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ABSTRACT 

Michele Alexandra Parisien. M.Sc., Environmental Sciences. Royal Military College of Canada. 

November, 2014. Effect of cadmium bioavailability on phytoextraction feasibility and ecological risk in a 

compost-based soil. Supervisors: Dr. Barbara A. Zeeb and Dr. Allison Rutter.  

 

The effect of cadmium (Cd) bioavailability on phytoextraction feasibility and ecological risk was 

investigated in soil amended with municipal solid waste (MSW) and sewage sludge (SS) compost at the 

Peterborough Gun Club in Peterborough, Canada. Plant uptake was low due to sorption of Cd to stable 

soil fractions, and it was therefore determined that phytoextraction was not a feasible method of 

remediating these MSW/SS compost-based soils. Low plant bioavailability limited exposure of higher 

order receptors to Cd, and an ecological risk assessment (ERA) indicated no potential for risk to any of 

the seven ecological receptors evaluated at this site. For comparison, risk was also characterized at a 

nearby PCB-contaminated site using the same seven receptors. Previous research had shown that 

phytoextraction would be an effective method of remediating this PCB site due to high plant uptake of the 

contaminant, and an ERA revealed that five of the seven receptors evaluated were potentially at risk of 

experiencing adverse health effects from PCBs. As ERAs characterize risk under present environmental 

conditions, the long-term potential for biochar to sorb Cd and limit its bioavailability was evaluated at the 

Peterborough site. Trends indicated decreasing Cd bioavailability in biochar-amended soil relative to the 

un-amended control, and this coincided with a significant decrease in organic matter content in the control 

soil. The results of this thesis emphasize the influence of contaminant bioavailability on phytoextraction 

feasibility and ecological risk, and demonstrate the potential for biochar to limit long-term Cd 

bioavailability and risk in MSW/SS compost-amended soil. 

 

Key Terms: Cadmium, municipal solid waste, sewage sludge, compost, bioavailability, phytoextraction, 

ecological risk, biochar. 
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RÉSUMÉ 

Michele Alexandra Parisien. M.Sc., sciences de l’environnement. Effet de la biodisponibilité de cadmium 

sur la faisabilité d’utiliser la phytoextraction ainsi que les risques écologiques associés dans les sols à base 

de compost. Le collège militaire royal du Canada. Novembre, 2014. Directeurs : Dr. Barbara A. Zeeb et 

Dr. Allison Rutter. 

 

L'effet de la biodisponibilité de cadmium (Cd) sur la faisabilité d’utiliser la phytoextraction  ainsi 

que les risques écologiques associés ont été étudiés dans les sols ou des déchets municipaux solides 

(DMS) et des boues d'épuration (BE) compostées ont été ajoutés au Club de Tir Peterborough (CTP) à 

Peterborough, Canada. La phytoextraction de Cd par les plantes était faible grâce à la sorption de Cd sur 

les fractions de sol stables et la phytoextraction par les plantes n'est donc pas une méthode possible pour 

rétablir les sols contaminés avec le Cd par l'application de compost produit avec DMS/BE. Cependant, la 

faible phytoextraction de Cd par les plantes réduit l’exposition du Cd pour les récepteurs écologiques des 

niveaux trophiques plus élevés sur ce site, et une évaluation des risques écologiques a indiqué qu’il n’y a 

aucun potentiel de risque. Pour comparaison, les risques écologiques ont aussi été caractérisés sur un site 

contaminé par des biphényles polychlorés (BPC) en utilisant les mêmes sept récepteurs. Des recherches 

antérieures avaient montré que la phytoextraction serait une méthode efficace de réhabiliter ce site à cause 

de la biodisponibilité des BPC élevée, et une évaluation des risques écologiques a indiqué qu'il existe le 

potentiel de risque à cinq des sept récepteurs évaluées. Étant donné que les évaluations des risques 

écologiques caractérisent le risque dans les conditions environnementales actuelles, cette étude a permis 

d’évaluer le potentiel à long terme pour le biocharbon à adsorber le Cd au CTP, et la limitation de sa 

biodisponibilité a également été évaluée. Les tendances indiquent une diminution de biodisponibilité de 

Cd dans les sols avec le biocharbon par rapport aux sols de contrôle (sols sans biocharbon) ce qui a 

coïncidé avec une diminution significative de la teneur en matière organique dans le sol de contrôle et non 

dans le sol avec biocharbon. Les résultats de cette thèse soulignent l'influence de la biodisponibilité des 

contaminants sur l'efficacité des plantes à absorber le Cd ainsi que les risques écologiques et démontrent 

le potentiel pour le biocharbon de limiter la biodisponibilité de Cd à long terme et les risques dans les sols 

avec DMS/BE compostés. 

 

Mots clés: cadmium, déchets municipaux solides, boues d'épuration, compost, biodisponibilité, 

phytoextraction, risque écologique, biocharbon. 
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1. GENERAL INTRODUCTION 

 Cadmium (Cd) is a xenobiotic metal that causes adverse health effects in humans, plants, and 

animals. Cadmium can mimic essential nutrients such as iron, calcium, and magnesium (Adriano, 2001; 

Bridges and Zalups, 2005), and its high water solubility allows it to cross biological membranes and 

interfere with cell function (Tran and Popova, 2013; Stohs et al., 2001). Cadmium may be accumulated 

by low trophic level organisms and transferred up the food chain (Hunter, 1982). Exposure to Cd can lead 

to ecological and human health risks including low biomass, chlorosis, and necrosis in plants (Cosio et 

al., 2006; Cunha et al., 2008), and bone, kidney, and liver disease in humans and other animals (Klaassen 

et al., 2009; Singh, 2005). 

Although Cd occurs naturally in the environment, anthropogenic loading of Cd to soils has 

increased considerably over the past century due to its use by industry and its many consumer 

applications (Kabata-Pendias and Mukherjee, 2007; Hutton, 1983). Improper disposal of Cd-containing 

products and runoff of Cd from roads and fields cause Cd to accumulate in municipal solid waste (MSW) 

and sewage sludge (SS) (Dean and Suess, 1985). Composted MSW/SS is widely applied to degraded soils 

to improve soil quality due to its high organic matter and nutrient contents, but amendment with MSW/SS 

compost can also result in soil Cd concentrations that exceed the guideline of 1.2 gg
-1

 Cd set by the 

Ontario Ministry of the Environment (MOE) (MOE, 2011). As Cd does not degrade, it persists for long 

periods of time in Cd-contaminated soils (Kabata-Pendias, 2000) such as those amended with MSW/SS 

compost.  

Common methods of remediating Cd-contaminated soil include excavation and landfilling, 

incineration, soil washing, solidification/stabilization, and vitrification (Monferrán and Wunderlin, 2013; 

Khan et al., 2004; Kabata-Pendias, 2000). Although effective, these methods can negatively affect soil 

quality, result in soil destruction, or limit future land use. There is therefore a demand for environmentally 

friendly remediation technologies that maintain soil integrity throughout the remedial process. 

Phytoextraction is one such technology, as it uses vascular plants in-situ to extract soil 

contaminants into plant roots and translocate them to the shoots, which are harvested and disposed of 

(Salt et al., 1998; Cunningham and Ow, 1996). Research has shown that several phytoextractors have the 

ability to extract significant amounts of Cd from contaminated soil and accumulate them in their shoots 

(Li et al., 2012; Liu et al., 2004; Schwartz et al., 2003; Ebbs et al. 1997). Phytoextraction relies on 

contaminant mobility and bioavailability (Lasat, 2000), and therefore the successful implementation of 

phytoextraction requires an understanding of bioavailability and the factors that affect it. Contaminant 

speciation, soil properties, and other environmental conditions can impact the availability of a 

contaminant in soil and have a positive or negative impact on phytoextraction success (Kirkham, 2006; 

He and Singh, 1993; Haghiri, 1974). The results of studies examining plant uptake of Cd from MSW/SS 

compost-amended soils are conflicting, with some reporting low Cd bioavailability (Shuman et al., 2002; 

Wen et al., 2002; Sims and Kline, 1991) and others reporting high Cd bioavailability (Kaschl et al., 2002; 

Simeoni et al., 1984). To date, there are no studies investigating the use of phytoextraction to remediate 

soil contaminated with Cd from the application of MSW/SS compost. 

 Ecological risk assessment (ERA) is a useful tool that can be used to estimate the potential for 

risk associated with phytoextraction. Phytoextraction results in high contaminant concentrations in the 

aboveground plant tissue, and this might increase the exposure of plant-eating receptors to Cd (Angle and 

Linacre, 2005). An ERA can be used to estimate the potential risk to receptors from phytoextraction. If 

contaminant bioavailability is too low for phytoextraction to be feasible, the exposure of receptors to soil 

contaminants might be low enough to eliminate the potential health risks. In this case, remediation might 

cause more harm than good, and ERA can be used to determine whether remediation is necessary.  
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 Another environmentally-friendly method of remediating Cd-contaminated soil is to immobilize 

it in the soil matrix with biochar. Biochar is the carbon-rich product of biomass pyrolysis, and it has a 

high sorption capacity for cations such as Cd
2+

. Its addition to soil reduces the water-solubility of Cd in 

soils (Park et al., 2011b) and significantly reduces Cd uptake by plants (Bian et al., 2014; Suppadit et al., 

2012; Beesley and Marmiroli, 2011; Cui et al., 2011). Because it is a stable form of organic matter that is 

estimated to persist in soils for several thousands of years (Spokas, 2010; Zimmerman, 2010), biochar 

might limit Cd bioavailability over the long-term. In addition, its sorption capacity for cations increases as 

it ages in soil due to the slow oxidation of its surface (Liang et al., 2006), and therefore Cd bioavailability 

in soil should decrease with time as biochar ages. However, further research is required to ascertain the 

long-term effect of biochar on Cd bioavailability. 

This M.Sc. thesis explores the relationship between contaminant bioavailability, phytoextraction, 

and ecological risk in an organic matter-rich soil contaminated with Cd from the application of MSW/SS 

compost at a site in Peterborough, Ontario. Chapter two provides a literature review of Cd toxicity and 

bioavailability in the environment, Cd phytoextraction and stabilization with biochar, and the process of 

conducting a preliminary quantitative ecological risk assessment (PQRA).  In chapter three, the feasibility 

of using phytoextraction with native and naturalized plant species to remediate Cd-contaminated soil at 

the Peterborough site is evaluated. This chapter also includes the results of a Cd sequential extraction 

study completed for soil at the site with a discussion of its implications for Cd bioavailability to plants. In 

chapter four, the potential for risk to wildlife receptors from Cd phytoextraction at the PGC was 

calculated using a PQRA. For comparison, the ecological risk from phytoextraction was also calculated at 

a PCB-contaminated site located 45 km away in Lindsay, Ontario, where previous studies had 

demonstrated high PCB bioavailability and effective phytoextraction. Risk was calculated at these sites 

using the same risk calculations and receptors, and the same kind of site-specific data. In chapter five, 

organic matter breakdown and Cd fractionation during the ageing process of soil amended with MSW/SS 

compost is explored, and the long-term effects of biochar on these factors is examined. Chapter 6 includes 

a discussion of the major findings and conclusions of this thesis as well as directions for future research. 

Finally, raw data and quality assurance and quality control results are included in appendices A-E. 
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2. LITERATURE REVIEW 

 

2.1  CADMIUM IN THE ENVIRONMENT 

Cadmium (Cd) is a toxic metal with no known biological function. In its natural form, Cd is 

usually found associated with zinc (Zn) in parent rock (Hutton, 1983), and is redistributed throughout the 

environment via volcanic eruptions, forest fires, and dust storms (Naidu et al., 1997). When Zn ores are 

mined, smelted, and refined, Cd is recovered as a by-product and is used in the production of nickel (Ni)-

cadmium batteries, pigments, alloys, and stabilizers for PVC plastics (Adriano, 2001; Mulligan et al., 

2001). The production and disposal of these products has led to anthropogenic loading of Cd to the 

environment, particularly via emissions from industry, runoff from roads and fields, and dumping of Cd-

containing liquids, which cause Cd to wash into water treatment systems and accumulate in sewage 

sludge (Hutton, 1983). 

Accumulation and redistribution of Cd via sewage sludge is of particular concern in Canada, as 

Canada produces up to 2.5 million wet tons of sewage sludge annually (CCME, 2012). Disposal of this 

waste is costly (US EPA, 2003), and this financial burden has led to a push towards the land application 

of composted sewage sludge as an alternative to disposal (Pascual et al., 2000). Sewage sludge compost is 

high in organic matter (OM) and improves soil properties such as water holding capacity, soil aeration, 

and nutrient content (Aggelides and Londra, 2000), and its application to soil significantly increases plant 

biomass (Indoria et al., 2013). Sewage sludge can also contain high concentrations of toxic metals such as 

Cd (Breslin, 1999), and though regulations exist to control the allowable concentrations of toxic 

substances in sewage sludge composts, metal concentrations in soil can nonetheless increase with 

repeated application (Hinesly et al., 1984) and cause adverse health effects in humans, plants, and 

animals.  

 

2.2  CADMIUM TOXICITY 

Plants are primarily exposed to Cd via uptake from the soil into the roots, while animal exposure 

occurs primarily through ingestion of Cd-contaminated soil, plants, and animals. Cadmium has a 

chemical structure resembling that of essential nutrients including Zn, Ca, and Fe, allowing it to compete 

with these metals for cell uptake in a process called ‘ionic and molecular mimicry’ (Adriano, 2001; 

Bridges and Zalups, 2005).  

 

2.2.1  Cadmium Toxicity to Plants 

Cadmium induces toxic effects in plants by disrupting plant cell homeostasis and inhibiting the 

antioxidant response, resulting in increased concentrations of reactive oxygen species (ROS) (Tran and 

Popova, 2013). Reactive oxygen species cause lipid peroxidation (Mohamed et al., 2012; Romero-Puertas 

et al., 2004; Chaoui et al., 1997) that disrupts lipid membrane function (Fodor et al., 1995).  

Visible symptoms of Cd toxicity in plants include chlorosis, necrosis, defoliation, and reduced 

biomass (Cosio et al., 2006; Cunha et al., 2008). The ability of plants to withstand these toxic effects is 

species-specific, and though some hyperaccumulators such as Thlaspi caerulescens (alpine pennycress) 

can accumulate high Cd concentrations (>1000 gg
-1

; Yanai et al., 2006) without exhibiting toxicity 



 

4 

 

symptoms, most species experience adverse health effects at much lower concentrations (<55 gg
-1

; 

Khan and Frankland, 1983). 

 

2.2.2  Cadmium Toxicity to Animals 

Cadmium interferes with the antioxidant response in animals (Stohs et al., 2001), increasing the 

ROS abundance and the oxidation of lipids and DNA (Wang et al., 2004; Bagchi et al., 1996). When 

animal cells are exposed to chronic, low levels of Cd, the production of metallothionein (MT; a low 

molecular weight protein) is up-regulated to mediate Cd toxicity (Park et al., 2001). Metallothionein 

binds Cd, and the inactive Cd-MT complex is transported to the kidney where it is filtered and excreted 

(Wolff et al., 2006; Horner and Smith, 1975). When animal cells are exposed to acute, high levels of Cd, 

however, the amount of pre-synthesized MT is insufficient to prevent Cd from exerting toxic effects 

(Squibb et al., 1976). Acute Cd toxicity primarily targets the liver and causes hepatotoxicity (Klaassen et 

al., 2009). 

Although the adverse effects of Cd on human health have been studied for over 150 years 

(Nordberg, 2009), widespread concern over Cd in the environment was only raised following a mass Cd 

poisoning in the Jinzu river basin of Japan in the 1940s, when people consuming rice contaminated with 

Cd from upstream industrial activity developed symptoms of severe Cd toxicity (Singh, 2005). This 

disease, now known as itai-itai (“ouch-ouch”) disease, is caused by chronic Cd exposure resulting in 

bone, kidney, and liver diseases (Singh, 2005). As a result of this incident, much work has been done to 

study Cd loading to the environment, implement guidelines for safe Cd concentrations in soil, and 

develop cost-effective and environmentally friendly methods of remediating soil contaminated with Cd.  

 

2.2  REMEDIATION 

2.2.1  Phytoextraction 

Phytoextraction involves the uptake of contaminants into plant roots, and the subsequent 

translocation of those contaminants into the above ground part of the plant (Salt et al., 1998). 

Phytoextraction is achieved by planting successive crops of a high biomass, fast-growing plant species 

with expansive root systems that can tolerate high concentrations of a contaminant in soil and accumulate 

it in their shoots (Garbisu and Alkorta, 2001). Shoots are harvested and removed from the site, and 

usually undergo a volume and weight reduction step prior to disposal (Salt et al., 1998).  This step is 

accomplished by ashing or composting to reduce the mass and volume of the waste product, which is then 

either incinerated or directly disposed of in a landfill (Sas-Nowosielska et al., 2004). Theoretically, 

phytoextraction is an ideal form of remediation, as it is an in-situ, low-cost, aesthetically pleasing, and 

environmentally friendly way to clean up contaminated sites. 

Phytoextraction of metals such as Cd has been well-studied, and several plant species have 

demonstrated the ability to extract Cd into their shoots (Jun and Ling, 2012; Li et al., 2012; Liu et al., 

2004; Baker et al., 2000; Ebbs et al., 1997). The two qualities used to measure a plant’s phytoextraction 

effectiveness are its bioaccumulation factor (BAF) and translocation factor (TF) (Fayiga et al., 2004). The 

BAF is the ratio of the Cd concentration of the plant to that of the soil, and indicates a plant’s ability to 

extract contaminants from soil (Ji et al., 2011). In most cases, a BAF >> 1 is required for effective 

phytoextraction (Krämer, 2005; McGrath and Zhao, 2003). The TF is the ratio of the Cd concentration of 

the shoot to that of the root, and demonstrates the ability of a plant to translocate Cd to the aboveground 
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portion of its tissue; the higher the TF the better, as the aboveground biomass is the portion that is 

removed from the site (Ji et al., 2011). 

