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Abstract 

Circular diffraction gratings have been formed by a new holographic technique using a circular diffraction 

grating generator.  This specially designed fixture consists of a mirror in the shape of the interior of a 

truncated cone that splits and redirects a beam of coherent and collimated light to form an interference 

pattern of concentric rings.  The interference pattern can be directly inscribed in surface-relief on a thin 

film of azobenzene functionalized glass forming compound.  The derived theory correctly predicts that 

the pitch of the resulting circular gratings can be controlled by altering the geometry of the mirrored 

fixture.  The inscription optical geometry can be further modified by adding a focusing lens and by 

changing the position of the focal point of inscribing light with respect to the sample film, affecting the 

rate of change of the pitch.  Ring gratings with a relatively smooth centre can be created by lowering the 

height of the mirrored fixture below a certain critical height.  The interior and exterior radii, the grating 

pitch, and the rate of pitch change (or chirp) of the resulting circular gratings can therefore be controlled, 

adding additional flexibility to the manufacturing process.  The result is a relatively large scale circular or 

ring grating, on the order of 1 cm diameter, that can be quickly and easily fabricated using common 

optical lab equipment to meet photonic applications specific requirements.   
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Résumé 

Des réseaux de diffraction circulaires ont été formées par une technique holographique en utilisant un 

générateur des réseaux de diffraction circulaires. Cette monture, spécialement conçue, consiste d'un 

miroir en forme de l'intérieur d'un cône tronqué, qui divise et redirige un faisceau de lumière cohérente 

pour former un patron d'interférence d'anneaux concentriques. Le patron d'interférence peut être inscrit 

directement en réseau de surface sur un film d’un verre fonctionnalisé d'azobenzéne. La théorie dérivée 

prédit correctement que le pas des réseaux circulaires résultants peut être contrôlé en modifiant la 

géométrie de la monture d'inscription. La géométrie optique d’inscription peut être encore modifiée par 

l'ajout d'une lentille ainsi qu’en changeant la position du point focal du rayon d’inscription par rapport au 

échantillon, ce qui affecte le taux de variation du pas.  Des réseaux en anneaux ayant un centre 

relativement lisse peuvent être créés en diminuant la hauteur de la monture au-dessous d'une certaine 

taille critique. Les rayons intérieur et extérieur, le pas du réseau, et le taux de changement du pas peuvent 

donc tous être contrôlés. Le résultat est un réseau circulaire relativement grand de l'ordre de 1 cm de 

diamètre, qui peut être rapidement et facilement fabriqué en utilisant des équipements communs dans les 

laboratoires d’optique, afin de répondre aux exigences spécifiques des applications photoniques. 
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CHAPTER 1: INTRODUCTION 

1.1 Definitions and Properties of Diffraction Gratings  

A diffraction grating is an optical element with a periodic modulation in its optical 

properties.  This periodic variation can affect the amplitude of incoming light by modulating 

the brightness of the output light.  Alternatively, it can affect the phase of the light by varying 

the optical path length of the output beam.  The result of a typical diffraction grating is that a 

mono-chromatic beam of light is split into multiple beams of different orders as illustrated in 

Figure 1.1.  It will be seen in the theory section of this thesis that the angle of these beams is 

dependent on the grating spacing (also called pitch), as well as the incident angle and 

wavelength of the incoming light.  As a result of this dependence on wavelength, a beam of 

polychromatic light can also be dispersed by a diffraction grating, creating spatial separation 

of the beam’s spectral elements.   

 

Figure 1.1 – An incoming beam of monochromatic light is split into different diffraction orders by a 

transmission amplitude grating.  Additional orders are possible, such as m=2 and m=-2 but are not shown.   

There are a wide range of types of diffraction gratings depending on how they are 

manufactured and what applications they are intended for.  As already mentioned, if the 

grating variations are related to changes in the absorption, reflectance, or transmittance 

characteristics of the material, it is considered an amplitude grating because the grating will 

affect the amplitude of the light.  If the modulation in the grating changes the index of 

0
th
 order 

m=0 

1st order 

m=1 

1st order 

m= -1 
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refraction in the material or changes the distance travelled in a material before an interface, it 

is called a phase grating because it is affecting the phase position of the light.  Depending on 

whether the material used is transparent or reflective, a diffraction grating can be used as a 

transmission or reflection optical element.  Diffraction gratings can have a constant pitch 

(meaning that the grating spacing is constant) or have a chirped pitch (meaning that the 

grating spacing changes over its surface).  There are linear gratings whose structure is made 

of parallel straight lines as well circular gratings; which are formed in the shape of concentric 

circles.   

Diffraction gratings may also have different profile shapes such as sinusoidal 

gratings, square wave also called binary gratings, triangle gratings, or saw-tooth patterns also 

known as blazed gratings as shown in Figure 1.2.  The profile of the grating can affect the 

properties of the grating such as the diffraction efficiency.  Diffraction efficiency is defined 

as the optical power from a diffraction order divided by the power from the incident light.  

Blazed gratings are sometimes used to increase the diffraction efficiency of one of the 

diffraction orders at the expense of the power of the other orders.  For example, depending on 

the blaze angle and wavelength used, 1
st
 order diffraction efficiencies can range from 50% to 

approaching 100% efficiency in a blazed grating which is much higher than the maximum 1
st
 

order efficiencies of 33.8% for sinusoidal gratings and 40.5% for square gratings
1
.   
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Figure 1.2 – Several examples of possible grating profiles.  The profiles may represent changes in amplitude 

of the incoming light due to modulation of the reflectance or transmittance of the grating.  The profiles may 

also represent the physical shape of the grating/air interface as for a surface relief grating (SRG) or 

changes in the index of refraction of the material in a volume phase grating.a 

1.2 Early History of Diffraction Gratings 

One of the earliest recorded examples of scientific observations of a diffraction 

grating was by James Gregory in 1673 when he proposed the experiment of shining a beam 

of light through a fine white feather
2
.  David Rittenhouse is thought to have made the first 

man-made diffraction grating in 1785 using hair or thin wires evenly spaced across the 

threads of two parallel screws
3
.  This type of grating can be classified as a linear, amplitude, 

transmission grating and is analogous to a multiple slit diffraction configuration. The hairs 

block light at a regular interval while the spaces in between the hairs act as slits.  In 1821 

Joseph von Fraunhofer rediscovered this technique
4
 and developed the equation relating the 

angle of diffracted orders to the grating spacing and wavelength of light.  Because of this and 

                                                      
a "Waveforms" by Omegatron - Own work. Licensed under Creative Commons Attribution-Share Alike 3.0-2.5-2.0-1.0 

via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Waveforms.svg#mediaviewer/File:Waveforms.svg 
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his numerous contributions to the field of spectroscopy, the theory of far field diffraction was 

later named in his honour.   

Works in the early 19
th
 century by the famous French physicist Augustin-Jean 

Fresnel also contributed to the invention of a specialized circular diffraction grating called a 

Fresnel Zone Plate.  Instead of focusing light using refraction, as is the case with a traditional 

lens, a zone plate focuses light using diffraction.  This is accomplished by blocking light from 

passing through any areas that would create destructive interference at the focal point, while 

allowing light to pass through the zones that create constructive interference at the focal 

point.  Figure 1.3 shows a simple example of a binary amplitude zone plate.  In the same 

manner as with a linear diffraction phase grating, the efficiency of a zone plate can be 

improved by changing the phase of the light in the destructive zones by 180 degrees instead 

of blocking it.  This was an idea that was originally suggested by British physicist Lord 

Rayleigh in 1871
5
 but it was first demonstrated to have more than a six-fold improvement in 

the intensity of the focused light by Robert W Wood in 1898
6
.  Although this thesis is not 

dealing with Fresnel zone plates specifically, the main topic of this thesis is the production of 

circular phase gratings similar to those conceived by Lord Rayleigh and produced by Wood.   
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Figure 1.3 – A Fresnel zone plate focuses light by using diffraction and is an example of a specialized 

circular diffraction grating. The example shown here can be classified as a binary amplitude zone plate 

where the black areas represent zones where light is completely blocked and the white areas represent 

areas where all of the light is allowed to pass through.b 

1.3 Modern applications of diffraction gratings 

Diffraction gratings have a wide range of applications.  Because of their ability to 

disperse different frequencies of light, diffraction gratings can often be used as a replacement 

for prisms.  One of their most common applications is in spectroscopy where a diffraction 

grating is used to separate the spectral components of a source of light.  A spectrometer can 

work over a range of wavelengths from X-rays to infrared light using different diffraction 

gratings with optimized pitches and grating profiles.  Analysis of the absorption and emission 

lines of the spectrum can tell a great deal about the source of light as well as what sort of 

materials the light passed through on the way to the detector.  For these reasons, spectroscopy 

can provide a wealth of information in fields that use passive observations of light such as 

astronomy and remote sensing.   

Diffraction gratings also change the direction of incoming light through diffraction 

orders higher than zero.  With a carefully chosen combination of wavelength, grating pitch 

                                                      
b "Zone plate" by Tom Murphy VII - Based on GFDL/cc-by-sa Image:zone plate.png. Licensed under Creative Commons 

Attribution-Share Alike 3.0 via Wikimedia Commons - 

http://commons.wikimedia.org/wiki/File:Zone_plate.svg#mediaviewer/File:Zone_plate.svg 
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and incident angle, this can be used to couple and de-couple light in fibre optics or other 

optical waveguides.  Prisms can also be used to couple light in this way; however diffraction 

gratings have the additional flexibility of being able to chirp the grating pitch.  Because of the 

interdependence between wavelength and grating pitch, chirped gratings can be designed as 

grating band-pass filters or band reflectors so that a range of wavelengths are transmitted or 

reflected.  One example is a fibre Bragg grating, which can be made from alternating 

materials with different indices of refraction within the core of a fibre optic.  This type of 

diffraction grating is known as a volume phase grating since it is not the surface of the 

material, but the volume of the material, that alters the phase of light through variations of its 

index of refraction.  The periodic changes in the index of refraction can be tuned to act as a 

dielectric mirror which maximizes reflection for certain wavelengths through constructive 

interference while limiting transmission through destructive interference.  Chirping the pitch 

of this type of volume phase grating can serve to widen the band of the filter, and has useful 

applications in the field of communication such as in multiplexors in fibre optics
7
.   

Another interesting application for diffraction gratings is their use for the excitation 

of surface plasmons.  When a thin layer of metal is interfaced with a dielectric material, 

under the right conditions it is possible to excite an electron density fluctuation in the surface 

of the metal by using light.  This electron density wave is called a surface plasmon.  One 

method of achieving this is by tuning the pitch of a diffraction grating on the surface of the 

metal to the specific plasmonic frequency of the interface.  In this case, the diffraction grating 

changes the momentum of light towards the plane of the interface and allows surface 

plasmon resonance to take place in the metal film when the proper conditions are met.  The 

resulting plasmon can then retransmit its energy as light at a specific frequency or band of 

frequencies, producing a tell-tale signal in its emitting spectrum. Surface plasmons are 

extremely sensitive to changes of the index of refraction at the interfaces and so can be used 

as biosensors in the direct detection of biomolecules as they associate or dissociate on the 

surface of the detector
8
.  

1.4 Photo-induced movement in azobenzene materials 

Azobenzene is a chemical compound made of two phenyl rings attached by a 

nitrogen double bond.  They can be considered as a derivative of diazene, a class of 

molecules which are strong absorbers of light and often used as dyes in industrial 

applications
9
.  Azobenzene molecules exhibit an interesting property called photo-
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isomerization. The molecule will change from its trans configuration to its cis isomer, and 

back again, when it is exposed to an absorbed frequency of light as illustrated in Figure 1.4.  

Azobenzene can be added as a chromophore to other materials such as polymers or glass 

forming materials and it will still retain its photo-isomerization properties.  A fascinating 

result of the photo-isomerization of azobenzene in polymers is the photo-induced mass 

transport of the molecules.  This was discovered in 1995 through the formation of Surface 

Relief Gratings (SRGs) in thin films of azopolymer by the Natansohn/Rochon
10

 and 

Tripathy/Kumar
11

 research teams. When an interference pattern of alternating dark and light 

fringes is projected with sufficient power and the correct wavelength onto a thin film of 

azobenzene functionalized material, the material will move away from the light towards the 

dark areas, effectively recording the interference pattern in surface-relief on the film.  This 

method has proven to be an extremely simple single-step process to manufacture quality 

SRGs on a micro and nanometer scale.  Although the physics behind the mass flow properties 

are not completely understood, one noteworthy feature that must be included in the 

development of theories of photo-induced transport in azo-materials is that it is dependent on 

the polarization of the incoming light.  Experiments have shown that a combination of light 

intensity as well as variations in the electric field with a component along the grating vector 

direction is required to produce deep SRGs in azo-materials
12

.  

