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Abstract 
 

The Guiding Center (GC) approximation is a widely used technique for reducing the 

computational power needed to model the motion of charged particles in magnetic fields. It is well 

known that the accuracy of the GC approximation increases as the energy of plasma particles 

becomes smaller. However, the accuracy of the GC approximation is hard to assess in any specific 

case. To quantify GC accuracy, we compare the GC approximation with full Lorentz trajectories 

by employing numerical integration to solve differential Equations of motion in various magnetic 

fields. Specifically, we consider particle motion in a magnetic field with a constant gradient, in the 

equatorial plane of a magnetic dipole, in the equatorial plane of a non-axisymmetric field, which 

is illustrative of the stretched magnetotail in the terrestrial magnetosphere, and in a 3-dimensional 

magnetic dipole. The particle motion has analytic solutions in some of these magnetic fields, which 

we describe and use in our analysis. For the first two fields we discuss in detail various methods 

for selecting the initialization point for the GC approximation based solely on the particle's initial 

position and velocity vectors. We established multiple options for GC initialization and discuss the 

effects of the starting point on the accuracy of computing the drift velocity.  We also discuss the 

possibility to replicate the magnetic moment, drift velocity or gyroperiod exactly. Since 

conservation of the magnetic moment, or 1st adiabatic invariant, is an essential assumption used in 

the GC approximation we discuss in detail the accuracy of this conservation. For axisymmetric, 

and non-axisymmetric magnetic fields, the conservation of the canonical angular momentum and 

its consequences is also discussed. To analyze the effect asymmetry has on these conserved 

quantities we simulate a plasma particle crossing the magnetotail for which three different models 

are considered. As a means of assessing the accuracy of the GC approximation, we consider an 

ensemble of particles that differ only in their initial phase. Such particles are indistinguishable in 

GC theory as the GC approximation collapses all phases onto the same GC trajectory. Thus, by 

analyzing the phase effects, we illustrate the limitations of the GC approximation thoroughly. 

Through this process we were able to quantify the secular error the GC approximation incurs every 

drift period. We find that in some cases, if the magnetic field is a smooth function of the 

coordinates, the errors in the GC approximation are exponentially small in the velocity of the 

particle. In other cases, if the magnetic field is represented by a piece-wise linear function, these 

errors are proportional to some power of the particle velocity. Lastly, we tested the GC theory 

assumption that the equatorial pitch angle is a conserved quantity. While this error decreases with 

particle velocity as well, there are noticeable variations in the pitch angle for consecutive crossings 

of the equatorial plane, even for relatively small velocities. We quantify the deviation of the 

equatorial pitch angle for a bounce period as a function of the velocity. The results obtained in this 

thesis can be used to estimate the accuracy of the Guiding Center approximation in a variety of 

magnetic fields.  
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Résumé  
 

L’approximation du centre guide (CG) est une technique très répandue pour réduire la 

puissance de calcul nécessaire à la modélisation du mouvement des particules dans des champs 

magnétiques. Le fait que l’exactitude de l’approximation du CG augmente quand l’énergie des 

particules du plasma devient plus petite est bien connu. Cependant, l’exactitude de l’approximation 

du CG est difficile à évaluer pour des cas spécifiques. De façon à quantifier l’exactitude du CG, 

nous comparons l’approximation du CG avec les trajectoires de Lorentz complètes en utilisant 

l’intégration numérique pour résoudre les équations différentielles du mouvement dans plusieurs 

types de champs magnétiques. Plus spécifiquement, nous considérons le mouvement des particules 

dans un champ magnétique avec un gradient constant, dans le plan équatorial d’un 

dipôle magnétique, dans le plan équatorial d’un champ non axisymétrique, ce qui est représentatif 

de l’étirement de la magnétoqueue, et pour un dipôle magnétique en trois dimensions. Les 

équations du mouvement des particules possèdent des solutions analytiques pour certain de ces 

champs que nous décrivons et utilisons dans notre analyse. Pour les deux premiers types de champs, 

nous examinons en détail plusieurs méthodes de sélection des points d’initialisation pour 

l’approximation du CG en nous basant uniquement sur la position et le vecteur vitesse initiaux de 

la particule. Nous avons établi plusieurs options cette initialisation et nous discutons les effets de 

ce point initial sur l’exactitude du calcul de la vitesse de dérive. Nous considérons aussi la 

possibilité de reproduire exactement le moment magnétique, la vitesse de dérive et la période de 

rotation. Puisque la conservation du moment magnétique, aussi appelé le premier invariant 

adiabatique, est une hypothèse essentielle utilisée pour l’approximation du CG, nous discutons en 

détail l’exactitude de sa conservation. Pour les champs magnétiques axisymétriques et non 

axisymétriques, la conversation du moment angulaire canonique et ses effets sont aussi 

discutés. Pour analyser l'effet de l'asymétrie sur ces quantités conservées, nous simulons une le 

mouvement d’une particule de plasma traversant la magnétoqueue pour laquelle trois modèles 

différents sont considérés. Afin d'évaluer l’exactitude de l'approximation CG, nous considérons un 

ensemble de particules qui ne diffèrent que par leur phase initiale. De telles particules sont 

indiscernables dans la théorie CG car l'approximation CG ramène toutes les phases sur la même 

trajectoire GC. Ainsi, en analysant les effets de phase, nous illustrons minutieusement les limites 

de l'approximation CG. Grâce à ce processus, nous avons pu quantifier l'erreur séculaire que 

l'approximation CG entraîne à chaque période de dérive. Nous constatons que dans certains cas, si 

le champ magnétique est une fonction lisse des coordonnées, les erreurs dans l'approximation CG 

sont exponentiellement petites pour la vitesse de la particule. Dans d'autres cas, si le champ 

magnétique est représenté par une fonction linéaire par morceaux, ces erreurs sont proportionnelles 

à une certaine puissance de la vitesse de la particule. Enfin, nous avons testé l'hypothèse de la 

théorie CG selon laquelle l'angle d’attaque équatorial est une quantité conservée. Bien que cette 

erreur diminue également avec la vitesse de la particule, il existe des variations notables de l'angle 

d’attaque pour des traversées consécutives du plan équatorial, même pour des vitesses relativement 

faibles. Nous quantifions la déviation de l'angle d’attaque équatorial pour une période de rebond 

en fonction de la vitesse. Les résultats obtenus dans cette thèse peuvent être utilisés pour estimer 

l’exactitude de l'approximation du centre guide dans une variété de champs magnétiques. 
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v(ṙ) 

v0 

v* 

v∥ 

v⊥  

Taylor expansion of magnetic moment up to second-order term 

exact expression for the magnetic moment 

normal to magnetic field line that lies in the r-z plane  

elliptic characteristic  

is ultimately smaller than 

is of the same order as  

gyrofrequency  

colatitude angle measured from the positive z-axis 

bounce frequency 

drift frequency 

canonical (generalized) momentum  

canonical momentum in the y-direction 

canonical angular momentum in the φ direction 

azimuthal angle measured counter clockwise from the positive x-axis  

drift invariant (3rd adiabatic invariant) 

scalar potential 

elliptic integral of the third kind 

charge  

radius  

initial position/radius  

radial position where v is directed in radial direction 

equatorial radius  

gyroradius/Larmor radius  

gyrocenter  

maximum trajectory bounds in the radial direction 

minimum trajectory bounds in the radial direction 

radial position where Td = Td_Exact 

radial position where Tg = Tg_Exact 

radial position where μ0 = μExact 

radians 

radius of Earth at the equator (6378km) 

radius of x and y components in 3D  

arc length  

arc length between mirror points  

sign of 

time 

period 

bounce period  

drift period 

exact expression for drift period  

gyroperiod  

exact expression for gyroperiod  

tangential to the magnetic field line that lies in the r-z plane  

velocity  

initial velocity  

velocity of circular motion at r∗ 

velocity parallel to magnetic field lines  

velocity perpendicular to magnetic field lines  



xii 

 

vn  

vx(x') 

vy(y') 

vz  

vC  

vD  

vD_Exact  

vG  

vφ  

W  

x   

x0 

xmax  

xmin  

xTg 

xVD  

xμ  

ξ   

Ξ  

y0  

y  

z0  

z  

 

velocity normal to magnetic field line that lies in r-z plane 

velocity in x-direction  

velocity in y-direction 

velocity in z-direction 

curvature drift velocity  

drift velocity  

exact expression for drift velocity  

gradient drift velocity  

velocity in the φ direction 

kinetic energy  

position in x-direction 

initial position in the x-direction 

maximum trajectory bounds in x 

minimum trajectory bounds in x  

x position where Tg = Tg_Exact 

x position where vD = vD_Exact 

x position where μ0 = μExact 

angle between r and v vectors measured counterclockwise 

elliptic integral of the second kind 

initial position in the y-direction 

position in y-direction 

initial position in z-direction 

position in z-direction 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

1. Introduction  
1.1 Research Motivation  
 

 My desire to research this thesis topic stems from my two strongest educational interests. 

The first is my passion for space. Growing up my childhood love for science fiction instilled in me 

a sense of exploration and an aspiration to improve myself. This conviction is what motivated me 

to understand the world around me on both a microscopic and macroscopic scale, as represented 

by the study of the atom and space in my degree pursuits of chemical engineering and space 

physics. My secondary passion is nuclear fusion, which is derived from my interests in the atom. 

It is the overlap of these two interests which led me to choose a thesis that involved both plasma 

physics and magnetic fields. This is because current techniques for achieving sustained nuclear 

fusion involve the use of magnetic fields to confine plasmas, while the significance of plasmas and 

magnetic fields in our universe is prevalent. If one-day nuclear fusion becomes viable as a means 

of spacecraft propulsion then it would be my dream to work in that field. In the meantime, I hope 

I can help accelerate this reality or at the very least learn enough to understand it. Lastly, my desire 

to explore boundaries while pushing my own is one of the reasons I chose to pursue a master’s 

degree in a difficult subject like physics. It was a test to simply prove to myself that I can do it.   

 

1.2 Scope and Objectives  
 

Around 99% of the matter in the known universe is made out of plasma, the fourth state of 

matter [1]. Due to this vast amount of matter, there are various types of plasmas found in the 

universe. These include, but are not limited to, artificial plasmas such as lasers and ion thrusters, 

terrestrial plasmas such as lightning and fire, and space plasmas such as the ionosphere, 

plasmasphere, the Van Allen belts, the ring current, the plasma sheet the magnetosheath and the 

sun. In general, most plasmas in the universe originate from the sun in the form of solar wind, 

coronal mass ejection, cosmic rays and solar radiation which ionizes the atmosphere of planets. An 

illustration of some of the plasmas surrounding Earth is given in Figure 1.1. 

 

A plasma is an ionized gas and thus it is uniquely susceptible to the effects of an externally 

applied electromagnetic force. This ionized nature makes plasma particles charge carriers. Due to 

this charge it is known that at rest a plasma particle generates a local electric field, while in motion 

it generates a local magnetic field at right angles to the electric field and velocity  [3].  Due to the 

various types of plasma, there are four main subcategories used for studying the motion of plasmas 

in electromagnetic fields. These are single-particle motion, magnetohydrodynamics, multifluid 

theory and kinetic theory. In single-particle motion we neglect the collective behaviour and assume 

an environment without collision. This is often used in low-density plasmas. On the other extreme, 

we have magnetohydrodynamics which is good for understanding collective behaviour and 

averages values such as density and velocity. It is suitable for highly conductive plasma with low 

wave frequency. Multi-fluid theory is similar to magnetohydrodynamics but takes into account the 

effects of different particles within the plasma. This is suitable for high-frequency wave 

propagation as the differences in components of the plasma cause the high-frequency waves. 

Lastly, we have the kinetic theory which relies on a statistical approach, rather than solving the 

Equations of motion. It requires certain simplifying assumptions and thus there are different 

‘flavours’ of kinetic theory [1].  
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Figure 1.1: Near-Earth space environment highlighting the location of various plasmas [2]. 

 

In this thesis, we focus on studying the high-energy Van Allen belt plasmas which are 

confined by Earth’s magnetosphere, the locations of which were illustrated in Figure 1.1. To study 

these plasma particles, it is common to view them from the perspective of single-particle motion, 

thus, an environment without collision is assumed. In addition, the single-particle theory is only 

valid for modelling plasmas where diamagnetism is assumed to be negligible [3]. This occurs when 

the electromagnetic field produced by the motion of the charged particle is small relative to the 

applied field guiding its motion [3]. Van Allen belt particles meet this condition as their local 

electromagnetic fields are small relative to Earth. Overall a basic review of single-particle motion 

is needed to understand the motion of Van Allen belt particles in Earth’s magnetic field. In three 

dimensions the motion of a plasma particle moves in three distinct ways. In order of decreasing 

frequency the first distinct motion is the gyration around magnetic field lines. The second is the 

bouncing between mirror points along magnetic field lines. The third is the drift around the Earth 

as a result of the magnetic field gradient and curvature. All of these motions are explained in more 

detail throughout the thesis. What is important to know is the higher frequency gyrations make 

modelling these plasma particles computationally resource intensive. A common approach to avoid 

this is using the guiding center (GC) approximation to eliminate the gyrating motion. This is done 

by assuming the particle lies on a GC within the gyrating path of the particle.  However, the validity 

of this approximation is inversely proportional to the energy of the plasma particle. This is why we 

are particularly interested in the high-energy Van Allen belt particles.  
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In this thesis our main objective is to study and improve upon the applicability of the 

guiding center (GC) approximation for modelling high energy particles. We do this by analyzing 

various GC initialization options, the underlying assumptions of GC theory and by quantifying 

errors associated with the GC approximation, in relation to the actual motion of the plasma particle. 

This provides those that wish to implement the GC approximation, under any particular study, to 

do so with a predictable scale of deviation from the actual motion of the plasma particle.  

 

1.3. Thesis Outline  
 

 In this thesis we solve differential equations of motion numerically to model the 

trajectories of plasma particles and their GC approximation.  This is done to evaluate the accuracy 

of the GC approximation at high energies and to quantify secular errors that accumulate as a result 

of the underlying assumption of GC theory. Before our analysis, we present the basics of plasma 

physics theory to establish the fundamental knowledge needed for understanding this thesis. In the 

overview of the theory, we discuss the motion of plasma particles in magnetic fields, how the GC 

theory allows for the approximations of said motion, the conserved quantities upon which the GC 

approximation is based and the numerical integrator used to generate our models. Additionally, we 

briefly touch on elliptic integrals as they are expressed in a short-handed form in various analytical 

solutions within this thesis.  

 

 We start with the two-dimensional motion of a plasma particle in a magnetic field with a 

constant gradient. This is done because any two-dimensional magnetic field can be locally 

approximated by a field with a constant gradient. Here we evaluate various locations to initialize 

the GC approximation based solely on the initial position and velocity vectors. The results are then 

measured against the actual trajectory of the particle to establish the accuracy of the GC 

approximation, particularly at higher velocities.  

  

In the second section we analyze the motion of a plasma particle confined to the equatorial 

plane of a magnetic dipole. This is done to simulate a more Earth-like environment since at 

distances less than four Earth radii, RE = 6,378km, the terrestrial magnetic field lines are often 

approximated as a magnetic dipole [4]. This is visualized in Figure 1.2 below. 

 

Our choice to confine the particle to the equatorial plane is due to the desire to employ 

analytical equations that exist for equatorial mirroring particles.  Again, we follow the same process 

as the first section and evaluate various locations to initialize the GC approximation. The section 

is applicable for modelling high-energy plasma particles trapped in the inner Van Allen belts shown 

in Figure 1.1. 

 

In the third section we evaluate the motion of a plasma particle confined to the equatorial 

plane of a non-axisymmetric magnetic field. This is done to simulate the outer sections of Earth’s 

magnetic field since the terrestrial magnetic field lines start to compress on the dayside and stretch 

on the nightside at distances greater than four RE as a result of solar wind pressure. This effect is 

also visualized in Figure 1.2. To introduce this asymmetry we add a magnetotail component to our 

dipole magnetic field. This is done using three different magnetotails for thoroughness, as space 

weather causes the shape of the magnetotail to be dynamic [4].  Additionally, we relied on magnetic 

field symmetry on the dayside to apply conserved quantities used in previous Sections. Thus we 

analyze the effects asymmetry has on these conservated quantities by modelling a particle for one 

drift period. Allowing it to transverse a dipole field on the dayside and a non-axisymmetric 
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magnetotail on the nightside. Quantifying these effects allows us to demonstrate the deviation of 

the GC approximation from the real trajectory when applied in non-axisymmetric conditions. 

Specifically, this section is applicable for modelling high-energy plasma particles trapped in the 

outer Van Allen belts shown in Figure 1.1. 

 

 
Figure 1.2: Compression and stretching of Earth’s magnetic field lines [1]. 

 

 In the fourth section we evaluate the motion of a plasma particle in three dimensions of a 

magnetic dipole. This is done to simulate a more Earth-like environment as it is rare for particles 

to be confined to the equatorial plane. Like the previous section it also allows us to evaluate the 

deviation of the GC approximation from the real trajectory. This is based on the GC theory 

assumption that the equatorial pitch angle is a conserved quantity. In this section we show that the 

actual motion of a plasma particle results in a changing equatorial pitch angle. We thus quantify 

this error to improve upon GC Equations. Though this section uses a magnetic dipole, which is 

more applicable in modelling the inner Van Allen belt high energy particles, we explore aspects of 

outer Van Allen belt particles as well. One example is the exploration of the upper limit of energies 

found in both Van Allen belts. For the inner Van Allen belt, this is 100 keV and 100 MeV for 

electrons and protons respectively, while the outer Van Allen belt contains mostly electrons at a 

maximum energy of 10 MeV [2].  
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2. Theory 
2.1 Lorentz Force  
 

We begin with a brief review of Lagrangian mechanics. To understand the motion of an 

object as it moves through space, with respect to time, a relationship between position, velocity 

and acceleration is needed. This is normally done in classical mechanics with Newton’s Equations 

of motion, but these Equations are dependent on the coordinate system. In contrast, the Euler-

Lagrange equation takes the same form in any system, regardless of the coordinates chosen. The 

Euler-Lagrange equation is more common in classical and analytical mechanics because of this 

and is given by Equation (2.1) [5]. Here r represents the position of the object, in our case the 

plasma particle, and the time derivative, velocity, is denoted with the standard dot above. In all 

equations, the bolded terms represent vectors to distinguish from scalar variables. 

 

 d

dt
(
∂L

∂ṙ
) = 

∂L

∂r
 

(2.1) 

In this equation, L represents the Lagrangian which is given by Equation (2.2) for our 

electrodynamic case [5]. In electrodynamics, the potential energy contains both the vector potential 

A(r, t) and scalar potential Φ(r, t) associated with the magnetic and electric fields respectively. In 

addition, m is mass and q is the charge of the plasma particle.  

 

 
L = 

mṙ2

2
 + q(ṙ · A - Φ) 

(2.2) 

From Maxwell's Equations, we know the expressions for the magnetic field strength (B) 

and electric field strength (E) are given in terms of their respective potentials as demonstrated in 

Equations (2.3)and (2.4) respectively.  

 

 B = ∇ x A  (2.3) 

 
E = -∇Φ - 

∂A

∂t
 

(2.4) 

Applying the Lagrange to the Euler-Lagrange Equation yields the electromagnetic 

Equation of motion known as the Lorentz force. This force governs the motion of a charged particle 

moving in an electromagnetic field and is given by Equation (2.5) below [1].  

 

 
F = 

d(mv)

dt
 = q(E + [v × B]) 

(2.5) 

In this Equation, v is the velocity of the particle. In this thesis, only the effects of B are examined, 

and therefore E is set to 0 for all cases analyzed. This means that Φ = 0 and A is independent of 

time. Under this condition, the magnitude of the velocity vector and the kinetic energy of the 

particle remains constant, as a magnetic field can not do work on a particle. This is proven by dot-

multiplying Equation (2.5) by velocity and integrating it once [1]. Since v is constant than it should 

be noted that m in Equation (2.5) can be taken outside the derivative.  
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 Due to the absence of E Equation (2.5) is valid to use for both relativistic and non-

relativistic plasma particles so long as the relativistic definition is used for the mass. This is needed 

because the mass of relativistic particles deviates from the rest mass (m0) of a particle at sufficiently 

high velocities. Since E = 0 throughout this thesis, the relativistic factor (γ) is also constant for any 

particular v.The relativistic mass is given by Equation (2.6), where and c is the speed of light [6].  

 

 m = γm0= 
m0

√1 - 
v2

c2

 (2.6) 

2.2 Motion in Uniform Magnetic Field  
 

 The direction the Lorentz force acts on a charged particle is at right angles to both the 

velocity and the magnetic field vectors. In the simplest case, a magnetic field with a constant 

strength causes a charged particle to gyrate in a circular motion when the velocity is directed 

perpendicular to the magnetic field lines. This gyrating motion is periodic and thus the time it takes 

for a charged particle to complete one gyration is known as the gyroperiod.  The reciprocal of this 

is known as the gyrofrequency and it is displayed along with the gyroperiod below in Equations 

(2.7) and (2.8) respectively [3]. 

 

 
ωg = 

|q|B

m
 

 

(2.7) 

 
Tg = 

2π

ωg

 

 

(2.8) 

In addition, the distance between the particle at any point along its trajectory and the center 

of its rotation is known as the Larmor radius or gyroradius. The analytical solution for this radial 

distance is given by Equation (2.9), where v⊥ is the perpendicular velocity relative to B [3].  

 

 rg = 
mv⊥

|q|B
 

 

(2.9) 

This gyrating motion is illustrated for both a proton and an electron in Figure 2.1, where 

the rest mass used is 1.673⋅10−27 kg and 9.109⋅10−31 kg respectively. In addition, the magnitude of 

the charge used is 1.602⋅10−19 C. In Figure 2.1 the dependence of the Lorentz force on both the 

mass and the charge of the particle is displayed. Where the sign of the charge affects the direction 

of rotation. While the mass is inversely proportional to the acceleration caused by the Lorentz 

force. Based on Equation (2.9) this would result in a gyroradius difference too large between an 

electron and a proton to be visualized since the rest mass of a proton is roughly 1850 times that of 

an electron.  To counteract this the electron was initialized with 10 times the energy, with the proton 

and electron being assigned energies of 1 MeV and 10 MeV respectively. At these energies, the 

proton is non-relativistic while the electron is relativistic. The velocity associated with this kinetic 

energy is directed in the XY plane. The magnetic field strength was given a value of 0.1 T and was 

directed in the positive z-direction. Compared to the magnetic fields in space a 0.1 T magnitude is 

much stronger and is used here only for illustration purposes. Under these conditions, the 
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corresponding Tg and rg for the proton are 6.57⋅10−7s and 1.45 m respectively. For the electron, Tg 

and rg are 7.34⋅10−9s and 0.35 m respectively. 

  
Figure 2.1: Gyration of charged particles in a uniform magnetic field. The ion is initiated with m0 = 1.673⋅10−27 

kg, q = 1.602⋅10−19 C r0 = [10, 0] m, v0 = [0 , 1.3828⋅107] m/s. The election is initiated with m0=1.673⋅10−27 kg, q = -

1.602⋅10−19 C, r0 = [15, 0] m, v0 = [0,  2.9964⋅108] m/s. The magnetic field is out of the page with Bz = 0.1 T. The 

gyration of the ion is shown in blue and the electron in red.  
 

In the event the plasma particle velocity has components in both the perpendicular and 

parallel directions, with respect to the magnetic field lines, then the motion of the plasma particle 

is helical. This is visualized in Figure 2.2 by using the proton with the same conditions as Figure 

2.1 and distributing 10% of the total velocity to the parallel velocity (v∥). The arrow represents a 

single magnetic field line passing through the gyrocenter of the particle.  

 

Lastly, the angle made between the velocity vector and the magnetic field vector is known 

as the pitch angle (α) and is defined by Equation (2.10) [1]. The pitch angle is an important quantity 

and is extensively used in Chapter 6. 

 

 
α =  cos−1 (

v · B

|v||B|
)  =  tan−1 (

v⊥

v‖
) 

 

(2.10) 
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Figure 2.2: Helical trajectory of an ion in a uniform magnetic field. The ion is initiated with m0 = 1.673⋅10−27 kg, 

q = 1.602⋅10−19 C r0 = [10, 0] m, v0 = [0,  1.2445⋅107, 1.383⋅106] m/s. The magnetic field is out of the page with Bz = 

0.1 T. The trajectory of the ion is shown in blue and a magnetic field line in black. 

  

2.3 Guiding Center (GC) Approximation 
  

In this section, we introduce the basics of the GC approximation. Using Equation (2.5) it 

is possible to model the exact particle motion to complete specification. However, in many cases 

of practical importance, its direct numerical solution is too time-consuming. For example, the 

gyroperiods calculated in Figure 2.1 were 6.57⋅10−7s and 7.34⋅10−9s for the proton and electron 

respectively. This requires a lot of computational power because numerical time steps need to be 

significantly smaller than the gyroperiod.  The GC approximation allows for a significant reduction 

in this computational time by averaging over the gyroperiod. In this approach, the particle is 

effectively collapsed into the gyrocenter. This is the most common way of tracing particle motion 

in Earth’s magnetosphere. For example, the energetic plasma particles trapped in the Van Allen 

belts.  Overall a thorough assessment of the GC accuracy is the main goal of this thesis. 

 

In Figure 2.2 the arrow representing the magnetic field line also doubles as a visualization 

of the moving center of the rotation for the plasma particle. In plasma physics this is commonly 

referred to as the gyrocenter. The gyrocenter is a vectorized form of the gyroradius Equation and 

is given by Equation (2.11) below [7].  

 

 rgc = r + 
m

qB2
[v × B] (2.11) 
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For the case of a uniform magnetic field, the gyrocenter of a particle is a straight line 

coinciding with the magnetic field line passing through the center of the helix of the particle 

trajectory. Knowing this, it becomes possible to replace the helical motion of the charged particles 

with a simple line that acts to approximate the real trajectory. This serves as an example of what is 

being attempted by the GC approximation. If the magnetic field is nonuniform the position of the 

instantaneous gyrocenter throughout the particle motion follows a more complicated trajectory. 

However, in many cases, the motion of a particle is represented as a fast gyration around the 

relatively slow-moving center of gyration. This is the essence of the GC approximation. In the 

simplest form of the GC approximation, it is common to average over the gyrations and assume 

that the particle is collapsed into the GC. In practice, this means only the GC trajectory is examined. 

One disadvantage of this is the loss of gyration differences across phases since the GC converges 

at the same point for all phase variations [6]. 

 

Overall, the GC approximation is applicable when the gyrations about the GC are relatively 

much faster than the drift of the GC. In addition, to apply the GC in a time-dependent magnetic 

field the field variation over the gyroradius should be small. Therefore, the validity of the 

approximation decreases as the velocity, or energy, of the particle increases [6]. To determine the 

independent Equations of motion for the GC, the particle motion must be examined under all non-

uniform magnetic field circumstances. Commonly these Equations of motion are known as drifts.  

In a non-uniform magnetic field, the magnetic field strength is a function of the position of the 

particle. Under this condition, when the velocity is initialized perpendicular to the magnetic field, 

like in Figure 2.1, the gyrating motion of the charged particle becomes cycloidal due to the change 

in the magnetic field strength changing the magnitude of the Lorentz force. Applying a magnetic 

field with a constant gradient that increases as a function of x allows for a visualization of this 

cycloidal motion in Figure 2.3. Here the conditions are the same as in Figure 2.1, except now Bz = 

(0.1 + 0.01x) T and the energy of both particles are increased by a factor of four for ease of 

visualization. The gyrocenter in black is governed by Equation (2.11). The magnetic field here is 

just used as an illustration, this type of field is discussed in detail in Chapter 3 of this thesis. 

 

In Figure 2.3 the addition of the black line shows that the gyrocenter moves roughly along 

the center of a charged particle trajectory, though not exactly, as was the case with a uniform 

magnetic field. Therefore, in a non-uniform field, the variation of the gyrocenter illustrates the 

increased difficulty in applying the GC approximation, as there is no longer a single x position in 

which the gyrocenter remains. In general, the variations of the gyrocenter are a result of magnetic 

field inhomogeneity, measured in any direction.  This magnetic field gradient causes the charged 

particle's gyroradius to decrease in areas of stronger magnetic field strength, and increase in areas 

of weaker magnetic field strength. This is demonstrated by the formation of cusps along the 

gyrocenter. Overall this gradient causes a net drift perpendicular to both the magnetic field vector 

and the associated magnetic gradient. This net drift is what is being approximated by the GC 

gradient drift equation. In Figure 2.3 this corresponds to a net drift in the y-direction, as the gradient 

is in the x-direction and the magnetic field is in the z-direction. The opposite direction in drift is a 

result of the drift equation being a function of the charge as displayed in Equation (2.12) [8]. Here 

𝛁𝐵 is the gradient for the magnitude of the magnetic field. 

 

 
vG = 

mv⊥
2

2qB3
[B × ∇B] 

(2.12) 
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Figure 2.3: Gyration of charged particles in a non-uniform magnetic field. The ion is initiated with m0 = 

1.673⋅10−27 kg, q = 1.602⋅10−19 C r0 = [10, 0] m, v0 = [0 , 2.7590⋅107] m/s. The election is initiated with 

m0=1.673⋅10−27 kg, q = -1.602⋅10−19 C, r0 = [15, 0] m, v0 = [0,  2.9998⋅108] m/s. The magnetic field is out of the 

page with Bz = (0.1 + 0.01x)  T.  The trajectory of the ion is shown in blue, the electron in red and their 

gyrocenters in black. 

  

 The gradient drift is proportional to the kinetic energy of the particle in the perpendicular 

direction, which is due to the particle experiencing more inhomogeneity by travelling farther along 

the gradient. Additionally, charged particles drifting in opposite directions cause a current to form.  

 

When the magnetic field is perpendicular to a certain plane the gradient drift becomes the 

only drift experienced by the particles moving in this plane. A common example of this is the 

magnetic equatorial plane of a dipole field. Particles confined to the equatorial plane of a dipole 

field are discussed in Chapters 4 and 5. 

 

The next GC Equation of motion becomes applicable when the charged particle moves 

along the magnetic field lines and the field lines are not straight. This is the drift due to the curvature 

of the magnetic field lines. Similar to gradient drift, the curvature drift also contributes to the ring 

current and drift velocity, which is why it is often combined into one Equation. Unlike the gradient 

drift, the curvature drift is derived from the parallel kinetic energy component of the particle. Due 

to this motion along the curved line a centripetal force is experienced [1]. The resultant drift is 

shown below in Equation (2.13) [8].  
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vC = 

mv‖
2

qB3
[B × ∇B] 

 

(2.13) 

Overall, the curvature drift is proportional to the kinetic energy of the particle in the 

parallel direction. It is directed at right angles to the radius of curvature and the magnetic field 

lines. Additionally, magnetic field curvature also contributes to current formation. Current 

formation as a result of magnetic curvature and gradients is how the ring current of Earth is formed, 

this was illustrated in Figure 1.1 [1]. In the event the magnetic field is cylindrically symmetric it 

becomes possible to combine the gradient and curvature drift equations into one governing 

equation of motion. This is done because, under this condition, the direction of both drifts is the 

same. The resultant total magnetic drift Equation is given by Equation (2.14).  

