

MIMO RADAR HARDWARE ACCELERATION WITH

ENHANCED RESOLUTION

ACCÉLÉRATION D’UN RADAR MIMO À

RÉSOLUTION AMÉLIORÉE

A Thesis Submitted to the Division of Graduate Studies

 of the Royal Military College of Canada

by

Eric J.A.G. Pitre, BEng

Lieutenant (Navy)

In partial Fulfillment of the Requirements for the Degree of

Master of Applied Science in Electrical Engineering

June, 2022

© This Thesis may be used within the Department of National Defence

but copyright for open publication remains the property of the author.

ii

Acknowledgements

I would first like to acknowledge the mentorship and expertise provided to me by my academic

supervisors. This thesis covers several facets of Electrical Engineering and having expert opinion

on specific topics was invaluable. Dr Joey Bray, Dr Vincent Roberge, and Dr Mostafa Hefnawi

provided timely advice regarding radar and RF systems, parallel processing, and MIMO

techniques respectively. Additionally, the quality of this work could not have been achieved

without their feedback and support.

I would also like to thank Dr. Germain Drolet and LCdr Robert Gilpin for providing me with the

required tools and advice regarding the MIMO radar which was built at RMC. Troubleshooting

and system understanding would have been much more difficult without their help.

Finally, I would like to thank my fiancée, Tanya, who had to share her home office with me for

the past two years. The pandemic definitely brought its challenges, but having to work from home

meant that she was the first one to hear about my technical problems and about how I wanted to

fix them. You were there for me when I needed it the most, and I truly appreciated that.

iii

Abstract

Classical radars steer their main beam across their desired Field of View (FOV) by physically

moving the antenna or by adjusting the phase of the elements of an array. It takes time for a narrow

beam to cover the entire FOV, which will in turn affect the refresh rate of the system. Recent

research has seen efforts to implement Multiple Input Multiple Output (MIMO) techniques to

radar. By using multiplexing techniques, the MIMO radar can illuminate the whole search sector

at once and perform beamforming on receive. At the cost of higher computational complexity and

longer dwell times, to compensate for lower Signal to Noise Ratios (SNR), the MIMO radar can

simultaneously scan the entire FOV and thus increase the refresh rate of the radar.

Due to the increased signal processing requirements, MIMO radars have difficulty operating in

real-time as the computations can take several seconds to execute. The computation cost is

somewhat mitigated by using efficient algorithms such as the Fast Fourier Transform (FFT) to

solve for the range, velocity, and Direction of Arrival (DOA) of the echoes. However, the FFT is

shown to have less than optimal resolution when compared to other signal processing tools.

In this thesis, parallel implementations of MIMO signal processing algorithms on a Graphics

Processing Unit (GPU) are proposed to allow for near real-time imaging of the field of view. In

addition, two algorithms (the Chirp Z Transform and the Bartlett Beamformer) are proposed to

replace the commonly used FFTs and improve the range and angular resolutions.

The result of this work yields a range resolution improvement of 24.58% and an angular resolution

improvement of 24.48% when compared to the baseline FFT method. Executed in parallel, the

solution provides a speed up of 454.2x on the GPU. A signal processing time of ~324 ms was

achieved for a Coherent Processing Interval (CPI) of 308 ms, enabling near real-time operation of

the radar. Additionally, a correction method which enables the imaging of near-field target is

proposed and verified.

iv

Resumé

Les radars classiques dirigent leur faisceau principal à travers leur champ de vision en déplaçant

l’orientation de l’antenne ou en ajustant la phase des éléments d'un réseau. Il faut du temps pour

qu’un faisceau étroit couvre la totalité du champ de vision, ce qui affecte le taux de

rafraîchissement du système. Récemment, des travaux de recherches mettent des efforts à

implémenter des techniques à entrées multiples et sorties multiples (MIMO) au radar. En utilisant

des techniques de multiplexage, le radar MIMO peut éclairer l’ensemble du secteur de recherche

simultanément et effectuer la formation de faisceaux en réception. Cependant, cet avantage vient

avec un coût de calcul plus élevé.

Du aux exigences du traitement de données, les calculs peuvent prendre plusieurs secondes à

exécuter. Les radars MIMO ont donc de la difficulté à fonctionner en temps réel. Le coût de calcul

est quelque peu atténué par l’utilisation d'algorithmes efficaces tels que la transformée de Fourier

rapide (FFT) pour résoudre la portée, la vitesse et la direction d’arrivée des échos. Cependant, il y

a des algorithmes qui génèrent de meilleures résolutions que l’analyse FFT.

Dans cette thèse, des implémentations d'algorithmes parallèles des systèmes radar MIMO sur un

unité de traitement graphique sont proposées afin de réduire le temps de calcul et de permettre une

imagerie en temps quasi réel du champ de vision. En plus, deux algorithmes sont proposés pour

remplacer les FFT couramment utilisées dans le but d’améliorer la résolution de portée et la

résolution angulaire. Les deux algorithmes sont basés sue la transformée en Z du signal chirp

(CZT : Chirp Z Transform) et sur la méthode de Bartlett pour la formation des faisceaux (Bartlett

Beamformer).

Le résultat de ce travail donne une amélioration en résolution de portée de 24,58% et une

amélioration en résolution angulaire de 24,48% par rapport à la méthode FFT. Exécutée en

parallèle, la solution offre une accélération de 454,2x sur l’unité de traitement graphique. Un temps

de calcul d'environ 324 ms a été atteint pour un intervalle de traitement cohérent (CPI) de 308 ms,

permettant un fonctionnement en temps quasi réel du radar. De plus, une méthode de correction

qui permet l'imagerie d'une cible à courte portée est proposée et vérifiée.

v

Contents

Acknowledgements ... ii

Abstract ... iii

Resumé .. iv

Contents ... v

List of Tables ... vii

List of Figures ... viii

Acronyms ... x

1 Introduction ... 1

1.1 Background .. 1

1.2 Problem Statement ... 2

1.3 Motivation .. 2

1.4 Thesis Statement .. 3

1.5 Methodology .. 3

1.6 Thesis Organization.. 4

2 Literature Survey .. 5

2.1 Radar Fundamentals and Signal Processing Techniques ... 5

2.2 MIMO Radars .. 18

2.3 Parallel Processing Techniques .. 21

2.4 MIMO Radar Prototypes .. 28

2.5 Accelerated Radar Signal Processing ... 40

2.6 Summary .. 45

3 Methodology ... 46

3.1 Simulation Environment .. 46

3.2 Configuration Setup ... 48

3.3 Algorithms .. 51

3.4 Short Range Correction .. 68

3.5 Optimization of CPU Implementation ... 74

4 Results ... 76

4.1 Signal Processing Acceleration .. 76

4.2 Resolution Measurements .. 79

vi

4.3 Result Summary ... 85

5 Conclusion .. 86

5.1 Summary .. 86

5.2 Contributions .. 87

5.3 Discussion .. 88

5.4 Future Work ... 90

Bibliography .. 91

vii

List of Tables

Table 1-1. Measurement Results, summarized from [7] ... 2

Table 2-1. Letter Band and ITU nomenclature, reproduced from [13] .. 6

Table 2-2. GPU Memory Types and Scope, reproduced from [27] .. 26

Table 2-3. Performance Results, summarized from [9] .. 31

Table 2-4. Performance Results, summarized from [8] .. 34

Table 2-5. Performance Results, summarized from [34] .. 37

Table 2-6. Desired Parameters, summarized from [7] .. 39

Table 2-7. Performance Results, summarized from [7] .. 40

Table 3-1. MIMO Radar Parameters, summarized from [7] .. 49

Table 3-2. Software Versions on Workstation .. 50

Table 3-3. FFTW functions used in Baseline FFT method. Notes from [45] 53

Table 3-4. Multithreaded FFTW Functions. Notes from [45] .. 62

Table 3-5. Useful cuFFT Functions, reproduced from [46] .. 64

Table 4-1. Execution Time and Acceleration Results .. 77

Table 4-2. Range Resolution Measurements .. 82

Table 4-3. Bearing Resolution Measurements .. 83

Table 4-4. Bearing Resolution Measurement: Target at 13.5 m ... 84

viii

List of Figures

Figure 1-1. Range-Doppler Diagram Example ... 3

Figure 2-1. FMCW Chirp, adapted from [16]... 7

Figure 2-2. FMCW Block Diagram, reproduced from [16] .. 8

Figure 2-3. Range-Doppler Space, reproduced from [17] .. 10

Figure 2-4. DFT Example, AM signal .. 11

Figure 2-5. Frequency Points Comparison: (a) DFT (b) CZT .. 12

Figure 2-6. DFT and CZT Narrow-Band Comparison ... 13

Figure 2-7. Fast CZT Algorithm: Block Diagram .. 14

Figure 2-8. Example of an M by N Planar Array, reproduced from [20] 14

Figure 2-9. One-Way Radiation Pattern of Steered Array, reproduced from [20] 15

Figure 2-10. Plane Wave Incident on Array, reproduced from [22] ... 16

Figure 2-11. DOA Comparison between FFT and Bartlett... 18

Figure 2-12. MIMO Radar Virtual Array, adapted from [6] .. 19

Figure 2-13. MIMO DOA Beamforming across the Data Cube, reproduced from [6] 20

Figure 2-14. DOA Estimation: (a) FFT (b) IAA, reproduced from [6] .. 21

Figure 2-15. Moore's Law and Single-Threaded CPU Performance, reproduced from [28] 22

Figure 2-16. Sequential and Parallel Regions of a Program, reproduced from [29] 23

Figure 2-17. CPU Efficiency (Speed Up) as per Amdahl's Law, reproduced from [28] 24

Figure 2-18. GPU Architecture, reproduced from [32] .. 25

Figure 2-19. CUDA Thread Hierarchy, reproduced from [31] ... 25

Figure 2-20. CUDA Device Memory Model, reproduced from [27] ... 27

Figure 2-21. Image Processing using FPGA and DSP, reproduced from [33] 28

Figure 2-22. System Block Diagram, reproduced from [33] .. 29

Figure 2-23. Antenna Placement, reproduced from [33] .. 30

Figure 2-24. Radar Image Output: (a) Field of View (b) Radar Image, reproduced from [33] 30

Figure 2-25. MIMO Radar Antenna Configuration, reproduced from [9] 31

Figure 2-26. OFDM MIMO Radar: (a) Field of View (b) Radar Image after Signal Processing,

reproduced from [9] .. 32

Figure 2-27. Moving Target: (a) Field of View with Moving Van (b) Radar Image after Signal

Processing, reproduced from [9] ... 32

Figure 2-28. Physical and Virtual Array Configuration, reproduced from [8] 33

Figure 2-29. (Left) Photograph of Transmitter Board. (Right) Circuit Diagram,

reproduced from [8] .. 33

Figure 2-30. Field Test of MIMO Radar, reproduced from [8] .. 34

Figure 2-31. Radar Components, reproduced from [34]... 35

Figure 2-32. Image of Radar Prototype, reproduced from [34] .. 36

Figure 2-33. Measurement Location of Radar, reproduced from [34] ... 36

Figure 2-34. Radar Image of Ship at 1200 meters, reproduced from [34].................................... 37

Figure 2-35. MIMO Radar photograph, reproduced from [7] .. 38

Figure 2-36. Simplified Signal Processing Diagram, adapted from [7] 38

ix

Figure 2-37. Radar Image for Single Target, reproduced from [7] .. 39

Figure 2-38. Flight Path of Airborne SAR, reproduced from [35] ... 41

Figure 2-39. Error Estimation Method on GPU, reproduced from [35] 41

Figure 2-40. SAR Image Comparison: (a) Without Compensation (b) With Compensation,

reproduced from [35] .. 42

Figure 3-1. Antenna and Target Geometry, Single Target ... 47

Figure 3-2. Data Cube Example, 40 × 20 × 10 ... 48

Figure 3-3. Connectivity Diagram, reproduced from [7] .. 49

Figure 3-4. Dell Precision 7920 Workstation ... 50

Figure 3-5. Simple Software Diagram .. 51

Figure 3-6. Stages of Computing the Radar Frames for the Baseline FFT Method 52

Figure 3-7. Visualization of Cube Compression... 53

Figure 3-8. Algorithm Substitutions: (a) Baseline 3D FFT (b) Proposed..................................... 55

Figure 3-9. Range FFT and CZT Comparison for 2 Targets .. 56

Figure 3-10. CZT, within Context of the Data Cube .. 57

Figure 3-11.Bartlett DOA, in Context of the Data Cube .. 58

Figure 3-12. Straddling Loss vs Oversampling Factor ... 60

Figure 3-13. Resolution Error vs Oversampling Factor.. 61

Figure 3-14. Multithreaded Cube Compression.. 64

Figure 3-15. GPU Implementation of Bartlett DOA .. 66

Figure 3-16. Parallel Implementation of Enhanced Resolution Radar Signal Processing 67

Figure 3-17. Receive Array Geometry, Far Target ... 68

Figure 3-18. Short Range Target Phase Error ... 70

Figure 3-19. FFT (64-point) Beamforming Output at Different Ranges 73

Figure 3-20. Bartlett DOA (720-point) Output at Different Ranges .. 73

Figure 3-21. Short Range DOA using: (a) Original Samples (b) Phase Corrected Samples 74

Figure 4-1. Analog Range Spectrum, Target at 50 m ... 79

Figure 4-2. Sampled Power Spectrum, baseline FFT ... 80

Figure 4-3. Sampled Power Spectrum, proposed CZT ... 80

Figure 4-4. Stradling Loss: (a) Target Coinciding with FFT bin (b) Target in between FFT bins81

x

Acronyms

ADC Analog to Digital Converter

AESA Active Electronically Steered Array

AM Amplitude Modulation

API Application Programming Interface

ASIC Application Specific Integrated Circuit

CDMA Code Division Multiple Access

CPI Coherent Processing Interval

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

CW Continuous Wave

CZT Chirp Z Transform

DIT Decimation in Time

DFT Discrete Fourier Transform

DOA Direction of Arrival

DSP Digital Signal Processing

DSSS Direct Spectrum Spread Spectrum

EM Electromagnetic

EP Electronic Protection

ESPRIT Estimation of Signal Parameters via Rotational Invariance Technique

EW Electronic Warfare

FDMA Frequency Domain Multiple Access

FFT Fast Fourier Transform

FFTW Fastest Fourier Transform in the West

FHSS Frequency Hopping Spread Spectrum

FMCW Frequency Modulated Continuous Wave

FOV Field of View

FPGA Field Programmable Gate Array

GPGPU General Purpose GPU

GPU Graphics Processing Units

HF High Frequency

HPBW Half Power Beamwidth

xi

IAA Iterative Adaptive Approach

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IFFT Inverse Fast Fourier Transform

IMU Inertial Measurement Unit

ITU International Telecommunication Union

LO Local Oscillator

MA Multiple Access

MIMO Multiple Input Multiple Output

MUSIC Multiple Signal Classification

MVDR Minimum Variance Distortionless Response

OMP Open MP

OS Operating System

OSF Oversampling Factor

PAR Phased Array Radar

PRI Pulse Repetition Interval

PRF Pulse Repetition Frequency

RADAR Radio Detection and Ranging

RCS Radar Cross Section

RMC Royal Military College of Canada

RRE Radar Range Equation

SAR Synthetic Aperture Radar

SDMA Space Division Multiple Access

SDR Software Defined Radio

SFP+ Small Form-Factor Pluggable Plus

SFU Special Function Unit

SIMD Single Instruction Multiple Data

SLA Sparse Linear Array

SLL Side Lobe Level

SM Streaming Multiprocessor

SNR Signal to Noise Ratio

SP Streaming Processor

SSS Single Snapshot

T/R Transmit and Receive

TDMA Time Domain Multiple Access

TOF Time of Flight

xii

UAV Unmanned Aerial Vehicle

UHD USRP Hardware Driver

ULA Uniform Linear Array

USRP Universal Software Radio Peripheral

1

1 Introduction

1.1 Background

Significant advancements have been made over the years in the fields of

telecommunications and radar. With the implementations of 5G wireless networks,

developers have leveraged the benefits of Massively Multiple Input Multiple

Output (MIMO) to dramatically increase the throughput and robustness of

communication systems [1]. Despite the advantages and scalability of MIMO

communication systems, the technology comes with increased processing

requirements [1]–[2]. Currently, FPGA and hardware solutions are implemented to

meet these computing demands and researchers are looking into using other

technologies, such as Graphics Processing Units (GPU), to perform the

computations [1]–[2]. MIMO technology has piqued the interest of radar

researchers as it could yield new capabilities when used with Software Defined

Radios (SDR) or as an addition to current radar systems [3]. Many papers have been

published regarding the implementation and testing of MIMO radars but, just like

for communication systems, there is a noticeable increase in processing

demands [3]. The added computations affect the scalability and real-time

performance of MIMO radars [3]. MIMO radars come in 2 broad categories

depending on the location of their antennas, where they are considered either co-

located [4] or distributed [5]. The work contained in this thesis specifically applies

to co-located MIMO radar.

MIMO, in the context of radar, can be interpreted as a different way of scanning a

Field of View (FOV). Instead of relying on mechanically steering an antenna or

adjusting the phase of an array to transmit and receive in a particular direction, the

MIMO radar uses orthogonal waveforms to illuminate the entire FOV at once, using

multiplexing techniques, and performs beamforming on receive [3]–[4]. Although

the computational demands are greater, the MIMO radar can simultaneously

evaluate echoes across the FOV without having to go through the lengthy scanning

process required by classical surveillance radars [3], [7]. Using Software Defined

Radios (SDR), a MIMO radar was built and tested at the Royal Military College of

Canada (RMC) in 2021 which could operate in different multiplexing modes and

yielded a relatively high refresh rate when compared to similar works [7].

However, the signal processing time was still significant, taking approximately 1.25

seconds. The radar took approximately 308 milliseconds to collect the 256-chirp

Coherent Processing Interval (CPI), meaning that the signal processing takes

approximately 80% of the time between radar frames [7]. Additionally, range and

angular resolution measurements were taken in [7] to quantify the performance of

the radar. In general, the resolution results were larger than what we expect from

theory.

2

1.2 Problem Statement

Many recently reported MIMO radar prototypes suffer from long computation

times [7]–[10]. Since the potential of the MIMO radar lies in reducing the required

time to scan a FOV, this added computation time diminishes the advantage of its

utilization and might not enable the radar system to run in “real-time”. Additionally,

a trade-off exists between choosing computationally efficient algorithms for speed

and more complex algorithms for better performance in resolution. More research

is required to find computationally efficient algorithms which provide high

resolution results [6].

As previously stated, the 1.25 second processing time of the RMC MIMO radar is

quite long compared to its CPI of 308 milliseconds. Additionally, as shown in

Table 1-1, the measured resolutions are larger than the theory would predict, even

when considering the FFT window used (Blackman-Harris), which is especially

true for the angular resolution.

Resolution
Desired

Resolution
Measured

Expected results for

rectangular FFT window

Range 0.75 m 1.75 m 0.875 m

Velocity 0.1 m/s 0.2 m/s 0.1 m/s

Angular 2° 10.5° 5.25°
Table 1-1. Measurement Results, summarized from [7]

1.3 Motivation

The motivation for this thesis is to realize a high refresh rate MIMO radar which

leverages the computational power of parallel processing to the previous work done

at RMC. Furthermore, algorithms that improve the resolution will also be explored

and will leverage the parallel processing capability. If a successful parallel

implementation of high-resolution algorithms can be achieved, RMC’s MIMO

radar will be able to provide higher quality results at a higher rate than before.

