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Abstract

In this work, we present the mathematical framework of the Kronecker product
(KP) dgebra and the optimal control theory. Using the advantage of such
mathematical properties we present the optimal control of polynomial systems. We
start by the algorithm of calculus of the optimal control law and we illustrate its
efficiency through the application to some nonlinear plants. Also, we develop a
new method called Lyapunov-function-based optimal control using KP presenting
the advantage of guaranteeing the stahility of the closed loop system by solving a
linear matrix inequality (LMI) feasibility problem. We present the algorithm of
calculus of such stabilizing control law and we illustrate its efficiency through
nonlinear plants. The experimental part of this work was conducted on a two-
degree-of -freedom (2-DOF) helicopter-based model set-up, in which we run many
experiments for different desired trajectories to test the efficiency of the proposed
method.



Résumeé

Dans ce travail, nous présentons la base mathématique de I'algébre du produit de
Kronecker et lathéorie de la commande optimale. En profitant de I'avantage de ses
propriétés mathématiques, nous présentons la commande optimale des systemes
polynomiaux en utilisant le produit Kronecker. Nous commencons par |'algorithme
de cdcul de la loi de commande et nous illustrons son efficacité a travers son
application a des dynamiques non linéaires. De plus, nous développons une
nouvelle méthode, appelée commande optimale basée la fonction de Lyapunov en
utilisant le produit Kronecker, qui présente |'avantage de garantir la stabilité du
systeme en résolvant un probléme de faisabilité d’inégalité matricielle linéaire.
Nous présentons |'algorithme de calcul de laloi de commande optimal e stabilisante
et nous illustrons son efficacité a travers son application a deux dynamiques non
linéaires. La partie expérimentale de ce travail est conduite sur un systéme
simplifié d’hélicoptére a deux degrés de liberté. Nous avons expérimenté et
observeé la réponse du systéme pour différentes trgjectoires pour tester |'efficacité
de la méthode proposée.
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1 Introduction

Every dynamic system can be described by a set of outputs which are functions of
a set of inputs. These functions are called the dynamics of the system (having the

general form of x=f(x,u), wheref is a nonlinear vector function). These

dynamics are in most cases complex, highly nonlinear and hard to solve. That's
why in the beginning of control engineering field, researchers approximate the
dynamics to alinear form and design linear controllers, among which some popular
techniques are ill used until today, for example the Proportional-Integral-
Derivative (PID) one. The linear control strategy has some limitations since it is
not taking into account the best approximation to represent the real dynamics of the
system, it has a reduced domain of attraction and it does not guarantee the stability
of the closed loop system in general. To overcome those issues, mathematicians
and control engineers developed various nonlinear control strategies. As a special
case, they developed the optimal control for a large class of nonlinear systems

(which can be written in the form of x= f (x)x+g(x)u, where f and g are

nonlinear functions). The aim of this optimal control strategy is to find the control
law based on the minimization of a certain performance index. Since most of the
nonlinear dynamics cannot be written in the above form, researchers use the
advantage of the KP agebra and the vector power tensor [1-2] to approximate

nonlinear dynamics by polynomials (in the form of x= Z f x‘") using the Taylor

i=1
series development. This method is called optimal control of polynomial systems
using KP [3]. Asit will be shown, this method has limitations too since it does not
guarantee the stability of the closed loop system. In fact, the choice of the cost
function approximation does not satisfy the conditions of the Lyapunov stability
[4]. This leads to the main contribution of this work which is to present a new
method called optimal control of polynomia systems using KP-based Lyapunov
functions (LF). This method is based in the fact of choosing the cost function to be
minimised in a quadratic form and depending on an extra rea scaar to satisfy the
conditions of Lyapunov stability and to guarantee the asymptotic stability of the
closed loop system.

To present the design process and illustrate the efficiency of this new method, a
general theoretical framework and practical application should be presented. This
thesis will be organised as follows: First, after introducing the thesis topic and its
main objectives. We will present in chapter 2 the state of the art of the main topics
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of this work, i.e., optimal control theory, nonlinear control, stability analysis of
polynomial systems, the KP algebra and its applications. In chapter 3, first we will
present the KP algebra. We will recall its basic definitions, proprieties and the
proof of new results (theorems and lemmas). Then, we will introduce the vector
power series (VPS) motivation to present the best approximation of nonlinear
functions, and we will illustrate through many examples. In chapter 4, we will
present the optimal control theory framework. We will begin by the presentation of
the optimization problem without constraints then with equality constraints, using
the Lagrange multipliers method. The optimal control problem will be transformed
into solving the so-called Hamilton Jacobi equation [5]. Then, we will show how
the resolution of this equation leads to determine the gain matrix of a popular
controller called Linear Quadratic Regulator (LQR). In chapter 5, we will study the
optimal control problem of a special class of nonlinear systems which can be
written in a polynomia form in terms of KP tensor. We will state the problem.
Then, we will present the equation of approximation and the algorithms to
determine the gain matrices of the optimal control law. At the end of this chapter,
we will illustrate the efficiency of this method through its application to different
nonlinear plants (scalar examples, F8 fighter and Maglev set-up models). We will
show the simulation results and performance improvements obtained by the KP
controllers versus the linear controllers. Since the KP-based controllers do not
guarantee the stability of the closed loop system, we have the idea to design a
stahilizing method by choosing the cost function to be minimized in a quadratic
form and depending on a rea scalar to satisfy the conditions of a Lyapunov
candidate function. This topic will be detailed in chapter 6. In fact, we will
introduce the statement of the problem then the equation of approximation in
which the initial problem is transformed into a set of decoupled linear equations.
Then, we will present the algorithm of calculus of the gain matrices of the state
feedback stabilizing control. Next, we will discuss the stability of the closed loop
system. We will show how the stability problem will be transformed into solving
an LMI problem. Finally, to illustrate the efficiency of this new method, we present
the simulation results of nonlinear plants. a scaar example and the F8 fighter
model. As the real behaviour may differ from the predicted one through the
simulations, we will present in chapter 7 an application to area plant: a 2-DOF
helicopter-model -based set-up from Quanser Inc. After the introduction, we will
begin this chapter by presenting a description of the set up, then we present its real
dynamics, the linearized and its high order polynomial approximations. Next based
on those approximations, we will present the control design which will be used to
run simulations and experiments for different desired trgjectories. Finaly, in
chapter 8, we will conclude this thesis and present its main contributions and
results.

Satement of contribution: Through this work, the main contributions are: the
development of a new method to design a stabilizing controller for the polynomial
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dynamic systems, caled Kronecker-product-Lyapunov-function-based technique,
the statement with proofs of some theorems and lemmas related to KP agebra
useful for the design process, and the implementation of the proposed technique to
an actua electro-mechanical set-up. To our best knowledge the KP-based
technique has been rarely tested for real-time control process.



State of the art

2.1 Introduction

The main framework of this thesisis related to three items. First, we deal with the
optimal control theory of nonlinear systems. In particular we treat the case of
polynomial systems since any nonlinear dynamics can be written in multivariable
power series form within a certain degree of approximation error. Then, we carry
out the advantage of the KP algebra to write the dynamics in a compact form and
make some appropriate mathematical manipulations to design a nonlinear
controller. As any research topic, we presented in this chapter the state of the art
related to those topics. In section 2.2, we will present an overview of the optimal
control history. Then, in section 2.3, we will introduce the framework of the
optimal control theory. In section 2.4, we will present the state of the art for the
nonlinear control and stability analysis of polynomial systems. In section 2.5, we
will present the Kronecker product algebra and its applications. Finally, in section
2.6, we will conclude this chapter.

2.2 Optimal control history

Sargent (2000) stated in one of the most exhaustive research papers on optimal
control that: "Optimal control theory is an outcome of the calculus of variations,
with a history stretching back over three hundred and sixty years, but interest in it
really mushroomed only with the advent of computer, launched by the spectacular
successes of optimal trgjectory prediction in aerospace applications in the early
1960s" [17].

According to Sargent (2000) in [17], the optimal control birth was in 1638, when
Galileo posted the two shape problems: the catenary and the brachistochrone. The
catenary system is a heavy chain suspended between two points, and the
brachistochrone system is a wire such that a bead diding along it under gravity.
But despite of his efforts and conjectures, the solutions of those two problems were
incorrect. In 1685, Newton presented a solution to the nose shape of a projectile
providing minimum drag problem and published the results in 1694. In 1696, five
mathematicians (Newton, Bernoulli, Leibnitz, De I'Hopital and Tschirnhaus)
solved the Brachistochrone problem and Bernoulli published the solution in 1697.
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This publication has risen the interest in the mathematics community to solve this
type of prablems. This interest has yielded a number of ideas and results for such
problems. In 1744, Euler, a student of Bernoulli collected those ideas in a book.
Based on the observation that "nothing at all takes place in the universe in which
some rules of maximum or minimum does not appear”, Euler formulated in 1744,

the problem in general terms as one of finding the curve x(t) over the interval
b
[a,b] with given values x(a), x(b), which minimizes J = [L(t,x(t),x(t))dt for

some given function L(t,x(t),x(t)). In 1755 and using his "undetermined

multipliers’, Lagrange described the first analytical approach based on
perturbations or "variations' of the optimal curve. This led to the "Euler-Lagrange
equation" which represents the first order necessary condition. In 1786, Legendre
studied the second variation and determined the second order necessary condition
of optimality for the scalar case. Clebsch extended later this condition to the vector
case which leads to the Legendre-Clebsch condition requiring the same matrix to
be nonnegative definite along the optimal trgectory. Later, Hamilton introduced
the "Hamiltonian function”, transformed the problem to a variational principle, and
he expressed the latter through a pair of partia differential equations. And, in 1838,
Jacobi showed that it could be written in a more compact form known as Hamilton-
Jacobi equation (HJE). Then, Weirestrass introduced the "excess function”, in

which he considered the specid case where L(t,x(t),%(t)) is positive

homogenous. L ater, Caratheodory showed that his excess function is positive if and
only if the second derivative of the Hamiltonian function is positive and by this he
confirmed the sufficiency of the Hamilton-Jacobi solution even under strong
variation. Based on Caratheodory work to establish the existence of optimal
tragjectories, Tonelli treated the problem of existence and he showed that this

existence is guaranteed if the function L(t,x(t),X(t)) is convex. Then, by the
restriction of the class of admissible functions X(-) satisfying the set of equations
g(t,x(t),x(t))=0 known as general set of differential algebraic equations and the
sufficient condition were imposed to ensure that there exists functions
x=f(t,x(t)) satisfying g(t,x(t),(t))=0. The resulting problem was named

problem of Lagrange, in which a solution presented by the introduction of
Lagrange multipliers, and by considering constraints of the form

x=f (t,x(t),u(t)), where the parameters u(t) or "controls' can be chosen at

each instant t € [a,b]. This yields the "optimal control problem" as follows: Find

u(-) on (ab) to minimize J :_TL(t,x(t),)‘((t))dt subject to x= f(t,x(t),u(t)),
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te(ab), x(a) and x(b) are given. In 1950, and based on the early work of

Hamilton and Jacobi in which they established the HJE, Bellman et al. developed
the Hamilton-Jacobi-Bellman (HJB) equation in the whole state space. The latter
represents a necessary and sufficient condition for an optimum solution [18]. Later
in 1956, Pontryagin presented through his "maximum principle’ a necessary
condition of optimality [19].

From this point and based on the two works of Bellman and Pontryagin introduced
above, many researchers and mathematicians have developed various techniques
and methods to solve and to study the stability of optimal control problems for both
the general and specific classes of nonlinear systems.

2.3 Optimal control theory

The optimal control deals with the problem of finding a control law for a given
system such that a certain optimality criterion is achieved. A control problem
includes a cost functional that is a function of state and control variables. An
optimal control is a set of differential equations describing the paths of the control
variables that minimize the cost functional. The optimal control can be derived
using Pontryagin's maximum principle or by solving the HIB equation [6]. Based
on those two principles, researchers have developed many control methods and
strategies of optimal control theory.

In 1966, Tchamran presented in [7] an algebraic method to solve the optimal
control problem for a specific class of nonlinear systems. Through a set of calculus
of variations he showed how the optimal control problem leads to solving
Bellman's functiona equations. Then, through two illustrative examples, he
showed how to solve this equation manually and give "the exact” solution of the
problem. Despite his effort, this method presents a limitation since it does not
guarantee the computation of the "exact" solution as well as the stability of the
closed loop system. Later in 1968, Kyong and Gyftopouls proposed in [8] another
direct algebraic method to solve the optimal control problem for another specific
class of nonlinear systems. They transform the nonlinear equation of the optimal
control problem into a set of agebraic equations through the benefit of the
expansions of the Kernels of the system. Despite its advantage to solve directly the
set of equations, this method does not guarantee always a solution, also the stability
of the closed loop system is not studied. In a more recent work published in 1993,
Goh presented a new approach to solve the nonlinear optima control problem
using a numerical approximation method based on the neural network algebra [5].
He transformed the problem into finding the optimal set of weights used to
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approximate the control law by using a nonlinear regression procedure. He also
showed that the asymptotical stability of the closed loop system is guaranteed
within a given domain of attraction by the appropriate choice of synaptic weight
parameters and a given weighting matrix. Finally, he illustrated his proposed
design through two nonlinear examples: the flight control system of an F8 fighter
model and a two-state system example. Two years later, in 1995, Dakev et al.
proposed in [9] a genera approach to solve optimal control problems using a
constrained optimization technique. This technique is based on the approximation
of the input control using a piece-wise approximation vector function. They
illustrated their proposed techniques through four examples: an academic example
with state constraints, two-link articulated manipulator optimal trajectory problem
and optimal following path problems and lifting re-entry space vehicle. Inspite of
the obvious numerical solution proposed to solve the optimal control problem, the
asymptotic stability of the system is not discussed on this work. Later, in 1996,
Rehbock et al. presented in [10] the design of suboptimal controller for a specific

class of nonlinear systems in the form of x=A(x)x+ B(x)u, where A(x) and

B(x) are state dependent. They aso showed that the closed loop system is

asymptotically stable under specific conditions. They illustrate their design through
two examples: an academic example with 2-DOF model and the F8 fighter flight
control system. In the second part of this work, the authors studied the optimal
control problem of the same class of nonlinear system, with the input control
subject to bounded noise. They showed that despite of the noise signal, the system
response is still bounded. To illustrate this result they presented the responses of
the same two studied systems, but with a bounded noise signa in the input. One
year later, in 1997, Langson and Alleyne presented in [11] an extended work for
the optimal control problem for a more general class of nonlinear systems in the

form of x= f (x)+g(x)u. They showed through appropriate transformations and

conditions on the weighting matrices of the functional cost. They illustrated their
proposed design using a 3-DOF example in which they showed the robustness of
the closed loop system via proper simulations. Then, they showed through an
experimental setup the implementation of their method despite of the numerical
issues due to the extensive calculus of the gain feedback matrix at each point along
the solution trgjectory. In 1999, Primbs et al. presented in [12] two approaches to
solve the optimal control problem. In the first one, called Control Lyapunov
Function (CLF), they showed that starting from the JBE and using Sontag's
formula lead to the design of an optimal controller. They showed through an
illustrative example the poor performance of such design and the fact it does not
guarantee the stability of the system. The second approach, called Receding
Horizon Control (RHC), is based on the decomposition of the time interval into

finite intervals [t,t+T], and the optimal control problem is solved for each of
thosetimeintervals. This resolution isrequired online (i.e., in real time) which may
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cause computational issues. They showed also the lack of efficiency of this method
through the same illustrative example since it shows poor performance and does
not guarantee the stability of the system. More recently in 2005, Ekman treated in
[13] asuboptimal control approach for bilinear systems. He presented a control law
based on an approximate solution of the HIB equation. This approximation is
based on the development of the partial derivative of Lyapunov equation with
respect to the state vector Xin terms of power series of X. He showed also that the
stahility of the closed loop system is not guaranteed and depends on the order of
truncation of the Taylor series expansion. As an illustrative example to show the
performance of the developed controller, the author presented the activated sludge
process and he run the simulation for two controllers: the proposed one (Taylor
series approximation) and the classic LQR. The simulation results showed a better
performance for the Taylor-series-based controller in terms of settling time and
overshoot. In 2008, Rafikov et al. presented in [14] alinear optimal control law for

aclass of nonlinear systemsin the form of %= A(t)x+ G(x)x+ Bu. They showed

that this controller guarantee the local asymptotical stability or the global
asymptotical stability for specific conditions. They illustrate their proposed method
through two examples: the Duffing oscillator for which they presented through
simulations the behaviour of the closed loop system and the automotive active
suspension system for which they showed the performance improvement in terms
of sprung and unsparing mass displacement. In 2009, Basin and Alvarez developed
in [15] a diding mode controller for a class of nonlinear systems in the form of

x=f (xt)+B(t)u(t), where the nonlinear function f(x,t) can be written in a

time-variant-polynomial form in the n variable state vector x. The developed
control law is obtained through the minimization of the quadratic Bolza-Meyer
function. They aso showed that the conventional polynomial quadratic regulator
fails to provide a feasible solution, whereas the sliding mode one give an optimal
solution. They illustrate the advantage of their design through the ssmulation of a
nonlinear plant and observe the behaviour of both controllers (siding mode and
polynomial quadratic regulator). The diding mode design shows an advantage in
terms of performance improvement. In 2010, Jajami et al. presented in [16] a new
method to solve the optimal control problem for a class of nonlinear systemsin the

form of x= Ax+Bu+ f(x). First, they transformed the optimal control problem

into a nonlinear two-point-boundary-value problem (TPBVP) via Pontryagin's
maximum principle. This problem is then transformed into a sequence of linear
time-invariant (LTI) TPBVP (LTITPBVP) by using the homotopy method. The
resolution of the LTITPBVP recursively leads to the optimal control law. Inspite of
the simplicity of the agorithm and the low computation load of the proposed
method, this technique has limitations in practice since it does not guarantee the
stahility of the system.
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2.4 Nonlinear control and stability analysis of polynomial
systems

The study of stability is a significant phase in the analysis and the synthesis of
dynamic systems. This explains the abundance of works and publications devoted
to this question since 1892, date on which Lyapunov made appear the first results
of the theory of motion stability [24]. The polynomial technique of studying the
stability of nonlinear systemsis one of the most important devel oped approaches. It
is based on the modeling of the considered nonlinear analytical system by a
polynomial system. Notice that the class of polynomial systems is large enough to
include the description of nonlinear systems and it can be simplified using the
Kproduct tensor and power of vectors and matrices [25].

