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Abstract 

Network defense is a complex field. Intrusions can come from multiple 

vectors and leverage any number of vulnerabilities in a computer system. Over the 

years, technologies have been developed to reduce outside threats. Intrusion 

detection systems and log aggregation solutions have been introduced to help 

analysts find anomalies and detect intrusions. These systems can make use of agents 

deployed across a network to monitor the state of the computers. On the hosts, 

multiple techniques can be used to detect intrusions, such as signature or anomaly-

based detection algorithms. However, those solutions need a lot of tuning, skilled 

analysts and modern equipment. Processing host-based data is challenging, as every 

log, event and configuration can be looked at; this generates a significant amount of 

data. 

In digital forensics, the objective is to look at a system’s state such as its 

processes in memory, as well as artifacts left on the disk. This can then be used to 

build a timeline of events to detect and understand how a malware which 

compromised a workstation works, so countermeasures can be implemented. By 

automating this process across an entire network of live computers, it would be 

possible to analyze the state of those systems to look for anomalies. However, this 

creates significant amount of data that needs to be collected, transferred and 

processed. It can also require significant resources. Previous research using memory 

forensics have looked at host-based artifacts from the memory capture collected 

using virtual machine snapshots to detect malware such as rootkit and ransomware. 

The main challenge for remote forensic analysis is timely acquisition of the memory 

and its analysis. 

This thesis aims to propose an automated solution based on digital forensics 

and machine learning to detect intrusions proactively across multiple computers. The 
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Digital Forensic – Incident Response (DFIR) tool Velociraptor was identified as the 

perfect tool to collect the artifacts that would be analyzed by a machine learning 

model. It is a lightweight platform that collects disk-based information and volatile 

information using the Windows API. The artifacts were collected and then analyzed 

by three machine learning algorithms, Isolation Forest, Random Forest and Support 

Vector Machine, to determine if anomalous activities were ongoing on the computer. 

Using this technique, Random Forest and Support Vector Machine achieved a 

perfect classification of the 41 malware samples used for the experiment. 
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Résumé 

La défense des réseaux est un domaine complexe. Les intrusions peuvent 

provenir de plusieurs vecteurs et exploiter un certain nombre de vulnérabilités dans 

un système informatique. Au fil des ans, des technologies ont été développées pour 

réduire les menaces externes. Des systèmes de détection d’intrusion et des solutions 

d’agrégation de journaux d’événement ont été introduits pour aider les analystes à 

trouver des anomalies et à détecter des intrusions. Ces systèmes peuvent utiliser des 

agents déployés sur un réseau pour surveiller l’état des ordinateurs. Sur les postes de 

travail, plusieurs techniques peuvent être utilisées pour détecter les intrusions, telles 

que des algorithmes de détection basés sur des signatures ou des anomalies. 

Cependant, ces solutions nécessitent beaucoup de réglages, des analystes qualifiés 

et des équipements modernes. Le traitement des données disponible sur un 

ordinateur est complexe, car chaque journal, événement et configuration peut être 

examiné; cela génère une quantité importante de données. 

En investigation numérique, l’objectif est d’examiner l’état d’un système tel 

que ses processus en mémoire, ainsi que les artefacts laissés sur le disque. Cela peut 

ensuite être utilisé pour créer une chronologie des événements afin de détecter et de 

comprendre comment les logiciels malveillants ont compromis un poste de travail, 

afin que des contre-mesures puissent être mises en œuvre. En automatisant ce 

processus sur l’ensemble d’un réseau d’ordinateurs actifs, il serait possible 

d’analyser l’état de ces systèmes pour rechercher des anomalies. Cependant, cela 

crée une quantité importante de données qui doivent être collectées, transférées et 

traitées. Cela peut aussi nécessiter des ressources importantes. Des recherches 

antérieures utilisant l'analyse de la mémoire d’un ordinateur ont examiné les artefacts 

basés sur l'hôte à partir de la capture de mémoire collectée depuis la mémoire d’une 

machine virtuelle pour détecter les logiciels malveillants tels que les programmes 
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malveillants furtifs et les logiciels de rançon. Le principal défi d’investigation 

numérique à distance est l'acquisition rapide de la mémoire et son analyse. 

Cette thèse vise à proposer une solution automatisée basée sur 

l’investigation numérique et l'apprentissage machine pour détecter les intrusions de 

manière proactive sur plusieurs ordinateurs. Velociraptor a été identifié comme 

l'outil parfait pour collecter les artefacts qui seraient analysés par un modèle 

d'apprentissage machine. Il s'agit d'une plate-forme légère qui collecte des 

informations disponibles sur le disque et dans la mémoire à l'aide de l'interface de 

protocole d'application Windows. Les artefacts ont été collectés puis analysés par 

trois algorithmes d'apprentissage machine, forêts isolées, forêts aléatoires et machine 

à vecteurs de support, afin de déterminer si des activités anormales étaient en cours 

sur l'ordinateur. Grâce à cette technique, les algorithmes forêts aléatoires et machine 

à vecteurs de support ont réalisé une classification parfaite des 41 échantillons de 

logiciels malveillants utilisés pour l'expérience.  



 

vii 

 

Table of Contents 

 
Acknowledgments................................................................................................ ii 

Abstract .............................................................................................................. iii 

Résumé ................................................................................................................. v 

Table of Contents ................................................................................................vii 

List of Tables .......................................................................................................xi 

List of Figures .....................................................................................................xii 

Section 1 Introduction ........................................................................................... 1 

1.1 Motivation ............................................................................................. 1 

1.2 Statement of Deficiency ......................................................................... 2 

1.3 Aim ....................................................................................................... 3 

1.4 Research Activities ................................................................................ 4 

1.5 Organization .......................................................................................... 5 

Section 2 Literature Review .................................................................................. 6 

2.1 Performance .......................................................................................... 6 

2.2 Machine Learning .................................................................................. 8 

2.3 Intrusion Detection System (IDS)......................................................... 10 

2.3.1 Cyber Kill Chain .............................................................................. 11 

2.3.2 Network Intrusion Detection Systems (NIDS) .................................. 13 

2.3.3 Host-Based Intrusion Detection Systems (HIDS) .............................. 15 

2.3.4 Data Analysis Techniques ................................................................ 16 



 

viii 

 

2.4 Enterprise Network Monitoring Solutions ............................................ 22 

2.5 Memory Forensics ............................................................................... 24 

2.6 Limitations .......................................................................................... 27 

Section 3 Background ......................................................................................... 29 

3.1 Machine Learning ................................................................................ 29 

3.1.1 Algorithms ....................................................................................... 29 

3.1.2 Feature Reduction ............................................................................ 35 

3.1.3 Feature Selection.............................................................................. 37 

3.1.4 Scaling ............................................................................................. 38 

3.1.5 Parameter tuning .............................................................................. 39 

3.2 Malware .............................................................................................. 46 

3.2.1 Remote Access Trojan ..................................................................... 46 

3.2.2 Rootkit ............................................................................................. 47 

3.2.3 Ransomware .................................................................................... 50 

3.2.4 Fileless Malware .............................................................................. 50 

3.3 Persistence Mechanisms....................................................................... 52 

3.4 Velociraptor ......................................................................................... 55 

Section 4 Methodology ....................................................................................... 57 

4.1 Velociraptor and Volatility Methods .................................................... 57 

4.2 Data Acquisition .................................................................................. 58 

4.2.1 Test Environment ............................................................................. 58 

4.2.2 Malware........................................................................................... 63 

4.2.3 Features Extraction .......................................................................... 73 



 

ix 

 

4.2.4 Data Collection ................................................................................ 79 

4.2.5 Experimentation ............................................................................... 81 

4.3 Exploratory Data Analysis and Data Munging ...................................... 83 

4.3.1 Data Munging .................................................................................. 83 

4.3.2 Volatility ......................................................................................... 84 

4.3.3 Velociraptor ..................................................................................... 88 

4.4 Feature Engineering ............................................................................. 92 

4.4.1 Feature Reduction ............................................................................ 92 

4.4.2 Cross-Validation .............................................................................. 92 

4.5 Model Learning and Evaluation ........................................................... 93 

4.5.1 Model Selection ............................................................................... 93 

4.5.2 Hyperparameter tuning ..................................................................... 94 

4.5.3 Model Training ................................................................................ 96 

Section 5 Results ................................................................................................. 99 

5.1 Results ................................................................................................. 99 

5.1.1 Performance Metrics ........................................................................ 99 

5.1.2 Isolation Forest .............................................................................. 100 

5.1.3 Random Forest ............................................................................... 105 

5.1.4 Support Vector Machine ................................................................ 107 

5.2 Missed Malware ................................................................................ 109 

5.3 Discussion ......................................................................................... 111 

5.3.1 Volatility Performance ................................................................... 111 

5.3.2 Perfect Classification ..................................................................... 114 



 

x 

 

5.4 Validation .......................................................................................... 115 

Section 6 Conclusion......................................................................................... 117 

6.1 Contribution ...................................................................................... 118 

6.2 Future Work ...................................................................................... 118 

References ........................................................................................................ 120 

Annex A Velociraptor Features List .................................................................. A-1 

 

  



 

xi 

 

List of Tables 

Table 1—User workstations in the test environment ............................................ 60 

Table 2—Volatility workstations schedules ......................................................... 61 

Table 3—Velociraptor workstations schedules .................................................... 61 

Table 4—Malware executables and tools used ..................................................... 63 

Table 5—Features from Cohen and Nissim [4] (Reproduced from [4]) ................ 74 

Table 6—Features from Wang et al.  [5] used in this thesis (Reproduced from [5])

 ........................................................................................................................... 74 

Table 7—Features added based on Parker and Nissim [6] .................................... 75 

Table 8—Features considered by Mohammad and Alqahtani [29] (Reproduced 

from [12]) ........................................................................................................... 77 

Table 9—Features considered by Murthaja et al. [2] (Reproduced from [2]) ........ 78 

Table 10—Type of features generated for Velociraptor ....................................... 79 

Table 11—Velociraptor features selected using PPS ............................................ 89 

Table 12—Trained model combinations .............................................................. 97 

Table 13—Results using Isolation Forest with Volatility ................................... 102 

Table 14—Results using Isolation Forest with Velociraptor ............................... 104 

Table 15—Results using Random Forest with Volatility .................................... 106 

Table 16—Results using Random Forest with Velociraptor ............................... 107 

Table 17—Results using SVM with Volatility ................................................... 108 

Table 18—Results using SVM with Velociraptor .............................................. 109 

Table 19—Volatility malware type detection, by algorithms .............................. 110 

Table 20—Velociraptor malware type detection, by algorithms ......................... 111 

Table 21—Comparison of the results obtained with Volatility with the works from 

Cohen and Nissim [4] and Wang et al. [5] ......................................................... 112 

Table 22—Comparison of Volatility and Velociraptor, for each algorithm ......... 116 

Table A-1—Complete Velociraptor features list ................................................ A-1  



 

xii 

 

List of Figures 

Figure 1—ROC curve ........................................................................................... 8 

Figure 2—Anomaly detection (Reproduced from [7]) ............................................ 9 

Figure 3—Machine Learning Pipeline (Reproduced from [9]) ............................. 10 

Figure 4—Classifications of intrusion detection systems (Reproduced from [14]) 11 

Figure 5—Lockheed Martin kill chain (Reproduced from [13]) ........................... 13 

Figure 6—Data analysis techniques (Derived from [14]) ..................................... 17 

Figure 7—Detection results of the various EDRs tested by Karantzas and 

Patsakis [35] using CPL, HTA, EXE and DLL attacks (Reproduced from [35]) ... 24 

Figure 8—Some features generated by Cohen and Nissim [4] research (Reproduced 

from [4]) ............................................................................................................. 26 

Figure 9—Volatility psxview plugin output (Reproduced from [38]) ................... 27 

Figure 10—Isolating data points using Isolation Forest. Xi (left) is more normal than 

X0 (right) (Reproduced from Liu et al. [42]) ........................................................ 30 

Figure 11—Random Forest ensemble tree prediction (Reproduced From Yiu [45])

 ........................................................................................................................... 32 

Figure 12—SVM attempting to find the best hyperplane (Reproduced from [48]) 33 

Figure 13—Soft Margin SVM (Reproduced from [48]) ....................................... 34 

Figure 14—Linear and Non-linear SVM (Reproduced from [48]) ........................ 35 

Figure 15—Subspace selection using PCA (Reproduced from [7]) ...................... 36 

Figure 16—PCA reduction to retain 95% of the variation, using the SKLearn library

 ........................................................................................................................... 36 

Figure 17—Correlation matrix vs. PPS matrix (Reproduced from [54]) ............... 38 

Figure 18—SVM sensitivity to scaling (Reproduced from [7]) ............................ 39 

Figure 19—Example of overfitted data (Reproduced from [7]) ............................ 40 

Figure 20—Bagging used to train a machine learning model (Reproduced from [7])

 ........................................................................................................................... 41 



 

xiii 

 

Figure 21—AdaBoost, a common boosting algorithm (Reproduced from [7]) ...... 42 

Figure 22—Comparison of Grid Search and Random Search (Reproduced 

from [61]) ........................................................................................................... 43 

Figure 23—Example of a 5-fold Cross-Validation (Reproduced from [67]) ......... 45 

Figure 24—Cross-Validation flowchart (Reproduced from [67]) ......................... 45 

Figure 25—RAT Structure .................................................................................. 47 

Figure 26—Kernel-level rootkit implementation (Reproduced from [74]) ............ 49 

Figure 27—Infection flow of files malware (Reproduced from [77]) ................... 51 

Figure 28—Various persistence mechanisms used by malware (Reproduced 

from [79]) ........................................................................................................... 52 

Figure 29—User-level persistence registry keys .................................................. 53 

Figure 30—Administrator-level persistence registry keys .................................... 53 

Figure 31—AppInit_DLL Registry key (Reproduced from [81]) ......................... 54 

Figure 32—Actions if a service fails to start (Reproduced from [84]) .................. 55 

Figure 33—Test Environment ............................................................................. 59 

Figure 34—CatfishHTTPSExfiltrator server receiving files on the server ............ 64 

Figure 35—Files on the victim computer after Lionfish encrypted the files in the 

user’s Document folder ....................................................................................... 65 

Figure 36—CatfishFileShredder trojan window ................................................... 65 

Figure 37—Process migration using Meterpreter ................................................. 67 

Figure 38—Cobalt Strike main interface (Reproduced from [93]) ........................ 69 

Figure 39—OffensivePH killing a process ........................................................... 71 

Figure 40—PEview of Detours with a rogue DLL, evil.dll (Reproduced from [23])

 ........................................................................................................................... 72 

Figure 41—Hidden rootkit hiding a file ............................................................... 73 

Figure 42—Experiment Flow .............................................................................. 82 

Figure 43—Volatility features importance, using SKLearn feature_importances 

class .................................................................................................................... 84 

Figure 44—Volatility features Correlation matrix ................................................ 86 



 

xiv 

 

Figure 45—Volatility features PPS matrix ........................................................... 87 

Figure 46—Velociraptor features importance, using SKLearn feature_importances 

class .................................................................................................................... 88 

Figure 47—Velociraptor features correlation matrix ............................................ 90 

Figure 48—Velociraptor features PPS matrix ...................................................... 91 

Figure 49—Comparison of the effectiveness of multiple machine learning 

algorithms for a file system analysis (Reproduced from Mohammad and 

Alqahtani [12]).................................................................................................... 94 

Figure 50—Isolation Forest Grid Search ............................................................. 95 

Figure 51—Random Forest Grid Search .............................................................. 95 

Figure 52—SVM Grid Search ............................................................................. 96 

Figure 53—Summary of the methodology used for both methods to train the 

machine learning models ..................................................................................... 98 

Figure 54—PCA reduction to two dimensions of the Volatility entire dataset, with 

normal data points shown in blue and malware points shown in orange ............. 103 

Figure 55—PCA reduction to two dimensions of the Velociraptor entire dataset, 

with normal data points shown in blue and malware points shown in orange ...... 105 



 

1 

 

Section 1 

Introduction 

Malware detection is a difficult task. Malware can come in many shapes, target 

different types of processes, protocols and devices. In order to defend against intrusions, 

three different strategies are typically used. The first one is trying to detect the malware as 

it is entering the network or the computer. This is why a lot of research has been focused 

on the detection of file downloads from suspicious URL or a user browsing to a malicious 

website. However, URLs can easily be changed to look less suspicious or avoid domains 

that have been blacklisted. This method can also be applied to detect internal 

communications once the adversary has entered the network. The second one is looking at 

what is happening inside the workstations, such as the series of system calls made in the 

operating system (OS), and what processes have been launched and by which parent 

process. This can also include anti-virus software, which compares specific strings and 

binary patterns to a database of known malicious software. However, some malware, such 

as rootkits, affect the functioning of the OS and hide from anti-virus software, making 

detection more difficult. Lastly, digital forensic is a field that looks at the compromised 

computer hard-drive and memory, post-exploitation, to better understand how the malware 

works, so signatures can be developed to detect a subsequent occurrence of the intrusion. 

The advantage of digital forensic is that it can provide the most context on the state of the 

machine at the moment when the disk or the memory capture was collected. Files that have 

been deleted or hidden can often be retrieved and lead to malware analysis and a deeper 

understanding of the adversary and its intent. This process, however, takes time and 

requires a skilled analyst. 

1.1 Motivation 

When a digital forensic investigation begins, the evidence of malicious activity on 

the compromised computer may have been hidden or deleted by the adversary in an attempt 
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to hide its presence. The sooner the forensic collection happens, the better the chances of 

collecting relevant artifacts. In addition, volatile memory is difficult to recover in a timely 

manner, as a memory capture must be done and extracted while the malware is running. 

Being able to collect, at a regular interval, digital evidence remotely, including from the 

volatile memory, would create more accurate and relevant collection of digital evidence. 

However, this brings the challenge of having too much data. One way to make sense of all 

this data is to use a machine learning algorithm. By training a model with clean computers, 

a baseline can be established. From there, all new collections can be analyzed and 

classified. Performing an automated digital forensic investigation remotely across multiple 

hosts creates a new way of conducting host-based monitoring, using a different approach 

and different artifacts. 

The main motivation behind this thesis is therefore to propose a method of 

detecting malware based on digital forensic techniques, host-based monitoring systems and 

machine learning techniques.  

1.2 Statement of Deficiency 

Current host-based monitoring solutions, such as Endpoint Detection and 

Response (EDR) tools and anti-virus software, use agents, which are located on the 

endpoints and report back to a central server. Depending on how well this data is collated 

with network-based tools, it can be difficult to understand the broader picture. In addition, 

they can generate a large number of alerts as they have the ability to report on many events 

and logs. Furthermore, EDRs do not necessarily have the resources to perform the 

behavioural analysis required to detect new threats as it requires more central processing 

unit (CPU) resources; they are more suited to detect known threats, which compose the 

majority of the threats faced by enterprise networks (86%) [1]. Security Operation Centers 

(SOC) need to rely on additional tools, such as threat hunting feeds and indicators of 

compromises (IOC). 

In order to get accurate behaviour-based detection, a good baseline, which has 

enough samples, and captures the normal network and computer activity, is required. The 
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challenge is, however, that the network requirements and software used by the users evolve 

over time. The baseline needs to be able to adapt to maintain efficiency.  

The focus of current digital forensic methods is finding and understanding how 

malware got into a system so that some mitigating actions can be implemented to prevent 

further intrusions. Although this provides good intelligence, it is usually not timely. Current 

research using digital forensics focus on either disk-based forensics or memory forensics. 

This thesis intends to improve from those methods by using both types of artifacts to have 

a broader view over a host. Using the Windows API, volatile information generally found 

in memory can be obtained rapidly to supplement data found on the disk. Current memory 

forensics methods use VM snapshots or sandbox environment to acquire the memory. This 

approach works well in a test environment, but cannot be applied to an enterprise network 

that uses physical workstations. A different acquisition method is required. 

Once artifacts are collected, making sense of the data is a significant challenge due 

to the sheer size of the collection. Applying machine learning to automate a digital forensic 

investigation is a novel idea. Most research focuses on extracting forensic artifacts from a 

single computer or a sandbox, but not from a live enterprise system [2], [3]. In order to 

apply the principles and findings from [2], [3] in a live network, the main change required 

is the collection and analysis of artifacts in near real-time. This thesis aims to create a 

solution that can be applied to live enterprise networks. 

1.3 Aim 

The aim of this thesis is to propose an automated solution based on digital forensics 

and machine learning to detect intrusions proactively across multiple computers. 

My research hypothesis is that using both types of artifacts, disk-based and 

memory-based artifacts, provides a better view over the activities currently ongoing on the 

computer. 

The implemented method is validated against the memory forensics research from 

Cohen and Nissim [4], Wang et al. [5] and Panker and Nissim [6], using machine learning 
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algorithms and memory forensic techniques; while Velociraptor is a DFIR tool with access 

to both disk-based and volatile artifact and Volatility is a memory forensics only tool, this 

is the most similar research approach. From their research, 40 features generated from 

Volatility plugins were selected to train the machine learning models. The validation 

objective is to get a better classification with the implemented methodology this validation 

methodology based on [4], [5] [6]. In this thesis, those two methodologies are referred to 

as Velociraptor and Volatility, respectively. 