The large data cube generated from the SDRs requires independent and repetitive

algorithms to be performed across all time samples, pulses, and MIMO channels

thereby providing significant parallelization opportunities which is well suited for

parallel programming techniques.

3

1.4 Thesis Statement

Multicore CPU and GPU parallel processing techniques will be investigated to

accelerate the high computational demands of MIMO radar signal processing.

Additionally, the Chirp Z Transform and the Bartlett Beamformer will be evaluated

to improve the range and angular resolutions. Resolution measurements and radar

frame execution times will then be compared against the current version of RMC’s

MIMO radar.

1.5 Methodology

The first step is to create a simulated MIMO radar environment which can generate

multiple target echoes for any given range, bearing, speed, and heading

combination, given a transmit and receive array configuration. The output of the

simulated environment will be the In-Phase and Quadrature (I&Q) voltage time

samples for all MIMO channels.

Once the radar echoes have been properly modeled, the baseline signal processing

algorithm will be written, which includes the range, doppler, and angular FFTs as

well as an algorithm to generate the range-doppler and range-bearing diagrams to

display to an operator. Figure 1-1 shows an example of a range-doppler diagram

with a visible target at ~50 meters and a radial velocity of ~4 meters per second.

Figure 1-1. Range-Doppler Diagram Example

4

The next step will be to replace the existing range FFT by the Chirp Z Transform

and the existing angular FFT by the Bartlett Beamformer for the high-resolution

mode. Within the simulation environment, point targets are used to perform

resolution measurements. Angular and range resolutions are then compared

between the FFT mode and the high-resolution mode.

Subsequently, the signal processing is parallelized on multicore CPU and on the

GPU. The time taken to perform each step of the computation is then measured and

compared with its sequential implementation in order to quantify the computation

acceleration, which will be done for both the existing 3D FFT method and the high-

resolution method.

Finally, resolution measurements in range and in bearing will be taken. Quantifying

the success of the high-resolution algorithm will be done by comparing the

resolution measurements of the high-resolution method against those of the existing

method.

1.6 Thesis Organization

This thesis is organized into 5 chapters. Chapter 2 provides a literature review of

MIMO radar and parallel processing techniques. Fundamental radar theory and

parallel processing techniques are covered, as well as a summary of state-of-the-art

MIMO radar prototypes and parallel implementations of radar signal processing.

Chapter 3 describes the radar system on which the proposed solution will be

implemented and will describe the simulation environment, the signal processing

chains, and the parallel implementations of both the existing 3D FFT and the

proposed high-resolution modes. Additional compensation for short range targets

will also be described to accommodate beamforming techniques in the lab

environment.

Chapter 4 describes the experimentation setup and will present the measurement

results for the resolutions and the refresh rates. Both simulation and measurements

will be presented.

Finally, Chapter 5 presents the findings and conclusions of this thesis and discusses

future work opportunities regarding MIMO radar and its signal processing.

5

2 Literature Survey

The literature survey chapter is composed of 6 sections which cover the required

background theory as well as the state-of-the-art in MIMO radar prototypes and

parallel implementation of radar signal processing. Section 2.1 covers radar

fundamentals and signal processing techniques. Section 2.2 describes the MIMO

radar scanning mode. Section 2.3 introduces the concept of parallel processing,

specifically regarding the use of multicore CPUs and GPU architecture. Section 2.4

discusses the state-of-the-art MIMO radar prototypes. Section 2.5 demonstrates

recent research in parallel implementations of radar signal processing. Finally,

Section 2.6 summarizes the survey on the state-of-the-art and concludes that MIMO

radar should benefit from GPU implementation.

2.1 Radar Fundamentals and Signal Processing Techniques

Radio Detection and Ranging (radar) was developed and used during World

War II [11]. Radars transmit electromagnetic (EM) waves and listen for echoes. By

measuring the delay between the signal’s transmission and the reception of the

reflections, the range between the radar and the scatterers can be determined [12].

The following equation relates the elapsed time delay ∆𝑡 to the range 𝑅 of the

scatters where 𝑐, the speed of light, is approximately equal to 3 × 108 m/s.

𝑅 =
𝑐∆𝑡

2
 (2.1)

Specific radar applications include: Surveillance, Tracking, Weapon Guidance,

Remote Sensing, Weather Detection, and Imaging to name a few [11]. Radars have

been implemented from High Frequency (HF) to millimeter waves where

Table 2-1 enumerates the radar band allocations and nomenclatures according to

the Institute of Electrical and Electronics Engineers (IEEE) and the International

Telecommunication Union (ITU).

6

IEEE nomenclature ITU nomenclature

Radar letter

designation
Frequency range Frequency range

Band

No.

HF 3 MHz to 30 MHz 3 MHz to 30 MHz 7

VHF 30 MHz to 300 MHz 30 MHz to 300 MHz 8

UHF 300 MHz to 1000 MHz

0.3 GHz to 3 GHz 9 L 1 GHz to 2 GHz

S 2 GHz to 4 GHz

3 GHz to 30 GHz 10
C 4 GHz to 8 GHz

X 8 GHz to 12 GHz

K𝑢 12 GHz to 18 GHz

K 18 GHz to 27 GHz

30 GHz to 300 GHz 11
Ka 27 GHz to 40 GHz

V 40 GHz to 75 GHz

W 75 GHz to 110 GHz

mm 110 GHz to 300 GHz 300 GHz to 3000 GHz 12
Table 2-1. Letter Band and ITU nomenclature, reproduced from [13]

The following sections aim to highlight some of the key processes which radars

need to perform. Surveillance radars need to scan large volumes of space in order

to find targets of interest amongst clutter [14]. Classical radars are generally fitted

with high-gain antennas which are rotated in azimuth as they perform their scans.

The antennas’ beam pattern tends to be narrow in azimuth, for good angular

resolution, but wide in elevation to maximize the sweep area and therefore its search

volume [14]. The following equation is a version of the Radar Range Equation

(RRE) and is thoroughly used in radar analysis [11], [12].

𝑅𝑚𝑎𝑥
4 =

𝑃𝑇𝐺𝑇𝐺𝑅𝜆2𝜎𝜏𝑝

(4𝜋)3(𝑆𝑁𝑅)𝑘𝑇𝑠𝑦𝑠𝐿
 (2.2)

where:

𝑅 = range (m)

𝑃𝑇 = transmit peak power (W)

𝐺𝑇 = transmit antenna gain (unitless)

𝐺𝑅 = receive antenna gain (unitless)

𝜆 = wavelength (m)

𝜎 = radar cross section (m²)

𝜏𝑝 = pulse width (s)

𝑆𝑁𝑅 = signal to noise ratio (unitless)

𝑘 = Boltzmann’s constant ≈ 1.38 × 10−23 W/(K∙Hz)

𝑇𝑠𝑦𝑠 = system equivalent temperature (K)

𝐿 = system losses (unitless, with 𝐿 > 1)

7

Equation (2.2) is used to predict the maximum range at which we can expect to

detect a target of RCS 𝜎, with a given probability for a given signal to noise ratio

(SNR). Note that larger ranges are expected when the 𝑃𝑇𝜏𝑝 (peak power and pulse

width) product is large. Therefore, long range radars operate at long pulse widths

and low PRFs to allow for unambiguous detection [11]. During a radar’s design

phase, all these parameters would need to be optimized for the task(s) the radar was

meant for. Not only does a radar need to detect targets at a given range, but

consideration must also be given to Electronic Protection (EP) and Intercept

Probability (for military applications). Spectrum allocations and mitigation

of competing signals which occupy the same RF band must also be a part of the

design [14], [15].

2.1.1 Frequency Modulated Continuous Wave (FMCW) Radar

The FMCW radar enables a Continuous Wave (CW) or pulsed radar (using

modulation on pulse) to make range measurements by adding bandwidth to the

signal [16]. This is done by modulating the transmitter frequency as a function of

time. As seen in Figure 2-1, any reflected signal will be delayed in time and will

have a different frequency, when compared to the current frequency of the local

oscillator. This difference in frequency, also called the bearing frequency, can be

measured to estimate the range of the target [16]. Since the radar FMCW radar is

transmitting and receiving simultaneously, it does not suffer from blind ranges in

the same manner as the traditional pulsed radar [15], which is useful for detection

at short ranges such as in automotive radar.

Figure 2-1. FMCW Chirp, adapted from [16]

∆𝑡 =
2𝑅

𝑐

𝑓𝑏

8

In Figure 2-4, the target is stationary and does not produce a Doppler shift. In

general, the beat frequency can be expressed as the combination of a range

component and a Doppler component. This is shown in (2.3).

𝑓𝑏 =
2𝑘0𝑅

𝑐
−

2𝑓𝑡
𝜕𝑅
𝜕𝑡

𝑐
 (2.3)

where:

𝑓𝑏 = beat frequency (Hz)

𝑐 = speed of light (m/s)

𝑘0 = chirp rate (Hz/s)

𝑅 = range between the radar and the target (m)
𝜕𝑅

𝜕𝑡
= range rate (m/s)

𝑓𝑡 = frequency of operation (Hz)

If the radar is designed to operate in an environment where the Doppler shifts are

negligible when compared to the range components, (2.4) can be used as a range

estimator.

𝑅 ≈
𝑐𝑓𝑏

2𝑘0
 (2.4)

In general, FMCW radars have separate transmit and receive apertures to guarantee

adequate isolation between the transmitter and the receiver. The receiver also needs

a copy of the transmitted waveform to perform mixing. The mixing process

generates the signal required for range and doppler measurements [16]. Figure 2-2

shows a generic FMCW radar block diagram where the frequency counter could be

any process (analog or digital) which extracts the beat frequency, and the indicator

represents the user interface or graphical output.

Figure 2-2. FMCW Block Diagram, reproduced from [16]

Doppler Shift

Range Component

9

To extract target velocity information when Doppler is small compared to the range

component, the dwell time must be increased so that the slowest radial velocities

can be measured [16], which may be accomplished by processing several FMCW

pulses in slow-time to form a Coherent Processing Interval (CPI) [3], where ramps

are transmitted every 1/𝑃𝑅𝐹 (seconds). Between every ramp interval, the radial

range of the target changes which translates as a measurable change of phase. The

number of ramps in the CPI 𝑁𝑝 must be selected so that the total integration time

allows for the required velocity resolution. Note that the PRF is usually chosen to

balance unambiguous range and blind speed requirements [12]. Therefore, for a

given PRF and desired Doppler resolution, (2.6) is used to determine the number of

ramps required in the CPI.

𝑡𝑖𝑛𝑡 =
1

𝑓𝑑_𝑚𝑖𝑛
 (2.5)

𝑁𝑃 =
𝑃𝑅𝐹

𝑓𝑑_𝑚𝑖𝑛
 (2.6)

where:

𝑡𝑖𝑛𝑡 = required dwell time

𝑓𝑑_𝑚𝑖𝑛 = smallest doppler shift the system is required to detect

𝑃𝑅𝐹 = pulse repetition frequency
𝑁𝑃 = number of pulses required in the CPI

2.1.2 Doppler Frequency Analysis

Modern radars use Doppler filtering and frequency transforms in order to suppress

clutter and to characterize the targets with respect to range and radial velocity [12],

which can then be used to triage targets based on their velocities. Figure 2-3 shows

targets, clutter, and noise within the Range-Doppler space. The Fast Fourier

Transform (FFT) is commonly used for this task [12], which converts time-based

samples into their frequency spectrum. Since velocity information is coded in the

reflection’s Doppler frequency, the FFT enables the radar system to sort the echoes

by velocity.

10

Figure 2-3. Range-Doppler Space, reproduced from [17]

The Discrete Fourier Transform (DFT) is an algorithm which transforms time

domain signals into their frequency domain spectrum [18]. The frequency coverage

and resolution of the DFT depends on the sampling rate of the system and the size

of the DFT (number of samples to evaluate). As shown in (2.7), the DFT evaluates

the sum of the input samples multiplied by complex weights, which must be

performed for all frequency bins 𝑘 [18].

𝑋[𝑘] = ∑ 𝑥[𝑛]

𝑁−1

𝑛=0

𝑒−𝑗
2𝜋𝑛𝑘

𝑁 𝑘 = 0, 1, ⋯ , 𝑁 − 1 (2.7)

𝑓[𝑘] =
𝑘𝑓𝑠

𝑁
 (Hz) (2.8)

where:

𝑋 = complex DFT coefficients

𝑥 = complex input signal

𝑘 = frequency bin index

𝑛 = time index

𝑓𝑠 = sampling frequency

𝑁 = size of DFT

11

As an example, the following continuous signal is sampled at 10 kHz (512 samples

are collected).

𝑠(𝑡) = cos(2𝜋𝑓0𝑡) (1 + 0.5 cos(2𝜋𝑓1𝑡)) (2.9)

where:

𝑓0 = 2000 Hz
𝑓1 = 105 Hz

Equation (2.9) is an Amplitude Modulated (AM) signal which has a carrier

frequency of 2000 Hz and is modulated by a 105 Hz sinusoid. Using the DFT, both

the time domain samples and the frequency spectrum are shown in Figure 2-4. In

the lower part of the figure, the carrier frequency can clearly be seen, along with

the upper and lower side bands of the 105 Hz modulation. The DFT is a useful

Digital Signal Processing (DSP) tool which is used across many domain [18],

including the range and velocity estimations of targets in a FMCW radar system.

Figure 2-4. DFT Example, AM signal

Carrier

Sidebands

12

The DFT as presented here is rarely used in this form, as it has a time complexity

on the order of 𝑁2. Efficient algorithms, such as the Decimation-in-Time (DIT)

radix-2 method, have been developed to compute the DFT by splitting the

computation in steps. These Fast Fourier Transforms (FFT) have a time complexity

on the order of 𝑁 log2(𝑁), which dramatically reduces the computation time of the

Fourier Transform [18].

Sometimes, however, the FFT resolution is too coarse and cannot provide the fine

spectral details required. If spectral analysis of a narrow band is required, a different

algorithm will be needed. The Chirp-Z Transform (CZT) is a DFT-like algorithm

which enables a user to select the frequency limits and resolution of the

computations [19] and is expressed in (2.10). Figure 2-5 utilizes the Z-Plane to

illustrate the frequency point distribution of the DFT and the CZT. Whereas the

DFT spreads its points evenly across the z-plane, from −
𝜔𝑠

2
 to

𝜔𝑠

2
, the CZT can

focus its frequency points between the frequencies of interest 𝜔1 and 𝜔2 with a

frequency step of ∆𝜔.

𝑋[𝑘] = ∑ 𝑥[𝑛]

𝑁−1

𝑛=0

𝑒−𝑗2𝜋(𝑓1+𝑘∆𝑓)𝑛 𝑘 = 0, 1, ⋯ , 𝑁 − 1 (2.10)

Figure 2-5. Frequency Points Comparison: (a) DFT (b) CZT

13

To show how the CZT can zoom-into a narrow frequency band and provide finer

details than the DFT, we reutilise the example AM signal from (2.9). The signal is

sampled at 10 kHz and 512 samples are collected, just as before. This time,

however, the data will be sent to a 512-point DFT and a 512-point CZT where both

results will be juxtaposed. The frequencies of interest for the CZT will be between

1800 Hz and 2200 Hz, which means each frequency step has a size of 0.7812 Hz.

Figure 2-6 shows amplitude results for both algorithms.

Figure 2-6. DFT and CZT Narrow-Band Comparison

Fortunately, there is also a fast algorithm which computes the CZT, as shown

in (2.11) [19]:

𝑋[𝑘] = 𝑊
𝑘2

2 ∑ 𝑥[𝑛]𝑒−𝑗𝜔1𝑛𝑊
𝑛2

2 𝑊−
(𝑘−𝑛)2

2

𝑁−1

𝑛=0

 (2.11)

where:

𝑊 = 𝑒−𝑗∆𝜔

∆𝜔 =
𝜔2 − 𝜔1

𝑁

𝜔2 = stop frequency (rad/s)
𝜔1 = start frequency (rad/s)

Although this format seems more tedious than the direct computation of the CZT,

equation (2.11) is written as a convolution. Since convolutions can be done via

multiplications in the frequency domain, the computational power of the FFT can

be used to achieve computational complexity on the order of 𝑁 log2(𝑁) [19]. The

computation of the CZT requires two FFTs, one IFFT, and several steps of

14

multiplications. Figure 2-7 is a visual representation of the fast CZT algorithm, in

the form of a block diagram.

Figure 2-7. Fast CZT Algorithm: Block Diagram

2.1.3 Phased Array Radars

Phased array radars have been used in many applications due to their scalability,

performance, and flexibility [11]. Using many individual antenna elements, RF

energy is combined in space which creates desirable beam patterns [12]. The

one-way normalized array factor for an 𝑀 × 𝑁 uniform linear planar array, as

shown in Figure 2-8, is expressed by (2.12) [20].

Figure 2-8. Example of an M by N Planar Array, reproduced from [20]

15

𝐴𝐹𝑛(𝜃, 𝜙) = {
1

𝑀

sin (
𝑀
2 Ψ𝑥)

sin (
Ψ𝑥

2)
} {

1

𝑁

sin (
𝑁
2 Ψ𝑦)

sin (
Ψ𝑦

2
)

} (2.12)

where:

Ψ𝑥 = 𝑘𝑑𝑥 sin(𝜃) cos(𝜙) + 𝛽𝑥

Ψ𝑦 = 𝑘𝑑𝑦 sin(𝜃) sin(𝜙) + 𝛽𝑦

𝑘 =
2𝜋

𝜆

𝜆 = wavelength (m)

𝑑𝑥 = spacing between antennas along x-axis (m)

𝑑𝑦 = spacing between antennas along y-axis (m)

𝛽𝑥 = phase progression of antennas along x-axis (rad)

𝛽𝑦 = phase progression of antennas along y-axis (rad)

𝜃, 𝜙 = spherical angles (rad)

In a phased array radar, the physical elements are generally fixed. Therefore, the

system can use phase shifters to control the transmit phase of each radiating

element [11]. The phase progression angle is represented by 𝛽𝑥 and 𝛽𝑦 in (2.12)

and is usually given in radians [20], which steers the main beam to a desired location

in 𝜃 and in 𝜙 [12]. Figure 2-9 shows the radiation pattern of a steered array for a

given set of parameters.

Figure 2-9. One-Way Radiation Pattern of Steered Array, reproduced from [20]

16

A phased array radar can therefore perform electronic scanning of a particular Field

of View (FOV) by simply changing the phase progression of its array elements [11].

Some radars will use a hybrid technique where they transmit a broader beam to

cover larger angular areas and then perform Digital Beamforming on receive [21],

which will reduce the amount of time needed to scan a large FOV but will require

significantly more processing [12], [21].

2.1.4 DOA Beamforming

Radar systems generally need to extract the azimuth information of target echoes.

In DOA estimation, intercepted signals across many antennas are used in

algorithms to determine the azimuth or elevation of the target [12]. As a plane wave

approaches an array, it is intercepted by the array elements at different times as a

function of the DOA and the positions of the elements. Figure 2-10 shows an array

which receives an incident signal from an angle 𝜃. The incident angle will generate

a phase difference across each antenna element [22]. For a Uniform Linear Array,

the relative phase shift 𝜑 between adjacent antennas can be expressed by (2.13).

