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Abstract 

 
Classical radars steer their main beam across their desired Field of View (FOV) by physically 

moving the antenna or by adjusting the phase of the elements of an array. It takes time for a narrow 

beam to cover the entire FOV, which will in turn affect the refresh rate of the system. Recent 

research has seen efforts to implement Multiple Input Multiple Output (MIMO) techniques to 

radar. By using multiplexing techniques, the MIMO radar can illuminate the whole search sector 

at once and perform beamforming on receive. At the cost of higher computational complexity and 

longer dwell times, to compensate for lower Signal to Noise Ratios (SNR), the MIMO radar can 

simultaneously scan the entire FOV and thus increase the refresh rate of the radar.  

Due to the increased signal processing requirements, MIMO radars have difficulty operating in 

real-time as the computations can take several seconds to execute. The computation cost is 

somewhat mitigated by using efficient algorithms such as the Fast Fourier Transform (FFT) to 

solve for the range, velocity, and Direction of Arrival (DOA) of the echoes. However, the FFT is 

shown to have less than optimal resolution when compared to other signal processing tools. 

In this thesis, parallel implementations of MIMO signal processing algorithms on a Graphics 

Processing Unit (GPU) are proposed to allow for near real-time imaging of the field of view. In 

addition, two algorithms (the Chirp Z Transform and the Bartlett Beamformer) are proposed to 

replace the commonly used FFTs and improve the range and angular resolutions. 

The result of this work yields a range resolution improvement of 24.58% and an angular resolution 

improvement of 24.48% when compared to the baseline FFT method. Executed in parallel, the 

solution provides a speed up of 454.2x on the GPU. A signal processing time of ~324 ms was 

achieved for a Coherent Processing Interval (CPI) of 308 ms, enabling near real-time operation of 

the radar. Additionally, a correction method which enables the imaging of near-field target is 

proposed and verified. 
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Resumé 

 
Les radars classiques dirigent leur faisceau principal à travers leur champ de vision en déplaçant 

l’orientation de l’antenne ou en ajustant la phase des éléments d'un réseau. Il faut du temps pour 

qu’un faisceau étroit couvre la totalité du champ de vision, ce qui affecte le taux de 

rafraîchissement du système. Récemment, des travaux de recherches mettent des efforts à 

implémenter des techniques à entrées multiples et sorties multiples (MIMO) au radar. En utilisant 

des techniques de multiplexage, le radar MIMO peut éclairer l’ensemble du secteur de recherche 

simultanément et effectuer la formation de faisceaux en réception. Cependant, cet avantage vient 

avec un coût de calcul plus élevé.  

Du aux exigences du traitement de données, les calculs peuvent prendre plusieurs secondes à 

exécuter. Les radars MIMO ont donc de la difficulté à fonctionner en temps réel. Le coût de calcul 

est quelque peu atténué par l’utilisation d'algorithmes efficaces tels que la transformée de Fourier 

rapide (FFT) pour résoudre la portée, la vitesse et la direction d’arrivée des échos. Cependant, il y 

a des algorithmes qui génèrent de meilleures résolutions que l’analyse FFT. 

Dans cette thèse, des implémentations d'algorithmes parallèles des systèmes radar MIMO sur un 

unité de traitement graphique sont proposées afin de réduire le temps de calcul et de permettre une 

imagerie en temps quasi réel du champ de vision. En plus, deux algorithmes sont proposés pour 

remplacer les FFT couramment utilisées dans le but d’améliorer la résolution de portée et la 

résolution angulaire. Les deux algorithmes sont basés sue la transformée en Z du signal chirp 

(CZT : Chirp Z Transform) et sur la méthode de Bartlett pour la formation des faisceaux (Bartlett 

Beamformer). 

Le résultat de ce travail donne une amélioration en résolution de portée de 24,58% et une 

amélioration en résolution angulaire de 24,48% par rapport à la méthode FFT. Exécutée en 

parallèle, la solution offre une accélération de 454,2x sur l’unité de traitement graphique. Un temps 

de calcul d'environ 324 ms a été atteint pour un intervalle de traitement cohérent (CPI) de 308 ms, 

permettant un fonctionnement en temps quasi réel du radar. De plus, une méthode de correction 

qui permet l'imagerie d'une cible à courte portée est proposée et vérifiée. 
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1     Introduction 

 

1.1 Background 

 
Significant advancements have been made over the years in the fields of 

telecommunications and radar. With the implementations of 5G wireless networks, 

developers have leveraged the benefits of Massively Multiple Input Multiple 

Output (MIMO) to dramatically increase the throughput and robustness of 

communication systems [1]. Despite the advantages and scalability of MIMO 

communication systems, the technology comes with increased processing 

requirements [1]–[2]. Currently, FPGA and hardware solutions are implemented to 

meet these computing demands and researchers are looking into using other 

technologies, such as Graphics Processing Units (GPU), to perform the 

computations [1]–[2]. MIMO technology has piqued the interest of radar 

researchers as it could yield new capabilities when used with Software Defined 

Radios (SDR) or as an addition to current radar systems [3]. Many papers have been 

published regarding the implementation and testing of MIMO radars but, just like 

for communication systems, there is a noticeable increase in processing         

demands [3]. The added computations affect the scalability and real-time 

performance of MIMO radars [3]. MIMO radars come in 2 broad categories 

depending on the location of their antennas, where they are considered either co-

located [4] or distributed [5]. The work contained in this thesis specifically applies 

to co-located MIMO radar.  

MIMO, in the context of radar, can be interpreted as a different way of scanning a 

Field of View (FOV). Instead of relying on mechanically steering an antenna or 

adjusting the phase of an array to transmit and receive in a particular direction, the 

MIMO radar uses orthogonal waveforms to illuminate the entire FOV at once, using 

multiplexing techniques, and performs beamforming on receive [3]–[4]. Although 

the computational demands are greater, the MIMO radar can simultaneously 

evaluate echoes across the FOV without having to go through the lengthy scanning 

process required by classical surveillance radars [3], [7]. Using Software Defined 

Radios (SDR), a MIMO radar was built and tested at the Royal Military College of 

Canada (RMC) in 2021 which could operate in different multiplexing modes and 

yielded a relatively high refresh rate when compared to similar works [7].  

However, the signal processing time was still significant, taking approximately 1.25 

seconds. The radar took approximately 308 milliseconds to collect the 256-chirp 

Coherent Processing Interval (CPI), meaning that the signal processing takes      

approximately 80% of the time between radar frames [7].  Additionally, range and 

angular resolution measurements were taken in [7] to quantify the performance of 

the radar. In general, the resolution results were larger than what we expect from 

theory.  
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1.2  Problem Statement 

 
Many recently reported MIMO radar prototypes suffer from long computation 

times [7]–[10]. Since the potential of the MIMO radar lies in reducing the required 

time to scan a FOV, this added computation time diminishes the advantage of its 

utilization and might not enable the radar system to run in “real-time”. Additionally, 

a trade-off exists between choosing computationally efficient algorithms for speed 

and more complex algorithms for better performance in resolution. More research 

is required to find computationally efficient algorithms which provide high 

resolution results [6].  

As previously stated, the 1.25 second processing time of the RMC MIMO radar is 

quite long compared to its CPI of 308 milliseconds. Additionally, as shown in   

Table 1-1, the measured resolutions are larger than the theory would predict, even 

when considering the FFT window used (Blackman-Harris), which is especially 

true for the angular resolution.  

 

Resolution 
Desired 

Resolution 
Measured 

Expected results for 

rectangular FFT window 

Range 0.75 m 1.75 m 0.875 m 

Velocity 0.1 m/s 0.2 m/s 0.1 m/s 

Angular 2° 10.5° 5.25° 
Table 1-1. Measurement Results, summarized from [7] 

 

1.3  Motivation 

 
The motivation for this thesis is to realize a high refresh rate MIMO radar which 

leverages the computational power of parallel processing to the previous work done 

at RMC. Furthermore, algorithms that improve the resolution will also be explored 

and will leverage the parallel processing capability. If a successful parallel 

implementation of high-resolution algorithms can be achieved, RMC’s MIMO 

radar will be able to provide higher quality results at a higher rate than before.  

The large data cube generated from the SDRs requires independent and repetitive 

algorithms to be performed across all time samples, pulses, and MIMO channels 

thereby providing significant parallelization opportunities which is well suited for 

parallel programming techniques.   
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1.4 Thesis Statement 

 
Multicore CPU and GPU parallel processing techniques will be investigated to 

accelerate the high computational demands of MIMO radar signal processing. 

Additionally, the Chirp Z Transform and the Bartlett Beamformer will be evaluated 

to improve the range and angular resolutions. Resolution measurements and radar 

frame execution times will then be compared against the current version of RMC’s 

MIMO radar. 

 

1.5  Methodology 

 
The first step is to create a simulated MIMO radar environment which can generate 

multiple target echoes for any given range, bearing, speed, and heading 

combination, given a transmit and receive array configuration. The output of the 

simulated environment will be the In-Phase and Quadrature (I&Q) voltage time 

samples for all MIMO channels.  

Once the radar echoes have been properly modeled, the baseline signal processing 

algorithm will be written, which includes the range, doppler, and angular FFTs as 

well as an algorithm to generate the range-doppler and range-bearing diagrams to 

display to an operator. Figure 1-1 shows an example of a range-doppler diagram 

with a visible target at ~50 meters and a radial velocity of ~4 meters per second. 

 

 

Figure 1-1. Range-Doppler Diagram Example 
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The next step will be to replace the existing range FFT by the Chirp Z Transform 

and the existing angular FFT by the Bartlett Beamformer for the high-resolution 

mode. Within the simulation environment, point targets are used to perform 

resolution measurements. Angular and range resolutions are then compared 

between the FFT mode and the high-resolution mode. 

Subsequently, the signal processing is parallelized on multicore CPU and on the 

GPU. The time taken to perform each step of the computation is then measured and 

compared with its sequential implementation in order to quantify the computation 

acceleration, which will be done for both the existing 3D FFT method and the high-

resolution method. 

Finally, resolution measurements in range and in bearing will be taken. Quantifying 

the success of the high-resolution algorithm will be done by comparing the 

resolution measurements of the high-resolution method against those of the existing 

method. 

 

1.6  Thesis Organization 

 
This thesis is organized into 5 chapters. Chapter 2 provides a literature review of 

MIMO radar and parallel processing techniques. Fundamental radar theory and 

parallel processing techniques are covered, as well as a summary of state-of-the-art 

MIMO radar prototypes and parallel implementations of radar signal processing.  

Chapter 3 describes the radar system on which the proposed solution will be 

implemented and will describe the simulation environment, the signal processing 

chains, and the parallel implementations of both the existing 3D FFT and the 

proposed high-resolution modes. Additional compensation for short range targets 

will also be described to accommodate beamforming techniques in the lab 

environment.  

Chapter 4 describes the experimentation setup and will present the measurement 

results for the resolutions and the refresh rates. Both simulation and measurements 

will be presented.  

Finally, Chapter 5 presents the findings and conclusions of this thesis and discusses 

future work opportunities regarding MIMO radar and its signal processing. 
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2     Literature Survey 

 
The literature survey chapter is composed of 6 sections which cover the required 

background theory as well as the state-of-the-art in MIMO radar prototypes and 

parallel implementation of radar signal processing. Section 2.1 covers radar 

fundamentals and signal processing techniques. Section 2.2 describes the MIMO 

radar scanning mode. Section 2.3 introduces the concept of parallel processing, 

specifically regarding the use of multicore CPUs and GPU architecture. Section 2.4 

discusses the state-of-the-art MIMO radar prototypes. Section 2.5 demonstrates 

recent research in parallel implementations of radar signal processing. Finally, 

Section 2.6 summarizes the survey on the state-of-the-art and concludes that MIMO 

radar should benefit from GPU implementation. 

 

2.1 Radar Fundamentals and Signal Processing Techniques 

 
Radio Detection and Ranging (radar) was developed and used during World         

War II [11]. Radars transmit electromagnetic (EM) waves and listen for echoes. By 

measuring the delay between the signal’s transmission and the reception of the 

reflections, the range between the radar and the scatterers can be determined [12]. 

The following equation relates the elapsed time delay ∆𝑡 to the range 𝑅 of the 

scatters where 𝑐, the speed of light, is approximately equal to 3 × 108 m/s. 

𝑅 =
𝑐∆𝑡

2
                                                           (2.1) 

Specific radar applications include: Surveillance, Tracking, Weapon Guidance, 

Remote Sensing, Weather Detection, and Imaging to name a few [11]. Radars have 

been implemented from High Frequency (HF) to millimeter waves where           

Table 2-1 enumerates the radar band allocations and nomenclatures according to 

the Institute of Electrical and Electronics Engineers (IEEE) and the International 

Telecommunication Union (ITU). 
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IEEE nomenclature ITU nomenclature 

Radar letter 

designation 
Frequency range Frequency range 

Band 

No. 

HF 3 MHz to 30 MHz 3 MHz to 30 MHz 7 

VHF 30 MHz to 300 MHz 30 MHz to 300 MHz 8 

UHF 300 MHz to 1000 MHz 

0.3 GHz to 3 GHz 9 L 1 GHz to 2 GHz 

S 2 GHz to 4 GHz 

  

3 GHz to 30 GHz 10 
C 4 GHz to 8 GHz 

X 8 GHz to 12 GHz 

K𝑢 12 GHz to 18 GHz 

K 18 GHz to 27 GHz 

30 GHz to 300 GHz 11 
Ka 27 GHz to 40 GHz 

V 40 GHz to 75 GHz 

W 75 GHz to 110 GHz 

mm 110 GHz to 300 GHz 300 GHz to 3000 GHz 12 
Table 2-1. Letter Band and ITU nomenclature, reproduced from [13]  

The following sections aim to highlight some of the key processes which radars 

need to perform. Surveillance radars need to scan large volumes of space in order 

to find targets of interest amongst clutter [14]. Classical radars are generally fitted 

with high-gain antennas which are rotated in azimuth as they perform their scans. 

The antennas’ beam pattern tends to be narrow in azimuth, for good angular 

resolution, but wide in elevation to maximize the sweep area and therefore its search 

volume [14]. The following equation is a version of the Radar Range Equation 

(RRE) and is thoroughly used in radar analysis [11], [12]. 

𝑅𝑚𝑎𝑥
4 =

𝑃𝑇𝐺𝑇𝐺𝑅𝜆2𝜎𝜏𝑝

(4𝜋)3(𝑆𝑁𝑅)𝑘𝑇𝑠𝑦𝑠𝐿
                                         (2.2) 

where: 

𝑅 = range (m) 

𝑃𝑇 = transmit peak power (W) 

𝐺𝑇 = transmit antenna gain (unitless) 

𝐺𝑅 = receive antenna gain (unitless) 

𝜆 = wavelength (m) 

𝜎 = radar cross section (m²) 

𝜏𝑝 = pulse width (s) 

𝑆𝑁𝑅 = signal to noise ratio (unitless) 

𝑘 = Boltzmann’s constant ≈ 1.38 × 10−23 W/(K∙Hz) 

𝑇𝑠𝑦𝑠 = system equivalent temperature (K) 

𝐿 = system losses (unitless, with 𝐿 > 1) 
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Equation (2.2) is used to predict the maximum range at which we can expect to 

detect a target of RCS 𝜎, with a given probability for a given signal to noise ratio 

(SNR). Note that larger ranges are expected when the 𝑃𝑇𝜏𝑝 (peak power and pulse 

width) product is large. Therefore, long range radars operate at long pulse widths 

and low PRFs to allow for unambiguous detection [11]. During a radar’s design 

phase, all these parameters would need to be optimized for the task(s) the radar was 

meant for. Not only does a radar need to detect targets at a given range, but 

consideration must also be given to Electronic Protection (EP) and Intercept 

Probability (for military applications). Spectrum allocations and mitigation               

of competing signals which occupy the same RF band must also be a part of the 

design [14], [15].  

 

2.1.1 Frequency Modulated Continuous Wave (FMCW) Radar 

The FMCW radar enables a Continuous Wave (CW) or pulsed radar (using 

modulation on pulse) to make range measurements by adding bandwidth to the 

signal [16]. This is done by modulating the transmitter frequency as a function of 

time. As seen in Figure 2-1, any reflected signal will be delayed in time and will 

have a different frequency, when compared to the current frequency of the local 

oscillator. This difference in frequency, also called the bearing frequency, can be 

measured to estimate the range of the target [16]. Since the radar FMCW radar is 

transmitting and receiving simultaneously, it does not suffer from blind ranges in 

the same manner as the traditional pulsed radar [15], which is useful for detection 

at short ranges such as in automotive radar.  

 

 

Figure 2-1. FMCW Chirp, adapted from [16] 

∆𝑡 =
2𝑅

𝑐
 

𝑓𝑏 
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In Figure 2-4, the target is stationary and does not produce a Doppler shift. In 

general, the beat frequency can be expressed as the combination of a range 

component and a Doppler component. This is shown in (2.3). 

𝑓𝑏 =
2𝑘0𝑅

𝑐
−

2𝑓𝑡
𝜕𝑅
𝜕𝑡

𝑐
                                               (2.3) 

where: 

𝑓𝑏 = beat frequency (Hz) 

𝑐 = speed of light (m/s) 

𝑘0 = chirp rate (Hz/s) 

𝑅 = range between the radar and the target (m) 
𝜕𝑅

𝜕𝑡
= range rate (m/s) 

𝑓𝑡 = frequency of operation (Hz) 

 

If the radar is designed to operate in an environment where the Doppler shifts are 

negligible when compared to the range components, (2.4) can be used as a range 

estimator. 

