 38 Towards No
300 3.13E-01 -3.99E-01 3 Towards No
500 2.49E-01 3.31E-01 2 Towards No

106

5.5. Comparing Teacher-Guided Methods

Table 5.10: LIME results for appending the teacher’s recommendation to the feature
space as a binary vector. Due to the large number of columns, headers are truncated
and numbers are rounded to one decimal place.

Ep Feat0 Feat1 Feat2 Feat3 Feat4 Feat5 Feat6 Max Wt Top 4
1 -2.5e-5 (29) -1.1e-4 (3) 1.7e-4 (1) 8.6e-5 (7) -1.3e-6 (52) -1.0e-4 (5) 1.0e-4 (6) 1.7e-4 No
8 -1.1e-3 (8) 5.7e-5 (47) -8.3e-4 (13) -2.9e-4 (25) -3.3e-4 (22) 1.5e-4 (36) 1.1e-3 (9) 3.2e-3 No
16 3.4e-3 (3) -4.0e-3 (1) 2.0e-3 (8) 4.1e-4 (31) 2.2e-3 (7) 1.9e-3 (9) -1.6e-4 (43) -4.0e-3 No
50 -3.2e-2 (4) 9.8e-3 (27) -1.0e-2 (25) 1.6e-2 (15) 6.2e-3 (33) -4.5e-2 (1) 1.6e-2 (16) -4.5e-2 No
100 1.4e-2 (8) -1.5e-2 (6) 1.9e-2 (4) 8.2e-3 (20) -7.2e-3 (22) 2.9e-2 (3) 1.7e-3 (40) 3.3e-2 No
200 -1.5e-1 (1) 2.8e-2 (19) -9.0e-2 (3) -1.1e-2 (36) -6.4e-2 (10) 8.4e-2 (5) 6.6e-2 (9) -1.5e-1 No
300 -5.3e-3 (37) 3.5e-2 (9) 3.9e-2 (7) -3.3e-2 (11) -1.5e-2 (19) 5.0e-2 (5) 1.9e-2 (17) 3.3e-1 No
500 -2.7e-2 (26) 6.3e-2 (15) 5.9e-2 (16) -9.0e-2 (7) 5.1e-2 (19) 1.4e-1 (2) 5.1e-2 (20) 2.5e-1 No

The results from Tables 5.8, 5.9 and 5.10 show that the agent never prioritizes
the action recommended by the teacher based on its associated features. It
can be seen that at episode 500 for mapping the teacher’s action to a float
(ref: Tab 5.8), the RL agent selects the recommendation; however, the feature
meant to map that recommendation to an executable action is weighted at
less than 5% of the most impactful feature and is ultimately driving the agent
away from the recommendation.

The one-hot encoded configuration illustrates a general increase in the impact
that the one-hot encoded feature has across episodes; however, it never maps
this to a likely action in its policy. This could be due to the fact that the
one-hot encoded feature is always 1, naturally having a higher impact on the
gradient due to its larger value (since all features are normalized between 0
and 1). Overall, teacher-guided RL via feature-space modification on its own
shows no noticeable improvement in training compared to the baseline PPO
agent.

5.5.3 Reward Shaping

Reward shaping involves modifying the rewards to encourage the agent to mimic
the teacher’s behavior. Similar to the above approaches, two implementations
were attempted:

• Gradually decreasing the magnitude of the reward for selecting an action
recommended by the teacher. This was done by adding 2.5 during the
first interval and decreasing it by 10% thereafter if the agent selected an
action recommended by the LLM, and adding 1.0 during the first interval
and decreasing it by 10% thereafter if the agent selected an action that
pertains to the host recommended by the LLM.

• Abruptly ceasing the extra rewards at a certain interval, where 2.5 was
added to actions that matched the teacher’s recommendations and 1.0 was
added to actions that contained the recommended host. These rewards
were constant and abruptly halted at training interval five (episode 40).

107

5.5. Comparing Teacher-Guided Methods

The results of teacher-guided RL via reward shaping are shown in Figure
5.12. It should be noted that the rewards shown in the figure are from the
original environment (i.e., exclude any additional teacher rewards).

0 100 200 300 400 500
Episode

0

20

40

60

R
ew

ar
d

Running Mean - 10 Episodes

0 100 200 300 400 500
Episode

Per-Episode Mean ± 1 SE

Baseline
Pretrained RL Agent

Reward Shaping with Gradual Decay
Reward Shaping with Hard Stop

Figure 5.12: Comparison of reward-shaping against the PPO baseline across 10
independent runs. The vertical dashed line indicates the point at which the teacher
guidance is abruptly removed for the hard stop configuration (the green curve).
Left: Mean reward after applying a 10-episode running average.
Right: Per-episode mean with a ±1 standard error.

Overall, Figure 5.12 shows no noticeable improvement from incorporating the
teacher’s feedback using reward shaping alone, whether the signal is gradually
reduced or abruptly halted. In fact, reward shaping with an abrupt halt to
the teacher-supplemented rewards demonstrates slightly worse performance
with respect to later convergence; however, this could simply be due to the
stochastic nature of the environment.

5.5.4 Auxiliary Loss

Similar to reward shaping, auxiliary loss incorporates the teacher feedback
during training; however, its purpose is to directly modify the loss to better
align with the teacher’s recommendation, rather than through the modification
of the reward signal.

Figure 5.13 demonstrates the results of having the teacher’s impact on the
agent’s overall loss gradually decayed and abruptly stopped.

108

5.5. Comparing Teacher-Guided Methods

The decayed version had the teacher’s influence decrease by 25% each training
interval, starting at episode eight. During each decay, the entropy coefficient
was increased by 5e−4 to encourage exploration during independent RL. Once
in independent RL, the entropy coefficient was decreased by 2e−4 until it
matched the baseline PPO’s configuration.

The abruptly stopped implementation had the LLM’s influence stop com-
pletely after three training intervals, with the entropy coefficient increasing
by 5e−4 every teacher-guided interval, then decreasing by 2e−4 every interval
until it reached the baseline configuration.

0 100 200 300 400 500
Episode

0

20

40

60

R
ew

ar
d

Running Mean - 10 Episodes

0 100 200 300 400 500
Episode

Per-Episode Mean ± 1 SE

Baseline
Pretrained RL Agent

Auxiliary Loss with Gradual Decay
Auxiliary Loss with Hard Stop

Figure 5.13: Comparison of Auxiliary Loss against the PPO baseline across 10
independent runs. The vertical dashed line indicates the point at which the teacher
guidance is abruptly removed for the hard stop configuration (the green curve).
Left: Mean reward after applying a 10-episode running average.
Right: Per-episode mean with a ±1 standard error.

As illustrated in Figure 5.13, there are considerable improvements in initial
convergence to the teacher’s policy. For both implementations, they plateau
after quickly converging onto the teacher’s policy and then increase at roughly
the same rate as the baseline performance. Gradually decaying the impact
of the auxiliary loss shows slightly improved final performance; however, this
could be due to the stochastic nature of the environment.

109

5.5. Comparing Teacher-Guided Methods

5.5.5 Combining Implementations

After evaluating each of the teacher-guided implementations separately, combi-
nations were tested in the hopes of increasing training efficiency.

Reward Shaping and Feature Space Modification

The results for incorporating reward shaping and feature space modification on
their own demonstrated no noticeable gain with respect to training efficiency.
The idea behind combining these two approaches is to give the agent an
incentive for selecting the teacher’s recommendation. If the agent is rewarded
for selecting the teacher’s recommendation, this should increase its ability to
map that recommendation into a corresponding executable action.

The results for the combination of feature space modification and reward
shaping are illustrated in Figure 5.14. Only one-hot encoded and float formats
for the feature space are implemented due to the inherent difficulties of mapping
a binary representation to a recommended action, shown in the previous LIME
analysis.

The gradual decay implementation, with the same hyperparameters described
above, is used for the reward shaping.

0 100 200 300 400 500
Episode

0

20

40

60

R
ew

ar
d

Running Mean - 10 Episodes

0 100 200 300 400 500
Episode

Per-Episode Mean ± 1 SE

Baseline
Pretrained RL Agent

Reward Shaping and Recommendation as Float
Reward Shaping and Recommendation as One Hot Encoded

Figure 5.14: Comparison of reward shaping with feature space modification against
the PPO baseline across 10 independent runs. The vertical dashed line indicates the
point at which the teacher guidance has been completely removed after being
gradually decayed by 10% starting at episode 8.
Left: Mean reward after applying a 10-episode running average.
Right: Per-episode mean with a ±1 standard error.

110

5.5. Comparing Teacher-Guided Methods

As shown in Figure 5.14, there is no noticeable improvement to training
efficiency, and appending the recommendation as a float appears to decrease
overall policy convergence. This is likely due to the randomness present
within the environment; however, it could be due to the additional features
deteriorating the agent’s ability to make effective decisions based on its observed
state.

The LIME analysis for the teacher’s recommendation formatted as a float
and as a one-hot encoding is shown in Tables 5.11 and 5.12, respectively.

Table 5.11: LIME results from appending the teacher’s recommendation to the
feature space as a float. Reco in Top 4 determines if the teacher’s recommendation is
in the top 4 actions from the RL agent’s policy, with its associated ranking if it is.

Episode Weight Max Weight Ranking Direction Reco in Top 4
1 8.98E-06 7.80E-05 31 Toward No
8 3.21E-04 -4.06E-03 31 Away No
16 -1.82E-04 1.28E-02 44 Away No
50 2.86E-03 -5.72E-02 42 Towards No
100 4.82E-04 -4.04E-02 44 Towards No
200 -1.00E-03 3.81E-02 40 Away No
300 2.59E-03 2.03E-01 45 Towards Yes/1
500 2.97E-02 4.57E-01 34 Towards Yes/1

Table 5.12: LIME results from appending the teacher’s recommendation to the
feature space as a a one-hot encoding. Shows weights for the one-hot encoded feature
only. Reco in Top 4 determines if the teacher’s recommendation is in the top 4
actions from the RL agent’s policy, with its associated ranking if it is.

Episode Weight Max Weight Ranking Direction Reco in Top 4
1 8.50E-06 2.64E-05 31 Towards No
8 -7.27E-04 -2.05E-03 22 Away No
16 4.14E-04 -7.43E-03 65 Towards No
50 4.66E-04 1.85E-02 73 Towards No
100 1.44E-02 -9.23E-02 30 Towards No
200 1.14E-01 1.91E-01 4 Towards No
300 2.22E-02 -3.18E-01 60 Towards Yes/2
500 1.19E-01 3.75E-01 9 Towards No

Similar to feature space modification on its own, Tables 5.11 and 5.12 show
no correlation between the teacher’s recommendation and the sampled action,
illustrating a lack of ability to map the recommendation to an executable action.
When the recommendation is mapped as a float or one-hot encoded value, the

111

5.5. Comparing Teacher-Guided Methods

agent does occasionally select the teacher’s recommendation; however, it can
be seen that the respective feature defining this recommendation has minimal
impact on its choice.

Overall, combining feature space modification with reward shaping shows no
noticeable improvement to training efficiency.

Action Masking and Feature Space Modification

Rather than providing an incentive to the RL agent to map its decisions to the
teacher’s recommendations through reward shaping, this idea is to force the
agent to select particular actions, encouraging it to map these to the teacher’s
recommendations.

Inference-only action masking demonstrated the best performance out of the
masking techniques with respect to training efficiency, so it was the chosen
algorithm to be combined with feature space modification. Similar to reward
shaping, the recommendation was appended as a float and a one-hot encoded
value. For the action masking component, a mask was applied and gradually
decayed by 25% every training interval, starting after episode 32.

The results of combining feature space modification with action masking are
illustrated in Figure 5.15.

0 100 200 300 400 500
Episode

0

10

20

30

40

50

60

70

R
ew

ar
d

Running Mean - 10 Episodes

0 100 200 300 400 500
Episode

Per-Episode Mean ± 1 SE

Baseline
Pretrained RL Agent

Action Masking and Recommendation as Float
Action Masking and Recommendation as One Hot Encoded

Figure 5.15: Comparison of feature space modification with action masking against
the PPO baseline across 10 independent runs. The vertical dashed line indicates the
point at which the teacher guidance begins to decay.
Left: Mean reward after applying a 10-episode running average.
Right: Per-episode mean with a ±1 standard error.

112

5.5. Comparing Teacher-Guided Methods

Figure 5.15 demonstrates the initial gains in performance provided by the
action masking; however, it shows no noticeable improvement thereafter com-
pared to action masking on its own. Furthermore, the policy convergence
deteriorates slightly for both the float and one-hot encoded recommendations.

The LIME analysis for combining action masking with feature space modifi-
cation for float and one-hot encoded recommendations is shown in Tables 5.13
and 5.14.

Table 5.13: LIME results from appending the LLM recommendation to the feature
space as a float with action masking. Reco in Top 4 determines if the teacher’s
recommendation is in the top 4 actions from the RL agent’s policy, with its
associated ranking if it is.

Episode Weight Max Weight Ranking Direction Reco in Top 4
1 -1.34E-06 8.48E-05 44 Away No
8 -4.20E-04 -2.50E-03 18 Away No
16 -1.09E-03 6.05E-03 26 Away Yes/4
50 -1.49E-03 1.70E-02 40 Away Yes/4
100 6.58E-05 3.90E-02 46 Towards No
200 5.60E-03 4.78E-02 33 Towards No
300 -1.30E-02 2.23E-01 35 Away Yes/2
500 4.40E-03 3.10E-01 42 Towards Yes/3

Table 5.14: LIME results from appending the LLM recommendation to the feature
space as a a one-hot encoding with action masking. Shows weights for the one-hot
encoded feature only. Reco in Top 4 determines if the teacher’s recommendation is in
the top 4 actions from the RL agent’s policy, with its associated ranking if it is.

Episode Weight Max Weight Ranking Direction Reco in Top 4
1 7.22E-07 -7.17E-05 82 Towards Yes/3
8 1.62E-03 -2.79E-03 3 Towards No
16 9.66E-04 -6.85E-03 46 Towards No
50 2.40E-03 -1.37E-02 41 Towards No
100 -1.30E-02 5.31E-02 27 Away No
200 2.96E-02 2.86E-01 23 Towards No
300 2.32E-02 -4.62E-01 52 Towards No
500 -5.98E-03 1.52E-01 78 Away No

Although appending the recommendation as a float shows the RL agent
consistently selecting a probability distribution that includes the teacher’s
recommendation in its top four actions (ref Table 5.13), there is no noticeable
correlation between the teacher’s recommendation and the sampled action. The
LIME analysis for one-hot encoding shows that the teacher’s recommendation

113

5.5. Comparing Teacher-Guided Methods

is initially included in the top four actions; however, this can be ignored, as no
learning has happened at this state, and the RL agent’s weights are completely
randomized.

It should also be noted that because the action masking is applied only at
inference, the LIME results are for the RL agent’s raw (unmasked) distribution.

Overall, combining action masking with feature space modification shows no
greater improvement than action masking by itself, and the agent shows no
indication of being able to map the teacher’s recommendation to an executable
action.

Action Masking and Auxiliary Loss

Masking actions at inference demonstrated initial gains in performance with
a dip during the transition from teacher-guided to independent RL. On the
other hand, auxiliary loss showed poor performance initially, but then quickly
converged onto the teacher’s policy. The purpose of combining action masking
and auxiliary loss is to merge the quick performance gains that action masking
offers while leveraging the auxiliary loss signal to facilitate a smoother transition
to independent RL.

The gradually decaying action mask at inference, with the gradually decaying
auxiliary loss was the chosen combination for this implementation, as they
both yielded the highest results with respect to training efficiency. Both were
decayed by 25% every training interval, starting after episode 8. The results of
combining action masking with auxiliary loss are illustrated in Figure 5.16.

114

5.5. Comparing Teacher-Guided Methods

0 100 200 300 400 500
Episode

0

10

20

30

40

50

60

70

R
ew

ar
d

Running Mean - 10 Episodes

0 100 200 300 400 500
Episode

Per-Episode Mean ± 1 SE

Baseline
Pretrained RL Agent

Auxiliary Loss and Action Masking

Figure 5.16: Comparison of action masking with auxiliary loss against the PPO
baseline across 10 independent runs. The vertical dashed line indicates the point at
which the teacher guidance is completely removed after having been decayed by 25%
per training interval.
Left: Mean reward after applying a 10-episode running average.
Right: Per-episode mean with a ±1 standard error.

Figure 5.16 demonstrates the initial gain in training efficiency by incorpo-
rating action masking with auxiliary loss. The agent initially matches the
teacher’s performance without any noticeable drop in performance as it transi-
tions to independent RL. It should also be noted that the agent’s performance
is noticeably superior following the transition to independent RL; however, the
baseline catches up at episode ≈170.

5.5.6 Evaluating the Best Technique

Overall, incorporating the teacher’s feedback using a combination of action
masking and an auxiliary loss signal produced the best results with respect to
training efficiency. While action masking and auxiliary loss demonstrate the
potential to improve training, feature space modification and reward shaping
had no noticeable impact.

It should be noted that certain techniques had a noticeably positive impact
on initial performance and convergence; however, in every implementation,
performance relative to the baseline was very similar by episode 500. The
high-level comparison between the teacher-guided techniques is shown in Table

115

5.6. LLM Integration

5.15.

Table 5.15: Comparison of teacher-guided techniques, using a pretrained RL agent as
the teacher. Rank 1 yields the best performance with respect to training efficiency,
whereas rank 4 is the least effective. All techniques that yielded no noticeable impact
on training efficiency are ranked as 4.

Technique Best Configuration Rank Notes

Action Masking with
Auxiliary Loss

Gradually decaying mask at
inference with gradually
decaying teacher loss

1 High initial performance,
with no drop during
transition

Auxiliary Loss Gradually decaying teacher loss 2 Quick convergence to
teacher’s policy

Action Masking Masking actions only at inference
with a gradually decaying mask

3 High initial performance,
with drop during transition

Feature Space
Modification

All configurations yielded similar
performance

4 No noticeable improvement
to training

Feature Space
Modification with Action
Masking

All configurations yielded similar
performance

4 No noticeable improvement
to training

Feature Space
Modification with
Reward Shaping

All configurations yielded similar
performance

4 No noticeable improvement
to training

Reward Shaping All configurations yielded similar
performance

4 No noticeable improvement
to training

5.6 LLM Integration

After selecting the best performing teacher-guided algorithm with respect to
training efficiency, the pretrained RL agent was replaced with the Cyber-Risk-
Llama8B LLM [72].

5.6.1 Prompt Engineering

Before incorporating Cyber-Risk-Llama8B into the RL pipeline, the prompt
was optimized further from what was used in the LLM selection process.
This was mainly due to the unreliable and variable performance exhibited by
executing the LLM’s recommendations directly in CybORG.

The prompt engineering process was arguably the most time-consuming
portion of this study due to its fundamental black-box nature. Generic prompt
engineering techniques were employed; however, iterative progress proved
difficult due to the lack of logical insights available in uncovering the best
prompt.

116

5.6. LLM Integration

Figure 5.17 illustrates the nuances associated with the prompt engineering
process. Identical prompts, with the exception of an additional newline, yield
completely different results.

….
Your response must follow this format exactly:
<action> <hostname> (e.g., actionx hostx).

Best Action:

….
Your response must follow this format exactly:
<action> <hostname> (e.g., actionx hostx).

Best Action: \n

LLM Response: 1. The network is fully
functional. The answer is ‘None’. 2. The
network is not fully functional.

Patch Op_Server0 Explanation: The
Op_Server0 has a high priority, and patching it
is essential to keep the network fully
functional.

Figure 5.17: Illustration of the nuances with prompt engineering. The left shows an
LLM response that cannot be reliably converted into an executable action. The right
shows that adding a single newline rectifies this, producing an extractable action.

It was discovered that Cyber-Risk-Llama8B’s existing training was inherently
biased towards certain actions and hosts based on their names, despite other
explicit instructions included in the prompt. For example, it would recommend
the remove action over restore even though privileged processes were found
on hosts, and prioritize enterprise servers over operational servers despite the
explicit priority attribute associated with both. As such, the host names and
actions were changed to generic names (e.g., action1, host1) which showed
more stable performance.