Figure 2-10. Plane Wave Incident on Array, reproduced from [22]

𝜑 = 𝛽𝑑 cos(𝜃) (2.13)

where:

𝛽 = 2𝜋𝜆

𝑑 = distance between antenna elements (m)

𝜃 = incident angle of wavefront (rad)

The advantage of performing digital beamforming upon reception is that the radar

can form multiple beams simultaneously instead of pointing its antenna in a given

17

direction [11]. Some modern radars, such as the Thales SMART-S MkII, scan their

FOV mechanically in azimuth and using digital beamforming in elevation, allowing

the radar system to generate 3D target tracks [23]. Other systems, such as

automotive radar, rely on digital beamforming to find the azimuth of nearby

vehicles [22].

A popular and efficient DOA estimator will simply make use of the FFT because

the progressive phase difference between antenna elements is equivalent to a spatial

frequency where the sampling rate is related to the element position. The resulting

normalized frequency 𝜔𝑛 will therefore be a value between −1 and +1 where 0

represents a target at boresight [6]. Since (2.13) represents the phase shift across

element:

𝜃 = acos(𝜔𝑛) (2.14)

 The conventional, or classical method of solving for the DOA is the Bartlett

Beamformer, which uses steering vectors to generate the power spectrum across the

angular FOV [24]. The steering vector is simply the expected phase shift across all

elements for any given incident angle. The signal power at a given angle is given

by (2.15) [25] and is simply a multiplication between the covariance matrix of the

input signals and the steering vector.

𝑃(𝜃) = 𝒂(𝜃)𝐻𝑹𝑥𝒂(𝜃) (2.15)

where:

𝜃 = steering angle

𝑃(𝜃) = Bartlett power spectrum, for given angle

𝑎(𝜃) = steering vector, for given angle

𝑅𝑥 = signal covariance matrix
[]𝐻 = complex transpose

Just as before, a target in the far field is assumed and the steering vector is equal to:

𝑎(𝜃) = [1, 𝑒−𝑗𝛽𝑑𝑐𝑜𝑠(𝜃), 𝑒−𝑗2𝛽𝑑𝑐𝑜𝑠(𝜃), ⋯ , 𝑒−𝑗(𝑁−1)𝛽𝑑𝑐𝑜𝑠(𝜃)] (2.16)

To scan the entire FOV, the Bartlett Beamformer must evaluate (2.15) for all

angles 𝜃 of interest. Unlike the FFT, the number of evaluated angles is not tied to

the number of antennas (i.e., a 64-point FFT will generate a spectrum with 64

equally spaced frequencies). The Bartlett Beamformer is not a High-Resolution

18

algorithm, when compared to the Capon Beamformer or any of the subspace-based

method [6]. However, it is robust, and works without a priori knowledge of the

targets. Additionally, other High-Resolution algorithms do not function well in a

single snapshot (SSS) setting or when multiple correlated signals are present.

Because of this, the Bartlett Beamformer is often the method of choice for radar

digital beamforming [24], [25]. Figure 2-11 shows a comparison of the FFT and the

Bartlett DOA for an array of 64 antennas. The targets are located at −55° and −40°

from boresight. The Bartlett DOA in this example was evaluated from −90° to 90°

with an angular step of 0.25°, for a total of 720 angle bins.

Figure 2-11. DOA Comparison between FFT and Bartlett

2.2 MIMO Radars

Like the phased array radar, the MIMO radar utilizes many antenna elements to

form arrays. However, there are two main differences between them. Firstly, the

phased array antennas generally perform both transmit and receive functions while

the MIMO radar has dedicated transmit and receive arrays which are spatially

separated [3]. Secondly, all the radiating elements of a phased array radar transmit

the exact same waveform. Phase shifts and amplitude weighting are used to shape

and steer the beams as required. The MIMO radar’s transmitting antennas, on the

other hand, all transmit different or orthogonal waveforms [3].

Because of these different transmitter waveforms, the MIMO radar receivers can

identify, sort, and process each waveform individually. This means that the transmit

waveforms must be orthogonal to each other [3]. When the MIMO array elements

are spaced just right, the demodulated signal at the receivers create an array which

is larger than the total number of antennas [6]. The convolution of transmit and

19

receive one-way patterns to generate the two-way pattern of a radar system isn’t

unique to MIMO. However, the orthogonal waveforms enable the receive to

discriminate between individual transmit/receive paths and combine the multiple

signals in many different ways [3], whereas the phase array configuration does not.

The signal processor uses the demultiplexed signals of all transmit/receive

permutations for beamforming [3]. Figure 2-12 shows a 2-element transmit array

and a 4-element receive array where the phase progression measured at the receivers

for each transmit antenna is equivalent to that of an 8-element ULA. Note that in

the figure, 𝜑 = 𝛽𝑑 sin(𝜃) because 𝜃 being measured from boresight.

Figure 2-12. MIMO Radar Virtual Array, adapted from [6]

MIMO radar waveforms can be orthogonal in time and in frequency. Therefore, the

use of Time Domain Multiple Access (TDMA), Frequency Domain Multiple

Access (FDMA), and Code Division Multiple Access (CDMA) have each been

investigated for the multiplexing scheme of the waveforms [3].

In TDMA, each transmitter is assigned a time slot to transmit its waveform. The

receiver then sorts the echoes from each transmitter, sequentially [3]. Although

TDMA is one of the simplest methods of implementing MIMO into a radar, it is not

the most effective, as the effective PRF is reduced by the number of transmitter

waveforms, reducing the data output rate and slowing the radar’s possible

maximum scan rate [3].

In FDMA, each transmitter is assigned a frequency channel which is orthogonal to

the others. However, FDMA has poor spectrum efficiency as each channel must be

as large as the radar’s waveform bandwidth [3]. If there are 𝑀 transmit antennas,

20

the FDMA MIMO radar will occupy 𝑀 times the bandwidth of its TDMA

counterpart, thereby making hardware, ADC, and antenna selection and design

difficult [3].

In CDMA, each transmitter is given a short code which is modulated onto the pulse.

The transmitter can now transmit simultaneously on the same frequency

channel [3]. The receiver can differentiate between each transmitter by

demodulating the signals with the appropriate matched filter. It is difficult,

however, to find codes which are truly orthogonal, which is especially true when

pulse durations are short [3] and “even small residual cross-correlation noise can

degrade the benefits of MIMO…” [3].

It is evident that each of these MIMO methods have its benefits and challenges, and

selecting a method will depend on the goals and restraints of the MIMO radar being

designed [12]. Although there have been recent developments in novel waveform

design [26], more work needs to be accomplished in finding ways to ensure the

orthogonality of the waveforms [3], [6]. Once all the waveforms have been sorted

into a virtual array (meaning individual paths from each transmitter to each

receiver), the channels can be added as sheets of Range Doppler, as shown in

Figure 2-13. The figure also shows how each channel can then be processed by an

FFT, operated in the depth (channel) direction, to transform the information into

DOA information.

Figure 2-13. MIMO DOA Beamforming across the Data Cube, reproduced from [6]

Although Figure 2-13 shows the FFT, other methods for angle estimation exists

including the CZT and the Bartlett methods that were previously described. So-

called subspace DOA techniques provide high resolution and accuracy but have a

much higher computational demand. Multiple Signal Classification (MUSIC),

Estimation of Signal Parameter via Rotational Invariance Technique (ESPRIT),

Sparse-Sensing, Iterative Adaptive Approach (IAA), and Minimum Variance

Distortionless Response (MVDR) are some of the common high-resolution angle-

finding techniques [6]. As discussed earlier, however, not all methods work at low

21

SNR, on single snapshots, for multiple correlated signals, or without a priori

knowledge of the targets. Figure 2-17 shows a comparison between the FFT DOA

method and the high-resolution IAA method. The sharper peaks and lower Side

Lobe Levels (SLL) are clearly a desirable feature of the high-resolution

algorithm [6]. Figure 2-14 is the result of a simulated Sparse Linear Array (SLA)

MIMO radar.

Figure 2-14. DOA Estimation: (a) FFT (b) IAA, reproduced from [6]

Even before the beamforming stage, the computation requirement of a MIMO radar

is increased due to the range and doppler processing done for all demultiplexed

channels. Additionally, the beamforming algorithm must be performed across all

range-doppler cells. These tasks are independent and provides opportunities for

parallelization.

2.3 Parallel Processing Techniques

In general, computer programs are written in sequential steps in order to be executed

on Central Processing Units (CPU) [27]. As new hardware got developed,

performance of CPUs increased and so did the speed of the programs. Up until

recently, the performance of CPUs seemed to be correlated with Moore’s law

(which predicts that transistor density doubles approximately evert 1.5 years) [28].

Since 2010, this relationship changed and the increase in single-threaded CPU

performance is slowing down for each new generation of chip [28]. This is shown

22

in Figure 2-15. Several factors such as leakage currents, heat dissipation, and energy

consumption limits the increase in the clock cycles of a processing unit and

therefore, CPU performance [27], [28].

Figure 2-15. Moore's Law and Single-Threaded CPU Performance, reproduced from [28]

Instead of making the computers faster by increasing the CPU clock rates, they can

make them wider by splitting the computing tasks onto many parallel threads

preformed on multiple cores [27]. On computers, this is usually done by leveraging

the power of multicore CPUs using an API like OpenMP or by using co-processors

such as General Purpose Graphics Processing Units (GPGPU) [27].

2.3.1 Multicore CPU

Modern computers and laptops have multicore CPUs which make parallel

programming opportunities more available than ever [27]. Using an Application

Programming Interface (API) such as OpenMP, programmers can direct the CPU

to perform certain tasks in parallel. Some tasks can only be done sequentially, while

others are repetitive or must be executed on large amounts of data. This means that

the computer program has defined sequential and parallel regions, which is shown

in Figure 2-16 [29].

23

Figure 2-16. Sequential and Parallel Regions of a Program, reproduced from [29]

The acceleration which can be achieved by using multicore CPU depends on the

number of cores and the portion of the code which can only be done sequentially.

This is called Amdahl’s law [28]. In order to maximize the speed up, given a set

number of cores, the programmer must strive to maximize the ratio of parallel

processing within the program. Equation (2.17) is the formulation of Amdahl’s law,

reproduced from [28].

𝑎 =
1

(𝑅 +
1 − 𝑅

𝑁)
 (2.17)

Where:

𝑎 = multicore efficiency, or speedup ratio

𝑁 = number of CPU cores

𝑅 = ratio of sequential processing

1 − 𝑅 = ratio of parallel processing

Figure 2-17 shows the efficiency (speed up) of CPUs for different values of 𝑁

and 𝑅.

24

Figure 2-17. CPU Efficiency (Speed Up) as per Amdahl's Law, reproduced from [28]

2.3.2 Graphics Processing Units (GPU)

GPUs were optimized for gaming applications where developers needed to increase

the throughput of operations to generate high quality graphics [27]. Since the

computation required to generate image frames are highly independent, a large

amount of them could be performed simultaneously in parallel [27]. The GPU has

also been used in other applications where there is a lot of data to process and where

the computation tasks can be parallelized, which is common in the scientific

community [30].

The GPU is built to run several hundred to several thousand threads

simultaneously [31]. The GPU has several building blocks containing Streaming

Multiprocessors (SM) [27], [31]. These SMs all have several Streaming Processors

(SP) which share control logic and instruction cache [27]. Executed threads are

mapped to SMs and have access to a Shared Memory. The GPU also has a Global

Memory and a Constant Memory to hold and share data send by the Host

computer [27]. Figure 2-18 shows a generic GPU architecture containing 4 SMs:

each with 8 SPs, 2 Special Function Units (SFU), and Shared Memory. Although

the Global Memory is large, read and write operations take a long time [27] which

can increase the execution time of Kernels. The Shared Memory, in contrast, is

smaller than the Global Memory but the access time is much shorter [27].

Programmers should take care to minimize Global Memory access to reduce the

execution times of their program.

25

Figure 2-18. GPU Architecture, reproduced from [32]

Compute Unified Device Architecture (CUDA) is an extension to other

programming languages which provide additional functionality for GPU

programming [27]. With CUDA, a programmer can code sequential instructions

which are to be executed on the CPU and Kernels, which are functions that run in

parallel on the GPU when called from the CPU [31]. When launching a Kernel from

the CPU, the GPU will execute the parallel threads in Blocks [27]. A Grid contains

all the Blocks, while a Block will contain many Threads. A Block of threads is

assigned to a SM, which schedule and perform the parallel computations of up

to 1024 threads per Block [27]. Each individual Thread will have an ID number

which will locate it within the Grid [27]. Figure 2-19 shows the CUDA Thread

hierarchy.

Figure 2-19. CUDA Thread Hierarchy, reproduced from [31]

26

2.3.2.1 Programming Considerations – Shared Memory

Access to the Global Memory is quite slow [27] and depending on the program, the

use of Shared Memory could be beneficial. Shared Memory, which can be accessed

much faster than the Global Memory, can be seen by all Threads of the same Block.

The Threads themselves can be used to load individual elements of a data array

from the Global Memory to the Shared Memory [27]. This limits the total number

of Global loads and stores, which speeds up the execution time. However, the

Shared Memory is much smaller than the Global Memory and caution must be taken

not to over-allocate [27]. Additionally, the visibility of each memory type is limited

and is summarized in Table 2-2.

Memory Type Scope Lifetime

Local Memory Thread Kernel

Shared Memory Block Kernel

Global Memory Grid Application

Constant Memory Grid Application
Table 2-2. GPU Memory Types and Scope, reproduced from [27]

2.3.2.2 Programming Considerations – Memory Access Patterns

Once relevant data is loaded from the host to the device, it is stored in the Global

Memory (constant values may be stored in the Constant Memory). When a large

amount of data needs to be loaded, it is best to do so in a coalesced manner [27],

especially when done from the Global Memory as it is slower. If data from the

Global Memory needs to be accessed in a random or non-sequential manner, the

program will benefit from first performing a coalesced load onto a faster and more

local memory (i.e., the Thread’s Local Memory or a Bock’s Shared Memory). From

there, non-sequential access to the required data will have less of a detrimental

effect on the Kernel’s execution time [27]. Note that as shown in Table 2-2, data

that is stored in a Thread’s Local Memory can only be seen by that thread, just like

the data stored in a SM’s Shared Memory can only be accessed by Threads within

the same Block. Therefore, a coalesced store may be required to transfer the

Kernel’s results back onto the Global Memory and, eventually, back to the Host

[27]. Figure 2-20 shows the access model of CUDA device memory.

27

Figure 2-20. CUDA Device Memory Model, reproduced from [27]

2.3.2.3 Programming Considerations – Control Flow Divergence

The GPU will run sets of 32 Threads at a time, called Warps [27]. The SM “is

designed to execute all threads in a warp following the Single Instruction, Multiple

Data (SIMD) model” [27]. This means that all Threads within a Warp need to

execute the same instructions, due to the shared control logic of the SM. As an

example, if the code contains an if/else statement, the Warp will perform well so

long as all the Threads have the same outcome (if or else). However, if some

Threads have to perform the ifs and the others perform the elses, the SIMD

hardware must execute them sequentially [27]. This problem is called Control Flow

Divergence and will increase the execution time of a program [27].

2.3.2.4 Programming Considerations – Memory Transfer

Kernels, which perform computations in parallel, can be considerably faster than

their sequential counterparts. However, the data first needs to get copied onto the

GPU before the Kernel launches. Additionally, once the data ahs been processed,

the results must be copied back to the Host [27]. The transfer of large data sets

between the Host and the Device takes time and should be minimized. It is therefore

wise to perform many tasks and computations on the GPU before copying the

results back to the CPU [27].

28

Parallel programming techniques have been used in many fields to accelerate

programs, signal processing, and run scientific simulations [27]. The acceleration

provided by parallelizing signal processing tasks of the MIMO radar should reduce

execution times and increase the system’s refresh rate.

2.4 MIMO Radar Prototypes

This section will look at recent MIMO radar prototypes and describe their

functionality, their performance, and their refresh rates.

2.4.1 Prototype A: TDMA MIMO Radar on FPGA and DSP

A 2D (range and azimuth) 4 × 4 FMCW MIMO Radar was demonstrated in [33]

which leverages the parallel structure of the collected data. The system has 4

transmit antennas , 4 receive antennas, performs the fast-time Range FFT on FPGA,

and performs the digital beamforming on a dedicated DSP module [33]. Using a

TDMA multiplexing scheme, the radar creates 16 virtual MIMO channels. Each of

these channels have 1024 time samples which are sent to an FFT range estimator,

prior to being beamformed for imaging. To reduce computation and to generate an

image of a reasonable size, the radar user can select the range of distances which

will be sent for imaging. In the paper, 44 out of the 1024 range cells (representing

ranges from 20 to 100 meters) are sent to the beamformer for imaging [33]. The

raw data flow is shown in Figure 2-21.

Figure 2-21. Image Processing using FPGA and DSP, reproduced from [33]

29

Within the DSP module, the Bartlett beamformer is executed. All the required

steering vectors are pre-stored in the L2 memory, for quick access. Beamforming

is done on a field of view spanning −21.5° to 21.5° with an angular step of 0.1°,

meaning that there are 431 total angular bins to compute. It appears that only one

chirp (per MIMO channel) is collected for processing, since no CPI was defined

nor was there any indication of integration or Doppler processing. Overall, the

FPGA/DSP configuration takes approximately 110 ms to execute the signal

processing. Each FMCW chirp has a duration of 20.6 ms and is followed by

a 19.4 ms delay which enabled the channel switch to occur. The total data

collection time 𝑇𝑠 takes:

𝑇𝑠 = 16 × (20.6 + 19.4) = 640 ms (2.18)

The signal processing could be executed at the same time as pulse collection, so the

refresh rate of approximately 1.56 Hz was purely a function of 𝑇𝑠. Figure 2-22

shows the functional block diagram of the radar. Figure 2-23 shows the antenna

positioning of the transmit and receive arrays. Figure 2-24 shows an example of the

radar image output.

Figure 2-22. System Block Diagram, reproduced from [33]

30

Figure 2-23. Antenna Placement, reproduced from [33]

Figure 2-24. Radar Image Output: (a) Field of View (b) Radar Image, reproduced from [33]

2.4.2 Prototype B: OFDM MIMO Radar

A real-time 3D (range, azimuth, and velocity) MIMO radar was demonstrated

in [9] using an OFDM waveform. The radar has a configuration of 4 × 4, as shown

in Figure 2-25, and performs range/bearing localization and velocity

measurements [9]. To reduce the cost and challenges associated with the design and

acquisition of RF components and hardware, the authors opted to leverage new

Software Defined Radio (SDR) technology as their RF front end [9].

The antennas are connected to four X310 radios, from Ettus Research, each of

which will stream the baseband samples to a computer for processing [9]. Once

demodulated, the OFDM radar requires the same signal processing as an FMCW

radar for range and velocity estimation. Therefore, the computation is comprised of

three FFTs [9]. The first FFT, across the subcarriers, will generate range

31

information. The second FFT, across the OFDM symbols, will generate target

velocity information. The third FFT, across the 16 MIMO channels, will generate

the DOA information.

Figure 2-25. MIMO Radar Antenna Configuration, reproduced from [9]

The radar system was designed so that the demodulated OFDM data is sent to a

high-performance computer for signal processing. The computation is done offline

on MATLAB and takes approximately 5 seconds to perform. During the

experiments, the following results were found:

Metric Result

Range Resolution 1.5 m

Velocity Resolution 22.6 km/h

Angular Resolution 7°

Processing Time 5 seconds
Table 2-3. Performance Results, summarized from [9]

Figure 2-26 shows an example of a radar image output. The FOV has 3 reflectors

placed in front of the radar at different ranges and different angles. The processed

radar image clearly identifies Target A (12.5 m), but is not capable of neatly

separating Targets B and C. However, the combined return of Targets B and C are

in the right locations and, along with the return from Target A, it is shown that the

OFDM MIMO radar works as intended [9].