1.4 Research Activities 

The following activities were conducted in order to achieve the research aim: 

• Set up the test network; 

• Determine artifacts and features to be collected; 

• Simulation of user activity on the network; 

• Collect forensic artifacts on clean computers to build a baseline of normal 

behaviour; 

• Run malware and collect artifacts from the compromised system; 

• Implement three different machine learning algorithms separately to model 

normal and detect anomalies; 

• Compare three machine learning algorithms to determine which one is better 

for the scope of this research; and 

• Compare the work done by Cohen and Nissim [4], Wang et al. [5] and Panker 

and Nissim [6], which used Volatility and machine learning, to my method 

using Velociraptor and machine learning. The implemented method uses both 

types of artifacts, disk-based and volatile artifacts, to improve from [4], [5] 

and [6]. 
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1.5 Organization 

This document is divided in six sections. First, Introduction, which has been 

covered. Second, Literature Review, which covers recent research relevant to this thesis 

with their limitations. Third, Background, which covers the theory and technical concepts 

relevant to this research. Forth, Methodology, which explains the research activity steps 

and design decision used during this research. Fifth, Results, which presents and discuss 

the results of this thesis. Finally, the Conclusion, which covers potential future work. 

  



 

6 

 

Section 2 

Literature Review 

Ever since computer networks started to be targeted, network administrators and 

security practitioners have been working at securing networks and detecting intrusions as 

quickly as possible. Any delay in response gives an intruder precious time to perform 

actions on objectives, such as collecting and exfiltrating data, modifying files or deleting 

information.  

This led to the emergence of multiple fields: network traffic analysis to attempt to 

detect anomalous inbound and outbound traffic, host-based monitoring to detect 

anomalous activity on a running computer, and digital forensic to investigate past 

compromises to learn from them and help closing gaps. 

Development of anti-virus software and host-based monitoring solutions look at 

the activities happening on a computer, to either compare a running program to a database 

of known malicious software using signatures, or attempt to see patterns that deviate from 

a specific baseline to find behavioural anomalies. This section discusses past research that 

looked into this issue and will provide some background for this thesis. 

2.1 Performance 

In order to understand how research results are compared in the next section, the 

performance metrics used in machine learning need to be understood. 

Performance of a machine learning algorithm can be evaluated using multiple 

metrics, such as accuracy, precision, recall and F1-Score. These metrics are derived from 

the confusion metrics [7], which displays the number of occurrences in which a classifier 

correctly and incorrectly predicts the outcome of the null hypotheses. In statistics, when 

there are two different proposed solutions to a problem, the two solutions are called the 

null hypothesis, or H0, and the alternative hypothesis, H1. The null hypothesis it the position 



 

7 

 

of the defendant, or in this case the prediction of correctly classified data by the classifier, 

while H1 is the alternative, where data is misclassified [8]. For example, if a data point is 

predicted to be malicious, the four elements of the confusion matrix would be: 

• True Positive (TP): TP represents a correct classification as malicious; 

• True Negative (TN): TN represents a correct classification as not malicious; 

• False Positive (FP): FP, also referred to as the Type I error, represents an incorrect 

classification, where the program is identified as malicious while it is benign; and 

• False Negative (FN): FN, also referred to as the Type II error, represents an 

incorrect classification, where the program is identified as benign while it is in fact 

malicious [7]. 

 Accuracy is the number of true predictions over all the predictions, as shown in 

Equation 1. Precision is a ratio of correct prediction over all the positive predictions, as 

shown in Equation 2. Recall is slightly different and is the ratio of the true predictions 

correctly identified by the algorithm over all the predictions, as shown in Equation 3. It is 

also called True Positive Rate (TPR). Finally, the F1-Score is a harmonic mean of both 

precision and recall and is defined by Equation 4. Algorithms that have a high precision 

and recall also have a high F1-Score [7]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3) 

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(4) 

 Another metric that is sometimes used is the receiver operating characteristic 

(ROC) curve to visually assess the performance of the algorithm. The area under the curve 

(AUC) represents the percentage of the graph that is under the curve. The ROC curve is 
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shown in Figure 1. The ROC curve axis are the TPR, or recall, and the False Positive Rates 

(FPR), which represent the ratio of the misclassified negative predictions [7]. 

 

Figure 1—ROC curve 

2.2 Machine Learning 

Machine learning is a field of data science where computers can learn from the 

data they are provided with. The idea is that the computer, when given a specific task with 

a performance metric or a threshold, will learn from each experience, or new data, by 

optimizing parameters in its algorithm so that over time, the task will be achieved more 

efficiently based on this threshold. Machine learning is beneficial to help solve complex 

problems that involve significant amounts of data and where the environment is constantly 

changing [7]. 

There are two main types of machine learning systems: supervised and 

unsupervised learning. The main difference between the two types of systems is that in a 

supervised learning system, the algorithm is trained with a labelled dataset. This means 

that before it attempts to classify new data, the algorithm knows the desired solutions, such 

as if a certain behaviour is anomalous or not. Support Vector Machines (SVM), Random 

Forest (RF) and other decision tree algorithms are examples of supervised learning 

algorithms. On the other hand, in unsupervised learning, no labels are provided to the 
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algorithm. It has to make sense of the data on its own. This can include clustering 

algorithms, anomaly detection algorithms such as Isolation Forest (IF), visualization and 

dimensionality reduction algorithm such as Principal Component Analysis (PCA) and 

association rule learning [7]. Figure 2 shows an anomaly detection algorithm that 

categorized two new data points. Out of those, one was calculated outside of the grouping 

and therefore deemed anomalous. 

 

Figure 2—Anomaly detection (Reproduced from [7]) 

Two other types of machine learning algorithms are semi-supervised learning, 

which is a mix of the two types presented above, where some data is labelled, but mostly 

it is not, and reinforcement learning, where the algorithm try different actions and get 

rewards or penalties based on the decisions it takes. At every attempt, the algorithm learn 

from its experience to maximize the rewards [7]. 

The machine learning pipeline covers all steps from acquiring data to getting the 

results. The idea is to collect data, which is in a raw format such as logs, then transform 

them into something that can be processed by the algorithm, such as numbers. Out of all 

the features generated, some are more useful than others. A selection of the best features 

must be done. Then, the model can be trained with the data and see how well it performs. 

Optimization can be done by tuning one or more of the parameters in the given algorithm. 

Finally, the model can be applied against new data to classify new data points, or to find 

anomalies [9]. Figure 3 shows the steps of the machine learning pipeline. 
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Figure 3—Machine Learning Pipeline (Reproduced from [9]) 

Machine learning can be applied to multiple fields of computer security. Network 

security research such as Spiekermann and Keller [10] aimed at detecting anomalous 

network traffic. Host-based analysis research such as Aghaei and Serpen [11] have used 

machine learning to analyze features collected from hosts, such as system traces. Finally, 

multiple digital forensic research such as Cohen and Nissim [4], Wang et al. [5] and 

Mohammad and Alqahtani [12] have used machine learning to automate and assist the 

detection of malware. Those three areas of research are covered in the following sections. 

2.3 Intrusion Detection System (IDS) 

Intrusion Detection Systems (IDS) are tools used to monitor the network traffic 

and the computers within a network. Their aim is to detect intrusions throughout the steps 

of the cyber kill chain, covered in Section 2.3.1. The kill chain is a framework to assist in 

classifying intrusion and analyze them [13]. 

There are two main types IDS, network-based (NIDS) or host-based (HIDS). Both 

have a different visibility over the network as they can see different artifacts. This section 

covers what an intrusion is, and both types of IDS. In addition, it covers the difference 

between signature-based and anomaly-based detection. 

This section covers both types of IDS, as well as the different data analysis 

techniques, as shown in Figure 4. 
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Figure 4—Classifications of intrusion detection systems (Reproduced from [14]) 

2.3.1 Cyber Kill Chain 

Proposed by Lockheed Martin researchers in 2011 [13], the cyber kill chain has 

become a reference in government and the industry to classify the different phases of an 

intrusion into a network. 

It also proposes applying military intelligence principals to network defence to 

classify intrusions and share them with allies. As such, they classify the indicators of 

compromise (IOC) as an important piece of intelligence that needs to be atomic, computed 

and behavioural. Those IOCs help update IDS rules and prevent future intrusions. They 

also outline seven common steps in an intrusion. The seven steps of intrusions are  [13]: 

1. Reconnaissance, where the network is probed for a way in; 

2. Weaponization, where malware is generated; 

3. Delivery, which is the method used to send the malware to the target network; 

4. Exploitation, which is the initial footprint when the payload is run for the first 

time; 

5. Installation, which adds persistence; 



 

12 

 

6. Command and Control (C2), which sets up a two-way communication with the 

attacker and enables the attacker to receive and send commands to the 

malware; and 

7. Actions on Objectives, which enables an attacker to exfiltrate data outside of 

the network or move laterally to increase its presence for future use. 

Their kill chain is very linear, but other kill chains such as the Unified Kill Chain 

from Pols [15] are more fluid. Nonetheless, it is a framework that can be used to share 

information with other organizations. It is important to note that the earlier in the chain 

malware is detected, the lesser the impact on a network will be [13]. 

Figure 5 shows the seven phases for three different intrusions. Note that similar 

IOCs across the different intrusions can assist in future detection. All three intrusions in 

Figure 5 use the same installation files and C2 channel. In addition, the first two intrusions 

have the same encryption key, shellcode and delivery method. The last two have the same 

delivery mechanism [13]. Those similarities show the importance of effective and rapid 

sharing of IOCs. They can also help attribute the originator based on the Tactics, 

Techniques, and Procedures (TTP) used [16]. 
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Figure 5—Lockheed Martin kill chain (Reproduced from [13]) 

When developing an IDS or creating new rules, some phases of the kill chain are 

more useful at detecting malware. For example, using a HIDS, the focus is on the 

exploitation and installation phases, as this is where the malware executes and generates 

artifacts on disk and in memory. Understanding what tool and techniques can be used to 

detect those artifacts is important as it influences what to collect and monitor. In addition, 

the C2 phase can also be detected due to abnormal processes using network connections. 

On the other hand, NIDS focus on the delivery and C2 as this is where they have the most 

visibility. Understanding at which stages of the kill chain malware can be detected and 

using which artifact is important when developing a rule-based or a behaviour-based 

detection tool. 

2.3.2 Network Intrusion Detection Systems (NIDS) 

Network intrusion detection has been around since the 1990s and was among the 

first type of tools available to the first SOCs. Today, due to their FPR and the rising level 

of encryption in network traffic, due in part to the widespread adoption of HTTPS, there 
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are increasing concerns over how effective NIDS are becoming. The growing 

implementation of encrypted Domain Name Server (DNS) traffic only makes this trend 

more visible. Phishing emails are one of the main entry points into a network, with more 

than 80% of organizations having experienced such attacks, and 97% of people being 

unable to recognize a phishing attack [17]. With this type of attack, most of the evidence 

is visible only on the hosts, especially with encrypted traffic, which makes the NIDS less 

effective. In this case, the aggregation of logs using a Security Information and Event 

Management (SIEM) can provide additional information, if tuned properly, and if its 

database is parsed with powerful software [18]. Machine learning methods discussed in 

Section 3.1 can assist this process. 

Most host-monitoring solutions make use of agents, or sensors, on monitored 

computers. Those agents share similarities with rootkits, as they need full visibility and 

enough privilege over the system to have the ability to detect the malware. They 

communicate with a server so that an analyst can either be alerted to the anomalous activity 

or query the hosts under observation [18]. 

Intrusion detection systems usually share common components [19]: 

1. data collection from multiple sources and of one or more types;  

2. data munging to convert the raw data into usable features for the detection 

algorithm; and 

3. a decision module that determines if an alert is triggered. 

On signature-based NIDS, the decision to trigger an alert is based on specific 

strings or binary patterns matched with a database of malicious signatures. For an anomaly-

based detection, a decision function must be implemented. It gives a weight to a given data 

point and makes a decision based on a predetermined threshold. Machine learning 

algorithms are helpful as they can make sense of large amount of data to give it a value, or 

determine outliers using supervised and unsupervised learning algorithms. 
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2.3.3 Host-Based Intrusion Detection Systems (HIDS) 

In 1980, Jim Anderson’s [20] research was the first to look at how host-based 

monitoring could be done. At the time, access control was mostly limited to passwords. 

The interest in monitoring networks was not necessarily focused on malware, but more on 

insider threat detection. Back in the 1980s, fear of spies and disgruntled employees was the 

main motivation to secure systems. There was a motivation to start looking at user 

behaviour, monitoring file access and auditing logs. 

From there, the idea of detecting network intrusions and performing network 

defence started to emerge. Governments started realizing that external threats, in addition 

to insider threats, were becoming an issue. Works such as the one from Teresa Lunt [21] 

on audit trails analysis and intrusion detection proposed improvements to Anderson’s [20] 

work and to some other research conducted at that time. Her study of the current research 

and techniques showed that multiple systems were required to properly monitor a network 

as each of the analyzed system could be defeated in some ways. 

Lunt et al. [22] stated in their research that their Real-Time Intrusion-Detection 

Expert System (IDES) “monitors the activities of individual users, groups, remote hosts 

and entire systems, and detects suspected security violations, by both insiders and 

outsiders, as they occur” [22]. Their IDES was designed to use a mix of rule-based 

detection, triggering on user-created events, and statistical analysis, trying to define a 

baseline of a particular user behaviour. They were among the first to propose such system, 

one that could detect malicious programs and intrusions based on behaviour and signatures. 

In recent years, the idea of detecting viruses and intrusions using signatures has 

evolved significantly. Today, malware, viruses and external attacks are much more 

common. Consequently, anti-virus software using signature-based detection are widely 

deployed in modern enterprise networks.  

NIDS have been used to report suspicious network traffic for a long time. 

However, this type of alerting system is also being used to report host-based events, called 

Host-Based Intrusion Detection Systems (HIDS). Similarly, the deployed agents, which 
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are programs running locally on the network’s hosts, can work together with an HIDS or a 

SIEM to analyze and report on the current state of the system, which includes procedure 

calls, registry changes, volatile memory and running programs [19]. 

 Deployed-Agents 

Deployed agents act both as data collectors and sensors, reporting to the SIEM, 

with varying levels of autonomy [18]. They can be split into two categories: OS-level 

sensors, which observe the entirety of the system and look at registries, memory, file 

changes and program-level sensors which monitor the state of a specific program, likely of 

importance to an organization [19]. 

Agents need to be autonomous as remote troubleshooting can be difficult and may 

affect the end user’s productivity. They have to be secured and resilient to attack by being 

trusted and tamper proof, while being transparent to the users and not adding too much 

strain on the system. If users cannot operate their system because of the added overhead, 

the agent is no longer useful. 

2.3.4 Data Analysis Techniques 

Once the data is collected by the IDS, data analysis needs to be performed to make 

sense of this data. There are three different data analysis techniques, which are covered in 

the following sections. Figure 6 shows the different techniques used by IDSs. 
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Figure 6—Data analysis techniques (Derived from [14]) 

 Signature-Based Detection 

Once malware has been analyzed and confirmed as malicious, the best way of 

preventing other infections from this malicious software in the future is to create a signature 

that the IDS detection engine then tries to match against the binary of the program, or to 

its hash value. Signatures can be written to detect malware on multiple systems, such as 

for NIDS or anti-virus [23].  

The main limitation of signatures is its lack of resilience to malware obfuscation, 

where a single piece of malware can get packed differently or with some added randomness 

to fool the signatures of the anti-virus engines and the IDS. Malware writers commonly 

use four methods to avoid detection [24]: 

1. dead-code insertion, which is code not affecting the execution; 

2. code transposition, which relocates the instructions in the binary, with more 

jumps to keep the desired behaviour; 

3. register reassignment, which uses different registers than what the compiler 

would normally choose; and 
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4. instruction substitution, which manually rewrites the compiled code by using 

similar instructions. 

Detection of such obfuscation techniques, especially by automated detection 

engines using signatures, can be difficult as these techniques involve malware writers with 

a good understanding of assembly language [24]. In addition, signature-based malware 

databases need to be updated regularly to ensure the latest detected malware for which a 

signature exists can be detected [14]. 

 Anomaly-Based Detection 

Anomaly-based detection aims to detect previously unknown attacks for which no 

signatures are available. As signature-based tools require a signature to see a threat, any 

new malware or attack vectors, such as zero-day exploits, can go undetected. Anomaly-

based detection works by defining what is normal for a given system, and activities that 

fall outside this baseline are considered anomalous [25].  

This baseline, or “learned patterns of normal activity” [14] acts as a line. If an 

event, a system activity or a network event crosses that threshold, it is considered 

anomalous. The challenge, however, is to set this line at a point which will be effective at 

finding true positives, but also generates a manageable number of alerts, which are data 

points that are flagged as anomalous. If a model can detect every intrusion, but flags half 

the data points as anomalous, this will generate too many false positive and the anomalies 

will not be found without significant manual analysis; the IDS is therefore not adding any 

value. A compromise must be struck to detect as many intrusions as possible while keeping 

false positives at a manageable level. Adversaries know this as well and will attempt to 

make their malware look as normal as possible; there malware will be scored much closer 

to the detection threshold and make it difficult to differentiate from normal activity. To 

detect them, too many false positives may need to be accepted, and therefore the malware 

would go through undetected [14].  

Once a baseline is established and the rules regarding the system under observation 

are well understood, anomaly-based detection can scale better than a signature-based 
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system. Once the baseline is established and the regular business activities are well 

understood, new intrusions not previously detected and for which no signature exists, can 

still be detected if it deviates from this baseline [14]. Multiple types of anomaly detection 

approaches exist, but the following sections will cover four common ones. 

2.3.4.2.1 Knowledge-Based Approach 

The knowledge-based approach implies prior knowledge of an attack or of the 

adversary’s methodology. Three common types of knowledge-based systems are:  

1. the state transition system, where the intrusion is mapped as a state diagram in 

which the adversary’s activity represents the system transition;  

2. the expert systems which are ruled-based systems such as implemented by 

Lunt et al. [22] that takes system logs to which a set of rules are applied, rules 

that are based on system vulnerabilities, possible intrusion vector and user 

activity; and 

3. signature analysis, which is the analysis of the audit trail generated by the 

malware and the pattern created as the adversary was operating from within 

the network [14]. 

More et al. [26] developed a knowledge-based IDS that can gather logs from 

multiple sources, including system logs, web-based resources on vulnerabilities and 

network activities. The information is parsed and considered as facts by the system. The 

reasoner module looks through those facts to find instances that can be considered as 

anomalous. To test their system, they ran a remote code execution exploit using a 

vulnerable version of Acrobat Adobe Reader. The system was able to detect the attack as 

from its sources, it knew that this version of Adobe Reader was vulnerable by getting the 

Common Vulnerabilities and Exposures (CVE) feed. CVEs are reports on vulnerabilities 

maintained by MITRE [27]. The CVE indicated that a malware could use port 80 and that 

the compromised dynamic link library (DLL) would be “annots.api”. Since the same 

behaviour happened on the system, it detected it. 
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The advantage of this system is that it leads to accurate results with few false 

positive. However, the knowledge the system possesses needs to be updated regularly. 

2.3.4.2.2 Machine Learning and Data Mining Approach 

Data mining is the application of machine learning techniques to analyze a large 

quantity of data to find new trends [7]. Often covered separately, data mining and machine 

learning approaches try to make sense of the data and learn from it.  

For data mining, this comes under the form of clustering and data classification. 

Clustering is an unsupervised machine learning algorithm, such as K-means, used to 

visually separate the data into groups to find new patterns. K-means is an algorithm that 

allocates all the data points into k number of clusters based on the distance between the 

points. To do so, an approximative central point is determined for each cluster. Using the 

arithmetic mean between points, the central point of the cluster is moved so that it is 

actually centred in the cluster. The calculation is done until the central point of all the 

clusters stays the same and that each point is allocated to a cluster [28]. Data classification 

algorithms learn, using a labelled dataset, the distinctive characteristic of each class and 

attempt to separate them [14]. Laskar et al. [28] proposed an anomaly detection approach 

that uses Isolation Forest and K-means for real-time anomaly detection using the network 

traffic logs. Using their approach, they achieved a higher detection rate compared to regular 

Random Forest implementations, with an AUC score of 0.64 to 0.98, depending on the 

dataset used to test the implementation. 

In machine learning based detection, the model acquires more knowledge about 

the system as events and data points are collected. The main difference with data mining 

is that the algorithm tries to learn from the data, not just find new patterns [7] At each 

iteration, the system is able to better classify the data as it has acquired more knowledge. 

Three types of machine learning based detection include: Neural Networks, which attempt 

to anticipate the next step in a way similar to a human brain and feeds the data forward [14], 

[29]; Fuzzy Logic, which uses approximative truth values that range between zero and one, 
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using boolean algebra properties [14], [29]; and SVM, which is discussed in Section 

3.1.1.3.  

Mendonça et al. [30] used Deep Convolutional Neural Network to detect intrusion. 

Their proposed algorithm achieved better results compared to other current IDS 

implementation, such as Deep Belief Network, while reducing the processing time. They 

achieved an F1-Score of 0.97 to 0.98, depending on the type of tested network attacks. 

2.3.4.2.3 Statistical-Based Approach 

The statistical approach focuses on defining meaningful metrics that can be 

evaluated statistically, such as by the mean, the variance, the standard deviation and the 

standard distribution of the data [31]. This can be applied to features such as the interval 

between user logon or between specific events. 