It was observed that the LLM generally prioritized hosts that appeared
earlier in the prompt. The likely cause for this is the fundamental masked
self-attention mechanism used by decoder-only LLMs, where only prior tokens
are used to calculate the attention score. This means that earlier tokens will
have a greater impact, as they will be used in the attention score calculation
for all future tokens.

Furthermore, the LLM appeared to struggle with extracting meaningful
information pertaining to host attributes that used timesteps as their metric,
such as the last analyzed field. This is logical, as Cyber-Risk-Llama8b likely
was not trained on reinforcement learning specific data, making it difficult to
map these metrics into something usable.

As such, the priority, last analyzed, and timestep fields were omitted from
the prompt, and the priority was represented by placing the hosts in a specific
order (operational server at the beginning).

To further increase performance, the minimum number of hops each host

117

5.6. LLM Integration

had from the operational server was added to the prompt - but only for hosts
along the critical paths (i.e., the shortest attack paths an attacker could follow
to propagate its presence to the operational server from the user subnet).

Finally, the prompt was further optimized by listing explicit step-by-step
instructions for the LLM to follow when making a decision. These included
constraints such as never selecting the remove or restore action on hosts that
do not have any suspicious processes or files.

The performance of the five prompts described above are shown in Figure
5.18. It can be seen that the performance is significantly better when explicit
step-by-step instructions and constraints are included in the prompt.

0 10 20 30 40 50
Episode

0

20

40

60

R
ew

ar
d

Per-Episode Mean ± 1 SE

Prompt 1 - Initial prompt used for evaluation
Prompt 2 - Generic hosts and actions
Prompt 3 - Generic hosts and actions, priority by order
Prompt 4 - Generic hosts and actions, priority by order and hops
Prompt 5 - Prompt 4 with step-by-step instructions and constraints

Figure 5.18: Evaluation of various prompts across 10 independent runs for 50
episodes. Per-episode mean reward with a ±1 standard error.

5.6.2 Standard Prompt Evaluation

Including explicit constraints and step-by-step instructions is not always feasible
in complex environments. For this reason, the evaluation of the LLM integration
was conducted using both the standard prompt (Prompt 4 in Figure 5.18)

118

5.6. LLM Integration

and the optimized prompt (Prompt 5 in Figure 5.18). In addition to this,
the standard prompt is used to provide a baseline that can be surpassed by
independent RL, facilitating easier validation of the teacher-guided technique’s
success.

The gradually decaying, inference-only action masking coupled with a decay-
ing auxiliary loss signal was identified as the best-performing teacher-guided
strategy and was used for the LLM integration. For the standard prompt,
a decay rate of 25% was applied to both the action mask and auxiliary loss
every eight episodes (i.e., one training interval), with the decay beginning after
four training intervals (32 episodes) of full teacher-guidance. The performance
of the LLM-integrated agent compared to the PPO baseline is illustrated in
Figure 5.19.

To encourage exploration beyond the teacher’s policy, the entropy coefficient
was increased by 5e−4 every time the auxiliary loss and action masking were
decayed. Once the teacher’s guidance was removed completely, the entropy
coefficient was decreased by 2.5e−4 every training interval until it reached the
baseline PPO agent’s configuration.

119

5.6. LLM Integration

0 100 200 300 400 500
Episode

0

10

20

30

40

50

60

R
ew

ar
d

Episodes 0 500: Mean Performance ± 1 SE

0 2000 4000 6000 8000 10000
Episode

0

10

20

30

40

50

60

70

R
ew

ar
d

Episodes 0 10000: Mean Performance ± 1 SE

Baseline LLM Action Masking and Aux Loss

Figure 5.19: Comparison of LLM-guided training using action masking with auxiliary
loss against the PPO baseline across 10 independent runs. The vertical dashed line
indicates the point at which the agent has transitioned to fully independent RL (i.e.,
learning solely from the environment’s signals). For clarity, the dashed line is only
shown on the top plot.
Top: Mean reward after applying a 10-episode running average with a ±1 standard
error for 500 episodes.
Bottom: Mean reward after applying a 10-episode running average with a ±1
standard error for 10,000 episodes.

120

5.6. LLM Integration

Figure 5.19 shows high variance between runs for the baseline and the LLM-
guided RL agent. This could be attributable to the stochasticity associated
with the environment; however, there is noticeably more variation with the
teacher-guided agent compared to the baseline. To validate if this is specific to
the LLM, Figure 5.20 compares various metrics against leveraging a pretrained
RL agent as the teacher, using an identical configuration.

Episode

30

40

50

60

70

Ep
is

od
e

R
ew

ar
d

Episode Reward ± 1 SE

Episode

1.0

0.5

0.0

0.5

Ex
pl

ai
ne

d
Va

ria
nc

e

Explained Variance ± 1 SE

0 2000 4000 6000 8000 10000
Episode

50

100

150

200

250

300

C
rit

ic
 L

os
s

Critic Loss ± 1 SE

0 2000 4000 6000 8000 10000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

En
tro

py

Entropy ± 1 SE

Pretrained RL Agent LLM

Figure 5.20: Comparison of LLM-guided training and pretrained RL agent guided
training across 10 independent runs. Plots depict the mean for episode reward,
explained variance, critic loss, and entropy across a 10-episode running average with a
±1 standard error.

While using the LLM as a teacher yields higher performance than the

121

5.6. LLM Integration

pretrained RL agent (despite both teachers having similar performance individ-
ually), there is an apparent increase in instability across metrics, specifically
episode reward, explained variance, and critic loss when using the LLM. A
possible cause for this, is the fact that the LLM was never trained explicitly
in the environment. In contrast, the pretrained RL agent was trained using
identical manually engineered features and signals as the baseline RL agent,
resulting in smoother updates to the critic’s gradients.

This fundamental difference between the LLM’s policy and a trained RL
agent’s policy is the reason that the decay was begun after four training
intervals rather than a single interval (as was done in the pretrained agent
evaluation). A noticeable drop in performance during the transition from
teacher-guided to independent RL was observed if the decay began earlier.

5.6.3 Optimized Prompt Evaluation

The LLM integration was also evaluated using a stricter prompt that explicitly
specifies what to do in a step-by-step format with constraints. For the optimized
prompt, a decay rate of 10% was applied to both the action mask and the
auxiliary loss signal every eight episodes (i.e., one training interval), with the
decay beginning after thirty training intervals of full teacher-guidance. The
entropy coefficient was increased by 2e−4 for every decay in auxiliary loss, and
decreased by 1e−4 until it reached the baseline PPO agent’s configuration once
fully transitioned to independent RL. Figure 5.21 shows the performance of
the optimized prompt against the PPO baseline.

122

5.6. LLM Integration

0 100 200 300 400 500
Episode

0

10

20

30

40

50

60

70

R
ew

ar
d

Episodes 0 500: Mean Performance ± 1 SE

0 2000 4000 6000 8000 10000
Episode

0

10

20

30

40

50

60

70

R
ew

ar
d

Episodes 0 10000: Mean Performance ± 1 SE

Baseline LLM Action Masking and Aux Loss

Figure 5.21: Comparison of LLM-guided training using action masking with auxiliary
loss against the PPO baseline across 10 independent runs. The vertical dashed line
indicates the point at which the agent has transitioned to fully independent RL (i.e.,
learning solely from the environment’s signals). For clarity, the dashed line is only
shown on the top plot.
Top: Mean reward after applying a 10-episode running average with a ±1 standard
error for 500 episodes.
Bottom: Mean reward after applying a 10-episode running average with a ±1
standard error for 10,000 episodes.

123

5.6. LLM Integration

The most notable observation in Figure 5.21 is the drop in performance
as the RL agent is transitioned from LLM-guided training to independent
RL. It can be seen that at around episode 1,200, the baseline reaches the
LLM-guided agent’s performance, and both exhibit similar behavior thereafter.
It can also be seen that both RL agents do not converge to the LLM’s baseline
performance in 10,000 episodes (320,000 timesteps).

The drop in performance exhibited by the LLM-guided RL agent shown in
Figure 5.21 can be caused by various factors, such as the actor not being able to
map the manually engineered features of CybORG to the actions recommended
by the LLM.

For validating the RL agent’s ability to mimic the LLM’s behavior, the same
auxiliary loss technique was applied; however, training was halted completely
after 30 training intervals (240 episodes). Furthermore, no action-masking was
applied in this setup to confirm that the RL agent’s policy is able to make
these decisions without having its distributions directly modified. Figure 5.22
illustrates that the RL agent is able to achieve and maintain almost identical
performance to the LLM, showing the capability of quickly distilling the 8-
billion-parameter LLM’s performance into a much cheaper 64,910-parameter
feedforward neural network (0.0008114% the size).

124

5.6. LLM Integration

0 100 200 300 400 500
Episode

20

0

20

40

60

R
ew

ar
d

Episodes 0 500: Mean Performance ± 1 SE

0 1000 2000 3000 4000 5000
Episode

20

0

20

40

60

R
ew

ar
d

Episodes 0 5000: Mean Performance ± 1 SE

Baseline
LLM

Auxiliary Loss - Learning
Auxiliary Loss - No Post Learning

Figure 5.22: Comparing cutting off learning after the LLM-guided phase (distillation)
and continuing to learn. The vertical dashed line indicates the point at which the
LLM-guidance is abruptly removed for the distilled agent (the green curve), and
where the LLM-guidance for the other agent (the red curve) begins to decay. For
clarity, the dashed line is only shown on the top plot.
Top: Mean reward after applying a 10-episode running average with a ±1 standard
error for 500 episodes.
Bottom: Mean reward after applying a 10-episode running average with a ±1
standard error for 5,000 episodes.

125

5.6. LLM Integration

The drop in performance during the transition from LLM-guided to indepen-
dent RL does not appear to be due to a lack of ability for the actor to map the
manually engineered feature space to recommended actions, as shown by the
successful distillation of knowledge into the RL agent. The other area to explore
is the critic network. Because the critic network is trained almost exclusively
on states that occurred as a result of executing LLM recommendations, it
could have difficulty estimating the value of other actions.

The advantage, explained variance, critic loss, and entropy were recorded
against the baseline agent’s performance, as shown in Figure 5.23. Only the
first 1,000 episodes are shown to focus on the transition from LLM-guided to
independent learning.

126

5.6. LLM Integration

Episode
5

0

5

10

15

20

Ad
va

nt
ag

e
Advantage ± 1 SE

Episode

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Ex
pl

ai
ne

d
Va

ria
nc

e

Explained Variance ± 1 SE

0 200 400 600 800 1000
Episode

50

100

150

200

250

300

350

400

C
rit

ic
 L

os
s

Critic Loss ± 1 SE

0 200 400 600 800 1000
Episode

1

2

3

4
En

tro
py

Entropy ± 1 SE

Baseline LLM

Figure 5.23: Comparison of LLM-guided training and independent RL across 10 runs
for 1,000 episodes. Figures depict the mean for episode reward, explained variance,
critic loss, and entropy across a 10-episode running average with a ±1 standard error.

These metrics show a noticeable shift during the transition from teacher-
guided to independent RL, which starts at episode 240 and ends at episode 320.
The advantage and explained variance decrease at this transition, while the
critic loss increases, validating the hypothesis that the critic network struggles
to make valid predictions for actions that do not perfectly align with the LLM’s
recommendations.

Entropy starts very low, demonstrating the deterministic nature of learning
solely from the LLM, with a small but noticeable increase during the transition

127

5.6. LLM Integration

to independent learning. This increase during the transition can be attributed
to the small entropy bonus that is added to encourage exploration in inde-
pendent RL, but also due to the loss signals now incorporating advantages
calculated using a struggling critic network.

In an attempt to rectify the apparent drop in performance during the transi-
tion from teacher-guided to independent RL, seven independent techniques
were employed:

• Adding the LLM’s recommendation to the critic loss.
• Replacing the critic network with a pretrained one.
• Dynamically changing the learning rates for the actor and critic.
• Adding extra epochs for the critic during the transition phase from

teacher-guided to independent RL.
• Decaying the LLM’s influence by a factor instead of a linear subtraction.
• Decaying the LLM’s influence after 2,000 episodes instead of 320.
• Stopping the critic from learning after the transition to independent RL.

To keep the figures legible, these are split into two separate plots, where
Figure 5.24a shows the first four techniques and Figure 5.24b shows the last
three.

128

5.6. LLM Integration

(a) Attempts 1-4 to Increase Stability

0 100 200 300 400 500
Episode

0

20

40

60

R
ew

ar
d

Episodes 0 500: Mean Performance ± 1 SE

0 1000 2000 3000 4000 5000
Episode

0

20

40

60

R
ew

ar
d

Episodes 0 5000: Mean Performance ± 1 SE

Baseline
LLM
Adding LLM to Critic Loss

Dynamically Change Actor and Critic LRs
Initializing Critic at 10000 Episodes
Extra Critic Epochs

129

5.6. LLM Integration

(b) Attempts 5-7 to Increase Stability

0 100 200 300 400 500
Episode

0

10

20

30

40

50

60

70

R
ew

ar
d

Episodes 0 500: Mean Performance ± 1 SE

0 1000 2000 3000 4000 5000
Episode

0

10

20

30

40

50

60

70

R
ew

ar
d

Episodes 0 5000: Mean Performance ± 1 SE

Baseline
LLM
Stopping Critic Learning

Decay After Longer Transition
Gradual Decay by Factor

130

5.6. LLM Integration

Figure 5.24: Attempting to facilitate a smoother transition from teacher-guided to
independent RL using four different techniques shown in Figure 5.24a, and three
different techniques shown in Figure 5.24b.
Figure 5.24a demonstrates: adding the LLM to the critic loss, initializing the critic
with a pretrained model at episode 10,000, dynamically changing actor and critic LRs,
and adding extra epochs for the critic network during the transition from
teacher-guided to independent RL.
Figure 5.24b demonstrates: decaying the LLM influence after a longer transition,
decaying the LLM’s influence by a factor instead of a linear subtraction, and stopping
the critic learning entirely after the transition.
Top graph for each plot: Mean reward after applying a 10-episode running average
with a ±1 standard error for 500 episodes.
Bottom graph for each plot: Mean reward after applying a 10-episode running
average with a ±1 standard error for 5,000 episodes.

The purpose of adding the LLM’s recommendation as an auxiliary loss
signal for the critic is to encourage the critic to put more emphasis on the
LLM’s recommendations, potentially improving the critic’s stability during the
transition from LLM-guided to independent RL. A factor of 0.1 was used for
LLM’s contribution to the critic loss, effectively reducing its impact by 90%.
As discussed in the methodology section, this is the same MSE loss that is
typically used by PPO [45]; however, masking was applied so that only samples
that align with the LLM’s recommendations were applied to the gradient.

Similarly, twice as many epochs were used for the critic network, but applied
only during the decaying transition from teacher-guided to independent RL.
This is to improve the critic’s ability to estimate values for any new, unseen
states during the RL agent’s transition to independent learning.

For validation, the RL agent was also initialized with a critic network that
was trained for 10,000 episodes. Although unrealistic in practice, the purpose
of this was to validate whether a “warmed-up” critic network could facilitate a
smoother transition to independent RL.

The three techniques described above show no noticeable improvement over
the standard LLM-guided setup, exhibiting the same drop in performance.

The critic learning was increased from 1.6e−3 to 3.2e−3 to quickly estimate
the returns of LLM-recommended actions, and then decreased to 0.8e−3 during
the transition to independent RL. The actor learning rate was also decreased
from 1.6e−3 to 0.8e−3 during the transition. As shown in Figure 5.24, this
approach showed a slower drop in performance than the other three methods;
however, this is due to the smaller actor learning rate and does not solve
the fundamental problem, which is the decrease in performance during the
transition.

131

5.6. LLM Integration

Similarly, employing a gradual multiplicative decay factor of 0.99 per training
interval instead of a linear subtraction, and waiting until episode 2,000 instead
of 320 to commence the decay also slowed the rate of performance decline, but
did not stop the decrease.

Finally, the learning for the critic network was stopped entirely after the
transition to independent RL at episode 320. The idea here was to see if a
critic trained exclusively on LLM recommendations would favor them enough
to produce advantages that would push the actor back to the LLM’s baseline
policy. This shows the worst performance of all the attempts. When new
states are introduced during the transition, the frozen critic is unable to adjust
its parameters, and fails to produce reliable estimates. Eventually, the actor is
able to stabilize, despite the suboptimal advantages returned from the critic at
episode ≈1,550.

These results show that the drop in performance from the LLM-guided to
independent RL is not solely attributable to the critic network.

Finally, to validate if the PPO baseline configuration can surpass the opti-
mized LLM-guided RL agent, the baseline PPO agent was trained for 50,000
episodes (1.6 million timesteps) as shown in Figure 5.25.

0 10000 20000 30000 40000 50000
Episode

0

10

20

30

40

50

60

70

R
ew

ar
d

Running Mean - 10 Episodes ± 1 SE

Baseline LLM

Figure 5.25: Comparing the optimized prompt against the baseline over 50,000
episodes across 10 independent runs using a 10-episode running average with a ±1
standard error. Due to the computational demands of an LLM, a distilled RL agent
was used in its place.

132

5.6. LLM Integration

From Figure 5.25, it can be seen that while individual runs of the baseline
PPO agent surpass the LLM, its mean performance never appears to stabilize
beyond the LLM. There are points after episode 22,000 where the mean of
the baseline temporarily surpass the LLM; however, the performance does not
remain stable.

5.6.4 Fundamental Limitation

Both of the implementations using the standard and optimized prompt show
the same behavior: performance does not improve at the same rate as the
baseline after the transition to independent RL. As a result, the baseline
performance converges with the teacher-guided performance by approximately
episode 180 for the standard prompt, and episode 1,200 for the optimized
prompt. The fundamental issue appears to be the policy in which the agent
converges on during the teacher-guided phase.

The difference in policies between an LLM-distilled RL agent with the
standard and optimized prompt, compared to a baseline RL agent trained over
100 and 10,000 episodes is shown in Table 5.16.

Table 5.16: Comparing the top three probabilities between the distilled RL agents
and ones trained until 100 and 10,000 episodes. Column titles are abbreviated for
readability.

Optimized Standard 100 Eps RL 10,000 Eps RL

Largest Prob 99.56% 99.96% 21.64% 54.86%

Second Largest Prob 0.30% 0.03% 8.53% 21.91%

Third Largest Prob 0.08% 0.01% 5.52% 8.86%

Table 5.16 shows that the largest probability is approximately 33,000%
bigger than the second largest for the RL agents trained using the LLM,
whereas the difference in the top two probabilities for the trained RL agents is
approximately 250%.

The auxiliary loss method employed has the agent modify its policy to
prioritize a single action, resulting in a very peaked distribution, which does
not occur naturally from independent RL. When the agent begins updating
its policy using standard PPO loss, where a non-zero advantage is used, the
policy will inevitably shift. Minor deviations to the logits associated with the
highest ranked action result in significant changes to the lower ones to ensure
a valid softmax is preserved.

Additionally, the critic was trained almost exclusively on states and tran-
sitions induced by the LLM’s recommendations during the teacher-guided

133

5.6. LLM Integration

phase. The initial limited exposure to the critic results in inaccurate, unreli-
able value predictions when new states are introduced during the switch from
teacher-guided to independent RL.

A way to overcome the primary limitation is to have the LLM output a
distribution of actions rather than a single recommendation. This would
ensure that the policy is appropriately distributed during the teacher-guided
phase, facilitating a smoother transition to independent PPO. A distribution
can be obtained by querying the LLM individually for every possible action,
as was done by Z. Zhou et al. [88]. This was deemed not realistic during
the literature review due to an LLM’s computational requirements and the
environment’s large action space, so the approach of mapping the LLM’s tokens
into a distribution was explored [88].

This study’s process of mapping the LLM’s output into a probability distri-
bution and using it to guide training is detailed in Appendix E.

