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Abstract

Jardine, Peter Travis. M.A.Sc. Royal Military College of Canada, April,
2015. Robust Model-Predictive Mission Planning for Unmanned Systems. Su-
pervised by Dr. S. Givigi.

This study investigates the use of Model Predictive Control (MPC) based
motion planning techniques for Unmanned Aerial Vehicle (UAV) ground at-
tack missions involving enemy defenses. This is accomplished through the de-
sign, implementation, and comparison of three different planning algorithms:
a technique using open-loop predictions; a technique using perturbations on
stabilizing feedback predictions; and a robust technique assuming the worst-
case scenario of uncertainty. In all cases, the range of enemy defenses is repre-
sented as specially constructed linear inequality constraints. The performance
of each technique is assessed using a simulated MATLAB environment. Re-
sults show that approximating the range of enemy defenses as linear inequality
constraints not only effectively ensures enemy avoidance, it also fits nicely into
the robust, Min-Max MPC formulation using semi-definite relaxations. The
robust technique produced stable, conservative solutions that adhered to con-
straints in the presence of uncertainty. Results also show these guarantees lead
to an exponential growth in computation time at larger prediction horizons.

iii



Résumé

Jardine, Peter Travis. M.A.Sc. Collège Militaire Royal du Canada, avril,
2015. Planification de mission pour les systèmes sans pilote basée sur une
commande prédictive robuste. Supervisé par Dr. S. Givigi.

Cette étude examine des techniques de la commande prédictive pour la
planification de mouvements pour les véhicules aériens sans pilote dans des
missions d’attaque au sol entre des défenses ennemies. Ceci est réalisé par la
conception, la mise en œuvre, et la comparaison de trois algorithmes de plan-
ification différents: une technique utilisant des prédictions en boucle ouverte;
une technique utilisant la prédiction de perturbations sur une rétroaction
stabilisé; et une technique robuste qui suppose le cas d’incertitude maxi-
male. Dans tous les cas, les défenses ennemies sont représentées selon des
constraintes d’inégalité linéaire. La performance de chaque technique est
évaluée en utilisant un environnement simulé dans MATLAB. Les résultats
démontrent que le traitement de défenses ennemies comme des contraintes
d’inégalité linéaire non seulement assure ainsi l’évitement de l’ennemi, il s’adapte
aussi bien dans la formulation de commande prédictive Min-Max robuste util-
isant des relaxations semi-définies. La technique robuste produit des so-
lutions stables et conservatrices qui respectent les contraintes en présence
d’incertitude. Les résultats démontrent aussi ces garanties exigent une crois-
sance exponentielle de temps de calcul à des horizons de prédiction plus longs.
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Résumé iv
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1 Introduction

This study investigates Unmanned Aerial Vehicle (UAV) motion planning for
ground attack missions involving enemy defenses. Specifically, it designs, im-
plements and compares three Model Predictive Control (MPC) based motion
planning algorithms while treating the range of enemy defenses as linear in-
equality state constraints. In recent years, UAVs have been successfully em-
ployed in support of combat operations around the world. Equipped with a
wide range of sensors and munitions, the RQ-1 Predator UAV has carried out
combat missions in Afghanistan, Iraq, Pakistan and North Africa [1]. Current
UAVs normally require a significant amount of human control, particularly for
high-level decision making [2]. This presents a number of limitations, includ-
ing the high communications bandwidth used for command and control and
the additional time required to include humans in the decision loop [3]. Over-
coming these limitations motivates research into autonomous UAVs capable
of making on-board decisions.

1.1 Motion Planning

An essential function of autonomous vehicles is the ability to make informed
decisions about motion planning [4]. Optimal motion planning techniques
should anticipate the future consequences of control actions while making the
most efficient use of limited resources [5]. This is particularly true for UAV
attack scenarios, where prolonged exposure to enemy defenses could result in
mission failure [3].

Motion planning is a well understood and studied problem. Over the
past fifty years, a wealth of innovative planning algorithms have been devel-
oped for use in computing, networking, transportation, chemical processing
and robotics. Most recently, MPC has emerged as a popular framework for
planning in complex environments because of its ability to produce optimized
solutions while guaranteeing adherence to state and input constraints [6]. The

1



1.2. Thesis Statement

main limitation of MPC is the complex computation required during optimiza-
tion, which can stymie attempts at real-time implementation [7]. However,
given certain assumptions, including the use of linear inequality constraints,
the MPC problem can be solved efficiently as a convex optimization [8]. Fur-
thermore, guarantees of stability and constraint adherence in the presence of
uncertainty are possible if the worst-case scenario of bounded disturbances is
used [9].

1.2 Thesis Statement

We demonstrate that MPC-based motion planning techniques can be used to
guide a UAV in ground attack missions involving enemy defenses. We consider
the performance of three variations of MPC-based motion planning:
• A nominal MPC-based motion planning algorithm using open-loop pre-

dictions;
• A closed-loop paradigm MPC-based motion planning algorithm which

optimizes perturbations on stabilizing feedback predictions;
• A robust Min-Max MPC-based motion planning algorithm which as-

sumes the worst-case scenario of bounded disturbances; and
In all cases, the range of enemy defenses are treated as constraints on the UAV
states in the form of linear inequality constraints. For the purpose of valida-
tion, we compare these techniques using a simulated MATLAB environment
and provide a theoretical analysis of stability.

1.3 Contributions

Through the investigation of these designs, this thesis makes the following
contributions:
• It formulates the UAV ground attack scenario described in [3] as a convex

quadratic program in the form of MPC using feedback predictions;
• It expands the linear inequality obstacle avoidance technique described

in [10] to include an exact linearization of UAV dynamics, closed-loop
feedback predictions, and robust guarantees of constraint satisfaction in
the presence of uncertainty;
• It applies the linear inequality semidefinite relaxation technique de-

scribed in [9] to solve the quadratic program while assuming the worst
case scenario of bounded disturbances;
• It provides a proof of stability for the system;

2



1.4. Organization

• It compares and contrasts the performance of three different MPC-based
motion planning techniques in terms of performance, robustness, com-
putation requirements and stability in the context of a UAV combat
mission; and
• It provides a theoretical foundation for future implementation of robust,

MPC-based motion planning in UAV ground attack missions involving
enemy defenses.

1.4 Organization

This study is divided into the following chapters: Chapter 2 provides a back-
ground of motion planning techniques; Chapter 3 describes the basics of MPC;
Chapter 4 formulates the UAV motion planning problem as a quadratic pro-
gram in the form of MPC; Chapter 5 presents results for the nominal MPC-
based planning solution; Chapter 6 presents results for a closed-loop paradigm
MPC-based planning solution; Chapter 7 presents results for the robust Min-
Max MPC-based planning solution; Chapter 8 provides a stability analysis of
the proposed MPC designs; Chapter 9 concludes the study; and Chapter 10
provides recommendations for future research.
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2 Motion Planning Background

This chapter provides a survey of literature related to motion planning for
autonomous vehicles. Early motion planning research focused on the short-
est path problem. These methods represented the search space as a set of
discrete, interconnected nodes and used brute force to find the optimal path.
As research matured, advanced techniques were conceived which incorporated
heuristics and reduced computation time. The need to plan routes through
uncertain or dynamic environments led to the development of reactive plan-
ners, which normally operated under the guidance of a global planner. More
advanced techniques have been developed to incorporate vehicle dynamics and
constraints specific to UAV ground attack scenarios. This chapter is divided
into the following sections: Section 2.1 describes early graph search techniques;
Section 2.2 describes reactive planning techniques; Section 2.3 describes ad-
vanced motion planning techniques for UAV ground attack scenarios; and
Section 2.4 summarizes the chapter.

2.1 Graph Search

Originally published in 1959, Dijkstra’s search algorithm was one of the ear-
liest motion planning algorithms [11]. As illustrated in Fig. 2.1, Dijkstra
represented the environment as a network of nodes, interconnected by paths
of definite cost. In the context of vehicle navigation, each node could represent
a position in free space, with the initial node being the initial position of the
vehicle. Dijkstra’s algorithm starts by assigning a value of zero to the initial
node and a value of infinity to all other nodes, including the goal node (i.e. de-
sired final location of the vehicle). All immediate neighbors of the initial node
are then examined and the total distances to them recorded. Each neighbor
then adopts this new cost if it is less than the value already assigned. After
this is accomplished for all neighbors, the node with the smallest assigned
value is selected as the next current node. Once a node has been visited, it is

4



2.1. Graph Search

never revisited. The process is repeated until the goal node is reached.

Figure 2.1: Illustration of graph search method for path planning

Assuming the destination is reachable, the resultant path will be the short-
est path. This method assumes a static network and fixed costs between each
node [12]. Though Dijkstra’s algorithm is sure to find the shortest path, large
computation times have been cited as a major shortcoming [12]. Recently,
Fan and Shi (2010) have improved the running efficiency of Dijkstra’s algo-
rithm through improved storage structures for application in network traffic
management [13].

In 1968, Hart, Nilsson, and Raphael [14] formally extended Dijkstra’s al-
gorithm to include heuristic information in the path costs. The total path cost
for each node is described as the sum of the real cost (as determined similar
to Dijkstra’s algorithm) and the heuristic value of the node. This heuristic
value could, for example, be based on the Manhattan or Euclidean distance
from the goal node. By selecting the node with the smallest total cost, the A*
search algorithm also takes into consideration whether the selected node leads
towards the goal. Provided a good heuristic function is used, A* effectively
reduces the number of nodes being examined, thereby reducing computation
time [12]. In a sense, Dijkstra’s algorithm could be considered a special case
of the A* algorithm, where the heuristic value is set to zero for all nodes [12].

Significant research has been accomplished aimed at modifying these algo-
rithms to reduce computation time and deal with time variant environments
[13]. In the simplest case, the A* search algorithm recalculates the shortest
path at regular intervals or each time a change in the environment is de-
tected. Many variations of these algorithms are described and compared by
Delling et al. (2009) [12]. The A* search algorithm and its derivatives are
used extensively throughout industry because they reliably produce complete
and optimal path finding solutions [15]. However, each technique assumes

5



2.2. Reactive Planners

complete knowledge of the environment and use deterministic state represen-
tations. Therefore, they do not consider the uncertainty, noise and imperfect
information present in many real-world scenarios. Also, the A* search algo-
rithm provides no consideration for system dynamics.

2.2 Reactive Planners

The path planning methods described in Section 2.1 depend on complete
knowledge of the environment. For this reason they are sometimes called
global planners. In practice, the precise location of moving obstacles cannot
always be predicted. This has led to the use of local-level, reactive planners in
conjunction with a global planner [16]. Reactive planners typically use on-line
sensor measurements to negotiate control inputs and handle unexpected situ-
ations. This approach effectively compensates for imperfections in the global
plan. The main drawback of treating the problem locally is that the final
solution is often not globally optimal [17]. Also, most methods only partially
account for system dynamics [18].

Position-based reactive approaches provide a change in direction to direct
the vehicle away from obstacles. Illustrated in Fig. 2.2, Potential Fields (PF)
is a well-known example of position-based obstacle avoidance [19]. PF rep-
resents the vehicle as a positively charged particle moving through a vector
field. This field could be in two or three dimensions. The goal is given a
negative charge and hence attracts the vehicle. Obstacles are given a posi-
tive charge, which acts as a repulsive force on the vehicle. The synthesis of
these forces guides the vehicle towards the goal while avoiding obstacles [5].
By considering only instantaneous position measurements, PF ignores system
dynamics.

6



2.2. Reactive Planners

Figure 2.2: Illustration of motion planning using potential fields

More advanced reactive planners are velocity-based. A popular example
is the Dynamic Window technique proposed by Fox, Burgard, and Thrun
(1997) [18]. This approach approximates the trajectory of the vehicle over
short intervals as a series of arcs. By reducing the possible solutions to a span
of velocity vectors, the Dynamic Window approach approximately accounts
for vehicle dynamics while avoiding overly complex computations [15].The
dynamics of the obstacles themselves are not considered, rather the most
recent sensor observation is used. This simplification reduces the complexity
of the problem, as it effectively assumes moving obstacles are static at each
time step [20]. The Dynamic Window technique does not provide formal
guarantees of stability in the presence of uncertainty.