 

 

vD = 
m (v‖

2 + 
1
2

v⊥
2)

qB3
[B × ∇B] 

 

(2.14) 

Other common guiding center drifts, include but are not limited to, the E x B drift, the 

polarization drift and the gravity drift. The E x B represents the direction of drift when an electric 

and magnetic field contributes to the Lorentz force. While E accelerates a particle along the electric 

field vector, B rotates the particle, as previously displayed in 2 and Figure 2.2. Once turned the 

electric field acts to decelerate the particle. This drift is not charge or mass dependent. The 

polarization drift is applicable when there are slow time variations in the electric field. The 

direction of this drift is along the same vector line as the electric field and depends on the charge. 

Usually, an oscillating electric field causes the polarization drift to oscillate with a 90o phase shift. 

This drift is also proportionate to mass and therefore the polarization current is mainly carried by 

the ions. Lastly, gravity drift acts in the direction perpendicular to both the gravity vector and the 

magnetic field. It is charge dependent and proportionate to the mass. Like the polarization drift, the 

difference in mass means the gravitational effects on electrons are ignored [1].  Overall the E x B 

and polarization drifts are not discussed in this thesis because we restrict our study to the E = 0 

condition. The gravity drift is ignored due to it being typically much weaker than the other Equation 

of motion [1]. The only exception to this is near strong gravitational fields, such as the surface of 

a sun, however, conditions such as this are not examined in this thesis. 

 

2.4 Canonical Momentum   
 

An important quantity defined in Lagrangian mechanics is the generalized canonical 

momentum (P). This generalized momentum, canonically conjugate to r, is given by Equations 

(2.15) and (2.16) [9]. 

 

 dP

dt
 = 

∂L

∂r
 

(2.15) 

 
P = 

∂L

∂ṙ
 = mv + qA 

(2.16) 

In the case that the Lagrangian does not depend on the coordinate r, which in our case 

means that A does not depend on r, then the corresponding Lagrange Equation becomes dP/dt = 0 
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and P is always a conserved quantity. If the magnetic field possesses some form of symmetry, such 

as axial symmetry, then there are conserved components of the canonical momentum. Magnetic 

fields discussed in Chapters 3, 4, 5 and 6 all have some form of symmetry, and conservation of the 

corresponding components of P are important in the discussions of these Chapters. If the 

Lagrangian does depend on r then the canonical momentum conjugate to this coordinate is not 

conserved. 

 

For two-dimensional problems the conservation of P allows, at least in principle, to reduce 

the integration of the equations of motion to quadratures. In three dimensions, however, there are 

never enough known conservation laws to integrate the equations of motion completely. 

Nevertheless, even in three dimensions, the conservation of P allows us to show that the motion of 

a particle is restricted to certain areas. Finally, it is used for assessment of the accuracy of the 

numerical method used to integrate the equations of motion in Chapters 3, 4, 5 and 6.   

 

2.5 First Adiabatic Invariant, Magnetic Moment 
 

In addition to the canonical momentum, another relevant quantity defined in classical 

mechanics is the adiabatic invariant. An adiabatic invariant is a quantity that varies very slowly 

relative to the changing system. It is known that the motion of a charged particle in an external 

magnetic field is periodic and that for every periodic motion, there is an associated adiabatic 

invariant (I) [9]. The general form, for all of the adiabatic invariants, is given by Equation (2.17) 

[5]. It should be noted that this equation can also be written as a definite integral when the 

conservation of canonical angular momentum is conserved under the assumption magnetic fields 

are axisymmetric straight lines [10]. 

 

 
 I= ∮ P dr 

(2.17) 

The first adiabatic invariant is associated with the periodic motion of a particle gyrating 

around a magnetic field, as in Figure 2.1. This quantity is known as the magnetic moment of the 

particle when the field is uniform. It is often interpreted as the product of the current loop about 

the magnetic field and the area encompassed by this loop.  It is given by Equation (2.18) [1]. For a 

non-uniform field Equation (2.18) represents the permeability of a vacuum μ and has a value of 

4π∙10−7 N/A2 [1]. The magnetic moment, in this case, is more complicated and is discussed later in 

this sub-section.  

 

 
µ

0
 = m

v⊥
2

B
  

 

(2.18) 

It should be noted here that the normalization for the magnetic moment varies in literature, 

in Equation (2.18) we define normalization as the constant value terms in front of v⊥ 
2/B. A 

normalization of m was chosen in this paper for both simplicity and unit consistency. The 

importance of the conservation of the magnetic moment is that it is the basis of the GC 

approximation, since the collapse of all phases onto the GC is only allowed if μ0 is conserved [11]. 

We are thus constrained to systems that conserve the magnetic moment to apply the GC 

approximation. Therefore, it should be noted that one condition where the magnetic moment 

becomes invalid is when the time variation of the magnetic field becomes comparable to the 
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gyrofrequency [3]. Overall, the GC approximation is widely used in plasma physics which is 

examining the conservation of μ0 is important.  

 

For any non-uniform magnetic fields, Equation (2.18) only represents the first term in an 

infinite Talyor series expansion. In addition, an exact expression for the adiabatic invariant can be 

calculated analytically, but only exist for a few specific magnetic fields [9]. While the Taylor series 

expansion applies more generally. The Taylor series of the magnetic moment needs to be examined 

in this paper since the validity of the GC approximation depends on the magnetic moment. For 

high energies, this requires more accurate forms of the magnetic moment.  For general magnetic 

fields, the Taylor series expansion has been solved up to the second-order term. The generalized 

form, with our normalization factor m, is given by Equations (2.19), (2.20) and (2.21). This 

Equation only remains valid for static magnetic fields with axial symmetry [12]. 

 

 
µ = µ

0
 + 

m

q
µ

1
 + (

m

q
)

2

µ
2
 

 

(2.19) 

 
µ

1
 = 

m

B2
((

2sinθ

r
 + 

1

B

∂B

∂τ
) v⊥v‖vφ - 2 (

∂θ

∂τ
) v‖

2vφ - 
1

B
(

∂B

∂n
) (v⊥

2 + vφ
2)vφ) 

 

(2.20) 

 µ
2
=

m

B3
(a1v‖

4 + a2v‖
3vn + a3v‖

2vn
2 + a4v‖

2vφ
2 + a5v‖vn

3 + a6v‖vnvφ
2 + 

a7vn
4 + a8vn

2vφ
2 + a9vφ

4) 

 

(2.21) 

Here expressions for the first-order and second-order Taylor series expansions are 

expressed in cylindrical coordinates r, φ, z. Additionally, τ and n represent the tangential and 

normal directions relative to the magnetic field line that lies in the r-z plane, making an angle θ 

with the z-axis. In relation to this magnetic field we define v⊥
2 = vn

2 + vφ
2.  The a coefficients for 

the second-order expansions are found in Gardner [12]. 

 

For a uniform magnetic field Equation (2.19) simplifies to Equation (2.18) and represents 

the exact solution of the magnetic moment. However, if the magnetic field is non-uniform, then μ0 

oscillates at the gyrofrequency around an exact solution. Exact analytical expressions for the first 

adiabatic invariant were developed for the magnetic field with a constant gradient and the 

equatorial plane of the magnetic dipole [11]. They are discussed further in Chapters 3 and 4.  

 

One of the main benefits of all adiabatic invariants of motion is that they are approximately 

conserved in most non-static magnetic fields. The main condition for this is that the time variations 

of the system are relatively slow.   If we make B functions of time then it is true that as t approaches 

-∞ or ∞ then I(t = -∞) ≈ I(t = ∞). Here I is used simply as an example for any adiabatic invariant. 

Assuming these time variations are smooth, or all-time derivatives of B(t) and E(t) are continuous, 

then the adiabatic invariant is conserved exponentially well for any n-th derivative. If ε represents 

how fast the magnetic field changes, with ε being proportional to the maximum of the time 

derivative, we can write ΔI = I(t = ∞) - I(t = -∞) = o(εn).   In the event of a discontinuity at the n-th 

derivative then the difference between I(t = -∞) and I(t = ∞) becomes algebraic ΔI = O(εn) [11]. 

The notation used here is standard for describing the rate at which a function changes as its 

argument grows or shrinks. Where O means ‘is of the same order as’ and o means ‘is ultimately 
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smaller than’ [13]. If the normalized difference of the magnetic moment, Δμ/μi, is graphed against 

a range of ε it is shown that for a continuous function Δμ/μi is proportional to the generic 

exponential form e(#/ε). In contrast, the same process applied to a discontinuous piece-wise linear 

function follows the power-law form ε# [11].  

 

2.6 Other Adiabatic Invariants  
 

The first adiabatic invariant is associated with the periodic gyration of a particle around a 

magnetic field line already discussed. In many magnetic fields there are two additional periodic 

motions a particle exhibits. These are the bouncing between mirror points and the drift around the 

Earth, the motions of which are illustrated later when they become relevant. In addition to the first 

adiabatic invariant associated with the gyration of the particle, it is possible to define two more 

adiabatic invariants associated with the bounce motion and the drift motion. These are known as 

the second and third adiabatic invariants respectively. Although we do not use these expressions 

in this thesis, they are included here for completeness. The second and third adiabatic invariants 

are usually defined as Equations (2.22) and (2.23) and are alternatively called the longitudinal (J) 

and drift Φd invariants respectively. Here < > denotes the average, sm the magnetic field line length 

between mirror points and BE the magnetic field strength of Earth at the equatorial surface [1].  

 

 J = 2msm〈v‖〉 (2.22) 

 
Φd = 

2πm

q2
BEμ

0
 

 

(2.23) 

 It should be noted, that these expressions are not exact. Similar to Equation (2.18) they 

are just the first terms of asymptotic expansions for these quantities.  First and second-order 

corrections for the second and third adiabatic invariants are calculated in Siambis et al [14], 

Northrop et al [15] and Northrop et al [16]. 

 

2.7 Matlab 
 

Matlab is one of the most popular and common software packages for numerical 

engineering and scientific calculations. It is used in this thesis to analyze the motion of plasma 

particles in various magnetic fields. Matlab is used to solve the ordinary differential equations of 

motion numerically in various externally prescribed magnetic fields. The main tool used for this 

purpose is Matlab's ode45 subroutine. Ode45 solves non-stiff ordinary differential Equations with 

medium accuracy. Matlab does have other ordinary differential equation solvers for various 

accuracy requirements and stiff conditions, however, ode45 is always used first since it applies to 

most situations. For this thesis ode45 is sufficient.  

 

The numerical solutions implemented by ode45 use algorithms from the Runge-Kutta 

family [17]. Specifically, it uses embedded methods of the 4th and 5th order of Cash–Karp type. 

The difference between the 4th and 5th order solutions is used to adjust the time steps as needed to 

maintain the desired accuracy of the integrator, ensuring the outputted data is smooth. The accuracy 

settings in ode45 are controlled by setting the value of two parameters, the relative tolerance and 

the absolute tolerance of the integration. The relative tolerance is usually an adequate threshold for 

stopping the integrator when a solution has met the desired accuracy.  However, if the solution is 
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around 0 then absolute tolerance is needed. In this thesis, the relative and absolute tolerances are 

set to 10−10 and 10−14.  For reference, a tolerance of 10−3 in Matlab corresponds to a 0.1% accuracy 

[17]. To test the accuracy of this code we can use conserved quantities to estimate the numerical 

error of our Matlab simulation. This is demonstrated in Figure 2.4 below which shows the absolute 

numerical error in two conserved quantities. For this example, the magnetic field with a constant 

gradient in the x-direction from Figure 2.3 is used. For this field the conserved quantities are the 

velocity and the y-component of canonical momentum Py. Here it is shown that the code has a 

relative numerical error between the order of 10−11 and 10−13, which is more than sufficient for most 

purposes.  

 

 
Figure 2.4: Relative error in Py (left) and v (right). Same conditions as Figure 2.1 for ion. 

 

For most ode45 integration in this thesis, the runtime was in the order of seconds and 

minutes. However, for slow velocity particles that drifted around the Earth, the runtime increased 

to the order of hours. Most of these were run overnight due to this time limitation. The computer 

used to run these simulations was equipped with an AMD Ryzen 7 5700U processor and a 16 GB 

Radeon Graphics (1.80 GHz) RAM. This is a high-end commercially available laptop at the time 

of writing.  

 

Ode45 is used in two different modes. First, for some calculations, the numerical 

integration of ode45 is carried out for a specified time. Alternatively, ode45 allows for the ability 

to terminate the integration when a certain condition is reached, such as a single gyroperiod or a 

single drift period around the Earth. This is controlled using Matlab’s ‘events’ functionality. Ode45 

is used to integrate either Lorentz Equations of motion or GC Equations. In the case of the Lorentz 

equation of motion, both the initial position and velocities are needed. Ode45 then takes these 

initial conditions and applies them in a separate function that calculates the x, y and z components 

of the Lorentz acceleration. With the initial velocity, the solver uses the initial acceleration outputs 

to generate new position and velocity vectors. This process continues until the time limit or events 

condition is reached. Thus generating an array of position and velocity vectors that will be analyzed 

and visualized. For the GC Equations the process is the same, but only the initial position is needed 

as GC Equations are in terms of velocity. Matlab also has a built-in function for evaluating elliptic 

integrals, which are used in this thesis to evaluate the exact expression of the adiabatic invariant. 

This function takes the form [K, Ξ] = ellipke(k). Where the argument k ranges from 0 to 1, while 

K and Ξ represent the complete elliptic integrals for the first and second kind respectively.  
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2.8 Elliptic Integrals  
 

Elliptic integrals are used to calculate the arclength of an ellipse similar to how inverse 

trigonometric functions are used to calculate the arclength of a circle [18].  Elliptic integrals 

provide solutions to a wide set of problems. Using standard notation, we define the elliptic integral 

of the first kind in Equation (2.24), here k is the elliptic modulus and the specific formulations of 

k are introduced when needed in later chapters.  

 

 
K(k) = ∫

dt 

√(1 - t2)(1 - k
2
t2)

 
1

0

 

 

(2.24) 

In addition to the completed elliptic integral of the first kind there are two other complete 

elliptic integrals. The complete elliptic integral of the second kind is given by Equation (2.25) [18].  

 

 
Ξ(k)  =  ∫

√1 −  k2t2dt 

√1 −  t2
 

1

0

 
(2.25) 

The complete elliptic integral of the third kind is given by Equation (2.26), here η is the 

elliptic characteristic [18]. 

 

 
Π(η, k) = ∫

dt 

(1 - ηt2)√(1 - t2)(1 -k
2
t2)

1

0

  
(2.26) 
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3. Particle Motion in a Magnetic Field with a 

Constant Gradient  
3.1 Analysis of the Magnetic Field with Constant Gradient  
 

As an example, we analyze the motion of a particle in a magnetic field with a constant 

gradient. Although this magnetic field is very simple it is often used to illustrate the general 

properties of particle motion. Furthermore, any two-dimensional magnetic field can be locally 

approximated by a field with a constant gradient. The expression for the magnetic field used in this 

section is given by Equation (3.1), where the coordinate system chosen is cartesian (x, y, z). 

Properties of a charged particle moving in this magnetic field has been studied by Kabin [11], 

Brizard [19] and Seymour [20].  

 

 𝐁  = (B0 + βx) 𝐞̂𝐳 

 

(3.1) 

For this magnetic field we use generic units. B0 and β represent the constant and variable 

magnetic field strength respectively and are both set to a value of 1 for simplicity. The motion of 

a plasma particle in this field is constricted to the XY plane if the initial velocity of the particle is 

in the XY plane [11]. Therefore, it should be noted that velocity is always perpendicular to the 

magnetic field in this case. Applying the definition of a magnetic field given by Equation (2.3) it 

becomes possible to determine the magnetic vector potential presented below by Equation (3.2).  

 

 
A = (B0x + β

x2

2
) 𝐞̂𝐲 

 

(3.2) 

The vector potential is used to determine the canonical momentum established in Equation 

(2.16). However, since A depends on the x coordinate, but not the y coordinate, only the y-

component of the canonical momentum is conserved. Substituting Equation (3.2) into Equation 

(2.16) gives the following expression for Py.  

 

 
Py = mvy + q (B0x + β

x2

2
) 

 

(3.3) 

In Equation (3.1) the magnetic field has a value of 0 when x = -B0/β, for our field this 

corresponds to a value of x = -1. This location is known as the neutral line or magnetic field reversal 

line and it serves as an important distinction between two types of trajectories. The first are particles 

that do not cross this neutral line and the second are ones that do cross it. In this section, we only 

consider the motion of particles that do not cross the neutral line as the GC approximation does not 

work for neutral line crossing particles. In addition, particles that do not cross the neutral line are 

more typical in space physics [11]. The equation used to determine if a particle crosses the neutral 

line is given by Equation (3.4), where Δs represents the separatrix [11]. 
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Δs = B0

2 + 2
β

q
Py - 2 |

β

q
| mv 

 

(3.4) 

 Using the conservation of momentum, it is shown that if Δs > 0 then the trajectory of a 

particle does not cross the neutral line, and if Δs < 0 then it does. Separating these two types of 

trajectories is the neutral line where the Δs = 0. Neutral line crossing only occurs if the velocity is 

large relative to the initial x-position. The further from the neutral line, the larger v must be to cross 

it. This is because a higher v causes the gyroradius to increase, widening the trajectory until the 

point of crossing.  Examining the non-crossing neutral line particles exclusively shows that these 

particles drift in a strip parallel to the y-axis due to the gradient drift cross-product given in 

Equation (2.12). The edges of this strip are determined from the conservation of the canonical 

momentum and the fact that vx = 0 at the edge of the strip.  At the edge the velocity is directed in 

the y-direction, thus indicating the xmin and xmax positions relative to the neutral line. These bounds 

of motion are given by Equations (3.5) and (3.6), where sgn represents taking only the positive or 

negative sign from the expression within its brackets.    

 

 
xmin = 

2(Py - sgn(qB)mv)

qB0 + sgn(B0 + βx0)q√Δs

 

 

(3.5) 

 
xmax = 

2(Py + sgn(qB)mv)

qB0 + sgn(B0 + βx0)q√Δs + 4 |
β
q

| mv

 

 

(3.6) 

 Equation (3.6) further shows that particles not crossing the neutral line are always bound 

to some strip. In this field, no particle can approach x = ∞. This is implied by the fact the square 

root term cannot be negative for our case. This is the intuitive conclusion as well since the magnetic 

field equation is not bound by any y-location limits.   

 

 For magnetic field (3.1), it is possible to determine the exact expressions for both the 

gyroperiod and the drift velocity. Due to this, it is also possible to express the general solution for 

the equations of motion in terms of Jacobi elliptic functions. The period and the drift velocity are 

therefore expressed in terms of complete elliptic integrals [20]. These expressions are given by 

Equations (3.7) and (3.9).  

 

 
Tg_Exact = (xmax+

B0

β
)

k
2

v
K(k) 

(3.7) 

 k = 4
mv⊥

|q|Bmaxx
max

 (3.8) 

 

 
vD_Exact  =

Δy

Tg_Exact

 = sgn(qB)v (
2

k
2

[1 - 
Ξ(k)

K(k)
]  - 1) 

(3.9) 
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3.2 GC Approximation for the Magnetic Field with Constant Gradient 
 

 For the magnetic field defined in Equation (3.1), ∇B = [β, 0, 0], substituting this into 

Equation (2.12) we arrive at the following expression for the GC drift. 

 

 
𝐯D = 

mv⊥
2

2q(B0 + βx)
2

β eŷ 

 

(3.10) 

 For small velocities, Equation (3.10) is recovered by expanding Equation (3.9) into a 

Taylor Series. Similarly, the gyroperiod given by Equation (2.7) is reached by expanding Equation 

(3.7) for small velocities. It is important to note, that these expressions depend on the value x. For 

example, at xmin the guiding center drift velocity is at a maximum and at xmax the guiding center 

drift velocity is at a minimum. Therefore, it is important to use the correct initial x-position to 

initialize the GC to ensure that the GC does not overshoot or fall short of replicating the true 

trajectory of the particle. Finding the ideal x-position to initialize the GC is one of the main goals 

of this study. This is done exclusively using the initial particle position and velocity vectors. 

 

3.3 Detailed Examination of Particle Trajectory  
 

As an illustration, we initialize a particle with a position of r0 = [10, 0] and a velocity of v0 

= [0, -25], and a m0 = 1. The trajectory is shown in Figure 3.1 for multiple gyrations using q = 1 to 

represent an ion, the electron is not shown as the analysis is very similar. The main difference is 

the drift in the opposite direction, which was already illustrated in Figure 2.3. From this point 

forward only the ion is further analyzed, though the results of this chapter are still applicable to the 

electron. It should be noted that all trajectories for this case are initialized with the velocity in the 

negative y-direction.  

 
Figure 3.1: Trajectory of an ion in a magnetic field with a constant gradient. The ion is initiated with m0 = 1, q = 

1 r0 = [10, 0], v0 = [0 , -25]. The magnetic field is out of the page with Bz = (1 + x). The trajecory is shown in blue 

and gyrocenter in red. 
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In Figure 3.1  the particle trajectory in blue is determined by integrating the Lorentz force 

Equation (2.5) and the gyrocenter position in red is calculated using Equation (2.11). The change 

in the radius of curvature of the trajectory is a result of the magnetic field increasing in the positive 

x-axis direction. The elongated trajectory at xmin on the left, or the shortened trajectory at xmax on 

the right, is a result of the magnetic field getting stronger along the positive x-axis.  

 

The vertical drift in the y-direction of the particle is to be expected based on the magnetic 

field gradient Equation (3.10).  With the magnetic field in the z-direction and the gradient in the x-

direction, the particle must drift in the y-direction. The direction of motion along the y-axis is 

determined by the charge, with the ion drifting upward. Lastly, it should be noted that the ion is 

initialized at xmax for all figures in this chapter unless otherwise specified.  

 

For our purposes, it is sufficient to analyze the motion of the particle over a single 

gyroperiod. Although the analytical expression for the gyroperiod is available from Equation (3.7), 

we can easily terminate the numerical calculation using Matlab functionality. We initialize all 

particles in our simulation with vx = 0 and we implement in Matlab an events function that 

terminates the integration when the x component of the velocity reaches zero again. Since the 

motion in this magnetic field is exactly periodic, we do not need to analyze longer periods of time. 

A typical particle trajectory restricted to one gyroperiod is presented in Figure 3.2 for the same 

initial conditions given in Figure 3.1. 

 

 
Figure 3.2: Trajectory of an ion for one gyroperiod. The ion is initiated with m0 = 1, q = 1 r0 = [10, 0], v0 = [0 , -

25]. The magnetic field is out of the page with Bz = (1 + x). The trajectory is shown in blue and the gyrocenter in 

red. 
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To approximate the trajectory in Figure 3.2 it is necessary to pick an initial point to 

integrate Equation (3.10), our GC drift velocity. It is conventional practice to use the initial 

gyrocenter position in red to do this because, at relatively low velocities, the gyrocenter is always 

roughly at the mean between xmin and xmax. At this relatively high velocity, we show that the red 

gyrocenter varies substantially in the x-direction during a gyroperiod and is often not at the mean 

of the particle trajectory in blue. In addition, using the particle trajectory to integrate our GC drift 

equation is obviously insufficient because the initial position can vary anywhere between xmin and 

xmax. For this reason, we analyze the evolute of a curve in an attempt to produce an alternative to 

the gyrocenter for GC initiation.  

 

Mathematically, the evolute is defined as the locus of the centers of curvature of a given curve 

[21]. For a curve given in parametric form x(t), y(t), the equations of the evolute are given by 

Equations (3.11) and (3.12).  

 

 
x(t) =  x0(t) - 

y'(t)(x'(t)
2
 + y'(t)

2)

x'(t)y''(t) - y'(t)x''(t)
 

 

(3.11) 

 
y(t) =  y

0
(t) + 

x'(t)(x'(t)
2
 + y'(t)

2)

x'(t)y''(t) - y'(t)x''(t)
 

 

(3.12) 

 

For our case, we recognize that x(t) = x, y(t) = y, x'(t) = vx, y'(t) = vy, x''(t) = ax and y''(t) = 

ay which allows us to reduce the evolute Equations (3.11) and (3.12) to Equations to (3.13) and 

(3.14) respectively.  

 

 
x =  x0 - 

vy(vx
2 + vy

2)

vxay - vyax

 

 

(3.13) 

 
y = y

0
+

vx(vx
2 + vy

2)

vxay - vyax

 

 

(3.14) 

Finally, using the Lorentz force Equation (2.5) and the fact that v2 is a constant of motion 

we can re-write the evolute as Equations (3.15) and (3.16).  

 

 
x = x0 +  

mvy

qB
 

 

(3.15) 

 y = y
0
 +  

mvx

qB
 

 

(3.16) 

This coincides with the gyrocenter position calculated in Equation (2.11). These Equations 

show that the local curvature radius of a particle trajectory is given by the gyroradius evaluated 

based on the magnetic field at the particle position. Therefore, the position of the gyrocenter 

coincides with the evolute in Figure 3.2. 
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We now try to improve the accuracy of the GC approximation by improving the initiation 

point of the gyrocenter. It is known that the GC approximation more accurately models the particle 

trajectory if the magnetic field applied in Equation (3.10) is averaged [6]. To do this we introduce 

iterations to the gyrocenter calculation. For epicycloid trajectories, a similar procedure was done 

in a paper by Fancong Zen [6]. However, in this paper, the iterative procedure was only applied to 

a single point and not along the entire trajectory [6]. For this paper, we use the vectorized form of 

the gyroradius from Equation (2.11). Here B is a function of r and can be taken at any location. In 

the original application, the gyrocenter is calculated using the magnetic field at the location of the 

particle. In the next iteration, we use B at the gyrocenter to determine a new gyrocenter location. 

Clearly this iterative process can be repeated, giving rise to the following. 

 

 rgc(i) = r  + 
m

q(B0 + βxrgc(i-1)
)
 [vy,-vx,0] 

 

(3.17) 

This equation is used to generate a series of new gyrocenter positions. Typically, these 

iterations converge, although for sufficiently large velocities they may diverge. The convergence 

criteria for Equation (3.17) are discussed later in Figure 3.4. The letter i distinguishes the iteration 

number. For the first iteration, we use the position of the particle. From here on out the final 

convergence of this Equation will be known as the converged gyrocenter, while the previously 

discussed gyrocenter will be known as the first gyrocenter.  

 

Next, the converged gyrocenter is added to the figure of one gyroperiod along with a few 

of the gyrocenter iterations to provide a visualization of this process. For further clarity, an 

additional plot of the corresponding points along the trajectory, 1st gyrocenter and converged 

gyrocenter is generated. Both plots are seen in Figure 3.3 below for the same initial conditions as 

before. The black line here represents the limit of iterations to reach convergence.  

 

On Figure 3.3 the transitions between the 1st, 2nd and 3rd iterations are shown to slowly 

converge towards the final converged gyrocenter. The number of iterations was set to 12 to reach 

this convergence, though the 10th and higher iterations practically coincide with the converged 

result. This is because, at the 10th iteration, the result changes on the order of 10−4. We define this 

as the minimum accuracy to be considered convergent because the naked eye can no longer detect 

changes in the black converged gyrocenter at subsequent iterations without zooming in on Figure 

3.3. To ensure the result in Figure 3.3 is converging, a comparison was done on the difference at 

100 iterations. Under this iteration number changes were on the order of 10−6, since this is smaller 

than 10−4 it was concluded that this process was convergent.   

 

The cusps of the converged gyrocenter serve as a common point between all iterations 

greater than 1, since they all intersect the same point on the 1st iteration. This point is more easily 

visualized using the stars in Figure 3.3. From this it is clear that the converged gyrocenter cusps 

correspond to the 3rd star on either side of the particle trajectory. This occurs when the entire 

velocity is directed in the x-direction. Therefore, it is concluded that the converged gyrocenter and 

the 1st iteration share a common point when velocity is in the same direction as the gradient. 

Alternatively, this point is thought of as the most stable point for the gyrocenter iterations. Thus it 

is also concluded the most unstable point is when velocity is in the y-direction, or perpendicular to 

the gradient. More specifically this occurs at xmin. This is visualized on Figure 3.3 by noticing how 
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far the 1st gyrocenter iteration protrudes away from the middle of the particle trajectory. At higher 

velocities, this point approaches and surpasses xmax, this is shown on Figure 3.4. When this 

happens, the iterative gyrocenter procedure requires more iterations to reach convergence. This 

further illustrates our need for a different approach when applying the GC approximation at high 

energies.  

 
Figure 3.3: 1st, 2nd, 3rd and final iterations of the gyrocenter with corresponding points for one gyroperiod. The 

ion is initiated with m0 = 1, q = 1 r0 = [10, 0], v0 = [0 , -25]. The magnetic field is out of the page with Bz = (1 + x).  

The trajectory is shown in blue, 1st gyrocenter in red, 2nd gyrocenter in orange, 3rd gyrocenter in yellow and 

final gyrocenter in black.  

 

  To compare the difference in the converged gyrocenter at a higher velocity a value of v 

= 30 was chosen. This value was chosen because it is the highest integer available before the neutral 

line crosses occurs. The threshold speed for neutral line crossing was determined by using the 

separatrix definition of Δs = 0 in Equation (3.4) and solving for the velocity. The result is given by 

Equation (3.18). For the initial conditions of this case, this results in a v = 30.25 to cross the x = -

1 neutral line.  

 

 

v = 

B0
2 + 2β

p
y

q

2m |
β
q

|
 

(3.18) 

 

The gyrocenter iterations for v = 30 are displayed in Figure 3.4.  
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Figure 3.4: 1st, 2nd, 3rd and final iterations of the gyrocenter using our threshold velocity for one gyroperiod. The 

ion is initiated with m0 = 1, q = 1 r0 = [10, 0], v0 = [0 , -25]. The magnetic field is out of the page with Bz = (1 + x).  

The trajectory is shown in blue, 1st gyrocenter in red, 2nd gyrocenter in orange, 3rd gyrocenter in yellow and 

final gyrocenter in black. 

 

In Figure 3.4 it took roughly 30 iterations to reach our desired convergence threshold of 

10−4. Zooming in on Figure 3.4 there were small-scale improvements even around 100 iterations, 

though these were smaller than 10−4. These improvements were all around the aforementioned 

unstable point of xmin.  Overall, the iterative gyrocenter converged for the highest velocity that did 

not cross the neutral line. This process aids in illustrating the fact that the GC approximation works 

well for small velocities and not so well for large velocities. Lastly, it is known that the iterated 

gyroperiods differ from the exact ones at higher velocities. Due to this, the GC approximation 

suffers from the secular errors that accumulate over multiple gyroperiods [6]. However, a means 

to avoid this is discussed later in Section 3.5. 

 

 Next, we consider the selection of the initial point for the GC drift equation. In this case, 

the drift velocity is in the y-direction and it depends on the initial x position only, as the x-position 

determines B. Thus, to calculate the change in the position of the GC we need simply to multiply 

the GC drift velocity, Equation (3.10), by the timeframe we consider. We can also use ode45 to 

integrate Equation (3.10), which is a more general approach. In Figure 3.5 the particle trajectory 

(blue), 1st gyrocenter (red) and converged gyrocenter (black) are shown with the thin lines. The 

thicker lines are the results of applying the GC approximation by integrating Equation (3.10) using 

the initial positions of the particle trajectory, 1st gyrocenter and converged gyrocenter. Clearly, if 

we use the position of the particle as the starting point for the GC approximation then we severely 

underestimate the GC drift, as the blue thick line endpoint is far from the blue thin line endpoint in 

Figure 3.5. This is because we used xmax as our initial point. If we used xmin then we would be 
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overestimating the GC drift.  Using the 1st gyrocenter this approximation still underestimates the 

drift, but is clearly more accurate than using the particle position. Finally, using the converged 

gyrocenter we get the most accurate estimation of the particle drift.  