5.6.5 Discussion

As stated in Chapter 1, three criteria are used to evaluate the success of the
LLM-guided agent compared to the baseline:

• Can it converge to an optimal policy quicker?
• Is its policy as accurate or more accurate?
• Does it initially produce more favorable actions?

When using the optimized prompt and providing the LLM explicit instruc-
tions and constraints for the environment, the RL agent is able to reach the
same policy quicker. However, this accelerated convergence results from a
performance drop during the transition from mimicking the LLM’s behavior
to learning solely from CybORG’s reward signals. Integrating the LLM with
the standard prompt, where its performance is considerably worse than the
pretrained RL agent showed the same training time required to converge onto
a favorable policy.

For the accuracy of the LLM-guided agent’s policy using the standard and
optimized prompt, there was no noticeable difference, except for the increased
variance for the standard prompt.

The initial performance of the LLM-guided agents using both the standard
and optimized prompts was notably better, enabling the agents to learn without
having to explicitly perform obviously unfavorable actions.

The convergence speed and policy stability both show noticeable improve-
ments when the LLM outputs a distribution instead of a single action. The
details of this are discussed in Appendix E.

134

6 Conclusion

Autonomous Cyber Operations (ACO) is an innovative field that enables
the training of agents to execute actions autonomously with minimal human
oversight. Current ACO applications require these agents to learn from scratch,
resulting in the need to perform obviously unfavorable actions to learn their
associated consequences. The purpose of this study was to integrate external
knowledge in the form of a Large Language Model (LLM) - that the agent
could directly leverage - to eliminate the need to perform unfavorable actions
and to increase training efficiency in terms of timesteps.

6.1 Contributions

The main contribution of this study is the demonstration of the positive impact
that LLMs can have on training efficiency using CybORG’s Cage Challenge 2
scenario. It showed that if prompted appropriately, the LLM can ultimately
be used to increase training efficiency for an RL agent, with some caveats.

In addition to illustrating the positive impact LLMs can have on ACO, this
study provides:

• A framework that can be used to efficiently evaluate and select the
best-performing LLM for a particular environment.

• Modifications to CybORG’s Cage Challenge 2 environment to better
represent realistic cybersecurity conditions.

• A web application that can be used to visualize the process of training
agents in the CybORG environment.

• A teacher-guided technique that combines action masking with auxiliary
loss.

• The evaluation of various teacher-guided RL techniques in terms of how
well they perform in a cybersecurity environment.

• A pipeline that can be leveraged to incorporate an LLM into the decision-
making process for RL agents.

135

6.2. Limitations

• The design of robust prompts that can enable LLMs to make effective
and contextually relevant decisions in the context of CybORG.

• A method that can be employed to efficiently distill an LLM’s generalized
training into a much smaller RL agent.

6.2 Limitations

While this study has made contributions in the field of ACO, there are many
limitations that exist throughout the various phases.

6.2.1 Selecting an LLM

While an autonomous, objective process was attempted, the evaluation for
selecting an appropriate LLM ended up involving manually validating the
responses of four LLMs for 100 questions against answers that were manually
created. These answers were created without any formal criteria for what
constitutes a best action, other than an estimation on how it would perform in
CybORG. Furthermore, the answers were assigned a score of 1 for being aligned
with the label, a 0.5 for relevant in the scenario and 0 otherwise. Instead,
the quality of the answers outputted by an LLM should be critiqued on a
continuous scale.

While the instantaneous reward from CybORG is not indicative of the best
action, creating a process for comparing possible actions and evaluating them
based on a spectrum of favorability would have improved the quality of the
LLM evaluation.

Furthermore, a generic prompt was used across all LLMs to ensure a fair
evaluation; however, due to the vast and different training data these LLMs
were exposed to, some could have performed completely differently with minor
prompt modifications. More effort spent in optimizing the prompts for each of
the LLMs prior to the evaluation could have contributed to the quality of the
selection process.

6.2.2 Environment Limitations

Perhaps the biggest limitation of this study is the simplicity of the simulation
used to justify the potential relevance of LLM integration for practical ACO.
Like most RL environments, CybORG functions by having the agents perform
actions in a sequential manner; however, this is not representative of realistic
cybersecurity scenarios, where attackers and defenders will wait for the other
to execute an action. This could partially be rectified by allowing each agent

136

6.2. Limitations

to interact with the environment for x timesteps before the other’s turn, where
x is a random integer.

The data outputted from CybORG is very simplistic and contains only new
processes, files, or connections that are not in the host’s baseline image, making
it very easy to detect red activity. There is a green agent that can modify
these; however, it also can only perform a single action every timestep, greatly
under representing all the benign activity that would be present in an emulated
network.

Because of the environment’s straightforward observation space, the feature
space engineering process for the RL agent is also quite simple and deterministic.
For example, a host is considered exploited if the number of connections for a
single port exceeds three.

While some stochasticity exists in the red agent that attacks the simulated
network, it still follows the same pattern of scan, exploit, and privilege escalate
for each of its hosts. In reality, a wide variety of attack paths exist, such as
phishing, that are not present in this scenario. CybORG’s multi-agent RL
environment (Cage Challenge 4 [52]) helps alleviate some of these concerns,
where a green agent can become red, representing compromises through social
engineering.

While this study provides a strong proof of concept for the benefits of
incorporating an LLM to augment decision-making in ACO, the extent of
its impact in real-world settings cannot be guaranteed due to the inherent
limitations of using a simulated RL environment for cybersecurity.

It should be noted that perfectly simulating the complex, dynamic nature
of cybersecurity, while providing signals for RL agents to learn is a very
difficult - perhaps impossible - challenge. Overall, the CybORG environment
is very impressive and considered one of the best simulated cybersecurity
environments for ACO at the time of writing [2]; however, it is still lacking
substantial information that would be present in a real network.

6.2.3 Agent Evaluation Limitations

The evaluation of the Proximal Policy Optimization (PPO) and Deep Q-
Network (DQN) agents was sufficient for selecting the best baseline, but
could have been more exhaustive. While many combinations of parameters
were tested for each algorithm, the tests could have been run for longer before
concluding that PPO is more effective in CybORG. While 150 episodes provided
a useful indication of convergence, running these tests for longer may have
shown different outcomes - for example, allowing the DQN agent to transition
to solely sampling from its Q-table (when ϵ ≈ 0).

137

6.2. Limitations

6.2.4 Teacher-Guided Integration Limitations

More hyperparameter tuning could have been performed for evaluating the var-
ious teacher-guided techniques. Unlike the baseline agent development, which
included testing many combinations in a structured fashion, hyperparameter
tuning for this phase was conducted in an ad-hoc manner.

Furthermore, while incorporating a pretrained RL agent instead of an LLM
helped focus on the technique itself (and reduced time due to the lower
computational demand), the LLM could have been evaluated for each of these
techniques in addition to the RL agent.

6.2.5 Parsing CybORG’s Output

One of the arguments for the potential benefits of incorporating an LLM into
the RL pipeline, was that it eliminated the need to manually engineer features
from CybORG’s raw state space, greatly reducing the risk of missing vital
information.

However, “pseudo” feature engineering was conducted with CybORG’s raw
state space to parse it into a format in which patterns could easily be extracted
by an LLM. The end format omitted information, such as host operating
systems and architectures.

Although an apparent decrease in performance was observed when these
were included in the prompt, more comprehensive prompt engineering that
included these details could have been beneficial.

6.2.6 Final Prompt Design

The final prompt design used for the LLM involved replacing the actions and
hosts with generic names, and defining each action as it relates to CybORG.
The purpose of the LLM selection in Phase 1 was to evaluate the models’
existing cybersecurity knowledge and how this could positively impact RL
training for CybORG. Defining the actions and the rules for CybORG within
the prompt defeats the purpose of evaluating the LLMs’ existing knowledge,
focusing instead on their pattern extraction capabilities.

The evaluation process in Phase 1 should have included all of this information
in the prompts, to test the LLMs’ abilities to contextualize patterns in CybORG
as opposed to solely validating whether their learned definitions for the actions
and hosts map well to the environment.

138

6.2. Limitations

6.2.7 LLM Resource Requirements

The primary purpose of this study was to integrate an LLM to increase the
training efficiency of RL agents. It used the number of timesteps as the metric
for evaluating this, completely ignoring the computational requirements to run
an LLM, and the time required for it to generate a response. For example, for
new states, the LLM takes an average of 3.685 seconds (as shown in Table 5.1)
to produce a response, as opposed to the fraction of a second required by an
RL agent (caching was enabled for the LLM, greatly increasing the speed for
previously seen states). The selected LLM also has 8 billion parameters, each
represented by a 16-bit float, meaning that 16 GiB of memory are required just
to have it loaded. On the contrary, the pretrained RL agent needs 128 KiB. It
should be noted that these figures are just for having the models loaded, not
the GPU requirements to have them generate responses.

6.2.8 LLM Integration Limitations

As mentioned in Chapter 5, the single-action integration technique used for
the LLM was fundamentally flawed, encouraging the RL agent to converge
to a narrow policy that does not stabilize well in PPO, while fixating the
critic network to learn the values of states produced by LLM recommendations,
completely ignoring others. This ultimately resulted in a non-optimal transition
from teacher-guided to independent RL, where the agent’s policy - initially
shaped by the LLM’s single-action recommendations - had to be flattened for
further refinement.

While the solution in Appendix E partially rectifies this problem by mapping
the LLM’s output into a probability distribution, it still results in similar critic
instability issues, stemming from having it initially learn only on states induced
by actions within the LLM’s recommended probability distribution.

6.2.9 Insufficient Testing for Transferability

One of the arguments made in Chapter 1 and Chapter 3 is that the LLM can
be easily transferred due to its vast amount of training, increasing training
efficiency across different environments. Although the LLM integration was
evaluated on nine different scenarios ranging from four to twelve hosts (ref
Appendix F), these scenarios consisted of identical functionality with minor
modifications to CybORG’s default scenario and red agent. To prove the
transferability of the LLM, different cybersecurity environments with a different
action space and a different set of rules should have been used.

139

6.3. Future Work

6.3 Future Work

Although there are many limitations with this study, the novel contributions
it has made lay the groundwork for significant advances in ACO. These
opportunities include:

• Modifying the integration technique and LLM’s response to facilitate a
smoother transition from teacher-guided to independent RL. This could
also include optimizing the prompt engineering process to include more
advanced techniques like Retrieval-Augmented Generation (RAG) [39].

• Integrating the LLM into the emerging multi-agent RL field [89].
• Leveraging the LLM to augment decision-making for the red agent.
• Fine-tuning the LLM to tailor its output to the CybORG environment.
• Integrating the LLM into the feature engineering process.
• Leveraging the LLM to augment decision-making in an emulated envi-

ronment.
• Incorporating an encoder-only LLM into the decision-making process

(with more success than what was attempted in Appendix D).
• Defending the LLM in an adversarial setting.

The integration of an LLM into the RL pipeline to augment decision-making
can be a key milestone in ACO applications, creating a strong foundation for
future advancements in autonomous cybersecurity.

140

Bibliography

[1] Nilotpal Chakraborty. INTRUSION DETECTION SYSTEM AND IN-
TRUSION PREVENTION SYSTEM: A COMPARATIVE STUDY. In-
ternational Journal of Computing and Business Research, 4(2), 2013.

[2] Callum Baillie, Maxwell Standen, Jonathon Schwartz, Michael Docking,
David Bowman, and Junae Kim. CybORG: An Autonomous Cyber
Operations Research Gym, February 2020.

[3] Mariah St. John. Cybersecurity stats: Facts and figures you should know.
Forbes, 2024.

[4] Sabih Saeed, Paul Black, Shaoning Pang, and Peter Vamplew. A Re-
view of Reinforcement Learning Enabled Autonomous Cyber Operations
Platforms, 2024. Publisher: SSRN.

[5] Center for Security and Emerging Technology, Micah Musser, and Ash-
ton Garriott. Machine Learning and Cybersecurity: Hype and Reality.
Technical report, Center for Security and Emerging Technology, June
2021.

[6] Jacob Wiebe, Ranwa Al Mallah, and Li Li. Learning Cyber Defence
Tactics from Scratch with Multi-Agent Reinforcement Learning, August
2023. arXiv:2310.05939 [cs].

[7] Garrett McDonald. Competitive Reinforcement Learning for Autonomous
Cyber Operations. PhD thesis, Royal Military College of Canada, Kingston,
Ontario, May 2023.

[8] CyberNative. Cyberbase 13b. https://huggingface.co/CyberNative/
CyberBase-13b, 2024.

[9] mlgwad. Cyberdost 2b v2.0. https://huggingface.co/mlgawd/

navarasa-2b-2.0-cyberdost, 2024.

[10] segolilylabs. Lily cybersecurity 7b v0.2. https://huggingface.co/

segolilylabs/Lily-Cybersecurity-7B-v0.2, 2024.

141

https://huggingface.co/CyberNative/CyberBase-13b
https://huggingface.co/CyberNative/CyberBase-13b
https://huggingface.co/mlgawd/navarasa-2b-2.0-cyberdost
https://huggingface.co/mlgawd/navarasa-2b-2.0-cyberdost
https://huggingface.co/segolilylabs/Lily-Cybersecurity-7B-v0.2
https://huggingface.co/segolilylabs/Lily-Cybersecurity-7B-v0.2

Bibliography

[11] Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed
Anwar, Muhammad Usman, Naveed Akhtar, Nick Barnes, and Ajmal
Mian. A Comprehensive Overview of Large Language Models, April 2024.
arXiv:2307.06435 [cs].

[12] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav
Artzi. BERTScore: Evaluating Text Generation with BERT. Interna-
tional Conference on Learning Representations, ICLR, February 2020.
arXiv:1904.09675 [cs].

[13] Mark Pfeiffer, Samarth Shukla, Matteo Turchetta, Cesar Cadena, An-
dreas Krause, Roland Siegwart, and Juan Nieto. Reinforced Imitation:
Sample Efficient Deep Reinforcement Learning for Mapless Navigation by
Leveraging Prior Demonstrations. IEEE Robotics and Automation Letters,
3(4):4423–4430, October 2018.

[14] Ali Beikmohammadi and Sindri Magnusson. TA-Explore: Teacher-Assisted
Exploration for Facilitating Fast Reinforcement Learning. London, United
Kingdom, May 2023. 2023 International Foundation for Autonomous
Agents and Multiagent Systems.

[15] Ziyi Wang, Xinran Li, Luoyang Sun, Haifeng Zhang, Hualin Liu, and
Jun Wang. Learning State-Specific Action Masks for Reinforcement
Learning. Algorithms, 17(2):60, February 2024. Number: 2 Publisher:
Multidisciplinary Digital Publishing Institute.

[16] Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh.
Reward Design with Language Models. International Conference on
Learning Representations, ICLR, February 2023. arXiv:2303.00001 [cs].

[17] Songjun Tu, Jingbo Sun, Qichao Zhang, Xiangyuan Lan, and Dong-
bin Zhao. Online Preference-based Reinforcement Learning with Self-
augmented Feedback from Large Language Model, December 2024.
arXiv:2412.16878 [cs] version: 1.

[18] Liangliang Chen, Yutian Lei, Shiyu Jin, Ying Zhang, and Liangjun Zhang.
RLingua: Improving Reinforcement Learning Sample Efficiency in Robotic
Manipulations With Large Language Models. IEEE Robotics and Au-
tomation Letters, 9(7):6075–6082, July 2024. Conference Name: IEEE
Robotics and Automation Letters.

[19] Zihao Zhou, Hu Bin, Zhao Chenyang, Lu Bin, and Zhang Pu. Large
Language Model as a Policy Teacher for Training Reinforcement Learning
Agents. In IJCAI International Joint Conference on Artificial Intelligence,
pages 5671–5679, Jeju, Korea, 2024. International Joint Conferences on
Artificial Intelligence.

142

Bibliography

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention
is All you Need. In Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

[21] Robin M. Schmidt. Recurrent Neural Networks (RNNs): A gentle Intro-
duction and Overview, November 2019. arXiv:1912.05911 [cs, stat].

[22] Qing Luo, Wei Zeng, Manni Chen, Gang Peng, Xiaofeng Yuan, and
Qiang Yin. Self-Attention and Transformers: Driving the Evolution of
Large Language Models. In 2023 IEEE 6th International Conference on
Electronic Information and Communication Technology (ICEICT), pages
401–405. Institute of Electrical and Electronics Engineers Inc., July 2023.
ISSN: 2836-7782.

[23] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring
the limits of transfer learning with a unified text-to-text transformer.
Journal of machine learning research, 21(140):1–67, 2020.

[24] Jesse Roberts. How Powerful are Decoder-Only Transformer Neural
Models? In 2024 International Joint Conference on Neural Networks
(IJCNN), pages 1–8, June 2024. arXiv:2305.17026 [cs].

[25] Gokul Yenduri, Ramalingam M, Chemmalar Selvi G, Supriya Y, Gautam
Srivastava, Praveen Kumar Reddy Maddikunta, Deepti Raj G, Rutvij H.
Jhaveri, Prabadevi B, Weizheng Wang, Athanasios V. Vasilakos, and
Thippa Reddy Gadekallu. Generative Pre-trained Transformer: A Compre-
hensive Review on Enabling Technologies, Potential Applications, Emerg-
ing Challenges, and Future Directions, May 2023. arXiv:2305.10435 [cs].

[26] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding, May 2019. arXiv:1810.04805 [cs].

[27] Gemini Team. Gemini 1.5: Unlocking multimodal understanding across
millions of tokens of context, December 2024. arXiv:2403.05530 [cs].

[28] OpenAI. GPT-4 Technical Report, March 2024. arXiv:2303.08774 [cs].

[29] Perrault Ray and Clark Jack. Artificial intelligence index report 2024.
Technical report, Standford University.

[30] Ming Shen. Rethinking Data Selection for Supervised Fine-Tuning, Febru-
ary 2024. arXiv:2402.06094 [cs].

143

Bibliography

[31] Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe,
Chelsea Voss, Alec Radford, Dario Amodei, and Paul Christiano. Learn-
ing to summarize from human feedback. Neural information processing
systems foundation, February 2022. arXiv:2009.01325 [cs].

[32] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christo-
pher D. Manning, and Chelsea Finn. Direct Preference Optimization: Your
Language Model is Secretly a Reward Model, July 2024. arXiv:2305.18290
[cs].

[33] Parthasarathy Balavadhani, Zafar Ahtsham, Khan Aafaq, and Shahid
Arsalan. The Ultimate Guide to Fine-Tuning LLMs from Basics to
Breakthroughs: An Exhaustive Review of Technologies, Research, Best
Practices, Applied Research Challenges and Opportunities, 2024.

[34] Sidji Matthew and Stephenson Matthew. Prompt Engineering ChatGPT
for Codenames. IEEE Computer Society, September 2024.

[35] Noor Nashid, Mifta Sintaha, and Ali Mesbah. Retrieval-Based Prompt
Selection for Code-Related Few-Shot Learning. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE), pages
2450–2462, Melbourne, Australia, May 2023. IEEE Computer Society.

[36] Gregory Palmer, Chris Parry, Daniel J. B. Harrold, and Chris Willis. Deep
Reinforcement Learning for Autonomous Cyber Operations: A Survey,
September 2024. arXiv:2310.07745 [cs].

[37] Eman Jawad. THE DEEP NEURAL NETWORK-A REVIEW. IJRDO
-JOURNAL OF MATHEMATICS, 9:1–5, September 2023.

[38] OpenAI. Chatgpt (may 14 version). https://openai.com/chatgpt, 2025.
Accessed: May 20, 2025.

[39] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi
Bi, Yi Dai, Jiawei Sun, Meng Wang, and Haofen Wang. Retrieval-
Augmented Generation for Large Language Models: A Survey, March
2024. arXiv:2312.10997 [cs].

[40] Martin Heller. Reinforcement learning explained, June 2019. Publisher:
IDG Communications, Inc.

[41] Wang Qiang and Zhan Zhongli. Reinforcement learning model, algorithms
and its application. In 2011 International Conference on Mechatronic
Science, Electric Engineering and Computer (MEC), pages 1143–1146.
IEEE Computer Society, August 2011.