The different statistical parameters can be scored in terms of the deviation from 

the normal statistical value. If this score is above the predetermined threshold, the event is 

deemed anomalous. The Markov Model is an implementation of this approach which also 

incorporates probability and states. [14]. 

Siris and Papagalou [32] used a statistical-based approach to detect TCP SYN 

flood attacks. They used an adaptative threshold algorithm and a Cumulative Sum 

(CUSUM) algorithm to detect the attacks. An adaptative threshold algorithm looks for 

abnormally high number of packets. A CUSUM algorithm is a change point detection 

algorithm that looks at the statistical distribution of data before and after a potential change 

occurs. Based on if the ratio is above a certain predetermined value, the algorithm alerts on 

the presence of a change. They found that CUSUM was more robust at detecting a wider 

range of attacks. 

 Specification-Based Approach 

Specification-based detection focuses on identifying the expected behaviour of a 

critical system. When an intrusion occurs, the normal behaviour of the system is altered, 

which indicates that malicious or anomalous activity is ongoing [33]. It is different than an 
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expert system, described in Section 2.3.4.2.1, as it attempts to build a profile of declarative 

knowledge, while knowledge-based systems simply use a set of procedures that are known 

to be normal. This ability to add context to the specifications makes it more flexible and 

enables the detection of new threats that do not fit the profile. 

Liu et al. [34] conducted a survey on potential IDS for smart grids and supervisory 

control and data acquisition (SCADA) systems and determined that due to the restricted 

nature of SCADA systems, specification-based IDS would be the best approach to detect 

intrusions for such system. 

2.4 Enterprise Network Monitoring Solutions 

A lot of open-source and commercial solutions make use of agents to monitor 

workstations across an enterprise network. Most solutions monitor logs and user activities 

and report it to the enterprise SIEM or another central reporting server [18]. Tools such as 

Microsoft Sysmon, Google Rapid Response, Rekall, Velociraptor, Encase Enterprise, 

Carbon Black and many more use agents to feed their central server awareness of all the 

systems in the enterprise. Those agents are programs that run with elevated privileges. This 

can also present a risk if malware is able to compromise the agent, as it can hide its 

presence. Microsoft PowerShell can also be used for this purpose as it can get access almost 

anywhere on a Windows enterprise network. It can remotely run commands and get the 

data back to the administrative console. While this requires an adversary to previously have 

escalated privileges, it can make their actions on objective easier and more covert. 

One of the latest tools used by SOCs are EDRs. They are host-based monitoring 

systems that have agents on the endpoints that report to the central server the collected 

information, such as Windows events and binaries.  

The focus of EDR tools is on the host-based artifacts and not on the network traffic; 

network information can be gathered, but only from the host logs and files. The main 

advantage of EDR tools is that they enable real-time collation of data that SOC analysts 

can monitor [35]. 
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Another advantage of EDRs is that they can act as an Intrusion Prevention System 

(IPS) and block threats as they are detected. SOC analysts can also use them to quarantine 

a host and clean the network after an intrusion. This can reduce the time taken to intervene 

and reduce the scope of the incident [35]. 

In their assessments of various EDR solutions, Karantzas and Patsakis [35] tested 

eleven EDRs, including Carbon Black, CrowdStrike Falcon, F-Secure Elements EDR, 

McAfee Endpoint Protection and Symantec Endpoint Protection, against TTPs used by 

Advance Persistent Threat (APT) actors. They found that no EDR solution was able to find 

all the threats. Most of the tested EDRs failed to detect DLL Side-loading, which is covered 

in Section 3.2.4. [35].  

In Figure 7, the ability of the tested EDRs to detect four threats is displayed. First, 

they tested introducing malware using the Control Panel file extensions (CPL) to hide the 

malware. CPL files are executables or DLLs registered in the registry key “HKCU\ 

Software\Microsoft\Windows\CurrentVersion\Control Panel\Cpls” [36]. Karantzas and 

Patsakis [35] used this type of file to introduce shellcode by leveraging memory mapped 

files, which allows file modifications directly in memory [37]. Second, they used an HTML 

Application (HTA) file by redirecting a user to a malicious site. The user runs the Visual 

Basic script (VBS) that injects into mshta.exe. Third, they used an unsigned portable 

executable (EXE) that performed a process injection and spoofed explorer.exe. Fourth, 

they used DLL side-loading, discussed in Section 3.2.4, to inject into a signed binary. For 

each of those attacks, all the eleven EDRs were tested. In Figure 7, each checkmark 

represents a successful attack. Each full dot represents a successful attack, but where the 

EDR triggered only a minor alert, which may go unnoticed. Each star represents a 

successful attack that triggered an alert. An empty dot shows an unsuccessful attack. 

Finally, a cross shows a failed attack that was detected by the EDR. None on the tested 

tools were able to detect all four attacks, and a large number of attacks were successful [35]. 
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Figure 7—Detection results of the various EDRs tested by Karantzas and Patsakis [35] using CPL, 

HTA, EXE and DLL attacks (Reproduced from [35]) 

EDR solutions are adding more and more machine learning algorithms and 

processing to attempt to increase the detection rate while maintaining low false positives, 

but also detecting malware earlier in the cyber kill chain, where less damage has been done. 

The main focus of EDR vendors is to find good features to evaluate while maintaining a 

low footprint on the host with a minimal bandwidth requirement, as well as efficiently 

parsing and processing an enormous quantity of data [35]. 

2.5 Memory Forensics 

 Memory forensics is a newer field of investigation within the digital forensic 

community. It makes use of tools to analyze the data structures in a system’s physical 

memory and has two main advantages over disk forensic [38]: 

• it can find evidence of executables that live only in memory; and 

• it can find evidence of rootkits, malicious software that modifies the behaviour of 

the OS and has full privilege over the system, which enables them to lie to other 
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host-based detection tools. Live analysis is not reliable as attackers can intercept 

API calls. 

 The most common tool for memory forensic is Volatility; it is powerful and has 

been an industry standard. “The Art of Memory Forensics” [38] goes into a lot of details 

about its functionalities and intricacies. Being Python-based, it is highly customizable and 

a lot of researchers have developed new plugins to increase its functionality. Those plugins 

are available open source and users can easily generate new ones that fit their needs. 

Memory forensics is performed using a capture of the RAM of a computer that is 

about to be shut down to conduct an investigation. A tool such as Dumpit [39] is required 

to collect the memory of a running computer. Once the computer is powered off, the data 

in memory is lost and an analyst is no longer able to derive indicators of compromise from 

the behaviour of the malicious program. Performing the analysis on a live system gives the 

analyst an opportunity to monitor the system behaviour over a longer period of time and 

take more captures if required. However, this can be risky if an adversary is exfiltrating 

data from the computer, as you generally want to shut down the computer as quickly as 

possible to avoid further damage. 

Cohen and Nissim [4] used machine learning and artifacts found in memory using 

Volatility to detect ransomware in a cloud computing server, hosting hundreds of virtual 

machines (VM). Using Volatility plugins, such as the Process Cross-View Plugin 

(psxview), thread scanner (thrdscan), services scanner (svcscan) and list of DLLs (dlllist), 

they generated features that could be fed into a machine learning algorithm. 

The advantage of their approach is that it enables detection of fileless malware, 

which do not have a presence on the disk. Fileless malware has many forms, including 

PowerShell code and using Windows Management Instrumentation (WMI) to run without 

having a presence on the disk [40]. They used VMware’s vSphere infrastructure to collect 

snapshots of the VMs, then extracted the memory captures from the snapshot files so they 

could be analyzed using Volatility. 
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They extracted snapshots every ten minutes, performing basic operations on the 

VMs, such as running a legitimate program. After 100 snapshots, they had a baseline to 

compare new data to. Once the baseline was generated, they ran nine programs, four benign 

(Process Monitor, Wireshark, the Microsoft Windows default Disk Defragmenter utility 

tool and Avast anti-virus) and five malicious ransomware (Cerber, TeslaCrypt, Vipasana, 

Chimeraand HiddenTear) to examine the effect, taking a new snapshot and reverting to the 

baseline after each execution. 

Figure 8 shows some of the features they generated with the various Volatility 

plugins. To be processed by their machine learning algorithms, the features needed to be 

integers that could be weighted and processed properly as most machine learning 

algorithms are better suited to process numeric values [7]. 

 

Figure 8—Some features generated by Cohen and Nissim [4] research (Reproduced from [4]) 

They used nine machine learning algorithms for their datasets: J48, RF, Naïve 

Bayes (NB), Bayesian Network (BN), Logistic Regression (LR), LogitBoost (LB), 

Sequential Minimal Optimization (SMO), Bagging, and AdaBoost (AB). Out of their 

multiple test cases, RF achieved the best overall results; this has also been observed by 

Wang et al. [5] who researched kernel-level rootkit using memory forensic and machine 

learning. 

In his work, Hameed [41] used a similar approach, but to analyze a single computer 

using similar Volatility plugins. The RF algorithm was also used to process the data. Out 
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of all the plugins used, psxview was deemed to be the most useful. This plugin enumerates 

processes using seven different methods and compares them to see which method detects 

each process, using true or false. With the “—apply-rules” option, processes that are not 

found due to a valid exception, such terminated processes, are listed as “okay” by 

psxview [38]. Since psxview looks for hidden processes, this method can only detect 

rootkits that attempt to hide processes; the usefulness of this method to detect more general 

rootkits would need to be tested as a hidden process is generally malicious. 

 

Figure 9—Volatility psxview plugin output (Reproduced from [38]) 

2.6 Limitations 

Current research has some important limitations that could be improved upon. This 

section discusses these limitations and how they could be improved. 

Signature-based monitoring is limited by the data in its database and is better 

equipped to detect older threats that have already been analyzed. In addition, the issue with 

recent research, such both Cohen and Nissim [4] and Hameed [41], is that it is not really 

applicable to a live environment as the memory images need to be collected through 

snapshots in order to be analyzed. This does not scale well to recent systems with large 

amounts of memory. Outside of the cloud-computing environment, disk acquisition and 
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memory captures need to be done computer by computer, which creates delays and can 

require a lot of bandwidth if done remotely. 

This thesis aims at addressing those factors by collecting at a regular interval 

digital forensic evidence using Velociraptor. The Velociraptor offline collector, running on 

each workstation can gather the information about the system state. Features can then be 

generated on a dedicated server. This enables collecting the artifacts from all computers in 

the network simultaneously and then process those artifacts using a machine learning 

algorithm.  

Using this technique, it is possible to widen the range of artifacts available to host-

based detection tools by looking at volatile and non-volatile digital forensic artifacts. 

Generating a baseline helps reduce the FPR generated by the machine learning 

algorithms. Using those forensic artifacts to monitor the system enable quick response and 

can lead to the generation of signatures to improve other anti-virus and monitoring 

solutions. In the case of the implemented methodology, the artifacts collected are directly 

compared with the baseline using machine learning to identify anomalies. 

In this section, a review of current research was presented. It covered different 

machine learning algorithms and how they work, NIDS and HIDS, enterprise monitoring 

solutions, memory forensic tools and techniques and limitations of current research. In the 

next section, further detail on machine learning algorithms, techniques and methodologies 

are presented. In addition, different types of malware are discussed with some common 

persistence mechanisms. Finally, Velociraptor, the DFIR tool used in the implemented 

methodology, is introduced. 
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Section 3 

Background 

In order to understand the concepts used in this research, additional theory needs 

to be introduced. This section includes the three algorithms used in this research and how 

they are optimized, the background theory for the malware used during the experiment and 

their persistent mechanisms and finally the tool used to collect the data that is processed 

by the algorithms.  

3.1 Machine Learning 

This section will cover the machine learning techniques and algorithms used 

during this thesis. In addition, the techniques used to perform feature reduction, to scale 

and to tune the algorithms. 

3.1.1 Algorithms 

This section covers the three machine learning algorithms used in this thesis, 

Isolation Forest which is an unsupervised learning algorithm, Random Forest, a supervised 

learning algorithm and Support Vector Machines, a supervised learning algorithm. 

 Isolation Forest 

Isolation Forest is an unsupervised learning algorithm specializing in outlier 

detection [7]. It was first introduced in 2008 by Liu et al. [42]. This technique’s main 

characteristic is that instead of attempting to baseline normal behaviours and then identify 

what does not fit this defined normality, it focuses on identifying outliers among a large 

set of data. 

Isolation Forest is a tree-based algorithm that splits all the data points into different 

trees, or splits. This process effectively isolates all data points into different branches of 
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the tree. The more splits required to reach the data point, the more normal the point is; 

anomalous data points tend to be easier to isolate and therefore requires fewer splits. This 

results in fewer branches and makes the process of walking back to the top of the tree 

shorter. In Figure 10, Xi is more normal than X0 for this reason, as the path to the top of 

the tree for Xi is longer [42]. The horizontal and vertical lines represent the splits the 

algorithm made to separate the data. 

 

Figure 10—Isolating data points using Isolation Forest. Xi (left) is more normal than X0 (right) 

(Reproduced from Liu et al. [42]) 

This algorithm has been mostly used in anomaly detection for financial data and 

for network traffic analysis to find anomalous entries. With Random Forest, outliers are 

identified as -1 and normal data as 1. 

Sharma’s [43] thesis analyzed log entries to find anomalous transactions. The 

dataset used contained credit card information of transactions done over a month period. It 

contained 284,807 transactions, with 492 of them being fraudulent. The research looked at 

detecting fraudulent credit card transactions by processing them using Isolation Forest.  

Spiekermann and Keller [10], used Isolation Forest to detect anomalous network 

traffic. Their goal was to detect covert channels, malware usage and other anomalies within 
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the network. They generated a dataset by performing a packet capture and injecting 

malicious packets using their test environment. 

This methodology can be applied to the analysis of any types of computer logs, 

such as network traffic or host logs. 

 Random Forest 

Random Forest was first developed by Ho [44] in 1995. This algorithm is an 

ensemble of decision trees where multiple trees are built randomly. This makes Random 

Forest more diverse compared to classical decision tree models. Normally, a decision tree 

splits a node based on what the best feature is, while Random Forest makes that split based 

on the best feature of a certain random set of features, to add diversity [7]. 

A Random Forest prediction is effectively the prediction that is the most occurrent 

among the overall ensemble of trees. This makes this algorithm outperform other tree-

based methods as it reduces the error that a single tree could generate [45]. Figure 11 shows 

a Random Forest made of nine different trees. Out of these trees, six predicted “1” and 

three predicted “0”. The Random Forest algorithm predicts the outcome to be “1” since the 

majority of the trees predicted it. This process is less prone to errors and leads to better 

performance. 
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Figure 11—Random Forest ensemble tree prediction (Reproduced From Yiu [45]) 

Random Forest is also a good algorithm to use if the dataset has lots of features, or 

dimensions, as it is flexible to missing data and can process different types of data, such as 

continuous, categorical and binary data [46]. Features that use continuous data can have 

values that range anywhere between two real numbers. For example, distances between 

two points in metres or the age of a person in years are continuous. Categorical, or 

qualitative, refers to data that cannot be quantified and can take a limited set of values, such 

as the name of a city [47]. Finally, binary data can only take two values, such as true or 

false. 

 Support Vector Machine 

SVM is a supervised learning algorithms, which aims at classifying the data into a 

desired number of classes [48]. In the case of this thesis, the SVM separates data into two 

classes, anomalous and normal data. 

SVM is a very good technique to optimize unknown solutions. It can be faster than 

Neural Network algorithms, but slower than tree base classifiers due to the computational 
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resources required to select a hyperplane to separate the data. SVM strength is in 

classifying data in two classes as the hyperplane can be identified to separate data points. 

It cannot natively support more classes due to the mathematical constraint of the algorithm, 

though methods do exist for extending or using SVM for multiclass problems. [48]. 

SVMs works by trying to generate a hyperplane that separates the two different 

classes of data into separate spaces. In Figure 12, the algorithm found the optimal 

hyperplane H to separate the data using a linear model. It generated the hyperplanes H1 

and H2, which are the first paralleled hyperplanes touching a data point. Equation 5 is used 

to generate the hyperplanes. H1 and H2 become the support vectors. Of course, this is a 

perfect case as “hard” margins can be used. Generally, the dataset will not be perfectly 

separable. In that case, the use of soft margins is required. This is done by introducing a 

slack variable, which calculates how far from H1 or H2 the point is inside the margin. This 

is represented by ξi, the non-negative slack variable. Figure 13 shows a similar model as 

Figure 12, but with soft margins as three of the data points are crossing over H, ξ1, ξ2 and 

ξ3 [48]. To determine if a point will be properly classified, the value of ξi is evaluated. 

Equation 6 shows the value of the margin. Equation 7 shows a misclassified point, which 

occurs when ξi >  1 and Equation 8 shows a point between the margin and the hyperplane 

of its class, which occurs when 0 <  ξi ≤  1 [49]. 

 

Figure 12—SVM attempting to find the best hyperplane (Reproduced from [48]) 
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Figure 13—Soft Margin SVM (Reproduced from [48]) 

The size of this soft margin can be determined using the parameter C, the penalty 

value. This value affects the width of the margin, or the distance between H1 and H2. The 

smaller the value of C is, the larger the margin. This value needs to be tuned during the 

cross-validation and varies based on the dataset and is discussed in Section 3.1.5.4. 

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 (5) 

𝑚𝑎𝑟𝑔𝑖𝑛 =
2

‖𝑤‖
(6) 

ξi

‖𝑤‖
>

2

‖𝑤‖
(7) 

ξi

‖𝑤‖
<

1

‖𝑤‖
(8) 

SVMs can use multiple different kernels to create the hyperplanes. The kernel is 

the mathematical function of the hyperplane. Equation 5 shows the linear SVM kernel 

equation, that is used in Figure 12 and Figure 13. However, this is not always optimal. 

Other non-linear models, such as polynomial and Gaussian Radial Basis (RBF), can also 

be used to better fit the dataset and create a better separation. RBF is the most common 

SVM kernel. Figure 14 shows the difference between linear and non-linear SVM. The non-
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linear hyperplane, in green, was able to make a perfect separation, while a linear 

hyperplane, in red, is impossible to separate. 

 

Figure 14—Linear and Non-linear SVM (Reproduced from [48]) 

Some of the weaknesses to SVMs include long training time on large datasets due 

to the computational cost, multi-class classifier effectiveness and performance in unbalance 

datasets [48].  

3.1.2 Feature Reduction 

A dataset can contain numerous features. However, not all features are 

equivalently useful at classifying the data. The more useful feature improves the model, 

but some can lead to simply adding more noise. When a dataset contains multiple 

dimensions, it leads to processing challenges as it becomes computationally heavy to 

process. Dimensionality reduction algorithms aim at removing the irrelevant and redundant 

features to improve the model’s accuracy [50]. 

 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a feature reduction technique based on 

linear algebra. It performs a series of orthogonal transformations that aims to preserve most 

of the variance within a dataset while reducing its dimensionality [50]. 
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The algorithm selects a hyperplane within the dataset that when a projection is 

applied, most of the variance is preserved. Figure 15 shows a two-dimension example, 

where three different hyperplanes are considered. On the right, the reduction to one 

dimension projection is displayed. The top right projection has kept most of the information 

that was present before and is the best hyperplane. The projection is done on the c1 axis 

using the vector c2 [7]. 

 

Figure 15—Subspace selection using PCA (Reproduced from [7]) 

Since with each dimension removed, some information is lost, determining down 

to how many dimensions a specific dataset can be reduced to in order to retain a large 

portion of the variance is needed. Usually, the aim is to retain 95% to 99% of the 

information. To find the optimal number of dimensions, the percentage of variance to be 

retained can be specified. In Figure 16 shows the SKLearn implementation of PCA, where 

95 percent of the variance is retained. Using this, the dataset can be fitted to generate the 

reduced dataset.  

pca = PCA (n_components=0.95) 
X_reduced = pca.fit_transform (X_train) 

Figure 16—PCA reduction to retain 95% of the variation, using the SKLearn library 
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3.1.3 Feature Selection 

Supervised feature selection techniques can be used to identify which features are 

more important and should be retained to train the machine learning model. This section 

covers the SKLearn feature_importances_variable, the Correlation matrix and Predictive 

Power Score (PPS) matrix. 

 Feature Importance 

Feature importance can be measured using tree-based algorithms, such as Random 

Forest. Using SKLearn, after a model is fitted with an ExtraTreesClassifier classifier, 

which works similarly to Random Forest but uses randomized decision trees [51], the 

variable feature_importances_ can be accessed. Each of the features is attributed a score, 

which is a weighted average of how much influence a given feature can have on the purity 

of the tree, across all trees of the forest. The higher the score, the more useful the feature 

is at predicting the model [7]. 

 Correlation Matrix and Predictive Power Score (PPS) 

The correlation matrix is a table that shows the correlation coefficient of the 

features in the dataset. Looking at this table helps understanding the dataset and the 

relations within its data. It also helps remove features that are less useful and which in turn 

reduces the computation time to process it [52]. 

The correlation matrix values range from -1 to 1. A strong positive correlation 

exists between features the closer the value is to 1, and a strong negative correlation exists 

the closer the value is to -1. A value close to 0 indicates a limited or non-linear correlation 

between the data [7]. 