 

 
Figure 3.5: GC integration using the trajectory, 1st gyrocenter and converged gyrocenter as starting locations 

for one gyroperiod. The ion is initiated with m0 = 1, q = 1 r0 = [10, 0], v0 = [0 , -25]. The magnetic field is out of 

the page with Bz = (1 + x).  .  The trajectory is shown in blue, 1st gyrocenter in red and converged gyrocenter in 

black, with the same colour thicker lines corresponding to GC integration. 

 

Note that we used the values based on the initial point of our particle trajectory, which 

corresponded to xmax. However, in practical calculations, the initial point is likely to be arbitrary. If 

the particle trajectory is used, the possible starting points for the GC calculation would vary 

between xmin and xmax, and the result would vary between underestimating and overestimating the 

GC drift. The same applies to either the 1st iteration of the converged gyrocenter.  However, in 

these cases, the range of the variation in the x-direction is considerably smaller. Thus, either of 

these methods improves the consistency of the GC drift calculation and increases the accuracy 

when compared to using the particle position. Still, the final position of the GC drift underestimates 

the converged gyrocenter in Figure 3.5. To quantify our accuracy we now take the difference in y 

between the endpoints of the thinner lines and the correspondingly coloured thicker lines. We call 

this difference in endpoints the tracing error and plot it as a function of velocity. The range of 

which is from v = 0.01 to v = 30. This is done on a log scale and is given in Figure 3.6.  
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Figure 3.6: Tracing Error as a function of velocity for v = 0.01 to v = 30. The ion is initiated with m0 = 1, q = 1 r0 

= [10, 0], v0 = [0 , -v]. The magnetic field is out of the page with Bz = (1 + x).  Tracing error for the trajectory is 

shown in blue, 1st gyrocenter in red and converged gyrocenter in black. 

 

In Figure 3.6 it is shown that as v goes to 0 all GC approximations, regardless of initial 

position, converge to the exact GC drift. To determine the relationship between tracing error and 

velocity we multiplied our initial tracing error value at v = 0.01 by velocity raised to some power, 

v#. Varying this power until the results matched that of Figure 3.6 allowed us to determine the 

relationship between tracing error and velocity. The tracing error in this plot is proportional to v3 

for the trajectory, while the 1st gyrocenter and converged gyrocenter are proportional to v4. It is 

clear, and also to be expected, that the tracing error is smallest when using the converged 

gyrocenter at every velocity in this range. Compared to the 1st gyrocenter, the converged gyrocenter 

reduced the tracing error by a factor of 17 for most velocities, where the red and black lines of 

Figure 3.6 are parallel. At the highest velocity of v = 30 the tracing error was reduced by a factor 

of 4. The deviation from the linear shape at the high velocity extreme is attributed to the breaking 

down of the GC approximation, while the change at the low extreme is due to numerical accuracy 

limitations.  

 

The GC approximation is initialized at xmax in Figure 3.5 and Figure 3.6. Thus the 

conclusion that tracing error is proportional to v3 has only been proven for the xmax condition. To 

test the proportionality of v3, for any point along the particle trajectory, we distribute the GC 

approximation starting location between xmin and xmax. For this analysis, we use 250 points for 

v3 

v4 
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sufficient resolution. Like before, the distance travelled by the GC approximation is measured 

against the true drift of the particle. This is the vertical distance between the starting point and 

endpoint of the trajectory in Figure 3.5. We now select two velocities from Figure 3.6 to compare 

the difference in their tracing errors from xmin and xmax. This is done for v = 0.1 and v = 1 and is 

displayed on the semilog plot in Figure 3.7. Here we normalize the x-axis such that 0 corresponds 

to xmin and 1 corresponds to xmax.  

 
Figure 3.7: Tracing Error for GC integration initiated between xmin and xmax for v = 0.1 (blue) and v = 1 (red). 

The ion is initiated with m0 = 1, q = 1 r0 = [xmin to xmax, 0], v0 = [0 , -v]. The magnetic field is out of the page with 

Bz = (1 + x).The black line is the blue line multiplied by 103. 

 

In Figure 3.7 the blue corresponds to v = 0.1 and the red corresponds to v = 1. 

Unsurprisingly the smallest tracing error occurs at the mean of xmin and xmax for these relatively low 

velocities, while the largest tracing error occurs at the extremes. The most important part of Figure 

3.7 is the black line. It is the tracing error results of v = 0.1 multiplied by our proportionality of v3, 

for this situation this is 103. Since the black line coincides with the results of v = 1 we thus conclude 

that tracing error is always proportionate to v3 when using the particle trajectory as a GC starting 

point, regardless of the location between xmin and xmax.  

 

3.4 Analysis of the Magnetic Moment   
 

 The use of the magnetic moment allows for a more in-depth analysis of the GC 

approximation accuracy, as the GC approximation requires that the first adiabatic invariant be 
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conserved. Conventionally Equation (2.18) is used to determine the magnetic moment, however, 

this is only an approximation and thus we attempt to improve upon it. To further increase accuracy, 

the second-order Taylor expansion of the magnetic moment is also derived for this magnetic field. 

This is done by applying the magnetic field with a constant gradient (3.1) to the general second-

order Taylor series expansions (2.19). The resulting formula is given by Equation (3.19) [10]. In 

addition, since the magnetic field can be taken along any path for the Taylor series expansion, both 

the actual ion trajectory and the converged gyrocenter are used.  

 

 
µ

T2
 = 

µ

m
(1 - uy + 

3
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(u2 + uy
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uy = 

vy
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(3.22) 

 
v* =

qB2

βm
 

 

(3.23) 

In addition, an exact analytical solution for the adiabatic invariant exists for this magnetic 

field in the form of elliptic integrals. It is given by Equation (3.24) [11]. Here K and Ξ are elliptic 

integrals of the first and second type respectively, as introduced in Section 2.6 [10].  
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k = 

4u

1 + 2(u + uy)
 

 

(3.25) 

We consider all of our different approximations of the magnetic moment. Since we know 

that the exact adiabatic invariant remains constant along the trajectory, we use Equation (3.24) as 

a basis of comparison for our various approximations of μ. We start by analyzing the application 

of Equation (2.18) using the magnetic field along the ion trajectory, the 1st gyrocenter and the 

converged gyrocenter. The result is displayed in Figure 3.8 for one gyroperiod, where it is shown 

that the approximations of μ oscillate at the same rate as the gyrofrequency. All quantities are 

normalized to the exact value of the adiabatic invariant given by Equation (3.24), which is also 

shown with a cyan line. Analyzing the application of Equation (2.18) was done for velocity values 

of v = 25 and v = 2.5, displayed in the top and bottom panels of Figure 3.8 respectively.  
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Figure 3.8: Zeroth-order magnetic moment approximation using B at the particle trajectory, 1st gyrocenter and 

converged gyrocenter, normalized by the exact expression at v = 25 (top) and v = 2.5 (bottom). The ion is 

initiated with m0 = 1, q = 1 r0 = [10, 0], v0 = [0 , - v]. The magnetic field is out of the page with Bz = (1 + x).  

Magnetic Moment for trajectory is shown in blue, 1st gyrocenter in red and converged gyrocenter in black and 

exact expression in cyan.  

 

The top panel shows that the exact solution is not centred at the mean of the oscillations 

for any of the magnetic moments. Clearly, the magnetic moment computed based on the magnetic 

field along the location of the particle exhibits the largest variation and is, therefore, the least 

accurate. The amplitude deviates by a maximum of 70% from the exact solution. Comparatively 

the 1st gyrocenter and converged gyrocenter deviate by a maximum of 20% and 5% respectively 

from the exact solution. Unsurprisingly it is clear that the converged gyrocenter is the most 

accurate. The asymmetry on the top panel is attributed to the relatively high velocity of v = 25. 
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Reducing this by a factor of 10 to v = 2.5, as shown on the bottom panel, validates this dependence 

on the velocity. This is demonstrated by the increased symmetry of all trajectories about the exact 

solution. The symmetry on the bottom panel shows why the 1st gyrocenter is a valid GC initiation 

point at relatively lower velocities, while the top panel further validates the use of the converged 

gyrocenter at higher velocities since it more accurately replicates the exact solution of μ than the 

1st gyrocenter.   

 

 For further comparison, we now apply the Taylor series expansion for the magnetic 

moment, which was established in (3.19). This is done using the magnetic field along the particle 

trajectory and the converged gyrocenter in an attempt to improve the magnetic moment accuracy. 

The result for one gyroperiod is given in Figure 3.9.  

 

 
Figure 3.9: Various magnetic moment approximations and the exact expression for one gyroperiod normalized 

by the exact expression. The ion is initiated with m0 = 1, q = 1 r0 = [10, 0], v0 = [0 , -25]. The magnetic field is out 

of the page with Bz = (1 + x). Equation (2.18) using B at the trajectory is shown in blue, 1st gyrocenter in red and 

converged gyrocenter in black.  Equation (3.19) using B at the trajectory is shown in magenta and converged 

gyrocenter in green. The exact expression is in cyan.  

  

At this relatively high velocity it is seen that the Taylor series expansions do not increase 

the accuracy of the magnetic moment. However, due to the dependency on velocity, the potential 

to be more accurate at different velocities exists. With all magnetic moments established, a 

correlation between velocity and the magnetic moment error is generated. This error is the 

difference between the exact solution and the farthest amplitude point.  This corresponds to the 

most unstable point along the trajectory, which was established in Section 3.3 as xmin due to the 
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weaker magnetic field.  The correlation of the magnetic moment error with velocity is graphed on 

a log plot from a velocity of v = 0.01 to v = 30 and displayed below in Figure 3.10. 

 
Figure 3.10: Magnetic moment approximation error as a function of velocity from v = 0.01 to v = 30. The ion is 

initiated with m0 = 1, q = 1 r0 = [10, 0], v0 = [0 , -v]. The magnetic field is out of the page with Bz = (1 + x). 

Equation (2.18) using B at the trajectory is shown in blue, 1st gyrocenter in red and converged gyrocenter in 

black.  Equation (3.19) using B at the trajectory is shown in magenta and converged gyrocenter in green. The 

exact expression is in cyan.  

 

Figure 3.10 shows the magnetic moment error scales as a power law with velocity, where 

v# is determined by the steepness of the slope. From Figure 3.10 it was determined that error using 

Equation (2.18) along the particle trajectory is proportional to v3 and changes the slowest of all the 

magnetic moments. The magnetic moment error using Equation (2.18) at the 1st gyrocenter, 

converged gyrocenter and using (3.19) at the converged gyrocenter are proportional to v4. The 

steepest curve corresponds to using the 2nd order Taylor expansion (3.19) at the particle trajectory 

and is proportional to v5. Therefore,  the application of Equation (2.18) along the converged 

gyrocenter is the most accurate method of calculating the magnetic moment at, or above, a velocity 

of roughly 6.5, while at, or below this threshold, the 2nd order Taylor expansion taken along the 

trajectory is the most accurate. All other methods of calculating the magnetic moment are inferior 

to both of these for the entire velocity range. The deviation of the linear sloped shape at the high 

velocities is attributed to the breaking down of the GC approximation. For low velocities, the 

deviation of the linear sloped shape is attributed to numerical errors as the calculation is 

approaching machine accuracy. Since this paper is examining the application of the GC 

approximation for higher energy particles this means the converged gyrocenter continues to be our 

basis of comparison for GC initiation.  

v3 
v4 

v5 
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3.5 Guiding Center Starting Location     

The converged gyrocenter is the best starting point for the GC, but it is still imperfect, as 

established by the tracing error in Figure 3.5. This tracing error is analyzed further by investigating 

three more starting point options. First, we note that there exist positions, along the x-axis, where 

the local magnetic moment, gyroperiod and drift velocity have the same value as their respective 

exact value. As an example, xμ is defined by rearranging Equation (2.18) for x and substituting 

μExact, Equation (3.24), for μ0. The result is given by Equation (3.26). The same process is repeated 

for determining the exact x location of the gyroperiod (xTg) and the drift velocity (xVD) by 

rearranging Equations (2.7) and (3.10) for x. The exact value used for the gyroperiod and drift 

period are given by Equations (3.7) and (3.9) respectively. However, these exact values can more 

easily be determined by using the integration time of the Matlab code with the events functionality 

set for one gyroperiod, now integration time = Equation (3.7) and the Δy/(integration time) = 

Equation (3.9). Substituting these values into xTg and xVD results in (3.27) and (3.28) respectively. 
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(3.28) 

The values of these x positions are normalized by subtracting the xmin and dividing by xmax 

- xmin, limiting them to values between 0 and 1. This results in a relative x-position value of 0.5 

corresponding to the center of the strip of the particle motion. As the velocity decreases all three 

x-position Equations converge at this value which is validated by graphing the relative x-positions 

over the velocity range from v = 0.01 to v = 30. The graph is displayed in Figure 3.11.   

 

Figure 3.11 shows that the x-position of the drift velocity deviates the least from 0.5 as 

velocity is increased, this is followed by the magnetic moment, with the gyroperiod deviating the 

most. The direction of deviation varies as the magnetic moment deviates towards xmax, while the 

gyroperiod and drift velocity deviate towards xmin. Lastly, it is shown that there is never a single x-

position that will satisfy the exact solution for all three quantities. Thus, in practical calculations, 

one might need to choose which is more important for a particular simulation. 

 

While the exact values for the first adiabatic invariant and gyrofrequency are sometimes 

very desirable, the typical application of GC focuses on the transport of the particle, thus accurately 

reproducing the drift velocity is the main goal. Equation (3.28) allows us to match the drift velocity 

used in the GC approximation to the precise drift velocity of the particle, which is determined from 

the exact solution of the full equations of motion for this particular magnetic field. Overall xVD is 
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typically the best choice for GC initialization. Furthermore, Equation (3.28) can be applied 

approximately to any two-dimensional magnetic field. Thus, we envision the following procedure 

for calculating the starting point for GC calculations. First, given a magnetic field, one needs to 

calculate its gradient, a necessary step for GC calculations regardless of the initialization procedure. 

Second, one would use Equation (3.28) to initialize the GC calculation. This procedure accounts 

for both the magnetic field strength and its gradient in GC initialization and thus is likely to always 

be superior to the conventional method of making a single step with the 1st gyrocenter. Assessment 

of how well this procedure performs in comparison with, for example, the iterated gyrocenter 

approach for general fields requires additional analysis. 

 

 
Figure 3.11: Normalized x position along the trajectory where μ, Tg and vD equal their respective exact 

expression as a function of velocity from v = 0.01 to v = 30. The ion is initiated with m0 = 1, q = 1 r0 = [10, 0], v0 = 

[0 , -v]. The magnetic field is out of the page with Bz = (1 + x). xμ is shown in blue, xTg in red and xVD in green.  

 

Taking our new positions of xμ, xTg and xVD and overlaying them onto the ion trajectory for 

one gyroperiod at v = 25 yields Figure 3.12. 

 

Comparing this figure with Figure 3.5 indicates xVD in green models the drift velocity 

exactly, as to be expected. Recall in Figure 3.5 that initiating the GC at the converged gyrocenter 

resulted in slightly underestimating the GC drift. In Figure 3.12 xVD is positioned at a slightly 

weaker magnetic field position than the converged gyrocenter in black, therefore, the GC will drift 

slightly further than before, thus improving upon the GC initiated at the converged gyrocenter. 
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Figure 3.12: GC initialization options overlayed onto the trajectory, 1st gyroradius and converged gyrocenter 

for one gyroperiod. The ion is initiated with m0 = 1, q = 1 r0 = [10, 0], v0 = [0 , -25]. The magnetic field is out of 

the page with Bz = (1 + x). The trajectory is shown in blue, 1st gyrocenter in red and the converged gyrocenter in 

black. Vertical lines correspond to the initialization options for xμ is shown in blue, xTg in red and xVD in green.    

 

3.6 Conclusion      
  

In this section, we analyzed in detail the motion of charged particles in a magnetic field 

with a constant gradient in the x-direction. Although this is a very simple field, it is used to illustrate 

many of the issues occurring in complex fields. These include how to choose an initial point for 

the GC approximation and what method should be used to most accurately approximate the 

magnetic moment. This field is also useful because any two-dimensional magnetic field can be 

locally approximated by a magnetic field with a constant gradient. For this magnetic field some 

important analytical expressions exist, which allow full and detailed analysis of the accuracy of the 

GC approximation.  

 

We discussed several methods for calculating the initial starting point for the GC 

approximation from the particle’s position and velocity vectors. We note that other methods have 

also been used by Kabin [22] or Brizard [19]. Brizard, for example, used the average x value for the 

particle trajectory [19]. However, this requires either using analytical results, which are not available 

other than for very specific magnetic fields, or numerical integration of a particle over at least one 

gyroperiod. In this thesis, we do not consider such possibilities and focus exclusively on the 

techniques for computing the GC initial position based exclusively on the initial position and velocity 

of the charged particle.  
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The first method used to evaluate the GC initial position was the application of the 

gyrocenter Equation (2.11). This restricted the range of variation in the x-direction when compared 

to using the particle position, thus, improving the consistency of the GC drift calculation. At higher 

velocities, it was shown that xmin was an unstable point in the application of Equation (2.11), and 

even increased xmax of the gyrocenter past xmax of the actual particle trajectory. To improve upon 

the 1st gyrocenter, iterations were introduced to average the variation in B across the range of x 

positions. This resulted in the converged gyrocenter trajectory (3.17), which further restricted the 

range of variation in the x-direction. In addition, the converged gyrocenter remained confined to 

the particle’s xmax at high velocities. To confirm the improvement of the converged guiding center 

a log plot was generated across a wide range of velocities for the error in GC drift. This validated 

that the converged gyrocenter had a smaller tracing error across all velocities. This error was a 

factor of 17 smaller than at the 1st gyrocenter for most velocities, reducing to a factor of 4 at the 

velocity extreme of v = 30.  It was also determined that the tracing error was proportion to v3 when 

initiating the GC approximation at the particle position and v4 when at the 1st gyrocenter or 

converged gyrocenter.  

 

The existence of exact analytical expressions for the magnetic moment, gyroperiod and 

drift velocity allowed for the determination of an x-position that corresponded to an equivalent 

value of the exact solution. These resulted in Equations (3.26), (3.27), and (3.28) respectively. It 

was found that these three x-positions shared no overlap for a range of velocities, except for their 

convergence towards the mean x-position at low velocities. Thus, the choice to initiate the GC 

approximation at any three of these x-positions depends on which expression takes priority for a 

given situation. In general, the typical application of GC prioritizes accurately modelling the drift 

velocity, and thus using xVD is the preferred choice in most situations. However, it is still very 

desirable to match the exact values for the first adiabatic invariant and gyrofrequency in certain 

situations.  

 

Different methods of measuring the accuracy of the GC approximation were determined 

by using the GC approximation condition that the 1st adiabatic invariant is conserved. Using the 

exact magnetic moment as a basis of comparison, various methods for calculating the magnetic 

moment were compared. This was done on a log plot using the zeroth-order Equation of μ  (2.18) 

and the Taylor series approximation Equation of μ  (3.19). Here the value of B used was taken 

along the particle trajectory, 1st gyrocenter and converged gyrocenter for Equation (2.18), and 

along the particle trajectory and converged gyrocenter for Equation (3.19). The result was that the 

zeroth-order converged gyrocenter is the most accurate method of calculating the magnetic 

moment at or above a velocity of roughly 6.5. The error between this calculation of μ and the exact 

solution was proportional to v4. For velocities less than 6.5 the 2nd order Taylor expansion taken 

along the trajectory of the particle is the most accurate. The error between this calculation of μ and 

the exact solution was proportional to v5. 
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4. Particle Motion in Equatorial Plane of a 

Magnetic Dipole    
4.1 Analysis of the Axisymmetric Magnetic Field  
 

In this chapter, we explore the accuracy of the GC approximation for a magnetic field that   

is commonly found in space physics. For example, at distances less than four RE, the terrestrial 

magnetic field is often approximated as a magnetic dipole, because the inner field lines are shielded 

by the outer magnetic field lines, which stretch and compress due to solar wind pressure, as 

illustrated in Figure 1.2. The effects of the asymmetry that arises from this stretching and 

compressing are analyzed in more detail in Chapter 5 of this thesis. The field of a magnetic dipole 

is often expressed in spherical coordinates (r, φ, λ) where r is the radial distance from the origin, φ 

is the angle made with the positive x-axis measured counter-clockwise and λ is the magnetic 

latitude. The conventional expression for a magnetic dipole is given by Equation (4.1). 

 

 
𝐁 = 

μ
0
ME

4πr3
(-2 sin λ 𝐞̂𝐫 + cos λ𝐞̂𝛌) 

 

(4.1) 

Here ME is Earth’s magnetic dipole moment and has a value of 8.05∙1022Am2. Magnetic 

fields are usually visualized with magnetic field lines. The differential Equation for the field lines 

is given by Equation (4.2). Here s represents the arc length of the magnetic field lines. 
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This equation is integrated to give Equation (4.3) [1].  

 

 r = ρ cos2 λ 

 

(4.3) 

Here ρ is the interception of a magnetic field line with the magnetic equator. The result of 

employing our magnetic field line expressions, Equations (4.2) and (4.3), is visualized in Figure 

4.1, where the dipole field is displayed for the meridional plane along the x-axis. Figure 4.1  shows 

that in the equatorial plane, when z = 0, the magnetic field only has a vertical component. Thus, 

charged particles with velocities in the equatorial plane remain restricted to this plane. These are 

known as equatorially mirroring particles. Thus, it is typical for the population of the equatorially 

mirroring particles to be considered separately from particles that are not confined to this plane. 

This is often done in literature to simplify the analysis, such as in Kabin et al [23], Li et al [24] 

[25] and Sarris et al [26] [27]. Similarly, we focus on the dynamics of equatorially mirroring 

particles exclusively.  

 

Since the magnetic field in the equatorial plane only has a vertical component, it is 

convenient to express Equation (4.1) in cartesian coordinates of x, y, and z. Applying this z = 0 

condition results in Equation (4.1) reducing to Equation (4.4). In this equation, the magnetic field 

is always in the positive z-direction. The motion of particles in the equatorial plane of a dipole 

similar to Equation (4.4) has been analytically studied extensively, some examples include Zeng 
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et al [6], Avrett [28], Juarez [29] and Brizard et al [30]. 

 

 
 B = 

M

r3
 𝐞̂𝐳 

(4.4) 

 

 
Figure 4.1: Magnetic dipole field lines in the Earth’s meridional plane. Field lines are given in blue and Earth’s 

position is in black.  

 

In Equation (4.4) M is the dipole moment of Earth expressed such that M = μ0ME/4π. For 

the dipole magnetic field in this Chapter, we use generic units, with an M value of 1000.  Since 

Equation (4.4) is inversely proportional to r3, it is also noted that the magnetic gradient is in the 

radial direction pointing towards the origin. The magnetic vector potential corresponding to this 

field is given by Equation (4.5). 

 

 
A = -

M

r2
𝐞̂𝛗 

 

(4.5) 

The vector potential is useful to determine the canonical momentum established in 

Equation (2.16). Since A does not depend on φ, the φ-component of the canonical momentum is 

conserved. Substituting Equation (4.5) into Equation (2.16) and only using the φ-component of 

velocity Pφ is given by Equation (4.6).  
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Pφ = mvφ - 
qM

r2
 

 

(4.6) 

 
vφ = 

xvy - yvx

r
 

(4.7) 

 

Alternatively, vφ = vsinξ where ξ is the angle between the position vector r and the velocity 

vector v measured counter-clockwise. These definitions and the typical trajectory of a particle 

moving between rmin and rmax, defined later, are illustrated in Figure 4.2. In this figure the blue 

trajectory represents an ion with initial conditions of r0 = [7, 0], v0 = [0, 3], m0 = 1 and q = 1.  

 

By applying Pφ with vφ = vsinξ the radial limits of motion for bound particles are 

determined. These are illustrated by the black dashed lines in Figure 4.2.  This is done by realizing 

the particle is at rmin and rmax when ξ is at 90o and -90o respectively. Substituting these conditions 

into Pφ results in rmin and rmax when rearranging for r. These parameters, however, are most 

conveniently represented using an auxiliary variable r*. We note that the expression for Pφ simplifies 

when ξ = 0o or 180o. Under this condition, r represents the position when the velocity of the particle 

is radially directed, we introduce r* to represent this value. There is a particular class of trajectories 

in this magnetic field which are simply circles centred on the dipole location. The velocity for this 

kind of motion is obtained simply by equating the Lorentz force with the centripetal acceleration 

required for circular motion. We call v* the speed of this circular motion at the location of r* [22]. 

The location of r* is illustrated by the red dashed line in Figure 4.2. The expressions for r* and v* 

are given by Equations (4.8) and (4.9) below.  
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(4.9) 

Applying this notation and simplifying the results we express the radial minimum and 

maximum limits of the trajectory in Equations (4.10) and (4.11) respectively [22]. 
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Figure 4.2: A typical trajectory of a particle in the equatorial field of a magnetic dipole. The particle is initiated 

with m0 = 1, q = 1 r0 = [7, 0] and v0 = [0, 3]. The magnetic field is out of the page with M = 1000.  The trajectory 

is the blue line, rmin and rmax are the black dashed lines and r* is the red dashed line.  

 

If v > v*/4 rmax becomes undefined and the particle motion becomes unbounded. Meaning 

that the trajectory of the particle is no longer confined by Earth’s magnetic dipole. Cosmic rays 

generally fall in this category, but in this thesis, only bound particles are examined [31].  

 

 The motion of charged particles in the equatorial plane of a dipole is known to have 

analytical solutions for the Equations of motion. These are expressed in terms of Jacobi elliptic 

functions [6]. The analytical solutions for the gyroperiod and the drift period are presented below 

in Equations (4.12) and (4.13) respectively, where the drift period is the complete rotation around 

the origin of the coordinate system [28].  
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This expression can be reduced to a combination of elliptic integrals of the first, second 

and third kind [28], however we do not use that formulation here. The solution for the drift period 

is given by (4.13) [6].  
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(4.13) 

 

The inclusion of the negative sign here is because φ is conventionally measured 

counterclockwise from the x-axis. This ensures that ions drift clockwise in a positive z-directed 

magnetic field, and electrons drift counterclockwise. Overall, it is clear that the particle trajectory 

in the equatorial field of a magnetic dipole only depends on three parameters. These are v, v* and 

r*. This provides a very convenient method of scaling for any situation that varies in initial 

conditions [6].  

 

4.2 GC Approximation for the Radial Magnetic Field Gradient 
 

For the magnetic field in Equation (4.4), ∇B = [-3Mx/r5, -3My/r5, 0], substituting this into 

Equation (2.12) yields the following expression for the GC drift. 

 

 
𝐯D = 

3mv⊥
2r

2qM
 (y𝐞̂𝐱 - x𝐞̂𝐲) 

 

(4.14) 

From this equation, we know that the drift velocity increases with r and is directed 

azimuthally in the φ-direction. For small v, Equation (4.14) can also be derived by expanding the 

change in radial position (Δφ) of a particle into a Taylor Series and dividing by Equation (4.13). 

Similarly, the gyroperiod given by Equation (2.7) is determined by expanding Equation (4.12) for 

small velocities. It is important to note, that these expressions depend on the value of r. For 

example, at rmin the GC drift velocity is at a minimum and at xmax the GC drift velocity is at a 

maximum. Therefore, it is important to use the correct initial r position to initialize the GC to ensure 

the GC does not overshoot or fall short of replicating the true trajectory of the particle. Finding the 

ideal r position to initialize the GC is one of the goals of this thesis. This is done by investigating 

various procedures of GC initialization using only the initial position and velocity of the particle. 

Using Equation (4.14) we can express the drift period of the particle as Equation (4.15) [6].   

 

 
Td = 

4π

3

qM

mv2r
   

(4.15) 

 

4.3 Code Accuracy  
 

Prior to analyzing the particle trajectory, it is important to quantify the accuracy of the 

numerical integrator for this code. The absolute relative error is determined in the same manner as 

in Figure 2.4. Here we use the normalized difference of conserved quantities and their initial values. 

The conserved quantities for this case are Pφ and v. The resultant relative numerical error for one 

drift period was determined to be on the order of 10−11 for both Pφ and v. This is more than sufficient 

for our purposes.  
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4.4 Detailed Examination of Particle Trajectory  
 

As an illustration, we initialize an ion with the same conditions as Figure 4.2 and integrate 

the Lorentz force, Equation (2.5), for one drift period. It should be noted that all trajectories for 

this case are initialized with the entire velocity pointed in the positive y-direction or φ-direction. 

The trajectory for approximately one drift period is shown in  Figure 4.3. In this figure, the 

integration time was somewhat arbitrarily set to 53s so the trajectory does not stop at exactly one 

drift period. Using Matlab’s events functionality to model exactly one drift period is possible but 

was deemed unnecessary here. Note that the trajectory, in general, is not a closed curve, since the 

ratio of the drift period to the gyration period is usually not a rational number. 

  
Figure 4.3: Trajectory of ion in the equatorial plane of a magnetic dipole. The particle is initiated with m0 = 1, q 

= 1 r0 = [7, 0] and v0 = [0, 3]. The magnetic field is out of the page with M = 1000. The trajectory is shown in blue 

and gyrocenter in red. 

 

In Figure 4.3 the blue line is the ion trajectory and the red line is the gyrocenter position 

calculated using Equation (2.11). The change in the radius of curvature of the trajectory is a result 

of the magnetic field increasing towards the origin in the radial direction. This radial-gradient 

stretches trajectory at rmax and compresses trajectory at rmin.  With the magnetic field in the positive 

z-direction and the gradient in the radial direction, the particle must experience a drift in the φ 

direction, the direction of which is determined by the charge, with an electron drifting 

counterclockwise and an ion drifting clockwise, with the ion shown in Figure 4.3. The direction of 

the drift ensures that an ion initialized on the positive x-axis is always at rmin when with vx = 0 and 

vy is positive.  
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Similarly to Section 3.3, it is sufficient to analyze the motion of the particle over a single 

gyroperiod. Although an analytical expression for the gyroperiod is available in Equation (4.12), 

we can more easily terminate the numerical calculation using Matlab functionality as we did for 

the magnetic field with a constant gradient. We initialize all particles in our simulation with vr = 0 

and we implement an event function that terminates the integration when the radial component of 

the velocity reaches zero again. A typical ion trajectory for one gyroperiod is shown below in 

Figure 4.4 for the same initial conditions as in Figure 4.3. 

 
Figure 4.4: Trajectory of an ion for one gyroperiod. The particle is initiated with m0 = 1, q = 1 r0 = [7, 0] and v0 = 

[0, 3]. The magnetic field is out of the page with M = 1000. The trajectory is shown in blue and gyrocenter in 

red. 

 

To reiterate the red line in this plot shows the gyrocenter position which is mathematically 

equivalent to the evolute curve, or the center of the curvature as established in Equations (3.11)  

through (3.16). 

 

Similarly to Section 3.3, we try to improve the accuracy of the GC approximation by 

averaging the magnetic field applied in Equation (4.14) [6]. To do this we introduce iterations to 

the gyrocenter calculation from Equation (2.11) to determine the location of the averaged magnetic 

field. The resulting gyrocenter iteration formula is given by Equation (4.16). 