144

https://openai.com/chatgpt

Bibliography

[42] Qingyan Huang. Model-Based or Model-Free, a Review of Approaches in
Reinforcement Learning. In 2020 International Conference on Comput-
ing and Data Science (CDS), pages 219–221. Institute of Electrical and
Electronics Engineers Inc., August 2020.

[43] Jingkai Jia and Wenlin Wang. Review of reinforcement learning research.
In 2020 35th Youth Academic Annual Conference of Chinese Association
of Automation (YAC), pages 186–191. IEE Computer Society, October
2020.

[44] Le Lyu, Yang Shen, and Sicheng Zhang. The Advance of Reinforcement
Learning and Deep Reinforcement Learning. In 2022 IEEE International
Conference on Electrical Engineering, Big Data and Algorithms (EEBDA),
pages 644–648. Institute of Electrical and Electronics Engineers Inc.,
February 2022.

[45] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal Policy Optimization Algorithms, August 2017.
arXiv:1707.06347 [cs].

[46] Li Li, Jean-Pierre S El Rami, Ryan Kerr, Adrian Taylor, and Grant
Vandenberghe. Towards Autonomous Cyber Operation Agents: Exploring
the Red Case, September 2023.

[47] Mitchell Kiely, David Bowman, Maxwell Standen, and Christopher Moir.
On autonomous agents in a cyber defence environment. arXiv preprint
arXiv:2309.07388, 2023.

[48] Defence Science and Technology Group. The technical coop-
eration program. https://www.dst.defence.gov.au/partnership/

technical-cooperation-program, n.d.

[49] Mitchell Kiely, David Bowman, Maxwell Standen, and Christopher Moir.
Cage challenge 1. https://github.com/cage-challenge/cage-challenge-1,
n.d.

[50] Mitchell Kiely, David Bowman, Maxwell Standen, and Christopher Moir.
Cage challenge 2. https://github.com/cage-challenge/cage-challenge-2,
n.d.

[51] Mitchell Kiely, David Bowman, Maxwell Standen, and Christopher Moir.
Cage challenge 3. https://github.com/cage-challenge/cage-challenge-3,
n.d.

[52] Mitchell Kiely, David Bowman, Maxwell Standen, and Christopher
Moir. Cage challenge 4. https://github.com/cage-challenge/

cage-challenge-4, n.d.

145

https://www.dst.defence.gov.au/partnership/technical-cooperation-program
https://www.dst.defence.gov.au/partnership/technical-cooperation-program
https://github.com/cage-challenge/cage-challenge-4
https://github.com/cage-challenge/cage-challenge-4

Bibliography

[53] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Lan-
guage Models as Zero-Shot Planners: Extracting Actionable Knowledge
for Embodied Agents. volume 162 of Proceedings of Machine Learning
Research, pages 9118–9147. ML Research Press, March 2022.

[54] Naman Goyal Jingfei Du Mandar Joshi Danqi Chen Omer Levy Mike
Lewis Luke Zettlemoyer Yinhan Liu, Myle Ott and Veselin Stoyanov.
Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv, 2019.

[55] Nick Ryder Melanie Subbiah Jared Kaplan Prafulla Dhariwal Arvind Nee-
lakantan Pranav Shyam Girish Sastry Amanda Askell Sandhini Agarwal
Ariel Herbert-Voss Gretchen Krueger Tom Henighan Rewon Child Aditya
Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter Christopher Hesse
Mark Chen Eric Sigler Mateusz Litwin Scott Gray Benjamin Chess Jack
Clark Christopher Berner Sam McCandlish Alec Radford Ilya Sutskever
Tom B. Brown, Benjamin Mann and Dario Amodei. Language models
are few-shot learners. arXiv preprint arXiv, 2020.

[56] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Func-
tion Approximation Error in Actor-Critic Methods, October 2018.
arXiv:1802.09477 [cs].

[57] Bowen Wang Chenhui Zhang Da Yin Dan Zhang Diego ROJAS Guanyu
Feng Hanlin Zhao Hanyu Lai Hao Yu Hongning Wang Jiadai Sun Jiajie
Zhang Jiale Cheng Jiayi Gui Jie Tang Jing Zhang Jingyu Sun Juanzi
Li Lei Zhao Lindong Wu Lucen Zhong Mingdao Liu Minlie Huang Peng
Zhang Qinkai Zheng Rui Lu Shuaiqi Duan Shudan Zhang Shulin Cao
Shuxun Yang Weng Lam Tam Wenyi Zhao Xiao Liu Xiao Xia Xiaohan
Zhang Xiaotao Gu Xin Lv Xinghan Liu Xinyi Liu Xinyue Yang Xixuan
Song Xunkai Zhang Yifan An Yifan Xu Yilin Niu Yuantao Yang Yueyan
Li Yushi Bai Yuxiao Dong Zehan Qi Zhaoyu Wang Zhen Yang Zhengxiao
Du Zhenyu Hou Aohan Zeng, Bin Xu and Zihan Wang. Chatglm: A
family of large language models from glm-130b to glm-4 all tools. Zhipu
AI, July 2024.

[58] Zi Lin Wei-Lin Chiang, Zhuohan Li and et. al. Vicuna: An open-source
chatbot impressing gpt-4 with 90

[59] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover,
Michael Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch.
Decision Transformer: Reinforcement Learning via Sequence Modeling.
volume 18 of Advances in Neural Information Processing Systems, pages

146

Bibliography

15084–15097. Neural information processing systems foundation, June
2021.

[60] Jiawei Wang, Teng Wang, Wenzhe Cai, Lele Xu, and Changyin Sun.
Boosting Efficient Reinforcement Learning for Vision-and-Language Navi-
gation With Open-Sourced LLM. IEEE Robotics and Automation Letters,
10(1):612–619, January 2025. Conference Name: IEEE Robotics and
Automation Letters.

[61] Michael Guastalla, Yiyi Li, Arvin Hekmati, and Bhaskar Krishnamachari.
Application of Large Language Models to DDoS Attack Detection. In
Yu Chen, Chung-Wei Lin, Bo Chen, and Qi Zhu, editors, Security and
Privacy in Cyber-Physical Systems and Smart Vehicles, volume 552, pages
83–99. Springer Nature Switzerland, 2024. Series Title: Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecommuni-
cations Engineering.

[62] Tarek Ali and Panos Kostakos. HuntGPT: Integrating Machine Learning-
Based Anomaly Detection and Explainable AI with Large Language
Models (LLMs), September 2023. arXiv:2309.16021 [cs].

[63] Johannes F. Loevenich, Erik Adler, Rémi Mercier, Alexander Velazquez,
and Roberto Rigolin F. Lopes. Design of an Autonomous Cyber Defence
Agent using Hybrid AI models. In 2024 International Conference on
Military Communication and Information Systems (ICMCIS), pages 1–10,
April 2024.

[64] A Bhagyalakshmi, C D Sruthi Laya, A M Yoga Preethikaa, and V Var-
sha. Machine Learning based Early Detection of Ongoing Cyber-Attacks.
In 2024 3rd International Conference on Applied Artificial Intelligence
and Computing (ICAAIC), pages 766–771. Institute of Electrical and
Electronics Engineers Inc., June 2024.

[65] Muhammad Omer Farooq and Thomas Kunz. A Generic Blue Agent
Training Framework for Autonomous Cyber Operations. In 2024 IFIP
Networking Conference (IFIP Networking), pages 515–521. Institute of
Electrical and Electronics Engineers Inc., June 2024. ISSN: 1861-2288.

[66] Ben Goertzel, Cassio Pennachin, Dov M. Gabbay, Jörg Siekmann,
A. Bundy, J. G. Carbonell, M. Pinkal, H. Uszkoreit, M. Veloso,
W. Wahlster, and M. J. Wooldridge, editors. Artificial General Intelligence.
Cognitive Technologies. Springer, Berlin, Heidelberg, 2007.

[67] Akram Awad, Littig Lars, and Sophie Geraerdts. Artificial General
Intelligence - White Paper. Technical report, September 2024.

147

Bibliography

[68] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke,
Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro, and Yi Zhang.
Sparks of Artificial General Intelligence: Early experiments with GPT-4,
April 2023. arXiv:2303.12712 [cs].

[69] Pat Langley, John E. Laird, and Seth Rogers. Cognitive architectures:
Research issues and challenges. Cognitive Systems Research, 10(2):141–160,
June 2009.

[70] Soumil Rathi. Approaches to Artificial General Intelligence: An Analysis.
Publisher: arXiv.

[71] Jie Zhang, Hui Wen, Liting Deng, Mingfeng Xin, Zhi Li, Lun Li, Hongsong
Zhu, and Limin Sun. HackMentor: Fine-Tuning Large Language Models
for Cybersecurity. In 2023 IEEE 22nd International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom),
pages 452–461, Exeter, United Kingdom, November 2023. IEEE.

[72] Vanessasml. https://huggingface.co/Vanessasml/

cyber-risk-llama-3-8b, 2024.

[73] Venky. https://huggingface.co/ZySec-AI/SecurityLLM, 2024.

[74] Sabit Ekin. Prompt Engineering For ChatGPT: A Quick Guide To
Techniques, Tips, And Best Practices, May 2023.

[75] Hakan T. Otal and M. Abdullah Canbaz. LLM Honeypot: Leveraging
Large Language Models as Advanced Interactive Honeypot Systems. In
2024 IEEE Conference on Communications and Network Security (CNS),
pages 1–6, September 2024. ISSN: 2994-5895.

[76] Suran Abhishek. Reinforcement learning/Atari dqn image.ipynb at master
· abhisheksuran/Reinforcement learning · GitHub.

[77] Keon. deep-q-learning/dqn batch.py at master · keon/deep-q-learning.

[78] Antonin RAFFIN, Quentin Gallouédec, Noah Dormann, Adam Gleave,
Anssi, Alex Pasquali, Juan Rocamonde, M. Ernestus, Patrick Helm,
Corentin, Quinn Sinclair, Thomas Simonini, Tobias Rohrer, Sidney Tio,
Rohan Tangri, Tom Dörr, Wilson, Steven H. Wang, Sam Toyer, Roland
Gavrilescu, Paul Maria Scheikl, Parth Kothari, Oleksii Kachaiev, Bernhard
Raml, Chris Schindlbeck, Costa Huang, Dominic Kerr, Grégoire Passault,
Jan-Hendrik Ewers, and Marc Duclusaud. DLR-RM/stable-baselines3:
v2.5.0: New algorithm (SimBa in SBX) and NumPy 2.0 support, January
2025.

148

https://huggingface.co/Vanessasml/cyber-risk-llama-3-8b
https://huggingface.co/Vanessasml/cyber-risk-llama-3-8b
https://huggingface.co/ZySec-AI/SecurityLLM

Bibliography

[79] Phil Tabor. Youtube-Code-Repository/ReinforcementLearning/PolicyGradient/PPO/torch
at master · philtabor/Youtube-Code-Repository, 2021.

[80] Adrian Holovaty and Simon Willson. Django, 2024.

[81] sqlite3 — DB-API 2.0 interface for SQLite databases.

[82] Nick Downie. Chart.js, 2024.

[83] Siddharth Sharma, Simone Sharma, and Anidhya Athaiya. ACTIVATION
FUNCTIONS IN NEURAL NETWORKS. International Journal of
Engineering Applied Sciences and Technology, 04(12):310–316, May 2020.

[84] Optuna - A hyperparameter optimization framework.

[85] Douglas G Altman and J Martin Bland. Standard deviations and standard
errors. BMJ : British Medical Journal, 331(7521):903, October 2005.

[86] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”Why Should I
Trust You?”: Explaining the Predictions of Any Classifier, August 2016.
arXiv:1602.04938 [cs] version: 3.

[87] Jonathan Hui. RL — Tips on Reinforcement Learning, February 2023.

[88] Jiehan Zhou, Yang Zhao, Jiahong Liu, Peijun Dong, Xiaoyu Luo, Hang
Tao, Shi Chang, and Hanjiang Luo. LLM4RL: Enhancing Reinforcement
Learning with Large Language Models. In 2024 IEEE Canadian Con-
ference on Electrical and Computer Engineering (CCECE), pages 86–88.
Institute of Electrical and Electronics Engineers Inc., August 2024. ISSN:
2576-7046.

[89] Contractor Faizan. Learning to Communicate in Multi-Agent Reinforce-
ment Learning for Autonomous Cyber Defence. PhD thesis, Royal Military
College of Canada, Kingston, Ontario, May 2024.

[90] Aghaei Ehsan. ehsanaghaei/SecureBERT · Hugging Face.

[91] Jiequan Cui, Beier Zhu, Qingshan Xu, Zhuotao Tian, Xiaojuan Qi, Bei
Yu, Hanwang Zhang, and Richang Hong. Generalized Kullback-Leibler
Divergence Loss, March 2025. arXiv:2503.08038 [cs].

149

Appendices

150

A CybORG Sequence Diagrams

Chapter 2 discussed the agents’ interaction with the environment at a
high-level; however, there are many underlying complexities that were not
mentioned. Figures A.1 and A.2 illustrate all entities and processes involved
for initializing the environment and executing an action. While an in-depth
knowledge of this process is not essential to understand this study, it is
important to highlight the effort the Technical Cooperation Program (TCP)
put into creating a simulated environment that mimics cybersecurity.

CybORG

init(scenario_file,env,agents)

Scenario ScenarioAgent ScenarioSessionEnvironmentController State Subnet
(Entity)

Host
(Entity)

SimulationController
(EnvironmentController)

init(scenario_file,agents)
*scenario_file=path to YAML
*env=string ('sim')
*agents=dict of agent objs controlled by
env

super.init(scenario_filepath,
scenario_mod,agents)

*scenario_filepath=path to YAML
*scenario_mod=default empty dict
*agents=dict of ag objs controlled by
env

_parse_scenario(scenario_path)
*Puts YAML into dict

using yaml.load

Continue parsing scenario
Updates each host using

respective image (each image
is own YAML file)

init(scenario_dict)
*scenario_dict is dict that has the YAML info

[for agent in
scenario["Agents"]]

Loop init(agent_name,
agent_info)

Loop

init(session_info
*All init does is set instance var

_create_environments

Scenario object with all information

init(scenario) - scenario object with all info

_initialize_state(scenario)

*Goes through all info in
Scenario object and
initializes instance variables:
subnet_name_to_cidr,ip_addresses,
hosts, sessions, session_count,

init(cidr,ip_addresses,nacls,name)

[for host in
scenario.hosts]

Loop
init(system_info,process_info,users,interfaces,hostname,info,services)

*Adds Users, Files, Processes,
Session and Interface objects

for each host

Loop

[for agent in
scenario.agents]

scenario.get_agent_info
 Get sessions from ScenarioAgent

and add to self.sessions dict

create_backup()
Loop

[for host in
self.hosts]

_create_agents(agents

[for agent in
scenario.agents]

Loop

AgentInterface

init(agent_class,agent_name,
actions,reward_calc_type,
allowed_subnets,scenario)

*Gets the agent info from the
ScenarioAgent obj

create_reward_calculator

RewardCalculator

init(agent,scenario)
initialize sub calcs

depending which calc

ActionSpace

init(actions,agent_name,allowed_subnets)
get_action_classes
*conv str to classblue agent self.agent set

 to sleep (since not specified)

ActionSpace

Observation().data

agent.set_initial_value(action_space,
observation)

Return agents

[for agent in
scenario.agents]

Loop Populate agent info
in self.INFO_DICT

set_init_obs(init_obs,true_obs) update(obs,known) *known=false for true state and true for agent state

returns SimulatorController

Figure A.1: Sequence diagram illustrating the entities and processes involved when
instantiating a new instance of the Cage Challenge 2 environment. Colored boxes are
expanded in subsequent plots.

151

CybORG

init(scenario_file,env,agents)

Scenario ScenarioAgent ScenarioSessionEnvironmentController State Subnet
(Entity)

Host
(Entity)

SimulationController
(EnvironmentController)

init(scenario_file,agents)
*scenario_file=path to YAML
*env=string ('sim')
*agents=dict of agent objs controlled by
env

super.init(scenario_filepath,
scenario_mod,agents)

*scenario_filepath=path to YAML
*scenario_mod=default empty dict
*agents=dict of ag objs controlled by
env

_parse_scenario(scenario_path)
*Puts YAML into dict

using yaml.load

Continue parsing scenario
Updates each host using

respective image (each image
is own YAML file)

init(scenario_dict)
*scenario_dict is dict that has the YAML info

[for agent in
scenario["Agents"]]

Loop init(agent_name,
agent_info)

Loop

init(session_info
*All init does is set instance var

_create_environments

Scenario object with all information

init(scenario) - scenario object with all info

_initialize_state(scenario)

*Goes through all info in
Scenario object and
initializes instance variables:
subnet_name_to_cidr,ip_addresses,
hosts, sessions, session_count,

init(cidr,ip_addresses,nacls,name)

[for host in
scenario.hosts]

Loop
init(system_info,process_info,users,interfaces,hostname,info,services)

*Adds Users, Files, Processes,
Session and Interface objects

for each host

Loop

[for agent in
scenario.agents]

scenario.get_agent_info
 Get sessions from ScenarioAgent

and add to self.sessions dict

create_backup()
Loop

[for host in
self.hosts]

_create_agents(agents

[for agent in
scenario.agents]

Loop

AgentInterface

init(agent_class,agent_name,
actions,reward_calc_type,
allowed_subnets,scenario)

*Gets the agent info from the
ScenarioAgent obj

create_reward_calculator

RewardCalculator

init(agent,scenario)
initialize sub calcs

depending which calc

ActionSpace

init(actions,agent_name,allowed_subnets)
get_action_classes
*conv str to classblue agent self.agent set

 to sleep (since not specified)

ActionSpace

Observation().data

agent.set_initial_value(action_space,
observation)

Return agents

[for agent in
scenario.agents]

Loop Populate agent info
in self.INFO_DICT

set_init_obs(init_obs,true_obs) update(obs,known) *known=false for true state and true for agent state

returns SimulatorController

CybORG

init(scenario_file,env,agents)

Scenario ScenarioAgent ScenarioSessionEnvironmentController State Subnet
(Entity)

Host
(Entity)

SimulationController
(EnvironmentController)

init(scenario_file,agents)
*scenario_file=path to YAML
*env=string ('sim')
*agents=dict of agent objs controlled by
env

super.init(scenario_filepath,
scenario_mod,agents)

*scenario_filepath=path to YAML
*scenario_mod=default empty dict
*agents=dict of ag objs controlled by
env

_parse_scenario(scenario_path)
*Puts YAML into dict

using yaml.load

Continue parsing scenario
Updates each host using

respective image (each image
is own YAML file)

init(scenario_dict)
*scenario_dict is dict that has the YAML info

[for agent in
scenario["Agents"]]

Loop init(agent_name,
agent_info)

Loop

init(session_info
*All init does is set instance var

_create_environments

Scenario object with all information

init(scenario) - scenario object with all info

_initialize_state(scenario)

*Goes through all info in
Scenario object and
initializes instance variables:
subnet_name_to_cidr,ip_addresses,
hosts, sessions, session_count,

init(cidr,ip_addresses,nacls,name)

[for host in
scenario.hosts]

Loop
init(system_info,process_info,users,interfaces,hostname,info,services)

*Adds Users, Files, Processes,
Session and Interface objects

for each host

Loop

[for agent in
scenario.agents]

scenario.get_agent_info
 Get sessions from ScenarioAgent

and add to self.sessions dict

create_backup()
Loop

[for host in
self.hosts]

_create_agents(agents

[for agent in
scenario.agents]

Loop

AgentInterface

init(agent_class,agent_name,
actions,reward_calc_type,
allowed_subnets,scenario)

*Gets the agent info from the
ScenarioAgent obj

create_reward_calculator

RewardCalculator

init(agent,scenario)
initialize sub calcs

depending which calc

ActionSpace

init(actions,agent_name,allowed_subnets)
get_action_classes
*conv str to classblue agent self.agent set

 to sleep (since not specified)

