
A SYNTHETIC USER ENVIRONMENT FOR NETWORK COUNTER-
SURVEILLANCE OPERATIONS

Automatic Generation of Human Interface Device Events

UN ENVIRONNEMENT UTILISATEUR SYNTHÉTIQUE POUR
OPÉRATIONS DE CONTRE-SURVEILLANCE RÉSEAU

Génération automatique d’évènements de dispositifs d’interface
humaine

A Thesis Submitted to the Division of Graduate Studies
of the Royal Military College of Canada

by

Sylvain Paul Leblanc, CD, MEng, PEng
Major (retired)

In Partial Fulfilment of the Requirements for the Degree of
Doctor of Philosophy

April 2014

©This thesis may be used within the Department of National Defence but
copyright for open publication remains the property of the author

This work is dedicated to two incredible people, my wife and my late father.

My wife, Dr. Catherine Louise Leblanc, has shown me what it means to persevere
and to sacrifice; this work is for her as a token of the life we have built together – I

would not change it for anything. You are my world.

Mon Père, le feu Paul-Émile Alcide Leblanc, outilleur-machiniste, est décédé en
2001 alors que j’entamais à peine le doctorat. Mon père a toujours supporté tous
mes efforts; cet ouvrage est pour lui, comme preuve de ce qu’il aurait pu faire s’il

avait eu les opportunités qu’il m’a aidé à obtenir.

ii

ACKNOWLEDGMENTS

Many people deserve acknowledgements for this work. First and foremost are my
family: my wife Catherine, my son Benjamin and my daughter Kate; the work is
mine but the sacrifice is theirs in great part. Thank you for keeping me sane, for
allowing me to keep going and for your unconditional love and support – without
you, this would never have happened.

I want to thank my adviser, colleague and friend, Dr. Scott Knight, for sticking with
me throughout this long endeavor. Scott is a tremendous researcher, and he is in
very high demand. I am grateful for the time and attention he devoted to me; I
know how many things I was up against and I thank you for the guidance you
provided me. Thank you also for the encouragements, the support and for your
uncompromising standards.

Dr. Ron Smith has been an island in a stormy sea. Ron’s quiet and unassuming
support has meant more to me than he probably knows. Thank you for the
encouragement, for the true happiness at my successes, and for remembering
what it feels like.

Thank you also to my colleagues, you have inspired me to keep going – I am not
going anywhere.

iii

ABSTRACT

The traditional response to the discovery of a network compromise has been to
remove the compromised system from the network, to clean it and to restore it to
service. This approach is reactive; a more active approach is necessary and such
an approach requires better intelligence collection on attackers. New tools and
techniques are required to allow the collection of intelligence on attackers,
including the provision of realistic user activity at the human interface device
(HID) level. This research developed a conceptual framework for the automatic
generation of HID events in a manner that, when observed by attackers, is
consistent with a human inputting text into a computer system. The framework,
called the Human Interface Device Event Generation Process, accepts a target
document as its input and, through sequential transformation, generates a series
of mouse and keyboard human interface device events. When placed on the
Universal Serial Bus of a compromised computer system, these human interface
device events render the composition of the target document by a synthetic user.
In order to make the generation of human interface device events consistent with
what is expected of a human user, the framework makes use of a User Personality
Model which represents the synthetic user’s text composition preferences, editing
choices, typing accuracy, use of the mouse and timing characteristics of human
interface device events. All of these aspects of the User Personality Model are
defined in this research. To demonstrate the validity and feasibility of the
framework, we have developed a proof-of-concept Synthetic User Environment
which implements the keyboard aspects of the Human Interface Device Event
Generation Process framework. The research contributes to the field of computer
network defence by providing a framework for the automatic generation of
human interface device events, defining User Personality Model components and
providing tools for the advancement of Network Counter-Surveillance Operations
and Deception Operations.

iv

RÉSUMÉ

La réponse typique à la découverte d’une compromission réseau est de retirer le
système compromis du réseau, de le nettoyer et de le remettre en service. Cette
approche est réactive; une approche plus active est nécessaire et une telle
approche requière une meilleure cueillette de renseignement sur les attaquants.
De nouveaux outils et techniques sont de mise pour permettre la cueillette de
renseignements sur les attaquants, y compris la fourniture d’activité d’utilisateur
au niveau de dispositifs d’interfaces humaines. Cette recherche a conçu un cadre
conceptuel pour la génération automatisé d’évènements de dispositifs
d’interfaces humaines de sorte à ce qu’ils soient consistants, lorsqu’observés par
les attaquants, avec un humain composant du texte sur un système informatique.
Le cadre conceptuel, appelé le Human Interface Device Event Generation Process,
accepte un document-cible comme entrant et, de par une séquence de
transformation, génère des évènements pour dispositifs d’interfaces humaines
pour une souris et un clavier. Lorsque placé sur le bus USB d’un système
informatique compromis, ces évènements pour dispositifs d’interfaces humaines
simulent la composition du document-cible par un utilisateur synthétique. Afin
que la génération d’évènements pour dispositifs d’interfaces humaines soit
consistante avec un utilisateur humain, le cadre conceptuel utilise un modèle de
personnalité humaine qui représente les aspects suivants de l’utilisateur
synthétique : ses préférences de compositions, ses choix à titre de révision, son
exactitude dactylographique, son utilisation de la souris et les délais associés avec
les évènements pour dispositifs d’interfaces humaines. Tous ces aspects du
modèle de personnalité humaine sont définis dans cette recherche. Une
démonstration de la faisabilité, nommé le Synthetic User Environment, a été
développée et mise en œuvre afin de démontrer la validité du cadre conceptuel.
La recherche fait contribution à la défense de réseaux informatiques en
fournissant un cadre conceptuel pour la génération automatique d’évènements
pour dispositifs d’interfaces humaines, en définissant les aspects du modèle de
personnalité humaine et en fournissant des outils pour l’avancement de
opérations de contre-surveillance réseaux et les opérations de déception.

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... III

ABSTRACT ... IV

RÉSUMÉ ... V

TABLE OF CONTENTS ... VI

LIST OF TABLES... X

LIST OF FIGURES .. XI

LIST OF SYMBOLS, ABBREVIATIONS AND ACCRONYMS .. XII

CHAPTER 1 : INTRODUCTION ... 1

1.1. CHAPTER INTRODUCTION .. 1
1.2. RESPONSE TO NETWORK ATTACKS .. 1

1.2.1. Reactionary Response .. 1
1.2.2. Seizing the Initiative ... 2

1.3. THREAT MODEL .. 3
1.3.1. Attacker Characteristics ... 5
1.3.2. Characterization of Users by Attackers.. 6
1.3.3. HID interface Event Stream Semantics .. 6

1.4. OPERATIONAL SCENARIO .. 8
1.5. STATEMENT OF DEFICIENCY ... 11
1.6. AIM .. 12
1.7. VALIDATION APPROACH.. 15

CHAPTER 2 : LITERATURE REVIEW .. 18

2.1. CHAPTER INTRODUCTION .. 18
2.2. HONEYPOTS ... 18

2.2.1. Premise and Definition of Honeypots .. 19
2.2.2. Honeypot Risks .. 20
2.2.3. Honeypot Classification ... 20
2.2.4. Applicability and Shortcomings of Honeypots to NCSO Research 24

2.3. CYBER DECEPTION ... 25
2.3.1. Contributions of Research to Cyber Deception .. 29

2.4. VITALITY DETECTION .. 30
2.4.1. Attackers' Motivation .. 30
2.4.2. User Behaviour Modelling ... 31

2.5. CHAPTER SUMMARY AND CONCLUSION: ... 45

vi

CHAPTER 3 : HID EVENT GENERATION PROCESS .. 47

3.1. CHAPTER INTRODUCTION .. 47
3.2. USER PERSONALITY MODEL ... 48
3.3. HID EVENT GENERATION PROCESS OVERVIEW .. 50
3.4. STAGE 1 – SYNTACTIC ELEMENT EXTRACTION ... 53

3.4.1. Input: TargetDocument ... 53
3.4.2. Dependency: i – Syntactic Elements Lexicon .. 53
3.4.3. Transformation 1 – Identification of Syntactic Elements 54
3.4.4. Output: DPM1 – Syntactic Elements Extracted .. 54
3.4.5. Worked Example .. 55

3.5. STAGE 2 – COMPOSITION ERROR INTRODUCTION .. 55
3.5.1. Dependencies ... 56
3.5.2. Transformations .. 62
3.5.3. Output: DPM2 – Composition Errors Introduced 64
3.5.4. Worked Example .. 64

3.6. STAGE 3 – EDITING ACTION SELECTION ... 66
3.6.1. Dependencies ... 66
3.6.2. Transformations .. 69
3.6.3. Output: DPM3 – Editing Actions Selected .. 70
3.6.4. Worked Example .. 70

3.7. STAGE 4 – HID ACTION SELECTION .. 71
3.7.1. Dependencies ... 71
3.7.2. Transformation 4 – Instantiate HID Editing Actions 77
3.7.3. Output: DPM4 – HID Actions Selected ... 79
3.7.4. Worked Example .. 79

3.8. STAGE 5 – MOUSE BEHAVIOUR PROCESSING .. 82
3.8.1. Dependencies ... 82
3.8.2. Transformation 5.1 – Specify Mouse Errors and Corrections 87
3.8.3. Transformation 5.2 – Compute Mouse Movement Details........................ 88
3.8.4. Output: DPM5 – Mouse Errors Introduced .. 88
3.8.5. Worked Example .. 88

3.9. STAGE 6 – HID EVENT STREAM GENERATION ... 90
3.9.1. Dependency: vi – HID Event Lexicon .. 90
3.9.2. Transformation 6 - Generate KOR and MOR ... 90
3.9.3. Worked Example .. 91
3.9.4. Output: DPM6 – HID Events Generated ... 92

3.10. STAGE 7 – EVENT TIMING CHARACTERIZATION.. 92
3.10.1. Dependencies ... 93
3.10.2. Transformation 7 – Insert Inter-Report Delays .. 93
3.10.3. Final Output ... 94

3.11. CHAPTER SUMMARY AND CONCLUSION: .. 94

vii

3.12. CONSISTENCY WITH HUMAN BEHAVIOUR ... 95

CHAPTER 4 : FEASIBILITY THROUGH IMPLEMENTATION .. 96

4.1. CHAPTER INTRODUCTION .. 96
4.2. PROOF-OF-CONCEPT REQUIREMENTS.. 96
4.3. PROOF-OF-CONCEPT DEVELOPMENT - THE SUE ... 98

4.3.1. Implementation of Stage 1 .. 101
4.3.2. Implementation of Stage 2 .. 102
4.3.3. Implementation of Stage 3 .. 103
4.3.4. Implementation of Stage 4 .. 104
4.3.5. Combined Implementation of Stages 6 and 7 .. 105

4.4. SUFFICIENCY ... 107
4.5. CHAPTER CONCLUSION ... 109

CHAPTER 5 : SUMMARY AND CONCLUSION ... 111

5.1. CHAPTER INTRODUCTION .. 111
5.2. DEFICIENCIES OF CURRENT APPROACHES ... 111

5.2.1. Honeypots .. 111
5.2.2. NIST .. 112

5.3. AIM OF THE RESEARCH ... 113
5.4. VALIDATION ARGUMENT... 113

5.4.1. Sufficiency .. 113
5.4.2. Validity of the User Personality Model .. 115
5.4.3. Feasibility ... 117

5.5. CONTRIBUTIONS .. 118
5.5.1. HGP Design .. 118
5.5.2. User Personality Model Definition ... 120
5.5.3. NCSO and Deception Operations ... 121
5.5.4. Publications ... 121

5.6. FUTURE WORK ... 121
5.6.1. User Personality Models .. 121
5.6.2. Remaining Implementation of the HGP ... 122

REFERENCES ... 123

APPENDICES ... 130

APPENDIX A : I – SYNTACTIC ELEMENTS LEXICON .. 131

APPENDIX B : II – COMPOSITION ERROR LEXICON .. 134

APPENDIX C : III – GENERAL EDITING ACTION LEXICON ... 136

APPENDIX D : IV – SPECIFIC EDITING ACTION LEXICON .. 139

APPENDIX E : V – MOUSE BEHAVIOUR LEXICON ... 141

viii

APPENDIX F : VI – HID EVENT LEXICON ... 142

APPENDIX G : VII – TIMED EVENT LEXICON.. 143

ix

LIST OF TABLES

Table 2-1 Tradeoffs between Honeypot Interaction Levels [3] 22
Table 2-2- Deception Methods of Conventional Warfare [30] 29
Table 2-3: Mouse Activity Signature Features [39]... 34
Table 2-4: Keystroke Analysis Task Hierarchy [42] ... 44
Table 3-1 - Syntactic Elements Lexical Examples .. 54
Table 3-2 - Composition Error Lexical Examples ... 57
Table 3-3 - Composition Accuracy Model - Representative Misplaced_SE PDF . 59
Table 3-4 - Composition Accuracy Model - Representative Wrong_SE PDF 60
Table 3-5 - Composition Accuracy Model - Representative CorrectionPoint
PDF .. 61
Table 3-6 - Typing Accuracy Model - Representative n-graph PDF 62
Table 3-7 - Editing Model .. 67
Table 3-8 – General Editing Action Lexical Examples ... 69
Table 3-9 - Elements of the Representative Word Processor Model 74
Table 3-10 - Elements of the Representative Word Processor Model (continued) 75
Table 3-11 - Specific Editing Action Lexical Examples ... 76
Table 3-12 - Mouse Behaviour Lexical Examples ... 84
Table 3-13 - Mouse Model – Representative Movement Speed Statistical
Distributions .. 85
Table 3-14- Mouse Model – Representative Number of Mouse Errors PDF 86
Table 3-15 - Mouse Model – Representative Mouse Button Errors Rectifying
Action PDF ... 86
Table 3-16 - Mouse Model - Representative Move_Mouse Accuracy PDF 87
Table 3-17 - HIT Timing Model - Representative PDF ... 93

x

LIST OF FIGURES

Figure 1 - Attacker Characterization ... 4
Figure 2 - Characterization of User Activity by the Attackers 5
Figure 3 - Event Stream Semantics ... 7
Figure 4 - The Basic Deception Process [26] ... 27
Figure 5: Generic Modelling of User Activity .. 32
Figure 6: Attributing User Activity to Profiles ... 33
Figure 7: Detector Architecture [38] ... 36
Figure 8: Mouse Event Categories [40] ... 37
Figure 9: Decision Tree Classifier [40] ... 39
Figure 10 - The User Personality Model.. 48
Figure 11 - The HID Event Generation Process ... 52
Figure 12 - Candidate Document Model Layout ... 72
Figure 13 – Representative Document Model following Sentence 1 Errors 73
Figure 14 - Representative Word Processor Model Layout Mock-Up 73
Figure 15 - Representative Document Model following Sentence 1 Errors (from
Figure 13) .. 81
Figure 16 – Representative Document Model following Sentence 1 Corrections . 82
Figure 17 - Mouse Model Movement Direction Octets .. 84
Figure 18 - Mouse Model – Move_Mouse Accuracy Layout 87
Figure 19 - Mouse_Move Trajectory Calculations... 91
Figure 20 - The Three Phases of TXL [60] .. 99
Figure 21 - TXL Software Architecture in the Context of the SUE 100
Figure 22 - Physical Setup of the SUE Proof-of-Concept 106

xi

LIST OF SYMBOLS, ABBREVIATIONS AND ACCRONYMS

A Absolute typing speed measure
Accident_But Accidental Button
API Application Programming Interface
ATA Action Type Histogram
ATH Action Type Histogram
AVS Anti-Virus Software
CompError Composition Error
Copy_SE Copy Syntactic Element
Cut_SE Cut Syntactic Element
DD Drag-and-Drop Mouse Action
Delete_SE Delete Syntactic Element
DND Department of National Defence
DocMod Document Model
DPM Document Production Model
FAR False Alarm Rate
GUI Graphical User Interface
HCI Human-Computer Interaction
HGP HID Event Generation Process
HID USB Human Interface Device
IDS Intrusion Detection System
ii-CompErrorLex Composition Error Lexicon
iii-GenEditActionLex General Editing Actions Lexicon
IPR Impostor Pass Rate
i-SynElmtLex Synthetic Elements Lexicon
iv-SpecActionLex Specific Editing Actions Lexicon
KOR Keyboard Output Report
MDA Average Movement Speed per Movement Direction
MDH Movement Direction Histogram
Misplaced_SE Misplaced Syntactic Element
Missed_Loc Missed Location
Mistyped_SE Mistyped Syntactic Element
MM Mouse Movement
MOR Mouse Output Report
Move_SE Move Syntactic Element
MSD Movement Speed compared to Distance Travelled
MTH Movement Elapsed Time Duration Histogram
NCSO Network Counter-Surveillance Operation

xii

NIST Network Intelligence Surveillance Toolset
OS Operating System
Paste_SE Paste Syntactic Element
PC Personal Computer in general
PC Point-and-Click in the context of mouse movement
PCI Peripheral Component Interconnect
PDF Probability Distribution Function
Position_Cursor Position Cursor in Document Model
R Relative typing speed measure
RCR Remove-Clean-Restore
Replace_SE Replace Syntactic Element
ROC Receiver Operating Characteristic
Select_SE Select Syntactic Element
SUE Synthetic User Environment
TargetDocument English free-text document for which the HGP generates

keyboard and mouse HDI events.
TDH Travelled Distance Histogram
Type_SE Type Syntactic Element
UCS Universal Character Set
USB Universal Serial Bus
UTF-8 UCS Transformation Format – 8-bit
vi-HIDEventLex HID Event Lexicon
vii-TimedEventLex Timed Event Lexicon
v-MouseBehaviourLex Mouse Behaviour Lexicon
WordProcMod Word Processor Model
Wrong_But Wrong Button
Wrong_SE Wrong Syntactic Element

xiii

CHAPTER 1 : INTRODUCTION
The research described in this dissertation proposes a conceptual framework for
the generation of user inputs on Universal Service Bus (USB) Human Interface
Devices (HID) in order to facilitate intelligence collection on attackers.

1.1. Chapter Introduction
Removing a compromised computer system from a network upon discovery of a
breach is not always possible because some key systems cannot be taken offline.
It may also be undesirable because doing so would deprive the defender of the
opportunity to collect intelligence on the attacker. Attackers who are aware of
observation by defenders may alter their behaviour, thus invalidating the
intelligence collected on them. Attackers are willing to spend significant effort to
characterize the computer systems that they compromise in order to assess their
value; the HID events present on the USB can be used by attackers to discover if
the compromised system is used by a human or an automated process which
could reveal the presence of a trap. This dissertation describes a conceptual
framework for the automatic generation of USB HID events associated with the
composition of arbitrary text; we call this framework the HID event Generation
Process, or HGP. The approach was validated through the implementation of a
proof-of-concept Synthetic User Environment, or SUE. This work is important
because the proposed framework will help facilitate intelligence collection on
attackers by generating HID events which are consistent with those generated by
a human.

1.2. Response to Network Attacks
Because computer networks contain valuable information, they are subject to
attack. These attacks can take many different forms, from broad-based scans by
unsophisticated users to more serious attacks by very proficient individuals and
organizations, such as foreign intelligence services, targeted at a specific
organization. This section will discuss responses to network attacks, as done in [1].

1.2.1. Reactionary Response
The common computer security approach is to protect the systems as much as
possible by employing vulnerability-oriented security measures (such as having
up-to-date configuration of operating systems and applications, ensuring good
security practises from users, using perimeter defence tools such as firewalls,
etc.), detecting potential problems (by monitoring the network, using tools such
as intrusion detection systems (IDS), etc.) and finally reacting to hostile events.
Reaction too often takes the form of Remove, Clean, and Restore (RCR) [2], where
defenders react by removing the infected system, cleaning it to remove the
attackers’ presence and restoring service. Unfortunately, there are three major

1

2

problems with this RCR approach. First, there are many instances where the
compromised system is critical to the operation of the network and simply cannot
be removed from service. Second, because of the inherent complexities in
computer systems and of the latent vulnerabilities in computer hardware and
software, there is a high probability that such an approach will not adequately
remove the attackers’ presence. Too often, the computer security community
attempts to protect information systems by building walls to stop potential
attacks, but there is no one looking over these walls. Finally, the attacker has the
initiative; the security community is only reacting to malicious activities and this
makes it very difficult to keep abreast of new and evolving threats.

Network defenders need a better approach that allows them to learn about the
attacker, as discussed by Spitzner who explains why it is necessary to understand
attackers in order to be able to effectively defend against attacks [3]. In his work
on honeypots, he suggests that an effective way to gain knowledge about
attackers' tools and techniques is to place attractive targets for them to attack,
and to observe the interaction between attackers and the target. The information
gained from the interactions can be interpreted to discover which known
vulnerabilities are exploited by the attackers, or even lead to the discovery of new
vulnerabilities, which can in turn result in better protection.

Throughout Spitzner's discourse on the topic, the protection process always starts
with a successful or attempted intrusion by attackers; the attackers always have
the initiative.

1.2.2. Seizing the Initiative
There are risks associated with the traditional RCR response, which advocates the
eradication of the threat by cutting off the attackers' access to the compromised
system. These risks include the inability to identify the attackers; the loss of
opportunity to learn about the attackers' techniques and motivations; the loss of
ability to influence the attackers' actions. Finally, it can be argued that by cutting
off the attackers' access where we know he has penetrated network defences, we
are only encouraging intrusion into the network through other ingress points.

It is not sufficient to learn about attackers' tools and techniques; it is necessary to
gather intelligence about the attackers. An intrusion into a computer network
raises many questions. Who is attacking? What are the attackers capable of?
What are their short-term objectives (in others words what are they after with
this specific attack)? What are the attackers' larger strategic objectives and how
does the current attack fit into that context? These questions cannot be answered
if we simply deny the attackers access whenever an intrusion is observed. To
answer these and other important questions, it is necessary to maintain contact

3

with the attackers. This argument for the maintenance of contact is at the core of
the motivation for the proposed research. The argument has been tested through
peer-reviewed publication [4] [5] [6].

Leblanc and Knight [5] propose network counter-surveillance operations (NCSO)
as a response to network attacks which have the potential to wrestle some of the
initiative away from the attackers. This response is predicated on three
operational objectives.

1. Holding contact with the attacker. Holding contact enables defenders to
gain intelligence on attackers through their continued interaction with
the compromised system.

2. Understanding the attacker. If we can gain an understanding of the
attackers’ capabilities, motivations and goals, we can be freed from a
purely reactive response to intrusions.

3. Preparing1 the attacker for future operations. An organization with the
mandate and resources to take the fight to the attacker may launch a
counter-operation on the attacker's information elements or
infrastructure, or it may gather evidence for legal proceedings.

NCSOs are a significant research thrust of the RMC Computer Security Laboratory,
and the associated statement of deficiency will be discussed in section 1.5. For the
moment, it suffices to say that because it is predicated on holding contact with
the attacker, there are risks associated with an NCSO. The attackers can damage
or alter information on the compromised system; defenders may not be able to
prevent the attackers from exfiltrating sensitive information; the attackers have
more opportunities for pushing the attack onto other systems in the defended
network.

Remaining undetected is of significant concern for this research. Should the
attackers realize that they are being observed on the compromised system, they
may alter their behaviour and thus make the intelligence collected by defenders
less valuable.

1.3. Threat Model

1 Preparation is used in a military intelligence context where it means taking actions to
increase the probability of success of future operations. For example, a military
organization planning a Deception Operation where they want their enemy to believe that
a major air offensive is planned for a certain sector, may prepare said enemy by increasing
air-reconnaissance activities in that sector.

4

To gain a shared understanding of the aim of this research, in order to
demonstrate its validity, it is important to properly characterize the sophisticated
attackers that are the subject of this research. There are many threats to any
networked computer system, particularly if that system is connected to the
Internet; computers are routinely scanned for the presence of known
vulnerabilities. Many commercial products, such as anti-virus software (AVS),
analyse these broad based threats to derive signatures. This research, in contrast,
deals with very sophisticated attackers such as foreign governments’ intelligence
services or military forces. These attackers are likely to be well resourced and they
have a strong interest in ensuring that their activities are not discovered, as is
evident in the dearth of open publication on their exploits. The sophisticated
attackers with which this research is concerned have some basic capabilities (see
Figure 1 - Attacker Characterization), which they may use to characterize user
activity on a compromised system.

As we will discuss in Chapter 2, user characterization is one of the means available
to attackers in order to ascertain the value of a compromised system. However, in
order to continue deriving benefit from the compromised system, attackers wish
to remain undetected and this places restrictions on how they can characterize

Figure 1 - Attacker Characterization

5

user activity. The abilities of the attackers and the restrictions with which they can
exercise those abilities are explained in this section.

1.3.1. Attacker Characteristics
We must presume that the compromise of the system is complete in that the
attackers have administrative or root privilege on the target, which means that
the list of processes running on the compromised system is visible to them. The
attackers have access to the system clock, which will allow them to conduct
statistical timing analysis of observed events. The attackers can observe events in
the operating system (OS) kernel, be they in user-space or in kernel space. Along
with visibility inside the OS, we will presume that the attackers can also run their
own processes on the compromised system.

However, there will be restrictions on the attackers' abilities to characterize user
activity, mostly because of a desire to remain undetected, which will result in the
process depicted at Figure 2. The attackers do not have access to the system's
physical environment, be it through direct observation or remotely through the
use of surveillance devices. Without physical observation, attackers are therefore
unable to see whether a user is actually using the HID interface devices. The
sophisticated attackers that concern us will wish to avoid being detected in order
to keep deriving benefit from the compromised system. Because of the standard
reactionary response to intrusion discussed in section 1.2.1, the attackers must
presume that they will lose access if their compromise is detected. The attackers
will wish to process information onboard the compromised system, where they

Figure 2 - Characterization of User Activity by the Attackers

6

have a better chance to hide their activity, rather than exfiltrate large amounts of
information off the compromised system because of the associated increase in
probability of detection when transiting the network. Although attackers can
sample events associated with HID, as discussed in section 1.3.3, the attackers will
not be able to stream all HID interface events to recreate user activity because
such streaming would use significant network bandwidth, and would increase the
probability that their attack will detected by an IDS [7].

1.3.2. Characterization of Users by Attackers
To characterize the user of a compromised system, attackers can observe system
kernel events associated with HID, specifically mouse and keyboard activity. For
each mouse or keyboard event, the attackers will be in a position to observe the
type of event and its time of occurrence. From these observed events, the
attackers will be able to derive a limited representation of the user activity. It is
reasonable to presume that attackers will have models of user behaviour at that
HID interface level, as some of these have been published in the open literature
(see section 2.4). Attackers will try to characterize a user by testing the activity
derived from observed user inputs against their known models of user
behaviours.

1.3.3. HID interface Event Stream Semantics
We can think of the HID interface event streams as a language with specific syntax
and semantics. Defining the syntax of the HID interface event stream is a bounded
problem, where it is possible to define the tokens (the characteristics of the
keyboard and mouse events) of the language. It is therefore reasonable for the
attackers to compare the user activity derived from observing the USB to models
of behaviour using statistical testing. This approach would be particularly well
suited to processing of the HID interface event streams on the compromised
system itself, during quiet hours, when the system's legitimate user would be less
likely to detect it.

The user moves the mouse and types at the keyboard to accomplish tasks. The
semantics of the HID interface event stream is the meaning associated with the
mouse and keyboard events. There have been many research efforts aimed at
characterizing natural languages using formal mathematical notations such as [8].
It is important not to confuse these with this research because the former is
premised on an analysis that has access to much more resources than the
attacker described in the latter.

One can think of the simple task of drafting an email message to understand how
quickly the HID interface event stream becomes complicated (Figure 3 helps
understand this example). In this example, the cursor is moved in the typing

7

window (1), and the user starts typing. A mistake is made, causing the user to use
the backspace key to erase some text, as represented by the strike through at (2),
before correcting it. Perhaps a portion of a sentence needs to be moved; it must
be selected (3) and cut (using the keyboard, the mouse or both) before the mouse
is used to reposition the cursor (4) in order to past the text (once again using the
keyboard and/or the mouse).

The attackers would be able to make a judgement about the semantics of the
document creation task through direct observation of the user, or by exfiltrating
the HID interface event stream and reconstructing it. As we discussed in section
1.3, the attackers' desire to remain undetected will preclude them from being
able to exfiltrate the entire HID interface event stream as this raises the
probability they will be detected. The attackers would be limited to exfiltrating a
group of HID interface events to see they represent syntactic text elements
arranged in a hierarchy of words, numbers, and punctuations to form sentences.

We will refer to the information gained from such reconstructions through event
stream sampling as local semantics. Local semantics are in contrast to global
semantics, where more general meaning is derived about the document creation
activity. An example of local semantics would be to say that the attackers can
derive the word the from the character sequence teh [backspace]
[backspace] he. Global semantics on the other hand, would allow the attacker
to realize that the conclusion of a report was drafted before the introduction.

The attackers may well choose to create a tool to examine the event stream on
the compromised system itself. Such a tool would allow the attackers to
communicate less information using the network than they would if they were to
exfiltrate the entire event stream, thereby reducing the probability that their

Figure 3 - Event Stream Semantics

1 2

3 4

8

compromise would be detected [5]. Such a tool would have the ability to use local
semantic information to analyze the event stream.

In summary, we can say that a realistic HID interface level environment is
necessary to prevent attackers from changing their behaviour, which would
hinder intelligence collation. Although there are a number of potential solutions
for providing such a realistic HID interface level environment, this research
focused on the automatic generation of user activity, as it is deemed to be cost
effective. The proposed automatic generation of user activity is also realistic in
the context of a threat model where the basic abilities of the attackers are
restricted by their motivation to remain undetected. Under these restrictions, the
attackers will be able to use their basic abilities to characterize user activity by
comparing mouse and keyboard events to known models of user behaviour (see
section 2.4). The goal is for the attackers to characterize the automatic user
activity generated by this research as human activity. Such automatically
generated activity will be deemed consistent with human behaviour because it
will respect the syntax of the English language and local semantics of the event
stream defined in the models of user activity that are at their disposal.

1.4. Operational Scenario
An organization may decide that the risks associated with an NCSO, as discussed
at the end of section 1.2.2, are justifiable when compared to the potential
benefits of the collected intelligence. When this occurs, the organization may
decide to engage a Network Intrusion Surveillance Toolset (NIST)2 to begin an
intelligence gathering operation. Many parallels can be drawn between the NIST
and honeypots, which will be discussed in detail in section 2.2. The NIST will
require three categories of tools, namely 1) tools to surreptitiously observe
attackers, 2) tools to limit the potential damage that can be done by attackers
while on the compromised system and 3) tools that will keep attackers engaged
with the compromised system.

This research is particularly interested in the latter. For the intelligence gathering
operation to be successful, the attackers must be convinced that the system they
have compromised is a legitimate, high-value asset. This research presents a
framework for the generation of HID events and implements a proof-of-concept
of this framework in a SUE that will mimic user activity at keyboard HID interface
level, in order to convince the attackers to continue interacting with the
compromised system, thereby allowing intelligence collection on them.

2 The NIST is a research thrust of the RMC Computer Security Laboratory.

9

This is best illustrated with a representative scenario, which we will situate in a
classified network of the Department of National Defence (DND). This network is
used in support of national command and control, and it contains classified
information. The network is protected by perimeter network security devices such
as firewalls and IDS, but in this scenario, it is DND's policy to allow limited
connectivity to the Internet (possibly only outbound HTTP connections) to enable
network users more flexibility in the performance of their duties3. Imagine that
sophisticated attackers have been able to target, attack, gain access to and
compromise a system residing on that network; let us further presume that it is a
workstation used by a senior commander's secretary. The presence of that system
on the classified network highlights its value to DND, as does the presence of
network protection measures such as firewalls and IDS. The system is also very
valuable to the attackers for two reasons: first, it may contain valuable
information because of its close association to a senior commander, second it is a
presence on the classified network from which the attackers can carry out a
broader range of network operations.

This scenario represents a situation where the NCSO described by Leblanc and
Knight [5] may well apply; it is conceivable that the potential risks to which DND is
exposed by maintaining contact are deemed justifiable when compared to the
potential intelligence benefits derived from continued contact with the attackers.
In order to respond to the attack in a manner that would allow defenders to carry
out the three operational objectives stated in section 1.2.2, it is important that
the attackers believe that they are interacting with a legitimate system, and not
with a decoy or honeypot. Sophisticated attackers however, are not fooled easily
and they can discover that they are dealing with a suspicious computer system
(see Vitality Detection in section 2.4). The consequences of the discovery by the
attackers that they are being observed can be detrimental to DND. At the very
least, the attackers may stop interacting with the compromised target, which
means that their behaviour can no longer be observed. Of more concern is the
fact that the attackers may retaliate by damaging the compromised system or
other systems on the classified network or by feeding erroneous information to
those attempting to observe their behaviour. In other words, detection of the
attackers will likely cause them to alter their behaviour, which may invalidate any
collected intelligence.

