
SYNTAX-AWARE GREYBOX

PROTOCOL FUZZING

FUZZING DE PROTOCOLE GREYBOX

SENSIBLE À LA SYNTAXE

A Thesis Submitted to the Royal Military College of Canada
by

Sébastien Généreux, B.Eng.

Major

In Partial Fulfillment of the Requirements for the Degree of
Master of Applied Science in Electrical and Computer Engineering

September 2025
© This project may be used within the Department of National

Defence but copyright for open publication remains the property of the
author.

To my wife and children.

ii

Acknowledgements

I would like to thank my supervisors, Dr. Vincent Roberge and Mr. Brian
Lachine for their guidance.

iii

Abstract

Fuzzing helps find potential vulnerabilities in applications by sending crafted
inputs to them and observing their response. Code coverage achieved by
those inputs is maximized to increase the likelihood of finding bugs. In the
case of fuzzing network applications there is an additional layer beyond code
coverage; state-space. Most bugs in network applications require them to be
in a particular state; the bug is said to be stateful. To explore that state
space, protocol fuzzers must model the state space in some way and try to
abide by protocol syntax. AFLNet has become the protocol fuzzer most often
compared to or extended in recent research. Efforts to make AFLNet faster
have achieved significant code coverage improvements. Meanwhile, efforts to
improveAFLNet’s state-modelling and state-exploration features have shown
mixed and limited results.

The aim of this research is to determine how adding syntax-awareness in
AFLNet’s mutation process changes the code coverage impact of state feed-
back features in AFLNet. This is based on the hypothesis that the current
input crafting process generates mainly invalid inputs which do not make it
beyond the network application’s initial protocol parsing logic. To limit scope,
the syntax-aware mutation process and validation are done for the File Trans-
fer Protocol only. An ablation study of AFLNet features is completed across
multiple target applications to measure the current code coverage impact of
state feedback features. The same experiments are repeated using our syntax-
aware fuzzer, AFLNet-Packmute, and then compared to the results of the
ablation study. Measuring and discussing the change in code coverage impact
achieves the aim of the research. We find that syntax-awareness increases the
effectiveness of two AFLNet state feedback features, while decreasing the
effectiveness of one.

iv

Résumé

Le fuzzing permet de trouver des vulnérabilités potentielles dans les applica-
tions en leur envoyant des entrées et en observant leur réponse. La couverture
du code obtenue par ces entrées est maximisée pour augmenter la probabilité
de trouver des bogues. Dans le cas du fuzzing d’applications réseau, il existe
une couche supplémentaire au-delà de la couverture du code : l’espace d’état.
La plupart des bogues dans les applications réseau exigent qu’elles soient dans
un état particulier ; on dit qu’elles sont des bogues avec état. Pour explorer
l’espace d’état, les fuzzers de protocole doivent modéliser l’espace d’état et
essayer de respecter la syntaxe du protocole. AFLNet est devenu le fuzzer
de protocole le plus souvent comparé à ou étendu dans les recherches récentes.
Les efforts visant à rendre AFLNet plus rapide ont permis d’améliorer con-
sidérablement la couverture du code. Contrairement, les efforts visant à
améliorer les fonctions de modélisation et d’exploration de l’état d’AFLNet
ont donné des résultats mixtes et limités.

L’objectif de cette recherche est de déterminer comment l’ajout de la prise
en compte de la syntaxe dans le processus de mutation d’AFLNet modifie
l’impact sur la couverture du code des caractéristiques de retour d’information
sur l’état dans AFLNet. Cet recherce se fonde sur l’hypothèse selon laquelle
le processus de mutation actuel génère principalement des entrées non valides
qui ne vont pas au-delà de la logique initiale d’analyse du protocole. Pour
limiter le champ d’application, le processus de mutation sensible à la syntaxe
et la validation ne sont effectués que pour le protocole File Transfer. Une
étude d’ablation des caractéristiques de retour d’état d’AFLNet est réalisée
sur plusieurs applications cibles afin de mesurer leur impact sur la couverture
du code actuel. Les mêmes expériences sont répétées en utilisant notre fuzzer
sensible à la syntaxe, AFLNet-Packmute, puis comparées aux résultats de
l’étude d’ablation. La mesure et l’analyse de l’impact de la couverture du code
nous permettent d’atteindre l’objectif de la recherche. Nous constatons que le
processus sensible à la syntaxe augmente l’efficacité de deux caractéristiques
de retour d’état d’AFLNet, tout en diminuant l’efficacité d’une seule.

v

Contents

Acknowledgements iii

Abstract iv

Résumé v

List of Tables ix

List of Figures x

Acronyms xi

1 Introduction 1
1.1 Motivation . 2
1.2 Statement of Deficiency . 3
1.3 Aim . 3
1.4 Research Activities . 4
1.5 Results . 5
1.6 Organization . 5

2 Background 6
2.1 Binary Fuzzing . 6

2.1.1 AFL . 7
2.2 Protocol Fuzzing . 8

2.2.1 AFLNet . 8
2.2.2 Profuzzbench . 18

2.3 Fuzzer Evaluation . 20
2.4 Related Work . 22

2.4.1 Alternative State Feedback 23
2.4.2 Value of State Feedback 24

vi

Contents

2.4.3 Syntax-awareness in AFLNet 25

3 Methodology and Design 29
3.1 Methodology . 29
3.2 AFLNet Ablation Study . 30
3.3 AFLNet-Packmute . 34

3.3.1 Fuzzing Loop Syntax-Awareness 35
3.3.2 Mutation Syntax-Awareness 37
3.3.3 Structural Design . 41
3.3.4 Behavioural Design . 49

3.4 Verification . 52
3.4.1 Analysis Script Verification 53
3.4.2 AFLNet-Packmute Verification 53

3.5 Validation . 54

4 Results 56
4.1 Experimental Design . 56
4.2 Ablation Study . 58

4.2.1 Coverage Results . 59
4.2.2 State feedback feature impact 64
4.2.3 Discussion . 70

4.3 AFLNet-Packmute . 71
4.3.1 Development . 71
4.3.2 Syntax-awareness . 72

4.4 Verification . 77
4.5 Validation . 81

4.5.1 Coverage Results . 81
4.5.2 State Feedback Impact 83
4.5.3 Change in state feedback feature impact 86

4.6 Discussion . 88

5 Conclusion 89
5.1 Contributions . 90
5.2 Limitations . 90
5.3 Future Work . 91

Bibliography 93

Appendices 97

A Syntax-Awareness Coverage Value A-1

vii

Contents

A.1 Coverage value of syntax-awareness in AFLNet A-1
A.2 Comparison to ChatAFL . A-3

B Region Mutations B-1

viii

List of Tables

2.1 AFLNet Mutations . 16
2.2 ProFuzzBench Targets . 19
2.3 ChatAFL Syntax-aware Mutations 27

3.1 Ablation Study AFLNet Configurations 31
3.2 AFLNet Syntax-aware Mutations 38

4.1 Results Data Fields . 59
4.2 Ablation Study Performance Results 60
4.3 Impact of Basic State Feedback . 66
4.4 Impact of Favoured Seed Selection 67
4.5 Impact of Favoured State Selection 68
4.6 Impact of Full State Feedback . 69
4.7 AFLNet-Packmute Explore-Exploit Optimization 77
4.8 AFLNet-Packmute Verification Results 80
4.9 Validation Performance Results . 81
4.10 Impact of Syntax-Aware Basic State Feedback 83
4.11 Impact of Syntax-Aware Favoured Seed Selection 84
4.12 Impact of Syntax-Aware Favoured State Selection 85
4.13 Impact of Syntax-Aware Full State Feedback 85
4.14 State Feedback Feature Impact Change 87

A.1 AFLNet v AFLNet-Packmute . A-2
A.2 AFLNet-Packmute v ChatAFL A-3

B.1 Impact of Region Mutations . B-2
B.2 Region Mutation Impact Change B-3

ix

List of Figures

2.1 AFLNet Initial Seed Creation . 9
2.2 AFLNet Example of Regions . 10
2.3 AFLNet Example of Sending Fuzz 11
2.4 AFLNet Example of IPSM . 11
2.5 AFLNet Fuzzing Illustration . 13
2.6 AFLNet Seed Parsing . 15
2.7 AFLNet Splicing . 17
2.8 AFLNet Max Message Constraint 17
2.9 AFLNet Replay Format . 18
2.10 ProFuzzBench Phases . 19
2.11 ProFuzzBench Analytics . 21
2.12 FTP Syntax Depths . 26
2.13 ChatAFL Syntax-Awareness . 26

3.1 Ablation Study Configurations . 33
3.2 Cloning Mutation Illustration . 40
3.3 Prepend-Region Mutation Illustration 41
3.4 AFLNet-Packmute Component Diagram 42
3.5 PcapPlusPlus Class Diagram . 43
3.6 Libpackmute Class Diagram . 45
3.7 AFLNet-Packmute Class Diagram 47
3.8 Pre-padding Sequence Diagram . 50
3.9 Check Syntax Sequence Diagram 51
3.10 Find Mutable Range Sequence Diagram 52

4.1 Experimental Setup . 57
4.2 Constant v Linear Exploit Rate . 75
4.3 Fixed Exploit Rate Tuning . 76

x

Acronyms

AFL American Fuzzy Lop
ASAN Address Sanitizer
CSV Comma Separated Values
DAAP Digital Audio Access Protocol
DICOM Digital Imaging and Communications in Medicine
DNS Domain Name Service
DTLS Datagram Transport Layer Security
FTP File Transfer Protocol
GCC GNU Compiler Collection
IPSM Implemented Protocol State Machine
LLM Large Language Model
PCAP Packet Capture
RTSP Real-Time Streaming Protocol
SIP Session Initiation Protocol
SMTP Simple Mail Transfer Protocol
SSH Secure Shell
TLS Transport Layer Security
VM Virtual Machine
XML Extensible Markup Language

xi

1 Introduction

Network applications are attractive attack targets because they are accessible
remotely and provide services to many devices. This makes it important
to find vulnerabilities in network applications so that they can be patched
or mitigations be taken before they are exploited. An effective way to find
potential vulnerabilities is fuzz testing (fuzzing) [1],[2]. Traditional binary
fuzzers send inputs, known as fuzz, to the application, known as the target,
over stdin or directly to functions. The target is then monitored for crashes
or hangs.

Fuzzing network targets presents unique challenges. They manage multiple
concurrent connections in a stateful and structured way. Protocol fuzzers
address these challenges by sending fuzz as packets over TCP/IP sockets to
the target. A protocol fuzzer also explores the state-space of the target to
find stateful bugs, the bugs most commonly found in network targets [3],[4].
AFLNet [5] is the protocol fuzzer most often extended or compared against
by recent protocol fuzzing research [6]–[12].

Each fuzz AFLNet creates comprises a series of network packets sent to
the target. It does not have knowledge of protocol-syntax. It instead bases fuzz
on initial network packet exchanges between a client and server application.
AFLNet models the internal state of a target based on the response codes
in the response packets. It heuristically selects which target state should be
fuzzed, and selects an input that reaches that state. AFLNet favours inputs
likely to find new coverage, and only modifies the portion of the input after
the selected state is reached. The input is modified and is sent to the target
as fuzz. The process that modifies the input into fuzz is called the mutation
process and includes changes to the sequence of messages sent.

The target is compiled with special instrumentation that coarsely tracks
what code has been executed as a result of the fuzz. Fuzz that introduce
new or interesting code coverage are added to the set of inputs that seed new
fuzzing rounds. Besides using code coverage feedback to maximize coverage
of code, AFLNet concurrently explores the state-space of the target through

1

1.1. Motivation

state feedback features.

1.1 Motivation

Research extending AFLNet has improved fuzzing speed (target executions
per second), used alternative state feedback features, and added external
knowledge to improve fuzz created [6]–[12]. To encourage research in pro-
tocol fuzzing, particularly AFLNet derivative fuzzers, a code coverage-based
benchmark has been created called ProFuzzBench [13]. Research shows
code coverage is correlated to, and moderately agrees with, bug finding abil-
ity for fuzzers [14]. The more code that is covered the more likely a fuzzer is
to find bugs.

AFLNet fuzzing speed improvements have resulted in significant increases
to final code coverage achieved. Since network targets are stateful, we expect
that state feedback features in AFLNet and its derivatives should also con-
tribute to code coverage improvement. Research extending state feedback
features of AFLNet, however, have had limited impact. AFLNet’s state
representation method, using response codes, is very coarse and contains lim-
ited information depending on the protocol. Thus, research has looked at
alternative state representations, such as NSFuzz [3], using source code state
variables, or StateAFL [10], using long-lived memory regions. The alterna-
tive state representations perform worse, on par, or only slightly better than
AFLNet depending on the target. AFLNet-Legion[11] proposes a new
target state selection algorithm and a new tree model to replace AFLNet’s
Implemented Protocol State Machine (IPSM) which results in insignificant
code coverage improvement and finds that random target state selection per-
formed equally to AFLNet’s heuristic-based approach. The authors of [11]
believe this result is due to insufficient target executions over their 24-hour
experiment and due to fuzz lacking state or structure awareness. A recently
published study confirms that state feedback, when added to the existing cov-
erage feedback, does not add code coverage value [15].

The statefulness of network protocols is a challenge which motivates re-
search in protocol fuzzing. That state feedback aspects of protocol fuzzers
based on AFLNet seem to provide limited contribution to code coverage,
motivates this research.

2

1.2. Statement of Deficiency

1.2 Statement of Deficiency

AFLNet’s authors did not initially conduct an ablation study, meaning it
was not demonstrated how meaningful each of their separable design features
were towards the total code coverage achieved. An ablation study has been
published since this research was proposed [15], though it does not look at the
sub-features that make up state feedback as a whole and does not consider
the impact of region mutations. They find that the addition of state feedback
atop code coverage feedback does not increase the code coverage achieved and
that perhaps response codes are not adequate representations of target state.

This conclusion is in some ways supported and challenged by previous
research. Alternative state representations and changes to state selection
features have had limited impact on code coverage improvement [3],[10]–[12]
meaning using response codes may not be the root issue. The authors of
[11] suggest this limitation might be addressed through faster fuzzing, syn-
tactically valid fuzz or fuzz aware of state-specific inter-message dependencies
(semantics).

We hypothesize the root cause limiting the effectiveness of state feedback
features is AFLNet’s mutation process creating syntactically invalid fuzz.
Fuzzer state feedback would have limited benefit to fuzzing if the fuzz being
sent to the target fail to pass initial protocol parsing and cannot reach deeper
in the application logic. The direct impact of invalid fuzz is reduced fuzzing
performance as measured by code coverage. The indirect impact, we believe,
is limited effectiveness of protocol fuzzer state feedback features.

1.3 Aim

The aim of this research is to determine how adding syntax-awareness in
AFLNet’s mutation process changes the code coverage impact of its state
feedback features. The extent to which syntax-awareness impacts code cover-
age is determined by measuring the effectiveness of AFLNet’s state feedback
features before and after adding syntax-awareness in the mutation process.
The change in effectiveness is used to achieve the aim. Effectiveness is mea-
sured as the code coverage impact of a particular AFLNet state feedback
feature relative to a parent configuration without that specific feature. To
limit scope, the syntax-aware mutation process is implemented for the File
Transfer Protocol (FTP) only.

The features measured are: basic state feedback, favoured state selection,
and favoured input selection. Basic state feedback in AFLNet, as defined by

3

1.4. Research Activities

this research, is when target state is modelled and specific states are fuzzed,
without specific care for how states and inputs are selected. Favoured state
and input selection are state-informed modes for each state selection and input
selection which try to select the best state to fuzz and the best input to derive
fuzz from. We are interested in the performance of these favoured modes
relative to randomly picking seeds and states.

Adding protocol-syntax awareness to the mutation process allows fuzz to
make it past initial protocol parsing logic in the target and thereby reach
aspects of the target which depend more heavily on internal state.

1.4 Research Activities

The research activities for this research were conducted over the following 4
phases:

1. Conduct an ablation study. An ablation study measures the effec-
tiveness of separable features in AFLNet using its current mutation
process. This phase confirms findings in previous research and draws
new conclusions about the value-added to code coverage of each sepa-
rable AFLNet feature. Region mutations, though not a state feedback
feature, are added for completeness.

2. Develop AFLNet-Packmute: Protocol-syntax Aware Mutation
Process. An AFLNet derivative, AFLNet-Packmute, is developed
which produces syntactically correct fuzz. This is based on the hypoth-
esis that invalid fuzz limits the effectiveness of AFLNet state feedback
features. AFLNet-Packmute allows some invalid fuzz to be created
to fuzz initial parsing code and error handling code in the target.

3. Verification. Analysis verifies whether AFLNet-Packmute behaves
as designed. That is, does it create only valid fuzz when instructed to
do so, and invalid fuzz when permitted to do so? This phase includes
activities that verify the correctness of analysis scripts and function be-
haviour.

4. Validation. Validation first involves measuring the code coverage im-
pact of state feedback features in AFLNet-Packmute. Next, the
change in impact is measured between these results and those obtained
in the ablation study phase, conducted with AFLNet. Finally, using
this measurement we determine how the addition of syntax-awareness
into the AFLNet mutation process has changed the code coverage im-
pact of state feedback features, achieving the aim of this research.

4

1.5. Results

1.5 Results

This research finds that adding syntax-awareness to AFLNet’s mutation pro-
cess increases the code coverage impact of two of its state feedback features
while reducing the impact of one state feedback feature. Favoured seed and
state selection, where selection prioritizes seeds or states with more potential
to find new coverage, see an increase in code coverage impact of +0.84% and
+0.77% respectively. The basic process of selecting states and fuzzing the
portions of message sequences exercising that state sees a reduction in code
coverage impact. We believe this may be due to syntactically valid fuzz reach-
ing further into the target’s logic, causing slower fuzzing speeds and therefore
reduced coverage. These research findings suggest previous work done to im-
prove on AFLNet’s state feedback features could have their effectiveness im-
proved through syntax-awareness, and that targets where the maximum code
coverage is achieved by a fuzzer configuration with state feedback enabled
could see even greater maximum coverage.

1.6 Organization

Chapter 2 introduces terminology, tools and related work important to un-
derstanding this research. Chapter 3 then describes in detail the design of all
research activities as well as the methodology used to arrive at that design.
Next, Chapter 4 presents the results or outcomes of conducting the research
as designed, including achieving the aim of the research. Lastly, Chapter 5
concludes, outlining contributions made by this research, its limitations and
areas for future work.

5

2 Background

In this chapter the information necessary to understand the research con-
ducted is presented, alongside existing research which directly relates to it.
First, a discussion on binary fuzzing will introduce terminology and tech-
niques used in the foundational fuzzing use-case. Protocol fuzzing is then
discussed as a distinct fuzzing use-case, with further detail on the AFLNet
fuzzer and ProFuzzBench benchmark. Next, best-practices in evaluating
fuzzers explains the experimentation parameters used in Chapter 3. Lastly, a
discussion on related works situates this research within the existing body of
knowledge.

2.1 Binary Fuzzing

Barton Miller first introduced the concept of fuzz testing in 1990 when he
observed that you could affect the reliability of UNIX utilities by sending
them random bytes [16]. This became known as fuzzing, and the inputs sent
to the targeted application are known as fuzz. Fuzzing is now an extensive
research area, with nearly 300 papers published in the field between 2018 and
2023 in select top venues [17].

Fuzzers can be categorized based on the level of introspection into the
target application they require. Blackbox fuzzers require a compiled binary
of the target, no source code. Greybox fuzzers require target source code in
order to add lightweight instrumentation that is used to evaluate or guide
fuzzing. Whitebox fuzzers also require source code but use more intensive
code analysis, such as constraint solving, to develop fuzz. The grey-white
trade-off is primarily between fuzz quality and fuzzing speed.

Another fuzzer categorization is whether it is generating new fuzz from
scratch, called generation-based, or mutating a seed to create fuzz, called
mutation-based. Mutation-based fuzzers store their starting candidate inputs
as seeds in a corpus. A mutation-based fuzzer is said to be evolutionary if

6

2.1. Binary Fuzzing

it uses feedback from the target’s execution to guide fuzzing efforts. This
guidance could inform which mutations to use, which seeds to select, and
whether new fuzz should be added to the corpus. The fuzzer which popularized
mutation-based evolutionary fuzzing is called AFL [18].

2.1.1 AFL

AFL’s design principles are speed, reliability and ease of use, on the basis
that fast stochastic fuzzing is better than slow precise fuzzing. Central to
AFL is coarse but fast code coverage feedback in the form of a 64 KB map
shared between the fuzzer and the instrumented target. At compile-time,
each code branch is instrumented to update the coverage map with branch-
tuple hit counts as shown in Listing 1. Each position in the map represents
a branch-tuple, and its value indicates how often the branch-tuple is visited
during a single target execution. The location address bit shift on line 3 is
necessary to differentiate a flow of branch-tuple 1-2 from 2-1. Otherwise, the
XOR operation would give the same result.

Listing 1 AFL branch-tuple coverage pseudocode [18]

1 cur_location = COMPILE_TIME_RANDOM;

2 shared_mem[cur_location ^ prev_location]++;

3 prev_location = cur_location >> 1;

This coarse coverage map will tell AFL if the fuzz sent is interesting;
whether it introduced coverage not yet reached by existing seeds or changed
the code execution path in an important way. Interesting fuzz are added to the
corpus of seeds for later fuzzing rounds. The corpus is managed in-memory
via a queue of entry structures. Each entry stores pointers to the next entry,
the filename of the seed associated with the entry and metrics associated with
that seed.

Fuzzing is conducted in a loop. In one iteration, a seed is selected from
the corpus, assigned an energy score, then mutated and sent to the target
according to that energy score before returning to select a new seed. Energy
scores are assigned using a power schedule which considers the execution speed
of the seed, the size of its bitmap, when in the fuzzing session’s lifespan it
was found, and a few others factors. Mutation involves applying a random
number (between 1 and 128) of randomly selected mutations one after the
other on the same buffer. Examples of mutations include bit flips, integer
value addition/subtraction, insertion of random bytes or dictionary words,
and block manipulations.

7

2.2. Protocol Fuzzing

When fuzz causes a crash or hang of the target, it is saved to be investigated
later. The conditions which cause crashes can be broadened by compiling the
target with a sanitizer enabled. The most common sanitizer used is called
Address Sanitizer (ASAN), which will terminate a program on occurrence
of memory violations such as use-after-free or buffer overruns, and output a
report. This broadens the bug classes that AFL fuzzing can find and is built
into common compilers such as GCC [19] and clang [20].

2.2 Protocol Fuzzing

Protocol fuzzers historically tended to be generation-based since network ap-
plication targets expect structured and state-aware input to execute most
of their functionality. Notable ones include Peach [21] and BooFuzz [22].
These fuzzers need user-provided protocol and state models in the form of
Extensible Markup Language (XML) files or Python code objects.

This trend has shifted since the advent of AFL and the popularity of
mutation-based evolutionary fuzzers [23]. Now the state-of-the-art is to pair a
mutation-based fuzzer with self-learning of target state space and/or protocol
syntax [23]. This reduces the amount of tailored configuration needed to
onboard a new target for fuzzing. Two common sources of initial inputs are
pre-recorded packet captures (PCAPs) or to run a client application and have
the fuzzer proxy packets. When using PCAPs, the fuzzer acts as the client.
Many mutation-based protocol fuzzers introduce new mutations that effect
the overall packet sequence being sent and some try to preserve inter and
intra packet dependencies [24],[25],[26].

2.2.1 AFLNet

Based on AFL, AFLNet was created by Van-Thuan Pham et al. and was
published in 2020 [5]. They propose that a network target’s state can be de-
rived from the server response code last received from the target. Building on
AFL’s [18] coverage-guided evolutionary greybox fuzzing approach, it derives
fuzz from application-layer data, called a message, and explores the target
application’s state to maximize coverage. Its main contributions include:

• Operates on sequences of messages (as opposed to individual ones).
• Message sequence mutations (called region mutations).
• State feedback. It explores target state-space through self-learning of
server response codes. This includes state-space representation through
an IPSM, target state selection, state-aware seed parsing and state-aware
seed selection.

8

2.2. Protocol Fuzzing

The AFLNet authors found significant fuzzing improvement relative to a
basic network-enabled version of AFL, AFLNwe [27], and BooFuzz [22], a
generation-based blackbox protocol fuzzer.

AFLNet is seeded with raw TCP streams. Figure 2.1 shows how network
traffic is first captured between a client application and target server and then
the raw TCP stream is saved to a file which becomes one of the initial seeds.
The more target server features exercised in the initial seeds the better for
fuzzing.

USER ubuntu
PASS ubuntu
SYST
PWD
LIST
STOR test.txt
MKD test
QUIT

Packet
Capture

Raw request
TCP stream

Figure 2.1: AFLNet process to create initial seeds

Algorithm 1 describesAFLNet’s main procedure, which must be provided
initial seeds and a target application. A queue of entries (seeds), bitmap and
IPSM are globally held (line 1). First AFLNet will perform a dry-run where
the initial seeds are sent to the target server one message at a time and the
target’s behaviour observed (lines 2-6). This phase builds the initial IPSM
and populates the corpus with initial seeds. Next, AFLNet selects a target
state to fuzz, selects a seed that exercises that state, creates fuzz by mutating
that seed and lastly sends it to the targets (lines 7-10). These are repeated in
a loop until fuzzing is done. Each step will be discussed in detail.

In the dry-run phase, the AddToQueue() function reads the initial seeds
from disk and adds them as entries to the queue. When a seed is added to
the queue it is parsed into individual messages using protocol-specific request
extraction code that uses message terminators or length headers to do the
splitting. AFLNet records the start and end byte of each of these messages
and assigns them a zero-indexed ID. This data is called a region and is saved
in the queue entry structure. In the case of FTP, it is as simple as splitting on
each message terminator \r\n. Figure 2.2 shows the regions for an example
FTP seed. This seed has eight regions. The region start and end position
values are inclusive, and capture any message terminators.

Using this region data, the seed is parsed into a linked list of individual

9

2.2. Protocol Fuzzing

Algorithm 1 AFLNet Simplified Main Program Loop

Input : Initial Seeds T, Target Program P

1: Queue,Bitmap, IPSM ← 0
2: for seed in T do
3: addToQueue(seed,Queue)
4: Message← parse(seed)
5: Response← send(Message, P,Bitmap)
6: updateStateMachine(IPSM,Response)
7: while true do
8: selectedState← selectState(IPSM)
9: selectedSeed← selectSeed(selectedState,Queue)

10: fuzz(P, selectedSeed, selectedState,Bitmap,Queue, IPSM) ▷ fuzz
target a few thousand times with this seed

USER ubuntu\r\nPASS ubuntu\r\nSYST\r\nPWD\r\nLIST\r\nSTOR test.txt\r\nMKD test\r\nQUIT\r\n

0:0-12 1:13-25
2:26-31

3:32-36
4:37-42

5:43-57 6:58-67 7:68-73

Figure 2.2: AFLNet FTP regions example

messages. Each message is combined with the internet and transport layer
settings of the fuzzing session to build network packets which are sent to the
target (Algorithm 1 lines 4-5). Using the same example seed, Figure 2.3 shows
the exchange. Upon connection, the server responds with code 220 to indicate
it is ready. Next response code 331 is sent to acknowledge a login attempt
for user ubuntu followed by response code 230 to confirm successful login.
Response code 221 confirms the session is over.