In 1996, Braiek presented in [20] a sufficient condition to verify the global
asymptotical stability of nonlinear polynomial systems by checking the
positiveness, definiteness and symmetry of a given matrix depending on
transformation matrices, relating the redundant to the non-redundant power
vectors, and the coefficient matrices, in which the dynamics of the system is
determined as a polynomial form in terms of KP decomposition, then the systemis
globally asymptotically stable. Despite the usefulness of the proposed method was
useful to prove the globa stability of non-linear polynomial systems and the
synthesis of nonlinear controllers, this technique shows only sufficient conditions.
More recently, based on this framework and using the sufficient condition to check
the global asymptotic stability of nonlinear polynomial systems, Ayadi and Braiek
proposed in 2004 in [21] a stabilizing control law. The existence of a solution
comes from a result presented in [20] transforming the sufficient condition to an
LMI feasibility problem. The resolution of this LMI leads to the calculus of the
gain matrices. The authors illustrated their method with an example showing the
performance of such design in terms of stability. Then, in 2006, Bouzaouache and
Braiek treated in [22] the global exponential stability of a class of singularly
perturbed nonlinear systems composed of two subsystems (dow and fast
components). Firgt, they wrote the nonlinear terms in a polynomial form using the
KP. Using the advantage of the KP algebra to write one "unified" state which is
composed from slow and fast subsystem states. They made coordinate
transformations to re-write the system dynamics in terms of one global vector.
Then, they showed the GAS property based on an LMI problem statement. The
authors studied in 2007, in [23], the stability of more general nonlinear systems.
First, they assumed that any nonlinear system can be written in a polynomial form
in terms of KP and VPS state vectors. Then, based on this assumption and using
some KP properties, they transform the stability in the sense of Lyapunov problem
to an LMI feasibility problem. They showed that any polynomia system in the
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form of >‘<=2Fix“‘ is stable if it exists a feasible solution to the LMI problem
i=1

P=P'>0 and t"(PM+M'P)t <0, where t and M are two appropriate

matrices calculated from the dynamics of the system. In 2007, Bouzaouache et al.
studied in [24] the stability of a class of hybrid nonlinear systems in which the
dynamics is written in terms of two-state vectors: continuous and discrete ones.
First, they proposed to write the hybrid system dynamics in the form of KP-based
finite vector power seriesin terms of the continuous state vector, then thanks to the
KP algebra they transformed the problem of stability in the sense of Lyapunov to
an LMI feasibility problem. Two years later, in 2009, Mtar studied in [25] the
global stability analysis in the sense of Lyapunov of the polynomia systems which
can be written in terms of KP state vector power series with an odd order of
truncation. First, they made some the KP calculations to transform the stability in
the sense of Lyapunov problem to a bilinear matrix inequality (BMI) feasibility
problem. Then, using the separation Lemma, the generalized SCHUR's
complement and some algebraic manipulations they transform the BMI problem
into an LMI feasibility one. The latter presents an advantage since it has additional
degrees of freedom in terms of decision variables. In the same year, Belhouane et
al. studied in [26] the stability of a specific class of polynomial systems written in

theform x= Z Fix“‘ +Gu, where G isaconstant matrix and r is an odd order of
i=1

truncation. This study leads to the design of a honlinear control law that guarantee

the global asymptotica stability of the system if the correspondent LMI holds.

First, they write the nonlinear control law in a polynomial form in terms of the

state vector, i.e. u =2Ki X!, which alows through proper KP agebra
i=1
mani pulations the transformation of the stability in the sense of Lyapunov problem
to a BMI problem. Then, by using the separation Lemma and the SCHUR's
complement, they transform the BMI to an LM feasibility problem. The resolution
of the latter leads to the calculus of the gain matrices and hence the stabilizing
polynomial control law. Findly, they illustrate the efficiency of their proposed
design through an illustrative example. In 2009, Jemai et al. proposed in [27] anew
method to determine the feedback nonlinear control law for the infinite horizon of
the class of polynomial systems written in the form x=> Fx'+Gu, with G a
i1
constant matrix. This method is based on the coordinate transformation of the state
and control vectors to re-write the original system in a linear form. Then, by
choosing the poles of the latter, they determine the polynomia control law of the
original system. Despite the advantage of easy implementation of the proposed
method, it is missing the theoretical framework that shows the existence of the
transformation and there is no stability study of the proposed control law. The

10
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same method of design of the same class of polynomial system was presented in
2010 by Derbali et al. in [28]. This design method was called fault tolerant control
design. To illustrate the effectiveness of their proposed design, they applied this
method to a series DC motor. The simulations showed a good performance of the
controller and the stability of the system.

2.5 KP algebraand itsapplications

The Kronecker product was named after German mathematician Leopold
Kronecker (1823-1891). It is very important in the areas of linear algebra and
signal processing and it has wide applications in systems theory, matrix calculus,
matrix equations, system identification, and other special fields[29].

In 1978, Brewer presented in [1] an excellent review and new algebraic proprieties
of the Kproduct tensor. First, he reviewed the basic definitions of the KP, the unit
vectors, the elementary matrix, the permutation matrix and the vector operator,

denoted by vec(-), as well as some algebraic proprieties of the permutation

matrices and basic algebraic proprieties in terms of associability, commutability
and transpose of the KP and the Kronecker sum. Then, he presented the basic

algebraic proprieties of the vec(-)operator also in terms of associability and

commutability and transpose. In the second part of the paper, he presented the
basic differentiability proprieties of the KP and its relation to the permutation

matrices and vec(-) operator. These properties will be very useful on the

differentiation of the Lyapunov candidate function for the stability study of the
polynomial systems. In 2000 Van-Loan treated in [30] some applications of the KP
to solve some mathematical problems. First, he presented some basic proprieties
that were used to solve the Sylvester equation problem and the Lyapunov problem
which is a particular case of the latter. Then, he showed that there is a solution of
the least squares problem by making the appropriate decomposition and using the
advantage of KP to apply the necessary algebraic transformations. Another
application of the KP algebra is to solve the tensor product issues in
approximations and interpolations. Also, he showed that using some KP proprieties
leads to the design of fast transformation algorithms. In 2004, Laub treated in a
chapter of his book [31], the KP algebra and some of its applications in matrix
calculus. First, he presented some definitions, then he presented many useful
proprieties, and as an illustrative application in matrix calculus, he presented how
to use the KP properties to solve the Sylvester and Lyapunov equations which are
widely used to solve control theory problems. In 2007, Liv and Trenkler presented
in [32] a genera theoretical overview of several matrix products such as
Hadamard, Kronecker, Khatri-Rao, Tracy-Singh, the Khatri-Rao sum, the Tracy-

11
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Singh sum and the vector cross, some of their proprieties and some relations
between two or more matrix products as well as some of their applications. First,
they presented the definition of the above cited matrix products and sums. Then,
they presented the relations between the different products; in particular, between
the Hadamard and Kronecker products, the Kathri-Rao and Tracy-Singh products,
the Tracy-Singh and Kronecker products and the Kronecker and vector cross
products. They presented some equality properties involving three or more
matrices and one or more types of product. Then, they presented some inequality
proprieties of the Hadamard product, KP, Khatri-Rao product, Tracy-Singh
product, vector cross product and K hatri-Rao sum involving one or more matrices.
Finally, they presented the application of the Khatri-Rao product to study variances
in statistics and econometrics, the multi-way models and algorithms in multivariate
statistics, psychometrics, engineering, food, and chemical sciences, and to design
more reliable transmission antenna in signal processing. Then, they showed the use
of Kronecker and Hadamard products to solve linear matrix equations and
particularly the generalized Lyapunov equation which is very useful in control
theory. Kaam and Nagy proposed in [33] a method caled singular value
decomposition (SVD) as a less expensive calculation method in image restoration.
They use some KP proprieties to transform the main problem which is expensivein
matrix calculus to another problem less laborious. They illustrate the advantage of
their proposed method via an example of image restoration of satellite images.

2.6 Conclusion

The main objective of this chapter was to present the state of the art for the three
main topics treated in this thesis, the optimal control theory, the nonlinear control
of polynomia systems and the KP agebra. In section 2.1, we introduced this
chapter. Then, in section 2.2, we presented the optimal control history and its roots.
In section 2.3, we presented the optimal control framework state of the art. In
section 2.4, we presented a literature review of the nonlinear control and stability
analysis of polynomial systems. The KP algebra history and its applications was
presented in section 2.5. Finally in section 2.6, we conclude this chapter.

The present chapter provides a historical background of the state of the art of the
optimal control theory and the application of the KP algebra to nonlinear control
techniques. Nonetheless, the application of this tensor to optimal control was very
limited and rarely implemented with actual devices. Also the study of the stability
of the closed loop optimal control system within such methodology was missing. In
fact the main contribution of the modified KP-based framework that will be
discussed in this thesis will be the possible investigation of stability. Note the latter

12
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won’t be discussed in details in this thesis, but the presented framework will make
it possible. More details about this subject are presented in [57].

13
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3.1 Introduction

When we multiply two matrices together, we generdly use the conventiona
multiplication method. This type of matrix multiplication is commonly used in
algebra and represents the composition of two linear transformations that are
represented by the two matrices [34]. There is a size restriction when performing
this type of matrix multiplication. The number of columns of the first matrix must
be the same as the number of rows in the second matrix from the left. Also, this
multiplication is not commutative in general. While this common type of matrix
multiplication remains very useful, it is not unique.

The Hadamard product, denoted by the symbol o, is another type of matrix
multiplication [34]. In this case, the two matrices are multiplied in the same way as
with the conventional matrix addition. For this multiplication, the two matrices are
required to be of the same size. The resulting matrix product is formed by
multiplying the corresponding entries of the two matrices together. One useful fact
about this type of matrix multiplication is that it is commutative. This product is
useful in severa areas of study, such us the association schemes in combinatorial
theory and weak minimum principlein partia differential equations.

The KP, denoted by the symbol ®, also known as the direct product or the tensor
product has an interesting advantage over the previoudy discussed matrix products.
The dimensions of the two matrices being multiplied together do not need to have
any relation to each other [34]. Many important proprieties of this product will be
presented in this chapter and used in the next chapters. This kind of product is used
in several areas of study such us signal and image processing, semi definite
programming and quantum computing [34].

This chapter deals with the KP framework, we start by presenting its definition in
section 3.2. In section 3.3, we list some proprieties of the KP as depicted from the
literature [1-35]. In addition, some new proprieties will be proposed with their
proofs [35]. Finally, section 3.4 is devoted to the motivation of the work that we
are doing which is essentially based on the function approximation, in order to
assess the reader with the point of view of thiswork.

14
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3.2 Definitions
In this section, we introduce the KP with some further related notations.

Definition 3.1: Given two matrices A and B of dimensions (pxq) and (mxn)

respectively, the Kronecker Product of A and B denoted by A®B is a
( pmx gn)-matrix defined by [1]:

allB alZB a:LqB
B - :
A®B= ail L 3.1

a,B a,B - a.B

where a, isthe i —k element of A.

Definition 3.2: The elementary matrix E{” of dimensions (pxq), which is "1"

in the ik™ -element, and is zero elsewhere that is[1]:
EVY —qe =" (3.2)

where € isthe p-dimensional column vector whichis "1" inthe k element and
zero elsewhere and is called the unit vector.

Definition 3.3: The permutation matrix is a square ( pgx pq) -matrix which has
precisely asingle "1" in each row and each column, defined by [1]:

p
U = Zz Ei(kpm ® Et(dqxp) (3.3

9
i=1 k=1

Definition 3.4: The vec(.) operator corresponds to the vector valued is the
operator which converts a ( px q)-matrix A:[A1|A2| |A[J into a vector of
dimensions ( pgx1), defined by [1]:

15
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A2
' (3.4)

where A isthe k™ column of the matrix A.

Definition 3.5: Given a vector V of dimension p=nm and a matrix M of
dimensions (nxm) verifying V =vec(M ), the mat(.) operator is the function
transforming the vector V into the matrix M and denoted by:

M =mat, (V) (35)

This notation is proposed to simplify the representation of some block matrices that
will be deduced from the new optimal control design discussed in chapter 6.

Definition 3.6: Rotellaand Tunguy [3] introduce the so called the non-redundant
| -power % of avector x=[x1 xq]T of R** defined by

(3.6)

T 0 S S S SN LV R (Y )

The relation between the non-redundant | -power of the vector % and | -power

of the vector X'is defined by

il _ 1 il
X' =TX (3.8
where Tj is atransformation matrix. Hence, we can write
il T+l
X _TJ. X (3.9

where 'I'J-+ is the Moore-Penrose Pseudo-Inverse of Tj defined by [3]
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T = (TJTTi )_lTJT (3.10)

J
Definition 3.7: Rotella and Tunguy (1988) define the binomial coefficients a , as

. nixa. n+j-1
VieN, 3T, eR" ™, a;= 0 [3].

J

3.3 Properties
In this section, we present the main properties that will be used in the next
chapters. Some of these proprieties are presented in [1-2] (refer to Theorems 3.1 to

3.16), while the proofs for Theorems 3.17 and 3.18 and Lemmas 3.1, 3.2 and 3.3
will be shown. Consider the following matrices of appropriate dimensions. A

(pxq), B(sxt), C(rxl), D(agxs), F(gxu), G(txu), H (pxq), M
(mxm), N (nxn), R(sxt). | is the identity matrix, U, is the permutation
matrix and x and y are given vectors of dimensions p and q, respectively. We
recall the following theorems mainly discussed in [1-3]:

Theorem 3.1: We have[1]

(A®B)®C=A®(B®C) (3.11)
Theorem 3.2: We have [1]

(A®B) =A" ®B' (312
Theorem 3.3: We have[1]

(A®B)(D®G)=(AD)®(BG) (3.13)
Theorem 3.4: We have [1]

B®A=U, (A®B)U (3.14)

gxt
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Theorem 3.5: We have [1]

vec( A" )=U  vec(A) (3.15)
Theorem 3.6: We have [1]

vec( A+ H ) =vec(A)+vec(H) (3.16)
Theorem 3.7: We have [1]

vec(AD) =(I,® A)vec(D)=(D" ®1, )vec(A)=(D" ® A)vec(l,,) (3.17)
Theorem 3.8: We have [1]

vec(ADB) = (B" ® A)vec(D) (3.18)

Theorem 3.9: We have [1]

(3.19)

A oA
oB) 0B

Theorem 3.10: We have [1]

O(AF) oA oF
= — gl ®F) (@A) (3.20)

Theorem 3.11: We have [1]

O(A®C) oA oC
T=6—8®C+(IS®prr)[a—B®Aj(lt®U|Xq) (3.21)

Theorem 3.12: We have [1]

xTAyz[vecT (AT)](X® y)=|vec' (A)](y®x) (3.22)
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Theorem 3.13: We have [1]

%T -1, (3.23)
Theorem 3.14: We have [1]
U ;Xq =U ;iq =U,, (3.29)
Theorem 3.15: We have [1]

pa=Upp =1, (3.25)
Theorem 3.16: We have [1]
Usan =Usin "Utins Vs Ui (3.26)
Theorem 3.17: We have [1]
Xl ¥ = i+l (3.27)

Theorem 3.18: For any integer n>1 and for any nonzero integer p, we have

U, =ur (3.28)

nPxn nxnP

Proof of Theorem 3.18: See Appendix A — section A-1

Theorem 3.19: For al integers n>1, (1 ., +U_, ) is regular for p even and

singular for p odd. Notethat for n=1, (Inpﬁ +Un,,xn) isanonzero integer.

Proof of Theorem 3.19: Theorem 3.19 is stated in [3] without proof, but this
propriety can be checked numerically. In Appendix A — section A-2, we prove this
result.

Lemma3.l: VjeN\{0} and ¥xeR",

i |
ZLTZ D (1,@x%) (3.29)
X
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(n) nl. .
where D;” e R" isgiven by

j-1

DIV =>U_  ®I . (3.30)
i=0

Note that

D =1, (3.31)

Proof of Lemma 3.1: See Appendix A — section A-3

Lemma 3.2: Fordl xeR", yeR' and Ac R™ xR', we have
(1 ®x")Ay=(1,®vec’ (A))(vec(1,) @1, )(x®y) (3.32)

Proof of Lemma 3.2: See Appendix A — section A-4

Lemma 3.3: Consider a matrix Ac RPxR™. Let [A -+ A] be a partition of
A with A e R xR". We have

(1, ®vec” (A))(vec(l,)®1,,)=maty,.,(vec(A)) (3.33)

paxn
Proof of Lemma 3.3: See Appendix A — section A-5.

In this section, we have introduced the main notations and proprieties related to the
Kronecker matrix product and vector power tensor. In particular, new results have
been proposed with their proofs attached in Appendix A..

3.4 Vector power seriesmotivation and multivariable
Taylor expansion

Since certain functions are hard to implement in practice, the art of approximation
becomes a mathematical solution to overcome this problem. One of the techniques
is the polynomial approximation based on Taylor series development. These series
allow the representation of a function as an infinite sum of terms that are calcul ated
from the values of the function and its derivatives about a given point [36].
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In the following, we introduce the Taylor series of any multivariable function.
Then, we investigate the representation of particular mono-variable and two-
variable functions. Their performances motivate the use of these series in terms of
approximation.

Let x=(x, -~ X,)" be avector of dimension n, and f(x) a function of the
vector x. The Taylor series development of f(x) about the point
a=(a - a)" isdefined by [36]

f(X)=ZZ"'Zﬁ_<Xj ;J_a!lj)J aai_kjf

k>0k>0 k>0 j=1

(a) (3.34)

The Taylor series representation is often used to approximate a function by afinite
number of terms so called Taylor polynomial. In vector caculus, consider f a

function from R" to R™, i.e, given by m rea-vaued component functions
f,;j=1-min x=(xl,---,xn)T . A particular case of the Taylor development of
the multi-variable vector function f(x), truncated at order 1 about a, represents
simply itslinearization about a and is given by

f(x)=f(a)+Df (a)(x-a) (3.35)

where Df (a) the Jacobian matrix of f , evaluated at x=a, obtained by the
computation of the potential derivatives of all componentsof f at a, asfollows

Df(a):(sf—Xl(a)--- %(a)] (3.36)
@ - @
= : (3.37)
of, of
a(a) a(a)

A particular case of any multivariable function f(x)eRis the Taylor series
expansion of the second order that can be written as
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f(x)~ f(a)+Df (a)-(x—a)jL%(x—a)T D*f (a)(x-a) (3.39)

where Df (a) is the gradient of the real valued function f evaluated at x=a,
given by

of

o

Df(a):( (@) (a)J (3.39)

and, D*f (a) isthe Hessian Matrix of f evaluated at x=a, given by

[ 521 o°f o°f ]
o’ f o2 f o2 f
D?f (a)= axzaxl(a) X () - axzaxn(a) (3.40)
% f 2 f o f
(@) o) (a)
| OX,0% 0X,0% X, ]

In order to illustrate this approximation, we consider in Appendix B examples of
scalar, two variable functions and aso dynamics. We present for each example the
mathematical approximation about the origin for different orders of truncations.
And then, we compare the plots of the original function with the approximated
ones in order to show the performances in terms of curve fitting and domain of
attraction.