The Predictive Power Score (PPS) is a new algorithm introduced in 2020 [53] to 

explore the data and find relationships between the different features. It looks at the 

probability that any given column, which is one of the features of the dataset, can predict 

the next column [54]. Using PPS, features that brings the most predictability in the model 

can be selected. The PPS score works in a similar fashion as the correlation score. 



 

38 

 

PPS was designed as an improvement over the correlation matrix to see how the 

result of a column can help predict another column. PPS is also asymmetric, meaning that 

if X can predict Y, Y does not necessarily predict X. In the correlation matrix, it is 

symmetric, but values can be negative. This is shown in Figure 17, where we have on the 

left the correlation matrix, and on the right, the PPS matrix for the Titanic dataset [55]. The 

colour coding also helps identify the correlation as a darker colour indicates a higher 

correlation. From this, the most important factor for survival can be identified, which was 

the sex of the passenger as it has the highest PPS score of 0.57 [54]. 

 

Figure 17—Correlation matrix vs. PPS matrix (Reproduced from [54]) 

From the PPS, it is possible to perform feature selection by keeping only the 

features of a dataset where the PPS score for the row containing the label is not zero. 

3.1.4 Scaling 

Scaling is important to normalize the data. Most machine learning algorithms have 

poor performance when the range of the value of the features is not scaled. For example, if 

one feature in the dataset has its values ranging from 0 to 1 and the other from 0 to 1000, 

the algorithm could attribute more weight to the latter as the values are bigger. To fix this, 

two common methods are min-max scaling, or normalization, and standardization. Min-

max scaling converts the values of all the features in the dataset so that they range between 



 

39 

 

0 and 1 by using Equation 9. Standardization achieve a similar result by using the standard 

deviation and the mean value, as shown in Equation 10 [7]. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 =  
𝑉𝑎𝑙𝑢𝑒 − min_𝑣𝑎𝑙𝑢𝑒

max_𝑣𝑎𝑙𝑢𝑒 − min_𝑣𝑎𝑙𝑢𝑒
(9) 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 =
𝑉𝑎𝑙𝑢𝑒 − 𝑚𝑒𝑎𝑛_𝑣𝑎𝑙𝑢𝑒

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
(10) 

Some algorithms require scaling more than others such as SVM. Figure 18 

illustrates this. The separation of the data points by the hyperplane is clearer when using a 

normalized dataset. 

 

Figure 18—SVM sensitivity to scaling (Reproduced from [7]) 

3.1.5 Parameter tuning 

In order to optimize the results of the different machine learning algorithms, care 

must be taken to avoid overfitting. This section covers overfitting, as well as multiple ways 

to reduce it and get better performance out of machine learning algorithms. 

 Overfitting 

Tree algorithms have a tendency to overfit the data on which they were trained on. 

This happens when the algorithm is tailored too perfectly to the training set and has 

difficulties adapting to the test set. If both are very similar, it can have difficulty identifying 

new data in the future [56]. For example, in Figure 19, the data point in blue are mostly 

aligned along the red line. However, an overfitted model could try to adjust too closely to 

the training set, as shown by the blue line. In the test set, if any other data points are 
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perfectly aligned on the red line, which represents a model more appropriately tuned, but 

happen not to be on the overfitted line, they would be considered as outliers. 

 

Figure 19—Example of overfitted data (Reproduced from [7]) 

In his study of overfitting and its solutions, Ying [56] explains the three main 

reasons why overfitting may occur. First, if there is too much noise, or less representative 

data, this can lead in the relevant data being suppressed. Second, if a model is tuned too 

much for high accuracy, it will be less consistent, as aiming for high accuracy in training 

can lead to higher bias, as it was the case in Figure 19. Lastly, when optimization is 

performed by comparing feature performance, the feature with the highest score gets 

selected. However, as some of the features are less useful, the overall accuracy of the model 

can be reduced as variation in those superfluous features will impact the overall accuracy. 

Solutions to overfitting include the use of a separate test and train dataset, as well 

as cross-validation [57]. In addition, increasing the number of data samples, using fewer 

features, using early stopping, which means stopping the model while new training 

iterations improve the model, using regularization to make the model simpler or using 

ensembling to combine different model predictions to get a more accurate picture, can also 

help reduce overfitting. Two common ensembling techniques are bagging and 

boosting [58]. 
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3.1.5.1.1 Bagging 

Bagging, or bootstrap aggregating, is a technique that uses a single machine 

learning algorithm and trains on multiple samples that are generated randomly from the 

training data set. The algorithm will classify each sample and work as an ensemble to select 

the subset which provides the best performance. Each sample and classifier can work in 

parallel, which makes the computation faster. Figure 20 shows a training set split into four 

samples. Each sample is used to classify the data and the ensemble will determine the 

overall prediction of the model. Using this technique does not necessarily reduce the bias, 

but provides more consistency by reducing the variance [7]. 

 

Figure 20—Bagging used to train a machine learning model (Reproduced from [7]) 

3.1.5.1.2 Boosting 

Boosting is another ensemble technique that combines multiple strong and weak 

learners together. However, compared to bagging, it is run sequentially, where each 

classifier attempts to classify the data and tries to improve the prediction made by the 

previous classifiers. A common boosting method is AdaBoost, which is a boosting 

algorithm that focuses on improving from the previous classifiers by focusing on 

underfitted data. For example, in Figure 21, the AdaBoost algorithm attempts to classify a 

small dataset. The first attempt focuses on all the points and provides an initial 
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classification, shown as the red line. For the second attempt, the weights are adjusted to 

focus on the underfitted points, and this process continues for the number of iterations 

desired [7]. 

 

Figure 21—AdaBoost, a common boosting algorithm (Reproduced from [7]) 

 Grid Search 

One of the main challenges in machine learning is the tuning of an algorithm 

various hyperparameters. Machine learning algorithms have two types of parameters: the 

parameters, which are determined automatically during the training of an algorithm and the 

hyperparameters, which need to be provided to the train method during the training of the 

algorithms [59]. If no values are specified, default values are specified by SKLearn. Those 

hyperparameters vary for each algorithm, but includes, for Random Forest, the number of 

estimators, the maximum depth of the tree and the maximum number of features to consider 

for an iteration [60]. Depending on the hyperparameters values, the performance and the 

accuracy of a model will vary greatly. Grid Search is a systematic solution to this problem. 

The goal of Grid Search is to identify, out of the different possible hyperparameters 

of an algorithm, the values that will lead to the best prediction while minimizing 
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overfitting. A range of values is specified to the algorithm, for each hyperparameters, 

which forms a grid, and each value is exhaustively tested [61]. 

This makes Grid Search a computationally heavy algorithm as the more 

dimensions it has, the longer it takes to compute [62]. This means that the numbers of 

hyperparameters tested and the range at which those will be tested need to be limited. 

Therefore, for each algorithm, the most important features can be tested against a limited 

range of values. 

 Random Search 

Another option is to perform a random search or a manual search prior to the Grid 

Search to narrow down the parameters and the range at which the performance will 

increase. 

Compared to Grid Search, Random Search only tries some of the combination 

present in the grid, which leads to faster result. While not perfect, it can help narrow down 

which hyperparameters to tune and the range of the values [61]. Figure 22 shows the 

difference between Grid Search, on the left, and Random Search, on the right. Each dot 

represents a tested combination. Random Search performed fewer tests, but much faster. 

 

Figure 22—Comparison of Grid Search and Random Search (Reproduced from [61]) 
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 Cross-Validation 

Once the data is collected, it needs to be separated into two categories to validate 

the results: a training set and a test set. This is to ensure that the model can be tuned to 

correctly predict the training dataset, but be flexible enough to predict new data, the test 

set, accurately [63]. The advantage of doing so is that once you test your model, the data 

provided to the model has never been seen before. Multiple methods exist to do this, 

varying in complexity and performance.  

The simplest and computationally simple method is to do a random split of the data 

into the two categories: the training set and the test set. Using Scikit-Learn, this can be 

achieved using the “train_test_split” function to separate the data. The ratio used is usually 

between 50% to 75% of the data in the training set and the rest in the test set [7]. However 

the disadvantage of such technique is that if the dataset is small, only a limited quantity of 

data is left for the test set, which can impact the results [64]. 

In addition, if the training dataset is used to tune the model, it can generate 

overfitting. To fix this, holdout validation can be used [7]. This uses a third dataset, called 

the validation set. However, if the available data is limited, this can be an issue as more of 

the data needs to be set aside and cannot be used for the test. Cross-validation methods 

such as k-fold cross-validation can help fix this issue without having to generate a 

validation dataset [65]. Usually, the optimal value of k is between five and ten 

splits [65] [66]. The k-fold algorithm works by separating the whole dataset in k splits, or 

folds. It then trains the model with k-1 folds and test it with the reserved sample. This 

process is repeated k times, by rotating which sample is used to test. Once this is done, k 

different scores have been generated and can help identify the standard variation between 

each score to see how well the model generalize. If the variation is low, the model is more 

precise [7]. Figure 23 shows a representation of a fivefold cross-validation. In this 

example, the training data is split into five components. At every iteration, a different fold 

is selected to serve as the test data. Depending on the specific k-fold algorithms, this can 

be stratified so that the labels in the dataset are split equally in the different subsets. This 

is called stratified k-fold. 
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Figure 23—Example of a 5-fold Cross-Validation (Reproduced from [67]) 

Using these techniques, an un-bias tuning of the hyperparameters, using the 

Random Search or Grid Search algorithms, can be performed. The new optimal 

hyperparameters can finally be used to fit the training set, and then on the test set to get the 

final results. Figure 24 shows this complete process. 

 

 

Figure 24—Cross-Validation flowchart (Reproduced from [67]) 
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 The different machine learning methods and techniques presented in this section 

covers the six steps of the machine learning pipeline, presented in Figure 3. These methods 

are used to enable effective use of machine learning to classify intrusions or malware. 

However, in order to initially have relevant data to work with, during the data gathering 

stage, malware needs to be executed so it can be labelled as such. Therefore, it is important 

to understand how the different types of malware operate so relevant features can be 

selected and fed to the algorithms. 

3.2 Malware 

In the previous sections, multiple techniques aimed at detecting malware have been 

presented. Such research needs malware samples to train the machine learning models and 

test their effectiveness. As such, a better understanding of the different types of malware 

and their capabilities is required.  

Multiple types of malware exist, some focus on stealing data while others attempt 

to remain on the infected computer for a long time. In this section, the different types of 

malware used to generate the malicious samples of this thesis are discussed, as well as the 

theory behind them. 

3.2.1 Remote Access Trojan 

The Remote Access Trojan (RAT), or Remote Access Tool, is a type of trojan, 

which is a seemingly harmless program that has a hidden malicious purpose, and is 

controlled remotely. A RAT enables an attacker to remotely access and control the 

computer.  

The client side, or victim side, usually takes the form a file that has been modified 

with some shellcode. It can be introduced through phishing using a malicious link or 

malicious attachments. The server side is an application that intercepts the initial beacon 

sent by the client over multiple protocols, such as TCP or UDP [68]. 
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The objective of a RAT is to get a foothold into a network and perform specific 

actions, such as moving laterally to exfiltrate important data, or to enable an attacker to spy 

on the user by monitoring his activity using screen captures or keyloggers for example. An 

attacker generally uses multiple servers to control multiple hosts [23]. Figure 25 shows an 

example of a multi-server/multi-victim communications structure that can be used with 

RATs. The attacker can have multiple servers to which the victim computer, infected with 

a RAT, reports to. 

 

Figure 25—RAT Structure 

Post Exploitation Tools are using RATs to gain and maintain access to a remote 

computer. Meterpreter, from the Metasploit framework [69] is a commonly used tool that 

can be used to create and maintain C2 with the RAT. Red teams use it to perform 

penetration testing [70]. Meterpreter also makes it easy to backdoor executables [71]. 

3.2.2 Rootkit 

A rootkit is a program that has the ability to hide the presence of malware on the 

system. This is achieved by gaining enough privilege on a computer to hide files, processes 
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and network activity. This is generally done by modifying the kernel of an OS, such as 

hooking the API calls with a kernel-mode or user-mode rootkit [23]. 

Rootkits are a form of backdoor into a system. They attempt to hide the execution 

of other malware or the attacker’s activity on the infected host. There are two main types 

of rootkits: user-level and kernel-level. The user-mode rootkit is more limited as it operates 

with user privilege. DLL injection is a common form of user-level rootkit [72].  

A common process injection method for rootkit is called process hollowing. 

Process hollowing happens when the injected executable overwrites another process in 

memory with its own malicious code. Its goal is that when the malware executes, the 

process listing tools lists it as the original legitimate binary, such as “svchost.exe” [38]. 

Kernel-level rootkits are much more dangerous as they can have complete control 

over the system and hide data much more easily, due to running at the lowest level of the 

OS, with the most privilege; they are therefore much harder to detect [73]. They do not 

give administrative privilege, this must be done before through other privilege escalation 

means [74]. 

The System Call Table (SCT) is a table in the OS that points to the different system 

calls. Normally, those pointers should lead to areas within the kernel static code. In case of 

a rootkit, it can point to other areas of the kernel memory [38]. In their survey of rootkits, 

Joy et al. [73] describe three techniques a kernel rootkit can use to modify the SCT. Those 

are the SCT modification, System Call Target modification and SCT redirection. An SCT 

modification occurs when a system call is modified with a malicious version by changing 

the address of the pointer, as shown in Figure 26. In that example, the altered SCT now 

points to a malicious code instead of the normal version. A System Call Target 

modification occurs when the legitimate destination code is modified by adding a jump 

instruction that leads to the malicious code. Finally, an SCT redirection occurs by 

overwriting the SCT in memory with a malicious version.  
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Figure 26—Kernel-level rootkit implementation (Reproduced from [74]) 

To detect rootkits, a memory forensic analysis of an infected computer using 

Volatility is one of the best options. Plugins such as psxview discussed in Section 2.5 can 

detect rootkits as it lists processes on the host using seven techniques. It is unlikely the 

rootkit will be able to hide from all of them. In addition, the plugin apihooks and driverirp 

can help detect hooks on the system or rogue drivers [38]. Those techniques have been 

leveraged in some recent research, including Wang et al. [5] that used Volatility plugins 

and machine learning to detect kernel-level rootkits. Their method led to an accuracy of 

0.986, an FPR of 0.076 and an AUC score of 0.998 using the RF algorithm. 

Since Windows Vista, Microsoft requires that kernel-level drivers are digitally 

signed in order to be loaded on the computer [75]. This makes kernel-mode rootkits rare 

today. 
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3.2.3 Ransomware 

Ransomware is a currently popular type of malware mainly used for financial gain 

by cyber-criminals. There are two main types of ransomware: Locker and crypto—

ransomware. 

Locker ransomware locks out the user of the computer and displays a message with 

the instructions to unlock the computer. This type of ransomware usually blocks access to 

the computer graphical user interface (GUI), but leaves files intact. It can be cleaned more 

easily [76]. 

The more powerful form of ransomware is the crypto ransomware. This type of 

ransomware encrypts the user files on the computer. System files are left intact so that the 

OS can remain stable so the user can pay the ransom. The malware informs the user of the 

payment options to get the decryption key that will restore the original files. Due to the 

nature of cryptographic algorithms, it is almost impossible to retrieve the files without 

having a backup of the files somewhere else. Since it only encrypts user files, it does not 

require elevated privilege [4].  

Cohen and Nissim [4] focused on detecting ransomware using Volatility plugins 

and machine learning, as presented in Section 2.5. They obtained good results using 

Random Forest, with an AUC score of 0.966 and a F1-Score of 0.935 on average across 

their experiments.  

3.2.4 Fileless Malware  

Fileless malware is a type of malware that does not have a presence on the disk. 

Fileless malware are also called Windows living off the land binaries (LOLBins) as they 

use tools already present on a host to perform their actions. LOLBins are more common 

nowadays since forensic investigators generally look for malicious files introduced onto 

the computer. They provide a more stealthy way of infecting and adding persistence into a 

host [77]. In their study of fileless malware, Sudhakar and Kumar [77] discussed the use 

of legitimate software present on user workstations, such as flash player, the web browsers, 

PDF viewers and Microsoft Office in such attack. Fileless malware can be used to run 
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scripts that execute in memory and have no presence on the disk; it can take the form of a 

web exploit, the use of macro-embedded documents and other scripts. Two tools that are 

integrated into the Windows OS and commonly used by attackers are Windows 

Management Instrumentation (WMI) and PowerShell. Using those tools, an attacker does 

not have to bring additional software into the network [77]. 

During a fileless attack, the flow of execution is as presented in Figure 27. The 

first step is the foothold, which can be established through various means, such as an 

infected link or a phishing campaign. Then, from this initial access, the adversary 

establishes persistence. This can be done in many ways, including adding registry keys. 

Finally, PowerShell is the weapon of choice for an adversary as it makes it a lot easier to 

execute programs without any presence on disk and is a very powerful tool [77].  

Other tools such as “PsExec.exe” are often used. However, it is not part of the core 

OS as WMI and PowerShell are, in many cases use of “PsExec.exe” would have to be 

introduced into the target environment [78]. 

 

Figure 27—Infection flow of files malware (Reproduced from [77]) 

Fileless malware can take many forms. Sudhakar and Kumar [77] classified them 

in three categories based on their persistence mechanism: memory resident malware, 
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Windows registry malware and rootkits fileless malware. To detect such malware, they 

recommended either monitoring the system behaviour, such as Windows events ID 4688 

(new process has been created) for a new PowerShell process, 7040 (new auto-start 

services) and 10148 (listen to specific IP and ports). Additionally, they recommended using 

rules to detect such malware. For example, monitoring instances of the Windows command 

prompt or of PowerShell that have been launched from a Microsoft Office document [77].  

Afreen et al. [40] acknowledge that little academic research has been performed 

on this type of malware due to their volatile nature. Security companies do most of the 

research on this, but with limited publishing. 

3.3 Persistence Mechanisms 

Once a foothold has been established in a network, malware authors want to make 

sure they can maintain their access once the computer restarts by establishing a persistent 

backdoor [79]. Dubey [80] lists multiple different malware persistence techniques, and are 

shown in Figure 28. 

 

Figure 28—Various persistence mechanisms used by malware (Reproduced from [79]) 
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Rootkits and bootkits can be used to establish persistence. This can be done by 

modifying parts of the startup code of the computer that is run during the boot sequence. 

This can be achieved by modifying the Master Boot Record (MBR), Volume Boot Record 

(VBR) or a boot sector so that the malware can be started during the boot sequence [80].  

Registry key modifications can also establish persistence. A common example is 

to add or edit a registry key so that the malware is run automatically at startup, as shown 

in Figure 29 if the attacker has user-level privilege and Figure 30 if he has administrator 

privilege [80]. 

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run 
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunOnce 
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunServices 

Figure 29—User-level persistence registry keys 

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run 
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce 
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServices 
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServicesOnce 
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\ 
Run 

Figure 30—Administrator-level persistence registry keys 

Similarly, by adding the malware to the folder “C:\Users\%USERNAME% 

\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup”, the program is 

executed at user logon [80]. 

A common DLL used for persistence is the “AppInit_DLLs”. By default, this is 

disabled by Windows for security reasons. However, it can be enabled by setting the value 

of the registry key “LoadAppInit_DLLs” to “1” and by modifying the path of the DLL that 

will be executed, the “AppInit_DLLs” registry key. This way, malicious DLLs can be 

added to every new process. This is shown in Figure 31, where the malicious DLL 

“pentestlab.dll” has been set as the “AppInit_DLLs” key value. In this case, it is a 

Meterpreter beacon, so every new process on the infected host creates a new Meterpreter 

session on the attacker’s computer [81]. 
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Figure 31—AppInit_DLL Registry key (Reproduced from [81]) 

DLL manipulation is also a very good persistence mechanism. For example, due 

to the DLL search order on a Windows computer, when a DLL is requested by an 

executable, Windows first looks for it in the executable’s directory. This can also be 

modified using registry keys [82]. If a malicious DLL has the same name as the legitimate 

one, but is higher in the load order, it is loaded instead. This is also called DLL Side-

loading [83]. Similarly, a malicious DLL can be hooked to a process, meaning that when 

the process starts, it loads the malicious DLL as well. 

Malware can also make use of the Windows Task Scheduler to add persistence. 

Using this tool, they can set the malware to start at startup, but also at multiple different 

schedules. Scheduled tasks can run PowerShell scripts or programs, which can reach back 

to the attacker [79]. 

Windows Services can also be leveraged. As shown in Figure 29 and Figure 30, 

services can be run at startup. If a rogue service is created and added to the list, it creates 

persistence. In addition, if a service fails to start, the user has the option to select some 
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recovery actions. This includes running a different program. The adversary can ensure the 

service fails to start and add a recovery action to run the malware, as shown in 

Figure 32 [84]. 

 

Figure 32—Actions if a service fails to start (Reproduced from [84]) 

In summary, there are multiple techniques that can be used to establish persistence 

on a computer. Whether it is by using DLLs, Scheduled Tasks, Windows Services or the 

Registry, attackers have multiple options to stay on the compromised workstation [79]. 

Figure 28 shows different types of persistence mechanisms. 

3.4 Velociraptor 

Velociraptor is an endpoint monitoring and Digital Forensics, Incident Response 

(DFIR) tool built to collect forensic evidence, monitor events, facilitate the enterprise threat 

hunting efforts and respond to an incident in an enterprise network. This project is very 

recent (2019) and is actively maintained. It has hundreds of plugins and can be extended 

by writing new ones that are tailored to an analyst’s needs [85]. 