As AFLNet receives response packets it collects them in a single response
buffer. Protocol-specific functions extract the sequence of response codes from
the response buffer (Algorithm 1 line 6). This forms the state sequence tra-
versed by the target as a result of the fuzz. The state transition sequence for
our working example would be 0-220-331-230-215-257-150-226-150-226-257-
221, where state '0'is the default initial state. Figure 2.4 shows the IPSM
from this first sequence. Each transition is labelled with the region ID from
the seed in Figure 2.2 which caused the transition. Regions 4 and 5 result in
two responses from the server, code 150 to indicate the file status and code
226 to indicate the transfer is completed. Future state sequences are added
to the IPSM if a new state or state transition is discovered.

10

2.2. Protocol Fuzzing

0 - USER ubuntu

1 - PASS ubuntu

7 - QUIT

Connect TCP

220 - Server ready

331 - User OK

230 - User logged in

221 - Goodbye

LightFTP...

Figure 2.3: AFLNet sending FTP fuzz. Grey arrow are client sent messages
and blue arrows are server sent

1
331

2
230

0
220

221

4/5
150

5

6

226
3

215
4

 7

257

Figure 2.4: AFLNet implemented protocol state machine (IPSM) example

In addition to updating the IPSM, AFLNet dynamically tracks target
state information as a list of structures, one per state. Listing 2 describes
important fields. AFLNet uses these fields to select seeds to fuzz specific
states and to heuristically select the best state to fuzz.

After the dry-run phase, fuzzing begins. An iteration of fuzzing com-
prises state selection, seed selection and fuzzing using that seed. Figure 2.5
illustrates the process. Using the IPSM and associated state data, AFLNet
decides which state to fuzz. In this example, FTP state 257 is selected which is
associated with the creation or printing of a directory (MKD and PWD com-
mands). Using the state structure with ID 257, AFLNet selects a seed from

11

2.2. Protocol Fuzzing

Listing 2 AFLNet target state info struct (partial)

typedef struct{

u32 id; /*server response code*/

u32 fuzzs; /*total fuzz which visit this state*/

u32 paths_discovered; /*total interesting fuzz

found while fuzzing this state*/

u32 selected_times; /*# of fuzzing rounds this

state has been selected*/

u32 score; /*how favoured this state is for selection*/

void **seeds; /*points to seeds reaching this state;

can cast to queue_entry*/

} state_info_t;

the corpus that traverses that state. The seed selected is parsed to identify the
first message sent once in that state. The message is mutated to create fuzz
and sent to the target. Compile-time instrumentation provides code coverage
feedback and response packet parsing provides the state sequence. If either of
these feedbacks determine the fuzz is interesting, it is added to the corpus as
a seed and a corresponding queue entry is made.

AFLNet supports three state selection methods; random, round-robin,
and FAVOR. The FAVOR mode will conduct round-robin for the first five
state selections then try to pick the best state to fuzz using a score assigned
based on equation (2.1).

score = ceil(1000 ∗ pow(2,−log10(log10(fuzzs+ 1)

∗selected times+ 1)) ∗ pow(2, log(paths discovered+ 1)))
(2.1)

fuzzs and selected times are used to measure the rarity of a state within
this fuzzing session, while paths discovered measures the potential for a state
to find new code paths. Score then is a function of its potential for new code
path discovery discounted by how much it’s been selected and fuzzed so far.
A state is selected with a probability proportional to its share of the sum of
scores across all states.

For seed selection, AFLNet also supports three modes; random, round-
robin and FAVOR. The FAVOR mode will conduct round-robin until the state
selected has at least 10 seeds reaching it, then start favouring seeds created
while the currently select state was being fuzzed, is an initial seed or has not
yet been fuzzed for this state. State and seed selection only apply if state

12

2.2. Protocol Fuzzing

1
331

2
230

0
220

221

4/5
150

5

6

226
3

215
4

 7

257

1. I will fuzz
state 257!

Corpus

2. Here's a seed that
reaches state 257!

USER a\r\nPASS b\r\nMKD
1\r\nMKD 2\r\nQUIT\r\n

USER a\r\nPASS b\r\nMKD 1\r\nMKD 2\r\nQUIT\r\n

3. Mutate, send
and watch!

Branch tuples

0-220-331-257-257-221

State transition
sequence

4. Interesting! New
coverage and/or state
activity, I shall save
this mutated buffer as
a new seed in my
corpus

Figure 2.5: AFLNet fuzzing illustration

feedback is enabled, otherwise AFLNet does not model state, and selects
seeds as AFL does, based on the order of the queue entries with preference
for seeds that have not yet been fuzzed. In the case state feedback is off, the
seed is still parsed into messages, but the portion of the seed that is mutated
is randomly selected; as little as one message up to the entire seed.

Algorithm 1 line 10 is where the selected seed and state results in fuzz
being created and sent to the target. Most of this research is implemented in
this part of AFLNet, so we will look at it in detail. Algorithm 2 describes the
AFLNet fuzzing function. There are three segments to this function; seed
parsing, the havoc stage and the splice stage. Each of these will be explained
in detail.

First, the selected seed (message sequence M) is parsed into a prefix, can-
didate and suffix sequence. This is done by converting the seed into a linked
list of messages and assigning pointers to the messages corresponding to:

• messages from the start of the seed up to and including the message that
moves the target into the desired state for fuzzing;

• messages sent while the target remains in that state. This forms the
candidate buffer which will be mutated; and

• messages after the target leaves the desired state.

13

2.2. Protocol Fuzzing

Algorithm 2 AFLNet fuzzing function

Input : Target Program P, Message sequence M, Target state s, Corpus,
IPSM

1: M1,M2,M3 ← parse(M, s) ▷ 1 - messages to place program in state s, 2
- messages up to change in state, 3 - remaining messages

2: in buf ←M2

3: orig buf ← in buf
4: out buf ← copy(in buf)

5: HAVOC STAGE:
6: for i from 1 to energy(M) do
7: stacks← random(128)
8: for j from 1 to stacks do
9: mutation← random(21) ▷ 17 if region mutations disabled

10: out buf ← mutate(out buf, mutation)
11: commonFuzzStuff(out buf, Corpus,Bitmap, P, IPSM)
12: out buf ← copy(in buf) ▷ restore out buffer

13: SPLICE STAGE:
14: if splice count++ <15 then
15: in buf ← orig buf ▷ restore in buffer
16: splice target← pickTarget()
17: new buf ← splice(splice target, in buf)
18: in buf ← new buf
19: out buf ← copy(in buf)
20: goto: HAVOC STAGE
21: splice count← 0

Figure 2.6 shows the parsing of a seed for selected state 257. To find
the candidate sequence, AFLNet looks at the state sequence traversed by
the target up to each region in the seed to find the first message after the
target is in the desired state and how many more regions are sent before a
new state is encountered. This region-specific state sequence is stored in the
region struct. Since the MKD command moves the target to state 257, the
following message is the start of the candidate sequence. As implemented,
AFLNet considers looping states to be ’new states’ and so the next state 257
reached after sending MKD 2 terminates the sequence. This implementation
means the candidate sequence is usually a single message. The message(s)
comprising the candidate sequence are then copied twice into byte buffers, of

14

2.2. Protocol Fuzzing

which three pointers keep a reference:
• orig buf retains the original copy;
• in buf will be re-assigned during the splicing stage (Algorithm 2 lines
13-20) and thus must be restored to the orig buf at the start of each
splicing stage; and

• out buf will be modified by the fuzzing loop havoc stage (Algorithm 2
lines 5-12) at the end of which it is restored to in buf.

USER ... PASS ... MKD 1 MKD 2 QUIT

prefix* (M1) candidate* (M2) suffix* (M3)

in_buf* MKD 2\r\n

orig_buf*

out_buf* MKD 2\r\n

Figure 2.6: AFLNet parsing of seed into prefix, candidate and suffix se-
quences

On each havoc stage, between 1-128 mutations are applied to the out buf
in a stacked fashion. A mutation is applied to the candidate buffer and then
another mutation is applied to that same buffer, stacking the mutations atop
one another. Table 2.1 shows all the mutation options and indicates the
likelihood of that mutation relative to the base-case mutation; random bitflip.
Most of these are inherited from AFL except for region mutations where
entire messages are involved. Interesting values are kept in a configuration
file for byte, word and dword sizes. These include signed or unsigned overflow
values, large values, or common size values. Cloned bytes are taken from the
buffer itself to then be inserted into or overwritten into the buffer. Dictionary
extras are provided as a newline separated list of words when the fuzzer is first
launched. These dictionaries are ideally protocol specific keywords or common
fields.

Once one havoc stage is completed, AFLNet enters the splicing stage.
The splicing stage is essentially an attempt to further exhaust achievable code
coverage using the selected seed by combining it with portions of other seeds
and repeating the havoc stage. Figure 2.7 illustrates a splicing mutation.
First, a splicing target is selected. This is a random seed other than the
currently selected seed and is at least 2 bytes long. The fuzzer scans both

15

2.2. Protocol Fuzzing

Table 2.1: AFLNet Mutations (#x likelihood relative to bit random bit flip)

Fuzzer Mutation

AFL Flip a random bit
AFL Set byte (1x), word(1x) or dword(1x) to interesting value

(random endianess)
AFL Add random value to byte(1x), word(1x) or dword(1x) (ran-

dom endianess)
AFL Subtract random value from byte(1x), word(1x) or dword(1x)

(random endianess)
AFL Set random byte to random value (1x).
AFL Delete bytes (2x).
AFL Overwrite bytes with constant bytes (0.25x), cloned bytes

(0.75x), or dictionary extra (1x)
AFL Insert bytes with constant bytes (0.25x), cloned bytes (0.75x),

or dictionary extra (1x)
AFL Splicing. Combine with bytes from other another seed
AFLNet Replace out buffer with random new region (1x)
AFLNet Prepend a random region to out buffer (1x)
AFLNet Append a random region to out buffer (1x)
AFLNet Duplicate entire out buffer (1x)

the splice target and in buf, noting the positions of the first and last differing
bytes; shown in bold red. Next, a position between the first and last differing
byte is randomly selected. A new buffer is created combining in buf up to but
not including the splice position and the splice target from the splice position
to its end. in buf is then pointed to this new buffer and out buf initialized to
its value to start a new havoc stage. This cycle of splice→havoc is repeated
15 times by default before the fuzzing function ends and AFLNet returns to
pick a new state to fuzz.

With 3 out of 21 mutations adding messages and up to 128 mutations being
applied to the same buffer, the mutated candidate buffer (out buf) can become
very long. To mitigate the negative impact to fuzzing speed that sending many
messages would have, AFLNet constrains the mutated candidate buffer to at
most n + 1 messages where n is the number of messages in the largest initial
seed. This constraint is implemented in the commonFuzzStuff() function on
line 11 in Algorithm 2. In this function, the out buf is parsed into individual
regions and then inserted into the linked list of messages formed at the start of
the fuzzing round, replacing the message(s) originally forming the candidate

16

2.2. Protocol Fuzzing

U S E R u b u n t u \r \n

U S E R u b A B O R T \n Q U I T \r \n

Find positions of first and last differing byte

Pick a byte position in that range

1

2

U S E R u b u B O R T \n Q U I T \r \n

Copy in_buf up to that position to form new buffer

In_buf

Splice Target

New In_buf

3

Figure 2.7: AFLNet splicing

sequence. Once n messages have been inserted, AFLNet forms one final
message containing the entire remaining buffer, message terminators included.
Figure 2.8 illustrates a buffer undergoing two region prepend mutations, one
region append mutation and a duplicate mutation. The buffer is then inserted
into the linked list of messages, respecting the max message constraint of five
messages, and so the sixth message is a combination of all three remaining
messages.

Example: prepend x 2, append x 1, duplicate x 1, yielding 8 messages in the buffer)

out_buf CWD 1\r\nSYST\r\nMKD 2\r\nPUT temp\r\nCWD 1\r\nSYST\r\nMKD 2\r\nPUT temp\r\n

CWD 1 SYST MKD 2 PUT temp

CWD 1 SYST\r\nMKD 2\r\nPUT temp\r\n

max new messages = 5

candidate* (M2)

Figure 2.8: AFLNet mutation illustration with max message constraint

From this updated linked list, the commonFuzzStuff() function sends the
fuzz to the target message by message; watching for new coverage or state
feedback. Interesting seeds are added to the corpus to seed future fuzzing
rounds and crashes or hangs are saved for future replaying. To aid in the

17

2.2. Protocol Fuzzing

replaying, AFLNet saves the fuzz in a replay format which records the length
of each message as a 4 byte value preceding each message. Figure 2.9 shows
the ASCII and byte representation of a two message fuzz alongside its replay
format.

USER ubuntu\r\n ... QUIT\r\n

0d00000055534552207562756e74750d0a ... 06000000515549540d0a

55534552207562756e74750d0a ... 515549540d0a

Byte representation

Region length as 4 byte int prepended to each region

Figure 2.9: AFLNet replay format

AFLNet’s features can be individually disabled or enabled using switches
when the afl-fuzz binary is executed. This research uses these switches to
conduct an ablation study of AFLNet’s state feedback features. The switches
relevant to this research are:

• -R: enable region mutations;
• -E: enable state feedback. When set, the fuzzer will model target state,
select states to fuzz and state-specific seeds. Seeds will be parsed in
order to mutate only the candidate sequence;

• -q: specify state selection algorithm among round-robin, random and
favor. Defaults to round-robin if not specified; and

• -s: specify seed selection algorithm among round-robin, random and
favor. Defaults to random if not specified.

2.2.2 Profuzzbench

AFLNet’s main author, Van-Thuan Pham, partnered with Roberto Natella,
author of AFLNet-based fuzzer StateAFL, to create a protocol fuzzing
benchmark named ProFuzzBench [13]. It comprises 13 targets, which im-
plement 10 different protocols. Targets represent a breadth of protocol state
types and are related to previous academic and non-academic fuzzing work.
Table 2.2 shows the 13 targets supported by ProFuzzBench.

The benchmark workflow involves build, execute and analyze phases as
shown in Figure 2.10. First a container is built for each target using Docker.
The target program and fuzzers being benchmarked are compiled in the con-
tainer using a specific folder name and structure. The target is compiled

18

2.2. Protocol Fuzzing

Table 2.2: ProFuzzBench supported targets

Protocol Target Description Protocol States

RTSP Live555 Real-time media
streaming

Streaming progress

SMTP Exim Email transmission Message queue, session
progress

FTP [Pro|Pure|B]-
FTPd, LightFTP

File transfer CWD, session flags,
session progress

SSH OpenSSH Secure remote shell User auth. progress,
session configuration

TLS OpenSSL Secure socket
connection

User auth. progress,
session configuration

DTLS TinyDTLS Secure datagram
communication

User auth. progress,
session configuration

DNS DNSmasq Network domain
names

Cached DNS records

SIP Kamailio Signaling protocol
for real-time sessions

User registrations, session
progress

DAAP Forked-DAAPd HTTP-based audio
library streaming

Streaming progress,
playlist

DICOM Dcmtk Image retrieval Progress of the session

twice, once for fuzzing with ASAN enabled and a second time without ASAN
for coverage analysis using gcov. Files necessary to execute fuzzing are copied
into the container at this step, such as initial seeds, clean-up scripts, and shell
commands to run fuzzing and coverage programs.

Fuzzers/
AFLNet/
AFLNwe/

Target/
Fuzzing/
Coverage/

Build Execute Analyze

timeout %d fuzzers/%f/afl-fuzz > target/fuzzing/bin
gcov > target/coverage/bintimeout %d fuzzers/%f/afl-fuzz > target/fuzzing/bin

gcov > target/coverage/bintimeout %d fuzzers/%f/afl-fuzz > target/fuzzing/bin
gcov > target/coverage/bin

Figure 2.10: ProFuzzBench benchmark phases

To execute experiments, bash scripts are used. At their core, these scripts

19

2.3. Fuzzer Evaluation

spin up containers, run the fuzzing and coverage scripts in the containers and
extract the output data onto the host before stopping the containers. An
example command to execute an experiment is shown in Listing 3. This ex-
periment launches 4 identical containers, named lightftp, and runs AFLNet
against the target within the container environment using the flags in quotes.
The fuzzing portion of the experiment lasts 86400 seconds. Once fuzzing is
complete, ProFuzzBench calculates the coverage achieved over time through-
out the fuzzing campaign. The coverage script runs seeds from the fuzzer cor-
pus against the gcov-compiled target. For each 5 seeds sent, gcov is run and
branch and line coverage information are recorded to disk. The last modified
timestamp of the seed files sent are recorded to indicate at what time that
coverage is achieved. This captures a time series of line and branch coverage
achieved by the fuzzer. When the coverage portion is complete, recorded data
is transferred out of the container into the designated host folder (results-
lightftp in this case) using the designated filename (out-aflnet in this case).

Listing 3 Example ProFuzzBench experiment command

profuzzbench_exec_common.sh lightftp 4 results-lightftp \

aflnet out-aflnet "-P FTP -D 10000 -q 3 -s 3 -E -K \

-m none" 86400 5

ProFuzzBench includes analysis scripts to consolidate the experiment
coverage outputs into a comma separated value file (CSV) and also to produce
plots of average coverage over time. The average coverage is of all runs at
each timestep. Figure 2.11 shows an example output for experiments using
AFLNet and AFLNwe. Note these are average coverages which, as later
discussed in Section 2.3, is not best-practice in fuzzer evaluation.

Though ProFuzzBench receives limited maintenance, users continue to
contribute improvements and it is the standard benchmark used for AFLNet-
related research.

2.3 Fuzzer Evaluation

Fuzzing is stochastic, meaning determining whether Fuzzer A is better than
Fuzzer B, and by how much, requires following certain principles. It is recom-
mended fuzzing experiments last at least 24 hours. Klees et al. observed that
fuzzing performance varies throughout an experiment and that fuzzing for 24-
hours is enough for initial false trends to reverse [29]. This recommendation

20

2.3. Fuzzer Evaluation

Figure 2.11: ProFuzzBench plotting script output showing coverage over
time as absolute values (top) and percentages (bottom)[28]

aligns well with research by Böhme et al. that determined code coverage to
bug finding agreement improves significantly up to 12 hours of fuzzing [14].

It is recommended that experiments are repeated at least ten times. There
are two reasons. First, at least ten data samples are required to accurately
complete statistical tests [17]. Second, ten data samples allows us to compare
median fuzzer performance. Median fuzzer performance is preferred over av-
erage performance due to fuzzing’s substantial performance difference run to
run [29]. Outliers, very good or very poor runs, skew the average.

There are two main ways to measure fuzzer performance; code coverage
achieved and bugs found. Code coverage is easy to measure with standard
tools and can be necessary when no bugs are found. The idea that code
must be executed in order for a bug to be found is intuitive. Research sup-
ports that code coverage is a good proxy for measuring bug finding ability for
fuzzers [14]. Specifically, code coverage is strongly correlated to, and mod-
erately agrees with bug finding. It remains that code coverage is not the
true objective of fuzzing, which is finding bugs. Research on fuzzer evalua-
tion recommends bug finding is best measured after-the-fact by triaging the
crashing testcases found by the fuzzers and to perform detailed bug dedu-
plication; a common occurrence with fuzzing [17]. This recommendation is
time-consuming to implement, so many research works limit their evaluation
to code coverage.

It is commonplace to report and assess only branch coverage as it better

21

2.4. Related Work

captures the ability to explore new portions of code and meet constraints. gcov
considers a branch as a transition between basic blocks in a control flow graph
of the code. As expected this includes conditional programing structures,
loops, and boolean conditional statements. It also includes exception han-
dling, initialization/destruction of static code elements, and additional ones
added from compiler generated code. Though gcov has features to reduce un-
reachable branches, 100% branch coverage is usually impossible [30]. In this
research, when we refer to final branch coverage, we mean the total number
of branches that the fuzzer succeeded in reaching over the entire session.

When comparing fuzzers using code coverage it is recommended that sta-
tistical tests, such as the Mann-Whitney-U test [31], be used to demonstrate
whether the coverage difference is statistically significant and that the differ-
ence be quantified (for example: Vargha and Delaney’s Â12 effect size [32]).

How much of a statistically significant coverage increase is needed to im-
prove protocol fuzzing? Previous research on coverage as a measure of test-
suite effectiveness suggests a small increase of coverage, in one case 4%, can
result in many bugs found [33]. Additional research on fuzzer evaluation in-
dicates this is due to initial seeds giving the fuzzer easy access to many code
branches early in the session [14]. For example, most branches found in their
23-hour experiments were covered in the first 15 minutes. Thus, this research
considers a statistically significant coverage improvement of any size to mean
the particular configuration or change has improved protocol fuzzing.

Ideally, multiple broadly representative fuzzing targets are used, and all
experiments repeated for different seed sets [29]. When multiple separable
design features are introduced in the same research work, an ablation study
is recommended [17]. Ablation studies seek to understand the role individual
components in a system have by removing other components. This allows
research to look at improving specific components within fuzzing and build on
previous research.

2.4 Related Work

Related to this research includesAFLNet-based research that looks to modify
its state feedback features, studies that measure the code coverage value of
state feedback in AFLNet, and a fuzzer that added syntax-awareness to
AFLNet’s mutation process.

22

2.4. Related Work

2.4.1 Alternative State Feedback

Research has looked at replacing AFLNet’s response code-based state repre-
sentation with more fine-grained alternatives. StateAFL [10] models target
state based on a fuzzy hash of long-lived memory regions. States are other-
wise selected and fuzzed similar to AFLNet. Code is injected at compile-
time to track memory allocations and to take memory snapshots when net-
work exchanges between the fuzzer and target occur. This state represen-
tation method eliminates the need to extract response codes from target re-
sponses, making the adoption of new targets easier and supporting targets
without response codes. Fuzzing new targets for the first time is likely to find
bugs, making this feature important [34]. StateAFL’s code has been open-
sourced. They find this new state representation generally has little to no
impact on branch coverage achieved relative to AFLNet, with the exception
of PureFTPd and TinyDTLS which show a 2-3% improvement.

NSFuzz [3] models target state based on state variables in the application
source. The authors created static analysis tools to help find state variables,
which are then manually annotated. Those annotations guide compile-time
instrumentation which monitors those state variables. Their premise is that
most network application targets have a single main loop which receives and
handles new connections according to some state variables. When a target
processes a message, a hash is taken of an array of state variables to repre-
sent the target state. NSFuzz additionally implements techniques to speed
up fuzzing, but they also tested a version of their fuzzer with no speed-ups
to understand the contribution of the new state representation alone. They
find the variant of the fuzzer with only the new state repesentation averages a
2.11% branch coverage improvement across ProFuzzBench targets, though
this average is skewed by 2 targets showing a large coverage increase while 5
targets showed a coverage decrease. This research team also ran experiments
with StateAFL and found an average coverage decrease of 3.38%. Overall
results varied depending on the target’s interaction with the state representa-
tion’s strengths or weaknesses. NSFuzz is not open-source.

On the topic of target state selection, AFLNet-Legion [11] implemented
a new state selection algorithm in AFLNet called Legion which is based on
Monte Carlo tree search. They found that the new algorithm failed to improve
coverage in a statistically significant way relative to AFLNet’s favoured state
selection mode. They relate this result to two limitations in AFLNet; low
fuzzing throughput and AFLNet generating bad fuzz rejected by the server.
AFLNet-Legion’s code has been open-sourced.

SMGFuzz [12] proposes that state selection should occur after seed se-

23

2.4. Related Work

lection, on the grounds that every state transition exists within the coverage
bitmap from which seeds are selected. In addition, SMGFuzz introduces more
efficient ways to store state information (as a map) and construct message se-
quences (no longer than the first protocol-specific termination command, such
as QUIT in FTP). The average executions for one particular target increased
by 40% through this semantic addition. On average, coverage improved by
12.48% across eleven ProFuzzBench targets. This average is skewed by one
strong outlier. When the outlier is removed, the average code coverage change
is negative. SMGFuzz has not yet been published and the code not currently
publicly available.

2.4.2 Value of State Feedback

Days before this research was proposed, a preprint became available wherein
the authors present AFLNet’s process in detail and investigate the code
coverage value added by the state feedback and seed-selection strategies in
AFLNet [15]. It was published in April 2025, its source code published
in May 2025, and is co-authored by the creator of AFLNet, Van-Thuan
Pham. The research shares a similar goal and motivation to the ablation study
conducted in this present research. The authors acknowledge an evaluation
of each AFLNet component was lacking and that they aimed to understand
the contribution state feedback makes towards overall fuzzer performance.

Whereas this research uses existing AFLNet switches to define different
configurations, Meng et al. modified the alf-fuzz source to more neatly isolate
features while holding others constant. To discover the value of state feed-
back they compiled separate AFLNet afl-fuzz binaries that isolate code-only
and code+state feedback while retaining an identical seed selection approach.
Using just existing switches this is not possible, because when state feedback
is enabled, purely AFL-style seed selection is not available, rather the closest
is FAVOR mode, where a mix of round-robin and AFL-style seed selection is
used with state heuristic considerations. They ran 10x24 hour experiments
using ProFuzzBench and reported average results. They find that while
additional state feedback can slightly improve code coverage for most sub-
jects, this improvement is not statistically significant. On average the code
coverage improvement is of +0.01%, with targets seeing changes from -2.42%
up to +1.38%.

Next, the authors researched the performance difference of selecting seeds
based on the queue order as is done by AFL and AFLNet FAVOR mode
(a blend of queue order and state heuristics). They found AFLNet FAVOR
mode performed worse than queue order, achieving -2.04% coverage on average

24

2.4. Related Work

across all ProFuzzBench targets (minus OpenSSL) and -5.07% on average
for FTP targets. This paper concludes that perhaps response codes are not a
good representation of target state and that would explain why state feedback
contributes such limited code coverage value. It is relevant to mention here
their definition of state feedback differs from our’s; where we include state-
heuristic based seed selection as part of state feedback.

2.4.3 Syntax-awareness in AFLNet

ChatAFL is a fuzzer derived from AFLNet which uses a large language
model (LLM) to apply three guidance strategies to protocol fuzzing; syntax-
aware mutations, enrichment of initial seeds and breaking out of coverage
plateaus [6].