32

Figure 2-26. OFDM MIMO Radar: (a) Field of View (b) Radar Image after Signal Processing,

reproduced from [9]

By increasing the number of OFDM symbols, the integration time was able to be

set to 11.8 ms, which enabled a velocity resolution of 22.6 km/h [9]. A van

travelling away from the radar at a speed of ~30 km/h was detected by the radar

and its speed was correctly displayed, as shown in Figure 2-27.

Figure 2-27. Moving Target: (a) Field of View with Moving Van (b) Radar Image after Signal

Processing, reproduced from [9]

2.4.3 Prototype C: 3D TDMA MIMO Radar

A 3D (range, azimuth, and elevation) TDMA MIMO radar was demonstrated in [8].

The radar has a 24 × 24 configuration, uses a FMCW waveform, and performs the

signal processing on MATLAB [8]. Unlike the previous 2 prototypes, this radar

system’s antenna arrays are located around the perimeter of the desired aperture.

There are 2 arrays of 12 transmit antennas, located on the upper and lower perimeter

walls. Additionally, there are 2 arrays of 12 receive antennas located on the left and

right perimeter walls. This configuration creates a 2D virtual array of 576 elements

and is shown in Figure 2-28 [8]. With this configuration, the angular resolution

should approach 2.5° in both elevation and azimuth. Note that the spacing between

the antenna elements is slightly larger than 𝜆/2, which should increase the

33

resolution and reduce antenna coupling [8]. Grating lobes are introduced, however,

but their locations fall outside the main lobe of the radiating element (±25°).

Beamforming computations are therefore only done within this FOV [8].

Figure 2-28. Physical and Virtual Array Configuration, reproduced from [8]

To implement the TDMA technique, each transmit element has a turn to transmit

its FMCW waveform, while the 24 receive antennas simultaneously receive [8].

Transmitter boards were used which include the antennas, calibration ports, and a

RF switch chain which is controllable by the system’s firmware. Figure 2-29 shows

the transmitter board alongside a simplified circuit diagram [8], illustrating the

cascade of switches along the branches to enable the switching of the transmitter to

each of the antennas.

Figure 2-29. (Left) Photograph of Transmitter Board. (Right) Circuit Diagram, reproduced

from [8]

34

Once all 576 MIMO channels have been sampled and sent to the processing

computer, MATLAB reads the file and performs the computations. A range FFT is

performed on each channel, followed by conventional beamforming for the azimuth

and elevation estimation [8]. Note that Hanning windows are used with the FFT to

reduce the Side Lobe Levels (SLL), at the cost of resolution. When including the

sampling, binary file writing on the DSP, transfer to the host computer, and signal

processing via MATLAB, it takes approximately 11 seconds to collect data and

render a radar image frame [8].

Table 2-4 summarizes the performance results of this MIMO radar prototype.

Metric Result

Range Resolution 27 cm

Azimuth Resolution 2.7°

Elevation Resolution 2.7°

Processing Time 11 seconds
Table 2-4. Performance Results, summarized from [8]

Figure 2-30 shows an experiment setup where four targets are placed in a field. The

MIMO radar images the FOV and it is clear that all four targets are visible and at

the correct location [8].

Figure 2-30. Field Test of MIMO Radar, reproduced from [8]

35

2.4.4 Prototype D: Distributed FMCW MIMO Radar

A 2D (range and azimuth) TDMA MIMO radar is demonstrated in [34] which

operates at long ranges using a 15 × 5 antenna configuration. The radar system

comprises of 15 transmitter antennas and 5 receiver antennas, which generate a

virtual MIMO array of 75 elements [34]. The antenna positioning can be seen in

Figure 2-31, alongside the rest of the radar components. Note that for simplicity,

only 7 transmitter antennas are drawn.

Figure 2-31. Radar Components, reproduced from [34]

The receiver and transmitter boards were developed for this project and perform

front end RF functions such as amplification, mixing, filtering, and sampling [34].

The radar transmits FMCW waveforms and uses TDMA to achieve orthogonality.

The received waveforms are sent to the Processing Node over high-speed Ethernet

where the signal processing is performed. Unfortunately, the signal processing

architecture and algorithms were not mentioned [34]. The radar, however, only

processes one MIMO chirp at a time (one chirp from each transmitter) and can

generate radar images at a refresh rate of 10 Hz [34]. When tested in a maritime

environment, the radar was able to detect a large ship (50 meters in length) at a

range of 3 km and a smaller vessel (8 meters in length) at a range of 1 km. These

measurements were achieved with an instantaneous transmitter power of

only 1 W [34]. Figure 2-32 shows an image of the radar prototype. The 15

transmitter antennas and 5 receiver antennas are clearly visible. Figure 2-33 shows

the measurement setup with the radar located on the edge of a Greek coastline,

facing the water. Figure 2-34 shows the radar image of a 50 meter long ship being

detected at a range of 1200 meters.

36

Figure 2-32. Image of Radar Prototype, reproduced from [34]

Figure 2-33. Measurement Location of Radar, reproduced from [34]

37

Figure 2-34. Radar Image of Ship at 1200 meters, reproduced from [34]

The radar operates at a frequency of 3 GHz, and its waveform has a bandwidth

of 50 MHz. With the 15 × 5 configuration, an angular resolution of 2.4° was

measured. The results are summarized in Table 2-5.

Metric Result

Frequency of Operation 3 GHz

Bandwidth 50 MHz

Angular Resolution 2.4°

Refresh Rate 10 Hz
Table 2-5. Performance Results, summarized from [34]

2.4.5 Prototype E: Real Time MIMO Radar using SDRs

A real-time 3D (range, azimuth, and velocity) MIMO radar using SDR technology

was demonstrated in [7]. In contrast to the other prototypes discussed so far, this

radar can operate in different MIMO modes (TDMA, FDMA, CDMA) which can

be selected by the user [7]. The radar has an 8 × 8 configuration which yields 64

MIMO channels. The SDRs mix the received signals with the Local Oscillator (LO)

and sends to sampled data to a workstation via 10G Ethernet for signal processing

and user display [7]. Figure 2-35 shows the MIMO radar. It is comprised of the

transmit and receive arrays, the SDRs and synchronizing clock, the processing

workstation, and the user interface.

38

Figure 2-35. MIMO Radar photograph, reproduced from [7]

The control of the radios and the collection of samples is managed by a c++ program

using the USRP Hardware Driver (UHD) Application Programming Interface

(API). GNU Radio was chosen as the signal processing program and performs

demultiplexing, MIMO radar tasks, visualization, and data recording [7]. The

MIMO signal processing chain is done by performing the Range FFT, Doppler FFT,

and Angular FFT in sequence. Finally, the data is prepared for visualizing the range-

doppler and range-bearing graphs. Figure 2-36 shows a simplified block diagram

of the signal processing chain.

Figure 2-36. Simplified Signal Processing Diagram, adapted from [7]

39

Several measurements were performed on the radar, operating in different MIMO

modes (TDMA, FDMA, CDMA) to verify the functionality of the radar. Resolution

measurements were also taken to qualify the performance of the radar. Due to the

selected antennas and the power of the radios, target detection was limited to

approximately 22 meters [7]. Figure 2-37 shows an image generated by the MIMO

radar for a single target.

Figure 2-37. Radar Image for Single Target, reproduced from [7]

The design parameters of the MIMO radar are listed in Table 2-6. Note that since a

doppler resolution of 0.1 m/s is required, a CPI of 256 chirps is needed. Each SDR

receiver collects 1024 samples at a rate of 250 MSa/s. This means that the data

cube which needs to be processed for one frame has a size of 1024 × 256 × 64 or

~𝟏𝟕 million samples [7]. The GNU Radio signal processing chain is designed as a

pipeline and leverages the multiple cores of the workstation’s CPU by performing

several sections of the pipeline simultaneously. Despite the size of the data cube, a

radar frame takes ~1.25 seconds to process [7]. Table 2-7 shows the performance

measurements of the radar.

Parameter Value

Maximum Range 150 m

Range Resolution 0.75 m

Velocity Range -10 m/s to +10 m/s

Velocity Resolution 0.1 m/s

Angular Resolution 2°

Processing Time “real-time”
Table 2-6. Desired Parameters, summarized from [7]

40

Parameter Measured Result

Maximum Range 21.75 m

Range Resolution 1.75 m

Velocity Resolution 0.2 m/s

Angular Resolution 10.5°

Processing Time 1.25 s
Table 2-7. Performance Results, summarized from [7]

In summary, the MIMO radar capable of functioning in real-time for all three modes

of multiplexing (TDMA, FDMA, CDMA). It is clear, however, that there is a

discrepancy between the desired and measured performance of the radar.

2.5 Accelerated Radar Signal Processing

This final section will investigate recent research in radar signal processing

acceleration. Specifically, to see how effective GPU acceleration can be when

dealing with radar data and processes. Two specific papers will be summarized, to

highlight the effectiveness of GPU acceleration. Additionally, other current

research regarding MIMO radar signal processing will be briefly summarized.

2.5.1 SAR Motion Compensation

In Synthetic Aperture Radar (SAR), all computations are designed around a linear

flight path. In reality, there will be perturbations in the aircraft’s trajectory which

will introduce errors in Slant Range and in Squint Angle [35], which distorts the

SAR image and require correction [35]. Because of the weight, size, and power

consumption of high performance Inertial Measurement Units (IMU) they are not

the ideal solution for airborne SAR, especially for Unmanned Aerial Vehicles

(UAV) [35]. Instead, using the raw radar data to estimate the aircraft’s movement

itself was proposed [35]. Given that the additional required computation is in

addition to an already demanding application, the tasks were performed on a GPU.

Figure 2-38 shows the flight path of an airborne SAR in comparison to the ideal

linear trajectory.

41

Figure 2-38. Flight Path of Airborne SAR, reproduced from [35]

The large synthetic array was subdivided into several sub-arrays. Once the radar

echoes were collected for a sub-array, the data was sent to a GPU to run a kernel

which estimates flight path error [35]. Figure 2-39 shows the GPU implementation

approach. Each kernel launched (labeled GPU kernel 1, 2, 3, …, M) performs the

algorithm for each of the sub-arrays. The computations output the corrections to the

flight path required at each sub-array location which, when applied to the image

processing, will refocus the image [35].

Figure 2-39. Error Estimation Method on GPU, reproduced from [35]

42

The CPU took 7313 seconds (~ 2 hours) to perform all the SAR processing whereas

the GPU took 92.15 seconds (~ 1.5 minutes) to perform the same operations,

resulting in an acceleration of ~79.36x [35]. The following SAR computations were

performed:

o Range Compression

o Azimuth Compression

o Motion Parameter Estimation

o Motion Compensation

o Autofocus Algorithm

o Speckle Filtering

o Image Generation

o Distortion Correction

o Geocoding

Seeing as the GPU can perform this many algorithms much faster than the CPU, it

should be more than capable of executing MIMO radar signal processing.

Additionally, subdividing a large dataset and performing the algorithms in parallel

enabled efficient use of the GPU. Similar techniques could be applied to MIMO

radar signal processing.

Figure 2-40 shows the difference in the quality of a SAR image when Motion

Compensation is used.

Figure 2-40. SAR Image Comparison: (a) Without Compensation (b) With Compensation,

reproduced from [35]

43

2.5.2 Radar Signal Processing of Weather Radar

The signal processing of a dual polarization FMCW weather radar was executed on

a GPU in [36]. Several processes need to happen on the weather radar such as FFTs

(range and doppler processing), clutter suppression, power calculations, spectrum

smoothing, mean doppler velocity calculations, and reflectivity depolarization ratio

to name a few [36]. These calculations must all be done on each of the polarization

permutations of the radar (horizontal-horizontal, vertical-vertical, and horizontal-

vertical).

Several CUDA kernels were implemented to perform key tasks in parallel such as

applying windowing to input signals, taking averages and complex conjugates of

signal samples, performing FFTs and IFFTs, and squaring the values of

samples [36]. These types of operations are required across many different radar

algorithms and can add significant delay to the signal processing time as they are

usually performed on a per-sample basis. The ability to execute these tasks in

parallel on a GPU should help reduce the execution time. Unfortunately, it was not

mentioned if the signal processing for each polarization mode was also done in

parallel.

The weather radar functions were performed on a CPU and on a GPU to evaluate

the execution times and to determine the acceleration [36]. For the experiment, an

Intel® Core™ i5-6200U (2 cores) CPU and an NVIDIA® GeForce® 930M GPU

were used [36]. Unfortunately, there was no detail on the size of the processed data

nor the parameters of the radar itself. The following are the measured execution

times:

o CPU: 15426.43 ms

o GPU: 6133.19 ms

Parallelization of signal processing tasks of the weather radar was successful, and

an acceleration of approximately 2.5x was achieved [36]. Applying the techniques

in [36] as well as parallelizing the signal processing of demultiplexed channels

should yield positive results when used in MIMO radar.

44

2.5.3 MIMO Radar Signal Processing

Several relevant papers have been recently published which deal with the signal

processing aspect of this work. For one, parallel implementations of MIMO radar

signal processing have been investigated. However, much of the work have been

focused on implementing solutions on multiple-core DSPs or on FPGA boards,

yielding modest results [37], [38]. GPU parallelization of MIMO radar signal

processing is relatively novel, and current implementations only use Fast Fourier

Transforms (FFT) for the analysis of range, doppler, and bearing information [39].

The acceleration currently achieved from performing this processing on a GPU is

approximately 150x, when compared to its execution on MATLAB [39].

Developments in beamforming techniques are also of great interest in MIMO radar

systems. Particularly, high-resolution beamformers which function on single-

snapshot datasets are highly sought-after. Modifying known super-resolution

techniques (such as MUSIC) for a MIMO configuration yields better results than

the Single Input Multiple Output (SIMO) counterparts [40]. Unfortunately, as

discussed in section 2.2, most super-resolution beamforming techniques have

unique requirements which may not be met, such as having a priori knowledge of

the targets or guaranteeing that multiple targets are not correlated. However, in

order to address the added complexity of some of these high-resolution methods,

attempts have been made to parallelize them on GPU [41]. Unfortunately, the

parallelization of the MVDR algorithm on GPU (via MATLAB) did not yield good

results, where it was concluded that larger speed ups could be achieved by

developing the GPU code through CUDA [41].

45

2.6 Summary

As seen in section 2.4, there has been great success with MIMO radar prototypes.

However, a common issue is the increased computational requirement of MIMO

signal processing. This is especially true when doppler processing is required and

the radar needs to collect large CPIs. Not all prototypes executed in real-time, but

those that did resorted to one (or several) of the following techniques to increase

the radar’s throughput:

o Choosing a faster algorithm at the cost of resolution (i.e., the FFT);

o Reducing the quantity of data to be processed (i.e., compute only some

angles and some ranges); or

o Offloading the computation on FPGA or DSP.

In section 2.5, GPU acceleration of radar signal processing was investigated. It was

found that large acceleration is achievable across many different algorithms, due to

the quantity and parallelism of the radar data. GPU acceleration is therefore

proposed as a solution to accelerate MIMO radars. Specifically, the proposed

algorithm will aim to not only accelerate the baseline MIMO radar signal processing

chain, but also incorporate different algorithms which will increase the quality of

the produced images.

46

3 Methodology

The methodology chapter provides a full overview of the proposed signal

processing and its implementation. Section 3.1 outlines the simulated environment

and the generic program for the MIMO signal processor. Section 3.2 presents an

overview of the physical constraints of the radar environment and describes the

configuration setup. Section 3.3 describes the sequential and parallel

implementations of the Chirp Z Transform, the Bartlett Beamformer, and the Cube

Compression algorithm. Section 3.4 defines the problem of beamforming at short

ranges and describes the required corrections. Finally, Section 3.5 describes an

optimization method which enabled CPU caching when executing the Bartlett

Beamformer on the CPU.

The proposed solution is independent of the type of MIMO waveform multiplexing

(i.e., TDMA, FDMA, CDMA, etc.) as it is applied on the baseband signal after

demultiplexing. The proposed solution is also designed for the FMCW waveform.

Using the proposed solution with a pulsed waveform is possible, but the first series

of FFTs must be modified as to perform matched filtering of the pulses.

3.1 Simulation Environment

Before signal processing solutions were designed and tested on the physical radar,

a Simulated Environment was developed. Its role is to simulate target echoes, given

a MIMO configuration for varying target ranges, bearings, speeds, and headings.

Since resolution measurements will be performed on the signal processing

solutions, the simulated environment must be able to generate echoes from at

least 2 targets. The scope of this thesis is restricted to accelerating already proven

algorithms for MIMO radar, therefore the output of the simulated environment will

be the ideal baseband I and Q voltages after de-chirping and demultiplexing the

MIMO waveforms. Since the radar in question uses a FMCW waveform, the

baseband signals have a beat frequency and a relative phase offset, which will

depend on the pulse number and the MIMO channel number.

To demonstrate a simple case, a single target’s range is evaluated for a 1 × 1

antenna configuration. Figure 3-1 shows the geometry of this configuration for a

target located at some range 𝑅 and some azimuth angle 𝜃 from the radar’s reference

point 𝑃(0,0).

47

Figure 3-1. Antenna and Target Geometry, Single Target

If (2.1) is manipulated to include the variables from Figure 3-1, the expression can

be arranged to isolate the time delay in this bistatic configuration as:

∆𝑡 =
𝑅𝑡𝑥 + 𝑅𝑟𝑥

𝑐
 (3.1)

where:

∆𝑡 = round trip delay (s)

𝑅𝑡𝑥 = range between target and transmitting antenna (m)

𝑅𝑟𝑥 = range between target and receiving antenna (m)

𝑐 = speed of light (m/s)

For the simulated target echoes, the calculations of 𝑅𝑡𝑥 and 𝑅𝑟𝑥 is done for every

permutation of transmit and receive antenna, as a function of the MIMO array

configuration. Additionally, as the targets moves due to their speed and heading,

the range measurements will change. This is important as the radar collects several

pulses to form its CPI, which will enable doppler processing.

𝜃 +

48

For each simulated chirp the positions of the targets are calculated, and baseband I

and Q voltages are generated at the correct beat frequencies using (2.3).

Additionally, relative phase offsets are added to properly simulate the doppler shifts

and the different MIMO channel ranges resulting from the different Tx and Rx

antenna locations. The output of the Simulated Environment is a data cube, and its

size will depend on the radar parameters (i.e., number of transmit antennas, receive

antennas, sampling rate, chirp time, number of chirp per CPI). Figure 3-2 shows an

example data cube for a radar with 10 virtual channels, 40 I and Q samples per

channel, and a CPI of 20 chirps. Note that each dot represents a sample.

Figure 3-2. Data Cube Example, 40 × 20 × 10

Once the Simulated Environment generates the echoes for a specified number of

targets, the data cube can be sent for signal processing. Once the signal processing

has been tested and verified, the Simulated Environment for target echo generation

can simply be replaced by the real-time acquisition of radio samples from the SDRs,

using UHD commands as in [7].

3.2 Configuration Setup

The algorithms developed herein is designed to replace the existing GNU Radio

signal processing chain on the physical radar [7]. Therefore, the radar design

parameters, given in Table 3-1, and settings are key to the algorithm’s

implementation. All parameters have been chosen in order to meet the performance

requirements listed in Table 2-6 (Section 2.4.5) [7]. The data cube collected by the

radar has a size of 1024 × 256 × 64, meaning that for each radar frame, nearly 17

million complex samples must be processed to produce the range-doppler and

range-bearing images.

