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Abstract

The MIL-STD-1553B data bus protocol is used to enable communications be-
tween aircraft subsystems. These interconnected subsystems are responsible
for core services such as communications, instrument data and aircraft con-
trol. With fleet modernization, more threat vectors are introduced through
increased inter-connectivity. These additional threat vectors create an op-
portunity in which adversaries have the ability to exploit vulnerabilities in
the MIL-STD-1553B protocol. This potential for exploitation introduces a
requirement for an Intrusion Detection System in order to maintain the re-
liability of the MIL-STD-1553B protocol and safety of the aircraft. Current
research into MIL-STD-1553B Intrusion Detection Systems utilize signature
or anomaly-based approaches. These methods demonstrated detection of ma-
licious traffic; however, they require further improvements in order to improve
their effectiveness.

The aim of this research is to refine the feature engineering component
of an existing MIL-STD-1553B deep learning anomaly detector in order to
improve its overall effectiveness. In this work, feature engineering includes
generation of new features, feature selection and dimensionality reduction.
The generation of new features creates an extended dataset derived from the
primary features. Using three different supervised feature selection and one
feature reduction technique, different feature sets are created for training and
testing with an existing Long-Short Term Memory autoencoder anomaly de-
tector.

In order to accomplish this aim, sixteen models are created. Twelve of
these models are attack specific, created from four distinct attack types and
three feature selection techniques against the original and generated feature
set. The remaining four are general models. Three are based on features
identified across all four attack types using the three selection techniques and
the full feature set. The fourth general model is based on the dimensionality
reduction technique that processed only the original feature set and did not
consider attack type. These sixteen models are then evaluated using common
performance metrics and compared to those of the original anomaly detector.
This research is validated by the marked performance improvement achieved
by the feature engineering refinements made in comparison to those of the
original model. In addition, this research also showed a significant reduction
in the number of features required to achieve this performance gain.
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Résumé

Le protocole de bus de données MIL-STD-1553B est utilisé pour permettre les
communications entre les sous-systèmes de l’avion. Ces sous-systèmes inter-
connectés sont responsables des services de base tels que les communications,
les données des instruments et le contrôle de l’aéronef. Avec la modernisation
des avions, de nouveaux vecteurs d’attaques sont introduits grâce à une inter-
connectivité accrue. Ces vecteurs d’attaque créent de nouvelles opportunités
dans lesquelles les adversaires ont la capacité d’exploiter les vulnérabilités du
protocole MIL-STD-1553B. Cette nouvelle menace amène une exigence pour
un système de détection d’intrusion afin de maintenir la fiabilité du proto-
cole MIL-STD-1553B et la sécurité de l’avion. Les recherches actuelles sur
les systèmes de détection d’intrusion MIL-STD-1553B utilisent des approches
basées sur les signatures ou les anomalies. Ces méthodes ont démontré la
capacité de détecter du trafic malveillant; cependant, ils nécessitent d’autres
affermissements afin d’améliorer leur efficacité.

L’objectif de cette recherche est d’améliorer l’extraction des caractéristiques
d’un détecteur d’anomalies par apprentissage profond MIL-STD-1553B exis-
tant afin d’améliorer son efficacité globale. Dans ce travail, l’extraction de car-
actéristiques comprend la génération de nouvelles caractéristiques, la sélection
des caractéristiques et la réduction de la dimensionnalité. La génération
de nouvelles caractéristiques crée un jeu de données étendu dérivé des car-
actéristiques principales. À l’aide de trois sélections de caractéristiques super-
visées différentes et d’une technique de réduction de caractéristiques, différents
ensembles de caractéristiques sont créés pour la formation et les tests avec un
détecteur d’anomalie par auto-encodeur récurrent à mémoire à long terme
existant.

Pour atteindre cet objectif, seize modèles sont créés. Douze de ces modèles
sont spécifiques à l’attaque, créés à partir de quatre types d’attaque distincts
et trois techniques de sélection de caractéristiques par rapport à l’ensemble
des caractéristiques original et généré. Les quatre autres sont des modèles
généraux. Trois sont basés sur des caractéristiques identifiées dans les qua-
tre types d’attaques à l’aide des trois techniques de sélection et de l’ensemble
complet des caractéristiques. Le quatrième modèle général est basé sur la
technique de réduction de la dimensionnalité qui ne traite que l’ensemble de
caractéristiques d’origine et ne prend pas en compte le type d’attaque. Ces
seize modèles sont ensuite évalués à l’aide de paramètres de performance com-
muns et comparés à ceux du détecteur d’anomalies d’origine. Cette recherche
est validée par la nette amélioration des performances obtenue grâce aux
améliorations apportées à l’extraction des caractéristiques par rapport à celles
du modèle d’origine. De plus, cette recherche a également montré une réduction
significative du nombre de caractéristiques nécessaires pour atteindre ce gain
de performance.
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1 Introduction

The MIL-STD-1553B data bus protocol is used to enable communications
between subsystems in civilian and military aircraft. These interconnected
subsystems are responsible for core services such as communications, instru-
ment data and aircraft control. MIL-STD-1553B was introduced in 1978 and
was designed for reliability and safety in an air-gapped environment. With
fleet modernization efforts, the increased connectivity to the systems external
to the aircraft has created additional threat vectors to the MIL-STD-1553B
data bus.

These additional threat vectors to the MIL-STD-1553B data bus create
an opportunity in which adversaries have the ability to exploit vulnerabilities
in the MIL-STD-1553B protocol. This potential for exploitation of the MIL-
STD-1553B protocol introduces a requirement for Intrusion Detection System
(IDS) in order to maintain the reliability of the MIL-STD-1553B protocol and
safety of the aircraft. Both signature and anomaly-based IDS have recently
been researched and provide viable options for monitoring vulnerabilities in
the MIL-STD-1553B data bus introduced by these new threat vectors. This
paper outlines the current vulnerabilities in the MIL-STD-1553B data bus
protocol and discusses current detection techniques. Furthermore, it highlights
the performance of an existing anomaly detector based on a Long-Short Term
Memory (LSTM) model and introduces feature engineering refinements to
improve the performance metrics of the LSTM based model. Performance
metrics in this context refer to those derived from the confusion matrix.

1.1 Motivation

With fleet modernization, threat vectors are being introduced through connec-
tions such as data links and maintenance diagnostic tools. The exploitation of
MIL-STD-1553B by an adversary with a presence on the network can result
in three potential impacts: Denial of Service (DoS), data leakage and data in-
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1.2. Statement of Deficiency

tegrity violations if adversaries accessed the data bus through the previously
mentioned threat vectors [1], [2]. The time and financial resources needed to
build additional security into the protocol itself is significant and given this
gap in protection, the ability to monitor bus traffic and develop cyber-attack
detection techniques is a very real requirement.

Recent research efforts in this area include machine learning, deep learning,
statistical and signature-based approaches [2], [3], [4], [5]. A LSTM based deep
learning model by Harlow[3] has demonstrated an initial proof of concept
approach to effectively detect MIL-STD-1553B cyber attacks. The success of
this initial work is promising and has highlighted areas where additional focus
may add further improvement in detection capabilities.

1.2 Statement of Deficiency

Current anomaly detection techniques for the MIL-STD-1553B data bus pro-
tocol demonstrate effectiveness, though there is room for improvement and
refinement to their respective pipelines that could improve their overall per-
formance. The anomaly detection method by Harlow[3] demonstrated the
ability and effectiveness of implementing a deep learning model for a MIL-
STD-1553B IDS. Though, as highlighted by Harlow’s research, there are areas
for improvement. Specifically, feature engineering is one of these areas which
has the ability to improve anomaly detection capabilities.

1.3 Aim

The aim of this research is to refine the feature engineering component of an
existing MIL-STD-1553B deep learning anomaly detector in order to improve
its overall effectiveness. The existing anomaly detector is the LSTM autoen-
coder developed by Harlow[3]. The feature engineering component includes
generation of new features, feature selection and dimensionality reduction.
The measure of effectiveness is based on the following performance metrics;
precision, recall, Area Under Receiver Operating Characteristic Curve (AU-
ROCC) and Matthews Correlation Coefficient (MCC). Validation is accom-
plished by comparing results from this research with the results attained by
related research [3].

2



1.4. Research Activities

1.4 Research Activities

To improve the effectiveness of this existing model, modifications are made
to the feature engineering component of this pipeline. In order to accomplish
this, the following research activities are conducted:

1. MIL-STD-1553B traffic from Harlow [3] is put through the data munging
process to form the primary features for the deep learning pipeline;

2. Feature Engineering:
a) Using this primary feature set as a starting point, new features are

generated through polynomial expansion, arithmetic combinations
and utilization of feature generation tools such as Time Series Fea-
tuRe Extraction on basis of Scalable Hypothesis (tsfresh) used by
Stan et al. [6].

b) Feature selection is used to create different feature sets to be input
into the deep learning model. The feature selection algorithms eval-
uated are Fast Orthogonal Search (FOS), Predictive Power Score
(PPS) and Analysis of Variance (ANOVA);

c) A single dimensionality reduction algorithm is used to reduce the
number of dimensions of the primary feature set. The dimension-
ality reduction algorithm evaluated is Uniform Manifold Approxi-
mation and Projection (UMAP) [7].

3. Training the LSTMmodel developed by Harlow [3] for anomaly detection
using selected sets.

4. Evaluation of the different models created using the new features sets is
conducted by comparing the performance metrics between the respective
models.

3



1.5. Organization

1.5 Organization

The remaining chapters in this document provide further detail regarding
the research conducted. Chapter 2 describes the MIL-STD-1553B protocol
and provides security specific context regarding currently known attack and
detection techniques. Additionally, Chapter 2 also includes background on
feature engineering, deep learning models, specifically LSTM, as well as model
tuning and evaluation metrics. Chapter 3 provides an overview of the refined
feature engineering component of the pipeline and the different models that
are developed. Chapter 4 includes the experiment results and discussion.
Finally, Chapter 5 discusses the research contribution, suggested future work
and recommendations.

4



2 Background

This chapter will provide background on the MIL-STD-1553B data bus proto-
col, its vulnerabilities and a review of current anomaly detection techniques.
It will also review feature engineering techniques used in this research. Ad-
ditionally, this chapter will lay out relevant information pertaining to LSTM
models.

2.1 MIL-STD-1553B

The MIL-STD-1553B standard was published in 1978 by the United States
Department of Defense which defines the mechanical, electrical and functional
characteristics of a serial data bus. This standard defines a multi-point, serial
communications bus allowing communications between terminals controlled
through a command and response protocol. The typical architecture for MIL-
STD-1553B is shown in Fig. 2.1 which consists of terminals connected through
a dual redundant communications bus. The standard defines three distinct
terminals:

1. Bus Controller (BC): The terminal responsible for initiating and direct-
ing information transfer on the bus.

2. Bus Monitor (BM): The terminal responsible for receiving and storing
select bus traffic for use at a later time.

3. Remote Terminal (RT): Any terminal not operating as a BC or BM.

Additionally, there is a maximum of 32 addresses on the MIL-STD-1553B
bus. Address 31 is reserved for broadcast transactions and the remaining 0 to
30 addresses are assignable to RTs [8].