Velociraptor uses query language similar to the Structured Query Language (SQL), 

the Velociraptor Query Language (VQL), to analyze the data directly. It allows parsing the 

network computers as if they were elements of a database. It also offers analysts a notebook 

to write their observations and run VQL queries, and also supports the exportation of data 

into a Jupyter notebook [86]; Jupyter makes it easier to write reports, generate graphs and 

use machine learning algorithms to parse a large number of data [87]. 



 

56 

 

Velociraptor has four main functions: collect artifacts, monitor a system, hunt for 

a specific threat and respond to an incident. During a collection, the processing is done by 

the agents on the host under observation, and only the results of the queries are sent over 

the network, saving significant bandwidth. It is lightweight and transparent to the user. The 

monitor function displays real-time events, such as DNS requests, event logs, file 

modifications, process execution and Event Tracing for Windows (ETW) architecture and 

display them on the Velociraptor server as they occur. ETW is a Microsoft Windows 

kernel-level tracing mechanism that enables tracing of kernel-mode or application-mode 

events to a log file [88]. The hunt function is where an analyst actively looks for malware 

or suspicious activity, generally based on threat intelligence or a currently known 

vulnerability [85]. 

When doing a collection, Velociraptor artifacts look very similar to Volatility’s 

artifacts; Volatility is a widely used memory forensic tool, which is covered in Section 2.5.  

Velociraptor has limited memory forensic analysis capability. It leverages the 

Windows API to collect information directly regarding the volatile state of the endpoints. 

While not being able to have the same level of visibility as a memory forensic tools that 

can parse the computer physical memory, it has artifacts that produces similar outputs, but 

much faster [89]. A full memory capture, which could be used by those memory forensic 

tools is also possible with Velociraptor. 

In this section, the three machine learning algorithms used in this thesis by both 

the implemented method using Velociraptor and machine learning and the validation 

method of using Volatility and machine learning were presented. The techniques used to 

train, fit and test a machine learning model were also covered. This is used in the following 

section, Methodology, to generate the models. In addition, the theory behind the malware 

used in this thesis was covered along with their persistence mechanisms. Finally, the tool 

used in the implemented methodology to collect the artifacts, Velociraptor, was introduced. 
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Section 4 

Methodology 

This chapter outlines the phases of research required to test the research hypothesis 

and validate the implemented methodology. The implemented method based on 

Velociraptor and machine learning is compared to using Volatility and machine learning. 

In this thesis, those two methodologies are referred to as Velociraptor and Volatility, 

respectively. It covers the test environment, the software used, the design decisions and a 

list of the malware used. It is organized following the machine learning pipeline, as 

presented in Figure 3 

4.1 Velociraptor and Volatility Methods 

In order to validate the aim of the implemented method which will be covered in 

this section, it needs to be validated with known methodologies. As discussed in 

Section 2.5, Volatility is the industry standard for memory forensic analysis. Many 

research such as Cohen and Nissim [4], Wang et al. [5] and Panker and Nissim [6] used 

Volatility to extract raw memory data that can be turned into features used to train a 

machine learning model. The model can then be used to detect the presence of malware, 

such as ransomware and rootkit. As such, the implemented method, Velociraptor, was 

compared to Volatility.  

Of course, Velociraptor is not a memory analysis framework, while Volatility is. 

This is a key difference between the two tools. Volatility is limited to analyzing what is 

available within the memory, while Velociraptor is not. Velociraptor has some visibility 

over the process memory using the Windows API, though its main purpose is to acquire 

disk-based artifacts. The reason why Volatility was used as the tool for the validation 

methodology is that memory forensics research which used machine learning have the most 

similar research approach to the implemented method. 
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The implemented method was validated by conducting the same experiment with 

both Velociraptor and Volatility. The performance of the machine learning models 

generated using the Volatility features were used as the validation performance comparison 

metrics; in order to validate the experiment, the implemented method needed to outperform 

the models trained using features generated with Volatility raw data. 

4.2 Data Acquisition 

This section covers the steps required to acquire the raw data from the memory 

and hard disk. This includes creating the network in which the experiment took place, how 

the experiment was conducted, the different types of malware used and the process of 

identifying what data had to be collected, or which features were required. Finally, it 

explains how the data was then collected.  

4.2.1 Test Environment 

In order to compare both Volatility and Velociraptor, a test environment that can 

simulate an enterprise network was needed. To do so, the Collaborative Security Test 

Environment (CSTE) from the Directorate Information Management Engineering and 

Integration (DIMEI) was used. CSTE enabled the creation of a virtual range which has lots 

of computing resources and uses VMware vSphere.  

The network simulates a small company, Globotech, which has ten employees. It 

contains the basic infrastructure that would be required for such a company to operate. 

Users are simulated using the Human Actor Like Orchestration (HALO) software, 

developed by Field Effect Software [90]. This tool was used to add some realism to the test 

environment and generate simulated background activity would be present within the 

environment. Details on the use of HALO in this research is covered in Section 4.2.1.2. 

Figure 33 shows a network diagram of the environment used. Each component of this 

network, such as the workstations, the servers and grey space are explained in detail in the 

following sections. 
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Figure 33—Test Environment 

 Workstations 

Ten Windows 10 workstations using Version 1909 (build 18363.778) has been set 

up. To compare both Velociraptor and Volatility, the workstations were separated into two 

groups of five, for each method. Table 1 shows the breakdown of the ten workstations, 

with the workstation's name, the role in the company, the username, the level of privilege 

of the user and the tool used. Since workstations 11 to 15 all had user-level privileges, 

some malware requiring more privileges needed to be run on a different workstation. 
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Table 1—User workstations in the test environment 

Workstation Role Name Account Role Tool 

R9-UA-11 CEO Alice Domain User Volatility 

R9-UA-12 Marketing Bob Domain User Volatility 

R9-UA-13 Sales Charlie Domain User Volatility 

R9-UA-14 HR Dan Domain User Volatility 

R9-UA-15 Finance Frank Domain User Volatility 

R9-UA-16 IT Grace Domain Admin Velociraptor 

R9-UA-17 IT Henry Administrator Velociraptor 

R9-UA-18 R&D Iris Domain User Velociraptor 

R9-UA-19 R&D Juliette Administrator Velociraptor 

R9-UA-20 Logistics Kyle Domain User Velociraptor 

 Human Actor Like Orchestration (HALO) 

HALO simulates user activity to make the enterprise network more realistic. This 

includes simulating programs being open, email being received, open and sent, web 

browsing, etc. 

HALO enables the creation of a schedule that can be used to automate user activity. 

Table 2 shows the schedule used for the Volatility Workstations and Table 3 for the 

Velociraptor workstations. This was designed so that the host activity would be more 

varied and that the start and end time of the workday would vary slightly between 

workstations. This also added more realism to the simulated environment. 
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Table 2—Volatility workstations schedules 

Time Alice Bob Charlie Dan Frank 

7:30 Email     Random Task   

8:00 Office Email Email Web Browsing Random Task 

8:30 PowerPoint Word Web Browsing Word Email 

9:00 Email PowerPoint Excel Email Excel 

9:30 Word Web Browsing Email Email Excel 

10:00 Office Office Office Random Task Excel 

10:30 Office Email Office Email Word 

11:00 Email Word PowerPoint Office Office 

11:30 Web Browsing Random Task Excel Random Task Office 

12:00 Word Web Browsing Web Browsing Web Browsing Web Browsing 

12:30 Email Random Task Web Browsing Random Task Web Browsing 

13:00 Office Email Email Email Excel 

13:30 Office Random Task Excel Excel Office 

14:00 Email Word PowerPoint Office Excel 

14:30 Office Web Browsing Office Random Task Excel 

15:00 Random Task Office Email Web Browsing PowerPoint 

15:30 Random Task Email Web Browsing Web Browsing Random Task 

16:00 Random Task   Email     

16:30 Email         

 

Table 3—Velociraptor workstations schedules 

Time Grace Henry Iris Juliette Kyle 

7:30   SysAdminWork Email     

8:00 Web Browsing SysAdminWork Office Web Browsing Email 

8:30 Random Task Random Task Web Browsing Office Excel 

9:00 Random Task Web Browsing Office Word Excel 

9:30 SysAdminWork Random Task Office PowerPoint Web Browsing 

10:00 SysAdminWork Random Task Random Task Email Office 

10:30 Random Task Office Email Random Task Office 

11:00 Random Task SysAdminWork Office Random Task Random Task 

11:30 SysAdminWork SysAdminWork Word Excel Email 

12:00 Random Task Web Browsing Office Random Task Web Browsing 

12:30 SysAdminWork Random Task Email Web Browsing Web Browsing 

13:00 SysAdminWork Random Task Web Browsing Email Office 

13:30 Random Task Office Web Browsing Random Task Office 

14:00 Random Task Random Task Random Task Office Excel 

14:30 Random Task Web Browsing Random Task Office Email 

15:00 Random Task Random Task Office Office Random Task 

15:30 Random Task Email Email Web Browsing Random Task 

16:00         Email 

16:30           
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HALO has been configured to run locally on each computer. Using the schedules 

in Table 2 and Table 3, a profile was generated so that the programmed activity would 

occur. Each profile details how a particular user is being simulated. 

 Windows Server 

In order to gather all the collected data from both Velociraptor and Volatility in 

one place, a Windows Server was set up to serve as a muster point where data was then 

taken outside of the environment for analysis. 

The collection of the artifacts on the workstations was done every 30 minutes using 

a scheduled task. The scheduled task runs a batch script that then runs either the 

Velociraptor offline collector executable, or the Dumpit and Volatility executables. It then 

runs a PowerShell script that sends all collected artifacts onto the Windows server. This is 

covered in more details in Section 4.2.3. 

 Servers 

Within the environment, multiple servers were set up and configured so that the 

simulated users, emulated by HALO, could function properly. This includes a Domain 

Controller that contains the Globotech DNS server, a file share, a mail server and a web 

server.  

 Grey Infrastructure 

In order to simulate the outside world, a grey infrastructure has been set up. This 

includes a Grey DNS server that acts as the authoritative DNS server for the environment, 

as well as a simulated Internet, provided by DIMEI and called Mr. Internet. 

Mr. Internet contains hundreds of scraped websites, which increases the fidelity of 

the environment. The HALO agents can browse the simulated web and get real webpages 

back and make the user activity look more authentic. 
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 Threat Emulation 

In order to run the malware, a red infrastructure needed to be set up. Kali Linux 

was used as the attack platforms. All malware samples were staged from this workstation 

and the C2 led to it. For the experiment, no redirectors were used as the focus was on host-

based activity and the change of IP address to different servers would not have impacted 

the experiment. 

4.2.2 Malware 

For the experiment, 11 unique malware binaries and 3 frameworks were used to 

create 41 different instances or sets of malware behaviour. Table 4 shows the list of 

malware binaries and frameworks used. The following section covers those programs and 

the intended effect on the infected host. 

Table 4—Malware executables and tools used 

Malware Name Malware Type Malware Behaviour Number of samples 

CatfishHTTPSExfiltrator Binary Data Exfiltration 1 

Lyonfish Binary Ransomware 1 

CatfishFileShredder Binary RAT 1 

CatfishSocket1 Binary RAT 1 

CatfishExplorer Binary RAT 1 

CatfishPowerShell1 Binary RAT 1 

Living Off The Land Binary Persistence 1 

CatfishPersister Binary Credentials Stealing/Persistence 2 

OffensivePH Binary Post-exploitation tool 3 

77rootkit Binary Rootkit 1 

Hidden Binary Rootkit 5 

Metasploit Framework RAT 3 

PowerShell Empire Framework RAT  1 

Cobalt Strike Framework RAT/Persistence/Credentials 

Stealing 

19 

 



 

64 

 

For this research, the detection focus was on the last four steps of the cyber kill 

chain [13] covered in Section 2.3.1. The malware generated artifacts related to the 

exploitation, installation, C2 and actions on objective phases of the kill chain as the 

visibility of the implemented methodology is on the host and there is limited network 

visibility. As such, it was not expected that the delivery stage would be detectable. 

 CatfishHTTPSExfiltrator 

CatfishHTTPSExfiltrator is a data exfiltration tool that sends all the files in the 

users’ Documents folder to the remote server. 

On the server, a python script is running to listen for incoming connections to the 

domain “www.TheGreatMagician.com”, which resolves to the attacker’s server. Once the 

program is running on the user’s workstation, it sends the files over an HTTP/HTTPS 

tunnel. Figure 34 shows the files being received on the server. 

This creates unusual network activity and a surge of files been accessed/modified. 

 

Figure 34—CatfishHTTPSExfiltrator server receiving files on the server 
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 Lyonfish 

Lyonfish is a ransomware that encrypts the files in the user document folder. Once 

the encryption is completed, each encrypted file now has the “.evil” extension, as well as 

a “.evil.txt” file, as shown in Figure 35. Those text files contain the ransom note with the 

contact information to get the files decrypted. 

This malware creates a lot of file activity, as all files in the Document folder get 

encrypted and new files are generated. 

 

Figure 35—Files on the victim computer after Lionfish encrypted the files in the user’s Document 

folder 

 CatfishFileShredder 

CatfishFileShredder is a trojan that launches a seemingly benign program which 

deletes the selected file. Figure 36 shows the displayed interface once the program is run 

on the victim workstation. 

 

Figure 36—CatfishFileShredder trojan window 
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The real behaviour of the program, however, is to create a remote PowerShell 

session on the victim’s workstation. On the Kali workstation, the remote shell can be 

received with the command “nc —lvp 6060”. The command prompt can then be interacted 

with. In order to generate some activity on the host, the attacker navigated to the user’s 

Documents folder, listed the files, deleted all files in that folder and launched notepad. 

This malware creates a lot of file activity, as all files in the Document folder get 

deleted, in addition to the network connection and the remote session. 

 CatfishSocket1 

Similar to CatfishFileShredder, this program runs in the background and creates a 

remote PowerShell session that can be received on the Kali workstation using the command 

“nc —lvp 5478”. The command prompt can then be interacted with. In order to generate 

some activity on the host, the attacker navigated to the user's Documents folder, listed the 

files, deleted all files in the folder and launched the notepad application. 

This malware creates a lot of file activity, as all files in the Document folder get 

deleted, in addition to the network connection and the remote PowerShell session. 

 CatfishExplorer 

CatfishExplorer is a C2 tool that queries the server located at the address 

“http://FunnyBearJokes.org” every five seconds to know what next task needs to be 

performed. The tasks are sent using HTML comments in the requested page. For the 

purpose of the experiment, the malware functionality was used to launch a new program, 

notepad. The malware decodes the instructions as the command in the comment needs to 

be base64 encoded. 

This led to having multiple instances of notepad being launched at regular 

intervals, as well as the network connection used for C2. Notepad was not part of the 

programs HALO would use part of the baseline. In any case, having a new instance of 

notepad launch every five seconds creates a lot of program activity which can be classified 

as abnormal. 
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 CatfishPowerShell1 

CatfishPowerShell1 is a malware that downloads a file called 

“reddit_redirect.html” off the website “silentreddragon.cn” to the location 

“C:\\ProgramData\reddit.com”. This file could be anything; however, it was decided to use 

a Meterpreter reverse TCP beacon [71] and name it “reddit_redirect.html”. This file was 

then used to connect to the Kali workstation’s Metasploit server, discussed in 

Section 4.2.2.7. 

This file being downloaded to an uncommon location generates artifacts. 

 Metasploit 

Metasploit is one of the most common penetration testing frameworks. It enables 

exploitation and post-exploitation of an adversary’s workstations [69]. 

Three different collections were generated. First, the meterpreter session was 

established using the beacon “reddit_redirect.html” downloaded previously from 

CatfishPowerShell1. The beacon calls back to the Kali server. From there, the following 

commands were executed: “ls”, “ifconfig”, “execute -f cmd.exe -i -h”, “clearev”, download 

a file, cat a file. Second, from this initial access, the second collection was done after the 

beacon migrated to a different process. This is shown in Figure 37. Finally, additional 

actions on were performed, such as dumping the hash and taking a screenshot of the user 

workstation.  

This created some network activities, as well as the injection of the payload into 

the new process.  

 

Figure 37—Process migration using Meterpreter 
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 PowerShell Empire (PSE) 

PowerShell Empire (PSE) is another post-exploitation framework. While it is no 

longer actively maintained, it is still widely used. Starkiller [91], the GUI front end can be 

used to manage the beacons.  

Using PSE, a macro embedded office document, “Resume.hta”, was generated that 

would be used to beacon out to the Kali Linux workstation. An HTA file is an HTML 

application file that can contain VBScript code [35]. From there, the file was downloaded 

and executed. The user clicked the “enable macro” pop-up. Then the beacon called back to 

the attacker’s computer. From the Kali workstation, the beacon appeared in Starkiller. The 

session was then interacted with by running the “whoami” command and using the file 

explorer functionality to see the folder structure of the target workstation. 

The ran macro and network activity generate artifacts. 

 Cobalt Strike 

Cobalt Strike is a proprietary adversary simulation and red team operations 

tool [92]. It is similar to Metasploit and PSE, but has multiple unique scripts and toolsets. 

Figure 38 shows the GUI for the tool. It can display a visual tree representation of the 

victim hosts, as well as the individual beacons prompt, where commands can be sent. 
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Figure 38—Cobalt Strike main interface (Reproduced from [93]) 

19 individual collections were generated using Cobalt Strike. This ranged from 

simply running the beacon to using the multiple functionalities of the tool, such as injecting 

into a process, keylogging, taking a screenshot, privilege escalation, lateral movement, 

mimikatz [94], macro-embedded Microsoft Word documents and establishing persistence. 

Scheduled task, Registry, UserInitMprLogonScript and a service were used as persistence 

mechanisms during the experiment. 

This generated a lot of activity, including some network traffic, process injection, 

hashes dump and hooks to other processes that should be detected. 

 Living Off The Land 

Living Off The Land (LOTL) is a fileless attack platform with persistence 

developed by Martin Fisher and made available on GitHub [95]. The default binary 

provided by the author was used as it was sufficient to generate the desired activity on the 
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victim’s computer. This program leverages the Windows LOLBins, such as PowerShell to 

operate, as covered in Section 3.2.4. 

LOTL runs in multiple stages. First it installs itself by writing Injector.exe to the 

registry, then writes an inline PowerShell script to the 

“HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run” 

registry, as described in Section 3.3. PowerShell is then run to execute the rest of the 

malware. The second stage injects into a process. PowerShell loads injector.exe and loads 

the payload executable in a legitimate binary, “svchost.exe”, using process hollowing, as 

covered in Section 3.2.2. As a result, the payload then runs as “svchost.exe” [95]. 

The process injection as well as the PowerShell activity generates artifacts. 

 CatfishPersister 

This malware contains two resources that are extracted during the execution. 

CatfishPersister creates “COM542.exe” in “C:\\ProgramData”. “COM542.exe” then 

creates “Krypto.dll” in “C:\\ProgramData”. The malware also adds a link to 

“COM542.exe” to the user startup folder for persistence. Then, the malware operates with 

two different modes, depending on whether it is run as administrator or as a regular user. 

As a user, it accesses the Security Account Manager (SAM) [96] database of the 

computer to download the password hashes. This is commonly done by attackers as 

cracking some of the passwords would facilitate lateral movement and privilege escalation.  

If run as an administrator, it attempts to download additional malware, 

“explorer64.exe”, from the site “http://FrozenRedDragon.cn/RedPanda.jpg”, then adds 

persistence using registry keys. 

Both modes were used during the collection. The persistence, download of the file 

and the SAM access generates artifacts. 
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 OffensivePH 

OffensivePH is another post-exploitation tool and requires Process Hacker [97] to 

be installed as it leverages its resources. It loads them into the current working directory as 

kph.sys. As such, during the three collections, Process Hacker had to be first installed on 

the host. OffensivePH uses its “Hook2Kph.dll”, which can then be injected in any running 

process [98]. 

The three collections covered killing a process, injecting shellcode by using hijack 

thread execution and injecting shellcode into a new “services.exe” instance. Figure 39 

shows the functionality that kills a process. 

The process injection and the act of killing a process generate artifacts. 

 

Figure 39—OffensivePH killing a process 

 77rootkit 

77rootkit (R77) is a user-mode registry-resident rootkit that can hide files, 

directories, processes, CPU usage, registry keys and values, services and network 

connection on the infected host [99]. 

R77 first stage consists of installing itself by creating two scheduled tasks that run 

at the system startup. Those tasks run a one-line PowerShell script, which runs the rootkit 

executable saved in the registry key. Then, it uses process hollowing to create its service 
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process that has winlogon.exe as the parent process. The code for the R77 service 

executable is directly loaded. 

R77 uses the Detours library, which was developed by Microsoft in order to expand 

on the OS and application functionalities and make program modifications easier for 

developers. However, it can also be used by malware authors to attach a malicious DLL to 

an existing program and create hooks. It is especially useful to hook a rogue DLL to a 

legitimate program on disk. In Figure 40, the PEview tool shows the Detours section of the 

executable where the malicious DLL “evil.dll” has been attached [23]. R77 uses exactly 

this method to avoid writing to disk.  

The different hooks created by R77 generate artifacts. 