A combined global and local path planner proposed by Xu, Stilwell, and
Kurdila (2010) [16] integrates the results from a globally computed plan with
the results of a locally computed plan. The global plan is executed at rel-
atively infrequent intervals (or just once off-line) and considers only fixed
elements in the environment such as floors, walls and static obstacles. This
global plan then guides the local planner, which is executed at a much higher
rate. The local planner relies on on-board sensors to navigate around unan-
ticipated obstacles. This method facilitates efficient motion planning without
full knowledge of the environment but does not fully consider system dynamics
or constraints during the planning phase.
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2.3 UAV Ground Attack Scenarios

Motion planning research for ground attack scenarios has focused mainly
on the problem of coordinating multiple UAVs. Few studies have demon-
strated the ability to provided stable, optimized control policies for ground
attack scenarios while incorporating system constraints and avoiding enemy
defenses in the presence of uncertainty. In [21], Schumacher (2005) of the Air
Force Research Laboratory presents a Cooperative Moving Target Engage-
ment (CMTE) control simulation, which coordinates the cooperative tracking
of moving ground targets. Sousa et al. (2004), developed a two-level hierar-
chy for planning and executing attacks against Surface-to-Air Missile (SAM)
and radar sites [22]. Their approach used risk-analysis to determine targeting
sequences and risk-adverse flight paths.

In [3], Suresh and Ghose (2012) present a generic battlefield scenario based
on layered defenses protecting a stationary ground target. As shown in Fig.
2.3, The Enemy Defense System Model consists of three concentric circles cen-
tered on a high-value target. This target could represent an enemy control
center, factory, or other strategic asset. Each layer is characterized by the
presence of different weapons platforms, such as static anti-aircraft missile
batteries or mobile anti-aircraft guns. When the UAV reaches a predeter-
mined distance from the target, the outermost defense layer is activated. As
the UAV successfully breaks through the outer defenses, the inner defenses are
activated is succession. The authors use Dubins’ paths to determine optimal
grouping patterns and routes for UAV strike teams. While this approach con-
siders vehicle dynamics and constraints in the planning stage, it does provide
guarantees of stability and constraint satisfaction in the presence of uncer-
tainty.
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Figure 2.3: Illustration of layered enemy defenses scenario used by Suresh and
Ghose (2012)

In [23], Hafez et al. (2015) use Model Predictive Control (MPC) and
Feedback Linearization to guide a team of UAVs for dynamic encirclement
of a ground target. Their research has been shown to be stable and imple-
mentable in real-time, though they do not consider obstacle avoidance in their
formulation. MPC will be discussed in greater detail in the next chapter.

2.4 Chapter Summary

This chapter provided a survey of literature related to motion planning for
autonomous vehicles. This included a brief description of early graph search
and reactive planning techniques. Several studies have focused on advanced
motion planning strategies that incorporate the dynamics and constraints re-
quired for UAV ground attack scenarios. In general, these methods do not
consider the effects of uncertainty in modeling and measurement. As will be
described in the following chapter, MPC can be used to provide optimized
control policies for multi-variable linear or non-linear systems while adhering
to hard constraints in the presence of uncertainty. Furthermore, guarantees
of stability and constraint satisfaction are possible given certain assumptions.
This makes MPC an ideal candidate for motion planning in UAV ground at-
tack scenarios.
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3 Model Predictive Control
Background

This chapter provides a survey of literature related to MPC-based motion
planning. MPC has gained recent popularity because of its ability to provide
optimized control policies for multi-variable linear or non-linear systems while
adhering to hard constraints on the states and inputs [24],[25]. The late 1990’s
saw an explosion of research into predictive model-based planners. These stud-
ies eventually evolved into a comprehensive framework, now nearly uniformly
recognized as MPC. Real-time implementation requires strict deadlines for
the availability of certain operational parameters. These time constraints can
be difficult to achieve for computationally intensive techniques such as MPC.
Later research aimed at formulating MPC problems in ways that are compu-
tationally efficient and tractable in real-time. One variation on the nominal
framework incorporates feedback in the prediction horizon. This closed-loop
paradigm technique improves the stability characteristics of the system if ap-
propriate feedback parameters are chosen. Adherence to hard constraints in
the presence of uncertainty is possible if the worst-case scenario of bounded
disturbances is used. This technique is known as Min-Max MPC. This chap-
ter is divided as follows: Section 3.1 describes the nominal MPC technique
for motion planning; Section 3.2 describes the closed-loop paradigm; Section
3.3 describes Min-Max MPC; Section 3.4 provides a brief overview of invari-
ant sets used for stability analysis; Section 3.5 describes various techniques
for incorporating obstacle avoidance in the MPC framework; and Section 3.6
summarizes the chapter.

3.1 Nominal MPC

The concept of MPC traces its roots back over forty years to the chemical
processing industry [26]. Since then it has been used in a wide range of
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applications and subject to numerous variations in design. Common examples
include: Identification and Command Method (IDCOM) [27], Dynamic Matrix
Control (DMC) [28], Receding Horizon Control (RHC) [6], Model Algorithmic
Control (MAC), Inferential Control (IC), and Internal Model Control (IMC)
[29],[30].

By the 1990s, the industrial success of MPC gained significant academic
attention. Since then, a comprehensive theory has emerged that includes
formal guarantees on stability and feasibility [29], [31], [32]. It would be
difficult to find a control strategy with such sound academic foundations that
is able to robustly provide optimal solutions while guaranteeing constraints
satisfaction [32]. For example, the classical Linear Quadratic Regulator (LQR)
is able to provide optimal control solutions, but this optimality is lost when
constraints are imposed through control signal saturation [33],[34].

Given a discrete-time system with dynamics governed by the equation

xk+1 = f(xk, uk) (3.1)

where xk ∈ Rnx and uk ∈ Rnu are the states and inputs with dimensions, nx
and nu, the MPC control law selects the input control sequence, u1:N over
finite prediction horizon, N that minimizes the objective function, J :

J(x1:N , u1:N ) = min
uk

jN (xN ) +
N−1∑
k=1

jk(xk, uk) (3.2)

where x1:N is the sequence of resultant states and jk is the incremental cost
at each step, k subject to constraints:

ck(xk, uk) ≤ 0 (3.3)

Fig. 3.1 provides an illustration of the input control sequence and states
over a finite prediction horizon.
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Figure 3.1: Illustration of MPC prediction horizon

The first input in the control sequence is executed and then a new plan is
developed. By replanning at each timestep, MPC is able to respond to changes
in the environment. The main limitation of MPC is the computational burden
of the optimization step. Recent advancements in optimization algorithms and
computing technology have allowed MPC to be used in fast-paced, real-time
applications such as autonomous vehicles [7]. One such method for achiev-
ing tractable solution was pioneered by Bemporad and Filippi (2001) [8] and
Tondel et al. (2001) [35]. Their approach presents the set of future states as
a piece-wise affine function (a series of interconnected linear systems) and for-
mulates the optimization as a multi-parametric, convex, quadratic program in
the form of a Linear Quadratic MPC (LQMPC) [36]. Given linear system dy-
namics, linear inequality constraints and a quadratic objective function, there
exists computationally efficient algorithms for solving these types of problems
[37] and [38].

3.2 Closed-loop Paradigm MPC

The closed-loop paradigm technique was first proposed by Kouvaritakis, Rossiter,
and Chang (1992) as part of a generalized MPC stability strategy [39]. The
concept uses a feedback control law to stabilize the system at each prediction
step while treating constraint handling as perturbations on this stabilizing
law. The perturbations are then used as the optimization variable, rather
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than the inputs themselves. [40]. For this study, the closed-loop paradigm
will serve as a necessary stepping stone towards formal guarantees stability in
the presence of uncertainty.

For example, given the dynamics described in (3.1), if the goal is to drive
xk to the origin, then we redefine the inputs as follows:

uk = −Lxk + pk (3.4)

where L is the gain defining the ideal control law and pk is a perturbation on
this law. We then redefine the objective function (3.2) as:

J(x1:N , p1:N ) = min
pk

jN (xN ) +
N−1∑
k=1

jk(xk, pk) (3.5)

Notice pk is the the optimization variable rather than uk. We select L such
that it is stabilizing in the unconstrained case. This introduces an underlying
stability provided the perturbations (i.e. the effect of constraints) converge to
zero over time and allow the unconstrained stabilizing law to take over [40],[32].
The value of these perturbations also provides useful information about the
effect constraints have on optimality, since larger perturbations mean larger
deviations from the ideal control law. Furthermore, this formulation will assist
with the formal robust stability analysis in later chapters.

3.3 Min-Max MPC

Almost all practical applications of MPC involve modeling errors or assump-
tions, process noise, disturbances, uncertain measurements and fluctuating en-
vironmental conditions. This motivates a desire for more robust performance,
including guarantees of feasibility and stability in the presence of uncertainty
[32]. The recursive nature of MPC provides a certain degree of robustness,
which may be sufficient for certain applications. However, a truly robust
analysis requires consideration of all possible realizations of uncertainty. The
seminal work of Campo and Morari (1987) was the first to formulate a robustly
stable MPC using the worst case scenario of uncertainty [41]. Their approach
involves a maximization of the objective function due to disturbances inside
of the greater minimization. For example, we redefine the dynamics in (3.1)
to include an uncertain term as follows:

xk+1 = f(xk, uk, dk) (3.6)
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where xk+1 is the state at time k + 1 when affected by bounded, uncertain
disturbance dk. We then redefine the objective function (3.2) to include the
maximum realization of this uncertainty as follows:

J(x1:N , u1:N ) = min
uk

max
dk

jN (xN ) +
N−1∑
k=1

jk(xk, uk) (3.7)

This method, normally referred to as Min-Max MPC, is now used exten-
sively throughout MPC literature. Kothare, Balakrishnan, and Morari (1996)
provided a technique for explicit incorporation of uncertainty via a convex
optimization using linear inequalities [42]. Löfberg (2003) was able to yield
tractable solutions to these optimization problems using semidefinite relax-
ations [43]. An excellent survey of constrained MPC focusing on issues of
stability and optimality is provided by Mayne et. al (2000) [29].

It will be shown in Chapter 8 that when formulated using the closed-loop
paradigm, Min-Max MPC can provide robust guarantees of stability in the
presence of bounded uncertainty. These guarantees require that the vehicle
be driven to an invariant set in finite time. This requires a number of special
assumptions, which will be covered in later chapters.

3.4 Invariant Sets

This section provides a brief description of invariant sets. This will be a useful
concept for analyzing the stability of the designs proposed in this study. For
a more detailed description of invariant sets and their applicability to more
general MPC stability analysis, refer to [44] and [45]. Consider a system with
states ẽ governed by linear dynamics Φ̃:

ẽk+1 = Φ̃ẽk (3.8)

Then set Ẽ is said to be positively invariant if:

ẽk ∈ Ẽ⇒ Φ̃ẽk ∈ Ẽ (3.9)

That is to say that once a state enters Ẽ it can no longer leave if governed
by the dynamics in (3.8). As described in the previous section, our stability
analysis will rely on guiding the vehicle to a positively invariant set containing
the origin.
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3.5 Obstacle Avoidance

There are various methods for incorporating obstacle avoidance in the MPC
framework. These can be considered in two broad categories: those which
discourage collisions as part of the objective function (i.e. as a potential field);
or those which represent obstacles as a constraint on the system states. In
[46], Chao et al. (2011) establish a dangerous distance between the vehicle and
the obstacle. If this distance is reached, the position and velocity orientation
information is used to predict the likelihood of a collision. If a collision is
anticipated, a cost is added to the objective function that discourages motion
in that direction.

In [47], Boccardo et al. (2005) simply adds an exponential term to the
objective function, which grows as the vehicle approaches an obstacle. Fahimi
(2007) takes a similar approach, instead using the inverse of the squared dis-
tance between the vehicle and obstacle to discourage collisions [48]. Frasch
et al. (2013) rely on an obstacle recognition algorithm to decide how best
to navigate around obstacles, considering them as constraints on the states
themselves [49].

Using linear, time-varying system dynamics, Mousavi et al. (2013) create
linear inequality constraints from points tangent to the Gaussian distribu-
tions of uncertainty around obstacles. These constraints are updated as the
system evolves. Since the set of feasible solutions takes the form of a convex
polytope, the optimization can be solved efficiently as a convex optimization
problem [10]. Their approach makes use of constraint softening, which does
not guarantee obstacle avoidance in the presence of uncertainty.