3.5 Conclusion

In this chapter, we presented the KP and VPS agebra We begin with an
introduction in section 3.1. Then, in section 3.2, we presented some definitions
related to the KP agebra. In section 3.3, we introduced some KP proprieties using
given and new theorems and lemmas. The proofs of these new results are presented
in Appendix A. The VPS formulation is presented in section 3.4 using
multivariable Taylor expansion. Then, we conclude this chapter. The motivation
for such representation of nonlinearities is detailed in Appendix B using examples
of algebraic functions and dynamic systems.
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4 Optimal control theory

4.1 Introduction

Optimization is the act of obtaining the best result under given circumstances. In
design, construction and maintenance of any engineering system, engineers have to
take many technological and managerial decisions at several stages. The ultimate
goal of al such decisions is either to minimize the effort required or to maximize
the desired benefit. Since the effort required or the benefit desired in any practical
situation can be expressed as a function of certain decision variables, the
optimization can be defined as the process of finding the condition giving the
maximum or minimum value of a certain function [38].

The applications of optimization in engineering are various and wide. In the
following, we depict some of these applications [38] that are still recorded:

Design of aircraft and aerospace structure for minimum weight;

Finding the optimal trajectories of space vehicles;

Optimum design of linkages, cams, gears, machine tools and other
mechanical components;

Optimal production planning, controlling and scheduling;

Optimum design of control system.

Optimization problems can be classified in several ways based on

The existence of constraints;

The nature of the design variables;
The physical structure of the problem;
The nature of the equations involved.

In this chapter, we will be limited to the study of the optimization problems based
on the existence or no of the constraint variables. In section 4.2, we consider the
problem of optimization with no congraints. In Section 4.3, we anayze the
optimization problem with equality constraints based on the method of Lagrange
multipliers. And finally, in Section 4.4, we present the optimal control problem in
general, then the case of the infinite horizon and the linear quadratic regulator
(LQR) problems.
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4.2 Freeconstraint optimization

In this section, we state different mathematical programming problems of
unconstrained optimization.

4.2.1 Multivariable function optimization without constraint
The unconstrained optimization problem can be defined as

Find

<X

(4.1)

x
1
—_—— — ——— —

<
gl o e

which minimizes f (x), where x1 R" is called the decision vector and f (x) isa

rea valued function called the objective function. Without loss of generality, this
optimization refers to a minimization since the maximum of a function can be
found by inverting the minimum of the negative of the same function [38]. Such a
minimization problem needs necessary and sufficient conditions to be fulfilled.
These conditions will be discussed in the following section.

4.2.2 Functional minimization without constraint

To solve the problem of unconstrained minimization, we consider the necessary
and sufficient conditions for the minimum or maximum of multi-variable function

f (x) given by following theorems[38].

Theorem 4.1 (Necessary Condition): If f(x) has a maximum or minimum at

x=X ,andif it exist, then

ﬂ)ﬂ x=X"
M —o, i=1.n (4.2)
x|
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(4.2) isequivalent to

o\ _oEff . T/ +\O
Df(x)zgﬂ(x) ﬂ(x)g (4.3

where Df (x* )T isthe gradient of thereal valued function f (X)

Theorem 4.2 (Sufficient Condition): Given X an extreme point (minimum or
maximum), we denote by D?f (x) the Hessian of the real valued function f (X).

The Hessian matrix correspond to the second partial derivative of f (x).

e[ f T f T7°f 9
E0C W T,
C q2f 12 f 7 7

D’f(X)=¢Me B¢ Tl - (44)
¢ : .
AT
ET T XM, ™ 4.,

If D*f (x*)ispositivedefinite, then X isareative minimum. And, if D*f (x*)is
negative definite then X isarelative maximum.

The proofs of these two theorems are commonly reported in the literature (see for
example [39]).

4.2.3 Calculusof variations-problem statement and solution

The calculus of variations is the problem dealing with the determination of extrema
(maxima and minima) of a functional, where the functiona can be defined as a
function of several other functions. In particular, the calculus of variations can be
used to solve trgjectory optimization problems [38]. A well-known problem of the
calculus of variations with no constraints is the mathematical programming
optimization of an integral amount given by [38].
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Find afunction u(x) that minimizes the functional (integral)

3= OES ()du(x):dx (45)

where J and F are considered functionals and X is an independent variable in
the interval [X1X2]

In the following, we denote by u —3—( ) the first derivative of U with respect to
X

X. Let u(x)=u, and u(x,)=u, be the boundary conditions of the problem

(4.8). The calculus of variations is the mathematical procedure used to select the
correct solution from a number of tentative solutions [52-53]. Any tentative

solution T(x) in the neighbourhood of the exact solution u(x) may be
represented

u(x)=u(x)+du(x) (4.6)

where variation du (x) isaninfinitesimal. It's considered as an arbitrary change in

ufor afixed value of the variable x (i.e., for dx=0). Note that the operation of
variation is commutative with respect to both the integration and the
differentiation, that is,

d ( gFdx) = ¢fd F )ax 4.7)
and
?;i Z_ %(d u) (4.8)

We define the variation of the function F (x,u,u') introduced in (4.8) asfollows

dF—de+11TT—qu+:TT—qu (4.9

1

For afixed value of the variable X, (4.12) isreduced to
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dF = Edu +Edu (4.20)

u fu

Then, using (4.10), the variation of the functional J, given by (4.8) is obtained. If
we consider the condition of the stationariness of J = we write the necessary

condition, dJ =0, as the vanishing of first derivative of J (similarly to the
maximization or minimization of simple functionsin ordinary calculus).

X

N “odF F ., 0
dJ= OdeX_Oé_d u+—du _dx (4.11)
X Xy ﬂu ﬂu

By integrating the second and third terms by parts, we obtain

X

IR “IF | adu Oy = IF T fIF

Oﬂ_d k= Oﬂ_dg‘ﬂx;a _Oﬂ_‘ﬂx CIX__ud

Substitute (4.12) in (4.11)

_deaQTF

_dudX 4.12
- Ok (4.12)

X

“&F d &dF &

éfF u
dJ= % T Eu“d udx - uH (4.13)

with du'(x)=0, du(x,)=0. Since du is arbitrary, each term of (4.13) must
vanish individualy, i.e.,

EF d aeﬂF oV

414
and
éfF ¢ Uy
—O 4.15
S H (419

According to the fundamental lemma of calculus of variations [53], the part of
integrand in bracketsis zero, i.e.,

I daEko_y, (4.16)
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Equation (4.16) caled Euler-Lagrange equation is the governing differentia
equation for the given problem. From (4.15), we obtain the boundary conditions.

eTF q

allallY R (4.17)
&fu'tl,

and

&TF q _

L ! (4.18)
&'t

(417) and (4.18) are caled natural boundary condition or free boundary
conditions. If these natural boundary conditions are not satisfied, we should have

du(x)=0, du(x,)=0, du(x)=0and du(x,)=0 (4.19)

in order to satisfy equations (4.15). (4.19) are called geometric or forced boundary
conditions. The Euler Lagrange equation (4.16) is a necessary, but not sufficient
condition for the minimization problem (4.5).

4.3 Optimization with equality constraints

In this section, we discuss different techniques of constrained optimization
problems. We will be limited to the case of equality constraints.

4.3.1 Multivariable function optimization with constraint

Given multivariable function f and g.,j =12,..., p, the optimization problem
with equality constraints can be defined as [38]

iX 0

[}
Find X =7,y which minimizes f (X) (4.20)

A
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Subject to
g;(X)=0 ,j=12-,n (4.21)

In the literature, we find different methods that are developed to solve this
problem. We depict the direct substitution, the constraint variation and the
Lagrange multipliers.

4.3.2 Solving the minimization with equality constraints

The first method to solve the prablem of function minimization which is the direct
subgtitution is very intuitive. It consists in solving simultaneously the n equality
constraints. Then, we express any set of m variables in terms of the remaining
Nn- m variables. These expressions are substituted into the original objective
function which results in a new objective in only n- m variables with no
constraints. Then, the optimum can be found by using the techniques of the
unconstrained optimization discussed above. This method is a smple (theoretical)
method but not convenient in practice, because the constraint equations are often
nonlinear and hard to solve [38].

The second method, the constraint variation, consistsin setting the total differential
of the objective function equal to zero and then developing the Taylor expression
of the constraint function about the minimum point and deducing the variation in

dx,,...,dx, . Then, substituting these variations in the main equation leads to the
necessary condition for the constrained optimization [38].

The third method of Lagrange multipliers will be the subject of the next subsection.

4.3.3 Method of Lagrange multipliers

This method will be the first introduced in a simple case of a two variable
minimization problem subject to one equality constraint (i.e, n=2 and m=1).
Then, we present the problem of a functional minimization in the case of one
dependent variable. Finally, we state the general form of a functional minimization
using the Lagrange multiplier formulation. This technique will be the key element
of the optimal control theory that will be discussed latter in the next section.
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4.3.3.1 Case of two variables and one equality constraint

We consider the particular case of an objective function of two variables f with
one equality constraint g . Hence, the problem formulation of this caseisto

Minimize f(x,x,) suchthat

9(x.%)=0 (4.22)

Using Theorem 4.1, introduced in section 4.2, we note the necessary condition for
the existence of the minimum at (xl : xz) is

_ T it

df =—dx +—dx, =0 4.23
% X ™ X, (4.23)

From the constraint

g(x.%)=0 (4.24)

we write the new constraint
g(xi +dx1,x;+dx2):0 (4.25)

The variations dx, and dx, verifying (4.25) about the point (xlxz) are called
admissible variations [38]. The constraint (4.25) is now rewritten using Taylor's
series expansion of g about (xlxz)

o T . /. .
g(><1.xz)+ﬂ(x1,x2)dxl+ﬂ—xz(xl,xz)dx2=0 (4.26)

Since g(xlxz) =0, weobtain at (xlxz)

_To 9 4 =
dg=—dx +—dx, =0 4.27
9 ™ %, x, (4.27)
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By assuming that 1111—9 10,a (x1 : xz) , (4.27) can be re-written as
X

dx, = KV (4.28)
X,
We substitute (4.28) in (4.23)
aeﬂf " )l ﬂf
¢ —Xl— 0 4.29
‘?11><1 Tg / ﬂxz T 2
at (xl : xz) , for al admissible variations dx, chosen arbitrary, that is
aif
LA T R (4.30)

xlﬂ/ﬂxl

at (xlxz) (4.30) represents the necessary condition for the existence of the

minimum at ( X, XZ) used in the method of constrained variations [38]. We denote
by |

"5

_ /%

=% (4.31)
eliz.x)

the Lagrange multiplier [38]. By substituting (4.31) in (4.30) and also rewriting
(4.31), we obtain [38]

aeﬂ_f+| ﬂgj =0 (4.32)
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and
?T_f ol '”_gj -0 (4.33)

Note that (4.28), (4.32) and (4.33) represent the necessary conditions for X to be
an extreme point of the problem (4.23). These conditions are treated by defining
the Lagrange function L as[38]

L (%21 )= (%) +1 g(%.%,) (4.34)

In fact, the derivatives of the Lagrange function with respect to the variables X,
X, and | , respectively, at the extreme point (xlxz) lead to (4.28), (4.32) and
(4.33). The sufficient condition for (4.23) to have aminimum at (xl , xz) isthat the
quadratic amount Q, defined by

_TPL 7°L T°L

——dx?+2 dx.dx, + — dx? 4.35
Qﬂxlle ﬂxlﬂxlezﬂxzzxz (4.35)

evaluated at (x1 : XZ) , is positive definite for al values of the admissible variations
dx, and dx, (seetheorem 2.6 of [38]. According to [38], if Q is positive definite
for al dx, and dx,, then al theroots of the following equation are positive

L11 -Z L12 g,
Ly, Lyp-z g,/=0 (4.36)
9 9, O
where
T°L 7L T°L
L11:_ J L12 = I-21: J T au2 (4.37)
Pl PPl Pl
and
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_T9
% =4

0,=79

(4.38)
i) T

(i)
Note that (4.36) is affine equationin z.

4.3.3.2 Case of functional minimization — Example of one dependant variable

In the case of minimization of an integral functional, the problem will be
formulated as follows [38]:

Find u(x) which minimizes

J= OE ge %de (4.39)

Subject to the constraint

%0, U0 (4.40)
8 dx g '

Where G may be an integral function too.
4.3.3.3 Case of functional minimization — General form

The general problem of minimization of integral functional can be formulated as
follows[38]:

Find the set of n functions u,(x,y,2),u,(x y,2),---,u,(xy,2) in the dependent
variables X, Y, Z which make the functional

X2 Yo 3
<= Tu u Yu Mu. Tu ‘I]u o}

J= Xy Yy ZyUp ey Uy — 2 n _dxdydz (4.41
ooocgy A Uy e g 0 (4.41)

XNz

stationary, subject tom constraints

Gj g')‘(,y,z,ul’ un,ﬂi ﬂi & & M MO

ey —L /0 L =0 (4.42)
X %y Ty Tz 1z
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for j=1,...,m. The Lagrange multiplier method consists of minimizing the
functional [38]

X Y2 2

L=00OF +!.G +...+1 G, ) dxdydz (4.43)
Yz
where |, ,i=1,...,m, are the Lagrange multipliers and functions of x,y and z.

This genera formulation of the minimization of an integral functional using the
Lagrange multipliers represents the key element of the optimal control theory. The
latter will be the subject of the next section.

4.4 Optimal control theory

4.4.1 General problem

Given a vector x=(x,-,%) T R", the optimal control problem can be
formulated as follows [40-41]:

Find the vector u=(u,,---,u,)’ T R™, which minimizes the functional, called
performance index

.
J =g g(xu,t)d (4.44)

subject to the constraint

x=f(x,u,t) (4.45)

with the boundary conditionx(0) =x,. u designates the input vector, x the state
vector and t thetime. The necessary condition for the general problemis

f.(xut)- % =0 (4.46)
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We introduce a Lagrange multiplier |, , also known as the adjoint variable, for the
+th

i constraint equation. Based on Lagrange multiplier method, the augmented
functiona is given by [41]

T n N
L=gga+al, (- %)t (4.47)
0€ i=1 u

In the following, we use the Hamiltonian function H | defined from (4.47)

H(xu,l ,t)=g+én I fo=fo(xut)+1 7 f (xu,t) (4.48)

i=1

with | =(1,,---,I,)". From (4.48), (4.47) becomes

T n " T

L:@-élixgdtde-lTx)dt (4.49)
0 i=1 (%] 0

The integrant

F:H-ITX:H-énlixi (4.50)

i=1

depends on X,u and t [38]. Hence using (4.50), the Euler Lagrange equations
corresponding to the functional L of (4.82) become

IF E&EE 8 = @ Eg#ﬁ:o ‘i=1---,n (4.51)
ix dtgTx g fx dt¢ % N
& 2

and

Iy 0 & g 00
. TOH- A1 xS CToH- Al %22

IF gaqig: 8 i1 2 gg 8 =1 Q’f:o j=1--,m (452
flu, dtgy, p flu, dt¢ flu, N
& p
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Or equivalently,

X dt&Tx g

(4.53)

(4.54)

Sincemzo, 'IT_)g: , ﬁ=0 and %=0,weobtain[42]

™ %

Or equivalently,

Ix

and

E:O

flu

(4.55)

(4.56)

(4.57)

(4.58)

The optimum solution for x, u and | can be obtained by solving (4.45), (4.57)
and (4.58) in the unknown nx's, nl,'s, i=1..,n, and nu;'s, j=1...,m,
unknowns. These equations are called the canonical Hamilton equations [42]. The

solution of these equations will contain 2n constants of integration. To determine
these constants we need n equations of theinitial conditions

X (t,) =%

(4.59)
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and also additional n, or n+1, conditions depending on whether or not T is
specified [41]. The set of all these conditions refers to the boundary conditions.
Different cases arise. First, we depict problems with fixed final time T (i.e, the
final time T is specified) and problems with free final time T (i.e, the final time
T isfree).

4.4.1.1 Problemswith fixed final time

We depict [41]

The problem of final state specified (i.e, T and x(T) are specified);
The problem of final state free (i.e., T isspecified and x(T) isfree);

The problem of final state lying on a surface defined by s(x(T)) =0.
4.4.1.2 Problemswith freefinal time

We depict also different situations [41]

The problem of final state fixed (i.e, T isfreeand x(T) fixed);

The problem of final state free (i.e, T and x(T) arefree);

The problem of final state moving with p(T) (i.e., x (T)=p(T));
The problem of final state lying on the surface defined by s(x(T)) =0;

The problem of final state lying on a moving surface defined by
s(x(T),T)=0.

The different scenarios listed above are set in the different boundary condition
equations (4.21) and (4.23). In [41], the author has stated the general form of these
boundary conditions, corresponding to the optimization problem (4.44) and (4.45)
foral t7 [0,T], asfollows:

| (T)">dx(T)=H (x(T),u(T).I (T),7)xdT (4.60)

In the following, we consider exclusively the case of specified final time T and
free state x(T) leading to the investigation of the problem of infinite horizon (i.e.,
T =¥ ) discussed later. Then the substitutionsin (4.60) are

dT =0 and dx(T) any variation (4.61)
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Thus, we obtain the specific boundary condition relationships [41]

x(0)=x, and | (T)=0 (4.62)

4.4.2 Hamilton-Jacobi equation

In this section, we treat the problem of the optimal control with the finite horizon
case(i.e., T isfinite) which leads to the well-known HJE [39].