3 Such a connection to the Internet is not necessarily present in any actual secure network, and the
author does not advocate its use. It is only suggested here to illustrate an obvious entry point for
attackers to gain access to the network.

10

In order to minimize the risk of detection of the defenders’ observation by the
attackers, the target must appear to be a legitimate system. For a system that is
assigned to an individual, a secretary in the case of our scenario, this legitimacy
includes user actions through HID. As the attackers have the ability to observe the
interactions between HID and the operating system, the HID interfaces provide a
potential means by which the attackers can characterize the system. It is thus
important to the maintenance of contact that the compromised system appears
to have legitimate user activity at the HID interfaces.

There are many potential ways of providing user interaction that appears realistic
at the HID interface level. First, we may decide to leave the user, the senior
commander's secretary in our scenario, interacting with the compromised system.
This solution is very simple as it does not involve additional personnel or special
technology. This approach is not always feasible however, because it restricts the
user's ability to perform regular duties because of his/her involvement in the
intelligence operation. The intelligence collection operations may also be
classified at a level higher than the user’s security clearance. Finally, concerns for
the privacy of the user may also make this approach impractical.

Defenders could capture HID interface level user activity and replay it as a second
approach to the generation of user activity at the HID interface level. This would
ensure that the HID interface activity is statistically consistent with a user of the
system, which is good since the attackers can use statistical analysis to
characterize the system (as discussed in section 1.3.2). This would also prove to
be inexpensive to implement. However, attackers who maintain state information
about the compromised system could detect this approach by realizing that the
same activity is taking place more than once. Such an approach is likely to not
pass the local semantics requirements discussed in section 1.3.3. Further,
replaying HID interface level user activity would likely not allow the defenders to
prepare the attackers for some types of further operations, such as planting
specific information on the compromised system for the attackers to find. This
approach would thus fail the third operational objective described in section
1.2.2.

A third alternative would be to have intelligence operators or analysts generate
HID interface level activity on the compromised system by interacting with it. This
approach would clearly provide a realistic HID interface level environment, and it
would allow defenders to enter arbitrary information on the compromised
system, thus possibly preparing the attackers for further network operations.
However, this approach would be prohibitively expensive. Intelligence operators
and analysts are highly trained resources; they possess specialized skills and they
have gone through an onerous security screening process. Because they can be

11

employed in very sensitive operations and other specialized intelligence activities,
one can surmise that their skills are highly valuable. While it appears that using an
intelligence operator or analyst to simply interact with the compromised system's
user interfaces is a very inefficient use of valuable resources, a comparative
analysis of the costs falls outside the scope of the current research. We will
nonetheless reject this approach as not feasible.

The fourth alternative being advocated by this research suggests a way to
automate the generation of user activity at the HID interface level. The approach
described in Chapter 3 is superior to the three alternatives discussed above
because it does not involve the compromised system’s regular user, or that of
valuable intelligence operators or analysts, it does not violate the local semantics
that the attackers could detect through sampling of the HID interface event
stream, and it allows for the introduction of arbitrary text on the compromised
system.

1.5. Statement of Deficiency
The reactionary RCR response to a compromised system inside a friendly network
described in section 1.2.1 is deficient because it breaks contact with the attacker;
in order to seize the initiative and gather useful intelligence, defenders must
maintain contact with the attackers on the compromised system. We have
advocated for the use of an NCSO as a means to gather intelligence, and we
discussed the objectives that can be met by such an NCSO in section 1.2.2. This
section aims to show how the research fits in the greater scope of NCSO.

Much work needs to be done to effectively employ NCSO. Organizations must
accept that they are necessary, and new tools must be developed in order to carry
them out, as detailed in previous publications [5] [6]. More specifically, the NIST
tools must fulfil the following three requirements:

1. surreptitiously observe attackers actions on the compromised system,
2. limit the damage that attackers can cause from the compromised

system, and
3. provide a realistic environment on the compromised system to keep

the attackers engaged.

Observation of attackers on the compromised system is necessary to the
collection of intelligence. Attackers are by definition non-cooperative, and will
therefore not assist defenders in their observation efforts. In order to keep
attackers from changing their behaviour, thereby invalidating collected
intelligence, the observation must be made surreptitiously. Surreptitious
observation is made difficult by the fact that attackers have administrative

12

privileges on the compromised system, with the abilities discussed in section
1.3.1. Various techniques have been investigated to carry out surreptitious
observation using virtual machine monitors [9] [10] and rootkit technologies [11],
but much work remains to be done. The need to surreptitiously observe the
attacker also affects how the other two NIST requirements can be fulfilled.

There are risks associated with the conduct of NCSOs. While the benefits of the
collected intelligence can make the risks acceptable, efforts must be made to
control the many forms of damage that attackers can cause using the
compromised system. For example, attackers can use a compromised system as a
foothold to carry out network reconnaissance or to prosecute attacks deeper into
the network on which the compromised system resides. Serious liability or
damage to the defenders’ reputation can also occur if attackers are able to use
one’s compromised system as stepping-stone to attack other systems that reside
on the networks of partners, friends or allies. There exists a trade-off between
controlling the actions of the attackers and remaining undetected by them
because the actions taken by defenders to control compromised systems can alert
attackers that their activities have been discovered. This concept has been
introduced in [5] and it remains an open area of research.

The third series of tools required by the NIST toolset aims to ensure that the
compromised system appears realistic to the attackers. Attackers wish to derive
benefits from the high value computer systems that they compromise; we
surmise that they are therefore likely to explore them in detail in order to become
familiar with their contents (be that files, accounts, installed applications, etc) and
their operating environments such as what applications are installed, which
processes are running, etc. It is not surprising that the research literature does not
contain details of the ways in which attackers will characterize compromised
computer systems, but we argue that any significant changes to the way in which
the compromised system is used can tip off the attackers that they have been
discovered. Recall from our Operational Scenario (section 1.4) that the NIST is
activated after a system has been compromised, but none of its tools can be
deployed on the compromised system after the compromise is discovered. In
order to keep the attackers engaged, the compromised system environment
cannot change to become unrealistic. For example, adding or removing
applications or processes that render the compromised system inoperative after
the compromise are likely to tip-off the attacker that they are under observation.

1.6. Aim
While the attackers’ characterization of the compromised system can take many
forms, we argue that it may include the monitoring of USB HID. Indeed, attackers
who compromise a user workstation such as the one described in our Operational

13

Scenario would easily notice if the USB HID activity stopped on the compromised
system. The automatic generation of USB HID events on a computer system is
therefore important, and the automatic generation of mouse and keyboard HID
events is the specific problem tackled by this research.

The aim of the research is to develop a conceptual framework for the automatic
generation of HID events in a manner that, when observed by attackers, is
consistent with a human inputting text into a computer system.

A readily available means of generating USB HID events would be to simply record
them, and replay them on the USB of the compromised system under
observation; this approach is not suitable to meet the needs of NCSOs. The
attackers against whom we wish to collect intelligence are deemed to be
sophisticated and highly motivated. Such attackers are not easy to fool, which
would make it likely that the replay of HID events on the USB would be detected.
There is therefore a need to present the attacker with HID activity on the USB that
is consistent with HID events generated by a human inputting text into the
compromised system4. The operational scenario presents a hypothetical situation
where the maintenance of contact with the attackers is desired, but it also
highlighted the opportunity to use the compromised system as a means to feed
certain desired information to the attacker. This research therefore proposes a
means to generate HID events that are associated with the input of arbitrary text
into the compromised computer by a synthetic user.

The conceptual framework resulting from this research encompasses an HID
Event Generation Process (HGP) which produces a series of HID events
corresponding with the inputting of text into a computer system. The HGP uses a
pipes and filters architecture which accepts a target document containing
arbitrary text as its input, and produces a series of HID events along with inter-HID
event delays, which corresponds to the inputting of that target document on the
compromised computer system.

In the context of this research, a conceptual framework is taken to be the
definition of the inputs and outputs of each stages of the HGP, along with the
lexicons that are used by the stages. The conceptual framework also provides a
design of each of the transformations that implement these stages, and
descriptions of the use of models of user personality.

4 We refer to the notional user which the framework emulates as the Synthetic User for
the remainder of this dissertation.

14

The automatically generated HID events will be considered consistent with those
generated by a human inputting text if the attacker is unable to distinguish the
former from the latter as shown at Figure 2. Recall from section 1.3 that the
attackers have some capabilities on the compromised system, but that their
desire to remain unobserved imposes limitations on what they can do.

In order to produce HID events that are consistent with a human user inputting
text into a computer system, the HGP utilises models of user behaviours. These
models detail the HID proficiency of the user, therefore allowing the framework
to generate HID events representing errors associated with the use of HID such as
typing mistakes or mouse movement errors. Because there are often many
different but equivalent ways to edit a document while inputting text, the user
models also represent the user’s preferences in terms of editing actions. Attackers
have the ability to stream portions of the HID event stream (Section 1.3.3); the
HGP therefore also includes composition errors that ensure that the generated
HID event stream is consistent with a human user composing text as it is inputted
into the compromised system. The various models of user behaviour allow the
HGP to be parameterised to represent different synthetic users in a consistent
manner.

The HGP describes the generation of HID events for a mouse and a keyboard.
While there are many different HID, we believe that the mouse and keyboard are
representative of the major activities involved in the inputting of text, namely
typing, pointing and selecting. The pipes and filters architecture chosen to
implement the proof-of-concept application can be extended to include the use of
other HID and we deem the use of these two HID devices sufficient to
demonstrate that the automatic generation of HID events is possible.

Text is entered in a computer system through an application. There is a wide
variety of applications used for this purpose, but many share a certain number of
characteristics. Each of them has a text entry area that can be thought of as a grid
of columns and rows, and each has commands used to carry out various actions.
We chose to use Microsoft Notepad in the implementation of the proof-of-
concept HID Event Generation SUE application. We believe that this is sufficient to
demonstrate the feasibility of the proposed framework.

The automatic generation of HID events is necessary to maintain contact with
attackers who have compromised computer systems. While this will likely not be
required widely in the defence of computer networks, it is very important for
NCSO. While the deployment of NCSO is not likely to be widespread, they are
required in limited but very serious situations where network defenders require
intelligence on attackers [6].

15

This research has developed a complete HGP pipeline that takes arbitrary text as
its input, and generates a sequence of mouse and keyboard HID events that are
consistent with a human user composing text when placed on the USB. Each stage
of the pipeline has been designed, along with the models on which the pipeline
depends.

1.7. Validation Approach
To the best of our knowledge, current literature does not detail any research into
the generation of the HID events associated with the production of arbitrary text
in a manner that is consistent with a human using a plain-text editor. While this
gives an indication of the originality of the work, it also means that it will not be
possible to validate the proposed HID event generation framework against other
known works. The validation of the work will therefore be done argumentatively
through the structured reasoning that is discussed in this section.

We have briefly discussed why we believe that the problems associated with the
maintenance of contact with attackers on computer networks are important to
NCSOs; Chapter 2 – Literature Review further demonstrates that this problem is
real and valid. The chapter will discuss the emergent field of Cyber Deception to
show that this is a promising area of research. Honeypots and Honeynets have
been proposed as means to learn about attackers, and the chapter will discuss
those and demonstrate why they are insufficient for the NCSOs discussed in
section 1.2.2. The chapter also discusses how attackers are willing to spend
considerable time, energy and resources into the characterization of the
computer systems that they compromise by a discussion of vitality detection,
which form the basis for three of the five models of User Personality.

Having argued that the problem identified in section 1.6 is real and valid, Chapter
3 – HID Event Generation Process presents the proposed framework. The
framework takes as its input a TargetDocument and it produces the HID events
and inter-HID event delays corresponding to a synthetic user entering this text in
the compromised system through the following stages:

1. Extraction of syntactic elements such as words, numbers, sentences,
paragraphs, etc from the TargetDocument to populate a Document
Production Model (DPM)

2. Introduction of Composition Errors in a DPM according to the Composition
Model and Typing Accuracy Model

3. Modification of the DPM to represent the selection of Editing Actions in
accordance with the Editing Model

16

4. Augmentation of the DPM to represent the addition HID events which
represent the use of the keyboard and mouse in accordance with the
Editing Model

5. Introduction of Mouse Errors in the DPM in accordance with the Mouse
Accuracy Model

6. The generation of HID Events, namely Keyboard Output Reports and
Mouse Output Reports, which can be placed on the USB of the
compromised system

7. Introduction of inter-HID event delays in accordance with the HID Timing
Model

Because the HID events automatically generated by the synthetic user must be
consistent with those entered by a human user, the chapter describes the models
of user personality that are used to introduce errors in the synthetic user
composition task, as mentioned in the stages above. We argue that the proposed
framework proposes a realistic environment that is not likely to bring the
attackers to alter their behaviour on the compromised system, and thus makes
the collection of intelligence on them possible.

Following Chapter 3, argues that the proposed framework is a valid solution to the
real problem described by the research aim. Chapter 4 – Proof of Concept SUE,
discusses the proof-of-concept SUE application which accepts arbitrary English
free-text and produces a series of HID events that represent the composition of a
TargetDocument on a compromised system running Microsoft Notepad. The SUE
implements a thread of execution through the HGP to demonstrate the feasibility
of the HGP. The SUE implements the aspects of the HGP that deal with keyboard
events, but it does not implement those dealing with mouse events. Aspects of
every stage of the process have therefore been implemented, except for Stage 5
that deals strictly with mouse events.

While it would have been interesting to implement every aspect of the HGP in the
SUE, we chose to omit some because of equipment limitations and because we
argue that they are not required to demonstrate feasibility. Chapter 4 presents
our proof-of-concept requirements, gives the details of the implementation of the
SUE and provides detailed arguments explaining why we believe that what was
implemented was sufficient to demonstrate the validity of the HGP.

Chapter 5 – Summary and Conclusion concludes this dissertation by highlighting
the shortcomings of other research efforts, namely in the areas of network
intelligence collection and honeypots. It also discusses why we believe that the
research aim has been met by the proposed framework and why the proof-of-
concept SUE application demonstrates that the approach is valid. The chapter also

17

highlights/ the unique contributions of the research and it will discuss avenues of
future work.

CHAPTER 2 : LITERATURE REVIEW
2.1. Chapter introduction
We have established the need for collecting intelligence on attackers when an
organization decides to maintain contact with them on a compromised system as
is the case in NCSO throughout Chapter 1. It is well established that attackers and
defenders are engaged in a sort of electronics arms race. Defenders discover
some of the vulnerabilities that are being exploited and deny attackers their use;
in response, attackers move on to exploit other vulnerabilities and the cycle
continues. A similar cycle takes place in terms of intelligence collection and
disinformation. Defenders want to collect information about attackers and
attackers are willing to go through significant efforts to ensure that they are not
observed.

In this chapter, we will look at honeypots as a means of collecting information on
attackers, and discuss why they fall short of meeting our research aim. We then
examine literature on Cyber Deception to demonstrate that it represents a
significant area of research in computer security and argue that this research
contributes to this field. The last section of this chapter will examine how
attackers may characterize a computer system in order to determine the presence
of a human user, which we call Vitality Detection, and which forms the basis for
some of the Models of User Personality discussed later.

2.2. Honeypots
We have previously discussed the need to give attackers a realistic target with
which they can interact. The idea of watching attackers while they are penetrating
systems is not new; it was suggested as early as 1989 by Clifford Stoll in a book
entitled The Cuckoo’s Egg [12], and Bill Cheswick’s paper An Evening with Berferd
[13]. The premise is that if it is possible to examine attackers at work, defenders
may be able to learn about their motivations and techniques. This in turn can
provide useful information for designing protection systems and procedures.

This section will discuss honeypots as a means of creating such a target. We will
discuss the premise and definition of honeypots, various classifications schemes
for them, and conclude with a discussion of attackers’ efforts to detect
honeypots.

Honeypots are applicable to this research, as important parallels can be made
between them and the HGP framework described therein. Like the framework,
honeypots help learn about attackers. Because honeypots are deployed on many
networks, the research community has had opportunity to observe how attackers

18

19

react to them; from this, important parallels will be inferred about the potential
reaction of attackers to the framework. The section will conclude with a summary
of the shortcomings of honeypot research in addressing the proposed research
problem.

2.2.1. Premise and Definition of Honeypots
It is possible to learn a great deal from observing the activity of attackers on an
organization’s actual production systems5. Systems that access large networks
such as the Internet are constantly connecting to other computer systems. Many
of these connections are legitimately initiated by the user, or by processes acting
on the user’s behalf, but many of these are the results of scans initiated by other
systems [3]. It can be extremely difficult to distinguish between genuine use by
the production system’s user and potentially harmful activity by attackers.
Consider a simple example dealing with the http protocol. A typical Web page
accessed by a browser can contain many different links to a wide variety of
servers. When users access an on-line news service (such as www.cbc.ca/news)
they will be seeing hypertext from the CBC, but they will also likely see
advertisements from sponsors. These advertisements typically originate with a
third-party organization, and not from the news agency. Most production systems
also have a wide variety of active processes that permit many conveniences such
as email, network file services, print services, etc. Many of these processes
communicate with other systems on the network, generating traffic. When
observing a compromised system, the attack activity becomes obfuscated by the
legitimate use of the production system, and is thus difficult to detect, isolate and
analyze. The security analyst is condemned to finding the proverbial needle in a
haystack.

Enabling the observation of the attackers’ activities is the premise behind the
concept of honeypots. A honeypot is defined as a security resource whose value
lies in being probed, attacked or compromised [3]. In this definition, a honeypot
has no production value. The system should not be requesting any services from
servers on the network and it should not offer any services to clients. Discovering
attack traffic then becomes trivial because any connection or connection attempt
to or from the honeypot is suspicious in nature.

Honeypots have been credited with many successes in detecting attacks and
observing attacker behaviour. They have been used to capture information to
track down spammers that send unsolicited emails [14] [15], to identify and track

5 Production Systems are taken to mean those computer systems that are used by the organization
for its core function. They are not specifically designed to learn about attackers.

http://www.cbc.ca/news

20

individuals that defaced Web sites, and to discover a zero-day6 Distributed Denial
of Service Tool [16]. In an extensive study at the Georgia Institute of Technology,
honeypots were used to capture the exploitation pattern of Internet worms by
collecting data on how they propagated across the network. The information
captured by the honeypots also led to the discovery of many infected systems on
the local network, and they were useful in discovering poor computer security
practises by some network users [17]. This is a short sample of exploits discovered
by honeypot technology; the reader is referred to the following sources for a
more extensive treatise on the topic in the field of web exploits [18], botnet
detection and analysis [19] and wormhole detection [20].

2.2.2. Honeypot Risks
There are two major risks associated with the use of honeypots: being used as a
stepping-stone, or being discovered. The honeypot can be used as a launching
point (a so called stepping stone) for an attack on another system. This can be
particularly damaging to the organization hosting the honeypot, as the honeypot
may have better access to other systems inside the organization’s security
enclave. The organization hosting the honeypot must therefore be concerned
with the risk to its own production systems, with damages to its reputation with
allies and partners, and with legal liability resulting from damages to other
systems launched from the honeypot.

There is also a risk that the attackers will discover that they are on a honeypot,
and not on a production system. As we will discuss in section 2.4, attackers will go
to great lengths to characterize the systems that they have compromised to
discover if they are legitimate production systems. Attackers that discover that
the system they have compromised is not legitimate have many options: they can
stop interacting with the compromised system, they can retaliate by causing
damage to the compromised system or other systems belonging to the
organization hosting it, or they can mount a disinformation operation, by
supplying erroneous information to the defenders observing their actions. This
third response by the attacker is the worst from the perspective of this research,
as it invalidates the defenders’ observation of the attackers and wastes resources.

2.2.3. Honeypot Classification
Before an organization deploys honeypots, it must have a clear purpose for their
use. The preceding paragraphs have given some examples of their benefit, but it is

6 Zero-day is used to describe an exploit that was as yet undiscovered by the computer security
community.

21

worthwhile to have a more thorough look at their value. Spitzner suggests that
there are two types: production and research honeypots [3]. Production
honeypots should not be confused with production systems, which are central to
an organization’s core business or operational functions. Production honeypots
are there to help secure the production systems. They are used to detect attacks
and to detract attention from production systems. Spitzner draws a parallel to law
enforcement: production honeypots are there to catch the bad guys so that the
organization can deal with the immediate threat. It is usually not necessary to give
attackers a lot of functionality when we only want to catch them, so production
honeypots tend to be easy to deploy and many production honeypots come as
easily installed applications. Research honeypots on the other hand are designed
to gain information about attackers. In order to gain information about the
attacker community writ large, the researcher may be willing to sacrifice some
short-term security objectives such as patching every hole in the defence
perimeter. In order to be able to gather intelligence, attackers must be given a
reasonably realistic system to interact with. This tends to make the deployment of
research honeypots more resource intensive.

While it is true that production honeypots have had success in helping to protect
organizations, they are not the focus of this work. This work is aimed at gathering
intelligence on attackers, it is therefore necessary to examine ways of gaining
knowledge about specific threats. Responses to these types of threats have not
been well documented in the open literature, and different kinds of tools will be
required to properly address them. As discussed in section 1.5, this research
investigates tools that can be used to turn a compromised system into a tool to
collect intelligence data about the attacker. While such tools are similar in some
ways to honeypots, they do not fit the definition of either production or research
honeypot; it would more appropriately be defined as an intelligence-gathering
tool.

Along with making a distinction between production and research honeypots,
Spitzner also proposes a taxonomy that is based on the functionality given to the
attackers once they have gained access to the honeypot [3]; such a classification
may also be useful with regard to this research. A honeypot may be classified as
low, medium, or high interaction, depending on how much the attackers are
allowed to do with the system. In order to achieve a higher level of attacker
interaction, while still maintaining control over what the attackers can do with the
honeypot, more effort will have to be devoted to the honeypot configuration,
deployment and maintenance. As we discussed in section 2.2.2, using honeypots
can be risky. We must keep in mind that the more functionality the attacker is
given to interact with the honeypot, the greater the risk. Table 2.1, taken from
Spitzner, summarizes the trade-offs between the level of interaction afforded the

22

attacker, the work required to install, configure, deploy and maintain the
honeypot, the potential information gathering ability of the honeypot, and level
of risk associated with its use.

Table 2-1 Tradeoffs between Honeypot Interaction Levels [3]

 Work to Install and
Configure

Work to Deploy and
Maintain

Information Gathering
Potential

Level of
Risk

Low Easy Easy Limited Low

Medium Involved Involved Variable Medium

High Difficult Difficult Extensive High

Low-Interaction Honeypots
Low interaction honeypots are easy to install and configure. In fact many ready-
made solutions such as NFR Security’s Backofficer Friendly (now rolled into
Checkpoint Security’s threat prevention appliances [21]), and others come as pre-
packaged applications. Instead of mimicking a complete operating system, the
honeypot only emulates a few specific services, and attackers are given limited
interaction with those. For example, the honeypot may be emulating an FTP
server by giving attackers a login prompt and capturing the account name and
password used to attempt access along with other details about the login session.
The honeypot could also emulate a file transfer service, allowing the attacker to
download files that have no production value for the organization.

The main purpose of low-interaction honeypots is detection, and they are
particularly useful at detecting network scans and unauthorized access attempts.
Because they look for well-defined attacks, low-interaction honeypots are very
efficient at recognizing known threats and they can be easily configured to alert
system administrators when such attacks are detected.

Low-interaction commercial solutions are stable and usually require little work to
set-up, deploy or keep in operation. Because they are only looking for known
attack patterns, it is usually not necessary to give attackers a lot of functionality.
This allows the organization to limit the potential damage that can be done by the
honeypot by putting in place some very strict data control mechanisms. If data
control is well executed, it can greatly limit the damage that can be wrought by a
low-interaction honeypot.

23

Low-interaction honeypots require less work and represent less risk than medium
or high-interaction honeypots. However, because they only look for known attack
patterns, low-interaction honeypots are not very useful for discovering new
attacks or novel ways of carrying out known attacks.

Medium Interaction Honeypots
Medium-interaction honeypots attempt to emulate services with more fidelity
than low-interaction honeypots, while still not deploying a full version of the
services being presented. Spitzner gives the example of a medium-interaction
honeypot deployed to gain information about an Internet worm targeted at a
Microsoft IIS server. While a low-interaction honeypot might only log connection
information from the attacking system, a medium-interaction honeypot would
establish the connection in a way that is consistent with the emulated IIS server. It
is hoped that if the honeypot is configured properly, the worm will upload its
payload following what it deems to be a successful connection, and the honeypot
will be able to capture it. Because of the limited functionality given to the
attacker, user-mode servers such as chroot and jail would typically be
categorized as medium-interaction honeypots in Spitzner’s taxonomy.

This increase in the potential information collected makes the medium-
interaction honeypot useful in a more active network defence posture. In the
previous example the worm was allowed a connection with the honeypot’s
operating system, but only through the emulated service. Because the worm has
not connected to the actual service it was targeting, the payload will not have its
desired effect. While this offers some protection, such a medium-interaction
honeypot is riskier than a low-interaction honeypot, and requires significantly
more effort to deploy and maintain. The gain in the information that can be
potentially collected by the honeypot may be offset by the extra work required to
keep the honeypot from becoming a risk to other systems.

High-Interaction Honeypots
Spitzner argues that the best way to observe attackers at work (and thus gain the
maximum amount of useful information) is to give them a complete system with
which to interact, and this is precisely what takes place in high-interaction
honeypots whose goal is to give attackers access to a real OS where nothing is
emulated or restricted [3]. A high-interaction honeypot is very often configured in
an attempt to appear indistinguishable from the production systems deployed on
the network, except that it has no production value. The high-interaction
honeypot affords the most comprehensive opportunity for learning about the
attacker’s techniques, because it allows the attacker to interact with an entire
operating system. However, this means that attackers have many resources with
which to cause damage to an organization’s networks. Attackers may also be able

24

to use the resources of the compromised high-interaction honeypot to launch
attacks against other targets, exposing the organization hosting it to potential
liability or costing it good will with friends, partners or allies.

To mitigate the potential damage done by attackers, and therefore reduce the risk
to the organization hosting the honeypot, much effort must be expended to
control the compromised honeypot. The honeypot will therefore usually be
deployed in a controlled environment, such as behind a firewall in a specially
configured network zone with other assets having a similar security policy [22].
The firewall will be configured to allow the attackers to reach the honeypot to
compromise it, but will restrict their ability to use it to attack other systems. It
may completely prohibit connection attempts emanating from the honeypot, or it
may use techniques such as limiting the bandwidth leaving the honeypot or
introducing delays. The configuration of such a firewall can be complex and
requires significant time and effort. As was illustrated in Table 2-1, high-
interaction honeypots have the greatest potential for gathering information about
attackers, are the most difficult to install, configure, deploy and maintain, and
represent the greatest risk to the organization.

2.2.4. Applicability and Shortcomings of Honeypots to NCSO Research
The classification scheme proposed by Spitzner shows a hierarchy of categories
which focuses on the level of interaction afforded to attackers with high-
interaction honeypots at the top. The classification scheme recognizes that there
is a correlation between the amount of effort devoted to the set-up and
administration of the honeypot and the value of the potential information gained
from it. Spitzner also discusses the trade-off between the level of interaction (and
by extension the potential value of the information) and the risk to the
organization. As was discussed in section1.2, we believe that there is some value
in maintaining contact with attackers in order to gather intelligence with respect
to their identity and motives. Honeypot technology has been used primarily to
learn about attackers’ tools and techniques; we believe however, that it is still
useful to examine the HGP described in this research in terms of Spitzner’
classification scheme.

Recall the scenario used to motivate the current research from section 1.4. Such a
system would be subject to the organization’s maintenance policy, and it would
benefit from the organization’s patch and update cycle. While it is possible that
the compromised system on which an application implementing the HGP is
deployed may not be perfectly maintained, it would be as up to date and secure
as any of the other production systems; the system is not purposely kept insecure
to attract attackers as is the case with weakened systems. In that context, the
deployed application is similar to Brenton’s hardened system [16].

25

While honeypots have contributed to computer security, we argue that they are
not sufficient for the gathering of intelligence on attackers for three reasons:

1) NCSOs are deployed on systems with production value,
2) honeypots do not provide a realistic environment and
3) honeypots cannot prepare attackers for future operations. All three of these

reasons have been deemed necessary in our discussion of deficiencies
(section 1.5).

In section 2.2.1, we have stated that a honeypot has been defined as a system
that has no production value; this fact bears repeating because it represents the
first shortcomings of honeypots in the prosecution of NCSOs. The HGP is meant to
be activated on a production system after it has been compromised, and this is
necessary to maintain the attackers’ interest. We argue that it will not be possible
to maintain the contact required to prosecute an NCSO if an attacker is somehow
moved from a production system that they have compromised to a honeypot.

Spitzner advocates for putting in place stringent control measures to ensure that
a honeypot cannot be used to damage production systems; this is the second way
in which honeypots are deemed inadequate for the prosecution of NCSOs. To fool
the attackers, they will have to be afforded complete control over the
compromised system, and the measures put in place to limit its use will have to
appear to be legitimate with respect to the organization’s network administration
and security policies. Any attempts at restricting what the attackers can do with
the compromised system, as deemed necessary in honeypot deployment, will
increase the probability that attackers will discover that the compromised system
is not a high value target. Furthermore, honeypot deployments do not provide
activity at the HID interface level as proposed in this research.

Finally, honeypots’ lack of production value makes them unsuitable for the
preparation of attackers for other operations. The sophisticated attackers against
whom NCSOs may be launched are likely to be knowledgeable and not easily
fooled. If defenders want to prepare attackers for future operations, they will
have to provide them with information that attackers deem to be of value which
is by definition not found on honeypots. These three facts argue in favour of the
idea that attackers will not be deceived by honeypots.

2.3. Cyber Deception
Recall that this work argues that in order to gather intelligence on attackers, we
must keep them from altering their behaviour on the target system. We are
therefore very interested in deceiving the attacker and we argue that this work
will fit well within the corpus of literature on computer security deception. While

26

there are many works on cyber deception in specific contexts [23] [24]and
software decoys [25]; this section will review two important works from this
corpus that deal with cyber deception in general. We will adopt Yuill et al.’s
definition of deception as those actions that are taken to deliberately mislead the
attackers and to thereby lead them to take (or not to take) specific actions that aid
computer security [26].

Work by Yuill et al. for the US Department of Defence suggests that deception
can serve an important or even indispensible role in computer security [26]. The
work argues that it is important to consider computer security deception as being
carried out in a large context, and therefore discusses the concept of Deception
Operations. This view that deception fits within a larger context is in accordance
with this work and it fits well with the NCSO that we discussed in section 1.2.2.
The authors argue that there are two types of Deception Operations: those that
aim to hide the real and those that aim to show the false.

The Deception Operations process is shown as a process model at Figure 4 [26],
included here by permission. While a complete discussion of this process fall
outside the scope of this research, a few important aspect bear notice. The
process begins with the development of the Deception Operations which aims at
defining the deception objective; this is to induce the target of the deception to
take some action (perhaps to do nothing) and to exploit that action to one’s
advantage.

A deception story is presented to the target during deployment, in the target’s
observation arena. The target of the Deception Operation is then engaged when it
receives the deception story, accepts it and takes the intended action.

Because this research describes a framework that is intended to be used in the
context of a NIST deployed on a compromised system by attackers, the
observation arena corresponds to the system that the attackers have
compromised. This goes to demonstrate that the framework described here is a
valid effort that will contribute to the field of deception for computer security.

It should be noted however that the framework proposed in this research is
different from the work described by Yuill et al. in one key aspect. In contrast to
this research, the work by Yuill et al. [26] presumes that the target of the
Deception Operation’s only view of the computer system consists of network
traffic. This is not the case for those attackers being targeted by NCSOs as they
have the capabilities described in section 1.3.1, including their ability to monitor
and analyse HID events on the USB. This work therefore extends the concept of
Deception Operations to the USB on the compromised system.

27

Work by Rowe of the US Naval Postgraduate School also proposes to model
deception for computer security [27]. Rowe suggests that most defensive
deception efforts for computer security have consisted of degrading the
attackers’ quality of service, thereby encouraging the attackers to move on. Rowe
then improves the deception by modeling the excuses (reasons for denying
service) given to the attackers such as suggesting there are problems with the
attackers’ command syntax, suggesting network delays, saying a resource is
unavailable, etc. Those excuses are ranked as to their likelihood in context and
one is served to the attacker. Rowe envisions such use of deception as a
secondary line of defence when the security perimeter (consisting of firewalls, IDS
and other security appliances) has been breached.