3.6 Chapter Summary

This chapter provided a survey of literature related to MPC-based motion
planning. It described three different MPC techniques: the nominal tech-
nique, the closed-loop paradigm, and Min-Max MPC. It also provided a brief
overview of invariant sets and various approaches for incorporating obstacle
avoidance into the MPC framework. If one considers the effective firing range
of the ground-based anti-aircraft weapons described in Section 2.3 as obstacles
in an MPC planning strategy, it would be possible to provide optimized con-
trol policies that guide a UAV to a fixed target while adhering to constraints.
Furthermore, given a quadratic objective function and linear inequality con-
straints, the entire MPC optimization could be solved efficiently, as a convex,
quadratic program. By incorporating feedback predictions and the worst-case
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scenario of bounded uncertainty, it would be possible to provide robust guar-
antees of stability. This suggests MPC is a potentially useful technique for
motion planning in UAV ground attack missions involving enemy defenses.
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4 Problem Formulation

Drawing from the discussions in Chapter 2 and Chapter 3, we now formulate
the problem in Section 2.3 in terms of MPC. Specifically, this chapter for-
mulates the UAV motion planning problem as a convex, quadratic program.
The scenario is based on the generic UAV ground attack mission described in
[3]. This chapter is divided into the following sections: Section 4.1 develops
a linearized model for UAV dynamics; Section 4.2 presents a simple propor-
tional feedback controller that allows enemy defense platforms to pursue the
UAV; Section 4.3 formulates the mission objective (i.e. to fly over a stationary
target) as the minimization of a quadratic objective function subject to state
and input constraints; and Section 4.4 provides a description of the simulated
environment used in this study. This problem formulation sets the stage for
subsequent chapters, which present various methods for solving the motion
planning problem.

4.1 Vehicle Dynamics

Consider a UAV at constant altitude with position coordinates x, y, and θ,
forward velocity, v, angular velocity, ω, and dynamics governed by:ẋẏ

θ̇

 =

v cos θ
v sin θ
ω

 (4.1)

where ẋ, ẏ and θ̇ are the time rate of change in position and orientation.
As described in [50], an exact linearization of the dynamics in (4.1) can be
achieved using the method of dynamic extension. This requires a change in

coordinates. Defining a vector, z =
[
x y

]T
, we want the error between z and

a desired vector, zd to approach 0 as t→∞. The second derivative, z̈ is then
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computed as:

z̈ =

[
cos θ −v sin θ
sin θ v cos θ

] [
v̇
ω

]
(4.2)

Assuming v 6= 0 and letting the input vector, u =
[
u1 u2

]T
= z̈, (4.2) is

rearranged and combined with (4.1) to obtain a new model for the vehicle as:
ẋ
ẏ

θ̇
v̇

 =


v cos θ
v sin θ

−u1
sin θ
v + u2

cos θ
v

u1 cos θ + u2 sin θ

 (4.3)

Given the change of variables, γ1 = x, γ2 = y, γ3 = ẋ, and γ4 = ẏ, (4.3) is
expressed as the following linear state space model:

γ̇1

γ̇2

γ̇3

γ̇4

 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



γ1

γ2

γ3

γ4

+


0 0
0 0
1 0
0 1

[u1

u2

]
(4.4)

The discrete form of (4.4) with sample time, dt is as follows:
γ1,k+1

γ2,k+1

γ3,k+1

γ4,k+1


︸ ︷︷ ︸

γk+1

=


1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

A


γ1,k

γ2,k

γ3,k

γ4,k


︸ ︷︷ ︸

γk

+


dt2

2 0

0 dt2

2
dt 0
0 dt


︸ ︷︷ ︸

B

[
u1,k

u2,k

]
︸ ︷︷ ︸
uk

(4.5)

where and A and B are the system and input matrices and γk and uk are
the state and input vectors at timestep, k. The vehicle position is measured
directly according to the measurement model:

ψk =

[
1 0 0 0
0 1 0 0

]
︸ ︷︷ ︸

C

γk (4.6)

where ψk is the measured output vector and C is the measurement matrix.

4.2 Enemy Dynamics

Mobile enemy defense platforms are assumed to have dynamics as described in
(4.1). As shown in Fig. 4.1, mobile platforms are able to track the UAV using
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a proportional feedback controller of the form: ue = Ke(γv − γe) , where γv
and γe are the states of the UAV and mobile platform, ue is the input vector
and Ke is the feedback gain matrix for the enemy platform. The dynamics of
the enemy platforms are constrained by a maximum velocity, which is imposed
by saturation.

Figure 4.1: Illustration of mobile enemy platform pursuing UAV

4.3 Mission Objectives

Based on the work of Suresh and Ghose (2012), Fig. 4.2 illustrates the ground
attack scenario considered in this study [3]. The UAV must pass through all
layers of the enemy defenses to fly over and destroy the target. Each weapon
system has a set of parameters that describe its firing range and mobility.
When the UAV comes within radius r1 of the target, the first layer of defense
is activated. At this point the mobile gun platforms operating within this
layer of defense can start pursuing the UAV. Once the UAV is within firing
range, the enemy can begin firing. Successive layers are activated as the UAV
closes in on the target. In all cases, the more time the UAV spends within
range of enemy defenses, the greater the likelihood it has of being destroyed.
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Figure 4.2: Battlefield scenario with enemy anti-aircraft weapons defending a
high-value target

The minimized objective cost, J∗ which drives the UAV towards a station-
ary target is then expressed as:

J∗(γ1:N ,∆u1:N ) = min
∆uk

N−1∑
k=0

[(ψr − ψk+1)TQ(ψr − ψk+1)

+ ∆uTkR∆uk + γTNPγN ]

(4.7)

where γ1:N and ∆u1:N are the states and incremental input changes at each
time step, k over finite prediction horizon, N ; ψk is the measured position of
the UAV; ψr is the measured position of the target (or, reference signal); Q and
R are the diagonal weighting matrices on the stage cost; and P is the diagonal
weighting matrix on the terminal cost. Minimizing (4.7) means minimizing the
distance between the UAV and the target while also minimizing the number
of input changes. We impose state and input constraints as conditions on the
optimization in the form of linear inequalities as follows:

MγΓ ≤ fγ
Mu∆U ≤ fu

(4.8)

where vectors Γ and ∆U are the stacked state and input increments over N ,
Mγ and Mu are constraint matrices, and fγ and fu are constraint vectors.

4.4 Simulation Setup

The motion planning solutions described in forthcoming chapters were imple-
mented and tested using MATLAB simulations. The CVX: Matlab Software
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for Disciplined Convex Programming (Version 2.1) was used to compute so-
lutions to the convex optimization problems [51].

Fig. 4.3 provides an illustration of the simulated MATLAB environment.
Positions in the environment are expressed in Cartesian x-y coordinates. Here
we see seven enemy defenses placed between the initial UAV position at
(1000, 0) and the target at (3000, 3000). Each scenario involved three en-
emy defense layers of radii 3000 m, 2000 m, and 700 m centered on the target.
Unless otherwise stated, the outer defense layer consisted of two enemy plat-
forms, each with an effective range of 400 m and maximum velocity of 20 m/s.
Effective range is defined as the range at which the enemy platform could use
its weapons to destroy the UAV.

The middle defense layer consisted of two mobile enemy platforms, each
with an effective range of 250 m and maximum velocity of 20 m/s. All mobile
platforms were assumed to be capable of firing while in motion and pursue the
UAV according to the dynamics described in Section 4.2. The inner defense
layer consisted of three static enemy platforms, each with a range of 250 m.
The UAV was given a maximum velocity of 60 m/s. These parameters were
based on the approximate capabilities of shoulder-mounted rocket propelled
grenade launchers, small arms and the RQ-1 Predator UAV described in [52].

Figure 4.3: Illustration of target and enemy defenses in MATLAB environment

At times, a small buffer zone was created around the range of each enemy
platform by increasing the radius of the constraint. This was meant to provide
some additional margin of safety since the enemy platforms are assumed static
during the prediction step. Given a buffer zone of 10 m, the new radius would
be computed as (r′e = re + 10 m). The values are based on the distance an
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enemy platform could travel in the given sample time. For example, given a
maximum velocity of 20 m/s and sample time 0.5s, it is feasible that the enemy
platform could be 10 m closer than expected after one timestep. Increasing
this buffer zone increases the margin of safety, but creates a more constrained
environment and hence is more challenging to solve.

A number of parameters were manipulated for the simulations in this
study. Where appropriate, the values for the following parameters are de-
scribed for each simulation:

Table 4.1: Description of simulation parameters

Parameter(s) Notation Description

Formulation - Type of MPC formulation*
Enemy Placement - Initial location of enemy platforms (x,y)
Horizon N Size of finite prediction horizon
Objective function Q : R Ratio of state and input cost weights
Sample time dt Time between discrete time increments
Process noise σw Standard deviation of process noise

*One of three formulations: nominal, closed-loop, or closed-loop (robust)

4.5 Chapter Summary

This chapter provided descriptions of the models, dynamics, objectives, and
simulated environments used in this study. Now that we have formulated the
UAV motion planning problem as a convex, quadratic program in the form of
MPC, we can use the three techniques from Chapter 3 to solve for optimized
motion plans.
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5 Nominal Solution

This chapter solves the problem in Section 4 as a convex, quadratic pro-
gramming optimization using the nominal MPC method. Nominal MPC is
characterized by the use of open-loop predictions and no representation of un-
certainty. Rossiter (2004) refers to this as the open-loop paradigm (OLP) [40].
This chapter is divided into the following sections: Section 5.1 presents the
evolution of system dynamics as a piece-wise affine function and incorporates
this into the quadratic objective function to achieve target tracking; Section
5.2 shows how the range of enemy defenses can be avoided using linear in-
equality constraints; Section 5.3 provides simulation results and analysis; and
Section 5.4 summarizes the chapter. With linear system dynamics, linear con-
straints and a quadratic objective function, the MPC optimization is convex
and hence can be solved efficiently [51].

5.1 Target Tracking

Based on the framework described in [36], this section develops a quadratic
program to track a stationary target. Assuming linear system dynamics, the
inputs can be redefined in terms of input increments as:

∆uk = uk − uk−1 (5.1)

and the standard linear state space model extended to include the new variable
γu,k = uk−1: [

γk+1

γu,k+1

]
︸ ︷︷ ︸

γ̄k+1

=

[
A B
0 I

]
︸ ︷︷ ︸

Ā

[
γk
γu,k

]
︸ ︷︷ ︸
γ̄k

+

[
B
I

]
︸︷︷︸
B̄

∆uk

where γ̄k is the new state vector including γk and γu,k; Ā is the corresponding
extended system matrix; and B̄ is the corresponding extended input matrix.
The measurement model is also extended to include this additional state:
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ȳk =
[
C 0 0

]︸ ︷︷ ︸
C̄

γ̄k

This relationship is simplified using a new notation:

γ̄k+1 = Āγ̄k + B̄∆uk (5.2)

and
ȳk = C̄γ̄k (5.3)

where ȳk indicates a measurement derived from the extended state vector,
γ̄k and C̄ is the corresponding extended output matrix. By expanding the
system dynamics and measurement model as a piece-wise affine function N
time steps into the future, we obtain the set of future measurements in terms
of the initial states and the control policy as follows:


ȳ1
ȳ2
ȳ3
...
ȳN


︸ ︷︷ ︸
Y

=


C̄ 0 0 ... 0
0 C̄ 0 ... 0
0 0 C̄ ... 0
...

...
...

. . .
...

0 0 0 ... C̄


︸ ︷︷ ︸

CCC




Ā
Ā2

Ā3

...
ĀN


︸ ︷︷ ︸
AAA

γ̄0 +


B̄ 0 0 ... 0
ĀB̄ B̄ 0 ... 0
Ā2B̄ ĀB̄ B̄ ... 0

...
...

...
. . .