2.1.1 Data Link Layer

Data transfer on the bus is accomplished through messages which are com-
prised of 20-bit components called words. MIL-STD-1553B defines three word

5



2.1. MIL-STD-1553B

Figure 2.1: Example of MIL-STD-1553B bus topology with a BC, BM, and
two RTs connected by a Dual Redundant Bus

types: command, data and status. Fig. 2.2 depicts the structure for each type
of word. These words combine to form the larger messages and the standard
defines two types of message formats: data messages and control messages.

Data messages are initiated by the BC issuing command words on the
bus followed by the RTs transmitting and/or receiving the data on the bus.
All RTs which are connected to the data bus have the ability to read all
messages transmitted, but only the addressed RTs are expected to carry out
the command sent by the BC. These data messages are further separated into
communications between specific RTs and broadcast communications. There
are three data message types between specific RTs: BC to RT, RT to BC and
RT to RT. Additionally, there are two broadcast data message types: BC to
RTs and RT to RTs. These messages and their required word sequences are
outlined in Fig. 2.3.

Control messages enable the BC to monitor and control the bus by issuing
mode commands to the RTs. Control messages are a set of predefined func-
tions and can contain command and data words, or solely mode codes from
the BC as seen in Table 2.1. When directed to a specific RT, the response can
contain status and data words, or solely a status word depending on the ini-
tial mode command word. When the control message is a broadcast message,
there are no responses from the RT(s). Fig. 2.4 illustrates the required words
for each type of control message.

The BC directs all communications on the bus between RTs following a
predefined schedule. This schedule contains two different types of message
schedules: periodic and aperiodic. Periodic messages are transmitted at fixed

6



2.1. MIL-STD-1553B

Figure 2.2: MIL-STD-1553B Word Formats [9]

Figure 2.3: MIL-STD-1553B Data Message Formats [8]

7



2.1. MIL-STD-1553B

T/R
bit

Mode
code

Function Data
word

Broadcast
command

1 00000 Dynamic bus control No No

1 00001 Synchronize No Yes

1 00010 Transmit status word No No

1 00011 Initiate self-test No Yes

1 00100 Transmitter shutdown No Yes

1 00101 Override transmitter shutdown No Yes

1 00110 Inhibit terminal flag bit No Yes

1 00111 Override inhibit terminal flag
bit

No Yes

1 01000 Reset remote terminal No Yes

1 01001
01111

Reserved No TBD

1 10000 Transmit vector word Yes No

0 10001 Synchronize Yes Yes

1 10010 Transmit last command Yes No

1 10011 Transmit bit word Yes No

0 10100 Selected transmitter shutdown Yes Yes

0 10101 Override selected transmitter
shutdown

Yes Yes

1 or 0 10110
11111

Reserved Yes TBD

Table 2.1: MIL-STD-1553B Mode Codes

time intervals according to the schedule. Aperoidic messages are conditional
and therefore not sent at a fixed interval, although they still retain a fixed time
slot in the schedule if they are to be transmitted. Collections of perodic and
aperiodic messages are combined to form a minor frame within the schedule.
Furthermore, a collection of minor frames form the main schedule, also known
as the major frame as seen in Fig. 2.5.

2.1.2 Security and Vulnerabilities

The MIL-STD-1553B data bus protocol was designed for reliability and safety
of the system. As stated by the standard [8], all bus communications follow a
predetermined cyclical schedule controlled by the BC. All RTs manufactured
are also to follow the standards defined by MIL-STD-1553B. However, adver-

8



2.1. MIL-STD-1553B

Figure 2.4: MIL-STD-1553B Control Message Formats [8]

Figure 2.5: MIL-STD-1553B Major and Minor Frames [8]
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2.1. MIL-STD-1553B

saries are not constrained by these standards and can manipulate the protocol
to their advantage to achieve their desired outcome.

Stan et al. [2] specify two main attack methods; message manipulation
and behaviour manipulation.

1. Message manipulation: Modification of legitimate words that are trans-
mitted over the data bus.

2. Behavior manipulation: Altering the normal behaviour of a compro-
mised component such as transmitting fake messages in an unusual tim-
ing or order.

Stan et al.[2] then outline three attack outcomes that can be accomplished via
the two attack methods. These attack consequences are DoS, data leakage,
and data integrity violation. These attack consequences can be caused by
either of the two attack methods discussed above. Furthermore, the attack
methods can be physically carried out by two different categories of RTs; a
rogue RT or a compromised RT. A rogue RT is a component that was not
part of the original configuration of the system and is not authorized to be
connected to the system. A compromised RT is a component the attacker can
manipulate, but is part of the original system.

A DoS blocks and/or disrupts communication by targeting specific RT
communications or flooding the entire data bus. This disruption can be
achieved with messages from either a rogue or compromised RT. DoS using a
message manipulation attack method is accomplished by modifying selected
messages. Modifying specific messages can deny specific RTs recent informa-
tion [2]. DoS using the behaviour manipulation method can have the same
effects just as described, with the addition of delaying the response of the
compromised RT. Additionally, DoS using behaviour manipulation can also
flood the data bus, creating communication collisions and prevent all commu-
nications from occurring on the data bus.

Data leakage is defined by [2] as unauthorized transmission of data be-
tween system components. When utilizing message manipulation, a device
can instruct a RT to transmit more data words than required by changing the
command word, or the device can transmit additionally unauthorized data
through the use of the reserved bits in a status word. When utilizing be-
haviour manipulation, unauthorized data can be transmitted during the idle
time in the BC schedule.

A data integrity violation is the introduction of invalid data onto the MIL-
STD-1553B data bus. This can be accomplished through a fake or compro-
mised RT on the data bus [2]. Since there is no authentication of devices in
MIL-STD-1553B, every RT on the bus will assume that this illegitimate com-
munication was transmitted by the legitimate RT. These spoofing methods
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allow rogue and compromised devices to provide false data, extract data and
control legitimate devices.

2.2 MIL-STD-1553B Intrusion Detection

MIL-STD-1553B is a protocol designed with reliability and safety as the pri-
mary concern. Ironically, these priorities have become vulnerable due to the
lack of security in the MIL-STD-1553B data bus protocol. Through the in-
creased digitization and inter-connectivity between MIL-STD-1553B systems,
there is an increase in potential for MIL-STD-1553B systems to be compro-
mised by adversaries. The ability to accurately monitor MIL-STD-1553B bus
traffic has become a requirement in order to maintain reliability, safety and
integrity of these systems.

2.2.1 Intrusion Detection Overview

Intrusions are defined by Khraisat et al. [10] as any unauthorized activities
that can cause damage to system. These damages can include any possible
threat to the confidentiality, integrity or availability of the system. An IDS has
the ability to identify these malicious and unauthorized activities on systems
to allow the security of the system to be maintained. IDSs can be categorized
into two main groups; signature-based IDS and anomaly-based IDS.

Signature-based IDSs use pattern matching techniques in order to detect
known attacks against a system [10]. The concept behind signature-based
IDS requires the designer to know the possible attacks in advance to create a
pattern matching algorithm to detect unauthorized access on the system. The
main drawback to signature-based systems is that knowledge of the attack is
required to create the signature, therefore signature-based IDS cannot protect
the system from novel attacks, though remains a complementary method to
anomaly detection.

Anomaly-based IDSs were developed with the intention to overcome the
limitation of signature-based IDS. An anomaly-based IDS models normal be-
haviour of a system and any threshold deviation from this normal observed
behaviour is regarded as abnormal operation [10]. This approach has the ben-
efit of allowing detection of unauthorized behaviour without prior knowledge
of specific signature or exploits.
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2.2.2 Signature-Based Detection

Bernard [4] developed a signature-based detection method for MIL-STD-1553B
traffic. This signature-based method was successful in detecting command
word DoS and status word data leakage attacks. However, this detection
technique does not have the ability to estimate the time of the attack nor the
period of the disruption. The status word data leakage attack signature was
alerted whenever the reserved bits were set to non-zero values, although this
would only be effective if the attacker utilized the reserved bits. The prior
knowledge required to create the rule of non-zero values for the reserved bits
highlight the main disadvantage to solely using a signature-based detection
method.

2.2.3 Sequence-Based Anomaly Detection

Stan et al. [11] created a sequence-based anomaly detection method compar-
ing the investigated traffic to known traffic from a specific bus implementa-
tion. The sequence-based method was implemented through the creation of a
Markov chain model representing valid transitions between messages. These
valid transitions were defined by the command and timing features from the
known MIL-STD-1553B messages and the model was separated into peroidic
and aperiodic messages. The model successfully detected the DoS anomalies
and spoofing anomalies with a zero false positive rate in their testing envi-
ronment. Although it was noted since the features extracted were based on
command words, the model would be ineffective in detecting anomalies where
only data or status words were manipulated.

2.2.4 Statistical-Based Anomaly Detection

Bernard [4] through frequency analysis demonstrated the ability to detect
anomalous traffic. Command word DoS attacks were detected through RT
frequency analysis, identifying when a target RT was transmitting less data
than expected by the BC schedule. This detection technique does not estimate
the time of the attack nor the period of the disruption.

MAIDENS [5] is a time-based histogram comparison approach that was
based on the research completed by Losier et al. [12]. MAIDENS used
time-based features from known MIL-STD-1553B traffic, creating a baseline
histogram to represent normal traffic and a deviation threshold was chosen
based on the baseline traffic. Unknown MIL-STD-1553B traffic was plotted
and compared to the baseline histogram and flagged as anomalous behaviour
when exceeding the threshold. The results from MAIDENS [5] demonstrated
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the ability of this method to identify a period of time in which a DoS, spoof-
ing or message manipulation attack occurred, however MAIDENS lacks the
ability to directly identify the messages or the specific RT’s responsible for the
attack. Additionally, this method was successful in detecting spoofing attacks
that only utilized data words, addressing part of the deficiency identified by
Stan et al. [11].

2.2.5 Machine Learning and Deep Learning Based Anomaly
Detection

Stan et al. [6] implemented their proposed RT authentication module from
their previous paper [11], which utilized an ensemble method leveraging both
unsupervised and supervised machine learning techniques. The RT Authenti-
cation module utilized the K-means algorithm in determining if the traffic was
legitimate traffic or if a rogue RT was communicating over the data bus. Next,
a classification algorithm was utilized to detect if a legitimate RT was mas-
querading as another RT. The ensemble approach for RT authentication was:
Step 1 using the unsupervised k-means model, then step 2 using a supervised
model is illustrated in Fig. 2.6. Decision tree, Gaussian naive Bayes, Ran-
dom Forest, Support Vector Classification (SVC), K-Nearest Neighbors and
Multi-Layer Perceptron (MLP) classification algorithms from the scikit-learn
library were chosen for evaluation. The results in [6] showed MLP and SVC
having the worst performance, while the remaining classifiers had comparable
performance. Ultimately random forest was chosen due to having low compu-
tational requirements and high precision and recall performance. The research
concluded the two part machine learning approach detected both rogue RT
and spoofing RT attacks with more than 98% level of precision and recall.