49

Parameter Value

Maximum Range 150 m

Frequency of Operation 5 GHz

Waveform Type Linear FMCW

Waveform Bandwidth 200 MHz

Radio Type Ettus Research™ N3xx

Number of Radios 4

Sampling Frequency 250 MHz

Chirp Duration 4.096 µs

Number of Tx Antennas 8

Number of Rx Antennas 8

Number of MIMO Channels 64

Number of Samples per Channel 1024

Number of Chirps per CPI 256

CPI duration 308 ms

Chirp Repetition Frequency 830.5 Hz
Table 3-1. MIMO Radar Parameters, summarized from [7]

The Local Oscillators (LO) of each N320 radio is synchronized from the N321 SDR

LO outputs. Additionally, a CDA-2990 Clock Distribution Unit supplies a common

time and reference signals to the 4 radios. Each radio also has a 10G SFP+ Ethernet

connection to the Host Processor, as shown in Figure 3-3. Detailed connectivity of

the MIMO radar setup can be found in [7].

The Workstation (also known as the Host Processor) is a Dell Precision 7920

containing 2 Intel® Xeon Gold 5120 processors (14 Cores each) and an NVIDIA

GeForce 2080 Ti GPU. Figure 3-4 illustrates the workstation along with its

hardware.

Figure 3-3. Connectivity Diagram, reproduced from [7]

50

Figure 3-4. Dell Precision 7920 Workstation

Several commercial software packages are required and are listed in Table 3-2. Note

that the UHD version on the Host Processor and on the SDRs must match. The

process to change the version of UHD of the radios can be found on the Ettus

Research™ website [42].

Software Name Notes Version

Linux Mint Cinnamon Operating System (OS) 20.1

CLion Integrated Development Environment (IDE) 2021.2

MATLAB Scientific programming platform 2021b

UHD Software API which supports USRP devices 3.15.0

FFTW Performs efficient DFT subroutines 3.3.10

CUDA Toolkit
Libraries, compilers, and development tools

for CUDA programs
10.1.243

Table 3-2. Software Versions on Workstation

The C++ program controls the radios and receive the sampled signals using the

UHD library. Signal processing will be performed either on the CPU and on the

GPU using the appropriate library or toolbox (FFTW and CUDA). OpenMP (OMP)

enables control over the threads and allows parallelization on multicore CPU.

Graphics will be generated using the pcolor function via the MATLAB Engine

API [38]-[39]. Figure 3-5 shows a simplified block diagram showing the software

elements (green) within the radar architecture.

51

Figure 3-5. Simple Software Diagram

3.3 Algorithms

This section will cover the MIMO radar signal processing chain. First, the existing

3D FFT method will be described, followed by the implementation of the CZT and

the Bartlett Beamformer, and concluding with the parallelization of the algorithms.

Regardless of the method is used to generate the MIMO radar images, five distinct

steps must be performed in the signal processing chain, namely:

o Initial Setup

o Sample Collection

o Radar Signal Processing

o Display Update

o Program Shut Down

The Initial Setup initializes the program with regards to the radar parameters and

any user entries. Then, communication with the SDR radios is established and an

instance of MATLAB is opened via the Engine API. Additionally, Host and Device

array memory, required for the computation, is allocated.

The Sample Collection stage can mean either the generation of target echoes from

the Simulation Environment, or the collection of baseband samples from the radios.

Either way, the output of this step is demultiplexed I and Q samples required for

signal processing.

The Radar Signal Processing stage can include any process that is performed on the

data cube, such as the baseline 3D FFT and cube compression to generate the range-

doppler and range-bearing data matrices [7]. In general, other radar functions could

be added here such as CFAR or tracking functions.

52

The Display Update stage refreshes the image seen by the radar user, which

involves calling the pcolor function on the newly processed sets of data or “frame”.

Note that steps 2 through 4 are done iteratively for as long as the radar is running.

The last stage would be to do a proper shut down of the program. This could mean

freeing Host and Device memory, clearing the FFT plans, and closing the instance

of MATLAB. Figure 3-6 shows a block diagram of these steps for the baseline 3D

FFT method.

Figure 3-6. Stages of Computing the Radar Frames for the Baseline FFT Method

3.3.1 Baseline Method: 3D FFT

The Fastest Fourier Transform in the West (FFTW) is a C library which performs

fast DFT subroutines on input data arrays having arbitrary size and dimension [45].

The data can be real or complex and the DFTs support different precisions (i.e.,

float or double). With the FFTW API, computing a 3D FFT is relatively simple. An

FFT plan must be created which defines the location of input and output data

memory (as pointers), and the type of FFT (FFT or IFFT). Once data is collected

and stored in the correct memory location, the FFT can be executed by calling the

fftw_execute function. A list of FFTW functions used for 3D FFTs is found in

Table 3-3.

53

Function Notes

fftw_plan_dft_3d()

Creates an 3D FFT plan. The size of the data cube

must be specified, as well as the pointers to the

input and output arrays. There is also an option to

specify the FFT or the IFFT.

fftw_execute()
Takes an FFT plan as input and performs that FFT.

Can be executed as often as required.

fftw_destroy_plan()
This function destroys the FFT plan and frees

memory allocated to it once the program is done.
Table 3-3. FFTW functions used in Baseline FFT method. Notes from [45]

Once the FFTs have been completed, the next step in the signal processing chain is

to compress the 3D cube into 2D images for range-doppler and range-bearing

visualisation. The data cube is composed of many range-bearing sheets (one for

each doppler bins) or from many range-doppler sheets (one for each bearing bin).

To calculate the range-bearing pixels, the power sum of the range-bearing bins is

taken across all doppler sheets, and the process is repeated in the bearing direction

to produce the range-doppler pixels, as illustrated in Figure 3-7 and described

by (3.2) and (3.3).

Figure 3-7. Visualization of Cube Compression

54

𝑂𝑢𝑡[𝑟, 𝑏] = ∑ |𝑥[𝑟, 𝑏, 𝑑]|2

𝑁𝑑−1

𝑑=0

 (3.2)

𝑂𝑢𝑡[𝑟, 𝑑] = ∑ |𝑥[𝑟, 𝑏, 𝑑]|2

𝑁𝑏−1

𝑏=0

 (3.3)

where:

𝑂𝑢𝑡 = pixel amplitude (real positive value)

𝑁𝑑 = number of doppler bins

𝑁𝑏 = number of bearing bins

𝑟 = range bin

𝑏 = bearing bin

𝑑 = doppler bin

𝑥 = processed cube samples (complex values)

In [7], the processed data cube is very large. There are 512 range samples, 256

doppler bins, and 64 bearing bins for a total of ~8 million complex samples. The

range-bearing image contains 32,768 pixels and the range-doppler image contains

131,072 pixels. The 3D FFT and Cube Compression operations, being

computationally intensive, are slow to execute on a CPU and are expected to benefit

the most from parallelization.

The radar collects its CPI of 256 pulses at a rate of 830.5 Hz, which takes

approximately 308 ms. Therefore, even if the signal processing could be done

instantaneously, the refresh rate of the radar has an upper limit of 3.24 Hz. When

executed as a pipeline on GNU Radio in [7], the signal processing took 1.25 seconds

which translated to a refresh rate of only 0.64 Hz.

3.3.2 Enhanced Resolution: CZT and Bartlett

As described in Chapter 2, the resolution of the FFT is sometimes too coarse for the

intended application. To increase the resolution of the radar, the Chirp Z Transform

will replace the range FFT and the Bartlett DOA will replace the bearing FFT, as

illustrated in Figure 3-8.

55

Figure 3-8. Algorithm Substitutions: (a) Baseline 3D FFT (b) Proposed

In the existing baseline solution, the range FFT computes the 1024 range bins and

keeps the positive half of the results (as negative range values are nonsensical). By

combining (2.4) and (2.8), the expression for the range axis, after the FFT, is

obtained:

𝑅[𝑖] =
𝑐𝑓𝑠

2𝑘0
×

𝑖

𝑁
 (3.4)

where:

𝑅 = range (m)

𝑖 = range bin index where 0 ≤ 𝑘 < 𝑁/2

𝑘0 = chirp slope (Hz/s)

𝑐 = speed of light (m/s)

𝑓𝑠 = sampling rate (Hz)

𝑁 = number of raw data complex samples

From (3.4) and the information from Table 3-1, the range resolution is 75 cm.

Additionally, when 𝑘 = 511, the maximum computed range has a value of 383.73

meters, which is much larger than the radar’s designed maximum range of 150

meters. Losing half the sample outputs and computing results outside the ranges of

interest of the radar is not an effective use of the 1024 samples that are collected

56

from the SDRs. With the CZT, only the ranges of interest between 0 and 150 meters

will be computed, using all 1024 samples. Using (2.4) and the frequency axis

from (2.11), the range axis of the CZT is calculated to be:

𝑅𝐶𝑍𝑇[𝑘] =
𝑐(𝑓1 + 𝑘∆𝑓)

2𝑘0𝑁
 (3.5)

 Since the ranges of interest are between 0 and 150 meters, (3.5) may be simplified

so that 𝑓1 and 𝑓2 are set to the beat frequencies which represent 0 and 150 meters,

respectively:

𝑅𝐶𝑍𝑇[𝑘] =
𝑐𝑘𝑓2

2𝑘0𝑁
 (3.6)

Using (2.4), the beat frequency of a target at 150 meters is approximately 48.828

MHz resulting in a range step of 14.65 cm. The CZT range axis is therefore

sampled approximately 5 times more often than for the existing FFT

implementation, resulting in a finer representation of the waveform’s shape and

width. Figure 3-9 demonstrates this by showing two point-targets (46 and 52

meters) after range processing using both the FFT and the CZT method. Note that

both algorithms used the same data set to generate their outputs. The I and Q

samples were generated by the simulated environment, as described in Section 3.1,

using the radar parameters listed in Table 3-1.

Figure 3-9. Range FFT and CZT Comparison for 2 Targets

57

As shown in Figure 3-10, the CZT needs to be executed many times in order to

cover the entirety of the data cube. However, since the radar parameters remain the

same during a CPI, some calculations in (2.11) only need to be performed once.

The following arrays are therefore computed in the Initial Setup stage of the

program, and are used for every call of the CZT function:

o 𝑊[𝑛] = exp (−
𝑗∆𝜔𝑛2

2
)

o 𝑊𝑖𝑛𝑣 = FFT(𝑊−1)

o 𝐵[𝑛] = exp(−𝑗𝜔1𝑛)

As in Figure 2-10, and expressed in (2.11), only the input data 𝑥[𝑛] will differ as

the CZT gets called throughout the cube. The complexity of the CZT is therefore

reduced to the computations operating on 𝑥[𝑛], which involve 3 multiplication

steps, an FFT, and an IFFT.

Figure 3-10. CZT, within Context of the Data Cube

Algorithm 1 shows the steps used to compute the CZT where 𝑥[𝑛] represents the

input data (time samples), and 𝑋[𝑘] represents the output data (range).

58

Algorithm 1: Chirp Z Transform

1: for every channel/chirp set of 1024 time samples{

 2: 𝑦 = 𝑥 ∙ 𝐵 ∙ 𝑊

 3: }

4: Perform in-place transform across entire cube 𝑦 = FFT(𝑦)

5: for every channel/chirp set of 𝑦 values{

6: 𝑦 = 𝑦 ∙ 𝑊𝑖𝑛𝑣

7: }

8: Perform in-place transform across entire cube 𝑦 = IFFT(𝑦)

9: for every channel/chirp set of 𝑦 values{

10: 𝑋 = 𝑦 ∙ 𝑊

11: }

12: end of CZT function

Unlike the FFT and CZT method, the Bartlett DOA is an iterative calculation. As

seen in Chapter 2, the spectral power needs to be calculated for each angle of

interest. If the FOV ranges from −90° to 90° with incremental steps of 1°, the

algorithm would need to calculate (2.15) 180 times to generate the DOA for a single

range/doppler bin. Figure 3-11 illustrates this in the context of the data cube where

the Bartlett DOA is being performed on the corner range/doppler bin and only the

first two angular bins have been calculated. Note that the 2-way half power

beamwidth (HPBW) of the radar system is 1.79 degrees at broadside [7].

Figure 3-11.Bartlett DOA, in Context of the Data Cube

59

Since the computations are done on a single blue column (snapshot) for each

range/doppler bin, the matrix multiplication of (2.15) can be simplified. For a given

range/doppler cell, the samples across the 𝑁 channels are expressed as:

𝒙 = [𝑥0, 𝑥1, … , 𝑥𝑁−1] (3.7)

The covariance matrix 𝑹𝑥 has size 𝑁 × 𝑁 and is computed by:

𝑹𝑥 = 𝒙 × 𝒙𝐻 = [
𝑥0𝑥0

𝐻 … 𝑥0𝑥𝑁−1
𝐻

⋮ ⋱ ⋮
𝑥𝑁−1 𝑥0

𝐻 … 𝑥𝑁−1𝑥𝑁−1
𝐻

] (3.8)

For a given angle, the steering vector 𝒂 represents the phase shift across all

elements, given a particular wave number 𝛽 and element spacing 𝑑.

𝒂𝜃 = [0, 𝑒−𝑗𝛽𝑑 sin(𝜃)𝑛, … , 𝑒−𝑗𝛽𝑑 sin(𝜃)(𝑁−1)] (3.9)

By performing the matrix multiplication 𝒂𝜃
𝐻𝑹𝑥𝒂𝜃, we get the following expression

for the spectral power at the selected angle 𝜃:

𝑃[𝜃] = (∑ 𝑎𝜃[𝑛]𝑥[𝑛]𝐻

𝑁−1

𝑛=0

) (∑ 𝑎𝜃[𝑛]𝐻𝑥[𝑛]

𝑁−1

𝑛=0

) (3.10)

𝑃[𝜃] = |∑ 𝑎𝜃[𝑛]𝑥[𝑛]

𝑁−1

𝑛=0

|

2

 (3.11)

Algorithm 2 shows the Bartlett DOA algorithm where 𝑥[𝑛] represents the input data

(one vertical column in range/doppler), 𝑎[𝑛][𝑘] represents the steering vector for a

given angle 𝜃, and 𝑃[𝑘] represents the output data (bearing).

60

Algorithm 2: Bartlett Beamforming

1: for every range/bearing combination{

 2: for every angle 𝒌 to be calculated{

3: 𝑡𝑒𝑚𝑝 = 0

4: for all samples 𝒏{

5: 𝑡𝑒𝑚𝑝 = 𝑡𝑒𝑚𝑝 + 𝑎[𝑛][𝑘] ∙ 𝑥[𝑛]
6: }

7: 𝑃[𝑘] = |𝑡𝑒𝑚𝑝|2

8: }

 9: }

10: end of Bartlett DOA function

3.3.3 Oversampling Factors

Oversampling the DFT, as done via the CZT and the Bartlett DOA, brings distinct

signal processing advantages. However, due to the fixed and known bandwidth of

the radar waveform, some oversampling factors (OSF) will yield better results than

others. The Straddling Loss (in dB) and resolution error (when compared to the

analog waveform) is simulated by sliding a point target across two adjacent bins,

and then averaged for various OSFs. Figure 3-12 shows the behaviour of the

Straddling Loss as a function of OSF. It is clear from the figure that the Straddling

Loss is reduced when the waveform is oversampled.

Figure 3-12. Straddling Loss vs Oversampling Factor

61

Although the average Straddling Loss is less than 1 dB for all OSFs above 1x, there

is always the possibility that a target will be located exactly between 2 DFT bins

(worst case scenario). The orange line, in the upper plot of Figure 3-12 represents

the worst-case Straddling Loss at a given OSF. Choosing an OSF greater than 2.x

will prevent the worst-case Straddling Loss from exceeding 1 dB.

Figure 3-13 shows the relationship between the average resolution measurement

error (shown as a percentage) and the OSF. Interestingly, the relationship is not

linear and exhibits peaks and nulls across the various values of OSFs. The nulls, or

zero error regions 𝑂𝑆𝐹0, are located at:

𝑂𝑆𝐹0 ≈ 𝑁 ×
2

𝑅𝑠
≈ 𝑁 × 2.2576 (3.12)

where:

𝑁 = 1, 2, 3, …

𝑅𝑠 = 0.88589. . . = 3 dB width of sinc2(𝑥)

Figure 3-13. Resolution Error vs Oversampling Factor

Using Figures 3-12 and 3-13 as guidance, a better choice can be made when

selecting the CZT and Bartlett parameters to enhance the resolution and reduce the

Straddling Losses. For the CZT, computing the ranges between 0 m and 170 m will

yield an OSF of 4.514x. For the Bartlett DOA, evaluating 144 bearing will yield an

OSF of 2.250x.

2.2576 4.5152

62

3.3.4 Multicore CPU Parallelization

As discussed in Chapter 2, parallel tasks can be performed by multiple CPU cores

simultaneously to reduce the execution time of an algorithm. The FFTW library is

compatible with OpenMP, and FFT plans can be made using multiple threads. The

following are additional functions which need to be called when wanting to execute

multithreaded FFTs:

Function Notes

fftw_init_threads()
Performs system initialization to use

multiple threads

fftw_plan_with_nthreads(nthreads)

The input of this function will dictate

how many threads will be used when

creating FFT plans

fftw_cleanup_threads()
Clears up memory, resources, and thread

related data allocated by FFTW
Table 3-4. Multithreaded FFTW Functions. Notes from [45]

Parallelization of the FFT is therefore as trivial as identifying how many threads the

system should use when planning the FFT. Since a large component of the CZT is

the execution of the FFT and the IFFT, executing them in parallel on the CPU will

reduce the total execution time. Additionally, the CZT has three multiplication steps

where each element of the large arrays gets modified. Instead of performing these

multiplications sequentially, OpenMP enables the system to split the task across the

multiple cores. To enable these parallel tasks, additional commands (#pragma omp

parallel for) are added to lines 1, 5, and 9. With these commands, the entirety of

Algorithm 1 is parallelized.

A similar approach is used for the Bartlett DOA. Spreading the work of the for loop

across multiple cores reduces the total execution time of the algorithm. In

Algorithm 2, the additional command (#pragma omp parallel for) is simply added

to line 1.

Finally, the Cube Compression function is also parallelized using OpenMP. Note

that the dimension of the processed cube is now 1024 × 256 × 144 since the

existing range and bearing FFTs have been replaced by the CZT and the Bartlett

DOA, respectively. Algorithm 3 shows the Cube Compression function, where 𝑅𝐷

is the range-doppler matrix and 𝑅𝐵 is the range-bearing matrix.

When using the CZT and the Bartlett DOA, the number of pixels of the range-

doppler and range-bearing displays is increased to 262,144 and 147,456,

respectively, for a total of 409,600 compressions, which is an increase of

approximately 2.5 times the number of pixels and which adds to the execution time

63

of the Cube Compression function. Even when using OpenMP with 56 threads, each

thread still needs to compute the output of over 7300 pixels. Using (2.17), the

acceleration achievable by parallelizing the Cube Compression can be predicted.

Even if the program is highly parallel (assuming 1% of the algorithm is sequential,

for argument’s sake), Amdahl’s law predicts a speed up of only 36x when using 56

threads.