...
ĀN−1B̄ ĀN−2B̄ ĀN−3B̄ ... B̄


︸ ︷︷ ︸

BBB


∆u0
∆u1
∆u2

...
∆uN−1


︸ ︷︷ ︸

∆U


(5.4)

or, simply:
Y = CCC(AAAγ̄0 +BBB∆U) = CCCΓ (5.5)

where Y and ∆U are the set of output and input vectors and AAA, BBB, and CCC are
derived from the expansion of Ā, B̄ and C̄ over N ; and Γ is the stacked state
vector:

Γ =


γ̄1

γ̄2

γ̄3
...
γ̄N

 (5.6)

By defining Yr as the set of target measurements (assumed stationary)
over N , we compactly define the tracking problem as:

J∗(γ̄1:N ,∆u1:N ) = min
∆U

(Y − Yr)TQQQ(Y − Yr) + ∆UTRRR∆U + γ̄TN P̄ γ̄N (5.7)
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where J∗ is the minimized objective cost and QQQ and RRR are the block diagonal
matrices constructed as follows:

QQQ =



Q̄1 0 0 0 0
0 Q̄2 0 0 0
0 0 Q̄3 0 0

0 0 0
. . . 0

0 0 0 0 Q̄N


,RRR =



R̄1 0 0 0 0
0 R̄2 0 0 0
0 0 R̄3 0 0

0 0 0
. . . 0

0 0 0 0 R̄N


where Q̄ and R̄ are the symmetric weighting matrices for the states and inputs.
By substituting (5.5) into (5.7) we find the tracking problem can be solved
using the following quadratic program [36]:

J∗(γ̄1:N ,∆u1:N ) = min
∆U

∆UT [BBBTCCCTQQQCCC BBB +RRR]∆U

+ 2[γ̄T0AAATCCCTQQQCCC BBB − YrTQQQCCC BBB]∆U

+ γ̄TN P̄ γ̄N

(5.8)

subject to constraints:

MγΓ ≤ fγ
Mu∆U ≤ fu

(5.9)

where Γ and ∆U are the stacked state and input vectors over the prediction
horizon, Mγ and Mu are constraint matrices, fγ and fu are constraint vectors
and P̄ is the weight of the terminal state cost.

Using (5.5), these constraints can be restated in terms of the optimizing
variable (∆U) as: [

MγBBB
Mu

]
∆U ≤

[
fγ −MγAAAγ0

fu

]
(5.10)

For this application, only the first optimized input is selected to drive the
system. At the next time step, a whole new plan is developed over horizon,
N . This approach is sometimes referred to as Receding Horizon Control [6].

5.2 Enemy Avoidance

This section develops a set of linear inequalities to approximate the range of
enemy defenses. These linear inequalities are then used as constraints on the
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5.2. Enemy Avoidance

optimization. Similar to the approach used by Mousavi et. al (2013), the
range of each enemy defense platform is treated as an obstacle [10]. Normally,
imposing a constraint on the system states based on the location of obstacles
creates a space of feasible solutions that is non-convex [10]. Therefore, the
optimization in section Section 4.3 would become non-convex and difficult
to solve. To conserve a convex region of feasible solutions, enemy avoidance
is achieved using linear inequality constraints placed along specially selected
points on the outer range of the enemy defenses.

Fig. 5.1 illustrates how linear inequality constraints can be used to avoid
enemy defenses. Given the position of the UAV (xv, yv) and position of an
enemy platform (xe, ye) with an effective firing range of radius re, we define
the straight line with length le and slope me between the center of mass of
the two objects. The point (xp, yp) lies on this line at a distance re from the
enemy defense. The linear inequality constraint is defined by the line with
slope perpendicular to me, tangent to the circle drawn around the enemy
platform of radius re and intersecting (xp, yp) (see Fig. 5.1).

Figure 5.1: Illustration of linear inequality constraints for enemy avoidance

Given slope me computed as follows:

me =
ye − yv
xe − xv

(5.11)
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5.2. Enemy Avoidance

then m′e = −1/me is the slope perpendicular to me. The angle θe between the
vehicle and the enemy platform with respect to the x-axis is computed as:

θe = arctan 2((ye − yv), (xe − xv)) (5.12)

Assuming the distance between the two objects is le, we use θe to find
(xp, yp) as follows: [

xp
yp

]
=

[
(le − re) cos θe + xv
(le − re) sin θe + yv

]
(5.13)

Therefore, for each obstacle at a given timestep, a linear inequality can
be used to constrain the UAV states to a region above or below the line with
slope me

′ intersecting (xp, yp) as follows:[
−me

′ 1 0 0 0 0
]
γ̄ ≤ −me

′xp + yp, if π ≥ θe > 0

[
me
′ −1 0 0 0 0

]
︸ ︷︷ ︸

Me,k

γ̄ ≤ me
′xp − yp︸ ︷︷ ︸
fe,k

, if π < θe ≤ 2π (5.14)

which is a relationship conditional on the value of θe. This condition on θe
ensures the UAV is forced to the correct side of the linear constraint. The
values of the constraint matrices Me,k and the constraint vectors fe,k will dif-
fer for each enemy platform at timestep, k. This linear inequality constraint
is assumed constant for the entire prediction horizon. Once the first opti-
mized input is executed, the UAV (and possibly the enemy platform) will
have moved. An updated set of linear constraints is then developed and used
for the next optimization. This process continues for each timestep until the
target is reached.

By assuming the enemy defense platform is static throughout the predic-
tion horizon, we can use (5.14) to construct the constraint matrix, Me and
constraint vector, fe for a single platform over horizon, N as:

Me,1 0 0 0
0 Me,2 0 0

0 0
. . . 0

0 0 0 Me,N


︸ ︷︷ ︸

Me

Γ ≤


fe,1
fe,2

...
fe,N


︸ ︷︷ ︸

fe

(5.15)

Additional enemy platforms are incorporated by stacking the correspond-
ing solutions to (5.15). By combining these constraints with those defined in
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(5.10), we obtain the full set of constraints for the system as a function of the
inputs: MγBBB

MeBBB
Mu

∆U ≤

fγ −MγAAAγ0

fe −MeAAAγ0

fu

 (5.16)

As shown by constraint 2 in Fig. 5.1, certain situations may find the
enemy platform placed directly between the UAV and target. In cases like this,
the linear inequality constraint would be perpendicular to the optimum flight
path and may not drive the UAV away from the enemy platform. To reduce
the likelihood of these head-on collisions, a special condition was used which
rotates the constraint by θd around the obstacle, encouraging the UAV to favor
one side. This was accomplished by computing the inequality constraint using
a new point (xp

′, yp
′) determined by the following rotational transformation:[
xp
′

yp
′

]
=

[
cos θd − sin θd
sin θd cos θd

] [
xp − xe
yp − ye

]
+

[
xe
ye

]
(5.17)

which effectively deflects the UAV to one side of the obstacle. For the simula-
tions described in this study, this transformation was only applied when the
angle between the UAV heading and θe were within 22.5◦ of each other. This
value was obtained through trial and error and would have to be tuned to suit
specific applications.

In summary, the full target tracking program as a function of inputs, in-
cluding enemy avoidance is as follows

J∗(γ̄1:N ,∆u1:N ) = min
∆U

∆UT [BBBTCCCTQQQCCC BBB +RRR]∆U

+ 2[γ̄T0AAATCCCTQQQCCC BBB − YrTQQQCCC BBB]∆U

+ γ̄TN P̄ γ̄N

subject to MγBBB
MeBBB
Mu

∆U ≤

fγ −MγAAAγ0

fe −MeAAAγ0

fu


5.3 Simulation and Results

The nominal MPC solution described in this chapter was tested in two sim-
ulations. The first simulation required the algorithm to plan a route to a
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stationary target while avoiding three static enemy defense platforms and
four mobile platforms capable of pursuing the UAV. A second simulation was
carried out using a single enemy platform to investigate the effect of the de-
flection angle described by (5.17) during head-on collisions. In all cases, the
system was assumed to be noiseless.

5.3.1 Static and Mobile Enemy Defenses

For this simulation, static and mobile enemy platforms were positioned as
shown in Table 5.1. A prediction horizon of 10, sample time of 0.5 s and
buffer zones of 75 m around mobile enemy platforms were used. As described
in Section 4.4, the buffer zone around enemy defenses was increased to provide
an added level of safety. The weighting matrices, Q and R were given equal
weights of 1:1. This simulation also made use of a deflection angle, θd = 30◦

to avoid head-on collisions. This deflection angle was selected through trial
and error to achieve the desired performance. Several figures are presented
which illustrate the behavior of the motion planning algorithm.

Table 5.1: Nominal simulation 1 parameters

Parameter(s) Notation Description

Formulation - Nominal
Static Enemy Placement - (2500, 3000)

(3500, 3000)
(3000, 2500)

Mobile Enemy Placement - (3000, 700)
(1400, 1150)
(3500, 1800)
(2500, 1700)

Horizon N 10
Objective function Q : R 1:1
Sample time dt 0.5 s
Process noise σw 0

In Fig. 5.2 we see the simulated UAV successfully navigate to the target
at position (3000, 3000). A closer look at the observed distance from enemy
defenses throughout the simulation is provided in Fig. 5.3 shows the UAV
stay outside the range of enemy defenses at all times. The closest pass was
within 5 m of a static platform in a congested area near the target.
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5.3. Simulation and Results

Figure 5.2: Nominal simulation 1 - Target tracking results

Figure 5.3: Nominal simulation 1 - Enemy avoidance results

Fig. 5.4 shows the acceleration inputs at each timestep. Here we see peaks
and valleys where aggressive maneuvers were required to navigate around
enemy defenses. Some oscillation in inputs were observed between timesteps
50 and 75. These oscillations were caused by the dynamics of mobile defenses.
Since the defense platforms were assumed static during each prediction, the
UAV could not anticipate and optimally plan around the path of the mobile
defenses. Therefore, constant corrections were required when passing near
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them.

Figure 5.4: Nominal simulation 1 - Applied inputs

Fig. 5.5 shows the overall cost decreasing throughout the simulation. Mi-
nor increases in cost were observed when maneuvering around enemy defenses,
particularly at around timestep 25.

Figure 5.5: Nominal simulation 1 - Objective cost decreasing with time

These plots demonstrate the nominal MPC formulation providing motion
planning solutions to track a target while avoiding enemy defenses during a
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noiseless UAV attack mission simulation.

5.3.2 Head-On Collisions

As described in Section 5.2, a special condition was used in the previous simu-
lation which rotated the linear constraint around any enemy platform located
directly between the UAV and the target. This deflection encouraged the UAV
to favor one side when there was a risk of a head-on collision. Three scenarios
were investigated to demonstrate the effect of increasing the deflection angle,
θd between 0◦, 30◦, and 45◦. In all three simulations, the UAV was initially
placed at position (3000, 0) and the target at position (3000, 3000). A static
enemy platform was placed directly between the UAV and the target at po-
sition (3000, 1500). Fig. 5.6 shows the observed track in each of these three
simulations. A solid line is included to show the linear constraint as the UAV
approached the enemy platform.
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Figure 5.6: Nominal simulation 2 - Tracking during head-on collisions using
different deflection angles
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Figure 5.7: Nominal simulation 2 - Separation during head-on collisions using
different deflection angles

By prematurely deflecting the constraint in head-on collision scenarios,
the UAV effectively anticipates having to avoid the enemy. A closer look at
the separation profile in Fig. 5.7 shows this results in the UAV spending
less time very close to the range of enemy defenses as the deflection angle
increases. Though this technique could be a valuable flight characteristic in
some situations, it provides no guarantees for collision avoidance, feasibility or
stability in the presence of uncertainty. Later chapters develop a more robust
formulation for collision avoidance in the presence of uncertainty.

5.4 Chapter Summary

This chapter solved the problem in Chapter 4 as a convex, quadratic pro-
gramming optimization using the nominal MPC method. Simulation results
demonstrate the nominal technique can provide motion planning solutions
track a target while avoiding enemy defenses during a noiseless UAV attack
mission simulation. By prematurely deflecting the linear inequality constraints
in head-on collision scenarios, the UAV can anticipate having to avoid the en-
emy defenses. This requires the incorporation of a deflection angle, which
must be tuned for specific applications. The solution does not provide any
guarantees of performance in the presence of uncertainty. In order to provide
guarantees of constraint satisfaction and stability in the presence of uncer-
tainty, we must first investigate the closed-loop paradigm MPC technique.
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6 Closed-Loop Paradigm
Solution

This chapter reformulates the solution in Chapter 5 in terms of perturbations
on a predicted closed-loop response. This technique was first proposed in Kou-
varitakis, Rossiter, and Chang (1992) as part of a generalized MPC stability
strategy [39]. The concept uses a feedback control law to stabilize the system
at each prediction step while treating constraint handling as perturbations
on this stabilizing law. The perturbations are then used as the optimization
variable, rather than the inputs themselves [40].