𝑅 ≈
𝑐𝑓𝑏

2𝑘0
                                                             (2.4) 

In general, FMCW radars have separate transmit and receive apertures to guarantee 

adequate isolation between the transmitter and the receiver. The receiver also needs 

a copy of the transmitted waveform to perform mixing. The mixing process 

generates the signal required for range and doppler measurements [16]. Figure 2-2 

shows a generic FMCW radar block diagram where the frequency counter could be 

any process (analog or digital) which extracts the beat frequency, and the indicator 

represents the user interface or graphical output. 

 

 

Figure 2-2. FMCW Block Diagram, reproduced from [16] 

 

Doppler Shift 

Range Component 
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To extract target velocity information when Doppler is small compared to the range 

component, the dwell time must be increased so that the slowest radial velocities 

can be measured [16], which may be accomplished by processing several FMCW 

pulses in slow-time to form a Coherent Processing Interval (CPI) [3], where ramps 

are transmitted every 1/𝑃𝑅𝐹 (seconds). Between every ramp interval, the radial 

range of the target changes which translates as a measurable change of phase. The 

number of ramps in the CPI 𝑁𝑝 must be selected so that the total integration time 

allows for the required velocity resolution. Note that the PRF is usually chosen to 

balance unambiguous range and blind speed requirements [12]. Therefore, for a 

given PRF and desired Doppler resolution, (2.6) is used to determine the number of 

ramps required in the CPI. 

𝑡𝑖𝑛𝑡 =
1

𝑓𝑑_𝑚𝑖𝑛
                                                     (2.5) 

𝑁𝑃 =
𝑃𝑅𝐹

𝑓𝑑_𝑚𝑖𝑛
                                                     (2.6) 

 

 

where: 

𝑡𝑖𝑛𝑡 = required dwell time 

𝑓𝑑_𝑚𝑖𝑛 = smallest doppler shift the system is required to detect 

𝑃𝑅𝐹 = pulse repetition frequency 
𝑁𝑃 = number of pulses required in the CPI 

 

2.1.2 Doppler Frequency Analysis 

Modern radars use Doppler filtering and frequency transforms in order to suppress 

clutter and to characterize the targets with respect to range and radial velocity [12], 

which can then be used to triage targets based on their velocities. Figure 2-3 shows 

targets, clutter, and noise within the Range-Doppler space. The Fast Fourier 

Transform (FFT) is commonly used for this task [12], which converts time-based 

samples into their frequency spectrum. Since velocity information is coded in the 

reflection’s Doppler frequency, the FFT enables the radar system to sort the echoes 

by velocity. 
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Figure 2-3. Range-Doppler Space, reproduced from [17]  

 

 

The Discrete Fourier Transform (DFT) is an algorithm which transforms time 

domain signals into their frequency domain spectrum [18]. The frequency coverage 

and resolution of the DFT depends on the sampling rate of the system and the size 

of the DFT (number of samples to evaluate). As shown in (2.7), the DFT evaluates 

the sum of the input samples multiplied by complex weights, which must be 

performed for all frequency bins 𝑘 [18]. 

𝑋[𝑘] = ∑ 𝑥[𝑛]

𝑁−1

𝑛=0

𝑒−𝑗
2𝜋𝑛𝑘

𝑁            𝑘 = 0, 1, ⋯ , 𝑁 − 1                      (2.7) 

𝑓[𝑘] =
𝑘𝑓𝑠

𝑁
 (Hz)                                                   (2.8) 

where: 

𝑋 = complex DFT coefficients 

𝑥 = complex input signal 

𝑘 = frequency bin index 

𝑛 = time index  

𝑓𝑠 = sampling frequency 

𝑁 = size of DFT 
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As an example, the following continuous signal is sampled at 10 kHz (512 samples 

are collected). 

𝑠(𝑡) = cos(2𝜋𝑓0𝑡) (1 + 0.5 cos(2𝜋𝑓1𝑡))                             (2.9) 

where: 

𝑓0 = 2000 Hz 
𝑓1 = 105 Hz 

 

Equation (2.9) is an Amplitude Modulated (AM) signal which has a carrier 

frequency of 2000 Hz and is modulated by a 105 Hz sinusoid. Using the DFT, both 

the time domain samples and the frequency spectrum are shown in Figure 2-4. In 

the lower part of the figure, the carrier frequency can clearly be seen, along with 

the upper and lower side bands of the 105 Hz modulation. The DFT is a useful 

Digital Signal Processing (DSP) tool which is used across many domain [18], 

including the range and velocity estimations of targets in a FMCW radar system.  

 

 

Figure 2-4. DFT Example, AM signal 

Carrier 

Sidebands 
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The DFT as presented here is rarely used in this form, as it has a time complexity 

on the order of 𝑁2. Efficient algorithms, such as the Decimation-in-Time (DIT) 

radix-2 method, have been developed to compute the DFT by splitting the 

computation in steps. These Fast Fourier Transforms (FFT) have a time complexity 

on the order of 𝑁 log2(𝑁), which dramatically reduces the computation time of the 

Fourier Transform [18].  

Sometimes, however, the FFT resolution is too coarse and cannot provide the fine 

spectral details required. If spectral analysis of a narrow band is required, a different 

algorithm will be needed. The Chirp-Z Transform (CZT) is a DFT-like algorithm 

which enables a user to select the frequency limits and resolution of the 

computations [19] and is expressed in (2.10). Figure 2-5 utilizes the Z-Plane to 

illustrate the frequency point distribution of the DFT and the CZT. Whereas the 

DFT spreads its points evenly across the z-plane, from −
𝜔𝑠

2
 to 

𝜔𝑠

2
, the CZT can 

focus its frequency points between the frequencies of interest 𝜔1 and 𝜔2 with a 

frequency step of ∆𝜔. 

 

𝑋[𝑘] = ∑ 𝑥[𝑛]

𝑁−1

𝑛=0

𝑒−𝑗2𝜋(𝑓1+𝑘∆𝑓)𝑛           𝑘 = 0, 1, ⋯ , 𝑁 − 1                  (2.10) 

 

Figure 2-5. Frequency Points Comparison: (a) DFT (b) CZT 
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To show how the CZT can zoom-into a narrow frequency band and provide finer 

details than the DFT, we reutilise the example AM signal from (2.9). The signal is 

sampled at 10 kHz and 512 samples are collected, just as before. This time, 

however, the data will be sent to a 512-point DFT and a 512-point CZT where both 

results will be juxtaposed. The frequencies of interest for the CZT will be between 

1800 Hz and 2200 Hz, which means each frequency step has a size of 0.7812 Hz. 

Figure 2-6 shows amplitude results for both algorithms. 

 

 

Figure 2-6. DFT and CZT Narrow-Band Comparison 

Fortunately, there is also a fast algorithm which computes the CZT, as shown            

in (2.11) [19]: 

𝑋[𝑘] = 𝑊
𝑘2

2 ∑ 𝑥[𝑛]𝑒−𝑗𝜔1𝑛𝑊
𝑛2

2 𝑊−
(𝑘−𝑛)2

2

𝑁−1

𝑛=0

                        (2.11) 

where: 

𝑊 = 𝑒−𝑗∆𝜔 

∆𝜔 =
𝜔2 − 𝜔1

𝑁
 

𝜔2 = stop frequency (rad/s) 
𝜔1 = start frequency (rad/s) 

 

Although this format seems more tedious than the direct computation of the CZT, 

equation (2.11) is written as a convolution. Since convolutions can be done via 

multiplications in the frequency domain, the computational power of the FFT can 

be used to achieve computational complexity on the order of 𝑁 log2(𝑁) [19]. The 

computation of the CZT requires two FFTs, one IFFT, and several steps of 
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multiplications. Figure 2-7 is a visual representation of the fast CZT algorithm, in 

the form of a block diagram.  

 

 

Figure 2-7. Fast CZT Algorithm: Block Diagram 

2.1.3 Phased Array Radars 

Phased array radars have been used in many applications due to their scalability, 

performance, and flexibility [11]. Using many individual antenna elements, RF 

energy is combined in space which creates desirable beam patterns [12]. The       

one-way normalized array factor for an 𝑀 × 𝑁 uniform linear planar array, as 

shown in Figure 2-8, is expressed by (2.12) [20]. 

 

Figure 2-8. Example of an M by N Planar Array, reproduced from [20] 
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𝐴𝐹𝑛(𝜃, 𝜙) = {
1

𝑀

sin (
𝑀
2 Ψ𝑥)

sin (
Ψ𝑥

2 )
} {

1

𝑁

sin (
𝑁
2 Ψ𝑦)

sin (
Ψ𝑦

2
)

}                     (2.12) 

where: 

Ψ𝑥 = 𝑘𝑑𝑥 sin(𝜃) cos(𝜙) + 𝛽𝑥 

Ψ𝑦 = 𝑘𝑑𝑦 sin(𝜃) sin(𝜙) + 𝛽𝑦 

𝑘 =
2𝜋

𝜆
 

𝜆 = wavelength (m) 

𝑑𝑥 = spacing between antennas along x-axis (m) 

𝑑𝑦 = spacing between antennas along y-axis (m) 

𝛽𝑥 = phase progression of antennas along x-axis (rad) 

𝛽𝑦 = phase progression of antennas along y-axis (rad) 

𝜃, 𝜙 = spherical angles (rad) 

 

In a phased array radar, the physical elements are generally fixed. Therefore, the 

system can use phase shifters to control the transmit phase of each radiating    

element [11]. The phase progression angle is represented by 𝛽𝑥 and 𝛽𝑦 in (2.12) 

and is usually given in radians [20], which steers the main beam to a desired location  

in 𝜃 and in 𝜙 [12]. Figure 2-9 shows the radiation pattern of a steered array for a 

given set of parameters. 

 

Figure 2-9. One-Way Radiation Pattern of Steered Array, reproduced from [20] 
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A phased array radar can therefore perform electronic scanning of a particular Field 

of View (FOV) by simply changing the phase progression of its array elements [11]. 

Some radars will use a hybrid technique where they transmit a broader beam to 

cover larger angular areas and then perform Digital Beamforming on receive [21], 

which will reduce the amount of time needed to scan a large FOV but will require 

significantly more processing [12], [21]. 

 

2.1.4 DOA Beamforming 

Radar systems generally need to extract the azimuth information of target echoes. 

In DOA estimation, intercepted  signals across many antennas are used in 

algorithms to determine the azimuth or elevation of the target [12]. As a plane wave 

approaches an array, it is intercepted by the array elements at different times as a 

function of the DOA and the positions of the elements. Figure 2-10 shows an array 

which receives an incident signal from an angle 𝜃. The incident angle will generate 

a phase difference across each antenna element [22]. For a Uniform Linear Array, 

the relative phase shift 𝜑 between adjacent antennas can be expressed by (2.13). 

 

Figure 2-10. Plane Wave Incident on Array, reproduced from [22] 

 

𝜑 = 𝛽𝑑 cos(𝜃)                                                  (2.13) 

where: 

𝛽 = 2𝜋𝜆 

𝑑 = distance between antenna elements (m) 

𝜃 = incident angle of wavefront (rad) 

 

The advantage of performing digital beamforming upon reception is that the radar 

can form multiple beams simultaneously instead of pointing its antenna in a given 
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direction [11]. Some modern radars, such as the Thales SMART-S MkII, scan their 

FOV mechanically in azimuth and using digital beamforming in elevation, allowing 

the radar system to generate 3D target tracks [23]. Other systems, such as 

automotive radar, rely on digital beamforming to find the azimuth of nearby 

vehicles [22].  

 

A popular and efficient DOA estimator will simply make use of the FFT because 

the progressive phase difference between antenna elements is equivalent to a spatial 

frequency where the sampling rate is related to the element position. The resulting 

normalized frequency 𝜔𝑛 will therefore be a value between −1 and +1 where 0 

represents a target at boresight [6]. Since (2.13) represents the phase shift across 

element: 

𝜃 = acos(𝜔𝑛)                                                    (2.14) 

 

 The conventional, or classical method of solving for the DOA is the Bartlett 

Beamformer, which uses steering vectors to generate the power spectrum across the 

angular FOV [24]. The steering vector is simply the expected phase shift across all 

elements for any given incident angle. The signal power at a given angle is given 

by (2.15) [25] and is simply a multiplication between the covariance matrix of the 

input signals and the steering vector. 

𝑃(𝜃) = 𝒂(𝜃)𝐻𝑹𝑥𝒂(𝜃)                                               (2.15) 

where: 

𝜃 = steering angle 

𝑃(𝜃) = Bartlett power spectrum, for given angle 

𝑎(𝜃) = steering vector, for given angle 

𝑅𝑥 = signal covariance matrix 
[ ]𝐻 = complex transpose 

 

Just as before, a target in the far field is assumed and the steering vector is equal to: 

 

𝑎(𝜃) = [1, 𝑒−𝑗𝛽𝑑𝑐𝑜𝑠(𝜃), 𝑒−𝑗2𝛽𝑑𝑐𝑜𝑠(𝜃), ⋯ , 𝑒−𝑗(𝑁−1)𝛽𝑑𝑐𝑜𝑠(𝜃)]            (2.16) 

 

To scan the entire FOV, the Bartlett Beamformer must evaluate (2.15) for all       

angles 𝜃 of interest. Unlike the FFT, the number of evaluated angles is not tied to 

the number of antennas (i.e., a 64-point FFT will generate a spectrum with 64 

equally spaced frequencies). The Bartlett Beamformer is not a High-Resolution 
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algorithm, when compared to the Capon Beamformer or any of the subspace-based           

method [6]. However, it is robust, and works without a priori knowledge of the 

targets. Additionally, other High-Resolution algorithms do not function well in a 

single snapshot (SSS) setting or when multiple correlated signals are present. 

Because of this, the Bartlett Beamformer is often the method of choice for radar 

digital beamforming [24], [25]. Figure 2-11 shows a comparison of the FFT and the 

Bartlett DOA for an array of 64 antennas. The targets are located at −55° and −40° 

from boresight. The Bartlett DOA in this example was evaluated from −90° to 90° 

with an angular step of 0.25°, for a total of 720 angle bins. 

 

 

Figure 2-11. DOA Comparison between FFT and Bartlett 

 

2.2 MIMO Radars 

 
Like the phased array radar, the MIMO radar utilizes many antenna elements to 

form arrays. However, there are two main differences between them. Firstly, the 

phased array antennas generally perform both transmit and receive functions while 

the MIMO radar has dedicated transmit and receive arrays which are spatially 

separated [3]. Secondly, all the radiating elements of a phased array radar transmit 

the exact same waveform. Phase shifts and amplitude weighting are used to shape 

and steer the beams as required. The MIMO radar’s transmitting antennas, on the 

other hand, all transmit different or orthogonal waveforms [3]. 

Because of these different transmitter waveforms, the MIMO radar receivers can 

identify, sort, and process each waveform individually. This means that the transmit 

waveforms must be orthogonal to each other [3]. When the MIMO array elements 

are spaced just right, the demodulated signal at the receivers create an array which 

is larger than the total number of antennas [6]. The convolution of transmit and 
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receive one-way patterns to generate the two-way pattern of a radar system isn’t 

unique to MIMO. However, the orthogonal waveforms enable the receive to 

discriminate between individual transmit/receive paths and combine the multiple 

signals in many different ways [3], whereas the phase array configuration does not.  

The signal processor uses the demultiplexed signals of all transmit/receive 

permutations for beamforming [3]. Figure 2-12 shows a 2-element transmit array 

and a 4-element receive array where the phase progression measured at the receivers 

for each transmit antenna is equivalent to that of an 8-element ULA. Note that in 

the figure, 𝜑 = 𝛽𝑑 sin(𝜃) because 𝜃 being measured from boresight. 

 

 

Figure 2-12. MIMO Radar Virtual Array, adapted from [6] 

 

MIMO radar waveforms can be orthogonal in time and in frequency. Therefore, the 

use of Time Domain Multiple Access (TDMA), Frequency Domain Multiple 

Access (FDMA), and Code Division Multiple Access (CDMA) have each been 

investigated for the multiplexing scheme of the waveforms [3].  

In TDMA, each transmitter is assigned a time slot to transmit its waveform. The 

receiver then sorts the echoes from each transmitter, sequentially [3]. Although 

TDMA is one of the simplest methods of implementing MIMO into a radar, it is not 

the most effective, as the effective PRF is reduced by the number of transmitter 

waveforms, reducing the data output rate and slowing the radar’s possible 

maximum scan rate [3]. 

In FDMA, each transmitter is assigned a frequency channel which is orthogonal to 

the others. However, FDMA has poor spectrum efficiency as each channel must be 

as large as the radar’s waveform bandwidth [3]. If there are 𝑀 transmit antennas, 
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the FDMA MIMO radar will occupy 𝑀 times the bandwidth of its TDMA 

counterpart, thereby making hardware, ADC, and antenna selection and design 

difficult [3]. 

In CDMA, each transmitter is given a short code which is modulated onto the pulse. 

The transmitter can now transmit simultaneously on the same frequency         

channel [3]. The receiver can differentiate between each transmitter by 

demodulating the signals with the appropriate matched filter. It is difficult, 

however, to find codes which are truly orthogonal, which is especially true when 

pulse durations are short [3] and “even small residual cross-correlation noise can 

degrade the benefits of MIMO…” [3]. 