Consider anonlinear system defined by the dynamics

x=f(x,u,t) (4.63)
with theinitial condition

X(ty) =% (4.64)

subject to the functional cost to be minimized
J(u)= QT g(x.u,t)dt (4.65)

The problem is to find an admissible control u” that forces the system (4.63) to
follow an admissible trajectory x that minimizes the performance (4.65). The
initial time t, and the initial states x(t,) are specified [41]. Without loss of
generality, the initial instant is reduced to t, =0. We define the optimal cost
V(x,t) withaninitial state x(t) at t by [5-39]

V(x,t):mjndg(x,u,t) (4.66)
ie,
V(xt)= 6g(x,u*,t) (4.67)

where u’ (t) is the optimal control. From (4.66), we set if the system starts from
x(t) at t, then V(x,t)=minJ. V(xt) isindependent of u because if the initial
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state x(t) and itstime t are specified, then the particular control u is “abstractly”
determined and minimizes V (x,t) [39-40]. So, to find the optimal control u’
which minimizes (4.65), and then, V(x(0),0) for various x(0), we can start by
the evaluation of (4.67) for all t and x(t), and then the associated optimal control
u” asfollows[39]:

Given tT [0,T] and t,T [t,T], we have

V(x(t).t) = = omin C) g(xut )dt (4.68)
. G o ¥
:usgt]g[tt]% g]slljl[t,T](Qg(X’u’t )dt +Qg(x,u,t )dt )E (4.69)

u’ is obtained by the concatenation of u(s) with si [t,t;] and sT [t,,T]. Note

that the term q‘;g(x,u,t )t isindependent of u(s) for si [t,T] and

Qa(xut)dt =V (x(t).t) (4.70)
Then,

_ o 6 ;
V(xt)= om0 €09 (xut )dt +V(x(t).t )H (4.72)

We set t =t +Dt, where DX is small. We apply the Taylor’s theorem to expand
the right hand side of (4.71) at the first order

V(xt)= “g(xut )t +v (x(t+Dx) t+ D)4 (4.72)

. é\t+
u(s),sﬂﬂ,ﬁ[)t] éo 9

We introduce G(x,u,t) such that Z—?: g(xu,t). Hence, the first order Taylor
. t+Dt .
expansion of (‘D g(xut)dt is

t+Dt

(\D g(xut )dt :G(x(t+Dt),u(t+Dt),t+Dt)- G(x(t),u(t),t) (4.73)
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Also, we have

G(x(t+Dt),u(t+Dt),t+ Dt) :G(x(t),u(t),t)+ij—?Dt

that is,

G (x(t+Dt),u(t+Dr),t+Dt)- G(x(t),u(t),t)=c:j—?Dt = g(xu.t)Dt

Then, from (4.73) and (4.75) we obtain

t+Dt
\

0 9(xut)dt =g(xut)Dt

Also, we use the first order Taylor expansion of V (x(t +Dt),t + Dt)

V(x(t +Dt),t + Dt) :V(x(t),t)+WDt

Noting,

dv i\ 6 %, IV

5 X(©:1) —gﬁ(x(t)i)a rry

and

V(x(t+Dt),t+Dt) =V (x(t),t)+ ?ai[]—\;(x(t),t)g %+%§Dt

we substitute (4.145) into (4.138)

vl S B M

AsV (x,t) isindependent of u, then

(4.74)

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

(4.80)
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6 U
V(x,t)=V(x(t + min g (xu,t) —_ x+ﬂ—Dtu
(s).st.d [t.0t] ™x g ﬂtg g
Then,
6 U
g xut adﬂg x+ﬂ—Dtu 0
ssty[tn]§ Xﬂ ﬂtg g

And, using (4.63), we write from (4.82)

v (xt) _ € oV o U
Mt - u(s), gtngn[t o] gg(X u t) fix g_a f (X,U,t)g
As Dt approaches zero, we abtain [39]
™v(xt) € AV o u
=- 2 ’ !t — = f 3 lt !
oo mipealout) e flutg

The equation (4.83) isthe HJE. This equation becomes

W%:(t) (xu t) s ¢ (x,u*,t)

where u” isthe optimal control expression given by [39]

7

@
=arg rp()nég(x ut)+

]

1o
aéT_Vg f(xut)3+

x g O

CJ(-
[(1»)]

4.4.3 Infinitehorizon

(4.81)

(4.82)

(4.83)

(4.84)

(4.85)

(4.86)

In this section, we introduce the infinite horizon optimal control problem for any
general time invariant nonlinear system. Then, we discuss the case of Linear Time
Varying systems (LTV). And finaly, we investigate the case of LTI systems

known as the LQR problem.
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4.4.3.1 Caseof timeinvariant systems
Consider the time invariant nonlinear dynamics
(4.87)

x=f (x,u)

subject to the time performance index
(4.88)

¥

J(u) = cp(xu)dt
0
with x(0) = x,. Then, for the stationary and infinitetime, i.e, T =¥ , we have [3]
(4.89)

WV (xt)=0

Tt
AsV isexplicitly independent of t. Then, we obtain the equivalent HIE
(4.90)

and
(4.92)

i.e,
T )
#VO ¢ (xu)g| =0 (4.92)

Sa(x.u) +
—aég(xu _
gg ix o Al

4.4.3.2 Caseof linear timevarying systems

Consider the system
(4.93)

x=F (t)x(t) +G(t)u(t)

42



Optimal control theory

with x(t,) =%, . We assume that the matricesF (t) and G(t) are continuous field

functions. Given the weighting matrices Q(t) and R(t) are continuous,

symmetric, nonnegative, and positive definite, respectively. We define the
performance index

3 :%5 (X ()Q()x(t) +u" () R(t)u(t) )t (4.94)

The optimal control law u (t) which minimizes the performance index J,
satisfies the following Theorem.

Theorem 4.1: Let’s consider the system given by the dynamics (4.93) subject the
performance index (4.94). It follows[39]

i) P(t) =limP(t,T) exists, where P(t,T) isthe solution of the equation
PF+PF' - PGR'G'P+Q=-P.

T

i) x" (t)P(t)x(t) isthe optimal performance index.
iii) u'(t)=- R'G" (t)P(t)x(t) isthe optimal control law.

We note that the system (4.93) is completely controllable for every time t. If,
given an arbitrary state x(t) at time t, there exists a control depending on x(t) at

t and atime t, depending on t such that application of this control over the
interval [t t,] takesthe state x(t) to the zero state at time t, .

The proof of thistheorem is discussed with detailsin [39].

444 LQR problem

In the following, we solve the problem of LOQR for the LTI system, and we show
how this problem leads to the resolution of the well-known algebraic Ricatti
equation (ARE). Therefore, we discuss the stability of the closed loop optimal
control.
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4.4.4.1 Optimal control design
Let’s consider the linear system
X=Ax+Bu (4.95)

with x(0) = %, . The performance index associated with (4.167) is defined as
_l¥i T T
= EQ (x Qx+u Ru+2x Nu)dt (4.96)

where Q and R are symmetric matrices. Q is non-negative definite, whereas R

is positive definite. N a matrix of appropriate dimensions. The task will be to
design a stahilizing linear state-feedback controller of the form u=- Kx which
minimizes the performance index J . This optimal control law will be denoted by

u . The following presentation is based on different approaches discussed in the
literature [42].

The Hamiltonian is written from (4.47)
H(xu,l ):%(UTRU+XTQX+2XTNU)+| T (Ax+Bu) (4.97)

From (4.57), the co-state vector | (t)is the solution of the vector differential
equation

|'(t):-"]”—'::-Qx- Nu- ATl (4.98)

The minimization of H impliesfrom (4.58)

11]1—H=Ru+NTx+ Bl =0 (4.99)
u

The optimal control is then obtained

u (t)=-R'N"x- R'BI (4.100)
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2
1 ';' =R>0 which leads to the minimum of (4.96). Substituting (4.100)
u

into (4.95) and (4.98) to obtain

Notice

x=(A- BR'N")x- BR'B'| (4.101)
and

I"=(-Q+NR'N")x+(NR'B" - A"} (4.102)
Or equivalently,

a0 _@A- BR!N'  -BR'B" 66

L= ‘o, - 4,103
€y &Q+NRINT NRIB™- AT 8 5 (4-103)

Denote by f (t,0) the transition matrix associated with (4.175). A partition of
f (t,0) determines asolution of (4.175) as follows

&0 a0 ab,(t,0) f,(t,0)6ex,0
==f (t,0 S+ c, - (4.104)
gl (%] ( )Eloﬂ ngl(t,O) fzz(t’o)gloﬂ
Note from the transversality condition
H (x(T).u(T).1 (T))dT +1 (T) >dx(T)=0 (4.105)

The final time, T® ¥, and the fina state x(T) are both free. Then, dT and
dx(T) are both nonzero. Given dT * 0 and dx(T)* 0, from (4.123), we have

H(x(T),u(T),l (T))=0and 1 (T)=0 (4.106)
From (4.102), we write a instant T
| (T)=f,(T,0)% +f,,(T,0)l,=0 (4.107)

Note that f (t,0) isregular, then f ,(t,0)2 0 "3 0. Thus,

45



Optimal control theory

I ='f22(-|—’0)_1f 21(T’0)X0 (4.108)
Equivalently, using any instant tasinitial time, we obtain from (4.102), " t3 0
| (t)=-F o (6 T) o (T1)X(1) (4.109)

Noting P(t)=-f, (t,T) ", (T,t)=-f,, (tT)f,(T.t), it follows P(T)=0 as
f(tt)=1,"t3T.Wehave

I (t)=P(t)»(t) (4.110)

Now from (4.97), as the matrices A,B,N,Q and R are constant, we deduce that

the Hamiltonian is explicitly independent of t, i.e, dd—lj[':O. Then,

H (u(t),x(t),l (t)) is constant. Finally, from the first equality of (4.106), we
conclude " t3 0

H(x(t)u(t).! (t))=0 (4.112)

Using (4.100) and (4.110), we rewrite (4.97) " xI R"

- ExTNR'lNTx+%xTQx- X'NRBTP(t)x+x"ATP(t) x-

%XTP(t)T BR'B"P(t)x=0 (4.112)
Thatis, " xI R"

X" §A- BRINT) P(t) +P(t) (A- BR™N")+(Q- NR*N')-

P(t) BR'BTP(t)ix=0 (4.113)
which reducesto

(A- BRNT) P(t)+P(t)" (A- BRIN")+(Q- NRN")-
P(t)' BR'B'P(t)=0 (4.114)
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From (4.111), we have
I =P(t)x+P(t)x (4.115)
Using (4.103) and (4.110), we write

(-Q+NR'NT)x+(NR'B" - A")P(t)x=P(t)x+P(t)(A- BR'N")x-
P(t)BR*B"P(t)x (4.116)

that is,

P(t)+(A- BRNT) P(t)+P(t)(A- BR'N")+(Q- NR'N)-
P(t)BR'B"P(t)=0 (4.117)

Since Q and R are symmetric, consider the transpose of both sides of (4.117) as
P(t)' +P(t) (A- BRINT)+(A- BR'N') P(t)" +(Q- NR'NT)-
P(t) BR'B"P(t)' =0 (4.118)

By comparing (4.117) and (4.118), we find that both P(t) and P(t)" are solutions

of the same differential equation, with P(T)=P(T)" =0. From the uniqueness of
solutions of differential equations, we conclude that

P(t)=P(t)" "t20 (4.119)
Then, (4.114) becomes

(A- BR*NT) P(t)+P(t)(A- BR'N")+(Q- NRN")-

P(t)BR'B'P(t)=0 (4.120)

P(t) satisfies (4.119) and (4.120) simultaneously. Thus, P(t)=0, and P is
constant and solution of

(A- BR’lNT)T P+P(A- BR'N")+(Q- NR'N")- PBR'B'P=0 (4.121)
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(4.121) isknown as the ARE. The optimal control isthen completed as

*

U =-R*(N+PB) x (4.122)

4.4.4.2 Stability analysis

Consider the LTI system (4.95) subject to the minimization of the quadratic
performance index (4.96). According to the general equations (4.84) and (4.85), the
related steady state HIB equation is written in form [5]

muingé;x Qx+;u Ru+x' Nu0+§éT\;; (Ax+Bu)=0 (4.123)

where V (x) isthe value of the cost function with the initial state x at t, given by
(refer to the general form (4.60) [5] (and references cited therein).

¥ L.
V(x) :minc‘,zeleQx+1uTRu+xTNu31t (4.124)
u 82 2 g

Wenotethat V (x) >0" x* 0 if

N
2Q No_, (4.125)
ENT Ry

Notice that the HIB equation (4.123) can be assimilated to the Hamiltonian

equation H (x,u,l )=0 computed from (4.97). Then, the term ﬂﬂ is associated
X

with the co-state | givenby | = Px. Thus, we can definite V (x), st.,

W _px (4.126)

x

with P solution of the ARE (4.121). Then, V(x)=x"Px is a natural Lyapunov

function to determine the stability of the closed-loop system (4.95) and (4.100)
with | expressed by (4.126). In fact, we have from (4.123)
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aé]Vo &V 6

BT Y (#oc+Bu)

:—%XTQX ; uTRU - X"NuU

_ 1 ®Q Ngax 6

= _( )gNT RS (4.127)

Using (4.125), we deduce that
V<0 "x'0 (4.128)

Remark 4.1: By substituting (4.125) into (4.124), the positiveness of integrand of
(1.124) is given by:

ExTgQ+(N+F>|3)R'1(N+F>|3)T- 2NR*(N +PB)" Ux %

gQ+PBR'B"P- NR'N"fjx>0 (4.129)
(4.129) holdsfor al xt O if

(Q- NR*N")+PBR'B'P>0 (4.130)
Note that, using the Schur’s complement [45], we have from (4.125)

R>0and Q- NR'N" >0 (4.131)
Thus, (4.130) holdsif V (x)>0.

Now we apply the definition of asymptotic stability in sense of Lyapunov (i.e., we
search if it exists a Lyapunov function V =x"Px such that for some positive
definite matrix P, we have % is negative definite), to establish the optimality

condition for any stabilizing system. Let’s consider the following theorem.
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Theorem 4.2: For some Lyapunov candidate function V = x" Px, if the stabilizing
state feedback controller u” =- Kx applied for the LTI system (4.95) is such that

min?clj—\t/ +Xx"Qx+U"Ru+2x"Nu2=0, then the controller is optimal.
u oz

Proof of Theorem 4.2: See Appendix C — section C-6

The design of the optimal control problem can be solved by finding the appropriate
Lyapunov function V(x)=xT Px. The Lyapunov candidate matrix P can be

obtained by minimizing the functional

&, Xx"Qx+u"Ru+2x"Nu (4.132)

dt

We apply the necessary condition of unconstrained minimization, discussed early
in this chapter, to the equation (4.74). We will have

TaalV | rox+u Ru+2x' Nug =0 (4.133)

Tug dt

u=u’

Noting V (x) = x" Px,, we have

TV | ok uTRu+ 2% NuO= (267 Pt Qe+ uTRu+ 26 Nu)
U ot 5 fu
1

:‘”—(ZXT PAX+2x" PBu+ X' Qx+u'Ru+2x" Nu)
u

=2(B"Px+Ru+N"x)=0 (4.134)

Hence, from (4.134), we find the optimal control law is given by (4.122), i.e.,

u =-Kx (4.135)
with

K=R*(PB+N)' (4.136)
the static state feedback gain.
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We check now the sufficiency condition of the unconstrained condition

2 . 2
ﬂ_Zaei_V + X' Qx+u'Ru+2x" Nugz‘"—z(ZxT PAX+ 2x"PBU+ X' Qx+U'Ru+ 2x" Nu)
u? & ci 5 Tu
=21(BTPX+ Ru+N"x)
Mu
=2R>0 (4.137)

since R is symmetric positive definite. Hence the second order sufficiency
condition is satisfied.

Now, we calculate the matrix P. From (4.95), (4.135) and (4.136), the optimal
closed loop system has the form

%=A- BR'(B"P+NT)x (4.138)
The optimal controller u” satisfies the condition (4.133). So,

2x"PAX+2x"PBU” + X' Qx+U RU +2x'Nu =0 (4.139)
We substitute the expression for u’, given by (4.138) into (4.139) to write

X" (ATP+PA)x- 2X PBR™(PB+N)" x+ X' Qx+x" (PB+N)R"(PB+N)" x-
2x'NR*(PB+N)" x=0 (4.140)

which leads to

X" (ATP+PA)x- 2x (PB+N)R™(PB+N)" x+X Qx+

x"(PB+N)R*(PB+N)' x=0 (4.141)
Factoring out x and x' yields

X' (AP+PA+Q- (PB+N)R(PB+N)")x=0 (4.142)

The above equation should be true for every x. In other words, we have
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A'P+PA+Q- (PB+N)R*(PB+N)" =0 (4.143)
The above equation is exactly the same as (4.111) referring to the general ARE. In
conclusion, the resolution of the optimal control problem, minimizing the
performance index (4.96) subject to the dynamics (4.95), leads simply to the
computation of the ARE (4.143).

4443 ARE —Main results

Given AB,N,Q and R matrices of dimensions (n" n), (n" m), (n" m),
(n" n) and (m” m) respectively. Q and R are symmetric non-negative definite
and symmetric positive definite. Consider the following ARE

ATP+PA+Q- (PB+N)R*(B"P+N")=0 (4.144)
which is equivalent to the equation

(A- BR‘lNT)T P+P(A- BR'N")+Q- NR'N" - PBR'B'P=0 (4.145)
in the matrix P of dimensions (n” n).

Definition 4.1: An unforced dynamical LTI system X = Ax issaid to be stableif al
eigenvalues of A are in the open left half plane, that is, Reg (A)g<0. A matrix
A with such a property is said to be asymptotically stable or Hurwitz [4-47].

Definition 4.2: The LTI system X= Ax+Bu is stabilizable if all unstable modes
are controllable (i.e., al uncontrollable modes are stable) [47-48].

Theorem 4.3: The dynamical system x=Ax+Bu, or (AB) is sad to be

stabilizable if there exists a state feedback u = Kx, such that the system is stable
(i.e, A+BK isdable) [47-49].

Definition 4.3: The LTI system
Xx=Ax+ Bu (4.146)

y=Cx+Du (4.147)
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is detectable if all unstable modes are observable, i.e., al unobservable modes are
stable [47-48].

Theorem 4.4: The dynamical system (4.146) and (4.147) or the pair (A,C) is said

to be detectable if there exists a matrix L such that A+ LC is Hurwitz, i.e,
asymptotically stable [47-48].

Definition 4.4: The observability map of the pair (A,C) is given by the function
[47-49]: z, :R"® L,([0,],RP) st. x,® Cxe* x¢, "1 [0].
Theorem 4.5:_The following statements are equivalent [47-49].

1. Thepair (AC) isobservableon [0,t,].
2. Ker(z,)={0}.

Corollary 4.1:_The Sylvester operator z (X )= AX + XB is singular if A and B
share common eigenvalues.