Cadmium phytoremediation works best in moderately contaminated soils (~5 gg
-1

 Cd) (Milan et 

al. 2012; Vysloužilová et al., 2003), as phytoextractors growing in highly contaminated soil often display 

signs of plant toxicity including chlorosis, necrosis, stunted growth, and/or wilting (Ghnaya et al., 2007). 

A number of laboratory, greenhouse, and field-scale studies have indicated the potential of certain plant 

species to extract Cd. Thlaspi caerulescens is a particularly efficient Cd phytoextractor (Schwartz et al., 

2003), and its ability to accumulate high concentrations of Cd in its tissue (>100 gg
-1

) classifies it as a 

Cd hyperaccumulator (Baker et al., 2000). There are few hyperaccumulators of Cd; the only ones 

identified to date include T. caerulescens, Viola baoshanensis (violet), and possibly Amaranthus 

hypochondriacus (Prince-of-Whales feather) (Li et al., 2012; Liu et al., 2004; Baker et al., 2000). 

However, hyperaccumulation alone is insufficient for effective phytoextraction; a high biomass yield is 

also required (McGrath and Zhao, 2003), and in some cases its importance can exceed that of a plant’s 

accumulation capacity. In a study by Ebbs et al. (1997), Brassica juncea (Indian mustard, a high biomass, 

moderate Cd-accumulator) was more effective than T. caerulescens (a low biomass, high Cd-

accumulator) in removing Cd and Zn from sewage sludge-amended soil. 

 

2.2.1.1  Soil Properties Affecting Cadmium Phytoavailability 

Successful phytoextraction requires Cd to be phytoavailable (Lasat, 2000), meaning that in order 

to be extracted, Cd must be present (or have the potential to be present) in the soil solution, as it is from 

here that plants assimilate nutrients and minerals (Kashem and Singh, 2001; Naidu et al., 1997; Xian, 

1989). The speciation of Cd in soil is largely controlled by soil properties and environmental conditions.  

 

Cadmium Speciation 

Cadmium is predominantly present in the soil solution as the free divalent cation, Cd
2+

 (Alloway, 

2013). Cadmium (II) can be retained in solution or sorbed to the solid phase, with major sorbents being 

organic matter particulates, silicate clay minerals, and Fe and Mn oxides (Naidu et al., 1997; Zachara et 

al., 1992). The relative importance of these sorbents varies with their abundance in soil. Cadmium (II) can 

be bound to these sorbents via inner-sphere (specific) adsorption (Sparks, 2003), which  occurs when Cd
2+

 

forms a covalent bond with the negatively charged O atom of a functional group on a soil colloid (Brady 

and Weil, 2013). This chemical bond binds Cd specifically, and is not easily broken. Cadmium (II) can 

also be bound by outer-sphere (nonspecific) adsorption (Guo et al., 2006), which occurs when one or 

more water molecules are present between Cd
2+

 and the colloidal surface, causing Cd
2+ 

to be sorbed to the 

negatively charged O-containing functional group via electrostatic attraction instead of covalent bonding 

(Brady and Weil, 2013). Cations held by outer-sphere adsorption are more weakly held than those bound 

by inner-sphere adsorption, and can be replaced by other, similarly charged cations in solution in a 

process called cation exchange (Naidu et al., 1997).  

Though the solid phase dominates Cd sorption in soil, Cd
2+

 can also form complexes with soluble 

inorganic or organic ligands in solution that mobilize Cd in soil (Alloway, 2005). Cadmium can form 

organo-metallic complexes with various dissolved organic matter (DOM) compounds in soil such as 

fulvic acids and low molecular weight organic acids released by microbes and plant roots (Kim et al., 

2010). In saline soils, Cd
2+

 can bind to Cl


 or SO4
2

  to form CdCl2 and CdSO4, respectively, both highly 

soluble Cd species (Alloway, 2005; Naidu et al., 1997) that are bioavailable to plants (Kookana et al., 
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1999). These soluble Cd-ligand complexes along with the free Cd
2+

 ions in solution and those released by 

cation exchange represent the fraction of Cd in soil that is most available for plant uptake.  

Under strong reducing conditions, SO4
2

 is reduced to S
2

, which can precipitate with Cd
2+

 to 

form CdS (greenockite), an insoluble Cd mineral that is unavailable for plant uptake (Alloway, 2005). 

Cadmium can also precipitate with CO3
2

 to form CdCO3 (otavite), another insoluble Cd mineral, though 

this reaction only occurs in the presence of abundant anions at high pH (>7.0) and high Cd concentration 

(>100 gg
-1

) (Alloway, 2005; Bataillard et al., 2003). 

 

Organic Matter Content 

Organic matter (OM) is an important soil characteristic influencing soil Cd sorption (Shaheen, 

2009; Kirkham, 2006; Hooda and Alloway, 1998). Soil OM (or soil humus) is characterized by its dark 

color, its ability to form stable complexes with metal cations, and its high buffering, cation exchange, and 

water holding capacities (Sparks, 2003). Soil OM is composed of non-humic substances, which are easily 

decomposable and have a short residency time in soil, and humic substances, which are high molecular 

weight compounds that persist in soil for long periods of time (Sparks, 2003). Humic substances can be 

further divided into fulvic acids, humic acids, and humin, and these are distinguished based on their 

solubility in acid or base.  

Humic substances are present in soil either as colloids in the solid phase or as dissolved organic 

matter (DOM) in the solution phase, with considerable implications for the mobility and phytoavailability 

of Cd (Naidu et al., 1997); DOM increases metal phytoavailability, whereas metals bound to solid phase 

OM are removed from the soil solution and are unavailable for plant uptake. 

DOM in the soil solution is part of the labile fraction of soil OM, and consists primarily of low 

molecular weight organic acids such as fulvic and amino acids (Krishnamurti and Naidu, 2003). These 

compounds can increase Cd mobility in soil by forming soluble organo-metal complexes with Cd
 
in 

solution (Kaschl et al., 2002; Almås et al., 2000). As these DOM complexes can be taken up by plants, 

sorption to DOM increases not only the mobility of Cd, but also its bioavailability (Antoniadis and 

Alloway, 2002).  

However, dissolved humic and fulvic acids makes up only a small proportion of total soil OM; 

solid phase humic and fulvic acids are the predominant form of OM in soils (Young, 2013; Almås et al., 

2000), and they sorb and immobilize Cd (Shaheen, 2009; Ge and Hendershot, 2005). This solid state OM 

has a large concentration of negatively charged carboxyl and phenolic functional groups on its surface 

that can bind divalent cations (such as Cd) by both inner-sphere and outer-sphere complexation 

(Loganathan et al., 2012; McLean and Bledsoe, 1996). The sorption capacity of OM is positively 

correlated with the surface area of the OM colloids due to the higher number of metal sorption sites on the 

colloid surface (Ge and Hendershot, 2005; Hooda and Alloway, 1998). Organic matter is variably 

charged, and its ability to sorb metal cations increases with pH (Morais et al., 1976; Vinkler et al., 1976). 

At high pH, OM-rich soils can significantly decrease plant bioavailability of Cd due to sorption by cation 

exchange (Haghiri, 1974). 

 

Cation Exchange Capacity 

A soil’s cation exchange capacity is the total amount of exchangeable cations that it can adsorb at 

a given pH (Bache, 1976). Plant uptake of Cd is influenced by the cation exchange capacity (CEC) of the 

soil, with increasing CEC leading to decreased plant uptake (Miller et al., 1976). Cation exchange is an 
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outer-sphere adsorption reaction that occurs when a cation in solution displaces a cation sorbed to the 

negatively-charged O atom of the functional groups on the surface of soil colloids (Brady and Weil, 

2013). This newly sorbed cation can then in turn be displaced by another cation in solution in a 

continuous process. Cation exchange is pH-dependent; at low pH, the ratio of H
+
:Cd

2+
 in the soil solution 

is high, and these ions will adsorb and desorb from the colloidal surface by cation exchange until an 

equilibrium is reached whereby the ratio of H
+
:Cd

2+
 ions adsorbed to soil colloids is equal to that of its 

ratio in solution (Brady and Weil, 2013). Therefore, more Cd
2+

 will be present in the soil solution at low 

pH due to the high proton concentration. However, as pH increases, H
+
 cations dissociate from the O 

atom of functional groups on the surface of clay and organic matter colloids, increasing the net negative 

charge of the soil and the available sorption sites for Cd binding (Morais et al., 1976).  

Cadmium competes with other metal cations for exchange sites in soil. These cations can come in 

the form of nutrients such as Na
+
, Mg

2+
, or Ca

2+
, with Ca

2+
 being the strongest competitor for exchange 

sites on soil colloids (Naidu et al., 1997). Soils rich in Ca can therefore have a considerable impact on Cd 

sorption and mobility.  In multi-metal polluted soils, Zn
2+

, Pb
2+

, and Cu
2+

, among other toxic metals, can 

compete with Cd
2+

 for sorption sites (Fontes et al., 2000). In these soils, Cd is usually present at a much 

lower concentration than other metal cations, and its competition with these metals for sorption sites can 

decrease its sorption coefficient significantly (Kookana et al., 1999). 

 

Soil pH 

There is general agreement in the literature that pH is the single most important factor affecting 

Cd sorption processes in variably charged soils (Naidu et al., 1997), and as sorption strongly influences 

Cd solubility, pH ultimately affects Cd bioavailability to plants. As pH increases, H
+
 cations are released 

from the O-containing functional groups of Fe, Al, and Mn oxyhydroxides (e.g. AlO


), organic matter 

(e.g. ROO


), and clay silicates (Morais et al., 1976). This release of protons increases the negative 

surface charge density on the soil colloid, attracting and binding metal cations such as Cd
2+

 by outer-

sphere adsorption (Karak et al., 2005). Both outer-sphere and inner-sphere Cd
 
adsorption increase rapidly 

with pH until they reach a plateau at which sorption has reached its maximum capacity (Tiller et al., 

1984).  

 

Other Factors Affecting Cadmium Sorption to Soil 

Metals have different characteristics that result in varying affinities for the surfaces of soil 

particles (Shaheen, 2009). Metals with a relatively small hydrated radius, high electronegativity, and a 

low hydrolysis constant (pKH) have a higher affinity for sorption sites (Shaheen, 2009; Alloway, 2005; 

McBride, 1994). A small hydrated radius decreases the distance between the metal cation and the 

negatively-charged exchange sites at the surface of the soil or biochar particle, which increases the force 

of attraction between the two in accordance with Coulomb’s Law (Shaheen, 2009). The higher the 

valency of a metal ion, the better its ability to replace an ion attached to the soil surface (Alloway, 2005). 

A metal with a relatively high electronegativity is better at attracting the surface negative charges on a 

soil colloid than a metal with a low electronegativity (McBride, 1994).  

Cadmium sorption is also affected by competition with other cations for sorption sites. Cadmium 

is usually found alongside Zn and Pb in soils, and studies comparing the soil sorption of Cd, Zn, and Pb 

demonstrate the differences in affinities among these metals due to the characteristics mentioned above 

(Shaheen, 2009; et al., 2008; Saha et al., 2002). Saha et al. (2002) correctly predicted the Pb >> Zn > Cd 

sequence of sorption affinity to two different substrates based on the metals’ respective pKH. Shaheen 
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(2009) studied the sorption of Pb and Cd in soils from Egypt and Greece and found that Pb has a higher 

distribution coefficient (Kd) than Cd, meaning that Pb is retained more strongly than Cd by soils. This was 

probably due to the difference in characteristics between the two metals; Pb
2+

 has a smaller hydrated 

radius, a lower pKH, and is more electronegative than Cd
2+

 (Shaheen, 2009).  

 

2.2.2  Biochar 

Biochar is the carbon-rich product of biomass pyrolysis in a low oxygen and relatively low 

temperature (<700C) environment (Lehmann and Joseph, 2009). The process used to produce biochar is 

similar to that used to produce charcoal, though these two products differ based on their intended use; 

while charcoal is intended to provide a source of fuel, biochar is used as a soil amendment (Lehmann and 

Joseph, 2009). There are four traditional reasons to produce and amend soils with biochar: 1) soil 

improvement; 2) waste management; 3) energy production; and 4) mitigation of climate change 

(Lehmann and Joseph, 2009). Biochar also has a fifth emerging purpose: 5) the sorption of contaminants 

such as Cd.  

Contaminant-sorbing biochars are divided into two main categories: those produced from plant 

material (wood chips, construction waste, crop and yard waste, etc.), and those produced from animal 

material (manure, bones, etc.). These biochars confer different advantages to soil based on their physical 

and chemical properties, with plant-based biochars primarily improving soil structure and porosity, and 

manure-based biochars primarily improving the soil nutrient content (Cantrell et al., 2012; Uzoma et al., 

2011; Uchimiya et al., 2010; Steiner et al., 2007).  

 

2.2.2.1  Physical Properties 

As the biochar feedstock is pyrolyzed, it undergoes a reduction in volume and mass as its organic 

components are volatilized (Azargohar et al., 2014; Kloss et al., 2012; Laine et al., 1991). The basic 

physical structure of the feedstock is retained throughout this process, resulting in an end product with a 

high density of micro-, meso-, and macro-pores that greatly increase its surface area (Laine et al., 1991). 

Highest treatment temperature (HTT), the highest temperature achieved during pyrolysis, is an important 

factor influencing the physical properties of biochar. As the HTT increases, particle size distribution 

(PSD) decreases and OM volatilization increases, increasing the pore density and surface area of the 

biochar (Sun et al., 2014; Dai et al., 2013). A high surface area has positive implications for remediation, 

as it increases the space available for contaminant sorption. 

 

2.2.2.2  Chemical Properties 

Biochar can sorb Cd and other cations by cation exchange due to the high density of carboxyl 

groups on its surface (Uchimiya et al., 2012; Appel et al., 2008).  Biochars generally have a high pH 

(>7.0), and can increase the pH of acidic soils (Cantrell et al., 2012; Kloss et al., 2012). This further 

contributes to the immobilization of Cd in soil due to the positive correlation between pH and CEC 

(Beesley and Marmiroli, 2011). 
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The HTT strongly influences the ability of biochar to sorb metal cations. Biochars produced at 

low HTTs (400C) have a relatively high negative surface charge density, high CEC, high hydrogen to 

carbon ratio (H:C), low pH, and low stability (Sun et al., 2014; Kloss et al., 2012). Biochars produced at 

high HTTs (>400C) have a relatively low negative surface charge density, low CEC, low H:C, and high 

stability due to its high degree of aromaticity (Azargohar et al., 2014; Sun et al., 2014; Kloss et al., 2012). 

Therefore, biochars produced at low HTTs will be more effective at sorbing contaminants, but will also 

degrade faster than biochars produced at high HTTs. 

Exposure to air results in the slow oxidation of the biochar surface as it ages in soil, leading to the 

formation of oxygen-containing functional groups on its surface (Cheng et al., 2006). The incorporation 

of oxygen into the graphite-like structure of biochar results in a loss of positive surface charge and a gain 

in negative surface charge (Cheng et al., 2008), increasing the CEC of the biochar and its sorption 

capacity for metal cations (Liang et al., 2006). 

 

2.2.2.3  Biochar in Organic Matter Rich Soils 

The degree to which biochar will affect contaminant immobilization depends on the sorption 

capacity of the soil it is amending; metal immobilization by biochar is higher in soils with low sorption 

capacities than those with high sorption capacities (Uchimiya et al., 2011). As OM-rich soils have a high 

CEC, biochar should have a more pronounced effect on Cd immobilization in low OM soils than in high 

OM soils (Shaheen et al., 2009). However, OM breaks down over time, and soil Cd concentrations might 

increase as it is desorbed from soil throughout the degradation process. Biochar (particularly those 

produced at high HTTs) is a highly stable form of OM with an estimated half-life on the order of 10
2
-10

7
 

years (Spokas, 2010; Zimmerman, 2010). As it also has a CEC that increases with its residency time in 

soil (Liang et al., 2006), biochar has the potential to limit the long-term bioavailability of Cd in OM-rich 

soils and the associated human and environmental health risks. 

 

2.2  ECOLOGICAL RISK ASSESSMENT 

Ecological risk assessment (ERA) is a tool used to evaluate the potential for receptors to 

experience adverse effects from exposure to a chemical stressor present in the environment (CCME, 

1996; MOE, 1996). In an ERA, the receptors are the plant and animal communities at a site, and the 

stressor is the chemical contamination present at that site. Ecological risk assessment is used to aid risk-

based decision making for contaminated sites, particularly when there are significant ecological concerns, 

unacceptable data gaps, or special site characteristics that should be considered prior to remediation 

(CCME, 1996).  

Risk assessments are either probabilistic or deterministic, and the differences between the two are 

primarily based on variability and uncertainty (Stark, 2000). A probabilistic risk assessment generates a 

range of risk values and indicates the probability that risk will occur given a particular set of 

circumstances, while a deterministic risk assessment is based on a single, “worst-case” estimate of 

exposure and does not account for any variability associated with risk (Stark, 2000). Deterministic risk 

assessments use highly conservative exposure and toxicity data, and results indicating no potential for risk 

can therefore be accepted with a high degree of confidence (CCME, 1996). The deterministic risk 

assessment is the most common type of risk assessment, and it follows a tiered approach to risk analysis.  
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2.2.1  The Tiers of ERA 

There are three tiers of an ERA: 1) the screening assessment; 2) the preliminary quantitative risk 

assessment (PQRA); and 3) the detailed quantitative risk assessment (DQRA). Each tier includes the 

same four components: receptor characterization, exposure assessment, hazard assessment, and risk 

assessment. The ERA process begins with a screening assessment, and if, upon its completion, the risk is 

considered to be adequately characterized, the process ends and the results are reported to risk managers. 