The closed-loop paradigm introduces an underlying stability provided these
perturbations (i.e. the effect of constraints) converge to zero over time and
allow the unconstrained stabilizing law to take over [40],[32]. The value of
these perturbations also provides useful information about the effects con-
straints have on optimality, since larger perturbations mean larger deviations
from the ideal control law. Furthermore, this formulation will assist with the
formal robust stability analysis in later chapters.

This chapter is divided into the following sections: Section 6.1 transforms
the solution from Chapter 5 to incorporate the closed-loop paradigm; Section
6.2 describes the observer required for this technique; Section 6.3 provides
simulation results and analysis, including a comparison with the nominal tech-
nique used in Chapter 5; and Section 6.4 summarizes the chapter.

6.1 Formulation

Let us define the state error term as the difference between the current vehicle
state γ̄k and the target state γr:

ek = γ̄k − γr (6.1)
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If we select our coordinate system such that the target state is at the
origin, then:

ek = γ̄k (6.2)

We define a nominal input using the following unconstrained, stabilizing
feedback law:

∆uk = −Kcl(ek) + gk (6.3)

where Kcl is the stabilizing gain and gk is a perturbation on the law. Inserting
this feedback law allows us to guarantee stability provided we drive the system
to a region where these perturbations decrease to zero. Stability characteristics
are discussed in greater detail in Chapter 8.

We can now substitute (6.3) and (6.2) into (5.2) to obtain:

ek+1 = Āek + B̄(−Kclek + gk) (6.4)

By letting Φ = Ā − B̄Kcl we obtain the error dynamics as a function of
the perturbations:

ek+1 = Φek + B̄gk (6.5)

Similar to the derivation of (5.4), we obtain the error predictions over
finite horizon, N as


e1

e2

e3

...
eN


︸ ︷︷ ︸

E

=


B̄ 0 0 . . . 0

ΦB̄ B̄ 0 . . . 0
Φ2B̄ ΦB̄ B̄ . . . 0

...
...

...
. . .

...
ΦN−1B̄ ΦN−2B̄ ΦN−3B̄ . . . B̄


︸ ︷︷ ︸

SeSeSe


g0

g1

g2

...
gN−1


︸ ︷︷ ︸

G

+


Φ
Φ2

Φ3

...
ΦN


︸ ︷︷ ︸
TeTeTe

e0

or, simply:
E = SeSeSeG+ TeTeTee0 = Γ− Γr (6.6)

where E and G are the set of error states and perturbations, Γr is the set
of stationary target state vectors over N and SeSeSe and TeTeTe are derived from the
expansion of the error dynamics over N .

Similarly, the inputs are expanded over N as:
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∆u0

∆u1

∆u2

.

.

.
∆uN−1


︸ ︷︷ ︸

∆U

=


I 0 0 . . . 0

−KclB̄ I 0 . . . 0
−KclΦB̄ −KclB̄ I . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

−KclΦ
N−2B̄ −KclΦ

N−3B̄ −KclΦ
N−4B̄ . . . I


︸ ︷︷ ︸

SuSuSu


g0

g1

g2

.

.

.
gN−1


︸ ︷︷ ︸

G

+


−Kcl

−KclΦ
−KclΦ

2

.

.

.

−KclΦ
N−1


︸ ︷︷ ︸

TuTuTu

e0

or, simply:
∆U = SuSuSuG+ TuTuTue0 (6.7)

where SuSuSu and TuTuTu are derived from the expansion of the inputs over N .
By substituting (6.6) and (6.7) into the objective function and removing

the constant terms, we find the tracking problem can be solved as a new
quadratic program with optimizing variable G:

J∗(e1:N , g0:N−1) = min
G

GT [SeSeSeTCCCTQQQCCC SeSeSe +SuSuSuTRRRSuSuSu]G

+ 2GT [SeSeSeTCCCTQQQCCC TeTeTe +SuSuSuTRRRTuTuTu]e0

+ eN
T P̄eeN

(6.8)

subject to MγBBB
MeBBB
Mu

∆U ≤

fγ −MγAAAγ0

fe −MeAAAγ0

fu

 (6.9)

where J∗ is the minimized objective cost, P̄e is the weight of the terminal cost,
ek = γ̄k − γr for k = 1, 2, 3, ..., N and γr is assumed constant for the entire
prediction. Recall the inputs, ∆U are easily computed as a function of the
optimizing variable G using (6.7) and thus, the full constraints expressed as:Mγ BBB

Me BBB
Mu

SuSuSu G ≤
fγ −Mγ(AAAγ0 +BBB TuTuTue0)
fe −Me(AAAγ0 +BBB TuTuTue0)

fu −Mu BBB TuTuTue0

 (6.10)

As described earlier, the optimizing variable (or, control variable) G, repre-
sents perturbations on the stabilizing feedback law. Normally, this stabilizing
feedback law (Kcl) would be selected to achieve some desired or ideal un-
constrained performance characteristics. Techniques for gain selection include
pole placement or by computing the optimal solution to the Discrete Algebraic
Riccati Equation (for minimum cost). The feedback law used in this study was
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6.2. Observer

the stabilizing gain from the solution of the Discrete Algebraic Riccati Equa-
tion. Minimizing (6.8) means minimizing G and hence, driving the systems
to a region where the stabilizing (unconstrained) feedback law can take over.
In summary, the full target tracking program as a function of perturbations
on the stabilizing feedback law, including enemy avoidance is as follows:

J∗(e1:N , g0:N−1) = min
G

GT [SeSeSeTCCCTQQQCCC SeSeSe +SuSuSuTRRRSuSuSu]G

+ 2GT [SeSeSeTCCCTQQQCCC TeTeTe +SuSuSuTRRRTuTuTu]e0

+ eN
T P̄eeN

subject to Mγ BBB
Me BBB
Mu

SuSuSu G ≤
fγ −Mγ(AAAγ0 +BBB TuTuTue0)
fe −Me(AAAγ0 +BBB TuTuTue0)

fu −Mu BBB TuTuTue0


6.2 Observer

As shown in the derivation of (6.8), the closed-loop paradigm technique re-
quires full information about the vehicle states (ek = γ̄k−γr) in order to make
predictions. Since the measurement model (5.3) only provides partial state
information, a Bayesian filter observer was developed to estimate the remain-
ing states. The Kalman Filter is one of the best known Bayesian estimation
techniques and was the method chosen for this study. For completeness, a
brief summary of the Kalman Filter algorithm used in this study is provided
in Appendix A. For more detailed theoretical foundations refer to [5] and [53].

6.3 Simulation and Results

The solution described in this chapter was tested in two simulations. The first
simulation required the algorithm to plan a route to a stationary target while
avoiding three static enemy defense platforms and four mobile platforms under
no-noise conditions. The second simulation was similar, but involved process
noise. In each simulation, the performance of the closed-loop paradigm solu-
tion was compared to the nominal solution formulated as described in Chapter
5. For this chapter, new data were collected using different parameters for the
prediction horizon, objective function, and initial enemy positions to demon-
strate the techniques can be tailored for specific mission requirements.
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6.3.1 Closed-loop Paradigm without Noise

For this simulation, the closed-loop paradigm solution was compared to the
nominal solution from Chapter 5 under identical, no-noise conditions. Static
and mobile enemy platforms were positioned as shown in Table 6.1. A predic-
tion horizon of 15, sample time of 0.5 s and buffer zones of 75 m around mobile
enemy platforms were used for both techniques. As described in Section 4.4,
the buffer zone around enemy defenses was increased to provide an added level
of safety. No head-on deflection angle was used. The weighting matrices, Q
and R were given equal weights 1:1. The stabilizing gain was selected as the
optimum solution to the Discrete Algebraic Riccati Equation. Several figures
are presented which illustrate the behavior of the motion planning algorithm.

Table 6.1: Closed-loop paradigm simulation 1 parameters

Parameter(s) Notation Description

Formulation - Closed-loop and Nominal
Static Enemy Placement - (2500, 3000)

(3500, 3000)
(3000, 2500)

Mobile Enemy Placement - (3000, 700)
(1400, 1150)
(3500, 1800)
(2500, 1700)

Horizon N 15
Objective function Q : R 1:1
Sample time dt 0.5 s
Process noise σw 0

In Fig. 6.1 we see the simulated UAV successfully navigate to the target
at position (3000, 3000). A closer look at the observed distance from enemy
defenses throughout the simulation is provided in Fig. 6.2 shows the UAV stay
outside the range of enemy defenses at all times. The tracking results were
identical for both the nominal and closed-loop paradigm solution.
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Figure 6.1: Closed-loop simulation 1 - Target tracking results

Figure 6.2: Closed-loop simulation 1 - Enemy avoidance results

Fig. 6.3 and Fig. 6.4 show the acceleration inputs at each timestep. Here we
see peaks and valleys where aggressive maneuvers were required to navigate
around enemy defenses. Also, we see no significant difference between the
nominal and closed-loop inputs.
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Figure 6.3: Closed-loop simulation 1 - Applied inputs in x

Figure 6.4: Closed-loop simulation 1 - Applied inputs in y

Fig. 6.5 shows the overall cost decreasing throughout the simulation. Also,
there is no significant difference between the nominal and closed-loop formula-
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tion in terms of objection cost. The reason for these similar results is explained
in Section 6.4.

Figure 6.5: Closed-loop simulation 1 - Closed-loop paradigm yields identical
objective cost when compared to nominal

In Fig. 6.6 we see the x and y components of the closed-loop control
variable (perturbations on the stabilizing control law) converge towards zero.
This plot illustrates a gradual decrease in the effect of constraints, which
effectively means the stabilizing control law is starting to take over.
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Figure 6.6: Closed-loop simulation 1 - Control variable converges to zero,
allowing the stabilizing control law to take over

6.3.2 Closed-loop Paradigm with Noise

For this simulation, the closed-loop paradigm solution was compared to the
nominal solution from Chapter 5 under identical conditions involving process
noise. The parameters for the objective function, horizon size, and sample
time differ from the previous simulation to demonstrate how the solution can
be tailored to meet specific mission requirements. The static and mobile
enemy platforms were positioned as shown in Table 6.2. A prediction horizon
of 25, sample time of 0.5 s, and buffer zones of 75 m around mobile enemy
platforms were used. As described in Section 4.4, the buffer zone around
enemy defenses was increased to provide an added level of safety. No head-on
deflection angle was used. The weighting matrices, Q and R were given a
ratio of 1:10. Random process noise was introduced into the system (as a
function of the inputs) with a standard deviation of 2 m/s2. The stabilizing
gain was selected as the optimum solution to the Discrete Algebraic Riccati
Equation. Several figures are presented which illustrate the behavior of the
motion planning algorithm.
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Table 6.2: Closed-loop paradigm simulation 2 parameters

Parameter(s) Notation Description

Formulation - Closed-loop and Nominal
Static Enemy Placement - (2500, 3000)

(3500, 3000)
(3000, 2500)

Mobile Enemy Placement - (4000, 700)
(900, 1150)
(3500, 1800)
(2000, 1700)

Horizon N 25
Objective function Q : R 1:10
Sample time dt 0.5 s
Process noise σw 2 m/s2

In Fig. 6.7 we see the simulated UAV successfully navigate to the target
at position (3000, 3000). A closer look at the observed distance from enemy
defenses throughout the simulation is provided in Fig. 6.8 shows the UAV
staying outside the range of enemy defenses at all times. The tracking results
were identical for both the nominal and closed-loop paradigm solution.

Figure 6.7: Closed-loop simulation 2 - Target tracking results
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Figure 6.8: Closed-loop simulation 2 - Enemy avoidance results

Fig. 6.9 and Fig. 6.10 shows the acceleration inputs at each timestep.
Here we see peaks and valleys where aggressive maneuvers were required to
navigate around enemy defenses. Also, we see no significant difference between
the nominal and closed-loop inputs.