Regarding syntax-aware mutations, the authors find an LLM can reliably
provide a protocol’s set of supported messages (its syntax) while respecting
a specific response format that identifies variable and fixed fields. To achieve
this, few-shot learning with two shots is used to inform the LLM of the desired
format while preventing it from adhering too closely to the example. The
LLM is then queried multiple times for the protocol syntax. Messages reliably
found in the LLM response form the protocol’s syntax for guiding mutations.
In their case study, using the Real Time Streaming Protocol (RTSP), the
LLM rarely generated random messages and in one case would sometimes
omit an optional field, but the majority response matched the ground-truth.
These message templates are then placed in a corpus that is used to constrain
mutations to variable fields within a message type.

It is relevant to mention here the different depths of syntax. First we can
ensure the message respects the correct form (called a template by ChatAFL)
and then ensure the fields contain the right type of information. Figure 2.12 il-
lustrates this. The USER FTP command expects the form shown at point one.
The username field meanwhile is expected to be a string comprising ASCII
characters except the carriage-return and linefeed characters. ChatAFL lim-
its syntax to the template-level. Yu et al. in their protocol fuzzing tool
named SGPFuzzer, explain being too strictly aligned with protocol syntax
could mean no bugs are triggered and that rather we need enough validity
to get past initial parsing, but some variability to trigger bugs [24]. Limiting
syntax to the template-level is one way of achieving this balance.

Before the stacked mutation loop is entered, the out buf is searched against
the templates. If a match is found, the variable fields are tracked by byte
position in an array of ranges (start and length of each byte range). These byte
ranges are mutated, while the rest of the buffer is left untouched. Figure 2.13

25

2.4. Related Work

USER <SP> <username> <CRLF>1

2

Template

Type
<username> ::= <string>
<string> ::= <char> | <char><string>
<char> ::= ASCII except <CR> and <LF>

Figure 2.12: FTP syntax depths

shows a mutable byte range being parsed from the buffer MKD 1\r\n. The
syntax corpus is queried and the buffer matches the FTP MKD message type.
The template has a variable field after the ”MKD ” header up to the message
terminator \r\n. In this example, this results in a single range starting at
byte position 4 with a length of 1.

out_buf* MKD 1\r\n

out_ranges* {.start = 4, .len = 1}

out_ranges* = parse_buffer(out_buf)

Grammar Corpus

MKD <Value>\r\n

Figure 2.13: ChatAFL syntax-awareness

When performing stacked mutations, a mutable range is randomly selected
to have the mutation applied to. A mutation is then randomly selected. Each
mutation first checks that the mutable range is sufficiently long for the chosen
mutation, if not then this stack is skipped and the loop continues to the next
stack, where a new random mutable range and mutation are chosen. How each
mutation is made syntax-aware is shown in Table 2.3. For AFL mutations,
except for splicing, syntax-awareness is simply constraining the target of the
mutation to the mutable range. ChatAFL does not modify the splicing stage.
In the case of the replace buffer mutation, the new buffer is parsed to obtain its
mutable ranges. If adding a new region, the existing regions must be shifted
based on the size of the region added. Note ChatAFL does not add the
mutable ranges of a newly added region to the list of mutable ranges in the
buffer. The duplication mutation is changed to only duplicate the selected
mutable range. In this case, the ranges are also replicated.

Like SGPFuzzer[24], ChatAFL’s authors agree that some amount of
syntactically invalid fuzz can be useful. Before entering the mutation loop a
decision is made to use syntax-awareness (exploit) or not (explore). These
terms usually refer to a trade-off between acquiring new knowledge about the

26

2.4. Related Work

Table 2.3: ChatAFL syntax-awareness added to AFLNet Mutations. #x
likelihood relative to bit random bit flip. Strikethrough indicates changes
made by ChatAFL.

Fuzzer Mutation ChatAFL Syntax Awareness

AFL Flip a random bit. Apply to mutable byte ranges only

AFL Set byte (1x), word(1x) or
dword(1x) to interesting value
(random endianess)

Apply to mutable byte ranges only

AFL Add random value to byte(1x),
word(1x) or dword(1x) (random
endianess)

Apply to mutable byte ranges only

AFL Subtract random value from
byte(1x), word(1x) or dword(1x)
(random endianess)

Apply to mutable byte ranges only

AFL Set byte to random value (1x) Apply to mutable byte ranges only

AFL Delete bytes (2x). Apply to mutable byte ranges only
Adjust mutable ranges accordingly

AFL Overwrite bytes with constant
bytes (0.25x), cloned bytes (0.75x),
or dictionary extra (1x)

Overwrite mutable byte ranges
only. Clone from entire buffer

AFL Insert bytes with constant bytes
(0.25x), cloned bytes (0.75x), or
dictionary extra (1x)

Insert in mutable byte ranges only.
Clone from entire buffer. Shift
ranges accordingly

AFL Splicing (after havoc stage) -

AFLNet Replace out buffer with random
new region (1x)(2x)

Replace mutable ranges with
mutable ranges of new region

AFLNet Prepend a random region to out
buffer (1x)(2x)

Shift existing mutable ranges

AFLNet Append a random region to out
buffer (1x)(2x)

-

AFLNet
ChatAFL

Duplicate entire out buffer (1x)
Duplicate selected mutable range
(2x)

Add new mutable range and shift
existing

environment (exploration) and using that knowledge to gain some form of
energy (exploitation).

When exploring, ChatAFL creates a single mutable range comprising the
entire buffer. For their experiments ChatAFL used a 50% explore-exploit
ratio. Three design decisions make the actual ratio unclear. First, though the

27

2.4. Related Work

decision for a round of fuzzing may be to exploit, if the parsing function fails
to match the buffer to a template, it resorts to exploration. Second, when
the replace-region mutation is performed it always attempts to exploit (again
resorting to explore if no match is found). Third, since the splicing stage is
not changed, it is likely the stage seeds future havoc stages with syntactically
invalid seeds, thus causing more exploration.

These design decisions hinder a clear understanding of the explore-exploit
tradeoff when applying syntax-awareness in AFLNet. Hence, in the research
conducted herein we undertake a different design to adding syntax-awareness
to AFLNet, while retaining ChatAFL’s granularity of syntax and mutable
range approach.

Tested against six ProFuzzBench targets, they found syntax-aware mu-
tations led to an average coverage improvement of 3.04% and an average cov-
erage speed-up of 2.02x relative to AFLNet. Among the six targets were two
FTP targets, ProFTPd and PureFTPd. Though the aim of this research is
not to improve on syntax-aware mutation, a comparison between ChatAFL
and this research is warranted and discussed in Appendix A.

28

3 Methodology and Design

This chapter presents the methodology and design used to conduct this re-
search. Recall the aim of this research is to determine how adding syntax-
awareness to AFLNet’s mutation process changes the branch coverage im-
pact of AFLNet state feedback features. This research achieves its aim by
measuring the impact of state feedback features before and after adding syntax
awareness.

First, an ablation study of separable AFLNet features is completed. This
provides the code coverage impact of each separable AFLNet feature rela-
tive to a baseline configuration (feature impact A). AFLNet is then extended
with syntax-awareness to create syntactically correct fuzz. We call our syntax-
aware AFLNet derivative AFLNet-Packmute. A verification phase con-
firms that created fuzz are indeed syntactically correct. Lastly, a validation
phase measures the impact to code coverage between a baseline AFLNet-
Packmute and configurations enabling each separable design feature (fea-
ture impact B). The difference between feature impact A and feature impact
B allows us to achieve the aim of the research.

3.1 Methodology

Initially we were interested in the idea of sharing dynamic state information
among parallel protocol fuzzers to improve favoured state selection, however
in preliminary experimentation we found state selection did not make any
difference in code coverage achieved. This conclusion is also reached in 2022
by a doctoral student of AFLNet’s creator [11]. This led us to observe no one
had yet investigated the code coverage impact of each AFLNet component.
Conveniently, AFLNet’s author included command-line switches to configure
various features within the tool and so fuzzer configurations could be defined
based on those switches to measure the code coverage contribution of each
feature.

29

3.2. AFLNet Ablation Study

Our hypothesis was that state feedback features lack effectiveness due to
AFLNet having no knowledge of protocol syntax. The AFLNet mutation
process presented in Chapter 2 has a high likelihood of making the fuzz syn-
tactically invalid, having on average 64 stacked mutations applied anywhere
in a protocol message. Syntactically invalid fuzz would then be rejected early
on in a networking application’s logic, failing to effectively interact with its
state. The objective then is to add syntax-awareness into AFLNet.

Although manually coding protocol parsers is effortful, we were convinced
there must be existing tools that have gone through that effort (Wireshark
exists after all). Searching for tools that give structured access to applica-
tion layer protocol data and have a language compatibility with AFLNet
(C) we found PcapPlusPlus [35]. It is written in C++ and thus could
be compiled alongside afl-fuzz, is actively maintained, has very fast reported
performance, and supports the parsing of fourteen different application layer
protocols; giving access to each field in a given protocol packet. Next we
looked to ChatAFL, which is the first tool to add syntax-awareness into
AFLNet’s mutation process. It’s use of mutable byte ranges to constrain
mutations while preserving syntax is elegant and simple, so we opted to use
that but also recognized design decisions which we found inefficient or unclear
(particularly regarding the exploit-explore trade-off). The design of this re-
search looks to address those observations while using existing tooling with
syntax-awareness, vice an LLM derived syntax corpus.

If an ablation study has now been published [15], why did we proceed
with the ablation study in this research? We believe that using an unmodified
AFLNet in the ablation study will further validate the work by Meng et
al. and contribute additional insights into the code coverage value of state
selection algorithms and region mutations. Furthermore, the ablation study
in this research was needed for development and validation phases and the
Meng et al. paper was not published in time for this research. The authors
omitted one target, OpenSSL, which our ablation study includes. Lastly,
unlike the existing ablation study we include state-informed seed selection as
part of state feedback in AFLNet.

3.2 AFLNet Ablation Study

The goal of this phase is to measure the change in branch coverage resulting
from enabling specific AFLNet features. Measuring the contribution of a
particular system component is called an ablation study. This is the feature’s
code coverage impact. If a feature has little to no impact on code coverage,

30

3.2. AFLNet Ablation Study

there is a case that the feature needs to be re-designed to be useful, simply
eliminated, or some other change made to AFLNet to make it impactful.

An ablation study of AFLNet components is conducted using Pro-
FuzzBench against all its supported targets (listed in Table 2.2). The latest
version of AFLNet at the time of this research is used, commit ID 6d86ca0.
ProFuzzBench by default uses an old version. Features are enabled one at a
time, using AFLNet’s existing switches to toggle or set specific features. The
fuzzing configurations are shown in Table 3.1. There is one baseline config-
uration, four configurations capturing various combinations of state feedback
features, and five configurations adding region mutations to each.

Table 3.1: Ablation study AFLNet configurations

Name
Region

Mutations
State

Awareness
Seed

Selection
State

Selection

BASELINE N/A N/A

BASELINE-RGNS ! N/A N/A

STFL-RND ! Random Random

STFL-RND-RGNS ! ! Random Random

STFL-FVR-SD ! Favor Random

STFL-FVR-SD-RGNS ! ! Favor Random

STFL-FVR-ST ! Random Favor

STFL-FVR-ST-RGNS ! ! Random Favor

STFL-FULL ! Favor Favor

STFL-FULL-RGNS ! ! Favor Favor

As per fuzzer evaluation best-practice outlined in Section 2.3, each con-
figuration is evaluated over ten separate fuzzing sessions lasting 24 hours. A
BASELINE experiment execution against the LightFTP target looks like
Listing 4.

Listing 4 ProFuzzBench BASELINE experiment command

profuzzbench_exec_common.sh lightftp 10 results-lightftp \

aflnet out-aflnet "-P FTP -D 10000 -K -m none" 86400 5

31

3.2. AFLNet Ablation Study

Ten fuzzing container instances are launched in parallel, running AFLNet
with the specified flags against the LightFTP application for 86,400 seconds
(24 hours) and then measuring coverage for every five testcases in the corpus.
The -K switch tellsAFLNet to send a process termination signal to the target
between fuzz. The -m none switch tells AFLNet there is no memory limit for
the spawned target processes. This is necessary due to using ASAN-enabled
64 bit binaries which allocate huge quantities of memory; though they never
actually use it. The -D switch tells AFLNet to wait 10,000 microseconds be-
fore sending the fuzz to allow the target application to complete initialization.
Each fuzzer configuration keeps these essential switches and then adds others
to enable specific features or for specific protocols. The ablation study uses
the target-specific timeouts included in default ProFuzzBench exepriment
commands.

The use of AFLNet’s existing switches to define each configuration makes
this ablation study simple to execute, needing to compile only one fuzzer per
target. However, we are then limited to analyzing the impact of these func-
tional features which may not perfectly isolate AFLNet’s design decisions.
This limitation is present when we measure the impact of basic state feedback,
where a state-aware seed selection approach must be used. Seed selection is
also done AFLNet with state feedback disabled as well. Hence, for basic state
feedback there are two influences at play; the change in seed selection and the
addition of state modeling and selection. Fortunately, the coverage impact
of state-heuristic based seed selection relative to plain AFLNet using queue
order has measured by Meng et al., allowing us to understand each of these 2
components at play when measuring basic state feedback.

This phase is concerned with observing the effectiveness of AFLNet fea-
tures; region mutations, basic state feedback (parsing seed into candidate se-
quence, interpreting server response codes as states) and each FAVOR-mode
seed and state selection. Effectiveness of a feature is measured by the percent
change in final median branch coverage observed when a feature is enabled
relative to the parent configuration.

Parent configurations have one less feature enabled than their child con-
figuration, allowing us to measure the impact of enabling one specific feature.
Figure 3.1 shows the parent:child hierarchy for all ten fuzzer configurations
included in the ablation study. Arrow number 1 isolates the impact of adding
state feedback while retaining a seed selection closest to the parent config and
random state selection. We call this basic state feedback. This evaluates the
coverage value of selecting and fuzzing specific states. STFL-FVR-SD will
mutate the messages targeting specific states, while BASELINE will mutate
anywhere from 1 message to the entire sequence, not targeting any specific

32

3.2. AFLNet Ablation Study

state. Arrows numbered 2 isolate the impact of favoured state selection. Ar-
rows numbered 3 isolate the impact of favoured seed selection. Purple right-
angled arrows indicate measurements that are accessory to the aim of this
research; that is, measuring the impact of region mutations. Those results
are discussed in Appendix B. Note for each numbered turquoise arrow there
are two opportunities to measure the feature impact; once by comparing the
configurations without region mutations enabled and once by comparing the
configurations with region mutations enabled. These multiple measurements
for each feature may help overcome results of limited statistical significance
and strengthen our observations. The green semi-circular arrow represents
the coverage value of the 3 state feedback features combined. There may be
synergies or drawbacks from combining features which cause an effect to per-
formance beyond the feature we wish to measure itself. This research did not
try to measure such factors. However, using multiple measurements allowed
us see a given feature’s impact in the context of different fuzzer configurations,
especially with or without region-mutations.

+RGNS

+RGNS+RGNS

+RGNS+RGNS
BASELINE STFL-RND

STFL-FVR-SD STFL-FVR-ST

STFL-FULL

2

2 3

31

Full state
feedback

Figure 3.1: Ablation study configuration hierarchy. 1 - basic state feedback.
2 - favoured state selection. 3 - favoured seed selection.

Protocol fuzzing performance is measured by the total branch coverage
achieved by the median fuzzer of a given configuration. Coverage is measured
by gcov as described in Section 2.2.2. Though gcov also provides line coverage,
only branch coverage will be used as is done in all related works. The percent
change in median branch coverage between a child and parent configuration
represents the impact or effectiveness of a feature.

As fuzzing is stochastic and we are repeating experiments a limited number
of times, statistical significance will determine whether the sets of results (child
and parent) belong to different distributions. The Mann-Whitney-U test [31]

33

3.3. AFLNet-Packmute

with a significant level of 0.05 confirms whether the distributions are different.
It is a test which helps reject the null hypothesis that the distributions are the
same when the number of samples is small. Though the test does not assume
the data is normally distributed it does assume they have a similar shape. The
test results in a p-value which indicates the likelihood that the samples are
from the same distribution. If the p-value is 5% (0.05) or lower we reject the
null hypothesis that they are from the same distribution and deem they are
different. Vargha and Delaney’s Â12 effect size [32] quantifies the difference.
An effect size ranges from 0 to 1 and indicates the chance that a random
sample from distribution A is greater than a random sample from distribution
B. If the effect size is larger than 0.5 is means distribution A contains larger
values, while an effect size under 0.5 indicates distribution B contains larger
values. The original paper proposes how far from 0.5 the effect size must be to
consider the difference in distributions negligible (0-0.06), small (0.06-0.14),
medium (0.14-0.21) or large (0.21+).

Related work in this field usually includes all values in calculating summary
statistics, but also includes the statistical significance metrics to indicate how
strong the observations are. Secondary measurements are included to draw
additional insights; speed-up (how fast fuzzer B reached the coverage of fuzzer
A in the event it outperformed A), average executions per second, and fuzzer
min/max run code coverage. The output of this phase is the feature impact
of the non-syntax-aware AFLNet.

3.3 AFLNet-Packmute

This section outlines the design of a syntax-aware AFLNet variant, named
AFLNet-Packmute which is developed for this research. It will later be used
to measure the state feature impact of AFLNet when it has a syntax-aware
mutation process. This section is organized in four parts;

• Adding syntax-awareness to the AFLNet fuzzing function from an al-
gorithmic perspective;

• Adding syntax-awareness to the AFLNet mutations;
• The structural design of AFLNet-Packmute; and
• The behavioural design of key functions.

Syntax-awareness is limited to ensuring messages adhere to a valid mes-
sage template for the protocol. Mutations are applied to byte ranges within
the mutation buffer which correspond to variable fields in the protocol spec-
ification. These are called mutable ranges. As mutations are applied to the
candidate buffer, the mutable ranges are updated accordingly. In the event

34

3.3. AFLNet-Packmute

the fuzzer decides to explore, and not use syntax awareness, a single mutable
range spanning the entire buffer is created. This approach to adding syntax-
awareness to AFLNet’s mutation process is taken from ChatAFL [6]. It
neatly adds syntax-awareness to the existing mutation process with minimal
changes. Our goal is to add syntax-awareness without making large changes
to how AFLNet is creating fuzz.

AFLNet-Packmute does not enforce that mutable ranges respect the
expected type of information by the protocol. For example, the FTP com-
mand USER expects a username field to only contain ASCII characters ex-
cluding the carriage-return and line-feed characters. Enforcing that level of
syntax-awareness would require changes to the mutation process itself, which
is outside the scope of this research.

3.3.1 Fuzzing Loop Syntax-Awareness

Algorithm 3 highlights in red the changes made to the AFLNet fuzzing func-
tion to make it syntax-aware. An exploit-explore decision point and mutable
range structures have been added. For each copy of the candidate buffer in
the fuzzing loop there is a corresponding mutable range structure that tracks
where mutable ranges exist in each buffer. These are updated as each muta-
tion is performed. Like the candidate buffer copies, these ranges are named
orig ranges, in ranges, out ranges. How the functions contained in Algorithm
3 have been made syntax-aware is covered in the next two subsections. Here
we limit ourselves to a high-level view.

On line 5, a decision is made whether to exploit or explore this fuzzing
round. If exploiting, the mutable ranges are extracted from the regions com-
prising the candidate sequence through the getRanges() function as shown on
line 7 and assigned to orig ranges. If exploring, a single range comprising
the entire buffer is created (line 9). These orig ranges are then copied to
in/out ranges on lines 10-11. In the stacked mutation loop, individual muta-
tions consider the ranges of the out buf and whether this round is exploiting
or exploring (line 17). Between each fuzz sent to the target, the out ranges
are reset to match the in ranges (line 20). During splicing, the in ranges are
restored to the orig ranges as is the buffer (line 24). If exploiting, a splicing
target that contains mutable ranges will be selected (line 25) and the splice
will occur between a mutable range in the target to a mutable range in the
in buf. Splicing will update the effected in ranges before the buffer and ranges
are copied into the out variables.

With this algorithm in mind, let’s consider how mutations are made syntax-
aware.

35

3.3. AFLNet-Packmute

Algorithm 3 AFLNet-Packmute Fuzzing Loop

Input : Target Program P, Message sequence M, Target state s, Corpus,
IPSM

1: M1,M2,M3 ← parse(M, s) ▷ 1 - messages to place program in state s, 2
- messages up to change in state, 3 - remaining messages

2: in buf ←M2

3: orig buf ← in buf
4: out buf ← copy(in buf)
5: exploit← random(100) < EXPLOIT RATE
6: if exploit then
7: orig ranges← getRanges(M2)
8: else
9: orig ranges← .starts = 0, .lengths = len(M2), .num ranges = 1

10: in ranges← copy(orig ranges)
11: out ranges← copy(in ranges)

12: HAVOC STAGE:
13: for i from 1 to energy(M) do
14: stacks← random(128)
15: for j from 1 to stacks do
16: mutation← random(21) ▷ 17 if region mutations disabled
17: out buf ← mutate(out buf, mutation, out ranges, exploit)
18: commonFuzzStuff(out buf, Corpus,Bitmap, P, IPSM)
19: out buf ← copy(in buf) ▷ restore out buffer and ranges
20: out ranges← copy(in ranges)

21: SPLICE STAGE:
22: if splice count++ <15 then
23: in buf ← orig buf ▷ restore in buffer and ranges
24: in ranges← copy(orig ranges)
25: splice target← pickTarget(exploit)
26: new buf ← splice(splice target, in buf,in ranges, exploit)
27: in buf ← new buf
28: out buf ← copy(in buf) ▷ prep next HAVOC
29: out ranges← copy(in ranges)
30: goto: HAVOC STAGE
31: splice count← 0

36

3.3. AFLNet-Packmute

3.3.2 Mutation Syntax-Awareness

The way ChatAFL added syntax-awareness to each mutation was covered
in Section 2.4. AFLNet-Packmute takes a more strict approach, seeking
to minimize the breaking of syntax when choosing to exploit. Table 3.2 de-
scribes how AFLNet-Packmute applies syntax-awareness to each mutation,
and the differences from ChatAFL. Note this pertains to when the fuzzing
round is exploiting. When exploring, a single mutable range comprising the
entire buffer is kept so that all bytes can be mutated and syntax-awareness
constraints are not enforced during mutations.

Region mutations in AFLNet-Packmute differ from ChatAFL in sev-
eral ways. In the case of replacing the entire buffer with a new region,
ChatAFL takes any region, regardless of whether there exist mutable ranges
in that region and then proceeds to parse it for mutable ranges (ie apply
syntax-awareness). This is done even if the decision is to explore, essentially
converting it to exploitation. Since this mutation case on average occurs mul-
tiple times each set of stacked mutations, ChatAFL’s process often tries to
exploit even if their exploit rate is set to 50%. AFLNet-Packmute ensures
the region selected has a mutable range if the decision was to exploit this
fuzzing round.

When AFLNet-Packmute prepends or appends regions to the muta-
tion buffer it then adds mutable ranges in those regions to the list of ranges,
whereasChatAFL does not. The splicing stage is not modified forChatAFL,
but we found it introduced syntactically invalid commands when fuzzing and
so we also made it syntax-aware. This way, there is a very clear decision to
exploit or explore that is carried throughout the fuzzing loop.

Another area ChatAFL’s approach introduced invalid fuzz is cloning from
anywhere in the mutation buffer, including message terminators. When ex-
ploiting, AFLNet-Packmute restricts the cloning of bytes from and to the
mutable range to prevent message terminators from being copied. In the case
of inserting to a zero-length mutable range, AFLNet-Packmute will pad
the inserted bytes as needed to preserve syntax-validity.

Let’s illustrate two mutations in detail to get a sense of how the ranges
and mutation buffer interact. Figure 3.2 illustrates inserting cloned bytes.
Point one shows the initial out buf and out ranges we are working with. The
mutation buffer ’USER ubu\r\nLIST\r\n’ consists of two messages, each with
one mutable range. For the USER command, the mutable range is ’ubu’ found
in byte positions 5 through 7, inclusive. Thus, the first entry in out ranges’
arrays has a start of 5 and a length of 3. The second mutable range, for the
LIST command, is found at byte position 14, but has length 0. This is because

37

3.3. AFLNet-Packmute

Table 3.2: AFLNet-Packmute syntax-aware mutations. Mutation likeli-
hood and meaning identical to AFLNet. Mutation descriptions abridged for
readability.

Mutation AFLNet-Packmute Syntax
Awareness

Description

Bit flip Apply to mutable byte ranges only Same as ChatAFL

Set to
interesting

Apply to mutable byte ranges only Same as ChatAFL

Add Apply to mutable byte ranges only Same as ChatAFL

Subtract Apply to mutable byte ranges only. Same as ChatAFL

Set to
random

Apply to mutable byte ranges only Same as ChatAFL

Delete Apply to mutable byte ranges only.
Adjust mutable ranges accordingly

Same as ChatAFL

Overwrite Overwrite mutable byte ranges only.
Clone from mutable ranges only

Cloning from mutable ranges only
prevents the cloning of message
terminators, creating new, broken
messages

Insert Insert in mutable byte ranges only.
Pad 0-length mutable ranges. Clone
from mutables ranges only. Shift
ranges accordingly

Cloning from mutable ranges only
prevents the cloning of message
terminators, creating new, broken
messages. Inserting into 0-length
mutable range may require padding to
respect the message template

Splicing Splice from mutable range in target
seed to mutable range in buffer.
Update ranges as needed

Splicing reduced from entire buffer to
only mutable ranges. Not considered
by ChatAFL

Replace
buffer

Select region with mutable range.
Replace mutable ranges with those
of new region

Preserved AFLNet mutation
likelihood. Added constraint to pick a
region with a mutable range so
syntax-aware mutations can continue

Prepend to
buffer

Shift existing mutable ranges. Add
new mutable ranges, if any.

Preserved AFLNet mutation
likelihood. Adding mutable range of
new region will permit it to be
immediately mutated

Append to
buffer

Shift existing mutable ranges. Add
new mutable ranges, if any.

Preserved AFLNet mutation
likelihood. Adding mutable range of
new region will permit it to be
immediately mutated

Duplicate
buffer

Duplicate all mutable ranges Preserved AFLNet mutation
likelihood and implementation

the LIST command may or may not have an argument; it is optional. In this

38

3.3. AFLNet-Packmute

illustration, mutable range 1 is selected for mutation (range choice=1). Since
these are zero-indexed arrays, it means the range at byte position 14 will be
inserted into with cloned bytes.