 

 

 

Figure 1.4 – In the proper conditions, azobenzene molecules change from one molecular isomer to another 

and back again when exposed to light in an effect called photo-isomerization.c 

The synthesis of molecular glass has several advantages over polymers including 

higher yields and easier purification.  Although they are not the first to synthesize azobenzene 

                                                      
c  "Azobenzene isomerization". Licensed under Public domain via Wikimedia Commons - 

http://commons.wikimedia.org/wiki/File:Azobenzene_isomerization.png#mediaviewer/File:Azobenzene_isomerization.pn

g 
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derivatives capable of forming glassy phases, a joint group from the Royal Military College 

of Canada and Queen’s University has recently demonstrated a new azo-glass compound
13

.  

This material possesses the added benefits of a single step synthesis process.  It has been 

shown that this azo-glass material is able to produce high quality photo-induced SRGs on a 

thin film with less than 50mW/cm
2
 of irradiance from the inscribing source of light

13
.  This 

azo-glass is the sample material that is used to create surface relief gratings in the 

experimentation section of this thesis.   

1.5 Goal of Research 

The goal of this thesis is to introduce a novel method of inscribing circular SRGs 

onto azo-glass films using a three-dimensional (3D) beam splitting technique with a fixture 

called a Circular Diffraction Grating Generator (CDG).  The CDG’s mirrored surface 

simultaneously acts to split and redirect a beam of coherent light to form interference fringes 

in the pattern of concentric circles.  When a thin film of azo-glass material is placed at the 

small aperture of the CDG, the circular interference pattern is recorded in surface-relief on 

the film.  This thesis will develop the theory required to relate the pitch of circular gratings 

generated to the geometry of the CDG when using a planar wave front as an inscribing 

source.  In addition, this thesis will investigate the resulting pitches of circular SRGs 

produced by a CDG when the wave front of the light source is spherically divergent or 

convergent.    

1.6 Thesis Structure 

This thesis is divided into 6 chapters.  Chapter 1 will serve as an introduction to some 

of the basic concepts and vocabulary required to understand the research.  Following an 

introduction to diffraction gratings, including some necessary definitions, there is a short 

history on the early discoveries in the field of diffraction optics.  Next, there is a short 

description of some modern applications of diffraction gratings.  It concludes with a brief 

discussion detailing the goal of research and an outline of the thesis structure. 

Chapter 2 is a literature review to determine current manufacturing techniques and 

possible applications for circular SRGs.   

Chapter 3 will cover the derivation of the required theory.  It will start with some 

basic concepts introducing light as an electromagnetic wave and the interference of light.  It 

will review some theory on far-field diffraction as well as the derivation of the grating 
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equations.  It will then provide a detailed geometric analysis of the interference patterns 

created by a CDG for both planar (collimated) as well as curved (divergent and convergent) 

sources of light.  The last section in chapter 3 will go into some detail of the theory behind 

the critical height of the CDG and how it plays a role in the formation of circular or ring 

gratings.   

Chapter 4 outlines the experimental procedures used to verify the theory.  It will 

cover the details on how sample thin films of azo-glass material and the CDG fixtures 

themselves are produced.  Next, it will explain the experimental set-up for producing circular 

SRGs with a collimated beam.  Lastly, it will show the experimental set-up for producing 

circular SRGs with a curved wave front.   

Chapter 5 will provide the results from the experiments outlined in Chapter 4 and 

will compare them with the theory from Chapter 3.   

Chapter 6 will discuss the implications of the work and will summarize the 

conclusions of this thesis.    
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CHAPTER 2: LITERATURE REVIEW 

2.1 Manufacturing techniques for diffraction gratings.   

SRGs can be produced by a variety of methods.  Gratings can be mechanically cut 

into a polished surface with a diamond tipped ruling engine.  Early versions of this type of 

machine used very precise gearing mechanisms to control the spacing between each grating 

line.  Modern ruling engines are now computer controlled and can employ piezoelectric 

actuators combined with high precision feedback control systems to further increase the 

accuracy of the grating profile to under 4 nm with the theoretical capability of inscribing 

gratings with pitches as small as 6000 lines per millimetre or a grating pitch of about 170 

nm
14

.  These types of ruling engines are one of the best manufacturing methods for creating 

master copies of large scale gratings.  However, the ruling engines are very expensive pieces 

of equipment and can take days to inscribe a grating since each groove is cut one at a time.  

As an example, a 500 mm by 400 mm grating can take more than 720 hours of continuous 

operation of a ruling engine to create
14

.   

Other methods of direct grating patterning are the result of high precision computer 

aided nano-manufacturing techniques such as electron beam lithography
15

, focused ion 

beams
16

 or laser milling
17

. These methods can be time consuming for large grating areas 

since, similar to ruling engines, each line is milled individually making for relatively slow 

production speed. Depending on the power of the machine and the depth of grating required, 

the manufacturing time can be substantially slower than a ruling engine.  For example, 

creating a grating with 1700 lines per millimetre (approximately 600nm pitch) on a 4 cm
2
 

area would take 6800 hours with a writing speed of 10 cm/hr as one paper reports
15

.  

Although these methods can be used to create very high quality gratings with nano-scale 

resolutions, they too require expensive specialized equipment.    

Photolithography is widely used in the industry and involves using a photo-mask to 

expose a pattern onto a light sensitive material called a photo-resist.  The photo-resist is 

chemically altered by the light, but only in the areas not blocked by the photo-mask.  The 

surface can then be chemically treated to etch away or deposit material in the pattern that was 

photo-exposed onto the surface.   The shapes and complexity of the pattern that can be 

created this way are limited only by the level of detail of the photo-mask and the resolution of 

the projection system.  An alternative method of photolithography uses an interference 
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pattern from two or more coherent sources of light to directly expose the photo-resist without 

the use of a photo-mask.  This method of fabrication is called interference photolithography 

and results in what’s called a holographic grating.  Holographic gratings are widely used in 

the field of optics and can be made with profile shapes that are approximately sinusoidal and 

have been shown to reduce optical aberrations that are normally present in ruled gratings
18

.  

Continued refinements in interference lithography methods have realized patterning 

resolutions of below 10 nm using extreme ultraviolet light wavelengths
19

.   Photolithography 

is convenient for creating large and complex gratings quickly since the entire pattern is 

exposed simultaneously rather than written one line at a time.  However, it is a complex 

multi-stage process which normally requires the production of the photo mask, exposure 

through a specialized projection system, chemical development of the photoresist, as well as 

etching and cleaning steps.   

Nano-imprinting involves production of a mold, sometimes from a method listed 

above, which is then pressed into a polymer surface.  Soft lithography is a type of nano-

imprinting that uses a flexible mold to transfer a surface-relief pattern, such as a diffraction 

grating or Fresnel lens, onto a desired substrate
20

.  The mold pattern can be modified prior to 

stamping through mechanical bending, compression or stretching
21

 adding some additional 

versatility to this production method.  Although nano-imprinting works well for mass 

production of gratings based on a master mold, it is also a multiple step process that is ill 

suited for rapid development of new prototype grating patterns.  

A relatively new micro-fabrication technique called Direct Laser Interference 

Patterning utilizes two or more interfering beams of light to directly engrave microstructure 

surface patterns on commercially available polymers through laser ablation of the material
22

.  

Recent publications report grating pitches as small as 125 nm are possible using this 

technique
23

.  This method has the benefits of traditional interference photolithography 

without the additional developing, etching and cleaning steps.  However the ablation process 

used to form the material requires a high-powered pulsed laser.   

2.2 Manufacturing of surface relief gratings in Azo-functionalized materials 

Linear holographic SRGs fabricated using interference patterns projected onto azo-

polymer films have been widely reproduced and studied since their discovery in 1995
10

.  

There are two main methods of manufacturing linear gratings in this method.   
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The first method involves splitting a laser beam with a beam splitter and then using 

mirrors to redirect the two beams in order to expose the sample of azo-material with laser 

light from at two different angles. The interference pattern of light caused by the angle 

between the beams can be inscribed directly on a film azo-material.  This method is similar to 

the standard method of producing holographs and is therefore susceptible to vibration.  Each 

optical element in the system must be extremely stable since any small movements, even at 

scales smaller than the wavelength of light, can affect the quality of the interference pattern 

by changing the phase position of the interfering light.   

The second common method of fabricating linear SRGs in azo-films uses a Lloyd 

mirror as seen in Figure 2.1.  A Lloyd mirror consists of a mirror that is held at a 90 degree 

angle to the sample.  One half of the incident beam of light is reflected by the mirror while 

the other half strikes the sample directly.  This creates an interference pattern of alternating 

light and dark fringes.  The spacing of the fringes can be manipulated by rotating the entire 

fixture (sample and mirror) with respect to the angle of the incident beam.  The main 

advantage to this method is that since the Lloyd mirror serves to split and redirect the 

incoming light in a single optical element, it is much less susceptible to vibration.   
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Figure 2.1 – Schematic of a Lloyd mirror set-up for inscribing linear SRGs in an azo-material sample. d 

There is an excellent recent review article summarizing methods and applications of 

surface patterning on azo-polymers by Priimagi and Shevchenko
24

.  The main advantage to 

producing diffraction gratings in this method is that it is a single step process that can 

produce large-scale gratings quickly without the requirement for a master photo-mask or 

mold.  Grating spacing can be customized by changing the angle of the interfering beams or 

using different wavelengths of light
24

.  However, a literature review on the subject has only 

turned up two other of publications reporting the fabrication of circular SRGs using azo-

functionalized materials. These methods include the formation of circular diffraction gratings 

using Bessel beams
25

 and fiber optic modes
26

.   These techniques are somewhat similar in 

concept to the technique of using a CDG, in that they are using circular patterns of light to 

directly inscribe circular SRGs.  However, the scale of the circular SRGs that have been 

produced by this method is in micrometers.  The main advantage of the use of the CDG to 

generate circular gratings is the fact that it can create fairly large gratings on the order of 1 

cm diameter in a single step process without a master grating pattern.  It will be seen that the 

ability to make changes to the geometry of the CDG and the optical elements also adds an 

element of controllability to the size, grating pitch, and degree of chirp of the resulting 

circular SRG.  This means that circular SRGs made to meet specific requirements can be 

quickly and easily fabricated using this new holographic method.    

                                                      
d
 Image from Brigham Young University website, http://www.photonics.byu.edu/holography.phtml   

http://www.photonics.byu.edu/holography.phtml
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2.3 Applications for Circular Diffraction Gratings 

As discussed in Section 1.3, linear diffraction gratings have a wide range of 

applications in modern technology.  Circular diffraction gratings share similar properties as 

their linear counterparts, but because of their circular symmetry around an optical axis, they 

can be used in a variety of two-dimensional and on-axis applications.  For example, circular 

diffraction gratings can be employed in the design of a wide variety of diffractive optical 

elements, such as diffractive or kinoform lenses
27

, specialized diffractive lensacons
28

 and 

hybrid lenses
29

.  Optical sensors can sometimes benefit from the two-dimensional geometry 

of circular gratings to reduce the directional dependence of the gratings while enhancing 

sensitivity by using surface plasmons.  This has been reported in applications such as infrared 

photodetectors30 and plasmon enhanced biosensors
31

.   An added benefit of the nano-

manufacturing technology employed to make these gratings is that it can be used for the 

miniaturization of optical sensors and instruments.  Micro-spectroscopes
32

 and angular 

rotation sensors33 have been shown to be technically feasible by using circular diffraction 

gratings with diameters less than 1mm across. 

Another possible application for circular SRGs includes surface emitting distributed 

feedback lasers.  A properly designed circular grating can act as a laser resonance cavity 

when pumped from an external optical source.  This type of device has been reported as 

being produced by a variety of manufacturing techniques in chirped
34

 and non-chirped 

configurations
35

.  These tiny surface-emitting lasers can be manufactured at low costs and can 

be used as a coherent light source for a lab-on-a-chip or other miniaturized optical sensor 

applications.   

An area of interesting research is the use of grating structures to create surface 

plasmon resonance to enhance the efficiency in light emitting diodes (LED) and solar cells.  

LED efficiencies and peak intensity outputs have been shown to increase through the use of a 

patterned metal surface capable of coupling surface plasmon modes36.  The problem with 

extracting light is that the metal film attenuates its intensity through reflection and 

absorption.  Grating structures have been shown to increase the photoluminosity intensity up 

to 46 times by increasing the light extraction efficiency and photon trapping in surface 

plasmon enhanced LEDs
37

.  In a somewhat similar area of research, grating structures are 

being investigated as a tool to induce surface plasmons  as well as couple waveguide modes 

into thin solar cell materials.  In this case, the goal is to trap more light, instead of extracting 
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it as in the case with the LEDs.  By incorporating repetitive circular nano structures into the 

fabrication of solar cells, it has been shown that an increase in the absorption of light by 7% 

is possible in thin film amorphous silicon solar cells38.  Another paper reports a 43% increase 

in short circuit current for thin film silicon solar cells using a grating structure as compared to 

similar cells without these nano structures
39

.   