Those concepts have been incorporated in a honeypot prototype that is meant to
attract attackers and waste their time. While such an attacker inconvenience
concept is interesting, it is not directly applicable to the problem that this

Figure 4 - The Basic Deception Process [26]

28

research addresses because NCSO do not seek to attract attackers, rather they are
carried out when defenders have already established contact. Nevertheless [27]
reinforces the validity of this research effort.

Rowe also suggests the use of counter-planning deceptions to foil cyber-attacks
[28]. As an example, imagine a defensive system that can detect an attack by
malware and simulate infection while simultaneously rendering the malware
inert. Specifically, Rowe defines work on obstructive counter-planning, which is
planning to interfere with or frustrate an adversary’s existing plan. To this end, he
proposes MECOUNTER which is an agent-based application that reacts to
attackers’ actions on a compromised system in accordance with defenders’ stated
counter-planning deception objectives. In this work, Rowe also argues that the
major flaw of honeypots is that they do not have production value; therefore, as
we argued in section 2.2.4, a production system as much greater potential to fool
attackers, and thereby enable intelligence collection.

In his paper [28], Rowe discusses the application of classic deception methods
[29] [30] to cyber deception. Of particular interest are the seven deception
methods of conventional warfare as shown in Table 2-2. As stated by Rowe, not
all of these may be applicable to cyber space. Concealment and camouflage are
difficult in the cyber environment because all the information present on a
compromised system is visible to attackers (as per our definition of their
characteristics at section 1.3.1). Similarly, realistic demonstrations and feints are
hard to achieve because of the risks of not following through on a demonstrated
weakness.

29

Table 2-2- Deception Methods of Conventional Warfare [30]

Method Meaning

concealment hiding friendly forces from the enemy

camouflage hiding troops and movements from the enemy by using artificial means

demonstrations making a move with friendly forces that implies imminent action, but
which is not followed through

lies, deliberately dishonest communications with the enemy

feints making a move with friendly forces that implies imminent action, but
following through with a different action

displays making the enemy see what is not there

insight deceiving the enemy by outthinking him

ruses tricks, such as displays that use enemy equipment and procedures

false and planted
information

allowing the enemy to find information that will hurt him while
benefiting friendly forces

2.3.1. Contributions of Research to Cyber Deception
Rowe goes on to demonstrate how his tool, MECOUNTER focuses its efforts on
lies, displays, and insights. MECOUNTER implements these three deception
methods involve the analysis of the potential plans that can be carried out by
attackers on a computer system and their negation through lies, displays or
insights. While a detailed discussion of MECOUNTER falls outside the scope of this
work, we believe that this research extends the application of classical deception
methods to NCSOs.

Rowe dismisses ruses by arguing that it is not possible to surprise attackers who
have compromised a computer system because of the level of control they exert
over that system. In an NCSO, a compromised system is by definition an asset that
is controlled by the attackers. Using a NSIT, including an HGP, on a computer
system that has been compromised by attackers is an effective way of turning it
into a tool to help defenders collect intelligence on the attackers (our aim as
stated in section 1.6).

Section 1.3.3 introduced the concept of local HID semantics; namely the fact that
attackers would be harder to fool if HID events were placed on the USB without
them being semantically valid. This can still leave one to wonder however, why
we go through the effort of modelling user activity at the USB HID level in order to
automate it instead of simply replaying recorded HID events on the USB. This

30

research provides the defenders this capability in order to give the synthetic user
the ability to introduce false and planted information on the compromised
computer system, which may well prepare the attackers for future operations
outside of the NCSO.

2.4. Vitality Detection

2.4.1. Attackers' Motivation
Attackers have an interest in characterizing the systems that they compromise,
especially when those are high value targets as described in our Operational
Scenario at Section 1.4. The HGP described in this dissertation aims at making the
compromised system continue to appear as a high-value production system 7.
Even for superficial compromises such as machines used to send spam, attackers
want to know if they have stumbled on a honeypot, and will even go to the effort
of creating tools to automatically identify the compromised system as a
legitimately compromised host [31]. This desire to characterize compromised
systems has lead attackers to organize in order to share knowledge about
network defence efforts. In point of fact, a group of would-be attackers called the
Phrack High Council was formed in 2002, with the stated aim of creating an
underground revolution against the information security industry and the
disclosure of information on security vulnerabilities, tactics and exploits because
this could lead to effective defence [32].

The sentiment against honeypots is very strong in the attacker community, and
emotions run high. The author noticed many fiery exchanges between would-be
attackers and security researchers on the benefits of honeypot technologies and
the usefulness of the information derived from it. A particularly nasty exchange
between Corey and McCarty took place in 2003, were Corey demonstrates that he
clearly dislikes honeypots [33]. Corey disputes the usefulness of honeypots stating
that the approach is flawed because it is based upon three faulty premises:

1. Honeypot technology may be openly shared and remain effective,
2. Honeypot technology may be deployed in a hostile environment, and

remain undetected, and
3. Even if detected, attackers will not target the honeypot or its operators

for further exploitation.

7 In biometrics [35] it is important to make sure that the biometric token presented is
from a live human, and not copied or stolen. The term vitality detection is used to describe
the techniques used to carry out this verification. Other terms such as liveness detection
or fingerprinting are used in the literature, but wewill use vitality detection throughout.

31

Corey does not provide any evidence to support his argument for the
ineffectiveness of honeypots, but McCarty addresses each of the premises [32].
McCarty retorted that honeypot technology could be effective even if openly
shared because the technology is continuously evolving, because attackers vary in
skill and care and because honeypots are scarce. He thinks that honeypots can be
deployed and remain undetected because researchers are constantly adjusting
them to make them more difficult to detect. In fact, he states that many
researchers in the field consider the creation of hardware tools to make the
detection of honeypots more difficult8; albeit not in the context of honeypots,
such malicious hardware tools have been explored by the author [34]. As we will
explore in Chapter 4, the creation of such hardware tools is similar to the
approach implemented in the SUE, where the HID interface level mouse and
keyboard activity is generated outside the compromised system. Finally, McCarty
states that the risk of having the honeypot attacked might concern the honeypot
operators, but not sufficiently to deter their use. This last point is of more concern
to us, as the organization deploying the HGP could face reprisals or counter-
intelligence operations (as discussed in section 1.5).

2.4.2. User Behaviour Modelling
As discussed in the Threat Model (section 1.3), we argue that it is likely that
attackers will try to characterize the high value compromised system in terms of
its user activity. When attackers have complete remote access to a compromised
system, they are in a position to observe the event stream of the input devices
such as a mouse and keyboard. We argue that it is reasonable for attackers to
attempt vitality detection by observing this event stream. For the HGP to be
effective, it must simulate the use of keyboard and mouse by a human, in a way
that is consistent with real human activity by the attacker. This section will discuss
how user activity can be modelled, in order to simulate the use of the mouse and
keyboard. The section begins with a discussion of Biometrics in computer security;
biometrics is discussed because it can be used to represent models of users, and
the research relies on such user models. The two main components of the HGP
are the modelling and simulation of mouse and keyboard HID events.

Modelling User Activity
Recall from Figure 2 on page 5 that the attacker will characterize user activity by
comparing the user activity derived from the compromised system to models of
user behaviour. These models are analogous to models used in anomaly-based
intrusion detection. In order to facilitate the understanding of the articles that will

8 As we will discuss below, many of the detection techniques used by attackers rely on
differences between a honeypot's OS and a production system OS

32

be discussed in the following sections, we will discuss the modelling of user
activity in general.

 The process of creating models of user activity is illustrated in Figure 5. The
model of user activity is a collection of features of the user activity under study. A
set of user activities, representative of the task at hand, is used to derive
prominent characteristics, called Features. The Model of User Activity is a set of
these features.

The application of models of user activity is illustrated in Figure 6. In order to
characterize the concrete activity of a particular user, we must ask that user to
provide activity samples and analyze these samples to obtain measures for the
features specified by the Model of User Activity. These measures represent a User
Activity Profile, which is a concrete instantiation of the abstract Model of User
Activity. Later, it is possible to examine a sample of Unattributed User Activity,
obtain measures for the features specified in the Model of User Activity, and
compare those to the measures found in the User Activity Profile in order to make
a determination about the probability that the sample came from the user for
whom we built the profile.

Biometrics is useful to the proposed research, because it represents features of
users, and can thus be used to build user models. Biometrics focuses on the
characteristics of the users. Those characteristics may be something unique to
their physical person (physiological biometrics) or something they do (behavioural
biometrics) [35]. Almost every user possesses physiological biometric features
such as fingerprints, iris patterns, palm prints, and voice patterns. Similarly,
features can be extracted from the different ways users interact with a computer
system; such as how they type or how they use a mouse.

This research suggests that it is possible to use these features to differentiate
between users to associate current session use with stored user profiles as
represented at Figure 6.

Figure 5: Generic Modelling of User Activity

Model of
User Activity

Features User Activity

33

Traore and Ahmed [36] discuss the use of behavioural biometrics in the context of
intrusion detection. They argue that physiological biometrics have been used to
verify identity, at the start of a session in order to make access control decision,
but that they have not been used for intrusion detection after initial
authentication for two main reasons. First they point out that physiological
biometric feature extraction requires special hardware (such as a fingerprint
reader or an iris scanner), which limits the network segments on which it can be
used. Second, users must provide some data sample to verify their identity; this
makes physiological biometric features unsuitable for the passive monitoring that
is required in intrusion detection. Behavioural biometrics features, on the other
hand, do not necessarily suffer from these two shortcomings.

Modelling Mouse Dynamics
The HGP included in the NIST will need to simulate the use of a mouse by a user. It
is important to review extant literature in the area of modelling mouse dynamics
because attackers have access to these models. A variety of approaches have
been suggested [37], but two approaches will be discussed in detail here: the
research of Traore and Ahmed and the research of Pusara and Brodley.

Traore and Ahmed introduce mouse dynamics as a new biometric technology in
[38] and [39] before refining the technique [36]. They hypothesize that mouse
dynamics can be used to identify users of a computer system because the

Figure 6: Attributing User Activity to Profiles

User Activity
 Profile

Activity of
Particular User

Extracted
Features

Unattributed
User

Activity
Match ?

Model of
User Activity

 Measures of
Features

34

variations within multiple sessions of a particular user are small when compared
to the variations between the sessions of different users. Mouse dynamics are
defined as the characteristics of the actions received from the mouse, used as a
pointing device by a specific user interacting with a graphical user interface (GUI).
Those actions can be classified in one of four types: Drag-and-Drop (DD), Point-
and-click (PC) general Mouse Movement (MM), or Silence where there is no
movement.

Traore and Ahmed's detector captures mouse activity by creating a log record
consisting of four fields: the type of action (DD, PC, MM or Silence), the distance
travelled (in pixels), the duration of the action (in 1/100 of a second) and the
direction of movement. The direction of movement is expressed as an integer in
the range of [1-8] representing the octet in which the movement occurred; 1 for
0° - 45°, 2 for 46° - 90° and so on. The mouse activity is modelled with the seven
features shown in Table 2-3. Details are given below for the seven features, which
can be logically grouped in five categories: movement speed (MSD), movement
direction (MDA, MDH), action type (ATA, ATH), travelled distance (TDH) and
elapsed time (MTH).

Table 2-3: Mouse Activity Signature Features [39]

Because there is a large amount of data collected, the MSD is modelled by a curve
over the range of distances travelled, and the particular details of this feature are
stored by using 12 equidistant points along that curve. The movement speed is
characterized by recording the average speed in each octant (MDA) and the
proportion of all movements in each direction (MDH). A similar characterization is
done for the action type features, by recording the average speed for each type of
action in ATA (based on PC, DD and MM).

Factor Ranges Units

Movement Speed compared to Distance Travelled (MSD) 25 – 800 Pixel/Sec

Average Movement Speed per Movement Direction (MDA) 25 – 800 Pixel/Sec

Movement Direction Histogram (MDH) 1 - 8 octet

Average Movement Speed per Types of Actions (ATA) 25 – 800 Pixel/Sec

Action Type Histogram (ATH) 0 – 100 %

Travelled Distance Histogram (TDH) 0 – 100 %

Movement Elapsed Time Duration Histogram (MTH) 0 – 100 %

35

The ATH is a histogram that has a bin for each of the four action types, indicating
the proportion of actions that fall in each bin. Similarly, the TDH gives an
indication of the proportion of the distance travelled for each mouse movement;
this histogram is described with nine equidistant bins from 0 pixels to the screen
width9. Finally, the MTH illustrates the distribution of the number of actions
performed by the user within different time bins during a session.

Traore and Ahmed observe that the first few bins of TDH and MTH are sufficient
for classification purposes because shorter distances and times are much more
likely than longer ones. This allows them some economies, because although both
these factors are open-ended, the detector can classify users by using only the
first two bins for TDH and the first three for MTH. It should be noted that
although the system can derive Silence actions using the time elapsed in between
PC, DD and MM, it does not use silences for session classification.

The detector is implemented using client/server architecture as depicted in Figure
7, included here by permission. The client portion of the system is installed on
each potential target, and it is responsible for capturing mouse and keyboard
data, converting them into more meaningful behavioural biometric features and
passing these to the server. The server analyzes the data and computes biometric
user profiles.

Like other biometric systems, the detector functions in two modes: enrolment
where a base user profile is created, and identification/verification where a
session profile is captured and compared against user profiles. The detector
controls the duration of the mouse and keyboard data capture period. It is
important to realize that the user is not alerted to the fact that data is being
captured. This fact, coupled with the absence of specialized data capture
hardware, enables authentication throughout the user session.

Traore and Ahmed validated their concept with a small-scale experiment to show
that it is possible to detect masqueraders, defined as users pretending to be
someone else. The participants (nt = 22) installed the client software and used
their PC for conducting routine activities. Their mouse and keystroke data was
collected for an unreported number of sessions. The set of participants was
separated into legitimate users (nl = 10) and unauthorized users (nu = 12). An
unreported fraction of all sessions from each legitimate user was used to create a

9 The authors used a screen 800 pixels large, thus explaining the ranges found in Table 2-3:
Mouse Activity Signature Features [39].

36

base profile. For each legitimate user, the researchers used sessions from the
other 21 users as representative masquerade attempts.

This resulted in an Impostor Pass Rate (IPR) of 0.00651. The IPR represents the
proportion of impostor access attempts that are erroneously authenticated to a
legitimate user of the system. The researchers also used the sessions from
legitimate users that were not used to compute the base profile, and ran those
through the detector. This resulted in a False Alarm Rate (FAR) of 0.01312. The
FAR represents the proportion of legitimate users of the system that were not
properly authenticated.

Pusara and Brodley [40] have also proposed the use of mouse movements to
carry out user re-authentication. The technique uses mouse data to generate a
profile for each user. The profile is built during a training phase, and later activity
is compared to that profile. During the subsequent re-authentication phase,
significant differences between the observed mouse activity and the profile are
flagged as anomalous.

Figure 7: Detector Architecture [38]

37

The profile is built using cursor locations (X; Y screen coordinates) sampled using a
clock and also at the occurrence of mouse events which are defined using six
mouse event categories represented by Figure 8, included here by permission.
The Mouse Events are represented in a hierarchy with Mouse Events at the top
level. The Mouse Events are broken down into three sub categories at the second
level of the hierarchy: Mouse Wheel, Clicks and Non-Client Area Moves. The non-
client area is defined as the area of the application window containing the menus
and tool bars. The Clicks are further divided into Single Clicks and Double Clicks at
the bottom level of the hierarchy. Each of the Mouse Events, Mouse Wheel,
Clicks, Single Clicks, Double Clicks, and Non-Client Area Moves categories are used
in the creation of the profile.

The profile combines information about mouse movements (derived from the X, Y
screen coordinates) and the six mouse event categories into numerous features.
The screen coordinates are sampled every 100 ms to derive general movement
data, and they are recorded every time a mouse event is detected to sample
mouse event data.

Mouse movement data (either general or associated with a specific mouse event
category) is derived from the cursor screen coordinates by calculating the
distance, angle and speed between pairs of screen coordinates. Although the
coordinates in a pair must be time-ordered, they need not necessarily be
consecutive. This is accomplished by waiting for k data points to pass before
making the distance, angle and speed calculation. This parameter k is called the

Figure 8: Mouse Event Categories [40]

38

frequency and it allows for data reduction by effectively implementing a sampling
rate of 1 k� .

The frequency value set used in Pusara and Brodley's experimentation was {1, 5,
10, 15, 20}. The amount of mouse movement data is further reduced by
calculating the mean, standard deviation and third moment value of the extracted
movement data (distance, angle and speed between coordinates) over a window
of N screen coordinates. The window sizes considered during experimentations
were {100, 200, 400, 600, 800, 1000}.

The technique derives the mouse event data in a similar way. For each of the six
mouse event categories, it computes the distance, the angle and the speed
between pairs of cursor screen coordinates (sampled at the time of the mouse
events) using a specified frequency k. The creation of the profile for each user
follows three steps:

1. Event count: The technique first takes a count of the number of events
observed for each of the six mouse event categories. This yields six
features: {Mouse Events, Mouse Wheel, Clicks, Single Clicks, Double
Clicks, Non-Client Area Moves}.

2. Mouse movement: The technique then computes mouse movement data
for each mouse event category and general mouse movement data (from
the screen coordinates sampled every 100 ms). Once again, it does this by
computing the mean, standard deviation and third moment value with
regard to the distance, speed and angle between pairs of successive
cursor screen coordinates for each mouse event category. The technique
also computes the mean, standard deviation and third moment value with
regard to the distance, speed and angle for pairs of screen coordinates
(sampled every 100 ms) to derive general mouse movement data. This
yields 63 features: {General Mouse Movement + 6 Mouse Event
Categories} X {Distance, Speed, Angle} X {Mean, Standard Deviation, Third
Moment Value}.

3. Screen Location: Finally, the technique characterizes where the mouse
activity is taking place by computing screen coordinates statistics (mean,
standard deviation and third moment value) for each axis (X and Y).
These statistics are gathered for each mouse event category and for the
general mouse movement data, yielding 42 features: {X; Y} X {General
mouse movements + 6 Mouse Events Categories} X {Mean, Standard
Deviation, Third Moment Value}.

Pusara and Brodley's technique is highly customizable because each of the
6 + 63 + 42 = 111 features derived from the six mouse event categories and

39

mouse movements can be calculated with a different frequency k. When building
a profile during the training phase, frequencies can be chosen to minimize IPR or
FAR during the re-authentication phase.

The technique uses binary decision tree classifiers to flag anomalous data during
the re-authentication phase. A binary tree is built for each registered user of the
system, where each internal node represents a test on a feature. Each of these
tests can result in any two of the following three outcomes: User Recognized, User
Not Recognized, or other test node. The leaves of the tree can only be User
Recognized or User Not-Recognized.

Figure 9, included here by permission, provides an example of classification during
re-authentication for a particular user (User #13). The first feature tested is the
number of non-client area moves; if there are 21 or less the current session does
not match to user #13. If there are more than 21 non-client area moves, the
number of mouse events is tested. The algorithm used to build the decision tree
falls outside the scope of the current research; it suffices to say that the tree is
built in such a way as to maximize the reduction in entropy at each of its layers.

Experiments were conducted using data collected from 18 volunteer students. For
each of the participants, data representing 10,000 unique cursor locations was
collected, over a period of approximately two hours. The participants were using
the same operating system (an unspecified version of Windows) and the same
browser (an unspecified version of Internet Explorer).

Figure 9: Decision Tree Classifier [40]

Number of
NC moves

Number of
Mouse Events

User Not
Recognised

User Not
Recognised

User
Recognised

>21 ≤21

≤60 >60

40

Two experiments were carried out to evaluate the technique: pair-wise
discrimination and anomaly detection. The pair-wise discrimination experiment
was designed to evaluate the differences in behaviour between the 153 pairs of
users. Although the technique was successful in discriminating between many
pairs of users (101 of the pairs had error rates [IPR and/or FAR] below 0.05), it
was impossible to confidently distinguish between the other 52 user pairs with
eight user pairs having error rates of over 0.40.

In anomaly detection, the experiment was designed to see if a particular user X
could be distinguished from all other users. To do this, the researchers created a
supervised data set by labelling X data as normal and all other data as coming
from intruders. Through the use of smoothing filters, the technique reports an
average IPR of 0.43% and an average FAR of 0.0175. The research does not seem
to have manipulated the parameters of the technique to carry out a receiver
operating characteristics (ROC) space analysis. In analysing their results, Pusara
and Brodley conjecture that the users having the highest FAR were those who
were not making much use of the mouse.

Modelling Typing Behaviour
Following the discussion on the modelling of mouse movement, we turn our
attention to typing behaviour10. There is a large amount of published research on
the subject of typing for authentication applications [41]. As previously argued by
the author however [1], that work is of little value to the current research
because it does not deal with English free-text. Although we will briefly discuss
general research efforts, our main focus will be on the efforts of Gunetti et al.

The Traore and Ahmed detector described earlier [38] uses keystroke dynamics as
a second behavioural biometric. The biometric is analyzed by measuring the dwell
time (length of time the key is pressed) and the flight time (length of time to move
from one key to another) between successive keys. The relationship between the
keys is recorded as either a digraph11 or a tri-graph describing the transition
between sequences of two or three keys. Traore and Ahmed offer some
anecdotal evidence of the usefulness of this biometric measure, showing that it is
possible to distinguish between users, but it is not clear how features are

10 The term Keystroke Dynamics is used to describe the dynamics of typing text, but it
usually only refers to the typing of letters. This research models the use of control
characters, and will use the term Typing Behaviour to refer to this more general form of
keyboard use modelling.
11 We use digraph to represent a grouping of two letters to remain consistent with the
literature [35]; the reader may think of a digraph as a pair of characters.

41

extracted from this biometric, or how these features are integrated into the
detector discussed above and depicted in Figure 7.

Other common measures used to characterize typing found in the literature are
the keystroke duration, which is the amount of time that a key is pressed (similar
to Ahmed and Traore's dwell time), and the digraph latency, the interval between
the depression of the first key and the depression of the second. A less common
but interesting new measure called the n-graph duration can be found in [42]. It is
defined as the amount of time elapsed between the depression of the first key
and the depression of the nth key of an n-graph. The n-graph duration is clearly a
combination of the keystroke duration and digraph latencies discussed above. It is
easy to see that one is able to compute the n-graph duration for any value of n by
recording only the time at which each key is depressed.

Typing is done under many different conditions: there are many different
keyboard layouts in use, the ergonomics of workstations vary greatly, and the
difficulty of the text influences the typing task. Because of the limited information
available to model typing biometrics, and because of the wide variability in the
typing task, most research in the field uses fixed text which is defined as a
structured target string that must be typed by the user [42]. Because typing fixed
text tends to be tedious, most research uses short target strings.

As mentioned by Traore and Ahmed, there has been considerable research in the
use of keystroke dynamics for authentication [38]. However, these efforts do not
meet the needs of this research, because they only deal with authentication. The
use of a target string is a major difference between modelling a user's typing
behaviour during authentication (done at the beginning of a session) and general
behaviour during a session. In authentication applications, users are generally
asked to type a target string and the system analyzes the characteristics of the
string being typed to compare its extracted features against stored user profiles,
as depicted at Figure 6 on page 32.

The seminal work in the field of keystroke analysis was done by Gunetti and
Picardi from the University of Torino in Italy (see [43] and most importantly [42]).
In [42] Gunetti and Picardi offer a taxonomy of keystroke analysis based on static,
dynamic, fixed text and free-text. Static refers to a system where a target string is
typed during login, and where the system analyzes the target string after it has
been typed to compare its extracted features to those stored in user profiles.
Dynamic analysis implies that the keystrokes are being monitored during the
session, after the login. However, most dynamic experiments reported in the
literature indicate that the user is still asked to type a target string (or one of a
small number of predetermined strings) during interruptions in the user’s session.

42

In dynamic authentication, the analysis may be done before the user has finished
entering the target string; this is not the case for static analysis done at the
beginning of a session.

In both static and dynamic analysis, the user is asked to enter some form of fixed
text. When the text to be analyzed is not constrained in any way (as is the case
after login during a session), the term free-text analysis is used. The HGP
described in Chapter 4 mimics free-text; it must therefore be modeled.

The typing profiles found in most authentication applications (see [44] [45] [46]
[47]) contain features based on digraph latency and/or keystroke duration. These
features are usually represented as statistics such as means and standard
deviations. When users are challenged for authentication, they provide a typing
sample from which sample statistics are extracted. Those sample statistics are
compared to the profile statistics, and a decision is usually made based on the
result of a statistical test. An alternate technique [48] consists of representing the
profile as a vector, where each element is the latency of an n-graph shared by the
profile and the sample under test. Such a system can determine the probability
that a sample belongs to a profile by computing a Euclidean distance between the
sample and the profile. These applications require large samples to be able to
make statistically valid authentication determinations.

Gunetti and Picardi represent samples as sets of pairs {n-graphs, n-graph
duration}. If the same n-graph is found more than once in a typing sample, the
corresponding pair uses the mean duration. As we will discuss later, this allows
the approach to handle small sample sizes. Consider this example taken from [42],
where two samples E1 and E2 are constructed from the typing of the word
authentication and the word theoretical. The samples would contain the
n-graphs obtained from the following letters (along with their duration):

E1: {a, u, t, h, e, n, t, i, c, a, t, i, o, n}
E2: {t, h, e, o, r, e, t, i, c, a, l}

Testing Samples through Distance Measures
Recall from Figure 6 that the features of the user activity model measured from
the unattributed user activity must be compared to stored user profiles to make a
determination about their provenance. Gunetti and Pacardi test the unattributed
typing activity against user profiles by calculating two measures of the distance12.

12 This distance is used to see how closely the observed activity matches the stored user
profiles; it does not correspond to any physical aspect of the typing behaviour.

43

In order to calculate the distance between two samples, the technique extracts a
subset of {n-graphs, n-graph duration} pairs; only those pairs that are shared
between the samples are used to compute the distance. The technique uses two
different distance measures to compare the unattributed activity and the user
profiles: an absolute and a relative measure. These distance measures are the
features used in Gunetti and Pacardi's user profiles.

The relative measure (R) gives an indication of the relative speed at which users
type n-graphs. The system extracts the n-graphs shared by two samples, and
orders them according to their duration. R is calculated based on the relative
ordering of the shared n-graphs in the two samples being compared. Although the
details of the calculation of the R value will not be explained in this document, R is
represented as a real value between 0 and 1. The reader should note that R
measures completely ignore typing speed. The premise to their use is that if a
user's typing ability is impaired by environmental or physiological factors, all n-
graphs will be similarly affected, and their relative ordering will remain consistent.

For two samples, a single R distance measure is computed for each n-graph type,
and each R distance measure gives an indication of the relative ordering of all n-
graphs shared by the two samples; R2 for all shared digraphs, R3 for all shared tri-
graphs, and so on. It is common for two samples to share more than one n-graph
type. When this is the case, it is possible to calculate a cumulative distance
between the samples by combining the individual R measures.

The absolute measure (A) only considers the speed at which n-graphs are typed.
The system examines each shared n-graph and determines if its mean speed in
one sample is similar to the mean speed of the same n-graph in another sample.
The test of similarity was determined through experimentation. The A value does
not give a direct indication of the speed at which a particular n-graph is typed.
Rather, it is calculated by looking at the ratio of similar n-graphs to the total
number of shared n-graphs of a given type. Both single A measures (such as A2, A3,
etc) and cumulative A measures (such as A2,3) can be computed.

The reader will note that the technique only uses the mean duration, and not any
other n-graph statistics, such as the standard deviation or third moment value.
While this implies that the system does not make use of all the information
contained in typing samples, it allows Gunetti and Picardi to use n-graphs that
occur only once in a sample.

An exhaustive discussion of relative and absolute distance calculations, including a
worked example, can be found at [1]. While those details will not be represented
here, the use of such measure can be used by attackers to characterize a

44

compromised system. The implication will be discussed during the descriptions of
the Typing Accuracy Model in section 3.5.1 and of the HID Timing Model in section
3.10.1.

We have seen that systems that only perform authentication do not provide
sufficient insight into keystroke analysis for the purposes of this research’s HPG.
Gunetti and Picardi suggest a hierarchy of keystroke analysis tasks, as depicted in
Table 2-4. The table shows the name of the task, the possible provenance of the
sample (X), where U and V are known users of the system, and O represents an
outsider. The table also lists the claim made by the user providing X and the
decision that the system must render.

Table 2-4: Keystroke Analysis Task Hierarchy [42]

The hierarchy presented in Table 2-4 is based on an increasing level of difficulty,
with Classification being easiest. Recall that this research is aimed at producing a
framework for the generation of HID events (see section 1.6) in a way that is
consistent with that of a real user, from the perspective of attackers that have
certain capabilities (see section 1.3). We argue that it is necessary for the
generated activity to be consistent with what would be generated by a particular
user, which means that the HGP described in this research would pass the
Identification test.

We take pause to review our analysis of User Behaviour Modeling. We have
clearly established that modelling user activity is a premise of the research. The
research efforts presented in this chapter are useful in gaining insight into some
of the requirements of the HGP. As we recall from the threat model in Section 1.3,
attackers use models of user behaviour to characterize user activity on the
compromised system. We presume attackers to have access to extant literature;

Task Name Provenance of X Claim made by
X

System Decision

Classification X comes from one of the
known users of the system

Nil Which U provided X

Authentication X comes from U, or
X comes from V, or
X comes from O

X claims to
belong to user
U

Truthfulness of the
claim

Identification X comes from U, or
X comes from O

Nil X comes from U, or
X comes from O

45

this implies that the proposed research must take that literature into
consideration.

Behavioural biometrics can help define user models, and we have seen how the
features contained in these models can be used to build user profiles. Within the
scope of the proposed research, we have examined the modelling of mouse and
typing dynamics.

Major research efforts have been examined in the context of modelling mouse
dynamics [36] [38] [39]. None of these is directly applicable to the definition of
models of user activity necessary to the HGP. The work by Gunetti & al. is clearly
applicable to the research, because the proposed HGP must simulate seemingly
free text.

All of these approaches have a shortcoming in that they model mouse activity and
typing activity for individual profiles, but they do not characterize it across users.
To that end, our research goes beyond the modelling of mouse and typing
dynamics, and requires more general models of mouse use and typing behaviour.

2.5. Chapter summary and conclusion:
The HGP for which this research describes an HGP framework would be useful in
the conduct of NCSOs. This chapter has reviewed current research literature as it
applies to the research.

The chapter defined honeypots as a security resource whose value lies in being
probed, attacked or compromised (section 2.2.1). While honeypots may be useful
for capturing broadly targeted malware, they cannot help with the collection of
intelligence on a sophisticated attacker as described in the Operational Scenario
(section 1.3). A honeypot does not have any production value; the HGP is then
clearly not a honeypot because it is meant to be used on a compromised
production system after the compromise is discovered.

By its very nature, a NCSO is a Deception Operation because it seeks to obtain
information on attackers without their knowledge. The review of literature on
cyber deception (section 2.3) demonstrates that deception is an active avenue of
research, which goes to reinforce the validity of the research topic.

The research into vitality detection and the modeling of user behaviour discussed
in section 2.4 is readily available to attackers. It stands to reason therefore, that
attackers may use it to characterise a compromised system which they deem to
be of high value. The work discussed and reviewed in this chapter demonstrates
that vitality detection by attackers is a worthwhile problem. The stated research

46

aim stated in section 1.6, namely to develop a conceptual framework for the
automatic generation of HID events in a manner that is consistent with a human
inputting text into a computer system, represents a worthwhile contribution to
the field of computer security.

CHAPTER 3 : HID EVENT GENERATION PROCESS
3.1. Chapter introduction
This research presents a framework which allows for the automatic generation of
HID events on a compromised system. The generated HID events are those
associated with the use of a mouse and keyboard by a human user using a text
entry application, such as an email client or simple text editor. The framework,
which we term the HGP, is presented in detail in this chapter.

While the act of recording HID events and replaying them on the USB would be
sufficient to make them consistent with those generated by a human user, that
this is not sufficient for the conduct of NSCOs, because attackers have the ability
to examine the semantics of the text being entered as detailed in section 1.3.3.
Simply replaying HID events could well result in an HID event stream that is not
meaningful in the context of the computer system compromised by the attackers.
The HGP described here therefore allows for the generation of an HID event
stream that is consistent with a human user entering arbitrary text in the
compromised computer system.

Because attackers are assumed to have complete control of the compromised
system, they can observe what takes place on it. It is not possible therefore for
the generation of HID events to take place on the compromised computer system,
as the generation activities would be visible to attackers. The automatic HID
generation must therefore take place off the compromised system to be
subsequently placed on its USB.