Point two shows the parameters that will determine the cloning operation.
clone rng is chosen randomly among mutable ranges with length greater than
zero, which in this case only leaves one option, the first mutable range (index
zero). There is no restriction on cloning from ones-self. clone len is a random
value between one and the length of the selected clone rng, in this illustration
the clone len is two. Now we know from which range we are cloning to, which
range we are cloning from and how many bytes we want to clone. Next we
need to know exactly which bytes we are cloning. clone from determines the
position from which a continuous set of bytes will be cloned. It is randomly
picked among byte positions that allow for the full clone len to be copied
from within the clone range. Here, the range we are cloning from starts at
position 5, and since we are cloning 2 bytes, we are left with 2 positions to
pick from; 5 or 6. The RNG function shown would evaluate to 3 minus 2 plus
1, or rand(2) which would return either 1 or 0. This illustration assumes 0 is
returned, meaning 2 bytes at position 5 will be cloned; ’ub’. clone to is simply
a random position within the range we are mutating (range choice) without
regard for space; the buffer will be lengthened if needed.

Point three shows the result after the mutation has been applied. Since we
are exploiting and mutating a zero-length range, padding must be added to
the mutable range before the cloned bytes to preserve syntax validity. Which
bytes to add are provided by Libpackmute, a syntax companion library we
wrote as part of AFLNet-Packmute (discussed in Section 3.3.3). The two
cloned bytes can then be inserted. Three bytes have been added to the second
mutable range and so the out ranges must be updated. The second mutable
range needs to be shifted to account for the padding and its length increased
by the number of bytes inserted (start goes from 14 to 15 and length goes
from 0 to 2). The padding is necessary to conform to the syntax of the LIST
command when it has an argument.

This second mutation illustration stacks a prepend-region mutation atop
the cloning illustration, hence, Figure 3.3 point one matches the values we
ended the previous illustration with. Point two shows that a random region
from a random seed in the corpus is selected. For the prepend-region mu-
tation the selected region may or may not have mutable ranges regardless of
whether we are exploring or exploiting. In this case, the region chosen is ’CWD
tmp\r \n’. Point three shows the selected region prepended to the original
out buf. When exploiting, the mutable ranges of the newly added region must
be prepended to out ranges which causes the start positions of the existing

39

3.3. AFLNet-Packmute

U S E R u b u \r \n L I S T \r \n

out_ranges* {
starts*
lengths*
num_ranges = 2
}

5 14

3 0

clone_len = 2

clone_from = 5 + rand(3 - clone_len + 1)

clone_rng = 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

'ub' | 'bu'
clone_to = 14

range_choice = 1

out_ranges* {
starts*
lengths*
num_ranges = 2
}

5 15

3 2

1

2

3

Buffer
prior to
cloning

Cloning
parameters

Clone and
update
ranges

pre-padding

U S E R u b u \r \n L I S T u b \r \n
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 3.2: Cloning insert mutation illustration (exploit)

mutable ranges to be pushed to the right.
Lines 25 and 26 of Algorithm 3 in Section 3.3.1 are where the splicing

operation occurs. A target is picked then the splicing takes place. When
exploiting, the splice target is ensured to have at least one mutable range of
length two or more. When exploring, any target that is not the current queue
entry and is not entirely less than two bytes is acceptable. Once a target is
selected it is read from disk into a byte array and the splicing takes place.

Syntax-aware splicing will splice mutable ranges in the in buf and the
target, while not effecting the remainder of the in buf. Regular splicing will
create a new buffer with a front-half of the old buffer and the back-half of the
new target buffer.

We’ve discussed how mutations and the AFLNet fuzzing loop are made
syntax-aware. These exist within the afl-fuzz program itself. We now need
to understand how AFLNet-Packmute gets the ability to identify mutable

40

3.3. AFLNet-Packmute

out_ranges* {
starts*
lengths*
num_ranges = 2
}

5 15

3 2

1 Buffer
prior to

prepend

2 Select
region

Corpus

USER a\r\nPASS b\r\nMKD
1\r\nMKD 2\r\nQUIT\r\n

USER a\r\nPASS b\r\nMKD
1\r\nMKD 2\r\nQUIT\r\n

USER a\r\nPASS b\r\nMKD
1\r\nMKD 2\r\nQUIT\r\n

USER a\r\nPASS b\r\nMKD
1\r\nMKD 2\r\nQUIT\r\n

new_rgn* C W D t m p \r \n
0 1 2 3 4 5 6 7 8

Random region
of random seed

out_ranges* {
starts*
lengths*
num_ranges = 3
}

4 14 24

3 3 2

3
Prepend

and
update
ranges

U S E R u b u \r \n L I S T u b \r \n
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C W D t m p \r \n U S E R u b u \r \n L I S T u b \r \n
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Figure 3.3: Prepend-region mutation illustration (exploit)

ranges from arbitrary buffers and how that information is efficiently stored in
the region metadata.

3.3.3 Structural Design

To perform syntax-aware fuzzing, AFLNet-Packmute needs three things:
1. The ability to verify the syntax validity of a sequence of messages;
2. The ability to find the mutable byte ranges within a sequence of mes-

sages; and
3. The ability to pad zero-length ranges when mutating to preserve syntax

validity.
Figure 3.4 shows the overall project design. There are three components;

PcapPlusPlus, Libpackmute and AFLNet-Packmute (noteably the afl-
fuzz program). This section describes how these are structurally designed,
with some reference to their interaction, while the next section 3.3.4 depicts
the interaction between the project’s components using sequence diagrams.

PcapPlusPlus is an existing network packet library which is known for
its excellent performance and active development [35]. It handles the manage-
ment of raw data comprising protocol layers, can parse out application layer
data fields from that raw data, and exposes some protocol specification data,
such as an enumeration of FTP commands. This library is selected due to

41

3.3. AFLNet-Packmute

its ability to parse application layer protocols and its language compatibility
with AFL, being written in C++. The library does not however contain all
the functionality needed by AFLNet-Packmute. For example, it does not
know which FTP Commands must or may have arguments, it does not expose
a C-compatible interface, and it does not operate on message sequences.

Libpackmute

PcapPlusPlus

Libpackmute

AFLNet-packmute

Raw
Protocol
Layers

FTP
Request

Layer
View

Syntax
Validity
Check

Find
Mutable
Ranges

0-Length
Range

Padding

FTP
Command

Enum

FTPMessageTemplate
FTP-specific

Individual messages

Packmute
protocol-agnostic

message sequences

Figure 3.4: AFLNet-Packmute component diagram (left) and Libpack-
mute modules (right)

Libpackmute is a C++ library developed for this research which imple-
ments that missing functionality. Via the Packmute module, it exposes a
C-compatible interface that is protocol-agnostic and operates on sequences of
messages. AFLNet-Packmute can thus provide it entire message sequences
and ask Libpackmute to determine whether the messages in the sequence
have valid syntax, where the mutable ranges are found, and how to pad zero-
length ranges to retain syntax-validity. The message sequences are passed
from AFLNet-Packmute to Libpackmute using AFLNet’s replay format,
which encodes the length of individual messages within a single continous byte
array. Libpackmute then can decode these to individual messages.

Packmute conducts protocol-agnostic portions of the process and offloads
protocol-specific functions to a separate module, which in the case of FTP
is named FtpMessageTemplate. This module uses and enriches the protocol
knowledge offered by PcapPlusPlus to offer the same three interfaces offered
by Packmute, but for individual application layer protocol messages. Adding
support for a new protocol would simply require a new protocol-specific mod-
ule to be written, the new protocol added to Packmute’s enumeration of sup-
ported protocols and the dispatch functions within Packmute to have one case
added. Let’s look in greater detail how each part of the project is structured,

42

3.3. AFLNet-Packmute

starting with PcapPlusPlus.
Figure 3.5 shows the hierarchy of PcapPlusPlus classes relevant to pars-

ing FTP requests. At the top you have a Layer, which is simply some raw
data with a length. The destructor handles freeing the data. Its child class,
SingleCommandTextProtocol, is used by protocols which comprise a single
command with some text arguments (ex. FTP, SMTP). This class provides a
static method, isDataValid(), which verifies if the layer’s data buffer is termi-
nated by the carriage-return and line-feed characters. That method is later
used by Libpackmute to help verify syntax validity. The SingleCommand-
TextProtocol class contains methods which parse out the bytes associated with
the command and argument fields to be used by child classes. Finally there
is the FtpRequestLayer class which provides public methods to access the
command and option fields within an FTP request buffer. The command can
either be obtained as a string or as an enumeration value, which it also defines.
All public methods shown are used by Libpackmute’s FTPMessageTemplate
module, and the Layer class methods are also used by the Packmute module.
When instantiating these layers from an existing data buffer, the FTP class
simply calls the parent’s constructor using its initialization list. Now onto
Libpackmute.

FtpLayer

Layer

m_Data: u8*
m_DataLen: size_t

Layer(data: u8*, dataLen: size_t, ...)
+ getData(): u8*
+ getDataLen(): size_t

SingleCommandTextProtocol

+ isDataValid(data: u8*, dataSize: size_t): bool
SingleCommandTextProtocol(data: u8*, dataLen: size_t, ...)
getCommandInternal(): string
getCommandOptionInternal(): string

Extends

Extends

FtpRequestLayer

+ FtpRequestLayer(data: u8*, dataLen: size_t, ...)
+ getCommand(): FtpCommand
+ getCommandOption(removeEscapeChars: bool): string
+ getCommandString(): string<<enumeration>>

FtpCommand

UNK,
ABOR,
....
XSEN

Use

Extends

Figure 3.5: PcapPlusPlus select classes.

43

3.3. AFLNet-Packmute

Libpackmute comprises a protocol-specific class (FtpMessageTemplate),
and a source file offering the C-compatible interface and protocol-agnostic
message sequence parsing (Packmute). Figure 3.6 shows the class diagram.
The FtpMessageTemplate class comprises private members needed to define
a template; a command, argument and whether that argument is optional.
The command is from the PcapPlusPlus defined enumeration and the ar-
gument is defined using a regex pattern. Why then is a boolean optional
member needed? There is no way to extract the regex string from an instan-
tiated std::regex object. Boost::basic regex could have been used, but would
have introduced an additional dependency. The class initializes a static pri-
vate vector of FtpMessageTemplates defining each FTP command, and it’s
corresponding argument. Again, this is due to PcapPlusPlus not having
knowledge of which commands may or must have arguments. This portion
of FtpMessageTemplate could potentially be upstreamed to PcapPlusPlus.
Next we look at the methods in FtpMessageTemplate.

The private static match template() method uses the FtpMessageTemplate
vector to determine whether a given FtpRequestLayer object first has a valid
command then has a valid argument for that command. The public static
method is syntax valid() first uses SingleCommandTextProtocol::isDataValid()
to verify the message is properly terminated and them match template() to
verify if the message matches a FTP template.

The find mutable() method takes a valid FtpRequestLayer and two lists by
reference. It will then append to the lists the start of the mutable range in
this FTP request and the length if any. The template obtained from a call to
match template() indicates if there is optionally an argument, in which case
it creates a zero-length mutable range. PcapPlusPlus’ FtpRequestLayer
methods that provide string representations of each the command and option
fields are used to obtain the lengths of each of those fields. Note this method is
very simple in the case of FTP, where each message has at most one mutable
range. More complex protocols would need to append a mutable range start
and length for each variable field in the protocol message.

In the case of FTP, if AFLNet proceeds to insert bytes in a zero-length
mutable range, we need padding to be added to keep it syntactically valid.
The padding required is offered by the public static method pre padding().
Though in the case of FTP it is a single space character, the method is written
to return a pointer to a character array so that AFLNet-Packmute could
support any size of pre-padding needed.

As the name implies, FtpMessageTemplate is FTP-specific and it only
handles individual messages. Packmute is a source file and header which
bridges afl-fuzz and the protocol-specific knowledge of FtpMessageTemplate.

44

3.3. AFLNet-Packmute

FtpMessageTemplate

- command: pcpp::FtpCommand
- argument: std::regex
- optional: bool
- templates: std::vector<FtpMessageTemplate>

+ FtpMessageTemplate(command: pcpp::FtpCommand, argument: std::regex, optional: bool)
+ is_syntax_valid(&request : pcpp:FtpRequestLayer) : bool
+ find_mutable(&request : pcpp:FtpRequestLayer, &starts : int[], &lengths : int[]) : int
+ pre_padding(*size : int) : char*
- match_template(&request : pcpp::FtpRequestLayer) : FtpMessageTemplate*

<<enumeration>>
proto_t

LPM_FTP

packmute

- setup: bool
- protocol: proto_t

+ lpm_find_mutable(buffer : replay_t): ranges_t*
+ lpm_check_syntax(buffer : replay_t): bool
+ lpm_setup_env(protocol : proto_t)
+ lpm_get_pre_padding(size* : int): char*
- extract_requests(buffer: replay_t): std::vector<T>
- find_mutable(buffer : replay_t): ranges_t*
- check_syntax(buffer : replay_t): bool

T, U

<<struct>>
replay_t

+ data: char*
+ size: int

<<struct>>
ranges_t

+ starts: int*
+ lengths: int*
+ region_ids: int*
+ num_ranges: int

Use

Use

1

Use

Figure 3.6: Libpackmute class diagram

It comprises public setup and dispatch functions alongside private template
functions which are instantiated with the proper types and then called by the
public dispatch functions.

First, afl-fuzz must call the public function lpm setup env() and pro-
vide a value found in the proto t enumeration. The private setup member
is then set. This protocol setting is used by the public dispatch functions
lpm find mutable() and lpm check syntax() to instantiate their private func-
tion equivalents using the type-specific class (ex. FtpMessageTemplate and

45

3.3. AFLNet-Packmute

FtpRequestLayer). These templated functions are where protocol-agnostic
logic occurs as well as the conversion from a message sequence to individual
messages.

The templated function check syntax() first splits the replay format buffer
passed as an argument into a vector of PcapPlusPlus layer objects through
the extract requests() function and then passes those individual layer objects
to the is syntax valid() method of the corresponding protocol-template class.
This function returns true if all messages in the sequence have valid syntax,
otherwise it returns false.

The find mutable() templated function similarly starts by obtaining a vec-
tor of individual layer objects, iterating through each one and verifying that
the syntax is valid. In the case the syntax is valid, it calls the protocol-template
class’ find mutable() method to find the mutable range(s) in the message. The
start position, length and associated region of the mutables ranges are stored
in a ranges t struct. afl-fuzz needs to know to which region in the mes-
sage sequence each mutable range belongs and where the mutable ranges are
relative to the start of the overall message sequence. These are tracked by
Packmute’s find mutable() function and assisted by PcapPlusPlus’ layer
features to obtain the raw data length of the entire message. Now we have a
protocol-agnostic, message-sequence based interface to support syntax-aware
fuzzing. Next comes the changes and additions made to AFLNet to create
AFLNet-Packmute.

Shown in Figure 3.7 are additions or changes made to afl-fuzz functions
and variables. A call to lpm setup env() is added in main() passing it the
protocol indicated when afl-fuzz is executed. The app protocol variable is
added for that purpose. The existing AFLNet region struct is expanded to
include two additional arrays (mut starts and mut lengths) and an array
length variable (mut counts). These store the start positions and lengths
of mutable ranges within the region. The mutable range start position is
relative to the start of the entire seed the region finds itself in. The change to
destroy queue() is to delete these new arrays.

The decision to store mutable range information alongside each queue entry
in its region information differs from ChatAFL’s approach. ChatAFL re-
parses the mutable ranges in a given buffer each time the fuzzing loop is
entered. A fuzzing loop is always seeded with a queue entry, so AFLNet-
Packmute annotates the region structs with the mutable range information
when an entry is added to the queue. When a queue entry is selected to seed a
round of fuzzing, its mutable ranges can simply be extracted from its existing
region structures, reducing the overhead of matching the buffer to a message
template and finding the mutable ranges. There are three occasions where

46

3.3. AFLNet-Packmute

afl-fuzz (new or changed)

- app_protocol: int
- exploit_rate: double

- main(argc: int, argc: char**): int
- destroy_queue()
- add_to_queue(fname: int*, len: int, replay_len: int, passed_det: int)
- annotate_regions_with_mutable(q: queue_entry*, buffer: replay_t*)
- any_ranges(q: queue_entry*, size: int): int
- fuzz_one(argv: char**): int
- get_ranges(q: queue_entry*, old_buf_size: int, new_rgn_size: int,

 rgn_start_id: int, rgn_count: int, ranges: ranges_t*, mode: int)
- choose_source_region(out_len: int*, selected_seed: queue_entry*,

selected_region_id: int*, mode: int)

<<struct>>
region_t

+ mut_count: int
+ mut_starts: int*
+ mut_lenghts: int*
+ start_byte: int
+ end_byte: int
+ modifiable: char
+ state_count: int
+ state_sequence: int*

Use

Figure 3.7: AFLNet-Packmute class diagram

entries are added to the queue; during fuzzing, parallel fuzzer sync, and initial
testcases. In the case of fuzzer sync or during fuzzing, the entry has already
been recorded to disk in replay-format, so the add to queue() function reads
it from disk and passes it to annotate regions with mutable(). For initial
testcases, it must first construct the replay-format buffer from the queue entry
then call the aforementioned function. annotate regions with mutable()
simply calls lpm find mutable() to get the mutable ranges and writes them to
the appropriate region’s mut struct elements.

any ranges() is a helper function that looks through a queue entry and
counts the number of mutable ranges of a certain size. It is used during the

47

3.3. AFLNet-Packmute

splice stage to ensure a splice target with at least one mutable range of size
two or greater is selected. It is also used during region mutations when an
entry with at least one mutable range of zero-length or greater is needed.

fuzz one() is the function where the fuzzing loop algorithm takes place
(Algorithm 3). How ranges are added was discussed in Section 3.3.1 and how
syntax-awareness was added to mutations discussed in Section 3.3.2. Here
we discuss how range management occurs through the get ranges() function
and some more technical details on how the syntax-aware mutations occur.
This is abstracted as a call to mutate() in Algorithm 3 though in practice it
involves loops and case statements inside fuzz one().

On line 7, Algorithm 3 calls a function named get ranges() and passes
it the buffer that will be mutated in this fuzzing loop. This function is re-
sponsible to update the range struct in the case where entire new regions are
being added or removed. Provided to get ranges() is a pointer to the queue
entry from which regions are being added, the existing size of the byte buffer,
the size in bytes of the new region being added, the ID of the first region in
the queue entry being added and the number of regions added. Also passed
to get ranges() is a pointer to the range struct being updated and a mode
argument. The mode argument determines what type of update should be
performed on the range struct:

1. Mode 0: replace all existing ranges with ranges from new region(s);
2. Mode 1: prepend ranges from new region(s) to existing ranges; and
3. Mode 2: append ranges from new region(s) to existing ranges.

Mode 0 is used when a new fuzzing round begins to get the orig ranges and
when the replace buffer region mutation occurs on out buf while exploiting.
Mode 1 and 2 are used for the region mutations where a region is added to
the start or end of out buf.

On line 17, Algorithm 3 calls a function named mutate() which applies
a single mutation to the out buf. This fuction does three things. First, the
function randomly selects a mutable range to mutate. When the decision is to
explore, or the original buffer had no mutable ranges, there is only one range to
pick from; the entire buffer. Second, the function generates a random number
to pick which mutation to apply. Third, it attempts to apply that mutation.
Most mutations have a length requirement. For example, adding to a dword
requires that the mutable range be at least 4 bytes long. If the mutable
range does not meet that requirement, the loop continues to the next stacked
mutation without making any change to the buffer. If the requirement is met,
the mutation is constrained to occurring within the selected mutable range. In
the case where the length of the buffer is changed, the length of the effected

48

3.3. AFLNet-Packmute

mutable range is updated, as well as the start positions of every mutable
range after the currently effected range. To make these changes convenient,
the mutable ranges are sorted based on their order in the buffer; first to last.
The inserting of new bytes is the only non-region mutation that applies to
zero-length ranges. In that case, a call to lpm pre padding() is needed and the
padding must be taken into consideration when adjusting ranges.

For region mutations, AFLNet relies on the choose source region() func-
tion to pick a random region from a random seed. AFLNet-Packmute mod-
ifies the function to have two modes; mode 0 to pick any region or mode 1 to
pick a region with at least one mutable range. Mode 1 is used when replacing
the buffer and exploiting, while mode 0 is used for prepend/append ranges or
when we are replacing the entire buffer and exploring. AFLNet-Packmute
ensures new regions that are added to the buffer have their mutable ranges
added to the range struct as well, unless we are exploring in which case the
single mutable range is updated. When the buffer is being entirely replaced
with a new region, and we are currently exploiting, AFLNet-Packmute will
ensure a region with at least one mutable range is selected so exploitation can
continue.

To facilitate testing, the exploit rate variable is set through a command
line switch -z. This is a new switch to AFLNet-Packmute which sets the
exploitation rate. That is, what proportion of fuzzing rounds should apply
syntax awareness.

3.3.4 Behavioural Design

This section provides sequence diagrams for each Libpackmute public func-
tion with a focus on showing the interaction between afl-fuzz with Libpack-
mute modules, and those modules’ interaction with PcapPlusPlus. As
PcapPlusPlus is an existing library not developed by this research, and for
readability, it is not broken down into its individual classes.

Figure 3.8 depicts the sequence diagram for lpm get pre padding(). First,
afl-fuzz must tell the Packmute module that the FTP protocol is being fuzzed.
Once lpm get pre padding() is called, Packmute simply obtains a pointer to
a buffer containing the padding from FtpMessageTemplate and returns it to
afl-fuzz. A pointer to an integer variable is passed along to record the size of
the padding.

Figure 3.9 depicts the sequence diagram for lpm check syntax(). The se-
quence of application-layer requests are sent to Packmute in replay-format.
Packmute then instantiates a function using the FTP-specific PcapPlus-
Plus layer class and its own FTP template class. This function extracts

49

3.3. AFLNet-Packmute

afl-fuzz Packmute FtpMessageTemplate

lpm_get_pre_padding(*size)

pre_padding(*size)

*pre_padding

*pre_padding

opt

[protocol = LPM_FTP]

lpm_setup_env(LPM_FTP)

Figure 3.8: Pre-padding sequence diagram

the individual requests from the replay-format buffer and builds a vector of
layer objects. The syntax validity of each request is then verified by FtpMes-
sageTemplate. To do this, it verifies the buffer is properly terminated using
PcapPlusPlus’ SingleCommandTextProtocol::isDataValid() static function
and then verifies that it matches a FTP message template. Matching a tem-
plate involves an exact match of the command, using PcapPlusPlus’ FTP
command enumeration, and a regex search of the option field using the mes-
sage template’s regex pattern. If any one request does not have valid syntax,
the function returns FALSE immediately, else it verifies each request before
returning TRUE. This message sequence-checking function is not used in the
final AFLNet-Packmute implementation, rather is syntax valid() is used
directly in lpm find mutable() to determine syntax validity on a per-message
level. It was used, however, during the development of AFLNet-Packmute
for verification purposes as will be discussed in Section 4.4. This sequence di-
agram is also useful to show how the extract requests() and match template()
functions work, details that are ommitted in the next sequence diagram for
readability.

Figure 3.10 depicts the sequence diagram for lpm find mutable(). The se-
quence of application-layer requests are sent to Packmute in replay-format.
Packmute then instantiates a function using the FTP-specific PcapPlus-
Plus layer class and its own FTP template class. That function extracts the
individual requests, iterates through each one, and if it has valid syntax it will

50

3.3. AFLNet-Packmute

PcapPlusPlusafl-fuzz Packmute

check_syntax<pcpp::FtpRequestLayer, FtpMessageTemplate>(reqs)

extract_requests<pcpp::FtpRequestLayer>(reqs)

FtpMessageTemplate

lpm_check_syntax(reqs)

lpm_setup_env(FTP)

pcpp::FtpRequestLayer(data, size)
pcpp::FtpRequestLayer Object

is_syntax_valid(request)

loop

[for each request]

request valid?

loop

[for each request]

all requests valid?

request.getData()
data*

request.getDataLen()
dataLen

isDataValid(data*, dataLen)
request valid?

opt

[valid]
match_template(request)

loop

[for each template]

request.getCommand()
cmdEnumVal

request.getCommandOption()
cmdOptionString

Figure 3.9: Check syntax sequence diagram

find the mutable ranges in it by calling FtpMessageTemplate’s find mutable()
function. That function accepts references to a start and length vector which
it will append mutable ranges to, and it returns the number of new ranges
added. To find the mutable ranges, in the case of FTP, it obtains the protocol
field sizes from PcapPlusPlus and uses those sizes to append a mutable
range according to the size and position of the option field. If there is no
option, FtpMessageTemplate will verify if an option could go there, in which
case it adds a zero-length mutable range. This applies to FTP commands
that may or may not have an option, which is captured in the vector of valid
message templates. AFLNet-Packmute could, for examples, insert bytes
there to give it an option.

Packmute’s find mutable() function handles the request sequence-level logic.
It will populate which region in the request sequence the mutable range be-

51

3.4. Verification

longs to and shift range start positions according to where they exist in the
overall message sequence. Recall mutable range positions are relative to the
entire sequence they exist in, and not the individual region. Lastly, it takes
the three parts; start, length, and region IDs, to build the range structs that
are returned to afl-fuzz.

afl-fuzz Packmute

find_mutable<pcpp::FtpRequestLayer, FtpMessageTemplate>(reqs)

extract_requests<pcpp::FtpRequestLayer>(reqs)

FtpMessageTemplate

lpm_find_mutable(reqs)

opt

[valid]

lpm_setup_env(FTP)

is_syntax_valid(request)
request valid?

find_mutable(request, *starts, *lengths)

PcapPlusPlus

request.getCommandString().size()
cmd_size

request.getCommandOption().size()
option_size

alt

[option_size > 0]
starts.push_back(cmd_size + 1)

lengths.push_back(option_size)

match_template()

opt

[template.optional]
starts.push_back(cmd_size)

lengths.push_back(0)

num_new_ranges

trackRegionIDs(num_new_ranges)

shiftExistingRangeStarts()

loop
[for each request]

buildRangeStructs(starts, lengths, region_ids)

mut_ranges*

Figure 3.10: Find mutable range sequence diagram

With this design in mind, we will next discuss how the output of AFLNet-
Packmute is verified.

3.4 Verification

The verification phase is designed to confirm that AFLNet-Packmute be-
haves as intended and that analysis scripts are correctly implemented before
moving onto the validation phase. We expect AFLNet-Packmute to cre-

52

3.4. Verification

ate syntactically valid fuzz when exploiting, while retaining AFLNet-like
behaviour when exploring.

3.4.1 Analysis Script Verification

We assume ProFuzzBench’s coverage time series output is accurate. This
is our starting point for analysis. From the coverage time series, we produce
two independent outputs; plots of median coverage over time overlaid with
min/max coverage, and overall performance statistics. These independent
outputs should agree on the final median, min, and max coverage as well as
the coverage speed-up factors. This helps verify that the analysis scripts are
correctly implemented. To further verify the statistics, values for one fuzzer
configuration and target combination is verified manually.