Another interesting application is the use of circular gratings as a photo-computation 

component.  There is ongoing research to create a neural network architecture using two 

dimensional beam arrays of light.  By interconnecting the beams of light in the beam array 

and by controlling the weight of these connections, it is possible to perform computations 

using light.  One paper reports the use of binary Fresnel zone plates with a radius of 1.2 mm 

as diffractive optical elements for the generation of these beam arrays to create a photo-

refractive neural network
40

.   

For all of the applications above, high quality circular diffraction gratings are 

required.  It is possible that some of these types of research may be able to benefit from a 

way to produce holographic circular diffraction gratings. 
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CHAPTER 3: THEORY 

3.1 Light as an electromagnetic wave 

Light has been an object of great interest to humans since our earliest times.  

Astronomers and philosophers have been observing and trying to explain it for thousands of 

years.  Under the scrutiny of some the greatest scientific minds, the past several centuries 

have yielded a tremendous advance in our understanding of the nature of light.  We now 

know that light is a transverse wave that is able to propagate through certain materials and 

empty space through a series of alternating electric and magnetic fields.  The accepted model 

that is currently used to describe the physics of an electromagnetic (EM) wave is the famous 

set of laws that make Maxwell’s equations.  An excellent summary of the theory of EM 

radiation can be found in the text book “Optics” by Hecht
41

 and many of the formulas in this 

section were taken from chapter 3 of that book.  Maxwell’s equations can be used to describe 

the properties of the EM interactions in any material and are given as: 
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    (3.1.4) 

E and B are the electric and magnetic vector fields.  The electric permittivity  and 

magnetic permeability  are physical constants when in free space denoted by 
0  and 

0 .  

The variable  is the charge density and J is the current density vector field.  Equation 

(3.1.1) is known as Gauss’s law for electric fields and describes how the total electric field 

flux over a closed area is related to the total amount of electric charge inside the volume of 

that same closed area.  Equation (3.1.2) is called Gauss’s Law for magnetic fields and is 

similar to equation (3.1.1) except since a magnetic monopole does not exist, it is impossible 

to have a point source or sink for a magnetic field.  Therefore, the magnetic flux over a 

closed area will always be zero.  Equation (3.1.3) is Faraday’s Law which describes, more 

generally, how a time varying magnetic field can induce an electric field in a closed loop, 

thus generating electricity in a metal coil.  Equation (3.1.4) is Ampere’s Law and describes in 
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general terms how either a current or changing electric field can induce a magnetic field. 

Arguably, Maxwell’s greatest contribution was recognizing that a flowing current was not 

necessarily required to create a magnetic field, but that any time varying electric field can 

induce a magnetic field.  This realization allowed Maxwell to write his equations for free 

space, where there is no charge density or electric current density and where the permittivity 

and permeability are constants: 

0
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Remarkably, even though there are no electric charges, electrical currents, or any 

conductive materials in space, an EM wave can still form and propagate based on the 

interdependence of equations (3.1.7) and (3.1.8).  It has been shown in appendix 1 of the text 

book by Hecht
41

 that these two equations can be manipulated into their vector form: 
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    (3.1.10) 

These equations are well known forms of partial differential wave equations that 

describe a sinusoidal wave that propagates through time and space.  According to wave 

theory the velocity of such a wave would be: 

0 01/v       (3.1.11) 

From Coulomb’s law, which relates the force that is exerted between two charged 

particles, the value of the permittivity in free space can be determined experimentally as 

12 2 2 3 1

0 8.85 10 s C m kg     .  Because of the somewhat arbitrary selection of units for 

charge, time and distance, the permeability of free space is set as 7 2

0 4 10 m kg C       to 

ensure the correct conversion between units of force and current from Ampere’s force law, 

which relates the force acting on two wires with a certain current.   
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The result of 18 2 2

0 0 1.12 10 s m     can then be used with equation (3.1.11) to 

determine a velocity of approximately 8 13 10 ms . This agrees very well with the measured 

speed of light in free space and offers convincing evidence that light is indeed comprised of 

electromagnetic waves.   

It is sometimes convenient, knowing that both the electric and magnetic waves 

propagate together, to choose only one of these waves in order to simplify the expression of 

an EM wave.  In practice, if the magnitude and direction of one is known at a given point in 

time and space, the same properties can be found for the other.  One convention is to describe 

only the electric field E when working with light.  This convention will be followed for the 

remainder of this thesis.   

A complex number representation can be used to describe the amplitude of the 

electric field over time and space: 

( )

0( , ) Re i k r tE r t E e     
 

   (3.1.12) 

or equivalently: 

0( , ) cos( )E r t E k r t       (3.1.13) 

where 
0E  is the directional amplitude of the electric field,  is the angular frequency

2  where  is the frequency of light, and t is time. Additionally, k is the wave vector in 

the direction the wave is travelling and whose magnitude is 2 /k   .  Also,  is the 

wavelength of light, and r is the position vector.  Lastly,   describes the phase position of 

the wave in radians.   

The next simplification that will be made to our theory describing the propagation of 

electromagnetic waves is removing the time dependence.  Imagine taking a snap shot of a 

waves moving in a swimming pool.  The wave can still be described in terms of values for k 

and r, however by making t a constant at some arbitrary point in time, the term ωt becomes a 

constant.  The constants ωt can be combined into the phase constant   to describe phase 

position in space at that frozen point in time.  The same concept can be applied to an 

electromagnetic field giving the result: 

 

0( ) cos( )E r E k r       (3.1.14) 
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Since the light beams that will be used in our experiment come from a single 

coherent source, meaning the phase of the light will not change as it travels, the assumption 

can be made that the interference pattern from the time independent waves will also not 

depend on the intial phase variable   from the source.  This assumption is possible because 

any initial phase value at the source of light will cancel out when calculating the phase 

difference between the two beams where they meet at their interference point.  The phase 

difference between the beams is calculated by subtracting path lengths 
1r and 

2r , thereby 

eliminating the initial phase term from the common source.  The result is the analysis of the 

interference of electromagnetic waves has been greatly simplified such that the only factors 

that need be considered are the path length r  that the light beam travels and the wavelength 

of light from the equation 2 /k   .  Using the path length and wavelength of light rays to 

calculate the phase difference for interfering light is the basis for the geometric ray trace 

analysis that will be used in sections 3.5 and 3.6 

3.2 Interference of light 

Like most other forms of waves, EM waves follow the principle of superposition.  

This principle states that when two or more waves occupy the same location at the same time, 

the resulting wave will be equal to the sum of all the waves.  Figure 3.1 represents two waves 

interfering with each other and the resultant superposition wave in red.  For areas where the 

amplitudes of the interfering waves are both on the same side of the x axis, they will interfere 

constructively and the resulting superposition wave will be amplified.  For areas where the 

amplitudes of the interfering waves are on opposite sides of the x axis, they will form 

destructive interference and they will partially or completely cancel each other out, reducing 

the amplitude of the resulting superposition wave.  This principle of superposition is a very 

important concept since it explains many phenomena relating to light including diffraction.   
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Figure 3.1 – A graph representing the superposition of waves. Two waves with different frequencies and an 

amplitude of 1 (arbitrary units) travel along the x axis. The resultant superposition wave is also shown.   

3.3 Diffraction of light 

 According to the Huygens-Fresnel principle, any disturbance to a beam of light can 

be mathematically described as an infinite number of point sources along the wave front of 

the beam. The superposition of the waves emitted from all of these point sources is an 

effective way to model the bending and interference effects of light that occur at the edges of 

an interface, known as diffraction.  Figure 3.2 shows a plane wave striking a slit. The wave 

front can be approximated as a number of point sources represented by the yellow dots.  It 

can be seen that resulting wave front from the superposition of the point sources will continue 

on the same path in the middle of the slit, but will curve outward at the edges of the slit.  An 

additional implication of this model, that is perhaps less obvious in Figure 3.2, is that a fringe 

pattern of alternating maxima and minima is created from the interference of the multiple 

point sources.  Both the bending of light around the edges of an interface and the resulting 

interference pattern are exactly what is observed in nature as diffraction.   
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Figure 3.2 – Diffraction of a wave through a slit.  The dots represent the conceptual point sources of light 

used by the Huygens-Fresnel principlee 

A simple example of diffraction in everyday life can be seen in the shadow cast by an 

object.  Any object blocking light can act as an interface and becomes a source of diffraction.  

Because the angle of diffraction is dependent on wavelength (this will be shown in the 

section 3.4), it is most noticeable when it comes from a coherent source, or a source that 

emits a single frequency of light.  It is not easy to see diffraction patterns at the edges of the 

shadow of your hand in daylight because the different colours that make up white light all 

diffract at different angles making a clear pattern hard to discern.  However, with a bright and 

coherent light source, it is possible to see interference patterns of alternating light and dark 

fringes at the edges of any shadow as a result of diffraction.  An example of this phenomenon 

can be seen around the edges of a razor blade in Figure 3.3.   

                                                      
e  By Arne Nordmann (norro) - Licensed under Public domain via Wikimedia Commons - 

http://commons.wikimedia.org/wiki/File%3ARefraction_on_an_aperture_-_Huygens-Fresnel_principle.svg  



22 

 

 

Figure 3.3 – The interference pattern in the shadow of this razor blade is caused by diffraction at the edges 

of the bladef.    

3.4 Diffraction gratings and the grating equation 

 As mentioned in section 1.1, a diffraction grating is a periodic modulation in a 

material that affects the properties of light.  In order to better understand how a diffraction 

grating works, it is best to start with the simplest example, a transmission amplitude grating.  

In this example, we will assume that an array of thin slits with a space between them of d will 

act as an array of point sources as depicted in Figure 3.4.   

                                                      
f
 Image from Scientific America Blog: “X-Ray Crystallography: 100 Years at the Intersection of Physics, 

Chemistry, and Biology”, http://blogs.scientificamerican.com/scicurious-brain/files/2012/12/diffraction-razor-

blade.png.   

http://blogs.scientificamerican.com/scicurious-brain/files/2012/12/diffraction-razor-blade.png
http://blogs.scientificamerican.com/scicurious-brain/files/2012/12/diffraction-razor-blade.png
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Figure 3.4 – Schematic of the geometry used to theoretically describe the far-field interference pattern from 

an array of coherent point sources.g 

If the grating is illuminated (from the left of the diagram) with a normally incident 

collimated beam (that is to say a beam with a perfectly planar wave front), then the point 

sources will be emitting light that is perfectly in phase.  If the collimated beam has an even 

power distribution over its entire wave front, then each point source will each emit an electric 

field that is equal and that will have an amplitude approximately equal to the value E0 when it 

arrives at point P.   Each point source, starting from the top of the diagram, is numbered with 

an integer n = 1, 2, 3, … , N where N is the total number of point sources in the array.  The 

value rn is the distance from each respective emitter to a distant point P.  The resulting 

electric field amplitude, E, at point P will be equal to the total contribution of these emitters 

using equation (3.1.12) and can be written as: 

 1 2 ( )( ) ( )

0 0 0... Ni kr ti kr t i kr tE E e E e E e
         (3.3.1) 

By taking out a common factor it can be further manipulated to show: 

 3 1 11 2 1 ( ) ( )( )

0 1 ... Nik r r ik r rikr ik r ri tE E e e e e e             (3.3.2) 

                                                      
g
 Image from pg 450 of Hecht

41 

P 
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The slits initially all have the same phase, but because the path lengths rn are all 

different this will introduce a phase difference between the rays arriving at point P.  This 

phase difference   can be defined in terms of the difference in distance between two rays 

multiplied by k: 

 
2 1( )k r r         (3.3.3) 

  From Figure 3.4, we see from similar triangles that the phase difference between 

two rays can be written more generally as
1( 1) ( )nn k r r   . Substituting this equation into 

equation (3.3.2) gives: 

 1 2 1

0 1 ( ) ... ( )
ikri t i i i NE E e e e e e              (3.3.4) 

The geometric series in the square brackets in equation (3.3.4) is known to equal: 

   2 11 ( ) ... ( ) 1 / 1i i i N i N ie e e e e               (3.3.5)  

Taking out a common factor of /2 /2/iN ie e  gives: 
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Using the trigonometric identity  sin / 2ia iaa e e i   and simplifying further gives: 
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Substituting equation (3.3.7) into equation (3.3.4) gives: 
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   (3.3.8) 

By changing the geometry of the problem by defining R as the distance from the 

centre of the array to the point P in question we see that: 

 2 1 1

1
( 1)( )

2
R N r r r         (3.3.9) 

By substituting equation (3.3.3) into equation (3.3.9) we get: 
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1
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R N r
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And by rearranging we get: 

 1

1
( 1)

2
kR N kr        (3.3.11) 

Subtituting this equation into equation (3.3.8) gives: 
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Irradiance is the measurement of the average energy over an area over a unit of time.  

It can be defined as a relation to the electric field in an EM wave by the expression:  
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       (3.3.13) 

where E* is the complex conjugate of the value E. 