ActionSpace

Observation().data

agent.set_initial_value(action_space,
observation)

Return agents

[for agent in
scenario.agents]

Loop Populate agent info
in self.INFO_DICT

set_init_obs(init_obs,true_obs) update(obs,known) *known=false for true state and true for agent state

returns SimulatorController

152

CybORG

init(scenario_file,env,agents)

Scenario ScenarioAgent ScenarioSessionEnvironmentController State Subnet
(Entity)

Host
(Entity)

SimulationController
(EnvironmentController)

init(scenario_file,agents)
*scenario_file=path to YAML
*env=string ('sim')
*agents=dict of agent objs controlled by
env

super.init(scenario_filepath,
scenario_mod,agents)

*scenario_filepath=path to YAML
*scenario_mod=default empty dict
*agents=dict of ag objs controlled by
env

_parse_scenario(scenario_path)
*Puts YAML into dict

using yaml.load

Continue parsing scenario
Updates each host using

respective image (each image
is own YAML file)

init(scenario_dict)
*scenario_dict is dict that has the YAML info

[for agent in
scenario["Agents"]]

Loop init(agent_name,
agent_info)

Loop

init(session_info
*All init does is set instance var

_create_environments

Scenario object with all information

init(scenario) - scenario object with all info

_initialize_state(scenario)

*Goes through all info in
Scenario object and
initializes instance variables:
subnet_name_to_cidr,ip_addresses,
hosts, sessions, session_count,

init(cidr,ip_addresses,nacls,name)

[for host in
scenario.hosts]

Loop
init(system_info,process_info,users,interfaces,hostname,info,services)

*Adds Users, Files, Processes,
Session and Interface objects

for each host

Loop

[for agent in
scenario.agents]

scenario.get_agent_info
 Get sessions from ScenarioAgent

and add to self.sessions dict

create_backup()
Loop

[for host in
self.hosts]

_create_agents(agents

[for agent in
scenario.agents]

Loop

AgentInterface

init(agent_class,agent_name,
actions,reward_calc_type,
allowed_subnets,scenario)

*Gets the agent info from the
ScenarioAgent obj

create_reward_calculator

RewardCalculator

init(agent,scenario)
initialize sub calcs

depending which calc

ActionSpace

init(actions,agent_name,allowed_subnets)
get_action_classes
*conv str to classblue agent self.agent set

 to sleep (since not specified)

ActionSpace

Observation().data

agent.set_initial_value(action_space,
observation)

Return agents

[for agent in
scenario.agents]

Loop Populate agent info
in self.INFO_DICT

set_init_obs(init_obs,true_obs) update(obs,known) *known=false for true state and true for agent state

returns SimulatorController

CybORG

init(scenario_file,env,agents)

Scenario ScenarioAgent ScenarioSessionEnvironmentController State Subnet
(Entity)

Host
(Entity)

SimulationController
(EnvironmentController)

init(scenario_file,agents)
*scenario_file=path to YAML
*env=string ('sim')
*agents=dict of agent objs controlled by
env

super.init(scenario_filepath,
scenario_mod,agents)

*scenario_filepath=path to YAML
*scenario_mod=default empty dict
*agents=dict of ag objs controlled by
env

_parse_scenario(scenario_path)
*Puts YAML into dict

using yaml.load

Continue parsing scenario
Updates each host using

respective image (each image
is own YAML file)

init(scenario_dict)
*scenario_dict is dict that has the YAML info

[for agent in
scenario["Agents"]]

Loop init(agent_name,
agent_info)

Loop

init(session_info
*All init does is set instance var

_create_environments

Scenario object with all information

init(scenario) - scenario object with all info

_initialize_state(scenario)

*Goes through all info in
Scenario object and
initializes instance variables:
subnet_name_to_cidr,ip_addresses,
hosts, sessions, session_count,

init(cidr,ip_addresses,nacls,name)

[for host in
scenario.hosts]

Loop
init(system_info,process_info,users,interfaces,hostname,info,services)

*Adds Users, Files, Processes,
Session and Interface objects

for each host

Loop

[for agent in
scenario.agents]

scenario.get_agent_info
 Get sessions from ScenarioAgent

and add to self.sessions dict

create_backup()
Loop

[for host in
self.hosts]

_create_agents(agents

[for agent in
scenario.agents]

Loop

AgentInterface

init(agent_class,agent_name,
actions,reward_calc_type,
allowed_subnets,scenario)

*Gets the agent info from the
ScenarioAgent obj

create_reward_calculator

RewardCalculator

init(agent,scenario)
initialize sub calcs

depending which calc

ActionSpace

init(actions,agent_name,allowed_subnets)
get_action_classes
*conv str to classblue agent self.agent set

 to sleep (since not specified)

ActionSpace

Observation().data

agent.set_initial_value(action_space,
observation)

Return agents

[for agent in
scenario.agents]

Loop Populate agent info
in self.INFO_DICT

set_init_obs(init_obs,true_obs) update(obs,known) *known=false for true state and true for agent state

returns SimulatorController

153

ChallengeWrapper OpenAIGymWrapper

*Converts info to
dictionary of result object's values

EnumActionWrapper BlueTableWrapper
(BaseWrapper)

TrueTableWrapper
(BaseWrapper) CybORG

step(action) step(agent_name,action)

step(agent, action)
step(agent, action)

SimulationController
(EnvironmentController)

execute_action(action)

_filter_obs(obs)

step(agent,action,skip_check)
step(agent, action)

Alt

[if not test_valid_action]
action=InvalidAction(agent)

InvalidAction

sim_execute(state)

[if state.sessions>0
where host=host] obs=Observation(True)

return obs

Observation Scenario

get_agent_info(agent_name).allowed_subnets

ScenarioAgent

allowed_subnets

return allowed subnetsreturn allowed subnets
filter_addresses(ips,cidrs,include_localhost)

filters addresses on obs object

Loop

_filter_obs(obs)

[agent in agents]

Remove
(Action -

example for blue)

Alt

State

get_true_state(INFO_DICT['true'])

get_true_state(info)
Returns true state (Observation object with everything in self.data). Lots of conditional interacts with objects (leaving as this for simplicity)

_filter_obs(obs)

get_agent_info(agent_name).allowed_subnets

return allowed subnets
filter_addresses(ips,cidrs,include_localhost)

filters addresses on obs object (with true state)

allowed_subnets
return allowed subnets

[for agent in
agent_interfaces]

Loop determine_done(agent_obs,true_obs,action)

AgentInterface

determine_reward(agent_obs,true_obs,action,done)

HybridAvailability
Confidentiality

RewardCalculator
(RewardCalculator)

calculate_reward(trueobs,
action,agentobs,done)

AvailabilityCalculator
(RewardCalculator)

DisruptReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

ConfidentialityReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

Ret score of svs unavailable
calculate_reward(cur_state,action, agent_obs,done)

PwnReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

Ret score if hosts compromised

Ret Availability (Impacted) Score

Ret score of compromised hosts

Aggregate reward

Return rewardReturn reward
 Add action's cost (cost instance variable of action object)

update(observation) - update obs for given agent

Update Action Space (own object
but just using single arrow for clarity)

Loop
[for agent in
agent_interfaces]

Alt

[if agent_name
=='Blue']

Monitor
(Action)

sim_execute(state)
Returns Observation obj

(Has Host object for each host)

_filter_obs(obs,agent)

Observation

combine_obs(agent_observation),
set_success(first_action_success)

update(observation) - update obs for given agent

Update Action Space (own object
but just using single arrow for clarity)

Results

Results('blue'.data,done,
reward,action_space_action)Return results (Results object)

observation_change(observation), action_space_change(action_space)
Still strings

Return Result object

observation_change(obs)

detect_anomalies(obs)

process_anomalies(anomaly_obs)

_create_vector(success)

*Creates table with row for every host and info (snet,IP,hostname,activity,compromised)
*Then goes through each row and creates vector based on activity and compromised

Changes observation to created vector

action_space_change(action_space) - doesn't appear to do anything - done in enumActionWrapper

Return Results object

action_space_change(action_space)
*Changes action space
to len(possible actions)

Return Results object

Returns obs, reward, done, info

Figure A.2: Sequence diagram illustrating the entities and processes involved every
time the environment is interacted with. Colored boxes are expanded in subsequent
plots.

ChallengeWrapper OpenAIGymWrapper

*Converts info to
dictionary of result object's values

EnumActionWrapper BlueTableWrapper
(BaseWrapper)

TrueTableWrapper
(BaseWrapper) CybORG

step(action) step(agent_name,action)

step(agent, action)
step(agent, action)

SimulationController
(EnvironmentController)

execute_action(action)

_filter_obs(obs)

step(agent,action,skip_check)
step(agent, action)

Alt

[if not test_valid_action]
action=InvalidAction(agent)

InvalidAction

sim_execute(state)

[if state.sessions>0
where host=host] obs=Observation(True)

return obs

Observation Scenario

get_agent_info(agent_name).allowed_subnets

ScenarioAgent

allowed_subnets

return allowed subnetsreturn allowed subnets
filter_addresses(ips,cidrs,include_localhost)

filters addresses on obs object

Loop

_filter_obs(obs)

[agent in agents]

Remove
(Action -

example for blue)

Alt

State

get_true_state(INFO_DICT['true'])

get_true_state(info)
Returns true state (Observation object with everything in self.data). Lots of conditional interacts with objects (leaving as this for simplicity)

_filter_obs(obs)

get_agent_info(agent_name).allowed_subnets

return allowed subnets
filter_addresses(ips,cidrs,include_localhost)

filters addresses on obs object (with true state)

allowed_subnets
return allowed subnets

[for agent in
agent_interfaces]

Loop determine_done(agent_obs,true_obs,action)

AgentInterface

determine_reward(agent_obs,true_obs,action,done)

HybridAvailability
Confidentiality

RewardCalculator
(RewardCalculator)

calculate_reward(trueobs,
action,agentobs,done)

AvailabilityCalculator
(RewardCalculator)

DisruptReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

ConfidentialityReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

Ret score of svs unavailable
calculate_reward(cur_state,action, agent_obs,done)

PwnReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

Ret score if hosts compromised

Ret Availability (Impacted) Score

Ret score of compromised hosts

Aggregate reward

Return rewardReturn reward
 Add action's cost (cost instance variable of action object)

update(observation) - update obs for given agent

Update Action Space (own object
but just using single arrow for clarity)

Loop
[for agent in
agent_interfaces]

Alt

[if agent_name
=='Blue']

Monitor
(Action)

sim_execute(state)
Returns Observation obj

(Has Host object for each host)

_filter_obs(obs,agent)

Observation

combine_obs(agent_observation),
set_success(first_action_success)

update(observation) - update obs for given agent

Update Action Space (own object
but just using single arrow for clarity)

Results

Results('blue'.data,done,
reward,action_space_action)Return results (Results object)

observation_change(observation), action_space_change(action_space)
Still strings

Return Result object

observation_change(obs)

detect_anomalies(obs)

process_anomalies(anomaly_obs)

_create_vector(success)

*Creates table with row for every host and info (snet,IP,hostname,activity,compromised)
*Then goes through each row and creates vector based on activity and compromised

Changes observation to created vector

action_space_change(action_space) - doesn't appear to do anything - done in enumActionWrapper

Return Results object

action_space_change(action_space)
*Changes action space
to len(possible actions)

Return Results object

Returns obs, reward, done, info

154

ChallengeWrapper OpenAIGymWrapper

*Converts info to
dictionary of result object's values

EnumActionWrapper BlueTableWrapper
(BaseWrapper)

TrueTableWrapper
(BaseWrapper) CybORG

step(action) step(agent_name,action)

step(agent, action)
step(agent, action)

SimulationController
(EnvironmentController)

execute_action(action)

_filter_obs(obs)

step(agent,action,skip_check)
step(agent, action)

Alt

[if not test_valid_action]
action=InvalidAction(agent)

InvalidAction

sim_execute(state)

[if state.sessions>0
where host=host] obs=Observation(True)

return obs

Observation Scenario

get_agent_info(agent_name).allowed_subnets

ScenarioAgent

allowed_subnets

return allowed subnetsreturn allowed subnets
filter_addresses(ips,cidrs,include_localhost)

filters addresses on obs object

Loop

_filter_obs(obs)

[agent in agents]

Remove
(Action -

example for blue)

Alt

State

get_true_state(INFO_DICT['true'])

get_true_state(info)
Returns true state (Observation object with everything in self.data). Lots of conditional interacts with objects (leaving as this for simplicity)

_filter_obs(obs)

get_agent_info(agent_name).allowed_subnets

return allowed subnets
filter_addresses(ips,cidrs,include_localhost)

filters addresses on obs object (with true state)

allowed_subnets
return allowed subnets

[for agent in
agent_interfaces]

Loop determine_done(agent_obs,true_obs,action)

AgentInterface

determine_reward(agent_obs,true_obs,action,done)

HybridAvailability
Confidentiality

RewardCalculator
(RewardCalculator)

calculate_reward(trueobs,
action,agentobs,done)

AvailabilityCalculator
(RewardCalculator)

DisruptReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

ConfidentialityReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

Ret score of svs unavailable
calculate_reward(cur_state,action, agent_obs,done)

PwnReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

Ret score if hosts compromised

Ret Availability (Impacted) Score

Ret score of compromised hosts

Aggregate reward

Return rewardReturn reward
 Add action's cost (cost instance variable of action object)

update(observation) - update obs for given agent

Update Action Space (own object
but just using single arrow for clarity)

Loop
[for agent in
agent_interfaces]

Alt

[if agent_name
=='Blue']

Monitor
(Action)

sim_execute(state)
Returns Observation obj

(Has Host object for each host)

_filter_obs(obs,agent)

Observation

combine_obs(agent_observation),
set_success(first_action_success)

update(observation) - update obs for given agent

Update Action Space (own object
but just using single arrow for clarity)

Results

Results('blue'.data,done,
reward,action_space_action)Return results (Results object)

observation_change(observation), action_space_change(action_space)
Still strings

Return Result object

observation_change(obs)

detect_anomalies(obs)

process_anomalies(anomaly_obs)

_create_vector(success)

*Creates table with row for every host and info (snet,IP,hostname,activity,compromised)
*Then goes through each row and creates vector based on activity and compromised

Changes observation to created vector

action_space_change(action_space) - doesn't appear to do anything - done in enumActionWrapper

Return Results object

action_space_change(action_space)
*Changes action space
to len(possible actions)

Return Results object

Returns obs, reward, done, info

ChallengeWrapper OpenAIGymWrapper

*Converts info to
dictionary of result object's values

EnumActionWrapper BlueTableWrapper
(BaseWrapper)

TrueTableWrapper
(BaseWrapper) CybORG

step(action) step(agent_name,action)

step(agent, action)
step(agent, action)

SimulationController
(EnvironmentController)

execute_action(action)

_filter_obs(obs)

step(agent,action,skip_check)
step(agent, action)

Alt

[if not test_valid_action]
action=InvalidAction(agent)

InvalidAction

sim_execute(state)

[if state.sessions>0
where host=host] obs=Observation(True)

return obs

Observation Scenario

get_agent_info(agent_name).allowed_subnets

ScenarioAgent

allowed_subnets

return allowed subnetsreturn allowed subnets
filter_addresses(ips,cidrs,include_localhost)

filters addresses on obs object

Loop

_filter_obs(obs)

[agent in agents]

Remove
(Action -

example for blue)

Alt

State

get_true_state(INFO_DICT['true'])

get_true_state(info)
Returns true state (Observation object with everything in self.data). Lots of conditional interacts with objects (leaving as this for simplicity)

_filter_obs(obs)

get_agent_info(agent_name).allowed_subnets

return allowed subnets
filter_addresses(ips,cidrs,include_localhost)

filters addresses on obs object (with true state)

allowed_subnets
return allowed subnets

[for agent in
agent_interfaces]

Loop determine_done(agent_obs,true_obs,action)

AgentInterface

determine_reward(agent_obs,true_obs,action,done)

HybridAvailability
Confidentiality

RewardCalculator
(RewardCalculator)

calculate_reward(trueobs,
action,agentobs,done)

AvailabilityCalculator
(RewardCalculator)

DisruptReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

ConfidentialityReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

Ret score of svs unavailable
calculate_reward(cur_state,action, agent_obs,done)

PwnReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

Ret score if hosts compromised

Ret Availability (Impacted) Score

Ret score of compromised hosts

Aggregate reward

Return rewardReturn reward
 Add action's cost (cost instance variable of action object)

update(observation) - update obs for given agent

Update Action Space (own object
but just using single arrow for clarity)

Loop
[for agent in
agent_interfaces]

Alt

[if agent_name
=='Blue']

Monitor
(Action)

sim_execute(state)
Returns Observation obj

(Has Host object for each host)

_filter_obs(obs,agent)

Observation

combine_obs(agent_observation),
set_success(first_action_success)

update(observation) - update obs for given agent

Update Action Space (own object
but just using single arrow for clarity)

Results

Results('blue'.data,done,
reward,action_space_action)Return results (Results object)

observation_change(observation), action_space_change(action_space)
Still strings

Return Result object

observation_change(obs)

detect_anomalies(obs)

process_anomalies(anomaly_obs)

_create_vector(success)

*Creates table with row for every host and info (snet,IP,hostname,activity,compromised)
*Then goes through each row and creates vector based on activity and compromised

Changes observation to created vector

action_space_change(action_space) - doesn't appear to do anything - done in enumActionWrapper

Return Results object

action_space_change(action_space)
*Changes action space
to len(possible actions)

Return Results object

Returns obs, reward, done, info

155

ChallengeWrapper OpenAIGymWrapper

*Converts info to
dictionary of result object's values

EnumActionWrapper BlueTableWrapper
(BaseWrapper)

TrueTableWrapper
(BaseWrapper) CybORG

step(action) step(agent_name,action)

step(agent, action)
step(agent, action)

SimulationController
(EnvironmentController)

execute_action(action)

_filter_obs(obs)

step(agent,action,skip_check)
step(agent, action)

Alt

[if not test_valid_action]
action=InvalidAction(agent)

InvalidAction

sim_execute(state)

[if state.sessions>0
where host=host] obs=Observation(True)

return obs

Observation Scenario

get_agent_info(agent_name).allowed_subnets

ScenarioAgent

allowed_subnets

return allowed subnetsreturn allowed subnets
filter_addresses(ips,cidrs,include_localhost)

filters addresses on obs object

Loop

_filter_obs(obs)

[agent in agents]

Remove
(Action -

example for blue)

Alt

State

get_true_state(INFO_DICT['true'])

get_true_state(info)
Returns true state (Observation object with everything in self.data). Lots of conditional interacts with objects (leaving as this for simplicity)

_filter_obs(obs)

get_agent_info(agent_name).allowed_subnets

return allowed subnets
filter_addresses(ips,cidrs,include_localhost)

filters addresses on obs object (with true state)

allowed_subnets
return allowed subnets

[for agent in
agent_interfaces]

Loop determine_done(agent_obs,true_obs,action)

AgentInterface

determine_reward(agent_obs,true_obs,action,done)

HybridAvailability
Confidentiality

RewardCalculator
(RewardCalculator)

calculate_reward(trueobs,
action,agentobs,done)

AvailabilityCalculator
(RewardCalculator)

DisruptReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

ConfidentialityReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

Ret score of svs unavailable
calculate_reward(cur_state,action, agent_obs,done)

PwnReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

Ret score if hosts compromised

Ret Availability (Impacted) Score

Ret score of compromised hosts

Aggregate reward

Return rewardReturn reward
 Add action's cost (cost instance variable of action object)

update(observation) - update obs for given agent

Update Action Space (own object
but just using single arrow for clarity)

Loop
[for agent in
agent_interfaces]

Alt

[if agent_name
=='Blue']

Monitor
(Action)

sim_execute(state)
Returns Observation obj

(Has Host object for each host)

_filter_obs(obs,agent)

Observation

combine_obs(agent_observation),
set_success(first_action_success)

update(observation) - update obs for given agent

Update Action Space (own object
but just using single arrow for clarity)