Such an HID event stream can be useful in the context of an NCSO, and it can also
help prepare the attackers for further operations, including Deception Operations.
The chosen arbitrary text for which HID events are automatically generated by the
HGP can represent disinformation that can be used in support of many of the
deception methods discussed at Table 2-2. Entering arbitrary text which the
attacker can see is, by its very definition, the provision of false and planted
information. In the greater context of a campaign against an organized adversary,
the compromised system can be used to support wider Deception Operations by
helping with lies, displays and feints. While it would be possible to simply plant
the disinformation material on the compromised system, for example by saving a
file in the system’s documents repository, attackers who have complete control of
the compromised system may notice the appearance of new documents and
become suspicious; the ability to make it appear as though the disinformation is
being input into the compromise system, as provided by the HGP, can be of use to
network defenders.

47

48

The main purpose of this chapter is to present the HID Event Generation Process;
we will use HGP or process unless the context makes this ambiguous. The chapter
begins with a discussion of models of user behaviour on which the process
depends. This is followed by an overview of the process itself, leading to a
detailed discussion of the seven stages that implement it. We then comment on
the process from the point of view of the attackers before summarising the
chapter.

3.2. User Personality Model
The major contribution of this research is a framework for the automatic
generation of HID events on the USB. Recall from section 1.6 that we aim for that
generation to be consistent with that of a human using the compromised system.
Section 2.4 has argued that attackers will go to great lengths to characterize the
computer systems that they have compromised, especially if they deem those to
be of high-value, such as systems for which defenders would launch an NCSO. This
begs the questions: how will attackers decide if the activity they see on the USB is
consistent with that generated by a human user? Although the open literature
does not detail any such models, it is reasonable to presume that attackers will
build models of user activity, and the process is premised on such models.

We use the term User Personality Model to describe the set of models of user
activity that attackers could use to characterize user HID activity on a system that
they have compromised. The User Personality Model is composed of five
components, as depicted at Figure 10 - The User Personality Model.

User Personality
Model

Composition
Accuracy

Model

Typing
Accuracy

Model

Editing
Model

Mouse
Model

HID Timing
Model

1

111

1

Word
Processor

Model

Figure 10 - The User Personality Model

49

The Composition Accuracy Model is a probabilistic model that describes the
synthetic user’s likelihood of making Composition Errors when composing text.
The composition errors modelled are the misplacement of a syntactic element
(such as a Word13, Number, Sentence, Paragraph, etc.) and the use of the
wrong syntactic element. The Composition Accuracy Model lists the possible
errors, along with their probability of occurrence, and it is discussed in more
detail in section 3.5.1.

The Typing Accuracy Model is a probabilistic model of the accuracy of the
synthetic user using a keyboard. For each digraph or tri-graph, the Typing
Accuracy Model lists the discrete probability distribution that the synthetic user
will type the intended digraph/tri-graph or an erroneous one. The Typing
Accuracy Model is discussed in more detail in section 3.5.1.

The Editing Model is a probabilistic model that describes the synthetic user’s
choices in terms of which Editing Actions are performed. There are many different
ways to accomplish editing tasks (such as selecting text and using an application’s
interface). The Editing Model describes the synthetic user’s preferences regarding
editing actions and expresses those preferences as a discrete probability
distribution of keyboard and mouse actions. The Editing Model is described in
more detail during our discussion of Stage 3 in section 3.6.1.

The Mouse Model is a probabilistic model of the use of the mouse by the
synthetic user in terms of movement speed and button use, along with potential
mouse errors. It divides mouse errors in one of two categories: those associated
with Mouse Movements, such as missing the aimed location on the screen
(Missed_Loc) and Mouse Button Use such as the accidental pressing of a button
(Accident_But), and the use of the wrong mouse button (Wrong_But). The
Mouse Model will be discussed in more detail in our discussion of Stage 5 in
section 3.8.

The HID Timing Model is a probabilistic model describing the distribution of delays
between various HID events. The model described the elapsed time between the
Keyboard Output Reports (KORs) and Mouse Reports (MORs) being placed on the
USB. The HID Timing Model will be discussed in more detail in our discussion of
Stage 7 in section 3.10.

13 By convention, we will use fixed-width font to represent elements found in a lexicon.

50

Figure 10 shows that the Editing Model and Mouse Model depend on the Word
Processor Model (discussed at section 3.7.1). This stands to reason as the choice
of editing action and the location of various word processor application controls
(and therefore the targets of Mouse Movements) are dependent on the word
processor used to compose text. While these dependencies are mentioned here,
they will be explored in more detail in section 3.7.1.

There has been significant research in the use of the HID from the field of human-
computer interaction (HCI). Specifically, the Goals, Operators, Methods and
Selection rules (GOMS) family of models [49] is known to be one of the most
widely known theoretical concept in HCI and the models of pointing tasks based
on Fitts Law are useful for analysing pointing tasks [50]. The User Personality
Model that we propose here is not meant to replace seminal HCI works; rather it
should be taken to be a reasonable approximation of the models that may be
used by an attacker in characterizing user activity. We use the User Personality to
argue that the HGP described in this research can integrate a wide variety of such
models of user behaviour.

Recall from our Operational Scenario (section 1.4) that the application that will
implement this HGP is meant to be used in the context of a NIST where it will
represent a synthetic user who will assume the role of the regular user of the
compromised system at the HID. In order to ensure that the synthetic user can
approximate the HID behaviour of the regular user, the User Personality Models
must be parameterized to exhibit different HID behaviour.

These models are discussed in more detail during the discussion of the process
stage where they are first used; the complete definition and population of these
models falls outside the scope of the research. This represents an important
avenue of future work as discussed in section 5.6.

3.3. HID Event Generation Process Overview
The HGP is depicted at Figure 11. It analyses a TargetDocument in order to
derive a sequence of HID events (MORs and KORs) simulating a human user
composing the TargetDocument. The HGP works with the representation of the
Document being produced on a word processor. The Document representation is
dynamic, beginning with an empty Document at the start of Stage 1 to eventually
contain the sequence of HID events that will render the composition of the
TargetDocument after Stage 7.

The process is based on a pipes and filters architecture where each successive
stage accepts an input from a previous stage, transforms this input and forwards
the resulting output to a subsequent stage. By its very nature, a pipes and filter

51

architecture is modular; this allows the process to be refined and extended.
Stages can be replaced, modified or added as long as the stages produce outputs
that will be acceptable as input to follow-on stages. The first input to the process
is a TargetDocument which is the Document that is to be rendered using HID
events. The final output is a sequence of pairs (HID event, inter-event delay)
which, when placed on the USB, make it appear that a human user is composing
the TargetDocument.

Each stage produces a Document Production Model (DPM) which describes the
sequence of transformation needed to produce the output from the input. It is
important to keep in mind that the DPMs do not represent a Document, but
rather the steps (or productions) necessary to generate a sequence of HID events
which, when placed on the USB of the compromised system, would be consistent
with a human user composing the TargetDocument using HID.

Not many users are able to compose text, even a simple Document such as a
short email, without making mistakes. The reader will therefore notice that Stages
2 and 5 of the HGP are devoted to the introduction of errors in the DPM, such
that the synthetic user will appear to make mistakes, thereby respecting the local
semantics considerations discussed in section 1.3.3.

Each stage of the HGP uses a lexicon, which defines the syntax of the
transformation language understood by the stage. Each lexicon is an extension of
the previous lexicon, which means that every stage understands the syntax of all
pervious stages. This is important because we use unrestricted ambiguous context
free grammars (as represented by the lexicons) to manipulate English free-text, as
will be discussed further in 4.2.

Two further models are represented on Figure 11. The Document Model (DocMod)
is the evolving representation of the TargetDocument as it is being composed
by the synthetic user on the compromised system; one can think of this
representation as corresponding to the text composition area of a word processor
application. The DocMod will therefore contain the text as it is entered, including
the errors and corrections of these errors necessary to ultimately render the final
version of the TargetDocument on the compromised system. The synthetic user
will be composing the TargetDocument using an application on the
compromised system, as represented by the Word Processor Model
(WordProcMod). The WordProcMod formalises the word processing application
functionality, such as the text entry, manipulation and navigation, so that it may
be used by the HGP.

52

1. Syntactic
Element

Extraction

Target
Document

i - Syntactic
Element
Lexicon

DPM1 -
Syntactic
Elements
Extracted

2. Composition Error
Introduction

iii - General
Editing Actions

Lexicon

DPM 2 –
Composition

Errors
Introducded

3. Editing
Action

Selection

User Personality
Model

vi - HID Event
Lexicon

DPM 3 –
Editing
Actions

Selected

6. HID Event
Stream

Generation

DPM 6 –
HID Events
Generated

7. Event Timing
Characterisation

Composition Model
Typing Accuracy Model

Editing Model

Mouse Model

HID Timing Model

DPM 7 -
Final

ii - Composition
Error

 Lexicon

Document
Model

Word Processor
Model

vii - Timed HID
Event Lexicon

4. HID Action
Selection

DPM 4 –
HID

Actions
Selected

iv - Specific
Editing Actions

Lexicon

Editing Model

5. Mouse
Behaviour
Processing

v - Mouse
Behaviour
 Lexicon

DPM 5 –
HID Errors
Introduced

Mouse Model

Figure 11 - The HID Event Generation Process

53

3.4. Stage 1 – Syntactic Element Extraction
The HGP simulates the generation of a TargetDocument, which is a specific
instance of a Document. A Document can be described by a sequence of
Syntactic Elements and the structure between them. The first stage of the HGP
captures these syntactic elements and the structure between them in a format
that can be manipulated by follow-on stages.

3.4.1. Input: TargetDocument
The HGP begins with the processing of a TargetDocument which represents the
final version of the arbitrary text that is to be composed on the compromised
system by the synthetic user. In the context of the composition of an email, the
final version would be what is sent by the user.

3.4.2. Dependency: i – Syntactic Elements Lexicon
The Syntactic Elements Lexicon (i-SynElmtLex14) describes those syntactic
elements that are recognized by the HGP. While there are no restrictions on the
syntactic elements of English free-text, the TargetDocument must be specifically
structured to be recognized by Stage 1 of the HGP:

• The TargetDocument cannot contain any numbered or bulleted lists
such as this one,

• The TargetDocument can only contain the following syntactic elements:
Character, Digit, Document, Letter, New_Line, Number,
Paragraph, Punctuation, Signature, Sentence,
SentenceElement, Separator, Word.

• The last line of the TargetDocument must contain a tag indicating the
end of text, etc.

The complete definition of each of the syntactic elements listed above can be
found at Appendix A; representative examples of the elements of i-SynElmtLex
can be found in Table 3-1.

14 All lexicons are numbered using Roman numerals; all stages and their corresponding
DPM are numbered with Arabic numerals.

54

Table 3-1 - Syntactic Elements Lexical Examples

3.4.3. Transformation 1 – Identification of Syntactic Elements
The HGP parses the TargetDocument to identify syntactic elements. The aim of
this transformation is to parse the TargetDocument in order to recognize all the
syntactic elements contained therein and to store them as a tree that can be
further manipulated by follow-on stages. The syntactic elements are extracted in
the following manner:

1. Beginning with a Document containing a single Paragraph with an
empty Sentence, the HGP builds a tree15 representing the structure of
the TargetDocument.

2. Each node of the tree will represent a syntactic element and the tree
hierarchy captures the structure between nodes. Each node will identify
the type of syntactic element (such as Word, Punctuation, etc.) and its
specific instance (such as "The", ".", etc.).

3. Each Paragraph, Sentence, Word and Number will be annotated with a
unique syntactic element identifier (SE_ID). This SE_ID will be used to
identify the specific syntactic element in further transformations.

3.4.4. Output: DPM1 – Syntactic Elements Extracted
The output of the first stage of the process will be a tree with Document at its
root, Paragraphs and Signature at the next level and Word, Number and
Punctuation as leaves.

15 The DPMs manipulated by every stage of the HGP will be represented as trees.

Syntactic Element Definition

Word 1 or more Letters

Sentence 1 or more (Words or Numbers) and Punctuation

Paragraph 1 or more Sentence and New_Line

Document 1 or more Paragraphs and optional Signature

55

3.4.5. Worked Example
Recall our discussion of local event stream semantics in section 1.3.3. We will use
the example presented at Figure 3 to demonstrate the stages of the HGP.

In this example, the TargetDocument, which would be sent by the synthetic
user as an email, is:

Here is a great sentence:
The quick brown fox jumps over the lazy dog.
Sly

Stage 1 begins with an empty Document like this one:

PARAGRAPH 1 [
SENTENCE 1 []]

This stage’s transformation will parse the TargetDocument and insert nodes in
the DPM as syntactic elements are recognised until in the following DPM is
obtained:

PARAGRAPH 1 [
SENTENCE 1 [WORD 1 [Here] WORD 2 [is] WORD 3 [a] WORD 4 [great] WORD 5
[sentence]:]]
PARAGRAPH 2 [
SENTENCE 2 [WORD 6 [The] WORD 7 [quick] WORD 8 [brown] WORD 9 [fox] WORD
10 [jumps] WORD 11 [over] WORD 12 [the] WORD 13 [lazy] WORD 14 [dog].]]
SIGNATURE [WORD 23 [Sly]]

3.5. Stage 2 – Composition Error Introduction
A human user does not create a Document perfectly on its first attempt; the
composition of the Document is usually fraught with errors and corrections. Stage
2 of the process accepts the tree of extracted syntactic elements from the
previous stage, and transforms it to include errors and their corrections. To
generate believable user activity, the HGP must simulate this imperfect
behaviour, as modeled in the User Personality Model. The second stage of the
process annotates the syntactic elements to allow for the introduction of errors.

The HGP considers two types of errors: Mouse Errors representing mistakes in the
use of the use of the mouse (as discussed in detail in section 3.8) and Composition
Errors representing mistakes in the typing, choice or positioning of syntactic
elements. Some errors and their associated corrections have strong dependencies
on other syntactic elements and the HGP must consider these dependencies using
a DocMod. In an effort to minimize the correlation between HGP stages, Stage 2
does not consider errors associated with the structure of the Document or the

56

word processor application used. Such errors are described in the DocMod and
WordProcMod respectively and processed in Stage 4 at Section 3.7. It should be
noted that the HGP does not consider recursive errors; in other words the
synthetic will not make new errors while correcting previous ones.

3.5.1. Dependencies

ii – Composition Error Lexicon
The Composition Error Lexicon (ii-CompErrorLex) describes the Composition
Errors that are considered by the HGP. The ii-CompErrorLex augments the
previously defined i-SynElmtLex by introducing new nodes and redefining
others. The main elements introduced in ii-CompErrorLex are Composition
Errors (CompError) and Correction.

When describing errors, we distinguish between the Target Syntactic Element,
which is the error-free representation of the syntactic element found in the
TargetDocument and the Erroneous Syntactic Element, which represents the
application of the error to the target syntactic element. For example, in a
mistyping error where the synthetic user mistakenly types “Teh” when he intends
to type “The”, the Target Syntactic Element is “The” and the Erroneous Syntactic
Element is “Teh”.

CompErrors can be applied to Word, Number, Sentence, or Paragraph and
they include:

• Misplaced Syntactic Elements (Misplaced_SE) where a syntactic
element is entered either too early (to the left of the target syntactic
element) or too late (to the right of the target syntactic element) during
text composition,

• Mistyped Syntactic Elements (Mistyped_SE) where the target syntactic
element is typed incorrectly, and

• Wrong Syntactic Elements (Wrong_SE) where the erroneous syntactic
element is typed instead of the target syntactic element.

Each error captures five elements:

1. A unique Error ID which is used to associate an error node and a
correction node in the DPM tree.

2. The Error Details which specifies how the target syntactic element is
misrepresented.

57

3. The Rectifying Actions detailing the sequence of editing actions required
in order to transform the erroneous syntactic element into the target
syntactic element.

4. The Correction Point, specified in terms of the target syntactic element’s
context. It is represented as the DPM node after which the rectifying
actions will be carried out. It may be any of the following:

o EndOfWord
o EndOfNumber
o EndOfSentence
o EndOfParagraph
o EndOfDocument

5. A ProcessedTag to indicate the actions taken to deal with the error.
These tags are necessary to minimize dependencies between nodes of the
DPM; storing this information in the error node avoids unnecessary
searches of the DPM tree in subsequent processing. Possible
ProcessedTags are:

o CorrectionPointInserted
o StubInserted

The complete description of the ii-CompErrorLex can be found at Appendix B
but sample lexical elements can be found at Table 3-2.

Table 3-2 - Composition Error Lexical Examples

CompError Error ID Error Details Rectifying
Actions

Correction Point Processed
Tag

Misplaced
Syntactic
Element

Misplaced_SE
_Unique#

Position
{Direction,
Magnitude}

One of:

Move_SE or
Delete_SE
and
Type_SE

One of:

EndOfWord
EndOfNumber
EndOfSentence
EndOfParagraph
EndOfDocument

Stub
Inserted

Mistyped
Syntactic
Element

Mistyped_SE_
Unique#

Erroneous
syntactic
element as
one of:

Word
Number

Replace_SE One of:

EndOfWord
EndOfNumber
EndOfSentence
EndOfParagraph
EndOfDocument

Correction
Point
Inserted

58

CompError Error ID Error Details Rectifying
Actions

Correction Point Processed
Tag

Sentence
Paragraph

Wrong_SE Wrong_SE_U
nique#

Erroneous
syntactic
element as
one of:

Word
Number
Sentence
Paragraph

Replace_SE One of:

EndOfWord
EndOfNumber
EndOfSentence
EndOfParagraph
EndOfDocument

Correction
Point
Inserted

Recall that the HGP must generate HID actions necessary to produce a
TargetDocument; Corrections must therefore be applied to generate the HID
events necessary to fix the errors that are introduced. Corrections are applied
at a particular point in the DPM (the CorrectionPoint) which represents the
moment at which the synthetic user recognizes the error and applies the specific
rectifying actions to correct it. The CorrectionPoint must follow the erroneous
syntactic element in the DPM, because it is not possible to notice or rectify an
error before it has been made.

Composition Accuracy Model
The Composition Accuracy Model is a probabilistic model that describes the
synthetic user’s likelihood of making CompErrors when composing text. Recall
that the CompErrors modelled are the erroneous typing of a syntactic element
(discussed in the following User Personality Model component), the misplacement
of a syntactic element and the use of the wrong syntactic element. While we
believe that the modeling of composition errors is a likely avenue of
characterization by attackers, we have not found descriptions of such models in
the research literature. We have decided therefore, to describe a representative
Composition Accuracy Model and use it in the development of the HGP.

The Composition Accuracy Model that we envision will detail the Misplaced_SE
and Wrong_SE errors, and introduce Correction Points as detailed in the
paragraphs below. It must be possible to parameterise the Composition Accuracy
Model in order to have the synthetic user approximate the HID behaviour of the
regular user of the compromised system, and this parameterisation is possible
through the use of different probability density functions.

59

The Composition Accuracy Model will contain a discrete probability distribution on
the number of Misplaced_SE errors by type of syntactic element (Word,
Number, Sentence or Paragraph) that can be made by the synthetic user. For
each type of syntactic element, the Composition Accuracy Model will also contain
a discrete probability distribution function (PDF) of the Direction of the error
(either Left or Right) along with its Amplitude expressed in syntactical
element units; Words/Numbers may be misplaced by a certain number of
Words/Numbers, Sentences may be misplaced by Sentences and
Paragraphs by Paragraphs.

Table 3-3 gives an example of a representative Composition Accuracy Model
representation of Misplaced_SE error probabilities where each row represents
the target syntactic element type on which the error is modelled, and each
column represents the probability of occurrence (in the first half of the table) and
the Direction/Amplitude of the error (in the second half of the table). Note
that the Direction/Amplitude PDF is not considered in those cases where
there is no actual occurrence of a Misplaced_SE error.

Table 3-3 - Composition Accuracy Model - Representative Misplaced_SE PDF

Misplaced_SE Number of Occurrences Direction/Amplitude

Erroneous
Syntactic
Element Type

0 1 216 Left/1 Right/1 Left/2 ...

Word/Number 0.4017 0.32 0.11 0.29 0.45 0.02 ...

Sentence 0.80 0.06 0.01 0.15 0.40 0.06 ...

Paragraph 0.92 0.01 0.00 0.20 0.45 0.02 ...

To model Wrong_SE errors, the Composition Accuracy Model will use a discrete
PDF and a dictionary containing lists of synonyms and antonyms for each syntactic
element of interest as shown in Table 3-4. Each row of that table shows the target

16 Note that in all tables containing PDFs, we do not show probabilities for every value of
the random variable; all values would be required in fully populated models.
17 While we have defined the components of the User Personality Model, we have not
conducted experiments to populate them with data. All probabilities shown in the tables
that follow are meant to be representative examples, and not indicative of actual
empirical values.

60

syntactic element and each column shows the Candidate Syntactic Element that
may be substituted for the target along with their respective probability.

Table 3-4 - Composition Accuracy Model - Representative Wrong_SE PDF

 Target /
Probability

Candidate 1 /
Probability

Candidate 2 /
Probability

Candidate 3 /
Probability

...

great
great good healthy bad ...

0.86 0.08 0.03 0.01 ...

Supervisor
Supervisor Manager Director Employee ...

0.82 0.08 0.03 0.01 ...

Secretary

Secretary Executive
Assistant

Administrator Clerk ...

0.75 0.12 0.05 0.02 ...

...

Because the HGP will ultimately produce the HID events that will render the
TargetDocument, errors must be rectified. To allow the HGP to generate the
HID events necessary for the rectification of CompErrors, the Composition
Accuracy Model must provide a discrete PDF of rectifying actions. This is
illustrated in Table 3-2 where the Misplaced_SE error may be rectified by either
moving the erroneous syntactic element or deleting the erroneous syntactic
element and typing the target syntactic element.

Upon discovering that an error has been made, a human user composing a
Document will decide when to fix the error. It goes without saying that an error
cannot be fixed before it is made, but it may not be fixed immediately after having
been made. For example, while the realization that ‘teh’ was erroneously typed
when ‘the’ was intended may be fixed immediately after the user makes the
error; a more subtle error such as typing ‘that’ instead of ‘which’ may not be
realized until final review of the Document. We use the term Correction Point to
describe the point at which the synthetic user discovers the error and carries out
the rectifying actions necessary to fix it.

The final element of the Composition Accuracy Model is the selection of these
CorrectionPoints. We propose to model this selection as a discrete PDF of the
possible correction points as shown in Table 3-5. The reader should note the
inherent hierarchical relationship between the erroneous syntactic element and

61

their associated correction point; the cells containing “XX” in the table represent
impossible selections which will have a probability of zero regardless of the
chosen User Personality Model parameters.

Table 3-5 - Composition Accuracy Model - Representative CorrectionPoint PDF

 Word / Number Sentence Paragraph Document

Word / Number 0.72 0.15 0.05 0.08

Sentence XX 0.45 0.25 0.30

Paragraph XX XX 0.42 0.58

Typing Accuracy Model
The Typing Accuracy Model describes a user’s proficiency with the keyboard, in
terms of actually striking the key that was intended. The model is probabilistic, as
it must describe, for each intended key, the probabilistic distribution of striking
that key or any other. For example, the probability that a touch-typist would make
an error when intending to strike the letter ‘o’ may be different in the digraph
‘lo’, where the same finger is likely used to type both letters, than in the
digraph ‘mo’ where different fingers are used.

We are not aware of research that details n-graph typing accuracy in the
literature, but we argue that it is reasonable to presume that attackers could use
such models to characterise a compromised system and we therefore propose the
inclusion of such a model in the HGP. The model we propose can be refined for n-
graph, as described in [36] and represented as a matrix as shown in Table 3-6 -
Typing Accuracy Model - Representative n-graph PDF where each row represents
the target n-graph and each column represents the n-graph substituted along
with its probability.

62

Table 3-6 - Typing Accuracy Model - Representative n-graph PDF

 Target /
Probability

Candidate 1 /
Probability

Candidate 1 /
Probability

Candidate 1 /
Probability

...

at at ar af ag ...

0.91 0.02 0.03 0.01 ...

ate ate afe atw age ...

0.88 0.04 0.02 0.02 ...

The The Teh Thr Rhw ...

0.89 0.09 0.01 0.01 ...

...

iii – General Editing Actions Lexicon
When errors are introduced, they must be corrected. The General Editing Actions
Lexicon represents certain actions that a user takes to edit a Document, and it will
be detailed during our discussion of Stage 3 at section 3.6.1. It is important to try
to minimize the dependencies between aspects of the automatically generated
HID behaviour to keep the HGP architecture as simple as possible. We have
decided therefore, to separate the concerns associated with the errors on
syntactic elements (processed in Stage 3) and the editing actions required to
rectify those errors (processed in Stage 4).

The editing actions are processed at Stage 4 and they are described in detail in the
Editing Model. While we do not do completely define the Editing Model here,
Stage 3 has a weak dependency on the General Editing Actions Lexicon because it
must be aware of the following elements from that lexicon: Move Syntactic
Element (Move_SE), where a syntactic element is removed from one location in
the DocMod and inserted at a different location, and Replace Syntactic Element
(Replace_SE) where one syntactic element is replaced by another.

3.5.2. Transformations
Three passes are required in order to accomplish the transformations necessary
to implement Stage 2. The first and second of these passes produces an
intermediary DPM while the third produces the stage’s output.

Transformation 2.1 – Flag Nodes for Errors
According to the appropriate User Personality Models, this transformation
stochastically determines which DPM nodes will be flagged for error. For

63

Misplaced_SE the HGP will stochastically determine the number of occurrences
of the error that will take place according to the Composition Accuracy Model
(Table 3-3) and randomly select the appropriate number of syntactic elements for
annotation in the DPM. Once the HGP determines that a Misplaced_SE error
takes place, it must stochastically select the appropriate error details from the
Composition Accuracy Model.

The HGP will select nodes for Wrong_SE by traversing the DPM and examining
each node to determine if the target syntactic element or a candidate syntactic
element will be selected; choosing a candidate rather than the target results in a
Wrong_SE error and the candidate syntactic element will represent the error
details

Similarly, for each n-graph in its Typing Accuracy Model (Table 3-6) the HGP will
traverse the DPM node by node to determine which n-graphs, if any, have been
mistyped. Should it find that a specific syntactic element has been mistyped; the
HGP will use the Typing Accuracy Model PDF to select the appropriate error
details.

For each CompError, the HGP will also stochastically choose the appropriate
rectifying actions and CorrectionPoint. Finally, this transformation will
annotate each error node by adding the following error information to the target
syntactic element node as per Table 3-2:

a. An ErrorID.
b. The error details.
c. The rectifying actions.
d. The CorrectionPoint.

Transformation 2.2 – Insert Correction Points
In this second transformation of Stage 1, the HGP parses the DPM in order to:

1. insert Correction Nodes at the appropriate CorrectionPoint;
2. insert a Fix node under each CorrectionPoint. This Fix node is used

to associate the target syntactic element with the erroneous syntactic
element. It contains the SE_ID of the target syntactic element and
rectifying actions necessary to fix the error; and

3. insert rectifying actions under Fix nodes.

64

Transformation 2.3 – Insert Misplaced Stubs
In the case of Misplaced_SE, two nodes are required in the DPM: one must be
placed where the erroneous syntactic element is first composed and the other
where the target syntactic element is meant to go. We will refer to location where
the target syntactic element will ultimately be placed as a Stub. The current
design allows for movement of a syntactic element by level: Paragraph to
Paragraph, Sentence to Sentence, Word to Word and Number to Number.
This transformation therefore:

1. inserts a Stub node in the DPM according to the error’s Position. This
stub will contain the target text, along with the required rectifying
actions, and

2. tags the target syntactic element containing the instantiated
Misplaced_SE and the Stub with the corresponding ErrorID.

3.5.3. Output: DPM2 – Composition Errors Introduced
The output of Stage 2 is a DPM where select nodes have been annotated with
CompErrors and where the Insertion Points required to fix those Errors have
been included.

3.5.4. Worked Example
Recall the output from Stage 1, which is our starting point for Stage 2
transformations:

PARAGRAPH 1 [
SENTENCE 1 [WORD 1 [Here] WORD 2 [is] WORD 3 [a] WORD 4 [great] WORD 5
[sentence]:]]
PARAGRAPH 2
[SENTENCE 2 [WORD 6 [The] WORD 7 [quick] WORD 8 [brown] WORD 9 [fox]
WORD 10 [jumps] WORD 11 [over] WORD 12 [the] WORD 13 [lazy] WORD 14
[dog].]]
SIGNATURE [WORD 23 [Sly]]

Transformation 2.1 annotates DPM nodes for CompErrors. In trying to
determine if any Misplaced_SE errors are present in our example, the HGP
would use Table 3-3 and might determine that there will be two misplaced Words
(p = 0.11) and stochastically chooses Word 8 and Word 9. Let us further
presume that the model stochastically chooses to misplace these by four words to
the right. The HGP would use the Composition Accuracy Model at Table 3-5 to
stochastically determine that these errors will be corrected at the
EndOfSentence (with p = 0.15) and annotate the DPM nodes thusly:

65

...18 WORD 8 [brown CompError (Misplaced_SE WORD 1, Right 4 WORD,
Move_SE (Left 4 WORD), EndOfSentence)] WORD 9 [fox CompError
(Misplaced_SE WORD 2, Right 4 WORD, Move_SE (Left 4 WORD),
EndOfSentence)] ...

The HGP would then traverse the DPM and might determine that “great” will be
replaced by “good” resulting in a Wrong_SE error according to Table 3-4 (p =
0.08). The HGP would further determine that this error would be noticed and
corrected by the synthetic user at the EndOfSentence and DPM node for Word
4 would be annotated as follows:

... WORD 4 [great CompError (Wrong_SE WORD 1, good, Replace_SE,
EndOfSentence)] ...

While traversing the DPM, the HGP also ascertains if any n-graphs are mistyped
according to the Typing Accuracy Model. Let us presume that the HGP
stochastically determines that the tri-graph “The” is mistyped as “Teh” (p = 0.09
in Table 3-6) and a CorrectionPoint of EndOfWord is chosen (p =0.72 in Table
3-5), resulting in the following annotation to the DPM node:

... WORD 6 [The CompError (Mistyped_SE WORD 1, Teh, Replace_SE,
EndOfWord)] ...

Transformation 2.2 inserts the appropriate CorrectionPoints in the DPM,
along with the appropriate Fix nodes at the end of SENTENCE 1, SENTENCE 2
and WORD 6. This will result in the following changes to the DPM where Fix
nodes have been added:

... SENTENCE 1 [...WORD 4 [great CompError (Wrong_SE WORD 1, good,
Replace_SE, EndOfSentence) WORD 5 [sentence] : Correction {Fix {Wrong_SE
WORD 1, Replace_SE} }] ...

... SENTENCE 2 [...WORD 6 [The CompError (Mistyped_SE WORD 1, Teh,
Replace_SE, EndOfWord) Correction { Fix {Mistyped_SE WORD 1,
Replace_SE}]... WORD 14 [dog] . Correction {Fix {Misplaced_SE WORD 1,
Move_SE (Left 4 WORD)} Fix {Misplaced_SE WORD 2, Move_SE (Left 4 WORD)}
}] ...

Finally, Transformation 2.3 inserts Stubs in the DPM where the erroneous text
associated with Misplaced_SE error will be entered in the Document. In our
example, Transformation 2.1 flagged WORD 8 and WORD 9 for misplacement to

18 Ellipses are used to indicate information from previous code snippets that is omitted for
brevity, while bold font is used to highlight additions or changes to the DPM.

66

the right by 4 Words; the DPM will therefore be updated by adding Stubs as
follows:

... WORD 7 [quick ...] WORD 8 [brown ...] WORD 9 [fox ...] WORD 10
[jumps] WORD 11 [over] WORD 24 [brown STUB{Misplaced_SE WORD 1, Move_SE
(Left 4 WORD)}] WORD 25 [fox STUB{Misplaced_SE WORD 1, Move_SE (Left 4
WORD)}] WORD 12 [the] WORD 13 [lazy] ...

3.6. Stage 3 – Editing Action Selection
There are many different ways to create and edit a Document; the synthetic user
must be able to make editing choices in a manner consistent with a human user.
This stage of the HGP is concerned with selecting the editing actions that are not
dependent on the structure of the DocMod or WordProcMod, such as the
movement, replacement and typing of syntactic elements.

3.6.1. Dependencies

Editing Model
The synthetic user will carry out a variety of Editing Actions to enter text, edit text
and navigate the word processor in order to compose the TargetDocument or
to edit it. There are many different ways to accomplish editing tasks (such as
selecting text and navigating an application interface); the Editing Model is a
probabilistic model that describes the synthetic user’s choices regarding choices
of Editing Actions.