 

Figure 40—PEview of Detours with a rogue DLL, evil.dll (Reproduced from [23]) 

 Hidden 

Hidden is another rootkit that can hide files, registry keys and values, directories 

and processes. It is a rogue driver that has to be installed with the Windows digital signature 

enforcement disabled. Then, it runs as a service on the computer [100]. 

The malware comes with a command line utility that can be used to hide and un-

hide elements. Five collections to test the different features were generated. First, simply 
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installing the driver. Then, the collections were taken after hiding a file, a directory, a 

registry key and a process. Figure 41 shows the service running and used to hide the file 

“calc.exe”. 

The rogue driver can be detected as it is unsigned and is getting installed. 

 

Figure 41—Hidden rootkit hiding a file 

4.2.3 Features Extraction 

Before the data could be collected, features extracted during the collection needed 

to be selected as this would determine exactly which plugins would be required during the 

collection process. The feature extraction process was done for Volatility by replicating 

recent research experiments as this served as the validation and is explained in the 

following section, Section 4.2.3.1. For Velociraptor, this was done by following recent 

research methodology and doing experimental testing to find features that could detect the 

selected malwares. This is covered in Section 4.2.3.2. 

 Volatility 

For Volatility, most of the features from Cohen and Nissim [4], Wang et al. [5] 

and Panker and Nissim [6] were used in the validation. From Cohen and Nissim [4], all 23 

features were used, as shown in Table 5. 
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Table 5—Features from Cohen and Nissim [4] (Reproduced from [4]) 

 

Wang et al. [5] focused their work on rootkit detection and had slightly different 

features set. Table 6 shows, out of their features, the ones used in this thesis. Most of these 

features were reproduced except the features which used the orphan thread, hooks in the 

I/O Request Packet (IRP) and malicious attachment plugins as they were not collected. 

Table 6—Features from Wang et al.  [5] used in this thesis (Reproduced from [5]) 

ID Feature  Description  Data 

type  

Plugins 

1 Hidden modules  Whether hidden modules exist  Boolean  modules, 
modscan 

2 Driver object  Whether abnormal driver object exits  Boolean  driverscan, 
modules 

3 SSDT hooking  Whether there are hooks on SSDT Boolean ssdt 

4 Abnormal 
Callbacks  

Whether there is malicious callback in the 
system  

Boolean   callbacks 

5 Abnormal 
timers  

Whether there is malicious timer in the 
system  

Boolean  timers 
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Panker and Nissim [6] used 177 features to detect unknown malware on Linux 

cloud environments. Some features were adapted to monitor a Windows system. Table 7 

shows the list of the twelve features used based on their research. Those twelve features 

were all generated from the pslist and netstat plugins. Since [6] focused on Linux malware, 

most of the features could not be adapted. 

Table 7—Features added based on Parker and Nissim [6] 

ID Feature Description Data 

Type 

Plugin 

1 net_conn_amount number of active network connections int netstat 

2 tcp_conn_amount number of active TCP int netstat 

3 udp_conn_amount number of active UDP int netstat 

4 listen_amount number of listen connections int netstat 

5 established_amount number of established connections int netstat 

6 close_wait_amount number of close wait status connections int netstat 

7 close_amount number of close status connections int netstat 

8 different_tcp_port number of different TCP ports int netstat 

9 different_udp_port number of different UDP ports int netstat 

10 empty_process_name number of processes es with empty names int pslist 

11 child_PowerShell number of processes named ’PowerShell’ int pslist 

12 child_cmd number of processes named ’cmd’ int pslist 

 

The amalgamation of the features from the three research increases the level of 

visibility over the hosts as each research focused on different types of malware. During the 

Exploratory Data Analysis in Section 4.3.1, the effectiveness of each of those features to 

predict the tested malware is measured. 

 Velociraptor 

The Velociraptor feature extraction process was done by looking at similar 

research using disk-based forensic and memory forensic. This section covers the initial set 

of features used. 
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In total, 76 plugins were extracted by looking at what was done for Volatility and 

in disk forensic-based research. In addition, experimental tests were performed using the 

Velociraptor GUI, which was run in a separate test environment for testing purposes, was 

used on a host where the malware was executed to see which plugins would increase 

visibility over a particular type of malware. 

For memory forensic inspired plugins, a methodology similar to Cohen and 

Nissim [4] and Panker and Nissim [6] was used to identify the features that would be 

useful. 

From Cohen and Nissim [4], multiple DLL, handles and services related features 

which extract information similar as shown in Table 5 were selected. However, the lack of 

a psxview plugin in Velociraptor made multiple features impossible to collect as no 

alternatives exist in Velociraptor. From Panker and Nissim [6], multiple network-related 

features were selected, in addition to some processes related plugins. 

For disk-based forensic, Mohammad and Alqahtani’s [12] work, which looked at 

machine learning techniques for file system forensic analysis, was used to select file-based 

plugins. Table 8 shows the features they used to perform a disk-based forensic analysis 

with machine learning.  
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Table 8—Features considered by Mohammad and Alqahtani [29] (Reproduced from [12]) 

 

Finally, additional plugins unique to Velociraptor were selected if they increased 

visibility over the host to detect the malware used. Those were determined based on the 

experimental tests, where malware was run on a host with Velociraptor running. Analyzing 

the malware behaviour with the Velociraptor GUI manually, such as the API hooking, it 

was possible to select additional relevant features which would assist the detection. Using 

the Velociraptor GUI, it is possible to create and edit artifacts, as well as view the details 

related to the artifacts. Velociraptor has many artifacts that can gather information on some 

Windows events, registries and the processes. All features from the papers covered in this 

section helped to select which plugins would be required to generate the features; in total, 

40 plugins were deemed required. The complete list of those plugins and features is listed 

in Annex A. 

Following Murthaja et al. [2] methodology of categorizing features, Velociraptor 

plugins were selected to achieve a similar level of visibility on the host, by looking at 

Registries, DLLs, API and Network-related artifacts. Table 9 shows the features generated 

by Murthaja et al. [2]. Velociraptor visibility over the API domain is very limited. As such, 

the hollows_hunter [101] tool, available on GitHub, was used. This tool can be run with 
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Velociraptor using a custom plugin, Custom.Windows.Detection.ProcessHollowing [102], 

and scans the running processes to look for hooks and in-memory patches. This tool makes 

it easier to detect process injection and process hollowing.  

Table 9—Features considered by Murthaja et al. [2] (Reproduced from [2]) 

 

In addition to the four domains shown in Table 9, two other domains were added: 

a file system category, which includes all the files-based features generated similarly to 

Mohammad and Alqahtani [12] features in Table 8, and a Windows event category, which 

includes PowerShell events, remote login events, etc. A full breakdown of the 76 features 

is available in Table A-. All selected Velociraptor features fall into one of those six 

domains, as shown in Table 10. In addition, the number of features per domain is identified. 
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Table 10—Type of features generated for Velociraptor 

Domain Features 

Registry 24 

DLL 7 

API 1 

Network 13 

File System 18 

Events 13 

4.2.4 Data Collection 

In order to generate sufficient data for both experiments, more than a week’s worth 

of data was needed. This section covers the methodology used to collect the data. 

 Volatility 

For Volatility, the first step was to capture the memory of the host. Dumpit [39], 

which creates a physical memory capture that can then be used by Volatility for the 

analysis, was used. Volatility was run directly on the host under observation in order to 

reduce the bandwidth requirement. As such, the memory capture remained on the host and 

the Volatility plugins were run. Their output was then sent to the Windows server and the 

capture was deleted. A Volatility portable executable that could be run on Windows using 

the method in [103] was used to analyze the capture. Using Dumpit and Volatility on the 

host created artifacts. However, since it was common to the baseline and the malware 

collection, it mitigates the impact of this. This is an issue with live memory forensics 

collection [4]. However, this significantly reduce the bandwidth requirement, which was 

one of the objectives of this research. 

To collect the Volatility plugins, the artifacts used by Cohen and Nissim [4], Wang 

et al. [5] and Panker and Nissim [6] were used, as discussed in Section 4.2.3.1. 

A Windows scheduled task was set up on all five Volatility workstations. This 

scheduled task was set to run every 30 minutes. However, all five Volatility workstations 

collections were offset by five minutes. This was done to make sure the virtual environment 
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would be able to support Dumpit. Having multiple memory captures done simultaneously 

could have taxed the infrastructure as in reality, the same hardware is used to host all the 

workstations. Multiple simultaneous read and write operations on the disk could have 

created a bottleneck and slowed the collection process. This scheduled task launched a 

batch file as administrator, running Dumpit, then a PowerShell script that collected the 

wanted plugins. The output from the various plugins was saved in a folder named with the 

hostname, time and date of the collection as JSON files. Finally, the script sent the 

compressed folder containing the JSON of this collection to the Windows server. 

For the malware samples, this scheduled task was disabled and the collection was 

launched manually after the malware had started or completed its execution. This slightly 

modified batch file sent the folder with the JSON files to a different repository on the same 

server, specific for the malware collections. 

 Velociraptor 

The first challenge for Velociraptor is that the tool is designed to be operated in a 

client-server architecture. The goal is to be able to query all the clients as if they were a 

database using VQL. In addition, hunts can be scheduled to collect the host data at a 

specific time. In order to follow the machine learning pipeline and get the data outside of 

the environment, a different configuration was needed. 

4.2.4.2.1 Offline Collector 

The Velociraptor offline collector was used instead of the Velociraptor Server 

because it was easier to gather all the data in the test environment and then process it with 

machine learning outside of it. This way, the data was collected directly on the host and 

sent as CSVs and JSON files to a central location. Those were then later parsed. Using the 

offline collector also forces the collection to be done now vs. scheduling a hunt, which can 

take longer to launch based on availability of the host resources. Velociraptor hunt are not 

necessarily run at the time requested, compared to Windows scheduled task, as the Server 

communicates with the agent of the hosts to see if the collection can be done now. This can 

add delay and makes collecting at 30 minutes intervals more difficult. 
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This offline collector can be generated from the Velociraptor Server. It packages 

all the requested plugins, even custom plugins generated by the analyst, and generates a 

single executable that creates a ZIP file with all the requested collection when run as 

administrator on the target workstation [104]. 

4.2.4.2.2 Methodology 

To collect the Velociraptor artifacts, a Windows scheduled task was set up on all 

five Velociraptor workstations. This scheduled task was set to be running every 30 minutes, 

on the hour and on the half hour. This scheduled task launched a batch file as administrator, 

running the offline collector. Then, once the ZIP file was completed, a PowerShell script 

was run to move the compressed folder to the Windows Server. 

For the malware sample, this schedule task was disabled and the collection was 

launched manually after the malware had started or completed its execution. This slightly 

modified batch file sends the collected ZIP to a different repository, specific for the 

malware collections. 

4.2.5 Experimentation 

This section discusses how the overall experiment was set up and covers 

specifically how the data was collected. The details on the malware used for the experiment 

is covered in Section 4.2.2 and the selected features and plugins used is covered in 

Section 4.2.3. 

The first step was to collect a baseline of the network, by collecting a regular user's 

activity. The HALO users followed their schedule, which included opening, creating 

documents, receiving and sending email, etc. In the second step, the malware is executed 

to generate the malicious artifacts. The third step was to split the data into a testing and a 

training set. Then, the fourth step was to process the data by the machine learning 

algorithms. This includes the feature selection, hyperparameter tuning, model training and 

model evaluation steps of the machine learning pipeline shown in Figure 3. Finally, the 
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fifth step was the classification of the results of the test set, which were generated and 

analyzed. The experiment flow is shown in Figure 42. 

 

 

Figure 42—Experiment Flow 

The following two sections cover the baseline collection and malware collections. 

 Baseline Collection 

The baseline was generated by running the Velociraptor Offline Collector, 

discussed in Section 4.2.4.2.1, and the Volatility collector, discussed in Section 4.2.4.1. In 

order to account for the time required to run the collector, a 30 min interval between 

collections was selected. With this interval, for five computers, 840 samples per week were 

created. Each sample contains all plugins, from either Velociraptor or Volatility, that were 

collected from the computer at a specific time. Using those plugins, the features were 

generated; each sample is therefore linked to a data point that can be used for the test set 

or the training set. In total, 1340 samples for Velociraptor and 2831 samples for Volatility 

were collected to create the baseline. More samples were collected for Volatility as the 

collection setup was completed earlier and some technical issues were encountered initially 

with the Velociraptor collection; the offline collector created some temporary files in 

Windows and this filled up the hard drive and crashed the host after a few days of 

collection. All data collected up to the crash was still valid, but the Velociraptor 

workstation had to be reverted every three days to avoid this issue. In the future, a solution 

to this problem would be to add in the collection script code that removes the previously 

generated temporary files. For this reason, since the collection of Volatility was still 

ongoing while the Velociraptor collection was troubleshooted, more data was available for 
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the validation experiment using Volatility. Instead of deleting samples, it was decided to 

keep all data samples. 

 Malware Collections  

Once the baseline was collected, 41 malware samples, covered in Section 4.2.2, 

were collected. Each malware sample is a unique use of a malware instance. For example, 

using Cobalt Strike, 19 unique malicious activities were performed and captured as 

individual malware sample. To do this, R9-UA-11 and R9-UA-17 workstations were used. 

In each case, the malware executable was downloaded from the rogue server from the 

hosted HTTP server on the Kali Linux workstation, then executed as a regular user or as 

an administrator, based on the desired behaviour. The collection scripts were run and after 

each occurrence, the computers were reverted to a clean state; for the malware collection, 

the collections were not run routinely every 30 minutes for the same period as the baseline 

collection, but manually after the malware had executed. 

Once this data was collected on the Windows 10 server in the CSTE environment, 

the data was taken outside of the environment so it could be analyzed. This is explained in 

detail the following section, Section 4.2.3. 

4.3 Exploratory Data Analysis and Data Munging 

The Exploratory Data Analysis (EDA) phase focused on looking at the data and 

identify trends. This section covers how this was done for both Volatility and Velociraptor. 

4.3.1 Data Munging 

The data collected using Velociraptor and Volatility was normalized using a min-

max scalar as this helps improve the accuracy of machine learning models, as covered in 

Section 3.1.4. Boolean data was transformed into “1” and “0”. 
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4.3.2 Volatility 

A total of 40 features were collected for Volatility. Using the built-in SKLearn 

python class feature_importances, of tree-based classifiers, covered in Section 3.1.3, the 

most useful features were identified by plotting a graph of feature importance for better 

visualization. Figure 43 shows the top 20 features using the feature_importances_ values 

in terms of relevance for Volatility. Process created by cmd.exe and PowerShell were the 

most useful, followed by the number of loaded modules, some of psxview columns and the 

number of handles. This was used to train and test the model with a reduced data set to 

attempt to increase performance. Superfluous features can have a negative impact on the 

model performance as described in Section 3.1.5.1. 

 

Figure 43—Volatility features importance, using SKLearn feature_importances class 

However, looking at the correlation matrix in Figure 44 and the PPS matrix in 

Figure 45 for Volatility, a lot of the features did not correlate. For the correlation matrix, 

shown at the top, there are some features that heavily correlate with each other, such as 

features generated from ldr_modules, psxview and svcscan. This means that some of those 

are redundant and not all required. In addition, the row containing the label shows which 

feature correlates to it, which means which features can best predict the label. The top two 

values child_cmd and child_powershell both have a value of 0.25, which shows poor 
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correlation. Multiple implementations that use the correlation matrix to select their features 

use values of at least 0.5 [105], [106]. This suggests a weak correlation within this dataset. 

The PPS matrix also shows a relatively low correlation, as most of the values are 

zero. To select a reduced set of featured, all feature that correlated with the label were 

selected. In the case of Volatility, this means only child_cmd, which looks at the number 

of processes that have cmd.exe as a parent, has a positive PPS score. This means that 

according to PPS, only this feature would help to classify the data. This is an indication 

that the set of features from the three papers may not be optimal for the detection of the 

tested malware.
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Figure 44—Volatility features Correlation matrix 



 

87 

 

 

Figure 45—Volatility features PPS matrix 
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4.3.3 Velociraptor 

Out of the 76 features, using the built-in SKLearn python 

class feature_importances of tree-based classifiers, the most useful features were identified 

by plotting a graph of feature importance for better visualization. Out of those features, the 

top 20 most useful features are located shown in Figure 46. The number of untrusted 

binaries and the LNK files pointing to a remote computer were the two most useful features. 

As for Volatility, a reduced feature set was used using this technique. 

 

Figure 46—Velociraptor features importance, using SKLearn feature_importances class 

Similar to Volatility, the correlation matrix in Figure 47 and the PPS matrix in 

Figure 48 for Velociraptor shows that a lot of the features do not correlate. For the 

correlation matrix, there are some features that heavily correlate with each other, such as 

the named pipes features from the handles plugin and the child process related features 

from the pstree plugin. The correlation matrix, however, showed a better correlation with 

the label, with multiple features having a correlation factor above 0.5, such as 

num_untrusted_binaries with 0.69 and mean_Mutant_Handle with 0.64. This is better than 

what was obtained for Volatility and means the features can better classify the data.  

For the PPS matrix, while most of the values were still zero, there was more 

correlation. To select a reduced set of features, all features that correlated with the label 
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were selected. Out of Figure 48, 16 columns had a value greater than 0 for the row “label”, 

which mean they showed correlation in predicting the label and would help classify the 

data. Once the label removed, this led to a reduced feature set of 15 features, listed in Table 

11. Again, this is better than observed for Volatility using the same method. 

Table 11—Velociraptor features selected using PPS 

ID Feature 

1 udp_conn_amount 

2 num_unique_EventID 

3 count_lnk_to_remote 

4 num_pipes_names 

5 mean_dll_path_len 

6 num_ps_cmd_type 

7 Mean_Forensics_Bam 

8 mean_Mutants_Handles 

9 num_Attack_ParentProcess 

10 num_Detection_BinaryRename 

11 max_child_process 

12 max_Mutants_Handles 

13 max_URL_entropy 

14 max_dll_dll_entries 

15 URL_num 
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Figure 47—Velociraptor features correlation matrix 
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Figure 48—Velociraptor features PPS matrix 



 

92 

 

4.4 Feature Engineering 

This section covers the different feature engineering decisions taken to prepare the 

data for the three machine learning algorithms, including feature reduction in Section 4.4.1 

and the cross-validation in Section 4.4.2. 

4.4.1 Feature Reduction 

During the feature engineering phase, five versions of the collected dataset were 

used to test the performance of the algorithm. Those testing sets were using all the collected 

features, using the PPS matrix score to keep only the features having a positive correlation 

with the label, using PCA, as covered in Section 3.1.2.1 to keep 95% and 99% of the 

variance and selecting the top 20 features using the feature_importances class, shown in 

Figure 43 for Volatility and Figure 46 for Velociraptor. 

Each machine learning algorithm was tested against each of those five datasets to 

assess performance and the impact of the feature reduction process. 

4.4.2 Cross-Validation 

For the cross-validation, the simpler test-train split referenced in Section 3.1.5.4 

was used. The use of a fivefold cross-validation for the dataset tuning would have generated 

folds with only four malware samples. This would not have been sufficient to properly 

train the model against the various types of malware used. 

The datasets were split in half, one half for the training dataset and the other for 

the test dataset. This was done due to only having 41 malware collections which left 20 to 

21 samples per set. Using a larger training set would have led to fewer malware samples to 

be tested. Since those malware samples were not all of the same type and generated 

different type of artifacts, this 50% split was selected. For the same reason, no validation 

sets were used as it would have required even more data.  
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This is sufficient for this proof of concept; however, more malware samples of 

each type would be required to perform a proper cross-validation using k-fold and improve 

performance. 

4.5 Model Learning and Evaluation 

This section covers the selected machine learning algorithms, the hyperparameters 

tuning process for each algorithm and how the various datasets were trained.  

4.5.1 Model Selection 

Based on the research, three machine learning algorithms were selected: Isolation 

Forest, Random Forest and SVM. 

Isolation forest has been used in network traffic analysis to find anomalies, such 

as in Spiekermann and Keller [10]. In this case, Isolation Forest attempts to detect the 

malware instances as outliers. 

Random Forest and SVMs have been used in multiple forensic research. In 

Mohammad and Alqahtani [12], they compared multiple machine learning algorithms to 

analyze features collected during a forensic analysis of a file system. From this analysis, 

they found that RF was the most effective algorithm. However, while SVMs were not as 

effective, they achieved good performance. Figure 49 shows the results of their research 

and the effectiveness of some algorithms in this context. Cohen and Nissim [4] also 

concluded that RF was the most effective algorithm for their application.  
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Figure 49—Comparison of the effectiveness of multiple machine learning algorithms for a file system 

analysis (Reproduced from Mohammad and Alqahtani [12])  

As such, these three algorithms have been selected to classify the generated datasets 

and classify the data. 

4.5.2 Hyperparameter tuning 

In order to find the best hyperparameters values, three tuning methods were used: 

the default parameters, Grid Search and a manual exhaustive implementation. Those three 

methods are covered in this section. 

 Default Hyperparameters 

Each algorithm can be used without specifying any hyperparameter values. In that 

case, the default values are used by the algorithm. The three algorithms were trained with 

the default values as a reference point. It is not expected to be optimal. As such, it was used 

only once on the all collected feature set. 

 Grid Search 

Grid Search was used for each algorithm to find the best hyperparameter values. 

The most influential parameters were determined based on experimental testing and 

research.  