By using equation (3.3.13) with equation (3.3.12) and combining all of the constant 

variables into a single constant 
0I we get: 
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      (3.3.14) 

where 
0I is the irradiance from a single point source at point P.  From Figure 3.4, we can see 

that the phase difference between any two consecutive emitters can be expressed as k times 

the difference in distance between two rays.  This can be expressed in terms of the angle   

as: 

 sinkd        (3.3.15) 

Substituting equation (3.3.15) into equation (3.3.14) gives our final result of 

irradiance as a function of angle θ: 
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     (3.3.16) 

This equation tells us that if N is larger than 1, then the top half of the expression will 

modulate between light and dark fringes more often than the bottom half of the expression.  

Figure 3.5 is an example graph of equation (3.3.16) for N=10.  The three tall peeks represent 

the diffraction orders 0, 1, and -1 and are the result of the slower modulation from the bottom 

portion of the equation.  The faster modulated smaller peeks are a result from the top half of 

the equation. For larger values of N, the number and frequency of these peeks becomes so 

large that they are nearly impossible to resolve spatially and so the principal diffraction order 

maxima remain the primary features of the diffraction pattern.   
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Figure 3.5 – Graph of irradiance versus diffraction angle from equation (3.3.16) with N=10, I0=1 Wm-2, 

λ=532nm and d=750nm.   

In order to find the principal maxima we must set the bottom half of the expression 

from equation (3.3.16) to zero.   

 20 sin sin
2

kd


 
  

 
     (3.3.17) 

Therefore the value inside the brackets of equation (3.3.17) must be equal to: 

 sin
2

kd
m   

 2 sin mm kd       (3.3.18) 

where 0, 1, 2,...m    serves as an integer multiplier, and indicates the order of the diffraction 

maximum as previously defined.   

This result makes intuitive sense since going back to equation (3.3.15), we know that 

the phase difference   between two consecutive rays at a certain angle θm must be some 

multiple of 2π for fully constructive interference to occur.  From the similar triangles in 

Figure 3.4, we know that all of the emitters will have fully constructive interference at this 

angle because their phase differences will likewise be multiples of 2 .   

The final result, by substituting the definition of 2 /k    into equation (3.3.18), is: 

sin mm d       (3.3.19) 
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This equation is known as the grating equation for normal incidence.  An approximation was 

cleverly included into Figure 3.4 such that all of the rays r1 to rN are approximately parallel to 

each other.  This occurs when the distance from the grating to the screen, r, is much larger 

than the distance d between point sources.  This is known as the far field or Fraunhofer 

approximation. 

As its name implies, the grating equation for normal incidence only applies when the 

incident light is normal to the grating.  If the angle of incidence were to change, the point 

source emitters in Figure 3.4 would no longer emit perfectly in phase because of the different 

path lengths from the source.  This would be equivalent to adding some new phase shift ψ 

between each consecutive emitter.  From equation (3.3.15) this gives: 

sinkd         (3.3.20) 

The plus or minus sign signifies that phase shift could be added or subtracted 

depending on which quadrant the angle of incidence is in.  The value of ψ from the off-

normal incident light can be easily described by using Figure 3.4 with the direction of light 

reversed.  In this case: 

sin ikd       (3.3.21) 

where i  is the angle of incidence.  Substituting equation (3.3.21) into equation (3.3.20) and 

solving to find the principle maxima of equation (3.3.14) similar to what was done for the 

case of normal incidence yields the result: 

 sin sinm id m d      

 (sin sin )m id m         (3.3.22) 

This is a more general solution to the grating equation that works for any angle of 

incidence.   

Although our grating equations were derived using an array of point source emitters, 

it can be similarly derived and applied to many different types of diffraction gratings under 

the same far field approximation.  In the case for gratings that are not an array of point 

sources the periodic distance between emitters d, is equivalent to the grating pitch Λ.    

As mentioned in the introduction section, one advantage of a phase grating over an 

amplitude grating is that none of the incident light is blocked in a phase grating.  This results 

in a large increase in the grating’s diffraction efficiency.  The derivation of the grating 

equation for a sinusoidal phase grating is more complicated than the simple example shown 

here.  However, for a square wave phase grating, it is relatively easy to conceptualize that by 
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changing the phase of light by 180 degrees in zones where destructive interference would 

normally occur (areas that would be blocked by a amplitude grating), you would actually be 

creating additional zones of constructive interference.  Therefore, the square wave phase 

grating is equivalent to doubling the number of constructive source emitters compared to a 

similar amplitude grating.  Because irradiance is related to the electric field times its complex 

conjugate the result effectively quadruples the irradiance of a square phase grating compared 

to a binary amplitude grating.  This example illustrates why phase gratings are so much more 

efficient than their amplitude grating counterparts.   

3.5 Analysis of the fabrication of constant pitch circular gratings using a planar wave 

front 

 Assume a mirror in the shape of a hollow truncated cone.  The inner surface of this 

shape is reflective and is the basis for a theoretical CDG.  When a collimated laser beam with 

a diameter sufficiently large to illuminate the entire reflective surface is incident 

perpendicular to the sample, the CDG will reflect the light towards the smaller aperture end, 

creating an interference pattern where it interferes with the directly incident light.  Figure 3.6 

shows a schematic of the cross section of a planar wave front incident onto a CDG where θ is 

the angle between the mirrored surface and the normal.  
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Figure 3.6 – Schematic showing the geometry of a CDG with a mirror angle θ when it is exposed to a planar 

wave front 

At points A and B, the collimated wave front will be in phase.  Using the law of sines 

with triangle ACD, it can be seen that: 

 
sin(90 ) sin( )

AC DC

 
  

Giving: 

 cotAC DC         (3.4.1) 

Using triangle ABC, it can be shown that: 

 cos2BC AC         (3.4.2) 

Substituting equations (3.4.1) and (3.4.2) to find the difference in path length PD is: 

 cot cos2PD AC BC DC AC         (3.4.3) 

Substituting equation (3.4.1), into equation (3.4.3) gives: 

 cot cot cos2PD AC BC DC DC       

 cot (1 cos2 )PD AC BC DC         (3.4.4) 

And from the trigonometric identity, 2cos2 1 2sin   we get: 

 
2cot (1 [1 2sin ])PD AC BC DC         

 
22sin
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DC
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 2sin cosPD AC BC DC         (3.4.5) 

From the trigonometric identity sin2 2sin cos    we get: 
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 sin2PD AC BC DC        (3.4.6) 

The phase difference  between the two paths is related to the path length difference 

by the expression: 

 ( )k PD         (3.4.7) 

where k  is the wavenumber for the light source 2 /k   , and the additional term of   is 

the phase change on path AC from a single reflection on the CDG mirror.  In order to find the 

grating pitch  or the distance between each maxima, we need to find the distance between 

two separate, but very close points on the sample where the change in the phase difference 

  between interfering paths will be 2 .  This can be written as: 

 2 1 2            (3.4.8) 

Substituting equation (3.4.7) into equation (3.4.8) gives: 

    2 12 k PD PD              (3.4.9) 

By substituting the definition of k and equation (3.4.6) into (3.4.9) we get: 

 
2 1

2
2 ( sin 2 sin 2 )DC DC


  


     (3.4.10) 

Since we know the distance between DC2 and DC1 will be equal to the pitch of the 

grating given the condition from equation (3.4.10) is met, therefore we can write: 

 2 1 csc2DC DC          (3.4.11) 

This equation is our final result and relates the pitch of the circular grating generated 

to the angle of the CDG θ, and wavelength of light λ, when using a collimated source.  It also 

demonstrates a practical limit to the smallest grating pitch that can be generated which is 

dependent on the wavelength of the light source and is limited to   as  approaches 45 

degrees.  At CDG angles greater or equal than 45 degrees, the reflected light will never reach 

the sample surface and no interference pattern will be generated.   

3.6 Analysis of the fabrication of chirped pitch circular gratings using curved wave fronts 

 Taking the same theoretical conical CDG mirror as in the last section, we now 

investigate the result of a point source of coherent light placed at a distance s from the center 

of the fixture along the axis of symmetry. The CDG will again reflect the light towards the 

smaller aperture end, creating an interference pattern with the directly incident light, but 

because of the curvature of the wave front, the mathematics becomes more complicated.  
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Figure 3.7 shows a schematic of the point source located at point A and its corresponding 

reflected image source at point I due to the CDG mirror. 

 

Figure 3.7 – Schematic for the geometry of a divergent point source used with a CDG to create chirped 

circular gratings 

Using Cartesian co-ordinates, from diagram the Point P is located at: 

 ( cos , sin )l s l       (3.5.1) 

Because the Image Source at point I will be twice the distance from A as the point P: 

 ( , ) (2 cos , 2 sin )X Y l s l       (3.5.2) 

In order to find the distance l, from triangle CZP we take: 

cos
tan

sin

l m

s l










 

which can be further manipulated to show that: 

 sin cosl s m        (3.5.3) 

Substituting this value of l into (3.5.2) and reducing (using common double angle and 

half angle trigonometric identities) gives: 

( , ) (2( sin cos )cos , 2( sin cos )sin )X Y s m s s m          

2 2( , ) (2 sin cos 2 cos , 2 sin 2 cos sin )X Y s m s s m          

( , ) ( cos(2 ) sin(2 ), cos(2 ) sin(2 ))X Y m m s s m         (3.5.4) 
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Now that we have the locations of point A and point I in terms of the parameters θ, 

m, and s, we can use their locations to calculate the difference in their effective optical path 

lengths to a given point (0, δ).  Again we define the path length difference as 2 1PD    . 

Given from Figure 3.7 that, 

 2 2

1 s         (3.5.5) 

 2 2

2
( )X Y         (3.5.6)  

We can expand our definition of PD and substitute in equation (3.5.4) to get: 

2 2 2 2 2 2
2 sin(2 ) 2 sin(2 ) 2 cos(2 ) 2 2 cos(2 ) 2PD sm s s m m m m s                   

         (3.5.7) 

Similar to the last section, the phase difference between the two paths is related to the 

path length difference and is given by: 

 
2

( ) ( )k PD PD





          (3.5.8) 

Again, the extra term Δ is the phase shift due to the single reflection which takes 

place on the 2 optical path.  In the same manner as before, if we set the change in phase 

difference   between two different points 1 and 2 to be equal to 2 , this gives us: 

   2 2 1 1

2
2 ( ) ( )PD PD


   


            

  2 2 1 1

1
1 ( ) ( )PD PD 


      (3.5.9) 

Here we are using function notation for the path length difference PD to show its 

dependence on the parameter δ as seen in equation (3.5.7).  The other variables that the path 

difference depends on: m, s, and θ are effectively constants for a given geometry of a specific 

experimental set-up.  In order to simplify the analysis, they will be treated as such.   

An analysis of Figure 3.8 for a light source converging onto a virtual point A yields 

similar results as for the divergent case.   
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Figure 3.8 - Schematic for the geometry of a convergent source to a virtual point A using a CDG to create 

chirped circular gratings 

Here the value of s will be negative and point P will have the co-ordinates:  

 ( cos , sin )l s l         (3.5.10) 

From triangle CZP, still maintaining the s has a negative value, we know that: 

 
 

 

cos
tan

sin

m l

s l








 

      (3.5.11) 

which further reduces to: 

 cos sinl m s          (3.5.12) 

From Figure 3.8 knowing that the location of the image source is: 

 ( , ) ( 2 cos , 2 sin )I X Y l s l         (3.5.13) 

Substituting in equation (3.5.12) into (3.5.13) yields: 

 ( , ) (2( sin cos )cos , 2( sin cos )sin )X Y s m s s m          (3.5.14) 
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This equation (3.5.14) is precisely equivalent to equation (3.5.4) derived from the 

diverging source case above.  This equivalency holds true so long as the virtual point source 

A is lower than point Q (0, -m/tanθ) where mirror line intersects the axis of symmetry or 

mathematically:  

/ tans m        (3.5.15) 

If the location of the virtual point source was above point Q on the diagram, then the 

angle of the converging light would be steeper than the CDG angle.  In this case the CDG 

mirror would fall into its own shadow and no light would hit the mirror at all.   