Onodeuze et al. [13] also proposed machine learning and deep learning
models to detect anomalous behaviour in MIL-STD-1553B traffic. The al-
gorithms evaluated were MLP, Bidirectional LSTM (Bi-LSTM), One Class
Support Vector Machine (OCSVM), Isolation Forest, Minimum Co-variance
Determination (MCD), Local Outlier Factor (LOF) and AWS XGBoost. Over-
all, the majority of the algorithms showed poor performance, either classify-
ing the majority of normal and malicious traffic as malicious, or the opposite
and classifying all traffic as benign. The highest performing model was the
OCSVM, having the highest overall scores across the datasets. Onodeuze et
al. [13] did not describe the type of malicious traffic that was introduced into
the datasets so it is difficult to determine the anomaly types that their models
are capable of detecting.

Harlow [3] proposed implementation of a LSTM based model for anomaly

13



2.3. Feature Engineering

Figure 2.6: RT Authentication Module [6]

detection for MIL-STD-1553B traffic. This model is based on the method used
by Taylor et al. [14] for anomaly detection in the Controller Area Network
(CAN). Currently, Harlow’s [3] initial research shows initial success in imple-
menting this method for MIL-STD-1553B anomaly detection. Additionally,
Harlow’s [3] model and dataset are utilized in this research and are described
further in 2.4.3 and 3.2 respectively.

2.3 Feature Engineering

A feature in the context of machine learning is simply an individual measurable
property or characteristic of the object being observed [15]. A feature is
derived from raw data and acts as an input into our model. The aggregation
of features form the dataset we use to train the machine learning models to
predict outcomes. Since the features are the building blocks of our datasets,
their generation and selection have a major impact on the overall quality and
efficiency of the model being created. In order to assist with the selection
of features, researchers use both expertise and algorithms to determine the
optimal features used to train a model. In this paper, the general definition of
feature engineering will be used and will include the topic of feature generation,
feature selection and demensionality reduction as seen in Fig. 2.7.
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Figure 2.7: Feature Engineering

2.3.1 Feature Generation

Feature generation is the process of creating new input variables from available
data. There are many different approaches for feature engineering and they
are specific to the type of data utilized. An example of this is McGaughey
et al, [16] use of the processing module netAI [17] to create network specific
flow features. Stan et al. [6] also implemented the use of a feature genera-
tion module called tsfresh [18], [19] which allows the calculation of features
from time-series datasets. Brownlee [20] highlights other feature generation
methods such as polynomial transformation. Polynomial transformation uti-
lizes simple mathematical operations to create additional features that may
transform the data into more effective features. The polynomial transforma-
tion method was also utilized by McGaughey et al. [16] on their set of flow
features to create further derived feature sets. The results demonstrated that
these features created through polynomial transformation allowed the model
to perform predictions with a higher level of accuracy.

2.3.2 Feature Selection

Feature selection is the technique of selecting a subset of features that will pro-
vide the most relevant data for input into the model [20]. Feature selection
can be grouped into two main categories as seen in Fig. 2.8; unsupervised and
supervised. Unsupervised feature selection does not use labelled data whereas
supervised feature selection does use labelled data. Supervised feature selec-
tion can further be grouped into three categories; intrinsic, wrapper and filter
methods [21]. Intrinsic feature selection refers to machine learning models that
have embedded processes for selecting the best features, such as Least Abso-
lute Shrinkage and Selection Operator (LASSO) [22] which uses penalization
functions or decision trees. The wrapper feature selection method recursively
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selects a subset of the features, trains the model on these features then eval-
uates the performance. Lastly the filter method selects features independent
of the machine learning algorithm, and instead uses statistical methods to
determine which features to use. In this section, the following three feature
selection methods will be explained: ANOVA (filter method), PPS (intrinsic
method) and FOS (filter method).

Figure 2.8: Overview of Feature Selection Techniques [20]

Analysis of variance

Correlation is a common filter feature selection method to measure the depen-
dency between two features and how strongly the features relate. The type
of statistical measure implemented depends on the type of input data and
type of problem: classification or regression. Fig. 2.9 shows common methods
for statistically measuring the correlation between data points. The anomaly
detection in MIL-STD-1553B is considered a binary categorization problem,
therefore the ANOVA is an applicable feature selection technique. ANOVA
calculates the linear correlation coefficient through a F-statistic method. A
F-statistic is a ratio between two variances, and ANOVA is specifically calcu-
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Figure 2.9: Filter Feature Selection Methods for Machine Learning [20]

lated using:

F =
MSB

MSW
(2.1)

Where F = ANOVA coefficient, MSB = Mean sum of squares between the
groups and MSW = Mean sum of squares within the groups.

Predictive Power Score

PPS is an intrinsic feature selection method which is relatively new, and de-
signed by 8080labs [23] and shows good results in recent research [24], [25].
This method allows both linear and non linear as well as categorical and nu-
merical variables to be utilized and evaluated. In the case of a classification
problem, PPS evaluates features by using a decision tree classifier and the
resultant F1 score as the metric. Decision trees are a type of supervised ma-
chine learning which have an intrinsic feature selection method. PPS uses
the decision tree models to select the highest performing features following a
similar approach utlized by Adhao et al.[26]. Decision trees work by creating
a tree that consists of nodes, branches and leafs as seen in Fig. 2.10 . A node
represents a feature attribute, a branch represents a decision rule and each leaf
represents an outcome. Decision trees use algorithms to determine if a node
is to be created and which feature attribute is to be used. After the decision
tree model is used, PPS then calculates the F1 score by using a baseline score
F1naive, which is the maximum of:

17



2.3. Feature Engineering

Figure 2.10: Decision Tree Classifier using Iris Dataset [27]

1. F1most common: The F1 score for a model that always predicts the most
common class of the target.

2. F1random: The F1 score of a model that predicts random values.
PPS then uses this baseline F1naive score along with the F1model, score of the
feature to create the PPS as seen in the equation below.

PPS =
F1model − F1naive

1− F1naive
(2.2)

Similar to other correlations methods, this PPS score then has to be compared
to the score of other features and a threshold has to be selected in order to
select features with the highest value. The F1 score will be further explained
in 2.4.4

18



2.3. Feature Engineering

Fast Orthogonal Search

FOS is algorithm that was developed by Krorenberg et al. [28] as an autore-
gressive process for modeling time-series data. This process was initially used
for modeling biological data. McGaughey et al. [16] researched its use as a
feature selection method in time-series network traffic. FOS demonstrated its
ability as an effective filter feature selection method in this instance, allowing
it to outperform the Best First Search method in performance and selecting
features that allowed the classifier to have better prediction. The ability of
FOS to select features from non-orthogonal candidates through the process of
building an internal orthogonal model makes it a novel candidate for feature
selection on the time-series traffic on a MIL-STD-155B data bus. The FOS
algorithm is a recursive algorithm which loops through features, selecting fea-
tures that have the highest Mean Squared Error (MSE) reduction value, Q,
to be part of the feature set as seen in Fig. 2.11. FOS indirectly assesses
the value by successively adding terms and defining the recursively computed
vector C and matrices D and α as follows:

C(m) = y(n)Pm(n)−
m−1∑
r=0

αmrC(r), m = 1, . . . ,M (2.3)

D(m, r) = Pm(n)Pr(n)−
r−1∑
i=0

αmiD(m, i), m = 1, . . . ,M ; r = 1, . . . ,m (2.4)

αmr =
D(m, r)

D(r, r)
, m = 1, . . . ,M ; r = 0, . . . ,m− 1 (2.5)

As m increases C, D and α grow in the form of a Cholesky decomposition.
For each successive mth term, the corresponding coefficient for the orthogonal
basis is computed by:

gm =
C(m)

D(m,m)
, m = 0, . . . ,M (2.6)

Next, the reduction in MSE from adding the mth term is calculated as follows:

Q = g2mD(m,m) (2.7)

This MSE reduction value, Q, is then stored in order to be compared against
the Q value of other features. This process is then repeated until the M th

feature is reached. FOS then selects the feature with the highest Q value,
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Figure 2.11: Flow diagram of Fast Orthogonal Search

removes that term from the remaining features, and repeats the above process
until a threshold for MSE is reached or there are no more features to fit.

To help illustrate how FOS works, consider a simple example with a 3X3
matrix below.

Labelled features =

2 8 7
3 6 3
5 2 5

 1
−1
1


We will take the first feature column, P1 and create the two matrices D and
α using 2.4 and 2.5 respectively.

D =

[
1 0

3.33 1.56

]
α =

[
1 0

3.33 0

]
From matrices D and α we can now calculate C1 and g1 from 2.3 and 2.6.

C1 = 0.22 g1 = 0.14

We then can calculate, from 2.7, that Q = 0.032. This Q value is then stored,
and the above process is repeated for the remaining features P2 and P3. The
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feature with the highest Q value is then selected and matrix D and C are then
updated with the selected feature column. The selected feature column is then
removed from matrix P , and the above process in its entirety is calculated
again, but this time only with the remaining two feature columns.

2.3.3 Dimensionality Reduction

Dimensionality in machine learning is considered the number of input feature
types in a given dataset. Bellman [29] states that a large number of input fea-
tures can make the task of creating machine learning models more challenging
and is generally referred to as the curse of dimensionality. Feature selection is a
method to reduce the number of features utilized and dimensionality reduction
is another method that can be used to reduce the number of input features,
either in conjunction with, or separate from feature selection. Dimensionality
reduction reduces the number of inputs by projecting the data into a lower
dimensional space, while still preserving the information contained in the data
[30]. This reduction of input variables while keeping the information allows
the models to become simpler, which results in less overfitting and reduced
computational requirements. The main categories of dimensionality reduction
are manifold learning, model based and matrix factorization, with examples
of each method seen in Fig. 2.12.

Figure 2.12: Overview of Dimensionality Reduction Techniques [20]
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2.3.4 Uniform Manifold Approximation and Projection

UMAP is a novel method for dimensionality reduction researched by McInnes
et al. [7]. UMAP constructs a high dimensional graph representation of the
data then optimizes a low-dimensional graph through ”fuzzy simplicial set
representations”. UMAP accomplishes this by extending a radius outwards
from each point and connecting points when those radii overlap. UMAP then
makes the graph ”fuzzy” by decreasing the probability that two points are
connected as the radius grows. Then, by stipulating that each point must be
connected to at least its closest neighbor, the local structure is preserved in
balance with global structure [31]. Fig. 2.13 depicts the radii and connected
points using UMAP, resulting in a cluster visualization for high dimensional
datasets. Having been created in 2020, UMAP does not have any documented
implementation in the IDS field, but has been used dimension reduction for
other temporal data [32]. This initial research into the UMAP technique shows
it offers advantages of increased speed and better preservation of the data’s
structure in comparison to similar techniques [7], [32].

Figure 2.13: Representation of Connecting Points using UMAP [31]

2.4 Deep Learning

Deep learning is a subset of machine learning that refers to a class of models
that use multiple layers of simple statistical components to learn the repre-
sentation of data [33]. Deep learning can utilize supervised, unsupervised or
semi-supervised methods for model creation. Deep learning models consist of
multiple layers of processing units called neurons, which interpret the data
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being input into the model. Neurons interpret the data by taking the weight
inputs from either the initial input, or from a previous layer and feeding them
through an activation function. If the neuron activates, it then will feed its
information forward to the neurons in the next layer, or as an output target.
There are many different types of activation functions and their use depends
on the problem and desired outcome, such as regression or binary classifica-
tion. Current research using deep learning models for anomaly detection in
MIL-STD-1553B traffic show mixed results, ranging from poor performance
[6], [13] to effective anomaly detection [3]. This research will seek to recreate
and improve upon the effective anomaly detection demonstrated by Harlow
[3].