 

 
rgc(i) = r + 

mr3
rgc(i-1)

qM
[vy, -vx] 

 

(4.16) 

We use this equation to iterate the gyrocenter position until it converges or to determine if 

the gyrocenter diverges. To generate Equation (4.16), we substituted the magnetic field, Equation 

(4.4), into Equation (2.11), our gyrocenter formula. The letter i distinguishes the iteration number. 
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The initial condition is such that r3 is taken at the trajectory of the particle.  Like Chapter 2 we refer 

to the final convergence limit of this Equation as the converged gyrocenter position, while the 

center of curvature of the trajectory is referred to as the 1st gyrocenter.  

 

Following the same procedure as in Chapter 2, we plot our iteration procedure in Figure 

4.5. In this figure we show the location of the gyrocenter at the 1st, 2nd and 3rd iteration as well as 

the final converged position. In addition, the corresponding points along the trajectory, 1st iteration 

and converged gyrocenter are indicated with stars of the same colour for easier interpretation.  

 
Figure 4.5: 1st, 2nd, 3rd and final iteration of gyrocenter and corresponding points for one gyroperiod. The 

particle is initiated with m0 = 1, q = 1 r0 = [7, 0] and v0 = [0, 3]. The magnetic field is out of the page with M = 

1000. The trajectory is shown in blue, 1st gyrocenter in red, 2nd gyrocenter in orange, 3rd gyrocenter in yellow 

and the final gyrocenter in black. 

 

In Figure 4.5 the 1st, 2nd and 3rd iterations are shown to slowly converge towards the final 

converged gyrocenter. To reach the converged result a total of 25 iterations were used.  However, 

at the 20th iteration, the difference between the iterations is on the order of 10−4, our convergence 

threshold from Chapter 3. To ensure this result is converging a comparison was done on the 

difference at 100 iterations. Under this iteration number, changes were on the order of 10−6.  

Therefore, it was concluded that the result shown in Figure 4.5 is indeed fully converged.   

 

The cusps of the converged gyrocenter serve as a common point between all iterations 

greater than one, as seen by the fact they all intersect the same point on the 1st iteration. This point 

is more easily visualized by viewing the stars in Figure 4.5. Here it is clear that the converged 

gyrocenter cusps correspond to the 3rd star on either side of the ion’s trajectory. This occurs at the 
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point where the velocity of a particle is directed in the radial direction. Therefore, it is concluded 

that the converged gyrocenter and the 1st iteration share a common point when velocity is in the 

same direction as the gradient of the magnetic field. This point is considered the most stable point 

for the gyrocenter iterations, where the converged limit is achieved on the very first iteration. 

Intuitively it can also be concluded that the most unstable point, where the iterations take the 

longest time to converge, occurs where the velocity is completely in the φ-direction, or 

perpendicular to the magnetic field gradient. More specifically this occurs at rmin and rmax. This is 

visualized by noticing that the green star on the 1st gyrocenter iteration is close to rmin, and is not 

near the center of the particle trajectory. However, at even higher velocities, this point does return 

close to the center of the particle trajectory. This is only because the particle is approaching 

unbound conditions and rmax increases rapidly at higher velocities, causing the 1st gyrocenter to also 

move with it.  This is shown in Figure 4.6. 

  

   To illustrate the difference in gyrocenter iteration we examine a higher velocity of v = 3.5. 

The higher velocity of v = 3.5 was chosen because it is close to the threshold speed above which the 

particle becomes unbound [22]. The unbound velocity was determined by using applying the 

unbound condition of v > v*/4. For the initial conditions of this case, this results in v = 3.5015 for a 

particle to become unbound. The results of 11 iterations for v = 3.5 are shown in Figure 4.6.  

 
Figure 4.6: 1st, 2nd, 3rd and final iteration of gyrocenter for v = 3.5 for one gyroperiod. The particle is initiated 

with m0 = 1, q = 1 r0 = [7, 0] and v0 = [0, v]. The magnetic field is out of the page with M = 1000.  The trajectory 

is shown in blue, 1st gyrocenter in red, 2nd gyrocenter in orange, 3rd gyrocenter in yellow and final gyrocenter in 

black. 
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Contrasting Figure 4.6 with Figure 4.5 it is shown that convergence was not reached. This 

is seen by the protrusion of the final iteration in black outside the actual particle trajectory, this 

protrusion increases as the iteration numbers are increased.  The number of iterations used in this 

figure was 11, though the gyrocenter iterations fully diverge at iterations ≥ 14. At these iterations, 

the scale of the diverged gyrocenter is much larger than the particle trajectory, which is why we 

chose to show the results of 11 iterations. Overall, at v = 3.5, or relatively high velocities, the 

gyrocenter iterations diverge before the unbound threshold of 3.5015 is reached. This divergence 

first appears at rmin, which is the most unstable point along the particle trajectory. This is not 

surprising, since the gyrocenter position at the 2nd iteration is displaced onto the particle trajectory. 

Numerical calculations from Zeng et al show that this iterative procedure converges when v < 

0.204v* [6]. For the initial conditions of this case, this results in v = 3.0217 for gyrocenter iterations 

to diverge. This indicates that the GC approximation also breaks down before unbound velocity 

thresholds are reached.  

 

We would like to point out that the gyrofrequency calculated using Equation (2.7) differs 

from the exact value given by Equation (4.12) when using the magnetic field at the converged 

gyrocenter, and this difference becomes more pronounced as the velocity increases. Gyrofrequency 

is typically not a particularly important parameter within the GC approximation, but it is used, for 

example, if the trajectory of the particle is approximated with cycloids. If either the drift velocity 

or the gyrofrequency used in the cycloid approximation is inaccurate, the GC approximation suffers 

from secular error [6]. This is examined in more detail in Section 4.6.  

 

We now discuss the effects of different GC starting locations for the integration of the GC 

drift velocity given by Equation (4.14). For the equatorial plane of a magnetic dipole, the 

magnitude of the drift velocity depends on the initial r position only, increasing proportionally with 

r2. Thus, to calculate the arc length travelled along the φ-direction of the GC we need simply to 

multiply the GC drift velocity by the time interval we consider. Instead, we use ode45 to integrate 

the GC drift velocity, which is a more general approach. This is done by using the starting locations 

of the particle trajectory, the 1st gyrocenter and the converged gyrocenter to integrate Equation 

(4.14). The result is displayed in Figure 4.7. In this figure the thicker lines represent the GC 

approximation while the thinner lines represent the particle trajectory, the 1st gyrocenter and the 

converged gyrocenter. It should be noted here that, unlike the magnetic field with a constant 

gradient, the GC approximation overestimates the drift velocity when it is evaluated at the 

converged gyrocenter. In addition, it is not clear if the converged gyrocenter improves upon the 1st 

gyrocenter at this relatively high velocity. When using the initial position of the particle the GC 

approximation underestimates the actual drift, however, this is to be expected since the particle is 

initialized at rmin where B is the strongest.  If initialized at rmax the GC approximation would thus 

overestimate the drift the most. Using the 1st gyrocenter this approximation still underestimates the 

drift, but is clearly more accurate than using the particle position.  

 

In Figure 4.7 the particle trajectory is initialized at rmin, but we note that in the practical 

application the particle will not always be initialized at rmin, instead, it would follow a probability 

of distribution between rmin and rmax. Thus, the probability of distribution between these limiting 

values would result in various underestimating or overestimating of the true particle drift. The same 

logic applies to either the 1st gyrocenter or the converged gyrocenter, but the variation in drift 

inaccuracy would be smaller since these curves are more tightly constrained in the r-direction. 
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Therefore, the overestimation or underestimation of the drift velocity is considerably reduced and 

either of these methods improves the consistency of the GC drift calculation. Still, the GC drift 

initialized at the converged gyrocenter significantly overestimates the particle's true drift. This is a 

result of v = 3 approaching divergence conditions. 

  
Figure 4.7: GC integration using trajectory, 1st gyrocenter and converged gyrocenter as starting locations for 

one gyroperiod. The particle is initiated with m0 = 1, q = 1 r0 = [7, 0] and v0 = [0, 3]. The magnetic field is out of 

the page with M = 1000. The trajectory is shown in blue, 1st gyrocenter in red and converged gyrocenter in 

black, with the same colour thicker lines corresponding to the GC approximation. 

 

  To quantify the error in the drift velocity associated with different possibilities for 

initialization of a GC simulation we plot the arclength error after one gyroperiod as a function of 

the particle velocity. This process is applied to the particle position, the first gyrocenter and the 

converged gyrocenter. The tracing error plot is shown in Figure 4.8 below on a log-log scale. The 

range of velocities for which the calculations are carried is from v = 0.01 to v = 3.02, to coincide 

with the divergence threshold. 

 

Figure 4.8 shows that the GC tracing error is proportional to v3 when using the position of 

the particle as a starting point and is proportional to v4 when using both the 1st gyrocenter and 

converged gyrocenter. This scaling is the same as for the magnetic field with a constant gradient 

in Section 3.3 and likely holds for general magnetic fields as well. Figure 4.8 also shows that using 

the converged gyrocenter at high velocities is worse than using the 1st gyrocenter above v = 2.7 and 

reaches trajectory error at the divergence threshold of v = 3.0217. However, the converged 

gyrocenter does offer significant improvement for v < 2, at these velocities the converged 

gyrocenter is a factor of three smaller in tracing error when compared to the 1st gyrocenter. The 
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deviation from the linear shape at the high velocity extreme is attributed to velocities approaching 

the gyrocenter divergence threshold. At the low-velocity extreme, numerical limitations affect the 

calculation of the arc length as changes in the φ position of the particle get significantly small and 

are thus hard to calculate numerically. 

     
Figure 4.8: Tracing error for v = 0.01 to v = 3.02. The particle is initiated with m0 = 1, q = 1 r0 = [7, 0] and v0 = 

[0, v]. The magnetic field is out of the page with M = 1000.  Tracing error for trajectory is shown in blue, 1st 

gyrocenter in red and converged gyrocenter in black. 

 

In the discussion above, when using the particle position as the starting point, the GC 

approximation is initialized at rmin in Figure 4.7 and Figure 4.8. Thus, the tracing error proportional 

to v3 has only been proven for the rmin condition. Of course, initializing the GC calculation at one 

of the extremes, such as rmin and rmax gives the largest error. To test the proportionality of v3, for 

any point along the particle trajectory, we distribute the GC approximation starting location 

between rmin and rmax. For this analysis, we use 250 points to achieve sufficient resolution. Like 

previously, the distance travelled by the GC approximation is compared to the true drift of the 

particle for one gyroperiod. Since the GC trajectory is circular, we use the difference in arc length, 

as we did in Figure 4.8. For comparison to the GC approximation endpoints, we must determine 

the endpoint of the particle at every point between rmin and rmax. Thus, we use the change in φ from 

Figure 4.7 and the r-value at each GC initialization point to calculate the corresponding arc length 

of the particle’s trajectory. We now select two velocities from Figure 4.8 to compare the difference 

in their tracing errors from rmin and rmax. This is done for v = 0.1 and v = 0.2 and is displayed on the 

v3 

v4 
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semi-log plot in  Figure 4.9. In this figure we normalize the x-axis such that 0 corresponds to rmin 

and 1 corresponds to rmax.  

 
Figure 4.9: Tracing error of GC drift between rmin and rmax of the particle trajectory for v = 0.1 (blue) and v = 

0.2 (red). The particle is initiated with m0 = 1, q = 1 r0 = [rmin to rmax, 0] and v0 = [0, v]. The magnetic field is out 

of the page with M = 1000. The black line is the blue line multiplied by 23. 

 

In Figure 4.9 the blue line corresponds to v = 0.1 and the red line corresponds to v = 0.2. 

Unsurprisingly the smallest tracing error occurs at the mean of rmin and rmax for these relatively low 

velocities, while the largest tracing error occurs at the extremes. The most important part of Figure 

4.9 is the black line. It is the tracing error results of v = 0.1 multiplied by our proportionality of v3, 

for this situation this is 23. Since it coincides with the results of v = 0.2 we thus conclude that 

tracing error is always proportionate to v3 when using the particle trajectory as a GC starting point. 

Regardless of the location between rmin and rmax. The deviation of the black line from the red at 0.5 

is to be expected. This is because tracing error approaches zero faster at 0.5 when velocity is 

decreased, or the number of points used between rmin and rmax increases.  

 

4.5 Analysis of the Magnetic Moment   
 

We now analyze the magnetic moment as a means to measure the accuracy of the GC 

approximation. First, we derive the 2nd order expansion for the magnetic moment for use later in 

this section. This is done by applying the magnetic field given by Equation (4.4) to our general 

form of μ given by Equation (2.19). The resulting formula is given by Equation (4.17) [10]. In this 

expression for μ, the magnetic field is supposed to be evaluated at the particle position. 
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For this particular magnetic field, the exact expression for the magnetic moment can be 

calculated, this is given by Equation (4.18)  [10].  
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(4.19) 

The normalization used in the original paper by Kabin [9] is slightly different from that 

used in this thesis, thus Equation (4.18) is converted to our notation. To make k unitless, Pφ is 

divided by m to account for differences in normalization choices between this paper and Kabin 

[10]. For the same reason, q/π is multiplied at the beginning of the equation. In this expression, Ξ 

is the complete elliptic integral of the second kind as introduced in Section 2.6. This version of the 

adiabatic invariant remains exactly constant along the entire trajectory of the particle, while other 

approximations for the adiabatic invariant oscillate at the gyrofrequency due to the change in 

magnetic field strength along the trajectory of the particle. In the following, we normalize the 

various approximations for the adiabatic invariant with the value of the exact invariant. 

 

We start by comparing the zeroth-order magnetic moment given by Equation (2.18) to the 

exact solution given by Equation (4.18). Applying Equation (2.18) using the value of the magnetic 

field strength along the ion trajectory (blue), the 1st gyrocenter (red) and converged gyrocenter 

(black) we generate Figure 4.10. These colours are consistent for all magnetic moment plots 

generated in this section. The values displayed here are normalized with the exact solution of the 

adiabatic invariant. Thus, the exact solution is represented by the horizontal cyan line at a value of 

one. This was done for one gyroperiod at a velocity of v = 3 and v = 0.3.  

 

On the top panel, the exact solution does not correspond to the mean of oscillation for any 

of the approximate magnetic moments. Though the converged gyrocenter is relatively close to the 

exact expression, the area above the cyan line is still clearly larger than below. Viewing the size of 

the amplitude variations it is clear that the magnetic moment calculated along the particle trajectory 

is the least accurate, at most this amplitude deviates 120% from the exact solution. In comparison, 

the 1st gyrocenter deviates a maximum of 50%, while the converged gyrocenter deviates a 

maximum of 30%. Thus, it is clear the converged gyrocenter is the most accurate method when 

using the zeroth-order magnetic moment given by Equation (2.18). This differs from the results in 

tracing error accuracy from the previous section, where the 1st gyrocenter was superior to the 

converged gyrocenter at v = 3. Thus showing that the converged gyrocenter is more valuable in 

magnetic moment approximations than GC initialization at relatively high velcoities. The 

asymmetry in the exact solution in the top panel is attributed to the relatively high velocity of the 

particle. On the bottom panel, we decrease the velocity by a factor of 10 to show that the application 
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of Equation (2.18)  is much closer to the exact solution. This is demonstrated by the increased 

symmetry and the decreased deviation in maximum amplitude. The symmetry on the bottom panel 

shows that the 1st gyrocenter, at relatively lower velocities, provides a very reasonable 

approximation to the true gyrocenter position. 

 
Figure 4.10: Normalized magnetic moment (2.18) at the trajectory, 1st gyrocenter and converged gyrocenter at v 

= 3 (top) and v = 0.3 (bottom). The particle is initiated with m0 = 1, q = 1 r0 = [7, 0] and v0 = [0, v]. The magnetic 

field is out of the page with M = 1000. The magnetic moment for trajectory is shown in blue, 1st gyrocenter in 

red, converged gyrocenter in black and exact expression in cyan.  

 

For further comparison, we now apply the second-order version of the magnetic moment, 

which is given by Equation (4.17). This is done using B along the particle trajectory. Despite the 

formulation of Equation (4.17) being derived for the trajectory of the particle we also use B at the 

converged gyrocenter in an attempt to improve Equation (4.17) further. All approximations of the 

magnetic moment are now displayed in Figure 4.11. 
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Figure 4.11: Various magnetic moment approximations and the exact expression for one gyroperiod. The 

particle is initiated with m0 = 1, q = 1 r0 = [7, 0] and v0 = [0, 3]. The magnetic field is out of the page with M = 

1000. Magnetic moment (2.18) using the trajectory is shown in blue, 1st gyrocenter in red and converged 

gyrocenter in black.  Magnetic moment (4.17) using the trajectory is shown in magenta and converged 

gyrocenter in green. The exact expression is in cyan.  

 

At this relatively high velocity the second-order Taylor series expansion does not increase 

the accuracy of the magnetic moment calculation when compared to Equation (2.18) applied at the 

converged gyrocenter. Quantified the maximum amplitude deviation from the exact solution is 

320% for μT2 when using B at the converged gyrocenter (green) and 90% for μT2 when using B at 

the actual trajectory (magenta).  Interestingly these maximum deviation points do not occur at the 

same points along the trajectory, but do occur at the iteration unstable points of rmin and rmax. Thus, 

maximum deviation occurs at opposite radial extremes for the 1st gyrocenter and the converged 

gyrocenter.  Therefore, there is a gyrocenter iteration in which rmin changes to rmax as the maximum 

deviation point. We note that the Taylor series expansion given by Equation (4.17) is based on the 

position of the particle. Thus, applying it to the gyrocenter position is, strictly speaking, not 

justified. However, it is natural to check if using the converged gyrocenter instead of the particle 

position improves the accuracy of this calculation. Clearly, as Figure 4.11 shows, it does not. 

 

Next, we calculate the maximum deviation of μ from μExact across a wide range of 

velocities. We define this measurement as the error in this calculation.  The dependence of the 

magnetic moment error on the velocity is graphed on a log plot from a velocity of v = 0.01 to v = 

3.02 and is displayed below in Figure 4.12. 
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Figure 4.12: Error in approximate magnetic moments vs exact expression for v = 0.01 to v = 3.02 for one 

gyroperiod. The particle is initiated with m0 = 1, q = 1 r0 = [7, 0] and v0 = [0, v]. The magnetic field is out of the 

page with M = 1000. Magnetic moment (2.18) using the trajectory is shown in blue, 1st gyrocenter in red and 

converged gyrocenter in black.  Magnetic moment (3.19) using the trajectory is shown in magenta converged 

gyrocenter in green. The exact expression is in cyan. 

 

 Figure 4.12 shows the differences in magnetic moment error calculations as a function of 

velocity. For Equation (2.18) using B at the particle trajectory and Equation (4.17) using B at the 

converged gyrocenter, the error is proportional to v3.  This is the slowest rate of convergence for 

all of the magnetic moments. For Equation (2.18) using B at the 1st gyrocenter and converged 

gyrocenter, along with Equation (4.17) using B at the particle trajectory, the error is proportional 

to v4. For all velocities analyzed the application of Equation (2.18) at the converged gyrocenter is 

the most accurate method of calculating the magnetic moment. This is different from our analysis 

of the magnetic field with a constant gradient, where the most accurate approximation was a 

combination of the 2nd order Taylor expansion using B along the trajectory of the particle and 

Equation (2.18) using B at the converged gyrocenter. Another difference is that the calculation of 

the 2nd order Taylor expansion using B at the particle trajectory and the converged gyrocenter are 

now proportionate to v3 and v4 respectively, while before they were proportionate to v4 and v5 

respectively.  In addition, at a v = 1.34, the calculation of Equation (4.17) at the particle trajectory 

kinks upwards. At v = 1.34 the error changes from being proportional to v4 to v6. The reason for 

this change is not immediately clear and is simply noted for thoroughness as it has no significant 

impact on the results. Lastly, the deviation of the linear sloped shape at the high velocities is 

attributed to the breaking down of the GC approximation.  

 

v3 

v4 
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Lastly, Figure 4.12 shows that using the second-order expansion for the magnetic moment 

gives results very close to using the basic formula for the magnetic moment applied at the first-

order gyrocenter position. 

 

4.6 Alternative Guiding Center Starting Location     
 

Similar to the magnetic field with a constant gradient, radial positions between rmin and 

rmax exist where B is such that using Equations (2.18), (2.7) and (4.15) give exact results for 

calculating the adiabatic invariant, the gyroperiod, and the drift velocity. In this Chapter, we use 

the drift period instead of the drift velocity as the results are equivalent. Like before, these locations 

are analyzed in an attempt to improve the GC initialization. For the equatorial plane of a magnetic 

dipole, the location of these exact solutions is achieved by substituting the exact solutions into their 

respective B-dependent equations. Since B is a function of r, we simply rearrange for r. The final 

forms of these three Equations are given by Equations (4.20), (4.21) and (4.22). Here rμ, rTg and rTd 

are the radial locations where the exact value is achieved for μ, Tg and Td respectively 

 

 

rµ = √
µ

exact
M

mv2

3

 

 

(4.20) 

 

rTg = √
Tg_Exact|q|M

2πm

3

 

 

(4.21) 

 
rTd = Td_Exact (

4π

3
) (

|q|M

mv2
) 

 

(4.22) 

The radial positions where these exact values are achieved are now plotted as a function 

of velocity for v = 0.01 to v = 3.5. These values of r were normalized by subtracting rmin and 

dividing by rmax - rmin so that a value of zero corresponds to rmin and a value of one corresponds to 

rmax. Thus, when the velocity decreases all three r-positions converge at the mean of the particle's 

bounds, represented by 0.5, as expected. This is displayed in Figure 4.13 below.  

 

From Figure 4.13 it is determined that the radial location of rTg deviates the least from 0.5 

up until a velocity of 3.2, at this point, rTd has the least deviation from 0.5. Additionally, rμ deviates 

the most out of all exact locations up until a velocity of 3.4, at this point, rTg has the most deviation 

from 0.5. Ideally, all three exact quantities would be conserved, but in practical applications, one 

needs to choose between trade-offs in accuracy between μ, Tg and Td, as demonstrated in Figure 

4.13.  Since conservation of Tg is only really used for epicycloid fits the best GC starting location 

for really high energy particles lies between rTd and rμ. However, in most applications the drift 

period takes priority and thus the location of rTd is the preferred location for the GC approximation. 

How this compares to the converged gyrocenter is left for future work.  
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Figure 4.13: Normalized r distance along the trajectory where μ, Tg and Td equal their respective exact 

expression for v = 0.01 to v = 3.48. The particle is initiated with m0 = 1, q = 1 r0 = [7, 0] and v0 = [0, v]. The 

magnetic field is out of the page with M = 1000. The magnetic moment is shown in blue, gyroperiod in red and 

drift period in green. 

 

The direction of deviation should also be noted as towards rmin for the location of rμ and rTd 

and towards rmax for rTd. Contrasting this with the results from the constant gradient analysis in 

Section 3.5 one notices that the direction of deviation is opposite for the exact μ and exact Tg 

locations. This is attributed to the direction of the gradient of the magnetic field with respect to the 

particle bounds. In this chapter, rmin corresponds to B maximum, while in Chapter 3, xmin 

corresponded to B minimum, the opposite is true for the maximum boundary. The reason why rTd 

did not change deviation direction, when compared to xVD from Chapter 3, is because the drift 

period and drift velocity are inversely proportional. Taking these exact radial locations and 

overlaying them onto the ion trajectory for one gyroperiod at v = 3 yields Figure 4.14.  
 

Comparing this figure with Figure 4.7 illustrates that the location of rμ, rTg and rTd all 

improve the tracing error at a velocity of v = 3. This is because the GC approximation initiated at 

the converged gyrocenter significantly overestimated the drift.  In Figure 4.14 rμ, rTg and rTd are all 

positioned at a stronger B position than the converged gyrocenter, and therefore the GC drift is 

more accurate. Quantifying this accuracy is left for future work. Overall we have shown that there 

exist multiple locations for GC initialization that improve upon the conventional application of the 

1st gyrocenter.  
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Figure 4.14: GC initialization options overlayed onto trajectory, 1st gyroradius and converged gyrocenter for 

one gyroperiod. The particle is initiated with m0 = 1, q = 1 r0 = [7, 0] and v0 = [0, 3]. The magnetic field is out of 

the page with M = 1000.  The trajectory is shown in blue, 1st gyrocenter in red and the converged gyrocenter in 

black. Arc lines corresponding to the initialization option for rμ are shown in blue, rTg in red and rTd in green. 

 

4.7 Conclusion      
 

In this chapter, we analyzed in detail the motion of charged particles confined to the 

equatorial plane of a magnetic dipole. The existence of analytical solutions for equatorially 

mirroring particles allowed for a more in-depth analysis of this particular field. Specifically an 

axisymmetric magnetic field with a gradient in the inward radial direction.  This magnetic field is 

used to illustrate the accuracy of the GC approximation applied to particles in the inner 

magnetosphere region, such as particles in the inner Van Allen Belts centred at 1.5 RE [2].  

 

Topics discussed in this section were how to choose an initial point for the GC 

approximation, and what method should be used to calculate the magnetic moment. The fact that 

this magnetic field has symmetry ensures the conservation of the canonical angular momentum, 

which was used to provide analytical Equations for the particle bounds. 

 

To evaluate GC initial position options, we started by adding iterations to the gyrocenter 

Equation (2.11) to average the value of B. This restricted the radial range of the gyrocenter for every 

iteration until a converged gyrocenter was reached. Thus, when compared to using the particle 

position, the consistency of the GC drift calculation was improved. Analyzing these iterations at 

higher velocities showed the existence of stable and unstable points along the gyroperiod.  For the 
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unstable point, this occurred at rmin and rmax, when the velocity was completely directed in φ or 

perpendicular to the gradient. For the stable point, this occurred when the velocity was completely 

directed in the radial direction or parallel along the gradient. At very high velocities the gyrocenter 

iteration diverges before unbound threshold speeds were reached. This occurs when v > 0.204v* [6]. 

To check if the converged gyrocenter improved the GC approximation a log plot was generated 

across a wide range of velocities for the tracing error in GC drift. From this graph it was determined 

that the tracing error in modelling the particle’s drift was proportionate to v4 when initialized at the 

converged gyrocenter, or 1st gyrocenter, and was proportionate to v3 when initialized at the particle 

trajectory. Although the tracing error for both the converged gyrocenter and the first approximation 

decrease at a rate of v4, this error is consistently a factor of 3 smaller for the converged gyrocenter 

up until v = 2. At v = 2.7, the 1st gyrocenter becomes a better GC initiation point because the velocity 

is approaching our iteration divergence threshold of 3.0217. 

 

Ideally, when using the GC approximation, we would like to model the drift period, 

magnetic moment and gyrofrequency exactly. In an attempt to determine an r position where this 

occurs we used the exact expression of drift period, magnetic moment and gyrofrequency that exist 

for t equatorial mirroring particles in a magnetic dipole. Unfortunately, these three points never 

coincide, except in the limit as v approaches 0. Thus, in the practical application of the GC 

approximation, one must choose between trade-offs in accurately measuring μ, rTg or rTd. For most 

applications of the GC approximation, we wish to match the drift period exactly. However, there 

are applications when accurately measuring μ or Tg is more desirable. An in-depth analysis of the 

converged gyrocenter vs rμ, rTg and rTd is left for future work, but findings here show that the 

locations of rμ, rTg and rTd offer improvement at relatively high velocities, especially those above v 

= 3.0217. Overall, all methods of GC initialization rely only on the initial position and velocity of 

the charged particle. This adds flexibility to plasma particle modelling as it eliminates the need to 

first model the actual trajectory of the charged particle.  

 

Lastly, we investigated different methods of calculating the first adiabatic invariant. In the 

standard GC approximation, the adiabatic invariant is assumed to be constant, a crucial assumption 

of the GC formalism. Even if the simplest zeroth-order approximation (2.18) for the adiabatic 

invariant is used there are several different possibilities where B is evaluated. It can be evaluated 

either at the instantaneous particle position or at the gyrocenter, which itself is calculated by several 

different methods. The magnetic moment was also expanded into a Taylor series in an attempt to 

improve the accuracy of the calculation. To establish a basis of comparison the oscillations of these 

magnetic moments were compared to the exact solution of the magnetic moment. To quantify our 

results we used the maximum difference between the exact solution and these oscillations to 

measure the error in measuring the magnetic moment. This was then plotted on a log plot for 

velocities that ranges from 0.01 to 3.02. It was found that applying (2.18) using B at the particle 

trajectory and (4.17) using B at the converged gyrocenter had a proportionality of v3.  For (2.18) 

using B at the 1st gyrocenter and converged gyrocenter, along with (4.17) using B at the particle 

trajectory, we have a proportionality of v4. Overall, the best method was determined to be using 

(2.18) at the converged gyrocenter because it had the least error for all velocity values.  
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5. Particle Motion in the Equatorial Plane of a 

Non-Axisymmetric Magnetic Field. Magnetic 

Dipole and Magnetotail 
5.1 Description of Non-Axisymmetric Magnetic Field   
 

In this chapter, we continue to analyze charged particles with velocities in the equatorial 

plane and are thus confined to it, but now introduce asymmetry to the magnetic field. In the 

previous Chapters, we relied on magnetic field symmetry to apply the canonical momentum, 

magnetic moment and other analytical expressions to determine GC initialization options. In this 

chapter, we analyze the effects asymmetry has on the conservation of these quantities for one drift 

period.  Quantifying the effects on magnetic moment specifically allows us to demonstrate the 

deviation of the GC approximation from the real trajectory.  Asymmetry in the magnetic field 

mimics the outer Sections of the Earth’s magnetosphere, where the magnetic field is compressed 

on the dayside and stretched on the nightside as a result of solar wind pressure, thus leading to 

asymmetry. Specifically, magnetic field compression occurs at a distance of r > 4RE on the dayside, 

while stretching of the magnetotail occurs at a distance of r > 5RE on the nightside [4]. This process 

was illustrated in Figure 1.2. High energy particles in the asymmetric portions of Earth’s magnetic 

field are found in the outer Van Allen belts. These represent the primary application for the GC 

approximation in this thesis, as we are measuring the validity of GC approximation for high-energy 

particles.    

 

In this chapter we use the geocentric solar magnetospheric (GSM) coordinate system. In 

this coordinate system the positive z-axis is aligned with the magnetic north, the positive x-axis is 

aligned from the Earth to the Sun, ignoring the dipole tilt, and the y-axis points from dawn to dusk, 

this completes the right-hand coordinate system.  

 

The magnetic field used in this section is a modification of our axisymmetric dipole 

introduced in Equation (4.1), which was simplified in Equation (4.4). To introduce asymmetry we 

subtract magnetic field strength from the dipole on the nightside to mimic magnetotail stretching.  

This magnetic field is based on models developed in papers by Kabin et al [23] and Kabin et al [32]. 

These models were developed for the specific purpose of investigating the night-time transition 

between the mostly dipolar region to the stretched magnetotail and were inspired by ground-based 

riometer measurements and optical observations of auroras [33]. This model allows for a relatively 

simple parametrization of the night-side transition region and allows the control of the thickness of 

the night-side cross-tail current sheet, its strength, and the location of the transition. The location of 

this sheet is given by the label plasma sheet in Figure 1.1. Although not particularly computationally 

expensive by itself, this model is still too slow to be used directly while integrating the Lorentz 

equations of particle motion. Therefore, a heuristic fit to a numerical model was developed in the 

paper by Kabin et al [23] approximating the parametrization of the magnetotail. This parametrization 

is in the equatorial plane only and has a fitting error accuracy better than 10−4, which leads to a slight 

deviation of the fields from perfect self-consistency in time-dependent simulations, but does not 

affect our calculations [23]. This approximated model is time-dependent, as the focus of the paper 

by Kabin et al [23] was the study of a substorm dipolarization. This is interpreted as the tailward 

motion of the transition region. In this thesis, we focus on steady-state magnetic fields, so in the 

equations below we choose t = 0, which corresponds to the state of the magnetosphere before a 
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substorm. Under this condition, the magnetotail is centred as 6 RE. In the equatorial plane, the 

magnetic field is given by Equation (5.1), here a and b1 through b5 represent components of the 

heuristic fit to a numerical model [23]. 