It is evident that each of these MIMO methods have its benefits and challenges, and 

selecting a method will depend on the goals and restraints of the MIMO radar being 

designed [12]. Although there have been recent developments in novel waveform 

design [26], more work needs to be accomplished in finding ways to ensure the 

orthogonality of the waveforms [3], [6]. Once all the waveforms have been sorted 

into a virtual array (meaning individual paths from each transmitter to each 

receiver), the channels can be added as sheets of Range Doppler, as shown in  

Figure 2-13. The figure also shows how each channel can then be processed by an 

FFT, operated in the depth (channel) direction, to transform the information into 

DOA information.  

 

 

Figure 2-13. MIMO DOA Beamforming across the Data Cube, reproduced from [6] 

 

Although Figure 2-13 shows the FFT, other methods for angle estimation exists 

including the CZT and the Bartlett methods that were previously described. So-

called subspace DOA techniques provide high resolution and accuracy but have a 

much higher computational demand. Multiple Signal Classification (MUSIC), 

Estimation of Signal Parameter via Rotational Invariance Technique (ESPRIT), 

Sparse-Sensing, Iterative Adaptive Approach (IAA), and Minimum Variance 

Distortionless Response (MVDR) are some of the common high-resolution angle-

finding techniques [6]. As discussed earlier, however, not all methods work at low 
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SNR, on single snapshots, for multiple correlated signals, or without a priori 

knowledge of the targets. Figure 2-17 shows a comparison between the FFT DOA 

method and the high-resolution IAA method. The sharper peaks and lower Side 

Lobe Levels (SLL) are clearly a desirable feature of the high-resolution       

algorithm [6]. Figure 2-14 is the result of a simulated Sparse Linear Array (SLA) 

MIMO radar. 

 

Figure 2-14. DOA Estimation: (a) FFT (b) IAA, reproduced from [6] 

 

Even before the beamforming stage, the computation requirement of a MIMO radar 

is increased due to the range and doppler processing done for all demultiplexed 

channels. Additionally, the beamforming algorithm must be performed across all 

range-doppler cells. These tasks are independent and provides opportunities for 

parallelization.  

 

2.3 Parallel Processing Techniques 

 
In general, computer programs are written in sequential steps in order to be executed 

on Central Processing Units (CPU) [27]. As new hardware got developed, 

performance of CPUs increased and so did the speed of the programs. Up until 

recently, the performance of CPUs seemed to be correlated with Moore’s law 

(which predicts that transistor density doubles approximately evert 1.5 years) [28]. 

Since 2010, this relationship changed and the increase in single-threaded CPU 

performance is slowing down for each new generation of chip [28]. This is shown 
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in Figure 2-15. Several factors such as leakage currents, heat dissipation, and energy 

consumption limits the increase in the clock cycles of a processing unit and 

therefore, CPU performance [27], [28]. 

 

 

Figure 2-15. Moore's Law and Single-Threaded CPU Performance, reproduced from [28] 

 

Instead of making the computers faster by increasing the CPU clock rates, they can 

make them wider by splitting the computing tasks onto many parallel threads 

preformed on multiple cores [27]. On computers, this is usually done by leveraging 

the power of multicore CPUs using an API like OpenMP or by using co-processors 

such as General Purpose Graphics Processing Units (GPGPU) [27]. 

 

2.3.1 Multicore CPU 

Modern computers and laptops have multicore CPUs which make parallel 

programming opportunities more available than ever [27]. Using an Application 

Programming Interface (API) such as OpenMP, programmers can direct the CPU 

to perform certain tasks in parallel. Some tasks can only be done sequentially, while 

others are repetitive or must be executed on large amounts of data. This means that 

the computer program has defined sequential and parallel regions, which is shown 

in Figure 2-16 [29]. 
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Figure 2-16. Sequential and Parallel Regions of a Program, reproduced from [29] 

 

The acceleration which can be achieved by using multicore CPU depends on the 

number of cores and the portion of the code which can only be done sequentially. 

This is called Amdahl’s law [28]. In order to maximize the speed up, given a set 

number of cores, the programmer must strive to maximize the ratio of parallel 

processing within the program. Equation (2.17) is the formulation of Amdahl’s law, 

reproduced from [28].  

𝑎 =
1

(𝑅 +
1 − 𝑅

𝑁 )
                                                  (2.17) 

Where: 

𝑎 = multicore efficiency, or speedup ratio 

𝑁 = number of CPU cores 

𝑅 = ratio of sequential processing 

1 − 𝑅 = ratio of parallel processing 

 

Figure 2-17 shows the efficiency (speed up) of CPUs for different values of 𝑁       

and 𝑅. 
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Figure 2-17. CPU Efficiency (Speed Up) as per Amdahl's Law, reproduced from [28] 

 

2.3.2 Graphics Processing Units (GPU) 

GPUs were optimized for gaming applications where developers needed to increase 

the throughput of operations to generate high quality graphics [27]. Since the 

computation required to generate image frames are highly independent, a large 

amount of them could be performed simultaneously in parallel [27]. The GPU has 

also been used in other applications where there is a lot of data to process and where 

the computation tasks can be parallelized, which is common in the scientific 

community [30]. 

The GPU is built to run several hundred to several thousand threads    

simultaneously [31]. The GPU has several building blocks containing Streaming 

Multiprocessors (SM) [27], [31]. These SMs all have several Streaming Processors 

(SP) which share control logic and instruction cache [27]. Executed threads are 

mapped to SMs and have access to a Shared Memory. The GPU also has a Global 

Memory and a Constant Memory to hold and share data send by the Host     

computer [27]. Figure 2-18 shows a generic GPU architecture containing 4 SMs: 

each with 8 SPs, 2 Special Function Units (SFU), and Shared Memory. Although 

the Global Memory is large, read and write operations take a long time [27] which 

can increase the execution time of Kernels. The Shared Memory, in contrast, is 

smaller than the Global Memory but the access time is much shorter [27]. 

Programmers should take care to minimize Global Memory access to reduce the 

execution times of their program.  

 



25 

 

 

Figure 2-18. GPU Architecture, reproduced from [32] 

 

Compute Unified Device Architecture (CUDA) is an extension to other 

programming languages which provide additional functionality for GPU 

programming [27]. With CUDA, a programmer can code sequential instructions 

which are to be executed on the CPU and Kernels, which are functions that run in 

parallel on the GPU when called from the CPU [31]. When launching a Kernel from 

the CPU, the GPU will execute the parallel threads in Blocks [27]. A Grid contains 

all the Blocks, while a Block will contain many Threads. A Block of threads is 

assigned to a SM, which schedule and perform the parallel computations of up         

to 1024 threads per Block [27]. Each individual Thread will have an ID number 

which will locate it within the Grid [27]. Figure 2-19 shows the CUDA Thread 

hierarchy.  

 

Figure 2-19. CUDA Thread Hierarchy, reproduced from [31] 
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2.3.2.1 Programming Considerations – Shared Memory 

Access to the Global Memory is quite slow [27] and depending on the program, the 

use of Shared Memory could be beneficial. Shared Memory, which can be accessed 

much faster than the Global Memory, can be seen by all Threads of the same Block. 

The Threads themselves can be used to load individual elements of a data array 

from the Global Memory to the Shared Memory [27]. This limits the total number 

of Global loads and stores, which speeds up the execution time. However, the 

Shared Memory is much smaller than the Global Memory and caution must be taken 

not to over-allocate [27]. Additionally, the visibility of each memory type is limited 

and is summarized in Table 2-2. 

 

Memory Type Scope Lifetime 

Local Memory Thread Kernel 

Shared Memory Block Kernel 

Global Memory Grid Application 

Constant Memory Grid Application 
Table 2-2. GPU Memory Types and Scope, reproduced from [27] 

 

2.3.2.2 Programming Considerations – Memory Access Patterns 

Once relevant data is loaded from the host to the device, it is stored in the Global 

Memory (constant values may be stored in the Constant Memory). When a large 

amount of data needs to be loaded, it is best to do so in a coalesced manner [27], 

especially when done from the Global Memory as it is slower. If data from the 

Global Memory needs to be accessed in a random or non-sequential manner, the 

program will benefit from first performing a coalesced load onto a faster and more 

local memory (i.e., the Thread’s Local Memory or a Bock’s Shared Memory). From 

there, non-sequential access to the required data will have less of a detrimental 

effect on the Kernel’s execution time [27]. Note that as shown in Table 2-2, data 

that is stored in a Thread’s Local Memory can only be seen by that thread, just like 

the data stored in a SM’s Shared Memory can only be accessed by Threads within 

the same Block. Therefore, a coalesced store may be required to transfer the 

Kernel’s results back onto the Global Memory and, eventually, back to the Host 

[27]. Figure 2-20 shows the access model of CUDA device memory. 
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Figure 2-20. CUDA Device Memory Model, reproduced from [27] 

 

2.3.2.3 Programming Considerations – Control Flow Divergence 

The GPU will run sets of 32 Threads at a time, called Warps [27]. The SM “is 

designed to execute all threads in a warp following the Single Instruction, Multiple 

Data (SIMD) model” [27]. This means that all Threads within a Warp need to 

execute the same instructions, due to the shared control logic of the SM. As an 

example, if the code contains an if/else statement, the Warp will perform well so 

long as all the Threads have the same outcome (if or else). However, if some 

Threads have to perform the ifs and the others perform the elses, the SIMD 

hardware must execute them sequentially [27]. This problem is called Control Flow 

Divergence and will increase the execution time of a program [27]. 

 

2.3.2.4 Programming Considerations – Memory Transfer 

Kernels, which perform computations in parallel, can be considerably faster than 

their sequential counterparts. However, the data first needs to get copied onto the 

GPU before the Kernel launches. Additionally, once the data ahs been processed, 

the results must be copied back to the Host [27]. The transfer of large data sets 

between the Host and the Device takes time and should be minimized. It is therefore 

wise to perform many tasks and computations on the GPU before copying the 

results back to the CPU [27]. 
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Parallel programming techniques have been used in many fields to accelerate 

programs, signal processing, and run scientific simulations [27]. The acceleration 

provided by parallelizing signal processing tasks of the MIMO radar should reduce 

execution times and increase the system’s refresh rate. 

 

2.4 MIMO Radar Prototypes 

 
This section will look at recent MIMO radar prototypes and describe their 

functionality, their performance, and their refresh rates. 

 

2.4.1 Prototype A: TDMA MIMO Radar on FPGA and DSP 

A 2D (range and azimuth) 4 × 4  FMCW MIMO Radar  was demonstrated in [33] 

which leverages the parallel structure of the collected data. The system has 4 

transmit antennas , 4 receive antennas, performs the fast-time Range FFT on FPGA, 

and performs the digital beamforming on a dedicated DSP module [33]. Using a 

TDMA multiplexing scheme, the radar creates 16 virtual MIMO channels. Each of 

these channels have 1024 time samples which are sent to an FFT range estimator, 

prior to being beamformed for imaging. To reduce computation and to generate an 

image of a reasonable size, the radar user can select the range of distances which 

will be sent for imaging. In the paper, 44 out of the 1024 range cells (representing 

ranges from 20 to 100 meters) are sent to the beamformer for imaging [33]. The 

raw data flow is shown in Figure 2-21. 

 

 

Figure 2-21. Image Processing using FPGA and DSP, reproduced from [33] 
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Within the DSP module, the Bartlett beamformer is executed. All the required 

steering vectors are pre-stored in the L2 memory, for quick access. Beamforming 

is done on a field of view spanning −21.5° to 21.5° with an angular step of 0.1°, 

meaning that there are 431 total angular bins to compute. It appears that only one 

chirp (per MIMO channel) is collected for processing, since no CPI was defined 

nor was there any indication of integration or Doppler processing. Overall, the 

FPGA/DSP configuration takes approximately 110 ms to execute the signal 

processing. Each FMCW chirp has a duration of 20.6 ms and is followed by                

a 19.4 ms delay which enabled the channel switch to occur. The total data 

collection time 𝑇𝑠 takes: 

𝑇𝑠 = 16 × (20.6 + 19.4) = 640 ms                                  (2.18) 

 

The signal processing could be executed at the same time as pulse collection, so the 

refresh rate of approximately 1.56 Hz was purely a function of  𝑇𝑠. Figure 2-22 

shows the functional block diagram of the radar. Figure 2-23 shows the antenna 

positioning of the transmit and receive arrays. Figure 2-24 shows an example of the 

radar image output.  

 

 

Figure 2-22. System Block Diagram, reproduced from [33] 
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Figure 2-23. Antenna Placement, reproduced from [33] 

 

Figure 2-24. Radar Image Output: (a) Field of View (b) Radar Image, reproduced from [33] 

 

2.4.2 Prototype B: OFDM MIMO Radar  

A real-time 3D (range, azimuth, and velocity) MIMO radar was demonstrated           

in [9] using an OFDM waveform. The radar has a configuration of 4 × 4, as shown 

in Figure 2-25, and performs range/bearing localization and velocity        

measurements [9]. To reduce the cost and challenges associated with the design and 

acquisition of RF components and hardware, the authors opted to leverage new 

Software Defined Radio (SDR) technology as their RF front end [9]. 

The antennas are connected to four X310 radios, from Ettus Research, each of 

which will stream the baseband samples to a computer for processing [9]. Once 

demodulated, the OFDM radar requires the same signal processing as an FMCW 

radar for range and velocity estimation. Therefore, the computation is comprised of 

three FFTs [9]. The first FFT, across the subcarriers, will generate range 
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information. The second FFT, across the OFDM symbols, will generate target 

velocity information. The third FFT, across the 16 MIMO channels, will generate 

the DOA information. 

 

 

Figure 2-25. MIMO Radar Antenna Configuration, reproduced from [9] 

 

The radar system was designed so that the demodulated OFDM data is sent to a 

high-performance computer for signal processing. The computation is done offline 

on MATLAB and takes approximately 5 seconds to perform. During the 

experiments, the following results were found: 

 

 

Metric Result 

Range Resolution 1.5 m 

Velocity Resolution 22.6 km/h 

Angular Resolution 7° 

Processing Time 5 seconds 
Table 2-3. Performance Results, summarized from [9] 

Figure 2-26 shows an example of a radar image output. The FOV has 3 reflectors 

placed in front of the radar at different ranges and different angles. The processed 

radar image clearly identifies Target A (12.5 m), but is not capable of neatly 

separating Targets B and C. However, the combined return of Targets B and C are 

in the right locations and, along with the return from Target A, it is shown that the 

OFDM MIMO radar works as intended [9]. 
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Figure 2-26. OFDM MIMO Radar: (a) Field of View (b) Radar Image after Signal Processing, 

reproduced from [9] 

 

By increasing the number of OFDM symbols, the integration time was able to be 

set to 11.8 ms, which enabled a velocity resolution of 22.6 km/h [9]. A van 

travelling away from the radar at a speed of ~30 km/h was detected by the radar 

and its speed was correctly displayed, as shown in Figure 2-27.  

 

 
Figure 2-27. Moving Target: (a) Field of View with Moving Van (b) Radar Image after Signal 

Processing, reproduced from [9] 

2.4.3 Prototype C: 3D TDMA MIMO Radar  

A 3D (range, azimuth, and elevation) TDMA MIMO radar was demonstrated in [8]. 

The radar has a 24 × 24 configuration, uses a FMCW waveform, and performs the 

signal processing on MATLAB [8]. Unlike the previous 2 prototypes, this radar 

system’s antenna arrays are located around the perimeter of the desired aperture. 

There are 2 arrays of 12 transmit antennas, located on the upper and lower perimeter 

walls. Additionally, there are 2 arrays of 12 receive antennas located on the left and 

right perimeter walls. This configuration creates a 2D virtual array of 576 elements 

and is shown in Figure 2-28 [8].  With this configuration, the angular resolution 

should approach 2.5° in both elevation and azimuth. Note that the spacing between 

the antenna elements is slightly larger than 𝜆/2, which should increase the 
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resolution and reduce antenna coupling [8]. Grating lobes are introduced, however, 

but their locations fall outside the main lobe of the radiating element (±25°). 

Beamforming computations are therefore only done within this FOV [8]. 

 

 

Figure 2-28. Physical and Virtual Array Configuration, reproduced from [8] 

 

To implement the TDMA technique, each transmit element has a turn to transmit 

its FMCW waveform, while the 24 receive antennas simultaneously receive [8]. 

Transmitter boards were used which include the antennas, calibration ports, and a 

RF switch chain which is controllable by the system’s firmware. Figure 2-29 shows 

the transmitter board alongside a simplified circuit diagram [8], illustrating the 

cascade of switches along the branches to enable the switching of the transmitter to 

each of the antennas. 

 

Figure 2-29. (Left) Photograph of Transmitter Board. (Right) Circuit Diagram, reproduced       

from [8] 



34 

 

Once all 576 MIMO channels have been sampled and sent to the processing 

computer, MATLAB reads the file and performs the computations. A range FFT is 

performed on each channel, followed by conventional beamforming for the azimuth 

and elevation estimation [8]. Note that Hanning windows are used with the FFT to 

reduce the Side Lobe Levels (SLL), at the cost of resolution. When including the 

sampling, binary file writing on the DSP, transfer to the host computer, and signal 

processing via MATLAB, it takes approximately 11 seconds to collect data and 

render a radar image frame [8]. 

Table 2-4 summarizes the performance results of this MIMO radar prototype. 