Figure 6.9: Closed-loop simulation 2 - Applied inputs in x
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Figure 6.10: Closed-loop simulation 2 - Applied inputs in y

Fig. 6.11 shows the overall cost decreasing throughout the simulation.
Also, there is no significant difference between the nominal and closed-loop
formulation in terms of objection cost. The reason for these similar results is
explained in Section 6.4.

Figure 6.11: Closed-loop simulation 2 - Closed-loop paradigm yields identical
objective cost when compared to nominal
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In Fig. 6.12 we see the x and y components of the Closed-loop control
variable converge towards zero. This plot illustrates a gradual decrease in
the effect of constraints, which effectively means the stabilizing control law is
starting to take over.

Figure 6.12: Closed-loop simulation 2 - Control variable converges to zero,
allowing the stabilizing control law to take over

6.4 Chapter Summary

This chapter built on the nominal solution in Chapter 5 by reformulating the
optimization problem terms of perturbations on a predicted closed-loop re-
sponse. Plots of the control variable (perturbations) show that the solution
drives the UAV to regions where the ideal, stabilizing control law can take
over. Since we used the optimum solution to the Discrete Algebraic Riccati
Equation as the gain for the closed-loop paradigm, it provides the control pol-
icy which minimizes the objective function. Given the same objective function
and system dynamics, this is mathematically identical to optimizing directly
on the inputs as with the nominal solution. Therefore, as observed in the sim-
ulations from this Chapter, we should expect the two techniques to yield the
same results. Though the closed-loop paradigm does not appear to provide
any advantage in terms of performance, it provides us with a stepping stone
towards the robustly stable solution proposed in Chapter 7.
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7 Robust Solution

Almost all practical applications of MPC involve uncertainty. The types of
UAV scenarios addressed in this study are no exception. Examples include
modeling errors or assumptions, process noise, uncertain measurements and
fluctuating environmental conditions. It will be shown in Chapter 8 that,
given certain assumptions, the closed-loop paradigm can assist with stability
analysis. However, this still does not guarantee constraint adherence given all
possible realizations of uncertainty. The seminal work of Campo and Morari
(1987) was the first to formulate a robustly stable MPC using the worst case
scenario of uncertainty [41]. Their approach involves a maximization of the
objective function due to disturbances inside of the greater overall minimiza-
tion. This method is normally referred to as Min-Max MPC. Later, Kothare,
Balakrishnan, and Morari (1996) provided a technique for explicit incorpo-
ration of uncertainty via a convex optimization using linear inequalities [42].
Löfberg (2003) was able to yield tractable solutions to these optimization
problems using semidefinite relaxations [43].

This chapter improves on the designs developed in the previous chapters
by incorporating the Min-Max technique. We begin by formulating the nom-
inal solution in terms of a combined maximization and minimization, then
incorporate aspects of the closed-loop paradigm to help guarantee stability.
Throughout this chapter, the following notation is used to represent the block
concatenation of b matrices:

⊕bi=1ai =


a1 0 0 0
0 a2 0 0

0 0
. . .

0 0 0 ab

 (7.1)

This chapter is divided into the following sections: Section 7.1 formulates
the Min-Max MPC problem; Section 7.2 shows how the Min-Max problem can
be solved using a single optimization and semidefinite relaxations; Section 7.3
develops a method to explicitly represent robust linear inequality constraints;
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Section 7.4 provides simulation results and analysis, including a comparison
with the closed-loop technique used in Chapter 6; and Section 7.5 summarizes
the chapter.

7.1 Min-Max Problem Formulation

This section redefines the UAV system dynamics to explicitly incorporate
bounded disturbances. The results are then used to formulate the Min-Max
MPC problem. Consider the system in (5.2) affected by disturbances:

γ̄k+1 = Āγ̄k + B̄∆uk +Dwk (7.2)

ȳk = C̄γ̄k

where wk ∈ W is an unknown but bounded external disturbance. For the
purpose of this study, the disturbance was structured with dimensions identical
to ∆u.

When these dynamics (including disturbances) are expanded over finite
horizon N , we obtain the set of future measurements as [43]:

Y = CCC(AAAγ̄0 +BBB∆U) + CCCΩΩΩW (7.3)

where W is the set of stacked disturbance vectors over the horizon and:

ΩΩΩ =


D 0 0 ... 0
ĀD D 0 ... 0
Ā2D ĀD D ... 0

...
...

...
. . .

...
ĀN−1D ĀN−2D ĀN−3D ... D

 (7.4)

Recalling our definitions of ∆uk and G, we use this extended definition
of Y to define the following quadratic program which optimally tracks the
fixed goal while guaranteeing constraint satisfaction assuming the maximum
realization of disturbances:

J∗(e1:N , g0:N−1) =min
G

max
W

GT [SeSeSeTCCCTQQQCCC SeSeSe +SuSuSuTRRRSuSuSu]G

+ 2GT [SeSeSeTCCCTQQQCCC TeTeTe +SuSuSuTRRRTuTuTu]e0

+ 2GT [SeSeSeTCCCTQQQCCC ΩΩΩ]W

+ 2W T [ΩΩΩTCCCTQQQCCC TeTeTe] e0

+W T [ΩΩΩTCCCTQQQCCC ΩΩΩ]W

+ eN
T P̄eeN

(7.5)
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subject to Mγ BBB
Me BBB
Mu

SuSuSu G ≤
fγ −Mγ(AAAγ0 +BBB TuTuTue0 + ΩΩΩW )
fe −Me(AAAγ0 +BBB TuTuTue0 + ΩΩΩW )

fu −Mu TuTuTue0


∀ W ∈ WN

(7.6)

where WN is the set of possible disturbances over N . Notice this is similar to
the solution in Chapter 5 except here we see the inclusion of uncertainty in a
combined maximization and minimization, which is a defining characteristic
of Min-Max MPC [43]. We also see the constraints extended to include the
bounded uncertainty. Clearly, assuming the worst-case disturbances would
yield an overly conservative path. The challenge now is to represent this
problem as a single minimization that can be solved efficiently.

7.2 Semidefinite Relaxations

Efficiently solving the Min-Max problem presented in Section 7.1 requires
several variable substitutions and a number of theorems related to linear in-
equalities. These theorems are gathered in [43], which draws on the work
of [42], [54], [55], and [56]. This section uses the results of [43] to solve the
Min-Max problem in Section 7.1 as a single minimization. Notation has been
adapted for the purpose of this study.

First we must make an assumption about the structure of the uncertainty.
Let us assume the uncertainty W is represented by a disturbance bounded in
a unit box (i.e. |W | ≤ 1). Then the following theorem is used to produce
the maximization of a linear function ω̃ subject to these disturbances. A full
proof is provided in [43].

Theorem 1. (Maximization of a disturbed linear function)
Given the uncertainty set W bounded in the box defined by |W | ≤ 1 and vector
ω̃ with m number of elements ω̃i, then

max
|W |≤1

ω̃TW =

m∑
i=1

|ω̃i| = |ω̃T |1 (7.7)

where 1 is a column vector of ones of appropriate length.
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Let us now use the objective function as described in (5.7) to define a new
scalar parameter, t which acts on the total objective cost as follows:

(Y − Yr)TQQQ(Y − Yr) + ∆UTRRR∆U − t ≤ 0 (7.8)

The following theorem shows how a quadratic inequality can be transformed
into a linear inequality and vice-versa. The result is often referred to as the
Schur Complement and is a very useful tool for control systems problems
involving linear inequalities. Theoretical proofs and various applications of
the Schur Complement for convex optimization are available in [57] and [56].

Theorem 2. (Objective Function as Linear Inequality) The inequality de-
scribed by (7.8) is equivalent to the following linear inequality: t (Y − Yr)T ∆UT

(Y − Yr) QQQ−1 0
∆U 0 RRR−1

 � 0 (7.9)

Proof. Since QQQ andRRR are symmetric, square and positive definite (QQQ � 0 and
RRR � 0) and t is a scalar, then it follows from Theorem 5.1 in [43] that the
Schur complement theorem transforms quadratic uncertainty (7.8) into the
linear inequality described by (7.9).

By substituting (7.3) into (7.9) and separating the disturbances we obtain
the following rather large inequality: t (CCC(AAAγ̄0 +BBB∆U)− Yr)T ∆UT

(CCC(AAAγ̄0 +BBB∆U)− Yr) QQQ−1 0
∆U 0 RRR−1


+

 0 (CCCΩΩΩW )T 0
(CCCΩΩΩW ) 0 0

0 0 0

 � 0

(7.10)

In order to fit the form required later in this section, we expand the uncertain
term as follows: 0 (CCCΩΩΩW )T 0

(CCCΩΩΩW ) 0 0
0 0 0

 =

 0
CCCΩΩΩ
0

W
1

0
0

T +

( 0
CCCΩΩΩ
0

W
1

0
0

T)T (7.11)

Next we develop an linear inequality which ensures the robust satisfaction
of constraints while assuming worst case disturbances. We begin by introduc-
ing four new matrices: F,L,H, and Λ.
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7.2. Semidefinite Relaxations

Recall we defined the vector W as the set of stacked disturbance vectors
over N , or W = [w1 w2 ... wN ]T . If the dimension of wk is r then the dimension
of W is Nr. Let each of these uncertain elements in W be Wi. For the purpose
of this study, we structured the disturbance with dimensions identical to ∆u.
Therefore, B̄ and D have the same dimensions and it follows from (7.2) that
vector ∆U also has dimension Nr. We use Wi to develop the diagonal matrix
Λ composed of the uncertain elements as follows:

W = ⊕Nri=1Wi1
Nr = ΛT1Nr (7.12)

where 1Nr is a column vector of ones. Then, we define the following matrices:

F (Nr+p+1)×(Nr+p+1) =

[
t (CCC(AAAγ̄0+BBB∆U)−Yr)T ∆UT

(CCC(AAAγ̄0+BBB∆U)−Yr) QQQ−1 0

∆U 0 RRR−1

]
(7.13)

HNr×(Nr+p+1) =
[
0 (CCCΩΩΩ)T 0

]
(7.14)

L(Nr+p+1)×Nr =

1
0
0

 (1Nr)T (7.15)

where p is the dimension of vector Y . These new variables allow us to express
(7.10) as:

F + LΛH +HTΛTLT � 0 (7.16)

Theorem 3. (Robust satisfaction of Linear Inequality)
The linear inequality (7.16) holds for all Λ ∈ RNr×Nr if there exists vector
τ ∈ RNr such that τ = ⊕Nri=1τi and τi > 0, matrix T ∈ RNr×Nr such that
T = ⊕mi=1τi and matrix S ∈ RNr×Nr such that S = ⊕Nri=1τi such that the
following linear inequality: [

F − LSLT HT

H T

]
� 0 (7.17)

is sufficient and necessary for Nr = 1 and sufficient for Nr > 1.