 

 

𝐁 = 
M

r3
 - f(φ)

b1

a2.884
[

ea2.46
 - b4

ea2.46
 + b5

]

2.065

ez ̂ 

 

(5.1) 

 a = (r + b2)/b3 

 

(5.2) 

 b1 = 648.9661 - 183.7327 tanh(1.6101t - 3.8109) 

 

(5.3) 

 b2 = 0.2019 - 0.0859 tanh(1.6258t - 4.1687) 

 

(5.4) 

 b3 = 3.3338 + 0.2906 tanh(1.6013t - 3.9748) 

 

(5.5) 

 b4 = 1.3820 - 0.2966 tanh(1.8191t - 5.1973) 

 

(5.6) 

 b5 = 93.1713 + 50.4476 tanh(1.6306t - 4.3549) 

 

(5.7) 

In Equation (5.1) the first term is the dipole from Section 4.1, Equation Here M represents 

the equatorial strength of Earth’s magnetic field at the surface, while r represents the radial distance 

from the center of the Earth in RE [23].  For this magnetic field, we use M = 3.1⋅10−5 TRE
3 because 

we are quantifying the effects for real Earth-like conditions, unlike the previous sections where we 

used generic units for the magnetic field. The second term in Equation (5.1) represents the 

magnetotail. A notable limitation of this model is that it is only applicable in the equatorial plane, 

however, this is sufficient for our purposes. Another limitation is that this model was designed to 

work only for radius values greater than 3 RE. This is not a significant limitation for our purposes 

since we are considering particle trajectories outside this radius. 

 

Since the magnetic field in the equatorial plane is always in the z-direction, ∇.B = 0 for any 

functional dependence on x and y. 

 

   This magnetic field model was further modified to limit the tail magnetic field to a certain 

azimuthal range, centred at midnight or φ = π. Here φ is the azimuthal angle. This was necessary as 

the original magnetotail model was axisymmetric [23]. This was achieved by including the factor 

f(φ) in Equation (5.1). This f(φ) is from an unpublished paper by Kabin et al that also similarly 

modelled a magnetotail. The function f(φ) is given by the combination of Equations (5.8) and (5.8), 

with the angle φ in degrees, measured counterclockwise from noon.  

 

 
f1(φ) = 

1

c0

[1 + tanh (
55o - (φ - 180o)

20o )] [1 + tanh (
55o + (φ - 180o)

20o )] 
(5.8) 

  

f(φ) = 
f1(φ)

c1

[1 + tanh (
110o - (φ - 180o)

5o )] [1 + tanh (
110o + (φ - 180o)

5o )] 

 

 

(5.9) 

In Equations (5.8) and (5.8) c0 = (1 + tanh(11/4))2 and c1 = (1 + tanh(110/5))2 to simply 
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ensure that an exact value of 1 is achieved on the nightside at midnight. This is done so that f(φ) 

ranges from 0 to 1, and acts as an on/off switch to subtract magnetic field strength, as shown by 

Equation (5.1). In addition, the need for two lines of f(φ) was to prevent numerical limitations from 

affecting our measured results. Originally we employed only Equation (5.8), which does not 

completely go to 0 but is instead in the order of 10−6. Although this appears to be a fairly small 

number, it turns out that even this small degree of asymmetry visibly affects the conservation of 

the canonical angular momentum and magnetic moment, discussed later in section 5.4. Thus, we 

applied a second f(φ), Equation ((5.9),  to decrease our numerical limitation. With both Equations 

(5.8) and (5.8) our f(φ) does a better job at approaching 0 and is in the order of  10−18. This value 

is smaller than machine epsilon in our numerical calculations and does not affect the results in any 

visible way. 

 

   Overall the most important values in f(φ) are 55o and 20o from Equation (5.8). Here the 

value of 55o represents the azimuthal angle where the transition from a dipolar to tail-like field 

takes place, measured from the negative x-axis.  The value of 20o represents the width of this 

transition. Figure 5.1 shows an illustration of our f(φ) given by Equations (5.8) and (5.8) in blue, 

where we label it small phi-gradient (∇φ) to differentiate it from two additional versions of f(φ), 

which are presented here for comparative purposes and are introduced later.  

 
Figure 5.1: f(φ) factor as a function of φ. Small ∇φ is shown in blue, large ∇φ is shown in red and the piecewise 

linear is shown in green.  

 

The magnetic field given by Equation (5.1), with f(φ) given by Equations (5.8) and (5.8), 

is visualized in the contour plot in Figure 5.2. The magnetic field on the dayside is clearly 
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axisymmetric, while on the nightside there is an obvious deviation from this symmetry. Since the 

magnetotail has a weaker magnetic field, the contours of constant B pass closer to the Earth on the 

nightside than on the dayside. To reiterate our function f(φ) controls where the transition from the 

tail current region to the dayside dipolar magnetic field takes place, as well as the steepness of this 

transition. 

 
Figure 5.2: Contour plot of the magnetic field strength of Bz (T) in the equatorial plane for small ∇φ. Magnetic 

field strength is displayed for outermost contour lines. Earth is represented by a circle with a radius of 1 RE, the 

dayside is in white and the nightside is in black.  

 

Plotting the magnetic field strength as a function of radius also helps illustrate the effects 

of the magnetotail on the rate of change of B, this is shown in Figure 5.3. This was done for multiple 

values of φ in radians, measured from the positive x-axis.  

 

In Figure 5.3 the black line represents the magnetic field strength along the positive x-axis. 

This illustrates the spatial variations in the magnetic field strength for the magnetic dipole side, 

while the red and green represent two radial slices of the magnetotail. The red line corresponds to 

the negative x-axis or midnight, and it has the most pronounced dip in strength due to the f(φ) factor 

being a maximum value of 1 here. Comparing this to the black line representing the dayside shows 

that the magnetic field strength drops approximately by a factor of 10. The green line corresponds 

to a value of f(φ) between 0 and 1 and illustrates a segment of the magnetotail transition.  Overall, 

the magnetotail effects start to occur at r = 4.5 RE, here the spatial variations in B increase until r 

= 6.5 RE, where the spatial variations in B become proportional to r3 again.   
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Figure 5.3: Variations of Bz as a function of r for multiple values of φ. The black line represents φ = 0, the red 

line is φ = π and the green line is φ = 0. 

 

 In addition to this magnetic field, two additional non-axisymmetric fields are analyzed in 

this chapter. This is done in order to illustrate the effects of magnetic field gradient steepness on 

particle trajectories and the conservation of the adiabatic invariants. Furthermore, Earth’s outer 

magnetosphere is known to change shape due to space weather conditions, which we define as 

variations in the solar radiation pressure that hits Earth’s magnetosphere. Thus, analyzing various 

magnetotails serves to illustrate the dynamic nature of the magnetotail. We now introduce two new 

magnetic fields, that are still governed by Equation (5.1) but employ a different f(φ) factor to simulate 

differences in the transition region of the magnetotail as illustrated earlier in Figure 5.1. The first 

new magnetic field uses a narrower, and therefore, steeper, transitional region. This is achieved by 

changing the value 20o in Equation (5.8) to a lower value of 5o. For clarity, we referred to our first 

case as small ∇φ, thus we refer to this one as large ∇φ based on their respective f(φ) transition ranges. 

Overall, the steeper transition in f(φ) is given by Equations (5.10) and (5.11), where the correction 

term c0 becomes c0 = (1 + tanh (11))2 and c1 is the same as before. 

 

 
f1(φ) = 

1

c0

[1 + tanh (
55o - (φ - 180o)

5o )] [1 + tanh (
55o + (φ - 180o)

5o )] 

 

(5.10) 

 
f(φ) =  

f1(φ)

c1

[1 + tanh (
110o - (φ - 180o)

5o )] [1 + tanh (
110o + (φ - 180o)

5o )] 

 

(5.11) 
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 The magnetic field is given by Equation (5.1), calculated using this definition of f(φ) is 

shown as a contour plot in Figure 5.4. Comparing Figure 5.2 and Figure 5.4 shows that the gradient 

in the azimuthal direction is much steeper in the tail for this field. This is also illustrated by 

contrasting the blue and red lines from Figure 5.1 

 
Figure 5.4: Contour plot of the magnetic field strength of Bz (T) in an equatorial plane large ∇φ. Same layout as  

Figure 5.2.  

 

For the magnetic field shown in Figure 5.2 and Figure 5.4, the magnetic field changes 

smoothly with the azimuthal angle. Thus the magnetic fields specified by Equations (5.8) and 

(5.10) are continuously differentiable. As one more example we consider a magnetic field in which 

f(φ) is expressed by a piece-wise linear function. In this case, while the magnetic field is 

continuous, its derivative is not. We use this example to examine the effects of non-smooth 

variations of the magnetic field on particle trajectories. It is known that the dependence on smooth, 

or not smooth, variation in the magnetic field significantly affects the conservation of adiabatic 

invariants [11] [34]. Therefore, we compare the smooth and non-smooth magnetic fields in this 

chapter. 

 

The piecewise linear version of f(φ) was implemented using if statements. The linear slope 

was chosen to be equal to the maximum derivative of our small ∇φ definition of f(φ). The 

derivatives for both Equations (5.8) and (5.10), small ∇φ and large ∇φ respectively, are displayed 

in Figure 5.5.  The choice of using the derivative of small ∇φ was done to make small ∇φ the 

pivotal magnetic field. This way large ∇φ becomes a variation in the rate of transition, when 

compared to small ∇φ, and the piece-wise linear function becomes a variation in the style of 

transition, when compared to small ∇φ. 
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Figure 5.5: Derivative of f(φ) for cases small ∇φ is in blue and large ∇φ is in red. 

 

Figure 5.5 shows that the maximum value for df(φ)/dφ for small ∇φ is 0.02369 and 

occurred at φ = 130. Using this we created the piecewise linear function given by Equation (5.12), 

which was shown in Figure 5.1 with a green line. 

 

 

 

 

 

f(φ) = 0 if 256 ≤ φ ≤ 103 
0.02369φ - 2.45216 if 103 < φ < 146 

-0.02369φ + 6.07624 if 214 < φ < 256 
1 if 146 ≤ φ ≤ 214 

 

(5.12) 

The contour plot for this magnetic field is shown in Figure 5.6. In comparison with Figure 

5.2 and Figure 5.4, it shows sharp changes in the magnetic field contour lines at the azimuthal 

angles where f(φ) changes the slope. 
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Figure 5.6: Contour plot of the magnetic field strength of Bz (T) in an equatorial plane for piecewise linear. 

Same layout as Figure 5.2. 

 

5.2 Brief Examination of Particle Trajectory 

 

The charged particles in this chapter are initialized on the axisymmetric dayside of the 

magnetic field for all three variations of the model. This is done so conserved quantities remain 

intact for the initial and final parts of the particle’s drift period. While the particle is in the 

axisymmetric part of the magnetic field the Equations for the conserved quantities are the same in 

this section as the ones derived for the magnetic dipole (4.4) in Section 4.1. This is because 

Equation (5.1) reduces to Equation (4.4) when f(φ) = 0. While the particle is on the dayside, the 

Pφ, rmin, rmax, Td_Exact and μExact remain constant. 

 

In regards to code validation, we reference the results from Section 4.3, as the magnetic 

field conditions are the same for the dayside. Thus, it is concluded that the code has a relative 

numerical error on the order of 10−11 for Pφ and v. It is shown in Section 5.4 that this numerical 

limitation is reached during our analysis and thus constrained the range of velocities examined. 

This is discussed in more detail in Section 5.4. Overall, it does not limit our ability to draw 

conclusions from the results.  

 

As an example, we consider the motion of a proton with initial conditions of m0 = 

1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0] RE and v0 = [0, 6] RE/s in the small ∇φ magnetic field. 

The rest mass and charge values were chosen to replicate a hydrogen ion. The initial position, r0, 
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was chosen to start on the dayside, with a value of 7 RE chosen to have the ion pass through the 

magnetotail’s steepest spatial variation, as established in Figure 5.3. An initial velocity of 6 RE/s 

was chosen to get a particle gyration range of approximately 2 RE for ease of visualization. At this 

velocity, the ion has a kinetic energy of 7.74 MeV. Comparatively the rest energy of an ion is 9.39 

MeV . Figure 5.7 shows the trajectory of the ion for one drift period.  

 
Figure 5.7: Trajectory of a particle in the equatorial plane of a non-axisymmetric field for one drift period. The 

particle is initiated with m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0] RE and v0 = [0, 6] RE/s. The magnetic 

field is out of the page with M = 3.1⋅10−5 TRE
3. The trajectory is shown in blue and the 1st gyrocenter in red. 

  

In Figure 5.7 the particle trajectory is displayed in blue and the 1st gyrocenter is in red. The 

gyrations become larger and longer in the magnetotail region as a result of the weaker magnetic 

field there. In addition, the rmin and rmax of the particle’s motion also change. Like before we only 

examine bound particles for this thesis. On the dipole side, the particles become unbound if v > 

v*/4, as rmax becomes undefined. Based on this definition the particle becomes unbound for our 

initial conditions when v > 10.15 RE/s. However, a lower practical threshold exists when taking 

into consideration that the particle must travel into a weaker B in the magnetotail. Due to the 

asymmetry of the magnetic field in this region, an analytical expression for unbound thresholds 

does not exist. Instead, it is determined through trial and error of numerical integration. For this 

scenario, with the v0 in the y-direction and x0 = 7 RE, it was determined this occurs for a v > 7 RE/s. 

At velocities slightly above 7 RE/s it took multiple drift periods for the particle to become unbound 

by Earth’s magnetic field. If we restrict the particle to one drift period then the unbound condition 

occurs at a v > 7.98 RE/s. An example of such a trajectory is shown in Figure 5.8. Overall, this 

process illustrates the need to consider magnetic field asymmetry when evaluating unbound 

threshold velocities.  
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Figure 5.8: Particle transition from bound to unbound trajectory due to weaker magnetic field in the tail. The 

particle is initiated with m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0] RE and v0 = [0, 7.98] RE/s. The magnetic 

field is out of the page with M = 3.1⋅10−5 TRE
3. 

 

 Now we consider the conservation of the canonical angular momentum and the first 

adiabatic invariant in this field. Figure 5.9 shows the canonical angular momentum of a particle 

from Figure 5.7 as a function of time. On the dayside, in the dipole magnetic field area, the 

canonical momentum is given by Equation (4.6) and is conserved. In Figure 5.9 this part of the 

trajectory corresponds to the initial horizontal part of the plot. As the particle moves into the tail 

field area, Equation (4.6) no longer represents the canonical angular momentum because the field 

now depends on the azimuthal angle, meaning the canonical momentum is no longer conserved. In 

Figure 5.9 this corresponds to the central area where the momentum oscillates. Eventually, when 

the particle enters the region of the dipolar magnetic field again, the canonical momentum is 

conserved again, this is illustrated by the plot of Pφ in Figure 5.9 becoming a horizontal line again. 

 

Similar considerations apply to the first adiabatic invariant. Figure 5.10 shows the time 

variation of the exact adiabatic invariant (4.18), as well as approximation (2.18) for the trajectory 

and 1st gyrocenter as a function of time. In the dipolar region, the exact value of the adiabatic 

invariant is given by (4.18), and it remains constant along the particle trajectory. In the tail region, 

this value oscillates, since expression (4.18) does not apply to this magnetic field. It becomes 

constant again when the particle renters the dipolar region. The approximations for the trajectory 

and 1st gyrocenter oscillate with every gyration even in the dipolar field region, but the amplitude 

of these oscillations becomes significantly larger in the tail field area. This is shown in Figure 5.10 
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Figure 5.9: Normalized canonical angular momentum over one drift period. The particle is initiated with m0 = 

1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0] RE and v0 = [0, 6] RE/s. The magnetic field is out of the page with M = 

3.1⋅10−5 TRE
3. 

 
 

Figure 5.10: Magnetic moments over one drift period. The particle is initiated with m0 = 1.673⋅10−27 kg, q = 

1.602⋅10−19 C, r0 = [7, 0] RE and v0 = [0, 6] RE/s. The magnetic field is out of the page with M = 3.1⋅10−5 TRE
3. The 

exact expression for the magnetic moment is in cyan, the approximate expression using the trajectory is in blue 

and using the 1st gyrocenter is in red.  

Dayside Dayside Tail 
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Figure 5.9 and Figure 5.10 show that both the canonical angular momentum and the exact 

value of the magnetic moment return to a value close, but not exactly equal, to their initial values 

after passing through the magnetotail area. For the adiabatic invariant this behaviour is expected 

[11]. However, this is a significant result for the canonical momentum as the only expectation is 

that it returns to a constant value in the dipolar region, but there is no obvious reason to expect it 

to be close to the starting value. In the GC approximation, however, the return to the original value 

for both the canonical momentum and the adiabatic invariant is expected because of the dawn-dusk 

symmetry of the magnetic field. This symmetry of the magnetic field results in the GC drift path 

being a closed curve. Thus, one can expect a particle that is well described by the GC 

approximation to remain within the same rmin and rmax bounds after passing through the tail region. 

Thus, small deviations from the initial value of Pφ and the μExact represent the deviation from the 

GC theory. Thus the GC approximation will incur cumulative secular errors with every drift.  

Section 5.4 aims to quantify this error over a range of velocities by measuring the difference 

between the final and starting values of Pφ and μExact. Quantifying this allows for the GC 

approximation to be applied so long as the error is tolerable for any particular application. This 

provides some guidelines on accuracy for applications of the GC approximation in non-

axisymmetric conditions.  

 

 The differences between final and initial values of Pφ and μExact are also calculated for large 

∇φ and the piece-wise linear function versions of the non-axisymmetric magnetic field. An 

example of the particle’s trajectory in both of these magnetic fields is given in Figure 5.11. The 

same initialization considerations used in Figure 5.7 are used here except for the following. An 

initial velocity of v0 = 5 RE/s is used in large ∇φ because it was determined that an initial velocity 

of v0 = 6 RE/s resulted in the particle becoming unbound. For the piece-wise linear function r0 = [7, 

0] RE and v0 = [0, 6] RE/s became r0 = [0, -7] RE and v0 = [6, 0] RE/s. This is because the particle for 

the piecewise linear function was only modelled for half a drift period and thus was initialized on 

the negative y-axis. This was done to save computational time as the magnetic field model becomes 

exactly dipolar on the dayside, thus the calculation of the particle trajectory on the dayside is not 

necessary and only wastes our computational resources. The computational time is a notable 

limitation of the analysis discussed in more detail in Section 5.4. Modelling half a drift period was 

not done for small ∇φ or large ∇φ magnetic fields as the numerical limitations of the code were 

reached before the need to reduce computational time. Overall the left panel of Figure 5.11 clearly 

shows the effects of a narrower φ range for f(φ) as the particle deviates from the projected path 

more sharply than in Figure 5.7, while the right panel of Figure 5.11 is visually very similar to the 

Figure 5.7. 

 

Regardless of which magnetic field is used, the weaker B in the magnetotail region causes 

the particle’s gyroradius to increase and gyrofrequency to decrease.  Thus, the particle spends less 

time traversing the magnetotail region than it otherwise would if the magnetic field were a dipole. 

To quantify this time difference we use the exact expression for the drift period, given by Equation 

(4.13), to represent the particle’s drift period in a dipole. To represent the drift period with our 

magnetotail we use our numerical integration time with Matlab’s events functionality set to stop 

the integrator after one drift period. This is done using the magnetic field of small ∇φ for a velocity 

range of 1 RE/s to 6.5 RE/s. The result is shown in Figure 5.12. In this figure the decrease in drift 

period due to a weaker magnetotail is quantified. The reasoning for the limited range of velocities 

and 0.5 RE/s intervals is explained in subsequent sections.  
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Figure 5.11: Trajectory in a magnetic field using large ∇φ for full Td (left) and half Td piece-wise (right). The 

particle is initiated with m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C. r0 = [7, 0] RE and v0 = [0, 5] RE/s (left). r0 = [0, -7] 

RE and v0 = [6, 0] RE/s (right).  The magnetic field is out of the page with M = 3.1⋅10−5 TRE
3.  

 

    
Figure 5.12: Comparison of exact drift period in dipole vs drift period of numerical integrator using small ∇φ. 

The particle is initiated with m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0] RE and v0 = [0, 6] RE/s. The 

magnetic field is out of the page with M = 3.1⋅10−5 TRE
3. 
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5.3 Phase Distribution  
 

The GC approximation is based on averaging the trajectory of a particle. Due to this 

multiple particle trajectories average to the same GC trajectory. In this section, we describe a 

procedure for generating an ensemble of particles that all have an identical GC approximation. 

These particles are indistinguishable from the point of view of GC theory. The initial conditions 

for these particles are generated in such a way that they are all characterized by the same value of 

Pφ, μExact and velocity. Due to the shared value of Pφ, these particles also have the same values for 

rmin and rmax. The only difference between these particles is their initial phase, which is, 

unobservable within the GC formalism. In Section 5.4 we show that certain properties of the motion 

depend on the initial phase, and this dependence becomes more prominent as the velocity of the 

particle increases. Thus the dependence of the results on the phase of the particle indicates the 

breakdown of the GC approximation. 

 

Figure 5.13 illustrates our procedure for generating particles with different phases and 

identical energies, Pφ, and μExact. The blue line in Figure 5.13  is the gyroperiod of a particle initiated 

at r0 = [7, 0] RE and v0 = [0, 6] RE/s, which is the same as Figure 5.7 discussed earlier. Using this 

trajectory, we calculate the velocity components of the particle at any point along the gyroperiod. 

This is illustrated in  Figure 5.13 by the several black lines tangential to the blue trajectory.  We 

then rotate these velocities to the same initial starting line at y = 0 shown by the black solid line. 

The red dashed lines in Figure 5.13 shows this rotation and the red vectors illustrate the new 

velocity vectors. We define the phase, δ, of the particle in such a way that δ = 0 at our initial point, 

where v0 is in the positive y-direction, and δ = 2π at the end of the gyroperiod. This allows us to 

write the initial velocity as v0 = v[sin(δ), cos(δ)] RE/s. Using this definition of velocity, we generate 

vx0 and vy0 for all phases between 0 and 2π.  

 

We now distribute the velocity vectors along the same starting line, the positive x-axis. To 

do this we use the rmin equation to determine x0 for each phase. This is done because our initial 

phase, δ = 0, is initiated at rmin, thus x0 = rmin at initialization. Additionally, since y0 = 0,  the y 

component of our becomes vφ.  Applying this results in our expression for x0 being given by 

Equation (5.13).      

 

 

x0 = 

Pφ +  √Pφ
2 + 4mqMv cos δ

2mv cos δ
 

 

(5.13) 

Due to the dependency on Pφ in this approach, it should be noted this process is limited to 

initialization on the dipole side only. Overall, this entire phase distribution process is visualized in  

Figure 5.13 below. 

 

In Figure 5.13 five of the particle’s local velocity vectors are displayed in black at five 

different positions along the trajectory for one gyroperiod, the corresponding values of the phase 

are shown. The corresponding red velocity vectors show r0 and v0 for each phase. To provide 

sufficient resolution 200 to 1000 particles with different phases are used in subsequent sections of 

this chapter.  
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Figure 5.13: Initialization of various particles phase-shifted to have the same starting line. The particle is 

initiated with m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0] RE and v0 = [0, 6] RE/s. The magnetic field is out of 

the page with M = 3.1⋅10−5 TRE
3. The trajectory is shown with a blue line, rmin and rmax with black dashed lines, 

starting line with a solid black line, local velocity vectors with black arrows, phase shift with res dashed lines 

and phase shifter velocity vectors with red arrows.   

 

During our initial attempts, we simply used Matlab’s events functionality to stop the 

integration when the particle returned to the positive x-axis, this ensured that the simulation 

corresponded to a single drift period. However, due to differences in phases, this created 

discontinuities in the data. These discontinuities appeared because different phases cross the y = 0 

line at different parts of their gyration. Thus, trajectories for some initial phases had an extra 

gyration compared to some other initial phases. This is illustrated in Figure 5.14 by the two darkest 

blue lines being separated from the rest of the phases. For this figure and the remaining figures in 

the phase distribution section, we used the small ∇φ version of the magnetic field for illustration.  

 

This separation of the phase endpoints causes complications in the calculation of Pφ and 

μExact. To resolve this issue Matlab’s events stopping condition of stopping at the positive x-axis 

was only used for the first phase. The time corresponding to this calculation was recorded and all 

the trajectories for the remaining phases were then integrated for the same time as the first one. 

Using this method, it is clear that all phases of particle tracing stop in the same vicinity. To illustrate 

the pattern the endpoints of each phase are graphed in Figure 5.15. On the left panel of Figure 5.15 

we use our original, relatively high velocity of v = 6 RE/s in a pure dipole field. This is done to 

determine if phase mixing is dependent on magnetic field asymmetry. The dipole field used is 

based on (5.1) with f(φ) always set to 0 to remove the magnetotail component. On the right panel 
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of Figure 5.15, we use our non-axisymmetric magnetic field with a reduced velocity of v = 3.5 

RE/s. Overall the oval shape of Figure 5.15 shows that phases are not mixing up and the particles 

are coming back in the same order as the left. Stars are used to display the location of phases 0, 

π/2, π and 3π/2. 

 
Figure 5.14: Discontinuity example of 10 phases δ = 0 to π/8,  at start and end of drift period. The particle is 

initiated with m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [x0 (5.13), 0] RE and v0 =[sin(δ), cos(δ)] RE/s. The 

magnetic field is out of the page with M = 3.1⋅10−5 TRE
3. 

 
Figure 5.15: Endpoints of the trajectory for a 1000 particle with different phases in axisymmetric dipole with v 

= 6 RE/s (left) and in non-axisymmetric field with v = 3.5 RE/s (right). The particle is initiated with m0 = 

1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0] RE and v0 = [0, v] RE/s. The magnetic field is out of the page with M = 

3.1⋅10−5 TRE
3.. Phase 0, pi/2, pi, and 3pi/2 are marked with stars in black, red, green and magenta respectively.  

 

From Figure 5.15 it is clear that calculating Pφ and μExact using these endpoints eliminates 

our discontinuity problem as the line of endpoints shows that every adjacent phase has an adjacent 

endpoint. We now present the same phase graph in Figure 5.16  for our original v = 6 RE/s, with 

the non-axisymmetric magnetic field. At this relatively high velocity, the phase endpoint pattern 

becomes more complex, indicating that we are approaching a limit in the applicability of the GC 

assumption. From Figure 5.15 and Figure 5.16 we conclude that the complex pattern of Figure 5.16  

is attributed to the relatively high velocity and not field asymmetry. 
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Figure 5.16: Endpoints of trajectory for 1000 phases in non-axisymmetric field with v = 6 RE/s. The particle is 

initiated with m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0] RE and v0 = [0, 6] RE/s. The magnetic field is out of 

the page with M = 3.1⋅10−5 TRE
3. Phase 0, pi/2, pi, and 3pi/2 are marked with stars in black, red, green and 

magenta respectively.  

 

 To illustrate that the initial phases do not mix for axisymmetric fields with relatively slow 

initial velocities we examine v = 3.5 RE/s further. Figure 5.17 shows the final phase as a function 

of the initial phase for both the non-axisymmetric field and the pure dipole field. A factor of π is 

added to adjust the range of results from -π and π to 0 and 2π. The nearly identical left and right 

panels of Figure 5.17 show the result of this comparison and visually validates that phase endpoints 

are not dependent on magnetic field asymmetry for relatively low velocities. The shape of Figure 

5.17 demonstrates a sinusoidal relationship between the final and initial phases. The discontinuity 

between 0 and 2π is expected and simply reflects the periodicity of the functions.  

 
Figure 5.17: Final phase dependence on the initial phase in a non-axisymmetric field (left) and in an 

axisymmetric dipole (right). The particle is initiated with m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0] RE and 

v0 = [0, 3.5] RE/s. The magnetic field is out of the page with M = 3.1⋅10−5 TRE
3. 
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5.4 Diffusion of the Canonical Angular Momentum and Magnetic Moment.   
 

 In this section, we analyze the difference between the final and starting values of Pφ and 

μExact across all phases. The starting and final values correspond to the straight-line Sections of  

Figure 5.13. The change in Pφ and μExact as the particles pass through the non-dipolar region can be 

interpreted as diffusion: an ensemble of particles with identical GC parameters at the beginning of 

the simulation becomes an ensemble of particles with somewhat different parameters after one drift 

period. Measuring this diffusion in Pφ and μExact is done over a range of velocities that varies by 

intervals of 0.5 RE/s. For every velocity analyzed we integrate 200-1000 particles corresponding 

to different initial phases for an entire drift. At high velocities, the time this took using an AMD 

Ryzen 7 5700U CPU was on the order of hours and increased as the velocity decreased. For this 

reason, the number of particles with different phases was reduced for small velocities. Often this 

code was left to run overnight. For this reason, we computed data in sets and then compiled the 

data together later. It should be noted that it is possible to dramatically reduce the computation time 

by using cluster parallel processing. Another reason preventing us from performing this calculation 

was numerical accuracy limits for relatively small velocities, as our results show that the ΔPφ and 

ΔμExact quickly decrease with velocity, and at some point become comparable to the numerical 

accuracy of the calculation. While it is possible to extend our results to smaller particle speeds by 

using higher-order numerical integrators and possibly quadruple precision arithmetic, we did not 

pursue this because of the lack of time. 

 

 For our small ∇φ magnetic field, we start with velocities of 6.5 RE/s, 6.0 RE/s and 5.5 RE/s. 

We then continue to decrease the velocity by 0.5 RE/s intervals and generate new sets of three. The 

compiled results for the normalized values of Pφ are displayed in Figure 5.18. The highest velocity 

of 6.5 RE/s was chosen based on the fact that the threshold velocity for the particle motion to 

become unbound for this case is just over 7 RE/s. Furthermore, this velocity exceeds the limit at 

which the GC approximation can be applied comfortably, as Figure 5.16 indicated that the GC 

approximation starts to break down at a velocity of 6 RE/s. Thus, the velocity of 6.5 RE/s is, in 

essence, the largest velocity that is relevant for our study. 

 



75 

 

 
Figure 5.18: Normalized canonical angular momentum difference for one drift period for v = 2.5 RE/s through 

6.5 RE/s. The particle is initiated with m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [x0 (5.13), 0] RE and v0 = 

v[sin(δ), cos(δ)] RE/s. The magnetic field is out of the page with M = 3.1⋅10−5 TRE
3.The top left panel is v = 6.5, 6 

and 5.5 RE/s; the top right panel is v = 5 and 4.5 RE/s; the bottom left panel is v = 4 RE/s; The bottom right panel 

is v = 3.5, 3 and 2.5 RE/s 

  

Figure 5.18 shows a complicated pattern of variation of ΔPφ/P0 as a function of the initial 

phase. Additionally, the magnitude of ΔPφ/P0 is shown to reduce from a scale on the order of 100 

to 10−10 over this very narrow velocity range. This indicates a very rapid decline in the change of 

Pφ as a function of velocity.  Due to this rapid decline, the data for the relatively low velocities of 

2.5 RE/s and 3.0 RE/s were a result of numerical error and were thus omitted. This is visually 

validated by graphing the results of 2.5 RE/s and 3.0 RE/s alone and is given in Figure 5.19. Here 

we know our numerical limitations are reached based on the fact that the scale in Figure 5.19 is on 

the order of 10−11, which coincides with our numerical limitation discussed earlier. In addition, the 

patterns in Figure 5.19 are clearly different from the waveforms in Figure 5.18. In principle, 

calculations for lower velocities could be achieved with a higher-order numerical integrator. 