To the best of our knowledge, no such models have been described in the
literature, but it is plausible for attackers to use such a model to characterize the
user activity on a compromised system. We have therefore developed a
representative Editing Model and use it in the HGP. The model details the
previously mentioned Move_SE and Replace_SE and many other editing
actions. It introduces the deleting of a syntactic element (Delete_SE) where it is
removed from the DocMod. Modelled editing actions also include the selection of
text where it is highlighted in the word processor (Select_SE), along with
copying (Copy_SE) where the selected text is placed on the word processor’s
clipboard, cutting (Cut_SE) where the selected text is removed from the DocMod
and placed on the word processor’s clipboard and pasting (Paste_SE) where text
from the word processor’s clipboard is inserted into the DocMod at the Cursor.
Finally, the Editing Model provides different methods for positioning the Cursor
(Position_Cursor) at a specific location in the DocMod.

Table 3-7 shows a representative Editing Model which will contain a discrete PDF
of the synthetic user’s editing choices. Each row in the table represents one of the
possible editing actions listed above, while each column lists the candidate

67

options that could instantiate these editing actions with their probability of being
selected. Once again, user personality parameters are necessary to ensure that
the Editing Model exhibit HID behaviour that is consistent with that of the human
user of the compromised system.

It stands to reason that a user’s editing actions will be influenced by the word
processor used. For example, a user’s choice for the Copy_SE editing action
would be reduced to two candidate instantiations if the word processor used to
compose an email did not provide an Edit Menu accessible through the right
mouse button.

Table 3-7 - Editing Model

Editing Action Candidate 1 /
Probability

Candidate 2 /
Probability

Candidate 3 /
Probability

Candidate 4 /
Probability

Move_SE Select_SE,
Cut_SE,
Position_Cursor
, Paste_SE

Select_SE,
Mouse Left
Button Down,
Drag Mouse,
Mouse Left
Button Up

-- --

0.75 0.25 XX XX

Replace_SE Delete_SE,
Type_SE

Select_SE,
Paste_SE

Select_SE,
Past_SE, Type_SE

--

0.82 0.05 0.13 XX

Delete_SE Select_SE,
<Delete>19

Select_SE,
<Backspace>

Position_Cursor,
sequence of
<Delete>

Position_Cursor
, sequence of
<Backspace>

0.40 0.32 0.12 0.16

Select_SE Move_Mouse,
Double-Click

Move_Mouse,
Mouse Left
Button Down,
Mouse Drag,
Mouse Left
Button Up

Postition_Cursor
, <Shift>, sequence
of <Navigation
Arrows>

--

0.30 0.45 0.25 XX

Copy_SE Menu_Area. <Ctrl-C> Mouse Right Button --

19 We indicate keyboard key names by enclosing them in < > characters.

68

Editing Action Candidate 1 /
Probability

Candidate 2 /
Probability

Candidate 3 /
Probability

Candidate 4 /
Probability

Edit_Menu.Copy Down.
Edit_Menu.Copy

0.54 0.32 0.14 XX

Cut_SE Menu_Area.
Edit_Menu.Cut

<Ctrl-X> Mouse Right Button
Down.
Edit_Menu.Cut

--

.52 .35 .13 XX

Paste_SE Menu_Area.
Edit_Menu.Paste

<Ctrl-V> Mouse Right Button
Down.
Edit_Menu.Paste

--

.52 .35 .13 XX

Position_
Cursor

Move_Mouse,
Mouse Left Button
Down, Mouse Left
Button Up

Sequence of
<Navigation
Arrows>

-- --

.82 .18 XX XX

The location of the Cursor relative to an error is also likely to influence the
choice of editing action; one can surmise that a user who notices an error
immediately after mistyping a word is more likely to use <Backspace> than the
mouse to delete the word while the reverse might be true if the error is
discovered after the entire TargetDocument has been typed. We use the
WordProcMod and DocMod respectively to capture the characteristics of the
word processor application and Document as it evolves during composition; these
are discussed in more detail in section 3.7.1.

The reader will notice however that not all the editing actions listed in Table 3-7
depend on the WordProcMod or DocMod. In order to minimize dependencies
between the stages of the HGP, we have chosen to separate the processing of
editing actions between those depending on the WordProcMod or DocMod and
those that do not. We use the term General Editing Actions to mean those editing
actions that do not depend on these two models; general editing actions are
processed in this stage of the HGP. Conversely, we use the term Specific Editing
Actions to mean those that do depend on the WordProcMod or DocMod; while
those editing actions are processed in Stage 4, this stage of the HGP must be

69

aware of them and there is thus a weak dependency between the Specific Editing
Action Lexicon and Stage 3 of the HGP.

iii – General Editing Action Lexicon
The General Editing Action Lexicon (iii-GenEditActionLex) describes the
various Document editing actions that can be chosen by the synthetic user
without regard to the structure of the Document or word processor. The editing
actions that are rendered at this stage are Move_SE, Replace_SE and Type_SE,
as shown inTable 3-8. The complete definition of iii-GenEditActionLex is
found at Appendix C.

Table 3-8 – General Editing Action Lexical Examples

Editing Action Instantiation

Move_SE Specify a position in the form
{Direction, Amplitude}

Replace_SE One of:

Delete_SE, Type_SE, or
Select_SE, Paster_SE, or
Select_SE, Delete_SE, Paste_SE

Type_SE Sequence of one or more Characters

The reader will notice that we use a general lexical definition of Move_SE at this
stage of the HGP; it will be refined during Stage 4. We chose to design the HGP in
this way to more equally distribute complexity between stages 3 and 4.

3.6.2. Transformations
Two passes are required to carry out the Stage 3 transformations.
Tranlolsformation 3.1 produces an intermediary DPM and Transformation 3.2
produces the stage’s output.

Transformation 3.1 – Instantiate Terminal Syntactic Elements
Some syntactic elements are collections of others, as is the case with a Sentence
that is a collection of Word and/or Number followed by Punctuation. We term
those syntactic elements that are not collections to be Terminal Syntactic
Elements (such as: New_Line, Numbers, Punctuations, Separators, and
Words). This transformation tags each of these terminal syntactic elements with a
special annotation called Type_SE, which will later be transformed into a
sequence of Keyboard Output Reports (KOR).

70

Recall that the DPM has been created from parsing the TargetDocument in
Stage 1 and annotated with CompErrors in Stage 2. The HGP must now produce
the HID events that will make it appear that the CompErrors took place; it is
therefore necessary to annotate the erroneous text, and not the target text, with
the Type_SE annotation.

Transformation 3.2 – Instantiate Replace Syntactic Element
Some corrections require the replacement of a syntactic element by another; this
action is relatively more complicated than typing and it is thus accomplished with
a separate transformation. As mentioned, we chose to carry out this
transformation in Stage 3 to distribute the complexity of the HGP. In this
transformation, the general editing actions for Replace_SE are instantiated at
the appropriate CorrectionPoint by stochastically choosing an appropriate
instantiation candidate according to the PDF from Table 3-7.

3.6.3. Output: DPM3 – Editing Actions Selected
The output of Stage 3 is a DPM where nodes have been annotated to reflect the
synthetic user’s choices with regard to general editing actions that are not
dependent on the Document or word processor.

3.6.4. Worked Example
Transformation 3.1 would annotate terminal syntactic elements to show what is
to be typed by the synthetic user thusly:

... WORD 1 [Here Type {Here}] ...

The reader is reminded that in the case of CompError, it is the erroneous text
and not the target text that is annotated as shown here:

... WORD 4 [great CompError (Wrong_SE WORD 1, good Type {good},
Replace_SE, EndOfSentence)] ...
... WORD 6 [The CompError (Mistyped_SE WORD 1, Teh Type {Teh},
Replace_SE, EndOfWord)] ...
... WORD 24 [brown Type {brown} STUB{Misplaced_SE WORD 1, Move_SE (Left
4 WORD)}] WORD 25 [fox Type {fox} STUB{Misplaced_SE WORD 1, Move_SE
(Left 4 WORD)}] ...

Transformation 3.2 is charged with the instantiation of the Replace_SE editing
action. From the Editing Model (Table 3-7), the HGP stochastically determines that
the erroneous Wrong SE WORD 1 (where “good” was used instead of “great”)
and the Mistyped_SE WORD 1 (where “The” was mistyped as “Teh”) will both
be instantiated with Delete_SE and Type_SE with a p = 0.82 in each case. This
will result in the following Fixes:

71

... SENTENCE 1 [...WORD 5 [sentence] : Correction {Fix {Wrong_SE WORD 1,
Replace_SE {Delete_SE {Wrong_SE WORD 1} WORD 26 [great Type {great}] } }
}] ...
... SENTENCE 2 [...WORD 6 [The CompError (Mistyped_SE WORD 1, Teh Type
{Teh}, Replace_SE, EndOfWord)] Correction { Fix {Mistyped_SE WORD 1,
Replace_SE {Delete_SE {Mistyped_SE WORD 1} WORD 27 [The Type {The}] } }
} ...

3.7. Stage 4 – HID Action Selection
Human users choose what they will say and how they will say it, as ultimately
represented by the TargetDocument sent as an email in our operational
scenario. As we have seen in our discussion of general editing actions at section
3.6.1, the user’s choices for some of those editing actions are not influenced by
the environment in which the TargetDocument is being composed. We know
however, that users also make choices about editing actions based on the
dynamic structure of the Document being composed as well as on the tools
available to edit it (the word processor). This stage of the HGP takes the
Document and word processor into account to select specific editing actions.

3.7.1. Dependencies
Stage 4 of the HPG depends on the Editing Model which has been discussed
previously, and it also depends on the DocMod and WordProcMod.

Document Model
The reader will recall from our discussion of i-SynElmtLex at section 3.4.2 that
the TargetDocument for which the HID Events are generated must follow a
strict structure in order to allow its manipulation by the HGP. We further
remember that the HGP uses a Document Model (DocMod) in order to keep track
of the specific syntactic elements as they are being composed. This is similar to a
human user using the screen as a visual feedback aid to make reference to
elements of the evolving Document.

As an example, imagine a user omitting the word “College” when typing “Royal
Military College of Canada”. It is easy to see that the word is omitted when
looking at the screen, and a user with such visual feedback is able to see exactly
where to position the Cursor in order to insert the missing word. The HGP has no
such visual feedback means with which to calculate the intended Cursor
location, and it uses the DPM nodes’ unique identifiers and a DocMod instead.

The HGP can use different DocMod, but these must generally contain a
representation of the Document as it evolves; in fact, each successive
transformation uses this DocMod to calculate the distance between the Cursor
and syntactic elements of the Document in order to properly instantiate specific

72

editing actions. The layout of a candidate DocMod is shown at Figure 12 and we
use this in the design of the HGP.

Our candidate DocMod represents the Document as a grid of characters. We
chose this structure so that the HGP can translate the relative position of syntactic
elements in the DocMod to actual screen coordinates for the generation of MORs.
Figure 12 suggests that our candidate DocMod uses fixed-width font, but it need
not necessarily be so; different mappings between the syntactic element position
and their corresponding screen location would simply have to be developed for
each variable-width font. The DocMod grid has a fixed width of a certain number
of Columns (which we set at 80 in this representative DocMod) and an arbitrary
number of Rows varying between 1 and Maximum_Rows.

The DocMod is only ever used by the HGP; it is not meant to be rendered in any
human-readable form. That being the case however, the reader can get an idea of
its use at Figure 13 which presents the evolving Document up to and including the
productions required to render SENTENCE 1 from our worked example.

Figure 12 - Candidate Document Model Layout

Columns

Ro
w

s

M
ax

im
um

_R
ow

s

73

 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5 …

1 H e r e i s a g o o d s e n t e n c e :

2

E
O
T

…

Figure 13 – Representative Document Model following Sentence 1 Errors

Word Processor Model
The HGP simulates a notional user composing the TargetDocument using a
specific word processor, which must be modelled by a WordProcMod. The
WordProcMod represents a simple application, such as an email client, where
documents can be composed or edited. The HGP can be configured to use a
variety of WordProcMods by updating the Editing Model and iii-
GenEditActionLex from section 3.5.1 and the Specific Editing Action Lexicon
below.

In order to design the HGP, we use a WordProcMod that makes use of a two-
button mouse and a keyboard with a mock-up layout presented at Figure 14. For
the design of the HGP, we use a WordProcMod having an Editing_Area screen

Figure 14 - Representative Word Processor Model Layout Mock-Up

Editing_Area

Columns

M
ax

im
um

Ro
w

s
File Edit Menu_Area x

New
Save
Exit

Copy
Cut
Paste

Copy
Cut
Paste

74

footprint with a width of 800 by a height of 600 pixels; this gives each fixed-width
character dimensions of 10 X 12 pixels20. The Menu_Area elements will also have
defined Screen_Coordinates, but these will remain constant and they will be
known a priori.

The WordProcMod contains the elements detailed at Figure 14 which can be
grouped in three distinct groups: the Menu, the Editing Section, HID Actions and
Positional Indicators as shown in Table 3-9.

Table 3-9 - Elements of the Representative Word Processor Model

Menu

Menu_Area Menu bar containing positions for the launching of the Edit_Menu,
File_Menu and a Close_Button.

Close_Button Button depicted as an X at Figure 14 which causes the shutdown of the
application. It has the same functionality as File_Menu.Exit.

Clipboard Word processor application buffer used to store a text string.

Edit_Menu Menu giving choices for the following actions:

Copy: copying the selected text to Clipboard.
Cut: copying the selected text to the Clipboard and removing it from
the Editing_Area.
Paste: inserting the text stored in the Clipboard to the
Editing_Area, at the Cursor.

File_Menu Menu giving choices for the following actions:
New: Open a new empty Document.
Save: Open a save dialog window where the use can choose a file
name under which to store the Document currently depicted in the
Editing_Area.
Exit: Causes shut down of the application.

20 We are well aware that these this is not a representative application size in typical
screen resolutions, but we chose it for illustrative ease of font to screen coordinate
mapping.

75

Table 3-10 - Elements of the Representative Word Processor Model (continued)

Editing Section

Editing_Area Section of the application where the Document is displayed and where it
can be edited.
The area will have a width of Columns, expressed in fixed-width
characters, and a height of Maximum_Rows. For this representative
WordProcMod, Columns and Maximum_Rows have the same values as
defined in the DocMod.
The Edit_Menu may also launched by using the right mouse button in the
Editing_Area.

HID Actions

Arrow_Nav Navigate by moving the Cursor over the Document using the keyboard
arrows: Up (UA), Left (LA), Down (DA) and Right (RA)

Double-Click (DC) Double-click left mouse button.

Drag Drag the mouse over a portion of the Document while holding the left
mouse button.

Left-Click (LC) Click down the left mouse button.

Left-Release
(LR)

Release the left mouse button.

Move Mouse (MM) Navigate by moving the Pointer over the Document using the mouse.

Right-Click (RC) Click down the right mouse button.

Right-Release
(RR)

Release the left mouse button.

Positional Indicators

Cursor Indicator showing where text will be inserted in the Editing_Area.

Pointer Solid indicator whose position shows the effect of MM. Using LC moves
the Cursor to the Pointer location in the Editing_Area and activates
items in the Menu_Area.

iv – Specific Editing Action Lexicon
Stage 4 is the first stage to consider fully the environment where the
TargetDocument is being composed and the Specific Editing Action Lexicon (iv-
SpecEditActionLex) describes the format of the nodes transformed by this
stage of the HGP.

Recall that lexicons define the syntax of the transformation language understood
by each stage of the HGP. From Figure 11, the reader notices that Stages 1
through 3 only depended on single User Personality Model components which

76

localizes the transformational syntax understood by the respective stage. Stage 4
is different in that it depends on three models: The Editing Model, the DocMod
and the WordProcMod. The iv-SpecEditActionLex will therefore draw from
all three of these models. Although all of these models have been defined
previously, we reproduce lexical examples at Table 3-11 for ease of reading; a
complete definition of all these elements can be found at Appendix D.

Table 3-11 - Specific Editing Action Lexical Examples

Lexical Element Definition

Copy_SE One of the following candidates:
Menu_Area.Edit_Menu.Copy, or
<Ctrl-C>, or
RC.Edit_Menu.Copy

Cut_SE One of the following candidates:
Menu_Area.Edit_Menu.Cut, or
<Ctrl-X>, or
RC.Edit_Menu.Cut

Delete_SE One of the following candidates:
Select_SE, , or
Select_SE, <Backspace>, or
Position_Cursor, sequence of 1 or more , or
Position_Cursor, sequence of 1 or more <Backspace>

Move Mouse One of the following candidates:
{Left or Right # of Columns, Up or # of Rows}
{Menu Name.Menu Element}

Move_SE One of the following candidates:
Select_SE, Cut_SE, Position_Cursor, Paste_SE, or
Select_SE, LC, Drag, LC.

Paste_SE One of the following candidates:
Menu_Area.Edit_Menu.Paste, or
<Ctrl-V>, or
RC.Edit_Menu.Paste

Position_Cursor One of the following candidates:
Move_Mouse, LC, LR, or
A sequence of 1 or more Nav_Arrows.

Select_SE One of the following candidates:
Move_Mouse, DC, or
Move_Mouse, LC, Drag, LR or
Position_Cursor, <Shift>, sequence of 1 or more <Nav_Arrows>.

77

3.7.2. Transformation 4 – Instantiate HID Editing Actions
At this stage in the process, all the editing actions may be instantiated with
specific keyboard and mouse HID events, which implies that all the DPM nodes
have to be visited. The process will therefore traverse the DPM, instantiating each
specific editing action based on the dynamic representation of the Document, as
contained in the DocMod and the probabilistic Editing Model, while considering
the word processor (as detailed in the WordProcMod). Transformation 4 is rather
complex, because it accomplishes three main tasks:

1. It traverses the DPM in a temporal order to visit each terminal node,
2. It processes each terminal node by instantiating specific editing actions

based on the Editing Model, DocMod and WordProcMod, and
3. It ensures proper management of the Cursor when processing

Corrections.

Visit of DPM Terminal Nodes in Temporal Order
Our chosen design for the HGP has allowed us to treat each DPM node largely
independently of other nodes up to this stage. In fact this desire to reduce
dependencies, and thus manage complexity, drove our decision to separate the
treatment of general and specific editing actions with the former processes in
Stage 3 and the latter processed here. Editing actions must however be done in a
logical temporal sequence; we must therefore consider the temporal ordering of
editing actions when specifying them because earlier DPM productions will affect
later ones. For example, inserting a long rather than a short word in the middle of
a Sentence will influence how far the mouse would have to be moved to bring
the Cursor to the insertion point. Furthermore, the HGP must consider the
WordProcMod, as it will influence the available editing actions; there are more
options for moving the Cursor in a word processor that uses both a mouse and a
keyboard than there are in one that uses a keyboard alone.

Recall that Stage 1 parsed the TargetDocument in the same manner that a user
reads: starting from top left, moving right along each line and processing lines
from top to bottom. Recall from section 3.4.4 that the upper levels of the DPM
tree represent the Document structure (such as Paragraphs and Sentences),
while the leaves represent editing actions and terminal syntactic elements. The
errors and rectifying actions that were introduced in the previous stages used the
same structure in the DPM, with the leaves of the tree representing editing
actions. A depth first left to right traversal therefore represents an appropriate
temporal order for the processing of each DPM terminal node.

78

Building of the DocMod Representation
As the HGP visits each terminal DPM node in a depth first left to right traversal, it
builds the DocMod. The DocMod initially shows an empty Document. When the
HPG encounters the first terminal DPM node containing a Type_SE editing
action, it places each letter of that syntactic element in successive
Document_Positions in the DocMod. Successive editing actions, such as
Delete_SE, Move_SE, etc. are similarly reflected in the DocMod (for example,
the input strings representing <Backspace> to erase a word and the re-typed
characters of that Word modify the associated position in the DocMod). It is
important to understand that the DocMod is dynamic, and that its representation
at any given time must be associated with the temporal order of the terminal
DPM nodes.

Instantiation of Editing Actions
Each DPM terminal node is visited to instantiate specific editing actions. The
reader will recall from our discussion of Transformation 3.1 – Instantiate Terminal
Syntactic Elements that the general editing action Type_SE has already been
processed. This stage of the HGP can therefore pass those nodes containing
Type_SE editing actions without further processing.

When the HGP encounters a terminal node containing an editing action that has
not been instantiated, such as Delete_SE for example, it uses the Editing Model
to stochastically choose a candidate instantiation. Following the example,
Delete_SE could be instantiated with Select_SE followed by <Backspace>;
the reader will notice that Select_SE can in turn be instantiated by different
editing action candidates. The transformation must therefore recursively continue
the instantiation of editing actions until the processed node has been instantiated
with sequences of either Type_SE or Mouse Actions. Type_SE can represent the
typing of text or the use of keyboard control characters while Mouse Actions will
be processed in Stage 5 of the HGP.

Cursor Management during Corrections
Recall that Transformation 2.2 – Insert Correction Points inserted
CorrectionPoints which represent the moment during the composition of the
TargetDocument where the synthetic user realizes that there is an error and
takes the rectifying actions necessary to Fix it. Recall also that these
CorrectionPoints can be at end of each Word, Sentence, Paragraph, or
Document. When users realise that there is an error, they must navigate to the
erroneous text to effect corrections by moving the Cursor. Once an error is
corrected, users must reposition the Cursor to bring it to CorrectionPoint in
order to continue with the TargetDocument composition task.

79

The HGP accomplishes Cursor management based on the Editing Model,
Document Model, and Word Processor Model. When processing a DPM node
containing a CorrectionPoint, the HGP will first save the Cursor’s logical
position in the DocMod as the point to return to once the rectifying actions have
been carried out. The HGP will then obtain the position of the Cursor on the
screen by using the mapping between its current logical position in the DocMod
and its corresponding screen position on the WordProcMod. Similarly, the HGP
will compute the screen position of the erroneous syntactic element that must be
rectified by using a mapping between the DocMod and the WordProcMod. The
difference between the Cursor’s saved location at the CorrectionPoint and its
required position to carry out rectifying actions will determine which navigation
actions (keyboard ArrowKeys or Mouse Actions) must be carried out to reach the
erroneous text. Once the Cursor has reached the erroneous text, the rectifying
actions can be carried out.

The reader will recall from our discussion of CorrectionPoints at section 3.5.2
that the erroneous text contains a reference to the target text. We use the DPM
nodes’ unique identifiers, for both the target and erroneous syntactic elements,
to associate the realization of the error at the CorrectionPoint and the
rectifying actions at the erroneous text location. Without these associations, it
would be impossible for the HGP to determine which instance of a particular
syntactic element is erroneous. To illustrate the point, our worked example from
section 3.4.5 contained two instances of the Word “The”, but only the first one
was flagged for error.

Following the rectification of an error, the HGP must return the Cursor to the
position it occupied before the instantiation of the rectifying actions. The HGP will
use the mapping between the logical position in the DocMod and the screen
position in the WordProcMod, for both the corrected text and the saved location
of the DPM node associated with the CorrectionPoint, to determine the
editing actions necessary to return the Cursor to its saved location.

3.7.3. Output: DPM4 – HID Actions Selected
The output of Stage 4 is a DPM where nodes have been annotated to reflect the
synthetic user’s choices with regard to all editing actions.

3.7.4. Worked Example
We continue our worked example by showing how Stage 4 of the DPM chooses
specific editing actions for Delete_SE and Move_SE. The process we illustrate
for Delete_SE will be very similar for Move_SE which we do not include here.
Recall that we left our worked example at the end of Stage 3 in section 3.6.4
having chosen the following general editing actions:

80

... SENTENCE 1 [... WORD 5 [sentence] : Correction {Fix {Wrong_SE WORD
1, Replace_SE {Delete_SE {Wrong_SE WORD 1} WORD 26 [great Type {great}]
} } }] ...

This partial representation of DPM3 shows the first sentence, ending with the
word “sentence” and the ‘:’ punctuation mark. Recall that we inserted a
CorrectionPoint at the end of SENTENCE 1 during Transformation 2.2 so that
the wrongly typed “good” can be deleted and replaced by typing “great”.

When the time ordered traversal of DPM nodes reaches this correction point, the
HGP must instantiate {Delete_SE Wrong_SE WORD 1} according to the
Editing Model at Table 3-7. Let us presume that Candidate 2 was stochastically
chosen (p = 0.32) and that the editing action is instantiated with Select_SE,
<Backspace>, resulting in the following representation of the DPM node:

... SENTENCE 1 [... : Correction {Fix {Wrong_SE WORD 1, Replace_SE
{Delete_SE {Select_SE {Wrong_SE WORD 1}} Type <Backspace> } WORD 26
[great Type {great}] } } }] ...

We notice that the node is not yet fully instantiated with Type_SE and Mouse
Movements because Select_SE is a general editing action. The HGP uses Table
3-7 once more to choose Candidate 3 (p = 0.25) and instantiate Select_SE as
Position_Cursor, <Shift-Down>, a sequence of Nav_Arrows and <Shift-
Up>. The HGP further determines that the Cursor will be positioned at the end
of the erroneous syntactic element (“good” in this case) using Mouse Movements
and it navigates the DPM to obtain the length of the erroneous syntactic element
as 4 letters. The HGP can now fully instantiate the specific editing action as
follows:

... SENTENCE 1 [... : Correction {Fix {Wrong_SE WORD 1, Replace_SE
{Delete_SE {Select_SE {Move_Mouse {End of Wrong_SE WORD 1} Type <Shift-
Down>, Type <LA>, Type <LA>, Type <LA>, Type <LA>, Type <Shift-Up>} Type
<Backspace> } WORD 26 [great Type {great}] } } }] ...

Recall that the HGP depends on the DocMod to instantiate some of the specific
editing actions; we reproduce the relevant portions of our worked example from
Stage 1 at section 3.4.5 below. We also need the DocMod from Figure 13 which
we reproduced at Figure 15 for ease of reading:

... SENTENCE 1 [WORD 1 [Here] WORD 2 [is] WORD 3 [a] WORD 4 [great
CompError (Wrong_SE WORD 1, good Type {good}, Replace_SE,
EndOfSentence)] WORD 5 [sentence]: Correction {Fix {Wrong_SE WORD 1,
Replace_SE {Delete_SE {Select_SE {Position_Cursor {End of Wrong_SE WORD
1} Type <Shift-Down>, Type <LA>, Type <LA>, Type <LA>, Type <LA>, Type
<Shift-Up>} Type <Backspace> } WORD 26 [great Type {great}] } } }] ...

81

 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5 …

1 H e r e i s a g o o d s e n t e n c e :

2

E
O
T

…

Figure 15 - Representative Document Model following Sentence 1 Errors (from Figure 13)

When processing the CorrectionPoint at the end of Sentence 1, the
Cursor is located at Document_Position (1, 25)21, associated with the
character space following the colon punctuation character; the HGP saves the
Cursor location as being associated with that specific character space. The HGP
must then traverse the DPM in reverse temporal order to find the target location
of the Mouse Movement (End of Wrong_SE WORD 1 in this case). Traversing in
reverse temporal order, the HGP first encounters the DPM node associated with
the ‘:’ at (1,24). Next the HGP finds the end of WORD 5 at (1,23) followed by ‘ ‘ at
(1,15). Finally, the HGP finds the end of Wrong_SE WORD 1 at (1,14) and deduces
that the Cursor must be moved left by 10 characters yielding the following DPM
node transformation:

... SENTENCE 1 [... : Correction {Fix {Wrong_SE WORD 1, Replace_SE
{Delete_SE {Select_SE {Position_Cursor { Move_Mouse {Left 10 characters}
LC, LR }, Type <Shift-Down>, Type <LA>, Type <LA>, Type <LA>, Type <LA>,
Type <Shift-Up>} Type <Backspace> } WORD 26 [great Type {great}] } } }]
...

In summary, the error will be rectified as follows, resulting in the DocMod shown
at Figure 16:

1. The mouse will be moved left 10 characters.
2. The left mouse button will be pressed.
3. The left mouse button will be released.
4. A shift key will be pressed.
5. The left arrow key will be pressed four times.
6. The shift key will be released.
7. The backspace key will be pressed.
8. The word “great” will be typed.

21 Document_Positions are expressed as (Row, Column) in the DocMod.

82

 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5 …

1 H e r e i s a g r e a t

s e n t e n c e :

2

E
O
T

…

Figure 16 – Representative Document Model following Sentence 1 Corrections

In order to return the Cursor to the location at which it was prior to the
processing of the CorrectionPoint, the HGP computes that the mouse must
be moved to right by 10 characters, resulting in the following DPM
transformation:

... SENTENCE 1 [... : Correction {Fix {Wrong_SE WORD 1, Replace_SE
{Delete_SE {Select_SE {Position_Cursor { Move_Mouse {Left 10
characters}, LC, LR }, Type <Shift-Down>, Type <LA>, Type <LA>, Type
<LA>, Type <LA> , Type <Shift-Up>} Type <Backspace> } WORD 26 [great
Type {great}] } Position_Cursor { Move_Mouse {Right 10 characters}, LC,
LR } } }] ...

3.8. Stage 5 – Mouse Behaviour Processing
In the previous stages, the HGP has processed the use of the keyboard for both
the typing of syntactic elements and control characters; Stage 5 aims to bring in
the use of the Mouse to the process. This stage will model the use of the mouse
in terms of movement speed and button use, and it will translate the
Document_Postions used in Stage 4 into Screen_Coordinates.

Human users are not perfect in their use of HID, which implies that HGP must
generate mouse actions in a manner that is consistent with humans making
mistakes. This stage of the process introduces Mouse Errors (keyboard errors have
been introduced in Stage 2 – Composition Error Introduction).

3.8.1. Dependencies

v – Mouse Behaviour Lexicon
The Mouse Behaviour Lexicon (v-MouseBehaviourLex) has two main components:
the synthetic user’s characteristic use of the mouse in terms of speed and
direction, and the potential errors that the synthetic uses can make when using
the mouse. Those errors are based on the synthetic user’s ability to hit the
desired Screen_Coordinates and the ability to carry out Button_Actions as
intended.

83

The v-MouseBehaviourLex will represent Mouse Movements (MouseMove) by
indicating target Screen_Coordinates22 and speed (MouseSpeed) in pixel/s.
The v-MouseBehaviourLex must be able to represent Mouse Errors
(MouseErrors) and we chose to model three of them: missing a target location
at which a mouse movement is aimed (Missed_Loc), the accidental pressing of a
mouse button (Accidental_But) and the pressing of a wrong mouse button
(Wrong_But).

The modelling of mouse button errors uses a discrete PDF in a manner similar to
that used to model composition errors in section 3.5.1. In the case of
MouseErrors, the DPM nodes will contain the following information:

1. The Target - the intended mouse action.
2. The Error – the erroneous mouse actions.
3. The Rectifying Actions – the sequence of Editing Actions required in order

to transform the erroneous mouse action into the target mouse action.

In contrast to CompErrors, it is not necessary to specify a CorrectionPoint
for MouseErrors. We assume that MouseErrors will always be corrected
immediately after being made because a user making use of a mouse is looking at
the screen and will therefore not delay in noticing the error. This lack of a
CorrectionPoint also means that it is not necessary to give the MouseError a
unique error identifier. There is no need to refer between the erroneous mouse
action and the target mouse action because the rectifying actions are immediately
carried out; this is explained in more detail in our discussion of Transformation 5.1
– Specify Mouse Errors and Corrections at section 3.8.2. The complete v-
MouseBehaviourLex can be found at Appendix E but lexical examples showing
MouseErrors can be found at Table 3-13.

Mouse Model
The Mouse Model (MouseMod) describes the synthetic user’s ability to hit the
desired Screen_Coordinates and to carry out Button_Actions as intended.
It has two main components: the synthetic user’s characteristic use of the mouse
(in terms of speed and direction) and the potential errors that the synthetic uses
can make when using the mouse.

22 Screen_Coordinates are expressed in pixels as (X, Y) where X is the horizontal
coordinate component representing Columns and increasing to the right and where Y is
the vertical component increasing downward and representing Rows; the origin is located
in the top-left corner of the screen.

84

The Mouse Model (MouseMod) is inspired by the work of Traore and Ahmed [36].
From their work, we are interested in the elements of Table 2-3 that deal with
movement direction (Mouse_Direction) and speed (Mouse_Speed).
Specifically, we consider Movement Speed compared to Distanced Travelled
(MDS) and Average Movement Speed per Movement Direction (MDA). The
Average Movement Speed per Types of Action (ATA) will be considered in Stage 7.