2.4.1 Long-Short Term Memory

An LSTM network is a subset of Recurrent Neural Network (RNN). A RNN
can evaluate data from the previous input and current input, making it a pow-
erful tool in sequential data modeling. The major drawbacks of vanilla RNNs
are the vanishing gradient and exploding gradient problems. The vanishing
gradient problem makes the RNN poor at remembering long sequences and
forgets the initial historic input as seen in Fig. 2.14. Conversely, the exploding
gradient problem is when the historic input overwhelms the remaining inputs
and render the model ineffective.

Figure 2.14: Vanishing Gradient for RNNs [34]
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LSTM networks were developed to solve the vanishing and exploding gra-
dient issues with vanilla RNNs [35]. A LSTM utilizes a memory cell that
allows it to store and access information over longer periods of time, mitigat-
ing the vanishing gradient problem [34]. The memory cells consist of an input
gate, output gate and a forget gate that control the preservation of informa-
tion. Fig. 2.15 depicts a simplified version of a LSTM network illustrating
the main components:

1. Nodes: Each node is represented either as fully activated (black) or
inactive (white).

2. Input Gate: Shown below each node in the hidden layer.
3. Forget Gate: Shown to the left of each node in the hidden layer.
4. Output Gate: Shown above each node in the hidden layer.

For simplicity each gate will be either open (O), or closed (–). The LSTM
cell will retain the first input as long as the forget gate is open and the input
gate is closed. Additionally the sensitivity of the output layer is controlled by
opening and closing the output gate which does not affect the memory of the
cell [34].

LSTM properties for sequential data prediction make them a viable can-
didate for anomaly detection of time-based systems. Taylor et al. [14] im-
plemented a LSTM network for anomaly detection on a CAN bus network,
Kundu et al. [36] implemented a LSTM network on industrial control net-
work, both demonstrating successful results in the detection of anomalies in
real-time systems. Additionally, Harlow’s [3] implementation of a LSTM net-
work for a MIL-STD-1553B anomaly detector provided successful results.

2.4.2 LSTM Network Hyper-parameter Tuning

Deep learning models have many different attributes, called hyper-parameters
that are used to modify and tune the model in order to increase performance.
Hyper-parameters are variables that are set by the creator for tuning the
model, whereas parameters are values which are estimated from the data itself
automatically, such as weights in a neural network. Some of the more common
LSTM hyper-parameters consist of the following:

1. Number of neurons and layers: This is the number of neurons that make
up the individual layers, and number of layers are in the network. There
is no set rule as to the number of neurons and number of layers, as it is
dependant on the type of data and model that is created.

2. Batch size: This is defined as the number of samples to iterate through
before updating the internal model’s parameters.

3. Number of epochs: The number of times the algorithms will iterate over
the entire dataset.
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Figure 2.15: Preservation of Gradient Information by LSTM [34]

4. Learning rate: As in traditional machine learning, this controls the rate
in which the model is adapted to the problem. Small rates require more
epochs due to the smaller adjustments, whereas large rates can adjust
rapidly but can sometimes overshoot the optimal solution.

5. Dropout: This is a regularization method in which neurons are randomly
ignored, which forces the neurons to take on more or less responsibility.
Dropout in turn reduces over-fitting and allows a model to become more
robust.

6. Bi-LSTM layer: When there are two layers implemented alongside each
other in opposite directions, allowing the network to read the input from
past to future as well as future to past. The bi-directional aspect allows
them to also consider elements in the future as they are processing them
in the opposite direction.

7. Attention mechanism: A mechanism that allows the model to map
the importance and associations between input sequences, enabling the
model to focus on certain inputs with more ”attention” by assigning
higher weights to these inputs.

2.4.3 LSTM Autoencoder

An LSTM autoencoder uses an unsupervised LSTM which learns the com-
pressed representation of the data [37]. This it done by having the model
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encode the data through a purposefully created bottleneck, and then recon-
struct the data through the decoding phase as seen in Fig. 2.16. In the case of

Figure 2.16: LSTM Autoencoder [37]

anomaly detection systems, these LSTM autoencoders are trained on known
”good” traffic to reduce the reconstruction error of the data. The trained
model’s resultant reconstruction error is then is then used to set a threshold
value for the acceptable reconstruction error. Harlow’s [3] model was created
using the tensorflow platform, consisting of three LSTM layers. The model’s
input consisted of 155 features, followed by a 30 node LSTM encoding layer,
a 15 node LSTM bottleneck layer, a 30 node LSTM decoding layer followed
by the output as seen in Fig. 2.17. This base model kept all other hyper-
parameters unchanged. The reconstruction error threshold chosen is based
on Mean Absolute Error (MAE) loss on the training data, and in the case of
Harlow’s research [3] the threshold was set to 10% above the MAE loss. The
trained model is then used with unknown traffic, and any traffic that exceeds
the reconstruction error threshold value is deemed anomalous traffic. Provotar
et al.’s [37] use of LSTM autoencoders on false data injection attack proved
effective in detecting anomalous behaviour. Additionally, Harlow’s [3] use of
LSTM autoencoders on MIL-STD-1553B data bus traffic also proved effective
in detecting anomalous behaviour.
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Figure 2.17: LSTM Autoencoder Model

2.4.4 Evaluation Metrics for Deep Learning

The effectiveness of a deep learning network can be measured by several met-
rics. The metrics to be discussed are derived from the confusion matrix seen
in Fig. 2.18. A confusion matrix is composed of four values:

1. True Positive (TP): An anomalous event that has been classified cor-
rectly.

2. False Positive (FP): A benign event that has been classified incorrectly
as an anomalous event.

3. False Negative (FN): An anomalous event that has been classified incor-
rectly as a benign event.

4. True Negative (TN): A benign event that has been classified correctly.

Using the values from the confusion matrix, metrics can be created such as ac-
curacy, precision, recall, AUROCC and MCC. Accuracy is a common method
to assess how often a model classifies data correctly and is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.8)

Precision is a metric that assesses how often positive classifications were cor-
rect and is defined as:

Precision =
TP

TP + FP
(2.9)
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Figure 2.18: Confusion Matrix

Recall is a metric that assesses the proportion of actual positives that were
correct and is defined as:

Recall =
TP

TP + FN
(2.10)

The F1 score combines precision and recall into a single metric and is the
harmonic mean. This results in a high score if both precision and recall are
high, a low score if both are low and a medium score if one is high and the
other is low. The F1 score is calculated as follows:

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(2.11)

AUROCC is an evaluation method that illustrates the ability for the model
distinguish between the classes. In order to calculate AUROCC, a Receiver
Operating Characteristic Curve (ROCC) is created by plotting the True Posi-
tive Rate (TPR) and False Positive Rate (FPR). The TPR isdefined as follows:

TPR =
TP

TP + FN
(2.12)

The FPR is defined as follows:

FPR =
FP

FP + TN
(2.13)
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These values are then plotted and then the AUROCC is found simply by
calculated the area under the curve. MCC is a another method for evaluating
performance of a model. MCC is calculated as follows:

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(2.14)

MCC aims to overcome the issues associated with accuracy and F1 score with
unbalanced data. Chicco et Jurman’s research [38] showed overall more reli-
able statics using the MCC over the F1 score.

2.5 Summary

In this chapter a detailed overview of the MIL-STD-1553B data bus protocol,
vulnerabilities and current research for MIL-STD-1553B IDS were provided.
Recent research outlined signature based detection methods, sequence-based
methods as well as deep learning based anomaly detection methods. Next,
feature engineering methods for MIL-STD-1553B traffic were discussed which
included feature generation, feature selection and dimensionality reduction.
Furthermore, current deep learning methods utlizing LSTM and LSTM au-
toencoder models were outlined and their effectiveness in detecting anomalous
behaviour was highlighted. Additionally, LSTM hyper-parameters and their
effect improving model performance were discussed. Finally, the metrics used
to evaluate the effectiveness of deep learning models were presented.
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3 Methodology and Design

In this chapter, the experimentation design is described in four phases. The
initial phase is data collection and munging, describing the datasets used as
well as the data manipulation to prepare it for the downstream processes.
The second phase is feature engineering, outlining the tools and methods
used to generate features, select features and reduce the dimensions of the
datasets. The third phase outlines the method used to train the LSTM model
for anomaly detection. The final phase will discuss the method in which the
results are validated against the aim of this research.

3.1 Deep Learning Pipeline

In order to understand how model effectiveness may be impacted by feature
engineering, the entire pipeline for a deep learning anomaly detector needs
to be designed and constructed. The same MIL-STD-1553B datasets Harlow
[3] collected using Abaco Bus Tools were used as the starting point for this
pipeline. The new feature engineering component of the deep learning pipeline
is built on Harlow’s model [3] and augmented using feature generation, feature
selection and feature reduction techniques. The feature generation component
includes two different techniques to create new features based on the initially
extracted feature set. The first feature generation method chosen was poly-
nomial expansion that leverages the sklearn library. The second technique
is based on time series characteristics using tsfresh, an application also used
by Stan et al. [6]. After feature generation, selecting the most useful fea-
tures would then need to be conducted. This is approached in two ways,
first with feature selection, then with dimensionality reduction. The feature
selection methods selected are ANOVA, FOS and PPS. The dimensionality
reduction method selected, UMAP, was introduced by McInnes et al. [7].
These datasets are then processed using the design from Harlow’s [3] anomaly
detection LSTM auto-encoder. The evaluation of the models utilize common
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evaluation metrics in the machine learning field. These metrics are then com-
pared against previously completed research in order to validate the model
and determine if there is a marked improvement in effectiveness.

3.2 Data Collection and Munging

The raw data collected by Harlow [3] forms the datasets used for this research.
This data includes both baseline data and anomalous data, the latter which
was created using the evaluation tool created by Paquet [1]. The datasets
can then be further divided into into two main groups based on anomalous
or attack types: DoS and data integrity violation. The dataset details are as
follows:

1. DoS
a) Network Disruption: A single dataset that shows flooding the net-

work with status words.

b) RT Deny: A single dataset where there is a targeted DoS on RT18.

c) RT SA Deny: Two separate recordings of datasets where there is a
targeted DoS on RT18 and subaddress 1.

2. Data Integrity Violation
a) RT Hijack: One recording of a dataset where a data word is injected

into the network traffic from RT18, subaddress 6 and word number
56.

These datasets have been collected using the Abaco BusTools-1553 software
suite in a simulated aircraft environment. Abaco BusTools-1553 records data
bus traffic in the Bus Monitor Data Files Extended (BMDX) message format
as seen in Fig. 3.1. Within each of the n messages, the data contained in
the words is in the format outlined in Fig. 3.2. Since this data structure is
simply the combined data from each message, it is munged to provide more
granular information such as RT address, transmit/receive, subaddress and
number of words to better correlate to how words are typically presented in
MIL-STD-1553B, as seen in Fig. 3.3. This is accomplished by separating the
data contained in the command word(s), data word(s) and/or status word(s)
into their respective formats as outlined in Fig. 2.2.