If the risk is not considered to be adequately characterized, the process moves upwards through the tiers, 

with each tier reducing uncertainty, refining conceptual models and endpoints, and becoming increasingly 

quantitative, predictive, and site-specific.  

 

2.2.1.1  Screening Assessment 

The screening assessment uses existing information from the literature or from previous studies 

of the site, and usually requires no additional sampling (CCME, 1997). In this tier, the receptor 

characterization component establishes the receptors of concern by identifying potentially exposed, 

sensitive, or otherwise significant species at the site and the surrounding area and compiling their life 

histories (CCME, 1996). Exposure assessment involves characterizing the contaminant of concern, 

including its transport pathways and fate in the environment, the extent of contamination at the site, 

identification of possible exposure pathways, and estimation of uptake into higher trophic organisms. 

Hazard assessment relates the level of contamination at the site to its potential toxicity to receptors by 

extrapolating from toxicity data in the literature. Finally, risk characterization combines the previous 

components of the screening assessment to qualitatively characterize risk as being high, low, or 

negligible. Risk characterization also includes uncertainty analysis, wherein data gaps are identified and 

uncertainty is determined to be either acceptable or unacceptable (US EPA, 1998). When extrapolating 

from the literature, the most conservative values are always used to provide a conservative estimate of 

risk. 

 

2.2.1.2  Preliminary Quantitative Ecological Risk Assessment 

The PQRA builds on the information collected in the screening assessment, and fills data gaps by 

collecting site-specific data through field sampling programs. Receptor characterization for the PQRA 

includes the identification of the types of habitats available in the area, their proximity to the 

contaminated site, the type of surface cover, soil type, etc. (CCME, 1997). Life history data is compiled 

for each receptor of concern, including dietary components, food and soil ingestion rates, body weight, 

migration, and home range size (CCME, 1997). Exposure assessment for this stage of ERA involves 

additional field sampling of potentially contaminated media to further elucidate patterns of contamination 

and to determine its distribution at the site. Potential sources of exposure including food items (plants and 

worms, among others), soil, water, and air are sampled to provide estimates of exposure to receptors 

(CCME, 1996). A receptor’s estimated daily intake (EDI) of a contaminant is calculated using its various 

exposure pathways and the contaminant concentration of the media it is exposed to (Sample and Suter, 

1994):  
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Ci = Contaminant concentration of food item (i) (gg
-1

 ww) 

Fi = Fraction of the diet composed of food item (i) (unitless) 

FIRi = Food Ingestion Rate for food item (i) (kgday
-1

 ww) 

Cs = Soil contaminant concentration (gg
-1

 dw) 

SIR = Soil ingestion rate (kgday
-1

 dw)  

AUF = Area use factor (unitless) 

BA = Bioavailability (1) 

EF = Exposure Frequency (weeks/year) 

BW = Bodyweight (kg ww) 

 

The hazard assessment quantitatively estimates the toxic effects of site contamination to 

receptors. Toxicity tests are completed using the species of concern or an appropriate surrogate, though 

toxicity data can also be extrapolated from the literature (CCME, 1996). The dose or concentration at 

which there are no observed adverse effects is called the toxicity reference value (TRV). Risk 

characterization for a PQRA includes a quantitative indication of risk using the quotient method, wherein 

a receptor’s EDI is divided by its TRV to yield the hazard quotient (HQ): 

 

                 
                       

                        
  

 

If the HQ is greater than one, then there is a potential for risk to this receptor group. If the HQ is 

less than one, then no risk is assumed for that receptor group. Preliminary quantitative risk 

characterization also includes an estimate of uncertainty associated with the HQ (US EPA, 1998; CCME, 

1996).  

 

2.2.1.3   Detailed Quantitative Ecological Risk Assessment 

In most situations, ERAs can be completed to satisfaction with a PQRA. However, if the 

uncertainty associated with an individual ERA component is unacceptable, a DQRA can be completed for 

that component (CCME, 1996). This tier of ERA is highly detailed and complex, and is usually reserved 

for sites that are particularly large or contain sensitive or essential habitat. The risk assessment included in 

this thesis was completed to satisfaction using a PQRA, and therefore a DQRA was not applicable to this 

thesis. 
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3. FEASIBILITY OF USING PHYTOEXTRACTION TO REMEDIATE 

A COMPOST-BASED SOIL CONTAMINATED WITH CADMIUM 

 

 

 

 

Michele A. Parisien
a
, Allison Rutter

b
, and Barbara A. Zeeb

a 

 

a
 Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, 

Canada K7K 7B4 

Fax.: 613-542-9489       

Tel.: 613-541-6000 x6713 (B.A.Z) 613-214-6799 (M.A.P.)      

Email: michele.parisien@rmc.ca (M.A.P.) 

Email: zeeb-b@rmc.ca (B.A.Z.) 

 
b
 School of Environmental Studies, Biosciences Complex, Queen’s University, Kingston, ON, Canada 

K7L 3N6 

Fax.: 613-533-2897 

Tel.: 613-533-2642 

Email: ruttera@queensu.ca 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:michele.parisien@rmc.ca
mailto:zeeb-b@rmc.ca
mailto:ruttera@queensu.ca


 

13 

 

3.1 ABSTRACT 

The application of municipal solid waste (MSW) and sewage sludge (SS) composts to soils may 

affect soil organic matter (OM) and hence phytoextraction feasibility. Greenhouse and in-situ field 

experiments were used to determine the potential for phytoextraction to remediate soil contaminated with 

cadmium (Cd) from MSW/SS compost application at a site in Peterborough, Canada. For the greenhouse 

experiment, one native (Chenopodium album) and three naturalized (Poa compressa, Brassica juncea, 

Helianthus annuus) plant species were planted in soil containing no detectable Cd (<1.0 μgg
-1

), and soil 

collected from the site containing low Cd concentrations (5.00.3 μgg
-1

 Cd), and high Cd concentrations 

(16.51.2 μg⋅g-1
 Cd). Plant uptake was low for all species, as indicated by root BAFs 0.5 for all but P. 

compressa in the low Cd treatment (BAF 1.0). Only B. juncea accumulated Cd in its shoots, though 

uptake was low (BAF 0.3) and there was no significant difference in shoot BAF between the low and 

high Cd treatments (p>0.05). For the field experiment, B. juncea was planted in-situ in areas of low and 

high Cd concentrations. Brassica juncea Cd uptake was low as indicated by root and shoot BAFs <0.2 for 

both treatments. Sequential extraction analysis indicated that Cd is retained primarily by soil fractions 

with relatively low bioavailability, and phytoextraction is therefore not a feasible method of remediation 

at this site. Though low Cd bioavailability has negative implications for Cd phytoextraction from soils 

amended with MSW/SS compost, it may limit receptor exposure to Cd sufficiently to eliminate the 

potential for risk at this site.   

 

Key Terms: Cadmium, municipal solid waste, sewage sludge, compost, phytoextraction, organic matter, 

cation exchange capacity 
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3.2 INTRODUCTION 

Soil is a valuable natural resource that is largely being depleted due to pollution and erosion 

(Pimentel, 2006). Efforts to economically restore degraded soils and preserve them for future use include 

amendment with municipal solid waste (MSW) and sewage sludge (SS) compost (Pascual et al., 2000). 

The organic component of MSW is largely composed of residential food, leaf, and yard waste 

(Environment Canada, 2013), while SS is the solid or semi-solid organic waste produced during the 

wastewater treatment process. Municipal solid waste and SS are composted either together or separately 

to generate nutrient- and organic matter (OM)-rich compost that improves soil properties such as cation 

exchange capacity (CEC), pH, bulk density, and water retention (Bertoncini et al., 2008; Cheng et al., 

2007). However, MSW/SS compost can contain high concentrations of metals such as cadmium (Cd) 

(Smith, 2009).  Cadmium is a xenobiotic metal that enters the environment anthropogenically through the 

production and disposal of products such as nickel (Ni)-Cd batteries, pigments, alloys, and stabilizers for 

polyvinyl chloride (PVC) plastics (Adriano, 2001; Mulligan et al., 2001). Cadmium is toxic to humans, 

plants, and animals, and despite regulations governing the allowable metal concentrations for the use of 

MSW/SS compost as soil amendments, their application can increase Cd concentrations in soil (Alloway 

and Jackson, 1991; Baker et al., 1979).   

Phytoextraction is an environmentally-friendly alternative to excavation and chemical 

remediation methods, as it uses vascular plants in-situ to extract soil contaminants into the roots and 

translocate them to the shoots, which are harvested and compacted for off-site disposal (Salt et al., 1998). 

Using site-specific native or naturalized species further reduces the environmental impact of 

phytoextraction (Ghosh and Singh, 2005), as it minimizes disturbance to the site’s ecology. Native plants 

are those that have originated in a region naturally without human involvement (Pysek et al., 2004), 

whereas naturalized plants are non-native species that are able to reproduce and sustain populations 

through several life cycles (Richardson et al., 2000) while remaining in balance with the ecological 

community to which they belong (Hallett, 2006). Because phytoextraction preserves the soil matrix and 

maintains soil properties, it is an attractive remediation option for high quality soils such as those 

amended with MSW/SS compost.  

Only metals present in the soil solution are readily available for plant uptake. Therefore, OM 

influences phytoextraction success in two opposing ways: solid-state OM can sorb Cd and reduce its 

phytoavailability (Kukier et al., 2010; Kaschl et al., 2002), while dissolved organic matter (DOM) in the 

soil solution forms soluble complexes with Cd, increasing its mobility and phytoavailability (Wong et al., 

2007; Antoniadus and Alloway, 2002). Although solid state OM colloids are the predominant form of 

OM in soil humus, DOM is nevertheless present at lower levels in the soil solution due to the excretion of 

root exudates by plants (Li et al., 2011) and the decomposition of colloidal OM (Martínez and McBride, 

1999).  

Fresh, uncomposted MSW/SS can significantly increase metal solubility and phytoavailability 

due to the composition and high concentrations of DOM (Salati et al.  2010; Ashworth and Alloway, 

2008; Antoniadis and Alloway, 2002; Zhou et al., 2000). In contrast, composted MSW/SS has a smaller 

fraction of DOM (Gao et al., 2005; Castaldi et al., 2005) and a greater proportion of large, humified, and 

insoluble organic acids (Jouraiphy et al., 2005; Kaschl et al., 2002; Chefetz et al., 1996).  This increase in 

stable OM in composted MSW/SS increases metal binding to the solid phase, and decreases metal 

solubility in soil and its availability to plants (Shuman et al., 2002; Wen et al., 2002; Sims and Kline, 

1991). While most studies of composted MSW/SS follow this trend, some report high metal 

phytoavailability despite composting (Kaschl et al., 2000; Simeoni et al., 1984). The results of these 

studies indicate that other soil factors also play an important role in governing Cd complexation and its 

uptake by plants, and this affects the potential of phytoextraction to remediate MSW/SS compost 

amended soils.  
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 In this study, greenhouse and field experiments are conducted using one native (Chenopodium 

album) and three naturalized (Poa compressa, Brassica juncea, Helianthus annuus) plant species 

(Cutright et al., 2010; Abe et al., 2008; Ebbs et al., 1997; Park et al., 2011b; Lai et al., 2008) to extract 

Cd from a MSW/SS compost-amended soil in Peterborough, Canada. The objectives are to determine 

whether phytoextraction can be used to successfully remediate Cd contamination in MSW/SS compost-

amended soils, and to elucidate the relationship between Cd fractionation and bioavailability in soils 

using sequential extraction.  

 

3.3 METHODS AND MATERIALS 

3.3.1 Site Description 

In 2010, a Cd-contaminated compost was used to restore a 0.805 ha disturbed area at the 

Peterborough Gun Club (PGC) in Peterborough, Ontario, Canada (Figure 3-1). The disturbed area was 

originally a natural vegetated habitat situated at the edge of a drumlin, which was flattened and denuded 

of vegetation to create a clay floor for a firing range. In 2009, the decision was made to restore the area 

rather than complete the construction of the new range. Compost produced from MSW and SS was 

obtained from a Kingston, Ontario company and mixed with topsoil and mulch to cover the clay layer. 

Application of this compost at the site resulted in soil Cd concentrations up to 21.4 gg
-1

 Cd, exceeding 

the standard of 1.2 gg
-1

 Cd set by the Ontario Ministry of the Environment (MOE; MOE, 2011). The 

compost was applied in a ~30 cm thick layer across the site, and the level of Cd contamination is uniform 

throughout the depth of this soil layer. The underlying clay layer does not have a detectable concentration 

of Cd. Despite this contamination, the soil at the site supported an abundant and diverse community of 

native and naturalized plant and animal species at the time of sampling in 2012.  
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Figure 3-1. Map of southern Ontario with the relative locations of Peterborough and Kingston. The 

Peterborough Gun Club property is shown in the black box, and the contaminated site is outlined in red. 

 

3.3.2 Soil and Plant Collection  

Fifty nine discreet soil samples (~200 g wet weight) were collected from a 0-20 cm depth in a 

grid pattern (at 10 m intervals in a 10070 m grid) to determine the concentrations and distribution of Cd 

in the soil (Appendix A - Figure A-1). Soil samples were stored in Whirlpak

 bags at 15C until 

analysis. Subsequently, bulk soil was collected from known areas of low and high Cd contamination for 

characterization and use in greenhouse studies. Bulk soil was air dried, sieved to <2 mm, and 

homogenized using the one-dimensional Japanese slab cake method (Pitard, 1993) and stored at room 

temperature until use. 

 

3.3.3 Greenhouse Study Experimental Design 

Plants were grown in soil in triplicate in three treatments: i) a control treatment using clean 

uncontaminated potting soil (<1.0 μg⋅g-1
 Cd; n=12); ii) a low (5.00.3 μg⋅g-1

 Cd; n=12) Cd treatment; 

and iii) a high (16.51.2 μg⋅g-1
 Cd; n=12) Cd treatment using bulk soil collected from the PGC site. 

Plants were grown in the Queen’s University (Kingston, Ontario) greenhouse at 28.25.7 C, and soil was 

maintained at 30% moisture. Plants were harvested after 50 days.  

 

3.3.4 In-situ Field Study Experimental Design 
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Plots measuring 1  2 m were established in areas of low (8.92.0 gg
-1

 Cd) and high (19.31.9 

gg
-1

 Cd) Cd concentrations at the PGC for a field-scale phytoextraction feasibility study. Plots were 

established by removing the existing vegetation and rototilling the soil to a depth of 20 cm to homogenize 

the soil. Seeds of B. juncea were sown in all plots at a density of 12 plants/m
2
. Plots were watered weekly 

for three months, at which time six plants were randomly harvested from each plot. Roots were separated 

from shoots, washed, and stored in Ziploc


 bags at 15 C until analysis.  

 

3.3.5 Analytical Procedures 

3.3.5.1 Soil Characterization 

Soil characterization included particle size distribution (PSD), pH, cation exchange capacity 

(CEC), organic matter (OM) content, total Cd concentration, and Cd fractionation. All analyses were 

conducted at the Analytical Services Unit at Queen’s University except for PSD, which was conducted at 

the Royal Military College of Canada (RMCC) by mechanical sieving. The pH was measured by mixing 

dry soil sample with double deionized (DDI) water at a 1:2 ratio, manually shaking for two minutes, 

allowing the solid residue to settle, and measuring the supernatant with a pH meter. The OM content was 

determined by loss on ignition, and the CEC was measured using the sodium acetate method according to 

Laird and Fleming (2008).  

 

3.3.5.2 Cadmium in Soils  

For total Cd analysis, soil samples were air-dried, homogenized, sieved to <2 mm, and ground 

with a mortar and pestle. Subsamples (0.5 g) were measured into glass DigiPrep tubes with 7 mL double 

deionized (DDI) water, 2 mL HNO3, and 6 mL HCl prior to digestion at 95C for 330 minutes. Samples 

were cooled and diluted to 25 mL with DDI water, then filtered into glass tubes using Whatman® No. 40 

filter paper.  

The sequential extraction scheme of Tessier et al. (1979) was used to determine the fractionation 

of Cd in soil, and was modified to include a water-soluble fraction as in Ma and Rao (1997). Briefly, a 1 g 

soil sample was sequentially extracted into five operationally-defined fractions: F1) water-soluble (double 

de-ionized (DDI) water, agitated for 2 hr); F2) exchangeable (1 M MgCl2 (pH 7.0)); F3) bound to 

carbonates (1 M NaOAc (pH 5.0 with HOAc)); F4) bound to iron (Fe) and manganese (Mn) oxides (0.04 

M NH2OH-HCl in 25% (v/v) HOAc (pH 2.0)); F5) bound to OM (0.02 M HNO3 plus 30% H2O2 (pH 

2.0)); F6) residual (aqua regia (3:1 HCl/HNO3)). Following each extraction, the samples were 

centrifuged, the supernatants were filtered through 0.45 µm filters, and analyzed by inductively coupled 

plasma optical emission spectrometry (ICP-OES).   

 

3.3.5.3 Cadmium in Plants 

To analyze plant Cd concentrations, plants were washed with water, patted dry, roots were 

separated from shoots, and dried in a vented oven at 70C for 24 h. Plant samples were ground using a 

coffee grinder, and 0.5 g subsamples were measured into glass crucibles and dry-ashed in a muffle 
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furnace for 20 minutes at 150 C, one hour at 250 C, and three hours at 500 C. Ashed samples were 

digested on a hot plate under watchglass cover for four hours with 1 mL HNO3 and 3 mL HCl. 