Algorithm 3: Cube Compression using OpenMP

1: omp parallel for all sample indexes 𝑺{

 2: for all doppler indexes 𝑫{

3: 𝑡𝑒𝑚𝑝 = 0

4: for all angular bins 𝑨{

5: 𝑡𝑒𝑚𝑝 = 𝑡𝑒𝑚𝑝 + |𝑑𝑎𝑡𝑎[𝑆, 𝐷, 𝐴]|2

6: }

7: 𝑅𝐷[𝑆, 𝐷] = 𝑡𝑒𝑚𝑝

8: }

 9: for all angular indexes 𝑨{

10: 𝑡𝑒𝑚𝑝 = 0

11: for all doppler bins 𝑫{

12: 𝑡𝑒𝑚𝑝 = 𝑡𝑒𝑚𝑝 + |𝑑𝑎𝑡𝑎[𝑆, 𝐷, 𝐴]|2

13: }

14: 𝑅𝐵[𝑆, 𝐴] = 𝑡𝑒𝑚𝑝

15: }

16: }

17: end of Parallel Cube Compression function

Figure 3-14 shows a visualization of the Cube Compression process when done in

parallel, where 3 threads are used to generate the range-doppler image.

64

Figure 3-14. Multithreaded Cube Compression

3.3.5 GPU Parallelization

Similar to FFTW, CUDA has a FFT product in its computing toolbox called cuFFT

which enables the efficient computation of DFTs on a GPU [46]. Just as with

FFTW, cuFFT can compute the DFT for different dimensions (1D, 2D, 3D) and

different precisions (i.e., float or double). Note that the baseline and proposed

algorithms are computed with double precision. The cuFFT API is similar to FFTW

where the user must create an FFT plan which can then be executed on the GPU.

Prior to executing the transform, the user must first ensure that the data has been

transferred onto the device. Additionally, just like the execution of any GPU

function, the results must be transferred back onto the CPU for further use or display

in the program. Table 3-5 lists useful cuFFT functions:

Function Notes

cufftPlan1D()

cufftPlan2D()

cufftPlan3D()

Plans 1D/2D/3D Transforms respectively.

cufftPlanMany()
Creates a plan which performs many DFTs across a large

dataset.

cufftExecC2C()

cufftExecZ2Z()

Executes a complex DFT for single/double precision,

respectively. The arguments are pointers to the input and

output arrays and the direction of the FFT (FFT/IFFT)

cufftDestroy()
Clears a cuFFT plan from the program, along with

associated memory and resources.
Table 3-5. Useful cuFFT Functions, reproduced from [46]

65

Some signal processing acceleration may be achieved by parallelizing tasks such as

squaring or applying windowing weights to a large data set [36]. Similar techniques

were used when implementing the CZT on the GPU. The transforms are performed

using cuFFT, but each of the multiplication steps (i.e., multiplying by the chirp

weight or performing the fast convolution) is done in parallel on the GPU where

each 3D cube bin is mapped to a thread. Algorithm 4 illustrates the parallel CZT

implementation on GPU where Multiply_1 is a kernel which multiplies the input

data and the chirp weights, Multiply_2 is a kernel which performs the fast

convolution, and Multiply_3 is a kernel which multiplies the output of the fast

convolution with the chirp weight and writes the final results in an output array.

Algorithm 4: Chirp Z Transform on GPU

1: // Perform 𝑦 = 𝑥 ∙ 𝑎 ∙ 𝑊 across entire cube

2: Multiply_1 <<<grid_size, block_size>>>(y, x, a, W)

3:

4: // Perform in place FFT in the range direction

5: cufftExecZ2Z(plan_fft, y, y, CUFFT_FORWARD)

6:

7: // Perform fast convolution

8: Multiply_2<<<grid_size, block_size>>>(y, 𝑊𝑖𝑛𝑣)

9:

10: // Perform IFFT

11: cufftExecZ2Z(plan_fft, y, y, CUFFT_INVERSE)

12:

13: // Perform final multiplication with chirp weight, 𝑂𝑢𝑡 = 𝑦 ⋅ 𝑊

14: Multiply_3<<<grid_size, block_size>>>(Out, y, W)

15:

16: end of GPU CZT function

For the Bartlett DOA, the transformation of (2.15) to (3.11) enables the algorithm

to be done in two simple steps on the GPU. Step 1 is to perform an element-by-

element multiplication of the input samples 𝑥[𝑛] with the steering vector 𝑎[𝑛]

across the cube for all range-doppler cells. Step 2 is to perform the sum of 𝑥[𝑛] ∙

𝑎[𝑛] for each element 𝑛 = 0 → 63. This two-step process is then done for all angles

of interest, as shown in Algorithm 5. Figure 3-15 shows a visualization of the

multiply/sum implementation of the Bartlett DOA for one angle. The process is

then repeated sequentially for all required angles. Note that the results are not

squared, as in (3.11), because the squaring step will be performed by the Cube

Compression function.

66

Algorithm 5: Bartlett DOA on GPU

1: for all angles of interest 𝒍{

2: Bartlett_Multiply<<<grid_size, block_size>>>(y, x, a, l)

3: Bartlett_Add<<<grid_size, block_size>>>(Out, y, l)

4: }

5: end of GPU Bartlett DOA function

Figure 3-15. GPU Implementation of Bartlett DOA

Finally, the Cube Compression is performed on the GPU by mapping each pixel

that needs to be computed (range-doppler and range-bearing displays) to a thread.

When the kernel is launched, each thread has a unique ID which means that each

pixel can be calculated simultaneously in parallel. Assuming there are 𝐴 pixels in

the range-doppler display and 𝐵 pixels in the range-bearing display, a total

of 𝐴 + 𝐵 threads need to be launched. Within the kernel, an initial statement will

verify if the thread ID is larger or smaller than 𝐴 in order to computer either a range-

doppler or a range-bearing pixel. Since the data cube has range, doppler, and

bearing components, the next step of the kernel is to identify these indices so the

power sum can be performed, and so the output can be stored in the correct location.

Algorithm 6 represents the Cube Compression kernel implementation. Figure 3-16

illustrates the computation of the radar frame using the CZT and the Bartlett DOA

on the GPU.

67

Algorithm 6: Cube Compression on GPU

1: 𝑖𝑛𝑑𝑒𝑥 = 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∗ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥

2:

3: // Do Range-Doppler Calculation

4: if (𝑖𝑛𝑑𝑒𝑥 < 𝐴){

5: find range and doppler bin indexes r and d

6: 𝑡𝑒𝑚𝑝 = 0

7: for all bearings b{

8: 𝑡𝑒𝑚𝑝 = 𝑡𝑒𝑚𝑝 + |𝑐𝑢𝑏𝑒[𝑟, 𝑑, 𝑏]|2

9: }

10: 𝑜𝑢𝑡𝑑𝑜𝑝𝑝𝑙𝑒𝑟[𝑟, 𝑑] = 𝑡𝑒𝑚𝑝

11: }

12: else if (𝑖𝑛𝑑𝑒𝑥 ≥ 𝐴){

13: find range and bearing bin indexes r and b

14: 𝑡𝑒𝑚𝑝 = 0

15: for all doppler d{

16: 𝑡𝑒𝑚𝑝 = 𝑡𝑒𝑚𝑝 + |𝑐𝑢𝑏𝑒[𝑟, 𝑑, 𝑏]|2

17: }

18: 𝑜𝑢𝑡𝑏𝑒𝑎𝑟𝑖𝑛𝑔[𝑟, 𝑏] = 𝑡𝑒𝑚𝑝

19: }

20:

21: end of Cube Compression Kernel

Figure 3-16. Parallel Implementation of Enhanced Resolution Radar Signal Processing

68

3.4 Short Range Correction

All beamforming methods discussed in Chapter 2 assume that the target is far from

the radar and the echoes can be represented by plane waves. When this is the case,

the phase shift experienced by subsequent antenna elements can be adequately

approximated by (2.13). However, when the target is near the array, the plane wave

approximation does not hold [47]. This happens at a range 𝑟 of:

𝑟 <
2𝐷2

𝜆
 (3.13)

where:

𝐷 = largest dimension of the antenna array (m)

𝜆 = wavelength (m)

3.4.1 Short Range Problem Definition

Although [47] provides a mitigation method for sonar systems, the problem of near

targets is applicable for antenna arrays in a radar environment. In [7], the radar’s

transmit array measures 1.92 m and its waveform has a wavelength of 6 cm.

Using (3.13), the far field of the antenna array is calculated to be 122.88 m.

Unfortunately, due to hardware limitations, target ranges were limited to be within

approximately 20 m (sometimes as near as 8 m). Therefore, distortion of the beam

pattern is expected.

Figure 3-17. Receive Array Geometry, Far Target

𝜃 +

69

Figure 3-17 shows a target at some range 𝑅0 and bearing 𝜃0 from an antenna

element 𝑅𝑋0. Using trigonometry, the range between the target and antenna

element 𝑅𝑋1 can be found:

𝑅1 = √(𝑥𝑡 − 𝑑) + 𝑦𝑡
2 = √𝑥𝑡

2 + 𝑦𝑡
2 − 2𝑥𝑡𝑑 + 𝑑2 (3.14)

𝑅1 = 𝑅0√1 −
2𝑥𝑡𝑑

𝑅0
2 +

𝑑2

𝑅0
2 (3.15)

where:

𝑥𝑡 = 𝑅0 sin(𝜃0)

𝑦𝑡 = 𝑅0 cos(𝜃0)
𝑑 = element spacing (m)

Equation (3.15) has a familiar form containing √1 + 𝑘. So long as 𝑘 ≪ 1, the

radical can be approximated by a first order Taylor Series:

√1 + 𝑘 ≈ 1 +
𝑘

2
+ 𝐻𝑂𝑇 (3.16)

where 𝐻𝑂𝑇 represents the higher order terms of the sequence, which are usually

negligible so long as the 𝑘 ≪ 1 criteria is respected. Since the target range 𝑅0 in

Figure 3-17 is very large, the approximation (3.16) can be used and (3.15) is

reduced to:

𝑅1 = 𝑅0 − 𝑑 sin(𝜃) +
𝑑2

2𝑅0
 (3.17)

As 𝑅0 increases, 𝑑2/(2𝑅0) tends towards zero. Therefore, the range difference

between two subsequent antennas (𝑅1 − 𝑅0) is approximately −𝑑 sin(𝜃), as

expected by the paraxial approximation. However, when the target is near the array

and the 𝑘 ≪ 1 condition no longer applies, and more terms of the Taylor Series

would be required to adequately approximate √1 + 𝑘.

70

If there is a target located at range of 1 km and a bearing of 20 degrees, the range

difference between the first and the last virtual element of the MIMO radar would

be:

∆𝑅 = (𝑁 − 1) × 𝑑 sin(𝜃) (3.18)

where:

∆𝑅 = difference between RF path length (m)

𝑁 = number of virtual antennas

𝑑 = spacing between Rx Array elements (m)

𝜃 = target bearing (degrees)

Using the radar in [7] with 𝑑 = 0.03 𝑚 and 𝑁 = 64, the expected range difference

when using (3.18) is ∆𝑅 = 0.6464 m. When calculating the true ranges to each

element using (3.14), the range difference is ∆𝑅 = 0.6480 m. When considering

the wavelength of 0.06 m, the phase error across the entire virtual array is ~9.6°.

This low phase error confirms the adequacy of the plane wave approximation

method for targets which are in the far field of the array. However, if the example

is repeated for a target range of 25 m (well within the far field boundary), the phase

error across the virtual array increases to ~186.8°, which reduces the quality of the

beam pattern of the DOA estimators. This problem is visualized in Figure 3-18,

where the plane wave approximation is compared to the true ranges of the RF paths.

Figure 3-18. Short Range Target Phase Error

𝜃 +

71

3.4.2 Short Range Correction for ULA

One of the issues with compensating for near targets is that the phase error is

function of both the range and bearing of the target. Thankfully, using the

enhanced resolution methods discussed in Section 3.3, both the range and the angle

of a test cell is known. After range and doppler processing, the Bartlett

beamforming method evaluates the power of the signal when “steered” to a given

angle. Since this is done for every range cell, the samples across the MIMO virtual

element can be directly compensated for. Using (3.15) and (3.17) the error between

the true range and the plane wave approximation can be expressed as:

∆𝑅𝑛 = √𝑅2 − 2𝑑𝑛𝑅 sin(𝜃) + 𝑑2 − (𝑅 − 𝑑𝑛 sin(𝜃)) (3.19)

where:

∆𝑅𝑛 = range error (m) at the 𝑛𝑡ℎ array element

𝑅 = range between target and center of the array (m)

𝜃 = bearing to target, measured from the center of the array (degree)

𝑑𝑛 = distance (m) between center of the array and the 𝑛𝑡ℎ array element

Finally, since the range error will correspond to a phase error, a complex correction

coefficient is applied to the discrete input samples for the given range and look

angle, which effectively flattens out the wavefront as a plane wave.

𝑥𝑐[𝑛] = 𝑥[𝑛] exp(𝑗𝛽 × ∆𝑅[𝑛]) (3.20)

where:

𝑥𝑐 = corrected sample (complex voltage)

𝑥 = input signal (complex voltage)

𝛽 = 2𝜋/𝜆 = phase constant (rad/m)

𝜆 = wavelength (m)

∆𝑅 = range error (m) calculated from (3.19)
𝑛 = virtual array element index

Algorithm 9 illustrates how the phase error is calculated and applied when

performing the Bartlett DOA for a given range-doppler bin.

72

Algorithm 9

1: 𝑁𝑟𝑥 = number of Rx elements

2: 𝛽 = phase constant (rad/m)

3: 𝑅 = range value of current range bin (m)

4: 𝑝𝑜𝑠𝑡𝑥[] = array containing the positions (m) of the transmit elements

5: 𝑝𝑜𝑠𝑟𝑥[] = array containing the positions (m) of the receive elements

6:

7: for all bearings 𝒃{

8: for all transmit elements 𝒊{

9: for all receive elements 𝒋{

10: 𝑑𝑡𝑥 = 𝑝𝑜𝑠𝑡𝑥[𝒊]

11: 𝑑𝑟𝑥 = 𝑝𝑜𝑠𝑟𝑥[𝒋]

12: 𝑥𝑡 = 𝑅 ∗ sin(𝒃)

13:

14: 𝐿𝑡𝑥 = √𝑅2 − 2𝑑𝑡𝑥𝑥𝑡 + 𝑑𝑡𝑥
2

15: 𝐿𝑟𝑥 = √𝑅2 − 2𝑑𝑟𝑥𝑥𝑡 + 𝑑𝑟𝑥
2

16: 𝑅𝑒𝑥𝑝 = 2𝑅 − sin(𝒃) (𝑑𝑡𝑥 + 𝑑𝑟𝑥)

17: Δ𝑅 = 𝐿𝑡𝑥 + 𝐿𝑟𝑥 − 𝑅𝑒𝑥𝑝

18:

19: 𝑏𝑖𝑛 = 𝒋 + 𝒊 ∗ 𝑁𝑟𝑥

20: 𝑥𝑐[𝑏𝑖𝑛] = 𝑥[𝑏𝑖𝑛] ∗ exp(𝑗𝛽 ∗ Δ𝑅)

21: }

22: }

23: Do Bartlett DOA as per Algorithm 2 with corrected samples 𝑥𝑐

24: }

25: end of Corrected DOA Algorithm

As seen in Algorithm 9, the errors are calculated for the transmit array and the

receive array since the total time of flight (TOF) is due to 2-way propagation as

shown in (3.1). In order to avoid computing Δ𝑅 redundantly every radar frame, a

correction array is generated during the initialization stage of the program which

contains the complex coefficients for all ranges and angles, and are then multiplied

with the input samples.

Using a pre-computed correction array translates well when performing the Bartlett

DOA. Algorithm 2 is unchanged with the exception that 𝑎[𝑛] ∙ 𝑥[𝑛] becomes 𝑎[𝑛] ∙

𝑥[𝑛] ∙ 𝑐[𝑛] when calculating (3.11), where 𝒙 is the input sample array, 𝒂 is the

steering vector, and 𝒄 is the correction array for the given range and steering angle.

Figures 3-19 and 3-20 show the beamforming output of the FFT and the Bartlett

DOA at different ranges. As the point target gets closer to the array, the beam

pattern gets distorted, wider, and exhibits lower power.

73

Figure 3-19. FFT (64-point) Beamforming Output at Different Ranges

Figure 3-20. Bartlett DOA (720-point) Output at Different Ranges

Figure 3-21 shows a point target located at 8 meters from the array, with a bearing

of 0 degrees. The leftmost image shows the distorted beam pattern of the near target.

The rightmost image shows the range-bearing plot when using Algorithm 9.

Figure 3-21 demonstrates that correcting the phases of the virtual channels enables

the use of the Bartlett DOA at short ranges. Note that as discussed in Section 3.4.1,

the far field region of the array begins at ~122.88 m.

74

Figure 3-21. Short Range DOA using: (a) Original Samples (b) Phase Corrected Samples

As shown in Figures 3-19 to 3-21, short range angular measurements are degraded

when using standard DOA algorithms as these rely on the plane wave

approximation. This might explain the poor angular resolution measured in [7],

since targets were place well within the far-field boundary. Applying the proposed

short range correction method should enable sharp MIMO radar imaging of near

targets.

3.5 Optimization of CPU Implementation

Memory access, when executing the Bartlett DOA from Algorithm 2, is not optimal

when performed on the CPU. Algorithm 10 expands on Algorithm 2 and provides

more information on its C++ implementation. In the algorithm, 𝑥 represents the

complex samples from the data cube, 𝑎 represents the steering vectors, 𝑐 represents

the pre-calculated correction matrix (for short range targets), and 𝑋 represents the

output cube.

Algorithm 10: Bartlett Beamforming – Detailed

1: for all range bins r{

2: for all doppler bins d{

3: // Do Bartlett Beamforming

4: for all angles of interest k{

5: temp = 0

6: for all channels i{

7: temp += x[i][d][r] * a[k][i] * c[k][i][r]

8: }

9: X[k][d][r] = temp

10: }

11: }

12: }

13: end of Detailed Bartlett DOA function

75

As the innermost loop iterates (lines 6-10), data from the 𝑥, 𝑎, and 𝑐 matrices are

loaded from memory prior to executing the multiplication. Since the 𝑥 matrix and

the 𝑐 matrix experience significant reuse throughout the loops, the data can be pre-

loaded to smaller temporary matrices which only need to be updated when the

required data changes (i.e., the next range bin). Algorithm 11 shows the optimized

CPU implementation, with 𝑥_𝑡𝑒𝑚𝑝 and 𝑐_𝑡𝑒𝑚𝑝 as the temporary arrays. Loading

the data from the matrices (lines 5 and 11) is done in a uncoalesced manner and is

inefficient. However, the data is stored to the temporary matrices in a way that

enables coalesced loads throughout the nested loops of the Bartlett DOA

(lines 6-10). The coalesced loads take advantage of CPU caching, which reduces

the total execution time of the radar frame.

Pre-loading the data matrices, as detailed in Algorithm 11, while using the radar

parameters of Table 3-1 reduces the execution time of the radar frame by ~55%

when done sequentially on the CPU, and by ~40% when done in parallel on the

CPU.

Algorithm 11: Bartlett Beamforming – Optimized

1: for all range bins r{

2: // Pre-Load the Correction Matrix

3: for all angles of interest k{

4: for all channels i{

5: c_temp[k][i] = c[k][i][r]

6: }

7: }

8: for all doppler bins d{

9: // Pre-Load Data Cube Matrix

10: for all channels i{

11: x_temp[i] = x[i][d][r]

12: }

13: // Do Bartlett Beamforming

14: for all angles of interest k{

15: temp = 0

16: for all channels i{

17: temp += x_temp[i] * a[k][i] * c_temp[k][i]

18: }

19: X[k][d][r] = temp

20: }

21: }

22: }

23: end of Optimized Bartlett DOA function

76

4 Results

To verify the success of the proposed algorithm, both the acceleration of the signal

processing and the resolution measurements must be quantified. Using the

simulated environment described in Chapter 3, raw data cubes are generated and

sent to the signal processing chain. Section 4.1 highlights the acceleration results,

while Section 4.2 evaluates the resolution measurements of the proposed method.