Metric Result 

Range Resolution 27 cm 

Azimuth Resolution 2.7° 

Elevation Resolution 2.7° 

Processing Time 11 seconds 
Table 2-4. Performance Results, summarized from [8] 

Figure 2-30 shows an experiment setup where four targets are placed in a field. The 

MIMO radar images the FOV and it is clear that all four targets are visible and at 

the correct location [8]. 

 

 

Figure 2-30. Field Test of MIMO Radar, reproduced from [8] 
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2.4.4 Prototype D: Distributed FMCW MIMO Radar 

A 2D (range and azimuth) TDMA MIMO radar is demonstrated in [34] which 

operates at long ranges using a 15 × 5 antenna configuration. The radar system 

comprises of 15 transmitter antennas and 5 receiver antennas, which generate a 

virtual MIMO array of 75 elements [34]. The antenna positioning can be seen in 

Figure 2-31, alongside the rest of the radar components. Note that for simplicity, 

only 7 transmitter antennas are drawn. 

 

Figure 2-31. Radar Components, reproduced from [34] 

The receiver and transmitter boards were developed for this project and perform 

front end RF functions such as amplification, mixing, filtering, and sampling [34]. 

The radar transmits FMCW waveforms and uses TDMA to achieve orthogonality. 

The received waveforms are sent to the Processing Node over high-speed Ethernet 

where the signal processing is performed. Unfortunately, the signal processing 

architecture and algorithms were not mentioned [34]. The radar, however, only 

processes one MIMO chirp at a time (one chirp from each transmitter) and can 

generate radar images at a refresh rate of 10 Hz [34]. When tested in a maritime 

environment, the radar was able to detect a large ship (50 meters in length) at a 

range of 3 km and a smaller vessel (8 meters in length) at a range of 1 km. These 

measurements were achieved with an instantaneous transmitter power of               

only 1 W [34]. Figure 2-32 shows an image of the radar prototype. The 15 

transmitter antennas and 5 receiver antennas are clearly visible. Figure 2-33 shows 

the measurement setup with the radar located on the edge of a Greek coastline, 

facing the water. Figure 2-34 shows the radar image of a 50 meter long ship being 

detected at a range of 1200 meters. 
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Figure 2-32. Image of Radar Prototype, reproduced from [34] 

 

 

Figure 2-33. Measurement Location of Radar, reproduced from [34] 
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Figure 2-34. Radar Image of Ship at 1200 meters, reproduced from [34] 

 

The radar operates at a frequency of 3 GHz, and its waveform has a bandwidth         

of 50 MHz. With the 15 × 5 configuration, an angular resolution of 2.4° was 

measured. The results are summarized in Table 2-5. 

 

Metric Result 

Frequency of Operation 3 GHz 

Bandwidth 50 MHz 

Angular Resolution 2.4° 

Refresh Rate 10 Hz 
Table 2-5. Performance Results, summarized from [34] 

 

2.4.5 Prototype E: Real Time MIMO Radar using SDRs 

A real-time 3D (range, azimuth, and velocity) MIMO radar using SDR technology 

was demonstrated in [7]. In contrast to the other prototypes discussed so far, this 

radar can operate in different MIMO modes (TDMA, FDMA, CDMA) which can 

be selected by the user [7]. The radar has an 8 × 8 configuration which yields 64 

MIMO channels. The SDRs mix the received signals with the Local Oscillator (LO) 

and sends to sampled data to a workstation via 10G Ethernet for signal processing 

and user display [7]. Figure 2-35 shows the MIMO radar. It is comprised of the 

transmit and receive arrays, the SDRs and synchronizing clock, the processing 

workstation, and the user interface. 
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Figure 2-35. MIMO Radar photograph, reproduced from [7] 

 

The control of the radios and the collection of samples is managed by a c++ program 

using the USRP Hardware Driver (UHD) Application Programming Interface 

(API). GNU Radio was chosen as the signal processing program and performs 

demultiplexing, MIMO radar tasks, visualization, and data recording [7]. The 

MIMO signal processing chain is done by performing the Range FFT, Doppler FFT, 

and Angular FFT in sequence. Finally, the data is prepared for visualizing the range-

doppler and range-bearing graphs. Figure 2-36 shows a simplified block diagram 

of the signal processing chain. 

 

 

Figure 2-36. Simplified Signal Processing Diagram, adapted from [7]  
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Several measurements were performed on the radar, operating in different MIMO 

modes (TDMA, FDMA, CDMA) to verify the functionality of the radar. Resolution 

measurements were also taken to qualify the performance of the radar. Due to the 

selected antennas and the power of the radios, target detection was limited to 

approximately 22 meters [7]. Figure 2-37 shows an image generated by the MIMO 

radar for a single target. 

 

 

Figure 2-37. Radar Image for Single Target, reproduced from [7] 

 

The design parameters of the MIMO radar are listed in Table 2-6. Note that since a 

doppler resolution of 0.1 m/s is required, a CPI of 256 chirps is needed. Each SDR 

receiver collects 1024 samples at a rate of 250 MSa/s. This means that the data 

cube which needs to be processed for one frame has a size of 1024 × 256 × 64 or 

~𝟏𝟕 million samples [7]. The GNU Radio signal processing chain is designed as a 

pipeline and leverages the multiple cores of the workstation’s CPU by performing 

several sections of the pipeline simultaneously. Despite the size of the data cube, a 

radar frame takes ~1.25 seconds to process [7]. Table 2-7 shows the performance 

measurements of the radar. 

 

Parameter Value 

Maximum Range 150 m 

Range Resolution 0.75 m 

Velocity Range -10 m/s to +10 m/s 

Velocity Resolution 0.1 m/s 

Angular Resolution 2° 

Processing Time “real-time” 
Table 2-6. Desired Parameters, summarized from [7] 
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Parameter Measured Result 

Maximum Range 21.75 m 

Range Resolution 1.75 m 

Velocity Resolution 0.2 m/s 

Angular Resolution 10.5° 

Processing Time 1.25 s 
Table 2-7. Performance Results, summarized from [7] 

 

In summary, the MIMO radar capable of functioning in real-time for all three modes 

of multiplexing (TDMA, FDMA, CDMA). It is clear, however, that there is a 

discrepancy between the desired and measured performance of the radar.  

 

2.5 Accelerated Radar Signal Processing 

 
This final section will investigate recent research in radar signal processing 

acceleration. Specifically, to see how effective GPU acceleration can be when 

dealing with radar data and processes. Two specific papers will be summarized, to 

highlight the effectiveness of GPU acceleration. Additionally, other current 

research regarding MIMO radar signal processing will be briefly summarized. 

 

2.5.1 SAR Motion Compensation 

In Synthetic Aperture Radar (SAR), all computations are designed around a linear 

flight path. In reality, there will be perturbations in the aircraft’s trajectory which 

will introduce errors in Slant Range and in Squint Angle [35], which distorts the 

SAR image and require correction [35]. Because of the weight, size, and power 

consumption of high performance Inertial Measurement Units (IMU) they are not 

the ideal solution for airborne SAR, especially for Unmanned Aerial Vehicles 

(UAV) [35]. Instead, using the raw radar data to estimate the aircraft’s movement 

itself was proposed [35]. Given that the additional required computation is in 

addition to an already demanding application, the tasks were performed on a GPU. 

Figure 2-38 shows the flight path of an airborne SAR in comparison to the ideal 

linear trajectory. 
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Figure 2-38. Flight Path of Airborne SAR, reproduced from [35] 

 

The large synthetic array was subdivided into several sub-arrays. Once the radar 

echoes were collected for a sub-array, the data was sent to a GPU to run a kernel 

which estimates flight path error [35]. Figure 2-39 shows the GPU implementation 

approach. Each kernel launched (labeled GPU kernel 1, 2, 3, …, M) performs the 

algorithm for each of the sub-arrays. The computations output the corrections to the 

flight path required at each sub-array location which, when applied to the image 

processing, will refocus the image [35]. 

 

 

Figure 2-39. Error Estimation Method on GPU, reproduced from [35] 
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The CPU took 7313 seconds (~ 2 hours) to perform all the SAR processing whereas 

the GPU took 92.15 seconds (~ 1.5 minutes) to perform the same operations, 

resulting in an acceleration of ~79.36x [35]. The following SAR computations were 

performed: 

o Range Compression 

o Azimuth Compression 

o Motion Parameter Estimation 

o Motion Compensation 

o Autofocus Algorithm 

o Speckle Filtering 

o Image Generation 

o Distortion Correction 

o Geocoding 

Seeing as the GPU can perform this many algorithms much faster than the CPU, it 

should be more than capable of executing MIMO radar signal processing. 

Additionally, subdividing a large dataset and performing the algorithms in parallel 

enabled efficient use of the GPU. Similar techniques could be applied to MIMO 

radar signal processing. 

Figure 2-40 shows the difference in the quality of a SAR image when Motion 

Compensation is used. 

 

Figure 2-40. SAR Image Comparison: (a) Without Compensation (b) With Compensation, 

reproduced from [35] 
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2.5.2 Radar Signal Processing of Weather Radar 

The signal processing of a dual polarization FMCW weather radar was executed on 

a GPU in [36]. Several processes need to happen on the weather radar such as FFTs 

(range and doppler processing), clutter suppression, power calculations, spectrum 

smoothing, mean doppler velocity calculations, and reflectivity depolarization ratio 

to name a few [36]. These calculations must all be done on each of the polarization 

permutations of the radar (horizontal-horizontal, vertical-vertical, and horizontal-

vertical).  

Several CUDA kernels were implemented to perform key tasks in parallel such as 

applying windowing to input signals, taking averages and complex conjugates of 

signal samples, performing FFTs and IFFTs, and squaring the values of          

samples [36]. These types of operations are required across many different radar 

algorithms and can add significant delay to the signal processing time as they are 

usually performed on a per-sample basis. The ability to execute these tasks in 

parallel on a GPU should help reduce the execution time. Unfortunately, it was not 

mentioned if the signal processing for each polarization mode was also done in 

parallel. 

The weather radar functions were performed on a CPU and on a GPU to evaluate 

the execution times and to determine the acceleration [36]. For the experiment, an 

Intel® Core™ i5-6200U (2 cores) CPU and an NVIDIA® GeForce® 930M GPU 

were used [36]. Unfortunately, there was no detail on the size of the processed data 

nor the parameters of the radar itself. The following are the measured execution 

times: 

o CPU: 15426.43 ms 

o GPU: 6133.19 ms 

Parallelization of signal processing tasks of the weather radar was successful, and 

an acceleration of approximately 2.5x was achieved [36]. Applying the techniques 

in [36] as well as parallelizing the signal processing of demultiplexed channels 

should yield positive results when used in MIMO radar. 
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2.5.3 MIMO Radar Signal Processing 

Several relevant papers have been recently published which deal with the signal 

processing aspect of this work. For one, parallel implementations of MIMO radar 

signal processing have been investigated. However, much of the work have been 

focused on implementing solutions on multiple-core DSPs or on FPGA boards, 

yielding modest results [37], [38]. GPU parallelization of MIMO radar signal 

processing is relatively novel, and current implementations only use Fast Fourier 

Transforms (FFT) for the analysis of range, doppler, and bearing information [39]. 

The acceleration currently achieved from performing this processing on a GPU is 

approximately 150x, when compared to its execution on MATLAB [39].  

Developments in beamforming techniques are also of great interest in MIMO radar 

systems. Particularly, high-resolution beamformers which function on single-

snapshot datasets are highly sought-after. Modifying known super-resolution 

techniques (such as MUSIC) for a MIMO configuration yields better results than 

the Single Input Multiple Output (SIMO) counterparts [40]. Unfortunately, as 

discussed in section 2.2, most super-resolution beamforming techniques have 

unique requirements which may not be met, such as having a priori knowledge of 

the targets or guaranteeing that multiple targets are not correlated. However, in 

order to address the added complexity of some of these high-resolution methods, 

attempts have been made to parallelize them on GPU [41]. Unfortunately, the 

parallelization of the MVDR algorithm on GPU (via MATLAB) did not yield good 

results, where it was concluded that larger speed ups could be achieved by 

developing the GPU code through CUDA [41].  
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2.6 Summary 

 
As seen in section 2.4, there has been great success with MIMO radar prototypes. 

However, a common issue is the increased computational requirement of MIMO 

signal processing. This is especially true when doppler processing is required and 

the radar needs to collect large CPIs. Not all prototypes executed in real-time, but 

those that did resorted to one (or several) of the following techniques to increase 

the radar’s throughput: 

o Choosing a faster algorithm at the cost of resolution (i.e., the FFT); 

o Reducing the quantity of data to be processed (i.e., compute only some 

angles and some ranges); or 

o Offloading the computation on FPGA or DSP. 

In section 2.5, GPU acceleration of radar signal processing was investigated. It was 

found that large acceleration is achievable across many different algorithms, due to 

the quantity and parallelism of the radar data. GPU acceleration is therefore 

proposed as a solution to accelerate MIMO radars. Specifically, the proposed 

algorithm will aim to not only accelerate the baseline MIMO radar signal processing 

chain, but also incorporate different algorithms which will increase the quality of 

the produced images. 
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3     Methodology 

 
The methodology chapter provides a full overview of the proposed signal 

processing and its implementation. Section 3.1 outlines the simulated environment 

and the generic program for the MIMO signal processor. Section 3.2 presents an 

overview of the physical constraints of the radar environment and describes the 

configuration setup. Section 3.3 describes the sequential and parallel 

implementations of the Chirp Z Transform, the Bartlett Beamformer, and the Cube 

Compression algorithm. Section 3.4 defines the problem of beamforming at short 

ranges and describes the required corrections. Finally, Section 3.5 describes an 

optimization method which enabled CPU caching when executing the Bartlett 

Beamformer on the CPU.  

The proposed solution is independent of the type of MIMO waveform multiplexing 

(i.e., TDMA, FDMA, CDMA, etc.) as it is applied on the baseband signal after 

demultiplexing. The proposed solution is also designed for the FMCW waveform. 

Using the proposed solution with a pulsed waveform is possible, but the first series 

of FFTs must be modified as to perform matched filtering of the pulses.  

 

3.1 Simulation Environment 

 
Before signal processing solutions were designed and tested on the physical radar, 

a Simulated Environment was developed. Its role is to simulate target echoes, given 

a MIMO configuration for varying target ranges, bearings, speeds, and headings. 

Since resolution measurements will be performed on the signal processing 

solutions, the simulated environment must be able to generate echoes from at      

least 2 targets. The scope of this thesis is restricted to accelerating already proven 

algorithms for MIMO radar, therefore the output of the simulated environment will 

be the ideal baseband I and Q voltages after de-chirping and demultiplexing the 

MIMO waveforms. Since the radar in question uses a FMCW waveform, the 

baseband signals have a beat frequency and a relative phase offset, which will 

depend on the pulse number and the MIMO channel number. 

To demonstrate a simple case, a single target’s range is evaluated for a 1 × 1 

antenna configuration. Figure 3-1 shows the geometry of this configuration for a 

target located at some range 𝑅 and some azimuth angle 𝜃 from the radar’s reference 

point 𝑃(0,0). 
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Figure 3-1. Antenna and Target Geometry, Single Target 

 

If (2.1) is manipulated to include the variables from Figure 3-1, the expression can 

be arranged to isolate the time delay in this bistatic configuration as: 

∆𝑡 =
𝑅𝑡𝑥 + 𝑅𝑟𝑥

𝑐
                                                   (3.1) 

where: 

∆𝑡 = round trip delay (s) 

𝑅𝑡𝑥 = range between target and transmitting antenna (m) 

𝑅𝑟𝑥 = range between target and receiving antenna (m) 

𝑐 = speed of light (m/s) 

 

For the simulated target echoes, the calculations of 𝑅𝑡𝑥 and 𝑅𝑟𝑥 is done for every 

permutation of transmit and receive antenna, as a function of the MIMO array 

configuration. Additionally, as the targets moves due to their speed and heading, 

the range measurements will change. This is important as the radar collects several 

pulses to form its CPI, which will enable doppler processing.  

 

𝜃 + 
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For each simulated chirp the positions of the targets are calculated, and baseband I 

and Q voltages are generated at the correct beat frequencies using (2.3). 

Additionally, relative phase offsets are added to properly simulate the doppler shifts 

and the different MIMO channel ranges resulting from the different Tx and Rx 

antenna locations. The output of the Simulated Environment is a data cube, and its 

size will depend on the radar parameters (i.e., number of transmit antennas, receive 

antennas, sampling rate, chirp time, number of chirp per CPI). Figure 3-2 shows an 

example data cube for a radar with 10 virtual channels, 40 I and Q samples per 

channel, and a CPI of 20 chirps. Note that each dot represents a sample. 

 

Figure 3-2. Data Cube Example, 40 × 20 × 10 

 

Once the Simulated Environment generates the echoes for a specified number of 

targets, the data cube can be sent for signal processing. Once the signal processing 

has been tested and verified, the Simulated Environment for target echo generation 

can simply be replaced by the real-time acquisition of radio samples from the SDRs, 

using UHD commands as in [7]. 