For Isolation Forest, the tuned hyperparameters were the number of estimators of 

the model, the maximal number of samples to be used to train estimators, the contamination 
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rate, which is the percentage of outliers in the model and the number of random states, 

which affects how the data is split in the different branches [107]. Figure 50 shows the 

considered values for each of the four parameters. 

 

Figure 50—Isolation Forest Grid Search 

For Random Forest, more hyperparameters were tuned as more factors could 

impact the model, and that Random Forest has more hyperparameters that can be tuned. 

The number of estimators of the model, the maximum number of features the model 

analyzes before making a decision on where to make a split, the maximum depth of the 

tree, the criterion on which the effectiveness of a split is evaluated such as impurity (gini) 

and entropy, the minimal number of samples that each split must contain, the minimal 

number of samples a node needs to generate a split and the random state [60]. Figure 51 

shows the considered values for each of the seven parameters.  

 

Figure 51—Random Forest Grid Search 

For SVM, three hyperparameters were tuned: the kernel used by the model to 

create the hyperplane, the C value, which is the parameter that regularize the model, as 

described in Section 3.1.1.3, and gamma, the kernel coefficient. Gamma represents the 

kernel coefficient used by the algorithm [108]. The C parameter and Gamma parameter 
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have the biggest impact on the algorithm performance [109]. Figure 52 shows the 

considered values for each of the three parameters. 

 

Figure 52—SVM Grid Search 

 Exhaustive Search 

Following a similar approach to Grid Search, an exhaustive tuning of the 

hyperparameters was done. This tuning process used the same hyperparameter values of 

Grid Search. It tried every combination of the hyperparameters of the grid. This was 

inspired by Guyon and Elisseeff [110] and although computationally expensive, it can be 

done if the number hyperparameters and values are not too large. 

The model was then trained and tested. Out of all the combination, the one with 

the highest F1-Score was kept and used to train the model. 

4.5.3 Model Training 

Finally, for both Velociraptor and Volatility, the three machine learning algorithms 

were used to trained models using the different feature reduction techniques and 

hyperparameter tuning mentioned in the previous sections. For each algorithm, 11 different 

combinations of trained models were generated, as shown by Table 12. The five feature 

selection techniques chosen for this thesis are all features (all), positive PPS correlation 

(PPS), PCA with 95% variance retained (PCA95), PCA with 99% variance retained 

(PCA99) and top 20 features based on feature_importances (Top20). For each of those, 

two tuning methods were used, Grid Search or Exhaustive. A third method, default 

parameters, was used only once for comparison purposes with all features. 
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Table 12—Trained model combinations 

Features Tuning 

All features Default parameters 

All features Grid Search 

All features Exhaustive 

Positive PPS correlation Grid Search 

Positive PPS correlation Exhaustive 

PCA with 95% variance retained Grid Search 

PCA with 95% variance retained Exhaustive 

PCA with 99% variance retained Grid Search 

PCA with 99% variance retained Exhaustive 

Top 20 features with feature_importances Grid Search 

Top 20 features with feature_importances Exhaustive 

 

In summary, for each of the two methodologies, each combination shown in 

Table 12 were used to train a machine learning model. This was done three times, once for 

each of the three machine learning algorithms. This mean that for each of the 2 

methodology, 33 different models were trained and evaluated. 

In Figure 53, the methodology presented in this section is summarized. The data 

was collected using Velociraptor the implemented method and Volatility for the validation 

method. For each method, features were generated. From this initial feature set, five 

different reduced feature sets were used to train a machine learning model. The 

hyperparameters were tuned using the default hyperparameters values, Grid Search or 

Exhaustive Search. Finally, each model was trained using one of the three algorithms, 

Isolation Forest, Random Forest and SVM. In the next section, the results of the last stage 

of the machine learning pipeline, results, is presented and discussed.  
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Figure 53—Summary of the methodology used for both methods to train the machine learning models  
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Section 5 

Results 

This section describes the results obtained from the experiment using Volatility 

and Velociraptor. The overall performance metrics obtained during the tests are presented, 

as well as the types of malware that were missed. It also provides context with regard to 

the results implication and how it fits with the research question. 

The aim of this thesis is to propose an automated solution based on digital forensics 

and machine learning to detect intrusions proactively across multiple computers. The 

experiment was conducted with the enterprise network and collection methodology 

explained in Section 4.2.4. The results show that the implemented method based on 

Velociraptor and machine learning is effective at detecting malware compared to using 

Volatility and machine learning. In this section, those two methodologies are referred to as 

Velociraptor and Volatility, respectively. 

5.1 Results 

The results of the different trained machine learning models discussed in Figure 53 

are presented. The implemented method using Velociraptor is compared, algorithm by 

algorithm, with the validation methodology using Volatility. Results obtained with 

Isolation Forest are discussed in Section 5.1.2, Random Forest in Section 5.1.3, and SVM 

is Section 5.1.4. 

5.1.1 Performance Metrics 

Each model was evaluated using accuracy, precision, recall and F1-Score. Those 

metrics were covered in Section 2.1. Equations 1–4 provided details regarding those four 

metrics, respectively. This section provides more practical details about those metrics and 

their implications relating to this thesis. 
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Accuracy provides some indication of a model performance. However, on its own, 

it is not the most useful metric. This is due to the fact that it only represents the percentage 

of correctly classified samples. For imbalanced datasets such as the one used in this thesis, 

it is not very useful, as a classifier which would identify all the samples as normal data 

would still achieve a high accuracy [7]. 

Precision is a metric that shows how many of the samples identified as malicious 

are indeed malicious. It does not take into account missed malware samples. A high 

precision score indicates that few normal benign data has been classified as anomalous [7]. 

Recall improves from this as it indicates how many of the malware samples were 

correctly classified. A perfect classifier which has correctly identified all malware samples 

would have a recall value of 1. It does not indicate, however, how many false positives 

were generated to reach that score [7]. 

Finally, the F1-Score combines precision and recall to provide a more complete 

picture of the overall performance of the algorithm. The F1-Score is calculated using the 

harmonic mean of precision and recall. A high F1-Score indicates that both precision and 

recall values are high [7]. 

F1-Score was used as the main comparison metric and for the algorithm tuning as 

false positives need to be kept at a reasonable level in order for a classifier to be useful at 

detecting malware; if too many false positives are identified, it is difficult to find the actual 

malware samples among the benign samples. As such the best models for each algorithm 

were selected based on the F1-Score. Therefore, it provides a better overall assessment of 

the results. All four metrics are shown in the tables presenting the results from the thesis 

experimentation. 

5.1.2 Isolation Forest 

In this section, the results of each model trained with Isolation Forest for both 

Volatility and Velociraptor are presented. 
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The results for Volatility are shown in Table 13. In the table, each row represents 

a different combination of selected features and hyperparameter tuning technique, as 

explained in Section 4.5.3. Each of those settings were used to train a different machine 

learning model, using Isolation Forest. For each of the 11 models in Table 13, the accuracy, 

precision and recall values are displayed. The trained model with the highest F1-Score is 

identified in bold. Table 13 to Table 18 are all organized the same way, using their 

respective method and algorithm. 

While the accuracy is relatively high for all models, the precision, recall and F1-

Score are very low. As explained in Section 5.1.1, this means that while most of the data 

points were correctly classified as non-malicious, it did not perform well. Since the dataset 

is very unbalanced, a high accuracy value is irrelevant on its own. Some models had a score 

of 0 for precision, recall and F1-Score, such as the PCA99 tuned with Grid Search; this 

means that the classifier identified all the samples as benign and non-malicious, even if the 

accuracy value was of 0.976. This also indicates that the model could not effectively isolate 

the outlier data points. One of the reasons is that data points could be too closely grouped 

together for the Isolation Forest algorithm to effectively identify outliers.  

The model which showed the best performance was trained with all features and 

the manual exhaustive turning method, with an F1-Score of 0.276, which is still low. The 

recall value of this model was of 0.216, which means that only 21.6% of the malware 

samples were considered anomalous. In addition, the precision value showed that only 

38.1% of the samples identified as malicious were indeed malicious. 
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Table 13—Results using Isolation Forest with Volatility 

Features Tuning Accuracy Precision Recall F1-Score 

All Default 0.949 0.429 0.129 0.198 

All Grid Search 0.981 0.000 0.000 0.000 

All Exhaustive 0.971 0.381 0.216 0.276 

PPS Grid Search 0.985 0.000 0.000 0.000 

PPS Exhaustive 0.985 0.000 0.000 0.000 

PCA95 Grid Search 0.984 0.000 0.000 0.000 

PCA95 Exhaustive 0.969 0.143 0.100 0.118 

PCA99 Grid Search 0.976 0.000 0.000 0.000 

PCA99 Exhaustive 0.951 0.571 0.162 0.253 

Top20 Grid Search 0.973 0.000 0.000 0.000 

Top20 Exhaustive 0.969 0.143 0.100 0.118 

 

In Figure 54, a two-dimension reduction using PCA of the Volatility entire dataset, 

is used to visually examine the data. The colours in the plot represent the labels of the data. 

The blue points represent the baseline collections, and the orange points represent the 

malware collections. It can be observed that the orange points are concentrated in the 

bottom left corner. This can make it difficult for Isolation Forest to select these points as 

outliers, potentially explaining its poor performance. 
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Figure 54—PCA reduction to two dimensions of the Volatility entire dataset, with normal data points 

shown in blue and malware points shown in orange 

For Velociraptor, the performance of the models trained with Isolation Forest are 

presented in Table 14. The model that achieved the best performance was also using the 

top 20 features with the manual exhaustive tuning method, this time with a F1-Score of 

0.844. In addition, 75% of the malware samples were found, with a precision score of 

85.7%. While the overall performance is still low, it is much better than what was obtained 

with Volatility. 
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Table 14—Results using Isolation Forest with Velociraptor 

Features Tuning Accuracy Precision Recall F1-Score 

All Default 0.935 0.952 0.313 0.471 

All Grid Search 0.970 0.048 0.500 0.087 

All Exhaustive 0.987 0.857 0.750 0.800 

PPS Grid Search 0.964 0.048 0.167 0.074 

PPS Exhaustive 0.971 0.667 0.519 0.583 

PCA95 Grid Search 0.964 0.000 0.000 0.000 

PCA95 Exhaustive 0.961 0.286 0.333 0.308 

PCA99 Grid Search 0.962 0.000 0.000 0.000 

PCA99 Exhaustive 0.977 0.571 0.632 0.600 

Top20 Grid Search 0.978 0.381 0.800 0.516 

Top20 Exhaustive 0.990 0.905 0.792 0.844 

 

Looking at the data separation for Velociraptor, a trend similar to Volatility is 

observed. In Figure 55, a two-dimension reduction using PCA of the Velociraptor entire 

dataset is used to visually examine the dataset. The colours in the plot represent the labels, 

with the blue points representing the baseline collection and the orange points representing 

the malware collections. The malware samples are located on the right of the plot. 

However, the identification of outliers would be difficult without increasing the 

contamination rate significantly, to a point where too many alerts would be generated. 
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Figure 55—PCA reduction to two dimensions of the Velociraptor entire dataset, with normal data 

points shown in blue and malware points shown in orange 

For both methods, Isolation Forest was not the most effective algorithm. However, 

Velociraptor obtained a much higher F1-Score compared to Volatility. 

5.1.3 Random Forest 

In this section, the results of each model trained with Random Forest for both 

Volatility and Velociraptor are presented. In both cases, it showed more potential and better 

overall results for both algorithms, as shown in Table 15 and Table 16. 

For Volatility, four models led to an F1-Score of 0.865: using the default settings 

or the manual exhaustive search with all features and with the manual exhaustive search or 

Grid Search with the top 20 features. Those four models were able to detect all the malware 

samples with 76.2% precision. The results are shown in Table 15. 
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It is interesting to see that the recall values are of either 1.000 or 0.000. This 

suggests that some overfitting could exist in the current dataset. This issue is discussed in 

Section 5.3.2. 

Table 15—Results using Random Forest with Volatility 

Features Tuning Accuracy Precision Recall F1-Score 

All Default 0.997 0.762 1.000 0.865 

All Grid Search 0.996 0.714 1.000 0.833 

All Exhaustive 0.997 0.762 1.000 0.865 

PPS Grid Search 0.990 0.333 1.000 0.500 

PPS Exhaustive 0.990 0.333 1.000 0.500 

PCA95 Grid Search 0.985 0.000 0.000 0.000 

PCA95 Exhaustive 0.985 0.000 0.000 0.000 

PCA99 Grid Search 0.985 0.000 0.000 0.000 

PCA99 Exhaustive 0.986 0.048 1.000 0.091 

Top20 Grid Search 0.997 0.762 1.000 0.865 

Top20 Exhaustive 0.997 0.762 1.000 0.865 

 

For Velociraptor, the same trend was visible, but was more pronounced. The recall 

values were also of either 1.000 or 0.000, but so were the F1-Scores. All models, except 

PCA, achieved 100 percent across all metrics with a perfect classification, while the four 

models using PCA detected none of the malware. This issue is discussed in Section 5.3.2. 

Table 16 shows the results for Random Forest with the Velociraptor dataset. 
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Table 16—Results using Random Forest with Velociraptor 

Features Tuning Accuracy Precision Recall F1-Score 

All Default 1.000 1.000 1.000 1.000 

All Grid Search 1.000 1.000 1.000 1.000 

All Exhaustive 1.000 1.000 1.000 1.000 

PPS Grid Search 1.000 1.000 1.000 1.000 

PPS Exhaustive 1.000 1.000 1.000 1.000 

PCA95 Grid Search 0.970 0.000 0.000 0.000 

PCA95 Exhaustive 0.968 0.000 0.000 0.000 

PCA99 Grid Search 0.968 0.000 0.000 0.000 

PCA99 Exhaustive 0.970 0.000 0.000 0.000 

Top20 Grid Search 1.000 1.000 1.000 1.000 

Top20 Exhaustive 1.000 1.000 1.000 1.000 

 

Using Random Forest, the optimal models for both methods were able to detect all 

the malware samples as they have a recall value is of 1.000. However, both Volatility and 

Velociraptor showed signs of overfitting. This could be due to repetition in the dataset, as 

indicated in the correlation matrix and the PPS matrix in Section 4.2.5, or to simpler cross-

validation method used since there were not enough malware samples in the dataset. This 

issue is discussed in Section 5.3.2. In terms of validation, Velociraptor outperformed 

Volatility and was able to detect all the malware samples. 

5.1.4 Support Vector Machine 

In this section, the results of each model trained with SVM for both Volatility and 

Velociraptor are presented. Both methods were able to detect most of the malware samples, 

as shown in Table 17 and Table 18. 

For Volatility, the best model with SVM was using all features tuned with Grid 

Search and manual exhaustive search. Both models led to a F1-Score of 0.857. The results 

are shown in Table 17. The default configuration, which was not tuned, and both models 

using the PPS feature reduction method, which only used one feature, had the worst results. 
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This is likely due to the PPS feature set only having one feature. Thus, this method was not 

an effective feature reduction technique for Volatility. 

Table 17—Results using SVM with Volatility 

Features Tuning Accuracy Precision Recall F1-Score 

All Default 0.985 0.000 0.000 0.000 

All Grid Search 0.996 0.857 0.857 0.857 

All Exhaustive 0.996 0.857 0.857 0.857 

PPS Grid Search 0.985 0.000 0.000 0.000 

PPS Exhaustive 0.985 0.000 0.000 0.000 

PCA95 Grid Search 0.959 0.143 0.068 0.092 

PCA95 Exhaustive 0.959 0.143 0.068 0.092 

PCA99 Grid Search 0.981 0.143 0.231 0.176 

PCA99 Exhaustive 0.981 0.143 0.231 0.176 

Top20 Grid Search 0.995 0.857 0.818 0.837 

Top20 Exhaustive 0.995 0.857 0.818 0.837 

 

For Velociraptor, four models led to a perfect classification: using all features with 

the manual exhaustive search, PPS with the manual exhaustive search and both methods 

using the top 20 features. The results are presented in Table 18. In addition, similarly to 

Random Forest, the recall values were of either 0.000 or 1.000. This issue is discussed in 

Section 5.3.2. 
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Table 18—Results using SVM with Velociraptor 

Features Tuning Accuracy Precision Recall F1-Score 

All Default 0.999 0.952 1.000 0.976 

All Grid Search 0.999 0.952 1.000 0.976 

All Exhaustive 1.000 1.000 1.000 1.000 

PPS Grid Search 0.997 0.905 1.000 0.950 

PPS Exhaustive 1.000 1.000 1.000 1.000 

PCA95 Grid Search 0.961 0.000 0.000 0.000 

PCA95 Exhaustive 0.955 0.000 0.000 0.000 

PCA99 Grid Search 0.964 0.000 0.000 0.000 

PCA99 Exhaustive 0.958 0.000 0.000 0.000 

Top20 Grid Search 1.000 1.000 1.000 1.000 

Top20 Exhaustive 1.000 1.000 1.000 1.000 

 

Using SVM, the optimal models for both methods were able to detect most of the 

malware samples. However, the perfect classification is an issue and is discussed in 

Section 5.3.2. 

The results presented in this section showed that some of the samples were not 

detected by the algorithms. The next section analyses which malware types were detected 

or missed. 

5.2 Missed Malware 

In order to determine which malware were missed by the two methods, the best 

trained model for each algorithm, based on the F1-Score, was reused for both Volatility 

and Velociraptor. Those models were identified in bold in Table 13 to 

Table 18. If more than one model proved optimal, one was selected. The fitted 

models using those features and tuning settings were then used to classify the entire dataset, 

so that all 41 malware samples could be analyzed. Once all the data was classified, the 

name and details of each malware were appended to the results based on the hostname and 
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timestamp. It was then possible to analyze which malware sample and malware types were 

detected or missed for each method. 

Table 19 shows the detection rates of Volatility for each malware types, for each 

algorithm. For example, for the first row, Credential Stealing malware, which has 2 

samples, Isolation Forest found none of the 2 malware samples, while Random Forest and 

SVM found all two. Isolation Forest did underperform compared to the other two 

algorithms. It missed all the credential stealing, persistence and the ransomware samples. 

It also did poorly with the rootkit samples. This is surprising as the paper from Cohen and 

Nissim [4], on which most of the Volatility features were based from, had much better 

results. This is covered in Section 5.3.1. Only the data exfiltration and the post-exploitation 

tool instances were detected. Random Forest and SVM were able to detect most malware, 

but also had difficulties with the RATs and the rootkits. Random Forest missed both the 

CatfishFileSchredder and CatfishSocket1 RATs as well as three out the five instances of 

the hidden rootkit. SVM missed the same RATs but only missed the hidden file instance 

of the hidden rootkit. 

Table 19—Volatility malware type detection, by algorithms 

Malware Type Malwares IF Detection RF Detection SVM Detection 

Credentials 

Stealing 

2 0.00 100.00 100.00 

Data Exfiltration 1 100.00 100.00 100.00 

Persistence 7 0.00 100.00 100.00 

Post-exploitation 

tool 

3 100.00 100.00 100.00 

RAT 21 28.57 90.48 90.48 

Ransomware 1 0.00 100.00 100.00 

Rootkit 6 16.67 50.00 83.33 

 

For Velociraptor, the results are shown in Table 20. The best models for Random 

Forest and SVM led to 100 percent detection, while Isolation Forest missed some of the 

Credential Stealing malware, namely CatfishPersister ran with user-level privilege, as well 
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as all data exfiltration attempts and some of the RATs samples, such as CatfishPowershell1, 

CatfishExplorer, Cobalt Strike process injection and screenshot. 

Table 20—Velociraptor malware type detection, by algorithms 

Malware Type Malwares IF Detection RF Detection SVM Detection 

Credentials 

Stealing 

2 50.00 100.00 100.00 

Data Exfiltration 1 0.00 100.00 100.00 

Persistence 7 100.00 100.00 100.00 

Post-exploitation 

tool 

3 100.00 100.00 100.00 

RAT 21 80.95 100.00 100.00 

Ransomware 1 100.00 100.00 100.00 

Rootkit 6 100.00 100.00 100.00 

5.3 Discussion 

The same methodology was used for both Volatility and Velociraptor in an effort 

to facilitate the comparison of both tools and validate the implemented methods. For each 

of the three algorithms, Velociraptor outperformed Volatility. However, some questions 

arise. 

5.3.1 Volatility Performance 

An interesting finding was that the machine learning algorithms, using features 

generated from Volatility, performed poorly when trying to detect rootkits. This is 

surprising because the paper from Cohen and Nissim [4], on which most of the Volatility 

features were based on, had much better results at detecting their ransomware samples and 

RATs samples. In addition, Wang et al. [5], who based their work on rootkit detection on 

[4] also had better results on rootkit detection. While some features could not be 

implemented in this thesis, as mentioned in Section 4.2.3.1, a higher detection rate was 

expected due to the sum of the selected features from Cohen and Nissim [4], Wang et al. [5] 

and Panker and Nissim [6]. 
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In Table 21, the results from this thesis, from Cohen and Nissim [4] experiment 

with RAT and Ransomware and from Wang et al. [5] are presented. While this thesis 

achieved a higher recall value, the F1-Score is much lower. This is due to a higher number 

of false positives obtained. While all the malware samples were correctly classified, 

multiple samples from the baseline were misclassified. 