Note that although super-resolution algorithms were considered (i.e., MUSIC,

MVDR, etc.), the CZT and the Bartlett DOA still increases the resolution of the

radar images (when compared to the baseline FFT) without having all the associated

requirements discussed in Section 2.2. Furthermore, the computational cost

associated with the super-resolution methods would have been must larger, making

the CZT and the Bartlett DOA a good compromise.

The signal processing was performed on a Dell 7920 workstation which contains 2

Intel® Xeon Gold 5120 processors (14 Cores each), and an NVIDIA GeForce 2080

Ti GPU (4352 CUDA Cores). The base clock rates are 2200 MHz and 1350 MHz

for the CPU and the GPU, respectively. Note that the Xeon Gold 5120 processors

have Hyper-Threading Technology, which enables each core to run 2 threads at

once [48]. Since the workstation has 2 CPUs with 14 cores each, 56 threads in total

are available.

4.1 Signal Processing Acceleration

The execution times of different algorithms are measured by calling timing

functions before and after they are called from the C++ program. Since the

acceleration of all portions of the signal processing is of interest, the timers will

measure the execution time of the range algorithm (FFT and CZT), the doppler

algorithm (FFT), the bearing algorithm (FFT and Bartlett), as well as the cube

compression.

Both FFTW and cuFFT can generate 3D FFT plans, which are executed faster than

performing a range FFT, followed by a doppler FFT and a bearing FFT. For

completeness, both methods will be timed and included in the results.

For the experiment, simulation runs will be performed using the baseline FFT

method (range FFT → doppler FFT → bearing FFT → Cube Compression), the more

efficient FFT method (3D FFT → Cube Compression), the proposed method (range

CZT → doppler FFT → Bartlett DOA → Cube Compression), and the proposed

method with the addition of Short Range Correction. All methods will be tested

when run sequentially on the CPU, in parallel on the CPU (56 threads), and in

77

parallel on the GPU. A total of 30 tests per method will be performed, where the

average timing measurements are recorded for acceleration calculations. Note that

when testing the GPU implementation, data transfer times between the host and the

device must be measured and included in the results.

The acceleration 𝐴 of a task or program is determined by comparing its sequential

execution time 𝑡𝑠𝑒𝑞 with its parallel execution time 𝑡𝑝𝑎𝑟:

𝐴 =
𝑡𝑠𝑒𝑞

𝑡𝑝𝑎𝑟
 (4.1)

Table 4-1 lists the average execution time and acceleration results for all methods.

Each radar frame computation is performed on 1024 time samples, 256 chirps,

and 64 virtual MIMO channels. As mentioned in Section 3.3.5, all samples are

complex doubles.

 Process Name
Execution Times (ms) Acceleration

Sequential

CPU

Parallel

CPU
GPU

Parallel

CPU
GPU

F
F

T

M
et

h
o
d

 3D FFT 599.82 133.16 7.55 4.5x 79.4x

Cube Compression 2357.83 102.07 2.74 23.1x 860.5x

Copy Host → Device 64.93

Copy Device → Host 0.84

Overall 2957.65 235.24 76.05 12.6x 38.9x

B
a
se

li
n

e
F

F
T

M
et

h
o
d

Range FFT 102.62 46.47 3.21 2.2x 32.0x

Doppler FFT 340.27 77.45 4.45 4.4x 76.5x

Bearing FFT 206.09 60.50 1.52 3.4x 135.6x

Cube Compression 2322.66 90.97 2.59 25.5x 896.8x

Copy Host → Device 64.23

Copy Device → Host 0.90

Overall 2971.65 275.38 76.90 10.8x 38.6x

P
ro

p
o
se

d

M
et

h
o
d

Range CZT 3920.41 646.12 17.98 6.1x 218.0x

Doppler FFT 316.36 64.48 3.90 4.9x 81.1x

Bartlett DOA 132472.14 4967.38 228.29 26.7x 580.3x

Cube Compression 10281.97 349.00 7.15 29.5x 1438.0x

Copy Host → Device 65.19

Copy Device → Host 1.14

Overall 146990.89 6026.98 323.65 24.4x 454.2x

S
h

o
rt

 R
a
n

g
e

C
o
rr

e
ct

io
n

 Range CZT 3862.72 645.05 17.97 6.0x 215.0x

Doppler FFT 412.54 80.16 3.83 5.1x 107.7x

Bartlett DOA 184318.34 7060.80 229.22 26.1x 804.1x

Cube Compression 10204.25 411.19 7.22 24.8x 1413.3x

Copy Host → Device 63.87

Copy Device → Host 1.12

Overall 198797.85 8197.20 323.22 24.3x 615.1x

Table 4-1. Execution Time and Acceleration Results

78

As seen from Table 4-1, the multicore CPU and the GPU were able to take

advantage of the parallelism within the algorithms. Even when using the baseline

FFT method (1 3D FFT plan), reasonable acceleration was achieved: 12.6x on the

multicore CPU and 38.9x on the GPU. In general, the execution of the FFTs on the

CPU does not seem to benefit much from parallelization. Despite having 56

available threads, the maximum acceleration achieved from the CPU was only 4.5x

when using a single 3D FFT plan. On the GPU, the FFTs are performed quickly,

yielding an acceleration of 79.4x. The single 3D FFT plan is also observed to be

slightly more efficient than 3 individual plans, which suggests that the FFTW and

cuFFT planners are well optimized.

When executing the Proposed Method (with 144-point Bartlett), large accelerations

are achieved for both the multicore CPU (24.4x) and the GPU (454.2x). The

parallelism introduced by the Bartlett algorithm is evident, as this step in the signal

processing chain yields speed ups of 26.7x for the CPU, and 580.3x for the GPU.

However, only the GPU implementation could be considered practical as it can

compute the entire radar frame in ~324 ms. Even with a respectable acceleration,

the multicore CPU implementation still takes approximately 6 seconds per frame.

As shown in Section 3.4, targets well within the far-field boundary can properly be

imaged by applying a phase correction to the samples, while performing the Bartlett

DOA algorithm. Despite pre-calculating the phase correction matrix, the additional

tasks of finding the proper indices, performing the memory load, and executing an

extra double precision multiplication increases the computation time by ~40% when

run on the CPU (sequentially of parallel). The GPU, however, only requires an

additional 0.93 ms to perform the corrected Bartlett DOA Algorithm, resulting in

the acceleration of 615.1x from Table 4-1. Although this result is important, it may

only be pertinent to applications which require the imaging of short range targets.

The acceleration achieved with the Proposed Method (not corrected) might be a

better indicator of the performance of the GPU, when used for MIMO radar signal

processing.

Although the results are not included in Table 4-1, a 289-point Bartlett version of

the Proposed Method (without Short Range Correction) would take ~5 minutes to

compute a frame when done sequentially on the CPU, ~ 11 seconds when done in

parallel on the CPU (27.3x), and ~550 ms when done on the GPU (545.5x).

79

4.2 Resolution Measurements

To calculate the range and bearing resolutions of the algorithms, the width of the

processed waveform must be measured. The spectrum power 𝑃𝑠 of the chirp, after

matched filtering, is represented by the square of the sinc function [12]:

𝑃𝑠(𝑥) = |
sin(𝑥)

𝑥
|

2

 (4.2)

Figure 4-1 shows the normalized analog spectrum of a target located at 50 m, using

the radar parameters from Table 3-1.

Figure 4-1. Analog Range Spectrum, Target at 50 m

The double sided −3 dB width ∆𝑅3𝑑𝐵 of the spectrum commonly defines the range

resolution of the radar and is related to the null-to-null width ∆𝑅𝑛−𝑛 [12].

∆𝑅𝑛−𝑛 =
𝑐

𝐵
 (4.3)

∆𝑅3𝑑𝐵 ≅ 0.88 ×
𝑐

2𝐵
 (4.4)

where:

𝑐 = speed of light (m/s)

𝐵 = bandwidth of the waveform (Hz)

50.75 m 49.25 m

66.4 cm

80

From Figure 4-1, the distance between the 2 nulls is 1.5 m. Using (4.4), the range

resolution of a 200 MHz waveform is calculated to be 66.4 cm.

Since the radar waveform is discretized, the resulting spectrum will be a “sampled”

version of the sinc from Figure 4-1. Specifically, the baseline range FFT evaluates

an output every 75 cm, while the proposed CZT does so every 16.60 cm.

Figures 4-2 and 4-3 show the sampled power spectrum when using the baseline FFT

and the proposed CZT, respectively.

Figure 4-2. Sampled Power Spectrum, baseline FFT

Figure 4-3. Sampled Power Spectrum, proposed CZT

81

Measuring the spectrum of a DFT comes with difficulties. Stradling Losses occur

whenever the target position does not coincide with an FFT bin, which manifests

itself by widening the main lobe of the spectrum and by reducing its peak power

[12], [49]. Otherwise, the spectrum will have the sharpest response and highest SNR

when the target position coincides with an FFT bin, as shown in Figure 4-4.

Figure 4-4. Stradling Loss: (a) Target Coinciding with FFT bin (b) Target in between FFT bins

The cases shown in Figure 4-4 (a) and (b) are the extremes, but since targets can be

positioned anywhere, there is no single value for the signal strength and resolution

of the FFT.

4.2.1 Range Resolution

To obtain a meaningful value for the radar’s range resolution (−3 dB), many

measurements must be taken and averaged. For the experiment, the target will begin

at a range of 50.00 m (stationary target at broadside) where the Stradling Loss and

spectral width is measured. The target will then move away from the radar by a

small incremental range ∆𝑟 (𝑏𝑖𝑛_𝑠𝑖𝑧𝑒/40) where the power and width

measurements are taken again. This is repeated until the target has traveled a

distance equal to the size of the FFT bin.

82

Table 4-2 shows the results of the range resolution measurements. As discussed in

Section 3.3.3, CZT parameters have been chosen as to provide an oversampling

factor (OSF) of 4.515x, which has been identified to be one of the optimal OSFs

when sampling a squared sinc function.

Measurement

Type
Max Min Average

Standard
Deviation

Baseline FFT

Straddling
Loss

3.87 dB 0.00 dB 1.26 dB 1.17 dB

3 dB
Resolution

149.90 cm 74.95 cm 88.06 cm 28.48 cm

Proposed CZT

Straddling
Loss

0.18 dB 0.00 dB 0.06 dB 0.05 dB

3 dB
Resolution

66.41 cm 66.41 cm 66.41 cm 0.00 cm

Table 4-2. Range Resolution Measurements

By using an optimal OSF of 4.515x, the resolution of the Proposed CZT exactly

matches the expected 3dB resolution of the waveforms. Additionally, the selected

OSF ensures that there are always the same number of samples above the −3 dB

threshold, bringing the Standard Deviation of the measured resolution to zero. It is

found that the Proposed CZT enhances the baseline average resolution of 88.06 cm

by ~24.58 precent. The Straddling Loss is also reduced when using the Proposed

CZT, which increases the SNR.

4.2.2 Bearing Resolution

Similar to the procedure in Section 4.2.1, the −3 dB resolution and straddling losses

are measured in the context of bearing resolution. Due to the issue of short range

beamforming, the target is placed at a range of 140 meters, which is outside the far-

field boundary of the antenna array. For the experiment, the target’s bearing varies

from 0° to the next bearing bin in increments of ∆𝑏 (𝑏𝑖𝑛_𝑠𝑖𝑧𝑒/80). To keep the

target within the same range bin, its cartesian coordinates (𝑥, 𝑦) are updated so that

atan(𝑥/𝑦) is equal to the desired angle and √𝑥2 + 𝑦2 is equal to the constant range

of 140 meters.

To compare the baseline FFT method against the 2 oversampling factors (OSF)

identified in Section 3.3.3, the resolutions of both the 144-point and the 289-point

Bartlett DOA will be measured. The 144-point DOA results in an OFS of 2.250x

while the 289-point DOA results in an OFS of 4.515x, both of which have been

identified as being optimal.

83

The number of MIMO virtual channels from Table 3-1 was chosen to yield a null-

to-null beamwidth of 3.581° at broadside. Using (4.4), the theoretical −3 dB

resolution is expected to be 1.586° (rounded to 1.59°) at broadside.

Table 4-3 shows the results of the bearing resolution measurements for the 3

methods.

Measurement

Type
Max Min Average

Standard
Deviation

Baseline FFT

Straddling
Loss

3.85 dB 0.00 dB 1.23dB 1.16 dB

3 dB
Resolution

3.58° 1.79° 2.10° 0.68°

Proposed
144-point
Bartlett

Straddling
Loss

0.71 dB 0.00 dB 0.23 dB 0.22 dB

3 dB
Resolution

1.59° 0.80° 1.58° 0.09°

Proposed
289-point
Bartlett

Straddling
Loss

0.18 dB 0.00 dB 0.06 dB 0.06 dB

3 dB
Resolution

1.59° 1.59° 1.59° 0.00°

Table 4-3. Bearing Resolution Measurements

Just as with the range resolution, the use of an optimal OFS greatly reduces the

variance of the resolution measurement while providing the expected -3dB

resolution (rounded to 2 decimal points). In terms of -3 dB resolution, there isn’t

much of an advantage in choosing the 289-point DOA over the 144-point DOA.

Both methods enhance the baseline method resolution of 2.10° by ~24.48 percent.

The advantage of the 289-point DOA lies in the reduction of Straddling Losses.

However, doubling the number of points only reduces the maximum Straddling

Loss by 0.553 dB and the average Straddling Loss by 0.172 dB. This is consistent

with the curves in Figure 3-12 from Section 3.3.3. Since the execution time of the

Bartlett algorithm is linearly proportional to the number of evaluated points, one

can reasonably conclude that the mild reduction in Straddling Loss is not worth

doubling the execution time. The 144-point DOA adequately reduces the Straddling

Losses of the baseline FFT method by 3.144 dB (maximum loss) and 0.995 dB

(average).

84

4.2.3 Short Range Angular Resolution

As described in Section 3.4, beamforming algorithms suffer when targets are near

the antenna array. A loss in amplitude was identified, along with the widening of

the bearing response. To demonstrate the phenomenon of near target beamforming

and to evaluate the performance of the proposed Short Range Correction algorithm,

the procedure from Section 4.2.2 is repeated for a target located at 13.5 meters from

the radar.

Table 4-4 shows the results of the bearing resolution measurements for the baseline

FFT method, the Proposed Bartlett DOA method (144-point), and the Proposed

Bartlett method with Short Range Correction.

Measurement

Type
Max Min Average

Standard
Deviation

Baseline FFT

Combined
Losses

6.38 dB 5.32 dB 5.78 dB 0.36 dB

3 dB
Resolution

7.16° 5.37° 5.60° 0.60°

144 - point
Bartlett

Combined
Losses

5.57 dB 5.22 dB 5.34 dB 0.11 dB

3 dB
Resolution

5.57° 4.78° 5.34° 0.36°

144 - point
Bartlett +

Short Range
Correction

Combined
Losses

0.71 dB 0.00 dB 0.23 dB 0.21 dB

3 dB
Resolution

1.59° 0.80° 1.58° 0.09°

Table 4-4. Bearing Resolution Measurement: Target at 13.5 m

As listed in Table 4-4, both the baseline FFT method and the 144-point Bartlett

method suffer from considerable losses (~ 6 dB). These losses are a combination of

beamforming distortion and Straddling Losses, which cannot be remedied by

simply oversampling in bearing. Additionally, the average -3dB resolution is much

larger than when the target is in the far-field. For the baseline FFT, the resolution

is, on average, 2.67x wider than for far-field targets. For the 144-point Bartlett, the

resolution is, on average, 3.37x wider than for far-field targets.

When the phase corrections are applied, as derived in Section 3.4.2, the average

resolution is re-sharpened to its expected value of ~1.58°, and the losses are reduced

to 0.71 dB (maximum) and 0.23 dB (average).

85

4.3 Result Summary

As shown in Sections 4.1 and 4.2, the proposed MIMO radar signal processing

provides enhanced range and bearing resolution while enabling real-time operation.

Both the range and bearing resolution measurements are reduced by ~24.5%, which

now match the theoretical values. Additionally, when executing the algorithm (144-

point DOA) on the GPU, an acceleration of 454.2x was achieved.

The Short Range Correction, proposed in Section 3.4.2, was also verified to

correctly flatten the incoming wavefront and enable the correct operation of the

DOA algorithm. Without correction, targets at 13.5 meters from the radar suffered

significant losses in bearing resolution (~ 3x wider than expected) and peak

power (~ 6 dB). When the correction was applied, the bearing resolution and peak

power measurements matched those from targets in the far field. With the correction

enabled, the CPU required ~ 40% more time to execute the Bartlett DOA. The GPU,

however, only needed an additional ~ 1 ms, which explains the large acceleration

of ~ 615x from Table 4-1.

The added complexity of the proposed algorithms is evident when comparing the

execution times. On the CPU (sequential), performing the proposed algorithm with

Short Range Correction takes ~67x more time than the baseline FFT method. On

the GPU, however, performing the proposed algorithm only takes ~ 4.25x more

time that the baseline, highlighting the suitability of GPUs for highly parallel

applications.

86

5 Conclusion

To conclude, the contents of the previous chapters will be summarized, the principal

contributions yielded by this thesis will be highlighted, the thesis hypothesis and its

success will be discussed, and future work topics will be proposed.

5.1 Summary

In Chapter 1, the topic of MIMO radars and their computational demands were

introduced. The problem statement, motivation, and thesis statement were also

presented. Finally, the methodology and thesis organization were outlined.

In Chapter 2, relevant theory such as multiplexing techniques, radar fundamentals,

signal processing techniques, and an introduction to MIMO radars was presented.

Additionally, state of the art in MIMO radar prototypes and case studies on GPU

accelerated radar signal processing were reviewed. Existing solutions to real-time

operation were identified such as choosing fast algorithms (at the cost of

resolution), reducing the quantity of data to process (i.e., the dimension of the radar

or the number of range and bearing bins to compute), or by offloading the work on

FPGA, DPS, or ASIC. A flexible GPU based solution, capable of quickly executing

the signal processing without sacrificing resolution, was proposed for a 3D (range,

bearing, and velocity) MIMO radar.

In Chapter 3, the simulation environment was introduced, which enables target echo

generation for MIMO radar geometries. The simulated radar, modeled from [7],

was presented along with its requirements, parameters, and hardware. The

workstation used for processing the radar data was also described, including its

installed hardware (CPU and GPU) and required software. Following this, the

baseline and proposed algorithms, along with Short Range Correction, were

developed. Finally, parallelization techniques for the baseline 3D FFT method and

the proposed algorithm were described.

In Chapter 4, timing and acceleration measurements were taken for the different

algorithms when run sequentially on the CPU, in parallel on the CPU, and in parallel

on the GPU. Additionally, range and bearing resolution measurements were

performed for all methods to quantify the improvement provided by the proposed

method. Finally, bearing resolution was evaluated for short range targets with the

aim of validating the Short Range Correction, as proposed in Section 3.4.2.