 

3.2 Configuration Setup 

 
The algorithms developed herein is designed to replace the existing GNU Radio 

signal processing chain on the physical radar [7]. Therefore, the radar design 

parameters, given in Table 3-1, and settings are key to the algorithm’s 

implementation. All parameters have been chosen in order to meet the performance 

requirements listed in Table 2-6 (Section 2.4.5) [7]. The data cube collected by the 

radar has a size of 1024 × 256 × 64, meaning that for each radar frame, nearly 17 

million complex samples must be processed to produce the range-doppler and 

range-bearing images. 
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Parameter Value 

Maximum Range 150 m 

Frequency of Operation 5 GHz 

Waveform Type Linear FMCW 

Waveform Bandwidth 200 MHz 

Radio Type Ettus Research™ N3xx 

Number of Radios 4 

Sampling Frequency 250 MHz 

Chirp Duration 4.096 µs 

Number of Tx Antennas 8 

Number of Rx Antennas 8 

Number of MIMO Channels 64 

Number of Samples per Channel 1024 

Number of Chirps per CPI 256 

CPI duration 308 ms 

Chirp Repetition Frequency 830.5 Hz 
Table 3-1. MIMO Radar Parameters, summarized from [7] 

 

The Local Oscillators (LO) of each N320 radio is synchronized from the N321 SDR 

LO outputs. Additionally, a CDA-2990 Clock Distribution Unit supplies a common 

time and reference signals to the 4 radios. Each radio also has a 10G SFP+ Ethernet 

connection to the Host Processor, as shown in Figure 3-3. Detailed connectivity of 

the MIMO radar setup can be found in [7]. 

The Workstation (also known as the Host Processor) is a Dell Precision 7920 

containing 2 Intel® Xeon Gold 5120 processors (14 Cores each) and an NVIDIA 

GeForce 2080 Ti GPU. Figure 3-4 illustrates the workstation along with its 

hardware. 

 

Figure 3-3. Connectivity Diagram, reproduced from [7] 
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Figure 3-4. Dell Precision 7920 Workstation 

 

Several commercial software packages are required and are listed in Table 3-2. Note 

that the UHD version on the Host Processor and on the SDRs must match. The 

process to change the version of UHD of the radios can be found on the Ettus 

Research™ website [42]. 

 

Software Name Notes Version 

Linux Mint Cinnamon Operating System (OS) 20.1 

CLion Integrated Development Environment (IDE) 2021.2 

MATLAB Scientific programming platform 2021b 

UHD Software API which supports USRP devices 3.15.0 

FFTW Performs efficient DFT subroutines 3.3.10 

CUDA Toolkit 
Libraries, compilers, and development tools 

for CUDA programs 
10.1.243 

Table 3-2. Software Versions on Workstation 

 

The C++ program controls the radios and receive the sampled signals using the 

UHD library. Signal processing will be performed either on the CPU and on the 

GPU using the appropriate library or toolbox (FFTW and CUDA). OpenMP (OMP) 

enables control over the threads and allows parallelization on multicore CPU. 

Graphics will be generated using the pcolor  function via the MATLAB Engine 

API [38]-[39]. Figure 3-5 shows a simplified block diagram showing the software 

elements (green) within the radar architecture. 
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Figure 3-5. Simple Software Diagram 

 

3.3 Algorithms 

 
This section will cover the MIMO radar signal processing chain. First, the existing 

3D FFT method will be described, followed by the implementation of the CZT and 

the Bartlett Beamformer, and concluding with the parallelization of the algorithms. 

Regardless of the method is used to generate the MIMO radar images, five distinct 

steps must be performed in the signal processing chain, namely: 

o Initial Setup 

o Sample Collection 

o Radar Signal Processing 

o Display Update 

o Program Shut Down 

 

The Initial Setup initializes the program with regards to the radar parameters and 

any user entries. Then, communication with the SDR radios is established and an 

instance of MATLAB is opened via the Engine API. Additionally, Host and Device 

array memory, required for the computation, is allocated.  

The Sample Collection stage can mean either the generation of target echoes from 

the Simulation Environment, or the collection of baseband samples from the radios. 

Either way, the output of this step is demultiplexed I and Q samples required for 

signal processing. 

The Radar Signal Processing stage can include any process that is performed on the 

data cube, such as the baseline 3D FFT and cube compression to generate the range-

doppler and range-bearing data matrices [7]. In general, other radar functions could 

be added here such as CFAR or tracking functions. 
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The Display Update stage refreshes the image seen by the radar user, which 

involves calling the pcolor function on the newly processed sets of data or “frame”. 

Note that steps 2 through 4 are done iteratively for as long as the radar is running. 

The last stage would be to do a proper shut down of the program. This could mean 

freeing Host and Device memory, clearing the FFT plans, and closing the instance 

of MATLAB. Figure 3-6 shows a block diagram of these steps for the baseline 3D 

FFT method. 

 

Figure 3-6. Stages of Computing the Radar Frames for the Baseline FFT Method 

 

3.3.1 Baseline Method: 3D FFT 

The Fastest Fourier Transform in the West (FFTW) is a C library which performs 

fast DFT subroutines on input data arrays having arbitrary size and dimension [45]. 

The data can be real or complex and the DFTs support different precisions (i.e., 

float or double). With the FFTW API, computing a 3D FFT is relatively simple. An 

FFT plan must be created which defines the location of input and output data 

memory (as pointers), and the type of FFT (FFT or IFFT). Once data is collected 

and stored in the correct memory location, the FFT can be executed by calling the 

fftw_execute function. A list of FFTW functions used for 3D FFTs is found in 

Table 3-3.  
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Function Notes 

fftw_plan_dft_3d( ) 

Creates an 3D FFT plan. The size of the data cube 

must be specified, as well as the pointers to the 

input and output arrays. There is also an option to 

specify the FFT or the IFFT. 

fftw_execute( ) 
Takes an FFT plan as input and performs that FFT. 

Can be executed as often as required. 

fftw_destroy_plan( ) 
This function destroys the FFT plan and frees 

memory allocated to it once the program is done. 
Table 3-3. FFTW functions used in Baseline FFT method. Notes from [45]  

 

Once the FFTs have been completed, the next step in the signal processing chain is 

to compress the 3D cube into 2D images for range-doppler and range-bearing 

visualisation. The data cube is composed of many range-bearing sheets (one for 

each doppler bins) or from many range-doppler sheets (one for each bearing bin). 

To calculate the range-bearing pixels, the power sum of the range-bearing bins is 

taken across all doppler sheets, and the process is repeated in the bearing direction 

to produce the range-doppler pixels, as illustrated in Figure 3-7 and described           

by (3.2) and (3.3). 

 

 

Figure 3-7. Visualization of Cube Compression 
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𝑂𝑢𝑡[𝑟, 𝑏] = ∑ |𝑥[𝑟, 𝑏, 𝑑]|2

𝑁𝑑−1

𝑑=0

                                   (3.2) 

𝑂𝑢𝑡[𝑟, 𝑑] = ∑ |𝑥[𝑟, 𝑏, 𝑑]|2

𝑁𝑏−1

𝑏=0

                                   (3.3) 

 

where: 

𝑂𝑢𝑡 = pixel amplitude (real positive value) 

𝑁𝑑 = number of doppler bins 

𝑁𝑏 = number of bearing bins 

𝑟 = range bin 

𝑏 = bearing bin  

𝑑 = doppler bin  

𝑥 = processed cube samples (complex values) 

 

In [7], the processed data cube is very large. There are 512 range samples, 256 

doppler bins, and 64 bearing bins for a total of ~8 million complex samples. The 

range-bearing image contains 32,768 pixels and the range-doppler image contains 

131,072 pixels. The 3D FFT and Cube Compression operations, being 

computationally intensive, are slow to execute on a CPU and are expected to benefit 

the most from parallelization. 

The radar collects its CPI of 256 pulses at a rate of 830.5 Hz, which takes 

approximately 308 ms. Therefore, even if the signal processing could be done 

instantaneously, the refresh rate of the radar has an upper limit of 3.24 Hz. When 

executed as a pipeline on GNU Radio in [7], the signal processing took 1.25 seconds 

which translated to a refresh rate of only 0.64 Hz. 

 

3.3.2 Enhanced Resolution: CZT and Bartlett 

As described in Chapter 2, the resolution of the FFT is sometimes too coarse for the 

intended application. To increase the resolution of the radar, the Chirp Z Transform 

will replace the range FFT and the Bartlett DOA will replace the bearing FFT, as 

illustrated in Figure 3-8. 
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Figure 3-8. Algorithm Substitutions: (a) Baseline 3D FFT (b) Proposed  

 

In the existing baseline solution, the range FFT computes the 1024 range bins and 

keeps the positive half of the results (as negative range values are nonsensical). By 

combining (2.4) and (2.8), the expression for the range axis, after the FFT, is 

obtained: 

𝑅[𝑖] =
𝑐𝑓𝑠

2𝑘0
×

𝑖

𝑁
                                                  (3.4) 

 

where: 

𝑅 = range (m) 

𝑖 = range bin index where   0 ≤ 𝑘 < 𝑁/2 

𝑘0 = chirp slope (Hz/s) 

𝑐 = speed of light (m/s) 

𝑓𝑠 = sampling rate (Hz) 

𝑁 = number of raw data complex samples 

 

From (3.4) and the information from Table 3-1, the range resolution is 75 cm. 

Additionally, when 𝑘 = 511, the maximum computed range has a value of 383.73 

meters, which is much larger than the radar’s designed maximum range of 150 

meters. Losing half the sample outputs and computing results outside the ranges of 

interest of the radar is not an effective use of the 1024 samples that are collected 
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from the SDRs. With the CZT, only the ranges of interest between 0 and 150 meters 

will be computed, using all 1024 samples. Using (2.4) and the frequency axis      

from (2.11), the range axis of the CZT is calculated to be: 

 

𝑅𝐶𝑍𝑇[𝑘] =
𝑐(𝑓1 + 𝑘∆𝑓)

2𝑘0𝑁
                                              (3.5) 

 

 Since the ranges of interest are between 0 and 150 meters, (3.5) may be simplified 

so that 𝑓1 and 𝑓2 are set to the beat frequencies which represent 0 and 150 meters, 

respectively: 

𝑅𝐶𝑍𝑇[𝑘] =
𝑐𝑘𝑓2

2𝑘0𝑁
                                                     (3.6) 

 

Using (2.4), the beat frequency of a target at 150 meters is approximately 48.828 

MHz resulting in a range step of 14.65 cm. The CZT range axis is therefore 

sampled approximately 5 times more often than for the existing FFT 

implementation, resulting in a finer representation of the waveform’s shape and 

width. Figure 3-9 demonstrates this by showing two point-targets (46 and 52 

meters) after range processing using both the FFT and the CZT method. Note that 

both algorithms used the same data set to generate their outputs. The I and Q 

samples were generated by the simulated environment, as described in Section 3.1, 

using the radar parameters listed in Table 3-1. 

 

 

Figure 3-9. Range FFT and CZT Comparison for 2 Targets 



57 

 

As shown in Figure 3-10, the CZT needs to be executed many times in order to 

cover the entirety of the data cube. However, since the radar parameters remain the 

same during a CPI, some calculations in (2.11) only need to be performed once. 

The following arrays are therefore computed in the Initial Setup stage of the 

program, and are used for every call of the CZT function: 

o 𝑊[𝑛] = exp (−
𝑗∆𝜔𝑛2

2
) 

o 𝑊𝑖𝑛𝑣 = FFT(𝑊−1) 

o 𝐵[𝑛] = exp(−𝑗𝜔1𝑛) 

 

As in Figure 2-10, and expressed in (2.11), only the input data 𝑥[𝑛] will differ as 

the CZT gets called throughout the cube. The complexity of the CZT is therefore 

reduced to the computations operating on 𝑥[𝑛], which involve 3 multiplication 

steps, an FFT, and an IFFT. 

 

 

Figure 3-10. CZT, within Context of the Data Cube 

 

Algorithm 1 shows the steps used to compute the CZT where 𝑥[𝑛] represents the 

input data (time samples), and 𝑋[𝑘] represents the output data (range). 
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Algorithm 1: Chirp Z Transform 

1: for every channel/chirp set of 1024 time samples{ 

 2:  𝑦 = 𝑥 ∙ 𝐵 ∙ 𝑊 

 3: } 

4: Perform in-place transform across entire cube 𝑦 = FFT(𝑦) 

5: for every channel/chirp set of 𝑦 values{ 

6:  𝑦 = 𝑦 ∙ 𝑊𝑖𝑛𝑣 

7: } 

8: Perform in-place transform across entire cube 𝑦 = IFFT(𝑦) 

9: for every channel/chirp set of 𝑦 values{ 

10:  𝑋 = 𝑦 ∙ 𝑊 

11: } 

12: end of CZT function 

 

Unlike the FFT and CZT method, the Bartlett DOA is an iterative calculation. As 

seen in Chapter 2, the spectral power needs to be calculated for each angle of 

interest. If the FOV ranges from −90° to 90° with incremental steps of 1°, the 

algorithm would need to calculate (2.15) 180 times to generate the DOA for a single 

range/doppler bin. Figure 3-11 illustrates this in the context of the data cube where 

the Bartlett DOA is being performed on the corner range/doppler bin and only the 

first two angular bins have been calculated. Note that the 2-way half power 

beamwidth (HPBW) of the radar system is 1.79 degrees at broadside [7]. 

 

 

Figure 3-11.Bartlett DOA, in Context of the Data Cube 
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Since the computations are done on a single blue column (snapshot) for each 

range/doppler bin, the matrix multiplication of (2.15) can be simplified. For a given 

range/doppler cell, the samples across the 𝑁 channels are expressed as: 

 

𝒙 = [𝑥0, 𝑥1, … , 𝑥𝑁−1]                                                (3.7) 

 

The covariance matrix 𝑹𝑥 has size 𝑁 × 𝑁 and is computed by: 

 

𝑹𝑥 = 𝒙 × 𝒙𝐻 = [
𝑥0𝑥0

𝐻 … 𝑥0𝑥𝑁−1
𝐻

⋮ ⋱ ⋮
𝑥𝑁−1 𝑥0

𝐻 … 𝑥𝑁−1𝑥𝑁−1
𝐻

]                         (3.8) 

 

For a given angle, the steering vector 𝒂 represents the phase shift across all 

elements, given a particular wave number 𝛽 and element spacing 𝑑. 

 

𝒂𝜃 = [0,  𝑒−𝑗𝛽𝑑 sin(𝜃)𝑛, … ,  𝑒−𝑗𝛽𝑑 sin(𝜃)(𝑁−1)]                       (3.9) 

 

By performing the matrix multiplication 𝒂𝜃
𝐻𝑹𝑥𝒂𝜃, we get the following expression 

for the spectral power at the selected angle 𝜃: 

𝑃[𝜃] = (∑ 𝑎𝜃[𝑛]𝑥[𝑛]𝐻

𝑁−1

𝑛=0

) (∑ 𝑎𝜃[𝑛]𝐻𝑥[𝑛]

𝑁−1

𝑛=0

)                  (3.10) 

𝑃[𝜃] = |∑ 𝑎𝜃[𝑛]𝑥[𝑛]

𝑁−1

𝑛=0

|

2

                                           (3.11) 

 

Algorithm 2 shows the Bartlett DOA algorithm where 𝑥[𝑛] represents the input data 

(one vertical column in range/doppler), 𝑎[𝑛][𝑘] represents the steering vector for a 

given angle 𝜃, and 𝑃[𝑘] represents the output data (bearing). 
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Algorithm 2: Bartlett Beamforming 

1: for every range/bearing combination{ 

 2:  for every angle 𝒌 to be calculated{ 

3:   𝑡𝑒𝑚𝑝 = 0 

4:   for all samples 𝒏{ 

5:    𝑡𝑒𝑚𝑝 = 𝑡𝑒𝑚𝑝 + 𝑎[𝑛][𝑘] ∙ 𝑥[𝑛] 
6:   } 

7:   𝑃[𝑘] = |𝑡𝑒𝑚𝑝|2 

8:  } 

 9: } 

10: end of Bartlett DOA function 

 

3.3.3 Oversampling Factors 

Oversampling the DFT, as done via the CZT and the Bartlett DOA, brings distinct 

signal processing advantages. However, due to the fixed and known bandwidth of 

the radar waveform, some oversampling factors (OSF) will yield better results than 

others. The Straddling Loss (in dB) and resolution error (when compared to the 

analog waveform) is simulated by sliding a point target across two adjacent bins, 

and then averaged for various OSFs. Figure 3-12 shows the behaviour of the 

Straddling Loss as a function of OSF. It is clear from the figure that the Straddling 

Loss is reduced when the waveform is oversampled. 

 

 

Figure 3-12. Straddling Loss vs Oversampling Factor 
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Although the average Straddling Loss is less than 1 dB for all OSFs above 1x, there 

is always the possibility that a target will be located exactly between 2 DFT bins 

(worst case scenario). The orange line, in the upper plot of Figure 3-12 represents 

the worst-case Straddling Loss at a given OSF. Choosing an OSF greater than 2.x 

will prevent the worst-case Straddling Loss from exceeding 1 dB. 

Figure 3-13 shows the relationship between the average resolution measurement 

error (shown as a percentage) and the OSF. Interestingly, the relationship is not 

linear and exhibits peaks and nulls across the various values of OSFs. The nulls, or 

zero error regions 𝑂𝑆𝐹0, are located at: 

𝑂𝑆𝐹0 ≈ 𝑁 ×
2

𝑅𝑠
≈ 𝑁 × 2.2576                                  (3.12) 

where: 

𝑁 = 1, 2, 3, … 

𝑅𝑠 = 0.88589. . . = 3 dB width of  sinc2(𝑥) 
 

 

Figure 3-13. Resolution Error vs Oversampling Factor 

 

Using Figures 3-12 and 3-13 as guidance, a better choice can be made when 

selecting the CZT and Bartlett parameters to enhance the resolution and reduce the 

Straddling Losses. For the CZT, computing the ranges between 0 m and 170 m will 

yield an OSF of 4.514x. For the Bartlett DOA, evaluating 144 bearing will yield an 

OSF of 2.250x. 