3.4.2 AFLNet-Packmute Verification

The verification of AFLNet-Packmute involves:

1. Test-driven development of Libpackmute: for each public function
providing features to AFLNet-Packmute, tests are written based on
expected behaviour and then the function is developed to satisfy the
test. This is done using CMake’s testing program, CTest;

2. AFLNet-Packmute mutation output verification using Libpack-
mute: code is added to AFLNet-Packmute to call lpm check syntax()
on every fuzz generated and break if the syntax is invalid. The mutation
applied and the content of out buf on each iteration is logged so that
root cause can be found. There is a form of self-fuzzing that occurs at
this verification step as well. Writing code that directly works with fuzz
being generated inherently triggers edge-cases and uncovers bugs; and

3. Final AFLNet-Packmute verification using a real FTP server:
LightFTP is fuzzed for exactly ten minutes while network traffic is
being captured. Analysis of server response codes then allows us to verify
the quantity of commands that are rejected due to bad command syntax.
This is conducted using AFLNet as a baseline, AFLNet-Packmute
with an exploit rate of 100% and AFLNet-Packmute with an exploit
rate of 0%. Results vary over multiple runs and so it is repeated three
times and the average taken.

53

3.5. Validation

3.5 Validation

This research phase is designed to fulfill the aim of the research. The ef-
fectiveness of state feedback features in a syntax-aware AFLNet derivative,
AFLNet-Packmute, is measured. Then the change in effectiveness between
a syntax-aware (AFLNet-Packmute) and syntax-unaware (AFLNet) mu-
tation process is measured. The change in effectiveness achieves the aim of
the research. The state feedback features of interest are:

1. Basic state feedback. Seeds are parsed into a prefix, candidate se-
quence, and suffix. Mutations are only applied to the candidate se-
quence. States are derived from target response codes and selected for
fuzzing. Seeds are chosen from among those that traverse the selected
state;

2. Favoured state selection. States are selected for fuzzing based on
heuristics which score a state’s likelihood to find new coverage as de-
scribed in Section 2.2.1; and

3. Favoured seed selection. Seeds with a higher likelihood for the dis-
covery of new coverage are selected as described in Section 2.2.1.

Fuzzing experiments are conducted using each fuzzer configuration pre-
viously listed in the ablation study design (Table 3.1), though instead of
AFLNet, AFLNet-Packmute is used. The experimental parameters in this
phase match the ablation study described in Section 3.2. Ten fuzzing sessions
of each configuration are run against each FTP target in ProFuzzBench.
Experiments last 24 hours. Each ten fuzzer experiments are conducted in a
separate VM to mitigate kernel bottlenecks. Effectiveness is measured by the
percent change in performance when each of the above listed state feedback
features is enabled relative to a parent configuration lacking that feature. Per-
formance is based on branch coverage achieved during fuzzing as measured by
gcov. Like the ablation study, the set of configurations used allows for multiple
ways to measure each feature, mitigating risk posed by statistical significance.
The impact of favoured seed and state selection can be measured four ways:

1. Measuring the feature impact when using the STFL-FVR configuration
enabling each favoured state or seed selection relative to STFL-RND;

2. Same configurations as 1. but with region mutations enabled;
3. Measuring the feature impact when using a STFL-FULL configuration

relative to the STFL-FVR configuration enabling each favoured state or
seed selection; and

4. Same configurations as 3. but with region mutations enabled.

54

3.5. Validation

Basic state feedback’s feature impact can be measured two ways;

1. Measuring the feature impact when using the STFL-FVR-SD relative
to a BASELINE configuration. The impact the different seed selection
approaches between these configuration has been measured by previous
work [15]; and

2. Same configurations as 1. but with region mutations enabled.

For conciseness the notation ”BASELINE[-RGNS] v. STFL-FVR-SD[-
RNGS]” is used in table titles. This title describes the two measurements
for basic state feedback’s feature impact; one between BASELINE and STFL-
FVR-SD and the other between BASELINE-RGNS and STFL-FVR-SD-RGNS.

The change in effectiveness is measured between results obtained using
AFLNet in the ablation study and the results obtained using AFLNet-
Packmute in the validation phase. Referring back to Figure 3.1, we measure
how arrows 1, 2 and 3 change after adding syntax-awareness. Using this change
in effectiveness, a determination on the impact to adding syntax-awareness can
be made and the aim of this research achieved.

To draw additional insights beyond the exact aim of the research or help
explain findings, this validation also looks at secondary measurements to
draw additional insights; speed-up (how fast fuzzer B reached the coverage
of fuzzer A), average executions per second, and fuzzer min/max run code
coverage. Lastly, this research provides insights into the code coverage value
of adding protocol-syntax awareness into the mutation process of greybox
coverage-guided protocol fuzzing which is discussed in Appendix A.

55

4 Results

This chapter presents the results of the research and achieves the aim in six
parts:

• Experimental Design - The infrastructure on which experiments are con-
ducted, and the data pipeline used to analyze results;

• Ablation Study - The performance results and state feedback feature
impacts for the AFLNet fuzzer against all ProFuzzBench targets;

• AFLNet-Packmute Development - The development and configura-
tion of the AFLNet-Packmute fuzzer;

• Verification - The outcome of each verification step outline in the design;
• Validation - The performance results and state feedback feature impact
for the AFLNet-Packmute fuzzer against ProFuzzBench FTP tar-
gets. Measurement of state feedback feature impact change as a result
of adding syntax-awareness; and

• Discussion - To sumamrize, a discussion highlights the main research
findings throughout each research activity.

4.1 Experimental Design

Experiments were conducted using ProFuzzBench and its included target
versions. Containers were launched in Ubuntu 22.04LTS guest virtual ma-
chines (VMs) using the VMWare Workstation hypervisor running on a Win-
dows Host OS. Engineering workstations were used to run the experiments.
Each workstation runs two VMs, each VM capable of running one 10-container
experiment. 12 cores were assigned to each VM, such that each container gets
one core equivalent and allows two additional cores for the guest OS. Though
AFL is designed to consume an entire core’s processing, AFLNet is IO bound,
meaning much less than a full core is used. In this research the most CPU in-
tensive target (Forked-DAAPd) saw all 12 cores above 60% usage, though
not exceeding 90%, while most targets saw much lower usage. Tests using
LightFTP and OpenSSH targets found half a GB of RAM per fuzzer was

56

4.1. Experimental Design

sufficient to meet demand, with most usage being caching, thus 8GB of RAM
was provided to each VM.

To speed up experimentation, two sets of computers were used while en-
suring that a given target’s experiments were only conducted on one set. The
first set comprised four Dell workstations accessible over WiFi. The second
set comprised three HP Z8 workstations on RMC’s network. In total, this
meant 14, 10-container experiments could run concurrently. Targets were
fuzzed for 24 hours followed by coverage analysis. The coverage analysis step
of ProFuzzBench is CPU intensive and takes from a few minutes to several
hours depending on the target. This fact, paired with power outages, sur-
prise reboots of RMC networked machines, and target stability issues led to
experimentation taking several weeks. Other research-related work was done
concurrently. Figure 4.1 shows the experimental setup, the software layers
involved, as well as the network configuration of the WiFi accessible fuzzing
computers. In the case of failed runs, additional runs were performed until
10 fuzzing experiments lasting the full 24 hours were successful. Prior to ex-
perimentation all commands used to run each target + configuration combo
were created and reviewed for accuracy. A single VM was prepared with all
the target containers built and dependencies installed prior to being cloned
across all the experimentation workstations.

Taurus

Router

2.4GHz WiFi (WAN – wifi client)

5Ghz WiFi
(LAN – access point) 4 x 1Gbps Ethernet (LAN)

• 4 x Dell Precision Engineering Workstations
• 24 cores x 32 GB RAM
• Static IPs (set in router)

• 192.168.10.[10,20,30,40]
• 2 x Ubuntu 22.04 LTS server edition VMs

• 12 VCPUs, 8 GB RAM
• Named “ubu22server[A-H]”
• Autostart on host boot
• Host ports 1000 and 2000

forwarded to VM ssh ports

Network: 192.168.10.0/24
Gateway: 192.168.10.1

KVM

Windows 11

VMWare Workstation

Ubuntu
22.04 LTS

Ubuntu
22.04 LTS

Docker Docker

Host OS

Hypervisor

Guest OS

Experiments

Experiments also conducted on 3 x RMCNet HP Z8 workstations
(20 cores x 32 GB RAM) with same setup. All experiments of a

given target were completed on the same hardware (no mixing).

SSH from laptop to VMs
to manage experiments

Figure 4.1: Experimental setup

The latest version of ProFuzzBench (commit 8573ec8) and AFLNet
(commit 6d86ca0) at the time of this research was used. ProFuzzBench by

57

4.2. Ablation Study

default compiles an old version of AFLNet, so all Dockerfiles were updated to
pull the specific newer AFLNet from AFLNet’s code repository and install
new dependencies.

ProFuzzBench outputs an archive per container, containing the fuzzer
output directory and the coverage analysis results. ProFuzzBench provides
a shell script that extracts the coverage time series from the archives and
another that plots the average coverage at each time step. The plotting script
outlined in Section 2.2.2 was modified to plot the median coverage at each
timestep overlaid with min/max coverage. Shell scripts were written to extract
data from the fuzzer output directory and create aggregated logs. Statistics
were calculated using R since it has a standard library for calculating the
Vargha-Delaney effect size. The plotting script already builds a dataframe of
the coverage time series, so it is used to enrich the statistics with a coverage
speed-up factor; that is, how much faster did fuzzer B reach the max coverage
of fuzzer A, in the case that it is faster. All this data is grouped to form two
results CSV files that could be analyzed using pandas [36]. Table 4.1 lists the
result data fields and information by file. The shared fields are found in both
files and together act as the primary key for the data.

4.2 Ablation Study

The ablation study in total comprised 10 instances each of 10 AFLNet config-
urations fuzzing 13 targets over 24 hours, totalling 1300 days worth of fuzzing.
Theoretically, the seven workstations could complete the fuzzing portion in
just over nine days. In practice, the time to start experiments, confirm they
are running correctly, collect results, verify they ran the full 24-hours, over-
come target-specific challenges, host computer issues and power outages meant
it took around five weeks.

This section is broken down in three subsections:
• Coverage results - The performance results of the fuzzing experiments
including coverage, executions speeds and crash statistics;

• State feedback feature impact - Measuring the branch coverage con-
tribution of enabling basic state feedback, favoured seed selection and
favoured state selection. For completeness results of a fully featured
state feedback configuration is included;

• Discussion - comments, thoughts, notes around the conduct of the abla-
tion study not related to the numerical results themselves.

58

4.2. Ablation Study

Table 4.1: Results data fields

Name Type Description

Shared fields

Fuzzer String Name of the fuzzer used in experiment
Target String Name of target fuzzed
Config Enum Configuration name; ref Table 3.1

Performance results

Crash Median Float Median of crashing testcases found by the fuzzer
Execs second Float Average target executions per second
BCov Min Integer Least final branch coverage among set of runs
BCov Max Integer Most final branch coverage among set of runs
BCov Median Float Median final branch coverage among set of runs

Comparative results

RelativeTo Enum Comparison configuration for statistical significance
calculation; ref Table 3.1

BCov MannWhitneyP Float p-value between Config and RelativeTo
BCov VDA.12.val Float Effect size between Config and RelativeTo
BCov med delta abs Float Difference in median branch coverage achieved

between Config and RelativeTo as a count
BCov med delta per Float Difference in median branch coverage achieved

between Config and RelativeTo as a percentage
Speed Up Float Ratio of the total fuzzing time over seconds taken by

Config to reach the final coverage of RelativeTo

4.2.1 Coverage Results

Table 4.2 lists the fuzzing performance results of the ablation study. Results
are grouped by target, listing the fuzzing metrics for each configuration. Met-
rics include the minimum, maximum and median branch coverage achieved
among the 10 runs. As there are 10 runs, the median is the average of the two
middle values in a sorted list of final branch coverages. The percent change in
median final branch coverage between two configurations is used to measure
the impact of fuzzer features. The same process is used to measure feature
impact in AFLNet-Packmute, our syntax-aware AFLNet variant. The
difference in these measured impacts allowed us to reach our aim.

To the right of branch coverage results, the target executions per second
are listed. This is the number of times the fuzzer spawns the target process,
sends a fuzz, observes the response and kills the process each second on aver-
age throughout the fuzzing session. This metric helps compare results across
research efforts. Lastly, the median number of unique crashing testcases found

59

4.2. Ablation Study

by the 10 runs is listed. Unique crashes from a coverage perspective can be
related to the same bug. No bug deduplication is performed.

The median final branch coverage bolded for each target indicates the
most performant configuration for that target. Observe that the best per-
forming configuration is seldom STFL-FULL-RGNS, the configuration with
all of AFLNet’s features enabled. This points to two things: 1) potential
future work involving the automated discovery of ideal fuzzer configuration
for a given target. In preliminary experiments, we found that coverage results
are significantly impacted by changes to timeouts, such as how long the server
is allowed to process each message. 2) using a single fuzzer configuration to
assess the impact of changes to AFLNet can lead to incomplete observa-
tions. Appendix A discusses this further in regards to the impact of adding
syntax-awareness.

Table 4.2: Ablation study performance results

Config
Branch Coverage

Execs/s
Crash
Med

Min Max Med

Live555 - RTSP

BASELINE 2797 2826 2814.5 10.00 48.0
BASELINE-RGNS 2787 2837 2810.5 9.59 69.5
STFL-RND 2742 2794 2762.0 9.19 16.5
STFL-RND-RGNS 2708 2774 2739.0 8.29 50.0
STFL-FVR-SD 2734 2809 2766.0 9.23 24.5
STFL-FVR-SD-RGNS 2708 2786 2764.5 8.53 27.5
STFL-FVR-ST 2754 2811 2773.0 9.34 17.5
STFL-FVR-ST-RGNS 2734 2763 2751.0 9.01 31.0
STFL-FULL 2750 2802 2778.5 9.66 25.5
STFL-FULL-RGNS 2707 2788 2770.5 9.38 34.0

Exim - SMTP

BASELINE 2783 2962 2859.0 2.91 0
BASELINE-RGNS 2841 2946 2886.5 3.06 0
STFL-RND 2758 2929 2845.5 2.90 0
STFL-RND-RGNS 2824 2923 2896.0 3.08 0
STFL-FVR-SD 2755 2910 2844.0 2.95 0
STFL-FVR-SD-RGNS 2864 2957 2914.5 3.10 0
STFL-FVR-ST 2760 2952 2873.5 2.83 0
STFL-FVR-ST-RGNS 2817 2934 2861.5 3.00 0
STFL-FULL 2844 2929 2873.5 2.61 0
STFL-FULL-RGNS 2878 2966 2931.0 2.67 0

60

4.2. Ablation Study

Continuation of Table 4.2

Config
Branch Coverage

Execs/s
Crash
Med

Min Max Med

ProFTPd - FTP

BASELINE 5208 5544 5347.5 2.93 0
BASELINE-RGNS 5008 5310 5226.5 2.15 0
STFL-RND 4381 5356 5036.0 2.08 0
STFL-RND-RGNS 4624 5252 5042.5 1.96 0
STFL-FVR-SD 4862 5325 5096.0 2.18 0
STFL-FVR-SD-RGNS 4858 5218 4950.5 2.13 0
STFL-FVR-ST 4459 5188 4944.5 2.08 0
STFL-FVR-ST-RGNS 4465 5270 4939.5 1.96 0
STFL-FULL 4922 5221 4976.0 2.50 0
STFL-FULL-RGNS 4693 5381 4948.5 2.26 0

LightFTP - FTP

BASELINE 345 376 360.0 5.59 0
BASELINE-RGNS 345 362 347.0 5.74 0
STFL-RND 342 363 346.5 5.35 0
STFL-RND-RGNS 331 364 346.0 5.29 0
STFL-FVR-SD 342 363 347.5 5.56 0
STFL-FVR-SD-RGNS 341 365 346.0 5.57 0
STFL-FVR-ST 332 358 343.5 5.58 0
STFL-FVR-ST-RGNS 324 362 344.0 5.37 0
STFL-FULL 340 359 348.5 5.88 0
STFL-FULL-RGNS 341 365 344.5 5.64 0

PureFTPd - FTP

BASELINE 1191 1288 1244.5 5.00 0
BASELINE-RGNS 1171 1277 1214.0 4.21 0
STFL-RND 1010 1187 1132.5 4.55 0
STFL-RND-RGNS 779 1144 989.5 3.48 0
STFL-FVR-SD 891 1230 1150.0 4.37 0
STFL-FVR-SD-RGNS 886 1109 1046.0 3.85 0
STFL-FVR-ST 1062 1174 1133.0 4.40 0
STFL-FVR-ST-RGNS 863 1127 1038.5 4.22 0
STFL-FULL 882 1275 1139.5 4.40 0
STFL-FULL-RGNS 916 1108 1054.0 4.09 0

61

4.2. Ablation Study

Continuation of Table 4.2

Config
Branch Coverage

Execs/s
Crash
Med

Min Max Med

BFTPd - FTP

BASELINE 463 496 484.5 3.06 31.0
BASELINE-RGNS 467 489 481.0 3.34 28.0
STFL-RND 455 491 484.5 3.61 19.0
STFL-RND-RGNS 471 496 476.5 3.11 19.0
STFL-FVR-SD 476 495 485.0 3.71 22.0
STFL-FVR-SD-RGNS 480 489 482.0 3.15 17.5
STFL-FVR-ST 468 490 483.5 3.51 20.0
STFL-FVR-ST-RGNS 455 486 476.5 2.75 24.0
STFL-FULL 481 498 485.5 3.98 19.5
STFL-FULL-RGNS 477 489 485.0 3.13 21.5

OpenSSH - SSH

BASELINE 3254 3384 3328.5 8.86 0
BASELINE-RGNS 3238 3360 3292.5 6.01 0
STFL-RND 3294 3369 3327.0 20.71 0
STFL-RND-RGNS 3311 3355 3329.0 17.00 0
STFL-FVR-SD 3315 3372 3339.0 18.96 0
STFL-FVR-SD-RGNS 3315 3354 3335.0 16.38 0
STFL-FVR-ST 3321 3388 3360.5 20.92 0
STFL-FVR-ST-RGNS 3323 3359 3340.5 17.82 0
STFL-FULL 3326 3360 3345.5 18.70 0
STFL-FULL-RGNS 3310 3378 3351.5 17.18 0

OpenSSL - SSL

BASELINE 9987 10190 10051.0 4.03 0
BASELINE-RGNS 10014 10129 10049.0 4.06 0
STFL-RND 10011 10322 10057.0 4.35 0
STFL-RND-RGNS 9699 10104 9949.5 4.55 0
STFL-FVR-SD 9975 10347 10069.5 4.33 0
STFL-FVR-SD-RGNS 9829 10117 10024.0 4.71 0
STFL-FVR-ST 10072 10142 10113.5 4.09 0
STFL-FVR-ST-RGNS 10040 10190 10121.5 4.36 0
STFL-FULL 10015 10556 10117.5 3.94 0
STFL-FULL-RGNS 9862 10157 10089.5 4.45 0

62

4.2. Ablation Study

Continuation of Table 4.2

Config
Branch Coverage

Execs/s
Crash
Med

Min Max Med

TinyDTLS - DTLS

BASELINE 561 624 586.5 2.23 47.5
BASELINE-RGNS 569 596 580.0 2.36 51.5
STFL-RND 408 590 570.5 2.33 41.0
STFL-RND-RGNS 495 595 574.0 2.37 42.5
STFL-FVR-SD 384 630 559.0 2.39 42.0
STFL-FVR-SD-RGNS 474 584 563.0 2.41 47.0
STFL-FVR-ST 382 587 561.5 2.41 41.5
STFL-FVR-ST-RGNS 482 644 570.0 2.39 43.5
STFL-FULL 503 638 586.5 2.46 43.5
STFL-FULL-RGNS 485 585 514.5 2.47 43.0

DNSmasq - DNS

BASELINE 1116 1128 1118.0 7.29 50.0
BASELINE-RGNS 1115 1128 1116.0 7.40 37.5
STFL-RND 1111 1117 1113.5 5.50 45.5
STFL-RND-RGNS 1114 1128 1116.0 6.03 44.5
STFL-FVR-SD 1111 1126 1115.0 5.72 47.5
STFL-FVR-SD-RGNS 1114 1128 1115.0 6.02 46.5
STFL-FVR-ST 1112 1152 1115.0 6.17 47.0
STFL-FVR-ST-RGNS 1114 1127 1115.0 6.38 48.5
STFL-FULL 1112 1128 1115.0 6.16 51.5
STFL-FULL-RGNS 1115 1127 1115.0 6.27 50.5

Kamailio - SIP

BASELINE 8558 9105 8858.5 4.54 0
BASELINE-RGNS 8937 9306 9168.0 4.45 0
STFL-RND 8312 8875 8650.5 4.22 0
STFL-RND-RGNS 8836 9265 8964.0 3.93 0
STFL-FVR-SD 8700 9141 8932.0 4.38 0
STFL-FVR-SD-RGNS 8639 9212 8854.5 4.14 0
STFL-FVR-ST 8344 8683 8516.5 4.26 0
STFL-FVR-ST-RGNS 9409 9792 9515.0 3.97 0
STFL-FULL 8715 8939 8783.5 4.50 0
STFL-FULL-RGNS 9501 10057 9788.5 4.28 0

63

4.2. Ablation Study

Continuation of Table 4.2

Config
Branch Coverage

Execs/s
Crash
Med

Min Max Med

Forked-DAAPd - DAAP

BASELINE 2211 2412 2353.0 0.83 0
BASELINE-RGNS 1908 2555 2472.5 0.84 0
STFL-RND 2203 2360 2275.0 0.88 0
STFL-RND-RGNS 2169 2486 2466.5 0.86 0
STFL-FVR-SD 2122 2347 2275.5 0.88 0
STFL-FVR-SD-RGNS 2429 2514 2474.0 0.84 0
STFL-FVR-ST 2223 2382 2335.5 0.86 0
STFL-FVR-ST-RGNS 2380 2517 2468.0 0.85 0
STFL-FULL 2104 2399 2330.0 0.87 0
STFL-FULL-RGNS 2449 2505 2469.0 0.85 0

Dcmtk - DICOM

BASELINE 2979 3067 3024.0 12.65 15.0
BASELINE-RGNS 2966 3065 3016.0 10.86 28.5
STFL-RND 3018 3087 3044.0 9.99 2.0
STFL-RND-RGNS 2997 3072 3021.0 9.83 3.0
STFL-FVR-SD 2999 3065 3031.0 13.32 3.0
STFL-FVR-SD-RGNS 2994 3108 3083.5 10.02 1.5
STFL-FVR-ST 2989 3049 3011.5 10.03 2.5
STFL-FVR-ST-RGNS 2988 3082 3019.0 12.29 3.0
STFL-FULL 3019 3104 3049.0 13.07 3.0
STFL-FULL-RGNS 2997 3090 3053.5 13.19 5.0

End of Table 4.2

Using these results we can now measure the code coverage impact of spe-
cific features.

4.2.2 State feedback feature impact

The discussion presented here will focus on aspects directly related to the
research aim; state feedback features. The impact of region mutations are
left to Appendix B. This section answers four research questions, one for each
state feedback feature and one looking at the impact of all features combined.
Impact is reported as a percent change between a child configuration’s per-
formance relative to its parent configuration. Coverage speed up is reported
where possible, alongisde statistical significance metrics. For brevity, the cov-

64

4.2. Ablation Study

erage values themselves are not duplicated here. Interested readers can refer
to Table 4.2 for exact coverage values.

RQ 1 - What is the code coverage impact of basic state feed-
back? This is measured as the median branch coverage difference between
one set of configurations, with and without region mutations: BASELINE[-
RNGS] (parent) v. STFL-FVR-SD[-RNGS] (child). Table 4.3 shows the im-
pact of the feature as a percent, the coverage speed-up, the p-value from the
Mann-Whitney-U test and lastly the Vargha-Delaney effect size. On average,
enabling basic state feedback changes coverage performance by -1.77 (RGNS)
to -1.89 (no RGNS)%. Results for the region-mutation enabled configurations
were mostly statistically significant or nearly so, and the average is skewed by
one outlier (PureFTPd), though removing it still yields a negative average
coverage change. In both cases, five targets saw coverage improvements, albeit
not statisticallly signficant for the configurations without region-mutations.

Recall this measurement comprises two effects; a difference in seed selection
approaches and the addition of state modeling and state selection. Previous
work has measured the impact of using FAVOR seed selection v. queue or-
der as BASELINE does [15]. Hence, by measuring basic state feedback using
STFL-FVR-SD, we can break down the contribution of each effect. Meng et
al. found FAVOR seed selection, isolated from state-feedback influences, led
to a -2.04% coverage change across all targets. In other words, STFL-FVR-SD
has a handicap of -2.04% in coverage performance due to the state-heuristics
it takes into account for seed selection. Considering this, the impact of the
state modeling and state selection aspects in basic state feedback contributed
a coverge increase of +0.15% and +0.27%. Fuzzing a singled message target-
ting a random state improved coverage slightly, though using a seed selection
approach informed by target state led to an overall coverage reduction.

RQ 2 - What is the code coverage impact of favoured seed selec-
tion? This is measured as the median branch coverage difference between two
sets of configurations, each with and without region mutations: STFL-RND[-
RGNS] v. STFL-FVR-SD[-RNGS] and STFL-FVR-ST[-RGNS] v. STFL-
FULL[-RNGS]. Table 4.4 shows the per-target results. On average, enabling
favoured seed selection alone increased branch coverage by 0.08 to 0.88%. Most
results across all measurements are not statistically significant, with a p-value
above 0.05. Thus we conclude favoured seed selection alone contributes a
small and statistically insignificant improvement to fuzzing performance.

RQ 3 - What is the code coverage impact of favoured state selec-
tion? This is measured as the median branch coverage difference between two
sets of configurations, each with and without region mutations: STFL-RND[-

65

4.2. Ablation Study

Table 4.3: Code coverage impact of basic state feedback

BASELINE[-RGNS] v. STFL-FVR-SD[-RNGS]

No RGNS RGNS

Target Impact % Speed-up p Â12 Impact % Speed-up p Â12

Live555 -1.72 - 0.00 0.97 -1.64 - 0.00 1.00
Exim -0.52 - 0.60 0.58 0.97 1.25× 0.09 0.27
ProFTPd -4.70 - 0.00 0.92 -5.28 - 0.00 0.89
LightFTP -3.47 - 0.07 0.74 -0.29 - 0.47 0.60
PureFTPd -7.59 - 0.00 0.95 -13.84 - 0.00 1.00
BFTPd 0.10 1.13× 0.91 0.48 0.21 2.29× 0.42 0.39
OpenSSH 0.32 1.28× 0.21 0.33 1.29 2.34× 0.08 0.27
OpenSSL 0.18 1.41× 0.25 0.34 -0.25 - 0.06 0.76
TinyDTLS -4.69 - 0.15 0.70 -2.93 - 0.02 0.83
DNSmasq -0.27 - 0.01 0.86 -0.09 - 0.10 0.72
Kamailio 0.83 1.28× 0.43 0.39 -3.42 - 0.00 0.91
Forked-DAAPd -3.29 - 0.03 0.80 0.06 1.01× 0.65 0.44
Dcmtk 0.23 1.65× 0.47 0.40 2.24 6.13× 0.00 0.11

Avg -1.89 1.35× Avg -1.77 2.60×
σ =2.62 σ =4.18

RGNS] v. STFL-FVR-ST[-RNGS] and STFL-FVR-SD[-RGNS] v. STFL-
FULL[-RNGS]. Table 4.5 shows the per-target results. On average, enabling
favoured state selection alone changes branch coverage by -0.10 to 0.69%.
Most results across all measurements are not statistically significant, with a
p-value above 0.05. There is one statistically significant outlier; Kamailio,
when region-mutations are enabled, saw a 6.15% and 10.55% increase in per-
formance through adding favoured state selection. Thus we conclude favoured
state selection, on average, does not effect fuzzing performance.