Results

Results('blue'.data,done,
reward,action_space_action)Return results (Results object)

observation_change(observation), action_space_change(action_space)
Still strings

Return Result object

observation_change(obs)

detect_anomalies(obs)

process_anomalies(anomaly_obs)

_create_vector(success)

*Creates table with row for every host and info (snet,IP,hostname,activity,compromised)
*Then goes through each row and creates vector based on activity and compromised

Changes observation to created vector

action_space_change(action_space) - doesn't appear to do anything - done in enumActionWrapper

Return Results object

action_space_change(action_space)
*Changes action space
to len(possible actions)

Return Results object

Returns obs, reward, done, info

ChallengeWrapper OpenAIGymWrapper

*Converts info to
dictionary of result object's values

EnumActionWrapper BlueTableWrapper
(BaseWrapper)

TrueTableWrapper
(BaseWrapper) CybORG

step(action) step(agent_name,action)

step(agent, action)
step(agent, action)

SimulationController
(EnvironmentController)

execute_action(action)

_filter_obs(obs)

step(agent,action,skip_check)
step(agent, action)

Alt

[if not test_valid_action]
action=InvalidAction(agent)

InvalidAction

sim_execute(state)

[if state.sessions>0
where host=host] obs=Observation(True)

return obs

Observation Scenario

get_agent_info(agent_name).allowed_subnets

ScenarioAgent

allowed_subnets

return allowed subnetsreturn allowed subnets
filter_addresses(ips,cidrs,include_localhost)

filters addresses on obs object

Loop

_filter_obs(obs)

[agent in agents]

Remove
(Action -

example for blue)

Alt

State

get_true_state(INFO_DICT['true'])

get_true_state(info)
Returns true state (Observation object with everything in self.data). Lots of conditional interacts with objects (leaving as this for simplicity)

_filter_obs(obs)

get_agent_info(agent_name).allowed_subnets

return allowed subnets
filter_addresses(ips,cidrs,include_localhost)

filters addresses on obs object (with true state)

allowed_subnets
return allowed subnets

[for agent in
agent_interfaces]

Loop determine_done(agent_obs,true_obs,action)

AgentInterface

determine_reward(agent_obs,true_obs,action,done)

HybridAvailability
Confidentiality

RewardCalculator
(RewardCalculator)

calculate_reward(trueobs,
action,agentobs,done)

AvailabilityCalculator
(RewardCalculator)

DisruptReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

ConfidentialityReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

Ret score of svs unavailable
calculate_reward(cur_state,action, agent_obs,done)

PwnReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

Ret score if hosts compromised

Ret Availability (Impacted) Score

Ret score of compromised hosts

Aggregate reward

Return rewardReturn reward
 Add action's cost (cost instance variable of action object)

update(observation) - update obs for given agent

Update Action Space (own object
but just using single arrow for clarity)

Loop
[for agent in
agent_interfaces]

Alt

[if agent_name
=='Blue']

Monitor
(Action)

sim_execute(state)
Returns Observation obj

(Has Host object for each host)

_filter_obs(obs,agent)

Observation

combine_obs(agent_observation),
set_success(first_action_success)

update(observation) - update obs for given agent

Update Action Space (own object
but just using single arrow for clarity)

Results

Results('blue'.data,done,
reward,action_space_action)Return results (Results object)

observation_change(observation), action_space_change(action_space)
Still strings

Return Result object

observation_change(obs)

detect_anomalies(obs)

process_anomalies(anomaly_obs)

_create_vector(success)

*Creates table with row for every host and info (snet,IP,hostname,activity,compromised)
*Then goes through each row and creates vector based on activity and compromised

Changes observation to created vector

action_space_change(action_space) - doesn't appear to do anything - done in enumActionWrapper

Return Results object

action_space_change(action_space)
*Changes action space
to len(possible actions)

Return Results object

Returns obs, reward, done, info

156

ChallengeWrapper OpenAIGymWrapper

*Converts info to
dictionary of result object's values

EnumActionWrapper BlueTableWrapper
(BaseWrapper)

TrueTableWrapper
(BaseWrapper) CybORG

step(action) step(agent_name,action)

step(agent, action)
step(agent, action)

SimulationController
(EnvironmentController)

execute_action(action)

_filter_obs(obs)

step(agent,action,skip_check)
step(agent, action)

Alt

[if not test_valid_action]
action=InvalidAction(agent)

InvalidAction

sim_execute(state)

[if state.sessions>0
where host=host] obs=Observation(True)

return obs

Observation Scenario

get_agent_info(agent_name).allowed_subnets

ScenarioAgent

allowed_subnets

return allowed subnetsreturn allowed subnets
filter_addresses(ips,cidrs,include_localhost)

filters addresses on obs object

Loop

_filter_obs(obs)

[agent in agents]

Remove
(Action -

example for blue)

Alt

State

get_true_state(INFO_DICT['true'])

get_true_state(info)
Returns true state (Observation object with everything in self.data). Lots of conditional interacts with objects (leaving as this for simplicity)

_filter_obs(obs)

get_agent_info(agent_name).allowed_subnets

return allowed subnets
filter_addresses(ips,cidrs,include_localhost)

filters addresses on obs object (with true state)

allowed_subnets
return allowed subnets

[for agent in
agent_interfaces]

Loop determine_done(agent_obs,true_obs,action)

AgentInterface

determine_reward(agent_obs,true_obs,action,done)

HybridAvailability
Confidentiality

RewardCalculator
(RewardCalculator)

calculate_reward(trueobs,
action,agentobs,done)

AvailabilityCalculator
(RewardCalculator)

DisruptReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

ConfidentialityReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

Ret score of svs unavailable
calculate_reward(cur_state,action, agent_obs,done)

PwnReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

Ret score if hosts compromised

Ret Availability (Impacted) Score

Ret score of compromised hosts

Aggregate reward

Return rewardReturn reward
 Add action's cost (cost instance variable of action object)

update(observation) - update obs for given agent

Update Action Space (own object
but just using single arrow for clarity)

Loop
[for agent in
agent_interfaces]

Alt

[if agent_name
=='Blue']

Monitor
(Action)

sim_execute(state)
Returns Observation obj

(Has Host object for each host)

_filter_obs(obs,agent)

Observation

combine_obs(agent_observation),
set_success(first_action_success)

update(observation) - update obs for given agent

Update Action Space (own object
but just using single arrow for clarity)

Results

Results('blue'.data,done,
reward,action_space_action)Return results (Results object)

observation_change(observation), action_space_change(action_space)
Still strings

Return Result object

observation_change(obs)

detect_anomalies(obs)

process_anomalies(anomaly_obs)

_create_vector(success)

*Creates table with row for every host and info (snet,IP,hostname,activity,compromised)
*Then goes through each row and creates vector based on activity and compromised

Changes observation to created vector

action_space_change(action_space) - doesn't appear to do anything - done in enumActionWrapper

Return Results object

action_space_change(action_space)
*Changes action space
to len(possible actions)

Return Results object

Returns obs, reward, done, info

ChallengeWrapper OpenAIGymWrapper

*Converts info to
dictionary of result object's values

EnumActionWrapper BlueTableWrapper
(BaseWrapper)

TrueTableWrapper
(BaseWrapper) CybORG

step(action) step(agent_name,action)

step(agent, action)
step(agent, action)

SimulationController
(EnvironmentController)

execute_action(action)

_filter_obs(obs)

step(agent,action,skip_check)
step(agent, action)

Alt

[if not test_valid_action]
action=InvalidAction(agent)

InvalidAction

sim_execute(state)

[if state.sessions>0
where host=host] obs=Observation(True)

return obs

Observation Scenario

get_agent_info(agent_name).allowed_subnets

ScenarioAgent

allowed_subnets

return allowed subnetsreturn allowed subnets
filter_addresses(ips,cidrs,include_localhost)

filters addresses on obs object

Loop

_filter_obs(obs)

[agent in agents]

Remove
(Action -

example for blue)

Alt

State

get_true_state(INFO_DICT['true'])

get_true_state(info)
Returns true state (Observation object with everything in self.data). Lots of conditional interacts with objects (leaving as this for simplicity)

_filter_obs(obs)

get_agent_info(agent_name).allowed_subnets

return allowed subnets
filter_addresses(ips,cidrs,include_localhost)

filters addresses on obs object (with true state)

allowed_subnets
return allowed subnets

[for agent in
agent_interfaces]

Loop determine_done(agent_obs,true_obs,action)

AgentInterface

determine_reward(agent_obs,true_obs,action,done)

HybridAvailability
Confidentiality

RewardCalculator
(RewardCalculator)

calculate_reward(trueobs,
action,agentobs,done)

AvailabilityCalculator
(RewardCalculator)

DisruptReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

ConfidentialityReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

Ret score of svs unavailable
calculate_reward(cur_state,action, agent_obs,done)

PwnReward
Calculator

(RewardCalculator)

calculate_reward(cur_state,action,
agent_obs,done)

Ret score if hosts compromised

Ret Availability (Impacted) Score

Ret score of compromised hosts

Aggregate reward

Return rewardReturn reward
 Add action's cost (cost instance variable of action object)

update(observation) - update obs for given agent

Update Action Space (own object
but just using single arrow for clarity)

Loop
[for agent in
agent_interfaces]

Alt

[if agent_name
=='Blue']

Monitor
(Action)

sim_execute(state)
Returns Observation obj

(Has Host object for each host)

_filter_obs(obs,agent)

Observation

combine_obs(agent_observation),
set_success(first_action_success)

update(observation) - update obs for given agent

Update Action Space (own object
but just using single arrow for clarity)

Results

Results('blue'.data,done,
reward,action_space_action)Return results (Results object)

observation_change(observation), action_space_change(action_space)
Still strings

Return Result object

observation_change(obs)

detect_anomalies(obs)

process_anomalies(anomaly_obs)

_create_vector(success)

*Creates table with row for every host and info (snet,IP,hostname,activity,compromised)
*Then goes through each row and creates vector based on activity and compromised

Changes observation to created vector

action_space_change(action_space) - doesn't appear to do anything - done in enumActionWrapper

Return Results object

action_space_change(action_space)
*Changes action space
to len(possible actions)

Return Results object

Returns obs, reward, done, info

The selected action and observation space must also be converted to
numerical representations that the RL agent can process. The enumaction
wrapper is used to determine all possible actions, which are then converted to
a discrete space for the agent to select from. The openAIGym wrapper is used
to determine the observation size (feature size of the agent). It does this by
initializing the environment and returning the length of the processed
observation.

Another important wrapper is the TrueTableWrapper, which returns the
processed true state of the environment (not the agent’s perceived state of the
environment). This preprocessing is done using a technique similar to the blue
agent’s preprocessing.

157

Figure A.3 shows the initialization of the wrappers that are used to process
the CybORG data into numerical representations that can be interpreted by
RL agents.

ChallengeWrapper
(BaseWrapper)

BlueTableWrapper
(BaseWrapper)

TrueTableWrapper
(BaseWrapper)

EnumActionWrapper
(BaseWrapper) CybORG ActionSpace

init(env,agent_name)
*env=Cyborg,agent_name='blue'

super.init(env,agent)
*Just sets self.env&self.agent
self.agent=None for this

Alt

[if agent_name='Blue']

init(env,output_mode='vector')
*env=CybORG obj

super.init(env,agent)

init(env,agent)
super.init(env,agent)

Ret TrueTableWrapper (self.env)

init(env) *env=BlueTableWrapper
super.init(env,agent)

get_action_space(agent='red')
*Actually through table wrappers,

but for clarity sake
showing to CybORG

SimulationController
(EnvironmentController)

get_action_space(agent='red')
get_action_space()

*Through AgentInterface object (
specifies it's red agent)
Ret possible actions (as dict)Ret possible actions (as dict)

Ret possible actions (as dict)

parse for possible actions and return
len of possible actions

init(agent_name=agent_name,env=env)
*env is EnumActionWrapper

super.init(env,agent)

init(action_space)

MultiDiscrete
(from gym.spaces)

MultiDiscrete
(from gym.spaces)

Alt

[action_space is list]
[else] init(action_space)

Box
(from gym.spaces)

super.init(env,agent)

env.reset().observation
*Goes through wrappers->cyborg
*Just keeping here to keep clean

init(-1,1,obs_len,dtype=np.float(32)
*Sets the observation_space

*After openAI gym wrapper's done, actionspace is
Discrete(22) and observation_space is box object

OpenAIGymWrapper
(BasseWrapper)

Figure A.3: Sequence diagram illustrating the wrappers that are used to interface
between RL agents and the simulated Cage Challenge 2 environment. Colored boxes
are expanded in subsequent plots.

158

ChallengeWrapper
(BaseWrapper)

BlueTableWrapper
(BaseWrapper)

TrueTableWrapper
(BaseWrapper)

EnumActionWrapper
(BaseWrapper) CybORG ActionSpace

init(env,agent_name)
*env=Cyborg,agent_name='blue'

super.init(env,agent)
*Just sets self.env&self.agent
self.agent=None for this

Alt

[if agent_name='Blue']

init(env,output_mode='vector')
*env=CybORG obj

super.init(env,agent)

init(env,agent)
super.init(env,agent)

Ret TrueTableWrapper (self.env)

init(env) *env=BlueTableWrapper
super.init(env,agent)

get_action_space(agent='red')
*Actually through table wrappers,

but for clarity sake
showing to CybORG

SimulationController
(EnvironmentController)

get_action_space(agent='red')
get_action_space()

*Through AgentInterface object (
specifies it's red agent)
Ret possible actions (as dict)Ret possible actions (as dict)

Ret possible actions (as dict)

parse for possible actions and return
len of possible actions

init(agent_name=agent_name,env=env)
*env is EnumActionWrapper

super.init(env,agent)

init(action_space)

MultiDiscrete
(from gym.spaces)

MultiDiscrete
(from gym.spaces)

Alt

[action_space is list]
[else] init(action_space)

Box
(from gym.spaces)

super.init(env,agent)

env.reset().observation
*Goes through wrappers->cyborg
*Just keeping here to keep clean

init(-1,1,obs_len,dtype=np.float(32)
*Sets the observation_space

*After openAI gym wrapper's done, actionspace is
Discrete(22) and observation_space is box object

OpenAIGymWrapper
(BasseWrapper)

159

ChallengeWrapper
(BaseWrapper)

BlueTableWrapper
(BaseWrapper)

TrueTableWrapper
(BaseWrapper)

EnumActionWrapper
(BaseWrapper) CybORG ActionSpace

init(env,agent_name)
*env=Cyborg,agent_name='blue'

super.init(env,agent)
*Just sets self.env&self.agent
self.agent=None for this

Alt

[if agent_name='Blue']

init(env,output_mode='vector')
*env=CybORG obj

super.init(env,agent)

init(env,agent)
super.init(env,agent)

Ret TrueTableWrapper (self.env)

init(env) *env=BlueTableWrapper
super.init(env,agent)

get_action_space(agent='red')
*Actually through table wrappers,

but for clarity sake
showing to CybORG

SimulationController
(EnvironmentController)

get_action_space(agent='red')
get_action_space()

*Through AgentInterface object (
specifies it's red agent)
Ret possible actions (as dict)Ret possible actions (as dict)

Ret possible actions (as dict)

parse for possible actions and return
len of possible actions

init(agent_name=agent_name,env=env)
*env is EnumActionWrapper

super.init(env,agent)

init(action_space)

MultiDiscrete
(from gym.spaces)

MultiDiscrete
(from gym.spaces)

Alt

[action_space is list]
[else] init(action_space)

Box
(from gym.spaces)

super.init(env,agent)

env.reset().observation
*Goes through wrappers->cyborg
*Just keeping here to keep clean

init(-1,1,obs_len,dtype=np.float(32)
*Sets the observation_space

*After openAI gym wrapper's done, actionspace is
Discrete(22) and observation_space is box object

OpenAIGymWrapper
(BasseWrapper)

ChallengeWrapper
(BaseWrapper)

BlueTableWrapper
(BaseWrapper)

TrueTableWrapper
(BaseWrapper)

EnumActionWrapper
(BaseWrapper) CybORG ActionSpace

init(env,agent_name)
*env=Cyborg,agent_name='blue'

super.init(env,agent)
*Just sets self.env&self.agent
self.agent=None for this

Alt

[if agent_name='Blue']

init(env,output_mode='vector')
*env=CybORG obj

super.init(env,agent)

init(env,agent)
super.init(env,agent)

Ret TrueTableWrapper (self.env)

init(env) *env=BlueTableWrapper
super.init(env,agent)

get_action_space(agent='red')
*Actually through table wrappers,

but for clarity sake
showing to CybORG

SimulationController
(EnvironmentController)

get_action_space(agent='red')
get_action_space()

*Through AgentInterface object (
specifies it's red agent)
Ret possible actions (as dict)Ret possible actions (as dict)

Ret possible actions (as dict)

parse for possible actions and return
len of possible actions

init(agent_name=agent_name,env=env)
*env is EnumActionWrapper

super.init(env,agent)

init(action_space)

MultiDiscrete
(from gym.spaces)

MultiDiscrete
(from gym.spaces)

Alt

[action_space is list]
[else] init(action_space)

Box
(from gym.spaces)

super.init(env,agent)

env.reset().observation
*Goes through wrappers->cyborg
*Just keeping here to keep clean

init(-1,1,obs_len,dtype=np.float(32)
*Sets the observation_space

*After openAI gym wrapper's done, actionspace is
Discrete(22) and observation_space is box object

OpenAIGymWrapper
(BasseWrapper)

160

B Django Application for Agent
Evaluation

This appendix contains additional information on the functionality of the
Django application [80] that was initially used to evaluate environment
modifications and agent development.

B.1 Application Overview

The Django application has three main functionalities that are available
through its graphical user interface (GUI):

• The ability to specify hyperparameters for a new round, run an
iteration, and store the results.

• The analysis of rounds at an episodic granularity.
• The analysis of rounds at a per timestep granularity.

B.2 Running a Round

Games can be directly run from the interface, enabling users to select the
number of episodes, steps and batch size. Additional parameters cannot be set
through the interface and must instead be configured by modifying the code
directly.

The game’s associated data, including the actions taken, rewards and
states are then stored in the database to be analyzed further. The interface
for running games is shown in Figure B.1.

161

B.3. Analyzing Results at the Episodic Level

Figure B.1: Django interface to run a game.

B.3 Analyzing Results at the Episodic Level

Once games have been run and stored in the database, they can be analyzed
further from the interface. Figure B.2 shows the interface for selecting
previously run games for deeper analysis.

Figure B.2: Interface for analysis selection.

After selecting a game from the interface shown in Figure B.2, an episodic
level view for the analysis appears, including:

162

B.4. Analyzing Results at the Timestep Level

• All actions taken for that episode; and
• The action taken at each timestep for that episode; and
• The reward across all episodes.
All of these metrics are presented in the form of Chart.js [82] visualizations.

The interface allows for different types of charts to be generated depending on
the intent. Furthermore, individual episodes can be selected to provide deeper
insight into the actions taken during that particular episode. The episodic
analysis view is shown in Figure B.3.

Figure B.3: Illustration of the episodic analysis view for a game.

B.4 Analyzing Results at the Timestep Level

The Django application supports a deeper analysis for the individual
timesteps within a game. This view dynamically generates an interface,
showing the blue agent’s perceived state and the true state of the environment
at a given timestep.

In addition to this, the rewards for that particular step, the last blue
action, the last red action, the next blue action, and the next red action are
shown for each timestep. Figure B.4 shows the analysis of a 4-host and
13-host game using the deeper per-timestep interface.

163

B.4. Analyzing Results at the Timestep Level

Figure B.4: Illustration of per-timestep analysis of a 4-host (top) and 13-host
(bottom) game.

164

C Prompts used for Study

As discussed, three main prompt formats were used for this study:
• The initial prompt, where the state of each host was listed in JSON

format with an explicit priority and last-analyzed status for each.
• The updated prompt that described the priority as a function of hops to

the operational server rather than a label. This also included converting
the actions and host names into a generic format.