Table 21—Comparison of the results obtained with Volatility with the works from Cohen and 

Nissim [4] and Wang et al. [5] 

Features Malware 

Type(s) 

Algorithm Recall F1-Score 

This Thesis Multiple RF 1.000 0.865 

Cohen and Nissim Ransomware RF 0.923 0.924 

Cohen and Nissim RAT RF 0.927 0.947 

Wang et al. Rootkit RF 0.984 0.986 

 

The methodology used by Cohen and Nissim [4] and Wang et al. [5] had some 

similarities with the method used in Section 4. However, they were some key differences 

between theirs and the methodology presented in this thesis. 

 First, Cohen and Nissim [4] used virtual machines on an ESXi Server using in 

vSphere. The CSTE environment used for this paper works in the same way and also has 

vSphere as the client-server interface. However, a key difference lies in the collection 

methodology. They used VM snapshots to collect the virtual memory. They used the virtual 

memory file from a snapshot of the virtual machine, the *.vmsn file. From there, they 

extracted the volatile memory data and saved to a *.dmp memory capture file. The idea 

was that even if a malware has VM evasion capabilities, it cannot interfere with the 

hypervisor and the memory capture [4]. However, in this thesis, a live-memory capture 

was performed using the Dumpit software. The Volatility executable was then run locally 

on the newly generated files. The resulting plugins’ output, JSON files, were then exported 

to a server for analysis. The advantage of this method is that it is applicable to a non-

virtualized environment, while snapshots can only be performed in virtualized 

environment. 
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Second, another important difference in methodology is the baseline generation. 

Cohen and Nissim [4] have set up a web server in their environment, so that the computers 

would browse websites on this server. 100 snapshots were taken, at ten-minute intervals. 

The last snapshot was also used as the clean state recovery point after running programs. 

Once the baseline was generated, they ran nine programs, four benign (Process Monitor, 

Wireshark, the Microsoft Windows default Disk Defragmenter utility tool and Avast anti-

virus) and five malicious ransomware (Cerber, TeslaCrypt, Vipasana, Chimeraand 

HiddenTear). For each of those nine programs, 100 more snapshots were taken before 

reverting to the clean state, again at ten-minutes intervals. This was done so that the 

progression of file encryption could be detected throughout the multiple snapshots. An 

advantage of this methodology is that if important data was paged on the disk and not 

available in memory at a certain point in time, the next memory capture may be able to 

catch it, which mitigates this issue [4]. In total, 1000 snapshots were processed by their 

algorithms. This differs from the methodology used for this thesis as it involved a 

sophisticated user simulation using HALO to collect a robust baseline. In addition, each 

malware collection was done once during the malware execution, after enough time had 

elapsed, so that the main characteristics could be detected. This generated 41 malware 

samples, in comparison to the 500 samples they generated with their five malwares. Also, 

no benign programs were installed. Instead, the HALO agent ran multiple programs, 

including Microsoft Office tools, during the baseline collection as part of its profile.  

A third difference is that only one memory capture for each malware was done and 

could have affected the performance of the implemented methodology; less malware 

sample makes it more difficult to perform a robust cross-validation, but having multiple 

samples nearly identical can be repetitive and affect performance. 

Lastly, the fact that more noise was generated in the baseline generated with 

HALO vs the baseline generated by Cohen and Nissim [4] as they only used HTTP request; 

this could have impacted the strength of their methodology as their background activity 

was much simpler, which mean their malware would stand out more and would be easier 

to detect. 
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5.3.2 Perfect Classification 

Both Random Forest and SVM algorithms using Velociraptor features had 

instances with perfect classification, or very poor classification with both Random Forest 

and SVM. Those results are surprising and indicate some issues with the data processing 

and the results themselves. It can also be a sign of overfitting in the dataset. 

First, Random Forest does not require scaling. Tree-based algorithms such as 

Random Forest and Isolation Forest do not gain additional performance using scaling. 

Training the dataset with a non-scaled dataset for those two algorithms could improve 

performance. 

Second, some types of malware are under represented in the dataset. For example, 

there was only one ransomware and one data exfiltration tool used, but 21 RAT were used. 

In addition, the 19 samples generated using Cobalt Strike could have introduced some bias 

in the algorithm as part of the collection is similar, such as using the same tool command 

and control channel. 

Third, the class imbalance in the dataset may have caused part of the results shown 

in Table 16. There were only 41 malicious samples for 1340 benign samples for 

Velociraptor, and 2831 samples for Volatility. This means the ratios of malicious to benign 

samples was 0.031 and 0.0145, respectively. Two main techniques exist to fix this issue: 

under-sampling the majority class, or oversampling the minority class. Since the number 

of malicious samples is small compared to the overall collected data, under sampling is not 

implementable. Over-sampling the minority class is a better option as it generates more 

artificial malicious samples. However, random over-sampling can lead to overfitting that 

benefits the minority class [111]. A hybrid approach, data augmentation can be used. It is 

which is a technique used to artificially increase the data that can be used in the training 

set. It is used to improve the generalization of the model. This technique works by 

generating data points that have values similar to the real data points so they look 

realistic [7]. It can also under-sample the majority class as well to further increase 

performance. The Synthetic Minority Over-sampling Technique (SMOTE) [112] is a data 

augmentation method that could be used in future work to improve the results and can be 
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implemented using imbalanced-learn [113], which is compatible with SKLearn. Using 

those techniques would increase the number of data points in the dataset and enable the use 

of a more complex cross-validation using K-fold. It would also ensure the dataset would 

better generalize. 

Fourth, using both baseline samples and malware samples during the training could 

have impacted the results. Further experimentation with different dataset training, 

including training with only baseline data, should be performed. 

Fifth, performing multiple classifications using different testing and training set 

and taking the overall metrics for those approaches could give a better overall view of the 

performance of the methodology. Using only one testing and training set is very specific 

and the values could change. 

Finally, the perfect classification can be a sign of overfitting. Another method of 

reducing overfitting includes the use machine learning algorithms which uses bagging, 

such as bagging trees, or boosting, such as AdaBoost. This was both discussed in Section 

3.1.5.1.1 and 3.1.5.1.2. 

5.4 Validation 

The aim of this thesis is to propose an automated solution based on digital forensics 

and machine learning to detect intrusions proactively across multiple computers. To 

validate this thesis, the implemented method of using Velociraptor and machine learning 

was compared to the validation method of using Volatility and machine learning. 

The validation method was designed by reproducing the experiment conducted by 

similar research; features from Cohen and Nissim [4], Wang et al. [5] and Panker and 

Nissim [6] were used to generate the validation dataset. From their research, 40 features 

generated from Volatility plugins were selected to train the machine learning models. 

To be validated, the implemented method, using Velociraptor, needed to 

outperform the Volatility method. The best results identified in Section 5.1, for each 
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machine learning algorithm, are presented in Table 22. In all three cases, the implemented 

methodology using Velociraptor outperformed the Volatility methodology. Of note, some 

of the performance metrics obtained a value of 1.000. A precision of 1.000 indicates that 

no false positives were detected, and a recall value of 1.000 indicates that no false negative 

were generated. 

Table 22—Comparison of Volatility and Velociraptor, for each algorithm 

Tool Algorithm Accuracy Precision Recall F1-Score 

Volatility IF 0.971 0.381 0.216 0.276 

Velociraptor IF 0.990 0.905 0.792 0.844 

Volatility RF 0.997 0.762 1.000 0.865 

Velociraptor RF 1.000 1.000 1.000 1.000 

Volatility SVM 0.996 0.857 0.857 0.857 

Velociraptor SVM 1.000 1.000 1.000 1.000 

 

Table 22 shows that the implemented methodology is valid and that using 

Velociraptor and machine learning is an effective method which can detect malware on 

multiple remote computers. In addition, it requires fewer computing resources and is more 

transparent to the user compared to Volatility, as mentioned in Section 3.4. 

The implemented method computationally less expensive at acquiring artifacts 

when compared to Volatility; Velociraptor does not need a memory capture to gather the 

data. This means that the implemented method can be applied in a physical network, while 

methodologies such as Cohen and Nissim [4] of using VM snapshots are limited to 

environment using VMs. While their approach has the advantage of generating a more 

trusted collection, as no malware can take control of the hypervisor from the VM, the 

system has to be frozen while the snapshot is taken. As their technique requires a 

hypervisor, it is limited to virtual environments.  
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Section 6 

Conclusion 

The aim of this thesis is to propose an automated solution based on digital forensics 

and machine learning to detect intrusions proactively across multiple computers. 

In the Literature Review, a comprehensive review of current research was 

presented. It covered different machine algorithms and how they work, the different types 

of IDS, including NIDS and HIDS, enterprise monitoring solutions and memory forensic 

tools and techniques. Additional information was also provided on machine learning 

algorithms and on malware in the Background section. This thesis built upon all those 

research experiments, as it used digital forensic techniques to collect digital artifacts. 

Velociraptor, an enterprise monitoring tool, was then used to analyze, with machine 

learning algorithms, host-based data to detect intrusions. This thesis addressed the 

limitations of current methodologies, such as current research not being implementable in 

a classic physical enterprise network.  

The implemented methodology of using Velociraptor outperformed  the validation 

method based on Cohen and Nissim [4], Wang et al. [5] and Panker and Nissim [6] 

research using the memory forensic tool Volatility and machine learning to detect malware. 

The features used in the validation methodology were trained with the same machine 

learning models as the implemented methodology, with the same malware samples. This 

validated both work and methodology, and showed that Velociraptor is an effective tool 

for this domain of research. Random Forest and SVM proved to be the most effective 

classifiers, achieving a perfect classification over the tested dataset for the implemented 

method, while the best model using the validation method achieved an F1-Score of 0.865, 

using Random Forest. 

However, although effective, the use of the Velociraptor offline collector to extract 

the artifacts and analyzed them outside the environment with machine learning algorithms 

has limitations. Since the acquisition is done directly on the live host, this means the 
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executable could be tempered with if an attacker managed to get administrative privileges. 

However, the detection of the events leading to this escalated privilege would still be 

detectable.  

Another limitation of this thesis is the small number of malware samples used 

reduced the strength of the classifier and made it more prone to overfitting. Solutions to 

this problem were discussed in Section 5.3.2 and include the use of data augmentation to 

artificially increase the number of malware samples. 

6.1 Contribution 

The implemented method, which used Velociraptor and machine learning, proved 

to be effective at detecting malware and was validated by outperforming similar research 

using Volatility and machine learning, such as Cohen and Nissim [4], Wang et al. [5] and 

Panker and Nissim [6]. As such, this thesis made the following contributions: 

1. the identification of Velociraptor as an effective tool that can be used to generate 

features to train a machine learning model which can effectively detect malware; 

2. the creation of an effective methodology to generate data; 

3. the identification of features that can detect the presence of malware on an active 

computer; and 

4. the comparison of three machine learning algorithms that can be used to find 

malware with this type of dataset. 

6.2 Future Work 

In the future, an implementation using the Velociraptor server, instead of the 

Velociraptor offline collector, could be used in a live environment to monitor and detect 

threats. This would be faster than the implemented methodology and would enable faster 

defensive countermeasures by network defenders, as they could interact with the infected 

host and respond directly by putting it in quarantine or killing the malicious process. The 

Velociraptor Server is not geared towards this type of automated analysis, therefore a new 
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program using the Velociraptor API would be needed to query and process the feature. The 

detection model could still be trained using the methodology presented in this thesis. 

In addition, this thesis only used a small number of malware samples to generate 

its dataset. In order to improve from this successful proof of concept, more malware 

samples would be needed through either acquisition of more malware binaries, or through 

data augmentation, so more cross-validation methods could be used, as discussed in 

Section 5.3.2. Other machine learning and deep learning algorithms could also be used to 

improve performance. 

In conclusion, this thesis successfully implemented a methodology to collect disk-

based and volatile artifacts using Velociraptor and process them using machine learning 

algorithms in order to classify the collected data. It also proved the research hypothesis that 

using both types of artifacts, disk-based and memory-based artifacts, provides a better view 

over the activities currently ongoing on the computer compared to only one type. 
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Annex A 

Velociraptor Features List 

Table A-1—Complete Velociraptor features list 

Type Feature Description Data 

Type 

Plugin 

API ProcessHollowing_suspicious_count Number of suspicious processes found by 

Hollow Hunter 

Int Custom.Windows.Detection.ProcessHollowing 

DLL num_Detection_ForwardedImports Number of dlls which are named the same 

as the DLL they are forwarding to 

Int Windows.Detection.ForwardedImports 

DLL mean_dll_path_len Mean length of the dll paths Float Windows.System.DLLs 

DLL max_dll_path_len Max length of the dll paths Int Windows.System.DLLs 

DLL median_dll_path_len Median length of the dll paths Float Windows.System.DLLs 

DLL mean_dll_entries Mean number of dll per process Float Windows.System.DLLs 

DLL max_dll_dll_entries Max number of dll per process Int Windows.System.DLLs 

DLL median_dll_dll_entries Median number of dll per process Float Windows.System.DLLs 

Events num_unique_ProcessName_EventLogs_AlternateLogon Number of logons specifying alternate 

credentials 

Int Windows.EventLogs.AlternateLogon 

Events num_unique_TargetUserName_EventLogs_AlternateLo

gon 

Number of unique Target User Name in 

the AlternateLogon EventLog 

Int Windows.EventLogs.AlternateLogon 

Events num_unique_TargetServerName_EventLogs_AlternateL

ogon 

Number of unique Target Server Name in 

the AlternateLogon EventLog 

Int Windows.EventLogs.AlternateLogon 

Events num_ps_severity Number of unique levels of severity Int Windows.EventLogs.PowershellModule 

Events num_ps_cmd_type Number of unique type of commands Int Windows.EventLogs.PowershellModule 

Events num_ps_cmd_name Number of unique command name Int Windows.EventLogs.PowershellModule 

Events num_ps_User Number of unique users Int Windows.EventLogs.PowershellModule 
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Events num_ps_host_applications Number of host application Int Windows.EventLogs.PowershellModule 

Events num_type_logon_RDPAuth Number of unique logon type Int Windows.EventLogs.RDPAuth 

Events num_unique_EventID Number of unique event ID Int Windows.EventLogs.RDPAuth 

Events num_unique_users Number of unique users Int Windows.EventLogs.RDPAuth 

Events num_unique_tasks_EventLogs_ScheduledTasks Number of unique schedule tasks Int Windows.EventLogs.ScheduledTasks 

Events num_serviceCreationComspec Number of hits on the string “COMSPEC” 

in Windows Service Creation events. 

Int Windows.EventLogs.ServiceCre

ationComspec/ServiceCreation 

File 

System 

client_user_num Total number of users on the workstation Int Generic.Client.Info/Users 

File 

System 

user_logged_on_today Number of users that logged on today Int Generic.Client.Info/Users 

File 

System 

Atime_modified_30min Number of files Accessed in the 30 min 

before the collection 

Int Generic.Forensic.Timeline 

File 

System 

Mtime_modified_30min Number of files Modified in the 30 min 

before the collection 

Int Generic.Forensic.Timeline 

File 

System 

Ctime_modified_30min Number of files Created in the 30 min 

before the collection 

Int Generic.Forensic.Timeline 

File 

System 

num_downloads Number of downloaded files, based on the 

Zone.Identifier alternate data stream 

Int Windows.Analysis.EvidenceOfDownload 

File 

System 

num_executables Number of downloaded files that are of an 

executable format 

Int Windows.Analysis.EvidenceOfDownload 

File 

System 

macrofound Number of Office macros found by 

Velociraptor 

Int Windows.Applications.OfficeMacros.csv 

File 

System 

num_Detection_BinaryRename Number of renamed binaries commonly 

abused by adversaries detected by 

Velociraptor 

Int Windows.Detection.BinaryRename 

File 

System 

num_Detection_CryptnetUrlCache Number of detected downloads using 

Certutil 

Int Windows.Detection.CryptnetUrlCache 
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File 

System 

num_Detection_TemplateInjection Number of injected templates in Office 

documents 

Int Windows.Detection.TemplateInjection 

File 

System 

Mean_Forensics_Bam Mean time between program start Float Windows.Forensics.Bam 

File 

System 

num_Forensics_CertUtil Number of entries in the CertUtils Cache 

of downloaded files 

Int Windows.Forensics.CertUtil 

File 

System 

num_abnormal_lnk_path Number of abnormal paths for the link file Int Windows.Forensics.Lnk 

File 

System 

count_lnk_to_remote Number of lnk file pointing to a different 

host 

Int Windows.Forensics.Lnk 

File 

System 

num_Forensics_RecentApps Number of entries in the Recent App 

plugin 

Int Windows.Forensics.RecentApps 

File 

System 

bam_lateral_movement Number of entries in 

Artifact.Windows.Forensics.Bam with 

wmic.exe as the binary 

Int Windows.Packs.LateralMovement/BAM 

File 

System 

wmic_lateral_movement Number of entries in 

Artifact.Windows.Forensics.Prefetche 

with wmic.exe as the binary 

Int Windows.Packs.LateralMovement/WMIC 

Network URL_num number of URL Int Generic.Forensic.Carving.URLs 

Network max_URL_entropy Calculate the entropy of all URL found in 

the cache and return the maximum value 

Int Generic.Forensic.Carving.URLs 

Network max_SRUM_exfill Largest NetworkBytesRaw value per 

millisecond 

Float Windows.Forensics.SRUM/Execution Stats 

Network mean_SRUM_exfill Mean NetworkBytesRaw value per 

millisecond 

Float Windows.Forensics.SRUM/Execution Stats 

Network net_conn_amount Number of network connection Int Windows.Network.NetstatEnriched/Netstat 

Network tcp_conn_amount Number of TCP connection Int Windows.Network.NetstatEnriched/Netstat 

Network udp_conn_amount Number of UDP connection Int Windows.Network.NetstatEnriched/Netstat 

Network listen_amount Number of LISTEN connection status Int Windows.Network.NetstatEnriched/Netstat 
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Network established_amount Number of ESTABLISHED connection 

status 

Int Windows.Network.NetstatEnriched/Netstat 

Network close_wait_amount Number of CLOSE_WAIT connection 

status 

Int Windows.Network.NetstatEnriched/Netstat 

Network close_amount Number of CLOSE connection status Int Windows.Network.NetstatEnriched/Netstat 

Network different_tcp_port Number of unique TCP port Int Windows.Network.NetstatEnriched/Netstat 

Network different_udp_port Number of unique UDP port Int Windows.Network.NetstatEnriched/Netstat 

Registry avg_child_process Mean number of child process per process Float Generic.System.Pstree 

Registry max_child_process Max number of child process per process Int Generic.System.Pstree 

Registry median_child_process Median number of child process per 

process 

Float Generic.System.Pstree 

Registry svchost_not_services Number of svchost process where the 

parent process is not services.exe 

Int Generic.System.Pstree 

Registry num_Attack_ParentProcess Number of executables that are mapped by 

Velociraptor to the MITRE Att&ck 

framework 

Int Windows.Attack.ParentProcess 

Registry num_Detection_Impersonation Number of threads on the system which 

have an impersonation token 

Int Windows.Detection.Impersonation 

Registry num_Mutants_Handles Number of mutant found on the system Int Windows.Detection.Mutants/Handles 

Registry max_Mutants_Handles Maximum number of mutants found in a 

process 

Int Windows.Detection.Mutants/Handles 

Registry mean_Mutants_Handles Mean number of mutants in all processes float Windows.Detection.Mutants/Handles 

Registry amcache_lateral_movement Number of entries in 

Artifact.Windows.System.Amcache with 

wmic.exe as the binary 

Int Windows.Packs.LateralMovement/AmCache 

Registry shimcache_lateral_movement Number of entries in 

Artifact.Windows.Registry.AppCompatC

ache with wmic.exe as the binary 

Int Windows.Packs.LateralMovement/ShimCache 
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Registry Bootstraping_lateral_movement Number of programs with a debugger 

registry key 

Int Windows.Packs.Persistence/Debug 

Bootstraping 

Registry num_enabled_startup Number of Startup items that is not 

desktop.ini 

Int Windows.Packs.Persistence/Startup Items 

Registry num_wmi_event_filter_startup Number of permanent event listener 

within WMI 

Int Windows.Persistence.PermanentWMIEvents 

Registry num_powershell_reg Number of signatures related to general 

PowerShell execution in the user’s profile 

registry hive 

Int Windows.Persistence.PowershellRegistry 

Registry num_wow64cpu Number of wow64cpu.dll replacement 

Autorun in Windows 10 

Int Windows.Persistence.Wow64cpu 

Registry enabled_macro Number entries in the registry key 

indicating macro was enabled by user 

Int Windows.Registry.EnabledMacro 

Registry num_Registry_WDigest WDigest registry values on the filesystem Int Windows.Registry.Wdigest 

Registry num_AppcompatShims Number of application compatibility cache 

entries 

Int Windows.Sys.AppcompatShims 

Registry pipe_amount Number of pipes in use on the system Int Windows.System.Handles 

Registry num_proc_using_pipes Number of Processes with named pipes Int Windows.System.Handles 

Registry num_pipes_names Number of unique pipe names Int Windows.System.Handles 

Registry num_pipes_handles Number of unique pipe handles Int Windows.System.Handles 

Registry num_untrusted_binaries Number of common systems binaries that 

are signed and that the signature does not 

match 

Int Windows.System.UntrustedBinaries 
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