 

The same numerical limitation is also reached at these velocities for ΔμExact/μ0. We now 

discuss similar graphs for ΔμExact/μ0 and display them in Figure 5.20. In this figure the main 

difference between the results of ΔμExact/μ0 and ΔPφ/P0. is that the ΔPφ/P0 decreases more rapidly 
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than ΔμExact/μ0 as a function of velocity. This is seen by the order of magnitude decreasing to 10−8 

for ΔμExact/μ0, versus 10−10 for ΔPφ/P0, over the same velocity range.  

 
Figure 5.19: Normalized canonical angular momentum difference for one drift period over 500 Phases. The 

particle is initiated with m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [x0 (5.13), 0] RE and v0 = v[sin(δ), cos(δ)] RE/s. 

The magnetic field is out of the page with M = 3.1⋅10−5 TRE
3. Results for v = 2.5 RE/s are in blue and v = 3 RE/s 

are in red. 

 
Figure 5.20: Normalized magnetic moment difference for one drift period for v = 2.5 RE/s through 6.5 RE/s.The 

particle is initiated with m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [x0 (5.13), 0] RE and v0 = v[sin(δ), cos(δ)] RE/s. 

The magnetic field is out of the page with M = 3.1⋅10−5 TRE
3. The top left panel is v = 6.5, 6 and 5.5 RE/s; the top 

right panel is v = 5 and 4.5 RE/s; the bottom left panel is v = 4 RE/s; The bottom right panel is v = 3.5, 3 and 2.5 

RE/s 
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To ensure the results displayed in Figure 5.18 and Figure 5.20 were in fact due to magnetic 

field asymmetry similar plots were produced for ΔPφ/P0 and ΔμExact/μ0 for a pure magnetic dipole 

field. This was only done for a velocity of 6 RE/s and is displayed in Figure 5.21. The results show 

that the data does not show regular variations and the amplitude of the variations is on the order of 

10−9  or 10−10. This is characteristic of the numerical precision used in our simulations. Compared 

to the results of v = 6 RE/s in Figure 5.18 and Figure 5.20 this validates diffusion occurs due to 

magnetotail asymmetry.    

 
Figure 5.21: Normalized difference in canonical angular momentum (top) and magnetic moment (bottom) for 

one drift period in a pure dipole with v = 6 RE/s. The particle is initiated with m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 

C, r0 = [x0 (5.13), 0] RE and v0 = v[sin(δ), cos(δ)] RE/s. The magnetic field is out of the page with M = 3.1⋅10−5 

TRE
3. 

 

Figure 5.18 and Figure 5.20 illustrate the dependence of ΔPφ/P0 and ΔμExact/μ0 on the phase 

of the particle. Since the GC approximation assumes all phases are condensed onto a single GC 

trajectory the very existence of these variations demonstrates the limitations of the GC 

approximation. In the following we use two measures to quantify the violation in the conservation 

of ΔPφ/P0 and ΔμExact/μ0. The first measure we use is simply the average of the data in Figure 5.18 

and Figure 5.20. The second method uses the maximum amplitude of ΔPφ/P0 and ΔμExact/μ0  for any 

phase.  

 

A similar analysis was performed for large ∇φ and the piece-wise linear function magnetic 

fields. The plots of ΔPφ/P0 and ΔμExact/μ0 as a function of initial phases are not included here 



78 

 

because they are redundant to the patterns illustrated in Figure 5.18 and Figure 5.20. What is 

important is the ΔPφ/P0 and ΔμExact/μ0 as a function of velocity. However, a notable difference in 

the calculations performed in these magnetic fields is the range of velocity we were able to use. 

For large ∇φ we used velocities that ranged between v = 2 RE/s and v = 5 RE/s. The choice of 5 RE/s 

was due to the threshold speed limitation of this magnetic field and the choice of  2 RE/s was due 

to the numerical limitations. For the piece-wise linear function, we used velocities that ranged 

between v = 1 RE/s and v = 6.5 RE/s. Since the piece-wise linear function is based on small ∇φ they 

share the same upper limit of v = 6.5 RE/s. The lowest velocity of 1 RE/s was chosen because of the 

time limitations of the calculations. At v = 1 RE/s, the code ran for upwards of 12 hours and thus 

lower velocities were not pursued. 

 

Combining the results of ΔPφ/P0, for all three magnetic fields, allows us to generate Figure 

5.22 below, here < > represents the average across phases and Δ represents the maximum amplitude 

across phases. 

 
Figure 5.22: Average and amplitude of ΔPφ/P0 for all three magnetic fields. A The particle is initiated with m0 = 

1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [x0 (5.13), 0] RE and v0 = v[sin(δ), cos(δ)] RE/s. The magnetic field is out of 

the page with M = 3.1⋅10−5 TRE
3.  Results for large ∇φ are in blue, small ∇φ are in red and piecewise linear are in 

green. The darker colour corresponds to the average and the lighter to the amplitude.   

 

For a smooth magnetic field profile, ΔPφ/P0 decreases very rapidly with velocity. Figure 

5.22 suggests that the diffusion of ΔPφ/P0 is an exponentially small function of the velocity. This 

is illustrated by the shape of the red and blue lines representing large ∇φ and small ∇φ respectively. 

For large ∇φ the line of best fit, given in black, demonstrates that ΔPφ/P0 is proportional to e−80/v2
. 

e(−960/v^3) 

v3 

e(−80/v^2) 
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For small ∇φ the line of best fit demonstrates the diffusion of ΔPφ/P0 is proportional to e−960/v3. To 

reiterate the difference between these two cases was a factor of four in their respective f(φ) 

Equations. Based on the black lines of best fit no correlation between this factor of four in the 

exponents is obvious, further analysis is required to understand this behaviour. In the future, it 

would be worthwhile to perform additional simulations for additional velocity values and to extend 

the range of the velocities used by increasing the accuracy of the calculations by using a higher-

order numerical integrator. If f(φ) is a piecewise linear function, and thus has a non-continuous 

derivative, then it is concluded that the diffusion of ΔPφ/P0 follows a power-law relationship.  This 

is illustrated by the shape of the green lines, where the corresponding black line of best fit is 

proportional to v3. Figure 5.22 also shows that the average deviation from the initial value is 

considerably smaller than the amplitude, but they both follow approximately the same pattern as a 

function of v.   

 

The radical difference in the accuracy with which ΔPφ/P0 is conserved between the smooth 

and non-smooth magnetic variations is not entirely surprising. Similar behaviour is known for the 

adiabatic invariants. When the time variation of the parameters of the system is smooth, then the 

change between the final and initial states of the invariant is an exponentially small function of the 

rate of change of the system parameter. This has been shown in papers by Kabin [11], 

Chandrasekhar [35] and Littlewood [34]. However, to the best of our knowledge, this kind of 

behaviour has not been discussed for the canonical momentum. This result might have considerable 

theoretical importance for future studies of systems that are almost symmetric.  

 

Figure 5.23 presents a plot similar to Figure 5.22 but for ΔμExact/μ0. In this figure, the trends 

are very similar to Figure 5.22 and the same conclusions are drawn. A notable difference is that all 

corresponding data points for ΔPφ/P0 are smaller than for ΔμExact/μ0. Thus showing that canonical 

momentum under the considered conditions is conserved better than the magnetic moment. It 

should also be noted that the difference in the level of conservation of the adiabatic moment for 

smooth and non-smooth field variations was also explored for ΔμExact/μ0 in a paper by Kabin [11]. 

However, Kabin examined a magnetic field with a constant gradient similar to our Chapter 3, and 

focused on time-dependent magnetic fields, while we study exclusively the effects of spatial 

variations. Despite this difference, the same conclusion of smooth functions being exponentially 

proportional to velocity and piecewise functions being power-law proportional was reached [11]. 

 

Figure 5.22 and Figure 5.23 show particles with different phases disperse as a result of 

passing through a non-axisymmetric magnetic field. Since different phases are indistinguishable in 

the GC approximation, this process may be represented as a diffusion, where a population of 

particles with initially identical GC parameters passes through a region of field asymmetry and 

comes out as a population with slightly different GC parameters. Naturally, this process repeats 

every time the particles pass through the magnetotail, thus the errors in the initial GC 

approximation are secular. After multiple transits through the magnetotail, the initial delta-function 

distribution of particles becomes wider thus this is a diffusion process. Further analysis of these 

results, as well as other magnetic fields, would allow us to calculate the velocity-dependent 

diffusion coefficient for the GC approximation, thus allowing us to mimic the effect of the initial 

phases of the particles. This project is potentially very important in the context of magnetospheric 

modelling, but is too time-consuming to be attempted as a part of this thesis. It is therefore left for 

future work. 
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Figure 5.23: Average and amplitude of ΔμExact/μ0 for all three magnetic fields. The particle is initiated with m0 = 

1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [x0 (5.13), 0] RE and v0 = v[sin(δ), cos(δ)] RE/s. The magnetic field is out of 

the page with M = 3.1⋅10−5 TRE
3.  Results for large ∇φ are in blue, small ∇φ are in red and piecewise linear are in 

green. The darker colour corresponds to the average and the lighter to the amplitude.   

 

5.5 Diffusion of Particle Trajectory Boundaries  
 

As discussed in the previous section, the generalized angular momentum of a particle is 

dependent on the initial phase of the particle. Therefore, rmin and rmax of the particle are also 

dependent on the initial phase as well. Note, that in the GC approximation these quantities also 

remain constant. We now examine the diffusion of the particle boundaries due to magnetic field 

asymmetry. This analysis is only done for the small ∇φ magnetic field. Overall the goal is to 

determine if there is a net drift outward or inward on the ensemble of particles that differ only in 

their initial phase. This drift has the potential to be quite important since in the GC it is directly 

associated with energy gain or loss. For example, if particles conserve their magnetic moment, then 

moving closer to the Earth, into the region of a stronger magnetic field implies energy gain by the 

particle. The reverse is true for a particle moving further away from the Earth [23]. To determine 

the net drift we plot the change in rmin and rmax, normalized by their respective initial values, as a 

function of the initial phase. The velocity range is from 1 RE/s to 6.5 RE/s, and not 3.5 RE/s  to 6.5 

RE/s like before, as rmin and rmax remained accurate in the numerical calculation at lower velocities. 

The results for velocities 5.5 RE/s, 6 RE/s and 6.5 RE/s are displayed below in Figure 5.24. 

Velocities from 1 RE/s to 5 RE/s are not included because it hinders visualization and the data is 

very similar to the cosine shape corresponding to v = 5.5 RE/s in Figure 5.24 

v3 

e(−960/v^3) 
e(−80/v^2) 
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Figure 5.24: Normalized difference in rmin and rmax after one drift period across all phases for v = 6.5, 6 and 5.5 

RE/s. The particle is initiated with m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [x0 (5.13), 0] RE and v0 = v[sin(δ), 

cos(δ)] RE/s. The magnetic field is out of the page with M = 3.1⋅10−5 TRE
3.  

 

This figure shows that particles with an initial phase between π/2 and 3π/2 drift inwards, 

towards Earth, while particles outside this phase range drift outwards, away from Earth. Based on 

our definition of phases the interval between π/2 and 3π/2 corresponds to when the particle is 

initialized closer to rmax. For relatively small particle speeds, the dependence of rmin and rmax on δ 

is remarkably close to a cosine function. As the velocity increases, however, this profile starts to 

deviate from cosine significantly, as seen at v = 6.5 RE/s in Figure 5.24. Another way of 

characterizing the inward or outward diffusion of particles crossing the magnetotail is to calculate 

the average over the phase displacement. The result is displayed in Figure 5.25 showing the average 

change in rmin and rmax as a function of velocity. 

 

Overall Figure 5.25 shows that the normalized change in rmin and rmax are positive for 

velocities of 2 RE/s or less, and negative for velocities of 2.5 RE/s or more. Thus indicating a 

diffusion outward for lower velocities and a diffusion inward for higher velocities. The spike in the 

data between 6 RE/s and 6.5 RE/s is attributed to approaching the upper limits of validity for this 

analysis. Lastly, it is shown that rmax moves further inward than rmin for inward diffusion as velocity 

is increased, thus the trajectory bounds tighten for inward drifting particles.  
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Figure 5.25: Average normalized difference in rmin and rmax after one drift period from v = 1 to 6.5 RE/s. The 

particle is initiated with m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [x0 (5.13), 0] RE and v0 = v[sin(δ), cos(δ)] RE/s. 

The drift of rmin is in red and the drift rmax is in blue. 

 

Since Δrmin/rmin0 and Δrmax/rmax0 in Figure 5.24 appear to be close to basic trigonometric 

functions, specifically cosines, a Fourier series expansion is done to simplify the analysis of 

velocity dependence. To fit these graphs a 3rd order Fourier expansion is used, meaning four 

coefficients are calculated. These coefficients are labelled a0, a1, a2 and a3. Thus the Fourier 

expansion takes the following form: 

 

 Δrmin

rmin0

 or  
Δrmax

rmax0

 = a0 + a1cos(δ) + a2cos(2δ) + a3cos(3δ) 

 

(5.14) 

Applying Equation (5.14) to every plot in Figure 5.24 allows us to generate values for a0, 

a1, a2 and a3 for every velocity used in that figure. Since most of the functions from Figure 5.24 

appear to be shaped like a cosine function it was unsurprising that the coefficient a1 had the most 

predictable shape. Furthermore, a1 had significantly higher values across all velocities when 

compared to a0, a2 and a3, making it the dominant coefficient. Therefore all other coefficients are 

ignored. They were only calculated to verify that a1 is indeed sufficient to describe the shape of the 

curve. Plotting a1 as a function of velocity on a log scale resulted in the generations of Figure 5.26, 

where the red and blue lines correspond to Δrmin/rmin0 and Δrmax/rmax0 respectively.  
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Figure 5.26: Log plot of Fourier series coefficient a1 as a function of velocity. rmin is in red and rmax is in blue. 

Black is the value of a1 for rmin at v = 1 RE/s, multiplied by v1.  

 

In Figure 5.26 the black line is the value of a1 for Δrmin/rmin0 at v = 1 RE/s, multiplied by v1.   

Thus Figure 5.26 shows that the cosine shapes of Δrmin/rmin0 are proportionate to v1. In regards to 

Δrmax/rmax0 in blue, the same conclusion is true for relatively low velocities. For relatively high 

velocities it is clear that a1 deviates from the v1 proportionality for the cosine shapes of Δrmax/rmax0. 

This is attributed to the results of Figure 5.25 where it was shown that <Δrmax/rmax0> moves more 

rapidly further inwards than <Δrmin/rmin0>. 

 

5.6 Conclusion  
 

In this chapter, we analyzed in detail the effects of magnetic field asymmetry on the 

conservation of canonical angular momentum and the first adiabatic invariant of the particle.  

Specifically, we analyzed particles that are confined to the equatorial plane of a magnetic dipole, 

modified by a tail current sheet on the nightside. Since the GC approximation is dependent on the 

conservation of the magnetic moment this is an important test of the GC accuracy and the range of 

applicability. This analysis is relevant to the high-energy particles in the outer Van Allen belt [1] 

[36] [37] [38]. 

 

In this chapter, we considered three separate versions of the magnetotail to demonstrate 

the differences arising from the magnetic field gradients. The magnetotail fields differed by a 

function that made the magnetic field weaker when the particle was at a certain φ location. This 
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function, f(φ), ranged from 0 to 1.  The first two magnetic fields relied on an f(φ) that was smooth 

to gradually achieve the transition from the dipolar magnetic field on the dayside to the tail-like 

field on the nightside. The first was denoted as small ∇φ based on the slower transition in f(φ). The 

second was denoted as large ∇φ based on the faster transition in f(φ). The last magnetic field 

examined relied on an f(φ) that was a piecewise linear function. The slope for the linear part of 

function f(φ) was chosen to correspond to the maximum derivative of f(φ) for small ∇φ.  

 

We described a procedure to initialize the particle which differs only in the initial phases. 

Since the GC approximation assumes all phases are collapsed onto the GC, these particles are 

indistinguishable in the GC approximation.  Thus, by analyzing the effect of the initial phase of the 

particle we assessed the accuracy of the GC approximation. The detailed calculations following 

thousands of particles with different phases were quite time-consuming, which was a limiting 

factor in our study. This ultimately put a constraint on the range of velocities analyzed and the 

number of velocities analyzed.     

 

The magnetic field used in this section was axisymmetric on the dayside which assured 

strict conservation of the canonical angular momentum and the adiabatic invariant. The magnetic 

field on the nightside was not axisymmetric which resulted in the violation of these conservation 

laws.  Somewhat surprisingly it was found that the canonical angular momentum returns close to 

its original value after the particle has passed through the asymmetric magnetotail. It was 

furthermore shown that the change in the canonical momentum is exponentially small in velocity 

if the magnetic field variation is smooth. To the best of our knowledge, this is a new result that 

may be important in theoretical plasma physics. If the magnetic field variation is a piece-wise linear 

function, the change in ΔPφ is only proportional to v3. A similar level of conservation is well-known 

for the adiabatic invariants, but this is the first time it is observed for the canonical momentum. 

The change in the canonical momentum and the adiabatic invariant as a result of crossing the 

magnetotail area is considered a diffusion process. Although this process cannot be explicitly 

modelled in the GC approximation, it can be added to it as a statistical diffusion process. 

 

Analysis of the conservation of the adiabatic moment in the same situation yielded similar 

results. For a smooth variation of the magnetic field, the change in the magnetic moment of a 

particle after passing through the magnetotail was exponentially small in the velocity. If the 

variation of the magnetic field was a piece-wise linear function, the change in the adiabatic 

invariant was proportional to v3. This result agrees with the general theory of the adiabatic 

invariants. 

 

Finally, the effects of asymmetry on rmin and rmax were examined because they rely on the 

conservation of canonical momentum. For particles initiated closer to rmax, with initial phases 

between π/2 and 3π/2, it was found that both rmin and rmax decreased. Therefore, these particles drift 

inward.  In contrast, for particles initiated closer to rmin, outside phases π/2 and 3π/2, it was found 

that rmin and rmax increased, thus these particles drift outward. This relatively small drift of the 

particles arising from passing through the magnetotail may also be considered diffusion. Averaging 

across phases it was found that particles with v ≤ 2 RE/s drift outward, while particles with v ≥ 2.5 

RE/s drift inward. Although there is no energy change for particles moving in purely magnetic 

fields, inward drift in GC theory is often considered to be equivalent to energy gain, and outward 

drift to energy loss.  For most of the velocity range considered, the dependence of rmin and rmax on 

the initial phase was approximated very well by a cosine function. Using a Fourier transform it was 

verified that cosine is indeed the dominant coefficient in the expansion, comfortably exceeding the 
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next largest coefficient by an order of magnitude or more. This surprisingly simple dependence on 

the phase might help develop a semi-empirical formula for the diffusion coefficient, however, this 

study is left for future work.  
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6. Particle Motion in Three Dimensions in a 

Magnetic Dipole  
 

In this chapter, we analyze the motion of charged particles that are initiated on the 

equatorial plane, but with an initial vz ≠ 0. Thus, the motion of the charged particle is now three-

dimensional. The magnetic field used for modelling is a simple dipole, introduced in more detail 

in Section 6.1. Plasma particles in a magnetic dipole are free to move along the magnetic field lines 

to some extent. From the conservation of the magnetic moment, Equation (2.18),  we know that as 

B increases so does v⊥, and we know B increases towards the poles due to the fact that a dipole 

magnetic field line density increases towards the poles. Substituting v⊥ = vsinα into Equation (2.18) 

it becomes clear that α tends to move toward π/2 or 3π/2 as the particle travels along the field line, 

away from the equatorial plane. Once the pitch angle reaches π/2 or 3π/2 the particle no longer has 

any parallel kinetic energy and is reflected at this mirror point due to the parallel component of the 

gradient force [1]. It is through this mechanism that high energetic plasma particles get trapped in 

the Earth’s Van Allen Belts. Thus, the increase in B along the magnetic field lines results in some 

particles being reflected back towards the magnetic equator, which is known as a magnetic bottle. 

Particles not contained within this field effect are considered to be part of the loss cone. Conditions 

necessary to meet loss criteria are discussed in more detail in Section 6.3. In general, a particle is 

considered to be part of the loss cone when α is significantly small at the equator [39]. 

 

Under most circumstances, particles in of the loss cone travel along magnetic field lines to 

high latitudes where they are absorbed by Earth’s atmosphere at roughly 100km above the surface, 

though this varies as Earth's atmosphere is thicker at higher latitudes. In some circumstances 

though, rapidly changing space weather conditions cause magnetic field lines to break and 

reconnect, which funnels a tremendous amount of particles towards Earth’s poles. This process is 

responsible for the auroras seen at high latitudes around Earth's poles, of which loss cone particles 

contribute to. These charged particles precipitate into the upper atmosphere where they ionize 

stable elements such as O2 and N2, resulting in the formation of bands of colours in the sky. The 

colour of the aurora depends on the element ionized and the altitude of ionization, ionization which 

in turn is related to the energy of the precipitating particle [33].  

 

Analyzing trapped plasma particles, we aim to scrutinize some assumptions in GC theory. 

Particularly, we focused on the question of whether the equatorial pitch angle αeq remains constant 

at every equatorial crossing. This assumption is often used in the simplest implementation of the 

GC theory, even though it is known that αeq does deviate at every equatorial crossing, even when 

E = 0 and the plasma is assumed to be collisionless [40]. Thus, we aim to quantify the deviation of 

the GC approximation by computing the real 3D trajectories of plasma particles.  

 

6.1 Analysis of Three-Dimensional Magnetic Field   
 

 We now introduce the magnetic field used in this Chapter. The magnetic field of a dipole 

is given by Equation (4.1). Using the magnetic field line Equation (4.3) we generate a 3D plot of 

the field lines in Figure 6.1 for visualization purposes. In this figure blue represents magnetic field 

lines below the magnetic equatorial plane and red represents field lines above it.  
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Figure 6.1: Eight 3D magnetic field lines crossing the equatorial plane at r = 10 RE. The southern field lines are 

in blue and the northern field lines are in red. Earth is represented by the center sphere with a r =1 RE.  

  

For practical implementation of the code it is convenient to convert the magnetic field 

expression given by Equation (4.1) to cartesian coordinates. The result is given by Equation (6.1). 

This is done under the assumption that the magnetic dipole has no tilt. In this section we use the 

real dipole moment of the Earth, so M is given a value of 3.1⋅10−5 TRE
3 and we assume all distances 

are measured in RE [1].   

 

 
𝐁 = 

M

r5
(-3xz 𝐞̂𝐱, -3yz 𝐞̂𝐲,(x2 + y2 - 2z2) 𝐞̂𝒛) 

 

(6.1) 

 r = √x2 + y2 + z2 

 

(6.2) 

Although it is easiest to solve the Equations of particle motion in cartesian coordinates, 

many analytical expressions involving the magnetic dipole appear simplest in spherical 

coordinates. The magnetic vector potential for this magnetic field is given by Equation (6.3), where 

θ is the colatitude defined as θ = π/2 – λ. 

 

 
𝐀 = -

Msin(θ)

r2
𝐞̂𝛗 

(6.3) 
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6.2 Analytical Properties of 3D Trajectories  
 

The magnetic vector potential is useful to determine the canonical momentum established 

in Equation (2.16). Since A does not depend on φ, the φ-component of the canonical momentum is 

conserved. Substituting Equation (6.12) into Equation (2.16), and only using the φ-component of 

velocity results in the expression for Pφ given by Equation (6.4).  

 

 
Pφ = ρ (mvφ  - 

qMsinθ

r2
) 

 

(6.4) 

 
vφ = 

xvy - yvx

ρ
 

 

(6.5) 

Although the conservation of Pφ follows naturally from Lagrangian dynamics, where the 

canonical angular momentum is conjugate to the azimuthal angle φ, it is often called the Størmer’s 

integral or invariant [36]. 

 

Similar to Section 4.1 we can use Equation (6.4) to determine the bounds of motion of the 

particle. Since the magnitude of vφ cannot be larger than the magnitude of v we obtain Equations 

(6.6) and (6.7) for rmin and rmax respectively.  

 

 

rmin = 

Pφ +  √Pφ
2 + 4mqMvsin

3
θ

2mvsinθ
 

 

(6.6) 

 

rmax = 

-Pφ - √Pφ
2 - 4mqMvsin

3
θ

2mvsinθ
 

 

(6.7) 

An example of these radial bounds is given in Figure 6.2. In this figure we define ρmin = 

rmin ⋅sinθ and ρmax = rmax ⋅sinθ as it is often convenient to make the plots of the particle trajectory in 

cylindrical coordinates to view the particle from the meridian plane. In Figure 6.2 the solid black 

lines correspond to our ρmin and ρmax bounds, while the blue line is a ion initiated with m0 = 

1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0, 0] RE and v0 = [0, vsinα, vcosα] RE/s. In this example 

we use v = 1 RE/s and α = π/4. We use Matlab’s events functionality to stop the calculation after 

half a bounce, which we define as the time until the particle first crosses the equatorial.  

 

Unlike the situation described in Section 4.1 these bounds are not near the particle’s 

trajectory at the equator. This is because the particle in this region has v∥, and, therefore, vφ cannot 

exceed v⟂. In contrast, near the mirror point ρmin and ρmax provide tight bounds for the trajectory of 

the particle because right at the mirror point v∥ = 0. Providing tight bounds on the trajectory near 

the equatorial plane would require another conservation law which would allow us to constrain v∥. 

Unfortunately, no such conservation law is known for 3D particle motion in a dipole field. In fact, 

no exact conservation law of this type likely exists as the problem is generally believed to be non-

integrable. Thus, an exact solution for the first adiabatic invariant does not exist for 3D motion. 

However, the first adiabatic invariant can be approximated by Equation (2.18) and used as the 

additional conservation law [12]. We do not do this since all approximate expressions for the 
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adiabatic invariant lose accuracy for high velocity, which is the case we are interested in most. 

Therefore, we accept Equations (6.6) and (6.7), to provide strict bounds for the motion of a particle, 

if not always tight.  

  
Figure 6.2: Illustration of ion trajectory and bounds for a half bounce period in ρ-z coordinates. The particle is 

initiated with M = 3.1⋅10−5 TRE
3,  m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0, 0] RE and v0 = [0, 0.7071, 

0.7071] RE/s. The trajectory is shown with a blue line and ρmin and ρmax with a black solid line.  

 

Analyzing our expression for rmax given by Equation (6.7) it is determined that a particle 

becomes unbound when 4mqMvsin3θ > Pφ
2, as rmax becomes undefined. In this thesis only bound 

particles are examined.  

 

Lastly, it should be noted that exact expressions for the gyroperiod and drift period also do 

not exist for particles moving in three dimensions. 

  

6.3 GC Approximation for the 3D Magnetic Dipole 
 

For particles moving in three dimensions in a magnetic dipole the gradient curvature drift 

velocity (6.10) is calculated explicitly. The drift velocity is directed everywhere in the azimuthal 

direction and κ is the curvature of the magnetic field lines.  
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𝐯D = 
m (v‖

2 + 
1
2

v⊥
2) κ

qB
 𝐞̂𝛗 

 

(6.8) 

 
𝛋 = B ⋅ ∇B = 

3

r
 (

(1+ cos2 θ) sin θ

(1+3 cos2 θ)
) 𝐞̂𝛗 

 

(6.9) 

For particles that are trapped in the magnetic field, there is an approximate expression for 

the GC bounce period and frequency, this is given by Equations (6.10) and (6.11) respectively  [1].  

 

 
Tb = 

LsRE

√W/m
(3.6 - 1.6 sin αeq) 

 

(6.10) 

 
Ωb = 

2π

Tb

 

 

(6.11) 

In Equation (6.10) W is the kinetic energy of the particle and Ls is the shell parameter, or 

Mcllwainian parameter, defined as the distance from the center of the Earth to the point where a 

field line crosses the equatorial plane expressed in RE [41]. αeq is the equatorial pitch angle. For 

trapped plasma particles, there is an approximate expression for the GC drift period and frequency 

as well, this is given by Equations (6.12) and (6.13) respectively [1].  

 

 
Td = 

πqMRE
2

3LsW
(0.35 + 0.15 sin αeq) 

 

(6.12) 

 
Ωd = 

2π

Td

 

 

(6.13) 

Note that in (6.10) and (6.12) the period only depends on the αeq, W of the particle and the 

Ls shell. It is implicitly assumed that all these parameters remain constant for any given particle. 

Investigating the limits of this assumption is one of the goals of this Chapter.  

 

Whether a particle is trapped in the magnetic bottle or is in the loss cone depends on the 

value of αeq. In general, a particle is more likely to precipitate into the atmosphere if it has a small 

pitch angle or high parallel kinetic energy at the equatorial plane. This is because such particles 

must travel farther to reach the magnetic mirror point, and if the magnetic mirror is below 100 km 

from the surface of the Earth, then the particle is very likely to be absorbed by the atmosphere [1].  

Additionally, a particle is more likely to remain trapped if its equatorial crossing is at a farther 

distance from the Earth as such particle must travel further to reach a 100 km altitude. The latitude 

of the magnetic mirror point λm for a particle is calculated under the GC approximation as a function 

of the equatorial pitch angle, it is given in Equation (6.14), where Beq and Bm are the magnetic field 

strength at the equator and mirror point respectively [1]. 

 

 
sin

2
αeq  = 

Beq

Bm

 = 
cos6 λm

√1 +  3sin
2

λm

 
(6.14) 
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This Equation is derived by assuming the magnetic moment, given by Equation (16) 

remains constant. Again, because Equation (2.18) is only approximate Equation (6.14) is not exact 

either. In Sections 6.6 through 6.8 we check with direct Lorentz calculation how accurately 

Equation (6.14) holds and if it remains approximately constant for the same particle during multiple 

bounces.  

 

It is also convenient to reformat Equation (6.14) to calculate the loss cone pitch angle at the 

equatorial plane αlc analytically. It is possible to do this with Equation (6.14) using Beq and Bm, 

however, this requires knowing Beq and Bm at every Ls shell. Instead, we format Equation (6.14) such 

that it only depends on the equatorial radial distance of the particle in RE. This is given by Equation 

(6.15), where the value of 1.015679 RE corresponds to 100 km above the surface of the Earth [39]. 

 

 

sin
2

αlc  = (
1.015679 RE

req

)

3

√

1

4 - 3 (
1.015679 RE

req
)
 

(6.15) 

 

6.4 Particle Trajectory and Code Accuracy 
 

Similar to the previous chapters we quantify the accuracy of the numerical integrator for 

this code before analyzing the particle trajectory in depth. We use the conserved quantities Pφ and 

v to check the accuracy of our numerical calculations. The resultant relative numerical error in 

these quantities for half a bounce period was determined to be on the order of 10−14 and 10−10 for  

Pφ and v respectively. This level of numerical accuracy is more than sufficient for our purposes. 