• An optimized prompt that described the steps the LLM should take in
deciding an action in an explicit step-by-step format. This prompt
included specific constraints, such as only selecting the remove and
restore actions on hosts with suspicious processes or files.

C.1 Initial Prompt

The initial prompt was used in Phase 1 to validate the LLMs. It included an
isolated, last-analyzed and priority status and listed all the processes, files,
and scans that were not in the baseline image. This was all presented in a
JSON format surrounded by additional contextual information to enable the
LLM to make a more informed decision. The initial prompt format is shown
in Listing C.1.

Listing C.1: Initial prompt. Extra newlines have been added to the original to be
displayed on the width of a page.

You are defending a network at timestep 26. Your goal is to keep

the network fully functional. Choose an action from Restore ,

Patch , Isolate , Unisolate , Remove , Analyse , Block , Allow.

Only select actions that disrupt functionality if essential.

Respond with <Action > <Hostname > only. Current network state:

{" Defender ": {"ip": "10.0.13.171" , "Processes ": [], "Files ": [],

"Scans": [], "Isolated ": false , "LastAnalysed ": 0,

"Priority ": "High"},

"Enterprise0 ": {"ip": "10.0.13.164" , "Processes ": [],

165

C.1. Initial Prompt

"Files": [], "Scans": [], "Isolated ": false ,

"LastAnalysed ": 6, "Priority ": "Medium"},

"Enterprise1 ": {"ip": "10.0.13.173" , "Processes ":

[{" remoteAddress ": "10.0.114.134" , "localPort ": 49547,

"count": 1}], "Files": [{" Name": "cmd.exe", "Path": "C:\\ temp\\",

"Density ": 0.9, "Signed ": false}, {"Name": "escalate.exe",

"Path": "C:\\ temp\\", "Density ": 0.9, "Signed ": false}],

"Scans": [], "Isolated ": false , "LastAnalysed ": 14,

"Priority ": "Medium"},

"Enterprise2 ": {"ip": "10.0.13.170" , "Processes ":

[{" remoteAddress ": "10.0.114.134" , "localPort ": 49191,

"count": 1}], "Files": [], "Scans": [], "Isolated ": false ,

"LastAnalysed ": -1, "Priority ": "Medium"},

"Op_Host0 ": {"ip": "10.0.105.6" , "Processes ": [], "Files": [],

"Scans": [], "Isolated ": false , "LastAnalysed ": 23,

"Priority ": "High"},

"Op_Host1 ": {"ip": "10.0.105.11" , "Processes ": [], "Files": [],

"Scans": [], "Isolated ": false , "LastAnalysed ": 1,

"Priority ": "High"}, "Op_Host2 ": {"ip": "10.0.105.3" ,

"Processes ": [], "Files": [], "Scans": [], "Isolated ": false ,

"LastAnalysed ": 8, "Priority ": "High"},

"Op_Server0 ": {"ip": "10.0.105.7" , "Processes ":

[{" remoteAddress ": "10.0.114.134" , "localPort ": 22,

"count": 11}], "Files": [], "Scans": [], "Isolated ": false ,

"LastAnalysed ": 18, "Priority ": "High"},

"User0": {"ip": "10.0.114.134" , "Processes ": [], "Files": [],

"Scans": [], "Isolated ": false , "LastAnalysed ": 13,

"Priority ": "Low"},

"User1": {"ip": "10.0.114.129" , "Processes ":

[{" remoteAddress ": "10.0.114.134" , "localPort ": 56433,

"count": 1}], "Files": [{" Name": "cmd.exe", "Path": "C:\\ temp\\",

"Density ": 0.9, "Signed ": false}], "Scans": [],

"Isolated ": false , "LastAnalysed ": 3, "Priority ": "Low"},

"User2": {"ip": "10.0.114.137" , "Processes ": [], "Files": [],

"Scans": [], "Isolated ": false , "LastAnalysed ": -1,

"Priority ": "Low"},

"User3": {"ip": "10.0.114.135" , "Processes ": [], "Files": [],

"Scans": [], "Isolated ": false , "LastAnalysed ": 7,

"Priority ": "Low"},

"User4": {"ip": "10.0.114.138" , "Processes ": [], "Files": [],

"Scans": [{" remoteAddress ": "10.0.114.134" , "localPort ": 22,

"count": 1}, {" remoteAddress ": "10.0.114.134" , "localPort ": 80,

"count": 1}, {" remoteAddress ": "10.0.114.134" , "localPort ": 3390,

"count": 1}, {" remoteAddress ": "10.0.114.134" , "localPort ": 443,

"count": 1}, {" remoteAddress ": "10.0.114.134" , "localPort ": 25,

"count": 1}], "Isolated ": false , "LastAnalysed ": 2,

"Priority ": "Low"}}

Best Action:

166

C.2. Standard Prompt

C.2 Standard Prompt

The standard prompt was created to rectify some of the performance issues
observed with the initial prompt (mainly high variance). It omitted the
priority attribute for each host and instead denoted the priority with respect
to how many hops each host had from the operational server along the critical
paths (the most direct path to the operational server from that particular
host). It also omitted the last-analyzed and timestep attributes, as the LLM
appeared to have difficulty processing their reinforcement learning specific
metrics (both were specified in terms of timesteps).

Furthermore, the LLM appeared to recognize patterns in specific actions
and hosts that did not align with the CybORG environment. As such, these
actions and hosts were mapped into generic names. For example, in the
context of CybORG, the remove action only functions for non-privileged
presences; however, the LLM would consistently recommend the remove
action on hosts with root-level red access, despite having this constraint
defined explicitly in the prompt.

The surrounding context was modified to include a detailed role, objective,
action definition, and execution intent. The standard prompt is shown in
Listing C.2.

Listing C.2: Standard prompt. Extra newlines have been added to the original to be
displayed on the width of a page.

**Role **:

You are an expert at cybersecurity and network defense.

** Objective **:

You must choose **ONE ACTION ** to execute on the most critical

host to maintain network functionality.

** Prioritize Hosts by Distance to the Target **

- Prioritize hosts that are closest to the operational server:

- host8: 0 hops.

- host4: 1 hops.

- host2: 2 hops.

- host3: 2 hops.

- host10: 3 hops.

- host11: 3 hops.

- host12: 3 hops.

- host13: 3 hops.

** Determine the Best Action **

For the selected host , choose the best action based on the

following definitions:

167

C.2. Standard Prompt

- ** action1 **: Use to gather additional information on a host ,

such as active processes , connections , or files.

- ** action2 **: Use to revert a fully compromised host where the

attacker has gained persistence.

- ** action3 **: Use to terminate non -persistent malicious

processes before they escalate privileges or gain persistence.

- ** action4 **: Use to apply security updates and reduce the

likelihood of future exploitation.

- ** action5 **: Use to block network access to and from a

compromised host to prevent lateral movement.

- ** action6 **: Use to restore network access to a previously

isolated host once it is deemed safe.

** Current Network State **:

host8| IP: 10.0.179.17 , NOT ISOLATED , Files: [], Processes:

[11 processes with: (Remote IP: 10.0.243.220 and Port: 22)],

Scans: []

host4| IP: 10.0.232.83 , NOT ISOLATED , Files:

[cmd.exe at C:\temp\ (Density: 0.9, Signed: No), escalate.exe

at C:\temp\ (Density: 0.9, Signed: No)], Processes: [1 process

with: (Remote IP: 10.0.243.220 and Port: 57984)] , Scans: []

host2| IP: 10.0.232.84 , NOT ISOLATED , Files: [escalate.sh at

/tmp/ (Density: 0.9, Signed: No)], Processes: [11 processes

with: (Remote IP: 10.0.243.220 and Port: 22)], Scans: []

host3| IP: 10.0.232.93 , NOT ISOLATED , Files: [], Processes: [],

Scans: []

host10| IP: 10.0.243.219 , NOT ISOLATED , Files: [], Processes: [],

Scans: []

host11| IP: 10.0.243.211 , NOT ISOLATED , Files: [], Processes: [],

Scans: [1 scan with: (Remote IP: 10.0.243.220 and Port: 445),

1 scan with: (Remote IP: 10.0.243.220 and Port: 139),

1 scan with: (Remote IP: 10.0.243.220 and Port: 135),

1 scan with: (Remote IP: 10.0.243.220 and Port: 3389)]

host12| IP: 10.0.243.213 , NOT ISOLATED , Files: [], Processes: [],

Scans: []

host13| IP: 10.0.243.215 , NOT ISOLATED , Files: [cmd.sh at /tmp/

(Density: 0.9, Signed: No)], Processes: [1 process with:

(Remote IP: 10.0.243.220 and Port: 54437)] , Scans: []

host1| IP: 10.0.232.87 , NOT ISOLATED , Files: [], Processes: [],

Scans: []

host5| IP: 10.0.179.27 , NOT ISOLATED , Files: [], Processes: [],

Scans: []

host6| IP: 10.0.179.20 , NOT ISOLATED , Files: [], Processes: [],

Scans: []

host7| IP: 10.0.179.18 , NOT ISOLATED , Files: [], Processes: [],

Scans: []

host9| IP: 10.0.243.220 , NOT ISOLATED , Files: [], Processes: [],

Scans: []

168

C.3. Optimized Prompt

Your response must follow this format exactly:

<action > <hostname > (e.g., actionx hostx).

Best Action:

The optimized prompt was created to achieve the best performance in
CybORG by providing the LLM with step-by-step instructions on how to
process the environment’s state, and provide a relevant response. This is a
similar idea to chain-of-thought prompting [74]; however, instead of
encouraging the LLM to follow a step-by-step sequence to produce a response,
these steps are explicitly provided.

In addition to this step-by-step methodology, explicit constraints were
specified in the prompt, such as disallowing the remove or restore action on
hosts without suspicious processes or files. ChatGPT-4o [38] was leveraged to
help format these constraints in a way that the intent could easily be
extracted by an LLM.

The optimized prompt used for this study is shown in Listing C.3.

C.3 Optimized Prompt

Listing C.3: Optimized prompt. Extra newlines have been added to original to be
displayed on width of page

**Role **:

You are an expert at cybersecurity and network defense.

** Objective **:

You must choose **ONE ACTION ** to execute on the most critical

host to maintain network functionality.

** Instructions **:

Evaluate the Network State and follow these strict steps:

Step 1: Identify Critical Hosts

!!! ** IMPORTANT :**

- **DO NOT select action2 or action3 unless there are suspicious

processes or files .**

- Identify hosts with ** suspicious processes or files **.

**Step 2: Prioritize Hosts by Distance to the Target **

- Prioritize hosts that are closest to the operational server:

- host8: 0 hops.

- host4: 1 hops.

- host2: 2 hops.

- host3: 2 hops.

169

C.3. Optimized Prompt

- host10: 3 hops.

- host11: 3 hops.

- host12: 3 hops.

- host13: 3 hops.

Step 3: Select the Best Host

- **host8 can ONLY be selected if it has suspicious processes or

files .**

- **IF AND ONLY IF** host8 has **ANY suspicious processes or

files**, select host8.

- **IF host8 has NO suspicious processes or files , SKIP IT and

proceed to Step 4.**

**Step 4: Choose the closest host from the remaining list

that has suspicious processes or files .**

**Step 5: Determine the Best Action **

For the selected host , choose the best action based on the

following rules:

- ** action1 **: Use when a host ’s ** status is unknown or

unclear**, and additional information is needed to make a

decision.

- ** action2 **: Use **ONLY** if the host has suspicious files or

long running processes.

- ** action3 **: Use **ONLY** if the host has short running

processes.

- ** action4 **: Use if the host has no current suspicious

processes or files to prevent future exploitation.

- ** action5 **: Use if the host is NOT already isolated and has

suspicious processes or files to prevent spreading to host8.

- ** action6 **: Use if the host is already isolated AND has no

suspicious processes or files.

!!! **IP addresses are identifiers only. They must NOT be used

for decision -making. The correct action is determined ONLY by the

host ’s state and proximity (i.e., number of hops).** !!!

!!! **DO NOT output explanations or repeat instructions. The

correct action is determined ONLY by the host ’s state and

proximity (i.e., number of hops).** !!!

!!! **ONLY SELECT action2 or action3 if there are suspicious

processes or files .** !!!

!!! **If the host has NO suspicious processes or files (" Files:

[]", "Processes: []"), action2 and action3 are NOT ALLOWED .** !!!

** Current Network State **:

host8| IP: 10.0.108.129 , NOT ISOLATED , Files: [], Processes: [11

processes with: (Remote IP: 10.0.146.86 and Port: 22)], Scans: []

host4| IP: 10.0.16.133 , NOT ISOLATED , Files: [cmd.exe at

C:\temp\ (Density: 0.9, Signed: No), escalate.exe at

170

C.3. Optimized Prompt

C:\temp\ (Density: 0.9, Signed: No)], Processes: [1 process with:

(Remote IP: 10.0.146.86 and Port: 55497)] , Scans: []

host2| IP: 10.0.16.134 , NOT ISOLATED , Files: [], Processes: [],

Scans: []

host3| IP: 10.0.16.131 , NOT ISOLATED , Files: [], Processes: [1

process with: (Remote IP: 10.0.146.86 and Port: 51248)] ,

Scans: []

host10| IP: 10.0.146.93 , NOT ISOLATED , Files: [], Processes: [],

Scans: []

host11| IP: 10.0.146.90 , NOT ISOLATED , Files: [cmd.exe at

C:\temp\ (Density: 0.9, Signed: No), escalate.exe at C:\temp\

(Density: 0.9, Signed: No)], Processes: [1 process with:

(Remote IP: 10.0.146.86 and Port: 56133)] , Scans: []

host12| IP: 10.0.146.85 , NOT ISOLATED , Files: [], Processes: [],

Scans: [1 scan with: (Remote IP: 10.0.146.86 and Port: 80),

1 scan with: (Remote IP: 10.0.146.86 and Port: 3389) ,

1 scan with: (Remote IP: 10.0.146.86 and Port: 443),

1 scan with: (Remote IP: 10.0.146.86 and Port: 25)]

host13| IP: 10.0.146.87 , NOT ISOLATED , Files: [], Processes: [],

Scans: []

host1| IP: 10.0.16.138 , NOT ISOLATED , Files: [], Processes: [],

Scans: []

host5| IP: 10.0.108.131 , NOT ISOLATED , Files: [], Processes: [],

Scans: []

host6| IP: 10.0.108.134 , NOT ISOLATED , Files: [], Processes: [],

Scans: []

host7| IP: 10.0.108.137 , NOT ISOLATED , Files: [], Processes: [1

process with: (Remote IP: 10.0.146.86 and Port: 22)], Scans: []

host9| IP: 10.0.146.86 , NOT ISOLATED , Files: [], Processes: [],

Scans: []

Your response must follow this format exactly:

<action > <hostname > (e.g., actionx hostx).

Best Action:

171

D Encoder-Only LLMs

Unlike the decoder-only LLMs that process text auto-regressively in a
sequential fashion, encoder-only LLMs process the text bidirectionally,
weighing tokens agnostic of their position in the input sequence. This shows
promise for this study, where the order in which hosts appear should not
impact the LLM’s decision. For example, just because the enterprise1 host
appears before the enterprise2 host in the prompt, the LLM should not
inherently prioritize enterprise1, and instead make its decision solely based on
the state and attributes of each host.

This study attempted to integrate an encoder-only LLM into CybORG,
specifically SecureBERT [90], a widely used model fine-tuned on cybersecurity
data. However, this approach encountered several challenges including:

• The window size for SecureBERT is 512 bytes, greatly limiting the
amount of information that can be included in a prompt.

• SecureBERT appeared to struggle with conceptualizing the state of the
environment.

Figure D.1 demonstrates the performance deficiencies of SecureBERT in
the context of CybORG. SecureBERT outputs a response not relevant to
CybORG despite the state only containing two hosts, with one containing an
escalate.exe and stuxnet.exe file with high density scores. Furthermore, even
when one host is explicitly listed as clean and the other as infected,
SecureBERT still does not recommend to act on the correct one with respect
to CybORG.

172

Your goal is to maintain network functionality. Choose a host to
act on based on the network state: {"Host1": {"ip":
"10.0.13.164", "Processes": [], "Files": [], "Scans": [], "Isolated":
false, "LastAnalysed": 6, "Priority": "Medium"}, "Host2": {"ip":
"10.0.13.173", "Processes": [{"remoteAddress":
"10.0.114.134", "localPort": 49547, "count": 1}], "Files":
[{"Name": "stuxnet.exe", "Path": "C:\\temp\\", "Density": 0.9,
"Signed": false}, {"Name": "escalate.exe", "Path": "C:\\temp\\",
"Density": 0.9, "Signed": false}], "Scans": [], "Isolated": false,
"LastAnalysed": 14, "Priority": "Medium"}}. I should act on the
<mask> host.

Mask Predictions : ['following', 'infected', 'first',
'target', 'compromised', 'remote', 'next', 'second',
'affected', 'specified']

Your goal is to maintain network functionality. Choose a host to
act on based on the network state:
{"Host1": "Clean", "Host2": "Infected"}.
I should act on the <mask> host.

Masked Predictions: ['clean', 'infected', 'first',
'following', 'compromised', 'affected', 'next', 'other',
'same', 'new']

Figure D.1: Deficiencies observed using SecureBERT for CybORG. The top plot
shows SecureBERT’s output when being fed the state for a simple two-host network,
with one host containing obviously malicious files. The bottom plot shows
SecureBERT’s output when being fed explicit ”Clean” and ”Infected” labels for each
host. In both instances, SecureBERT’s response is not favorable in the context of
CybORG.

173

E Mapping the LLM to a
Distribution

The incorporation of the teacher’s guidance through an auxiliary loss signal
demonstrated a positive impact on the agent’s training in this study; however,
it had a fundamental limitation. Recommending a single action resulted in
the agent converging onto a peaked policy where the likelihood of sampling
any other action was very unlikely. This made improving beyond this point
impossible without first flattening out the distribution, enabling the baseline
(independent RL agent) to match or even surpass the teacher-guided agent’s
performance.

The solution to this problem was to map the LLM’s output into a
probability distribution and use this entire distribution as part of the loss
signal to guide the agent’s learning. This resulted in the agent mimicking an
entire distribution rather than greatly inflating single probabilities
corresponding to the teacher’s recommendation.

The process of mapping the LLM’s output to a distribution involves
analyzing the tokens that correspond to the LLM’s recommended action and
host to extract their corresponding softmax distributions. Once these
distributions are extracted, the probabilities for the tokens corresponding to
every action and host are parsed into their own distributions, only including
tokens relevant to CybORG (instead of a distribution over every possible
token).

From here, simple cartesian multiplication was applied between the action
and host distributions to generate probabilities for selecting every action on
every host - matching CybORG’s action space. This was normalized and used
as the LLM’s output to guide learning.

The entire process for mapping the LLM’s output into a distribution over
CybORG’s action space is shown in Figure E.1.

174

Prompt

['action', '2', 'Ġhost',
'4', 'Ċ', 'Explanation',
':', 'ĠĊ', 'The',
'Ġhost', ...]