Unlike the last section where we analysed a collimated source beam to inscribe 

constant pitch SRGs, in the chirped pitch configuration it is impossible to isolate the 

parameter δ from equation (3.5.9) to get a spatial representation of the grating pitch 2 1 

through algebraic manipulation.  In order to overcome this problem, a computer simulation 

using a ray trace analysis method was developed in order to measure the distance beams of 

light travel before meeting at a position (δ, 0) on the sample.  By taking multiple virtual test 

paths for the rays of light, the simulation can provide an estimate of the grating pitch as a 

function of δ which can be graphed for a given experimental geometry.  This computer 

simulation was independently verified by using commercial algebra software to numerically 

solve equation (3.5.9) with equation (3.5.7) for certain test cases with the same set geometry 

as the simulation.  The results of this simulation will be presented in the section 4.5.   The 

MATLAB source code for the ray trace simulation is found at Appendix A: 

3.7 Critical height of the CDG 

 The ratio of the height of the CDG fixture h, to the radius of the minor aperture, m, 

is a critical parameter that also depends on the CDG angle.  If the height of the CDG is too 

great, then the reflected beam will cross the centre mark of the circular SRG being inscribed 

and create additional unwanted interference with the beams from the opposite side of the 

CDG.  If the height of the CDG is too small, then the reflected beam will not reach the centre 

point of the circular SRG at all and the result will be a ring grating instead of a full circular 

grating.    
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Figure 3.9 – Geometry to calculate the critical height of the CDG with collimated beam 

The critical height of the CDG, hc, is defined as the height which causes the reflected 

beam to strike the centre of the circular grating.  Using triangle ADE from Figure 3.9 it can 

be shown that: 

 
tan

c

t
h


       (3.6.1) 

Using triangle ABC it can be shown that: 

 tan 2
c

m t

h



       (3.6.2) 

Isolating for t from equation (3.6.2) gives: 

 tan 2ct h m       (3.6.3) 

Substituting equation (3.6.3) into equation (3.6.1) it can be shown that: 

 
tan 2 tan

c

m
h

 



     (3.6.4) 

This expression defines the critical height of the CDG for inscribing constant pitch 

SRGs with a collimated wave front in terms of the two other CDG parameters m and θ.  
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Figure 3.10 - Geometry to calculate the critical height of the CDG with divergent beam 

In the case of a convergent or divergent wave fronts used for inscribing chirped pitch 

SRGs, the calculations are complicated by the additional parameter s.  Figure 3.10 shows the 

geometry for calculating the critical height of the CDG for a divergent beam.  From equation 

(3.5.4) we know the position of I is equal to: 

 ( , ) ( cos(2 ) sin(2 ), cos(2 ) sin(2 ))X Y m m s s m        (3.6.5) 

We can use the standard equation for a line to describe a line from point I to the origin as: 

 
cos2 sin 2

cos2 sin 2

Y s m
y x x

X m m s

 

 


 

 
   (3.6.6) 

We can also describe the line that coincides with the CDG mirror as: 

 tanx y m        (3.6.7) 

To find the point of intersection of these two lines, we substitute equation (3.6.7) into 

equation (3.6.6) and simplify with trigonometric identities to get: 

 
 cos2 sin 2

2 tan
c

m s m
h y

m s

 




 


    (3.6.8) 

This equation represents the critical height of a CDG when inscribing with a 

divergent wave front.  Since we know that Cartesian co-ordinate location equations from the 

Image Source I are equivalent for converging and diverging beams from equations (3.5.4) 

and (3.5.14), we know that equation (3.6.8) will also hold true for the case of a converging 

light source (s<0).   
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However, applying the constraint that the critical height must be a positive value 

allows us to gain more insight into the geometry of a converging or diverging beam used with 

a CDG using equation (3.6.8).  If s is greater than zero, as with a diverging beam, then the 

value in brackets of equation (3.6.8)  must also be greater than zero in order to get a positive 

critical height giving: 

 cos2 sin2s m   

 tan2s m        (3.6.9) 

If value of s is smaller than the value given by equation (3.6.9), then the bottom half 

of equation (3.6.8) must be negative to give a positive value to hc.  This means that: 

 0 2 tanm s    

 
2

tan

m
s




       (3.6.10) 

Equations (3.6.9) and (3.6.10) constrain the possible values of s for a given CDG 

geometry if a full circular grating is desired with no cross over interference.  From the 

previous constraint given by equation (3.5.15), it is theoretically possible to achieve ring 

gratings within the range of: 

 
2

tan tan

m m
s

 

 
       (3.6.11) 

In this range of values, the geometry will never allow the reflected interfering beam 

to reach the centre of the circular SRG.   This can be seen in Figure 3.11 where similar 

triangles PAQ and IAO are set by the condition that point A is twice the length from the 

origin as point Q where the extended line of the CDG mirror intersects the y-axis.   In this 

case the reflected source beam is parallel to the CDG mirror and would therefore require an 

infinitely high CDG height h in order to create an interference pattern all the way to the 

centre of the SRG at the origin.  For any values of s in between point A and Q as stated in 

equation (3.6.11), ring gratings are possible but a full circular grating will not be possible to 

create.   
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Figure 3.11 – Figure demonstrating the geometery of the maximum critical height for a CDG with a 

converging light source 
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CHAPTER 4: Experimental Procedure 

4.1 Preparation of the Azo-glass samples 

A Dispersed Red 1 (DR-1) azo-benzene compound with mexylaminotriazine group is 

synthesized according to literature
13

.  The result is a fine powder which is prepared in a 3 

percent solution, by weight, in dichloromethane.  The solution is mixed by shaking for 

approximately one hour and then passed through a 50 µm filter.  Glass microscope slides are 

cut into squares about 3 by 3 cm large.  They are cleaned with soap and water, wiped dry and 

further air dried in an oven at 100 degrees Celsius for 10 minutes.  The dry slides are blown 

with compressed air to remove any dust particles and are placed in a humidity-controlled 

chamber on a spin coater where approximately 3 ml of the prepared azo-glass solution is 

manually deposited and spun at 1500 rpm for 40 sec.  The sample is then placed in an oven at 

95 degrees Celsius for a further 20 minutes to evaporate any remaining solvent.  The typical 

film thickness ranges from 400 to 500 nm as measured with a Sloan Dektak II D 

profilometer, model 139961.  The sample films are then ready for inscription as detailed in 

the following sections. 

4.2 Manufacturing and measuring of the CDG fixtures 

Several CDG fixtures were machined and polished using manual equipment found in 

common machine shops. Care was taken to ensure that the reflecting conical surface was a 

true truncated cone, finishing at a knife-edge on the minor aperture, with its central axis 

perpendicular to the flat face.  The material used was high-quality annealed carbon steel. 

After machining and polishing, the CDG fixtures were washed with solvent and dried with 

air. Approximately 500 nm of silver was then sputter coated onto each CDG in order to create 

a mirror-like finish on their interior surface. An example of a finished CDG is shown in 

Figure 4.1.   
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Figure 4.1 – A Circular Diffraction Grating Generator or CDG for short.   

A total of six CDGs were manufactured with nominal angles   of 12, 20, 25, 30, 

32.5 and 42.5 degrees.  The height, h, and the radius of the minor aperture, m, of the CDGs 

were measured using digital callipers with an instrument uncertainty of 0.02mm.  The width 

of the CDG mirror, t, was measured using a travelling microscope with a Vernier scale 

accurate to within 0.02mm.  Because of the somewhat subjective nature of the measurements 

taken with the travelling microscope, 3 trials were performed to estimate the average value 

and random uncertainty, which was added to the instrument error.  The angle θ was 

calculated by using the inverse tan of t divided by h as in Figure 3.9.  The error in the 

measured angle was calculated using the partial differential method.  Since the tolerances of 

the machining process are not known, the measured angles and errors seen in Table 4.1 are 

used in all graph data and theoretical calculations in this thesis.  
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Table 4.1 – Nominal and measured CDG angles.  The measured angles are taken for the remainder of this 

thesis.  The row in bold corresponds to the CDG geometry used for chirped circular grating portion of the 

experiment.   

Nominal  

CDG 

angle 

(degrees) 

Width of CDG mirror in radial axis: 

t (mm) 

Height of 

CDG mirror: 

h (mm) 

Measured CDG 

angle: 

θ (degrees) 

trial 1 trial 2 trial 3 average error value error value error 

42.5 3.91 3.88 4 3.93 0.08 4.62 0.02 40.4 0.7 

32.5 2.58 2.68 2.66 2.64 0.07 4.5 0.02 30.4 0.8 

12 1.5 1.42 1.52 1.48 0.07 6.97 0.02 12.0 0.6 

20 2.12 2.54 2.3 2.32 0.23 6.58 0.02 19.4 1.8 

25 3.42 3.32 3.76 3.5 0.24 7.55 0.02 24.9 1.6 

30 2.34 2.48 2.38 2.40 0.09 4.34 0.02 28.9 1.0 

4.3 Inscription of constant pitch circular gratings using a planar wave front 

 An azo-glass sample was placed directly on the reverse side of a CDG as in the 

experimental setup illustrated in Figure 4.2.  The beam from a 5-watt Verdi diode-pumped 

laser (model 0174-525-52) with a wavelength of 532 nm was passed through a spatial filter, 

collimated with a convex lens, and circularly polarized by a quarter-wave plate.  Circularly 

polarized light is used to ensure an even grating is formed in all directions of the circular 

SRG.  Linearly polarized light directly from the laser would not work well for forming 

circular gratings because of the polarity dependence of the photo induced transport effect in 

azo-glass as mentioned in section 1.4.  The resulting collimated beam was measured to have 

an irradiance of 604 mW/cm
2
.  The beam diameter was controlled by a variable iris and was 

projected onto the CDG and sample.  All of the optical elements were mounted to a solid rail 

on an optical experiment table.  Special care was taken to ensure that all optical elements 

were centred along the optical axis and the collimated beam was perfectly orthogonal to the 

CDG in order to match the theoretical geometry as accurately as possible.   
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Figure 4.2 – Experimental setup for inscription of constant pitch circular gratings. 

The real-time diffraction efficiency was measured as the SRG was forming by using 

the set-up depicted in Figure 4.3.  A low-powered helium neon probe laser was aimed at the 

sample where the circular grating was being inscribed. The beam from the probe laser was 

mechanically chopped and a silicon photodiode was placed at the location of the first-order 

diffraction maximum.  The signal from the photodiode was amplified by a lock-in amplifier 

and plotted as a function of time on a computer. The diffraction efficiency was calculated by 

dividing the power from the first diffraction order by the power from the incident beam, 

which was measured in a similar manner.  This was done in order to verify the amount of 

laser exposure time required to generate the most efficient diffraction grating.     
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Figure 4.3 – Experimental set-up for measurement of real time diffraction efficiency of a grating as it is 

being photo-inscribed. 

In total, five different SRGs were generated using the first five CDGs listed in Table 

4.1.  As outlined in section 3.7, the CDG must be shorter than the critical height hc or the 

reflected light will cross the centre point of the circular grating and cause unwanted 

interference.  However, the implications of changing the height of a CDG were not fully 

understood at the time that the CDGs were being manufactured.  Table 4.2 shows the 

measured height compared to the theoretical critical height hc.  It can be seen that in some 

cases, large discrepancies exist between the ideal value of hc and the measured height of the 

CDGs.  These differences in measured height versus critical height can be mitigated in 

several ways.  In the case where the measured height of the CDG was larger than hc, the 

variable iris in the experimental setup was reduced in size.  This effectively reduced the size 

of the beam reaching the outside edges of the CDG, and therefore eliminated any cross 

interference from happening.  If the height of the CDG was too small, a ring grating was 

created, and good data points can still be taken in the ring portion of the grating.   After the 5 
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SRGs were inscribed, their pitches were then measured using three independent measurement 

techniques.    

 

Table 4.2 – Measured height compared to critical height for the 5 CDGs used in the collimated beam 

experiment.    The critical height is calculated for a collimated laser source using equation (3.6.4).   

Measured 

CDG angle 

- θ (degrees) 

Minor 

radius - 

CDG Height - 

h (mm) 

m (mm) measured hc 

40.4 5.65 4.62 1.06 

30.4 5.60 4.5 4.66 

12.0 5.72 6.97 24.61 

19.4 5.72 6.58 12.64 

24.9 5.92 7.55 8.25 

 

4.4 Measurement techniques for grating pitch 

Atomic Force Microscope (AFM) measurements of the grating pitch were taken 

using a Pacific Nanotechnology Nano-R O-020-0002 scanning probe microscope that was 

calibrated to be within 3% accurate using a sample with known dimensions.  The grating 

pitch was measured from the AFM imagery over the maximum number of visible grating 

periods and then averaged to improve accuracy of the results.  Four separate scans were also 

made on each circular grating at 0, 90, 180, and 270 degree positions and these results were 

further averaged.   

A set of circular SRGs produced from each CDG were sputter coated with 

approximately 60 nm of gold.  A Philips CP-XL30 Scanning Electron Microscope (SEM) 

with an instrument uncertainty of 5% was then used to create imagery of the coated SRGs 

with magnifications less than capable by the AFM in order to view a larger portion of the 

grating.  The length of ten grating periods was measured from the digital images using public 

domain imagery software ImageJ
h
.  The results were divided by ten to achieve an average 

measurement of the grating pitch.   