Table 3-12 - Mouse Behaviour Lexical Examples

Movement

Move_Mouse
Target

Screen_Coordinate
(X, Y)

MouseSpeed
(pixel/s)

MouseErrors Target Mouse Action Erroneous Mouse
Action Rectifying Action

Accident_But NULL
One of:

RC, RR or
LC, LR

One of:

LC, LR or
<Esc>

Missed_Loc (X, Y) (X, Y) (X, Y), Mouse_Speed

Wrong_But

One of:

RC, RR or
LC, LR or

DC

One of:

RC, RR or
LC, LR or

DC

One of:

LC, LR or
LC, LR, DC or
<Esc>, DC or

NULL

Our MouseMod also uses an integer from 1 to 8 to designate the octet in which
the movement is taking place. It should be noted however that where Traore and
Ahmed’s first octet began at 0° from the top of the screen, ours begins at -22.5°
from the vertical (337.5°), as depicted at Figure 17. We chose this to ensure that

1
2

3

4
5

6

7

8

Figure 17 - Mouse Model Movement Direction Octets

85

mouse movement targets that are horizontal or vertical compared to the
Pointer’s starting location fall within the centre of a specific octet. In other
words, moving the mouse horizontally will result in movement in the 3rd or 7th
octet while moving it vertically will result in movements in the 1st or 5th octet.

In order to model movement speed, the MouseMod will first consider the
movement direction of travel to pick normally distributed average speed, similar
to Traore and Ahmed’s MDA measure. This movement speed will then be
adjusted based on the distance that must be travelled, considering Traore and
Ahmed’s MSD. While we have not conducted experimentation to populate the
MouseMod our intuition is that movements over small distances will be slower
than those over large distances because they require finer motor control; work on
Fitts Law such as [50] could help refine this stage. Table 3-13 provides a
representative movement speed specification for a potential MouseMod used in
the development of the HGP.

Table 3-13 - Mouse Model – Representative Movement Speed Statistical Distributions

 Movement Direction Octet Movement Speed Reduction Factor
(%)

Octet #
Angle (°)

1
(-22.5 –

22.5]

2
(22.5 -
47.5]

... 8
(-47.5 - -

22.5]

000 -
125

125 -
250

... ≥ 700

Mean (µ)

(pixel/sec)
220 231 ... 90 32 29 ... 0

Standard
Deviation
(σ)
(pixel/sec)

12 15 ... 11 -- -- -- --

As discussed in the previous section, the MouseMod must also model the mouse
button errors made by the syntactic user, namely Accident_But and
Wrong_But. While this model has not been populated, representative models
were used to develop the HGP. Table 3-14 shows the distribution on the number
of mouse button errors made in the composition of the TargetDocument, while
Table 3-15 shows a representative discrete PDF of the rectifying actions that
would fix errors in the use of the mouse buttons. Accident_But is the clicking of
a button when none was intended during a Move_Mouse; it is expected that this
error can be rectified by either clicking the left mouse button (with LC, LR) or by
simply continuing the Move_Mouse. According to our WordProcMod, accidently

86

pressing the right button when the left was intended (either singly or during a DC)
causes the Edit_Menu to open; we see two options to close the menu and the
model offers two candidates: pressing the <Esc> key or pressing the left mouse
button twice. Lastly, accidently pressing the left mouse button when the right
button was intended is simply fixed by pressing the right button.

Table 3-14- Mouse Model – Representative Number of Mouse Errors PDF

Number of Mouse Button Errors 0 1 2 ...

Accident_But 0.62 0.18 0.09 ...

Wrong_But 0.82 0.09 0.05 ...

Number of Missed_Loc Errors 0 1 2 ...

Probability 0.25 0.42 0.18 ...

Table 3-15 - Mouse Model – Representative Mouse Button Errors Rectifying Action PDF

 Target Error Rectifying Actions
Candidate 1

Rectifying Actions
Candidate 2

Accident_But

Move_Mouse Move_Mouse, RC,
RR, Move_Mouse

Move_Mouse, RC,
RR, LC, LR,
Move_Mouse

Move_Mouse, RC,
RR, <Esc>,
Move_Mouse

 0.45 0.62 0.38

Move_Mouse Move_Mouse, LC,
LR, Move_Mouse

Move_Mouse, LC,
LR, Move_Mouse --

 0.55 1.00 XX

Wrong_But

RC, RR LC, LR RC, RR NULL

 1.00 1.00 XX

LC, LR RC, RR LC, LR <Esc>, LC

 1.00 0.62 0.38

DC RC, RR LC, LR, DC <Esc>, DC

 0.35 0.52 0.48

DC LC, LR DC NULL

 0.65 1.00 XX

87

Finally, the MouseMod must model the Missed_Loc error. In order to develop
the HGP, we used a model of Move_Mouse accuracy based on the grid shown at
Figure 18. The target Document_Position is found at the centre of the grid
(denoted by T in the figure) and potential erroneous locations are numbered in a
clockwise spiral around the target. A representative MouseMod mouse accuracy
discrete PDF giving the probability of hitting the target Document_Position or
an erroneous location can be found at Table 3-16.

24 9 10 11 12

23 8 1 2 13

22 7 T 3 14

21 6 5 4 15

20 19 18 17 16

Figure 18 - Mouse Model – Move_Mouse Accuracy Layout

Table 3-16 - Mouse Model - Representative Move_Mouse Accuracy PDF

 Target Candidate 1 Candidate 2 ... Candidate 24

Document_Position 0.68 0.03 0.12 0.01

To recap, we have discussed the following aspects of the MouseMod: the
movement direction octets, a PDF to determine stochastically the speed of
movement based on that direction and including an adjustment for the distance
of travel, PDFs to select stochastically the number of MouseErrors, PDFs to
instantiate stochastically MouseErrors in terms of buttons and location. We are
now ready to discuss the two specific transformations being carried out by Stage 5
of the HGP.

3.8.2. Transformation 5.1 – Specify Mouse Errors and Corrections
The HGP first annotates the appropriate DMP nodes with MouseErrors
According to the Mouse Model (Table 3-14) this transformation stochastically
determines how many MouseErrors will take place. Once the number of errors
has been determined, the HGP will randomly select which mouse actions will be
flagged as erroneous and annotate the corresponding DPM node with the
following information:

88

1. The Target - the intended mouse action which is already noted in the
DPM node.

2. The Error – the erroneous mouse actions. The HGP will use the MouseMod
(Table 3-15) to instantiate mouse button errors and to pick erroneous
Document_Positions (Table 3-16).

3. The Rectifying Actions – the sequence of editing actions required in order
to correct the Mouse_Error according to the MouseMod (Table 3-15).

Recall that MouseErrors rectifying actions take place immediately after the
error, and that a CorrectionPoint need not be specified.

3.8.3. Transformation 5.2 – Compute Mouse Movement Details
At the conclusion of the previous stage, DPM4 contains Move_Mouse of the form:
Move_Mouse {Right 10 characters, Down 2 rows} or Move_Mouse
{Edit_Menu.Copy}; these must now be translated to Screen_Coordinates
in order to compute the Pointer trajectory in Stage 6.

Recall from our discussion of the WordProcMod that our chosen word processor
application has a defined screen dimension expressed in pixels. The Menu_Area
elements are located at fixed screen locations, and the HGP holds a list of their
constant Screen_Coordinates; it need not compute them as it does for
Move_Mouse actions that are expressed relative to the Cursor. Each character in
the Editing_Area has a Document_Position that is 10 pixels wide by 12
pixels high; the mapping between Document_Position and
Screen_Coordinates is therefore given by:

(𝑋,𝑌) = (𝐶𝑜𝑙𝑢𝑚𝑛 ∗ 10,𝑅𝑜𝑤 ∗ 12) (1)

The Speed must also be specified to detail Move_Mouse actions, but we leave its
specification to Stage 6.

3.8.4. Output: DPM5 – Mouse Errors Introduced
The output of Stage 5 is a DPM where nodes have been annotated to reflect all of
the synthetic user’s choices with regard to all editing actions, including the typing
of syntactic elements, errors and their rectifying actions. The terminal DPM nodes
are all annotated with Type_SE, Move_Mouse or mouse button actions.

3.8.5. Worked Example
Recall the following portion of our worked example from Stage 4:

89

... SENTENCE 1 [... : Correction {Fix {Wrong_SE WORD 1, Replace_SE
{Delete_SE {Select_SE {Postion_Cursor { Move_Mouse {Left 10 characters},
LC, LR }, Type <Shift-Down>, Type <LA>, Type <LA>, Type <LA>, Type <LA>
, Type <Shift-Up>} Type <Backspace> } WORD 26 [great Type {great}] }
Postion_Cursor { Move_Mouse {Right 10 characters}, LC, LR } } }] ...

In carrying out Transformation 5.1, The HGP will first use the DocMod at Table
3-14 to determine that there will be one instance of an Accident_But (p = 0.18),
no instances of Wrong_But (p = 0.82) and one instance of Missed_Loc (p =
0.42). Let us further presume that both DPM nodes containing the Move_Mouse
editing action above (in italics) have been stochastically selected as erroneous
mouse actions to implement the Accident_But and Missed_Loc errors
respectively.

The HGP uses Table 3-14 to determine that the Accident_But is to be
instantiated with an accidental press and release of the right mouse button (p =
0.55). Such an error happens in the middle of a mouse movement, and the
associated Move_Mouse is split into two sections: one before and one after the
button error. In this case, the HGP determines that the error will take place at the
fourth character of the movement, leaving a 6-character movement after the
error. The HGP further determines that Rectifying Actions Candidate 2 will be
used (p = 0.38) and the error will be corrected with the use of the <Esc> key. The
first Move_Mouse DPM node is therefore transformed as follows:

... Postion_Cursor { Move_Mouse {Left 4 characters}, RC, RR, Type <Esc>,
Move_Mouse {Left 6 characters}, LC, LR }...

In order to instantiate the Missed_Loc error, the HGP uses Table 3-16 to
determine that the error will be instantiated with Candidate 4 (p = 0.04). From
Figure 18, we recall that this error position is 1 Row below and 1 Column to the
right of the target. The HGP therefore transforms the second Move_Mosue DPM
node as follows:

... Postion_Cursor { Move_Mouse {Down 1 row, Right 11 characters},
Move_Mouse {Up 1 row, Left 1 character}, LC, LR } ...

Transformation 5.2 traverses the DPM and finalises the details of the
Move_Mouse errors. To illustrate the technique, we use the last Move_Mouse
action discussed above: Move_Mouse {Down 1 row, Right 11
characters}. Recall that the HGP builds a dynamic DocMod as it traverses the
DPM when arriving at this node (Figure 15 at this point). From this representation
of the DocMod, the HGP can ascertain that the Cursor position is at Column 16,
Row 1; going right 11 characters and down 1 row puts the target of the mouse
movement at Column 27, Row 2. Using formula (1), we transform this into(27 ∗

90

10,2 ∗ 12) = (270,24). The Move_Mouse action is therefore transformed as
follows:

... Move_Mouse {(270, 24), }, ...

3.9. Stage 6 – HID Event Stream Generation
From the point of view of the attackers’ presence on the compromised computer
system, a synthetic user generates a series of HID Events on the USB. Stage 6 of
the process traverses the DPM and transforms Type_SE, Move_Mouse and
mouse button editing actions into a sequence of Keyboard Output Reports (KOR)
and Mouse Output Reports (MOR).

3.9.1. Dependency: vi – HID Event Lexicon
The HID Event Lexicon (vi-HIDEventLex) describes the HID events that are
created by the HGP to render the TargetDocument on the compromised system.
It defines the two HID events of interest: MOR and KOR as defined in [51]. The
definitions for these elements can be found at Appendix F.

3.9.2. Transformation 6 - Generate KOR and MOR
As was done in Stage 4, the HGP will perform a temporal order traversal of the
terminal DPM nodes, building the DocMod as it goes. The HGP will instantiate
Type_SE editing actions by generating one KOR for each letter in a syntactic
element and for each control character (used for editing or navigation) in the
DPM. Similarly, the HGP will instantiate the mouse button actions (LC, LR, RC, RR
and DC) by generating an MOR for each.

The HGP must calculate the trajectory of the Pointer, in terms of
Screen_Coordinates and distance, for each Move_Mouse action. Recall from
Table 3-13 that the Mouse Model details the movement speed depending on the
distance to be travelled by direction. Given the current Screen_Coordinates of
the Pointer (𝑋𝐶 ,𝑌𝐶) and its target Screen_Coordinates (𝑋𝑇 ,𝑌𝑇), the
distance (d) can be computed using equation (2) while the angle (Θ) can be
computed using equation (3):

𝑑 = �(𝑋𝑇 − 𝑋𝐶)2 + (𝑌𝑇 − 𝑌𝐶)2 (2)

𝜃 = atan2�(𝑋𝑇 − 𝑋𝐶), (𝑌𝐶 − 𝑇𝑇)� ∗ 180/𝜋 (3)

The arctan trigonometric function requires adjustments to the angle depending
on the quadrant of the verctor between the current and target
Screen_Coordinates; we use atan2 [52] instead of arctan to obtain the
appropriate angle regardless of the quadrant. We also invert the function

91

arguments from (Y, X) to (X, Y) to obtain angles relative to the Y-axis which
corresponds to the top of the screen, as demonstrated at Figure 19.

The HGP can use the Mouse Model at Table 3-13 to populate the Move_Mouse
with the stochastically chosen Speed, according to the Direction octet and
adjusted for the Distance.

3.9.3. Worked Example
Recall that the first word of our TargetDocument is:

 ... WORD 1 [Here Type {Here}] ...

When transforming this node, the HGP will create a KOR for each letter (as
detailed at Appendix F) as follows:

• KOR with flag 0x05 to indicate that the right <Shift> key is depressed and
keycode 0x0B for the letter ‘h’,

• KOR for keycode 0x08 for the letter ‘e’,
• KOR for keycode 0x15 for the letter ‘r’, and
• KOR for keycode 0x08 for the letter ‘e’.

Recall the following DPM node from the Stage 5 worked example in section 3.8.5:

... Move_Mouse {(270, 24), }, ...

The HGP will use the WordProcMod to keep track of the position of the
Pointer. It is the OS that keeps track of the position of the Pointer but that

Figure 19 - Mouse_Move Trajectory Calculations

Columns

Rows

(X
C
,Y

C
)

(X
T
,Y

T
)

Θ d

(0,0)

92

position is available to applications such as a word processor; we therefore keep
track of its position within the WordProcMod. Let us presume that the previous
mouse action had left the Pointer 20 characters left and 10 rows below the
Cursor’s current Screen_Coordinates at (270,24). Using equation (1), we can
derive the Pointer’s current position at

(270 − 20 ∗ 10,24 + 10 ∗ 12) = (70,144) (4)

We can now use equations (2) and (3) respectively to compute the distance and
angle of the trajectory between the current and target Pointer position as
follows:

𝑑 = �(270− 70)2 + (24 − 144)2 = 233 𝑝𝑖𝑥𝑒𝑙𝑠 (5)

𝜃 = atan2�(144 − 24), (270 − 70)� ∗ 180/𝜋 = 40.0° (6)

Having computed the trajectory of the Mouse_Move, the HGP is now in a position
to calculate the movement speed using Table 3-13 - Mouse Model –
Representative Movement Speed Statistical Distributions as follows:

1. Θ = 40.0° places the movement in octet #2 which implies a movement
speed of 233 pixels/s.

2. d = 233 implies a reduction factor of 29% giving a movement speed of
233 ∗ 0.29 = 165 pixels/s, giving the following transformation to the
DPM node:

... Move_Mouse {(270, 24), 165}, ...

3.9.4. Output: DPM6 – HID Events Generated
The Stage 6 DPM is a tree representing a sequence of MORs and KORs as its
terminal nodes.

3.10. Stage 7 – Event Timing Characterization
As discussed in section 2.4, the timing of HID events can be used to characterize
users. The HGP must therefore generate HID events at a rate that is consistent
with generation by a human. This stage of the HGP assigns delays between the
HID events.

93

3.10.1. Dependencies

HID Timing Model
The HID Timing Model is a probabilistic model describing the distribution of times
between the occurrences of various HID events. The model considers the timing
of keyboard keys, mouse buttons and the transition between MORs and KOR.
While we have not conducted experiments to populate the HID Timing Model, we
propose a representative continuous PDF of the delays between HID elements as
shown at Table 3-17.

Table 3-17 - HIT Timing Model - Representative PDF

 KOR Delays MOR - Delays

 aa ab ... zz LC-
LR

LR-
RC

... DC KOR –
LC

KOR –
RC

MM –
KOR

..
.

Mean (µ)

(pixel/sec)
342 112 ... 458 .75 .88152 1.560 2.123 3.158 ...

Standard
Deviation
(σ)
(pixel/sec)

27 11 ... 32 .05 .11 -- .20 .45 .55 .78 ...

As we have done for the Typing Accuracy Model, we propose to model digraphs.
The left hand section of Table 3-17 shows the digraphs with the delay between
each letter. Similarly, the HIM Timing Model considers the delays between various
mouse button actions and transitions between MORs and KORs as shown in the
right-hand section of the table.

vi – Timed HID Lexicon
 The Timed Event Lexicon (vii-TimedEventLex) defined at Appendix G simply
describes ordered pairs of each HID Event and their release time on the USB.

3.10.2. Transformation 7 – Insert Inter-Report Delays
This stage traverses the DPM in temporal order and inserts release times for each
HID Event, for both MORs and KORs.

DPM-6 contains the Move_Mouse editing actions containing a target
Screen_Coordinate and movement speed of the form:

94

... Move_Mouse {(270, 24), 165}, ...

Transformation 7 uses the movement Speed contained in the DPM node to
generate MORs at a rate of 200 per second, which is typical for wired HID mice
[53]. This value reporting rate is established between the USB device and the
endpoint during USB enumeration. From our previous example where 233 pixels
were to be travelled at a speed of 165 pixel/s, the HGP will generate:

233 𝑝𝑖𝑥𝑒𝑙𝑠 ∗ 1
165

𝑠𝑒𝑐𝑜𝑛𝑑𝑠
𝑝𝑖𝑥𝑒𝑙

∗ 200 𝐾𝑂𝑅𝑠
𝑠𝑒𝑐𝑜𝑛𝑑

= 282 𝐾𝑂𝑅𝑠 (7)

The HGP will therefore generate 282 KORs on the trajectory between the current
and target Pointer position with a delay of 1 200� second between each.

The delays between other HID events, such as keyboard keys, mouse buttons and
transitions between KORs and MORs will follow the HID Timing Model as
illustrated at Table 3-17.

3.10.3. Final Output
The final output of the HGP is a sequence of HID Events rendering the
composition of the TargetDocument on the compromised system, in
accordance with the User Personality Model.

3.11. Chapter Summary and Conclusion:
This chapter has presented the HGP, which is the major contribution of the
research. The process accepts a TargetDocument containing structured English
free-text, and through a series of transformations, produces a sequence of HID
Events that, when placed on the USB of the compromised system, gives attackers
the impressions that the TargetDocument is being composed by a human user.

Recall from section 1.6 that the aim of the research is to develop a conceptual
framework for the automatic generation of HID events in a manner that is
consistent with a human inputting text into a computer system. The process
presented here meets this aim because it is able to automatically generate HID
events for placement on the USB. The process helps resolve the specific
deficiencies addressed in section 1.5 by automatically generating the MORs and
KORs that correspond to the composition of English free-text by a synthetic user.

The pipes and filters architecture, with which the process described in this
chapter has been designed, offers flexibility. The dependencies between the User
Personality Model components and the transformation stages of the process are
localized and well defined. This architecture will enable the extension of the

95

process by allowing for the use of enhanced models of user behaviour and refined
transformation stages to represent defenders’ evolving understanding of attacker
capabilities.

3.12. Consistency with Human Behaviour
The process that we have described in this chapter is clearly able to automatically
generate HID Events. But that is not sufficient however, for us to claim success.
Our aim also requires us to show that process supports the generation of HID that
are consistent with a human user composing text on the compromised system.
We argue that the chosen architecture is conducive to the inclusion of a varied
 User Personality Model; a more complete argument for the validity of the User
Personality Model is presented at section 5.4.2. As defenders refine their
understanding of the models that attackers use to characterise compromised
computer systems, they are in a position to refine the User Personality Model
used in the process.

96

CHAPTER 4 : FEASIBILITY THROUGH IMPLEMENTATION
4.1. Chapter Introduction
We believe that the HGP framework presented in this research is a valid solution
to the problem of automatic generation of HID events, in a manner that is
consistent with a human user; we have devoted Chapter 3 to making this validity
argument. Proposing a valid solution is not sufficient however, to demonstrate
that this research meets its aim. The solution presented here must also be
feasible, and this chapter will be devoted to making such a feasibility argument.

This chapter will discuss the proof-of-concept requirements and the
implementation decisions made to meet those requirements. The chapter will
then discuss the implementation of a proof-of-concept of the HGP, including
some of the specific technologies and programming languages used. Finally, the
chapter will conclude by arguing for the sufficiency of the proof-of-concept as
implemented toward a demonstration of feasibility.

4.2. Proof-of-Concept Requirements
In order to demonstrate that the HGP described in Chapter 3 is a feasible solution
to the real and important problem described in section 1.5, the author has built a
proof-of-concept system, called the Synthetic User Environment or SUE.
Demonstrating that the HGP can be built is proof of its feasibility, ipso facto. We
must demonstrate however that the SUE, as it was built, is a sufficient
implementation of the HGP. To that end, we propose the following proof-of-
concept requirements:

1. The proof-of-concept must be able to accept TargetDocuments
containing arbitrary English language free-text as its input. The structure
of the English free-text must respect the i-SynElmtLex, but there are
no semantic restrictions on its composition.

2. In order to respect the pipes and filters architecture that we have
selected for the HGP, each successive stage of the proof-of-concept must
be able to produce an output that is an acceptable input to its follow-on
stage.

3. To meet the research aim’s automatic generation component, each stage
of the proof-of-concept must be able to automatically manipulate the
nodes of the DPM. This is not taken to mean that the proof-of-concept
must implement all transformations; it must be demonstrated however
that all transformations can be implemented automatically. This
requirement for automation implies:

97

a. That the proof-of-concept must be able to manipulate a DocMod
to handle the dynamic nature of the Document.

b. That the proof-of-concept must be able to use an appropriate
WordProcMod.

4. The proof-of-concept must demonstrate that it is possible to consider and
integrate aspects of the User Personality Model, including the processing
of errors and corrections.

5. The final stage of the proof-of-concept must produce HID events that can
be placed on the USB of compromised system, along with inter-event
delays, such that these HID events must render the composition of the
TargetDocument, including errors and their correction.

These requirements capture the essential difficulties in the implementation of the
HGP. We further suggest that meeting those requirements will give assurance of
the feasibility of the HGP as designed in the paragraphs that follow.

We have chosen to implement those aspects of the HGP that model the use of the
keyboard by the synthetic user, and our proof-of-concept SUE application
generates the KORs associated with the rendering of the TargetDocument as it
is composed on the compromised system. We do not however, implement the
use of a mouse in the SUE.

Our decision to only model the use of the keyboard is partly due to equipment
limitations. As we will explain in more detail in our discussion of the SUE, our
proof-of-concept SUE uses a PLX Net2280 USB Development Board [54]. Each PLX
Net2280 can only represent one USB device, and only one can be installed on a
PC. Furthermore, only one such PLX Net2280 was available to the author, which
forced us to represent only one of the two types of HID devices specified by the
HGP. Of the two devices considered by the HGP, the keyboard is definitely the
most important and we will discuss why we believe that it suffices to demonstrate
the feasibility of the HGP in section 4.4.

The implementing KORs exercises the significant portions of the HGP, and that it
meets the requirements listed above. Specifically, the implementation of the
keyboard aspects of the HGP allows the proof-of-concept to accept an English
free-text TargetDocument as required by 1 above.

The editing actions described in the User Personality Model contain many
candidate instantiations that use the keyboard; KORs are therefore sufficient to
demonstrate that the proof-of-concept can handle the processing of errors and
corrections. We have chosen to implement a simplified version of the Editing
Model which instantiates specific editing action candidates. We have also

98

implemented a simplified version of the HID Timing Model which stochastically
inserts delays between KORs according to parameters representing the typing
proficiency of the synthetic user. We argue that the integration of the Editing
Model and of the HID Timing Model demonstrate that the User Personality
Models can be integrated in the proof-of-concept, thereby meeting the
requirement listed at 4 above.

In order to meet the requirement listed at 3 above, we have chosen to implement
all of the automatic processing for transformations associated with keyboard HID
events in stages 1, 3, 4, 6 and 7. We have also implemented automatic processing
of transformations 2.2 and 2.3 in Stage 2. We deem the transformations
automatic in that they manipulate the DPM that they receive from the previous
stage, and pass their resulting output DPM to the follow-on stage as required by 2
above until the last stage generates a series of KORs that meet the requirement
of 5 above.

4.3. Proof-of-Concept Development - The SUE
The SUE proof-of-concept was implemented using the TXL and C programming
languages. TXL development took place using an open source editor which
supports TXL syntax highlighting, called Notepad++ [55], under the Windows XP
[56] and Windows 7 [57] OS. C development was accomplished with the Eclipse
IDE for C/C++ Developers [58].

Because it is less widely used than C, we begin this section with a discussion of the
TXL programming language, followed by a description of the implementation of
the various stages of the HGP in the SUE.

The TXL Programming Language
TXL is a product of Queen’s University [59]. It is a programming language
specifically designed to support transformational programming, which has made it
particularly well suited to the pipes and filters architecture chosen for the HGP,
where each stage’s input is transformed into the stage’s output according to the
where each stage’s input is transformed into the stage’s output according to the
transformation rules described in Chapter 3. As depicted in Figure 20, included
here by permission, a TXL program is composed of three phases: Parse, Transform
and Unparse [60]. Each of these will be discussed in the context of the SUE.

99

The TXL Parse Phase parses the input of the TXL program into a tree. Parsing is
done according to the appropriate grammar [61], which is represented by the
various lexicons discussed in Chapter 3. The grammar is expressed in a notation
similar to Extended Backus-Nauer Form [62], and it must be context-free. For the
SUE, the transformation stages where TXL is used (in stages 1 through 3) utilise
the lexicons which describe how the various model elements are structured in
order to parse the stage’s input.

The TXL Transform Phase takes care of transforming the input parse tree into an
output parse tree according to the rules and functions specified in the program.
The transformations are specified by example meaning that a pattern and
replacement is specified for each; if a tree matches the pattern, it is replaced by
the replacement. Every TXL function and rule produces a node that is
homomorphic to its input, meaning that both are of the same type. In the SUE,
the TXL Transform Phase is used to implement the HGP transformations described
in sections 3.4 to 3.7, with the exception of Transformation 2.1 – Flag Nodes for
Errors.

The TXL Unparse Phase therefore produces an output that can also be parsed by
the grammar; in our case this means that each stage’s lexicon must define both
the input and output DPM elements syntax. In our case, this means that every
successive lexicon using TXL is an extension of its predecessor. For example, recall
the first sentence from the TargetDocument from our worked example, which
became the following nodes in DPM-1:

Figure 20 - The Three Phases of TXL [60]

100

Here is a great sentence: ...

... SENTENCE 1 [WORD 1 [Here] WORD 2 [is] WORD 3 [a] WORD 4 [great] WORD
5 [sentence]:] ...

The first stage’s lexicon (i-SynElmtLex) therefore defines a Word as both
[wordToken], to parse the input syntactic element, and also as 'WORD
[number] '[[wordToken] '] to reflect the fact that words are tagged and
numbered by Stage 1.

TXL manipulates text files, and our implementation of stages 1 through 3 contain
25 TXL files. Figure 21 gives an indication of the relationship between the four
elements of a TXL transformation in the context of the SUE:

1. The input file. This is the TargetDocument for the first transformation
and the output of a TXL program for subsequent transformations. The
input file’s extension is the name of the TXL program
(TargetText.1_SynWElmtExtracton above),

2. The TXL program which effects the transformations; TXL program files
have an extension of .txl (1_SynElmtExtraction.txl above),

3. The lexicon which represents the grammar used by the TXL program to
parse its input. By convention, we use the .lexicon file extension
(SynElmt.lexicon above) , and

4. The output file which is a DPM in the context of the SUE. The output file
extension is the name of the follow-on stage’s TXL program (DPM1.2-
1_CompErrorFlagging above).

Figure 21 - TXL Software Architecture in the Context of the SUE

TargetText.1_SynElmt
Extraction

DPM1.2-
1_CompErrorFlagging

1_SynElmtExtraction.
txl

SynElmt.lexicon

101

4.3.1. Implementation of Stage 1
The input of this stage is a TargetDocument that contains English free-text in
the sense that there are no restrictions on the English language text that is being
composed by the synthetic user; there are however restrictions on its structure. It
must be a UTF-8 encoded text document that respects the structure laid out in
the TXL implementation of i-SynElmtLex; this lexicon is implemented as a TXL
grammar. The implementation recognizes:

• Word - a sequence of alphabetic characters (censored swearing such as
“d$%$it?” would not be recognized as a Word),

• Number - as an optional ‘-‘, optional ‘$’, integer or real number beginning
with a digit and continuing with any number of digits, an optional decimal
point followed by at least one more digit, and an optional exponent
beginning with the letter E or e and followed by an optional sign and at
least one digit [60]; the following would all be recognized as Numbers: “-
$454.27”, “0.08%”, “-4.6E-3”,

• Sentence – sequence of Word or Number followed by a Punctuation
mark,

• Paragraph – a sequence of Sentences followed by a New_Line, and
• Signature – a sequence of Words followed by a New_Line.

In Transformation 1 – Identification of Syntactic Elements, the TargetDocument
is parsed such that each Word, Number, Paragraph and Signature is uniquely
identified and structured in a tree with a single Document node at its root and
instances of Word, Number, New_Line and Punctuation nodes at its leaves.
DPM1.2-1_CompErrorFlagging contains this output DPM. By default, DPMs
are output as UTF-8 encoded text files. TXL can create XML output, which has
proven useful for debugging, but there is no need for human interpretation of the
DPMs.

The result of this stage, DPM1, closely resembles the example we discussed at
section 3.4.5. For example, a TargetDocument such as:

Here is a great sentence:
The quick brown fox jumps over the lazy dog.
Sly

results in the following DPM-1:

PARAGRAPH 1 [
SENTENCE 1 [WORD 1 [Here] WORD 2 [is] WORD 3 [a] WORD 4 [great] WORD 5
[sentence]:]]
PARAGRAPH 2 [

102

SENTENCE 2 [WORD 6 [The] WORD 7 [quick] WORD 8 [brown] WORD 9 [fox] WORD
10 [jumps] WORD 11 [over] WORD 12 [the] WORD 13 [lazy] WORD 14 [dog].]]
SIGNATURE [WORD 23 [Sly]]

4.3.2. Implementation of Stage 2
Stage 2 of the process introduces Composition Errors. Transformation 2.1 – Flag
Nodes for Errors which flags nodes for errors. This transformation has not been
automated because it is heavily dependent on the Composition Model and Typing
Accuracy Model; we argue that these models must be developed further before
representations of these models can be manipulated by the SUE. The nodes are
flagged for error manually in a manner consistent with was is expected by a TXL
implementation and following the stage’s grammar: ii – Composition Error
Lexicon. That is to say that each syntactic element flagged for error is annotated
with the required information from the lexicon as detailed in section 3.5.2. From
our worked example in section 3.5.4, the reader will recall the Word “the” was
mistyped as “teh", this would result in the following manual annotation:

... WORD 6 [The CompError (Mistyped_SE WORD 1, Teh, Replace_SE,
EndOfWord)] ...

The resulting intermediary DPM2-1 is fed to the Transformation 2.2 – Insert
Correction Points implementation which inserts the appropriate
CorrectionPoints for each syntactic element flagged as erroneous. Based on
the CorrectionPoint identified in the CompError, the transformation finds
the appropriate location in the DPM and creates the Correction node in the
DPM if one does not exist. The transformation then inserts a Fix node that
contains the identification of the erroneous syntactic element and the
appropriate rectifying actions. For Mistyped_SE error from our example, the
Correction is inserted as follows:

...WORD 6 [The CompError (Mistyped_SE WORD 1, Teh, Replace_SE,
EndOfWord) Correction { Fix {Mistyped_SE WORD 1, Replace_SE}]...

The intermediary DPM2-2 is in turn fed to Transformation 2.3 – Insert Misplaced
Stubs which inserts Stubs to allow the processing of Misplaced_SE errors.
Whenever such a Misplaced_SE error is encountered, the SUE navigates the
DPM according to the error’s Position, and inserts a copy of the erroneous
syntactic element so that it is typed out of position during composition. Recall
that in our example, “brown” was annotated for misplacement by four Words to
the right, resulting in the following insertion of Word 24 in the DPM.

... WORD 7 [quick ...] WORD 8 [brown CompError (Misplaced_SE WORD 1,
Right 4 WORD, Move_SE (Left 4 WORD), EndOfSentence)] WORD 9 [fox ...]

103

WORD 10 [jumps] WORD 11 [over] WORD 24 [brown STUB{Misplaced_SE WORD 1,
Move_SE (Left 4 WORD)}] ...