 

 

2.2576 4.5152 
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3.3.4 Multicore CPU Parallelization 

As discussed in Chapter 2, parallel tasks can be performed by multiple CPU cores 

simultaneously to reduce the execution time of an algorithm. The FFTW library is 

compatible with OpenMP, and FFT plans can be made using multiple threads. The 

following are additional functions which need to be called when wanting to execute 

multithreaded FFTs: 

 

Function Notes 

fftw_init_threads() 
Performs system initialization to use 

multiple threads  

fftw_plan_with_nthreads(nthreads) 

The input of this function will dictate 

how many threads will be used when 

creating FFT plans 

fftw_cleanup_threads() 
Clears up memory, resources, and thread 

related data allocated by FFTW 
Table 3-4. Multithreaded FFTW Functions. Notes from [45] 

 

Parallelization of the FFT is therefore as trivial as identifying how many threads the 

system should use when planning the FFT. Since a large component of the CZT is 

the execution of the FFT and the IFFT, executing them in parallel on the CPU will 

reduce the total execution time. Additionally, the CZT has three multiplication steps 

where each element of the large arrays gets modified. Instead of performing these 

multiplications sequentially, OpenMP enables the system to split the task across the 

multiple cores. To enable these parallel tasks, additional commands (#pragma omp 

parallel for) are added to lines 1, 5, and 9. With these commands, the entirety of 

Algorithm 1 is parallelized. 

A similar approach is used for the Bartlett DOA. Spreading the work of the for loop 

across multiple cores reduces the total execution time of the algorithm. In 

Algorithm 2, the additional command (#pragma omp parallel for) is simply added 

to line 1. 

Finally, the Cube Compression function is also parallelized using OpenMP. Note 

that the dimension of the processed cube is now 1024 × 256 × 144 since the 

existing range and bearing FFTs have been replaced by the CZT and the Bartlett 

DOA, respectively. Algorithm 3 shows the Cube Compression function, where 𝑅𝐷 

is the range-doppler matrix and 𝑅𝐵 is the range-bearing matrix.  

When using the CZT and the Bartlett DOA, the number of pixels of the range-

doppler and range-bearing displays is increased to 262,144 and 147,456, 

respectively, for a total of 409,600 compressions, which is an increase of 

approximately 2.5 times the number of pixels and which adds to the execution time 
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of the Cube Compression function. Even when using OpenMP with 56 threads, each 

thread still needs to compute the output of over 7300 pixels. Using (2.17), the 

acceleration achievable by parallelizing the Cube Compression can be predicted. 

Even if the program is highly parallel (assuming 1% of the algorithm is sequential, 

for argument’s sake), Amdahl’s law predicts a speed up of only 36x when using 56 

threads. 

 

Algorithm 3: Cube Compression using OpenMP 

1: omp parallel for all sample indexes 𝑺{ 

 2:  for all doppler indexes 𝑫{ 

3:   𝑡𝑒𝑚𝑝 = 0 

4:   for all angular bins 𝑨{ 

5:    𝑡𝑒𝑚𝑝 = 𝑡𝑒𝑚𝑝 + |𝑑𝑎𝑡𝑎[𝑆, 𝐷, 𝐴]|2 

6:   } 

7:   𝑅𝐷[𝑆, 𝐷] = 𝑡𝑒𝑚𝑝 

8:  } 

 9:  for all angular indexes 𝑨{ 

10:   𝑡𝑒𝑚𝑝 = 0 

11:   for all doppler bins 𝑫{ 

12:    𝑡𝑒𝑚𝑝 = 𝑡𝑒𝑚𝑝 + |𝑑𝑎𝑡𝑎[𝑆, 𝐷, 𝐴]|2 

13:   } 

14:   𝑅𝐵[𝑆, 𝐴] = 𝑡𝑒𝑚𝑝 

15:  } 

16: } 

17: end of Parallel Cube Compression function 

 

Figure 3-14 shows a visualization of the Cube Compression process when done in 

parallel, where 3 threads are used to generate the range-doppler image. 
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Figure 3-14. Multithreaded Cube Compression 

 

3.3.5 GPU Parallelization 

Similar to FFTW, CUDA has a FFT product in its computing toolbox called cuFFT 

which enables the efficient computation of DFTs on a GPU [46]. Just as with 

FFTW, cuFFT can compute the DFT for different dimensions (1D, 2D, 3D) and 

different precisions (i.e., float or double). Note that the baseline and proposed 

algorithms are computed with double precision. The cuFFT API is similar to FFTW 

where the user must create an FFT plan which can then be executed on the GPU. 

Prior to executing the transform, the user must first ensure that the data has been 

transferred onto the device. Additionally, just like the execution of any GPU 

function, the results must be transferred back onto the CPU for further use or display 

in the program. Table 3-5 lists useful cuFFT functions: 

 

Function Notes 

cufftPlan1D( ) 

cufftPlan2D( ) 

cufftPlan3D( ) 

Plans 1D/2D/3D Transforms respectively.   

cufftPlanMany( ) 
Creates a plan which performs many DFTs across a large 

dataset. 

cufftExecC2C( ) 

cufftExecZ2Z( ) 

Executes a complex DFT for single/double precision, 

respectively. The arguments are pointers to the input and 

output arrays and the direction of the FFT (FFT/IFFT)  

cufftDestroy( ) 
Clears a cuFFT plan from the program, along with 

associated memory and resources. 
Table 3-5. Useful cuFFT Functions, reproduced from [46] 



65 

 

Some signal processing acceleration may be achieved by parallelizing tasks such as 

squaring or applying windowing weights to a large data set [36]. Similar techniques 

were used when implementing the CZT on the GPU. The transforms are performed 

using cuFFT, but each of the multiplication steps (i.e., multiplying by the chirp 

weight or performing the fast convolution) is done in parallel on the GPU where 

each 3D cube bin is mapped to a thread. Algorithm 4 illustrates the parallel CZT 

implementation on GPU where Multiply_1 is a kernel which multiplies the input 

data and the chirp weights, Multiply_2 is a kernel which performs the fast 

convolution, and Multiply_3 is a kernel which multiplies the output of the fast 

convolution with the chirp weight and writes the final results in an output array. 

 

Algorithm 4: Chirp Z Transform on GPU 

1: // Perform 𝑦 = 𝑥 ∙ 𝑎 ∙ 𝑊 across entire cube 

2: Multiply_1 <<<grid_size, block_size>>>(y, x, a, W) 

3:  

4: // Perform in place FFT in the range direction 

5: cufftExecZ2Z(plan_fft, y, y, CUFFT_FORWARD) 

6: 

7: // Perform fast convolution  

8: Multiply_2<<<grid_size, block_size>>>(y, 𝑊𝑖𝑛𝑣) 

9: 

10: // Perform IFFT 

11: cufftExecZ2Z(plan_fft, y, y, CUFFT_INVERSE) 

12: 

13: // Perform final multiplication with chirp weight, 𝑂𝑢𝑡 = 𝑦 ⋅ 𝑊 

14: Multiply_3<<<grid_size, block_size>>>(Out, y, W) 

15: 

16: end of GPU CZT function 

 

For the Bartlett DOA, the transformation of (2.15) to (3.11) enables the algorithm 

to be done in two simple steps on the GPU. Step 1 is to perform an element-by-

element multiplication of the input samples 𝑥[𝑛] with the steering vector 𝑎[𝑛] 

across the cube for all range-doppler cells. Step 2 is to perform the sum of 𝑥[𝑛] ∙

𝑎[𝑛] for each element 𝑛 = 0 → 63. This two-step process is then done for all angles 

of interest, as shown in Algorithm 5. Figure 3-15 shows a visualization of the 

multiply/sum implementation of the Bartlett DOA for one angle. The process is 

then repeated sequentially for all required angles. Note that the results are not 

squared, as in (3.11), because the squaring step will be performed by the Cube 

Compression function. 
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Algorithm 5: Bartlett DOA on GPU 

1: for all angles of interest 𝒍{ 

2:  Bartlett_Multiply<<<grid_size, block_size>>>(y, x, a, l) 

3:  Bartlett_Add<<<grid_size, block_size>>>(Out, y, l) 

4: } 

5: end of GPU Bartlett DOA function 

 

 

 

Figure 3-15. GPU Implementation of Bartlett DOA 

 

Finally, the Cube Compression is performed on the GPU by mapping each pixel 

that needs to be computed (range-doppler and range-bearing displays) to a thread. 

When the kernel is launched, each thread has a unique ID which means that each 

pixel can be calculated simultaneously in parallel. Assuming there are 𝐴 pixels in 

the range-doppler display and 𝐵 pixels in the range-bearing display, a total                 

of 𝐴 + 𝐵 threads need to be launched. Within the kernel, an initial statement will 

verify if the thread ID is larger or smaller than 𝐴 in order to computer either a range-

doppler or a range-bearing pixel. Since the data cube has range, doppler, and 

bearing components, the next step of the kernel is to identify these indices so the 

power sum can be performed, and so the output can be stored in the correct location. 

Algorithm 6 represents the Cube Compression kernel implementation. Figure 3-16 

illustrates the computation of the radar frame using the CZT and the Bartlett DOA 

on the GPU.  
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Algorithm 6: Cube Compression on GPU 

1: 𝑖𝑛𝑑𝑒𝑥 =  𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∗  𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 +  𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 

2: 

3: // Do Range-Doppler Calculation 

4: if (𝑖𝑛𝑑𝑒𝑥 <  𝐴){ 

5:  find range and doppler bin indexes r and d 

6:  𝑡𝑒𝑚𝑝 =  0 

7:  for all bearings b{ 

8:   𝑡𝑒𝑚𝑝 =  𝑡𝑒𝑚𝑝 + |𝑐𝑢𝑏𝑒[𝑟, 𝑑, 𝑏]|2 

9:  } 

10:  𝑜𝑢𝑡𝑑𝑜𝑝𝑝𝑙𝑒𝑟[𝑟, 𝑑] = 𝑡𝑒𝑚𝑝 

11: } 

12: else if (𝑖𝑛𝑑𝑒𝑥 ≥ 𝐴){ 

13:  find range and bearing bin indexes r and b 

14:  𝑡𝑒𝑚𝑝 =  0 

15:  for all doppler d{ 

16:   𝑡𝑒𝑚𝑝 = 𝑡𝑒𝑚𝑝 + |𝑐𝑢𝑏𝑒[𝑟, 𝑑, 𝑏]|2 

17:  } 

18:  𝑜𝑢𝑡𝑏𝑒𝑎𝑟𝑖𝑛𝑔[𝑟, 𝑏] = 𝑡𝑒𝑚𝑝 

19: } 

20: 

21: end of Cube Compression Kernel 

 

 

 

Figure 3-16. Parallel Implementation of Enhanced Resolution Radar Signal Processing 
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3.4 Short Range Correction 

 
All beamforming methods discussed in Chapter 2 assume that the target is far from 

the radar and the echoes can be represented by plane waves. When this is the case, 

the phase shift experienced by subsequent antenna elements can be adequately 

approximated by (2.13). However, when the target is near the array, the plane wave 

approximation does not hold [47]. This happens at a range 𝑟 of: 

𝑟 <
2𝐷2

𝜆
                                                       (3.13) 

where: 

𝐷 = largest dimension of the antenna array (m) 

𝜆 = wavelength (m) 

 

3.4.1 Short Range Problem Definition 

Although [47] provides a mitigation method for sonar systems, the problem of near 

targets is applicable for antenna arrays in a radar environment. In [7], the radar’s 

transmit array measures 1.92 m and its waveform has a wavelength of 6 cm.     

Using (3.13), the far field of the antenna array is calculated to be 122.88 m. 

Unfortunately, due to hardware limitations, target ranges were limited to be within 

approximately 20 m (sometimes as near as 8 m). Therefore, distortion of the beam 

pattern is expected. 

 

Figure 3-17. Receive Array Geometry, Far Target 

𝜃 + 
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Figure 3-17 shows a target at some range 𝑅0 and bearing 𝜃0 from an antenna     

element 𝑅𝑋0. Using trigonometry, the range between the target and antenna    

element 𝑅𝑋1 can be found: 

 

𝑅1 = √(𝑥𝑡 − 𝑑) + 𝑦𝑡
2 = √𝑥𝑡

2 + 𝑦𝑡
2 − 2𝑥𝑡𝑑 + 𝑑2                  (3.14) 

𝑅1 = 𝑅0√1 −
2𝑥𝑡𝑑

𝑅0
2 +

𝑑2

𝑅0
2                                       (3.15) 

where: 

𝑥𝑡 = 𝑅0 sin(𝜃0) 

𝑦𝑡 = 𝑅0 cos(𝜃0) 
𝑑 = element spacing (m) 

 

Equation (3.15) has a familiar form containing √1 + 𝑘. So long as 𝑘 ≪ 1, the 

radical can be approximated by a first order Taylor Series: 

 

√1 + 𝑘 ≈ 1 +
𝑘

2
+ 𝐻𝑂𝑇                                       (3.16) 

where 𝐻𝑂𝑇 represents the higher order terms of the sequence, which are usually 

negligible so long as the 𝑘 ≪ 1 criteria is respected. Since the target range 𝑅0 in 

Figure 3-17 is very large, the approximation (3.16) can be used and (3.15) is 

reduced to: 

𝑅1 = 𝑅0 − 𝑑 sin(𝜃) +
𝑑2

2𝑅0
                                    (3.17) 

 

As 𝑅0 increases, 𝑑2/(2𝑅0) tends towards zero. Therefore, the range difference 

between two subsequent antennas (𝑅1 − 𝑅0) is approximately −𝑑 sin(𝜃), as 

expected by the paraxial approximation. However, when the target is near the array 

and the 𝑘 ≪ 1 condition no longer applies, and more terms of the Taylor Series 

would be required to adequately approximate √1 + 𝑘.  
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If there is a target located at range of 1 km and a bearing of 20 degrees, the range 

difference between the first and the last virtual element of the MIMO radar would 

be: 

∆𝑅 = (𝑁 − 1) × 𝑑 sin(𝜃)                                      (3.18) 

where: 

∆𝑅 = difference between RF path length (m) 

𝑁 = number of virtual antennas 

𝑑 = spacing between Rx Array elements (m) 

𝜃 = target bearing (degrees) 

 

Using the radar in [7] with 𝑑 = 0.03 𝑚 and 𝑁 = 64, the expected range difference 

when using (3.18) is ∆𝑅 = 0.6464 m. When calculating the true ranges to each 

element using (3.14), the range difference is ∆𝑅 = 0.6480 m. When considering 

the wavelength of 0.06 m, the phase error across the entire virtual array is ~9.6°.  

This low phase error confirms the adequacy of the plane wave approximation 

method for targets which are in the far field of the array. However, if the example 

is repeated for a target range of 25 m (well within the far field boundary), the phase 

error across the virtual array increases to ~186.8°, which reduces the quality of the 

beam pattern of the DOA estimators. This problem is visualized in Figure 3-18, 

where the plane wave approximation is compared to the true ranges of the RF paths. 

 

 

Figure 3-18. Short Range Target Phase Error 

 

𝜃 + 
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3.4.2 Short Range Correction for ULA 

One of the issues with compensating for near targets is that the phase error is 

function of both the range and bearing of the target. Thankfully, using the 

enhanced resolution methods discussed in Section 3.3, both the range and the angle 

of a test cell is known. After range and doppler processing, the Bartlett 

beamforming method evaluates the power of the signal when “steered” to a given 

angle. Since this is done for every range cell, the samples across the MIMO virtual 

element can be directly compensated for. Using (3.15) and (3.17) the error between 

the true range and the plane wave approximation can be expressed as: 

 

∆𝑅𝑛 = √𝑅2 − 2𝑑𝑛𝑅 sin(𝜃) + 𝑑2 − (𝑅 − 𝑑𝑛 sin(𝜃))             (3.19) 

where: 

∆𝑅𝑛 = range error (m) at the 𝑛𝑡ℎ array element 

𝑅 = range between target and center of the array (m) 

𝜃 = bearing to target, measured from the center of the array (degree) 

𝑑𝑛 = distance (m) between center of the array and the 𝑛𝑡ℎ array element   

 

Finally, since the range error will correspond to a phase error, a complex correction 

coefficient is applied to the discrete input samples for the given range and look 

angle, which effectively flattens out the wavefront as a plane wave. 