The final measurement method for estimating the grating pitch of the circular SRGs 

is by performing direct measurements of the diffraction angle.  A 4 mW helium neon laser, 

                                                      
h
 ImageJ software by Wayne Rasband. National Institute of Mental Health, Bethesda, Maryland, USA.  

http://imagej.nih.gov/ij/ 
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semi-transparent beam splitting mirror and computer controlled rotary table were placed on 

an optical experiment table in the configuration shown in Figure 4.4.  Prior to the diffraction 

grating being inserted, a screen is marked with a vertical line to indicate the position of the 

laser beam as it passes straight through the system.  The rotary table with attached sample 

diffraction grating is then rotated until the zeroth reflected diffraction, which is also reflected 

off the beam splitter, is aligned with the vertical screen marking.  This indicates that the light 

beam is normally incident on the sample.  The rotary table is then turned until the first 

reflected diffraction order is reflected off the beam splitter and aligned with the line on the 

screen.  In this position of the rotary table, the diffracted beam is travelling along the same 

path as the incident beam, so therefore, the angle of incidence is equal to the angle of 

diffraction.  The computer calculates the difference in angle from the normal position to the 

angle that this occurs.  Using equation (3.3.22) and given the first diffraction order m = 1 as 

well as given that 1 i   leads to the equation: 

 
12sin




   (4.3.1) 

Knowing the wave length of the laser and with value of 1  from the rotary table 

allows for the precise calculation of the pitch Λ.  Measurements are taken from the 1 and -1 

diffraction orders and the results are averaged to further improve the precision of the 

measurement.   

The grating equations, and subsequently equation (4.3.1), are derived using a linear 

array of point sources, and so technically speaking these equations should apply to linear 

diffraction gratings.  However, if the laser from the diffraction measurement set-up 

illuminates a small portion of a circular SRG near the outside edge of the grating, then this 

small region of the circular grating is a good approximation of a linear grating.  This is 

because size of the grating pitch (and the illuminated test region) is very small compared to 

the overall radius of the circular grating.   Therefore the pitches calculated by this direct 

diffraction angle measurement method remain valid approximations.   
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Figure 4.4 – Side view of the direct diffraction angle measurement set-up used to calculate grating pitch.   

4.5 Inscription of chirped pitch circular gratings with a curved wave front 

The experimental setup for inscribing chirped pitch circular SRGs is very similar to 

the setup described in section 4.3.  However, in this case a focusing lens is inserted into the 

optical path between the variable iris and the CDG.  Because the incoming light is collimated, 

the focusing lens generates an approximation of a point source of coherent light at its focal 

point.  Depending on the focal length of this lens and the distance to the sample film, the 

point source may be used to produce a diverging or converging spherical wave front as 

illustrated in Figure 4.5.  A lens with a focal length of 5 cm was used for the diverging case, 

while a lens with a focal length of 30 cm was used in the converging case.  A rail-mounted 

screen was used to find the location of the point source in order to verify the distance, s, 

between the point source and the sample.   
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Figure 4.5 – Experimental setups for inscription of chirped pitch circular gratings.  (a) Representation of 

the case where the focal point of the focusing lens is placed ahead of the CDG to create a diverging source.  

(b) Representation of the case where the focal point of the focusing lens is placed behind the CDG to create 

a converging source.   

In this portion of the experiment only one CDG with a measured angle of 28.9 

degrees was used.  Its dimensions are specified in the row in bold from Table 4.1.  Multiple 

trials were performed with different distances, s, between the point source and the sample in 

order to better understand the effects of this parameter on the resulting SRG.  Because of 

constraints in the length of the optical rail, and because of interference between rail-mounted 

optical elements, five values of s were used: -20, -10, 3, 6, and 9 cm.   
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Again, as discussed in the theory section, the critical height of the CDG must be 

considered.  This time because the inscribing light has a spherical wave front, the critical 

height of a given CDG changes with the distance to the point source, s, as described in 

section 3.7.  Table 4.3 shows this theoretical relationship using the same experimental 

geometry outlined in this section.  The additional theoretical cases of s = 1000 cm and s = -

1000 cm were added to this table to demonstrate that for large absolute values s, the 

calculated values of hc for a spherical wave front approach the theoretical value of hc = 5.73 

mm for a collimated source.  This indicates that the derived theory for critical height of the 

CDG is self-consistent because distant point sources can be approximated as collimated light.   

Table 4.3 – Critical height of a CDG as the distance from the sample to point source (s) varies.  These 

values were calculated using equation (3.6.8) with CDG angle of 28.9 degrees and minor aperture radius of 

5.95 mm.  The critical height of the CDG for a curved wave front approaches the value for the critical 

height of the CDG for a collimated wave front, hc = 5.73 mm, for large absolute values of s. 

Distance from 

point source to 

sample: s (cm) 

Critical height of CDG 

for curved wave front: 

hc (mm) 

1000 5.71 

9 4.13 

6 3.55 

3 2.28 

-10 7.99 

-20 6.72 

-1000 5.74 

 

The actual measured height of the CDG was 4.34 mm.  In the cases where the actual 

height was larger than the required hc from Table 4.3, the variable iris was reduced in size, 

effectively reducing the size of the CDG exposed to light.  This was done conservatively in 

order to ensure no crossover interference would take place.  According to theory, the result is 

that the gratings would not be formed all the way to the centre of the circular SRG but instead 

would form a band of grating grooves in the shape of a ring of concentric circles.  Similarly, 

when the measured height of the CDG was smaller than the required critical height, ring 

gratings were also formed.  The pitch of the resulting SRGs was then measured at various 

distances from the centre of the grating order to determine the profile of the chirp of the 

grating pitch.  Because ring diffraction gratings were formed, not full circular gratings, the 
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pitches  were measured from the edge of the grating to as close to the centre of the grating as 

measurements would allow.   

For the chirped pitch gratings, the AFM was the only instrument used to measure 

grating pitch as a function of position.  This instrument has already been proven to be an 

accurate form of measurement from the experiments with constant pitch circular gratings.  

The very small scanning area for the imagery combined with the ability to accurately control 

the sample position on a sub-millimetre scale using the computer controlled sample platform, 

made the AFM an excellent tool for this application.  Direct diffraction angle measurements 

would have been problematic because of the larger sample area covered by the probe laser 

beam and because of difficulties with measuring the distance from the centre of the circular 

grating.  SEM imagery would have offered a good alternative to the AFM measurements but 

its operation was dependent on technician availability where the AFM measurements could 

be done in-house.   
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CHAPTER 5: RESULTS 

5.1 Results from the real time diffraction efficiency measurements 

Real-time measurements of the diffraction efficiency of circular SRGs were taken as 

they were being inscribed, as described in section 4.3.  The resulting graph of the diffraction 

efficiency as a function of time is shown in Figure 5.1.  This figure shows a smooth increase 

in the diffraction efficiency of the grating after the inscribing laser is turned on at t=0.  The 

graph plateaus at approximately t=300 seconds when the maximum grating height is reached.  

The large downward spike just after t=600 seconds occurred when the inscribing laser was 

turned off since the sudden change in illumination took a few cycles for the lock-in amplifier 

to average out the signal.  Based on the results of this graph, an exposure time of 350 seconds 

was chosen for subsequent production of circular SRGs in this experiment.   

 

Figure 5.1 – Real-time first order diffraction efficiency of a circular SRG as it is being inscribed in DR-1 

azo-glass by a 40.4 degree CDG using a collimated laser beam with an irradiance of 604 mW/cm2 
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Because the SRG being formed is a circular grating, the first order diffraction 

maximum from the probe laser is an arc of a circle instead of a point as with a linear grating.  

The photo-sensor used to measure the relative power was placed as close as possible to the 

sample in order to capture as much of the light from the diffraction order as possible, 

however some of the light fell outside of the sensor area.  The result is that the calculated 

diffraction efficiency shown in Figure 5.1 may be lower than the true diffraction efficiency.  

However this inaccuracy was deemed acceptable, since the main purpose of collecting this 

data was for determining the amount of exposure time required to inscribe gratings using the 

experimental set-up.  The data in graph Figure 5.1 may not be the true absolute diffraction 

efficiency, but still demonstrates the amount of time required in order to maximize the 

grating efficiency.   

 

Figure 5.2 – The first order diffraction maximum is an arc of a circle when a small portion of the circular 

SRG is illuminate by a probe laser.  This makes calculations of the diffraction efficiency more difficult since 

not all of the diffracted light can be captured on the surface of the photo-sensor.   

5.2 Results from constant pitch circular SRGs produced with planar wave fronts 

A grating produced as outlined in section 4.3 is shown in Figure 5.3.  Although the 

resulting gratings appeared to be circular, the individual grating lines themselves are much 

too small to be seen with the naked eye.  In order to verify that circular gratings were 
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produced, one of the SRGs was exposed to a low power Helium Neon laser with a collimated 

beam that illuminated the entire grating surface.  The resulting diffraction pattern is shown in 

Figure 5.4.  The zeroth order is the circle in the centre where light passes straight through the 

grating.  The first order maximum is represented by the ring of light and is consistent with the 

pattern expected from a circular diffraction grating.  This diffraction pattern also 

demonstrates that the experimental set-up has recorded an accurate holographic 

representation of the incident and reflected inscribing light from the CDG, and is able to 

reproduce this pattern holographically when illuminated with monochromatic light.    

 

Figure 5.3 – A circular SRG with radius of approximately 11mm produced holographically using a CDG.  

This sample has been coated with gold prior to observations being made with a SEM.  It can be seen that 

the grating pattern does not reach all of the way to the centre of the SRG, but forms a band of rings.  This 

was done intentionally in order to ensure no cross over interference occurred from the opposite side of the 

CDG.   
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Figure 5.4 – A photograph of the diffraction pattern produced from a circular SRG being completely 

illuminated by a low-powered collimated laser beam.  The screen is approximately 1 cm away from the 

grating and shows the zeroth and first order diffraction pattern consistent with a circular diffraction 

grating.   

The five different sample gratings were then imaged using an AFM.   An example of 

imagery from the AFM is shown in Figure 5.5.  This figure shows a regular sinusoidal 

grating pattern with the grating grooves aligned in the azimuthal direction, consistent with an 

SRG made up of concentric rings.  The maximum measured grating depth was approximately 

250 nm.   
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Figure 5.5 - AFM scan of circular SRG generated by a 19.4 degree CDG. The x-axis corresponds to the 

radial direction of the circular grating while the z-axis is the depth of the SRG. The average grating pitch 

measured from four different AFM scans at the 0°, 90°, 180° and 270° positions of this grating was 905 nm. 

Table 5.1 shows the results of pitch measurements taken from the AFM scans.  

Because the AFM has a very small scan area of about 7µm across, it is possible to see some 

localized differences in grating pitch, possibly caused by imperfections in the CDG mirror or 

slight misalignment of the optical elements in the experiment.  For this reason, four scans 

were taken of each circular SRG at 0, 90, 180 and 270 degree positions.  These results were 

then averaged for the final value.  Random uncertainties of the grating pitch were calculated 

by subtracting the smallest measured value from the largest measured value and dividing by 2 

for each circular SRG.  The random uncertainty was then added to the 3% instrument 

uncertainty to give a total uncertainty to the measured pitch.  The theoretical values of grating 

pitch were calculated using equation (3.4.11) and a wavelength of 532nm.  All theoretical 

results of grating pitch fall within the uncertainty of the measured pitch.   
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Table 5.1 – Theoretical results compared to measured results from AFM scans of grating pitch for five 

circular SRGs made from CDGs with different angles.  Theoretical pitches were calculated using equation 

(3.4.11).    

Measured 

angle of 

CDG 

(degrees) 

Theoretical 

prediction 

of grating 

pitch (nm) 

Grating pitch as measured by AFM scan (nm) 

90
o
 

position 
180

 o
 

position 

270
 o
 

position 

0
 o
 

position average 

Uncertainty 

(instrument 

+ random) 

40.4 539.0 580.9 556.3 569.1 548.8 560 30 

30.4 609.5 629.7 614.0 638.9 616.3 620 30 

12.0 1309.2 1309.8 1495.0 1475.0 1314.6 1400 140 

19.4 848.2 925.3 894.0 934.2 866.6 900 60 

24.9 697.1 719.3 722.9 771.0 718.7 730 50 

At the time that the SEM was available, the CDG with an angle of 24.9 degrees had 

not yet been manufactured.  For this reason it was only possible to take SEM imagery of four 

out of the five SRGs.  The four available samples were sputter coated with a thin film of gold 

and imagery was taken at various levels of magnification.  Example SEM imagery is shown 

in Figure 5.6.  At magnification levels of about 2000 times, the individual grating grooves 

can be resolved and appear to be consistent over large areas and very regularly spaced.  The 

curvature of the circular grating lines cannot be easily seen because the level of magnification 

is still relatively high and their radius of curvature is relatively large so that the grating 

groves appear to be linear.  At a magnification level of 15000 times, the individual grating 

lines are very clearly resolved and can be measured using the integrated scale on the images.   
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Figure 5.6 - SEM imagery of circular SRG generated from a 19.4 degree CDG over a range of 

magnification powers.  At 2000 times magnification, the grating peaks can be visually resolved showing a 

highly regular grating pattern over a scale of about 100 µm. At 8000, 15000, and 25000 times magnification 

grating lines are very clear. The distance of 10 lines is measured to give an average pitch of 809 nm. 

 

 

Table 5.2 shows the theoretical grating pitches compared to the pitches measured by 

the SEM imagery.  It was not possible to take multiple images at different locations of the 

SRGs using the SEM because of time constraints, so the random uncertainty is not known.  