Lemma 4.1: Consider the Sylvester equation AX + XB=C, where Al R"",
Bl R™™ and ClT R"™ are given matrices. There exists a unique solution
X1 R"™ if, and only if, | (A)+] (B):0 ,"i=12--,n and j=12,--,m
[47].

Theorem 4.6:_ Assume the matrix Q- NR 'Nis symmetric, non-negative definite,
ie, Q- NR'N"20. If (AB)is stabilizable and (A- BR'N",Q- NR'N")is
detectable, then Psolution of (4.144) is unique and symmetric and
A- BR'(B"P+NT)isHurwitz [46-47].

Proof of Theorem 4.6: See Appendix C — section C-7
Now let we provethat A= A- BR'N" - BR'B"P isasymptotically stable.
Proposition 4.1:_ A, is Hurwitz if one of the following is true

1. Q=Q- NR'N">0
2. Q20 and (AQ) isobservable.
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In fact, consider the ARE (4.143). Suppose x an eigenvector of the matrix A, , i.e,
Ax=1x for | the associated eigenvalue. Pre-multiply and post-multiply (4.143)

by x" and x respectively anduse R*=RR, i.e,

X" PTAx+x A Px+x Qx+x PBR'RB"Px=0 (4.148)
which leads to
21 X' Px=- X' Qx- |RB"Px[ (4.149)

1% case: Suppose Q>0, then - X"Ox- HﬁBTPxH2<O. Thus, 2l X"Px<0 and
P>0.Weconclude Re(l ) <0, thatis, A isHurwitz.

2™ case: Suppose Q3 0 and (KQ) is observable. Assume Re(l )=0 or | = jw
We have from (4.252)

2Re(l )X"Px=0=-x'Qx- [RB"PH’ (4.150)
Then, xX’Qx=0 and HI?{BTPXH:O, i.e, Qx=0 and B"Px=0. Wededuce

Ax=Ax- BR'B'Px=Ax=I x= jwx (4.151)

.z At .
Noting e = § —— , we write
iz0 |-

efx=g t '_ixz a L(jw)ix
g 1! iag 1!
tjw) .
=a Qx = el (4.152)
is0 I:
Thus,
QeMx=Qe™x=e"Qx=0 (4.153)
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which is a contradiction to (R, (3) observable.

Now, we prove that P is solution of the ARE (4.143). In fact, suppose that there
exists two solutions P, and P, such that A =A-BR'B'R and

A, = A- BR'B'P, are stable. From (4.235), we write

R'A +AR+Q+R BR'B'R =0 (4.154)
and
PZTA:z + Afz P,+Q+P/BR'B'P,=0 (4.155)

Subtract P} A, from the ARE (4.154)

(R"- P )A +AR+Q=-P'A - R'BR'B'R =0 (4.156)
Subtract A} P, from the ARE (4.155)

P'A, +A (R,- R)+Q=-AlR- P/BR'B'P, (4.157)
Subtracting (4.156) and (4.157) leadsto

(R7- PI)A + AL (R- R)=(AL- AL)R+PFI(A, - A )+ PIBRIETP, -

R'BR'B'R (4.158)

Note A, =A- BR'B'R, and A_ = A- BR'B'P,. (4.158) iswritten

(R"- F)A, +AL(R- R)=(A- BR'B'R,- A+BR'B'R) R
+P/BR'B'R,- P'BR'B'P,
+F} (A- BR'B'R,- A+BR'B'P)
=-P/BR'B'R+R'BR'B'R- PJBR'B'P,

+P/BR'B'R,- B'BR'B'R (4.159)
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(R-R) A +A(R-R)=0 (4-160)

Since A, and A, are both asymptotically stable, then " i,Re(Ii(%))<0 and
Re(l i (A1 )) <0. Thus, the unique solution for (4.160) is

P-PR=0,ie, R=PR, (4.161)

Finally, note that the solution of the ARE is symmetric. In fact, P is asolution of
(4.143) will lead to P" solution of (4.143). As P isunique, then P =P ,i.e, P
symmetric.

4.4.4.4 lllustration example of an LQR problem

In this section, we illustrate the LQR problem of 2-DOF inverted penduli coupled
with aspring plant as shown in Figure 4.1 [51].

The variables are: @, angular displacement of pendulum i(i=12), t, torque
input generated by the actuator for pendulum i (i =1,2), F spring force, I
spring length, f slope of the spring to the earth, |, length of pendulum i (i =1,2),

m mass of pendulum i (i =1,2), L distance between the two penduli , and k
spring constant.

The equations of mation of the two inverted pendulum system are [51]

g I

| .
M=o =t + mlg—ésn(ql) +1,F cos(q, - f ) (4.162)
and

12 .. .
WE§Q2 =t, +ng§29“(0|2)- |,F cos(q, - f) (4.163)

where g isthe constant of gravity,

— 4 2 25420
F —kg?- & +(1,-1,)°Y 2 (4.164)
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| = gL +l,sing, - Ilsinql)2 +(1, cosq, - |1cosq1)28ﬂ2 (4.165)

and

r= ta”'lzel_lifozqﬁ _ I_zsm-q 22 (4.166)
gL+l,sing, - |;sing, g

with theinitial conditions

F =0 whenqg, =q, =0 (4.167)

my

Y

R—
T, ot

Figure 4.1 Two inverted pendulum coupled by a spring system [51]
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Thisimplies
. AT
(ql,ql,qz,qz) =0 (4.168)

is an equilibrium state of the systemif t , =t ,. The system (4.162) and (4.163) is
written in amatrix form as[51]

é0 1 0 Oy éo O u
é@,u € Ug,a € 2 u
e'u € 0 0 0la'g 6= o0 U
d éqlu_gll l,JéJlu+gn1|1 g, o
dqr & u € Ug, 0 € ug u
dtéhzl] 2 0 0 13@_20 go gggzu
8,0 S 9 AYag & -
&8 g0 0 = oggbg &0 e
e > U e ml; g
€0 y
é u
20/ . 2F .
9_(qu1' q1)+_COS(q1' f ) U
él, ml, a
+a i (4.169)
é U
éa, . 2F u
eg(sn%'qz)'_cos(qz'f)l;l
elz mzlz u
We note
e, U
%, 4
_é&1q
x=&1u (4.170)
%, Y
¢. u
€.
the state vector,
dg.u
u=a (4.172)
gzu

the control vector,
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é0 1 0 Oy
& G
e 0 0 ou
A= €l a (4.172)
—-é u .
eO 00 19
é u
g0 0 lg 04
e 2 u
aconstant matrix,
éo 0 u
é 2 U
= : 0 G
éml; a
B=ga U (4.173)
e0 0Oy
é 2 0
e 0 20
e myl;
aconstant matrix, and
€0 y
é u
(::"g(smql' ql) +£C05(q1- f ) l;I
él, ml, u
fo=a u (4.174)
5) U
éq, . 2F G
élg(squ'cb)' —ICOS(qz-f )l:J
e'2 mz 2 u

the perturbation vector which is nonlinear in X. Hence, the dynamics (4.219) can
be written

x=Ax+Bu+ f () (4.175)

To linarize the system (4.225), we assume that the nonlinear term f_ =0, then we
obtain the dynamics

X = Ax+ Bu (4.176)
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The performance index associated with this dynamicsis defined by

1=1g (X"Qx+uTRu)at (4.177)
29 '

where Q and R are the weighting matrices given by

éng 0 0 O
oom 0 o0

ey ey ey any end

e 4.178
Q €0 0 10mg O (4.176)
€0 0 0 10m§
51 0
_éd v (4.179)
& 14
Then, the optimal control law is given by
u =-R'B"Px (4.180)
where P is solution of the ARE
A'P+PA+Q- PBR'B'P=0 (4.182)
For the numerical application, consider the constant values
1, =1m
I =
i12=0.8m
m =1k
]|: m J (4.182)
im, =0.8kg
f:ﬁ g=9.8m/¢
1k=0.02N/m

Using MATLAB, we obtain the solution of ARE (4.181) asfollows
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€993 536 0 0y
é G
5_g53% 171 0 0
&0 0 3569 3210
€0 0 321 097

(4.183)

Hence, using (4.284), we obtain the optimal control law u” = - Kx, where

él0.72 342 O 0u
K=ga

? 4.184
&0 0 1254 3.804 (4.189

Using SIMULINK, we simulate the linearized system (4.280) using the optimal
control law (4.284) for different initial conditions. The time evolution of the

angular positions ¢;,q, and the actuator torques t ;,t , for an initial condition of

g, =— and g, =— areshown in Figures4.2to0 4.5.

Angle & vi. Time

0 1 2 3 4 5
Time in sec

Figure 4.2 g, evolution vs. time of the two inverted pendulum system
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Angle 8 vs. Time
0.6 , ' : .

Time in sec
Figure 4.3 q, evolution vs. time of the two inverted pendulum system

Torgque 1y vs. Time

T T T

0 1 2 3 4 5
Tims= in ssc

=7 -

Figure 4.4 t, evolution vs. time of the two inverted pendulum system
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Torque 7 vs. Time

= I I i
L] 1 2 3 4 5
Time in s=c

Figure4.5t , evolution vs. time of the two inverted pendulum system

The simulation results for the angular positions g, and ¢,, show that the LQR
stabilize the system at the equilibrium position. The input signals (i.e., motor
torques t, and t,) show that both motors present a normal behaviour and there is
no important overshoot that will cause saturation issues.

45 Conclusion

In this chapter, we introduced the problem of optimization and some applications
in engineering as well as its classifications based on several criteria. We presented
the problem of optimization and some applications in engineering as well as its
classification based on several aspects. Then, in section 4.2, we presented the
problem of optimization with no constraints in which we treated first the problem
of multivariable function optimization with no constraints, then the problem of
functional minimization with no constraints and finally we presented the calculus
of variation problem statement and their solutions. In section 4.3, we treated the
optimization problem with equality constraints. We began with the genera
problem of multivariable function optimization with constraints, then we solved the
particular problem of minimization with equality constraints, and findly, we
treated the method of Lagrange multipliers under three different cases. In section
4.4, we presented the optimal control theory. We began with the formulation of
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general problem, then we treated the HJE, then we presented the infinite horizon
problem and the LQR controller. We presented the design method and then we
studied the stability of such controller and how this leads to the main results of
ARE. And finally, we illustrated the LQR problem through an example. In section
4.5, we conclude this chapter.



5 Optimal control of polynomial
systems using Kronecker
product

5.1 Introduction

The objective of this chapter is to compute an optimal control law for polynomial
systems using the KP formulation. In section 5.2, we will state the problem and we
show how the problem of finding the optimal solution is reduced in solving what
we call the State Dependent Ricatti equation (SDR). In section 5.3, the problem of
solving the SDR is transformed into solving uncoupled linear equations in the gain
matrices using the KP agebra. The calculation of these gain matrices is presented
in section 5.4. It's done by the cancellation of the coefficients of VPS terms and the
resolution of linear equations. In section 5.5, we apply the proposed method to
three scalar examples.

5.2 Problem statement

Consider the nonlinear dynamics given by

X(t)=F(x)+G(x)-u(t)=F(x)+ > .G (x)-u(t) (5.2)

m
K=

1
where teR is the continuous time, X(t)eR" the state vector and

u(t)=[u(t) ... u,(t)] eR" theinput vector. F(.),G(.) for k=1..,m are

analytic vector fieldsfrom R" into R" given by the following polynomials
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| |
F(x)=3F, X! (5.2)
=1
[¢] .
G,(x)=>G,-x! for k=1..,m (5.3
i=0
9 .
G(x =G, (|m®x‘”) (5.4)
j=0
with G, =[G - G, ]eR"xR™ . Inthe following, we treat the generalized

cost function of the form

3=2J(8 (O@s(t)+u (Ru(1)+ 25" () Nut)) (55)
where s(t) isthe output vector of R*
s(x) = ZK:H]X‘” (5.6)

R isapositive definite matrix of R™™, Q anon-negative matrix of R*Y and N

a matrix of R”™ .In addition, we assume that the matrix Q—NR'N" is non-

negative definite. This work is an extension of the optimal control problem based
on the KP algebra introduced by Rotellaand Tunguy [54.]

Following Boudarel et al. [54] and using (4.133), introduced in chapter 4, we
denote by V(x(t)) the optimal cost with an initial condition x at t

|

Where U =ar g(mi n J) isthe optimal control. Then, we write the HIE [3-53]

V(x)= (sT (x(t))Qs(x(t))+uT(t)Ru"(t)+2s" (x(t ))Nu (t ))dt (5.7)

1
2

ﬂ(x):n]'n %(ST(x)Qs(x)JruTRstT(X) Nu)+(%]T(F(x)+G(x)u)} (5.8)

That is, referring to (4.151) and (4.152)
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ﬁ(x):_[}(g (0s()+u™RI 525 (¥ NJ){%T (F(x)+G(x)u)} 59)

Considering the stationary infinite time and non-constraint input case [3], we have

% = 0. Thus, from (5.8), we obtain [3-43]

J = -Rl(NTs(x)+GT (x)aa—\):j (510

subgtituting (5.10) in (5.9) leads to

< (9Q(9-¢ RS- GRS () + Y (7 (92

oV’ oV
- G(X)R*N' —s" (X)NR'G" (x)—=0 5.11
= G()RNTS(x)=S (X)NR'GT (x) = (511

or equivaently,

V) (oV

[F(X)_G(X)RINTS(X)]T (&JJ{&j [F(X)—G(X)F(lNTs(x)]

oV Y T oV . Lo
—[&j [G(R'G (X)](&}s (x)[Q-NR'N"]s(x)=0 (5.12)
The equations (5.10) and (5.12) determine the optimal control law u’". The term

V
68_ is calculated first through the equation (5.12), and after that, through the
X

equation (5.10), we can calculate U’ .
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5.3 Equation of approximation

Merriam [55] and Lukes [56] have proposed the determination of an analytic

oV . oV
expression for 6_ and then for u . They assume that 6_ can be written in a
X X

polynomial form as
oV p .
. ]Z J (5.13)

where Pl j =1, are constant matrices of R™ . Us ng the KP proprieties, vec

and mat notations, introduced in chapter 3, we transform (5.12) by substituting
(5.2), (5.4), (5.14) and (5.6), to obtain

3| (S0 (1) rowt ()| (5 ]
)

|
gl el

- iax‘]T(iGi(|m®x)j [ZG( c@x‘)jT prix‘]

o3 H, X! ' Q- NRN” h HX! =0 (5.14)
() (e ren

Thisisequivalent to

iix“TFﬁij“ ii Fx‘”+22x‘“HT(Q NRNT)H, X!

i=1 j=1 i=1 j=1 i=1 j=1
Zh:iixHTHiTNR’l(Im®>(“‘T)GjTl3kx‘k‘ iiix‘”lﬂ G, (1n® X JRINTH XK
i=1 j=0 k=1 i=1 j=0 k=1

33 Zg:dzp:xiTF?TGj (1n@x )R (1, ®x7)aIPx =0 (5.15)
i=L j=0 c=1d=0

By using Theorems 3.14, 3.17, Lemmas 3.2 and 3.3, introduced in chapter 3, (5.15)
can be transformed into
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f B

Y3 (TR )+ 3 e (X3 e (] (Q- RN

i=1 j=1 i=1 j=1 i=1 j=1

33 ﬁ%i‘THI NR™met”, |vec(RF,) [X*) - S XTHINR(1,,®x"™)GTPX!
i=1 j=0 k=1 mom : i=1 j=0 k=1 :

—Zpll gozg;dzp;)[( 1, ®xX'T)GIPX' T Rmat., [vec(R/G,) X =0 (5.16)
i=1 j=0 c=1d=

Thisisequivalent to

fziv&:T(FiTF}))JHJ+Ileilva(Fi,TFj))ai+j+ii\m ( "(Q-NRIN)H, ))3'“‘

i=l j=1 i=1 j=1

i%‘TH NRA X iii%k‘TH; NermtIMxm[vec(l?TGj )}J””
1 !

M:
M@

i=1 j=0 k= i=l j=
) j e j=0 k=1 - ]
Zzzz[mﬂ JLvec(RTG) ) X | RAvexd =0 (5.17)
i=1 j=0 c=1d=0
with V, = n‘atn,+kxm[vec(PTG. )]=[vec(R'G, ): - ivec(R'G, )], notice that
2 :[vec(PkTGlj)i -+ ivec(R'G, )]asnotedln[3] Hence, we write

3 S (F1R X1+ 3SR R S e (] QRN

i=1 j=1 i=1 j=1 i=1 j=1
h P . p h o
—Zzg:ive&(HINR-]ijT)x"*“k‘ zplzg:ZH N mVANGH
i=1 j=0 k=1 i=1 j=0 k
P g9 9 P
SN RNV R VX =0 (5.18)
i=1 j=0 c=1d=0

By applying again Theorem 3.14, we obtain
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>3 vec! (FTR )X+ 3! (RTF, )+ 33! (H (@ NRANTJH,

i=1 j=1 i=1 j=1 i=1 j=1

X3 vl (HINRAG 35S v (GRNTH

i=1 j=0 k=1 i=1 j=0 k=1

M-c\

Il
JiN

L& T 1 /T \Ji+i+erd] _
222 > vee! (VR Jx =0 (5.19)
. * . 8V . -
In order to compute the optimal control u , we have to find v given in the
X

polynomial form (5.13). So, we have to calculate the different terms P, i e N".

These terms are obtained by cancelling the coefficients of X in (5.19), which are
the subject of the next section.

5.4 Determination of P

541 First order

The calculation of B, from (5.19) is given by the cancellation of the coefficients of

x? . We obtain
vec' (P F,)+vec' (F'P,)+vec’ (H] (Q—NRNT}H,)
—vec" (H NR™V,, ) - vec” (V,,R*NTH, ) - vec' (V,, RV ) =0 (5.20)

Since the operator vec(.) is linear on the matrices of the same dimensions, and

V,, = B'G,, then the equation (5.20) will be

R'F,+F'R+H/ (Q-NR'N")H,~H/NR'G;R, - B'G,R'N"H,
-P'G, R*leg P=0 (5.21)
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P, is the gain matrix solution of the optimal control problem of the linearized

system corresponding to (5.1). The equation (5.21) is the classical ARE introduced
in chapter 4.