Proof. Since F , H, and L are real matrices and Λ is defined in (7.12) using
W bounded by a unit box (|W | ≤ 1), then it follows from Theorem 3.4 in [43]
that linear inequality (7.17) is sufficient and necessary for (7.16) to hold when
Nr = 1 and sufficient for (7.16) to hold Nr > 1.
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7.2. Semidefinite Relaxations

For simplicity, it can be shown algebraically that [43]:

LSLT =

∑Nr
j=1 τj 0 0

0 0 0
0 0 0

 (7.18)

Finally, using the definitions of F , H, and T and Theorem 3, we see that
(7.10) can be rewritten as:


t−
∑Nr

j=1 τj (CCC(AAAγ̄0 +BBB∆U)− Yr)T ∆UT 0

(CCC(AAAγ̄0 +BBB∆U)− Yr) QQQ−1 0 CCCΩΩΩ
∆U 0 RRR−1 0

0 CCCΩΩΩT 0 T

 � 0 (7.19)

Using (6.7) and letting ∆Ycl = (CCC(AAAγ̄0 +BBBSuSuSuG+BBBTuTuTue0)− Yr), this linear
inequality is restated in terms of perturbations on a stabilizing control law as:

t−
∑Nr

j=1 τj ∆Y T
cl (SuSuSuG+ TuTuTue0)T 0

∆Ycl QQQ−1 0 CCCΩΩΩ
(SuSuSuG+ TuTuTue0) 0 RRR−1 0

0 CCCΩΩΩT 0 T

 � 0 (7.20)

This linear inequality allows us to define a new objective function, which
is our Min-Max problem in Section 7.1 reformulated as a single minimization:

min
G,T,τ

t (7.21)

subject to constraints:
t−
∑Nr

j=1 τj ∆Y T
cl (SuSuSuG+ TuTuTue0)T 0

∆Ycl QQQ−1 0 CCCΩΩΩ
(SuSuSuG+ TuTuTue0) 0 RRR−1 0

0 CCCΩΩΩT 0 T

 � 0 (7.22)

Mγ BBB
Me BBB
Mu

SuSuSu G ≤
fγ −Mγ(AAAγ0 +BBB TuTuTue0 + ΩΩΩW )
fe −Me(AAAγ0 +BBB TuTuTue0 + ΩΩΩW )

fu −Mu TuTuTue0


∀ W ∈ WN

(7.23)

We have now expressed the Min-Max problem as a single minimization of
t constrained by an linear inequality relating t to the objective function. The
next step is to ensure the robust satisfaction of the state and input constraints
in (7.23).
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7.3. Robust Constraints

7.3 Robust Constraints

Based on the work in [9], this section uses Theorem 1 to explicitly define the
linear inequality constraints in (7.23) assuming worst case disturbances. Let
us first assume that we only wish to examine how the state constraints are
affected by disturbances.

Given that Γ represents the stacked set of states over the prediction hori-
zon, by substituting (7.3) into the state constraint portion of (7.23), we obtain:

Mγ(AAAγ0 +BBB∆U) +Mγ(ΩΩΩW ) ≤ fγ ∀W ∈WN (7.24)

Now we would like to separate the individual rows in MγΩΩΩ and define the
new variable ωi as the row components:

MγΩΩΩ =
[
ω1

T ω2
T . . . ωq

T
]T

(7.25)

where q depends on the structure of the uncertainty. Given this definition of
ωi, it follows that:

(MγΩΩΩW )i = ωi
TW (7.26)

Since the values of W are uncertain, we introduce the vector ζγ,i to repre-
sent the maximum possible solution of (7.26), or:

ζγ,i = max
W∈WN

ωi
TW (7.27)

Therefore, it follows from Theorem 1:

ζγ,i = |ωiT |1 (7.28)

We define ζγ as the column vector composed of elements ζγ,i
for i = 1, 2, ...,m:

ζγ =
[
ζγ,1 ζγ,2 . . . ζγ,m

]T
(7.29)

Similarly, given the enemy constraint matrix (Me) from (7.6), we use the
same procedure to derive a separate vector ζe for the enemy constraints:

ζe =
[
ζe,1 ζe,2 . . . ζe,m

]T
(7.30)

This allows us to express the full set of state and input constraints as:Mγ BBB
Me BBB
Mu

SuSuSu G ≤
fγ −Mγ(AAAγ0 +BBB TuTuTue0)− ζγ
fe −Me(AAAγ0 +BBB TuTuTue0)− ζe

fu −Mu TuTuTue0

 (7.31)
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In summary, the full target tracking program is as follows:

min
G,T,τ

t

subject to
t−
∑Nr

j=1 τj ∆Y T
cl (SuSuSuG+ TuTuTue0)T 0

∆Ycl QQQ−1 0 CCCΩΩΩ
(SuSuSuG+ TuTuTue0) 0 RRR−1 0

0 CCCΩΩΩT 0 T

 � 0

Mγ BBB
Me BBB
Mu

SuSuSu G ≤
fγ −Mγ(AAAγ0 +BBB TuTuTue0)− ζγ
fe −Me(AAAγ0 +BBB TuTuTue0)− ζe

fu −Mu TuTuTue0


7.4 Simulation and Results

The robust, closed-loop paradigm, Min-Max MPC solution described in this
chapter was tested in two simulations. The first simulation required the al-
gorithm to plan a route to a stationary target while avoiding three static
enemy defense platforms and four mobile platforms under noisy conditions.
The results are compared to the non-robust, closed-loop paradigm solution.
The second simulation examined the computation time required for all three
solutions in this study: nominal, closed-loop paradigm, and robust. For this
chapter, new data were collected using different parameters for the prediction
horizon, objective function, and initial enemy positions to demonstrate the
techniques can be tailored for specific mission requirements.

7.4.1 Robust Adherence to Constraints

For this simulation, the robust Min-Max solution was compared to the non-
robust, closed loop paradigm solution from Chapter 6 under identical condi-
tions. Recall the robust solution uses the closed-loop paradigm while assuming
worst case disturbances. Static and mobile enemy platforms were positioned
as shown in Table 7.1. A prediction horizon of 10 and sample time of 0.2 s were
used. No buffer zones were used. The weighting matrices, Q and R were given
a ratio of 1:10. Random process noise was introduced into the system (as a
function of the inputs) with a standard deviation of 1 m/s2. The closed-loop
gain was selected as the optimum solution to the Discrete Algebraic Riccati
Equation. Several figures are presented which illustrate the behavior of the
motion planning algorithm.

55



7.4. Simulation and Results

Table 7.1: Closed-loop (robust) simulation 1 parameters

Parameter(s) Notation Description

Formulation - Closed-loop and
Robust Closed-loop

Static Enemy Placement - (2500, 3000)
(3500, 3000)
(3000, 2500)

Mobile Enemy Placement - (3500, 700)
(900, 1150)
(3500, 1800)
(2200, 1700)

Horizon N 10
Objective function Q : R 1:10
Sample time dt 0.2 s
Process noise σw 1 m/s2

In Fig. 7.1 we see the simulated UAV successfully navigate to the target
at position (3000, 3000).

Figure 7.1: Closed-loop (robust) simulation - Target tracking results

Fig. 7.2 and Fig. 7.3 show the acceleration inputs at each timestep.
Here we see peaks and valleys where aggressive maneuvers were required to
navigate around enemy defenses. Also, we see the robust design provides
slightly different inputs than the non-robust design.
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Figure 7.2: Closed-loop (robust) simulation - Applied inputs in x

Figure 7.3: Closed-loop (robust) simulation - Applied inputs in y

The difference in inputs observed in Fig. 7.2 and Fig. 7.3 are caused by
the robust design adjusting the plan for worst case scenarios of noise. This
is best illustrated when passing near enemy defenses. Fig. 7.4 illustrates one
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such situation between timesteps 183 and 233, where the UAV travels near a
static enemy platform. Here we see that generally, the robust case provides
more conservative separation from the enemy.

Figure 7.4: Closed-loop (robust) simulation - Clearance from firing range of
selected enemy platform

A closer look near timestep 203 in Fig. 7.5 shows the non-robust design
actually passes within the firing range of the enemy platform. This can be
attributed to the process noise introduced into the system. Notice the ro-
bust case, since formulated to assume worst-case scenario of noise, provides
adequate separation in the presence of identical noise.
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Figure 7.5: Closed-loop (robust) simulation - Robust solution prevents UAV
from entering range of selected enemy defense platform in the presence of
uncertainty

7.4.2 Computation Time

This section addresses one of the major drawbacks of the robust design - high
computational requirements. Where the nominal and closed-loop designs re-
quire the optimization of a single variable (either ∆U or G), the robust design
used in this study requires the optimization of three variables (G,T , and τ).
The computation required to handle these additional degrees of freedom grows
with the prediction horizon. In order to demonstrate the growth in computa-
tion requirements, the times required for over individual 10,000 optimizations
were recorded while varying the method (nominal, closed-loop, and robust),
prediction horizon (from N = 1 to N = 20), and cost function (for Q : R ra-
tios of 1:2, 1:3, 1:4, and 1:5). The mean computation time for each prediction
horizon size is presented in Fig. 7.6 for all three methods. The error bars
represent three standard deviations (99.7 %).
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Figure 7.6: Exponential increase in computation time required for robust
solution

From this figure we clearly see the dramatic increase in computation time
required for the robust solution. The error bars also increase in size, as there
is more room for variation in the additional degrees of freedom. The statis-
tical significance of this increase in computation was verified by an analysis
of variance (ANOVA). A closer look in Fig. 7.7 shows a slightly higher com-
putation time required for the closed-loop formulation when compared to the
nominal method. However, as demonstrated by the overlapping error bars,
this difference is not as statistically significant as with the robust case.
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Figure 7.7: Modest increase in computation for closed-loop paradigm

Computation time can be an important factor when considering robust
motion planning solutions, particularly for real-time applications. This is
especially true for MPC-based motion planning, where the greatest benefits
are seen when using large prediction horizons. Ultimately, deciding whether
this exponential growth in computation time is acceptable depends on real-
time constraints and is a potential topic for further research.

7.5 Chapter Summary

This chapter improved on the designs developed in the previous chapters by
incorporating the Min-Max technique to account for uncertainty. Simulation
results show this design provides robust guarantees of constraint avoidance in
the presence of bounded disturbances. This technique has two main draw-
backs. By assuming the worst case scenario of disturbances the solution is
overly conservative. Also, computation time grows exponentially faster than
the other designs at larger prediction horizons.
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8 Stability Analysis

This chapter investigates the stability characteristics of the proposed motion
planning designs and is divided as follows: Section 8.1 provides a stability
proof for the closed-loop design by driving the system to a terminal set; Section
8.2 shows that when the closed-loop paradigm is used in conjunction with
the robust Min-Max MPC formulation, we can provide robust guarantees of
stability in the presence of bounded disturbances; and Section 8.3 extends the
stability analysis to explicitly incorporate the semidefinite relaxations used in
our robust Min-Max MPC solution.

8.1 Closed-loop Stability

This section provides a stability analysis of the solution developed in Chapter
6. Typically, MPC stability is established by expressing the terminal cost as
a Lyapunov function and driving the system to a terminal set, ET from which
the stabilizing feedback law can take over [40],[32]. This terminal set is closed,
contains the origin and all state and control constraints are satisfied inside ET .

Theorem 4. Considering quadratic objective function (6.8), linear model
(5.2), stabilizing feedback law (6.3), and linear, matrix inequality constraints
(6.10), when formulated as an MPC, the system will be exponentially stable.

Proof. As described in [58], since the stabilizing feedback Kcl and the terminal
cost P̄e are chosen using the stabilizing gain and positive-definite solution of
the Discrete Algebraic Riccati Equation, then eTk P̄eek is a Lyapunov function
and the terminal set is positively invariant under (6.3). Therefore, if the
system can be driven to ET and the following conditions are also true: (i) ET
is a closed set containing the origin; (ii) all states inside ET satisfy the state
constraints; and (iii) the control constraints are satisfied inside ET , then it
follows according to Theorem 2.1 in [32] that the terminal objective function
is a Control-Lyapunov function and the system is exponentially stable.
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The above theorem tells us that if we choose an appropriate feedback law
and terminal cost, we can guarantee stability of the system provided we drive
the system to a region (terminal set) where the feedback law can take over.
The recursive nature of MPC allows us respond to unpredicted changes in the
environment (i.e. the movement of enemy defenses). At each timestep, the
constraints are redefined and a new optimized control law is produced which
drives the system towards the goal.

8.2 Robust Stability

Here we present a theorem which guarantees stability of the robust Min-Max
MPC in the presence of uncertainty. Recall our definition of a positive in-
variant set from Section 3.4. The following theorem is based on the work of
[29] in which stability is achieved by steering the vehicle states to an invari-
ant set from which the stabilizing feedback law (6.3) can take over. Nota-
tion has been modified to suit this study. We introduce a new terminal set
ET = {ek ∈ E | Kclek ∈ U, ek+1 ∈ ET ∀ wk ∈ W}. Since we want the
steady state error to converge to zero, we also ensure the terminal set contains
the origin, 0 ∈ ET . Recall ek = γ̄k − γr, where γr is the target state.

Theorem 5. (Stability given bounded disturbances)
Considering the objective function in (7.5), linear model (7.2) with states
γ̄k ∈ X, error terms ek ∈ E and inputs ∆uk ∈ U, subject to distur-
bances wk ∈ W and constraints (7.6), stabilizing feedback law (6.3) and
eN ∈ ET , when formulated as an MPC, the system will be asymptotically
stable.