However by using an instrument uncertainty of 5%, all of the predicted theoretical grating 

pitches fall within the uncertainty of SEM measurements.   
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Table 5.2 - Theoretical results compared to measured results from SEM imagery of grating pitch for four 

circular SRGs made from CDGs with different angles.  Theoretical pitches were calculated using equation 

(3.4.11).    

Measured 

CDG angle 

(degrees) 

Theoretically 

predicted grating 

pitch (nm) 

Average 

measured pitch 

from SEM (nm) 

SEM instrument 

uncertainty: 5% 

(nm) 

40.4 539.0 540 30 

30.4 609.5 580 30 

12.0 1309.2 1280 60 

19.4 848.2 810 40 

The final method used to measure the grating pitch of the constant pitch circular 

SRGs was to measure the angle of diffraction of the first order maxima as described in 

section 4.3.  A computer program controls the rotary table, measures and records the 

diffraction angle, and automatically performs the required calculations using equation (4.3.1).  

The resulting pitch measurements are shown for SRGs from all five CDG angles in Table 5.3 

and it can be seen that the measured pitches fall within the uncertainty of the predicted 

values.   

Table 5.3 - Theoretical results compared to measured results of grating pitch calculated from diffraction 

angle measurements for five circular SRGs made from CDGs with different angles.  Measured pitches were 

calculated using equation (4.3.1) and theoretical pitches were calculated using equation (3.4.11).    

Measured 

CDG angle 

(degrees) 

Theoretically 

predicted grating 

pitch (nm) 

Pitch calculated 

from diffraction 

angle (nm) 

Calculated Pitch 

uncertainty: 5% 

(nm) 

40.4 539.0 540 30 

30.4 609.5 610 30 

12.0 1309.2 1270 60 

19.4 848.2 830 40 

24.9 697.1 710 40 

A graph summarizing the measured grating pitches from all three measurement 

techniques compared to the theoretically predicted value is shown in Figure 5.7.  Uncertainty 

in the CDG angle for each point is taken from Table 4.1.  It can be seen that the results for all 

three independent methods of measuring grating pitch are consistent and agree well with the 

predicted value from equation (3.4.11).    
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Figure 5.7 - Theoretical and measured results of the SRGs pitch inscribed by a 532 nm laser as a function of 

CDG mirror angle θ.   Measured results include data points taken from AFM, SEM and direct diffraction 

angle measurements. The theoretical curve is plotted using equation (3.4.11).   

5.3 Results from chirped pitch circular SRGs 

AFM scans were taken of the 5 chirped pitch circular SRGs that were generated from 

the 28.9 degree CDG with different distances to the point source of light.  An example of the 

AFM imagery taken is seen at Figure 5.8.  The scans were taken approximately every 0.5 mm 

along a randomly chosen radial line starting at the outside edge of each circular SRG.  The 

scans were also repeated at the same distance from centre, δ, but on the opposite side of the 

SRG.  The grating pitch was measured from the imagery by averaging the distance between 

multiple grooves.  This result was then averaged again with the results from the AFM 

imagery taken from the opposite side of the SRG.  Grating pitch data as a function of δ as 

measured by the AFM imagery is presented as black points in Figure 5.11 through Figure 
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5.15.  Uncertainty in the pitch was calculated by taking the absolute value of the difference 

between the two trials divided by two to find the random uncertainty and adding this to the 

3% instrument uncertainty.  

 

Figure 5.8 - AFM imagery at 1mm from the edge of a circular SRG inscribed using a 28.9 degree CDG with 

a point source of inscribing light at s = -10 cm. 

The computer ray trace simulation described in section 3.6 was used in order to 

provide a theoretical solution to compare with the collected data.  The ray trace simulation 

provides two main outputs: a cross sectional schematic of the rays, as well as data points for 

the calculated pitch as a function of distance from centre of the circular SRG.  Figure 5.9 and 

Figure 5.10 are two examples of schematics generated by the simulation that represent the 

calculated ray paths.  Firstly, lines are drawn to represent the innermost and outermost beams 

that will strike the CDG and that are reflected in order to determine the angular boundaries of 

the simulation.  Then, at a chosen interval, intermediate sample beams are drawn and are 

reflected by the CDG.  Finally lines that represent beams of directly incident light are drawn 

to meet the points of the reflected intermediate sample beams.  This output is used to visually 

confirm that the geometry of the simulation is working correctly.  The fact that all of the 
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critical heights used in the simulation runs strike the centre point (δ=0), as seen in Figure 5.9 

and Figure 5.10, and are in agreement with the critical heights taken from Table 4.3 adds 

further evidence to the accuracy of the simulation.   

 

Figure 5.9 – Schematic of rays of light reflecting off of a 2D cutaway of a CDG mirror for a diverging wave 

front. The schematic is from the ray trace simulation using a distance to point source of s=3cm and a 

critical height of the CDG hc=2.28 mm with the outermost reflected beam striking the centre of the SRG as 

predicted.   
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Figure 5.10 - Schematic of rays of light reflecting off of a 2D cutaway of a CDG mirror for a converging 

wave front.  In this case it appears that the rays are coming from below the CDG.  The reason for this is 

that it was convenient in the simulation to calculate the angle of incidence to the mirror, and subsequently 

the angle of reflection, by simulating the point of convergence as the true source of light.  In the physical 

experiment the light is actually approaching from above and converging on a virtual point source below the 

sample.  The schematic is from the ray trace simulation using a distance to point source of s=-10cm and a 

critical height of the CDG hc=7.99 mm with the outermost reflected beam striking the centre of the SRG as 

predicted.   

An additional result from the simulations is a graph with data points for the 

theoretical grating pitch as a function of δ, the coplanar distance from the centre of the SRG.  

These data points were calculated using simulation parameters that matched the geometry 

measured from the physical experiments as closely as possible.  The wavelength of light was 

entered as 532 nm to match the wavelength of the laser used.  The critical height from Table 

4.3 was used as the height parameter for each case in the simulation.  A measured CDG 

angle, θ, of 28.9 degrees from Table 4.1 and a minor radius of 5.95mm from Table 4.3 were 

used.  Since there is an uncertainty of 1  degree in the measured angle, the simulation was 

also executed for CDG angles of 27.9 and 29.9 degrees.  This was done for all five tested 

distances, s, from the point source to the sample film.  These results can be seen as the solid, 

dashed, and dotted line graphs in Figure 5.11 through Figure 5.15.  The red and blue lines 

border an area that represents a range of theoretical solutions within the confines of the error 
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in the CDG angle parameter.  The black dotted line represents the ideal theoretical solution 

for a CDG angle of 28.9 degrees.   

One additional step was taken in order to demonstrate that the theoretical grating 

pitches generated by the simulation were accurate.  Although equation (3.5.7) does not 

simplify well in its general form, it can be approximated using numerical methods for 

specific cases.  By assigning the same parameters to this equation as in the computer 

simulation and only leaving the values of PD and δ as variables, a solution was found for 

various test points using commercial algebra software to satisfy equation (3.5.9).  By 

subtracting the solution values of δ2 and δ1, the pitch Λ can be found for each test point.  This 

method was used to calculate grating pitches for various test values of δ, using the same 

distances from the point source to the sample, s, as used in the experiments.  This was done 

using the same geometric parameters as the simulation.  The results from this numeric 

solution can be seen as white circle points on Figure 5.11 through Figure 5.15.  The results 

indicate a perfect agreement between the simulation and the numeric solution adding further 

confidence that the ray trace simulation is performing as expected.    
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Figure 5.11 - Theory and measurements for a circular SRG inscribed from a 28.9 degree CDG with 

diverging point source 3 cm away from sample. 

 

Figure 5.12 - Theory and measurements for a circular SRG inscribed from a 28.9 degree CDG with 

diverging point source 6 cm away from sample. 
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Figure 5.13 - Theory and measurements for a circular SRG inscribed from a 28.9 degree CDG with 

diverging point source 9 cm away from sample. 

Figure 5.11 through Figure 5.13 represent the test cases where diverging light from 

the inscribing laser was used to inscribe chirped pitch SRGs.  All three graphs have a 

negative slope indicating that the grating pitch gets smaller towards the edge of the circular 

SRGs.  These three graphs show a general trend where the smaller the distance, s, to the point 

source, the more pronounced the chirp of the grating pitch.  Figure 5.11 corresponds to data 

taken using a value of s = 3 cm and has the most pronounced negative chirp of -13.4 nm of 

pitch per mm of grating.  Figure 5.12 corresponds to s = 6cm and has a chirp of -7.0 nm/mm. 

Figure 5.13 corresponds to a value of s = 9cm, and has the least amount of negative change in 

pitch over the surface of the grating at -4.5 nm/mm.   
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Figure 5.14 - Theory and measurements for a circular SRG inscribed from a 28.9 degree CDG with 

converging point source -10 cm away from sample.    AFM measurements are not made for the values of δ 

smaller than about 3.5 mm because the height h of the CDG prohibits the formation of grating lines in the 

center of the SRG as discussed in section 4.5. 
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Figure 5.15 - Theory and measurements for a circular SRG inscribed from a 28.9 degree CDG with 

converging point source -20 cm away from sample.    AFM measurements are not made for the values of δ 

smaller than 3 mm because the height h of the CDG prohibits the formation of grating lines in the center of 

the SRG as discussed in section 4.5. 

Figure 5.14 and Figure 5.15 represent the test cases where converging light from the 

inscribing laser was used to inscribe chirped pitch SRGs.  These two graphs have a positive 

slope indicating that the grating pitch gets larger towards the edge of the circular SRGs.  

Similar to the case of a diverging source, these graphs show a general trend where the smaller 

the distance, s, to the point source, the more pronounced the chirp of the grating pitch.  Figure 

5.14 corresponds to a value of s = -10 cm and has the most pronounced positive chirp of 6.3 

nm of pitch per mm of grating.  Figure 5.15 corresponds to a value of s = -20 cm, and has the 

least amount of change in pitch over the surface of the grating at 3.6 nm/mm.   

A summary of the measured rate of chirp dependent on the distance, s, to the point 

source can be seen in Table 5.4.  These values were calculated as the slope from linear 

regressions of the experimental data points.   
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Table 5.4 – Rate of change in grating pitch over distance from centre of chirped SRG for the 5 tested distances to 

the inscribing point source.  Note that negative values of s correspond to a converging source where positive values 

of s correspond to a diverging source.    

Distance from point 

source to sample –  

s (cm) 

Rate of change in pitch over 

distance from centre of grating –  

Chirp (nm/mm) 

-20 3.6 

-10 6.3 

3 -13.4 

6 -7.0 

9 -4.5 

The experimental data points from Figure 5.11 to Figure 5.15 generally fall within 

uncertainty of the ideal theoretical solution of a 28.9 degree CDG.  The differences between 

experimental and theoretical results can be accounted for by a number of potential sources for 

error.  Any imperfections in the CDG mirror surface or in the alignment of the CDG or point 

source can alter the results.  In order to help mitigate these sources of error, two 

measurements from opposite sides of the CDG were taken and the results averaged. Another 

source of error comes from the various parameters used in the simulation.  Because of 

limitations in the accuracy of measuring the CDG angle using a travelling microscope, the 

relative uncertainty was highest for this parameter.  This is the reason that several simulations 

were run to quantify the possible range of errors caused by the uncertainty of the CDG angle.  

However, additional error could have been introduced from inaccuracies in the distance to the 

point source, s, or the size of minor aperture of the CDG, m.  These values were known with 

greater accuracy since they were measured directly and so had a smaller relative uncertainty 

than the CDG angle.  Lastly, changes to the room temperature in the laboratory can 

theoretically affect the piezoelectric actuators on the AFM which might affect the accuracy of 

the AFM imagery.  The AFM was recalibrated at the beginning of each day of test 

measurements and any variations are accounted for in the 3% instrument error included in the 

total uncertainty of the AFM pitch measurements.   

One common trend that was seen in Figure 5.11 through Figure 5.15 is that the last 

two or three measured pitches furthest from the centre of the circular SRG are higher than 

expected for each SRG.  It is believed that the reason for this unexpected observation is a 

result of the manufacturing process of CDG fixture itself.  After the CDG is machined, it was 

polished in a time consuming process that removed small amounts of material on the surface 

of the CDG in order to get rid of any scratches.  Although extreme care was taken to polish 

the CDG at an angle consistent with its nominal geometry, the inner most edge of the CDG 
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mirror where it is finished at a knife edge would have been more susceptible to the removal 

of material in the polishing process.  This would effectively lower the CDG angle in the areas 

closest to the knife edge, which is the area that reflects the interfering light for the outermost 

area of the resulting SRGs.  It is believed that the higher than expected grating pitches from 

the outside few points of the SRG measurements are indicative of a slight change of less than 

one degree in the CDG angle at the inside edge of the CDG mirror.   This accidental 

discovery may actually be beneficial in that it shows the potential for further controlling the 

rate of pitch by manipulating the curvature of the CDG mirrors.   