Watchglass covers were removed, two drops H2O2 were added to each sample, and sample volumes were 

reduced to 2 mL. Samples were diluted to 12.5 mL with DDI water and filtered into glass ICP tubes using 

Whatman® No. 40 filter paper. Plant samples collected from the greenhouse experiment were analyzed 

by ICP-OES, and plant samples collected from the in-situ field study were analyzed by inductively 

coupled plasma mass spectrometry (ICP-MS). 

 

3.3.6 Quality Assurance/Quality Control 

One method blank, one certified reference material, and two analytical duplicates were included 

for every 14 samples analyzed. The mean relative standard deviation for all duplicate samples was 

7.69.2% (n=28). All blanks were below the ICP-OES and ICP-MS detection limits for Cd of 1.0 and 

0.05 μg⋅g-1
 Cd, respectively. Certified reference materials SS-2 and NIST-1570A had mean percent 

recoveries of 100.013.3% (n=6), and 90.611.6% (n=9), respectively, as compared to the lab certified 

values.  

 

3.3.7 Statistical Analysis 

Statistical analyses were performed using S+ version 8.2 (Tibco Software Inc., USA). All Cd 

concentrations and plant weights are reported on a dry weight (g) basis and recorded with the standard 

deviation of the mean. Data were tested for normality using the Kolmogorov-Smirnov test. All non-

normal data were transformed. One-way analysis of variance (ANOVA) and two-sample t-tests were used 

with significance level =0.05. 

 

3.4 RESULTS AND DISCUSSION 

3.4.1 Soil Characterization 

While pH, PSD, and CEC were similar between low and high Cd soil, Cd concentration and OM 

content were significantly higher in the high Cd soil relative to the low Cd soil (Table 3-1). Cadmium 

concentrations in the soil ranged from <1.0 to 21.4 gg
-1

 Cd with a mean of 6.14.8 gg
-1

 Cd. This Cd 

heterogeneity is likely due to the uneven distribution of compost throughout the site, with areas that 

received more compost having a higher Cd concentration than areas that received less compost. As the 

compost is the source of Cd, soils with higher Cd concentrations also have higher OM contents. The OM 

contents of the PGC soils are considerably higher than average global soil OM content (<5%; Sparks, 

2003; Schnitzer, 1991), and this likely contributed to the high CEC of the PGC soils (Asadi et al., 2009). 
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Table 3-1. Soil characterization results for the control soil (potting soil) and low and high Cd soils 

collected from the PGC for use in the greenhouse experiment. Significant differences among treatments 

are indicated by different letters. All parameters were measured in triplicate except for pH and CEC. 

  Particle size distribution 

(%) 

pH CEC OM Cd 

 fine 

(<0.5 mm) 

coarse 

(0.5-4.7 mm) 

 cmolkg
-1

 (%) gg
-1

 

    Control Soil 50.04.5
a
 45.81.3

a
 5.4 150.4 87.71.4

c
 <1.0 

    Low Cd Soil  59.61.4
b 

39.41.1
b 7.6 38.1 13.91.3

a 
5.10.3

a
 

    High Cd Soil 56.04.3
ab 

43.34.3
ab 7.7 46.2 24.51.9

b 
16.61.2

b 

 

 

3.4.2 Cadmium Fractionation in Soil 

 Cadmium in the low and high Cd soils was separated into six operationally defined fractions, with 

Cd bioavailability decreasing with each successive fraction (Xian, 1989). The Cd concentrations in each 

fraction are reported as a percentage of the total concentrations (Figure 3-2). Cadmium fractionation was 

not completed in triplicate for each soil due to time and cost limitations, but soils were thoroughly 

homogenized prior to sequential extraction analysis. 

The proportion of Cd in the OM- and residual-bound fractions of the high Cd soil was twice that 

of the low Cd soil, while the proportion of Cd in the exchangeable and carbonate-bound fractions of the 

high Cd soil were half that of the low Cd soil. This indicates higher Cd bioavailability in the low Cd soil 

compared to the high Cd soil. There was little difference in the proportion of Cd bound to Fe/Mn oxides 

between the low and high Cd soil, and the Cd concentration in the water-soluble fraction was below the 

detection limit of the ICP-OES. 
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Figure 3-2. Fractionation of Cd in the low and high [Cd] soil into six operationally defined fractions. The 

Cd concentration in the F1 fraction was below the ICP-OES reporting limit of 0.025 mg/L. 

 

3.4.3 Plant Biomass 

Plants growing in all treatments in both the greenhouse and field studies did not display signs of 

reduced biomass, chlorosis, necrosis, leaf-rolls, or any other physical symptoms of Cd toxicity. Contrary 

to many published studies, three of the four plant species in the greenhouse experiment had a higher 

biomass in the high Cd soil relative to the low Cd soil (Mishra et al., 2006; Ghosh and Singh, 2005; 

Shukla et al., 2003). As the high Cd soil treatment also has a higher OM content, there were likely more 

nutrients and generally better growing conditions in the high compared to the low Cd soil. 

In the greenhouse study, P. compressa shoot weight was significantly higher in the high Cd 

(12.00.1 g) compared to the low Cd (5.41.9 g) and control (3.50.3 g) treatments (p<0.05). P. 

compressa roots were too tangled to determine representative root weights for each treatment. Brassica 

juncea shoot weight was significantly higher in the control (7.92.7 g) compared to the low Cd treatment 

(1.40.3 g; p<0.05), but not the high Cd (3.81.3 g) treatment. There were no significant differences in B. 

juncea root weights among treatments (p>0.05). Helianthus annuus shoot weight was significantly higher 

in the control treatment (13.24.0 g) compared to the low Cd treatment (4.60.6 g; p<0.05), but not the 

high Cd treatment (7.62.5 g; p<0.05). Helianthus annuus root weights were significantly higher in the 

control (2.20.3 g) compared to the low (0.50.0 g) and high Cd (0.90.2 g) treatments (p<0.05). There 

were no significant differences in mean C. album shoot or root weights among treatments (p>0.05).  

There were no significant differences in B. juncea shoot or root weights between treatments in the 

in-situ field study (p>0.05).  
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3.4.4 Plant Cadmium Uptake  

3.4.4.1 Greenhouse Study 

All plant species had low uptake of Cd into their roots (Figure 3-3), as indicated by a 

bioaccumulation factor (BAF; the ratio of the Cd concentration of the plant to that of the soil) of 0.5 for 

all species except for P. compressa in the low Cd soil (BAF 1.00.1). In the high Cd treatment, the root 

BAF for P. compressa was low (BAF 0.50.1), but significantly greater than those of C. album, H. 

annuus, and B. juncea (p<0.05).  

The only plant to accumulate Cd in its shoots was B. juncea, and there was no significant 

difference in its mean shoot BAFs (both <0.5) between treatments (p>0.05).  

 

 

Figure 3-3. Mean Cd concentrations in plant root and shoot tissue for each treatment in contaminated 

soil. Soil concentrations for the Low Cd treatment and the High Cd treatment were 5.00.3 and 16.51.2 

gg
-1

 Cd, as indicated by the dashed lines. The Cd concentrations in the control plants were all <1.0 gg
-

1
 Cd and were not included in this figure. A one-way ANOVA was used to compare plant root Cd 

concentrations among species within the low treatment and the high treatment. Significant differences 

among species in the low Cd treatment are indicated by the lower-case letters, and significant differences 

among species in the high Cd treatment are indicated by the upper-case letters.  

 

3.4.4.2 In-situ Field Study 

Brassica juncea had low Cd uptake in both low and high Cd treatments (Figure 3-4), as indicated 

by mean root and shoot BAFs of <0.2 for both. There was no significant difference in B. juncea root 

BAFs between treatments (p > 0.05), but the mean shoot BAF was significantly higher in the low Cd 

(BAF 0.190.04) than in the high Cd treatment (BAF 0.100.03; p < 0.05).  

a 

A 

b 
C b 

B b 

B Low [Cd] 

High [Cd] 

0

2

4

6

8

10

12

14

16

18

Low Cd High Cd Low Cd High Cd Low Cd High Cd Low Cd High Cd

C
d

 C
o

n
ce

n
tr

at
io

n
 (


g/
g)

 

Treatment 

Shoots

Roots

Poa Compressa            Brassica juncea         Helianthus annuus     Chenopodium album 



 

22 

 

There was no significant difference in B. juncea Cd uptake between treatments at the PGC for 

either roots or shoots (p > 0.05), though shoots accumulated significantly more Cd than roots in both the 

low and high Cd treatments (p < 0.05) (Figure 3-4). 

 

 

Figure 3-4. Mean Cd concentrations in root and shoot tissue for B. juncea growing in low and high Cd 

soil at the Peterborough Gun Club. Soil concentrations for the low and high Cd soils were 8.92.0 and 

19.31.9 gg
-1

 Cd, respectively, as indicated by the dashed lines. A one-way ANOVA was used to 

compare plant Cd concentrations among treatments. Differing letters indicate significant differences. 

 

Plant Cd uptake was low for all species in both the greenhouse and field experiments, with no 

plant having a BAF>1.0. These results are particularly surprising for B. juncea, a known Cd 

phytoextractor that usually achieves a BAF between 3-52 (Park et al., 2011b; Lai et al., 2008; Ishikawa et 

al., 2006; Quartacci et al., 2005; Ghosh and Singh, 2005; Su and Wong, 2004; Kumar et al., 1995). Low 

Cd uptake by B. juncea indicates that there are factors limiting Cd bioavailability, and this is likely related 

to the fractionation of Cd in the PGC soil. The bulk of the Cd in the PGC soil is retained by the residual, 

OM, and Fe/Mn oxide fractions, and is not available for plant uptake (Figure 3-2).  

The PGC soil has a high OM content relative to the global soils (Sparks, 2003) due to amendment 

with MSW/SS compost. Composted MSW/SS is composed primarily of stable, solid state OM that is 

resistant to microbial degradation (García-Gil et al., 2000) and that can sorb Cd via inner-sphere 

complexation, wherein Cd is specifically sorbed to negatively-charged surface functional groups by 

covalent bonding (Brady and Weil, 2013). The formation of strong metal-organic complexes limits the 

release of metals into the soil solution and reduces their bioavailability (Smith, 2009).  

Inorganic fractions of MSW/SS amendments (such as carbonates and Fe/Mn oxides) are also 

important in sorbing Cd and influencing its bioavailability (Achiba et al., 2009; Zinati et al., 2004; Li et 

al., 2001; Illera et al., 2000; Li et al., 2000). In this experiment, 31.9% and 17.7% of Cd was sorbed to 

carbonates in the low and high Cd soil, respectively, and 49.1% and 52.0% of Cd was sorbed to Fe/Mn 

oxides in the low and high Cd soil, respectively. The presence of Fe/Mn oxides in MSW/SS amendments 

increases the ability of the amended soil to specifically adsorb Cd and limit its bioavailability (Chaney et 
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al., 2000). As the Fe/Mn oxide fraction retains the greatest proportion of Cd in both the low and high Cd 

soils, it likely plays an important role in limiting plant uptake of Cd in the PGC soil.    

The results of this study agree with those reporting low mobility of Cd in soils amended with 

composted MSW/SS (Farrell et al., 2010; Hanc et al., 2009; Castaldi et al., 2006). The high CEC and pH 

of the PGC soil is characteristic of composted MSW/SS (Pengcheng et al., 2008; He et al., 1995; 

Shiralipour et al., 1992), and they confer on it a large sorptive capacity for metals such as Cd. The PGC 

soil’s high pH buffering capacity is also characteristic of composted MSW/SS (García-Gil et al., 2004), 

and it can moderate fluctuations in soil pH that might otherwise cause increased bioavailability of Cd 

from the exchangeable and carbonate-bound fractions (Wu et al., 2004; Horckmans et al., 2007). Soils 

that have these properties when amended with MSW/SS are those most likely to limit Cd solubility and 

plant uptake (McBride, 2003a). This study clearly indicates that phytoextraction is not a feasible method 

of remediating the PGC soil. However, low plant uptake of Cd limits Cd loading to the plant-based food 

chain, and may reduce animal exposure to Cd with positive implications for ecological risk. Further study 

is required to quantify the ecological risk associated with Cd from soils amended with MSW and SS 

compost. 
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4. ECOLOGICAL RISK ASSOCIATED WITH PHYTOEXTRACTION 

OF SOIL CONTAMINANTS  
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4.1 ABSTRACT 

 Contaminant bioavailability is an important factor influencing the applicability of 

phytoextraction, and the potential for risk at contaminated sites. Low contaminant bioavailability leads to 

ineffective phytoextraction, while high bioavailability can lead to considerable contaminant uptake by 

plants, increasing the exposure of these and higher order receptors to contaminants. In this study, 

phytoextraction feasibility and ecological risk were investigated at two contaminated sites in Ontario. The 

first site (Peterborough) was contaminated with Cd, and the second site (Lindsay) with PCBs. At the 

Peterborough site, low Cd bioavailability limited phytoextraction effectiveness. A preliminary 

quantitative risk assessment (PQRA) based on ecological exposure to Cd indicated no potential for risk 

from oral exposure (hazard quotient <1), possibly reducing the need for remediation. Phytoextraction of 

PCBs using Cucurbita pepo was highly effective at the Lindsay site, and a PQRA based on ecological 

exposure indicated risk (hazard quotient > 1) from PCBs to five of seven receptor species examined. 

These results demonstrate the relationship between contaminant bioavailability, phytoextraction, and risk, 

and emphasize the importance of incorporating risk assessment into the remediation process. 

 

KEY TERMS: Phytoavailability, receptor exposure, polychlorinated biphenyls, cadmium, organic 

matter, hazard quotient 
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4.2 INTRODUCTION 

 Contaminants accumulate in soils from a variety of sources including waste and emissions from 

industry, agricultural runoff, landfill leachate, and the application of soil amendments such as sludge (SS) 

and municipal solid waste (MSW) composts. They can be taken up by soil organisms and enter the food 

chain, where they may cause adverse health effects in humans, plants, and animals. Traditional methods 

of soil remediation, such as chemical washing and/or excavation followed by landfilling, are expensive 

and disruptive to the environment. Extensive work has therefore been completed in the past 20 years to 

study the potential of more environmentally friendly remediation alternatives, including phytoextraction. 

In theory, phytoextraction may provide an excellent remediation solution for contaminants that cannot be 

degraded (e.g., cadmium (Cd)) or are not effectively degraded (e.g., polychlorinated biphenyls (PCBs)) 

by soil microorganisms. However, phytoextraction success is greatly affected by contaminant 

bioavailability (Petruzzelli et al., 2013), which is in turn affected by contaminant speciation and soil 

properties including pH, organic matter (OM) content, and cation exchange capacity (CEC), (Naidu, 

2008; Domínguez et al., 2008; Shuman, Dudka, and Das, 2002). If contaminants have low bioavailability, 

they will not be effectively accumulated and phytoextraction will not occur (Petruzzelli et al., 2013). In 

this case, exposure to receptor organisms through the plant pathway is limited, and risk to these receptors 

might not exist. Conversely, if contaminants have high bioavailability and phytoextraction is effective, 

higher order ecological receptors might encounter risk from ingestion of contaminated plants. Therefore, 

the presence or absence of risk to ecological receptors at a site should be evaluated when considering 

phytoextraction as a remediation method. This is accomplished using ecological risk assessment (ERA) 

(Sample and Suter, 1994).  

 Ecological risk assessment is a useful tool to guide site remediation. Management of 

contaminated sites in North America is moving towards a risk-based approach (US EPA, 1997; CCME, 

1996), with the goal of remediation being to reduce risk to an acceptable level (Johnson et al., 1993). 

Even when contaminant concentrations at a site are several times higher than the prescribed federal or 

provincial guidelines, factors such as soil properties and contaminant speciation can limit contaminant 

bioavailability and reduce the potential for risk at a site. In this case, invasive remediation techniques may 

cause more harm than good (Efroymson et al., 2004) as they generally involve disturbing the established 

ecological community (i.e. excavation and landfill) or mobilizing contaminants that are otherwise stable 

in the soil (i.e. soil washing). 

 In this study, the ecological risk associated with food and soil ingestion at two phytoextraction 

sites located in Southern Ontario, Canada, is calculated with a preliminary quantitative risk assessment 

(PQRA) (Environment Canada (EC), 2012; CCME, 1996; US EPA, 1998) using site-specific contaminant 

concentrations in plants and soil invertebrates derived in earlier studies. The sites were chosen for their 

proximity to each other (45 km) and their differences in contaminant type and soil quality. The first site is 

located in Peterborough and is characterized by an organic matter (OM)-rich soil contaminated with Cd 

from the application of a MSW/SS compost, and the second is a brownfield site located in Lindsay that is 

characterized by a degraded soil contaminated with PCBs. 

 

4.3 MATERIALS AND METHODS 

4.3.1 Site #1: Peterborough, ON (Cd) 

In 2010, a Cd-contaminated MSW/SS compost was used to improve the soil in a 0.805 ha area at 

a firing range located near Peterborough, Ontario, Canada. Subsequently, it was determined that the soil 
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Cd concentrations ranged from <1.0-21.4 gg
-1

, exceeding the site condition standard of 1.2 μg⋅g-1
 Cd 

set by the Ontario Ministry of the Environment (MOE) (MOE, 2011). The high OM content, high cation 

exchange capacity (CEC), and neutral pH of the soil indicated that the soil was in good condition (Table 

4-1; Parisien et al., Chapter 3 – this thesis), and the site supported a diverse community of native and 

naturalized plant and animal species. 