Using the recorded response times from the BMDX file as seen in Fig.
3.2, an intermessage response time is calculated to supplement the already
provided RT intramessage response time(s). This is done in order to create a
time feature representing the duration between messages. This intermessage
response time is the sum of the previous message’s initial transmit time and
the intramessage response time(s).
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Figure 3.1: Abaco BusTools-1553 BMDX Structure [9]

Figure 3.2: Abaco BusTools-1553 BMDX Message Structure [9]
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Figure 3.3: Abaco BusTools-1553 Data Munging

3.2.1 Data Labelling

In order to utilize supervised feature selection methods, the anomalous datasets
require labelling. Due to the use of the pre-created dataset, the data is manu-
ally labelled using timestamps and attack parameters recorded by Harlow as
well as the implied schedule of the system. The labelling method was different
for each of the main groups: DoS and data integrity violation.

The DoS labelling method assumes that any message not part of the base-
line schedule is considered anomalous. The message information comprising
of the RT address, transmit/receive flag, and subaddress is used to create
this baseline. The premise behind this assumption is that MIL-STD-1553B
utilizes a predictable real-time schedule and the messages transmitted on the
bus should not deviate from that during normal operation. Additionally since
our simulated environment has a limited schedule it was noted there were only
80 unique messages in the baseline datasets by filtering on the previously dis-
cussed message information. The assumption that the baseline messages will
not deviate from the schedule is made as Abaco BusTools-1553 attempts to in-
terpret the MIL-STD-155B words on the databus and create a message based
on that data. Since Abaco BusTools-1553 was a tool developed for design
and development of production MIL-STD-1553B RTs, it assumes they will
adhere to the standard and as such the output can misrepresent actual traffic
on the databus. Application of the DoS technique could cause a collision and
the message would be rejected by the RT, although in the simulated setup,
Abaco BusTools-1553 may attempt to ”read” the words and state there was
a message sent. In this case, the message would then not match any of the
messages from the baseline schedule. Additionally, the attack may also collide
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partway through a message, where the initial part of the message would be
intact but the remaining data would not match the baseline. In both these
scenarios, the message is then labelled as anomalous.

In the case of the data integrity violation dataset, the messages are in-
tercepted and sent with altered data. The method used to label this dataset
assumed that all messages that matched the targeted message, its subaddress
and was within the attack time as noted by Harlow [3] is considered as anoma-
lous. These methods of labeling will not result in a perfectly labelled dataset
as some messages may have been mis-labeled, although the impact of this is
assumed to be minimal due to the real-time nature and predictability of the
baseline traffic.

3.3 Feature Engineering

Feature engineering is the next step in the pipeline in order to prepare the
data for use in the anomaly detection model. This step first consists of fea-
ture generation followed by feature selection and dimensionality reduction as
outlined in Fig. 3.4.

Figure 3.4: Feature Engineering Focused Pipeline

3.3.1 Feature Generation

In this step, the primary features created in the data collection and munging
step are used to generate multiple new features. The first method of feature
generation utilizes the scikit learn sklearn.preprocessing.PolynomialFeatures
module [27]. This module generates a new feature matrix with all polynomial
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combinations of the features up to the degree specified. For the purpose of
this research the maximum polynomial degree of two is used due to processing
speed and resource consumption. The second method utilizes the python tool
tsfresh. tsfresh is a python package that generates time-series features using 78
different feature calculation modules [18], [19] as seen in Appendix A. tsfresh
does this by running the different calculation modules with the data from
the features in the dataset, and then creates additional features based on the
results from the calculation modules.

3.3.2 Feature Selection and Reduction

After feature generation, feature selection and a dimensionality reduction
method is used in order to select a smaller number of features to be used
as input into each discrete run of the learning model. The feature selection
methods ANOVA, PPS and FOS are used to select a subset of features in par-
allel from the same starting features created in the previous phase. This will
allow for comparison of each model’s results as seen in Fig. 3.4. Additionally,
the UMAP dimensionality reduction method is used in parallel with the other
feature selection methods, as illustrated in Fig. 3.4 in order to allow another
data point for comparison. This allows the evaluation of UMAP’s ability to
reduce the number of features while still maintaining effectiveness.

3.4 Anomaly Detection Deep Learning Model

The final step of the anomaly detection pipeline is the training and use of the
LSTM as an anomaly detector. The model is based on Harlow’s [3] LSTM
implementation. First, the model created by Harlow is replicated utilizing the
baseline dataset using only the primary features, which becomes the reference
for evaluating the effectiveness. Next sixteen models are created. Twelve of
these models are attack specific, created from four distinct attack types and
three feature selection techniques against the original and generated feature
set. The remaining four are general models. Three are based on features
identified across all four attack types using the three selection techniques and
the full feature set. The fourth general model is based on the dimensionality
reduction technique that processed only the original feature set and did not
consider attack type. These general models enable the evaluation of a single,
more attack agnostic model to effectively detect anomalous traffic when its
performance metrics are compared to those of the specific models, possibly
allowing for the streamlining of model creation.
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After the training of these models, they will be analyzed and a threshold
value is determined based on the MAE value of the baseline traffic. The
trained models are then tested using the anomalous traffic datasets, where
the results are then compared. With all the results from the multiple models
and the reference model from Harlow’s [3], the effectiveness of the feature
engineering techniques can be directly compared.

3.5 Evaluation of Deep Learning Pipeline

In order to measure the effectiveness of the anomaly detection method the
results were evaluated using multiple methods. The methods utilized metrics
derived from the confusion matrix metric: precision, recall, accuracy, AU-
ROCC and MCC. These metrics were used to measure the performance of the
anomaly detector. These results were then compared against recent work in
the field, specifically Harlow’s [3] original LSTM detector.

3.6 Summary

In this chapter, the methodology for improving the feature engineering aspects
of Harlow’s LSTM anomaly detector through the use of feature engineering
was presented. The data collection method and the data munging techniques
were discussed. Additionally, the feature engineering process, including fea-
ture generation, selection and dimensionality reduction techniques used were
presented. The created feature sets are then used with Harlow’s model [3],
selecting the feature set that provides the best results. Finally, the evaluation
of the anomaly detection pipeline was presented along with how the results
are validated.
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4 Results

In this chapter, the anomaly detection pipeline is built and evaluated using the
design outlined in chapter 3. The experimental design is detailed, followed by
a discussion on the creation of the initial dataset used in the experimentation.
Next, the feature generation process for producing the extended datasets is
discussed. Then the output of the feature selection and reduction techniques
are provided as are the details regarding the different sets of models used in the
experimentation. Finally the metrics from the multiple models are discussed
and compared to current work.

4.1 Experimental Design

The anomaly detection pipeline described in the previous chapter was imple-
mented using the following hardware and software components:

• Processors: Two Intel Xeon Gold 6230, 40 cores total
• RAM: 768 GB DDR4 memory
• GPU: 8 NVidia RTX 2080Ti
• SSD: 1.92 TB NVMe Gen 3
• Operation System: Ubuntu 20.04
• NumPy package
• Pandas library
• Scikit-learn toolkit

– metrics

– preprocessing.PolynomialFeatures

– feature selection.SelectKBest

– feature selection.f classif
• PPScore tool
• UMAP tool
• Matplotlib library
• tsfresh tool
• TensorFlow library
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4.1.1 Datasets

As discussed in Section 3.2 the data collected comprised both of baseline and
anomalous datasets. All of the datasets were representative of an aircraft in
the cruise phase of flight. There was a total of three baseline datasets col-
lected, all of which utilized the same master schedule. Through investigation
of these three benign datasets and as expected, it was confirmed that they
were identical. As such, only one baseline dataset (baseline inflight 5 250820)
was selected for use in this experiment as the others would not contribute any
additional information. The anomalous data collected comprised of a total of
five datasets across two attack categories as outlined in Section 3.2.

1. DoS
a) NetDisrupt statusword 250820 (disrupt): Network disruption

b) RT-SA deny statusword rt18 sa32 250820 (deny): RT deny

c) RT-SA deny statusword rt18 sa1 250820 (SA deny): RT subaddress
deny

d) RT-SA deny statusword rt18 sa1 rec2 250820 (SA deny 2): RT
subaddress deny

2. Data Integrity Violation
a) Hijack rt18 sa6 w56 250820 (hijack): RT hijack

Through an investigation the SA deny and SA deny 2 datasets contained sim-
ilar data. Due to the similar data in the SA deny and SA deny 2 datasets,
SA deny was utilized for feature selection and SA deny 2 was used solely for
generating model performance metrics. These anomalous datasets are named
using the following convention: the first part is the type of attack, followed
by the associated RT details and ending in the day, month, year recorded. To
avoid confusion these datasets will now be referred to by their abbreviated
forms outlined in parenthesis above. As mentioned previously, these datasets
were collected in a simulated lab environment by Harlow[3] utilizing an eval-
uation tool created by Paquet[1]. Both the baseline and anomalous datasets
contain just over 1 million MIL-STD-1553B messages each. The anomalous
datasets are imbalanced, containing little anomalous traffic compared to nor-
mal traffic. The specific amount of anomalous traffic for each dataset is as
follows: disrupt - 17.2%, deny - 2.1%, SA deny - 5.7%, SA deny 2 - 4.2%, and
hijack - 17.2%.

The data was then munged to create meaningful features. As previously
shown, Abaco BusTools records data based on the structure in Fig. 3.2. The
command words and response words are broken out into their individual com-
ponents as explained in Section 3.2. Additionally, all the errors interpreted by
Abaco BusTools are recorded in a single feature as shown in Table 4.1. Abaco
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Error Name Error Value Description

BT1553 INT HIGH WORD 0x00000001 high word error

BT1553 INT BIT COUNT DATA 0x00000001 bit count err, data word

BT1553 INT INVALID WORD 0x00000002 Invalid word error

BT1553 INT LOW WORD 0x00000004 low word error

BT1553 INT INVERTED SYNC 0x00000008 Inverted sync

BT1553 INT MID BIT 0x00000010 Mid Bit Error

BT1553 INT TWO BUS 0x00000020 data on both buses error

BT1553 INT PARITY 0x00000040 parity error

BT1553 INT NON CONT DATA 0x00000080 non-contiguous data

BT1553 INT EARLY RESP 0x00000100 early response

BT1553 INT LATE RESP 0x00000200 late response

BT1553 INT BAD RTADDR 0x00000400 incorrect rt address

BT1553 INT CHANNEL 0x00000800 Bus (0=A, 1=B)

BT1553 INT WRONG BUS 0x00002000 Response on wrong bus

BT1553 INT BIT COUNT 0x00004000 bit count error

BT1553 INT NO IMSG GAP 0x00008000 No/Short inter-message gap

BT1553 INT END OF MESS 0x00010000 End of message

BT1553 INT BROADCAST 0x00020000 broadcast message

BT1553 INT RT RT FORMAT 0x00040000 rt-to-rt message format

BT1553 INT RESET RT 0x00080000 Reset rt

BT1553 INT SELF TEST 0x00100000 Self-test

BT1553 INT MODE CODE 0x00200000 Message is a Mode Code

BT1553 INT NOCMD 0x00400000 Command unseen by decoder

BT1553 INV RTRT TX 0x00800000 Invalid RTRT TX CMD2

BT1553 INT RTRT RCV NRSP 0x01000000 RT-RT No response on Rcv

BT1553 INT RETRY 0x02000000 Retry

BT1553 INT NO RESP 0x04000000 no response (RT-RT, set if EI-
THER is no resp.)