 

To illustrate a typical three-dimensional trajectory of a particle, we consider the motion of 

a proton with the same initial conditions as Figure 6.2.  Under these initial conditions the particle 

is initiated at rmin with a kinetic energy of 0.2124 MeV. The trajectory is visualized in Figure 6.3 

in 3 dimensions. In this figure it is shown that the particle gyrates around and follows the curved 

field line. Additionally, as the particle moves away from the equatorial plane v∥ decreases and v⊥ 

increases, as its magnetic moment is approximately conserved. This continues until the particle 

only has a v⊥, at this mirror point the particle is reflected back towards the equatorial plane.  

 

For these initial conditions, the αeq changed from αeq = 0.7854 rad (π/4) to αeq = 0.7880 rad, 

accounting for the direction of travel relative to the magnetic field line. At the same time the radial 

distance for the equatorial crossing changed from 7 RE to 7.0061 RE. This illustrates the errors 

inherent in the GC approximation. For example, when applying the approximate formulas (4.15) 

and (6.10), for the drift and bounce periods respectively, one needs to use the equatorial pitch angle 

of the particle and the magnetic field intensity at the location of the particle or its gyrocenter. If 

these parameters remain the same from one bounce to another, then there is no problem in applying 

these formulas. However, if the radial distance of the equatorial crossing and the pitch angle both 

slightly change at every bounce this creates uncertainty in the application of Equation (6.8). There 

is also a risk of accumulation of error over many bounces for some particles; this is examined 

further in Sections 6.6 through 6.8. 
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Figure 6.3: Example trajectory in 3D for half a bounce period. The particle is initiated with M = 3.1⋅10−5 TRE

3, 

m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0, 0] RE and v0 = [0, 0.7071, 0.7071] RE/s.  

 

We measure μ given by (2.18) at the final and initial position of the particle because μ0 is 

a function of both α and B, which depends on r. Thus, we check to see if the μ returns to the same 

value at the equatorial crossing as the changes in α and B could offset each other. Plotting μ for the 

trajectory of the particle results in Figure 6.4 and more clearly shows that the final value of μ does 

not return exactly to the initial value. In this figure, the initial and final values correspond to 

3.7650⋅10−7 Am2 and 3.7947⋅10−7 Am2 respectively. Additionally, this figure shows that the mean 

value about which the zeroth-order magnetic moment oscillates remains virtually constant, but that 

the amplitude of oscillation changes as the particles moves into stronger or weaker magnetic fields. 

The maximum amplitude occurs at the equatorial plane, where the magnetic field is the weakest, 

and the minimum amplitude occurs at the mirror point, where the magnetic field is strongest, as 

expected. 

 

 The following Sections are dedicated to analyzing the variations in αeq and μ0 for half a 

bounce period, the accumulation of αeq deviations for multiple bounce periods and the Δαeq in 

relation to the GC approximation of the loss cone for a range of velocities.  

 



93 

 

 
Figure 6.4: Magnetic moment for half a bounce period. The particle is initiated with M = 3.1⋅10−5 TRE

3, m0 = 

1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0, 0] RE and v0 = [0, 0.7071, 0.7071] RE/s.  

 

6.5 Phase Distribution Problem  
 

Similarly to Chapter 5, we analyze the various phases of the particles because the loss of 

phase data is a limitation of GC theory. In Chapter 5 we were able to initialize an ensemble of 

particles which were different only in their initial phase value, while the energy, drift velocity, 

magnetic moment, canonical angular momentum and radial limits of motion were all the same. 

These particles were thus indistinguishable from the point of view of the GC theory. In three 

dimensions we would like to be able to initialize a similar ensemble of particles. This is more 

complicated since we also would like the particles to have the same αeq and λm, in addition to all 

the quantities mentioned above. Figure 6.5 illustrates this difficulty, in this figure the two particles 

are initiated in the equatorial plane with the same values for energy, pitch angle and canonical 

angular momentum. Using the same canonical angular momentum allows us to restrict both 

particles to the same radial limits of motion. Therefore these two particles differ in only their initial 

velocity and initial position. The first particle, displayed in blue in Figure 6.5, has the same initial 

conditions as Figure 6.2, where r0 = [7, 0, 0] RE and v0 = [vsin(δ), vsin(αeq)sin(δ), vcos(αeq)] RE/s 

with our phase δ = 0, v = 1 RE/s and, αeq =π/4. The second particle, displayed in red in Figure 6.5, 

uses a phase value of δ = π to generate a new initial velocity vector. To generate a new r0 we use 

Equation (4.10) from section 4.1, this results in r0 = [7.1694, 0, 0] RE. Overall, despite all the 

similarities between the two particles, it was found that they have different mirror points. Thus 

their trajectories differ. 

Equator 

Mirror 

Equator 



94 

 

 
Figure 6.5: Illustration of the phase distribution problem. M = 3.1⋅10−5 TRE

3.  Particle in blue is initiated with r0 

= [7, 0, 0] RE and v0 = [0, 0.7071, 0.7071] RE/s. Particle in red is initiated with r0 = [7.1694, 0, 0] RE and v0 = [0, -

0.7071, 0.7071] RE/s. ρmin and ρmax are shown with black solid lines. 

  

It is not immediately clear if this phase distribution problem has an elegant solution. The 

situation is further complicated by the fact that for particle motion in a three-dimensional dipole 

field there is no exact expression for the adiabatic invariant, only various approximations. Overall, 

this problem stems from a lack of Equations to constrain the degrees of freedom. Therefore, to 

simplify our initialization process in the rest of this Chapter we initialize our particles at the same 

location, r0 = [7, 0, 0] RE, with our initial velocity taking the form v0 = [vsin(αeq)cos(ξ), 

vsin(αeq)sin(ξ), vcos(αeq)]. Here ξ is the azimuthal angle between r and v vectors measured 

counterclockwise as introduced in Section 4,1. ξ plays the role of the phase angle, although unlike 

Section 5.3 it represents the initial phase angle only approximately. For example, particles with the 

same initial location and αeq, but different azimuthal angle ξ, would have different centers of 

curvature for their trajectories calculated using Equation (3.13). The rest of this chapter is dedicated 

to a systematic study of variations in v, αeq, and ξ separately, while the other two variables are held 

constant.   

 

6.6 Analysis of Variations in Velocity    
 

  In this section, we illustrate the dependence of the equatorial pitch angle and the magnetic 

moment on the magnitude of the velocity of the particle. Therefore, we hold the initial αeq, and ξ 

constant and assign them values of π/4 and π/2 respectively. All other initial variables are the same 
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as in Figure 6.2. The upper range of velocity to be analyzed is determined from our bound velocity 

threshold condition established by rmax given by Equation (6.7). From this we know a particle 

becomes unbound when 4mqMvsin3θ > Pφ
2 [22]. Using this Equation, we found that the particle 

becomes unbound when v0 > 11.07 RE/s. Therefore, we analyze velocities from v = 0.01 to 10 RE/s. 

Using 1000 velocities within this velocity range we measure Δαeq for half a bounce period. The result 

is given below in Figure 6.6. At low velocities, the data in this figure does not have a high resolution 

due to the larger frequency of variation. In an attempt to solve this we considered increasing the 

number of velocities used within the lower range of analysis, however, this clusters more data points 

into a small area, resulting in data being indistinguishable. Thus, we did not increase the resolution. 

For similar figures encountered later in this chapter the same principle applies.  

   
Figure 6.6: Δαeq for 1000 velocities from v = 0.01 to 10 RE/s. Integrated for half a bounce period. The particle is 

initiated with M = 3.1⋅10−5 TRE
3, m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0, 0] RE and v0 = v[sin(αeq)cos(ξ), 

sin(αeq)sin(ξ), cos(αeq)] RE/s. α0 = π/4 and ξ = π/2. Δαeq is in blue, minimum and maximum lines of best fit are 

black dashed lines and the average line of best fit is the black line. 

  

In Figure 6.6 it is shown in blue that the Δαeq is linearly proportional to velocity on average. 

However, it oscillates between 0 and some amplitude that is linearly proportional to v. The 

frequency of these oscillations increases as v approaches 0. The black line in Figure 6.6 represents 

the linear line of best fit, the slope of this line is 0.0366v. This line represents the average error in 

modelling αeq for every half bounce period and it demonstrates that even at relatively low velocities 

the particle deviates from GC approximation. The line of best fit was calculated using a least-

squares method up to a velocity of v = 9 RE/s, then extrapolated to v = 10 RE/s afterwards. This was 

done to exclude the negative data above v = 9 RE/s. The locations where Δαeq crosses 0 simply 

illustrate when the final v∥ is greater than the initial v∥ and does not mark any significant transition. 

0.366v 

0.072v 
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The fact that Δαeq remains positive over most velocities is due to the choice of the initial phase. 

Thus we add a dashed black line at 0 to illustrate the minimum error in modelling αeq. The 

maximum error is also illustrated by a black dashed line, here we used the local peaks to fit another 

linear line of best fit, the slope of this line is 0.0720v. 

 

 The behaviour of the change in the normalized magnetic moment Δμ/μ0 as a function of v 

is similar, as shown in Figure 6.7. Again, there are some velocities for which Δμ/μ0 = 0, thus we 

add a dashed black line at 0 to illustrate the minimum error. For the average and maximum error, 

in a solid and dashed black line respectively, we find that a quadratic function best fits the data. 

Following the same process that was used in Figure 6.7 we determined the average error to be 

proportional to 0.0085v2 + 0.1098v - 0.0271. The maximum error was determined to be 

proportional to 0.0452v2 + 0.1295v + 0.0205. We note that both y-intercepts should be 0 and that 

their value is only a result of the least-squares best fit method. Contrasting this slope with the Δαeq 

slope we find that the change in a magnetic moment in Figure 6.7 is quadratic, while the change in 

pitch angle is linear in Figure 6.6. We attribute this to α in v⊥ = (vsinα)2 being raised to the power 

of two from (2.18). The frequency of the oscillations, once again, increases as v decreases.  

 
Figure 6.7: Δμ/μ0 for 1000 velocities from v = 0.01 to 10 RE/s. Integrated for half a bounce period The particle is 

initiated with M = 3.1⋅10−5 TRE
3, m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0, 0] RE and v0 = v[sin(αeq)cos(ξ), 

sin(αeq)sin(ξ), cos(αeq)] RE/s. α0 = π/4 and ξ = π/2. Δμ/μ0 is in blue, minimum and maximum lines of best fit are 

black dashed lines and the average line of best fit is the black line.  

 

We now investigate if the average Δαeq from Figure 6.6 accumulates over multiple half-

bounce periods. To do this it is convenient to first analyze only one velocity, thus we use v = 1 RE/s 

from Sections 6.2 and 6.3. At this velocity, the bounce half period is 12.4s. Therefore we set the 

0.0085v2 +0.1098v–0.0271 

0.0452v2+0.1295v–0.0205 
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integration time to 1300s to obtain at least 100 equatorial crossings. At every crossing, we recorded 

the value of αeq. We note that it is possible to use Matlab's events functionality to stop the 

integration after a certain number of crossings. However, to generate 100 crossings a lot of code 

lines would be needed. This process is rather simple but tedious, therefore using a specified 

integration time was deemed sufficient. The results are displayed in Figure 6.8, where the first 

crossing corresponds to our initial pitch angle of π/4.  

  
Figure 6.8: αeq at every equatorial crossing for v = 1 RE/s. Integration time = 1300s. The particle is initiated with 

M = 3.1⋅10−5 TRE
3, m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0, 0] RE and v0 = v[sin(αeq)cos(ξ), sin(αeq)sin(ξ), 

cos(αeq)] RE/s. α0 = π/4 and ξ = π/2.  

 

From Figure 6.8 we see that Δαeq does not visibly accumulate for this velocity, but instead 

oscillates. The range of this oscillation is shown by the amplitude, which is 0.0695 rad in Figure 

6.8. We now attempt to measure the oscillation period as a function of velocity. Before this, we 

must ensure that the sinusoidal pattern is consistent over multiple velocities. Thus we recreate 

Figure 6.8 for v = 3 RE/s, v = 5 RE/s and v = 7 RE/s. We do this by dividing our integration time 

from Figure 6.8 by velocity, thus integration time = 1300/v. In addition to this, we also check to 

see if the amplitude of oscillation remains consistent when a different integration time is used. To 

check for this, we simply double our integration time to 2600/v. Overall Figure 6.9 illustrates the 

oscillations of αeq as a function of equatorial crossings for v = 3 RE/s, v = 5 RE/s and v = 7 RE/s. 

The left column corresponds to integration time = 1300/v, while the right column corresponds to 

2600/v.   
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Figure 6.9: αeq at every equatorial crossing for v = 1 RE/s (top row), 3 RE/s (middle row) and 7 RE/s (bottom 

row). Integration time = 1300s/v (left column) and 2600/v (right column). The particle is initiated with M = 

3.1⋅10−5 TRE
3, m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0, 0] RE and v0 = v[sin(αeq)cos(ξ), sin(αeq)sin(ξ), 

cos(αeq)] RE/s. α0 = π/4 and ξ = π/2. 

 

From Figure 6.9 we conclude, that for relatively low velocities, there is a clear repeating 

pattern in the oscillations in αeq. This is demonstrated by the 1st and 2nd rows, where v = 3 RE/s and 

v = 5 RE/s respectively. Unfortunately, the shapes of these patterns, along with Figure 6.8, are not 
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consistent. Thus, a plot of oscillation period for different velocity cannot be generated, because 

coding a method to detect the end of an oscillation period would require a unique solution for 

various velocities. However, our implementation of integration time scaling did result in the same 

number of crossings for every velocity in Figure 6.8 and Figure 6.9 which showed a clear pattern 

in oscillation. Thus, for relatively low velocities, we know our bounce period is proportional to the 

velocity, as expected based on Equation (6.10). For the 3rd row of Figure 6.9, we note that no 

pattern of oscillation is evident for v = 7 RE/s. Furthermore, we found that increasing integration 

time for this case resulted in the maximum amplitude of αeq changing from 1.0427 rad to 1.2146 

rad. This is significant as it implies that there is a velocity threshold above which the pattern in the 

variation of α between two equatorial crossings disappears. In fact, Δαeq in this case looks fairly 

chaotic. Although chaotic trajectories of particles in a field of a magnetic dipole have been reported, 

this phenomenon appears not to have been studied substantially in the past [42] [43]. Therefore, 

we leave the details for future studies. In contrast, the amplitude change for v = 3 RE/s was 0.2121 

rad to 0.2122 rad, for v = 5 RE/s it was 0.4150 rad to 0.4151 rad, both of which are much smaller 

than our results from v = 7 RE/s.  To explore this behaviour further we plot the maximum change 

in αeq as a function of the entire velocity range of 0.01 RE/s to 10 RE/s in Figure 6.10. This was 

done for 1000 velocities using an integration time of 332s/v. We reduced the integration time to 

make our computational resources more efficient. In Figure 6.8 we know that slightly more than 

six oscillation periods are formed in 1300 s at v = 1 RE/s. Thus an integration time of 332s/v should 

comfortably allow at least one oscillation period to form at every velocity.   

 
Figure 6.10: Maximum oscillation range of αeq for 1000 velocities between v = 0.01 to 10 RE/s. Integration time = 

332s/v. The particle is initiated with M = 3.1⋅10−5 TRE
3, m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0, 0] RE 

and v0 = v[sin(αeq)cos(ξ), sin(αeq)sin(ξ), cos(αeq)] RE/s. α0 = π/4 and ξ = π/2.   

0.07v 
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In Figure 6.10 there is a clear linear trend at lower velocities. As the velocity approaches 

0 it is unsurprising that our range of αeq variation approaches 0, as the GC approximation is accurate 

for lower energy particles. Analyzing the linear trend at lower velocities we obtain a slope value 

of 0.07v. This aligns with our results from Figure 6.6, where the maximum Δαeq = 0.0720v for a 

half bounce period. Thus, we know that, for relatively low-velocity particles, some particles reach 

their maximum Δαeq in a single crossing. However, this does not continue to occur every 

subsequent crossing, instead the Δαeq gradually gets smaller and then reaches this maximum again. 

This is illustrated by v = 3 RE/s in  Figure 6.6 and Figure 6.9. For other particles, Δαeq is consistently 

small each crossing as the particle oscillates between maximum and minimum αeq extremes, as 

illustrated by v = 1 RE/s Figure 6.8.  

 

Figure 6.10 also shows that there is a distinct transition in the type of variation of Δαeq as 

the velocity passes the velocity of approximately 7 RE/s. This further confirms the existence of a 

threshold velocity of some sort for the motion of the particles at approximately this value. 

 

In regards to the 0 points in Figure 6.10, these align with the Δαeq = 0 from Figure 6.6. 

However, the 0 points in Figure 6.10 are sharper than the gradual oscillations toward 0 in Figure 

6.6. This is attributed to the fact that a particle with a Δαeq ≈ 0 for a half bounce period will continue 

to move within the oscillation maximum and minimum values of αeq, eventually reaching a linear 

slope of maximum Δαeq = 0.0720v after multiple bounces.  

 

Figure 6.10 shows that the maximum range of oscillation in αeq increases linearly for 

relatively small particle velocities. In addition, this trend remains the same regardless of the 

integration time used, as demonstrated in Figure 6.9.  At some point, at a relatively high-velocity 

threshold, this range of oscillation in αeq approaches π/2 as velocity or integration time is increased. 

Therefore, high-energy particles have the ability to approach αeq = 0 for some bounces and it is 

only a matter of time before they reach the loss cone. Applying our starting location of ρ = 7 RE to 

the loss cone Equation (6.15) it was determined that the particle has a αlc = 2.3o or 0.04 rad. Figure 

6.11 illustrates the approach αeq = 0 in the ρ-z plot for the relatively high velocity of v = 9.52 RE/s. 

This corresponds to the particle having a kinetic energy of 19.88 MeV. The initial equatorial pitch 

angle of this particle was π/4, which is very far from the loss cone. However, as shown in Figure 

6.11, there is some point in time when the particle penetrates very deeply into the dipole field and 

would be lost to the upper atmosphere of Earth. In Figure 6.11 we set the integration time to stop 

when the particle reaches the radial distance of 1.015679 RE, which is 100 km above the surface of 

Earth. In this case, it took 154.03s for this particle to be absorbed by the atmosphere of Earth, this 

is based on purely statistical changes in the mirror point location from one bounce to the next. 

 

This is an interesting result as it puts an upper limit on the energy of particles that can 

remain within the Van Allen belts, even if their velocities are below our unbound condition of v = 

11.07 RE/s. Above a certain velocity threshold, we have illustrated a new diffusion process in which 

the random scattering of αeq results in a loss cone being reached.  In addition, if our initial pitch 

angle is closer to the loss cone condition then the probability of scattering also increases [40].  We 

have also shown in Figure 6.10 that αeq oscillates within a range that, if close to the loss cone, 

would result in diffusion into the loss cone.  Overall these two facts blur the boundaries of the loss 

cone. We believe a statistical model could be built to modify our current understanding of diffusion 

into the loss cone to account for our range of variation in αeq as a function of velocity. We note that 

collision probability with neutrals would likely play a role here. We leave this for future work, 

however, we aim to further demonstrate the benefit of such work later in this section.  
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Figure 6.11: ρ-z plot for v = 9.52 RE/s. Integration time = 154.03s. The particle is initiated with M = 3.1⋅10−5 

TRE
3, m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0, 0] RE and v0 = v[sin(αeq)cos(ξ), sin(αeq)sin(ξ), cos(αeq)] RE/s. 

α0 = π/4 and ξ = π/2.   

 

It should be noted that the situation opposite to Figure 6.11 is also possible. There are some 

particles which preserve their equatorial pitch angle with much greater consistency than could have 

been expected. For example, Figure 6.12 shows the trajectories of two particles initiated at v = 4.34 

RE/s and v = 9 RE/s, integrated for 1300s/v, for which the equatorial pitch angle remains virtually 

unchanged from one bounce to another. In Figure 6.11 these points are where the maximum Δαeq 

≈ 0, as briefly discussed earlier. The orbits of such particles would be extremely stable with 

regard to pitch angle diffusion, and as a consequence, such particles may be over-represented in 

the terrestrial magnetosphere under certain conditions. Note, that the velocity of one of these 

particles is quite high. Comparing the left and right panels of Figure 6.12  it is also concluded that 

the number of trajectory inflection points decreases as velocity increases for these types of particles  

 

Next we analyze the Equations for λm (6.14), Tb (6.10) and Td (6.12), which are all obtained 

from the GC approximation. We now use Matlab’s events functionality set to the calculation time 

to half a bounce period for the remainder of this section. To start we use Equation (6.14) to 

determine the location of λm numerically and analytically.  Numerically we use initial Beq and Bm 

along the particle’s trajectory. Analytically we use the GC assumption that αeq remains constant 

and apply our αeq = π/4 starting condition across our entire velocity range. In addition, we wish to 

modify our analytical approach to illustrate the dynamic nature of αeq established in previous 

figures To do this we use our average Δαeq = 0.0366v from Figure 6.6 to modify our initial αeq = 

π/4. We choose to add this average Δαeq because the data from Figure 6.6 was positive, indicating 
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that αeq increased. Thus, we apply  αeq = π/4 + π/4 (0.0366v) to Equation (6.14) to determine λm. 

The result of all three methods for determining λm is given in Figure 6.13 as a function of velocity. 

In this figure, blue corresponds to our numerical approach, red to standard GC theory and green to 

our attempt at modifying the GC theory.  

 

 
Figure 6.12: ρ-z plot for v = 4.34 RE/s (left) and v = 9 RE/s (right). Integration time = 1300s/v. The particle is 

initiated with M = 3.1⋅10−5 TRE
3, m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0, 0] RE and v0 = v[sin(αeq)cos(ξ), 

sin(αeq)sin(ξ), cos(αeq)] RE/s. α0 = π/4 and ξ = π/2.   

 
Figure 6.13: Calculation of λm using GC approximation for velocities from v = 0.01 to 10 RE/s. Integrated for 

half a bounce period. The particle is initiated with M = 3.1⋅10−5 TRE
3, m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = 

[7, 0, 0] RE and v0 = v[sin(αeq)cos(ξ), sin(αeq)sin(ξ), cos(αeq)] RE/s. α0 = π/4 and ξ = π/2. The numerical solution is 

in blue, GC theory is in red and our modification to GC theory is in green 
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Figure 6.13 shows that as velocity decreases the numerical results approach the GC 

approximation for λm, as the blue line approaches the red line, which is equal to our initial condition 

of αeq = π/4. This result is unsurprising since similar studies have been conducted showing that the 

λm deviates from the GC approximation for high-energy protons [44]. However, for high-energy 

electrons, the deviations were negligible, and thus the results are mass-dependent [44], though this 

mass dependence is not examined in this thesis. The green line shows an improvement when 

applying our modification to the GC theory. This illustrates that a more thorough statistical model 

could be developed to improve the GC approximation by rewriting αeq in Equation (6.14) as a 

function of velocity. Lastly, the cusps in Figure 6.13 do not correspond to points on any other 

figures and thus are deemed insignificant.  

  

We now compare the GC approximation bounce and drift period, given by  Equations 

(6.10) and (6.12) respectively, against our numerical calculations of the real trajectory. Again, we 

also use αeq = π/4 + 0.0366v to modify GC theory. To calculate the numerical bounce period, we 

simply multiply our integration time by a factor of two, as our events functionality models half a 

bounce period. For the drift period, we calculate the angle between the positive x-axis and the 

particles stopping location after a half bounce period. This gives us the Δφ the particle experiences 

during our half-bounce constriction. Using this we multiply our integration time by 2π/Δφ to get 

our numerical drift period. The results of this process are displayed in Figure 6.14 and Figure 6.15 

for the bounce and drift periods respectively. These figures show that the GC Equations are only 

approximate, as the periods for the numerical integration oscillate around both GC solutions for all 

velocities analyzed. It should be noted that the numerical calculations were all performed for ξ = 

π/2. If ξ is varied, the area between the GC theory and numerical curves will likely be filled with 

numerical results, however, the maximum difference between the numerical and analytical results 

is likely to be comparable to that shown in Figure 6.14 and Figure 6.15 

   
Figure 6.14: Calculation of Tb using GC approximation for velocities from v = 0.01 to 10 RE/s. Integrated for 

half a bounce period. The particle is initiated with M = 3.1⋅10−5 TRE
3, m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = 

[7, 0, 0] RE and v0 = v[sin(αeq)cos(ξ), sin(αeq)sin(ξ), cos(αeq)] RE/s. α0 = π/4 and ξ = π/2.  The numerical solution is 

in blue, GC theory is in red and our modification to GC theory is in green. 
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In Figure 6.14 it is interesting to note that, for higher velocities, the numerical curve forms 

almost flat steps where the bounce period is almost independent of the particle velocity for a while, 

and then rapidly drops to the next relatively flat step. We currently do not have an explanation for 

this behaviour.  In regards to our modification to the GC theory, it is impossible to determine if the 

green line more accurately represents the numerical results than the red. Thus, we sum the 

numerical data in blue and subtract the sum of both GC theory and our modification to compare 

accuracy. We then divide by our iteration to average the data. The absolute average difference 

between the GC theory and our modification was 1.61s vs 0.73s. Again, this illustrates that a 

statistical model could be developed to improve the GC approximation by accounting for variations 

in αeq. 

 

 
Figure 6.15: Calculation of Td using GC approximation for velocities from v = 0.01 to 10 RE/s. The particle is 

initiated with M = 3.1⋅10−5 TRE
3, m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0, 0] RE and v0 = v[sin(αeq)cos(ξ), 

sin(αeq)sin(ξ), cos(αeq)] RE/s. α0 = π/4 and ξ = π/2.  The numerical solution is in blue, GC theory is in red and our 

modification to GC theory is in green. 
 

The results of Figure 6.15 indicate that at relatively high velocities, such as v = 6 RE/s, the 

difference between the GC approximation and numerically computed drift periods varies by a 

factor of two. In addition, we also wish to test our modification to the GC theory. Again, we sum 

the numerical data in blue and subtract the sum of both GC theory and our modification to 

determine accuracy. We then divide by the number of data points to average the data. The absolute 

average difference between the GC theory and our modification was 4.04⋅104s vs 4.36⋅104s. 

Indicating that our modification did not improve the accuracy of measuring the drift period. 

 

 



105 

 

6.7 Analysis of Variations in Pitch Angle   
 

In this section, we vary the equatorial pitch angle while holding the initial v, and ξ constant. 

Here we use the values of v = 5 RE/s and ξ = π/2 respectively. All other initial conditions are the 

same as those in Figure 6.2. We chose v = 5 RE/s because this value is sufficiently large so that 

deviations from the GC are sufficiently clear, yet it is still significantly smaller than the threshold 

at which the motion becomes unbounded. Also, at this speed, the scattering of a particle into the 

loss cone is not very likely.  In regards to our pitch angle range, we use an upper bound of 89o or 

1.5333 rad, as 90o would result in equatorially mirroring particles. These were already extensively 

discussed in Chapter 5. For our lower limit, we choose a value of 0o to study if the loss cone 

threshold angle αlc calculated using Equation (6.15) is indeed 2.3o. Using 1000 pitch angles 

between 0o and 89o we measure Δαeq for our half bounce period. The result is given below in Figure 

6.16. Similar to the results for varying velocity we find points where the Δαeq = 0. The frequency 

of the oscillations in Δαeq decreases as α0 approaches π/2. For small values of α0, we clearly do not 

resolve these oscillations accurately, doing so would require many more points at lower values of 

α0, which would result in the data being clustered. Overall, it does not affect our ability to draw 

conclusions from the data.  

 

 
Figure 6.16: Δαeq for 1000 pitch angles from α0 = 0 to 89o. Integrated for half a bounce period. The particle is 

initiated with M = 3.1⋅10−5 TRE
3, m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0, 0] RE and v0 = v[sin(αeq)cos(ξ), 

sin(αeq)sin(ξ), cos(αeq)] RE/s.  v = 5 RE/s and ξ = π/2. Δαeq is in blue, minimum and maximum lines of best fit are 

black dashed lines and the average line of best fit is the black line. 

 

-0.2173α0
2 – 0.0457α0 + 0.5445 

-0.0396α0
2 – 0.1358α0 + 0.3167 
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Figure 6.16 shows that Δαeq approaches 0 as αeq approaches π/2. This is natural, since when 

αeq = π /2 the particles become restricted to the equatorial plane, and thus, their pitch angle cannot 

change. On the other hand, as α0 approaches zero the frequency of the oscillation grows and the 

amplitude of the oscillations reaches the maximum. This corresponds to a value of 0.5445 rad as 

the line of best fit for peak data, represented by the black dashed line, is proportional to the 

quadratic -0.2173α0
2 - 0.0457α0 + 0.5445. To represent the minimum, we put a black dashed line 

along the 0 horizontal. To represent the average Δαeq we fit a quadratic line to this data, shown in 

black in Figure 6.16. For this line of best fit we find that Δαeq = -0.0396α0
2
 - 0.1358α0 + 0.3167. 

   

 We now analyze the Δμ/μ0 as a function of our α0, this is illustrated in Figure 6.17.  Similar 

to Figure 6.16 the data oscillates, and the frequency of these oscillations increases as α0 approaches 

zero. Due to the nature of the data, we plot it on a log-log scale, Similar to Section 6.6 there are 

some points where Δμ/μ0 ≈ 0, thus we add a line of best fit in black. The slope of this line is 

proportional to α0
−1.407e−1.3814.  

  
Figure 6.17: Δμ/μ0 for 1000 pitch angles from α0 = 0 to 89o. Integrated for half a bounce period. The particle is 

initiated with M = 3.1⋅10−5 TRE
3, m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0, 0] RE and v0 = v[sin(αeq)cos(ξ), 

sin(αeq)sin(ξ), cos(αeq)] RE/s. v = 5 RE/s and ξ = π/2. Δαeq is in blue, minimum and maximum lines of best fit are 

black dashed lines and the average line of best fit is the black line. 

 

From Section 6.6 we know that Δαeq does not accumulate, but oscillates, between a range 

of αeq, at least for relatively small velocities. To determine the range of oscillation in αeq we remove 

our events functionality and graph the maximum Δαeq for multiple equatorial crossing by using a 

specified integration time. We do not correct for the use of a higher velocity and simply use the 

same integration time = 332s/v from Section 6.6.  Using a velocity of v = 5 RE/s in this section 

results in an integration time of 66.4s.  Overall, the results of this process are displayed in Figure 

6.18. 

 

 

α0
-1.407e-1.3814 
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Figure 6.18: Maximum oscillation range of αeq for 1000 pitch angles from α0 = 0 to 89o. Integration time = 66.4s. 

The particle is initiated with M = 3.1⋅10−5 TRE
3, m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0, 0] RE and v0 = 

v[sin(αeq)cos(ξ), sin(αeq)sin(ξ), cos(αeq)] RE/s. v = 5 RE/s and ξ = π/2.   

 

In Figure 6.18 we show similar results to that of varying velocity from Figure 6.9, except 

that in this case the data is downward sloping. Like Figure 6.9 the downward deviations from the 

linear trend on the right side of Figure 6.18 correspond to the points where Δαeq = 0. These 

occurrences line up with our results from Figure 6.16 and Figure 6.17. Therefore, they are a result 

of the particle traversing a similar path between rmin and rmax every bounce. This was illustrated in 

Section 6.6 in Figure 6.12. Again, similarly to Figure 6.9, the upwards deviations in Figure 6.18 

correspond to plasma particles that have a wide range of oscillation in αeq. Due to this large 

oscillation range, small α0, particularly those already close to the loss cone, have the ability to 

approach αlc. This process was illustrated in Figure 6.11 where the complicated trajectory 

eventually reaches a loss cone angle purely based on statistical probability. This is an interesting 

result as we expect particles close to the loss cone approximation, in our case 0.04 rad, to be lost. 