 

Table 4-1. Properties of soil with low and high Cd concentrations from the Peterborough Site (Parisien et 

al., Chapter 3 – this thesis). Asterisks indicate significant differences between soils. 

 Particle size 

distribution (%) 

pH CEC OM Cd 

 fine coarse (H2O) cmol/kg (%) μg⋅g-1
 

    Low [Cd] Soil  59.61.4
 

39.41.1
 7.6 38.1 13.91.3

 
5.10.3

 

    High [Cd] Soil 56.04.3
 

43.34.3
 7.7 46.2 24.51.9

* 
16.61.2

* 

 

 

A Cd phytoextraction feasibility study was completed in 2014 by Parisien et al. (Chapter 3 – this 

thesis). Briefly, one native (Chenopodium album) and three naturalized (Brassica juncea, Helianthus 

annuus, and Poa compressa) plant species were grown in triplicate in a control soil (potting soil; <1.0 

μg⋅g-1
 Cd; n=12), soil with low (5.00.3 μg⋅g-1

 Cd; n=12) and high Cd concentrations (16.51.2 μg⋅g-1
 

Cd; n=12), both collected form the Peterborough site. The bioaccumulation factor (BAF; the ratio of the 

contaminant concentration in the plant to the contaminant concentration in the soil) was <1 for all species 

including B. juncea, a plant that usually has a BAF between 3-52 (Park et al., 2011b; Lai et al., 2008; 

Ishikawa et al., 2006; Quartacci et al., 2005; Ghosh and Singh, 2005; Su and Wong, 2004; Kumar et al., 

1995). Sequential extraction analysis indicated that Cd was bound primarily by soil fractions with 

relatively low bioavailability (Fe/Mn oxides, OM, and residual fractions). From this data it was 

determined that phytoextraction was not appropriate for this site (Parisien et al., Chapter 3 – this thesis).  

An earthworm bioavailability experiment was conducted to determine the exposure of higher 

order ecological receptors to Cd from earthworm ingestion.  Earthworms (Eisenia fetida) purchased from 

the ‘The Worm Factory’ (Westport, ON) were added to 1.32 L pots in triplicate at a density of 20 

worms/750 g soil. Soils used in this experiment were the same as those used in the phytoextraction 

feasibility study (Parisien et al., Chapter 3 – this thesis), and included the same control, low Cd, and high 

Cd treatments described above. Soil moisture was maintained at 30% and worms were harvested after 50 

days.  

Analytical Procedures: Earthworms were washed with double de-ionized (DDI) water, patted dry, 

and depurated at 4C for 72 h prior to being dried in a vented oven at 25C for 24 h. Earthworm samples 

were chopped and homogenized, and 0.5 g subsamples were added to digestion tubes with 2 mL HNO3 

and 6 mL HCl and digested overnight on a hot plate at 200C. Samples were diluted to 12.5 mL with DDI 

water, filtered into glass ICP tubes using Whatman® No. 40 filter paper, and analyzed by inductively 

coupled plasma optical emission spectroscopy (ICP-OES). 
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Quality Assurance and Quality Control (QA/QC): One blank, one certified reference material, 

and two analytical duplicate samples were included for every 14 samples analyzed. The certified 

reference material (Tort-2; NRCC, 1994) was within the accepted range, and had a percent recovery of 

83.5 (n=1). Blank samples were below the ICP-OES detection limit (<1.0 μg⋅g-1 
Cd). The mean relative 

standard deviation for duplicate samples was 5.51.5% (n=2).  

Statistical Analysis: Statistical analyses were performed using S+ version 8.2 (Tibco Software 

Inc., USA). Earthworm Cd concentrations are reported on a dry weight (g) basis and recorded with the 

standard deviation of the mean. Data were found to be non-normal using the Kolmogrov-Smirnov test, 

and were therefore transformed. A one way analysis of variance (ANOVA) was used with significance 

level =0.05. 

 

4.3.2 Site #2: Lindsay, ON (PCBs) 

The second study site was a former industrial site in Lindsay, ON that had soil contaminated with 

PCB Aroclor-1248 (Low et al., 2010). The PCB concentrations at the site ranged from <2.1 to 22.5 gg
-1

 

PCB (Low et al., 2010). The soil was predominantly clay with 4.3% total organic carbon (Low et al., 

2011). Several field trials were completed at the site to study PCB phytoextraction with pumpkins and 

native colonizers (Ficko et al., 2011; Greenwood et al., 2011; Low et al., 2011; Ficko et al., 2010; Low et 

al., 2010). 

Ecological risk assessment inputs for the Lindsay site were generated by Smith (2012). Briefly, 

Cucurbita pepo. ssp pepo var. Howden was planted in triplicate in PCB-contaminated soil (4.81.6 μg⋅g-

1
; n=24) from the site with earthworms (E. fetida), fertilizer, and perlite. C. pepo total plant BAFs for 

PCBs were >15. The results of Smith (2012) corroborated the results of previous research demonstrating 

the effectiveness of using phytoextraction with C. pepo to remediate PCB-contaminated soil at this site 

(Ficko et al., 2011; Greenwood et al., 2011; Low et al., 2011; Low et al., 2010).  

 

4.3.3 Ecological Risk Assessment 

4.3.3.1 Receptor Organisms 

Risk was calculated for the same seven receptor species at both sites as they are <50 km apart. 

The receptors included: two herbivorous mammals (eastern cottontail and meadow vole); two omnivorous 

mammals (raccoon and deer mouse); one invertivorous mammal (short-tailed shrew); one omnivorous 

bird (American Robin); and one invertivorous bird (American woodcock) (Table 4-2). Species were 

selected based on taxonomic guild, trophic level, life history traits, and relevance to the Peterborough/ 

Lindsay region.  
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Table 4-2. Ecological receptors included in the ecological risk assessments of the Peterborough and 

Lindsay sites. 

 Common Name Species Name 

Herbivorous Mammal Eastern Cottontail  Sylvilagus floridanus 

Meadow Vole Microtus pennsylvanicus 

Omnivorous Mammal Raccoon Procyon lotor 

Deer Mouse Peromyscus maniculatus 

Invertivorous Mammal Short-Tailed Shrew Blarina brevicauda 

Omnivorous Bird American Robin Turdus migratorius 

Invertivorous Bird American Woodcock Scolopax minor 

 

 

Eastern Cottontail (Sylvilagus floridanus) 

Eastern cottontails are widely distributed across North America, occupying habitat with dense, 

woody vegetation, and digging underground dens in abandoned fields (Chapman and Litvaitus, 2003). 

Their home range varies between 0.8 ha (Trent and Rongstad, 1974) and 5.98 ha (Bond et al., 2001), with 

males having a higher home range than females (especially during the breeding season). Cottontails 

consume a large quantity of herbaceous plants during the growing season, and woody plants during the 

winter months (Chapman and Litvaitus, 2003).  

 

Meadow Vole (Microtus pennsylvanicus) 

Meadow voles are abundant in many types of field habitat across North America including grass-

sedge marshes, old-field successional meadows, and grasslands (Madison, 1980; Getz, 1961). They 

occupy habitats as large as 0.085 ha (Getz, 1961) and as small as 0.0002 ha during the winter months 

(Douglass, 1976). Meadow voles’ diets consist of shoots and leaves during the spring and summer, and 

roots and seeds during the fall and winter (Lindroth and Batzli, 1984). In this study, meadow voles 

represent small mammals exposed to contaminants primarily through plant ingestion. 

 

Raccoon (Procyon lotor) 

Raccoons are present throughout North America. They occupy a wide range of habitats, including 

forests and urban areas (Bartoszewicz et al., 2008). Raccoons consume plants, mammals, insects, 

earthworms, and amphibians (Bartoszewicz et al., 2008; Hamilton, 1951). Their home range varies 

depending on resource density, though most occupy a home range  39 ha (Lotze, 1979). Raccoons can 

be exposed to contaminants through consumption of contaminated plants and earthworms, as well as 

through incidental soil ingestion associated with these food items. 
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Deer Mouse (Peromyscus maniculatus) 

Deer mice have highly variable home range sizes (0.012-0.935 ha) in field habitats across North 

America (Sheppe, 1966; Whitaker, 1966). They are omnivorous mammals that consume plants and 

invertebrates, including earthworms (Sheppe, 1966; Whitaker, 1966), and might therefore be exposed to 

contaminants through ingestion of plant and animal material.  

 

Short-Tailed Shrew (Blarina brevicauda) 

Short-tailed shrews are insectivorous mammals that live in burrows in the soil beneath vegetative 

cover and occupy a home range between 0.03-0.22 ha (Platt, 1976). Their fast metabolism requires them 

to consume a large quantity of food per day (Platt, 1974), primarily in the form of earthworms, plants, and 

small vertebrates (Hamilton, 1941). Because they live in the soil and their primary food item also lives in 

(and consumes) soil, short-tailed shrews may experience high exposure to soil contaminants.   

 

American Robin (Turdus migratorius) 

American robins are abundant throughout North America, and occupy relatively small home 

ranges (0.11-0.21 ha; Young, 1955; Howell, 1942) in suburban areas (Howell, 1942). They are frugivores 

during the fall and winter, and switch to an omnivorous diet composed mostly of invertebrates for the 

spring and summer (Wheelwright, 1986). As earthworms comprise a portion of their spring and summer 

diet (Howell, 1942), robins may be exposed to contaminants due to earthworm accumulation of 

contaminants. Earthworm consumption may also increase contaminant exposure due to incidental 

ingestion of soil on the surface of the earthworm body, and as foraging for them requires robins to probe 

the earth with their beaks. 

 

American Woodcock (Scolopax minor) 

American woodcocks are ground-nesting birds that occupy large home ranges (3.1-73.6 ha; 

Hudgins et al. 1985) in forest and field habitats with sufficient soil moisture to support abundant 

earthworm populations, as these invertebrates make up a large fraction of their diet (Dessecker and 

McAuley, 2001). Because woodcocks probe the soil for food items (Rabe, Prince, and Beaver, 1983) and 

primarily consume invertebrates that live in and eat soil, they are more exposed to contaminants than 

birds with other dietary and foraging characteristics.  

 

4.3.3.2 Exposure Pathway Investigation 

Air exposure was not considered to be a relevant exposure pathway at either site, as Cd is non-

volatile and air measurements detected no PCBs. Water was also not considered to be a relevant exposure 

pathway, as there was no water source at either site. Furthermore, Cd had low water solubility at the 

Peterborough site due to sorption to low bioavailability soil fractions, and its downward movement 

through the soil profile is further limited by a clay layer beneath the contaminated top soil (Parisien et al., 
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Chapter 3 – this thesis). As PCBs exhibit low water solubility due to their hydrophobicity, the potential 

for off-site migration and mobilization of contaminants to ground water are low at both sites. 

Contaminant exposure to ecological receptors from ingestion of food items was assessed using 

concentrations of Cd and PCBs in plants and earthworms.      

 

Plant Bioavailability 

The Cd and PCB concentrations used to represent exposure from plant ingestion were developed 

by taking the mean plant Cd and PCB concentrations from the treatments with the highest plant uptake in 

the phytoextraction feasibility studies, as they represent the most conservative contaminant 

concentrations. These concentrations were converted to wet weight (ww) using the conversion factor 0.15 

(assumes a moisture content of 85%) (US EPA, 1993) to yield plant concentrations of 0.53 gg
-1

 for Cd 

and 9.75 gg
-1

 for PCBs.  

 

Earthworm Bioavailability  

Cd-Contaminated Soil: The earthworm Cd concentration used in this risk assessment was 

established by taking the average Cd concentrations of earthworms harvested from the low and high Cd 

treatments of the earthworm bioavailability experiment as there was no significant difference between 

them. This yielded an earthworm Cd concentration of 39.5 gg
-1

 (dry weight (dw)), which was converted 

to ww using the conversion factor for earthworms of 0.16 (assumes a moisture content of 84%) (US EPA, 

1993) to yield 6.32 gg
-1

 Cd (ww).  

PCB-Contaminated Soil: The earthworm PCB concentration used in this risk assessment is the 

mean concentration (110 gg
-1

 PCBs (dw)) from the PCB phytoextraction study (Smith, 2012). This 

concentration was converted to ww using the conversion factor for earthworms of 0.16 (assumes a 

moisture content of 84%) (US EPA, 1993) to yield 17.6 gg
-1

 PCBs (ww). 

 

4.3.3.3 Risk Calculations 

A preliminary quantitative risk assessment was conducted for both sites using the quotient 

method (EC, 2012; CCME, 1996; US EPA, 1998). Each receptor’s estimated daily intake (EDI) of Cd 

and PCBs was calculated using the most conservative estimates from the literature in the equation below 

from Sample and Suter (1994). 

 

                       
[∑(              )  (       )]               

  
 

 

Ci = Contaminant concentration of food item (i) (gg
-1

 ww) 

Fi = Fraction of the diet composed of food item (i) (unitless) 

FIRi = Food Ingestion Rate for food item (i) (kgday
-1

 ww) 

Cs = Soil contaminant concentration (gg
-1

 dw) 
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SIR = Soil ingestion rate (kgday
-1

 dw)  

AUF = Area use factor (unitless) 

BA = Bioavailability (1) 

EF = Exposure Frequency (weeksyear
-1

) 

BW = Bodyweight (kg ww) 

 

All exposure factors used in the EDI equation are shown in Table 4-3. The same plant and 

earthworm contaminant concentrations were used for all receptor species, while the remaining exposure 

factors were receptor-specific. 

 

Table 4-3. Exposure factors used to determine the receptor-specific estimated daily intakes of Cd and 

PCBs at the Peterborough and Lindsay sites, respectively.  

 Receptor 

Exposure 

Factors (EFs) 

Eastern 

Cottontail 

Rabbit 

Meadow 

Vole 

Raccoon Deer 

Mouse 

Short-

Tailed 

Shrew 

American 

Robin 

American 

Wood-

cock 

EFs specific 

to Cd 

       

Ci (gg
-1

)        
 Plant 0.53 0.53 0.53 0.53 0.53 0.53 0.53 

 Worm n/a n/a 6.32 6.32 6.32 6.32 6.32 

Cs (gg
-1

) 21.4 21.4 21.4 21.4 21.4 21.4 21.4 

EFs specific 

to PCBs 

       

Ci (gg
-1

)        

 Plant 9.75 9.75 9.75 9.75 9.75 9.75 9.75 

 Worm n/a n/a n/a 17.6 17.6 17.6 17.6 

Cs (gg
-1

) 4.8 4.8 4.8 4.8 4.8 4.8 4.8 

Receptor- 

Specific EFs 

       

Fi (%)        

 Plant 1.00
d 

1.00
e
 0.587

e 
0.640

k 
0.171

e 
0.298

e 
0.105

e 

 Worm n/a n/a 7.20E-02
e 

1.70E-02
e 

0.418
e 

0.150
e 

0.678
e 

FIR (kgday
-1

) 0.272
c 

5.26E-03
g
 0.961

c 
1.01E-02

j 
7.95E-03

e 
0.117

l 
0.130

e 

SIR (kgday
-1

) 2.57E-03
d 

1.89E-05
h 

8.99E-03
h 

1.99E-05
h 

2.21E-05
h 

8.36E-04
h 

1.33E-03
h 

AUF
a 

1.00
e 

1.00
e 

2.10E-02
e 

1.00
e 

1.00
e 

1.00
e 

0.260
e 

BA
b 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 

BW (kg) 1.15
f 

1.60E-02
i 

3.67
e 

1.30E-02
e 

1.60E-02
e 

7.70E-02
e 

0.134
e 

EF 1.00 1.00 1.00 1.00 1.00 0.750
e, m 

0.673
e, n

 
 

a
 If size (ha) of HR < site, AUF=1; if HR > site, AUF = site/HR  

b
100% contaminant bioaccessibility is assumed for all receptors 

c 
Kroner and Cozzie (1999) 

d
 Extrapolated from Arthur and Gates (1988) 

e 
US EPA (1993) 

f
 Rongstad (1966) 

g
 Extrapolated from Nagy (1987) 
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h
 Beyer et al. (1984) 

i
 Merritt (1986); Barrett and Stueck (1976) 

j 
Millar (1981) 

k
 Jameson (1952) 

l
 Calculated from Scorupa and Hothem (1985) 

m
 Speirs (1953) 

n
 Sepik et al. (1993) 

 

The receptor’s EDI was divided by its toxicity reference value (TRV) to yield the hazard quotient 

(HQ). The TRVs used in this PQRA are the contaminant concentrations in a medium at which a receptor 

demonstrates no adverse effects (NOAEL; No Observed Adverse Effects Level) and were derived from 

laboratory-based NOAELs by applying allometric scaling (as described in Sample et al., 1996).  

 

4.4 RESULTS AND DISCUSSION 

4.4.1 Risk Characterization 

4.4.1.1 Site # 1: Peterborough 

Preliminary quantitative risk assessments assume that if the HQ < 1, there is no potential for risk 

to that receptor group, and if HQ > 1, there is potential for risk (CCME, 2006). Hazard quotient 

calculations indicate that there is no risk from Cd at the Peterborough site to any of the receptors involved 

in this PQRA (Table 4-4), despite soil Cd concentrations more than five times higher than the Canadian 

Council of Ministers of the Environment (CCME)’s soil quality guideline (SQGE) for the protection of 

environmental health (SQGE = 3.8 mgkg
-1

) (CCME, 1999).   