This aspect is measured by Liu et al., where they found that all AFLNet’s
state selection algorithms led to similar coverage results [11]. They test six
targets; LightFTP, ProFTPd, Exim, OpenSSH, OpenSSL and Live555.
Our expanded study agrees with theirs, but does find it may help depending
on the target and configuration.

RQ 4 - What is the code coverage impact of full state feedback?
This is measured as the median branch coverage difference between one set of
configurations, with and without region mutations: BASELINE[-RNGS] (par-
ent) v. STFL-FULL[-RNGS] (child). Table 4.6 shows the results. On average
state feedback, with all features enabled, changed code coverage achieved by -
1.48 to -1.51%. This is a mild improvement from basic state feedback, brought
on from favoured seed and state selection combined. The results for the ma-

66

4.2. Ablation Study

Table 4.4: Code coverage impact of favoured seed selection

STFL-RND[-RGNS] v. STFL-FVR-SD[-RNGS]

No RGNS RGNS

Target Impact % Speed-up p Â12 Impact % Speed-up p Â12

Live555 0.14 1.07× 0.79 0.46 0.93 1.41× 0.06 0.25
Exim -0.05 - 0.12 0.71 0.56 1.11× 0.07 0.26
ProFTPd 1.19 1.87× 0.58 0.42 -1.82 - 0.85 0.53
LightFTP 0.29 1.31× 0.85 0.47 0.00 - 0.91 0.48
PureFTPd 1.55 1.37× 0.73 0.45 5.71 1.40× 0.35 0.37
BFTPd 0.10 1.13× 0.62 0.43 1.15 3.39× 0.06 0.25
OpenSSH 0.36 1.40× 0.04 0.23 0.18 1.19× 0.73 0.45
OpenSSL 0.12 1.22× 0.60 0.43 0.75 2.09× 0.05 0.24
TinyDTLS -2.02 - 0.91 0.52 -1.92 - 0.15 0.70
DNSmasq 0.13 1.48× 0.25 0.35 -0.09 - 0.21 0.67
Kamailio 3.25 2.65× 0.00 0.07 -1.22 - 0.08 0.74
Forked-DAAPd 0.02 1.00× 0.63 0.57 0.30 1.07× 0.19 0.32
Dcmtk -0.43 - 0.12 0.71 2.07 6.13× 0.01 0.15

Avg 0.36 1.45× Avg 0.51 2.22×
σ =1.20 σ =1.94

STFL-FVR-ST[-RGNS] v. STFL-FULL[-RNGS]

No RGNS RGNS

Target Impact % Speed-up p Â12 Impact % Speed-up p Â12

Live555 0.20 1.33× 0.73 0.45 0.71 1.73× 0.03 0.21
Exim 0.00 - 0.97 0.49 2.43 3.28× 0.00 0.07
ProFTPd 0.64 1.82× 0.35 0.37 0.18 1.46× 0.65 0.44
LightFTP 1.46 1.23× 0.09 0.27 0.15 1.30× 0.79 0.54
PureFTPd 0.57 1.05× 0.57 0.42 1.49 1.16× 0.44 0.39
BFTPd 0.41 1.93× 0.22 0.34 1.78 3.36× 0.02 0.20
OpenSSH -0.45 - 0.17 0.69 0.33 1.20× 0.38 0.38
OpenSSL 0.04 1.10× 0.38 0.38 -0.32 - 0.11 0.72
TinyDTLS 4.45 2.11× 0.02 0.19 -9.74 - 0.05 0.77
DNSmasq 0.00 - 0.88 0.48 0.00 - 0.84 0.47
Kamailio 3.14 1.95× 0.00 0.00 2.87 1.79× 0.00 0.12
Forked-DAAPd -0.24 - 0.74 0.45 0.04 1.02× 0.71 0.45
Dcmtk 1.25 6.67× 0.00 0.08 1.14 2.09× 0.21 0.33

Avg 0.88 2.13× Avg 0.08 1.84×
σ =1.43 σ =3.11

jority are statistically significant, with a p value less than or equal to 0.05.
Accounting for Meng et al.’s finding that state heuristics in seed selection re-
duces performance by -2.04%, we find other state feedback aspects contribute
a small coverage increase of +0.53 to +0.56%.

67

4.2. Ablation Study

Table 4.5: Code coverage impact of favoured state selection

STFL-RND[-RGNS] v. STFL-FVR-ST[-RNGS]

No RGNS RGNS

Target Impact % Speed-up p Â12 Impact % Speed-up p Â12

Live555 0.40 1.69× 0.17 0.32 0.44 1.24× 0.50 0.41
Exim 0.98 1.37× 0.41 0.39 -1.19 - 0.47 0.60
ProFTPd -1.82 - 0.39 0.62 -2.04 - 0.58 0.58
LightFTP -0.87 - 0.10 0.72 -0.58 - 0.70 0.56
PureFTPd 0.04 1.01× 0.94 0.52 4.95 1.17× 0.76 0.46
BFTPd -0.21 - 0.82 0.54 0.00 - 0.57 0.58
OpenSSH 1.01 2.05× 0.01 0.16 0.35 1.48× 0.12 0.29
OpenSSL 0.56 1.61× 0.00 0.13 1.73 4.98× 0.00 0.05
TinyDTLS -1.58 - 0.47 0.60 -0.70 - 0.71 0.56
DNSmasq 0.13 1.44× 0.20 0.33 -0.09 - 0.73 0.55
Kamailio -1.55 - 0.09 0.73 6.15 4.02× 0.00 0.00
Forked-DAAPd 2.66 1.35× 0.15 0.31 0.06 1.01× 0.55 0.42
Dcmtk -1.07 - 0.00 0.90 -0.07 - 0.97 0.49

Avg -0.10 1.50× Avg 0.69 2.32×
σ =1.28 σ =2.34

STFL-FVR-SD[-RGNS] v. STFL-FULL[-RNGS]

No RGNS RGNS

Target Impact % Speed-up p Â12 Impact % Speed-up p Â12

Live555 0.45 1.72× 0.23 0.34 0.22 1.24× 0.65 0.44
Exim 1.04 1.55× 0.19 0.32 0.57 1.25× 0.33 0.37
ProFTPd -2.35 - 0.25 0.66 -0.04 - 1.00 0.50
LightFTP 0.29 1.08× 0.97 0.51 -0.43 - 0.82 0.54
PureFTPd -0.91 - 0.91 0.48 0.76 1.16× 0.58 0.42
BFTPd 0.10 1.00× 0.62 0.43 0.62 1.36× 0.79 0.46
OpenSSH 0.19 1.17× 0.15 0.31 0.49 1.24× 0.14 0.30
OpenSSL 0.48 1.95× 0.08 0.26 0.65 3.16× 0.02 0.19
TinyDTLS 4.92 2.11× 0.16 0.31 -8.61 - 0.33 0.64
DNSmasq 0.00 - 0.62 0.43 0.00 - 0.45 0.40
Kamailio -1.66 - 0.08 0.74 10.55 5.83× 0.00 0.00
Forked-DAAPd 2.40 1.61× 0.06 0.25 -0.20 - 0.88 0.53
Dcmtk 0.59 2.38× 0.02 0.19 -0.97 - 0.08 0.74

Avg 0.43 1.62× Avg 0.28 2.18×
σ =1.80 σ =3.95

It remains that a few targets see a large coverage reduction from state
feedback; ProFTPd, PureFTPd, LightFTP, TinyDTLS (when region
mutations are enalbed). Kamailio, the SIP target, sees a significant coverage
benefit from enabling state feedback and region mutations. The fact three

68

4.2. Ablation Study

of four FTP targets are not favourable to state feedback could mean the
final results of this research are muted. If the results demonstrate increased
impact through the additon of syntax-awareness, even for FTP targets, that
could mean even greater benefits to targets benefitting from state feedback.
At a minimum, one target, BFTPd, does benefit from the addition of state
feedback here.

Table 4.6: Code coverage impact of full state feedback

BASELINE[-RGNS] v. STFL-FULL[-RNGS]

No RGNS RGNS

Target Impact % Speed-up p Â12 Impact % Speed-up p Â12

Live555 -1.28 - 0.00 0.97 -1.42 - 0.00 0.99
Exim 0.51 1.31× 0.48 0.40 1.54 2.05× 0.01 0.16
ProFTPd -6.95 - 0.00 0.99 -5.32 - 0.01 0.84
LightFTP -3.19 - 0.04 0.78 -0.72 - 0.34 0.63
PureFTPd -8.44 - 0.00 0.91 -13.18 - 0.00 1.00
BFTPd 0.21 1.19× 0.73 0.45 0.83 1.46× 0.27 0.35
OpenSSH 0.51 1.61× 0.01 0.17 1.79 4.68× 0.01 0.16
OpenSSL 0.66 2.12× 0.01 0.15 0.40 1.56× 0.25 0.34
TinyDTLS 0.00 - 0.91 0.48 -11.29 - 0.01 0.88
DNSmasq -0.27 - 0.06 0.76 -0.09 - 0.20 0.67
Kamailio -0.85 - 0.38 0.62 6.77 3.31× 0.00 0.00
Forked-DAAPd -0.98 - 0.91 0.52 -0.14 - 0.68 0.44
Dcmtk 0.83 3.21× 0.03 0.20 1.24 2.09× 0.11 0.29

Avg -1.48 1.89× Avg -1.51 2.53×
σ =2.98 σ =5.45

These results are less favourable towards the code coverage value of state
feedback than those from Meng et al.[15], which found a negligible perfor-
mance decrease of 0.01%. The difference is explained by our inclusion of
state-heuristic based seed selection as part of state feedback. The specific
configuration of their fuzzer for each target and timeouts used would also
influence these results.

If we look at FTP targets only, which will be relevant for our validation,
we see full state feedback has an average impact of -4.59% (no RGNS) and
-4.60% (RGNS). This negative results is explained by the impact of seed selec-
tion informed by state heuristics (FAVOR-mode relative to queue order only).
Meng et al. found that, on average for FTP targets, this difference caused a
coverage decrease of -5.07%.

69

4.2. Ablation Study

4.2.3 Discussion

This ablation study concludes that AFLNet state feedback features reduce
coverage relative to a BASELINE configuration which mutates a random num-
ber of sequential messages in a sequence. This coverage reduction is fully ex-
plained by the negative impact of state-heuristic based seed selection relative
to queue-order based selection. Accounting for this, remaining feedback fea-
tures do add a postive coverage effect, though small and often not statistically
significant.

Authors have hypothesized the limited impact of state feedback could be
due to response codes not being a good state representation [15], fuzz being
invalid (syntax) or irrelevant (semantics), and lastly that maybe state feed-
back will prove more impactful at greater number of executions [11]. This
research investigates how syntactically valid fuzz changes the impact of state
feedback, under the hypothesis that valid fuzz are needed to reach and en-
gage with program state. Those results are discussed in Section 4.5. For now,
we present target-specific challenges and observations while conducting the
ablation study:

1. Forked-DAAPd: the coverage analysis portion of some runs took 36+
hours. This is due to long timeouts paired with seeds containing 200+
messages. There are two versions of this target, a kernel-thread version
with low stability (likely contributor to large seeds, paired with region
mutations) and a user-thread version which has issues completing the
code coverage portion. Based on execution speeds, it appearsNSFuzz[3]
used the kernel-thread version and so we proceeded with that one but
had to let coverage analysis run a long time.

2. OpenSSL: commit 6d86ca0 of AFLNet fails to fuzz this target when
state feedback is enabled (-E), due to state ids count equalling zero. At-
tempts were made to resolve this by studying a pull request to add an
additional SSL target (WolfSSL) but without success. For this tar-
get only, we reverted to using the ProFuzzBench included AFLNet
version (Jan 2021 - commit f2e71ea).

3. BFTPd: disk would fill up causing fuzzing to fail. This is due to log files
accumulating. Target clean.sh was updated to clear the log files between
target executions. % coverage change among configurations was near
zero; why? Though BFTPd has 1328 branches, only 378 of them are in
the source file which handles command parsing (and AFLNet is only
fuzzing the command channel), and so a good branch improvement in the
command source results in an overall small branch percent improvement.
When fuzz only target portions of the code but coverage is assessed

70

4.3. AFLNet-Packmute

relative to the entire source then percentages can be misleading. For
example, between the worst run of BFTPd (STFL-RND run 8) and the
best run (STFL-FULL run 3) there is a 13% coverage difference in the
command parsing file.

4. TinyDTLS: regardless of AFLNet version, after a long fuzz time, some
fuzzing sessions will crash/quit. Experiments were repeated to get 10
successful runs. Reasons are unknown.

5. ProFTPd, Exim, PureFTPd, BFTPd: initial seeds sometimes time-
out during dry-run which causes fuzzing to fail starting. Longer timeouts
and/or permitting the target to exceed timeouts during the dry-run
(adding + to the -t parameter value) resolved this. In an effort to
stick to ProFuzzBench included commands, experiments were simply
restarted to get 10 successful starts.

6. DNSmasq: very similar median coverage results across all configura-
tions. DNS has very few response codes; only 1 for ’success’ and 9 for
different failures. The DNSmasq config used by ProFuzzBench does
not contain any dns records, so most of its functionality would not be
reached. Results were very skewed across runs, with the min run being
very close the median, but most configs have a max run much greater
than the median. Similar to BFTPd, with this target we see the fuzzing
only execute a small subset of the overall program banches. The branch
different between the min and max BASELINE runs were all in one
specific file (rfc1035.c) while all other source file coverage is identical.
rfc1035.c represents 9.2% of the branches in DNSmasq’s source.

Verifying that experiments have succesfully started simply requires run-
ning the top utility and confirming there are 10 afl-fuzz processes running.
Afterwards, the data processing scripts verify the fuzzing duration in seconds
based on the fuzzer output directory logs.

4.3 AFLNet-Packmute

This section presents the results of developing our syntax-aware AFLNet
variant, AFLNet-Packmute. First, details on how the tool is developed are
discussed followed by a look at how we arrived at the final design presented
in Chapter 3.

4.3.1 Development

PcapPlusPlus and Libpackmute are written in C++, compiled statically
and installed on the local system using the CMake build system generator.

71

4.3. AFLNet-Packmute

To build afl-fuzz, we use the AFLNet included Makefile with modifications.
The object file must be compiled with a C compiler and then linked against
PcapPlusPlus and Libpackmute using a C++ linker. The modified Make-
file splits the compilation and linking steps for the afl-fuzz target. Listing 5
shows the object file target being compiled with a C compiler then the binary
target being linked with a C++ compiler.

Listing 5 Afl-fuzz makefile target

afl-fuzz.o: afl-fuzz.c $(COMM_HDR)

$(CC) $(CFLAGS) -c afl-fuzz.c -o $@

afl-fuzz: afl-fuzz.c $(COMM_HDR) afl-fuzz.o aflnet.o aflnet.h

$(CXX) aflnet.o afl-fuzz.o -o $@ $(LDFLAGS) \\

-lpackmute -lPacket++ -lCommon++

Early in development, we found an error in PcapPlusPlus’ handling
of command-only FTP messages. When accessing the option field, instead
of returning an empty string it crashes the application. This is due to it
comparing a zero-indexed postion field against a length field. We patched
the issue, added a testcase to the project test suite, and our pull-request was
merged into the project, resolving the issue.

Stability is important since the application needs to run for 24 hours.
Valgrind’s Memcheck [37] tool is used, alongside AFL’s built-in head/tail
allocation canaries to catch memory management errors. An integer over-
flow bug proved most problematic and was only found through manual print
statements. To conduct fuzzing with AFLNet-Packmute, a new Pro-
FuzzBench Dockerfile is created which compiles and installs PcapPlusPlus
and Libpackmute before the fuzzer is finally compiled.

4.3.2 Syntax-awareness

How syntax-awareness is applied to the mutation process in general was clear
prior to development. Specific opportunities to reduce the likelihood of break-
ing syntax were discovered and addressed one-by-one. Two questions arose
regarding exploitation v exploration that had less defined answers; where in
the process? and how often?

Where? ChatAFL chose to situate the explore-exploit decision at the
start of the havoc stage; a decision is made on the first havoc stage and after
each splice cycle. We placed the exploit-explore decision at the start of a

72

4.3. AFLNet-Packmute

fuzzing round, so that it persists through the splice cycle as well. We do
not believe that this decision had a particular advantage; it was necessary
due to our design. Mutable range information is stored alongside the queue
entry struct when a seed is added to the corpus; we did not parse ranges from
arbitrary buffers while fuzzing. Thus, after splicing the only knowledge of
mutable ranges of that buffer are found in the range structs. If we go from
exploring a buffer, which is spliced with another, to exploiting, the mutable
ranges within it are unknown, since to this point we’ve treated it as one big
mutable range. This is why we could not place the exploit-explore decision
at the start of the havoc stage. Though Libpackmute does have the ability
to parse mutable ranges from buffer while fuzzing once converted to replay
format, a strength of our design is saving that effort and placing the exploit-
explore decision on a fuzzer round-basis made it possible.

How often? Though their real explore-exploit ratio is unclear due to de-
sign decisions, ChatAFL’s authors chose a 50-50 exploit-exploit ratio, mean-
ing half the havoc stages initially used syntax awareness while half did not.
The authors of the paper were contacted to know if this ratio had been ex-
perimentally determined or simply selected as a good starting point. We have
not yet received a response.

Literature on the exploitation-exploration tradeoff suggests the focus on
one or the other should vary across the system’s lifespan depending on the
nature of its environment and its learning [38]. Berger-Tal et al. found that
generally, to maximize the production of energy, a system should first focus
on building knowledge early in its life (exploring) and later focusing on just
converting that knowledge to energy (exploiting). This is similar to the ap-
proach used in Directed Greybox Fuzzing by Böhme et al. which used a new
power schedule to progressively focus more on seeds which where closer to
target code branches [39]. Exploring early on enabled them to avoid getting
stuck in a local minimum. In their case however, there was a clear ’knowledge’
the fuzzer was gaining; seeds close to the target code branches. In AFLNet-
Packmute, there is no such knowledge gained; the fuzzer has a fixed syntax
knowledge. While fuzzing, seeds that reach new coverage are found (a form
of knowledge) but it is really always trying to produce energy (coverage).

To investigate if this approach has value for syntax-aware fuzzing we con-
ducted a simple experiement. Fuzz using two different exploit-explore con-
figurations where each configuration had an average exploitation rate of 75%
over the lifespan of the fuzzing. One configuration used a fixed 75% exploit
rate, named 75ee, and the other a linearly increasing exploit rate from 0-100%
over the first half of the lifespan and 100% thereafter, named linEE. Both use
a BASELINE configuration of AFLNet-Packmute fuzzing the LightFTP

73

4.3. AFLNet-Packmute

target and was repeated 10 times each, lasting 24 hours. Figure 4.2 shows the
median branch coverage over time for each fuzzer. The fuzzer with a linearly
increasing exploit rate from 0-100% for the first 12 hours is in orange (named
linEE), whereas the fixed 75% exploit rate is shown in blue (named 75ee). The
final performance difference is small (linEE achieving 0.41% fewer branches)
and statistically insignificant. The coverage progress however is very inter-
esting. Once linEE enters 100% exploitation at 720 minutes (12 hrs) we see
the coverage essentially plateaus, while it was making good progress during
exploration. 75ee meanwhile makes progress throughout. There appears to
be coverage value in exploration throughout the fuzzer lifespan. This may
be due to some of the reasons other literature has opted to keep some invalid
fuzz; targets diverging from protocol definitions, fuzzing edge cases or protocol
parsing logic [4],[6],[15].

We leave further investigation as future work and proceed with tuning the
exploit-explore ratio as a fixed value applied throughout the fuzzer lifespan.
Using AFLNet-Packmute’s -z switch, we conducted experiments using an
exploit rate of 25, 50, 75 and 100%, respectively named %ee. The BASELINE
configuration of AFLNet from the ablation study is included to compare
against exploration-only. Figure 4.3 shows the median branch coverage over
time for each exploit rate, overlaid with the min/max at each timestep in a
shaded region of the same colour as the median line. The plot omits the first
hour so that the axis can be better scaled to see detail.

The configuration with an exploit rate of 75% performed best, though not
statistically significant relative to the base-case of exploration only. 75ee had a
median performance equal to 50ee but superior minimum and maximum per-
formance. Table 4.7 shows to final metrics of the experiments; min run, max
run, median, execs/second. We see the difference between exploiting fuzzers
and the base-case of AFLNet is not statistically significant, though greatest
for 75ee. Why the performance drop at a 100% exploit rate? This question
led to an interesting discovery. Exploration in this specific context (AFLNet
+ LightFTP) has an ability exploitation does not have; to introduce entirely
new commands not found in the initial seeds. This is because it can overwrite
existing FTP commands with dictionary words that are valid FTP commands.
In the case of FTP targets, ProFuzzBench provides the fuzzer a dictionary
which contains the command keywords for several other message types not
found in the initial seeds. When exploring, these are inserted or overwritten
into the buffer to form new commands and reach significant portions of code.
We expect this advantage of exploration is reduced for targets with more fea-
ture complete initial seeds or more complex protocols where a simple keyword
insertion does not create an entirely new message type. For exploitation to

74

4.3. AFLNet-Packmute

0 200 400 600 800 1000 1200 1400
Time (in min)

670

680

690

700

710

720

730

740

Lin
e

Co
ve

ra
ge

aflnet-packmute-75ee_baseline
aflnet-packmute-linEE_baseline

0 200 400 600 800 1000 1200 1400
Time (in min)

320

330

340

350

360

Br
an

ch
 C

ov
er

ag
e

aflnet-packmute-75ee_baseline
aflnet-packmute-linEE_baseline

Code coverage analysis

Figure 4.2: Constant v linearly increasing exploit rate in AFLNet-
Packmute

achieve this, the fuzzer would need to add the FTP command to a mutable
range,create a message terminator previous to it, and then add a space after
it; a very unlikely occurence.

Why then is 100% exploitation not much worse than 0% if it can’t reach
the code for several entire FTP commands? The cause is syntactically invalid
fuzz being introduced from two sources, even when AFLNet-Packmute tries
to apply syntax all the time: 1) The grouping of many messages into one if the

75

4.3. AFLNet-Packmute

0 200 400 600 800 1000 1200 1400
Time (in min)

550

600

650

700

750

Lin
e

Co
ve

ra
ge

aflnet-6d86ca0-baseline
aflnet-packmute-25ee_baseline
aflnet-packmute-50ee_baseline
aflnet-packmute-75ee_baseline
aflnet-packmute-100ee_baseline

0 200 400 600 800 1000 1200 1400
Time (in min)

260

280

300

320

340

360

380

Br
an

ch
 C

ov
er

ag
e

aflnet-6d86ca0-baseline
aflnet-packmute-25ee_baseline
aflnet-packmute-50ee_baseline
aflnet-packmute-75ee_baseline
aflnet-packmute-100ee_baseline

Code coverage analysis

Figure 4.3: Tuning a fixed exploit rate in AFLNet-Packmute against the
LightFTP target

mutation buffer has introduced too many messages. These messages are saved
into a single region which may or may not be syntactically valid and have one
big mutable range with a bunch of messages. LightFTP rejects these as
having bad command syntax. On later fuzzing rounds these multi-message
regions are added to the mutation buffer through region mutations. 2) Ran-
dom mutations creating message terminators. FTP messages are terminated
by the byte sequence 0x0d0x0a which can be introduced into a mutation buffer

76

4.4. Verification

Table 4.7: AFLNet-Packmute performance across exploit rates

Config Min Max Median %∆ v. 0ee Execs/s p Â12

afl 345 376 360 - 5.59 - -
25ee 345 375 362 0.56 5.68 0.43 0.39
50ee 348 367 362.5 0.69 5.76 0.20 0.33
75ee 349 380 362.5 0.69 5.69 0.17 0.32
100ee 341 364 357.5 -0.69 6.81 0.32 0.64

through, for example, the insertion of 0x0a bytes followed by an incrementa-
tion. AFLNet-Packmute parses these into individual messages and sends
syntactically invalid fuzz to the target, which then get saved to the corpus.
These syntactically invalid regions can later be added to fuzz from region mu-
tations, splice into mutation buffers or seed entire fuzzing rounds. If there is
no mutable range, AFLNet-Packmute would default to mutating the entire
buffer; just like exploration.

The first cause of invalid fuzz can be addressed by removing the max new
message constraint when parsing and inserting the mutation buffer into the
message linked list, however we deem this is a change to AFLNet beyond
adding syntax-awareness so it was left out of scope. Also, removing this
constraint would further explode the size of seeds when region mutations are
enabled. The second cause could be addressed by sanitizing the mutation
buffer at the end of the mutation loop before the buffer is parsed; removing
any 0x0d0x0a found within any mutable ranges. As will be discussed in 4.4,
we find invalid fuzz caused by this represents a very small proportion of the
overall fuzz and would be even less likely in protocols with more complex
message terminators (e.g. those defined by header fields). Thus, we pursued
verification and validation using a fixed 75% exploit rate.

4.4 Verification

Recall from Chapter 3 the verification of this research involved three steps.
First, the scripts that produce the final metrics and coverage plots are verified.
Second, AFLNet-Packmute’s code is verified for correctness through test
driven development and built-in syntax checks. Third, a final verification of
AFLNet-Packmute is conducted against a real FTP server to confirm fuzz
produced are syntactically valid when exploiting and resemble AFLNet when
exploring.

The analysis scripts comprised coverage summary statistics scripts (final

77

4.4. Verification

min, max, median branch coverage, statistical significance) and coverage plot-
ting scripts (min, max, median branch coverage over time). These are inde-
pendently derived from the ProFuzzBench coverage time series output, thus
they should agree with each other. During development, comparing these out-
puts proved useful in finding errors in each other. The plots pointed to errors
in speed-up calculations. For example if the speed-up between configuration
A and B is 2×, then we expect a horizontal line drawn from the end value of
B to intersect A’s curve at the 12 hour mark. At first, the speed-up script
was not preserving the sequence of values correctly before appending them to
the statistics CSV. The summary statistics pointed to errors in how the plot
legend was populated, assigning incorrect labels to each line.