4.3.3. Implementation of Stage 3
Stage 3 of the process selects those Editing Actions that are not dependent on the
Document or word processor. While the design of Stage 3 of the process called for
two transformations, the TXL implementation further refines those into five
passes.

Transformation 3.1 – Instantiate Terminal Syntactic Elements instantiates
terminal syntactic elements, which are those syntactic elements that are not
collections of syntactic elements such as New_Line, Numbers, Punctuations,
Separators, and Words. This transformation tags each of these terminal
syntactic elements with a special annotation so that they can later be transformed
into a sequence of KOR.

This transformation is implemented in two passes. The first pass TXL program
traverses the DPM using a depth first left to right ordering and annotates terminal
syntactic elements that were not flagged for error. From our worked example,
Word 1 would be annotated as follows:

... WORD 1 [Here Type {Here}] ...

Recall that those nodes that have been flagged for error contain both the target
text and the erroneous text. The TXL program will annotate those nodes flagged
for error such that KORs will later be generated from their erroneous text. Our
mistyped Word would be annotated as follows:

...WORD 6 [The CompError (Mistyped_SE WORD 1, Type{Teh}, Replace_SE,
EndOfWord) Correction { Fix {Mistyped_SE WORD 1, Replace_SE }]...

The second and third passes are TXL programs that implement Transformation 3.2
– Instantiate Replace Syntactic Element and instantiate Replace_SE and
Move_SE errors respectively. Our chosen implementation does not implement
the full Editing Model discussed in chapter but it does demonstrate that the
model can be integrated in the HGP by automatically generating the general
editing actions associated with composition errors. For example, the
implementation of the specialisation of the Replace_SE general editing action
associated with the previously discussed erroneous Word is given here:

...WORD 6 [The CompError (Mistyped_SE WORD 1, Type{Teh}, Replace_SE,
EndOfWord) Correction { Fix {Mistyped_SE WORD 1, Replace_SE {Delete_SE
{Mistyped_SE WORD 1} WORD 27 [The Type {The}] } }]...

104

TXL was found to be sub-optimal for the implementation of stochastic processes,
as required by the proposed User Personality Model. The SUE is therefore
implemented such that DPM3 is the last to make use of TXL. The fourth and fifth
passes in Stage 3 are TXL programs that annotate nodes containing specific
editing actions so that the further stages of the process will be able to process
them. The fourth pass annotates the sequences of Fix nodes in correction points
to enable Cursor management in the next stage and the fifth pass extracts all of
the terminal nodes of the DPM (either Type or specific editing actions) into a file
for processing by the next stage. The output of this stage, DPM3, is a text file that
will be parsed by the follow-on C application.

4.3.4. Implementation of Stage 4
Transformation 4 – Instantiate HID Editing Actions is implemented in C using 15
files grouped into six modules. Recall that Transformation 4 – Instantiate HID
Editing Actions visited the nodes of the DPM in temporal order to choose specific
editing actions for each general editing action it encountered. At this stage of the
HGP, the choice of editing action depends on the structure of the Document as
well as the word processor in use. The program implementing this stage must also
keep track of the position of the Cursor so that it may be able to handle
corrections by navigating to erroneous DPM nodes and back.

The program uses two data structures to model the Document (DocMod) and the
sequence of HID Events (HIDSeq) that is used to compose the TargetDocument
on the compromised system. These two data structures are used for different
purposes: the DocMod is used to compute relative distances between syntactic
elements and the HIDSeq will ultimately be the output of the stage: DPM4. Let us
address each of these in turn.

We implement the DocMod as a linked-list where each list node contains a
terminal syntactic element identifier, its text and length. Recall from our
discussion of the Document Model that the Document was represented as grid to
allow for the calculation of relative distances between syntactic elements in the
correction of errors. As the proof-of-concept implementation of the HGP only
deals with the HID events associated with a keyboard, it suffices to represent this
distance as relative Document_Positions without having to compute
translations to Screen_Coordinates. The SUE therefore computes relative
positions by traversing the DocMod linked-list and counting the number of
characters associated with each syntactic element. Recall that a
CorrectionPoint represents a point in the composition of the Document
where the synthetic user realises an error has been made, and that the Cursor
records the composition position in the Document. The program uses a pointer to
refer to the Cursor in the DocMod linked-list.

105

The HIDSeq on the other hand is a list of all the keyboard actions that will
become HID events. It is important to note that the HIDSeq is rate monotonic,
regardless of what is being rendered in the word processor. Typing the character
‘a’ and erasing immediately with the <Backspace> key still results in two KORs.
The program uses a custom built parser to interpret the nodes of DPM3, and
consumes syntactic elements by using a depth-first, left-to-right traversal of the
Document tree.

As mentioned in our discussion of the Word Processor Model, some of the
synthetic user’s choices with regard to HID actions depend on the word processor
being used; using Microsoft Word is very different than using vi. For the purposes
of our proof-of-concept, we have chosen to use the Microsoft Notepad
application that is part of the Windows OS [56] as the WordProcMod. The specific
editing actions possible with Notepad are therefore integrated as the
WordProcMod into the C implementation of Transformation 4 – Instantiate HID
Editing Actions.

For each Syntactic Element, HID actions are processed as follows:

1. Type_SE actions are implemented by adding a syntactic element to the
DocMod. In those cases where a syntactic element is inserted in the
middle of other text, a linked-list node is inserted appropriately.

2. Delete_SE actions have multiple possible instantiations as proposed in
the Editing Model; in order to demonstrate the feasibility of the approach,
the Delete_SE action is implemented by adding a sequence of
<Backspace> to the HIDSeq.

3. Move_SE is implemented with Select_SE, Cut_SE,
Position_Cursor, Paste_SE

4. Select_SE is implemented with a sequence of <Shift> <Arrow_Keys>
5. Cut_SE is implemented with <Ctl-X>
6. Position_Cursor is implemented with a sequence of <Arrow_Keys>
7. Paste_SE is implemented with <Ctl-V>

The output of this stage, DPM4, contains a sequence of all HID events representing
the composition of the TargetDocument by the synthetic user using keyboard
events.

4.3.5. Combined Implementation of Stages 6 and 7
Transformation 6 - Generate KOR and MOR is charged with the generation of HID
events based on the HIDSeq represented by the previous stage of the HGP. We
chose to use a USB development board, the PLX Net2280, installed on a SUE

106

Server, in order to generate HID events to be placed on another workstation
representing the compromised system as shown at Figure 22.

The PLX Net2280 is a PCI to Hi-Speed USB 2.0 programmable peripheral controller
[54]. The SUE applications are run on a server equipped with a PLX Net2280. This
server is connected to the compromised computer system with a USB cable
where it enumerates as a keyboard. There are no connections between the SUE
server and the compromised system, other than a USB cable.

As mentioned previously, we only had access to one PLX Net2280 for this
research. The reader should also note that only one instance of a PLX Net2280
may be used on a host at one time; the PLX Net2280 API cannot manage more
than one USB device. Both of these facts drove our decision to implement only
the keyboard aspects of the HGP. Stages 6 and 7 are implemented together in a C
application that makes use of a module representing the HID Timing Model and
also uses the PLX Net2280 API.

Transformation 6 - Generate KOR and MOR of the HGP is responsible for the
generation of HID events; as our proof-of-concept SUE only implements the
aspects of text composition using the keyboard, it generates KORs only. In order
to generate KORs, the SUE parses the HIDSeq to extract the characters that
correspond to the typing of syntactic elements and control characters
corresponding to editing actions. The SUE uses the PLX Net2280 API to craft the
appropriate KORs from those characters in order to insert them onto the USB of
the compromised system. From our worked example, the SUE would generate
four KORs for WORD 1 [Here Type {Here}] as follows:

Figure 22 - Physical Setup of the SUE Proof-of-Concept

Attackers’
Remote
Access

SUE Server
(PLX Net2280)

Compromised
System

USB

SUE Operator

107

1. KOR for ‘H’
2. KOR for ‘e’
3. KOR for ‘r’
4. KOR for ‘e’

The last transformation of the HGP, Transformation 7 – Insert Inter-Report Delays,
introduces delays between the HID events according to the HID Timing Model.
Because the proof-of-concept SUE is only concerned with KORs, we need only
consider those aspects of HID Timing Model that deal with KORs. We chose to
implement this portion of the HID Timing Model with a normal distribution
parameterised according to the synthetic user’s typing proficiency. The last
program in the SUE obtains the synthetic user’s typing proficiency parameter
from the SUE Operator and releases the KORs generated at Transformation 6 -
Generate KOR and MOR on the USB of the compromised system with the
stochastically modelled delays.

The proof-of-concept SUE application is used by running a series of pipelined
command-line programs. These programs can be easily scripted which further
goes to demonstrate that the HGP described at Chapter 3 can be automated.

4.4. Sufficiency
A full implementation of the HGP as described in Chapter 3 would certainly
demonstrate the feasibility of the proposed framework, but it is considered to be
out of scope for this research. We argue that such a complete implementation is
also not necessary to demonstrate the feasibility of the HGP, and believe that the
proof-of-concept SUE as implemented is sufficient. This section is therefore
devoted to this sufficiency argument and it will do so by discussing how the proof-
of-concept requirements have been met and why the omitted portions are not
deemed essential.

The SUE’s implementation meets our first proof-of-concept requirement because
it is demonstrated to be able to accept an English free-text TargetDocument
contained in a text file. The SUE automatically extracts the syntactic elements
from that TargetDocument and outputs a DPM representation of its syntactic
elements. The SUE accepts any English free-text TargetDocument as long as it
respects the Stage 1 lexicon at Appendix A.

DPMs are successively passed through 10 TXL transformations in Stages 1, 2 and 3
and passed through five further transformations programmed in C in Stages 4, 6
and 7. These successive transformations demonstrate that the chosen pipes and
filters architecture is valid and that the HGP can be automated as demanded by
requirements 2 and 3.

108

The SUE achieves the third proof-of-concept requirement by implementing
portions of the Editing Model and HID Timing Model. The integrations of these
two models shows that the HGP as designed can integrate User Personality Model
components that include stochastic candidate choices of model elements, and it
has shown that it can use those models to automatically transform DPMs. This
meets the fourth proof-of-concept requirement.

The SUE is able to render the composition of the TargetDocument, including
errors and their corrections, on the compromised system with only a USB
connection between the SUE Server and the compromised system. This addresses
the last proof-of-concept requirement, ipso facto.

We recognize that some elements of the HGP are not implemented in the proof-
of-concept SUE. The three major omissions are the integration of all aspects of
the User Personality Model, the decision not to generate MORs and the manual
annotations of errors in Transformations 2.1. We leave the discussion of the
validity User Personality Model to section 5.4.2 and discuss the other two
omissions below.

Equipment limitations prevented us from implementing those aspects of the HGP
that deal with the generation of MORs. In the context of text composition, the
mouse is used to navigate the application and the OS; the mouse is therefore
useful in the carrying out of editing actions but it cannot be used to enter text.
Because of this, we consider that the mouse is subsumed by the keyboard; while
many users are likely to often prefer using a mouse to a keyboard to navigate,
there is nothing that can be done with a mouse that cannot be done with a
keyboard (within the context of Notepad as our word processor). It should also be
noted that the PLX Net2280 API includes primitives that can move the mouse at a
given speed to specified Screen_Coordinates; the implementation of MORs is
therefore likely to be straight-forward if time consuming. We argue therefore,
that the proof-of-concept SUE need not implement MORs to demonstrate that the
HGP is feasible.

Our decision to manually flag nodes for error, instead of implementing their
automatic annotation, in Transformation 2.1 – Flag Nodes for Errors could be
questioned but we argue that this decision does not invalidate our feasibility
argument. Flagging nodes for error is unique in that it relies on two components
of the User Personality Model, namely the Typing Accuracy Model and
Composition Accuracy Model. As we have discussed in section 3.10.1, the HID
Timing Model and the Typing Accuracy Model are very similar in that they model
the interactions between character digraphs. We have successfully implemented
stochastic delays, parameterized according to characteristics of the synthetic user,

109

in the SUE as discussed in the . The implementation of a digraph discrete PDF as
prescribed by the proposed Typing Accuracy Model could be accomplished by
following a similar approach.

As we will argue further in section 5.4.2, the Composition Accuracy Model is one
of two components of the User Personality Model for which the least information
is available in the literature. This means therefore, that our efforts to implement a
representative approximation of that model would be very speculative, and we
suggest that it would contribute little to the validation of this research.
Nonetheless, we can examine what would be required to implement the
automatic flagging of errors at Transformation 2.1 – Flag Nodes for Errors:

1. Develop a representation of the Typing Accuracy Model showing a
discrete PDF of digraph candidates similar to what is shown in Table 3-6.

2. Develop a representation of the Composition Accuracy Model’s various
elements as shown in the following: Table 3-3, Table 3-4 and Table 3-5.

3. Develop an application that can parse DPM1 from the previous stage and
extract syntactic elements. Recall that TXL does not handle stochastic
processes well, which means that this step must be done without the
power of a transformation oriented language.

4. Stochastically choose nodes for errors according to the Composition
Accuracy Model and Typing Accuracy Model, and annotate those nodes
accordingly.

We argue that the steps above are straight forward and well understood. The
automation of Transformation 2.1 – Flag Nodes for Errors is not necessarily
technically challenging, but it would be time consuming and onerous. We do not
believe that this effort is required to demonstrate the feasibility of the HGP and
are confident that it can be safely omitted from the proof-of-concept
implementation.

4.5. Chapter Conclusion
The proof-of-concept SUE has been implemented to demonstrate the feasibility of
the HGP described in Chapter 3. The proof-of-concept SUE was implemented
using two programming languages, TXL and C, on Windows XP or Windows 7 OS.
The proof-of-concept SUE is meant to be executed on a server equipped with a
PLX Net2280 USB development board connected to the compromised computer
system via USB, where it will enumerate and appear as a keyboard.

Stages 1 through 4, 6 and 7 of the HGP have been implemented for the
generation of KORs and this chapter has described their implementation. The
chosen pipes and filters architecture is respected and the proof-of-concept SUE is

110

demonstrated able to render a TargetDocument, including errors and
corrections, on a compromised system. The successful implementation of the
proof-of-concept SUE demonstrates that the solution presented in Chapter 3 is
feasible.

CHAPTER 5 : SUMMARY AND CONCLUSION
5.1. Chapter Introduction
This research tackles the problem of intelligence collection on sophisticated
attackers who have compromised a computer system. This chapter summarises
the dissertation and explain why we believe that we have met our research aim.
We first argue that the problem we tackled, namely the collection of intelligence
on sophisticated attackers is real and important. We then present our solution to
this problem, explain why it is valid and argue for its feasibility. The chapter then
lists the contributions of our work and discuss avenues of future work.

5.2. Deficiencies of Current Approaches
The Remove Clean Restore response to the discovery of the presence of attackers
on a computer system is inadequate because it is reactive; attackers have the
initiative and defenders are always left trying to catch up. In order to have better
chances of developing effective defences, defenders must know more about the
attackers tools, techniques, capabilities and motives. Intelligence gathering is
therefore required on the attackers and Network Counter-Surveillance Operations
(NCSO) has been proposed as a means of collecting such intelligence.

We surmise that sophisticated attackers who put significant effort and resources
into the compromise of high-value targets will examine the systems they
compromise closely to derive valuable information from them and to be assured
that they are not themselves under observation. Attacker observation of the high-
value systems that they compromise can include characterization of users, which
implies that sophisticated attackers can be interested in the ways with which
users interact with the systems they have compromised, including through
observation of the HID events on the USB.

We have presented an operational scenario describing the compromise of a high-
value computer system by sophisticated attackers, which would warrant the
collection of intelligence. We argue that attackers would want their activity on
that compromised system to remain undetected because of the value they derive
from presence on the high-value compromised system; this will affect what they
can do to characterize user activity. Current techniques do not provide a means of
collecting intelligence on sophisticated attackers in such a context.

5.2.1. Honeypots
We have discussed honeypots in section 2.2. While honeypots can be beneficial
for capturing tools and techniques, they do not allow for the collection of
intelligence on sophisticated attackers because attackers are likely to easily

111

112

discover that the honeypot they have compromised is of low-value. Honeypots
are defined as having no production value, and sophisticated attackers are not
likely to be fooled by a system that does not correspond to the production
systems that they target.

Current research does not detail user activity on honeypots; we believe that this
makes honeypots unrealistic intelligence collection mechanisms from the point of
view of a sophisticated attacker. The lack of HID activity on the system will be
another avenue through which sophisticated attackers can discover that they
have been led to a honeypot instead of a high-value system.

Finally, honeypots are static; the research literature does not provide means of
changing the information on a honeypot to respond to an evolving situation. This
makes honeypots unsuitable for setting the stage for future operations against
the attackers (which we termed the preparation of the attackers).

5.2.2. NIST
The typical response to compromise breaks contact with attackers and thus does
not allow defenders to collect intelligence on the attackers, as would be the case
in a Network Counter-Surveillance Operation (NCSO). There are serious
deficiencies in the tools and techniques that defenders currently have at their
disposal in order to allow intelligence collection on attackers, and we have
described a Network Intelligence Surveillance Toolset (NIST) to address these
deficiencies. The NIST is premised on maintaining contact with the attackers by
allowing them to remain on the compromised system while they are being
surreptitiously observed. While provisions are being made for the control of the
attackers’ actions on the compromised system, the NIST carry an inherent amount
of risk and should only be engaged when the assessment of the risk against the
potential intelligence gathered warrants an NCSO.

The major deficiency addressed by this research deals with the fact that attackers
are likely to break contact themselves if they suspect that they are under
observation. For an NCSO to be successful, the NIST employed by network
defenders must provide the attackers a realistic environment with which to
interact. It is this specific aspect of the NIST that is being tackled by this research.

113

5.3. Aim of the Research
From section 1.6, the aim of our research is:

To develop a conceptual framework for the automatic generation of HID events
in a manner that, when observed by attackers, is consistent with a human
inputting text into a computer system.

The generation of HID events must take place outside the compromised system to
ensure that it is not visible to the attackers. Automatic means that a human user
must not use interface devices to generate HID events on the compromised
system’s USB. Consistent with a human inputting text means that the rendering of
the document composition will be characterized as normal by the attacker as
depicted at Figure 2. This consistency with humans further means that the
rendered composition must respect local HID event stream semantics which in
turn implies that replaying recorded HID events on the compromised system’s
USB would not suffice.

Our literature review and the discussion of NCSOs and NISTs allow us to say that
the problem tackled by this research is real and that solving it will bring valuable
contributions to the field of computer network defence.

5.4. Validation Argument
In order to demonstrate that the HGP that we have propose is valid, we must
successfully argue that it is a sufficient solution to the problem and that it meets
our research aim. We must also show that the User Personality Model used by the
HGP as represented in this work is representative of the models that may be used
by attackers to characterize human activity on a compromised system. Finally, we
must explain why we believe that the proof-of-concept SUE demonstrates the
feasibility of the HGP.

5.4.1. Sufficiency
The HID Event Generation Process (HGP) that we have designed in this research
proposes an actual solution to the research problem. The HGP accepts a free-text
English language TargetDocument and produces a series of HID events that
render its composition on a compromised computer system. The HGP is
systematic in its approach, and it uses a sound pipes and filters architecture that is
conducive to modification and expansion as our understanding of the attackers’
means of user characterisation evolves. The HGP’s generation of user events is
automated because there is no need for humans to use HID to generate HID
events. The HGP successively transforms the TargetDocument based on a
defined User Personality Model which can be parameterised which allows for the
representation of different synthetic users.

114

Specifically, the HGP generates HID events related to the use of a keyboard and
mouse, such that the syntactic elements of the TargetDocument will be
rendered as they are being composed on the compromised system as follows:

1. The first stage of the HGP extracts all syntactic elements, such Word,
Numbers, Sentences, Paragraphs, etc. from the TargetDocument and
produces a Document Production Model (DPM) using a tree to represent
the structure of the syntactic elements of the TargetDocument.

2. Stage 2 of the HGP annotates the syntactic elements of the DPM with
Composition Errors, which are mistakes in the typing, choice or
positioning of syntactic elements. The Composition Errors introduced at
this stage are not associated with the structure of the Document or the
word processor being used. In order to ensure consistency with human
behaviour, as required by our aim, this stage of the HGP uses two
components of the User Personality Model, namely the Composition
Accuracy Model describing the synthetic user’s propensity to misplace or
to use the wrong syntactic element, along with the Typing Accuracy
Model that details the synthetic user’s propensity to mistype syntactic
elements.

3. The third stage of the HGP selects the editing actions that are required to
render the typing of the DPM’s syntactic elements, along with the
introduced errors and associated corrections. To maintain consistency
with human behaviour, the HGP uses an Editing Model that describes the
synthetic user’s preferences in the selection of editing actions. The editing
actions selected and described in Stage 3 are general in that they do not
depend on the representation of the Document or word processor being
used.

4. In Stage 4, the HGP refines the choices of editing actions based on the
word processor being used. It also considers the dynamic representation
of the Document as it is being composed and the Editing Model, in order
to choose specific editing actions in a manner consistent with the
synthetic user.

5. The fifth stage of the HGP considers the use of a mouse. The stage picks
screen coordinate targets for the implementation of specific editing
actions and computes trajectories (distance and angle) and movement
speed according to the Mouse Model to maintain consistency with a
human user. The stage also introduces errors in the use of the mouse,
along with the corrections of these errors. Namely, it models the
accidental pressing of a mouse button, the pressing of the wrong mouse
button and the missing of a target location on the screen.

115

6. Stage 6 generates HID events, namely Mouse Output Reports and
Keyboard Output Reports to implement the editing actions of the DPM in
accordance with the word processor being used.

7. Finally, the last stage of the HGP introduces delays between the HID
events in accordance with the HID Timing Model.

We believe that the HGP summarized above, and described in detail in Chapter 3,
is a sufficient solution to the problem of the provision of a realistic user
environment at the HID level for the purpose of intelligence collection on
sophisticated attackers as detailed in our research aim.

5.4.2. Validity of the User Personality Model
In order to successfully argue that the aim of the research has been met, we must
show that the automatically generated HID events are consistent with those
generated by a human inputting text into a computer system. Recall from Figure 2
that attackers characterize a system by comparing the activity they sample against
their models of normal behaviour. Unfortunately, attackers are loath to share
their models with defenders.

Our review of the open literature has revealed that attackers are willing to expand
significant effort to characterise honeypots. One can surmise therefore, that
sophisticated attackers who compromise high-value computer systems (such as
described in the Operational Scenario) would expend significant effort and
resources to characterise their compromised target. Attackers can use user
activity at the HID level on the USB to characterise the users of the compromised
system. Attackers have access to publicly available literature, and we argue that
they can use this literature to model user behaviour at the interface level.
Defenders and attackers will be engaged in a measure counter-measure arms race
in the context of NCSO. While our research has not revealed any such attacker
models of user personality in the open literature, it is reasonable to expect that
this is something that can be done by sophisticated attackers.

We have discussed modelling efforts for the use of a mouse and keyboard. As
mentioned, we have not populated these models through experimentation
because this effort was deemed to be out of scope for our research. We have
however developed the components of the User Personality Model as discussed in
Chapter 3. The following paragraph will argue for the validity of these
components.

The HID Timing Model describes the rate at which our synthetic user is generating
HID events on the compromised system’s USB. The modeling of typing behaviour
based on digraph duration in this model flows directly from the research efforts of

116

Gunneti and Picardi at [42]. The approach used by Gunneti and Picardy of
recording the duration of digraphs could be extended to the use of mouse
buttons, and we suggest that it is reasonable to suggest that attackers would
model the speed of mouse button action in such a manner. Recall that it is not
necessary to model the rate at which MORs is placed on the USB because it is
established during the enumeration of the USB device. We can therefore be
confident that our HID Timing Model is valid as it is closely related to research
efforts in this area.

Similarly, many aspects of the Mouse Model can found in the open literature. The
mouse movement modeling flows from the efforts of Ahmed and Traore at [39]
who introduce the concept of speed per movement direction (through their MDA
measure) and average movement speed per direction (MSD). The concept of local
HID event semantics that we have introduced is based on the DocMod; the mouse
movements that will be used to manipulate the Document during its composition
will therefore also respect the distribution of movements according to directions,
as represented by the MDH measure because they are based on those semantics.
The other aspects of the Mouse Model, namely the mouse button errors and the
mouse use accuracy, are not well documented in the literature. We suggest
however, that these are feasible aspects of mouse behaviour that can be
modelled by attackers. An attacker could model this aspect of user behaviour
through experimentation that counts the number of erroneous mouse actions; we
argue therefore that our approach of modelling the accuracy of button use
through a discrete PDF is reasonable.

The Typing Accuracy Model which we use to model the mistyping of a syntactic
element (Mistyped_SE) is also based on Gunetti and Picardi’s work at [42].
While the authors only dealt with the issue of n-graph duration statistics, we
argue that their treatment of typing based on n-graphs can be extended to
accuracy. Attackers who are interested in the accuracy of a HID user will need a
means of characterising this accuracy. The approach of determining the number
of errors for each digraph variation is one that attackers could reasonably be
expected to use to model this typing accuracy, and it is well captured by the
Typing Accuracy Model’s use of a discrete PDF to represent the candidate
digraphs that can be typed by the synthetic user.

Our proposed Composition Accuracy Model models two classes of errors that can
be made in the composition of a Document: the misplacing of text
(Misplaced_SE) and poor choices in the selection of a syntactic element
(Wrong_SE). The model also determines at which point the synthetic user realises
that an error has been made. We believe that these three aspects, along with

117

Mistyped_SE errors are representative of the types of composition errors that
can be made by a user.

Finally, the Editing Model instantiates editing actions such as: text selection,
moving, replacement, deleting, copying, cutting and pasting. Because users have
more than one option for carrying out these editing actions, the model is
probabilistic and contains a PDF of the possible candidate instantiations. The
model depends on the representations of the word processor used by the
synthetic user because it will affect the editing action choices available to the
synthetic user.

The Composition Accuracy Model and Editing Model that we propose have no
closely related equivalents in the research literature. It would have been quite
easy to simply forego these aspects, and this would have made the design of the
HGP and development of a proof-of-concept much simpler. We believe however,
that both of these aspects of user HID behaviour can be modelled by attackers,
and we think that this modeling is more likely in the case of the sophisticated
attackers towards which this research is directed. We have therefore proposed
candidate models for inclusion in the HGP.

We feel that our models are reasonable approximations of what can be modelled
by attackers, but we cannot offer any evidence to prove their validity empirically.
It is reasonable to ask what would be the impact of having erred in the definition
of the User Personality Model; what would happen to this research’s contribution
if attackers use different models of HID user behaviour.

The major contribution of the research is the development of the HGP framework,
in a manner that is consistent with a human user. We have had to develop the
framework with uncertain models of HID user behaviour. It was deemed
important therefore, to ensure that the HGP is conceived in a way that will allow
for the integration of different models of user activity, and we argue that we have
done so. The pipes and filter architecture chosen for the HGP minimizes the effect
of changes to the User Personality Model to specific stages of the framework.
Changes to a component of the User Personality Model requires only that the
lexicon for that stage be updated and that the appropriate transformations be
modified to make use of the new model. We suggest that this type of localized
changes confirms the validity of the chosen framework design.

5.4.3. Feasibility
Finally, we demonstrated that the HGP that we propose here is feasible because
we have been able to implement a proof-of-concept Synthetic User Environment
or SUE. The SUE accepts a free-text English language TargetDocument and,

118

through successive automatic transformations, produces a series of HID events
which render the composition of said Document when placed on the USB of a
compromised system. The rendering is consistent, from the perspective of the
attackers’ presence on the compromised system, with what would be composed
by a human user including errors and their corrections.

The SUE implements the HID events associated with the use of the keyboard, but
not of the mouse. We argue that the implementation of keyboard aspects is
sufficient to demonstrate the feasibility of the HGP because every editing action
that can be done with a mouse can be done with a keyboard. The implementation
of the mouse aspects of HID behaviour is expected to be time consuming, but we
do not believe that they contribute to the demonstration of validity of the HGP.

By integrating aspects of the Editing Model and HID Timing Model into the SUE,
we have demonstrated that the HGP can be integrated with the User Personality
Model. We have also demonstrated that the SUE is able to automate the
transformations of the HGP and can therefore argue that the SUE is sufficient to
demonstrate the validity of the HID event generation framework.

We have presented an HGP that allows for the automatic generation of mouse
and keyboard activity on the USB in a manner which, from the perspective of the
attackers on the compromised system, is consistent with a human user. The
attackers that we have described in the Threat Model have complete access to
the compromised system, but they are also limited by their desire to remain
undetected; this affects their ability to characterise the user activity on the
compromised system. We argue that our proposed HGP framework therefore,
produces HID events that are consistent with a human HID user. By building a
proof-of-concept SUE, we have demonstrated that the HGP is feasible and that it
is a valid solution to the problem addressed by our research aim.

5.5. Contributions
This research makes a number of contributions and we list them below.

5.5.1. HGP Design
Our most important contribution is the design of a systematic approach to the
generation of HID events, specifically a mouse and keyboard, in a manner that is
consistent with a human inputting text into a computer system. Specifically, we
have developed an HID Generation Process (HGP) composed of:

119

1. A seven stage HGP:
a. Stage 1 – Syntactic Elements Extraction parses a

TargetDocument, extracts its syntactic elements and stores
them in a DPM representing their structure.

b. Stage 2 – Composition Errors Introduction inserts errors in the
DPM. The stage conducts three transformations on the DPM: 1)
flagging nodes for errors, 2) inserting CorrectionPoints where
the synthetic user realises that errors have been made and
corrects them, and 3) inserts markers (or Stubs) where
misplaced syntactic elements will be inserted in the Document.

c. Stage 3 – Editing Action Selection considers the synthetic user’s
choices in terms of editing actions that do not depend on the
Document or word processor. The stage has two transformations:
1) the instantiation of terminal syntactic elements which are
typed by the syntactic user, and 2) the instantiation of the editing
action that replaces a group of syntactic elements by another (as
is the case when a wrong Word was used for example).

d. Stage 4 – HID Action Selection takes the Document and word
processor into account to choose the specific editing actions
required to compose the TargetDocument including errors and
their correction.

e. Stage 5 – Mouse Behaviour Processing takes into effect the use of
the mouse by the syntactic user, including the specification of
movements and errors in the use of the mouse buttons and the
missing of target locations on the screen. The stage has two main
transformations: 1) the specification of mouse errors and their
correction, and 2) the computation of mouse movement details.

f. Stage 6 – HID Event Stream Generation generates the KORs and
MORs associated with the terminal DPM nodes.

g. Stage 7 – Event Timing Characteristics introduces delays between
HID events and places them on the USB of the compromised
system thereby rendering the composition of the
TargetDocument.

2. Lexicons which represent the grammars understood by the successive
stages:

a. i – Syntactic Element Lexicons defines the syntactic elements
which the HGP can parse such as: character, digit, document,
letter, new line, number, paragraph, punctuation, signature,
sentence, separators and words.

b. ii – Composition Error Lexicon defines the composition errors on
syntactic elements understood by the HGP, namely: misplaced,

120

mistyped and wrong along with correction points which may be
the end of words, sentences, paragraph or document.

c. iii – General Editing Action Lexicon defines general editing actions
on syntactic elements, namely: move, replace and type.

d. iv – Specific Editing Action Lexicon refines or defines the
definitions of the following editing actions on syntactic elements:
copy, cut, delete, move, paste and select. It also defines editing
actions involving the mouse such as: move, use buttons and
position cursor.

e. v – Mouse Behaviour Lexicon defines mouse movements and
errors such the use of the wrong button, the accidental pressing
of a button and the missing of a target screen location.

f. vi – HDI Event Lexicon defines HID MORs and KORs.
g. vii – Timed Event Lexicon annotates delays between HID events.

3. A Document Model (DocMod) which represents the dynamic evolution of
the Target_Docment as it is being composed by the synthetic user, and

4. A Word Processor Model (WordProcMod) which captures the
characteristics of the application on which the synthetic user is composing
the TargetDocument.

We have demonstrated that the architecture that we have chosen is sound and
feasible by implementing it in a proof-of-concept Synthetic User Environment
(SUE) which parses a TargetDocument and automatically generates the MORs
that render its composition, incuding errors and their corrections, by placing them
on the USB of the compromised system.

5.5.2. User Personality Model Definition
This research has defined the User Personality Model that attackers may use to
characterise user activity at the USB HID level on a compromised system. As
discussed further in the previous section, we have defined:

1. Composition Model,
2. Typing Accuracy Model,
3. Editing Model,
4. Mouse Model, and
5. HID Timing Model.

Such modelling allows network defenders to consider a further means by which
attackers can characterise the environment in which they operate. The definition
of these models contributes to the field of Vitality Detection, and can lead to
other avenues of research.