However, Figure 6.18 clearly shows, at least for this velocity, that initial pitch angles as high as 

0.5 rad also get lost after multiple bounce periods. Detailed analysis of these trajectories is left for 

future work. Overall, the results of varying α0 produced results with similar patterns to varying 

velocity. Thus, we know that the maximum line of best fit from Figure 6.16 corresponds to the 

slope on the right end of Figure 6.18. 

 

Having quantified the average variation in αeq as a function of α0 we now measure the 

numerical solution against the GC approximation for Equations for λm (6.14), Tb (6.10) and Td 
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(6.12). We also set Matlab’s events functionality back to half a bounce period to analyze these 

Equations. Similar to section 6.6 we calculate λm using Equation (6.14) and use our numerical 

results to determine Beq and Bm. The result of this process is given in Figure 6.20 in blue. In red we 

use our value of α0 for αeq in Equation (6.14) to demonstrate GC theory. Lastly, we modify Equation 

(6.14) by using the average variation in αeq from Figure 6.16. Since all data in Figure 6.16 is 

positive we add our average variation in αeq. Thus we apply αeq = α0 + (-0.0396α0
2

 - 0.1358α0 + 

0.3167) to Equation (6.14) to determine λm. The modified result is displayed in green in Figure 6.19 

below. 

 

Figure 6.19 shows that as α0 increases the numerical results in blue approach the GC 

approximation in red, as to be expected. However, the red GC approximation fails to accurately 

model the numerical results throughout the range of α0. This is especially true as α0 approaches 0 

since our results for the GC theory in red approach 1.3 rad or 75o. This latitude too high for dipole 

field line mapping, and is typically only reached In aurora precipitation which requires magnetic 

field line breaking and reconnection as discussed in the beginning of this chapter. Thus we show 

that the standard application GC theory does not produce logical result when attempting to estimate 

λm at low α0.   The green line shows a significant improvement when applying our correction factor 

to the GC theory. Overall, this illustrates that a more thorough statistical model could be developed 

to improve the approximation of λm when applying (6.14). This is left for future work.  

 

  
Figure 6.19: Calculation of λm using GC approximation for 1000 pitch angles from α0 = 0 to 89o. The particle is 

initiated with M = 3.1⋅10−5 TRE
3, m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0, 0] RE and v0 = v[sin(αeq)cos(ξ), 

sin(αeq)sin(ξ), cos(αeq)] RE/s. v = 5 RE/s and ξ = π/2. The numerical solution is in blue, GC theory is in red and our 

modification to GC theory is in green. 
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Lastly, we compare the GC approximation bounce and drift period Equations, (6.10) and 

(6.12) respectively, against our numerical calculations of the real trajectory. Again we express αeq 

as a function of α0 to account for average variation and apply this to the GC Equations. The 

calculation of the numerical bounce and drift period is the same discussed previously in section 

6.6.  With the numerical results in blue, the GC approximation in red and our modification of the 

GC approximation in green we generate Figure 6.20 and Figure 6.21 for the bounce and drift 

periods respectively.  

  

 
Figure 6.20: Calculation of Tb using GC approximation for 1000 pitch angles from α0 = 0 to 89o. The particle is 

initiated with M = 3.1⋅10−5 TRE
3, m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0, 0] RE and v0 = v[sin(αeq)cos(ξ), 

sin(αeq)sin(ξ), cos(αeq)] RE/s. v = 5 RE/s and ξ = π/2. The numerical solution is in blue, GC theory is in red and our 

modification to GC theory is in green. 

 

For the bounce period Figure 6.20 clearly shows that our modification did not improve 

upon the GC approximation, though it is below the numerical results in blue by a consistent 

deviation across all α0. In contrast, the discrepancy of the red curve grows for small pitch angles, 

but is more accurate for large pitch angles. Overall, the inaccuracy of both GC curves is attributed 

to a relatively high velocity.  To quantify the difference in accuracy we sum the numerical data in 

blue and subtract the sum of both GC curves, to average the data, we then divide by our iterations. 

Across the entire range of α0 we find that the GC approximation had a value of 0.08s and our 

modification to the GC expression had a value of 0.34s. The higher accuracy of the red curve is 

attributed to crossing the numerical results, while our modification did not.  
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Figure 6.21: Calculation of Td using GC approximation for 1000 pitch angles from α0 = 0 to 89o. Integrated for 

half a bounce period. The particle is initiated with M = 3.1⋅10−5 TRE
3, m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = 

[7, 0, 0] RE and v0 = v[sin(αeq)cos(ξ), sin(αeq)sin(ξ), cos(αeq)] RE/s. v = 5 RE/s and ξ = π/2. The numerical solution is 

in blue, GC theory is in red and our modification to GC theory is in green. 

 

For the drift period Figure 6.21 shows that our modification in green improved the GC 

approximation, as the curve is more centred around the numerical results. However, using our 

quantitative analysis conducted in Figure 6.20 we find the red curve to be more accurate. Across 

the entire range of α0 we find that the GC approximation had a drift period error of 3.26s and our 

modified expression had a drift period error of 7.21s.  

 

Overall, we have shown that αeq does depend on α0 and used the average rate of oscillation 

in αeq to improve upon the GC approximations Equation for αeq, while demonstrating the potential 

for improvement for Tb and Td.  Similar to the results for the varying velocity we found pitch angles 

that result in scattering into the loss and cone and initial pitch angles in which the conservation of 

αeq is extremely consistent.  

 

6.8 Analysis of Variations in Azimuthal Angle    
 

In this section, we vary the azimuthal angle ξ while holding v and αeq constant. They are 

assigned values of 5 RE/s and π/4 respectively. All other initial variables are the same as in Figure 

6.2. We choose v = 5 RE/s for consistency with section 6.7. We choose αeq = π/4 for consistency 

with section 6.6, and because it is one of the lowest pitch angles that remains trapped for v = 5 
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RE/s, as established in Figure 6.18.   In regards to our azimuthal range, we use 1000 points between 

0 and 2π for ξ.  We start by analyzing our Δαeq for our ξ range and display the results in Figure 

6.22 for half a bounce period.  

    
Figure 6.22: Δαeq for 1000 azimuthal angles from ξ = 0 to 2π. Integrated for half a bounce period. The particle is 

initiated with M = 3.1⋅10−5 TRE
3, m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0, 0] RE and v0 = v[sin(αeq)cos(ξ), 

sin(αeq)sin(ξ), cos(αeq)] RE/s. v = 5 RE/s and α0 = π/2. Δαeq is in blue and the line of best fit is the black. 

 

 Figure 6.22 shows a clear dependence of Δαeq on ξ. Naturally, the curve in Figure 6.22 is 

periodic as ξ changes from 0 to 2π. While there are numerous oscillations, the overall waveform 

seems to follow the form of a sine function. To confirm this trend, we plotted the same curve for v 

= 0.15 RE/s and v = 1.5 RE/s, again we find the overall waveform seems to follow the form of a 

sine function, as illustrated in Figure 6.23.  The black line of best fit in Figure 6.22 shows that the 

average variation in Δαeq = 0.19sin(ξ). This curve of best fit was determined using a least-squares 

method, with amplitude accuracy limited to two decimal points. Observing this we conclude that 

the maximum deviation of αeq from its initial value after half-a-bounce bounce occurs around ξ = 

π/2 and ξ = 3π/2, when the velocity is initially directed in the φ direction. In contrast, the minimum 

deviation of αeq occurs around ξ = 0 and π, when the velocity is initially directed in the radial 

direction. Lastly, we sum the data of the blue line and divide it by the number of iterations to 

determine if there is an average positive or negative result. The result is a value of 0.0277 rad. This 

indicates that the particle is slightly more likely to have αeq increase after a half-bounce period 

which means that most particles at this velocity are scattered away from the loss cone 

 

0.19sinξ 
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Figure 6.23: Δαeq for 1000 azimuthal angles from ξ = 0 to 2π for v =  0.15 RE/s (left), 1.5 RE/s (right). Integrated 

for half a bounce period. The particle is initiated with M = 3.1⋅10−5 TRE
3, m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, 

r0 = [7, 0, 0] RE and v0 = v[sin(αeq)cos(ξ), sin(αeq)sin(ξ), cos(αeq)] RE/s. α0 = π/2. 

 

Next we analyze normalized Δμ as a function of ξ, the results are displayed in Figure 6.24 

for half a bounce period. 

  
Figure 6.24: Δμ/μ0 as for 1000 azimuthal angles from ξ = 0 to 2π. Integrated for half a bounce period. The 

particle is initiated with M = 3.1⋅10−5 TRE
3, m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = [7, 0, 0] RE and v0 = 

v[sin(αeq)cos(ξ), sin(αeq)sin(ξ), cos(αeq)] RE/s. v = 5 RE/s and α0 = π/2. Δαeq is in blue and the line of best fit is the 

black. 

  

0.19 + 0.61sinξ 
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The curve in Figure 6.24 is similar to that in Figure 6.22. Using a least-squares method we 

determine the amplitude of a sine function to fit the data. In regards to the y shift of 0.19, this was 

determined by averaging the data in blue. We find the best approximation to be 0.19 + 0.61sin(ξ), 

shown as a black line in Figure 6.24. Compared to Figure 6.24 the oscillations are shifted upwards. 

Thus, the particle is slightly more likely to have μ increase after a half-bounce period. 

 

Similar to Figure 6.10 and Figure 6.18, from Sections 6.6 and 6.7 respectively, we 

attempted to analyze the maximum range of oscillation in αeq for multiple bounce periods. 

However, due to the periodic nature of the azimuthal angle, the results were simply too noisy and 

did not provide relevant data.  

 

We now plot the difference in our numerical solution vs the GC approximation for λm 

(6.14) Tb (6.10) and Td (6.12). Again we modify our GC approximation to try and improve the 

results. However, unlike Sections 6.6 and 6.7, we do not have a graph of the maximum oscillation 

range in αeq to validate that our average Δαeq from Figure 6.22 should be applied. Instead, we note, 

that this is simply a trial to see if the GC approximation benefits from writing αeq as a function of 

ξ. In addition, this is also done for consistency with previous Sections. Overall, we also apply αeq 

= α0 + 0.19sin(ξ) to Equation (6.14) to determine λm. The result of this process is given in Figure 

6.25.  

 
 

Figure 6.25: Calculation of λm using GC approximation for 1000 azimuthal angles from ξ = 0 to 2π. Integrated 

for half a bounce period. The particle is initiated with M = 3.1⋅10−5 TRE
3, m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, 

r0 = [7, 0, 0] RE and v0 = v[sin(αeq)cos(ξ), sin(αeq)sin(ξ), cos(αeq)] RE/s. v = 5 RE/s and ξ = π/2. The numerical 

solution is in blue, GC theory is in red and our modification to GC theory is in green. 
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Figure 6.25 shows that the GC approximation in red does a fairly good job at averaging 

the changes that result from a periodic variation in λm. However, the modification to the GC 

approximation demonstrates a significant increase in predicting the numerical results of λm.  

 

It should be noted here that the dependence of ξ on the GC Equation for the mirror point 

was studied in a paper by Porazik [39], where they used the 2nd order Taylor expansion of μ, given 

by Equation (2.19), to formulate an expression for the loss cone Equation that depends on varying 

values of ξ and initial αeq. For future work, this Equation could be modified to determine λm as a 

function of ξ, or used in combination with section 6.6 to include the velocity variable.   

 

Lastly, we compare the GC approximation bounce and drift period Equations, (6.10) and 

(6.12) respectively, against our numerical calculations. Following the same procedure, we again 

modify Equations (6.10) and (6.12) by applying αeq = α0 + 0.19sin(ξ). The calculation of the 

numerical bounce and drift period is the same discussed previously in Section 6.6. Since Tb and Td 

do not depend on ξ the result is a horizontal line.  With the numerical results in blue, the 

conventional analytical expression in red and our modified analytical expression in green we 

generate Figure 6.26 and Figure 6.27 for the bounce and drift periods respectively.  

  

 

 
Figure 6.26: Calculation of Tb using GC approximation for 1000 azimuthal angles from ξ = 0 to 2π. Integrated 

for half a bounce period. The particle is initiated with M = 3.1⋅10−5 TRE
3, m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, 

r0 = [7, 0, 0] RE and v0 = v[sin(αeq)cos(ξ), sin(αeq)sin(ξ), cos(αeq)] RE/s. v = 5 RE/s and ξ = π/2. The numerical 

solution is in blue, GC theory is in red and our modification to GC theory is in green. 
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Figure 6.26 shows that variation in ξ does cause changes in the bounce period. However, 

the variation in the bounce period is rather small, on the order of 10−1s. On average the GC solution 

in red is below the mean of the numerical oscillations. Again modifying the GC Equation with our 

sine function seems to have improved the approximation. To quantify the inaccuracy of both 

methods we average the difference in sums between the numerical data in blue and both GC 

approximations. For the red line, this results in a value of 0.116s, for the green curve this is 0.096s, 

thus validating the improvement of Tb when αeq is made a function of ξ.  

 

 
Figure 6.27: Calculation of Td using GC approximation for 1000 pitch angles from α0 = 0 to 89o. Integrated for 

half a bounce period. The particle is initiated with M = 3.1⋅10−5 TRE
3, m0 = 1.673⋅10−27 kg, q = 1.602⋅10−19 C, r0 = 

[7, 0, 0] RE and v0 = v[sin(αeq)cos(ξ), sin(αeq)sin(ξ), cos(αeq)] RE/s. v = 5 RE/s and ξ = π/2. The numerical solution is 

in blue, GC theory is in red and our modification to GC theory is in green. 

 

Figure 6.27 shows the dependence of the drift period ξ. The drift period calculated 

numerically reaches a maximum around ξ = π and a minimum at ξ = 0. The drift period given by 

(6.12) is, of course, independent of ξ. It is shown by the horizontal red line. In addition, our 

modification made a negligible difference in approximating the drift period. The results of the 

numerical solution are hypothesized to be based on the initial position of the particle and the charge. 

First, we know an ion gyrates counterclockwise with an initial Bz in the positive direction, which 

is the case here. With x0 on the positive x-axis, the ion must initially gyrate into a positive y-position 

if the initial v is directed towards the origin, which it is with ξ = π. Thus this results in a small Δφ 

over our half bounce period constriction, which in turn affects our drift period calculation, as Td = 

2π/Δφ.  
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 Nothing in the GC approximation depends on the angle ξ, however, our calculations 

demonstrate that λm, Tb and Td a do depend on the value of ξ. This clearly illustrates the approximate 

nature of the GC theory. While this dependence decreases with the particle velocity, it might have 

to be taken into account in some calculations 

. 

6.9 Conclusion  
 

In this chapter, we analyzed the motion of plasma particles in a three-dimensional dipole. 

One of the main focuses of our study was to test the GC assumption that the equatorial pitch angle 

remains constant. Since the GC approximation is dependent on the conservation of the magnetic 

moment, which is also dependent on pitch angle, this is an important test of the GC accuracy. In 

our analysis, we found multiple ways in which αeq deviates from the GC approximation. Under 

certain conditions, this resulted in particles diffusing into the loss cone, despite α0 being far from 

the expected loss cone requirements. Using these deviations in αeq we then illustrated the potential 

for improving the GC Equations for αeq (6.14), Tb (6.10) and Td (6.12). Much of this was left for 

future work, as though we covered a lot of ground, the results in this Chapter are only preliminary 

and require much more time to study in detail. Overall this analysis is relevant to understanding 

the characteristics of trapped radiation belt particles and the precipitation of loss cone particles into 

the ionosphere.  

 

 We began by deriving the particle's bounds of motion in an attempt to analyze an ensemble 

of particles that only differed in phase. Since phases are indistinguishable under GC theory this 

would allow for a more in-depth analysis.  Unfortunately, the complexity of 3D motion only 

allowed for our radial constraints to be tight at the magnetic mirror point. This is in part attributable 

to the fact that no analytical solutions exist for particle motion in a 3D dipole. This resulted in a 

lack of enough independent Equations to constrain our system. For the same reason, we did not 

find a simple way to distribute particles between rmin and rmax so that they shared common 

parameters in everything but the initial phase. For example, two particles with the same bounds of 

motion end up having different initial pitch angles, which in turn results in two separate mirror 

points. After one reflection at a mirror point, the particles no longer move together and thus can 

not be used for phase analysis. As a way to address this issue, we introduced the azimuthal angle ξ 

to mimic differences in phases. Although the azimuthal angle is not exactly the phase angle, in the 

GC approximation it does not affect the location of the mirror point. Then we proceeded to analyze 

the parameters of v, αeq and ξ separately. Thus we were able to form conclusions on the variation 

of one parameter at a time. This is a notable limitation in our analysis. In future work, a more in-

depth analysis would compile the variation in these three parameters into unifying statistical or 

analytical expression to estimate the deviation of GC theory in regards to the conservation αeq. 

Unfortunately, the time allotted to complete this Master’s thesis does not allow for such time-

consuming analysis. 

 

 For variations in velocity, we found that Δαeq over a half bounce oscillated between 0 and 

a maximum amplitude which increased linearly with v, and thus so too did the average change in 

Δαeq. In addition, the frequency of these oscillations decreased with v. Similar results were found 

for the Δμ/μ0, except the Δμ/μ0 increased quadratically with v. We also observed that there are some 

particular velocities for which Δαeq = 0 and we found that these particles conserve their αeq 

extremely well, even over multiple bounce periods, and thus could make up a disproportionate 

percent of trapped radiation belt particles under some conditions. For all other particles, we found 
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that the Δαeq oscillated between a maximum range over multiple bounces, up until a velocity 

threshold of v ≈ 7 RE/s where a transition to chaos trajectoies occurred. Below this threshold, the 

maximum range of oscillation over multiple bounce periods corresponded to the maximum range 

in Δαeq over a half bounce period. Indicating that the oscillation of αeq between the minimum and 

maximum values is not always gradual, as some particles, some of the time, make the maximum 

Δαeq in a single equatorial crossing. Above a velocity threshold of v ≈ 7 RE/s we found that the 

maximum Δαeq increases with time and thus it is only a matter of time before these high-energy 

particles diffuse into the loss cone. Lastly, using the GC approximations for λm, Tb and Tg we 

showed that the numerical results deviate from GC approximation, especially λm. In an attempt to 

improve these results we used the average change in Δαeq to demonstrate that GC theory can be 

more accurate if αeq is written as a function of v, and not assumed as a constant.  

 

When analyzing the dependence of variation in αeq on the pitch angle itself we found very 

similar results to the ones found in our variation in the velocity section.  For example, we found 

that, over multiple bounce periods, relatively small values in α0 resulted in the maximum Δαeq 

increasing with time, while values of α0 approaching π/2 were accurately modelled by our 

maximum line of best fit from our Δαeq over a half bounce. This is inverse to our velocity results 

because the GC approximation converges towards our numerical results as v is decreased or when 

α0 is increased, as the particle approaches equatorial mirroring. We also found points within our α0 

range for which Δαeq = 0 holds, resulting in particles conserving their αeq extremely well, even over 

multiple bounce periods. The line of best fit for Δαeq as a function of α0 over a half bounce period 

was proportionate to a parabolic function. However, this parabolic line was relatively lat and thus 

was not a huge deviation from a linear line of best fit. Using this average line of best fit for Δαeq, 

as a function of α0, we were again able to demonstrate that the GC approximations for λm, Tb and 

Tg have the potential to be improved upon. In addition, we also highlighted the deviation of the GC 

approximation from numerical results. Illustrating that underlying assumptions in GC theory, at 

times, do not reproduce accurate approximation, especially at relatively low values of α0. 

 

For variations in the azimuthal angle, ξ, we found that the average change in Δαeq was 

similar to a sine function. Using the Equation for our curve of the best fit we analyzed the GC 

approximations for λm, Tb and Tg. Unlike variations in velocity and initial pitch, these Equations 

are not functions of ξ. This is because the GC approximation assumes phases are indistinguishable, 

though ξ does not represent phase directly, it is our proxy for it. Through our analysis we found 

that λm, Tb and Tg do change as a function of ξ, and thus this illustrates a limitation of GC theory. 

Lastly, we made the GC approximation a function of ξ by applying our average change in Δαeq. 

This resulted in significant improvement in the approximation of λm and Tb, however, this did not 

affect the results for Tg in any significant way.    
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7. Summary 
 

In this thesis we investigated the limits of the GC approximation. To this end we compared 

particle trajectories with the GC approximation in various magnetic fields and analyzed the 

dependence of various parameters, such as the particle speed, direction of the velocity and pitch 

angle. We also studied various strategies for selecting the initial position for the GC depending on 

the initial particle position and velocity exclusively. Whenever possible, we used analytical results 

applicable to motion in different fields. 

 

We started with the examination of GC initialization options and GC approximation 

accuracy for high-energy particles moving in a magnetic field with a constant gradient in the x-

direction. Although this is a very simple field, it can be used to locally approximate any two-

dimensional magnetic field.  

 

We sought a GC initialization method which relied solely on the initial position and 

velocity vectors of the particle. This is advantageous as it does not rely on using analytical results 

that are only available for specific magnetic fields or numerically tracing a particle over at least 

one gyroperiod. The simplest method is to just use the particle’s position as the starting point for 

GC integration. However, this is the least accurate method and our calculations show that the error, 

in this case, is proportional to v3. A better, commonly used option is to start the GC integration at 

the location of the gyroradius calculated by using the magnetic field at the position of the particle. 

This approach results in the error being proportional to v4. We attempted to improve the accuracy 

further by introducing iterations to our calculation of the gyrocenter position. This reduced the 

error further by a factor of 17, although it did not change the scaling of the error with v. 

 

For the magnetic field with a constant gradient there were exact solutions, which were used 

to find the exact locations where the expressions for the magnetic moment, gyroperiod and drift 

velocity became exact. It was found that these three x-positions shared no overlap for a range of 

velocities, except for their convergence towards each other at low velocities. Thus only one of the 

magnetic moment, gyroperiod or drift velocity can be evaluated exactly when applying GC at high 

velocities. Since the typical application of the GC approximation focuses on the transport of the 

particles the drift velocity may be considered the most desirable GC starting point in most 

applications.  

 

A crucial aspect of the GC theory is the conservation of the magnetic moment. For the 

magnetic field with a constant gradient an exact expression for the first adiabatic invariant is 

available, however, most practical calculations use the approximation of μ0 = mv⊥
2/B, which is just 

the first term in a Taylor series expansion of the exact expression. Thus, we analyzed different 

strategies for evaluating the magnetic moment for this field as well. Of course, using μ0 with the 

magnetic field evaluated at the particle position is the least accurate, with the error being 

proportional to v3. This is improved if the expression for μ0 is evaluated using a magnetic field at 

either the 1st gyrocenter or the converged gyrocenter. The scaling of the error in both of these cases 

was v4. Another possibility is to use the expression for the second-order Taylor series expansion. 

This gave an error proportional to v4 and v5 when evaluating B at the converged gyrocenter and 

particle position respectively. Comparing the results on a log plot it was found that the application 

of μ0 at the converged gyrocenter is the most accurate method of calculating the magnetic moment 

at or above a velocity of roughly 6.5. For velocities less than 6.5 the application of the Taylor series 



119 

 

expansion using B at the particle trajectory was the most accurate. 

 

In Chapter 4 we examined GC initialization options and GC approximation accuracy for 

high energy particles in the equatorial plane of a magnetic dipole. Similar to Chapter 3 we relied 

on magnetic field symmetry to determine particle trajectory bounds. The results of Chapter 4 apply 

to modelling high-energy particles in the inner magnetosphere of Earth, such as inner Van Allen 

Belt particles.  

 

Similar to Chapter 3 we investigated different options for initializing GC in the equatorial 

plane of a magnetic dipole. The results were similar to those of Chapter 3 as well, initializing the 

GC calculation at the position of the particle gave an error proportional to v3, while the first 

approximation to the gyrocenter resulted in the error proportional to v4. Using iterations to improve 

the estimation of the gyrocenter reduced the error by a factor of 3 for most velocities, but did not 

change its scaling with v. Based on the agreement between the two different fields we believe this 

scaling with v to be universal. One difference between the two Chapters is that the gyrocenter 

iterations diverged for sufficient high v in the equatorial plane of a magnetic dipole. At sufficiently 

large velocities approaching the divergence threshold we found the 1st gyrocenter to have smaller 

errors than the converged gyrocenter. 

 

In the equatorial plane of a magnetic dipole there also exist exact analytical expressions 

for the magnetic moment, gyroperiod and drift period. Similar to Chapter 3 we used these exact 

formulations with the actual magnetic moment, gyroperiod and drift period to determine an initial 

radial position that corresponded to these exact solutions. It was found that these three radial 

positions shared no overlap for a range of velocities, except for their convergence at low velocities. 

Thus only one of the magnetic moment, gyroperiod or drift period can be conserved exactly when 

applying GC approximation at high velocities.  

 

Overall the GC initialization results of Chapters 3 and 4 allow us to envision GC 

initialization, dependent only on the initial position and velocity vectors, to be conducted as 

follows. First, one needs to determine ∇B for a given magnetic field, which is required for GC 

formalism anyway. Second, one needs to initialize a plasma particle using either (3.28) or (4.22), 

as the accurate reproduction of drift velocity or period is usually preferred. Overall this procedure 

accounts for both the magnetic field strength and its gradient in GC initialization, and is expected 

to work well for general magnetic fields This hypothesis should be verified for a variety of fields 

by future work. 

 

The existence of the exact expression for the magnetic moment also allowed us to measure 

the accuracy of the GC approximation in the equatorial plane of a dipole. The results were generally 

similar to those of Chapter 3, except for the different scaling of the errors when using the Taylor 

series expansion form of μ. Evaluating B at the converged gyrocenter and particle trajectory 

resulted in the errors proportionate to v3 and v4 respectively, one less than they were for the magnetic 

field with a constant gradient. We believe that this is due to the field of Chapter 3 being too simple, 

some terms in the expansion are likely to equal zero, which affects the scaling. Thus, the scaling 

of the errors obtained in Chapter 4 is believed to be more general. In Chapter 4 evaluating μ0 at the 

converged gyrocenter was found to have the least error across the entire velocity range examined.   

 

In Chapters 3 and 4 the background magnetic field had symmetry and therefore the 

canonical momentum of the particle was conserved. This conservation law allowed us to derive 
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the limits of particle motion analytically. In general, most magnetic fields do not have symmetry. 

Therefore, we introduce some asymmetry to the equatorial field of a magnetic dipole in Chapter 5. 

This asymmetry mimics the stretching of the magnetosphere on the nightside. On the dayside the 

magnetic field in our model remains dipolar, this allowed us to use the exact expressions for the 

canonical momentum and adiabatic invariant in this region. We considered three different models 

of the magnetotail to illustrate the effects of the magnetic gradient steepness. Two of these 

magnetotails had smooth variations in the magnetic field strength as a function of position, while 

the other magnetotail was modelled by a piece-wise linear function. These magnetotail models 

allowed us to illustrate the effects of the magnetic gradient on particle motion. 

 

In Chapter 5 we focus on the changes in the canonical momentum and the adiabatic 

invariant as the particle passes through the magnetotail region. Here it was found that the initial 

and final values for both Pφ and μExact remain approximately the same after crossing the magnetotail. 

For the adiabatic invariant this behaviour is expected due to the dawn-dusk symmetry of the 

magnetic field. However, this is a significant result for Pφ, as the only expectation for the canonical 

momentum is that it will return to a constant value in the dipolar region. Measuring the difference 

between the final and initial values of Pφ and μExact allowed us to quantify the secular error the GC 

approximation accumulates every drift. The ΔPφ and ΔμExact were calculated for a range of initial 

phases and velocities. For a smooth variation of the magnetic field, we found that the change in the 

canonical momentum and the adiabatic invariant was an exponentially small function of the 

velocity. For our magnetotail with piecewise linear variations, it was found that secular error was 

proportional to v3. Such radical difference in the level of conservation of the adiabatic invariants is 

not surprising, it is well known that the level of their conservation depends on whether the variation 

of external parameters is smooth or not. Similar effects for the canonical momentum were found, 

it seems that this is a new discovery and is therefore of considerable theoretical interest.  

 

This research may provide the foundation for future theoretical studies in the area of 

classical mechanics as well as plasma physics. In addition to small secular changes in Pφ and μExact, 

we also observed similar small changes in the average position of the particle after crossing the 

magnetotail, this results in a radial drift. In GC theory inward drift is often equivalent to an energy 

gain, with outward drift being equivalent to an energy loss. However, we know that because 

magnetic fields can not do work on a particle that this is not the case. These small secular changes 

can, most likely, be statistically modelled as diffusion. Thus, this aspect of our study indicates yet 

another way in which the GC approximation breaks down. 

 

For this equatorial non-axisymmetric magnetic field we generated an ensemble of particles 

which differ only in their initial phase. These particles share identical values for all other 

parameters, such as the particle’s energy, canonical momentum, magnetic moment and the ranges 

of motion. The analysis of phase dependence clearly illustrates deviations from the GC 

approximation, as the GC approximation assumes all phases are collapsed onto the GC, and thus 

are indistinguishable. 

 

In Chapter 6 we considered motion in a three-dimensional dipole. The problem, in this 

case, becomes considerably more complicated than the 2D motion studied up to this point. First of 

all, no analytical solutions exist in three dimensions. Even more importantly, the size of the 

parameter space increases, as we need to analyze the dependence on the pitch angle as well. 

Although our simulations covered a lot of ground, the results in this Chapter are only preliminary 

and require much more time to study in detail. We found multiple deviations from the standard GC 
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theory and illustrated them as a function of the initial particle speed, equatorial pitch angle and the 

azimuthal angle, which plays the role of the initial phase in 3D. These deviations from the GC 

theory included variations in the equatorial pitch angle between consecutive bounces of a particle 

and associated variations in the mirror point positions. In some cases, these variations were 

substantial enough for a particle to ‘diffuse’ into the loss cone. Such results have applications to 

the dynamics of the radiation belt particles and their precipitation into the ionosphere. In some 

cases the dynamics of particles in the dipole magnetic field appear to be chaotic which also requires 

more detailed investigation in the future. Deviations for the bounce and drift periods from their 

standard GC calculations were also demonstrated. Of course, all the violations of the GC theory 

approach zero as the velocity of the particles becomes small. Future work in this area would focus 

on quantifying the GC inaccuracies better for all possible combinations of the particle’s initial 

velocity, equatorial pitch angle, azimuthal angle and position. Lastly, we attempted to improve 

upon the GC approximations of λm, Tb, and Tg by including the average Δαeq as a function of 

velocity, initial pitch and the azimuthal angle separately.  In many cases, this showed significant 

improvement and thus we believe corrections could be developed to further improve the GC 

approximation by conglomerating the patterns in αeq oscillations found in this paper.  
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9. Appendix: Matlab Code   
 

https://github.com/mathew-staikos/A-Comparison-of-Lorentz-Trajectories-with-the-Guiding-

Center-Approximation-for-High-Energy-Particles.git 

 

 

 

 

 

 

 

https://github.com/mathew-staikos/A-Comparison-of-Lorentz-Trajectories-with-the-Guiding-Center-Approximation-for-High-Energy-Particles.git
https://github.com/mathew-staikos/A-Comparison-of-Lorentz-Trajectories-with-the-Guiding-Center-Approximation-for-High-Energy-Particles.git