Verification of AFLNet-Packmute started with the test-driven develop-
ment of Libpackmute. No tests were directly written for lpm setup env() as
it simply sets a variable, and all other functions fail immediately if it has not
first been called. 15 tests where written to verify Libpackmute’s three other
public functions:

1. lpm check syntax(): Four tests of good syntax; ProFuzzBench intial
seed, single byte FTP command, FTP arguments including null bytes,
FTP arguments containing newline characters, and valid message se-
quences thousands of bytes long. Seven tests of bad syntax; invalid
FTP command, the presence of an option where there shouldn’t be,
the absence of an option where there should be, invalid replay format,
invalid FTP message terminator, random bytes, and random bytes in
replay format.

2. lpm find mutable(): Three tests comprising valid messages with no mu-
table ranges, valid messages with mutable ranges, and a sequence with
a mix of invalid and valid message containing mutable ranges.

3. lpm get pre padding(): One test verifying the correct byte is provided
for FTP.

Using CMake’s CTest program, these tests were executed as development
progressed to ensure new changes did not break existing functionality. Now
that we had a verified function that checks the syntax validity of a buffer
we could use it to verify our addition of syntax-awareness to AFLNet. As
described in Section 3.4 a call to lpm check syntax() was made with each fuzz
generated. This found errors in the FTP regex patterns and an incorrect pa-
rameter setting in a call to PcapPlusPlus’ getCommandOption() method.
These checks also showed the combining of messages that occurs where multi-
ple regions are grouped into a single message if the total buffer’s region count
exceed the maximum.

78

4.4. Verification

The nature of writing code which handles randomly changing buffers is that
it fuzzes itself. Simply running AFLNet-Packmute revealed logic errors in
conditional statements, limitations to std::regex search’s length capacity, and
an integer overflow error. These improved the stabilty and correctness of
AFLNet-Packmute.

The last step was to verify AFLNet-Packmute against a FTP server.
EachAFLNet, AFLNet-Packmute (expoit = 0%) andAFLNet-Packmute
(exploit = 100%) fuzz the LightFTP target for 10 minutes while network traf-
fic is recorded. A STFL-FULL-RGNS configuration is used. This is repeated
three times and averaged. This verifies the number of commands rejected by
the server due to bad command syntax. For an exploit rate of 100% we expect
this number to be near zero, while for an exploit rate of 0% we expect it to be
comparable to AFLNet. As is discussed in Section 4.3 bad commands can
be introduced from AFLNet’s maximum new message constraint as well as
the default behaviour to mutate the entire buffer if no mutable ranges were
found. For the purposes of verification, the fuzzer with a 100% exploit rate
has the maximum new message constraint removed and the default behaviour
is to skip selected seeds that have no mutable ranges.

The following FTP response codes were counted:

• 500 - Syntax error, command unrecognized
• 501 - Syntax error in parameters or arguments
• 503 - Bad sequence of commands
• 504 - Command not implemented for that parameter
• 530 - Not logged in
• 550 - Requested action not taken

Table 4.8 shows the average number of requests sent by each fuzzer and
the average number of response codes of each type as a percent of the requests
sent. We expect the proportion of each to change over time, but 10 minutes
is sufficient to verify AFLNet-Packmute is working as intended.

With an exploit rate of 0%, Packmute-XplR should resemble AFLNet
since it is always exploring (XplR). In terms of response codes as a percent
of requests sent, it mostly is in line with AFLNet, although there is a small
reduction in requests being rejected for bad command syntax and an increase
in requests sent. This may be due to one run for Packmute-XplR having a high
request count and one run of AFLNet having a low request count creating
that gap. A given run might favour seeds with more or less messages due to
coverage discoveries. In the case of both fuzzers, they complete 1 queue cycle
over the 10 minutes of fuzzing; meaning each initial seed is used once to start
the fuzzing round.

79

4.4. Verification

With an exploit rate of 100%, Packmute-XplT should see nearly no bad
commands. The only source of bad commands we expect is the random cre-
ation of new message terminators as described in Section 4.3. On average,
0.3% of commands sent are rejected for bad command syntax. This varies
across runs, with one run seeing 0.7% and another seeing 0%. This makes
sense if a random message terminator is introduced into a buffer early in the
fuzzing session, creating invalid fuzz which is then regularly introduced into
the fuzz through region mutations.

Table 4.8: AFLNet-Packmute real FTP server verification

Fuzzer Requests Sent
Response Code %

500 501 503 504 530 550

AFLNet 80 942 18.8 5.3 0.1 0.01 18.5 1.1
Packmute-XplR 85 121 17.9 5.7 0.01 0.01 17.7 1.5
Packmute-XplT 100 591 0.3 8.1 0 0 30.8 6.2

Beyond verification, these results reveal two important things. First, that
exploration can create behaviour exploitation cannot such as the 503 and 504
response codes, resulting from it introducing new message types via dictionary
insertion/overwriting. Second, that while exploiting, many syntactically valid
fuzz are now rejected due to being semantically irelevant. Though AFLNet-
Packmute sees a response code 500 reduction of 18.5%, the occurrence of
530 response codes increases by 12.3%. Considering commands rejected for
syntax or the lack of a valid login session (500 + 530) adding syntax-awareness
has shifted the total from 37.3% to 31.1% of commands being rejected. This
suggests to us adding some semantic awareness has great potential to increase
the quantity of effective fuzz. The low throughput of protocol fuzzing paired
with more than a third of fuzz being rejected due to syntax or semantics makes
for limited coverage progress. We must keep in mind these observations are
from a short 10 minutes of fuzzing. Our intuition is that at longer fuzzing
durations the proprotion of fuzz rejected due to response code 530 (please
login) would reduce. Over time, the fuzzer would exhaust easily reached code
coverage outside of valid login sessions, giving more time to seeds and states
that have valid logins.

This verification confirms AFLNet-Packmute mimics AFLNet when
exploring and creates a negligible number of bad commands when exploiting.
We can continue to the validation phase knowing AFLNet-Packmute works
as expected.

80

4.5. Validation

4.5 Validation

This section is organized in three parts. First, the coverage results of AFLNet-
Packmute with a 75% exploit rate fuzzing the four FTP targets are presented.
Second, the code coverage impact of state feedback features in AFLNet-
Packmute is measured. Lastly, the change in coverage impact between
AFLNet and AFLNet-Packmute can be calculated to allow us to fulfill
the aim of this research.

4.5.1 Coverage Results

The fuzzing performance results of AFLNet-Packmute with a 75% exploit
rate are presented in Table 4.9. The minimum, maximum and median final
branch coverage value across the ten runs of each configuration are listed,
alongisde the executions per second and median number of crashing test-
cases found. In bold are the best performing configurations for each target.
Appendix A compares these values directly to the ablation study results to
derive the coverage impact of adding syntax awareness to AFLNet’s muta-
tion process and also does a comparison to ChatAFL-CL1, the only other
syntax-aware AFLNet variant.

Table 4.9: Validation performance results

Config
Branch Coverage

Execs/s
Crash
Med

Min Max Med

ProFTPd - FTP

BASELINE 5248 5485 5324.5 3.23 0
BASELINE-RGNS 4333 5115 4788.0 2.49 0
STFL-RND 5167 5526 5297.5 3.21 0
STFL-RND-RGNS 4937 5150 4971.0 1.80 0
STFL-FVR-SD 4921 5290 5094.5 2.73 0
STFL-FVR-SD-RGNS 4990 5304 5088.0 2.13 0
STFL-FVR-ST 4334 5290 4745.5 3.28 0
STFL-FVR-ST-RGNS 4840 5194 5021.5 1.99 0
STFL-FULL 4801 5116 4909.0 3.01 0
STFL-FULL-RGNS 4966 5280 5115.0 2.30 0

81

4.5. Validation

Continuation of Table 4.9

Config
Branch Coverage

Execs/s
Crash
Med

Min Max Med

LightFTP - FTP

BASELINE 349 380 362.5 5.69 0
BASELINE-RGNS 348 374 354.0 5.35 0
STFL-RND 327 360 348.5 5.76 0
STFL-RND-RGNS 349 364 350.5 4.95 0
STFL-FVR-SD 346 363 358.0 6.24 0
STFL-FVR-SD-RGNS 335 363 348.5 5.04 0
STFL-FVR-ST 326 365 345.5 6.00 0
STFL-FVR-ST-RGNS 335 366 348.5 4.87 0
STFL-FULL 330 363 358.0 5.96 0
STFL-FULL-RGNS 347 372 354.5 5.18 0

PureFTPd - FTP

BASELINE 1272 1344 1290.0 5.18 0
BASELINE-RGNS 1285 1327 1304.0 3.67 0
STFL-RND 1023 1203 1075.5 4.40 0
STFL-RND-RGNS 952 1149 1041.5 2.52 0
STFL-FVR-SD 857 1135 1080.0 3.93 0
STFL-FVR-SD-RGNS 1052 1199 1108.5 2.62 0
STFL-FVR-ST 1038 1163 1101.5 3.35 0
STFL-FVR-ST-RGNS 956 1153 1098.5 2.62 0
STFL-FULL 1045 1296 1121.5 3.85 0
STFL-FULL-RGNS 1059 1195 1130.5 2.60 0

BFTPd - FTP

BASELINE 471 498 481.0 3.06 26
BASELINE-RGNS 459 496 485.0 3.15 29.5
STFL-RND 439 503 482.5 4.10 16
STFL-RND-RGNS 460 495 484.0 2.54 22
STFL-FVR-SD 476 511 486.5 4.02 12.5
STFL-FVR-SD-RGNS 478 491 486.5 2.96 17
STFL-FVR-ST 454 492 487.0 4.18 11
STFL-FVR-ST-RGNS 473 488 482.5 2.41 18.5
STFL-FULL 476 499 482.5 4.05 13.5
STFL-FULL-RGNS 473 489 481.5 2.83 24

End of Table 4.2

82

4.5. Validation

4.5.2 State Feedback Impact

Using the coverage performance results we calculate the median branch cover-
age change between two configurations to determine the impact of that feature.
This section answers four research questions, one for each state feedback fea-
ture and one looking a the impact of all features combined. Impact is reported
as a percent change between a child configuration’s performance relative to it’s
parent configuration. Coverage speed up is reported where possible, alongisde
statistical significance metrics. For brevity, the coverage values themselves
are not duplicated here. Interested readers can refer to Table 4.9 for exact
coverage values. These feature impacts will be later compared to AFLNet’s
feature impact.

RQ 1 - What is the code coverage impact of syntax-aware basic
state feedback? This is measured as the median branch coverage differ-
ence between one set of configurations, with and without region mutations:
BASELINE[-RNGS] (parent) v. STFL-FVR-SD[-RNGS] (child). Table 4.10
shows the impact of the feature as a percent, the coverage speed-up when
possible, the p-value from the Mann-Whitney-U test and lastly the Vargha-
Delaney effect size.

For three targets, enabling state feedback reduced coverage, all statistically
significant with a p value below 0.05. BFTPd saw a small but statistically
insignificant coverage increase. On average, coverage changed by -5.05 to -
5.76% as a result of enabling basic state feedback in our syntax-aware fuzzer
AFLNet-Packmute.

Table 4.10: Code coverage impact of syntax-aware basic state feedback

BASELINE[-RGNS] v. STFL-FVR-SD[-RNGS]

No RGNS RGNS

Target Impact % Speed-up p Â12 Impact % Speed-up p Â12

ProFTPd -6.64 - 0.00 1.00 -3.95 - 0.00 0.91
LightFTP -1.24 - 0.02 0.80 -1.55 - 0.04 0.77
PureFTPd -16.28 - 0.00 1.00 -14.99 - 0.00 1.00
BFTPd 1.14 2.55× 0.10 0.28 0.31 1.25× 0.97 0.51

Avg -5.76 2.55× Avg -5.05 1.25×

RQ 2 - What is the code coverage impact of syntax-aware favoured
seed selection? This is measured as the median branch coverage difference
between two sets of configurations, each with and without region mutations:
STFL-RND[-RGNS] v. STFL-FVR-SD[-RNGS] and STFL-FVR-ST[-RGNS]
v. STFL-FULL[-RNGS]. Table 4.11 shows the per-target results.

83

4.5. Validation

Nearly half the results are or are almost statistically significant, and on
average the impact ranges from +1.56% to +1.99%. Since favoured seed selec-
tion incorporates aspects of AFL’s proven seed selection, we do expect this to
improve performance relative to random selection. Only PureFTPd consis-
tently sees coverage improvement across all measures. BFTPd, ProFTPd,
and LightFTP see a coverage decrease in at least one measurement.

Table 4.11: Code coverage impact of syntax-aware favoured seed selection

STFL-RND[-RGNS] v. STFL-FVR-SD[-RNGS]

No RGNS RGNS

Target Impact % Speed-up p Â12 Impact % Speed-up p Â12

ProFTPd 3.82 3.30× 0.02 0.19 -0.13 - 0.85 0.47
LightFTP 2.73 1.17× 0.06 0.25 -0.57 - 0.04 0.78
PureFTPd 0.42 1.15× 0.71 0.56 6.43 3.25× 0.06 0.25
BFTPd 0.83 2.43× 0.45 0.40 0.52 1.5× 0.60 0.43

Avg +1.95 2.01× Avg +1.56 2.38×

STFL-FVR-ST[-RGNS] v. STFL-FULL[-RNGS]

No RGNS RGNS

Target Impact % Speed-up p Â12 Impact % Speed-up p Â12

ProFTPd 3.45 3.30× 0.22 0.33 1.86 2.86× 0.06 0.25
LightFTP 3.62 2.06× 0.08 0.27 1.72 1.93× 0.04 0.23
PureFTPd 1.82 1.10× 0.35 0.37 2.91 1.28× 0.19 0.32
BFTPd -0.92 - 0.97 0.51 -0.21 - 0.91 0.52

Avg +1.99 2.15× Avg +1.57 2.02×

RQ 3 - What is the code coverage impact of syntax-aware favoured
state selection? This is measured as the median branch coverage difference
between two sets of configurations, each with and without region mutations:
STFL-RND[-RGNS] v. STFL-FVR-ST[-RNGS] and STFL-FVR-SD[-RGNS]
v. STFL-FULL[-RNGS]. Table 4.12 shows the per-target results. Most re-
sults are not statistically significant, though overall favoured state selection
has increased coverage achieved by 0.4 to 0.80 %. As with favoured seed
selection, the four measurements for this feature impact show different tar-
gets benefitting under different fuzzer configurations. Each target benefits
when favoured state selection is added to certain configurations, while only
PureFTPd benefits in all cases.

RQ 4 - What is the code coverage impact of syntax-aware full
state feedback? This is measured as the median branch coverage differ-
ence between one set of configurations, with and without region mutations:

84

4.5. Validation

Table 4.12: Code coverage impact of syntax-aware favoured state selection

STFL-RND[-RGNS] v. STFL-FVR-ST[-RNGS]

No RGNS RGNS

Target Impact % Speed-up p Â12 Impact % Speed-up p Â12

ProFTPd -0.89 - 1.00 0.50 -1.43 - 0.09 0.73
LightFTP -0.86 - 0.34 0.63 -0.57 - 0.02 0.82
PureFTPd 2.42 1.44 0.34 0.37 5.47 2.27 0.44 0.39
BFTPd 0.93 1.57 0.94 0.52 -0.31 - 0.40 0.62

Avg 0.40 1.51× Avg 0.79 2.27×

STFL-FVR-SD[-RGNS] v. STFL-FULL[-RNGS]

No RGNS RGNS

Target Impact % Speed-up p Â12 Impact % Speed-up p Â12

ProFTPd -1.25 - 0.01 0.85 0.53 1.50 0.74 0.45
LightFTP 0.00 - 0.70 0.56 1.72 1.93 0.07 0.26
PureFTPd 3.84 1.30 0.09 0.27 1.98 1.18 0.62 0.43
BFTPd -0.82 - 0.40 0.62 -1.03 - 0.14 0.70

Avg 0.44 1.30× Avg 0.80 1.54×

BASELINE[-RNGS] (parent) v. STFL-FULL[-RNGS] (child). Table 4.13
shows the per-target results. On average enabling all state feedback features
led to a coverage decrease of -4.43 to -5.45%, most results being statistically
significant. ProFTPd and PureFTPd see a large coverage decrease, while
LightFTP and BFTPd either see a small increase or decrease depending on
whether region mutations are enabled.

Table 4.13: Code coverage impact of syntax-aware full state feedback

BASELINE[-RGNS] v. STFL-FULL[-RNGS]

No RGNS RGNS

Target Impact % Speed-up p Â12 Impact % Speed-up p Â12

ProFTPd -7.80 - 0.00 1.00 -3.45 - 0.00 0.89
LightFTP -1.24 - 0.02 0.82 0.14 1.15× 0.85 0.53
PureFTPd -13.06 - 0.00 0.93 -13.31 - 0.00 1.00
BFTPd 0.31 1.08× 0.38 0.38 -0.72 - 0.21 0.67

Avg -5.45 1.08× Avg -4.34 1.15×

85

4.5. Validation

4.5.3 Change in state feedback feature impact

In this section we present the change in state feedback feature impact resulting
from the addition of syntax-awareness to AFLNet’mutation process. Though
many of the results are not statistically significant, the fact that the sepa-
rate measurements generally agree about feature impact gives us additional
confidence in the results. We consider the average feature impact across all
measurements, but also separate it by configurations with and without region
mutations enabled. These results achieve the aim of the research.

Table 4.14 lists the results by feature as an overall impact change, along-
side the impact change grouped by configurations with and without region
mutations. We find that syntax-awareness decreases the impact of basic state
feedback (impact change of -1.04%) while it increases the impact of favoured
seed and favoured state selection (impact changes of +0.84% and +0.77% re-
spectively). Region mutation enabled configurations saw a lessened impact
change, while configurations without region mutations saw a stronger impact
change (more negative and more positive).

Regarding basic state feedback, the impact decrease is largely due to
PureFTPd which saw a substantial decrease in performance between BASE-
LINE to STFL-FVR-SD when syntax-awareness is added; -7.59% without syn-
tax down to -16.28% with syntax. Other targets saw a blend of small impact
increases and decreases. The root cause of this for PureFTPd we believe is
the large difference in target executions achieved over the 24 hours of fuzzing.
Using AFLNet, BASELINE to STFL-FVR-SD saw a decrease of 0.63 execu-
tions per second, whereas AFLNet-Packmute saw a decrease of 1.25 execu-
tions per second (double the slowdown). Syntax-aware STFL-FVR-SD against
PureFTPd better succeeds at interacting with the program’s logic, meaning
each execution is slower. If we look at the run of each BASELINE and STFL-
FVR-SD which most closely reaches the median performance and consider the
slowest target execution seen, we see in AFLNet BASELINE has a slowest
execution of 765ms while STFL-FVR-SD has a slowest execution of 871ms
(14% slower). For AFLNet-Packmute BASELINE has a slowest execution
of 601ms while STFL-FVR-SD has a slowest execution of 930ms (55% slower).
Looking at the specific code branches reached by AFLNet-Packmute, but
not AFLNet, we see many of them are loops which would cause a decrease in
fuzzing speeds. Interestingly, when region mutations are enabled, this slow-
down in fuzzing speeds is also present, though syntax-awareness makes region
mutations so much more positively impactful to coverage that it overcomes
the effect of slower fuzzing.

Though syntax-awareness has worsened the impact of basic state feedback,

86

4.5. Validation

Table 4.14: Change in code coverage impact of state feedback features from
adding syntax-awareness (FTP Targets only)

Feature AFLNet AFLNet-Packmute Impact ∆

Basic State Feedback -4.36 -5.40 -1.04
RGNS -4.80 -5.05 -0.25

No RGNS -3.92 -5.76 -1.84

Favoured Seed +0.93 +1.77 +0.84
RGNS +1.08 +1.57 +0.49

No RGNS +0.78 +1.97 +1.19

Favoured State -0.16 +0.61 +0.77
RGNS +0.41 +0.79 +0.38

No RGNS -0.72 +0.42 +1.14

All Features -4.60 -4.89 -0.29
RGNS -4.60 -4.34 +0.26

No RGNS -4.59 -5.45 -0.86

it has improved the impact of favoured seed and favoured state selection. Re-
garding favoured seed selection, the impact increase is mostly from ProFTPd
and LightFTP which usually saw an important impact increase from adding
syntax-awareness. BFTPd and PureFTPd meanwhile had a mix of im-
pact changes. The improvement to favoured state selection feature impact
is consistent across all four targets, with some variation across measurments.
Importantly, favoured state selection goes from have a negative impact to code
coverage to a positive impact. This supports our hypothesis that syntax-aware
fuzzing would better engage with the target’s statefullness.

Overall, enabling all state feedback features resulted in a decreased im-
pact of -0.29% after adding syntax-awareness. The individual positive impact
changes of each favoured state and seed selection did not jointly overcome the
decrease in impact resulting from adding basic state feedback. The region
mutation enabled configurations disagree with this conclusion, seeing instead
a small impact increase of +0.26% from adding syntax-awareness, while the
configuration without region mutations saw a larger impact decrease of -0.86%.

87

4.6. Discussion

4.6 Discussion

The motivation for this research was to understand why improvements to
AFLNet’s state feedback features have had limited impact to code coverage
achieved. The hypothesis we tested was that state feedback features have
been ineffective due to syntactically invalid fuzz, unable to reach and engage
with program state. We did this by measuring the impact of state feedback
features in an ablation study, developing a syntax-aware protocol fuzzer based
on AFLNet called AFLNet-Packmute, verifying our implementation and
lastly validating the research.

The ablation study revealed that state feedback overall, on average, re-
duces the coverage achieved by AFLNet. This is driven by the selection of
seeds based on state heuristics vice queue order, which achieves better cover-
age. State modelling aspects of basic state feedback has a small postivie cov-
erage effect. Relative to random selection, the state-informed FAVOR mode
of each state and seed selection have a positive code coverage impact. During
development of our syntax-aware fuzzer AFLNet-Packmute, we found that
exploration has value throughout the entire fuzzing session and that for the
LightFTP target a 3:1 ratio of syntactically valid to random fuzz is opti-
mal. This was implemented as a fixed exploit rate of 75%, a decision made at
the start of each fuzzing round, after a seed is selected. Unlike the existing
syntax-aware AFLNet-based fuzzer, we enforced syntax validity through all
mutations and including the splicing mutation stage.

The verification of AFLNet-Packmute confirmed it produces syntacti-
cally valid fuzz when exploiting and resembles AFLNet when exploring. The
verification phase additionally showed that although adding syntax aware-
ness does reduce the overall fuzz rejected by the server at initial stages, most,
though not all of the now syntactically valid fuzz are rejected due to semantics.
This points to valuable future work to improve the quantity of effective fuzz
through the addition of semantic knowledge. In the validation phase we found,
for FTP targets, that though syntax-awareness improves the effectiveness of
favoured state and seed selection, it was unable to overcome the coverage de-
crease seen from basic state feedback. For targets where state feedback enabled
configs reach the greatest coverage (Exim, BFTPd, OpenSSH, OpenSSL,
Dcmtk, Kamailio, Forked-DAAPd) this research suggests adding syntax-
awareness may allow them to reach even greater maximum coverage - as seen
with BFTPd. This research also suggests syntax-awareness could amplify the
code coverage impact of previously researched alternative AFLNet features
(see 2.4.1), especially improved state selection approaches, which became pos-
itively impactful once syntax-aware.

88

5 Conclusion

Network applications are attractive targets for attackers, making the timely
discovery of vulnerabilities important. One method to uncover potential vul-
nerabilities in applications is fuzzing. Protocol fuzzers are designed to send
fuzz over TCP/IP sockets and manage the structured packets and stateful
connections expected by network targets. AFLNet is the most common tool
recently used as a baseline to extend and evaluate against. Research extend-
ing AFLNet has had difficulty finding important code coverage increases
through alternative state feedback features. Our hypothesis was that syn-
tactically invalid fuzz created by AFLNet hinders the effectiveness of state
feedback features. From this, our research aim was to determine how adding
syntax-awareness in AFLNet’s mutation process changes the code coverage
impact of state feedback features in AFLNet. We achieved this by measur-
ing the change in the effectiveness of state feedback features after adding a
syntax-aware mutation process relative to the current AFLNet process.

Our results demonstrate favoured seed and state selection, as state feed-
back features, become more impactful to code coverage achieved when a
syntax-aware mutation process is used, seeing increases in their impact of
+0.84% and +0.77% respectively. Basic state feedback meanwhile sees a re-
duction in effectiveness, possibly due to fuzz better engaging with the target
program as found in slower target executions speeds. This supports our initial
hypothesis that syntax-aware fuzz would better engage with target stateful-
ness, with favoured state selection now becoming positively impactful for FTP
targets, and favoured seed selection nearly doubling in impact. This also sug-
gests existing works that have proposed alternative state feedback features
in AFLNet, which resulted in modest coverage increases, could see their
effectiveness improved, and that for targets which reach their greatest code
coverage using state feedback could see even further positive effects.

We will list research contributions made by this work, followed by limita-
tions and lastly, future work.

89

5.1. Contributions

5.1 Contributions

The main contribution of this research is demonstrating that syntax-awareness,
when added to the state-of-the-art protocol fuzzer, AFLNet, improves the
effectiveness of two of its state feedback features while worsening the perfor-
mance of basic state feedback. Reaching this contribution has allowed us to
make several smaller contributions along the way:

• An ablation study of AFLNet, complimenting the recently published
ablation study [15], through the addition of theOpenSSL target, consid-
eration for region mutations and breaking state feedback down into three
more granular features. The three state feedback features researched are
basic state feedback, favoured seed selection and favoured state selection;

• A syntax-aware AFLNet variant named AFLNet-Packmute, com-
plimenting the existing ChatAFL syntax-aware fuzzer, with a differ-
ent design and greater syntax constraints to ensure validity throughout
splicing, cloning and insert mutations;

• Demonstrated that the challenges posed by region mutations as currently
implemented in AFLNet are partially overcome through the addition
of syntax-awareness, making them positively impactful to fuzzing per-
formance (for FTP targets);

• Demonstrated that comparing performance changes using a single fuzzer
configuration can lead to incomplete conclusions. Using multiple config-
urations gives a better sense of under what conditions a certain change
will improve fuzzing; and

• Demonstrated, through short verification experiments, that 37% of fuzz
sent by AFLNet to FTP targets are rejected due to syntax or semantics
and that adding syntax-awareness only reduces the rejection rate to just
over 31%, most syntactically valid commands now being rejected due to
semantics.