Step 1. Generate
Tokens from
LLM

Step 2. Extract
Probabilities
from Host and
Action Tokens

Step 3. Map
Host and Action
Probabilities
into Action
Space

LLM
(FROZEN)

Action: Index 1
Host: Index 3

Regex

Extract
Probs for
all Actions

Extract
Probs for
all Hosts

Normalize
Probs

Normalize
Probs

Normalized
Probs for
Actions

Normalized
Probs for

Hosts

Product &
Temperature

Scaling

Action Space

action1 host1: 0.0132
action1 host2: 0.0012
...
action6 host13: 0.0942

...
1: 0.0023
2: 0.5320
3: 0.0232
4: 0.1834
...
'zoo': 0.000012

Softmax for
Action Token

...
1: 0.1332
2: 0.0094
3: 0.0053
4: 0.4234
...
'zoo': 0.000031

Softmax for
Host Token

1: 0.0023
2: 0.5320
3: 0.0232
4: 0.1834
5: 0.0723
6: 0.0642

Probabilities
for Actions

1: 0.1332
2: 0.0094
3: 0.0053
4: 0.4234
...
13: 0.0870

Probabilities
for Hosts

1: 0.0026
2: 0.6064
3: 0.0265
4: 0.2091
5: 0.0824
6: 0.0730

Normalized Probs
for Actions

1: 0.1564
2: 0.0011
3: 0.0062
4: 0.4967
...
13: 0.1022

Normalized Probs
for Hosts

Figure E.1: Extracting a probability distribution from the LLM. In Step 1, the tokens
generated by the LLM are parsed and the one representing the recommended action
and host are extracted. In Step 2, the softmax for the LLM’s predicted action and
host is used to extract probabilities for every action and host in the environment.
These are then normalized to form a probability distribution across the actions and a
probability distribution across the hosts. The ‘zoo’ token is meant to illustrate that
the LLM outputs a distribution across every possible token. In Step 3, the
probabilities of the individual actions and hosts are merged to form a distribution
across every action on every host (the same action space used for the RL agent).
Temperature scaling is used to sharpen the probability distribution (i.e., push
probabilities closer to 0 or 1).

The same auxiliary loss process used in this study relies on a single action
and cannot be used with the LLM outputting a distribution. As such, the loss

175

E.1. Optimized Prompt

term was modified to use Kullback-Leibler (KL) divergence, a loss function
that quantifies the difference between two probability distributions [91]. KL
divergence includes information about the entire distribution, enabling the RL
agent to modify its policy in a way that aligns with the LLM’s full set of
recommendations, rather than just optimizing for a single action.

One potential concern observed with the LLM’s distribution was the low
probability of selecting the highest action compared to all others. As shown in
Table E.1, while the highest action has a 24.83% of being taken, there is a
75.17% that it will not be. To rectify this, a temperature scaling of 0.5 was
applied to the distribution. Temperature scaling is a technique for tuning the
sharpness of a model’s distribution, with a scalar T :

softmax(zi) =
ezi/T∑N
j=1 e

zj/T

where T < 1 results in a sharper distribution, and T > 1 yields a flatter
distribution.

Table E.1: Illustrating the impact that a temperature scaling of 0.5 has on the
probabilities. Probabilities keep their respective ordering; however, are nudged higher
or lower depending on their rankings.

No Temperature 0.5 Temperature

Largest Prob 24.83% 61.19%

Second Largest Prob 11.74% 13.71 %

Third Largest Prob 8.08% 6.48%

E.1 Optimized Prompt

The results of the LLM integration using a distribution instead of a single
action for the optimized prompt are shown in Figure E.2. The temperature
scaled and unmodified distributions are shown. The hyperparameters are
identical to those used in Chapter 5.

176

E.1. Optimized Prompt

0 200 400 600 800 1000
Episode

0

10

20

30

40

50

60

70
R

ew
ar

d

Episodes 0 1000: Mean Performance ± 1 SE

0 2000 4000 6000 8000 10000
Episode

0

10

20

30

40

50

60

70

R
ew

ar
d

Episodes 0 10000: Mean Performance ± 1 SE

Baseline
LLM
LLM-Guided (Single Action)

LLM-Guided (Distribution)
LLM-Guided (Distribution, Temperature=0.5)

Figure E.2: Demonstrating the performance of LLM integration using a distribution
for the optimized prompt. Results show the temperature-scaled and unmodified
distribution. The hyperparameters are identical to those used in Chapter 5. The
vertical dashed line indicates the point at which the teacher-guided agents have
transitioned to fully independent RL (i.e., learning solely from the environment’s
signals). For clarity, the dashed line is only shown on the top plot.
Top: Mean reward after applying a 10-episode running average with a ±1 standard
error for 500 episodes.
Bottom: Mean reward after applying a 10-episode running average with a ±1
standard error for 10,000 episodes.

Figure 5.22 shows a minor decrease in performance for the

177

E.1. Optimized Prompt

recommendation as a distribution during the action masking phase of training.
This is expected because, unlike the LLM’s default behavior of greedily
selecting the token with the highest probability as was done in the
single-action method, the distribution method does not guarantee that the
LLM’s recommendation will be chosen. Because temperature scaling increases
the chances of sampling the most likely action, its performance is initially very
similar to the single action method.

Both methods show a decrease in performance during the transition to
independent RL, but the guidance as a distribution does not immediately
revert back to the baseline performance, as is observed with the single-action
recommendation. The distribution-based approach yields slightly higher
performance until episode ≈4,800, at which point the baseline catches up.

It can also be seen that the standard error for the guidance as a
distribution is considerably lower than the single-action recommendation,
which is indicative of a more stable teacher-guided implementation.

The actor loss, explained variance, critic loss, and entropy of the
distribution-guided and single-action-guided agents are shown in Figure E.3.

178

E.1. Optimized Prompt

Episode

2

1

0

1

2

Ac
to

r L
os

s
Actor Loss ± 1 SE

Episode
1.0

0.5

0.0

0.5

Ex
pl

ai
ne

d
Va

ria
nc

e

Explained Variance ± 1 SE

0 2000 4000 6000 8000 10000
Episode

100

200

300

400

C
rit

ic
 L

os
s

Critic Loss ± 1 SE

0 2000 4000 6000 8000 10000
Episode

0

1

2

3

4
En

tro
py

Entropy ± 1 SE

Baseline LLM-Guided (Single Action) LLM-Guided (Distribution)

Figure E.3: Comparing the actor loss, explained variance, critic loss, and entropy of
the distribution-guided RL agent against the single-action-guided one. The
unmodified distribution is used for this comparison.

Figure E.3 shows a minor improvement with respect to explained variance
and critic loss for the distribution-guided agent. This can be attributed to the
critic being exposed to more states because of the stochastic sampling rather
than choosing the most likely token. However, these metrics are both
considerably lower than the baseline agent (after transitioning to independent
RL). The critic learning solely from the LLM recommendations is the likely
cause for these results.

The actor loss is roughly the same between both teacher-guided
implementations, showing quick convergence after the transition to

179

E.2. Standard Prompt

independent RL.
The entropy for the distribution-guided agent closely resembles that of the

baseline, likely due to the stochastic nature of distributions.
Overall, these metrics show an improvement with the distribution-guided

agent compared to the single-action guided one. The main issue appears to be
an unstable critic network, likely attributable to the exploitation of LLM
recommendations early on, leading to inadequate training on all states.

E.2 Standard Prompt

The exact same process of mapping the LLM’s output into a distribution was
also done for the standard prompt. The results of guiding the agent using a
distribution instead of a single action are shown in Figure E.4. Like above,
the same hyperparameters in Chapter 5 were used for both implementations
with a temperature-scaled and modified distribution.

180

E.2. Standard Prompt

0 200 400 600 800 1000
Episode

0

10

20

30

40

50

60

70
R

ew
ar

d

Episodes 0 1000: Mean Performance ± 1 SE

0 2000 4000 6000 8000 10000
Episode

0

10

20

30

40

50

60

70

R
ew

ar
d

Episodes 0 10000: Mean Performance ± 1 SE

Baseline
LLM
LLM-Guided (Single Action)

LLM-Guided (Distribution)
LLM-Guided (Distribution, Temperature=0.5)

Figure E.4: Demonstrating the performance of LLM integration using a distribution
for the standard prompt. Comparison of a temperature-scaled and unmodified
distribution against the single-action method used in Chapter 5. The vertical dashed
line indicates the point at which the teacher-guided agents have transitioned to fully
independent RL (i.e., learning solely from the environment’s signals). For clarity, the
dashed line is only shown on the top plot.
Top: Mean reward after applying a 10-episode running average with a ±1 standard
error for 500 episodes.
Bottom: Mean reward after applying a 10-episode running average with a ±1
standard error for 10,000 episodes.

The recommendation as a distribution shows a considerable increase in

181

E.2. Standard Prompt

training efficiency compared to the recommendation as a single-action after
the transition to independent RL at episode 64.

The initial performance of the unmodified distribution outperforms the
temperature-scaled one (and the baseline LLM performance), illustrating the
potential benefits of sampling from the LLM’s distribution rather than picking
the token with the highest probability.

The distribution-guided RL agents outperform the others until episode
≈5,100, where performance becomes comparable to the baseline’s.

The temperature-scaled distribution shows noticeable instability and even
fluctuates below the baseline agent’s performance from episodes ≈7,800-9,100.

Figure E.2 compares the actor loss, explained variance, critic loss, and
entropy between the two teacher-guided implementations.

182

E.3. Discussion

Episode

2

1

0

1

2

Ac
to

r L
os

s
Actor Loss ± 1 SE

Episode

1.0

0.5

0.0

0.5

Ex
pl

ai
ne

d
Va

ria
nc

e

Explained Variance ± 1 SE

0 2000 4000 6000 8000 10000
Episode

50

100

150

200

250

300

C
rit

ic
 L

os
s

Critic Loss ± 1 SE

0 2000 4000 6000 8000 10000
Episode

0

1

2

3

4
En

tro
py

Entropy ± 1 SE

Baseline LLM-Guided (Single Action) LLM-Guided (Distribution)

Figure E.5: Comparing the actor loss, explained variance, critic loss, and entropy of
the distribution-guided RL agent against the single-action-guided one for the
standard prompt. The unmodified distribution is used for this comparison.

Similar to Figure E.3, the distribution-guided implementations using the
standard prompt shows comparable critic loss, explained variance, and actor
loss metrics with a slight increase in entropy that matches the baseline’s
behavior.

E.3 Discussion

While mapping the LLM’s guidance to a distribution alleviates the primary
concern of the distilled RL agent having too narrow of a policy, this does not

183

E.3. Discussion

fully address the issue with the critic learning solely from LLM
recommendations. Similar “warm-starting” techniques used in Figure 5.24
where the critic gets additional training on the agent’s rollouts during the
transition period, could help the critic produce better value estimates,
facilitating a smoother transition to independent RL. This should ultimately
reduce the deficiencies in the explained variance and critic loss seen above.

184

F Evaluating LLM-Integration
for Different Scenarios

To demonstrate the LLM’s effectiveness across different environments, its
impact in the RL process was tested on nine additional scenarios ranging from
four to twelve hosts. The action space and functionality are practically
identical to the 13-host network used throughout this study, with minor
modifications to the red agent and scenarios.

The LLM-guided method is identical to what was used in the study for the
standard and optimized prompt, with varying times at which to start the
decay, to scale with the complexities of the scenarios. The rate of decay for
the auxiliary loss and action mask is the same as in the 13-host network
evaluated in Chapter 5, but the time in which the decay starts varies between
the scenarios.

The structure of the prompts used for the LLM is almost identical, with
the only difference being the hosts and their associated distance from the
operational server.

Table F.1: The only hyperparameter adjusted for testing the implementation is when
the transition from teacher-guided to independent RL is initiated.

Number of Hosts Standard Decay Start Optimized Decay Start

4 1 10

5 1 10

6 1 10

7 1 15

8 2 20

9 2 20

10 2 20

11 3 25

12 3 30

185

Overall, the results in all the environments show what was exhibited in the
rest of the study - the RL agent quickly converges to the LLM’s performance,
before stabilizing with the baseline PPO agent. It can be seen that the LLM
is less effective and stable in some environments. For example, the baseline
performance of the LLM exhibits noticeably high variance in the six-host
scenario.

The results of the LLM integration for the standard and optimized prompt
are shown in Figures F.1 to F.9.

These results are only for the auxiliary loss and action masking technique
employed in Chapter 5, where the LLM recommends a single-action. The
recommendation as a distribution technique discussed in Appendix E was not
tested for these scenarios.

The top plot and bottom plot for each figure show the mean reward after
applying a 10-episode running average with a ±1 standard error for 500 and
5,000 episodes respectively.

The vertical dashed lines indicate the point at which the teacher-guided
agents have transitioned to fully independent RL (i.e., learning solely from the
environment’s signals). The first dashed line is for the standard prompt (green
curve) and the second dashed line is for the optimized prompt (purple curve).
For clarity, the dashed lines are only shown on the top plot.

186

0 100 200 300 400 500
Episode

0

20

40

60

80

R
ew

ar
d

Episodes 0 500: Mean Performance ± 1 SE

0 1000 2000 3000 4000 5000
Episode

0

20

40

60

80

R
ew

ar
d

Episodes 0 5000: Mean Performance ± 1 SE

Baseline
Standard LLM
Optimized LLM

LLM Teacher-Guided Standard
LLM Teacher-Guided Optimized

Figure F.1: LLM integration results in the 4-host environment.

187

0 100 200 300 400 500
Episode

10

20

30

40

50

60

70

R
ew

ar
d

Episodes 0 500: Mean Performance ± 1 SE

0 1000 2000 3000 4000 5000
Episode

10

20

30

40

50

60

70

R
ew

ar
d

Episodes 0 5000: Mean Performance ± 1 SE

Baseline
Standard LLM
Optimized LLM

LLM Teacher-Guided Standard
LLM Teacher-Guided Optimized

Figure F.2: LLM integration results in the 5-host environment.

188

0 100 200 300 400 500
Episode

20

30

40

50

60

70

R
ew

ar
d

Episodes 0 500: Mean Performance ± 1 SE

0 1000 2000 3000 4000 5000
Episode

20

30

40

50

60

70

R
ew

ar
d

Episodes 0 5000: Mean Performance ± 1 SE

Baseline
Standard LLM
Optimized LLM

LLM Teacher-Guided Standard
LLM Teacher-Guided Optimized

Figure F.3: LLM integration results in the 6-host environment.

189

0 100 200 300 400 500
Episode

10

20

30

40

50

60

70

R
ew

ar
d

Episodes 0 500: Mean Performance ± 1 SE

0 1000 2000 3000 4000 5000
Episode

10

20

30

40

50

60

70

R
ew

ar
d

Episodes 0 5000: Mean Performance ± 1 SE

Baseline
Standard LLM
Optimized LLM

LLM Teacher-Guided Standard
LLM Teacher-Guided Optimized

Figure F.4: LLM integration results in the 7-host environment..

190

0 100 200 300 400 500
Episode

10

20

30

40

50

60

70

R
ew

ar
d

Episodes 0 500: Mean Performance ± 1 SE

0 1000 2000 3000 4000 5000
Episode

10

20

30

40

50

60

70

R
ew

ar
d

Episodes 0 5000: Mean Performance ± 1 SE

Baseline
Standard LLM
Optimized LLM

LLM Teacher-Guided Standard
LLM Teacher-Guided Optimized

Figure F.5: LLM integration results in the 8-host environment.

191

0 100 200 300 400 500
Episode

0

10

20

30

40

50

60

70

R
ew

ar
d

Episodes 0 500: Mean Performance ± 1 SE

0 1000 2000 3000 4000 5000
Episode

0

20

40

60

R
ew

ar
d

Episodes 0 5000: Mean Performance ± 1 SE

Baseline
Standard LLM
Optimized LLM

LLM Teacher-Guided Standard
LLM Teacher-Guided Optimized

Figure F.6: LLM integration results in the 9-host environment.

192

0 100 200 300 400 500
Episode

10

20

30

40

50

60

70

R
ew

ar
d

Episodes 0 500: Mean Performance ± 1 SE

0 1000 2000 3000 4000 5000
Episode

20

40

60

80

R
ew

ar
d

Episodes 0 5000: Mean Performance ± 1 SE

Baseline
Standard LLM
Optimized LLM

LLM Teacher-Guided Standard
LLM Teacher-Guided Optimized

Figure F.7: LLM integration results in the 10-host environment.

193

0 100 200 300 400 500
Episode

0

20

40

60

R
ew

ar
d

Episodes 0 500: Mean Performance ± 1 SE

0 1000 2000 3000 4000 5000
Episode

0

20

40

60

R
ew

ar
d

Episodes 0 5000: Mean Performance ± 1 SE

Baseline
Standard LLM
Optimized LLM

LLM Teacher-Guided Standard
LLM Teacher-Guided Optimized

Figure F.8: LLM integration results in the 11-host environment.

194

0 100 200 300 400 500
Episode

0

20

40

60

R
ew

ar
d

Episodes 0 500: Mean Performance ± 1 SE

0 1000 2000 3000 4000 5000
Episode

0

20

40

60

R
ew

ar
d

Episodes 0 5000: Mean Performance ± 1 SE

Baseline
Standard LLM
Optimized LLM

LLM Teacher-Guided Standard
LLM Teacher-Guided Optimized

Figure F.9: LLM integration results in the 12-host environment.

195

	Acknowledgements
	Abstract
	Résumé
	List of Tables
	List of Figures
	Introduction
	Motivation
	Statement of Deficiency
	Aim
	Research Activities
	Organization

	Background
	Large Language Models
	Self-Attention
	LLM Architecture
	Pretraining
	Fine-Tuning
	Supervised Fine-Tuning
	Reinforcement Learning with Human Feedback
	Direct Preference Optimization
	Full Fine-Tuning vs Partial Fine-Tuning

	Prompt Engineering
	X-Shot Learning
	Chain-of-Thought Prompting
	Retrieval-Augmented Generation

	Reinforcement Learning
	Model-Based vs Model-Free RL
	Policy Convergence
	Monte Carlo and Temporal Difference
	On-Policy vs Off-Policy RL
	Off-Policy Learning
	On-Policy Learning

	Autonomous Cyber Operations
	CybORG Overview
	Cage Challenge 2
	Environment Interaction
	Wrappers

	Related Work
	Teacher-Guided RL
	LLMs and RL Integration
	LLMs in Cybersecurity
	Autonomous Cyber Operations
	Artificial General Intelligence
	Generalized Nature
	Computational Requirements
	Transparency
	Ethical Concerns

	Discussion
	Research Opportunities

	Methodology
	Selecting an LLM
	Environment Modification
	Block Action
	Patch Action
	Isolate Action
	Action Removal
	Preprocessing

	Baseline Agent Development
	DQN Agent
	PPO Agent
	Baseline Agent Evaluation

	Teacher-Guided Algorithm Development
	Action Masking
	Reward Shaping
	Feature Space Modification
	Auxiliary Loss
	Combining Implementations

	Integration of the LLM into the RL pipeline
	Prompt Design
	Extracting LLM Recommendations
	Transition from LLM-Guided to Independent RL

	Evaluation Design
	Selecting the RL Algorithm
	Comparing Teacher-Guided Algorithms
	Feature Space Modification

	Evaluating LLM Integration
	Explained Variance
	Evaluating on Different Scenarios

	Evaluation
	Selecting an LLM
	Initial Prompt Development
	Automated Evaluation
	Manual Evaluation

	Choosing the RL Algorithm
	Environment Modifications
	Adding Actions
	Removal of the Block Action

	Signal Modifications

	Optimizing PPO
	Comparing Teacher-Guided Methods
	Action Masking
	Masking Actions via Softmax
	Masking Hosts via Softmax
	Masking Actions via Logits
	Comparing Masking Techniques

	Feature Space Modification
	Reward Shaping
	Auxiliary Loss
	Combining Implementations
	Reward Shaping and Feature Space Modification
	Action Masking and Feature Space Modification
	Action Masking and Auxiliary Loss

	Evaluating the Best Technique

	LLM Integration
	Prompt Engineering
	Standard Prompt Evaluation
	Optimized Prompt Evaluation
	Fundamental Limitation
	Discussion

	Conclusion
	Contributions
	Limitations
	Selecting an LLM
	Environment Limitations
	Agent Evaluation Limitations
	Teacher-Guided Integration Limitations
	Parsing CybORG's Output
	Final Prompt Design
	LLM Resource Requirements
	LLM Integration Limitations
	Insufficient Testing for Transferability

	Future Work

	Bibliography
	Appendices
	CybORG Sequence Diagrams
	Django Application for Agent Evaluation
	Application Overview
	Running a Round
	Analyzing Results at the Episodic Level
	Analyzing Results at the Timestep Level

	Prompts used for Study
	Initial Prompt
	Standard Prompt
	Optimized Prompt

	Encoder-Only LLMs
	Mapping the LLM to a Distribution
	Optimized Prompt
	Standard Prompt
	Discussion

	Evaluating LLM-Integration for Different Scenarios