121

5.5.3. NCSO and Deception Operations
This work also contributes to the evolving development of Network Counter-
Surveillance Operations. The provision of a realistic environment on the
compromised system, with which the attackers can interact, is one of three
required tools of the Network Intelligence Surveillance Toolset that this new kind
of operation requires. The framework for the automatic generation of HID events
described here is an important aspect of such a realistic environment.

The ability to make it seem as if the synthetic user is composing arbitrary text on
the compromised system is an important enabler to Deception Operations. As
with the research published by Rowe [28], the HGP can be used in lies, displays
and insights. We believe that an HGP can push Deception Operations further by
enabling ruses, and False and Planted Information. Ruses involve the use of tricks
such as displays that use enemy equipment and procedures; the HGP can use the
compromised system, considered an asset by the attackers, to show them what
defenders want them to see. The compromised system can also become a vector
with which to introduce false and planted information to the attackers in a
manner that appears much more realistic than simply introducing files in the
compromised system. The use of ruses and false and planted information can help
defenders prepare attackers for future operations

5.5.4. Publications
We have already contributed to the field of research through publication in [5] [4]
[6]. These works argue that a reactive-oriented network defence policy based
solely on perimeter defences is not sufficient to properly safeguard information
technology infrastructure. An argument is made for an approach based on the
idea that defence begins with an understanding of those adversaries that pose
significant risk to the cyber infrastructure, their motivations and their capabilities.
Therefore, the first response to an attack should not always be to immediately
block the attack. The papers discuss NCSO with the objective to discover: who is
attacking, what they are capable of, what their current mission objective is, and
what is the larger strategic goal or context for the current attack.

5.6. Future Work

5.6.1. User Personality Models
The first aspect of future work arising from this research is in the area of user
characterisation by the attackers. The likelihood that the user activity generated
by the framework will be accepted as consistent with a human user by the
attackers increases as our models approach those used by the attackers.
Developing better models is therefore a worthwhile endeavor. Particular
attention should be paid to the Composition Accuracy Model and Editing Model

122

because there are no readily apparent research efforts detailing this type of
modeling activity.

This research has devoted significant effort to supporting of the local semantics of
the HID event stream. While we believe this to be important as it is a likely avenue
of user activity characterisation by attackers, this is also an area that could be
further explored.

5.6.2. Remaining Implementation of the HGP
The continued implementation of the automatic HGP framework is also worth
further investigation. While we argue that this proof-of-concept implementation
using only keyboard output reports is sufficient to demonstrate the validity of the
framework, further development would serve to highlight the contributions of the
work to operational intelligence collection. We suspect that the implementation
of mouse movement in particular would allow for a variety of word processor
models, which would increase the areas in which the synthetic user environment
could be used. The implementation of mouse movements would also help refine
the models of the document being composed by the synthetic user, which has the
potential to make the framework applicable to a greater range of Deception
Operations. A more robust implementation could in turn help refine the
framework, further demonstrating the benefits that could be derived from it.

This research tackled the provision of a realistic user environment with which
attackers can interact in order to keep them engaged with a compromised system
with a view of collecting intelligence on them. We have demonstrated that this
problem is worthy of significant research effort. The research proposed a
framework for the automatic generation of keyboard and mouse HID events, in a
manner that is consistent with a human user, and we have successfully argued for
the validity of this solution. The framework was validated through the
implementation of a proof-of-concept synthetic user environment, which
demonstrated that the proposed solution is feasible.

REFERENCES

[1] S.P. Leblanc, "Toward The Creation Of A Synthetic User Environment - An
Active Network Defence Enabler," Electrical and Computer Engineering
Department, Royal Military College of Canada, Kingston, Ontario, Depth
Research and Doctoral Research Proposal 2008.

[2] Computer Emergency Readiness Team (CERT). (2000, April) The CERT Division
| SEI | CMR. [Online]. http://www.cert.org/tech_tips/win-UNIX-
system_compromise.html#D.2

[3] Lance Spitzner, Honeypots: Tracking Hacker. Boston, MA: Addison-Wesley,
2003.

[4] Scott Knight, Pat Smith, Sylvain Leblanc, and David Vessey, "Living with the
Enemy: Containing a Network Attacker When You Cannot Afford to Eliminate
Him," in Information Systems Technology Symposium on Information
Assurance and Cyber Defence, NATO Research and TEchnology Agency,
Antalya, Turkey, 2010, pp. 25–1 – 25–10.

[5] Scott Knight and Sylvain Leblanc, "When Not to Pull the Plug: The Need for
Counter-Surveillance Operations," in The Virtual Battlefield: Perspectives on
Cyber Warfare, Christian Czosseck and Kenneth Geers, Eds. Tallinn, Estonia:
Ios Press, 2009, vol. 3, ch. 16, pp. 226–237.

[6] Sylvain P Leblanc and G Scott Knight, "Engaging the Adversary as a Viable
Response to Network Intrusion," in Workshop on Cyber Infrastructure -
Emergency Preapardness Aspects, Ottawa, Canada, 2005.

[7] R.W. Smith and G.S. Knight, "Predictable Design of Network-Based Cover
Communications," in IEEE Symposium on Security and Privacy (S&P 2008),
Oakland, CA, 2008, pp. 311–321.

[8] Yingxu Wang, "A formal syntax of natural languages and the deductive
grammar," Fundamenta Informaticae, vol. 90, no. 4, pp. 353–368, April 2009.

[9] D.J. Major, "Exploiting system call interfaces to observe attackers in virtual
machines," Royal Military College of Canada, Kingston, Ontario, MASc Thesis

123

http://www.cert.org/tech_tips/win-UNIX-system_compromise.html%23D.2
http://www.cert.org/tech_tips/win-UNIX-system_compromise.html%23D.2

124

2008.

[10] Harley B. Heywood, "An Intrusion Surveillance Toolset Based on Virtual
Machine Introspection," Royal Military College of Canada, Kingston, Ontario,
MASc Thesis 2011.

[11] T.Dean, G.S. Knight J.S. Alexander, "Spy vs. Spy: Counter-Intelligence
Methods for Backtracking Malicious Intrusions," in Proceedings of the 2011
Conference of the Center for Advanced Studies on Collaborative Research
(CASCON'11), Markham, Ontario, 7-10 November 2011, pp. 1–14.

[12] Cliff Stoll, The cuckoos egg: tracking a spy through the maze of computer
espionage. New York, NY: Simon & Schuster, 2005.

[13] Bill Cheswick, "An Evening with Berferd in which a cracker is Lured, Endured,
and Studied," in Winter USENIX Conference, San Francisco, 1992, pp. 103–
116.

[14] Neal Krawetz, "Anti-honeypot technology," Security & Privacy, IEEE, vol. 2,
no. 1, pp. 76–79, Jan-Feb 2004.

[15] Kyumin Lee, James Caverlee, and Steve Webb, "Uncovering social spammers:
social honeypots+ machine learning," in 33rd International ACM SIGIR
conference on Research and development in information retrieval, New York,
NY, 2010, pp. 435–442.

[16] Chris Brenton, "Honeynets," in SPIE Enabling Technologies for Law
Enforcment and Security, Boston, MA, 2001, pp. 115–122.

[17] John Levine, Richard LaBella, Henry Owen, Didier Contis, and Brian Culver,
"The use of honeynets to detect exploited systems across large enterprise
networks," in Information Assurance Workshop, West Point, NY, June 2003,
pp. 92–99.

[18] Abdallah Ghourabi, Tarek Abbes, and Adel Bouhoula, "Characterization of
attacks collected from the deployment of Web service honeypot," Security
and Communication Networks, vol. 7, no. 2, pp. 338–351, February 2014.

125

[19] Niels Provos and Thorsten Holz, Virtual honeypots: from botnet tracking to
intrusion detection, 1st ed. Boston, MA, USA: Pearson Education Professional,
2007.

[20] Zubair A Khan, Saeed U Rehman, and M H Islam, "An analytical survey of
state of the art wormhole detection and prevention techniques,"
International Journal of Science and Engineering REsearch, vol. 4, no. 6, pp.
1723–1731, June 2013.

[21] Checkpoint Security. (2014, February) Threat Prevention Appliances |
Checkpoint Software. [Online]. http://www.checkpoint.com/products/threat-
prevention-appliances/

[22] Communications Security Establishment Canada (CSEC). (2014, February)
Baseline Security Requirements for Network Security Zones in the
Government of Canada. [Online]. http://www.cse-cst.gc.ca/its-
sti/publications/itsg-csti/itsg22-eng.html

[23] Miles A McQueen and Wayne F Boyer, "Deception used for cyber defense of
control systems," in 2nd conference on Human System Interactions HSI,
Catania, Italy, May 2009, pp. 624–631.

[24] Dan Ragsdale, "Scalable Cyber Deception," Defence Advanced Research
Project Agency (DARPA), Arlington, VA, Briefing Charts 2011.

[25] James B Michael, "On the response policy of software decoys: Conducting
software-based deception in the cyber battlespace," in Computer Software
and Applications Conference COMPSAC, Oxford, UK, 2002, pp. 957–962.

[26] Jim Yuill, Fred Feer, Dorothy Denning, and Bowyer Bell, "Deception for
Computer Security Defense," Office of the Secretary of Defense - The
Pentagon, Washington, DC, research project final-report for the 2004.

[27] Neil C Rowe, "A model of deception during cyber-attacks on information
systems," in Multi-Agent Security and Survivability, August 2004, pp. 21–30.

[28] Neil C Rowe, "Counterplanning deceptions to foil cyber-attack plans," in
Information Assurance Workshop, West Point, NY, June 2003, pp. 203–210.

http://www.checkpoint.com/products/threat-prevention-appliances/
http://www.checkpoint.com/products/threat-prevention-appliances/
http://www.cse-cst.gc.ca/its-sti/publications/itsg-csti/itsg22-eng.html
http://www.cse-cst.gc.ca/its-sti/publications/itsg-csti/itsg22-eng.html

126

[29] James F Dunnigan and Albert A Nofi, Victory and Deceit: Deception and
Trickery at War. Lincoln, NE, USA: Writers Club Press, 2001.

[30] Neil C Rowe and Hy S Rothstein, "Two taxonomies of deception for attacks on
information systems," Journal of Information Warfare, vol. 3, no. 2, pp. 27–
39, July 2004.

[31] Osama Hayatle, Amr Youssef, and Hadi Otrok, "Dempster-Shafer Evidence
Combining for (Anti)-Honeypot Technologies," Information Security Journal: A
Global Perspective, vol. 21, no. 6, pp. 306–316, December 2012.

[32] Bill McCarty, "The honeynet arms race," Security & Privacy, IEEE, vol. 1, no. 6,
pp. 79–82, Nov-Dec 2003.

[33] Joseph Corey. (2003, September) Phrake Fakes. [Online]. URL http://www.
phrack. org/fakes/p62/p62-0x07. txt, http://www. phrack.
org/fakes/p62/p62-0x07. txt

[34] John Clark, Sylvain Leblanc, and Scott Knight, "Compromise through USB-
based Hardware Trojan Horse Device," Future Generation Computer Systems,
vol. 27, no. 5, pp. 555–563, May 2011.

[35] Yogendra N Singh and Sanjay K Singh, "A taxonomy of biometric system
vulnerabilities and defences," International Journal of Biometrics, vol. 5, no.
2, pp. 137–159, April 2013.

[36] Issa Traore and Ahmed A Ahmed, Continuous authentication using
biometrics: Data, models, and metrics. Hershey, PA, USA: IGI Global,
September 2012.

[37] Zach Jorgensen and Ting Yu, "On mouse dynamics as a behavioral biometric
for authentication," in 6th ACM Symposium on Information, computer and
Communications Security, Hong Kong, March 2011, pp. 476–482.

[38] Ahmed A Ahmed and Issa Traore, "Detecting Computer Intrusions Using
Behavioral Biometrics.," University of Victoria, Victoria, BC, Technical Report
2005.

127

[39] Ahmed A Ahmed and Issa Traore, "A new biometric technology based on
mouse dynamics," Dependable and Secure Computing, IEEE Transactions on,
vol. 4, no. 3, pp. 165–179, July-Sept. 2007.

[40] Maja Pusara and Carla E Brodley, "User re-authentication via mouse
movements," in workshop on visualization and data mining for computer
security, Washington, DC, 2004, pp. 1–8.

[41] Salil P Banerjee and Damon L Woodard, "Biometric authentication and
identification using keystroke dynamics: A survey," Journal of Pattern
Recognition Research, vol. 7, no. 1, pp. 116–139, 2012.

[42] Daniele Gunetti and Claudia Picardi, "Keystroke analysis of free text," ACM
Transactions on Information and System Security (TISSEC), vol. 8, pp. 312–
347, 2005.

[43] Francesco Bergadano, Daniele Gunetti, and Claudia Picardi, "Identity
verification through dynamic keystroke analysis," Intelligent Data Analysis,
vol. 7, no. 5, pp. 469–496, January 2003.

[44] Livia C Araujo, Luiz H Sucupira Jr, and et al., "User authentication through
typing biometrics features," Signal Processing, IEEE Transactions on, vol. 53,
no. 2, pp. 851–855, Feb 2005.

[45] Alen Peacock, Xian Ke, and Matthew Wilkerson, "Typing patterns: A key to
user identification," Security & Privacy, IEEE, vol. 2, no. 5, pp. 40–47, Sept-Oct
2004.

[46] Fadhli W Wong, Ainil S Supian, Ahmad F Ismail, Lai W Kin, and Ong C Soon,
"Enhanced user authentication through typing biometrics with artificial
neural networks and k-nearest neighbor algorithm," in 35th Asilomar
Conference on Signals, Systems and Computers, vol. 2, Pacific Grove, CA,
Noveember 2001, pp. 911–915.

[47] Willem G De Ru and Jan H Eloff, "Enhanced password authentication through
fuzzy logic," IEEE Expert, vol. 12, no. 6, pp. 38–45, Nov-Dec 1997.

[48] Wasil E Eltahir, MJE Salami, Ahmad F Ismail, and WK Lai, "Dynamic keystroke
analysis using AR model," in Intl. conference on Industrial Technology, vol. 3,

128

Hammamet, Tunisia, December 2004, pp. 1555–1560.

[49] Bonnie E John and David E Kieras, "The GOMS family of user interface
analysis techniques: Comparison and contrast," ACM Transactions on
Computer-Human Interaction (TOCHI), vol. 3, no. 4, pp. 320–351, December
1996.

[50] I Scott MacKenzie and William Buxton, "Prediction of pointing and dragging
times in graphical user interfaces," Interacting with Computers, vol. 6, no. 2,
pp. 213–227, June 1994.

[51] USB.org. (2014, February) USB.org - USB 2.0 Documents. [Online].
http://www.usb.org/developers/docs/usb20_docs/

[52] Ken Shoemake, "Euler angle conversion," in Graphics Gems, Paul Heckbert,
Ed. San Diego, CA, USA: AP Professional, 1994, ch. III.5, pp. 222–229.

[53] Géry Casiez and Nicolas Roussel, "No more bricolage!: methods and tools to
characterize, replicate and compare pointing transfer functions," in 24th
Annual ACM symposium on User interface softare and technology, Honolulu,
Hi, 2011, pp. 603–614.

[54] PLX Technologies. (2013, Dec.) PLX Technology : Legacy USB Controller.
[Online]. http://www.plxtech.com/products/usbcontrollers/legacy#net2280

[55] Don Ho. (2013, Dec.) Notepad++ Home. [Online]. http://notepad-plus-
plus.org/

[56] Microsoft. (2013, Dec.) Windows XP Home Page. [Online].
http://www.microsoft.com/canada/windowsxp/default.mspx

[57] Microsoft. (2013, Dec.) Windows - Microsoft Windows Help. [Online].
http://windows.microsoft.com/en-ca/windows/windows-
help#windows=windows-7

[58] Eclipse Foundation. (2013, Dec.) Eclipse Downloads. [Online].
http://www.eclipse.org/downloads/

http://www.usb.org/developers/docs/usb20_docs/
http://www.plxtech.com/products/usbcontrollers/legacy%23net2280
http://notepad-plus-plus.org/
http://notepad-plus-plus.org/
http://www.microsoft.com/canada/windowsxp/default.mspx
http://windows.microsoft.com/en-ca/windows/windows-help%23windows=windows-7
http://windows.microsoft.com/en-ca/windows/windows-help%23windows=windows-7
http://www.eclipse.org/downloads/

129

[59] Queen's University at Kingston. TXL Documentation. [Online].
http://txl.ca/ndocs.html

[60] James R Cordy, Ian H Carmichael, and Russell Haliday. (2012, July) TXL
Documentation. [Online]. http://www.txl.ca/docs/TXL106ProgLang.pdf

[61] Thomas R Dean, James R Cordy, Andrew J Malton, and Kevin A Schneider,
"Grammar programming in TXL," in 2nd IEEE International workshop on
Source Code Analysis and Manipulation, Montréal, QC, October 2002, pp. 93–
102.

[62] ISO, "IEC 14977: 1996 (e), Information Technology Syntactic Metalanguage
Extended BNF," International Standard 1996.

[63] John T Clark, "On Unintended USB Communication Channels," Royal Miliary
College of Canada, Kingston, MASc Thesis 2009.

http://txl.ca/ndocs.html
http://www.txl.ca/docs/TXL106ProgLang.pdf

APPENDICES

130

131

Appendix A : I – SYNTACTIC ELEMENTS LEXICON

The Syntactic Elements Lexicon(SynElmtLex) describes the various syntactic
elements that are recognized by the HGP. It is used by the first stage of the SUE
Event Generation Process, Syntactic Element Extraction.

The SynElmtLex contains the following Syntactic Element:

Character
Digit | <EOT> | Letter | New_Line | Punctuation |

Separator

Digit
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

Document
1..* Paragraph, [Signature], <EOT>

Letter
{ A, …, Z, a, …, z }

New_Line
(<Carriage Return>, <Line Feed>) | <Line Feed>

Number
[Separator] [-] [$] 1..* Digit [., 1..* Digit]

[%][Separator]

Paragraph
1..* Sentence, New_Line

Punctuation
{ \,, ., ;, !, ?, : }

Signature
[0..* Words], New_Line

132

Sentence
0..* SentenceElement , Punctuation

SentenceElement
Word | Number

133

Separator
{ \\, \<,\ >, \(, \), \{,\} , \" }

Word
[Separator] 1..* Letter [Separator]

Notation:

, Enumeration or list separator

| OR representing a choice between elements.

? .. ? Sequence of specified cardinality, where cardinality can be 0, 1 or
many (*)

{ } Comma separated enumeration

[] Comma separated list of optional elements

() Comma separated list of mandatory elements

< > Non-printable character

\ Escape character for notation tokens: ii- Composition Error
Lexicon

134

Appendix B : II – COMPOSITION ERROR LEXICON

The CompErrorLex describes the Composition Errors that are implemented by the
HGP. The CompErrorLex is based on the characteristics of the User Personality
Models, and is used by Stage 2 of the HGP.

CompError
Mispalced_SE | Mistyped_SE | Wrong_SE

Misplaced_SE A misplaced Syntactic Element is out of position in the current
context, compared to its correct position in the
TargetDocument. The error will be implemented by inserting
a new node (Stub) in the DPM to duplicate the Target out of
Position.

1. Error ID of the form Misplaced_SE_Unique#
2. Position of the form {Direction, Magnitude}

a. Direction indicates whether the Syntactic Element is
misplaced early (Left in the Document) or late (Right in the
Document)

b. Magnitude indicates by how much the Syntactic Element is
misplaced, expressed in #paragraphs ; #sentences ;
#sentence_elements. The current implementation only
allows for SyntacticElements to be misplaed by level
Paragraph by Paragraph¸Sentence by Sentence, etc. The
current implementation only allows Words to be misplaced.

3. Move_SE {Position} | Delete_SE, Type_SE
4. DPM_Node > Erroneous_DPM_Node
5. StubInserted

Mistyped_SE Erroneous sequence of Character (sequence not representing
the Target Syntactic Element, where either: 1) additional
Characters are introduced, or 2) legitimate Characters are
typed out of sequence

1. Error ID of the form Mistyped_SE_Unique#
2. { 0..* Number, 0..* Punctuation, 0..* Separator,

0..*Word}

135

3. Replace_SE
4. DPM_Node > Erroneous_DPM_Node
5. CorrectionPointInserted

Wrong_SE A wrong Syntactic Element is typed instead of the intended
Syntactic Element contained in the TargetDocument.

1. Error ID of the form Wrong_SE_Unique#
2. {Word | Sentence | Paragraph}
3. Replace_SE
4. DPM_Node > Erroneous_DPM_Node
5. CorrectionPoint Inserted

136

Appendix C : III – GENERAL EDITING ACTION LEXICON

The GenEditActionLex describes the various Document editing actions that are
processed by the HGP. General editing actions are those chosen by the user
without regard to the structure of the Document or Word Processor.

The GenEditActionLex introduces the following Editing Actions, none of which
depend on the Document or Word Processor structure:

Move_SE Change the position of a Syntactic Element in the Document
{Position}

Replace_SE Replaces a Syntactic Element with another in the Document
Delete_SE, Type_SE

| Select_SE, Paste_SE
| Select_SE, Delete_SE, Paste_SE

Type_SE Input a Syntactic Element in the Document at the Cursor
location, one character at a time using the keyboard.

1..* Character

The DocEditActionLex also redefines the following syntactic elements to show
them instantiated with a Type_SE node

New_Line
(<Carriage Return>, <Line Feed>)

| <Line Feed> [Type_SE]

Number
[Separator][-] [$] 1..* Digit [., 1..* Digit]

[%][Separator] [Type_SE]

Punctuation
{ \,, ., ;, !, ?, : } [Type_SE]

Separator
{ \\, \<,\ >, \(, \), \{,\} , \" } [Type_SE]

137

Word
[Separator] 1..* Letter [Separator] [Type_SE]

138

Mistyped_SE
1. Error ID of the form Mistyped_SE_Unique#
2. { 0..* Number, 0..* Punctuation, 0..* Separator,

0..*Word} [Type_SE]
3. Replace_SE
4. DPM_Node > Erroneous_DPM_Node
5. CorrectionPointInserted

Wrong_SE

1. Error ID of the form Wrong_SE_Unique#
2. {Word | Sentence | Paragraph} [Type_SE]
3. Replace_SE
4. DPM_Node > Erroneous_DPM_Node
5. CorrectionPoint Inserted

139

Appendix D : IV – SPECIFIC EDITING ACTION LEXICON

The Specific Editing Action Lexicon (iv-SpecEditActionLex) contains the
following Editing Actions, which are all dependent on the Document or Word
Processor structure, along with means of navigation (through Mouse and
Keyboard) and means of interacting with the Word Processor (through the
Mouse):

Copy_SE Place Syntactic Element on the application clipboard. This
command corresponds to the Copy action of the Edit_Menu.

Menu_Area.Edit_Menu.Copy | <Ctrl-C> | RC.Edit_Menu.Copy

Cut_SE Place Syntactic Element on the application clipboard and
remove it from the Document. It corresponds to the Cut action
of the Edit_Menu.

Menu_Area.Edit_Menu.Cut | <Ctrl-X> | RC.Edit_Menu.Cut

DC Double-click left mouse button.

Delete_SE Removes a Syntactic Element from the Document.
Select__SE,

| Select__SE, <Backspace>
| Position_Cursor, 1..* <Backspace>
| Position_Cursor, 1..*

LC Click left mouse button

LR Release left mouse button

Move_Mouse Move the Pointer from one location to another in the
Document.

[Up | Down] #Rows, [Left | Right] #Colums
 | Menu_Name.Menu.Element

Move_SE Move a Syntactic Element from one location to another in the
Document.

Select_SE, Cut_SE, Position_Cursor, Paste_SE
| Select_SE, LC, Drag, LR

Nav_Arrows

140

Left_Arrow (LA), DA, RA, UA

Paste_SE Place a Syntactic Element from the application clipboard to the
Document, in the position corresponding to the Cursor's
location.

Menu_Area.Edit_Menu.Paste | <Ctrl-V> | RC.Edit_Menu.Cut

Position_Cursor Position the Cursor to a specific Document location in the
application's Editing_Area.

Move_Mouse, LC, LR | 1..* Nav_Arrows

RC Click right mouse button

RR Release right mouse button

Select_SE Highlight a Syntactic Element in the Document.
Move_Mouse, DC

| Move_Mouse, LC, Drag, LR
| Position_Cursor , <Shift>, 1..* Nav_Arrows>

141

Appendix E : V – MOUSE BEHAVIOUR LEXICON

The Mouse Behaviour Lexicon (v-MouseBehaviourLex) defines Move_Mouse
and MouseErrors. Each MouseError captures four elements:

1. The Target - the intended mouse action.
2. The Error – the erroneous mouse actions.
3. The Rectifying Actions – the sequence of Editing Actions required in order

to transform the Erroneous Syntactic Element into the Target Syntactic
Element.

4. The Correction Point – in terms of the Target Syntactic Element’s context,
represented as the DPM node after which the rectifying actions will be
carried out.

v-MouseBehaviourLex contains the following elements:

Accident_But A mouse button is inadvertently pressed.
1. NULL
2. RC, RR | LC, LR
3. <ESC> | Position_Cursor

Missed_Loc Mouse_Indicator does not hit the desired location during MM.
1. Move_Mouse
2. Move_Mouse
3. Move_Mouse

Move_Mouse Mouve the Pointer to a specific Screen_Coordinate at a
Speed expressed in pixel/s.

 (X,Y), Speed

Wrong_But Wrong Button when the wrong mouse button is pressed.

1. LC, LR | RC, RR
2. RC, RR | LC, LR
3. <ESC>, 0..* MM, LC, LR | RC, RR
4. Erroneous_DPM_Node + 1

142

Appendix F : VI – HID EVENT LEXICON

The HIDEventLex contains the following HID Events:

KOR The Keyboard Output Report as specified by the USB HID Class
with Timing Information

Offs
et

7 6 5 4 3 2 1 0 Remar
k

0 RG
UI

RA
lt

RShi
ft

RC
tl

LG
UI

LAl
t

LShi
ft

LC
tl

Modifi
ed

Keys

1 Reserved Ignore
d

2 Key Code 1

Key
Arrays … …

7 Key Code 6

MOR The Mouse Output Report as specified by the USB HID Class
with timing information

Offse
t

7 6 5 4 3 2 1 0 Remar
k

0 Device
Specified

MidBu
t

RightBu
t

LeftBu
t

User
Input

1 X Displacement

2 Y Displacement

143

Appendix G : VII – TIMED EVENT LEXICON

The Timed Event Lexicon (vii-TimedEventLexicon) introduces a release time
to the HID Events defined previously. It contains the following elements:

tn Release time, expressed in milliseconds, since the beginning
of emissions of the HID event stream on the USB

(KOR, tn) Keyboard Output Report followed by its release time.

(MOR, tn) Mouse Output Report followed by its release time.

	Acknowledgments
	Abstract
	Résumé
	Table of contents
	List of Tables
	List of Figures
	List of Symbols, Abbreviations and Accronyms
	Chapter 1 : INTRODUCTION
	1.1. Chapter Introduction
	1.2. Response to Network Attacks
	1.2.1. Reactionary Response
	1.2.2. Seizing the Initiative

	1.3. Threat Model
	1.3.1. Attacker Characteristics
	1.3.2. Characterization of Users by Attackers
	1.3.3. HID interface Event Stream Semantics

	1.4. Operational Scenario
	1.5. Statement of Deficiency
	1.6. Aim
	1.7. Validation Approach

	Chapter 2 : LITERATURE REVIEW
	2.1. Chapter introduction
	2.2. Honeypots
	2.2.1. Premise and Definition of Honeypots
	2.2.2. Honeypot Risks
	2.2.3. Honeypot Classification
	Low-Interaction Honeypots
	Medium Interaction Honeypots
	High-Interaction Honeypots

	2.2.4. Applicability and Shortcomings of Honeypots to NCSO Research

	2.3. Cyber Deception
	2.3.1. Contributions of Research to Cyber Deception

	2.4. Vitality Detection
	2.4.1. Attackers' Motivation
	2.4.2. User Behaviour Modelling
	Modelling User Activity
	Modelling Mouse Dynamics
	Modelling Typing Behaviour
	Testing Samples through Distance Measures

	2.5. Chapter summary and conclusion:

	Chapter 3 : HID Event Generation Process
	3.1. Chapter introduction
	3.2. User Personality Model
	3.3. HID Event Generation Process Overview
	3.4. Stage 1 – Syntactic Element Extraction
	3.4.1. Input: TargetDocument
	3.4.2. Dependency: i – Syntactic Elements Lexicon
	3.4.3. Transformation 1 – Identification of Syntactic Elements
	3.4.4. Output: DPM1 – Syntactic Elements Extracted
	3.4.5. Worked Example

	3.5. Stage 2 – Composition Error Introduction
	3.5.1. Dependencies
	ii – Composition Error Lexicon
	Composition Accuracy Model
	Typing Accuracy Model
	iii – General Editing Actions Lexicon

	3.5.2. Transformations
	Transformation 2.1 – Flag Nodes for Errors
	Transformation 2.2 – Insert Correction Points
	Transformation 2.3 – Insert Misplaced Stubs

	3.5.3. Output: DPM2 – Composition Errors Introduced
	3.5.4. Worked Example

	3.6. Stage 3 – Editing Action Selection
	3.6.1. Dependencies
	Editing Model
	iii – General Editing Action Lexicon

	3.6.2. Transformations
	Transformation 3.1 – Instantiate Terminal Syntactic Elements
	Transformation 3.2 – Instantiate Replace Syntactic Element

	3.6.3. Output: DPM3 – Editing Actions Selected
	3.6.4. Worked Example

	3.7. Stage 4 – HID Action Selection
	3.7.1. Dependencies
	Document Model
	Word Processor Model
	iv – Specific Editing Action Lexicon

	3.7.2. Transformation 4 – Instantiate HID Editing Actions
	Visit of DPM Terminal Nodes in Temporal Order
	Building of the DocMod Representation
	Instantiation of Editing Actions
	Cursor Management during Corrections

	3.7.3. Output: DPM4 – HID Actions Selected
	3.7.4. Worked Example

	3.8. Stage 5 – Mouse Behaviour Processing
	3.8.1. Dependencies
	v – Mouse Behaviour Lexicon
	Mouse Model

	3.8.2. Transformation 5.1 – Specify Mouse Errors and Corrections
	3.8.3. Transformation 5.2 – Compute Mouse Movement Details
	3.8.4. Output: DPM5 – Mouse Errors Introduced
	3.8.5. Worked Example

	3.9. Stage 6 – HID Event Stream Generation
	3.9.1. Dependency: vi – HID Event Lexicon
	3.9.2. Transformation 6 - Generate KOR and MOR
	3.9.3. Worked Example
	3.9.4. Output: DPM6 – HID Events Generated

	3.10. Stage 7 – Event Timing Characterization
	3.10.1. Dependencies
	HID Timing Model
	vi – Timed HID Lexicon

	3.10.2. Transformation 7 – Insert Inter-Report Delays
	3.10.3. Final Output

	3.11. Chapter Summary and Conclusion:
	3.12. Consistency with Human Behaviour

	Chapter 4 : Feasibility Through Implementation
	4.1. Chapter Introduction
	4.2. Proof-of-Concept Requirements
	4.3. Proof-of-Concept Development - The SUE
	The TXL Programming Language
	4.3.1. Implementation of Stage 1
	4.3.2. Implementation of Stage 2
	4.3.3. Implementation of Stage 3
	4.3.4. Implementation of Stage 4
	4.3.5. Combined Implementation of Stages 6 and 7

	4.4. Sufficiency
	4.5. Chapter Conclusion

	Chapter 5 : Summary and Conclusion
	5.1. Chapter Introduction
	5.2. Deficiencies of Current Approaches
	5.2.1. Honeypots
	5.2.2. NIST

	5.3. Aim of the Research
	5.4. Validation Argument
	5.4.1. Sufficiency
	5.4.2. Validity of the User Personality Model
	5.4.3. Feasibility

	5.5. Contributions
	5.5.1. HGP Design
	5.5.2. User Personality Model Definition
	5.5.3. NCSO and Deception Operations
	5.5.4. Publications

	5.6. Future Work
	5.6.1. User Personality Models
	5.6.2. Remaining Implementation of the HGP

	References
	Appendices
	Appendix A : i – Syntactic Elements Lexicon
	Appendix B : ii – Composition Error Lexicon
	Appendix C : iii – General Editing Action Lexicon
	Appendix D : iv – Specific Editing Action Lexicon
	Appendix E : v – Mouse Behaviour Lexicon
	Appendix F : vi – HID Event Lexicon
	Appendix G : vii – Timed Event Lexicon