After the accuracy of the simulation had been independently confirmed by comparing 

it to the experimental data, further simulations were run in order to demonstrate the potential 

range of pitches and the degree of chirp.  Similar geometry was chosen as used in the 

experiment. However, a wider range of values of s were used.  The results of these simulation 

runs are summarized in Figure 5.16.  This graph demonstrates that by using small positive 

values of s, it is possible to achieve grating pitches smaller than the wavelength of light.  This 

overcomes the theoretical limit of minimum pitch for circular SRG production using a 

collimated light source with a CDG as seen in equation (3.4.11).  For small positive or 

negative values of s, the change in grating pitch, or chirp is most pronounced.  Maximum 

values for grating chirp rate measured from the bottom and top curves in Figure 5.16 are -

30.1 nm pitch/mm and 34.1 nm pitch/mm for values of s = 1 cm and s = -2 cm respectively.   
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Figure 5.16 - The dependence of grating pitch on distance from the center of the grating for 14 simulated 

circular SRGs inscribed with a 28.9 degrees CDG using different distances to the point source of light, s, 

with a wavelength of 532 nm.  A positive value of s denotes divergent source while a negative value indicates 

a convergent source.  As the distance to the point source increases, whether positive or negative, the slope of 

the grating pitch over distance from centre of SRG approaches zero.  Small absolute values of s result in 

steeper slopes and nonlinear curves.  The grating pitch can be further controlled by changing the CDG 

angle θ or the wavelength of light λ.  Curves are derived from a ray trace computer simulation discussed in 

theory section of this thesis and seen in Appendix A. 

An additional result that can be seen in Figure 5.16 happens for very distant point 

sources.  Whether converging or diverging, the curvature of the inscribing light becomes less 

pronounced at far distances to the source and is a closer approximation to collimated light.  

For values of s=10 m or s=-10m, the slope of the curves generated approaches zero.  This is 

consistent with the constant pitch gratings generated in the collimated beam experiment.  The 

values of pitch for distant point sources in Figure 5.16 are consistent with the predicted pitch 

from equation (3.4.11) for an SRG inscribed using a 28.9 degree CDG with 532 nm 

wavelength collimated beam.   Both results independently arrive at a constant pitch value of 

approximately 629 nm.  This shows that the derived theory for the chirped pitch circular 

gratings is simply a more general case of the theory that was developed for the constant pitch 

gratings, and that the two theoretical solutions are in agreement.   
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CHAPTER 6: CONCLUSION 

This thesis has introduced a novel holographic method of generating circular 

diffraction gratings using a specially designed mirror fixture called a Circular Diffraction 

Grating Generator (CDG).  The circular gratings are inscribed in surface relief on thin films 

of photo-mechanically active azo-glass material.  The theory describing the geometry of 

interfering light reflected by the CDG has been developed in order to predict the grating pitch 

as well as the rate of grating chirp for circular surface relief gratings (SRGs) fabricated by 

this method.  A ray trace simulation was used as a tool to model the pitch of the generated 

SRGs and the results from this simulation agreed well with the theory as well as the 

experimental data.   

A collimated beam of coherent light can be used to create constant pitch circular 

SRGs.  By focusing the inscribing light to a point source, either converging or diverging on 

the CDG mirror, it is possible to create chirped circular SRGs with positive or negative rates 

of changes in pitch over the surface of the grating.  The result is that the pitch and chirp of the 

circular gratings can be controlled with a relatively high degree of accuracy within the 

confines of the theory by changing the geometry of the experiment and the wavelength of the 

inscribing light.   

One of the main advantages to this method of fabricating circular SRGs is the speed 

that the gratings are produced.  While other methods of fabrication such as grating engines, or 

direct milling with energy beams can produce gratings with comparable resolutions, it can 

take days of milling one groove at a time on expensive machinery to produce a grating of a 

few centimeters across.  Photolithography can produce gratings much more quickly than 

direct milling, but still requires the fabrication of a photo mask.  The method of creating 

circular SRGs outlined in this thesis can be described as a form of direct 3D interference 

photolithography, which combines the advantages of photolithography without the 

requirement for a photo-mask or chemical etching.  The result is a single step process that can 

create holographic circular gratings quickly, without the requirement for a master grating or 

photo-mask, and without any specialized equipment other than a suitably powerful laser.  In 

the case of the experiments outlined in this thesis, good quality gratings were formed in 350 

seconds using a beam irradiance of 604 mW/cm
2
.  Less powerful inscribing sources of 

around 100 mW/cm
2
 would also work, but would require more exposure time.   
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Another advantage of this circular SRG manufacturing technique is the relatively 

large scale of the gratings produced while still maintaining very fine sub micrometer detail in 

the grating structure.  While other methods of direct inscription of circular gratings in azo-

polymer films have been demonstrated, the size of these gratings has been in the order of 

micrometers.  It has been demonstrated in this thesis that by using a CDG, it is possible to 

fabricate circular SRGs more than a centimeter across while maintaining a diffraction grating 

structure finer than 500 nm.  This method can be similarly scaled up or scaled down to meet 

application specific requirements by changing the size of the CDG.  The main practical limit 

to the size of a circular SRGs produced by this method is the irradiance of the collimated 

beam from the inscribing laser which must be wide enough to illuminate the entire CDG and 

also have enough power to activate the photo-mechanical response in the azo-material film 

with an irradiance of at least 50 mW/cm
2
 as discussed in section 1.4.    

An interesting result from the analysis of the theory and experiments is the fact that 

the circular SRGs created by this new holographic method are very sensitive to the height of 

the CDG.  It is important that its height not exceed the ‘critical height’ of the CDG or else the 

interfering beams will cross over the centre point of the circular grating and cause an 

unwanted third source of interference.   However, if the height of the CDG is less than the 

critical height, then it is possible to create a ring diffraction grating.  The ability to create 

ringed gratings may serve as an advantage in certain applications where the gratings serve to 

focalize or couple light towards a sample material in the centre of the rings.  Varying the 

height of the CDG below the critical height changes the thickness of the ring grating and 

allows for an additional element of controllability in the fabrication of gratings by this 

method.    

Areas of future development on the topic of holographic circular gratings should 

concentrate on application based research.  Researchers using circular diffraction gratings in 

their work may benefit greatly from the ability to create customized circular SRGs with the 

required size and pitch in a fast, single-step process.  Because of the relative simplicity of this 

manufacturing process without the requirement for specialized complex equipment, this 

technology may enable small laboratories to fabricate their own customized circular gratings 

in order to further application based research in their own fields.  It is anticipated that areas of 

research such as diffractive lenses, surface emitting feedback dye lasers, and plasmonic 

enhancement of LEDs or solar cells, will now be more accessible to research groups that 
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previously did not previously have the ability to manufacture their own circular gratings in 

house, thus paving the way for future discoveries in the field of photonics.    
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Appendix A: Code for ray trace simulation of CDG with converging and diverging wavefronts 

 

clearvars 
close all 
format long 
syms theta 
d=5.95e-3; %set radius of minor aperture (m) 
theta=28.9; % set CDG angle (degrees) 
s=-100e-3; % set distanc to point source (m) 
lambda=532e-9; % set wavelength of inscribing light (m) 
%h=d/(tand(2*theta)-tand(theta))*.397 
h=7.99e-3; % set height of CDG 
t=h*tand(theta); % calculate thickness of CDG based on height and angle 

  
%angle of reflection calculations in matrix form 
%mirror=[d 0 d+t h] 
%beam1=[d; -s] 
%beam2=[d+t; h-s] 
%reflectionmatrix=[cosd(-theta) -sind(-theta);sind(-theta) cosd(-

theta)]*[-1 0;0 1]*[cosd(theta) -sind(theta);sind(theta) cosd(theta)] 
%reflection1=reflectionmatrix*beam1 

  
angleout1=atand(d/s); %calculate the angle from the point source to 

innermost point on the CDG mirror 
angleout2=abs(atand((d+t)/(s-h))); % calculate the angle from the point 

source to the outermost point on the CDG mirror 

  
%calculate the reflected angle from the CDG mirror for the two beams 

above 
if s>0  
       reflectedangle1=(angleout1+2*theta); 
    reflectedangle2=(angleout2+2*theta); 
 else 
     reflectedangle1=(-angleout1+2*theta); 
    reflectedangle2=(-angleout2+2*theta); 
 end 

  
counter=0; 
scanincrement=.5e-3; %set the sample rate for how many test points you'd 

like (m) 
%scan and calculate test points to use 
for x=d+scanincrement:scanincrement:d+t %loop in increments of 

scanincrement along the length of the CDG mirror 
    counter=counter+1; 
    y=(x-d)/tand(theta);  % calculate the y position on the CDG mirror 

where the beam will hit 
    angleout=abs(atand(x/(s-y))); % calculate the angle from the source 

in order to hit the test point on the CDG mirror 
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    %calculate the reflected angle for the test point on the CDG mirror 
    if s>0  
        reflectedangle=(angleout+2*theta); 
    else 
        reflectedangle=(-angleout+2*theta); 
    end 

     
    finalx=x-y*tand(reflectedangle);% calculate the final x coord at 

sample after reflection 

     
    %draw the ray trace lines on the schematic 
    incident=line([0 x],[s y],'Color', [0 1 0]); 
    reflected=line([x finalx],[y 0],'Color', [0 1 0]); 
    straightin=line([0 finalx],[s 0],'Color', [0 0 1]); 

     
    %this section of code estimates the grating pitch by calculating the 
    %path difference between the test points selected above, and by 

moving 
    %in small increments away from the test point until a differnce in 

path 
    %difference of one wavelength is found 

     
    %calculate the pathdifference between incident and reflected beams 

for the test point 
    if s>0 
        pathdifference=sqrt(x^2+(y-s)^2)+sqrt((x-finalx)^2+y^2)-

sqrt(finalx^2+s^2); 
    else 
        pathdifference=-sqrt(x^2+(y-s)^2)+sqrt((x-

finalx)^2+y^2)+sqrt(finalx^2+s^2); 
    end 
    pdinwavelengths=pathdifference/lambda; % convert from m to # of 

wavelengths 

     
    phasescan=0; 
    microincrement=1e-10; %set very small incremental increase parameter 
    scanposition=x; 
    while phasescan<1 % loop while the difference between path difference 

is less then one wavelength 
        scanposition=scanposition+microincrement; %increase the scan 

position by one scan increment 
        y=(scanposition-d)/tand(theta); % calculate the y position on the 

mirror where the scan will strike 
        angleout=abs(atand(scanposition/(s-y))); % calculate the angle 

from the point source to hit the scan position on mirror 

          
        %calculate the reflected angle of the scan 
        if s>0  
            reflectedangle=(angleout+2*theta); 
         else 
            reflectedangle=(-angleout+2*theta); 
        end 
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        finalxscan=scanposition-y*tand(reflectedangle); % calculate the 

xposition on the sample where the reflected scan ray will hit 

         
        %calculate the path difference between incident and reflected 

light 
        %for the scan position 
        if s>0 
            pathdifference=sqrt(scanposition^2+(y-

s)^2)+sqrt((scanposition-finalxscan)^2+y^2)-sqrt(finalxscan^2+s^2); 
        else 
            pathdifference=-sqrt(scanposition^2+(y-

s)^2)+sqrt((scanposition-finalxscan)^2+y^2)+sqrt(finalxscan^2+s^2); 
        end 
        micropdinwavelengths=pathdifference/lambda; % convert scan 

position PD from m to # of wavelengths 
        phasescan=abs(pdinwavelengths-micropdinwavelengths); %check 

difference between path length between test point and scan point 
    end 

    
   %store position in x direction of test point and the resulting 
   %calculated pitch in two arrays 
   position(counter)=finalx; 
   pitch(counter)=(finalx-finalxscan); 

     
end 
%output the position and calculate pitch 
position.' 
pitch.' 

  
%draw remainder of elements on ray trace schematic 
scrsz=get(0,'ScreenSize'); 
%figure('Name','CDG simulation', 'NumberTitle', 'on', 'Position',[1 

scrsz(4)/2 scrsz(3)/2 scrsz(4)/2]) 
axis([0 d+t 0 .01]) 
axis equal 
%draw mirror 
mirror=line([d d+t],[0 h]); 
%draw inside border line 
incident1=line([0 d],[s 0], 'Color', [1 0 0]); 
%draw outside border line 
incident2=line([0 d+t],[s h], 'Color', [1 0 0]); 
reflected2=line([d+t d+t-h*tand(reflectedangle2)],[h 0],'Color', [1 0 

0]); 

  
%plot position vs pitch graph 
figure 
plot(position,pitch) 
%position 
%pitch 
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Appendix B: Papers published or under review from research 

Leibold, J., Snell, P., Lebel, O., and Sabat, R.G. “Design and fabrication of constant-pitch circular 

surface-relief diffraction gratings on disperse red 1 glass”. Opt. Lett. 2014,  39, 3445-3448.  

 

Leibold, J. and Sabat, R.G. “Laser-induced Controllable Chirped-Pitch Circular Surface-Relief 

Diffraction Gratings on Azo-Glass” Under review in Photonics Research as of Mar 2015.   