Risk to herbivores was limited by low Cd bioavailability to plants. This is supported by risk 

calculations that were made for a hypothetical case wherein the plant Cd concentration was equal to a 

BAF=1.00 (5.35 gg
-1

 Cd). In this case, the HQ surpasses 1.00 for the American robin, the eastern 

cottontail, and the deer mouse, indicating risk to these species due to increased Cd exposure from plant 

ingestion.  

The plant bioavailability of Cd exhibited by this compost-based soil is low (Chen and Cutright, 

2001; Gupta and Sinha, 2007). As OM can sorb Cd by cation exchange and reduce the water soluble 

fraction of Cd in the soil (the portion available for plant uptake; Shuman, Dudka, and Das, 2002), the high 

OM content of the soil is likely the factor limiting Cd bioavailability at this site. As this PQRA indicates 

no current potential for risk at the site, a leave-in-place strategy could be applied, as it has minimal 

financial and environmental costs. Although studies have demonstrated that the concentration of water 

soluble Cd in MSW/SS compost-amended soil can remain stable for several years (Brown et al., 1998; 

Hyun et al., 1998), OM breaks down over time and plant Cd bioavailability may increase in the future as 

it desorbs from degrading OM (McBride, 2003b). Therefore, a long-term monitoring program should be 

implemented at the site to monitor future ecological risk. 
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Table 4-4. Receptor-specific estimated daily intakes and mammalian and avian toxicity reference values 

for Cd and PCBs, as well as the hazard quotient for each receptor at the Peterborough and Lindsay sites. 

The EDIs were calculated using the exposure factors in Table 3, and the TRVs for Cd and PCBs were 

extrapolated from laboratory tests. The HQ was obtained by dividing the EDI by the TRV, and bolded 

numbers indicate potential ecological risk.  

 

 Receptor 

 Eastern 

Cottontail 

Rabbit 

Meadow 

Vole 

Raccoon Deer 

Mouse 

Short-

Tailed 

Shrew 

American 

Robin 

American 

Wood-

cock 

Peterborough, ON 

Cadmium 

       

EDI 0.174 7.10E-05 5.32E-03 0.381 1.39 1.44 0.621 

TRV 0.716
a
 2.09

a
 0.536

a
 2.20

a
 2.09

a 
1.45

b 
1.45

b 

HQ 0.243 3.40E-05 9.93E-03 0.173 0.664 0.990 0.428 

Lindsay, ON 

PCBs 

       

EDI  2.32 2.91E-04 3.87E-02 5.09 4.49 6.36 1.75 

TRV 0.125
c 

0.364
c 

0.094
c 

0.384
c 

0.364
c 

0.180
d 

0.180
d 

HQ 18.5 8.00E-04 0.412 13.2 12.3 35.3 9.73 

 
a
 Sutou et al. (1980), as cited in Sample et al. (1996) 

b
 White and Finley (1978), as cited in Sample et al. (1996) 

c
 Aulerich and Ringer (1977), as cited in Sample et al. (1996) 

d
 Dahlgren et al. (1972), as cited in Sample et al. (1996) 

 

4.4.1.2 Site # 2: Lindsay 

In contrast, at the Lindsay site the American robin, American woodcock, short tailed shrew, 

eastern cottontail, and deer mouse are potentially at risk, while the meadow vole and raccoon are not 

(Table 4-4). The robin has the highest potential for risk, followed by the cottontail, deer mouse, short-

tailed shrew, and American woodcock. The robin, woodcock and shrew have the highest earthworm 

intake, and this likely contributed to their high HQs as earthworms accumulated a high PCB burden. The 

deer mouse has a high food ingestion rate relative to the other small mammalian receptors, and therefore 

has high exposure to PCBs through food ingestion. The eastern cottontail consumes a large quantity of 

plant material and has less resistance to contaminant toxicity due to its low metabolic rate relative to 

smaller mammals (Sample et al., 1996), and these factors might have contributed to its high HQ.  

As there is potential for risk from PCBs to five of seven tested receptor groups at this site, 

precautionary measures must be taken to limit exposure of these receptors. This can be accomplished by 

netting or fencing, though it is difficult to limit the presence of small mammals such as shrews, which 

have small home ranges and might spend most of their time in a phytoextraction plot (Angle and Linacre, 

2005). Identifying potential risks early in the remediation process can aid in determining the suitability of 

phytoextraction to remediate a site. While phytoextraction may pose temporary risk to ecological 

receptors, it may still be more acceptable than more traditional remediation methods such as excavation 

and landfilling, a process that is both expensive and environmentally destructive (Angle and Linacre, 
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2005). With proper implementation of safety precautions, risks can be managed in order to produce a safe 

environment for receptors while maximizing plant extraction of contaminants.  

 

4.5 CONCLUSIONS 

Bioavailability of a contaminant is essential for successful phytoextraction. Low plant availability 

of Cd in the Peterborough soil due to sorption to low bioavailability soil fractions prevented plants from 

extracting and accumulating a sufficient amount of Cd for effective phytoextraction. This low Cd 

availability also reduced plant uptake enough to eliminate the potential for ecological risk to receptors at 

the site, which in turn reduces the need for remedial action.  

High bioavailability of PCBs in the Lindsay soil facilitated phytoextraction of this contaminant. 

However, high plant uptake of PCBs also increased receptor exposure to this contaminant, resulting in the 

potential for risk for five of seven receptor groups evaluated. Determining what receptor groups might be 

at risk due to phytoextraction is an important component of the planning process, as it allows site 

managers to implement appropriate risk management strategies to control risk during remediation. 

The two sites considered in this PQRA are at opposite ends of the spectrum, and they emphasize 

the relevance of risk assessment to the remediation process as well as the relationship between 

contaminant availability, phytoextraction, and ecological risk. This study indicates that the exceedance of 

generic soil guidelines is not enough to determine whether a contaminated site poses ecological risk; 

contaminant bioavailability should be considered before bypassing site-specific risk assessment in favor 

of immediate remediation.  
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5.1 ABSTRACT 

 Biochar is a stable form of organic matter (OM) that can sorb and immobilize metals such as 

cadmium (Cd), potentially limiting its long-term mobility and bioavailability in soil. A laboratory 

experiment was conducted to investigate the effect of biochar on Cd mobility as OM degrades in a soil 

amended with municipal solid waste (MSW) and sewage sludge (SS) compost. Soil contaminated with Cd 

(21.7 gg
-1

) from MSW/SS compost application at a site in Peterborough, Ontario, was placed into glass 

jars in a control treatment (soil only; n=3) and a biochar treatment (soil amended with 4% biochar (dry 

weight); n=3) and maintained at 40C for 185 days. The OM content significantly decreased (from 

30.71.5% to 27.40.6%) in the control treatment between the start and end of the experiment, but did not 

change significantly in the biochar treatment. Although there were no significant changes in the 

proportion of Cd in each soil fraction for either treatment, the trends in Cd fractionation suggest that Cd is 

moving from soil fractions with high bioavailability to those with low bioavailability. The length of this 

experiment was likely too short for significant trends to develop, and it should therefore be repeated for a 

longer period of time to properly characterize the changes in Cd fractionation that occur as OM degrades. 

 

Key words: Cadmium, MSW/SS compost, biochar, organic matter, bioavailability, sequential extraction, 

soil ageing 
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5.2 INTRODUCTION 

Municipal solid waste (MSW) and sewage sludge (SS) composts are widely applied to degraded 

soils to improve soil quality and plant yield (Singh and Agrawal, 2008). Though concerns have been 

raised regarding their high concentrations of metals such as Cd, research has demonstrated low 

bioavailability of metals associated with these composts (Parisien et al., Chapter 3 – this thesis; Hanc et 

al., 2009; Wen et al., 2002; Gigliotti et al., 1996). Composting causes metals to shift from soil fractions 

with relatively high bioavailability (water soluble, exchangeable, and carbonate-bound) to those with 

relatively low bioavailability (Fe/Mn oxide-, OM-, and residual-bound) (He et al., 2009; Castaldi et al., 

2006; Greenway and Song, 2002).  

While Cd bioavailability is initially low in soils amended with MSW/SS compost, it increases 

over time as OM degrades (McBride, 2003b; Chang et al., 1997) or if soils become water-logged and 

reducing conditions cause Fe/Mn oxides to dissolve and release Cd (Brown et al., 1989). Little research 

has focused on the long-term availability of Cd in MSW/SS compost-amended soils, and the results are 

mixed for studies of non-composted MSW/SS; while some find little to no change in Cd bioavailability 

over time (McGrath et al., 2000; McGrath and Cegarra, 1992; Brown et al., 1998; Hyun et al., 1998), 

others report high uptake into plants several years after the termination of MSW/SS application (McGrath 

et al., 2000; Sloan et al., 1997).  

The lack of long-term data necessitates precautionary measures or long-term monitoring at sites 

contaminated with Cd from the application of MSW/SS composts in order to limit possible future risk to 

human and ecological receptors. Because the potential for increased risk from these soils stems primarily 

from the degradation of OM or the dissolution of Fe/Mn oxides, one possible method of limiting the long-

term mobility of Cd is to amend soil with biochar.  Biochar is the carbon-rich product of biomass 

pyrolysis, and it is an emerging technology for the remediation of contaminated soils (Denyes et al., in 

press; Beesley et al., 2011). Biochar has a high density of negatively charged functional groups on its 

surface that sorb cations such as Cd (Uras et al., 2012; Wu et al., 2012). Amending soil with biochar 

shifts Cd from the water-soluble fraction of soil to the carbonate-, OM-, and Fe/Mn oxide-bound fractions 

(Bian et al., 2014; Park et al., 2011b). While several studies have demonstrated the ability of biochar to 

immobilize Cd in soil and reduce its uptake into plants (Bian et al., 2014; Suppadit et al., 2012; Zhang et 

al., 2012; Beesley and Marmiroli, 2011; Cui et al., 2011), there is a lack of research examining the effect 

of biochar on long-term Cd mobility and bioavailability.  

This study will evaluate the potential of biochar to sorb Cd and limit its long-term mobility and 

bioavailability in soil contaminated with Cd from the application of a MSW/SS compost at a site in 

Peterborough, Ontario. The Cd in this soil has low bioavailability as it is bound primarily by Fe/Mn 

oxides, OM, and residual soil components (Parisien et al., Chapter 3 – this thesis). The results of an 

ecological risk assessment have indicated that there is currently no potential for risk to receptors at this 

site (Parisien et al., Chapter 4 – this thesis). However, because Cd solubility may increase in the future 

due to dissolution of Fe/Mn oxides and OM degradation, this study investigates long-term Cd mobility 

and bioavailability. 

 

5.3 METHODS AND MATERIALS 

5.3.1 Site Description 

In 2010, a MSW/SS compost originating from a Kingston, ON company was used to restore a 

disturbed 0.805 ha area at the Peterborough Gun Club (PGC) in Peterborough, Ontario. Native plants 
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were planted in the restored area to encourage the establishment of a native ecological community 

(BioLogic, 2009). The MSW/SS compost was later discovered to have Cd concentrations up to 21.4 gg
-

1
, exceeding the Ontario Ministry of the Environment (MOE) site condition standard of 1.2 gg

-1
 Cd 

(MOE, 2011). Despite the high soil Cd concentrations, the site supported a diverse community of native 

and naturalized plant species.  

 

5.3.2 Experimental Design 

Soil was aged under accelerated conditions to promote microbial degradation of OM. Four 

hundred g (wet weight) of PGC soil with a Cd concentration of 21.71.5 gg
-1

 (n=3) were added to 1 L 

glass jars (n=3) in a control treatment (soil only) and a biochar treatment (soil amended with biochar at 

4% dry weight). Biochar was obtained from Burt’s Greenhouses in Odessa, Ontario, and was fully 

characterized in Denyes et al. (2014). Analyses included pH, cation exchange capacity, particle size 

distribution, specific surface area, organic carbon, moisture percentage, and proximate and ultimate 

analysis. Soils were maintained at ~60% soil moisture (Donnelly et al., 1990) in an oven at 40ºC with 

continuous oxygen flow, and mixed twice per week for 185 days. After harvesting, soils were air-dried, 

homogenized, sieved to <2 mm, and ground for further analysis. 

 

5.3.3 Analytical Methods 

Soils were measured for total Cd by measuring 0.5 g subsamples into glass DigiPrep tubes with 7 

mL double de-ionized (DDI) water, 2 mL HNO3, and 6 mL HCl prior to digestion at 95C for 330 

minutes. Samples were cooled and diluted to 25 mL with DDI water, filtered into glass ICP tubes using 

Whatman® No. 40 filter paper, and analyzed by ICP-OES. 

Cadmium was sequentially extracted from soils before and after 185 days of ageing according to 

the procedure of Tessier et al. (1997), with the addition of an extraction step for the water-soluble fraction 

as described in Ma and Rao (1997) (Table 5-1). This sequential extraction scheme partitions Cd into six 

soil fractions: 1) water-soluble; 2) exchangeable; 3) carbonate-bound; 4) Fe/Mn oxide-bound; 5) Organic 

matter-bound; and 6) residual. Cadmium bioavailability decreases with each successive extraction step, 

with the water-soluble fraction having the highest Cd bioavailability and the residual fraction having the 

lowest (Dudka and Chlopecka, 1990; Xian, 1989). Sequential extraction was carried out on 1 g soil 

samples in 50 mL polyethylene centrifuge tubes. Following each extraction, the samples were centrifuged 

at 3,000 rpm for 5 min, and the supernatants was filtered through 0.45 µm filters and analyzed by ICP-

OES.  
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Table 5-1. Method used for sequential extraction of Cd from soils.  

Fraction Phase Reagent Time/Temperature 

1 Water-soluble 15 mL double distilled (DDI) water Shake 2 h at 22C 

2 Exchangeable 8 mL 1 M MgCl2 (pH 7.0) Shake 1 h at 22C 

3 Carbonate-bound 8 mL 1 M NaOAc (pH 5.0) Shake 5 h at 22C 

4 Fe/Mn oxide-

bound 

20 mL 0.04 M NH2OH-HCl in 25% 

(v/v) HOAc (pH 2.0)  
6 h at 96C  

5 Organic matter-

bound 

3 mL 0.02 M HNO3 + 5 mL 30% 

H2O2 (pH 2.0) / 3 mL 30% H2O2 (pH 

2.0) / 5 mL 3.2 M NH4OAc in 20% 

(v/v) HNO3 

2 hr at 85C / 3 hr at 85C 

/ shake 30 min at 22C 

6 Residual bound 6 mL HCl + 2 mL HNO3 (aqua 

regia) 
5 hr at 95C 

 

 

5.3.4 Quality Assurance and Quality Control (QA/QC) 

One blank, one control, and one analytical duplicate sample were included for every 14 samples 

analyzed. The certified reference material (SS-2) had a mean percent recovery of 101.019.9 (n=3). All 

blanks were below the ICP-OES reporting limit for soil (<1.0 μgg
-1

) and water (<0.6 μgg
-1

) (n=3). The 

mean relative standard deviation was 5.62.5% (n=5) for all duplicate samples. All calibration controls 

were within the accepted range. Cadmium recovered from each of the six fractions was summed for each 

sample and compared against the total Cd concentration (as determined by aqua regia digestion), and the 

mean percent recovery was 110.66.1% (n=4).  

 

5.3.5 Statistical Analysis 

Statistical analyses were performed using S+ version 8.2 (Tibco Software Inc., USA). Soil Cd 

concentrations are reported on a dry weight (g) basis and recorded with the standard deviation of the 

mean. Welch modified two-sample t-tests were used with significance level =0.05. 

 

5.4 RESULTS AND DISCUSSION 

5.4.1 Cadmium Fractionation 

There was no significant difference in the proportion of Cd in each soil fraction between one and 

185 days for either the control or the biochar treatment (p >0.05) (Figure 5-1). However, there is a 

considerable difference in the percent change in Cd concentration that occurred within soil fractions over 

the course of the experiment. The proportion of Cd in the residual fraction (F6) increased by 45.7% for 

the control treatment, compared to a 59.8% increase in the biochar treatment.  During the same time 

frame, the proportion of Cd in the OM fraction (F5) decreased in the control treatment by 29.8%, but 
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increased in the biochar treatment by 10.3%. The percent change in Cd in the Fe/Mn oxide fraction (F4) 

was similar between the control and the biochar treatments, with decreases of 6.5% and 8.1%, 

respectively. Only small changes occurred in the carbonate and exchangeable fractions, and the Cd 

concentrations in the water soluble fraction were negligible (<0.1 gg
-1

) for both treatments. Trends 

indicate decreasing Cd bioavailability in the biochar treatment relative to the control treatment, and this 

conforms to the expected effects of biochar amendment and incubation time. Although these trends are 

not significant after 185 days, they might increase to statistical significance if this experiment is 

conducted over a longer time period.  

 

 

Figure 5-1. Fractionation of Cd in the Control and Biochar treatments into six operationally defined 

fractions between one and 185 days. The Cd concentration in the F1 fraction was below the ICP-OES 

detection limit of 0.6 μgg
-1 

Cd. Two-sample t-tests indicated no significant differences in the percentage 

of Cd in each soil fraction within treatments between the start and end of the experiment.  

 

5.4.2 Organic Matter Content 

There was a significant decrease (from 30.71.5% to 27.40.6%; p <0.05) in the soil OM content 

in the control treatment between one and 185 days.  Despite this significant decrease in %OM, there was 

only a small (non-significant; p >0.05) decrease in the proportion of Cd held in the OM-bound fraction. 

These results suggest that Cd in this fraction is sorbed primarily by the most stable portion of the soil 

OM, though the length of this experiment was likely too short for a significant loss of OM-bound Cd to 

occur.     