5.4.2 Second order

The calculation of P, from (5.19) is given by the cancellation of the coefficients of
x¥ . We obtain
e’ (F'R,)+vec (F,R)+vec' (R'F,)+vec’ (R'F,)
+vec” (H] (Q-NRNT)H, )+ vec” (H] (Q-NR'NT)H, )
—vec' (H; NR™V, ) —vec” (H] NR™V;] ) —vec (H NR V)
~vec (V,oR*N"H, ) -vec' (V,R*N"H, ) -vec’ (V,,R*NH, )

vec' (VR Vg ) —vec” (VoR ™V ) —vec” (VyR™Vyg ) —vec! (ViR V) =0 (5.22)

We have V,, = PJ G, and using Theorem 3.9, given in chapter 3, (5.20) will be
transformed into

1o+ z) v (TR (14U, v’ (R'F,)
1+ T( (@- NRTlNT)H)

n

0,
(|3+u ) vec (HNRV] )
a
a

n

|n3+um) vec' (H/NR'G) R, )( +umn2)vecT(vloF(1c;gF;_,)

| +U, o )vec' (VoRINTH, ) —(1 . +U_ . Jvec’ (VRV} )=0 (5.23)

n

Since (In3 +U_ ) # 0 (refer to Theorem 3..18 in chapter 3) and by the linearity

of the Vec(.) operator (for the matrices inside has the same dimensions), the
equation (5.23) becomes
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PlT F, + FlT P+ HlT (Q_ NRN' ) H, - HlT NR_]VJ _VloR_lNTHZ _VloR_]VlI
~H/NR'G]P, -V, R'G/P,=0 (5.24)

If we put the terms involving P, in one side and the other known terms in the other
side, thiswill lead to

(HINR'G] +V,,R'Gy —F" )R, =H/ (Q-NRN")H, +R'F, -V, ;R 'N'H,

-H/NRV; -V, RV} (5.25)
If we note
Sy = HlT NR‘ng +V10R‘1Gg — FlT (5.26)

A =HI (Q=NRINT)H, +R'F, -VoR™N"H, —HINR ™V VRV (5.27)
Then, the equation (5.25) will be

Hence, P, can be calculated as

B=% "/, (5.29)

In fact, note that B, is solution of the ARE (5.21). Using Theorem 4.3 in chapter 4
and noting H/ (Q—NR’lNT)Hlis symmetric non-negative definite, assume
(F..G,) is stabilizable and (F, —G,R*N"H, , H] (Q— NR™N")H, ) is detectable,
then F,—G,R™*(Gy R, + N"H,) is Hurwitz. Thus, F,~G,R™*(G;R,+ N"H,) isa
regular matrix and its inverse exists.
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543 General order

In the general case, to calculate Pp , pPe N", we need to isolate the coefficients of

x*¥ in (5.19). By the cancellation of the coefficients of X% in (5.19), we obtain

PP P& by
2.2 Vee(RTF )+ 2> veo(FTR )+ 3.3 vec(HI (Q-NR'NT)H,)

p p-1p T p p1 p ; _]VT
22 vee(URINTH =315 3 ves(HINR )
m m
p_p p-1p1 :
X222, vee[URNG) =0 (530)
i+j+d+c=p+1
that is,
ive:(Fi)TFp’”l)_'_iveC(' pl+1)+iveC(HT(Q NF‘rlNT)prnl)
=1 i-1 )
p p-l L b pi i
_iz_llj_o vec(V;R™NTH ., )- g,_o vec(H], . NR™V)
<i+j<p L|+]<p
p p-1
) ; 2, veo[YRNVG)=0 (5.31)
i,d=1j,c=0
e vomprt

By isolating al the termsin Pp from (5.31) and noting that V , = PpT G, , we have
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vec(P F; )Jerec:(I Fy)+vec( P )+Zvec:(l3,T P

p-1p-1

S QNN o, | FGRNH)-S'S° vy rin, )
i1 =0
I<i+j<p
1p-1
Ae(HINRGIR)- 33 vec(HT ., NRA ) vl GRA) ~vectV,R 'GP
i=1 j=0
I<i+j<p
p-1 p-1
-$ 8 ey R V)0 532
i,d=1j,c=0
I<i+j<p

If we group all the terms that of P, in one side, and al the other terms in (P
and below) in the other side, we obtain
vec( PR )+vec(F' R )-vec(FIGR'NH, ) -vec

(HNR'GR))
CSFGRA)- veowmwlaip)——Zm(. Foa)- (R )

p-1pd
_Zvec(HiT (Q-NR™N')H FH+1)+ZZ vee(VR'INTH, )
i=1 i=l j=0
Ki+j<p
p-1 p-1 p-1 p-1
+>° 3 vec(Hp  NRV)+ 3 5 vee(V, RV ) (5.33)
i=1 j=1 i,d=1j,c=0
]si+Jj§p i+j+cid:p+l
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We note

p-1

b :—Zvec(HT(Q NR™ NT)HpM)—Zvec(i Foin)- Zvec( P, )

i=1

p-1p-1 p-1p-1
-1 T ~h /T

+ vec(V,R'NH, ;. ;- J)+Z vec(H,,, . NRV]T)

=1 j=0 =0

i=1 j i=1 j

I<i+j<p Ki+j<p

p-1 p-1
+ 202, vee(ViR V)

i,d=1j,c=0

%,_/

i+j+c+d=p+l

Using Theorem 3.9, given in chapter 3, we can write
vec(PF,)=U__ vec(F'P,)

vec(P GR'NH,)=U__.vec(H/NR'G;P,)
vec(P G,R V) =U__vec(V,,R'GP, )

By replacing (5.34), (5.35), (5.36) and (5.37) in (5.33), we write

(1,024, )(veo(FTP,) ~vec(HI NR'GI P,) veo(V,R 'GP, )) =

Using Theorem 3.10, given in chapter 3, we have
vec(F'P,)=(1, ®F)vec(PR,)
vec(H/NR'G] R, ) =(1 , ® H/ NR"G; )vec(P, )
vec(V,RGy R, ) = (1, ®V,,R'Gy )vec(R, )

Replacing (5.39), (5.40) and (5.41) in (5.38) will lead to

A

p

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)
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(l P +Un><np )(( ! n° ®F1T)_(Inp ®HI I\F\ﬂeg)_(lnp ®V10RIGJ ))\H:(Pp) - //D (542)
Using the distributivity property of the KP, we write

(Inm1 T )(lnp ®(F ~H/NR'G] ~R'G,RG] ))vec(Pp) = /. (543

p

If we note
p=(1ee+U, ) (1, ®(F ~HINR'G] -R'G,RGY ) (5.44)

Then, the equation (5.43) will be

ovec(P) =7, (5.45)

Note from Theorem 4.3, in chapter 4, ' —H/NR'G, —-P'G,R'G; is regular.
The matrix (Inp+1 +Unxnp) isregular for p even and singular for p odd (refer to

chapter 3). So, to calculate Pp , two cases of calculus arise.

5431 p even

Noting from Theorem 3.18 in chapter 3, that the matrix(lnpu +Unxnp) is regular

— . —1 . -
for peven, then ./, isregular. Hence, ./, exist. From the equation (5.45), we
can write

1

vec(P,) =/, "7, (5.46)

p

Since al terms of //'p‘ and o
then deduce Pp.

! are known, it’s easy to calculate vec(P,) and

5432 p odd

To overcome the problem of singularity, Rotella and Tanguy [3] introduce the so-
called non-redundant j -power % of avector X as defined in Definition 3.6 in

chapter 3. Noting that X! :Tj)?‘” and X :fo‘” where T, is a transformation
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matrix and T, its pseudo inverse given in chapter 3, the equation (5.24) can be

written in terms of %/ Then, the coefficients of o

multiplied by T_,; ontheleft side, i e,

are given in (5.38) but

T+, (Ve FTR) Ve HINR'GTR) Vs (VR G )) =T, 7, (547
By thelinearity of the vec(.) operator and using V,, = B'G, , we have

T
Tp+l

(10a+U, )vec(( R —H/NR'G; -R'GR'G] )P, ) T 7, (548)
Also, we write

P=PT’ (5.49)
Injecting the equation (5.49) in (5.48) leads to

Tha(1 e +U_ Jvee((FT —H/NR'G] - R'G,RG] ) BT,

=Tou”,y (5.50)
By using Theorem 3.10 given in chapter 3, (5.54) will be

Tou

T, (5:51)

(s +U, 0 )(ToT ®1, vee((FT —HINR'G] ~R'G,R'G] ), |

By applying again Theorem 3.10, given in chapter 3, (5.51) will be

Toa(1es U, )(ToT ®1,)(1, ®(FT —HINR'G] -R'G,R G )
vec(P,)=T, .7, (5.52)
If we note

=Tl U, L) (T 1) (5.53)
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5 =71, ®(F ~HINR'G] ~F'G,R G/ ) (5.54)

p

Ay =T A, (5.55)

Then, (5.52) will be written

vee(B, )= 7, (5.56)

P P
The matrix ./; is arectangular matrix, of a pi1 FOWS and na, columns, which

has the property of being of full rank. Note that & , is the binomial coefficient as

defined in chapter 3. If we note ./"p+ the Moore-Penrose Pseudo-Inverse of ./; ,
i.e.,

Tt = (.7T.7).7T (5.57)
Hence, (5.56) becomes

(1., ®(FT —H/NR'G] -F'G,R'G] ))vec(lip) = A (5.58)

Since the matrix (I ®(FlT -H/NR'G; -B'G,R"'G] )) is regular, it can be

ap

inverted and hence vec( Pp) can be calculated. Once we have F~’p, we can easly

calculate P, through (5.49).

5.5 Calculusof the feedback control

By substituting (5.7), (5.9) and (5.10) into (5.5), we write

u :—Rl{NTZh: H, X! +(i(|n ® x”)GJTJ(g R.x" H (5.59)

i=1 j=0

that is,
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u = —Zhll RINTH, X! - zp;zg; RY(1,®x")G]Rx' (5.60)

i=1 j=0

Applying Lemmas 3.2 and 3.3, introduced in chapter 3, we obtain

U =Y RINTHX =Y S R mat]., (vec(RG, )¢ (5.60)
i=1 i=1 j=0
Hence, we can write
U = zuk K (5.62)
k>1
where
k k-1
=-R*N'H +>> matnTlxm(vec(Fi’TGj )) (5.63)
i=1 j=0
i+j=k
or equivalently,
k k-1
- R NH, +ZZ Vif (5.64)

|:lj

I+]

For the design of the suboptimal control based on the KP introduced above, as
given by Rotella and Tanguy [3], the stability of the closed loop system is not
ensured and not treated. Khayati and Benabdelkader [57] extend this work to a new
approach based on the Lyapunov Function to design a suboptimal control which
ensures the stability within an interval of attraction. This new approach will be
presented and discussed in chapter 6.
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5.6 Application to nonlinear scalar models

Example 5.1: Consider the tutorial example discussed in [3] defined by
X=-1.4x-0.5x" +(0.5-2.5%)-u (5.65)

where Xe R and U€ R are the state and the control input, respectively. The cost
functional to be optimized is defined by

j24x +2.50%) dt (5.66)
0

Referring to [3] the “exact” optimal control is

. 7X+2.5%% — x3/156.25x% — 25x + 55
o (5.67)
125(0.2-x)

This complex control function is hardly practical and unbounded for x=0.2. The
design of the sub-optimal control till the 2™ order leads to the computation of the

P andthe u, asfollows
P(x)=0.8324x—0.047x? (5.68)

U =—0.1664x + 0.8418? (5.69)

The design and simulation of the exact and sub-optimal control law of the 2™ order
leads to the exact cost J* and the suboptimal cost J . The results are presented in
Table 5.1 for different initial conditions, X(O), in terms of relative cost errors

‘j_

€ = in %, and different truncation orders n=1 (i.e, linear control), and

n=2.

The results show that the cost errors relative to the exact design are much higher
with the linear design than the second and third order designs. In fact, the linear
approximation of the state feedback does not take into account the nonlinearities.
Also, Figures 5.1 and 5.2 show the evolution of the state variable X and the control

variable u vs. timefor aninitial condition x(0)=6.
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Table 5.1 Exact cost and Sub-optimal costs errors vs. Initial condition for the scalar example (5.65)

x(0) Ny €y €2
10 0.3163 26.84 145
20 09112 70.01 1328
30 1.5857 11252 3255
40 2.2954 152,68 55.07
50 3.0250 190.40 79.14
6.0 3.7673 225.85 104.06
7.0 45184 259.23 129.48
80 5.2759 200.74 155.21
90 6.0385 32053 181.14
100 6.8049 348.77 207.22

Btate ws. Time

oo Exact controfler
== Linear controller

= ni order KP controller [

Time in sec

Figure 5.1 State evolution for scalar example (5.65)
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The simulations of the state evolution for both controllers show that the exact and
the sub-optimal controllers present almost the same behaviour.

Input vs. Time

--------- Exact controller
: _ ==+ Linear controller
= Ind order KP controller

_1 ’ i | 1 i
0 1 2 3 4 3
Time in sec

Figure 5.2 Input signal evolution for scalar example (5.65)

The simulations of the control inputs show again that the exact and the sub-optimal
controllers present the same behaviour.

Moreover, note that the simulation of the sub-optimal controls for the initial

condition x(0)=0.2, show the following costs J,_, =0.01652, J_, =0.01629

whereas the exact optimal control fails to stabilize the system for this particular
initial condition.

Example 5.2: Consider the tutorial example discussed in [58] defined by
X=X-X+U (5.70)

where xeR and ueR are the state and the control input, respectively. The cost
function to be optimized is defined by

82



Optimal control of polynomial systems using Kronecker product

J=%f(x2+u2)dt (5.71)

u =-P(x) (5.72)
where P(x) is solution of the state dependent equation
P(X)Z—Z(X—XS)P(X)—X2=0 (5.73)
An exact solution of (5.73) is computed using MAPLE software as

P(x)=x(1- % +x* 2 + 2= x(l— X+ -1)° +1j (5.74)
Hence, using (5.72), the “exact” optimal control is

u = x(x2 -1- M) (5.75)

The design of the sub-optimal control till the 3 order leads to the following
expression

_ 1++/2)
u:—(1+x/§)x+( +ﬁ jx (5.76)

The design and simulation of the discussed (exact and sub-optimal) techniques lead
to the exact cost J* and the suboptimal cost J of 1% and 3 order of truncation.

The resilts are presented in Table 5.2 for different initial conditions, x(0), in

terms of relative cost errors, e, = in %.

The results of the different simulations show that below an initial condition of 1.2,
the cost errors w.r.t. the exact design are higher with the linear (1 order) controller
than those of 3" order controller. The 3" order design represents a good estimation
of the exact controller since the errors are less than 5%. Figures 5.3 and 5.4 shown
below are respectively the evolution in time of the state variable X and the input
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control u for the three different controllers (exact, linear and 3" order) with an
initial condition of 1.

Table 5.2 Exact cost and sub-optimal cost error vs. Initial condition for the scalar example (5.70)

x(0) J Clinaz Cyugan
0.4 0.18 0.38 0
0.6 0.38 1.65 0
0.8 0.61 4.87 0.05
10 0.82 10.81 0.56
12 1.00 19.66 5.89
14 114 30.29 115.98

State evolution

1 tpeRERA R Teaeaeaes i o """"‘Exﬂ'ct M
't : =:=:]1at order & 2nd order
0.8 ....| =3rd order & 4th order ||

Time in sec

Figure 5.3 State evolution for the scalar example (5.70)
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Input evolution

1.5}
I
!
2 -l_' o Exact
1 = =+1st order & Ind order
: —3rd order &. dth order
2% 1 2 3 4 5

Time in sec
Figure 5.4 Input signal evolution for the scalar example (5.70)

We note from Figures 5.3 and 5.4 that the 3 order design shows a better curve
fitting w.r.t. the exact design than the linear one in terms of both the state variable
and input control. This improvement comes from the fact that we have a better
function estimation by the introduction of the nonlinearities in the estimation
process.

Example 5.3: Consider the scalar example defined by
X=X+x+U (5.77)

where xeR and ueR are the state and the control input, respectively. The cost
function to be optimized is defined by

J =%T(x2 +U° )t (5.78)

0

Note that the autonomous part of the dynamics (i.e., unforced system) is unstable.
from (5.10), the optimal contral is

u =-P(x) (5.79)
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where P(x) is solution of the equation
P(x)"=2(x+x*)P(x)-x*=0 (5.80)
The resolution of the equation (5.90) leads to
P(X) =X+ +(x+ )+ (5.81)
Hence, the “exact” optimal control is

* 2
u =—[x+x2+ (x+x2) +x2j (5.82)
The design of the sub-optimal control of the 3" order leads to

21 3
T=2X+X*+| ———=[X° 5.83

Z-%) 5%
The design and simulation of the proposed (exact and sub-optimal) techniques lead
to the exact cost J” and the suboptimal cost J . The results are presented in Table
5.3 for different initial conditions, x(0), in terms of the relative cost errors,
J—

J| . . .
3(0) —‘ , in % with the selected truncation orders one, two and three.

The smulation results show that below an initial condition of 1.0, the linear
controller works but with errors much higher than the nonlinear ones (of 2™ and 3
orders). For an initial condition higher than 1.0, the linear controller cannot
stahilize the system, in contrast the nonlinear ones are stabilizing ones, with the
advantage for the 3" order controller having smaller relative errors. Figures 5.5 and
5.6 are respectively the evolution of the state variable X and the input control u
for the different controllers (exact, linear, 2™ order and 3" order ones) for an initial
condition of 0.8.
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Table 5.3 Exact Cost and Sub-optimal costs errorsvs. Initial condition for the scalar example (5.77)

x(0) J €in €, €y

0.1 0.01 28.79 2555 | 25.39
0.2 0.05 3495 | 2701 | 2654
0.3 0.12 43.28 28.88 | 21.75
04 0.23 54.40 | 30.97 | 28.89
0.5 0.37 69.64 | 33.39 | 29.95
0.6 0.56 91.28 36.13 | 30.97
0.7 079 | 12332 | 39.15 | 31.85
0.8 1.07 176.50 | 4243 | 32.77
0.9 141 | 28612 | 46.07 | 3354
1.0 1.80 Unst. 4991 | 34.14
11 2.26 Unst. 5411 | 34.74
12 2.78 Unst. 58.62 | 35.29
13 3.37 Unst. 63.50 | 35.87
14 4.03 Unst. 68.70 | 36.33
15 477 Unst. 7421 | 36.80
16 5.59 Unst. 80.11 | 37.27
1.7 6.49 Unst. 86.45 | 37.73
1.8 7.48 Unst. 93.10 | 38.22
19 8.57 Unst. | 100.14 | 38.67
20 9.75 Unst. | 107.64 | 39.18
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State evolution

0.8 ; T : '
\ e Exact

0.7 \ : == 15t order
\ ===1nd order
: ' —3rd order ||

0.6

YD [+
-

0.5E
B804}

0.3

0.2

0.1

u b I-‘-"'li:'-l-l'l--“llll—l--lll - -
0 2 4 ] & 10
Time in sec

Figure 5.5 State evolution for the scalar example (5.77)

Input evolution

e Exact
= =]zt order -
——=2nd order
Ard order

0 2 4 6 8 10
Time in sec

_5 i i

Figure 5.6 Input signal evolution for the scalar example (5.77)
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The simulations of the exact, linear and (2nd and 3¢ order) nonlinear controllers,
with an initial condition of 0.8, show that for both the state and input control
responses, the best approximation of the exact controller behaviour is given by the

nonlinear ones (2™ and 3 order controllers) with a slightly better advantage for
the3™ order one.