𝑥𝑐[𝑛] = 𝑥[𝑛] exp(𝑗𝛽 × ∆𝑅[𝑛])                                  (3.20) 

where: 

𝑥𝑐 = corrected sample (complex voltage) 

𝑥 = input signal (complex voltage) 

𝛽 = 2𝜋/𝜆 = phase constant (rad/m) 

𝜆 = wavelength (m) 

∆𝑅 = range error (m) calculated from (3.19)  
𝑛 = virtual array element index 

 

Algorithm 9 illustrates how the phase error is calculated and applied when 

performing the Bartlett DOA for a given range-doppler bin. 
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Algorithm 9 

1: 𝑁𝑟𝑥 = number of Rx elements  

2: 𝛽 = phase constant (rad/m) 

3: 𝑅 = range value of current range bin (m) 

4: 𝑝𝑜𝑠𝑡𝑥[  ] = array containing the positions (m) of the transmit elements 

5: 𝑝𝑜𝑠𝑟𝑥[  ] = array containing the positions (m) of the receive elements 

6: 

7: for all bearings 𝒃{ 

8:  for all transmit elements 𝒊{ 

9:   for all receive elements 𝒋{ 

10:    𝑑𝑡𝑥 = 𝑝𝑜𝑠𝑡𝑥[𝒊]  

11:    𝑑𝑟𝑥 = 𝑝𝑜𝑠𝑟𝑥[𝒋] 

12:    𝑥𝑡 = 𝑅 ∗ sin(𝒃) 

13:     

14:    𝐿𝑡𝑥 = √𝑅2 − 2𝑑𝑡𝑥𝑥𝑡 + 𝑑𝑡𝑥
2  

15:    𝐿𝑟𝑥 = √𝑅2 − 2𝑑𝑟𝑥𝑥𝑡 + 𝑑𝑟𝑥
2  

16:    𝑅𝑒𝑥𝑝 = 2𝑅 − sin(𝒃) (𝑑𝑡𝑥 + 𝑑𝑟𝑥) 

17:    Δ𝑅 = 𝐿𝑡𝑥 + 𝐿𝑟𝑥 − 𝑅𝑒𝑥𝑝 

18: 

19:    𝑏𝑖𝑛 = 𝒋 + 𝒊 ∗ 𝑁𝑟𝑥 

20:    𝑥𝑐[𝑏𝑖𝑛] = 𝑥[𝑏𝑖𝑛] ∗ exp(𝑗𝛽 ∗ Δ𝑅) 

21:   } 

22:  } 

23:  Do Bartlett DOA as per Algorithm 2 with corrected samples 𝑥𝑐 

24: } 

25: end of Corrected DOA Algorithm 

 

As seen in Algorithm 9, the errors are calculated for the transmit array and the 

receive array since the total time of flight (TOF) is due to 2-way propagation as 

shown in (3.1). In order to avoid computing Δ𝑅 redundantly every radar frame, a 

correction array is generated during the initialization stage of the program which 

contains the complex coefficients for all ranges and angles, and are then multiplied 

with the input samples. 

Using a pre-computed correction array translates well when performing the Bartlett 

DOA. Algorithm 2 is unchanged with the exception that 𝑎[𝑛] ∙ 𝑥[𝑛] becomes 𝑎[𝑛] ∙

𝑥[𝑛] ∙ 𝑐[𝑛] when calculating (3.11), where 𝒙 is the input sample array, 𝒂 is the 

steering vector, and 𝒄 is the correction array for the given range and steering angle. 

Figures 3-19 and 3-20 show the beamforming output of the FFT and the Bartlett 

DOA at different ranges. As the point target gets closer to the array, the beam 

pattern gets distorted, wider, and exhibits lower power. 
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Figure 3-19. FFT (64-point) Beamforming Output at Different Ranges 

 

 

 

Figure 3-20. Bartlett DOA (720-point) Output at Different Ranges 

 

Figure 3-21 shows a point target located at 8 meters from the array, with a bearing 

of 0 degrees. The leftmost image shows the distorted beam pattern of the near target. 

The rightmost image shows the range-bearing plot when using Algorithm 9.     

Figure 3-21 demonstrates that correcting the phases of the virtual channels enables 

the use of the Bartlett DOA at short ranges. Note that as discussed in Section 3.4.1, 

the far field region of the array begins at ~122.88 m.  
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Figure 3-21. Short Range DOA using: (a) Original Samples (b) Phase Corrected Samples 

 

As shown in Figures 3-19 to 3-21, short range angular measurements are degraded 

when using standard DOA algorithms as these rely on the plane wave 

approximation. This might explain the poor angular resolution measured in [7], 

since targets were place well within the far-field boundary. Applying the proposed 

short range correction method should enable sharp MIMO radar imaging of near 

targets. 

 

3.5 Optimization of CPU Implementation  

 
Memory access, when executing the Bartlett DOA from Algorithm 2, is not optimal 

when performed on the CPU. Algorithm 10 expands on Algorithm 2 and provides 

more information on its C++ implementation. In the algorithm, 𝑥 represents the 

complex samples from the data cube, 𝑎 represents the steering vectors, 𝑐 represents 

the pre-calculated correction matrix (for short range targets), and 𝑋 represents the 

output cube. 

 

Algorithm 10: Bartlett Beamforming – Detailed 

1: for all range bins r{ 

2:  for all doppler bins d{ 

3:   // Do Bartlett Beamforming 

4:   for all angles of interest k{ 

5:    temp = 0 

6:    for all channels i{ 

7:     temp += x[i][d][r] * a[k][i] * c[k][i][r] 

8:    } 

9:    X[k][d][r] = temp 

10:   } 

11:  } 

12: } 

13: end of Detailed Bartlett DOA function 
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As the innermost loop iterates (lines 6-10), data from the 𝑥, 𝑎, and 𝑐 matrices are 

loaded from memory prior to executing the multiplication. Since the 𝑥 matrix and 

the 𝑐 matrix experience significant reuse throughout the loops, the data can be pre-

loaded to smaller temporary matrices which only need to be updated when the 

required data changes (i.e., the next range bin). Algorithm 11 shows the optimized 

CPU implementation, with 𝑥_𝑡𝑒𝑚𝑝 and 𝑐_𝑡𝑒𝑚𝑝 as the temporary arrays. Loading 

the data from the matrices (lines 5 and 11) is done in a uncoalesced manner and is 

inefficient. However, the data is stored to the temporary matrices in a way that 

enables coalesced loads throughout the nested loops of the Bartlett DOA  

(lines 6-10). The coalesced loads take advantage of CPU caching, which reduces 

the total execution time of the radar frame. 

Pre-loading the data matrices, as detailed in Algorithm 11, while using the radar 

parameters of Table 3-1 reduces the execution time of the radar frame by ~55% 

when done sequentially on the CPU, and by ~40% when done in parallel on the 

CPU. 

 

Algorithm 11: Bartlett Beamforming – Optimized 

1: for all range bins r{ 

2:  // Pre-Load the Correction Matrix 

3:  for all angles of interest k{ 

4:   for all channels i{ 

5:     c_temp[k][i] = c[k][i][r] 

6:   } 

7:  } 

8:  for all doppler bins d{ 

9:   // Pre-Load Data Cube Matrix 

10:   for all channels i{ 

11:    x_temp[i] = x[i][d][r] 

12:   } 

13:   // Do Bartlett Beamforming 

14:   for all angles of interest k{ 

15:    temp = 0 

16:    for all channels i{ 

17:     temp += x_temp[i] * a[k][i] * c_temp[k][i] 

18:    } 

19:    X[k][d][r] = temp 

20:   } 

21:  } 

22: } 

23: end of Optimized Bartlett DOA function 

 

  



76 

 

4    Results 

 
To verify the success of the proposed algorithm, both the acceleration of the signal 

processing and the resolution measurements must be quantified. Using the 

simulated environment described in Chapter 3, raw data cubes are generated and 

sent to the signal processing chain. Section 4.1 highlights the acceleration results, 

while Section 4.2 evaluates the resolution measurements of the proposed method.  

Note that although super-resolution algorithms were considered (i.e., MUSIC, 

MVDR, etc.), the CZT and the Bartlett DOA still increases the resolution of the 

radar images (when compared to the baseline FFT) without having all the associated 

requirements discussed in Section 2.2. Furthermore, the computational cost 

associated with the super-resolution methods would have been must larger, making 

the CZT and the Bartlett DOA a good compromise.  

The signal processing was performed on a Dell 7920 workstation which contains 2 

Intel® Xeon Gold 5120 processors (14 Cores each), and an NVIDIA GeForce 2080 

Ti GPU (4352 CUDA Cores). The base clock rates are 2200 MHz and 1350 MHz 

for the CPU and the GPU, respectively. Note that the Xeon Gold 5120 processors 

have Hyper-Threading Technology, which enables each core to run 2 threads at 

once [48]. Since the workstation has 2 CPUs with 14 cores each, 56 threads in total 

are available. 

 

4.1 Signal Processing Acceleration 

 
The execution times of different algorithms are measured by calling timing 

functions before and after they are called from the C++ program. Since the 

acceleration of all portions of the signal processing is of interest, the timers will 

measure the execution time of the range algorithm (FFT and CZT), the doppler 

algorithm (FFT), the bearing algorithm (FFT and Bartlett), as well as the cube 

compression.  

Both FFTW and cuFFT can generate 3D FFT plans, which are executed faster than 

performing a range FFT, followed by a doppler FFT and a bearing FFT. For 

completeness, both methods will be timed and included in the results. 

For the experiment, simulation runs will be performed using the baseline FFT 

method (range FFT → doppler FFT → bearing FFT → Cube Compression), the more 

efficient FFT method (3D FFT → Cube Compression), the proposed method (range 

CZT → doppler FFT → Bartlett DOA → Cube Compression), and the proposed 

method with the addition of Short Range Correction. All methods will be tested 

when run sequentially on the CPU, in parallel on the CPU (56 threads), and in 
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parallel on the GPU. A total of 30 tests per method will be performed, where the 

average timing measurements are recorded for acceleration calculations. Note that 

when testing the GPU implementation, data transfer times between the host and the 

device must be measured and included in the results. 

The acceleration 𝐴 of a task or program is determined by comparing its sequential 

execution time 𝑡𝑠𝑒𝑞 with its parallel execution time 𝑡𝑝𝑎𝑟: 

𝐴 =
𝑡𝑠𝑒𝑞

𝑡𝑝𝑎𝑟
                                                          (4.1) 

Table 4-1 lists the average execution time and acceleration results for all methods. 

Each radar frame computation is performed on 1024 time samples, 256 chirps,      

and 64 virtual MIMO channels. As mentioned in Section 3.3.5, all samples are 

complex doubles. 

 

 Process Name 
Execution Times (ms) Acceleration 

Sequential 

CPU 

Parallel 

CPU 
GPU 

Parallel 

CPU 
GPU 

F
F

T
 

M
et

h
o
d

 3D FFT 599.82 133.16 7.55 4.5x 79.4x 

Cube Compression 2357.83 102.07 2.74 23.1x 860.5x 

Copy Host → Device   64.93   

Copy Device → Host   0.84   

Overall 2957.65 235.24 76.05 12.6x 38.9x 

B
a
se

li
n

e 
F

F
T

 

M
et

h
o
d

 

Range FFT 102.62 46.47 3.21 2.2x 32.0x 

Doppler FFT 340.27 77.45 4.45 4.4x 76.5x 

Bearing FFT 206.09 60.50 1.52 3.4x 135.6x 

Cube Compression 2322.66 90.97 2.59 25.5x 896.8x 

Copy Host → Device   64.23   

Copy Device → Host   0.90   

Overall 2971.65 275.38 76.90 10.8x 38.6x 

P
ro

p
o
se

d
 

M
et

h
o
d

 

Range CZT 3920.41 646.12 17.98 6.1x 218.0x 

Doppler FFT 316.36 64.48 3.90 4.9x 81.1x 

Bartlett DOA 132472.14 4967.38 228.29 26.7x 580.3x 

Cube Compression 10281.97 349.00 7.15 29.5x 1438.0x 

Copy Host → Device   65.19   

Copy Device → Host   1.14   

Overall 146990.89 6026.98 323.65 24.4x 454.2x 

S
h

o
rt

 R
a
n

g
e 

C
o
rr

e
ct

io
n

 Range CZT 3862.72 645.05 17.97 6.0x 215.0x 

Doppler FFT 412.54 80.16 3.83 5.1x 107.7x 

Bartlett DOA 184318.34 7060.80 229.22 26.1x 804.1x 

Cube Compression 10204.25 411.19 7.22 24.8x 1413.3x 

Copy Host → Device   63.87   

Copy Device → Host   1.12   

Overall 198797.85 8197.20 323.22 24.3x 615.1x 

Table 4-1. Execution Time and Acceleration Results 
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As seen from Table 4-1, the multicore CPU and the GPU were able to take 

advantage of the parallelism within the algorithms. Even when using the baseline 

FFT method (1 3D FFT plan), reasonable acceleration was achieved: 12.6x on the 

multicore CPU and 38.9x on the GPU. In general, the execution of the FFTs on the 

CPU does not seem to benefit much from parallelization. Despite having 56 

available threads, the maximum acceleration achieved from the CPU was only 4.5x 

when using a single 3D FFT plan. On the GPU, the FFTs are performed quickly, 

yielding an acceleration of 79.4x. The single 3D FFT plan is also observed to be 

slightly more efficient than 3 individual plans, which suggests that the FFTW and 

cuFFT planners are well optimized. 

When executing the Proposed Method (with 144-point Bartlett), large accelerations 

are achieved for both the multicore CPU (24.4x) and the GPU (454.2x). The 

parallelism introduced by the Bartlett algorithm is evident, as this step in the signal 

processing chain yields speed ups of 26.7x for the CPU, and 580.3x for the GPU. 

However, only the GPU implementation could be considered practical as it can 

compute the entire radar frame in ~324 ms. Even with a respectable acceleration, 

the multicore CPU implementation still takes approximately 6 seconds per frame. 

As shown in Section 3.4, targets well within the far-field boundary can properly be 

imaged by applying a phase correction to the samples, while performing the Bartlett 

DOA algorithm. Despite pre-calculating the phase correction matrix, the additional 

tasks of finding the proper indices, performing the memory load, and executing an 

extra double precision multiplication increases the computation time by ~40% when 

run on the CPU (sequentially of parallel). The GPU, however, only requires an 

additional 0.93 ms to perform the corrected Bartlett DOA Algorithm, resulting in 

the acceleration of 615.1x from Table 4-1. Although this result is important, it may 

only be pertinent to applications which require the imaging of short range targets. 

The acceleration achieved with the Proposed Method (not corrected) might be a 

better indicator of the performance of the GPU, when used for MIMO radar signal 

processing. 

Although the results are not included in Table 4-1, a 289-point Bartlett version of 

the Proposed Method (without Short Range Correction) would take ~5 minutes to 

compute a frame when done sequentially on the CPU, ~ 11 seconds when done in 

parallel on the CPU (27.3x), and ~550 ms when done on the GPU (545.5x). 
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4.2 Resolution Measurements 

 
To calculate the range and bearing resolutions of the algorithms, the width of the 

processed waveform must be measured. The spectrum power 𝑃𝑠 of the chirp, after 

matched filtering, is represented by the square of the sinc function [12]: 

𝑃𝑠(𝑥) = |
sin(𝑥)

𝑥
|

2

                                                (4.2) 

 

Figure 4-1 shows the normalized analog spectrum of a target located at 50 m, using 

the radar parameters from Table 3-1. 

 

 

Figure 4-1. Analog Range Spectrum, Target at 50 m 

 

The double sided −3 dB width ∆𝑅3𝑑𝐵 of the spectrum commonly defines the range 

resolution of the radar and is related to the null-to-null width ∆𝑅𝑛−𝑛 [12].  

∆𝑅𝑛−𝑛 =
𝑐

𝐵
                                                        (4.3) 

∆𝑅3𝑑𝐵 ≅ 0.88 ×
𝑐

2𝐵
                                               (4.4) 

 

where: 

𝑐 = speed of light (m/s) 

𝐵 = bandwidth of the waveform (Hz) 
 

50.75 m 49.25 m 

66.4 cm 
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From Figure 4-1, the distance between the 2 nulls is 1.5 m. Using (4.4), the range 

resolution of a 200 MHz waveform is calculated to be 66.4 cm.  

Since the radar waveform is discretized, the resulting spectrum will be a “sampled” 

version of the sinc from Figure 4-1. Specifically, the baseline range FFT evaluates 

an output every 75 cm, while the proposed CZT does so every 16.60 cm.           

Figures 4-2 and 4-3 show the sampled power spectrum when using the baseline FFT 

and the proposed CZT, respectively. 

 

 

Figure 4-2. Sampled Power Spectrum, baseline FFT 

 

 

Figure 4-3. Sampled Power Spectrum, proposed CZT 
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Measuring the spectrum of a DFT comes with difficulties. Stradling Losses occur 

whenever the target position does not coincide with an FFT bin, which manifests 

itself by widening the main lobe of the spectrum and by reducing its peak power 

[12], [49]. Otherwise, the spectrum will have the sharpest response and highest SNR 

when the target position coincides with an FFT bin, as shown in Figure 4-4. 

 

 

Figure 4-4. Stradling Loss: (a) Target Coinciding with FFT bin (b) Target in between FFT bins 

 

The cases shown in Figure 4-4 (a) and (b) are the extremes, but since targets can be 

positioned anywhere, there is no single value for the signal strength and resolution 

of the FFT.  

 

4.2.1 Range Resolution 

To obtain a meaningful value for the radar’s range resolution (−3 dB), many 

measurements must be taken and averaged. For the experiment, the target will begin 

at a range of 50.00 m (stationary target at broadside) where the Stradling Loss and 

spectral width is measured. The target will then move away from the radar by a 

small incremental range ∆𝑟 (𝑏𝑖𝑛_𝑠𝑖𝑧𝑒/40) where the power and width 

measurements are taken again. This is repeated until the target has traveled a 

distance equal to the size of the FFT bin. 
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Table 4-2 shows the results of the range resolution measurements. As discussed in 

Section 3.3.3, CZT parameters have been chosen as to provide an oversampling 

factor (OSF) of 4.515x, which has been identified to be one of the optimal OSFs 

when sampling a squared sinc function. 