87

5.2 Contributions

The work achieved in this thesis yielded solutions to the limitations presented in

Chapters 1 and 2. The key contributions of this work are listed below:

1. A simulated environment, which provides a virtual proving ground for

MIMO radar signal processing, was developed. Multiple target echoes can

be simulated within an environment where individual transmit/receive paths

between the antennas and the targets are important. The simulation

environment has configurable radar parameters, can accommodate different

antenna array geometries, and all signal processing can be replaced, making

the simulated environment a useful tool in future MIMO radar research.

2. Methods to accelerate the baseline 3D FFT and the Cube Compression

algorithms were proposed. Despite the additional transfer time required to

copy ~17 million complex doubles from the Host to the Device, the baseline

FFT method saw significant acceleration when executed on the GPU (~39x)

and can now compute the entire radar frame within 76 ms. Considering that

the SDRs take approximately 308 ms to collect the chirp to form the CPI,

the GPU accelerated method truly enables real-time operation of the radar

by making the refresh rate acquisition-time-limited.

3. For a radar waveform with a known bandwidth, optimal oversampling

factors (OSF) have been identified. These optimal OSFs guarantee that the

sampled digital resolution is equal to the expected analog resoltuion, with

little to no variance. In this work, OSFs of 2.257x and 4.515x were used to

guide the parameter selection of the CZT and the Bartlett DOA. The use of

these optimal OSFs have been validated in Chapter 4, which implies that

very high oversampling factors (i.e., 10x or 20x) are not required to

guarantee good resolution measurements and low straddling losses.

4. The CZT and the Bartlett DOA were proposed as replacements for the range

and bearing FFTs, respectively. Using optimal OSFs, the measured

resolutions were enhanced by ~24.5%. In addition to being configurable

with regards to oversampling factors, the CZT and the Bartlett DOA can

provide extra flexibility to the radar system. The computed ranges and

bearings can be modified and even provide a zoom around a target of

interest. Although the Bartlett DOA is much more computationally

expensive than the FFT, the CZT maintains a complexity of 𝑛 log2(𝑛).

88

5. A Short Range Correction technique was proposed in Section 3.4 which

addresses the difficulty in performing beamforming on targets near the

antenna array. By applying a phase correction to the samples, the spherical

wavefront is effectively flattened into a plane wave which can be correctly

beamformed. This phase correction is made possible by the MIMO mode,

since individual transmit and receive paths can be separated and

compensated for prior to the beamforming algorithm. The Short Range

Correction, however, cannot be used with the FFT, since the angle

information from the FOV is required during computation. The Short Range

Correction technique has been validated in Chapter 4, and can be used for

any beamforming technique which scans the FOV (i.e., Bartlett, MVDR,

ESPRIT, IAA, etc.).

6. Methods to parallelize the CZT and the Bartlett DOA on the CPU and on

the GPU were proposed. By executing each step of the proposed algorithms

at once on the entire data cube, accelerations of ~24.4x for the CPU and

~454x for the GPU were achieved. When the short range correction is

applied, the speed up is increased to ~615x.

The development of the proposed method with GPU acceleration, was presented at

the 4th International Conference on Computing and Wireless Communication

Systems (ICCWCS) [50].

5.3 Discussion

In Chapter 1, the following thesis statement was identified:

“Multicore CPU and GPU parallel processing techniques will be

investigated to accelerate the high computational demands of MIMO radar

signal processing. Additionally. The Chirp Z Transform and the Bartlett

Beamformer will be evaluated to improve the range and angular

resolutions. Resolution measurements will then be compared against the

current version of RMC’s MIMO radar.”

To verify the hypothesis that hardware acceleration would benefit MIMO radar

processing, all algorithms described in Chapter 3 were developed to be executed

either sequentially in the CPU, in parallel on the CPU, and in parallel on the GPU.

In Chapter 4, all methods were tested and timed in order to calculate the achieved

acceleration. Although any acceleration could be deemed a success, the total

execution time of the radar frame will also be compared against the current version

of RMC’s MIMO radar. To be considered a success, the radar frame must be

performed within 1.25 seconds [7].

89

To verify the hypothesis that replacing the range and bearing FFT by the CZT and

the Bartlett DOA would enhance the resolution of radar, both the baseline FFT

method and the proposed method have been programmed. In Chapter 4, resolution

measurements have been conducted to quantify the improvement in both the range

and bearing resolutions. Both far and near targets were used, to validate the Short

Range Correction. Comparing the measured resolution against the current RMC

MIMO radar is not meaningful, as the resolution is not well defined in [7].

Therefore, any enhancement in range or bearing resolution when using the proposed

method is considered a success.

In the case of processing speed, acceleration enabled execution times well within

1.25 seconds. When using the baseline 3D FFT method, both multicore CPU and

GPU acceleration met the requirement, with processing times of ~235 ms

and ~76 ms, respectively. However, when using the proposed method (CZT and

Bartlett DOA), only the GPU was able to compute the radar frame within the

requirement, with an execution time of ~324 ms. If a signal processing time of 1.25

seconds is considered acceptable, the proposed algorithm on GPU still allows for

another ~926 ms of computation. Therefore, this solution enables more radar

processing to be performed (i.e., detection algorithms, tracking, etc.) within the

allotted time.

In the case of resolution, the measurements from Chapter 4 show enhancements

of ~24.5% in both range and bearing. With the CZT and Bartlett DOA configured

to yield optimal OSFs (2.257x and 4.515x), the double-sided half-power resolutions

of the radar now match the expected values exactly. For short range targets, the

advantage of using the Bartlett DOA with Short Range Correction is apparent. At

13.5 meters, the average resolution of the baseline 3D FFT is ~5.6° whereas the

proposed method yields the expected resolution of ~1.58°. This represents an

enhancement in bearing resolution of approximately 3.5x. The proposed algorithms

therefore provide enhanced resolutions at all ranges.

Given the results listed above, the thesis statement has been validated and it can be

concluded that the proposed algorithm enhances the resolution of the MIMO radar,

and that GPU acceleration enables faster refresh rates.

90

5.4 Future Work

Before concluding this thesis, 3 research opportunities are proposed for future work.

Firstly, the implementation of super-resolution beamforming techniques on the

MIMO radar could be investigated. It has been shown in this thesis that the GPU

can quickly perform the proposed algorithm, meaning that it might also be able to

perform more complex algorithms in a reasonable amount of time. As discussed in

Section 2.2, there are additional difficulties in implementing super-resolution

techniques due to multiple correlated signals and clutter. Additionally, subspace-

based algorithms (such as MUSIC and ESPRIT) require that the quantity of targets

be known a priori, which is generally not the case in a surveillance radar. However,

all of these methods (including MVDR and IAA) depend on complex linear algebra,

such as the inversion of matrices. Researching the effectiveness of the GPU in the

execution of these tasks would be of interest.

Secondly, orthogonal waveforms should be studied. This thesis focuses on the

signal processing after demultiplexing and does not consider the effects of non-

orthogonality of the chosen multiplexing technique (TDM, CDM, FDM). For a

given waveform, target illumination and orthogonality could be evaluated.

Additionally, the performance of the selected waveform could be validated in

clutter and against moving targets. Research in this field could potentially yield a

novel multiplexing scheme optimized for MIMO radar.

Finally, GPU acceleration of an Electronic Warfare system should be researched.

As an example, extracting waveform information in an Electronic Support system

can be computationally demanding. Whether the system is performing pulse

sorting, frequency and time estimations, DOA estimations, or executing the

Wigner-Ville and Radon Transforms, there could be parallelism exploitable by the

GPU. Since there is value in quickly identifying signals in EW systems,

accelerating the signal processing on a GPU should be investigated.

91

Bibliography

[1] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next

generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb.

2014, doi: 10.1109/MCOM.2014.6736761.

[2] K. Li, B. Yin, M. Wu, J. R. Cavallaro, and C. Studer, “Accelerating massive MIMO

uplink detection on GPU for SDR systems,” in 2015 IEEE Dallas Circuits and Systems

Conference (DCAS), Oct. 2015, pp. 1–4. doi: 10.1109/DCAS.2015.7356600.

[3] J. Bergin and J. R. Guerci, MIMO Radar Theory and Application. Boston, MA, USA:

Artech House, 2018.

[4] J. Li and P. Stoica, “MIMO Radar with Colocated Antennas,” IEEE Signal Process.

Mag., vol. 24, no. 5, pp. 106–114, Sep. 2007, doi: 10.1109/MSP.2007.904812.

[5] A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO Radar with Widely Separated

Antennas,” IEEE Signal Process. Mag., vol. 25, no. 1, pp. 116–129, 2008, doi:

10.1109/MSP.2008.4408448.

[6] S. Sun, A. P. Petropulu, and H. V. Poor, “MIMO Radar for Advanced Driver-Assistance

Systems and Autonomous Driving: Advantages and Challenges,” IEEE Signal Process.

Mag., vol. 37, no. 4, pp. 98–117, Jul. 2020, doi: 10.1109/MSP.2020.2978507.

[7] R. T. Gilpin, “Real-Time Multiple Input Multiple Output (MIMO) Radar Using Sotware

Defined Radio,” Royal Military College of Canada, Kingston Ontario, 2021.

[8] A. Ganis, “Architectures and Algorithms for the Signal Processing of Advanced MIMO

Radar Systems - CORE,” Universita’ Degli Studi Di Udine, 2018. Accessed: Mar. 09,

2022. [Online]. Available: https://core.ac.uk/display/195748925?recSetID=

[9] Y. L. Sit, B. Nuss, S. Basak, M. Orzol, W. Wiesbeck, and T. Zwick, “Real-time

2D+velocity localization measurement of a simultaneous-transmit OFDM MIMO Radar

using Software Defined Radios,” in 2016 European Radar Conference (EuRAD),

London, Oct. 2016, pp. 21–24.

[10] T. Al-Nuaim, M. Alam, and A. Aldowesh, “Low-Cost Implementation of a Multiple-

Input Multiple-Output Radar Prototype for Drone Detection,” in 2019 International

Symposium ELMAR, Sep. 2019, pp. 183–186. doi: 10.1109/ELMAR.2019.8918664.

[11] M. Skolnik, Radar Handbook, Third. New York, NY, USA: McGraw-Hill, 2008.

[12] M. Budge C. and S. German R., Basic Radar Analysis, Second. Norwood, MA, USA:

Artech House, 2020.

[13] “IEEE Standard Letter Designations for Radar-Frequency Bands - Redline,” IEEE Std

521-2019 Revis. IEEE Std 521-2002 - Redline, pp. 1–22, Feb. 2020.

92

[14] F. Neri, Introduction to Electronic Defense Systems, Second. Edison, NJ, USA: SciTech

Publishing, 2006.

[15] D. L. Adamy, EW 102 A second Course in Electronic Warfare. Norwood, MA, USA:

Artech House, 2004.

[16] M. Skolnik, Introduction to Radar Systems, 3rd ed. New York, NY, USA: McGraw-

Hill, 2001.

[17] Y. Zhang, Y. Guo, and Z. Chen, “Range-Doppler domain signal processing for medium

PRF ubiquitous radar,” in 2016 CIE International Conference on Radar (RADAR), Oct.

2016, pp. 1–4. doi: 10.1109/RADAR.2016.8059428.

[18] A. Antoniou, Digital Signal Processing Signals, Systems, and Filters. New York, NY,

USA: McGraw-Hill, 2006.

[19] P. Rajmic, Z. Prusa, and C. Wiesmeyr, “Computational cost of Chirp Z-transform and

Generalized Goertzel algorithm,” in 2014 22nd European Signal Processing

Conference (EUSIPCO), Sep. 2014, pp. 1004–1008.

[20] C. A. Balanis, Antenna Theory Analysis and Design, Fourth. Hoboken, NJ, USA: Wiley,

2016.

[21] R. Sturdivant, C. Quan, and E. Chang, Systems Engineering of Phased Arrays.

Norwood, MA, USA: Artech House, 2019.

[22] F. Meinl, M. Kunert, and H. Blume, “Hardware acceleration of Maximum-Likelihood

angle estimation for automotive MIMO radars,” in 2016 Conference on Design and

Architectures for Signal and Image Processing (DASIP), Oct. 2016, pp. 168–175. doi:

10.1109/DASIP.2016.7853815.

[23] “Smart-S Mk2,” Thales Group. https://www.thalesgroup.com/en/worldwide/

defence/smart-s-mk2-3d-medium-long-range-surveillance-radar (accessed Mar. 16,

2022).

[24] Y. Shao, G. Zheng, F. Liu, and F. Jiang, “A Coherent Weak Target DOA Estimation

Method Based on Target Features,” in 2021 OES China Ocean Acoustics (COA), Jul.

2021, pp. 5–8. doi: 10.1109/COA50123.2021.9519912.

[25] I. A. H. Adam and M. D. R. Islam, “Perfomance Study of Direction of Arrival (DOA)

Estimation Algorithms for Linear Array Antenna,” in 2009 International Conference on

Signal Processing Systems, May 2009, pp. 268–271. doi: 10.1109/ICSPS.2009.47.

[26] H. Liu, X. Wang, B. Jiu, J. Yan, M. Wu, and Z. Bao, “Wideband MIMO Radar

Waveform Design for Multiple Target Imaging,” IEEE Sens. J., vol. 16, no. 23, pp.

8545–8556, Dec. 2016, doi: 10.1109/JSEN.2016.2604844.

93

[27] D. B. Kirk and W. W. Hwu, Programming Massively Parallel Processors, Third.

Cambridge, MA, USA: Elsevier, 2017.

[28] T. Baji, “Evolution of the GPU Device widely used in AI and Massive Parallel

Processing,” in 2018 IEEE 2nd Electron Devices Technology and Manufacturing

Conference (EDTM), Mar. 2018, pp. 7–9. doi: 10.1109/EDTM.2018.8421507.

[29] S. T. Ataullah and M. Siddique, “Optimisation Techniques for Multicore Architectures

and Parallel Processing using OpenMP,” in 2021 International Conference on Decision

Aid Sciences and Application (DASA), Dec. 2021, pp. 187–191. doi:

10.1109/DASA53625.2021.9682392.

[30] K. Li, “GPU Accelerated Reconfigurable Detector and Precoder for Massive MIMO

SDR Systems,” Thesis, Rice University, 2015. Accessed: Mar. 18, 2022. [Online].

Available: https://scholarship.rice.edu/handle/1911/88088

[31] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming,” in

2008 IEEE Hot Chips 20 Symposium (HCS), Aug. 2008, pp. 40–53. doi:

10.1109/HOTCHIPS.2008.7476525.

[32] G.-J. van den Braak, B. Mesman, and H. Corporaal, “Compile-time GPU memory

access optimizations,” in Modeling and Simulation 2010 International Conference on

Embedded Computer Systems: Architectures, Jul. 2010, pp. 200–207. doi:

10.1109/ICSAMOS.2010.5642066.

[33] W. Wang, D. Liang, Z. Wang, H. Yu, and Q. Liu, “Design and Implementation of a

FPGA and DSP Based MIMO Radar Imaging System,” Radioengineering, vol. 24, no.

2, Art. no. 2, 2015.

[34] A. Figueroa, N. Joram, and F. Ellinger, “A fully modular, distributed FMCW MIMO

radar system with a flexible baseband frequency,” in 2021 IEEE Radar Conference

(RadarConf21), May 2021, pp. 1–6. doi: 10.1109/RadarConf2147009.2021.9455174.

[35] L. Jun, L. Yang, and Q. Hu, “Airborne SAR motion compensation and imaging based

on GPU architecture,” in IET International Radar Conference 2013, Apr. 2013, pp. 1–

6. doi: 10.1049/cp.2013.0146.

[36] R. S. Perdana, B. Sitohang, and A. B. Suksmono, “Radar Signal Processing in Parallel

on GPU: Case Study Dual Polarization FMCW Weather Radar,” in 2019 International

Conference on Electrical Engineering and Informatics (ICEEI), Jul. 2019, pp. 657–661.

doi: 10.1109/ICEEI47359.2019.8988845.

[37] Y. Gao, H. Gao, and X. Zhang, “MIMO Radar Algorithm Parallel Implementation

Based on TMS320C6678,” in 2014 IEEE 12th International Conference on

Dependable, Autonomic and Secure Computing, Aug. 2014, pp. 231–236. doi:

10.1109/DASC.2014.49.

94

[38] F. Meinl, M. Kunert, and H. Blume, “Massively parallel signal processing challenges

within a driver assistant prototype framework first case study results with a novel

MIMO-radar,” in 2014 International Conference on Embedded Computer Systems:

Architectures, Modeling, and Simulation (SAMOS XIV), Jul. 2014, pp. 351–357. doi:

10.1109/SAMOS.2014.6893232.

[39] G. Liu et al., “MIMO Radar Parallel Simulation System Based on CPU/GPU

Architecture,” Sensors, vol. 22, no. 1, Art. no. 1, Jan. 2022, doi: 10.3390/s22010396.

[40] A. Hassanien, M. G. Amin, Y. D. Zhang, and F. Ahmad, “High-resolution single-

snapshot DOA estimation in MIMO radar with colocated antennas,” in 2015 IEEE

Radar Conference (RadarCon), May 2015, pp. 1134–1138. doi:

10.1109/RADAR.2015.7131164.

[41] G. F. Rideout, “GPU Parallelization of the MVDR Beamforming ALgorithm for

Multiple Input Multiple Output Radar,” Royal Military College of Canada (Canada),

Kingston Ontario, 2019.

[42] “Building and Installing the USRP Open-Source Toolchain (UHD and GNU Radio)

on Linux - Ettus Knowledge Base.” https://kb.ettus.com/

Building_and_Installing_the_USRP_Open-Source_Toolchain_(UHD_and_GNU_

Radio)_on_Linux (accessed Mar. 24, 2022).

[43] “Pseudocolor plot - MATLAB pcolor.” https://www.mathworks.com/help/

matlab/ref/pcolor.html (accessed Mar. 24, 2022).

[44] “Call MATLAB from C++ - MATLAB & Simulink.” https://www.mathworks.com/

help/matlab/calling-matlab-engine-from-cpp-programs.html (accessed May 09, 2022).

[45] M. Frigo and S. G. Johnson, “FFTW Manual” https://www.fftw.org/fftw3.pdf

(accessed Mar. 24, 2022).

[46] NVIDIA, “cuFFT Library User’s Guide” https://www.docs.nvidia.com/

cuda/pdf/CUFFT_Library.pdf (accessed Mar. 25, 2022).

[47] W. Yuan, T. Zhou, S. Jiajun, W. Du, B. Wei, and T. Wang, “Correction Method for

Magnitude and Phase Variations in Acoustic Arrays Based on Focused Beamforming,”

IEEE Trans. Instrum. Meas., vol. 69, no. 9, pp. 6058–6069, Sep. 2020, doi:

10.1109/TIM.2020.2972657.

[48] “Product Specifications.” https://www.intel.com/content/www/us/en/products/

sku/120474/intel-xeon-gold-5120-processor-19-25m-cache-2-20-ghz.html (accessed

Jun. 06, 2022).

[49] J. P. Keradec and X. Margueron, “Improved Frequency Resolution DFT Eases Teaching

FFT Analysis and Provides Better Amplitude Accuracy,” in 2005 IEEE

Instrumentationand Measurement Technology Conference Proceedings, May 2005, vol.

2, pp. 1149–1154. doi: 10.1109/IMTC.2005.1604324.

95

[50] E. Pitre, V. Roberge, J. Bray, and M. Hefnawi, “MIMO Radar Hardware Acceleration

with Enhanced Resolution,” in 4th International Conference in Computing and Wireless

Communication Systems (ICCWCS), Morocco, Jun. 2022, pp. 1–6.