5.7 Conclusion

In this chapter, we presented the optimal control of polynomial systems using the
KP method. In section 5.2, we stated the problem which leads to the equation to be
solved. In section 5.3, we made an approximation of the unknown terms into a
polynomial form in terms of the KP, which leads to the resolution of uncoupled
linear equations. The resolution of these equations is presented in section 5.4
leading to the calculus of the feedback optimal control law. In section 5.5, we
showed the application of this method to three scalar examples. Despite the fact
that this method enlarges the interval of attraction with higher order of truncation
in the equation of approximation, it does not guarantee automatically the stability
of the system. This stability will be guaranteed by the new method so-called KP-
Lyapunov-function-based control that will be presented in the next chapter.
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6 Optimal control using
Kronecker product Lyapunov
function based technique

6.1 Introduction

In chapter 5, we presented the optimal control method using the KP-based
polynomial expansion, which has the advantage of a larger domain of attraction
compared with the linear techniques. But, despite this advantage, this method has a
limitation. In fact, it does not guarantee the stability of the closed loop system since

the computation of the cost function V(x) does not satisfy the conditions of the

stability. Alternatively, we will propose a new method by choosing V(x) in a

guadratic form to satisfy the conditions of a Lyapunov candidate function and then
guaranteeing the globa asymptotical stability (GAS) in the sense of Lyapunov,
eventually [57].

This new method will be the aim of chapter 6. After introducing this chapter, we
will state, in section 6.2, the optimal control problem. In section 6.3, we will
transform the problem into a system of uncoupled linear equations and we will

choose the cost function V(x) in appropriate form to ensure the GAS. The

resolution of these linear equations for a given order of truncation will be showed
in section 6.4. For each order, we will present the agorithm to calculate the
different gain matrices. Based on the calculation of these gains, we will present in
section 6.5 the state feedback design which leads to the sub-optimal control law
using the KP-Lyapunov-Function (LF) technique. In section 6.6, we will check the
stability of the closed loop system. In section 6.7, we will illustrate the
improvement in terms of control performance through two nonlinear plants. a
scalar example and the F8 fighter model. For both systems, we will run the
simulations and compare the results using three techniques Linear, KP, KP-LF
based ones. Finally in the conclusion, we will summarize the sections of this
chapter and the main contributionsin terms of stability framework.
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6.2 Statement of the problem

Let’s consider the nonlinear dynamics

X(t)=F(x)+G(x)-u(t)=F(x)+ > G, (x)-u(t) (6.1)

m
k=1

where teR is the time, X(t)eR" the date  vector,
ut)=[w(t) .. u,(t)] eR™ is the input vector. F(.),G,(.), for

k=1,...m, are anaytic vector fields from R" into R". Note that
G(¥)=[G(X) || G,(x)]eR™™. Wewrite

F(x)=2F ' 6.2)
i>1

G (x)=>G,-x!  Vvk=1..m (6.3)
j=0

G(x):ZGj(lm@)x‘”) (6.4)
j=0

with F eR™, G, eR™vk=1..m and G =[G, |.| G,|eR™™ . Let

z(t)=H (x) e R® be avector function of the states given by

H(x)=YH, % (6.5)

i>1
The problem of optimal control is to design a state feedback which minimizes the
continuous time cost functional

3 :% J[[2(t)" Qz(t) +u(t)" Ru(t)]ot (6.6)
0

where Q is a non-negative definite matrix of R*? and R is a positive definite

matrix of R™™. We denote by V(x) the optimal cost with an initial condition X

at t [42).

V(x)==

NI
-8

[ 2(t)" Qz(t)+ur(t) Ru(t) Jat 6.7)
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where U’ = arg(mi n, J) is the optimal control. As widely discussed in chapter 4,
the optimality conditions are given as follows [42]

u (x)=-R'G( x)T V. (X) (6.8)

H(X)" QH(X)+V,(X)' F(x)+F(x) V,(x)-V,(X) G(X)R'G(x) V,(x)=0  (6.9)

X

where V, (X) = Z—V denotes the derivative of V (x) wurt. the state vector x.
X

6.3 Equation of approximation

Based on the optimality condition (6.8) and (6.9), the design of the optimal state
feedback that will be discussed later is proposed in polynomial form using the KP
tensor, the vecand mat notations [3-57]. This design is based on the determination

of the cost function V (x) presented in a quadratic form. According to [5], V(X)
would be expected to satisfy the conditions of any Lyapunov candidate function.
Let's consider the V (x) in form

X

V(X)=%£XT ZXJT'P]'TJ( P aan ZP .X“‘ (610)

= al, |1,

with aeR, P=P">0 in R™ and P; j>2; constant matrices of R™™ .
Assuming that P is a symmetric positive definite matrix, and using the Cholesky
decomposition, it exists P, in R™" such that P=PR'P. Then, by substituting

(6.10) in (6.9) and replacing P by B'P,, the equation (6.10) can be written as

V()= BRI ST ST RN 2T SRR (61

i>2 j>2 i>2 j>2
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If we note
B if i=j=1
P.=<al if i=1j>2 (6.12)

Then V( X) can be written as

SR LTS ) ML L

i=1 j=1 |>2 j=1 i=1 j>2

+ ZZX”T RlPioX! (6.13)

|>2 j22

Hence, V (X) iswritten in a compact form as

1 i |

v(x)=EZZx‘ "Rl P X (6.14)
i1 j>1

The equation of V(x)given by (6.14), where P, is introduced in (6.12) will be

advantageous to solve the nonlinear equation (6.9) in V,. By applying the
derivative of the equation (6.13) wrt. x, wehave

oxim
Xz__zz X —PR X (6.15)
i=1 j=1
Referring to Lemma 3.1 introduced in chapter 3 to write
ax“‘ li-1
7 =D (1, ®x") (6.16)

where D{"” is the square j -differential Kronecker matrix of R™*" introduced in
chapter 3. Thus, the expression (6.15) will be

v, =ii(ln®x‘j’”T)D”)T PP X (6.17)

X
-1 j=1
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Applying Lemmas 3.2 and 3.3 introduced in chapter 3, to the expression
(1,©xT)DO" PT R X! leadsto

(1, ®X7T)DT Pl R X! =(1, @ vecT (R R, DI ))(vee(1, ®1,,,0)) X1

i) i)
=matl. (VeC(FﬂJ)TPJ(i)DEn) ))X‘M (6.18)
We note
Vi =maty, (VeC(FﬂJ)TPJ(i)DJ( ")) em (6.19)
Hence, the equation (6.17) will be
V=Y Sy K (6.20)

ix1 j>1

Injecting the equations (6.2), (6.4), (6.5) and (6.20) into (6.9) leadsto

z i j_urVijT F. NG z KT FkT\/”_ ot Z x\i\THiTQHj xK

i)j.k=1 i)jk=1 ij>1
—[Z > XIEVIG (1, @ XK )} R‘{ > (1.exXT )vabcxb*cq =0 (621)
i,j21k=>0 b,c>1d>0

By using Theorem 3.14 and Lemma 3.3, we have

> vec (VIR )X S vedT (R )X 4 Y veT (HTQH, )X

i,j.k=1 i,j.k=1 ij>1
_[%;m;w&m (V&:(V”TGK ) Nk )} R—l|: t%:l;)ébmm’l WHI,;mflxm (va:(vthd ))} =0 (6.22)

If we note

i+j+k—1

W =mat .. (vec(V]G,)) eR™ (6.23)
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Hence, the equation (6.22) will be

> vec (VIR )X S ved” (R )X 4 Y veT (HTQH, )X

i,j,k>1 i,j,k>1 i,j>1

_ Z Z vec' (V\/iijfl\Nbcd ) X\i+j+k+b+c+d—2\ -0 (6.24)

i,jb,c21k,d>0

In order to obtain the optimal control U™, we have to find the polynomial V (X) .In
other words, we have to calculate the different terms Fi’, i e N . Theterms F,’ are

obtained by cancelling the coefficients of x4 in (6.24). This procedure is the
subject of the following section.

6.4 Determination of P

6.4.1 First order

The calculation of B from (6.24) is given by the cancellation of the coefficients of

X% . Noting that the first differential Kronecker matrix is given by D™ =1 _ and
that P=R'P, we use (6.13), (6.19), (6.23), (6.24) and the mat notation to obtain

vec(PF,) +vec( F,P) +vec(H, QH, ) - vec(PG,R'G; P) =0 (6.25)

Since the operator Vec(.) is linear w.r.t. the matrices of the same dimensions, the
equation (6.25) will be

PF,+F'P+H,QH, - PG,R'G/P=0 (6.26)

The equation (6.26) is the classical ARE and P, given from P=P'PR isthe gain
matrix of the optimal linear controller for the linearized system.
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6.4.2 Second order

The calculation of P, from (6.24) is given by the cancellation of the coefficients of
X . We obtain

vec (VZT1 Fl) +Vvec (Vlz Fl) +Vvec (Vll F, ) + vec( FlTVZl) + vec( F'V,, ) + vec( FZTVH)
+vec(H, QH, ) +vec(H; QH, ) - vec(Wy;,R "W, ) — vec (W3, R Wiy, )

_V&(WLF\TWm) - VeC(V\ﬂo F(]V\élo ) - V&(V\ﬂo F(]\Mzo) - Vec(\/\ﬁo F(Wu) =0 (6.27)

By using (6.13), (6.19) and (6.22), noting that D" = I, and applying Theorem 3.9
, Theorem 3.10 and the mat notation given in chapter 3, the equation (6.27) will
be

(R ®1,)u, avec(R)+(F ®I1.)(D" ®1,)vec(R,)a +vec(PF,)

U, (R ®I1.)u_.ave(R)+U, (R ®I.) (D" @I, )vec(R)a

+vec(FP)U .. +vec(HIQH, )+ vec(HIQH, ) -((PGRG] ) ®1 .U, .a vec(R)

V.., (PERIGT)®1, U, veo(R)a -((PGRIG] @1, )(Df" ®1, )a vec(R)
U, (PR )21, (D0 @1, Ja ver(py)-ves( PG 1, 0 RGP

U, vec(PG (I, ®R'G,P))=0 (6.28)

In fact, we have
vec(VleFl)zvec[mat (vec(pT , D ))Fl}
:vec[mat (vec(PTa I, n)) Fl]

—a vec[matnzxn (vec( R )) Fl}

-a vec(PTF)
(F ®1I ) (PT)
=a(F'®l1.)U_ .vec(R,) (6.29)
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vec(Vlel):vec[mat (vec PP D(”)))Fl}

~vec| mat,, (vec(al,R,D{"))F, |

=a vec[mat vec PD‘”’ J
P

—a (F®I, )vec[mat ( ec(P,D{’ ))}

=a (F ®I vec(R,D{")
=a (R ®1,)(D"" @1, )vec(R,) (6.30)

VeC(FzTVn):VeC[FT matT (VeC(F’T P )Dl(”)))}
= [FT mat;,
:vec[FT mat”

= vec(F; P) (6.31)

vec(Woi R Wy ) = vec[matnzxm (vec(VZTlG0 )) R mat! (vec(vllGo))J
= vec(V,;G,RGyV,, )
:vec(a P/G,R'G,P )
=a((PGR'G])®1 , Jvec(F))
=a((PGR'G])®1 .U, .vec(R) (6.32)

vec (Wi, R ™ ) = vec[matnzxm (vec (Vs G, )) RYmat! (vec(VIIG0 ))}
= vec(V;;G,R GV, )
= vec(V,;G,RG; P)

=a((PGR'G])®1,)(DI @1, )vec(R) (6.33)
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and

veo(WELR W) =vec| mat, (veo(\[G,)) R * et (veo( VG,

(et (vee(v16) R (v |
_vec(mat _(vec(PG, )) R'G P)
=((PesR™) ®|n2)vec (vec(PG,)))
( PGT )vec
(( (PGRY)®1,)®1, )
:vec(PGl((PGT Hel,) )
= vec(Pq( I, ®(R‘lGOP))) (6.34)

The remaining terms of (6.27) are combined with (6.29) to (6.34) using Theorem
3.9 given in chapter 3. Then, we abtain

(U + 1 [vec(F P)+(F ®I.)au, .vec(P,)

)
+(FT ®1,)(D{"" @1, )a vec(P, )+ vec(H, QH, ) -
(PeR'Gy)®1 . )au, .vec(R)—((PGR'Gy)®1 . )a (DI @1, )vec(R,)

~vec((1, ®(PGIR™))G] P)J:O (6.35)

Based on Theorem 3.18, introduced in chapter 3, we notice that (Unzxn + |n3) is
regular for any ne N . Then we have

vec(FP)+(F ®1.)au, .vec(R)+(F @1 .)(D{" ®1,)a vec(R,)
+vec(H2TQHl)—((PGOR’lG§)® I, )a U__vec(R)

~((Pe,RGy) @1, )(DY ©1,)a vec(Pz)—vec((In ®(PGIR?))G] P)=o (6.36)
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Grouping al the terms containing vec( Pz) in one side and the rest (known terms)
in the other side leads to

[(FI—GOR'lG; P) ® |}[u +(D ®1,) Ja vec(R,)

- vec[(( PG,RG; )®1 . )(PG,)~HQH, - F, P} (6.37)

Since [U . +(D§”>T ® |n)]= D" (use the definition of the differential matrix

nx

shown in chapter 3), the equation (6.37) will be

[( F,-G,R'G,] p)T ®1, ] D{""a vec(R,) :vec[(—Fz +Gl(|n ®(R-1G0p)))T p— H;QHl} (6.38)

We note
% =|(R-GR'GP)®I_ ] (6.39)
and

= —vec{( F,-G (I, ®(R’1GOP)))T P+ HZTQHl} (6.40)

Hence, the equation (6.38) will be

,D{""a vec(B,) = 7, (6.41)

Since P=P" >0 is solution of the ARE (6.26), (F1 -G,R'G, P) is regular. But,

D{" is singular, for any integer n>2. We use the non-redundant vector power
notation, introduced in chapter 3, to write

R =R, (6.42)

where T, e R™*" with t "’ stands for the binomial coefficient [22]. From (6.42),
we can write

R=RT, (6.43)
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where T, isthe Moore-Penrose pseudo-inverse of T, defined by

-1

T, =T, (TT})
thus, (6.41) becomes

;' D{"a vec(RT, )= 7,

Using Theorem 3.7, we obtain

a.;, DI (T, @I, )vec(Ry) = 7,

Define

T,=(T,; ®1,)D{"

and T, its Moore-Penrose pseudo-inverse given by
T =T (1)

We obtain from (6.46)

vec(B)=a 'T,". ;7 7,

then, P, = BT, can be deduced.

6.4.3 General order

(6.44)

(6.45)

(6.46)

(6.47)

(6.48)

(6.49)

The calculation of B, from (6.24) is given by the cancellation of the coefficients of

X" We obtain
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p._p p-1p-1 p
> > vec(HTQH, )+vec(VoF )+ vec(ViiF )+ D> vec(VF )+ vec(FV,,)
i=1 j=1 i=1 j=1 k=1
] Jp+1 Tik’pT
p-1p-1 p
+V€C( )+ - 121 VeC( ) VeC(WpTloR 1\Nuo) VeC(V\QoRil\Mlo)
i= ]:
i+j+k=p+2

—vec( 10 plO) VeC(V\{IoFT]V\{po)_f3 ‘ ZZ V&(V%TkR_]\Mod):O (6-50)

i+j+k+b+c+d=p+3

By replacing V and W by their values according to the definitions (6.19) and
(6.23), using (6.12) and applying Theorem 3.9, Theorem 3.10 and the mat
notation, introduced in chapter 3, the equation (6.50) will be

Zp:i vec(H'QH; )+(F' ®1,)u_ .a vec(P,)+(F' ®1,)(DS" ®1,)a vec(P, )

“erpto
#2323 vee(VR )+, (R @1, )U, a vec(R)
i=1 j=1k=1
|+Jj+k p+2
p-1p-1 p
U, (K @1, )(DY @1, )a vee(R,)+ 33> vee(RY, )
i=1 j=1 k=1
i+j+k=p+2

p

(6R'GIP) @1, |au, vec(P,)-

(GRGIP) @1, |(DY" @1, )a vec

D) > vec(V\/ijTk R™W,, ) =0 (6.51)

i+j+k+b+c+d=p+3
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In fact,

=(R' ®1,)a vec(R)

:(F:LT ® Inp) a Unxnpvec(P ) (6.52)

p

vec(VTF) vec[mat (vec PT P Dy’ )FJ

1p
~vec| mat,, (vec(al,R,D{"))F, |

np-p

=vec[mat (avec(P,DY J

. )a vec[ (vec(Png”) ))}
)

a vec(P D‘"’)

(np

=(F'®1,)(D{"" @1, )a vec(P, ) (6.53)

)
vec(W, R W) vec[ vec (VoG ))R‘1 mat’ (vec(VlIGo))}
= vec(VplGOR 'GyVyy )
=vec(a P G,R'G; P)
=((PG,R7G])®1 , )a vec(R) )
=((Pe,R7Gy)®1,)u, .a vec(R,)

~((@ReIP) @1, )u,,a vec(P,) (654)
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vec(WioR "W, ) = vec[matnpxm (vec(vlTpG0 )) R mat! (vec(VIIG0 ))]
=vec(V,,G,RGyV,, )
= vec(V,;G,R "G, P)
=((PG,R'G]) @1, )(DY" @1, )a vec(P,)
~((GRaP) @1, (D" @1, )a vec(P,) (6.55)
Using Theorem 3.9, introduced in chapter 3, we write
vec(F'V,,)=U, vec(V,F)

=U, (F'®I,)u, ave(P,) (6.56)

vec(FlTvlp)=unpxnvec(vl; Fl)

=U, (F'®l1,)(Df" @1, )a vec(P, ) (6.57)
vec(WR™W, ) =U , vec(W),R W)
=U_, ((P&R'G])®1 ,)au, , vec(P,)
=U_, ((GOR—lc;g p)T ®I, )a u_. vec(R,) (6.58)

1p0

vec(WoR™W,, ) =U |, vec(W,R™Wy,)
ST ((PGOR’ng)Qb l, )(Dg‘>T ®1,)a vec(P,)
U pxn((GoR’ng P) ®1, )(nyT ®1,)a vec(P, ) (6.59)

n

Note that, by definition, D" ®1, +U = D™T In fact,

p+1
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p-1

nxnP

. T
DT @I, +U_ =[ unim®|np1j ®1,+U
i=0

p T
Unixn ® In"”i j
=0

= DT (6.60)

If we group all the unknown terms in P, in one side and al the known terms (the
remaining terms) in the other side, the equation (6.51) will be
p+1

(l +unpxn)[(Fl ~G,R'G] P)T ®1, } D{a vec(P, ) =

p1plplplplpl p-1p-l p

vec(WLR W, )= 3> > veo(V[F, )
i=1 j=1k=0 b=1 c=1d=0 i=1 j=1 k=1
i+j+k+b+c+d=p+3 m
p-1p-1 p T p P T
2 VeC(FkVij)—ZZ vec(Hi QHj) (6.61)
i=1 j=1 k=1 i=1 j=1
i+j+k=p+2 i+j=p+l
We note
o =(R-GR'GP)®I, (6.62)
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p-1p-lplpipipl plpl p

Z2DPIDP) vec(W, R, )—ZZZ vec(Vj'F)
i=1 j=1k=0b=1 c=1d=0 i=1 j=1k=1
i+]j+k+b+c+d=p+3 m
p-1p-1 p P P
=23y vee(RY, ) - ZZ vec(HQH, ) (6.63)
i=1 j=1 k=1 |:1 j=1
m i+j= p+1

Hence, the equation (6.61) will be
(10 +U,,..) % Da vec(P, )= 7, (6.64)

p+1

(n)T

Notethat . " isregular since (F, - G,R'G; P) isaHurwitz matrix [3]. DY} isa

singular matrix for all integers p>2. (1 .. +U, ) is regular for p even and
singular for p odd. Using the non-redundant vector power notation introduced in
Definition 3.6 of chapter 3, we can write

P=PT (6.65)

nPx Q) . n . . . .
where T, e R " witht fj) stands for the binomial coefficient [22]. From (6.65),
we can write

P=PT’ (6.66)

where T, isthe Moore-Penrose pseudo-inverse of T defined by

T =T (L) (6567)
Two cases arise depending on p even or odd.