BT1553 INT ME BIT 0x08000000 1553 status word message error
bit

BT1553 INT TRIG BEGIN 0x10000000 message with trigger begin

BT1553 INT TRIG END 0x20000000 message with trigger end

BT1553 INT BM OVERFLOW 0x40000000 message at buffer overflow

BT1553 INT ALT BUS 0x80000000 retry on alternate bus

Table 4.1: Abaco BusTool Errors [9]
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refers to these errors as interrupts and further details on each error/interrupt
can be see in [9]. These errors are the result of the errors BusTools interprets
on the databus and were separated into individual error flags. The complete
list of 155 primary features created after data munging can be seen in Ap-
pendix B.

The feature generation techniques were then applied to the munged datasets.
Polynomial expansion utilizing the sklearn.preprocessing.PolynomialFeatures
tool created a total of 12,247 derived features from the existing 155 primary
features. tsfresh created an additional 26,071 derived features from the exist-
ing 155 primary features through the use of the calculation modules outline
in Appendix A. To note, some of the tsfresh calculation modules utilizes more
than a single variable, so the number of features generated is not simply the
number of modules multiplied by the primary features. Additionally, tsfresh
will automatically eliminate generated features that contain no additional in-
formation, such as no variance in the values generated. Adding the features
from the two generation techniques to the original primary feature set resulted
in a total of of 38,473 unique features.

Using the process outlined Section 3.2.1, all of the attack datasets were
labelled and specific discussion regarding this process is found in Section 4.3.5.

4.1.2 Models

After creation of the extended datasets, the feature selection techniques were
implemented to determine the features to be used for each model. Model
development consisted of two approaches; attack specific and general. The
first approach was to use a specific model for each attack type as shown in
Fig. 4.1. Each labelled attack type dataset was fed into the three feature
selection technique tools, outlined in Fig. 4.1. The top features output from
each feature selection were then used to define the features selected from
the baseline dataset to train the models. The process for selecting the top
features utilized elbow curves and is further discussed in Section 4.3.7. Upon
completion, there was a specific model for each attack type and each feature
selection method, resulting in 12 specific models.

The second approach was to create a general model by using the three
feature selection techniques to select the top features for each attack type.
These top features for each attack type were then combined and used as the
features from the baseline to train the general model, as outlined in Fig. 4.2.
This resulted in a total of 3 general models, one for each feature selection
method. The purpose of the general model was to compare the results of a
general model to the specific model to evaluate the ability for a more stream-
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Figure 4.1: Attack Specific LSTM Model

lined approach for feature selection and model generation. The number of top
features for all models was determined through the analysis of elbow curves
shown in Appendix C. These elbow curves are discussed further in Section
4.3.7. Across the 15 models, there were approximately 5 to 15 features se-
lected for each method.

Lastly, a single model was created for the feature reduction technique
UMAP. UMAP was utilized in parallel with the feature selection techniques,
although UMAP was only used with the primary feature dataset and not the
extended dataset. The rational to this decision is explained further in Section
4.3.4.

Harlow’s model [3] is utilized as a basis for this research. Next the thresh-
old for anomalous traffic for all models was calculated based on the MAE. This
reconstruction error threshold was based on Harlow’s implementation. The
reconstruction threshold was calculated as 10% above the MAE loss obtained
during the training of the model with the baseline dataset. At the end of
model creation there was a total of 16 unique models trained to be evaluated.
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Figure 4.2: General LSTM Model

Using the process outlined in Section 3.2, all of the attack datasets were
labelled. The maliciously labelled messages were compared against the start
and stop timings of the attacks that were provided by Harlow [3]. Further
discussion regarding labelling is found in Section 4.3.5.

4.2 Verification

The components utilized in the deep learning pipeline consisted of data mung-
ing to obtain a base set of features, feature generation to provide unique feature
sets, feature selection and dimensionality reduction, and model generation.
The developed pipeline was executed end-to-end to ingest the recorded MIL-
STD-1553B traffic, process the data to create the primary feature set and then
generate features using polynomial expansion and tsfresh techniques. Next,
features to be used in training and testing each of the sixteen models were
identified through three feature selection, and one feature reduction technique.
The training and testing was then conducted, creating output used for analysis
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with the MSE anomaly threshold. Each component of the pipeline operated
as expected and based on the design outlined in Chapter 3.

4.3 Validation

The resulting performance metrics of the 16 models were then compared to
the research conducted by Harlow [3] and demonstrated that there was an
overall improvement in the effectiveness of the anomaly detection pipeline.
These metrics included accuracy, precision, recall, AUROCC and MCC. To
obtain the evaluation metrics, each anomalous dataset was processed through
the respective LSTM autoencoder, which was trained on the baseline traffic.
Scores were recorded for each anomalous dataset and their respective models,
which are shown in Fig. 4.3. The green highlighted cells represent the highest
value technique within each block, and the red text represents the highest value
for each anomalous dataset, for both the general and specific models. Fig. 4.3
shows a resolution of four decimal places since that was the lowest resolution
that was required to differentiate between the performance metrics of some
models. The overall improvement through the addition of feature engineering
was apparent in all models except for the general hijack model. All other
models demonstrated an increase in performance metrics, with examples such
as SA Deny increasing from 54% to 96% AUROCC and Disrupt increasing
from 6% to 99% AUROCC.

4.3.1 ANOVA

The ANOVA general model outperformed all other general models in the DoS
type attack (disrupt, deny, SA deny, SA deny 2). The specific ANOVA models:
disrupt and hijack outperformed all other specific models for these same attack
types, as seen in Fig. 4.3. The deny and disrupt specific models performed
marginally better than the general model, although in the case of the SA deny
dataset, the general model performed better by 4%. Furthermore, the deny,
SA deny, SA deny 2, and disrupt datasets utilizing the general model obtained
similar results. This is attributed to the four datasets utilizing the DoS attack
method, and as such would contain similar traffic. Due to this result, it shows
that these four attacks could be combined into a single DoS model, allowing a
more streamlined pipeline while still yielding effective results when compared
to Harlow’s model [3]. In the case of the hijack dataset metrics, the specific
hijack model significantly outperformed the general hijack model.
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Figure 4.3: Results for general and specific models.

4.3.2 FOS

FOS performed well for the specific models: Deny and SA Deny, and per-
formed relatively poorly for the disrupt and hijack models. FOS also per-
formed poorly for all of the general models as seen in Fig. 4.3. Additionally,
the remainder of the FOS model’s metrics demonstrated poor performance.
The feature scores from FOS resulted in an elbow curve that typically sug-
gested only one feature, whereas the majority of other feature selection meth-
ods suggested 5 or more. Due to the elbow method only suggesting a single
feature, it is suggested that other methods be explored for selecting the cutoff
for the number of features. Except for precision, the metrics from the disrupt

44



4.3. Validation

dataset demonstrated similar performance between the general and specific
models, although with poor performance. Finally, with the metrics from the
hijack dataset, the general model outperformed the specific model, although
again with overall poor performance. These results highlight the possible need
for more anomalous traffic to be used for selection of the features.

4.3.3 PPS

PPS performance metrics initially appear to be ineffective across the majority
of the datasets as seen in Fig. 4.3. Although on closer analysis of the metrics
from the deny, SA deny and SA deny 2 datasets, those specific models shows
promise. This can be demonstrated in Fig. 4.4, where the anomalous traffic
can be seen in three distinct groupings where the MAE value is much larger
relative to the other traffic. These three groupings of increased MAE repre-
sent the anomalous traffic, and are are similar to the ANOVA and FOS MAE
values for the same dataset, as seen in Appendix E Fig. E.3, Fig. E.4 and Fig.
E.5. Therefore, the MAE threshold for anomalous traffic in Harlow’s model
[3] could be adjusted to potentially provide more effective detection for the
PPS model. This could be accomplished by reducing the MAE reconstruction
threshold or utilizing other methods such as standard deviation. This reduc-
tion of the reconstruction threshold would then result with more of the traffic
seen in Fig. 4.4 surpassing the threshold and thus resulting in detection by
the model. The specific disrupt model demonstrated poor performance ac-
cording to the PPS evaluation metrics. Additionally, the four general PPS
models demonstrated poor performance especially in comparison to the top
performing ANOVA model.

4.3.4 UMAP

The UMAP model did not perform well when compared to all other models.
UMAP was the dimensionality reduction method selected and as such, it re-
duced all the primary features to the the selected number of features. The
tuning for UMAP consisted of a trial and error method in adjusting the hyper-
parameters to allow proper clustering of data. After testing multiple iterations
of hyperparameters and visualising the results, the following hyperparameters
were chosen:

• N Neighbors: 10
• Min Distance: 0.1
• N Components: 10

It was decided to limit any further time invested in tuning UMAP and noted
that future investigation would be required. Additionally, UMAP was used
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Figure 4.4: MSE for PPS feature selection Method on the Deny dataset

solely on the primary features. This decision was taken solely due to the equip-
ment limitation, specifically because reducing the expanded datasets required
substantially more RAM than was available. In order to properly investigate
the use of UMAP on the extended datasets, additional RAM would be re-
quired as well as utilization of GPU resources to allow for reduced compute
time. In the case of the current datasets selected through the feature selec-
tion methods in this research, the need for further feature reduction is seen as
unnecessary since the selected number of features from all the methods were
sufficiently small.

4.3.5 Hijack Dataset

As seen in Fig. 4.3, the hijack models received the lowest MCC and AU-
ROCC score. This is possible for two reasons: data labelling and attack
complexity. This dataset has a higher probability of being mis-labelled as the
labelling method described did not account for message collisions and how
Abaco BusTools-1553 may create a message with assumed data. This was
accounted for in the other datasets as it was the sole method for labelling,
whereas in the hijack dataset it becomes more complex because there is both
data being replaced as well as the possibility for collisions taking place. Addi-
tionally, the errors could be attributed to the complexity of the attack, where
the model may see similar traffic with only minor differences in the data and
timing. In order to further support this reasoning, a pre-labelled dataset would
need to be used in place of labelling the data after recording.
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4.3.6 Feature Generation

Feature generation consisted of using sklearn.preprocessing.PolynomialFeatures
and tsfresh packages. In Fig. 4.5, all features consisting of all capitalization
are either primary features or features generated through sklearn Polynomial
Features. Furthermore, the features generated through sklearn Polynomial
Features are labelled how they were created, such as RSP1 CMD1-addr is pri-
mary features RSP1 ∗ CMD1-addr. The remaining features were created by
the tsfresh tool. The majority of the features in the higher performing models
were the result of the sklearn Polynomial Features package. Additionally, the
features generated by the tsfresh tool did not perform as well as expected
despite being used in previous research completed by Stan et al[6].