Proof. By construction, ET is selected such that it contains the origin (0 ∈
ET ), satisfies the stated constraints (ET ∈ E), and all inputs resulting from
the stabilizing feedback law while inside the terminal set satisfy the input
constraints (Kclek ∈ U ∀ ek ∈ ET ). Furthermore, as described in [58],
if the stabilizing feedback Kcl and the terminal cost P̄e are chosen using the
stabilizing gain and positive-definite solution of the Discrete Algebraic Ric-
cati Equation, then eTk P̄eek is a Lyapunov function and the terminal set is
positively invariant under (6.3). Therefore, given these conditions, it follows
from the proof in Section 4.6 of [29] that the system is asymptotically stable
∀ wk ∈ W.

The assumptions in the above theorem require that the vehicle be driven to
the invariant set in finite time. This is related to the prediction horizon, since
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it must be sufficiently large to reach the invariant set. Recall from the results
of Section 7.4.2 that larger prediction horizons (hence, robust guarantees of
stability) typically require greater computation time.

8.3 Extension to Positive Semidefinite Relaxations

In Chapter 7 we presented an MPC formulation for the robust satisfaction
of constraints based on semidefinite relaxations. This section extends the
stability analysis in Section 8.2 to include these semidefinite relaxations.

Let us consider the same variables and dynamics from Theorem 5 but now
using the objective function in (7.21) and constraints (7.22) and (7.31). We
also define a new terminal set, EP = {ek ∈ E | eTk Πek ≤ 1} where Π � 0. As
with Theorem 5, we select the the stabilizing feedback Kcl and the terminal
cost P̄e using the solution of the Discrete Algebraic Riccati Equation. There-
fore, it follows from [58] that eTk P̄eek is a Lyapunov function and the terminal
set is positively invariant under (6.3). Also, recall that perturbations, G as
defined in (6.1) serve as the control variable in the closed-loop paradigm.

Theorem 6. (Robust stability using semidefinite relaxations)
Given a semidefinite program with objective function (7.21) and constraints
(7.22), (7.31) and linear, stabilizing feedback law (6.3), appending the addi-
tional constraint ek+1 ∈ EP to the semidefinite minimax program guarantees
stability if the problem is initially feasible at e0.

Proof. As described in the proof for Theorem 5.2 in [43], this theorem follows
through induction. If we assume the problem was feasible at the previous step
(ek−1), then ek ∈ EP. We know that G = 0 is a feasible solution at step k which
gives ek+j+1 = (Ā − B̄Kcl)ek+j + Dwk, where the values of j are dependent
on the prediction horizon. Since we have selected Kcl and Pe for invariance,
we know that these predictions are also contained in EP. This guarantees
feasibility of state and input constraints. By construction, ek+1 ∈ EP holds
for ∆u = −Kclek. Therefore, the problem is feasible at step k.

From this result, we see that provided a terminal set and linear state
feedback matrix are selected which satisfy the assumptions listed, we can
guarantee robust stability in the presence of bounded disturbances while also
adhering to constraints. This requires that the problem is initially feasible at
k = 0 (i.e. the vehicle starts from a position that adheres to constraints). The
recursive nature of MPC allows us respond to unpredictable changes in the
environment (i.e. the movement of enemy defenses). At each timestep, the
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constraints are redefined and a new optimized control law is produced which
drives the system towards the goal.
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9 Conclusion

The preceding chapters have designed, implemented, and compared three dif-
ferent techniques for guiding a UAV in ground attack missions involving enemy
defenses. This chapter presents our conclusions based on the findings of this
study, including a comparison with previous related work. In all cases, the
motion planning problem was formulated as a convex, quadratic program in
the form of MPC. Each solution represented the range of enemy defenses as
specially constructed linear inequality constraints. To summarize, the follow-
ing techniques were investigated:

• A nominal MPC-based motion planning technique which effectively guided
a UAV to a stationary target while avoiding enemy defenses in a simu-
lated environment assuming no uncertainty.
• A closed-loop paradigm MPC-based motion planning technique which

effectively guided a UAV to a stationary target while avoiding enemy de-
fenses in a simulated environment assuming no uncertainty. This tech-
nique also served as a stepping stone towards a robustly stable solution
when combined with the Min-Max MPC.
• A robust Min-Max MPC-based motion planning technique which effec-

tively guided a UAV to a stationary target while avoiding enemy defenses
in a simulated environment involving bounded, uncertain disturbances.
This technique operated in the closed-loop paradigm and was shown to
be robustly stable given certain assumptions.

These techniques were implemented in a number of simulated UAV ground
attack missions involving ground-based enemy defenses. In order to reduce
computational complexity, it was decided to assume mobile enemy platforms
were stationary during all predictions. This assumption resulted in less ef-
ficient solutions than could have otherwise been possible. As described in
Chapter 10, estimating mobile enemy dynamics is a potential topic for future
research. The remainder of this chapter is divided as follows: Section 9.1
discusses the formulation of ground attack missions as a convex, quadratic
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program; Section 9.2 discusses the use of linear inequalities for avoidance of
enemy defenses; Section 9.3 discusses the use of semi-definite relaxations; Sec-
tion 9.4 discusses stability; Section 9.5 discusses the relative performance of
each technique; and Section 9.5 discusses the potential for real-time imple-
mentation.

9.1 Formulation for Ground Attack Missions

Previous research in [3] aimed at providing optimal UAV grouping patterns
and routes for UAV strike teams. Their approach did not consider the effects
of uncertainty on constraint adherence or stability. This study developed a
problem statement based on the mission scenarios in [3], focusing on motion
planning requirements for a single UAV. This included a layered defense sys-
tem composed of static and mobile anti-aircraft weapons. By formulating the
problem as a convex quadratic program in the form of MPC and incorporat-
ing feedback predictions, this study provided stable, optimized motion plans
that could be computed efficiently using CVX: Matlab Software for Disci-
plined Convex Programming. When the Min-Max technique was used, these
plans were guaranteed to adhere to constraints in the presence of bounded
disturbances.

9.2 Robust Enemy Avoidance via Linear
Inequalities

Avoidance of enemy defenses was achieved using the linear inequality obstacle
avoidance technique proposed in [10] with a number of improvements. Where
[10] used a linear approximation of UAV dynamics, this study used an exact
linearization through dynamic extension. Rather than constraint softening,
this study used closed-loop feedback predictions and a Min-Max technique to
guarantee constraint satisfaction in the presence of uncertainty. Simulations
demonstrated the Min-Max technique safely guiding the UAV around enemy
defenses in the presence of uncertainty. Under identical conditions, other tech-
niques guided the UAV into the range of enemy defenses. Since the technique
described in [10] does not enforce the constraints for all possible cases of un-
certainty, it can not provide the guarantees demonstrated by the Min-Max
technique in this study.
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9.3 Application of Semi-Definite Relaxations

Guaranteeing constraint adherence in the presence of uncertainty required the
implementation of a Min-Max MPC-based design. This technique assumed
the worst case scenario for disturbances for all predictions, which was clearly
an overly conservative assumption. This also required an extra optimization,
which maximized the cost with respect to disturbances. Based on the work of
[9], the Min-Max MPC formulation in this study was solved as a single min-
imization involving semidefinite relaxations on linear inequality constraints.
This allowed explicit incorporation of bounded disturbances in a convex (and
hence, easily solvable) optimization. Simulations show this technique pro-
vided conservative motion planning solutions that adhered to constraints and
avoided the range of enemy defenses in the presence of uncertainty. The added
complexity of this optimization involved an exponential growth in computa-
tion time at higher prediction horizons. Whether this growth in computation
time is acceptable depends on the particular mission requirements and is a
topic for further research.

9.4 Stability Analysis

A robust proof of stability was provided for the system. This involved a
number of assumptions, including the enforcement of a terminal constraint
requiring the UAV be driven to a terminal, invariant set in finite time. In
order to satisfy this terminal constraint, the prediction horizon had to be
sufficiently large. This is ultimately tied to the computation time, as results
show larger predictions horizons require greater computation time to solve.

9.5 Relative Performance

Each MPC technique demonstrated their own strengths and weaknesses. The
nominal technique was the easiest to implement and required the least amount
of computation time. However, it provided no guarantees of constraint satis-
faction or stability in the presence of uncertainty. The Closed-loop Paradigm
required slightly more computation time and provided no obvious benefits in
terms of performance when implemented on its own. However, it provided po-
tentially useful stability characteristics, particularly when combined with the
Min-Max technique. The Min-Max technique not only guaranteed constraint
satisfaction in the presence of uncertainty, it could also be guaranteed stable
by enforcing a terminal constraint. These guarantees were accompanied by
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9.6. Potential for Real-Time Implementation

an exponential growth in computation time at higher predictions horizons.
Deciding which technique to use ultimately involves a trade-off between per-
formance, robustness, computation time, and stability.

9.6 Potential for Real-Time Implementation

By formulating the UAV ground attack motion planning problem as a convex,
quadratic program, this study has provided a foundation for real-time imple-
mentation of MPC-based techniques for these types of scenarios. Real-time
implementation would involve additional constraints on the processing time
so commands would be available to the system when needed. Particularly for
the Min-Max solution with robust guarantees of stability, it is unclear whether
the solutions proposed in this study could be applied directly to real-time sys-
tems. However, formulating the problem as a convex, quadratic program is
an important stepping stone towards this goal. Further investigation is re-
quired to determine what further modifications would be required to ensure
processing times would adhere to real-time constraints.
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10 Recommendations

The results of this study suggest closed-loop paradigm MPC-based motion
planning is a potentially useful tool for UAV ground attack missions involv-
ing static and dynamic enemy defenses. The viability of the robust Min-Max
solution would depend on the specific application, mainly due to high compu-
tation requirements. A number of issues should be explored in future research
to improve on the design.

In all cases, mobile enemy platforms were assumed static throughout the
prediction horizon. Incorporating enemy dynamics in predictions would likely
yield more efficient planning trajectories. Future research should focus on
incorporating enemy dynamics while considering the affect this has on com-
putational requirements. One possible approach is to make assumptions about
the future locations of dynamic enemy platforms and use machine learning to
make improvements over time.

Though all solutions were formulated to include a convex optimization
and hence could be solved relative efficiently, it is still unclear if the proposed
method is suitable for real-time, UAV applications. Future research should
focus on implementing these designs in real-time. This would naturally include
an investigation into more efficient computation methods.

In cases where multiple enemy defenses overlap, there may not be a feasible
planning solution which guarantees constraint adherence. Further research
should investigate the use of MPC-based designs to plan through these types
of scenarios.

In order to guarantee stability of the system, we assumed the system could
be driven to a terminal state which satisfies the constraints and contains the
origin. In highly constrained environments, the target (and hence, the ori-
gin) may be in a region which does not satisfy the state constraints. This
is particularly likely when the enemy defenses are assumed static throughout
the prediction horizon. For this reason, it may be useful to temporarily move
the target inside the admissible region. This would allow a terminal set to be
defined which satisfies the constraint while containing the origin. How and
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where to move target is a topic for future research.
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A Kalman Filter

As shown in Chapter 6, the closed-loop paradigm requires full information
about the vehicle states in order to make predictions. Since the measurement
model (5.3) only provides partial state information, a Bayesian filter observer
was developed to estimate the remaining states. The Kalman Filter is one of
the best known Bayesian estimation techniques and was the method chosen for
this study. For completeness, a brief summary of the Kalman Filter algorithm
used in this study is provided here.

1. The a priori estimate was predicted as:

ˆ̄γ
−
k+1 = Āˆ̄γ

+
k + B̄∆uk (A.1)

2. The covariance prediction of this estimate is then:

Σ̂−k+1 = ĀΣ̂+
k Ā

T + Q̃ (A.2)

3. The Kalman gain computed as:

Kk+1 = Σ̂−k+1C̄
T (C̄Σ̂−k+1C̄ + R̃) (A.3)

4. An updated state estimate is then computed as:

ˆ̄γ
+
k+1 = Kk+1(ȳk+1 − C̄ ˆ̄γ

−
k+1) (A.4)

5. Finally, the covariance is updated as:

Σ̂+
k+1 = (I −Kk+1C̄)Σ̂−k+1 (A.5)
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