There was no significant difference in the soil OM content in the biochar treatment between one 

and 185 days. Biochar is OM-rich and sorbs Cd, and therefore it is likely responsible for the small 

increase in the proportion of Cd bound to the OM fraction that occurred during this experiment (Park et 
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al., 2011b). Biochar provides a source of stable OM that is not susceptible to microbial degradation 

(Kuzyakov et al., 2014), and its addition to soil likely compensated for the degradation of the more labile 

OM. As the native soil OM decomposes and releases Cd into the soil solution, biochar is expected to re-

sorb Cd from solution and limit its long-term mobility and bioavailability. This effect will become more 

pronounced with time, as sorption of Cd by biochar increases with incubation time in soil due to the slow 

oxidation of its surface and the resulting increase in its negative surface charge density and sorption 

capacity (Major et al., 2010; Zimmerman, 2010). 

 

5.5 CONCLUSIONS 

 Although the changes in the proportion of Cd bound to each soil fraction between the beginning 

and end of the experiment were not significant for either treatment, the trend in Cd fractionation for both 

treatments indicates that Cd is moving from the more bioavailable fractions to the less bioavailable 

fractions with time. This trend is more pronounced in the biochar treatment.  

Changes in the proportion of Cd bound to OM (though not significant) reflected the loss of OM 

that occurred in the control treatment and the input of biochar OM that occurred in the biochar treatment. 

This work highlights the potential for biochar to immobilize soil contaminants over the long term by 

stabilizing the OM. This experiment should be conducted over a longer period of time (1+ years) to allow 

significant trends to develop with further OM degradation and biochar incubation.  
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6. DISCUSSION AND CONCLUSIONS 

  Cadmium is a toxic metal with no known biological function, and exposure to Cd can cause 

adverse health effects to humans, plants, and animals. Although Cd is naturally present at low levels in 

the environment, anthropogenic activity, such as the use of municipal solid waste (MSW) and sewage 

sludge (SS) compost, can considerably increase Cd concentrations in soils. Cadmium-contaminated soil is 

commonly remediated using conventional technologies such as soil washing and excavation and 

landfilling. As these methods can be expensive and damaging to the soil matrix, efforts are being made to 

develop environmentally-friendly and cost-effective alternatives.  

Phytoextraction uses vascular plants to extract Cd into the roots and translocate them to the 

shoots, which are harvested and disposed of (Salt et al., 1998; Cunningham and Ow, 1996). Several plant 

species have successfully extracted significant concentrations of Cd into their aboveground tissue, and 

considerable research has been done over the past 20 years to identify new Cd phytoextractors and 

enhance plant uptake though the use of various soil amendments. Studies have demonstrated that plant 

uptake, and therefore phytoextraction success, depends on environmental factors such as soil properties 

and Cd speciation. 

In this thesis, the feasibility of using phytoextraction to remediate Cd in a MSW/SS compost-

based soil was investigated at a site in Peterborough, Ontario. Greenhouse and field studies showed low 

plant uptake into all species evaluated, with each having a mean BAF ≤ 1 (Chapter 3).  Sequential 

extraction was used to determine the fractionation of Cd in the Peterborough soil, as the partitioning of Cd 

among soil fractions is representative of Cd bioavailability to plants. Cadmium in the Peterborough Gun 

Club (PGC) soil was retained primarily by the Fe/Mn oxide, organic matter, and residual fractions, with 

relatively little held in the water-soluble, exchangeable, and carbonate-bound fractions. As the latter three 

make up the plant available Cd pool, only 38.3% and 20.3% of Cd was potentially available for plant 

uptake in the low and high Cd treatments, respectively. Results of greenhouse, field, and sequential 

extraction experiments indicated low bioavailability to plants, and hence phytoextraction was deemed an 

infeasible method of remediating Cd-contaminated soil at the PGC.  

Although low plant uptake eliminated phytoextraction as a remediation option, it also reduced 

exposure of plant-eating receptors to Cd, and might therefore limit the associated health risks. The 

potential for risk at the PGC was calculated for seven site-specific ecological receptors using a 

preliminary quantitative risk assessment (Chapter 4). This risk assessment was completed using site-

specific Cd data for soil, plants, and earthworms in order to accurately characterize risk. Despite soil Cd 

concentrations up to 18 times higher than the MOE soil guideline of 1.2 μgg
-1

 Cd, no potential for risk 

was found for any of the seven receptors evaluated. For comparison, risk was also calculated for the same 

seven receptors at a PCB-contaminated site in Lindsay, ON. This site differed from the Peterborough site 

based on its soil quality, the contaminant of concern, and contaminant bioavailability. Previous research 

has shown that phytoextraction would be an effective method of remediating this site due to high plant 

uptake of PCBs, and an ecological risk assessment revealed that five of the seven receptors were 

potentially at risk of experiencing adverse health effects from PCBs. The results of these risk assessments 

demonstrate the importance of considering contaminant bioavailability when estimating risk, as guideline 

exceedance alone does not accurately predict the potential for risk to ecological receptors. 

While risk assessments characterize the potential for risk under existing environmental 

conditions, over time, changing environmental conditions can cause fluctuations in soil chemistry, leading 

to increased contaminant bioavailability in soil and increased potential for risk. This is an important 

consideration when characterizing ecological risk from Cd in soils amended with MSW/SS compost, as 

the degradation of organic matter and dissolution of Fe/Mn oxides may result in an increase in the 

proportion of Cd in high-bioavailability soil fractions in the future.  Biochar is a carbon-rich amendment 
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that may limit long-term Cd bioavailability, as it has a high sorption capacity for Cd that increases over 

time as it is oxidized in soil. Therefore, a study was completed to investigate the changes in Cd 

fractionation in ageing MSW/SS compost-amended soil both with and without the addition of biochar 

(Chapter 6). While the soil organic matter content decreased significantly in the un-amended control after 

185 days of ageing, there was no significant change in the biochar treatment. Sequential extraction of Cd 

from aged soils demonstrated trends of decreasing Cd bioavailability in the biochar treatment relative to 

the control, suggesting that biochar has the potential to limit Cd bioavailability in the PGC soil over the 

long-term, thus minimizing risk to ecological receptors.  

This thesis is the first study investigating the relationship between the bioavailability, 

phytoextraction, and ecological risk associated with Cd in MSW/SS compost-amended soil. Although Cd 

bioavailability is low in these soils, future work should focus on Cd bioavailability in those amended with 

fresh, uncomposted MSW/SS, as its high content of dissolved organic matter improves Cd solubility and 

may therefore increase phytoextraction feasibility. Future work should also further investigate the effect 

of biochar on Cd bioavailability in compost-based soils over time, as this thesis demonstrates that it has 

the potential to be an effective long-term remediation technology for soils amended with MSW/SS 

compost. 
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8.1 APPENDIX A 

 

Additional site information 

Soil Cd concentrations at the Peterborough Gun Club 

 

 

 

 

 

 

Table A-1. Cadmium concentrations in soil samples collected from the Peterborough Gun Club.  

 

Figure A-1. Map of sample locations at the Peterborough Gun Club corresponding to the sample numbers 

in Table A-1.  
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Table A-1. Cadmium concentrations in soil samples collected from the Peterborough Gun Club. Quality 

assurance and quality control data are included at the bottom of the table. 

 

Sample Number Soil [Cd] (gg
-1

) 

6001 2.7 

6002 3.1 

6003 2.7 

6004 1.4 

6005 1.9 

6006 2.6 

6007 5.4 

6008 6.9 

6009 11.5 

6010 7.7 

6011 6.9 

6012 2.3 

6013 1.5 

6014 5.8 

6015 2.2 

6016 2.7 

6017 2.7 

6018 8.6 

6019 21.4 

6020 11.3 

6021 1.7 

6022 5.2 

6023 2.5 

6024 2.7 

6025 17.4 

6026 3.8 

6027 2.7 

6028 5.4 

6029 3.4 

6030 3.4 

6031 4.7 

6032 4.1 

6033 1.3 

6034 1.5 

6035 <1.0 

6036 3.4 

6037 5.6 

6038 5.7 

6039 5.9 

6040 13.3 

6041 16.7 



 

65 

 

6042 13.9 

6043 8.7 

6044 4.0 

6045 6.0 

6046 3.0 

6047 6.0 

6048 5.0 

6049 10.3 

6050 10.7 

6051 6.6 

  

Blank <1.0 

Blank <1.0 

Blank <1.0 

Blank <1.0 

  

SS-2 1.7 

SS-2 1.7 

SS-2 Target 1.8 

  

6004 1.4 

6004-D 1.4 

  

6010 10.4 

6010-D 9.9 

  

6017 2.8 

6017-D 2.7 

  

6023 2.4 

6023-D 2.6 

  

6028 5.1 

6028-D 5.8 

  

6036 3.2 

6036-D 3.6 

  

6049 10.1 

6049-D 10.5 
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Figure A-1. Map of sample locations at the Peterborough Gun Club corresponding to the sample numbers in Table A-1.  
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8.2 APPENDIX B 

 

Raw data for Chapter 3 

Feasibility of using phytoextraction to remediate a compost-based soil contaminated with cadmium. 

 

 

 

 

 

Table B-1. Particle size distribution data for all treatments.  

 

Table B-2. Cation exchange capacity values for all treatments.  

 

Table B-3. pH values for all treatments.  

 

Table B-4. Soil organic matter content of all treatments determined by loss on ignition (LOI).  

 

Table B-5. Cadmium concentrations of soil, roots, and shoots in each pot of the greenhouse experiment.  

 

Table B-6. Soil Cd concentrations of the low and high Cd field plots at the PGC, and root and shoot Cd 

concentrations of Brassica juncea grown in the field experiment. 

 

Table B-7. Sequential extraction results for low Cd and high Cd soils.  

Table B-8. Final root and shoot dry weights (dw) for plants grown in the greenhouse pot experiment.  
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Table B-1. Particle size distribution data for the control, low Cd, and high Cd soil treatments. Duplicates are included at the bottom of the table. 

 

  Sieve Numbers   

Sample Name Sample Mass 4 10 18 35 60 100 200 Pan % Coarse % Fine 

Low Cd 1 198.24 0.01 0.02 17.97 20.80 20.01 18.15 17.74 5.30 38.80 61.20 

Low Cd 2 197.00 0.22 0.17 19.46 21.38 20.74 20.90 13.36 3.77 41.23 58.77 

Low Cd 3 198.49 0.01 0.15 18.26 21.06 21.10 23.55 11.79 4.07 39.48 60.52 

High Cd 1 178.72 0.07 0.22 20.99 27.28 19.67 11.98 10.21 9.58 48.56 51.44 

High Cd 2 190.48 0.02 0.05 16.36 24.14 21.45 14.80 13.75 9.43 40.57 59.43 

High Cd 3 197.71 0.02 0.08 16.77 24.88 21.02 14.47 12.28 10.49 41.75 58.25 

Control soil1 51.53 9.74 14.75 13.35 13.55 17.37 18.16 11.51 1.57 51.39 48.61 

Control soil 2 55.27 6.64 12.99 12.74 13.99 15.11 13.75 19.41 5.37 46.35 53.65 

Control soil 3 57.84 4.84 14.11 13.40 14.25 15.84 14.06 16.91 6.60 46.59 53.41 

            

Low Cd 3 198.49 0.01 0.15 18.26 21.06 21.10 23.55 11.79 4.07 39.48 60.52 

Low Cd 3-D 190.30 0.01 0.16 18.32 21.09 21.88 22.80 12.03 3.71 39.58 60.42 

            

Control soil 3 57.84 4.84 14.11 13.40 14.25 15.84 14.06 16.91 6.60 46.59 53.41 

Control soil 3-D 60.02 4.46 14.75 12.55 15.35 15.87 13.49 17.54 6.00 47.10 52.90 
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Table B-2. Cation exchange capacity values for all treatments. Quality assurance and quality control data 

are included at the bottom of the table. 

Sample Name CEC (cmol/kg) 

Control 150.4 

Low Cd 38.1 

High Cd 46.2 

  

Blank <3.0
 

  

Anders 11.2 

Anders-D 9.6 

  

Control (ICV) [Cd] (mg/L) 

Control 16.7 

Control Target 16.0 
 

 

 

 

Table B-3. pH values for all treatments. Quality assurance and quality control data are included at the 

bottom of the table. 

Sample Name pH 

Control 5.4 

Low Cd 7.6 

High Cd 7.7 

  

Control
a
 4.0 

  

Low Cd 7.6 

Low Cd-D 7.6 
 

a
 Solution with known pH of 4.0 

 

 

 

Table B-4. Soil organic matter content of all treatments determined by loss on ignition (LOI). Quality 

assurance data is included at the bottom of the table. 

Sample Name Treatment Organic Matter (%LOI) 

Exp1-05 Control 89.3 

Exp1-06 Control 86.5 
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Exp1-07 Control 87.2 

Exp1-21 Low Cd 15.2 

Exp1-22 Low Cd 14.6 

Exp1-23 Low Cd 15.5 

Exp1-24 Low Cd 14.8 

Exp1-25 Low Cd 12.5 

Exp1-27 Low Cd 12.7 

Exp1-28 Low Cd 11.7 

Exp1-31 Low Cd 13.4 

Exp1-35 High Cd 23.5 

Exp1-36 High Cd 26.8 

Exp1-37 High Cd 27.8 

Exp1-38 High Cd 24.9 

Exp1-40 High Cd 21.5 

Exp1-41 High Cd 23.6 

Exp1-42 High Cd 21.8 

Exp1-43 High Cd 25.6 

Exp1-46 High Cd 25.4 

   

Exp1-23 Low Cd 14.8 

Exp1-23-D Low Cd 15.1 

   

Exp1-35 High Cd 23.5 

Exp1-35-D High Cd 24.1 

   

Exp1-37 High Cd 27.8 

Exp1-37-D High Cd 25.8 

 

 

 

 

Table B-5. Cadmium concentrations of soil, roots, and shoots in each pot of the greenhouse experiment. 

Quality assurance and quality control data are included at the bottom of the table. 

Sample Name
 a
 Treatment Soil [Cd] 

(gg
-1

) 

Root [Cd] 

(gg
-1

) 

Shoot [Cd] 

(gg
-1

) 

Exp1-05/53
 

Poa compressa Control A <1.0 <1.0 <1.0 

Exp1-06/54 Poa compressa Control B <1.0 <1.0 <1.0 

Exp1-07/55 Poa compressa Control C <1.0 <1.0 <1.0 

Exp1-20/56 Poa compressa Low Cd A 4.9 5.6 <1.0 

Exp1-21/57 Poa compressa Low Cd B 5.0 4.8 <1.0 

Exp1-22/58 Poa compressa Low Cd C 4.9 5.1 <1.0 

Exp1-35/59 Poa compressa High Cd A 16.0 7.1 <1.0 

Exp1-36/60 Poa compressa High Cd B 16.5 6.6 <1.0 

Exp1-37/61 Poa compressa High Cd C 17.6 9.8 <1.0 

Exp1-11/65 Helianthus annuus Control A <1.0 <1.0 <1.0 

Exp1-12/66 Helianthus annuus Control B <1.0 <1.0 <1.0 
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Exp1-13/67 Helianthus annuus Control C <1.0 <1.0 <1.0 

Exp1-26/68 Helianthus annuus Low Cd A 5.3 <1.0 <1.0 

Exp1-27/69 Helianthus annuus Low Cd B 4.8 1.5 <1.0 

Exp1-28/70 Helianthus annuus Low Cd C 4.6 1.1 <1.0 

Exp1-41/71 Helianthus annuus High Cd A 15.9 2.0 <1.0 

Exp1-42/72 Helianthus annuus High Cd B 14.8 2.5 <1.0 

Exp1-43/73 Helianthus annuus High Cd C 17.8 2.0 <1.0 

Exp1-08/74 Brassica juncea Control A <1.0 <1.0 <1.0 

Exp1-09/75 Brassica juncea Control B <1.0 <1.0 <1.0 

Exp1-10/76 Brassica juncea Control C <1.0 <1.0 <1.0 

Exp1-23/77 Brassica juncea Low Cd A 4.6 3.4 1.7 

Exp1-24/78 Brassica juncea Low Cd B 4.6 <1.0 1.2 

Exp1-25/79 Brassica juncea Low Cd C 4.9 <1.0 1.52 

Exp1-38/80 Brassica juncea High Cd A 16.4 <1.0 1.62 

Exp1-39/81 Brassica juncea High Cd B 18.1 <1.0 <1.0 

Exp1-40/82 Brassica juncea High Cd C 15.3 <1.0 1.79 

Exp1-14/86 Chenopodium album Control A <1.0 <1.0 <1.0 

Exp1-15/87 Chenopodium album Control B <1.0 <1.0 <1.0 

Exp1-16/88 Chenopodium album Control C <1.0 <1.0 <1.0 

Exp1-29
b
 Chenopodium album Low Cd A 5.0 - - 

Exp1-30
b 

Chenopodium album Low Cd B 5.6 - - 

Exp1-31/89
 

Chenopodium album Low Cd C 5.5 1.8 <1.0 

Exp1-44/90 Chenopodium album High Cd A 15.5 3.3 <1.0 

Exp1-45/91 Chenopodium album High Cd B 16.2 2.2 <1.0 

Exp1-46/92 Chenopodium album High Cd C 18.3 3.7 <1.0 

     

Sample Name [Cd] (gg
-1

) Matrix 

Blank  <1.0 Soil  
 

Blank <1.0 Soil   

Blank <1.0 Soil   

Blank <1.0 Soil   

Blank <1.0 Plant   

Blank  <1.0 Plant   

Blank <1.0 Plant   

Blank <1.0 Plant   

Blank <1.0 Plant   

Blank <1.0 Plant   

     

SS-2 1.7 Soil   

SS-2 1.9 Soil   

SS-2 1.8 Soil   

SS-2 Target 1.8 Soil   

     

NIST-1570A 2.2 Plant  
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NIST-1570A 1.7 Plant  

NIST-1570A 2.4 Plant  

NIST-1570A 2.0 Plant  

NIST-1570A 2.0 Plant  

NIST-1570A 

Target 

2.4 Plant 
 

    

Exp1-4 13.1 Soil   

Exp1-4-D 13.5 Soil   

     

Exp1-13 <1.0 Soil   

Exp1-13-D <1.0 Soil   

     

Exp1-18 <1.0 Soil   

Exp1-18-D <1.0 Soil   

     

Exp1-27 5.3 Soil   

Exp1-27-D 4.1 Soil   

     

Exp1-32 5.5 Soil   

Exp1-32-D 5.5 Soil   

     

Exp1-41 16.3 Soil   

Exp1-41-D 15.5 Soil   

     

Exp1-46 19.6 Soil   

Exp1-46-D 17.0 Soil   

     

Exp1-54S <1.0 Plant   

Exp1-54S-D <1.0 Plant   

     

Exp1-59R 5.6 Plant   

Exp1-59R-D 9.2 Plant   

     

Exp1-62S <1.0 Plant   

Exp1-62S-D <1.0 Plant   

     

Exp1-67R <1.0 Plant   

Exp1-67R-D <1.0 Plant   

     

Exp1-70S <1.0 Plant   

Exp1-70S-D <1.0 Plant   

     

Exp1-75S <1.0 Plant   

Exp1-75S-D <1.0 Plant   
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Exp1-78S 1.3 Plant   

Exp1-78S-D 1.3 Plant   

     

Exp1-83S <1.0 Plant   

Exp1-83S-D <1.0 Plant   

     

Exp1-85S 2.7 Plant   

Exp1-85S-D 2.5 Plant   

     

Exp1-87S <1.0 Plant   

Exp1-87S-D <1.0 Plant   

     

Exp1-92S <1.0 Plant   

Exp1-92S-D <1.0 Plant   
 

a
 Numbers before the dash represent soil samples, and those after the dash represent plant samples 

b 
Plant did not germinate 

 

 

 

 

Table B-6. Soil Cd concentrations of the low and high Cd field plots at the PGC, and root and shoot Cd 

concentrations of Brassica juncea grown in the field experiment. Quality assurance and quality control 

data are included at the bottom of the table. 