4.3.7 Feature Selection and Reduction

The top 10 features for each attack method and dataset can be seen in Fig. 4.5,
where the green highlighted fields show common features between at least two
feature selection methods and red font represents common features between
at least two datasets within the same feature selection method. Fig. 4.5
does not represent the actual number of features in each model, and is used to
illustrate the similar features across the feature selection methods and models.
It is noted in Fig. 4.5 that there are very few, to no common features between
the feature selection methods utilizing the Net Disrupt and Hijack dataset.
Additionally, as seen in Fig. 4.5 there are few to no features shared between
the hijack dataset and the deny, SA deny and disrupt datasets. This further
re-enforces the similarities between the DoS attacks and the differences from
the hijack attacks suggesting separate model for detection of these respective
attack types.

The feature selection and reduction methods were conducted to determine
the top performing features for each of the four datasets (disrupt, deny, SA
deny, and hijack). These results were analyzed, and it was noted where there
was a pronounced drop-off in the relative feature selection scores. As seen in
Appendix C, the disrupt, deny and SA deny FOS results had a sharp dropoff
after only one feature, whereas in the hijack results produced a curve that
was less pronounced and suggested approximately 4 features. In the case of
the ANOVA method, again the disrupt, deny and SA deny results had similar
curves suggesting approximately 7-10 features, whereas the hjiack results did
not have a defined elbow. Finally, the PPS method showed similar curves
between the deny and SA deny results, no elbow for the hijack dataset and
suggesting only one feature for disrupt. These results can be split into three
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groups: feature scores with a defined elbow curve, feature scores with no
defined elbow and features with a sharp drop after the first feature. In the
case of the defined elbow group, the number of features utilized in the model
corresponds to the elbow curve. In the case of the no elbow curve group, it
was decided to use 10 features as 10 features seems to be the common number
of features among the other datasets. Finally, in the case of a single feature,
it was determined to utilize 5 feature as a single feature could not provide
enough data to the models for proper training.

4.3.8 Datasets

There were a total of five datasets with attack traffic present recorded. Addi-
tionally each of those five datasets contained three distinct attacks, all lasting
approximately one minute in length. This results in a total of 3 minutes of
attack traffic within a total of 20 minutes of recorded traffic. Though this
recorded traffic has a low number of distinct attacks, is of a short duration,
and reflects limited flight activity, it does provide sufficient data for this ex-
periment.

4.3.9 Comparison

The results of the improved anomaly detection pipeline were evaluated against
the previous research completed by Harlow[3]. Comparing to the original
features utilized by Harlow[3] the refined anomaly detection pipeline had a
marked improvement. Overall, the metrics for anomaly detection increased
significantly. Additionally, the amount of features required to provide accu-
rate predictions was reduced from 62 to less than 30 features, with some of
the higher performing models requiring as low as 5 features. Finally, the in-
crease in MAE between anomalous traffic and normal traffic demonstrates a
much larger reconstruction error for the anomalous traffic. This allows for
easier anomalous traffic detection when compared to Harlow’s [3], as seen in
Appendix D and Appendix E.

4.4 Summary

In this chapter, the results from the feature engineering pipeline were pre-
sented and discussed. The detailed data munging, feature engineering and
model creation process were explained. The metrics from the feature engineer-
ing methods were then presented and discussed in detail, identifying trends
and points of interest. Finally the results were compared to current research
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completed by Harlow [3], identifying the benefits of the revised feature engi-
neering pipeline for the MIL-STD-1553B anomaly detector. The refinements
to the feature engineering component in the existing deep learning pipeline
demonstrated a marked improvement. Specifically, half of the generated mod-
els showed increased performance compared to the original model. In addition,
this performance improvement was achieved using significantly fewer features.
In combination, these previous two points highlight a pipeline that involves
lower processing times for feature engineering and model execution accompa-
nied by improved effectiveness of the original LSTM anomaly detector.
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5 Conclusion

This research refined the feature engineering component of an existing MIL-
STD-1553B deep learning anomaly detection pipeline. This was accomplished
through the use of different feature generation, feature selection and feature re-
duction techniques in order to improve the overall effectiveness of the anomaly
detector. In this final chapter an overview is presented, reiterating the mo-
tivation for this research. Next this research’s contributions of this research
to the field of MIL-STD-1553B anomaly detection will be presented. Rec-
ommendations for future work based on this research will then be discussed.
Finally, recommendations will be offered for actions based on the findings in
this research.

5.1 Overview

Research has demonstrated the vulnerabilities of the MIL-STD-1553B databus
and the ability for adversaries to exploit these vulnerabilities [1], [2]. In order
to mitigate the impact of these vulnerabilities being exploited, the ability to
detect malicious traffic on the MIL-STD-1553B databus is paramount. Recent
research has allowed the monitoring of the MIL-STD-1553B databus and the
ability to effectively detect anomalous traffic. These methods have included
machine learning, deep learning, statistical and signature-based approaches
[2], [3], [4], [5].

The research conducted by Harlow [3] utilized a deep learning model and
was successful in demonstrating an initial proof of concept for anomalous traf-
fic on the MIL-STD-1553B databus. This approach was further developed by
refining the feature engineering portion of the deep learning pipeline. The
specific methods implemented to refine the pipeline included feature genera-
tion and feature selection. This refined portion of the pipeline was then used
with the existing model created by Harlow [3] to determine if there was an
overall increase in the ability to detect anomalous databus traffic.
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5.2. Contributions

The refined deep learning anomaly detection pipeline was then verified
through its ability to correctly categorize the anomalous datasets. The re-
fined pipeline generated new features using polynomial expansion and with
tsfresh that in turned served as input into the three different feature selec-
tion techniques and the dimensionality reduction technique. Sixteen distinct
models based on Harlow’s original design were created and processed with the
new feature engineering aspects created through this research and results were
calculated using common performance metrics. These metrics are based off
the confusion matrix and include; accuracy, precision, recall, AUROCC and
MCC. These metrics showed that the refined deep learning pipeline overall
was effective in detecting anomalous traffic in the MIL-STD-1553B databus.

The results from the experiments were then validated by comparing the
performance metrics against the research completed by Harlow [3] and clearly
demonstrate that there was a marked improvement in anomalous traffic detec-
tion. The comparison of the results revealed there was a marked improvement
in 8 of the 16 models created during this research. In addition, this research
demonstrated that the improved results can be achieved with fewer features.
The reduction in the required features results in lower processing times on sim-
ilar hardware, or a reduction in the hardware resources required for accurate
detection of anomalous traffic on the MIL-STD-1553B databus.

5.2 Contributions

The following contributions were made by this research:
1. This research showed that feature engineering techniques can achieve

improvements in detection metrics while at the same time, require fewer
features for processing new data.

2. A developed methodology for feature engineering using traffic collected
from a MIL-STD-1553B data bus.

3. Refined feature engineering techniques for anomaly detection using a
LSTM autoencoder model for MIL-STD-1553B data bus traffic.

4. An improved pipeline for anomaly detection on MIL-STD-1553B data
bus traffic.

5. Determining the similarities between the DoS type attacks and the dif-
ferences from the hijack attacks, identifying that separate models are
suggested for the detection of these attack types.

6. Identifying of the similarities between the DoS type attacks, allowing for
more streamlined model implementation.
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5.3. Future Work

5.3 Future Work

This research investigated the effectiveness of utilizing feature engineering in
the deep learning pipeline for anomaly detection in MIL-STD-1553B traffic.
This work has also highlighted other areas that are recommended to investi-
gate to further this work:

1. Development of richer benign and malicious traffic data sets with a more
complex master schedule, more RTs and aperiodic messages. These new
datasets would allow for the creation of more robust training, test and
validation sets providing better validation of the created model(s).

2. Development of a MIL-STD-1553B attack framework which allows for
labelling of data at creation time. These datasets would allow for higher
fidelity metrics.

3. Development of a model detection that detects the mode of the aircraft,
allowing models to be created for both attack types and specific aircraft
modes.

4. Further experimentation focused on optimization of dimensionality tech-
niques such as UMAP that may further improve performance.

5.4 Recommendations

The use of MIL-STD-1553B monitoring solutions is limited within the Royal
Canadian Air Force. This research recommends the evaluation of an anomaly
detection solution for use on real MIL-STD-1553B traffic. If such a solution
was tested and provided similar results it would allow for effective detection
of anomalous traffic on the MIL-STD-1553B databus. This in turn would
provide the ability to monitor traffic on these databuses to provide additional
security to help close the gap in protection due to the fact MIL-STD-1553B
does not have security built into the protocol.
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A tsfresh Calculation Modules

Module Comment

1 abs energy (x) Returns the absolute energy of the time
series which is the sum over the squared
values.

2 absolute maximum (x) Calculates the highest absolute value of
the time series x.

3 absolute sum of changes
(x)

Returns the sum over the absolute value
of consecutive changes in the series x

4 agg autocorrelation (x,
param)

Descriptive statistics on the autocorrela-
tion of the time series.

5 agg linear trend (x,
param)

Calculates a linear least-squares regres-
sion for values of the time series that
were aggregated over chunks versus the
sequence from 0 up to the number of
chunks minus one.

6 approximate entropy (x,
m, r)

Implements a vectorized Approximate en-
tropy algorithm.

7 ar coefficient (x, param) This feature calculator fits the uncondi-
tional maximum likelihood of an autore-
gressive AR (k) process.

8 augmented dickey fuller
(x, param)

Does the time series have a unit root?

9 autocorrelation (x, lag) Calculates the autocorrelation of the
specified lag, according to the formula [1]

10 benford correlation (x) Useful for anomaly detection applications
[1][2].

continued on next page
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Module Comment

11 binned entropy (x, max
bins)

First bins the values of x into max bins
equidistant bins.

12 c3 (x, lag) Uses c3 statistics to measure non linearity
in the time series

13 change quantiles (x, ql,
qh, isabs, f agg)

First fixes a corridor given by the quan-
tiles ql and qh of the distribution of x.

14 cid ce (x, normalize) This function calculator is an estimate for
a time series complexity [1] (A more com-
plex time series has more peaks, valleys
etc.).

15 count above (x, t) Returns the percentage of values in x that
are higher than t

16 count above mean (x) Returns the number of values in x that
are higher than the mean of x

17 count below (x, t) Returns the percentage of values in x that
are lower than t

18 count below mean (x) Returns the number of values in x that
are lower than the mean of x

19 cwt coefficients (x,
param)

Calculates a Continuous wavelet trans-
form for the Ricker wavelet, also known
as the “Mexican hat wavelet” which is

20 energy ratio by chunks
(x, param)

Calculates the sum of squares of chunk i
out of N chunks expressed as a ratio with
the sum of squares over the whole series.

21 fft aggregated (x, param) Returns the spectral centroid (mean),
variance, skew, and kurtosis of the abso-
lute fourier transform spectrum.

22 fft coefficient (x, param) Calculates the fourier coefficients of the
one-dimensional discrete Fourier Trans-
form for real input by fast

23 first location of maxi-
mum (x)

Returns the first location of the maximum
value of x.