5.2 Limitations

The most significant limitation of this work was the decision to only implement
syntax-awareness for FTP, which means the results observed may not apply
to other protocols. This decision was made to constrain the time this research
would take to complete. This was partially mitigated by using multiple FTP
targets for validation, which we found behaved differently from one another.

The statistical significance of results was a limitation we did not initially
anticipate. Several of the configurations had similar results, including several
identical branch coverages, meaning the Mann-Whitney U-test did not result

90

5.3. Future Work

in a p-value low enough to reject the null hypothesis that the two sets of
samples came from the same distribution. We mitigated this by modifying
the design to measure feature impact in several different ways. Each of these
measurements had varying levels of statistical significance, though in general
agreed with each other giving us additional confidence there was a performance
difference.

Achieving the aim of this research required implementing syntax-awareness.
During design and development we made decisions which introduced limita-
tions. We conducted a limited study of the exploration-exploitation tradeoff
in the context of syntax-awareness. This means there are almost certainly
better ways to implement syntax-awareness in AFLNet. Our intuition is
that further improved syntax-awareness would amplify our results (more pos-
itive or more negative feature impacts). If fuzz can even better interact with
program state, fuzzing may become slower but the state-aware selection of
seeds and states to fuzz may become more impactful. Another way syntax-
awareness in AFLNet could be further improved is through changes to its
region-mutations. Currently those mutations cause the mutation buffer to
quickly exceed the maximum number of new message AFLNet will accept
from a single fuzz, creating multi-region messages that cause syntactically
invalid fuzz to be introduced.

The real goal of fuzzing research is to improve bug finding ability of fuzzers
which is best done by considering bugs found (the ground truth). Due to
time, we did not de-duplicate and investigate crashes. This was a limitation
of the ablation study and of the validation. Instead, our aim was achieved
through code coverage, a proxy for bug finding ability. Increased code coverage
moderately agrees with increase in bug finding ability, though may not always
agree [14]. Though we used 24 hour experiment durations which exceeds the
recommended minimum 12 hours for best coverage to bug finding agreement,
due to protocol fuzzing’s much slower speed than binary fuzzing 24 hours may
still not be enough. Of the FTP targets, our fuzzing experiments, on median,
only found crashing test cases of BFTPd. A few runs of each PureFTPd
and ProFTPd found crashing test cases.

5.3 Future Work

There is future work related to our research limitations as well as our contri-
butions:

• Expand AFLNet-Packmute to support other protocols;

91

5.3. Future Work

• Further investigate the exploitation-exploration tradeoff as it relates to
applying syntax-awareness to AFLNet’s mutation process. This could
include using the power shedule to distribute fuzzing effort between ex-
ploitation and exploration similar to AFLGo [39];

• Evaluate and improve on AFLNet’s region mutations. We believe they
currently result in wasted stacked mutations due to the replace buffer
mutation occuring too frequently and too large of seeds due to the du-
plicate buffer mutation. Using syntax-knowledge there is potential for
new mutations as well;

• Add semantic knowledge toAFLNet. Even after adding syntax-awareness,
over 30% of messages sent in the first 10 minutes of fuzzing LightFTP
were rejected due to bad semantics (”Please login”). That represents
a large portion of fuzzing effort and, if addressed, would make speed
improvements already made to AFLNet be that much more effective;

• Automate the discovery of optimal AFLNet configurations for a given
target. Our research found the best configuration for a target varies. In
preliminary experiments we found that small details like timeouts can
also be very impactful towards code coverage achieved. One method
might involve many parallel fuzzers of different configurations, which
recursively test different parameters to arrive at an approximate optimal.
As each fuzzer is stopped and restarted, the existing corpus can be kept
and even synced across to other fuzzers to continue progress; and

• Re-evalutate alternate state feedback features made by previous research
using a syntax-aware AFLNet variant.

92

Bibliography

[1] M. Zalewski, “The afl++ fuzzing framework trophies.” AFLplusplus.
Accessed: 24-10-2024. [Online.] Available: https://aflplus.plus/

#trophies.

[2] Google, “Honggfuzz: Security oriented software fuzzer.” Github. Ac-
cessed: 24-10-2024. [Online.] Available: https://github.com/google/

honggfuzz?tab=readme-ov-file#trophies, 2015.

[3] S. Qin, F. Hu, Z. Ma, B. Zhao, T. Yin, and C. Zhang, “NSFuzz: Towards
Efficient and State-Aware Network Service Fuzzing,” ACM Transactions
on Software Engineering and Methodology, vol. 32, pp. 1–26, Nov. 2023.

[4] J. Ba, M. Bohme, Z. Mirzamomen, and A. Roychoudhury, “SGFuzz,” in
Proceedings of the 31st USENIX Security Symposium, (Boston MA USA),
USENIX Security Symposium, Aug. 2022.

[5] V.-T. Pham, M. Bohme, and A. Roychoudhury, “AFLNET: A Greybox
Fuzzer for Network Protocols,” in 2020 IEEE 13th International Con-
ference on Software Testing, Validation and Verification (ICST), (Porto,
Portugal), pp. 460–465, IEEE, Oct. 2020.

[6] R. Meng, M. Mirchev, M. Böhme, and A. Roychoudhury, “Large Lan-
guage Model guided Protocol Fuzzing,” in Proceedings 2024 Network and
Distributed System Security Symposium, (San Diego, CA, USA), Internet
Society, 2024.

[7] J. Robben and M. Vanhoef, “Netfuzzlib: Adding First-Class Fuzzing Sup-
port to Network Protocol Implementations,” in Computer Security – ES-
ORICS 2024 (J. Garcia-Alfaro, R. Kozik, M. Choraś, and S. Katsikas,
eds.), (Cham), pp. 65–84, Springer Nature Switzerland, 2024.

[8] A. Andronidis and C. Cadar, “SnapFuzz: high-throughput fuzzing of
network applications,” in Proceedings of the 31st ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, (Virtual South
Korea), pp. 340–351, ACM, July 2022.

93

https://aflplus.plus/#trophies
https://aflplus.plus/#trophies
https://github.com/google/honggfuzz?tab=readme-ov-file#trophies
https://github.com/google/honggfuzz?tab=readme-ov-file#trophies

Bibliography

[9] J. Li, S. Li, G. Sun, T. Chen, and H. Yu, “SNPSFuzzer: A Fast Greybox
Fuzzer for Stateful Network Protocols Using Snapshots,” IEEE Trans-
actions on Information Forensics and Security, vol. 17, pp. 2673–2687,
2022.

[10] R. Natella, “StateAFL: Greybox Fuzzing for Stateful Network
Servers,” Empirical Software Engineering, vol. 27, p. 191, Dec. 2022.
arXiv:2110.06253 [cs].

[11] D. Liu, V.-T. Pham, G. Ernst, T. Murray, and B. I. Rubinstein, “ State
Selection Algorithms and Their Impact on The Performance of Stateful
Network Protocol Fuzzing ,” in 2022 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), (Los Alami-
tos, CA, USA), pp. 720–730, IEEE Computer Society, Mar. 2022.

[12] L. Yu, S. Yanlong, and Z. Ying, “Stateful protocol fuzzing with statemap-
based reverse state selection,” Aug. 2024. arXiv:2408.06844 [cs].

[13] R. Natella and V.-T. Pham, “ProFuzzBench: a benchmark for stateful
protocol fuzzing,” in Proceedings of the 30th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, (Virtual Denmark),
pp. 662–665, ACM, July 2021.

[14] M. Böhme, L. Szekeres, and J. Metzman, “On the reliability of
coverage-based fuzzer benchmarking,” in Proceedings of the 44th Inter-
national Conference on Software Engineering, (Pittsburgh Pennsylvania),
pp. 1621–1633, ACM, May 2022.

[15] R. Meng, V.-T. Pham, M. Böhme, and A. Roychoudhury, “AFLNet Five
Years Later: On Coverage-Guided Protocol Fuzzing,” IEEE Transactions
on Software Engineering, vol. 51, pp. 960–974, Apr. 2025.

[16] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliabil-
ity of UNIX utilities,” Communications of the ACM, vol. 33, pp. 32–44,
Dec. 1990.

[17] M. Schloegel, N. Bars, N. Schiller, L. Bernhard, T. Scharnowski,
A. Crump, A. Ale-Ebrahim, N. Bissantz, M. Muench, and T. Holz, “SoK:
Prudent Evaluation Practices for Fuzzing,” in 2024 IEEE Symposium on
Security and Privacy (SP), (San Francisco, CA, USA), pp. 1974–1993,
IEEE, May 2024.

[18] M. Zalewski, “American Fuzzy Lop.” lcamtuf.coredump.cx. Accessed:
24-10-2024. [Online.] Available: https://lcamtuf.coredump.cx/afl/

technical_details.txt.

94

https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt

Bibliography

[19] GNU, “Instrumentation Options (Using the GNU Compiler Collection
(GCC)).” gcc.gnu.org. Accessed: 25-10-2024. [Online.] Available: https:
//gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html.

[20] LLVM, “Clang Compiler User Manual; Clang 20.0.0.” clang.llvm.org.
Accessed: 25-10-2024. [Online.] Available: https://clang.llvm.org/

docs/UsersManual.html.

[21] Gitlab, “protocol-fuzzer-ce.” gitlab.com. Accessed: 25-10-2024. [Online.]
Available: https://gitlab.com/gitlab-org/security-products/

protocol-fuzzer-ce.

[22] J. Pereyda, “Boofuzz: A fork and successor of the Sulley Fuzzing Frame-
work.” github.com. Accessed: 25-10-2024. [Online.] Available: https:

//github.com/jtpereyda/boofuzz.

[23] S. Jiang, Y. Zhang, J. Li, H. Yu, L. Luo, and G. Sun, “A Survey of Net-
work Protocol Fuzzing: Model, Techniques and Directions,” Feb. 2024.
arXiv:2402.17394 [cs].

[24] Y. Yu, Z. Chen, S. Gan, and X. Wang, “SGPFuzzer: A State-Driven
Smart Graybox Protocol Fuzzer for Network Protocol Implementations,”
IEEE Access, vol. 8, pp. 198668–198678, 2020.

[25] C. Song, B. Yu, X. Zhou, and Q. Yang, “SPFuzz: A Hierarchical Schedul-
ing Framework for Stateful Network Protocol Fuzzing,” IEEE Access,
vol. 7, pp. 18490–18499, 2019.

[26] Z. Luo, J. Yu, F. Zuo, J. Liu, and Y. Jiang, “Bleem: Packet Sequence
Oriented Fuzzing for Protocol Implementations,” USENIX Security Sym-
posium, Aug. 2023.

[27] V.-T. Pham, “AFLNwe.” github.com. Accessed: 28-10-2024. [Online.]
Available: https://github.com/thuanpv/aflnwe.

[28] R. Natella and V.-T. Pham, “ProFuzzBench - A Benchmark for State-
ful Protocol Fuzzing.” github.com. Accessed: 28-10-2024. [Online.]
Available: https://github.com/profuzzbench/profuzzbench/tree/

master.

[29] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating Fuzz
Testing,” in Proceedings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’18, (New York, NY, USA),
pp. 2123–2138, Association for Computing Machinery, Oct. 2018.

[30] GNU, “gcovr Frequently Asked Questions.” gcovr.com. Accessed: 8-07-
2025. [Online.] Available: https://gcovr.com/en/stable/faq.html.

95

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://clang.llvm.org/docs/UsersManual.html
https://clang.llvm.org/docs/UsersManual.html
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://github.com/jtpereyda/boofuzz
https://github.com/jtpereyda/boofuzz
https://github.com/thuanpv/aflnwe
https://github.com/profuzzbench/profuzzbench/tree/master
https://github.com/profuzzbench/profuzzbench/tree/master
https://gcovr.com/en/stable/faq.html

Bibliography

[31] H. B. Mann and D. R. Whitney, “On a Test of Whether one of Two
Random Variables is Stochastically Larger than the Other,” The Annals
of Mathematical Statistics, vol. 18, no. 1, pp. 50–60, 1947. Publisher:
Institute of Mathematical Statistics.

[32] A. Vargha and H. D. Delaney, “A Critique and Improvement of the ”CL”
Common Language Effect Size Statistics of McGraw and Wong,” Jour-
nal of Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101–132,
2000. Publisher: [American Educational Research Association, Sage Pub-
lications, Inc., American Statistical Association].

[33] Y. Wei, B. Meyer, and M. Oriol, “Is Branch Coverage a Good Measure
of Testing Effectiveness?,” in Empirical Software Engineering and Veri-
fication: International Summer Schools, LASER 2008-2010, Elba Island,
Italy, Revised Tutorial Lectures (B. Meyer and M. Nordio, eds.), pp. 194–
212, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[34] M. Böhme and B. Falk, “Fuzzing: on the exponential cost of vulnerability
discovery,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, (Virtual Event USA), pp. 713–724, ACM, Nov.
2020.

[35] Seladb, “PcapPlusPlus: a multiplatform C++ library for capturing, pars-
ing and crafting of network packets.” github.com. Accessed: 18-11-2024.
[Online.] Available: https://github.com/seladb/PcapPlusPlus.

[36] T. pandas development team, “pandas: Python data analysis library.”
pandas.pydata.org. Accessed: 15-06-2025. [Online.] Available: https:

//pandas.pydata.org/.

[37] N. Nethercote and J. Seward, “How to shadow every byte of memory
used by a program,” in Proceedings of the 3rd international conference
on Virtual execution environments, (San Diego California USA), pp. 65–
74, ACM, June 2007.

[38] O. Berger-Tal, J. Nathan, E. Meron, and D. Saltz, “The Exploration-
Exploitation Dilemma: A Multidisciplinary Framework,” PLoS ONE,
vol. 9, p. e95693, Apr. 2014.

[39] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
Greybox Fuzzing,” in Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, (Dallas Texas USA),
pp. 2329–2344, ACM, Oct. 2017.

96

https://github.com/seladb/PcapPlusPlus
https://pandas.pydata.org/
https://pandas.pydata.org/

Appendices

97

A Syntax-Awareness Coverage
Value

This appendix investigates two things; what is the coverage value of adding
syntax awareness to AFLNet and how AFLNet-Packmute compares to
ChatAFL. ChatAFL’s authors find syntax-aware mutations consistently in-
crease coverage achieved over all targets tested; however this research makes
a more nuanced conclusion.

A.1 Coverage value of syntax-awareness in
AFLNet

By how much does adding syntax-awareness to AFLNet’s mutation process
increase the median branch coverage of a run? That is the question we consider
here, limiting ourselves to FTP targets due to the limitation of AFLNet-
Packmute. Across all configurations a fixed exploit rate of 75% is used.
Table A.1 shows the percent coverage improvement for each of the four FTP
targets between AFLNet (NET) and AFLNet-Packmute (PM) for each
fuzzer configuration. Bolded coverage values show the largest median coverage
value for that target. For three targets, the addition of syntax-awareness
increases the largest median branch coverage achieved by any configuration;
2.5 branches for LightFTP (+0.70%), 1.5 branches for BFTPd (+0.31%),
and 66 branches for PureFTPd (+4.78%). ProFTPd meanwhile saw a
decrease of -0.43% after adding syntax-awareness. This decrease is not a result
of fewer executions; in fact, AFLNet-Packmute had 0.29 executions per
second more thanAFLNet. It may be that ProFTPd has a different optimal
exploit rate, benefitting more from exploration than LightFTP. Although
we performed ten runs, there is the chance a few lucky runs in the AFLNet
BASELINE resulted in a higher median value. In preliminary experimentation
repeating experiments once resulted in two sets of 10 runs with feature impacts

A-1

A.1. Coverage value of syntax-awareness in AFLNet

doubling due to two very good runs. This is unlikely to be the case here though
because ProFTPd sees a coverage decrease across many configurations.

If we limit ourselves to comparing a single fuzzer configuration we might
make very different conclusions. STFL-FULL led to decreases in 3/4 tar-
gets once syntax-awareness was added, while STFL-FVR-SD-RGNS led to
increases across all 4 targets. Averaged across all configurations, three targets
saw a coverage increase, while ProFTPd saw a small decrease from adding
syntax awareness.

Table A.1: AFLNet (NET) v AFLNet-Packmute (PM)

Config NET PM %∆ NET PM %∆

LightFTP BFTPd

BASELINE 360 362.5 0.69 484.5 481.0 -0.72
BASELINE-RGNS 347 354 2.02 481 485.0 0.83
STFL-RND 346.5 348.5 0.58 484.5 482.5 -0.41
STFL-RND-RGNS 346 350.5 1.30 476.5 484.0 1.57
STFL-FVR-SD 347.5 358 3.02 485 486.5 0.31
STFL-FVR-SD-RGNS 346 348.5 0.72 482 486.5 0.93
STFL-FVR-ST 343.5 345.5 0.58 483.5 487.0 0.72
STFL-FVR-ST-RGNS 344 348.5 1.31 476.5 482.5 1.26
STFL-FULL 348.5 358 2.73 485.5 482.5 -0.62
STFL-FULL-RGNS 344.5 354.5 2.90 485 481.5 -0.72

Avg 1.59 Avg 0.32

ProFTPd PureFTPd

BASELINE 5347.5 5324.5 -0.43 1244.5 1290.0 3.66
BASELINE-RGNS 5226.5 4788.0 -8.39 1214 1304.0 7.41
STFL-RND 5036 5297.5 5.19 1132.5 1075.5 -5.03
STFL-RND-RGNS 5042.5 4971.0 -1.42 989.5 1041.5 5.26
STFL-FVR-SD 5096 5094.5 -0.03 1150 1080.0 -6.09
STFL-FVR-SD-RGNS 4950.5 5088.0 2.78 1046 1108.5 5.98
STFL-FVR-ST 4944.5 4745.5 -4.02 1133 1101.5 -2.78
STFL-FVR-ST-RGNS 4939.5 5021.5 1.66 1038.5 1098.5 5.78
STFL-FULL 4976 4909.0 -1.35 1139.5 1121.5 -1.58
STFL-FULL-RGNS 4948.5 5115.0 3.36 1054 1130.5 7.26

Avg -0.26 Avg 1.99

A-2

A.2. Comparison to ChatAFL

A.2 Comparison to ChatAFL

The main thesis document has discussed at length about the differences be-
tween this work and the syntax-aware AFLNet variant, ChatAFL [6]. The
name of their fuzzer which only adds syntax-aware mutations to AFLNet is
named ChatAFL-CL1: https://github.com/ChatAFLndss/ChatAFL.git.
They report average branch coverage achieved by 10x24 hour experiments
against two FTP targets using ProFuzzBench; ProFTPd and PureFTPd.
Consulting their repository, they use a STFL-FULL configuration, possibly
with a timeout of 5000+ ms as that is the default of their script. Though
ChatAFL made changes to the likelihood and implementation of certain
mutations, these are all found in the region mutations which STFL-FULL
omits. ChatAFL uses target versions 3-4 years newer than included in Pro-
FuzzBench which we expect will impact results slightly.

Table A.2 shows the branch coverage results for each fuzzer against the two
aforementioned FTP targets. The baseline for each is the coverage achieved
by AFLNet. For AFLNet-Packmute we include both the STFL-FULL
and STFL-FULL-RGNS configurations. Comparing STFL-FULL, AFLNet-
Packmute sees a reduction in coverage, whileChatAFL-CL1 sees important
coverage increases of +3.63% for ProFTPd and +6.67% for PureFTPd.
These coverage increases are aligned with our results for the STFL-FULL-
RNGS configuration, achieving +3.36% coverage increase for ProFTPd and
+7.26% coverage increase for PureFTPd.

Table A.2: AFLNet-Packmute v ChatAFL

Target
AFLNet-Packmute (PM)

AFLNet PM %∆ Speed-up

STFL-FULL
ProFTPd 4976.0 4909.0 -1.35 -
PureFTPd 1139.5 1121.5 -1.58 -

STFL-FULL-RGNS
ProFTPd 4948.5 5115.0 +3.36 3.57×
PureFTPd 1054.0 1130.5 +7.26 2.71×

Target
ChatAFL-CL1 (CHAT) STFL-FULL

AFLNet CHAT %∆ Speed-up

ProFTPd 4763.00 4935.90 +3.63 2.45×
PureFTPd 1056.30 1126.76 +6.67 1.34×

A-3

https://github.com/ChatAFLndss/ChatAFL.git

A.2. Comparison to ChatAFL

These results show the differences in design decisions do effect coverage
results. ChatAFL used a fixed exploit rate of 50% with the decision placed
prior to each havoc stage, while AFLNet-Packmute makes a single exploit
decision once per seed with an exploit rate of 75%. AFLNet-Packmute
also modifies the splicing stage to be syntax-aware as well. This provides
further support that perhaps ProFTPd benefits from more exploration, as
mentioned in Section A.1 where we noted syntax-awareness on average reduced
code coverage achieved for that target. Perhaps ChatAFL-CL1 could see even
greater coverage increases using a STFL-FULL-RGNS configuration.

A-4

B Region Mutations

This appendix investigates the code coverage impact of region mutations and
how syntax-awareness changes that impact. Though not a state feedback
feature, the data is on hand from the ablation study and no previous research
has looked at the contribution towards code coverage in AFLNet.

Region mutations make a lot of sense, being the only mechanism to re-
arrange and modify the message sequence overall. However, we believe as
implemented they are partially counterproductive and lead to too large of
seeds.

• Replace buffer (mutation case 17): This mutation replaces the entirety
of the current mutation buffer with a random region from a random
seed. On average this mutation is applied 3 times per fuzz created;
1/21 chance of occurring where there is on average 64 stacked mutations
applied. This mutation essentially resets the stacked mutations back to
zero using a new buffer. Stacked mutations have been wasted.

• Duplicate buffer (mutation case 21): This mutation doubles the entire
mutation buffer, which can lead to massive fuzz sizes in terms of number
of messages if applied multiple times to a single fuzz.

Relevant future work would be to re-design region mutations. Perhaps
having a separate stacked mutation loop for region mutations, selecting them
less frequently, or for only some proportion of total havoc stages.

RQ A - What is the code coverage impact of region mutations?
Five fuzzer configurations per target added region mutations in the ablation
study. These are shown in Figure 3.1 as the boxes titled ”+RGNS”. In to-
tal there are 65 experiments (13 targets times 5 region configs). Across all
configurations, enabling regions mutations had an average impact of -0.001%,
however with a standard deviation of 4.18, and 25 experiments together seeing
a mean speed-up of 3.20×, there was significant variation. Table B.1 shows
the mean percent change in branch coverage from adding region mutations
(impact) along with the standard deviation and mean coverage speed-up fac-

B-1

tor. We see that region mutations can lead to important speed-up factors
when they do help, though it is for a limited number of targets. When region
mutations are added to the STFL-FVR-ST configuration, we see a positive
mean impact, however this is skewed by two large positive results. Two targets
consistently benefitted in a statistically significant way from region mutations;
Kamailio and Forked-DAAPd. One target consistently dropped in perfor-
mance in a statistically significant way when region mutations were enabled;
PureFTPd.

Recall region mutations introduce new messages into the fuzz or replace
the message being mutated. A positive consequence is a greater number of
message orders and combinations are attempted. The traditional AFL mu-
tations would not neatly add messages from other seeds. A negative result is
much larger seeds, greatly increasing mutation space. AFL was designed on
the premise of small changes to small seeds, which progressively reach deeper
application logic. If seeds keep getting larger, it becomes more unlikely the
specific bytes that we need to mutate in a specific way to get deeper will be
found.

Table B.1: Code coverage impact of region mutations

Config+Regions
Impact Speed-up

(# targets)Mean σ

BASELINE -0.18 2.34 2.83 (3)
STFL-RND -0.17 4.58 2.59 (7)
STFL-FVR-SD -0.06 3.84 3.74 (4)
STFL-FVR-ST 0.59 4.47 3.99 (6)
STFL-FULL -0.18 5.62 2.91 (5)

RQ B - How has adding syntax-awareness changed the code cov-
erage impact of region mutations? This question can only be consid-
ered for the 4 FTP targets, a limitation of AFLNet-Packmute. We expect
syntax-awareness to improve the code coverage impact of region mutations,
or at least lessen the coverage reduction it causes. Why? Syntax-awareness
reduces the mutation space available to the fuzzer, mitigating some of the big-
seed problem discussed in RQ A. These results use a 75% exploit rate as was
determined optimal for a BASELINE configuration against the LightFTP
target. Table B.2 shows the mean impact of adding region awareness to the
listed configurations for each AFLNet and AFLNet-packmute. Lastly, it
shows the change in impact. For FTP targets, the addition of region mutations
to AFLNet configurations, on average, reduces the median code coverage

B-2

achieved with an overall average of -2.77% coverage change. For AFLNet-
Packmute however, region mutations lead to positive coverage impact when
added to STFL-RND, STFL-FVR-SD, STF-FVR-ST and STFL-FULL con-
figurations with an overall average of +0.74%. Adding syntax-awareness in-
creased the coverage impact of region mutations for every configuration, from
+2.03% up to +4.60% median coverage improvement.

Table B.2: Change in code coverage impact of region mutations from adding
syntax-awareness (FTP Targets only)

Config+
Regions

AFLNet AFLNet-Packmute
Impact

∆Impact Speed-up
(# targets)

Impact Speed-up
(# targets)Mean σ Mean σ

BASELINE -2.26 1.19 - -0.23 1.57 1.85 (2) +2.03
STFL-RND -3.57 6.09 1.08 (1) 1.03 3.96 3.16 (3) +4.60
STFL-FVR-SD -3.24 4.02 - 0.58 2.46 2.32 (2) +3.82
STFL-FVR-ST -2.43 4.00 1.23 (1) 1.38 3.05 2.74 (2) +3.81
STFL-FULL -2.33 3.48 - 0.95 2.28 2.81 (2) +3.28

B-3

	Acknowledgements
	Abstract
	Résumé
	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation
	Statement of Deficiency
	Aim
	Research Activities
	Results
	Organization

	Background
	Binary Fuzzing
	AFL

	Protocol Fuzzing
	AFLNet
	Profuzzbench

	Fuzzer Evaluation
	Related Work
	Alternative State Feedback
	Value of State Feedback
	Syntax-awareness in AFLNet

	Methodology and Design
	Methodology
	AFLNet Ablation Study
	AFLNet-Packmute
	Fuzzing Loop Syntax-Awareness
	Mutation Syntax-Awareness
	Structural Design
	Behavioural Design

	Verification
	Analysis Script Verification
	AFLNet-Packmute Verification

	Validation

	Results
	Experimental Design
	Ablation Study
	Coverage Results
	State feedback feature impact
	Discussion

	AFLNet-Packmute
	Development
	Syntax-awareness

	Verification
	Validation
	Coverage Results
	State Feedback Impact
	Change in state feedback feature impact

	Discussion

	Conclusion
	Contributions
	Limitations
	Future Work

	Bibliography
	Appendices
	Syntax-Awareness Coverage Value
	Coverage value of syntax-awareness in AFLNet
	Comparison to ChatAFL

	Region Mutations