 

  
Measurement 

Type 
Max  Min  Average  

Standard 
Deviation  

Baseline FFT 

Straddling 
Loss 

3.87 dB 0.00 dB 1.26 dB 1.17 dB 

3 dB 
Resolution 

149.90 cm 74.95 cm 88.06 cm 28.48 cm 

Proposed CZT 

Straddling 
Loss 

0.18 dB 0.00 dB 0.06 dB 0.05 dB 

3 dB 
Resolution 

66.41 cm 66.41 cm 66.41 cm 0.00 cm 

Table 4-2. Range Resolution Measurements 

 

By using an optimal OSF of 4.515x, the resolution of the Proposed CZT exactly 

matches the expected 3dB resolution of the waveforms. Additionally, the selected 

OSF ensures that there are always the same number of samples above the −3 dB 

threshold, bringing the Standard Deviation of the measured resolution to zero. It is 

found that the Proposed CZT enhances the baseline average resolution of 88.06 cm 

by ~24.58 precent. The Straddling Loss is also reduced when using the Proposed 

CZT, which increases the SNR. 

 

4.2.2 Bearing Resolution 

Similar to the procedure in Section 4.2.1, the −3 dB resolution and straddling losses 

are measured in the context of bearing resolution. Due to the issue of short range 

beamforming, the target is placed at a range of 140 meters, which is outside the far-

field boundary of the antenna array. For the experiment, the target’s bearing varies 

from 0° to the next bearing bin in increments of  ∆𝑏 (𝑏𝑖𝑛_𝑠𝑖𝑧𝑒/80). To keep the 

target within the same range bin, its cartesian coordinates (𝑥, 𝑦) are updated so that 

atan(𝑥/𝑦) is equal to the desired angle and √𝑥2 + 𝑦2 is equal to the constant range 

of 140 meters. 

To compare the baseline FFT method against the 2 oversampling factors (OSF) 

identified in Section 3.3.3, the resolutions of both the 144-point and the 289-point 

Bartlett DOA will be measured. The 144-point DOA results in an OFS of 2.250x 

while the 289-point DOA results in an OFS of 4.515x, both of which have been 

identified as being optimal. 
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The number of MIMO virtual channels from Table 3-1 was chosen to yield a null-

to-null beamwidth of 3.581° at broadside. Using (4.4), the theoretical −3 dB 

resolution is expected to be 1.586° (rounded to 1.59°) at broadside.  

 

Table 4-3 shows the results of the bearing resolution measurements for the 3 

methods. 

 

  
Measurement 

Type 
Max  Min  Average  

Standard 
Deviation  

Baseline FFT 

Straddling 
Loss 

3.85 dB 0.00 dB 1.23dB 1.16 dB 

3 dB 
Resolution 

3.58° 1.79° 2.10° 0.68° 

Proposed 
144-point 
Bartlett  

Straddling 
Loss 

0.71 dB 0.00 dB 0.23 dB 0.22 dB 

3 dB 
Resolution 

1.59° 0.80° 1.58° 0.09° 

Proposed 
289-point 
Bartlett 

Straddling 
Loss 

0.18 dB 0.00 dB 0.06 dB 0.06 dB 

3 dB 
Resolution 

1.59° 1.59° 1.59° 0.00° 

Table 4-3. Bearing Resolution Measurements 

 

Just as with the range resolution, the use of an optimal OFS greatly reduces the 

variance of the resolution measurement while providing the expected -3dB 

resolution (rounded to 2 decimal points). In terms of -3 dB resolution, there isn’t 

much of an advantage in choosing the 289-point DOA over the 144-point DOA. 

Both methods enhance the baseline method resolution of 2.10° by ~24.48 percent. 

The advantage of the 289-point DOA lies in the reduction of Straddling Losses. 

However, doubling the number of points only reduces the maximum Straddling 

Loss by 0.553 dB and the average Straddling Loss by 0.172 dB. This is consistent 

with the curves in Figure 3-12 from Section 3.3.3. Since the execution time of the 

Bartlett algorithm is linearly proportional to the number of evaluated points, one 

can reasonably conclude that the mild reduction in Straddling Loss is not worth 

doubling the execution time. The 144-point DOA adequately reduces the Straddling 

Losses of the baseline FFT method by 3.144 dB (maximum loss) and 0.995 dB 

(average). 
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4.2.3 Short Range Angular Resolution 

As described in Section 3.4, beamforming algorithms suffer when targets are near 

the antenna array. A loss in amplitude was identified, along with the widening of 

the bearing response. To demonstrate the phenomenon of near target beamforming 

and to evaluate the performance of the proposed Short Range Correction algorithm, 

the procedure from Section 4.2.2 is repeated for a target located at 13.5 meters from 

the radar.  

Table 4-4 shows the results of the bearing resolution measurements for the baseline 

FFT method, the Proposed Bartlett DOA method (144-point), and the Proposed 

Bartlett method with Short Range Correction. 

 

  
Measurement 

Type 
Max  Min  Average  

Standard 
Deviation  

Baseline FFT 

Combined 
Losses 

6.38 dB 5.32 dB 5.78 dB 0.36 dB 

3 dB 
Resolution 

7.16° 5.37° 5.60° 0.60° 

144 - point 
Bartlett  

Combined 
Losses 

5.57 dB 5.22 dB 5.34 dB 0.11 dB 

3 dB 
Resolution 

5.57° 4.78° 5.34° 0.36° 

144 - point 
Bartlett + 

Short Range 
Correction 

Combined 
Losses 

0.71 dB 0.00 dB 0.23 dB 0.21 dB 

3 dB 
Resolution 

1.59° 0.80° 1.58° 0.09° 

Table 4-4. Bearing Resolution Measurement: Target at 13.5 m 

 

As listed in Table 4-4, both the baseline FFT method and the 144-point Bartlett 

method suffer from considerable losses (~ 6 dB). These losses are a combination of 

beamforming distortion and Straddling Losses, which cannot be remedied by 

simply oversampling in bearing. Additionally, the average -3dB resolution is much 

larger than when the target is in the far-field. For the baseline FFT, the resolution 

is, on average, 2.67x wider than for far-field targets. For the 144-point Bartlett, the 

resolution is, on average, 3.37x wider than for far-field targets. 

When the phase corrections are applied, as derived in Section 3.4.2, the average 

resolution is re-sharpened to its expected value of ~1.58°, and the losses are reduced    

to 0.71 dB (maximum) and 0.23 dB (average).  
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4.3 Result Summary 

 
As shown in Sections 4.1 and 4.2, the proposed MIMO radar signal processing 

provides enhanced range and bearing resolution while enabling real-time operation. 

Both the range and bearing resolution measurements are reduced by ~24.5%, which 

now match the theoretical values. Additionally, when executing the algorithm (144-

point DOA) on the GPU, an acceleration of 454.2x was achieved.  

The Short Range Correction, proposed in Section 3.4.2, was also verified to 

correctly flatten the incoming wavefront and enable the correct operation of the 

DOA algorithm. Without correction, targets at 13.5 meters from the radar suffered 

significant losses in bearing resolution (~ 3x wider than expected) and peak          

power (~ 6 dB). When the correction was applied, the bearing resolution and peak 

power measurements matched those from targets in the far field. With the correction 

enabled, the CPU required ~ 40% more time to execute the Bartlett DOA. The GPU, 

however, only needed an additional ~ 1 ms, which explains the large acceleration 

of ~ 615x from Table 4-1. 

The added complexity of the proposed algorithms is evident when comparing the 

execution times. On the CPU (sequential), performing the proposed algorithm with 

Short Range Correction takes ~67x more time than the baseline FFT method. On 

the GPU, however, performing the proposed algorithm only takes ~ 4.25x more 

time that the baseline, highlighting the suitability of GPUs for highly parallel 

applications. 
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5     Conclusion 

 
To conclude, the contents of the previous chapters will be summarized, the principal 

contributions yielded by this thesis will be highlighted, the thesis hypothesis and its 

success will be discussed, and future work topics will be proposed. 

 

5.1 Summary 

 
In Chapter 1, the topic of MIMO radars and their computational demands were 

introduced. The problem statement, motivation, and thesis statement were also 

presented. Finally, the methodology and thesis organization were outlined. 

In Chapter 2, relevant theory such as multiplexing techniques, radar fundamentals, 

signal processing techniques, and an introduction to MIMO radars was presented. 

Additionally, state of the art in MIMO radar prototypes and case studies on GPU 

accelerated radar signal processing were reviewed. Existing solutions to real-time 

operation were identified such as choosing fast algorithms (at the cost of 

resolution), reducing the quantity of data to process (i.e., the dimension of the radar 

or the number of range and bearing bins to compute), or by offloading the work on 

FPGA, DPS, or ASIC. A flexible GPU based solution, capable of quickly executing 

the signal processing without sacrificing resolution, was proposed for a 3D (range, 

bearing, and velocity) MIMO radar. 

In Chapter 3, the simulation environment was introduced, which enables target echo 

generation for MIMO radar geometries. The simulated radar, modeled from [7], 

was presented along with its requirements, parameters, and hardware. The 

workstation used for processing the radar data was also described, including its 

installed hardware (CPU and GPU) and required software. Following this, the 

baseline and proposed algorithms, along with Short Range Correction, were 

developed. Finally, parallelization techniques for the baseline 3D FFT method and 

the proposed algorithm were described. 

In Chapter 4, timing and acceleration measurements were taken for the different 

algorithms when run sequentially on the CPU, in parallel on the CPU, and in parallel 

on the GPU. Additionally, range and bearing resolution measurements were 

performed for all methods to quantify the improvement provided by the proposed 

method. Finally, bearing resolution was evaluated for short range targets with the 

aim of validating the Short Range Correction, as proposed in Section 3.4.2. 
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5.2  Contributions 

 
The work achieved in this thesis yielded solutions to the limitations presented in 

Chapters 1 and 2. The key contributions of this work are listed below: 

1. A simulated environment, which provides a virtual proving ground for 

MIMO radar signal processing, was developed. Multiple target echoes can 

be simulated within an environment where individual transmit/receive paths 

between the antennas and the targets are important. The simulation 

environment has configurable radar parameters, can accommodate different 

antenna array geometries, and all signal processing can be replaced, making 

the simulated environment a useful tool in future MIMO radar research. 

 

2. Methods to accelerate the baseline 3D FFT and the Cube Compression 

algorithms were proposed. Despite the additional transfer time required to 

copy ~17 million complex doubles from the Host to the Device, the baseline 

FFT method saw significant acceleration when executed on the GPU (~39x) 

and can now compute the entire radar frame within 76 ms. Considering that 

the SDRs take approximately 308 ms to collect the chirp to form the CPI, 

the GPU accelerated method truly enables real-time operation of the radar 

by making the refresh rate acquisition-time-limited. 

 

3. For a radar waveform with a known bandwidth, optimal oversampling 

factors (OSF) have been identified. These optimal OSFs guarantee that the 

sampled digital resolution is equal to the expected analog resoltuion, with 

little to no variance. In this work, OSFs of 2.257x and 4.515x were used to 

guide the parameter selection of the CZT and the Bartlett DOA. The use of 

these optimal OSFs have been validated in Chapter 4, which implies that 

very high oversampling factors (i.e., 10x or 20x) are not required to 

guarantee good resolution measurements and low straddling losses. 

 

4. The CZT and the Bartlett DOA were proposed as replacements for the range 

and bearing FFTs, respectively. Using optimal OSFs, the measured 

resolutions were enhanced by ~24.5%. In addition to being configurable 

with regards to oversampling factors, the CZT and the Bartlett DOA can 

provide extra flexibility to the radar system. The computed ranges and 

bearings can be modified and even provide a zoom around a target of 

interest. Although the Bartlett DOA is much more computationally 

expensive than the FFT, the CZT maintains a complexity of 𝑛 log2(𝑛). 
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5. A Short Range Correction technique was proposed in Section 3.4 which 

addresses the difficulty in performing beamforming on targets near the 

antenna array. By applying a phase correction to the samples, the spherical 

wavefront is effectively flattened into a plane wave which can be correctly 

beamformed. This phase correction is made possible by the MIMO mode, 

since individual transmit and receive paths can be separated and 

compensated for prior to the beamforming algorithm. The Short Range 

Correction, however, cannot be used with the FFT, since the angle 

information from the FOV is required during computation. The Short Range 

Correction technique has been validated in Chapter 4, and can be used for 

any beamforming technique which scans the FOV (i.e., Bartlett, MVDR, 

ESPRIT, IAA, etc.).  

 

6. Methods to parallelize the CZT and the Bartlett DOA on the CPU and on 

the GPU were proposed. By executing each step of the proposed algorithms 

at once on the entire data cube, accelerations of ~24.4x for the CPU and 

~454x for the GPU were achieved. When the short range correction is 

applied, the speed up is increased to ~615x. 

 

The development of the proposed method with GPU acceleration, was presented at 

the 4th International Conference on Computing and Wireless Communication 

Systems (ICCWCS) [50]. 

 

5.3 Discussion 

 
In Chapter 1, the following thesis statement was identified: 

“Multicore CPU and GPU parallel processing techniques will be 

investigated to accelerate the high computational demands of MIMO radar 

signal processing. Additionally. The Chirp Z Transform and the Bartlett 

Beamformer will be evaluated to improve the range and angular 

resolutions. Resolution measurements will then be compared against the 

current version of RMC’s MIMO radar.” 

To verify the hypothesis that hardware acceleration would benefit MIMO radar 

processing, all algorithms described in Chapter 3 were developed to be executed 

either sequentially in the CPU, in parallel on the CPU, and in parallel on the GPU. 

In Chapter 4, all methods were tested and timed in order to calculate the achieved 

acceleration. Although any acceleration could be deemed a success, the total 

execution time of the radar frame will also be compared against the current version 

of RMC’s MIMO radar. To be considered a success, the radar frame must be 

performed within 1.25 seconds [7]. 
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To verify the hypothesis that replacing the range and bearing FFT by the CZT and 

the Bartlett DOA would enhance the resolution of radar, both the baseline FFT 

method and the proposed method have been programmed. In Chapter 4, resolution 

measurements have been conducted to quantify the improvement in both the range 

and bearing resolutions. Both far and near targets were used, to validate the Short 

Range Correction. Comparing the measured resolution against the current RMC 

MIMO radar is not meaningful, as the resolution is not well defined in [7]. 

Therefore, any enhancement in range or bearing resolution when using the proposed 

method is considered a success. 

In the case of processing speed, acceleration enabled execution times well within 

1.25 seconds. When using the baseline 3D FFT method, both multicore CPU and 

GPU acceleration met the requirement, with processing times of ~235 ms                

and ~76 ms, respectively. However, when using the proposed method (CZT and 

Bartlett DOA), only the GPU was able to compute the radar frame within the 

requirement, with an execution time of ~324 ms. If a signal processing time of 1.25 

seconds is considered acceptable, the proposed algorithm on GPU still allows for 

another ~926 ms of computation. Therefore, this solution enables more radar 

processing to be performed (i.e., detection algorithms, tracking, etc.) within the 

allotted time.  

In the case of resolution, the measurements from Chapter 4 show enhancements     

of ~24.5% in both range and bearing. With the CZT and Bartlett DOA configured 

to yield optimal OSFs (2.257x and 4.515x), the double-sided half-power resolutions 

of the radar now match the expected values exactly. For short range targets, the 

advantage of using the Bartlett DOA with Short Range Correction is apparent. At 

13.5 meters, the average resolution of the baseline 3D FFT is ~5.6° whereas the 

proposed method yields the expected resolution of ~1.58°. This represents an 

enhancement in bearing resolution of approximately 3.5x. The proposed algorithms 

therefore provide enhanced resolutions at all ranges. 

Given the results listed above, the thesis statement has been validated and it can be 

concluded that the proposed algorithm enhances the resolution of the MIMO radar, 

and that GPU acceleration enables faster refresh rates.  
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5.4 Future Work 

 
Before concluding this thesis, 3 research opportunities are proposed for future work.  

Firstly, the implementation of super-resolution beamforming techniques on the 

MIMO radar could be investigated. It has been shown in this thesis that the GPU 

can quickly perform the proposed algorithm, meaning that it might also be able to 

perform more complex algorithms in a reasonable amount of time. As discussed in 

Section 2.2, there are additional difficulties in implementing super-resolution 

techniques due to multiple correlated signals and clutter. Additionally, subspace-

based algorithms (such as MUSIC and ESPRIT) require that the quantity of targets 

be known a priori, which is generally not the case in a surveillance radar. However, 

all of these methods (including MVDR and IAA) depend on complex linear algebra, 

such as the inversion of matrices. Researching the effectiveness of the GPU in the 

execution of these tasks would be of interest. 

Secondly, orthogonal waveforms should be studied. This thesis focuses on the 

signal processing after demultiplexing and does not consider the effects of non-

orthogonality of the chosen multiplexing technique (TDM, CDM, FDM). For a 

given waveform, target illumination and orthogonality could be evaluated. 

Additionally, the performance of the selected waveform could be validated in 

clutter and against moving targets. Research in this field could potentially yield a 

novel multiplexing scheme optimized for MIMO radar. 

Finally, GPU acceleration of an Electronic Warfare system should be researched. 

As an example, extracting waveform information in an Electronic Support system 

can be computationally demanding. Whether the system is performing pulse 

sorting, frequency and time estimations, DOA estimations, or executing the 

Wigner-Ville and Radon Transforms, there could be parallelism exploitable by the 

GPU. Since there is value in quickly identifying signals in EW systems, 

accelerating the signal processing on a GPU should be investigated.  
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