24 first location of minimum
(x)

Returns the first location of the minimal
value of x.

continued on next page
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Module Comment

25 fourier entropy (x, bins) Calculate the binned entropy of the power
spectral density of the time series (using
the welch method).

26 friedrich coefficients (x,
param)

Coefficients of polynomial , which has
been fitted to

27 has duplicate (x) Checks if any value in x occurs more than
once

28 has duplicate max (x) Checks if the maximum value of x is ob-
served more than once

29 has duplicate min (x) Checks if the minimal value of x is ob-
served more than once

30 index mass quantile (x,
param)

Calculates the relative index i of time se-
ries x where q% of the mass of x lies left
of i.

31 kurtosis (x) Returns the kurtosis of x (calculated with
the adjusted Fisher-Pearson standardized
moment coefficient G2).

32 large standard deviation
(x, r)

Does time series have large standard de-
viation?

33 last location of maximum
(x)

Returns the relative last location of the
maximum value of x.

34 last location of minimum
(x)

Returns the last location of the minimal
value of x.

35 lempel ziv complexity (x,
bins)

Calculate a complexity estimate based on
the Lempel-Ziv compression algorithm.

36 length (x) Returns the length of x

37 linear trend (x, param) Calculate a linear least-squares regression
for the values of the time series versus the
sequence from 0 to length of the time se-
ries minus one.

38 linear trend timewise (x,
param)

Calculate a linear least-squares regression
for the values of the time series versus the
sequence from 0 to length of the time se-
ries minus one.

continued on next page
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Module Comment

39 longest strike above mean
(x)

Returns the length of the longest consec-
utive subsequence in x that is bigger than
the mean of x

40 longest strike below mean
(x)

Returns the length of the longest consecu-
tive subsequence in x that is smaller than
the mean of x

41 matrix profile (x, param) Calculates the 1-D Matrix Profile[1] and
returns Tukey’s Five Number Set plus the
mean of that Matrix Profile.

42 max langevin fixed point
(x, r, m)

Largest fixed point of dynamics
:math:argmax x {h (x)=0}‘ estimated
from polynomial ,

43 maximum (x) Calculates the highest value of the time
series x.

44 mean (x) Returns the mean of x

45 mean abs change (x) Average over first differences.

46 Module Comment

47 mean change (x) Average over time series differences.

48 mean n absolute max (x,
number of maxima)

Calculates the arithmetic mean of the n
absolute maximum values of the time se-
ries.

49 mean second derivative
central (x)

Returns the mean value of a central ap-
proximation of the second derivative

50 median (x) Returns the median of x

51 minimum (x) Calculates the lowest value of the time se-
ries x.

52 number crossing m (x, m) Calculates the number of crossings of x on
m.

53 number cwt peaks (x, n) Number of different peaks in x.

54 number peaks (x, n) Calculates the number of peaks of at least
support n in the time series x.

55 partial autocorrelation
(x, param)

Calculates the value of the partial auto-
correlation function at the given lag.

56 percentage of reoccurring
datapoints to all data-
points (x)

Returns the percentage of non-unique
data points.

continued on next page
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Module Comment

57 percentage of reoccurring
values to all values (x)

Returns the percentage of values that are
present in the time series more than once.

58 permutation entropy (x,
tau, dimension)

Calculate the permutation entropy.

59 quantile (x, q) Calculates the q quantile of x.

60 query similarity count (x,
param)

This feature calculator accepts an input
query subsequence parameter, compares
the query (under z-normalized Euclidean
distance) to all subsequences within the
time series, and returns a count of the
number of times the query was found in
the time series (within some predefined
maximum distance threshold).

61 range count (x, min,
max)

Count observed values within the interval
[min, max).

62 ratio beyond r sigma (x,
r)

Ratio of values that are more than r * std
(x) (so r times sigma) away from the mean
of x.

63 ratio value number to
time series length (x)

Returns a factor which is 1 if all values in
the time series occur only once, and below
one if this is not the case.

64 root mean square (x) Returns the root mean square (rms) of the
time series.

65 sample entropy (x) Calculate and return sample entropy of x.

66 set property (key, value) This method returns a decorator that sets
the property key of the function to value

67 skewness (x) Returns the sample skewness of x (cal-
culated with the adjusted Fisher-Pearson
standardized moment coefficient G1).

68 spkt welch density (x,
param)

This feature calculator estimates the cross
power spectral density of the time series
x at different frequencies.

69 standard deviation (x) Returns the standard deviation of x

70 sum of reoccurring data
points (x)

Returns the sum of all data points, that
are present in the time series more than
once.

continued on next page
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Module Comment

71 sum of reoccurring values
(x)

Returns the sum of all values, that are
present in the time series more than once.

72 sum values (x) Calculates the sum over the time series
values

73 symmetry looking (x,
param)

Boolean variable denoting if the distribu-
tion of x looks symmetric.

74 time reversal asymmetry
statistic (x, lag)

Returns the time reversal asymmetry
statistic.

75 value count (x, value) Count occurrences of value in time series
x.

76 variance (x) Returns the variance of x

77 variance larger than stan-
dard deviation (x)

Is variance higher than the standard de-
viation?

78 variation coefficient (x) Returns the variation coefficient (stan-
dard error / mean, give relative value of
variation around mean) of x.
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B Primary Features

This Appendix lists all the primary features extracted from the raw data
contained from the Abaco BusTool BMDX files. Further details on specific
features and flags can be found in the Abaco BusTools API documentation [9].

To save space, these 155 features are listened in two columns across a sin-
gle table the covers 3 pages. Additionally E/S refers to the DATA word
directly above. For example E/S.1 is the Interrupt (error) Enable/Status bits
for DATA02, as this is how Abaco BusTools records and labels the data.

RSP1 E/S.23

RSP2 DATA25

INTERMESSAGE GAP E/S.24

CMD1-addr DATA26

CMD1-TR E/S.25

CMD1-subaddr DATA27

CMD1-numword E/S.26

CMD2-addr DATA28

CMD2-TR E/S.27

CMD2-subaddr DATA29

CMD2-numword E/S.28

STS1-addr DATA30

STS1-Error E/S.29

STS1-Inst DATA31

STS1-SerReq E/S.30

STS1-Reserved DATA32

STS1-BCRecv E/S.31

STS1-Busy BT1553 INT NO IMSG GAP CMD 1

STS1-SubFlag BT1553 INT BIT COUNT CMD 1

column continued on next page column continued on next page
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STS1-DBAcc BT1553 INT WRONG BUS CMD 1

STS1-TerFlag BT1553 INT CHANNEL CMD 1

STS2-addr BT1553 INT BAD RTADDR CMD 1

STS2-Error BT1553 INT LATE RESP CMD 1

STS2-Inst BT1553 INT EARLY RESP CMD 1

STS2-SerReq BT1553 INT NON CONT DATA CMD 1

STS2-Reserved BT1553 INT PARITY CMD 1

STS2-BCRecv BT1553 INT TWO BUS CMD 1

STS2-Busy BT1553 INT MID BIT CMD 1

STS2-SubFlag BT1553 INT INVERTED SYNC CMD 1

STS2-DBAcc BT1553 INT LOW WORD CMD 1

STS2-TerFlag BT1553 INT INVALID WORD CMD 1

DATA01 BT1553 INT HIGH WORD CMD 1

E/S BT1553 INT NO IMSG GAP CMD 2

DATA02 BT1553 INT BIT COUNT CMD 2

E/S.1 BT1553 INT WRONG BUS CMD 2

DATA03 BT1553 INT CHANNEL CMD 2

E/S.2 BT1553 INT BAD RTADDR CMD 2

DATA04 BT1553 INT LATE RESP CMD 2

E/S.3 BT1553 INT EARLY RESP CMD 2

DATA05 BT1553 INT NON CONT DATA CMD 2

E/S.4 BT1553 INT PARITY CMD 2

DATA06 BT1553 INT TWO BUS CMD 2

E/S.5 BT1553 INT MID BIT CMD 2

DATA07 BT1553 INT INVERTED SYNC CMD 2

E/S.6 BT1553 INT LOW WORD CMD 2

DATA08 BT1553 INT INVALID WORD CMD 2

E/S.7 BT1553 INT HIGH WORD CMD 2

DATA09 BT1553 INT NO IMSG GAP STS 1

E/S.8 BT1553 INT BIT COUNT STS 1

DATA10 BT1553 INT WRONG BUS STS 1

E/S.9 BT1553 INT CHANNEL STS 1

DATA11 BT1553 INT BAD RTADDR STS 1

E/S.10 BT1553 INT LATE RESP STS 1

DATA12 BT1553 INT EARLY RESP STS 1

E/S.11 BT1553 INT NON CONT DATA STS 1

DATA13 BT1553 INT PARITY STS 1

column continued on next page column continued on next page
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E/S.12 BT1553 INT TWO BUS STS 1

DATA14 BT1553 INT MID BIT STS 1

E/S.13 BT1553 INT INVERTED SYNC STS 1

DATA15 BT1553 INT LOW WORD STS 1

E/S.14 BT1553 INT INVALID WORD STS 1

DATA16 BT1553 INT HIGH WORD STS 1

E/S.15 BT1553 INT NO IMSG GAP STS 2

DATA17 BT1553 INT BIT COUNT STS 2

E/S.16 BT1553 INT WRONG BUS STS 2

DATA18 BT1553 INT CHANNEL STS 2

E/S.17 BT1553 INT BAD RTADDR STS 2

DATA19 BT1553 INT LATE RESP STS 2

E/S.18 BT1553 INT EARLY RESP STS 2

DATA20 BT1553 INT NON CONT DATA STS 2

E/S.19 BT1553 INT PARITY STS 2

DATA21 BT1553 INT TWO BUS STS 2

E/S.20 BT1553 INT MID BIT STS 2

DATA22 BT1553 INT INVERTED SYNC STS 2

E/S.21 BT1553 INT LOW WORD STS 2

DATA23 BT1553 INT INVALID WORD STS 2

E/S.22 BT1553 INT HIGH WORD STS 2

DATA24
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C Feature Selection Scores
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Figure C.1: NetDisrupt statusword 250820 feature score

69



Figure C.2: Hijack rt18 sa6 w56 250820 feature score
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Figure C.3: RT-SA deny statusword rt18 sa1 250820 feature score
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Figure C.4: RT-SA deny statusword rt18 sa32 250820 feature score
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D General Model MAE Graphs
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Figure D.1: MSE for Net Disrupt statusword 250820
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Figure D.2: MSE for Hijack rt18 sa6 w56 250820
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Figure D.3: MSE for RT-SA deny statusword rt18 sa1 250820
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Figure D.4: MSE for RT-SA deny statusword rt18 sa1 rec2 250820
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Figure D.5: MSE for RT-SA deny statusword rt18 sa32 250820
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E Specific Model MAE Graphs
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Figure E.1: MSE for Net Disrupt statusword 250820
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Figure E.2: MSE for Hijack rt18 sa6 w56 250820
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Figure E.3: MSE for RT-SA deny statusword rt18 sa1 250820
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Figure E.4: MSE for RT-SA deny statusword rt18 sa1 rec2 250820
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Figure E.5: MSE for RT-SA deny statusword rt18 sa32 250820
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