Sample Name
a 

Treatment Soil [Cd]  

(gg
-1

) 

Root [Cd]  

(gg
-1

) 

Shoot [Cd]  

(gg
-1

) 

PGC13-041/065 Low Cd A 7.8 0.62 1.94 

PGC13-042/066 Low Cd B 11.1 0.76 2.10 

PGC13-043/067 Low Cd C 7.6 0.75 1.86 

PGC13-044/068 Low Cd D n/a 0.57 1.31 

PGC13-045/069 Low Cd E n/a 0.65 1.65 

PGC13-046/070 Low Cd F n/a 0.65 1.32 

PGC13-053/077 High Cd A 17.2 1.47 2.04 

PGC13-054/078 High Cd B 20.9 0.97 1.78 

PGC13-055/079 High Cd C 19.9 0.63 2.10 

PGC13-056/080 High Cd D n/a 1.01 1.24 

PGC13-057/081 High Cd E n/a 1.47 2.89 

PGC13-058/082 High Cd F n/a 0.90 1.59 

     

Sample Name  [Cd] (gg
-1

) Matrix 

Blank  <0.05 Plant   

Blank <0.05 Plant   
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Blank <1.0 Soil   

     

SS-2 1.9 Soil   

SS-2 Target 1.8    

     

NIST-1570A 2.11 Plant   

NIST-1570A 2.71 Plant   

NIST-1570A 2.26 Plant   

NIST-1570A 2.32 Plant   

NIST-1570A 

Target 

2.40  

  

     

PGC13-95 6.9 Soil   

PGC13-95-D 6.8 Soil   

     

PGC13-110 22.1 Soil   

PGC13-110-D 24.9 Soil   

     

PGC13-44 1.41 Plant   

PGC13-44-D 1.21 Plant   

     

PGC13-053 1.99 Plant   

PGC13-053-D 2.08 Plant   

     

PGC13-058 1.26 Plant   

PGC13-058-D 1.91 Plant   

     

PGC-068 0.55 Plant   

PGC-068-D 0.59 Plant   

     

PGC-077 1.62 Plant   

PGC-077-D 1.31 Plant   

     

PGC-082 0.89 Plant   

PGC-082-D 0.90 Plant   
 

a
 Numbers before the dash represent soil samples, and those after the dash represent plant samples 
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Table B-7. Sequential extraction results for low Cd and high Cd soils. Samples were converted from mg/L to gg
-1 

by multiplying the value in 

mg/L by the final sample volume (mL) and dividing the product by the final sample weight (g). Quality assurance and quality control data are 

included at the bottom of the table. 

 

Sample Name Treatment Fraction [Cd] mg/L Final Sample 

Volume (mL) 

Final Sample 

Weight (g) 

[Cd] 

(gg
-1

) 

PGC13-094 Low Cd Soil F1 0.002 15 1.0147 0.0 

  F2 0.066 8 1.0147 0.5 

  F3 0.330 8 1.0147 2.6 

  F4 0.271 15 1.0147 4.0 

  F5 0.025 20 1.0147 0.5 

  F6 0.021 25 1.0147 0.5 

PGC13-104 High Cd Soil F1 0.002 15 1.0702 0.0 

  F2 0.074 8 1.0702 0.6 

  F3 0.501 8 1.0702 3.7 

  F4 0.788 15 1.0702 11.0 

  F5 0.143 20 1.0702 2.7 

  F6 0.137 25 1.0702 3.2 

       

Sample Name [Cd] (gg
-1

) 

Blank <0.6 
     

       

SS-2 1.4      

SS-2 Target 1.8      

       

PGC13-095 8.0      

PGC13-095-D 7.7      

       

Control (ICV) [Cd] (mg/L) 

Control 3.9      
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Control Target 4.0      

       

Control 0.41      

Control Target 0.40      

       

Control 3.8      

Control Target 4.0      

       

Control 0.42      

Control Target 0.40      

       

Control 4.2      

Control Target 4.0      

       

Control 0.39      

Control Target 0.40      
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Table B-8. Final root and shoot dry weights (dw) for plants grown in the greenhouse pot experiment. 

Quality assurance and quality control data are included at the bottom of the table. 

Treatment Root dry weight (g) Shoot dry weight (g) 

Poa compressa Control A - 3.80 

Poa compressa Control B - 3.31 

Poa compressa Control C - 3.41 

Poa compressa Low Cd A - 7.02 

Poa compressa Low Cd B - 5.75 

Poa compressa Low Cd C - 3.28 

Poa compressa High Cd A - 11.99 

Poa compressa High Cd B - 12.14 

Poa compressa High Cd C - 11.98 

Helianthus annuus Control A 1.89 8.62 

Helianthus annuus Control B 2.45 15.04 

Helianthus annuus Control C 2.33 16.02 

Helianthus annuus Low Cd A 0.51 5.04 

Helianthus annuus Low Cd B 0.59 4.81 

Helianthus annuus Low Cd C 0.51 3.94 

Helianthus annuus High Cd A 1.05 10.25 

Helianthus annuus High Cd B 0.93 5.41 

Helianthus annuus High Cd C 0.61 7.17 

Brassica juncea Control A 0.95 5.77 

Brassica juncea Control B 1.23 10.9 

Brassica juncea Control C 2.36 6.94 

Brassica juncea Low Cd A 0.38 1.00 

Brassica juncea Low Cd B 0.23 1.49 

Brassica juncea Low Cd C 0.47 1.58 

Brassica juncea High Cd A 0.90 3.71 

Brassica juncea High Cd B 1.29 5.16 

Brassica juncea High Cd C 0.49 2.55 

Chenopodium album Control A 0.57 2.44 

Chenopodium album Control B 0.49 2.94 

Chenopodium album Control C 0.68 3.33 

Chenopodium album Low Cd A - - 

Chenopodium album Low Cd B - - 

Chenopodium album Low Cd C 0.7 4.43 

Chenopodium album High Cd A 0.6 3.79 

Chenopodium album High Cd B 0.75 4.21 

Chenopodium album High Cd C 0.18 1.18 
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8.3 APPENDIX C 

 

Raw data for Chapter 4 

Ecological risk associated with phytoextraction of soil contaminants. 

 

 

 

 

 

Table C-1. Cadmium concentrations in earthworms. 
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Table C-1. Cadmium concentrations in earthworms. Quality control and quality assurance data are 

included at the bottom of the table. 

Sample Name Treatment [Cd] (gg
-1

) 

Exp2-01 Control A 8.2 

Exp2-02 Control B 1.5 

Exp2-03 Control C 6.0 

Exp2-04 Low Cd A 33.2 

Exp2-05 Low Cd B 31.7 

Exp2-06 Low Cd C 24.8 

Exp2-10 High Cd A 45.0 

Exp2-11 High Cd B 51.2 

Exp2-12 High Cd C 50.9 

   

Blank - <1.0 

   

Tort-2 - 22.3 

   

Exp2-004 - 32.2 

Exp2-004-D - 34.3 

   

Exp2-013 - 43.9 

Exp2-013-D - 48.2 
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8.4 APPENDIX D 

 

Raw data for Chapter 5 

Effect of biochar on cadmium fractionation with organic matter degradation in a soil amended with 

municipal solid waste/sewage sludge compost. 

 

 

 

 

 

Table D-1. Cadmium concentrations in soil fractions of the control and biochar treatment soils before and 

after the soil ageing experiment.  

 

Table D-2. Total (aqua regia) Cd concentrations in the control and biochar treatment soils. 

Table D-3. Organic matter content of the control and biochar treatment soils at the start and end of the 

soil ageing experiment.   
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Table D-1. Cadmium concentrations in soil fractions of the control and biochar treatment soils before and after the soil ageing experiment. 

Samples were converted from mg/L to gg
-1 

by multiplying the value in mg/L by the final sample volume (mL) and dividing the product by the 

final sample weight (g). Quality control and quality assurance data are included at the bottom of the table. 

Sample Name Treatment Fraction [Cd]  

(mg/L) 

Final Sample 

Volume (mL) 

Final Sample 

Weight (g) 

[Cd] 

(gg
-1

) 

SAE-01 Start – Control A F1 <0.025 15.0 1.0156 - 

  F2 0.084 8.0 1.0156 0.7 

  F3 0.513 8.0 1.0156 4.0 

  F4 0.904 15 1.0156 13 

  F5 0.079 20 1.0156 1.6 

  F6 0.231 25 1.0156 5.7 

SAE-02 Start – Control B F1 <0.025 15 1.0131 - 

  F2 0.080 8 1.0131 0.63 

  F3 0.435 8 1.0131 3.4 

  F4 0.748 20 1.0131 14 

  F5 0.129 20 1.0131 2.6 

  F6 0.176 25 1.0131 4.3 

SAE-03 Start – Control C F1 <0.025 15 1.0303 - 

  F2 0.081 8 1.0303 0.63 

  F3 0.453 8 1.0303 3.5 

  F4 0.811 15 1.0303 11 

  F5 0.174 20 1.0303 3.4 

  F6 0.140 25 1.0303 3.4 

SAE-04 Start – Biochar A F1 <0.025 15 1.0294 - 

  F2 0.068 8 1.0294 0.53 

  F3 0.401 8 1.0294 3.1 

  F4 0.941 15 1.0294 13 

  F5 0.140 20 1.0294 2.7 

  F6 0.129 25 1.0294 3.1 

SAE-05 Start – Biochar B F1 <0.025 15 1.0044 - 

  F2 0.064 8 1.0044 0.51 

  F3 0.438 8 1.0044 3.5 
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  F4 0.868 15 1.0044 12 

  F5 0.153 20 1.0044 3.0 

  F6 0.154 25 1.0044 3.8 

SAE-06 Start – Biochar C F1 <0.025 15 1.0016 - 

  F2 0.071 8 1.0016 0.57 

  F3 0.410 8 1.0016 3.3 

  F4 0.803 15 1.0016 12 

  F5 0.105 20 1.0016 2.1 

  F6 0.136 25 1.0016 3.4 

SAE-43 End – Control A F1 <0.025 15 1.0507 - 

  F2 0.073 8 1.0507 0.56 

  F3 0.410 8 1.0507 3.1 

  F4 0.907 15 1.0507 12 

  F5 0.091 20 1.0507 1.7 

  F6 0.204 25 1.0507 4.9 

SAE-44 End – Control B F1 <0.025 15 1.0735 - 

  F2 0.076 8 1.0735 0.57 

  F3 0.410 8 1.0735 3.1 

  F4 0.763 15 1.0735 10 

  F5 0.082 20 1.0735 1.5 

  F6 0.267 25 1.0735 6.2 

SAE-45 End – Control C F1 <0.025 15 1.0821 - 

  F2 0.075 8 1.0821 0.55 

  F3 0.441 8 1.0821 3.3 

  F4 0.727 15 1.0821 10 

  F5 0.083 20 1.0821 1.5 

  F6 0.278 25 1.0821 6.4 

SAE-46 End – Biochar A F1 <0.025 15 1.0293 - 

  F2 0.075 8 1.0293 0.58 

  F3 0.381 8 1.0293 2.9 

  F4 0.682 15 1.0293 9.9 

  F5 0.082 20 1.0293 1.6 

  F6 0.200 25 1.0293 4.9 
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SAE-47 End – Biochar B F1 <0.025 15 1.0135 - 

  F2 0.067 8 1.0135 0.53 

  F3 0.382 8 1.0135 3.0 

  F4 0.822 15 1.0135 12 

  F5 0.150 20 1.0135 3.0 

  F6 0.129 25 1.0135 3.2 

SAE-48 End – Biochar C F1 <0.025 15 1.0155 - 

  F2 0.072 8 1.0155 0.56 

  F3 0.386 8 1.0155 3.0 

  F4 0.651 15 1.0155 9.6 

  F5 0.158 20 1.0155 3.1 

  F6 0.122 25 1.0155 3.0 

       

Sample Name [Cd] (gg
-1

) 

Blank <0.6
 

     

Blank <0.6      

       

SS-2 1.4      

SS-2 2.1      

SS-2 Target 1.8      

       

PGC13-095  7.7      

PGC13-095-D 8.0      

       

SAE-37 21.1      

SAE-37-D 19.6      

       

SAE-47 21.9      

SAE-47-D 19.4      
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Control (ICV) [Cd] (mg/L) 

Control 3.9      

Control Target
 

4.0      

       

Control 0.41      

Control Target 0.40      

       

Control 3.8      

Control Target 4.0      

       

Control 0.42      

Control Target 0.40      

       

Control 4.2      

Control Target 4.0      

       

Control 0.39      

Control Target 0.40      
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Table D-2. Total (aqua regia) Cd concentrations in the control and biochar treatment soils. Quality 

control and quality assurance data are included at the bottom of the table. 

Sample Name  Treatment [Cd] (gg
-1

) 

SAE-07 Control A Start 22.9 

SAE-08 Control B Start 20.0 

SAE-09 Control C Start 22.1 

SAE-43 Control A End 21.1 

SAE-44 Control B End 21.2 

SAE-45 Control C End 21.9 

SAE-10 Biochar A Start 19.8 

SAE-12 Biochar B Start 18.5 

SAE-13 Biochar C Start 19.0 

SAE-46 Biochar A End 18.1 

SAE-47 Biochar B End 18.7 

SAE-48 Biochar C End 15.0 

   

Blank - <1.0 

   

SS-2 - 1.9 

   

SAE-04 - 20.3 

SAE-04 - 19.3 

   

SAE-047 - 17.7 

SAE-047 - 19.7 

 

 

 

 

Table D-3. Organic matter content of the control and biochar treatment soils at the start and end of the 

soil ageing experiment.  Quality assurance data are included at the bottom of the table. 

Sample Name Treatment Organic Matter (% LOI) 

SAE-07 Control A Start 31.9 

SAE-08 Control B Start 29.0 

SAE-09 Control C Start 31.1 

SAE-43 Control A End 27.7 

SAE-44 Control B End 27.7 

SAE-45 Control C End 26.7 

SAE-10 Biochar A Start 33.6 

SAE-12 Biochar B Start 36.0 

SAE-13 Biochar C Start 35.3 

SAE-46 Biochar A End 32.3 

SAE-47 Biochar B End 32.2 
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SAE-48 Biochar C End 28.4 

   

SAE-45 Control C End 26.9 

SAE-45 Control C End 26.4 

   

SAE-48 Biochar C End 28.4 

SAE-48 Biochar C End 31.4 
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8.5 APPENDIX E 

 

Additional Information 

Quality assurance and quality control targets. 

 

 

 

 

 

Table E-1. Target values for quality assurance and quality control values used in this thesis. 
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Table E-1. Inductively coupled plasma (ICP) target values for Cd in quality assurance and quality control 

(QA/QC) samples.  

QA/QC Type Target Cd Value 

(gg
-1

) 

(Laboratory Mean) 

Warning Limits Control Limits 

Method Blank    

    ICP-OES <1.0 n/a n/a 

    ICP-MS <0.05 n/a n/a 

    

Certified Reference 

Material   

 

    NIST-1570A 

(Spinach) 2.4 2.2-2.7 

2.0-2.9 

    SS-2 1.8 1.5-2.1 1.3-2.3 

    Tort-2 25.3 22.2-28.4 20.6-30.0 

    

QA/QC Type RSD
a
  (%)   

Duplicate 70-130  
 

    
 

a 
RSD = Relative  

 