6.43.1 p even

We combine (6.64) and (6.66)

(1,00 +U,,.. ) 7% Dl a vec(B,T, ) = 74 (6.68)

By applying Theorem 3.10, introduced in chapter 3, (6.68) will be
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(100 +U,0 )7 DI (T, ®1,)a vee(P, ) = 7, (6.69)
Define

T,=(T, ®1,)Df, (6.70)
Then, (6.69) will be

(1o +U,.) 7% Ty avec(B,)= 7, (6.71)
Given T, the Moore-Penrose pseudo-inverse of T,

T =T (T (6.72)

Hence, considering the fact that (1 .. +U , ) is regular for any p even (see
Theorem 3.18 in chapter 3), (6.52) will be

vee(P,)=a " T," 2T (1 +Unpxn)_1//P (6.73)
If P, P, ..., P, areknown, P, can be caculated from (6.73). Then, P, =P.T
is deduced.

6.4.3.2 p odd

Note that (1, +U , ) issingular for any integer n>2 and any integer p odd.

The equation (6.24) can be written in terms of %. Then, the cancellation of the
coefficientsof X" lead to (6.44), but pre-multiplied by T7

p+1-*

T;fl( I nPt +U nPxn ) /;T DE)TIa VeC( Pp) = TpT+1’//P (674)
Define
So=Tou"s (6.75)

106



Optimal control using Kronecker product Lyapunov function based technique

Then, (6.74) becomes

TpTJrl(|np+1 +Unpxn)_ /;T Dgl)lTa vec(Pp) = ,//; (6.76)
Since P, = |5pr+ , by applying Theorem 3.10, in chapter 3, (6.57) will be
Toa(loe +U ) % DO (TT @1, )a vec(B,) = 7, 6.77)

p+1?

UsingT, =(T, ®1,)D{7,, we obtain

Tpil(ln,,ﬂ +Unpxn)./;TTpT a vec(ﬁp) =/, (6.78)
Define
: /i = Tp' /;(Inml + Unpxn )Tp+1 (6.79)

and . /," its Moore Penrose pseudo-inverse

(AT A AT (6.80)

Hence, we obtain

vec(P,)=a " ;5" 7, (6.81)

If P, P, ..., P, areknown, P, can be caculated from (6.81). Then, P, =P.T
is deduced.

6.5 Statefeedback design

Consider the nonlinear dynamics (6.1). The optimal control which minimizes the
functional cost (6.6) is obtained by the optimality conditions (6.8) and (6.9). We
propose to use the procedure introduced in sections 6.2 and 6.3 with an optimal

cost V(x) in the form of (6.10). To solve the obtained nonlinear SDR equation
(6.9), transformed in the form of (6.23), it was shown that the cancellation of the

terms x?, X, ..., X", ... leads to independent equationsin P, P,, ..., P,,..
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respectively. The optimal control can be introduced in an analytical form u” (x) by
using (6.8), (6.19) and (6.22).

u(x)=-y pr‘p‘ (6.82)
p=>1
with
. p p p1
Ky=R"->> > W, (6.83)
i=1 j=1k=0
i+j+k=p+1

Thus, the KP tensor used here allows a systematic determination of the optimal
state-feedback. In practice, we proceed by the design of an approximated

suboptimal cost V(x) in form (6.10) which leads to the computation of finite

number of independent equations in P, PB,, ..., Pp The obtained suboptimal
control will be simply truncated at maximum order of 2p+g-1, asfollows
2p+g-1
a(x)= > Kx" (6.84)
p=1

where g is the order of the polynomial term G(x) introduced in (6.4). Note that
the proposed nonlinear feedback (6.83) and (6.84) will not necessarily be
implemented with a great number of matrices P, to be so different from the linear

control approximation. It can be concluded that the state-feedback obtained with
only P (i.e, only the first order of the SDR equation) is more efficient than the
solution issued from the linearized system according to [3]. In fact, by computing
only P, we may obtain a polynomial sub-optimal control of order g+1 (where g
is the order of the term G(x) in (6.1)), in particular, when g is non-zero. The

stability of the proposed sub-optimal state feedback (6.83) and (6.84) will be
discussed in a further work [57] by considering the approximated cost function

V (X) asaLyapunov candidate function.

6.6 Stability discussion

In this section, we discuss thoroughly the stability of the closed loop system in
large by considering the analytic expression of V(x) given by (6.10) as a
Lyapunov candidate function. In one hand, using (6.10) and (6.11), we write
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P aR - aP -\ X
aPl FPR - PP - X2

V(x)= (xT X2 X’ ) E ST | (6:89)
aPJ.T p]_Tp2 pJTp] e ||

P,P,,...,P,... are caculated using (6.26), (6.73),(6.81), and are independent of

IR} j
a.lf

P abk, - aP

aFl BB - PP

: RS : >0 (6.86)
T T T

aF PR - PP

then, V(x)>0,Vx#0. Note that from (6.10) we obtain V(x)>0 if
P=P" >a?l .Intheother hand, the time derivative of V (x) along the trgjectories
of the closed loop system (6.1) with the optimal control u”(x), given by (6.82), is

[5]

v (t)= a;f (1)

=Vi(¥)"(F(X)=G(X)R'GT (x)V,(¥))

X

——ZH(X) QH () -2V, (x) G(IRGT (YV, (x)

=~ ZH (%) QH ()~ u (x)" R (x) (6:87)

Noting that Q=Q'20 and R=R' >0, then V(t)<0,Vx=0 [5].

Consequently, if P>a?l holds, then the optimal state-feedback control (6.1)-
(6.9) is GAS. The stability analysis of the closed-loop sub-optimal control is
discussed in details in [57] in terms of LMI feasibility problems including the
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estimation of the domain of attraction of the designed control. Such LMI problems
can be solved numerically by using any interior point optimization method
implemented in MATLAB using the LMI control toolbox (see [57] and references
cited therein).

6.7 Numerical applications

Example 6.1 (Scalar Example): Consider the following dynamic model (same as
Example 5.1 of chapter 5) defined by the dynamics

X=-1.4x-0.5%" +(0.5-2.5x)-u (6.88)

where xe R and u e R arethe state and the control input, respectively. We recall
the "exact" optimal controller and the 3 order K P-based controller

_ 7x+ 2.5 — x3/156.25x% — 25x + 55
e 12.5(0.2-x)

(6.89)

Uy =—0.1664x + 0.8418%? + 0.0719%° (6.90)

By applying the algorithm proposed in this chapter using (6.12), (6.19), (6.23),
(6.26), (6.73), (6.81), (6.83) and (6.84), we design a new Lyapunov-based KP
controller. The LF based controller of 3 order is given by

U, =—0.1664x+0.8355x’ + 0.1018x" (6.92)

Obviously, we can see that the linear controller designed from the linearized
systemis

u,, =—0.1664x (6.92)

The design and the simulation of the proposed four (Exact, Linear, KP and LF)
techniques lead to the suboptimal costs J,,q, Jin, Jep @d J.- . Theresults are

presented in Table 6.1 for different initial conditions, x(0), in terms of the cost
vaue J,., for the exact design, and the relative cost errors in 9%,

Jun—J _ . Jeo —J
€., =——=2 for the Linear design, Cp(n) = —KP___Badl for the n" KP

‘J Exact Exact
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‘]LF _‘]Exact

design and €, = for the n™ LF design. The selected truncation

Exact
ordersare n=2 and n=3 respectively.

Table 6.1 Exact cost and Sub-optimal costs Errors vs. Initial condition for the scalar example (6.88)

X(O) Jexam Lin KP(2) LF(2) KP(3)

1.0 0.3163 26.84 1.45 0.13 2.37 0.03

20 0.9112 70.01 13.28 1.02 20.02 0.02

3.0 1.5857 112.52 32.55 2.19 49.37 0.32

4.0 2.2954 152.68 55.07 3.37 85.40 149

5.0 3.0250 190.40 79.14 4.47 126.17 2.10

6.0 3.7673 225.85 104.06 5.49 170.89 173

7.0 4.5184 259.23 129.48 6.43 215.19 1.36

8.0 5.2759 290.74 155.21 7.29 270.84 132

9.0 6.0385 320.53 181.14 8.09 325.74 1.38

10.0 6.8049 348.77 207.22 8.84 383.83

2

The results of the different ssimulations show that the cost errors are much lower
with the LF-KP design than the other methods (Linear and KP), (see €, and

€.ry Columnsin Table 6.1). Furthermore, for the performance of the3™ order LF

design is better than those of the second order. The errors decrease and we get a
satisfactory improvement in terms of cost estimation, curve fitting of the state
variable w.r.t. to the “exact” solution and input magnitude. This improvement is
supported also by Figures 6.1 and 6.2 which show the process variable x and the

input variable u evolutions for an initial condition X(0)=6.0with the different
techniques of control (“exact” design, Linear design, KP design of n=2and n=3
and LF design of n=2and n=3).
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The simulation results for state evolution shows that best fitting w.r.t. the exact

controller is given by the 3 order LF one, which presents the best predicted
behaviour of the exact controller.

In terms of input control, the best fitting is guaranteed by the LF 2nd order
controller, presenting almost the same behaviour as the exact controller.

state va. time for different controllers

Exact

Lirear

KP 2nd order

———KP 3rd order
LF Znd order
LF 3rd order M

5

time (s}

Fig 6.1 State evolution for different controllers of the scalar example (6.88)
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caontrol input vs. time for different controllers

45 | |
Exact
i %I : Linear I
I KP 2nd order
) : : —— —KP 3rd order ||
i
LF Znd order
30 i |
; — — —LF 3rd order
Iy A . |
2% iy
= 0|54
Loy
E-3 SRS _
10 _
gL......: S s _
Ul— | . ._ T — ,'T g4
5 - !

i i 1 i i i i
] 001 002 003 004 005 006 OO0F OO 009 0.1
time (s)

Fig 6.2 Input control evolution for different controllers of the scalar example (6.88)

Example 6.2 (F8 Fighter Model): Consider the F8 fighter dynamics model [59]

X =—0.88X, + X, — 0.09x X, + 0.47%2 — 0.02X? — XX, + 3.85X’
—0.21u + 0.28x2U + 0.47xU? + 0.63U° (6.93)

% =% (6:94)

%, =—4.21x —0.40x, — 0.47x’ — 3.56x° — 20.97u + 6.26x’u
+46x,u’ + 61.40u° (6.95)

with the optimal cost function

0

J =%j(xTQx+ u'Ru)dt (6.96)

0

where X=(% X, %) is the state vector, Q=diag(0.25, 0.25, 0.25) and

R=1. Note that the terms involving nonlinearities in u with small effect on the
dynamics are eliminated, as the approaches discussed here cannot account for
nonlinear control terms [59], but are taken into consideration in the simulated
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model dynamics. The simulations have been applied with the proposed LF-based

technique as well as the linear control, Lin, where the model is linearized about the

origin, the KP-based design introduced in [3] and an SDR-equation-pointwise-

based technique [59] (referred to as pw in the following). The sub-optimal cost J,

is evaluated with different initial conditions in terms of angle of attack, that is

% (0) in degree, but with the same initial conditions x,(0)=x,(0)=0, for the
J, —J

pw

different methods. Table 6.2 shows the cost performance errors €] = in
pw

%; LF- (with p=2 and p=3), KP- (with p=2 and p=3) and Lin-based

design costs are compared to the pw-technique one. A positive value corresponds

to an improvement (i.e., alower cost) with the given method compared to the pw

one; meanwhile the negative value means a higher cost. The LF design discussed

in this chapter exhibits the best results in terms of cost performance.

Table 6.2 Cost index J™ and Sub-optimal costs errors vs. initial conditions for the F8 fighter

%(0) J s | o) €52) e)os e;"
6 0.0016 20.2 18.6 -0.6 -0.8 0.0
12° 0.0071 | 2338 228 -16 26 0.2
17 0.0196 30.9 30.3 -37 -6.8 -0.7
23 0.0519 46.3 457 -13.3 -31.7 -4.3
20° 0.1056 48.3 46.3 Unstable | Unstable | Unstable
3% 0.4081 714 65.6 | Unstable | Unstable | Unstable
1.6170 585 50.9 Unstable | Unstable | Unstable
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Angle of attack vs. time

25 - -
— — - SDE-Pointwise-based Design
20k ==~ Linear Design
@ 3 ©2ned order KP-bazed Design
g; "'" 2nd order LF-based Design
151 1";: : == =3rd order LF-based Design
8 3
_E —
g 10+ ] .
]
(=]
Ao
2 |
ﬂ -
-5 5 L i
0 3 10 15 20
Time in sec

Figure. 6.3 Angle of attack evolution for different controllers of the F8 fighter

Input effort
20 - . .
=-=--SDR-Pointwise-based Design
15} === Linear Design |
1 v 2nd order KP-based Design
— 2nd order LF-based Design
10 ===3rd order LF-based Design |1

Tail defelection in degree
i
—

-10 L i i 1
1] 2 4 i 8 10
Time in sec

Figure. 6.4. Input control evolution for different controllers of the F8 fighter
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Figures 6.3 and 6.4 show the angle of attack and the input control simulation
results, obtained with the initial condition x,(0)=23 . Simulations of LF-based

design, with order of truncation of p=2 and p=3, overlap almost during all the

time. They show very similar results in terms of transient behaviour and stability.
Furthermore, the proposed LF design (with both orders p=2 and p=3 which

remain relatively small) exhibits a significant added-value in terms of cost
estimation and domain of attraction interval performances compared to the other
methods.

6.8 Conclusion

In this chapter, we presented the method of optimal control using the KP-LF-based
method. After introducing this chapter in section 6.1, we stated in section 6.2 the
problem of optimal control. The main contributions in terms of stability framework
is shown in section 6.3, in which we presented the equations of approximations
which transform the main equation to uncoupled linear equations and by choosing
the cost function in a quadratic form satisfying the Lyapunov candidate function
conditions to guarantee the GAS. The resolution of the algorithms of theses
equations was presented in section 6.4, in which we calculated the different gain
matrices for different orders of truncation using the KP algebra. In section 6.5, we
presented the corresponding state feedback optimal control law. In section 6.6, we
checked roughly the stability of the closed loop system. In chapter 6.7, we
illustrated the improvement in terms of control performance of the new technique
through two nonlinear plants. Finally, in section 6.8, we conclude this chapter.
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7 Applicationto a 2-DOF
helicopter model based setup -
simulations and experiments

7.1 Introduction

The main objective of this chapter is to apply the proposed design method to a 2-
DOF helicopter-model-based setup in order to test its efficiency. In the first
section, we introduce this chapter. In section 7.2, we give a brief description of the
system. In the third section, we present the model dynamics. Then, in section 7.4,
we present the design method of the proposed linear and nonlinear controllers of
different orders of truncations. In section 7.5, we present the simulation results of
the proposed controllers. In section 7.6, we present the experimental results for the
same controllers. Finaly, we conclude this chapter in section 7.7. Note that further
simulations and experimental results have been completed in Appendices E and F
respectively for different desired trgjectories.

7.2 Description of the system

The 2-DOF helicopter model, as shown in Figure 7.1 and designed by Quanser Inc,
consists of a helicopter model mounted on a fixed base with two propellers that are
driven by DC motors. The front propeller controls the elevation of the helicopter
nose about the pitch axis and the back propeller controls the side to side motions of
the helicopter about the yaw axis. The pitch and yaw angles are measured using
high resolution encoders [61]. The helicopter has two DC motors. the yaw motor,
actuating the back propeller and pitch motor rotating the front propeller.
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Figure 7.1 Quanser 2-DOF helicopter set up

The helicopter-based setup has two encoders measuring the pitch angle and the
yaw angle [61]. The yaw motor has an armature resistance of 1.6Q2 and a current

torque constant of 0.0109NnY A . The larger pitch motor has an armature resistance
of 0.83Q2 and a current torque constant of 0.0182Nmy A . The pitch motor/propel ler
has an identified thrust force constant of 1.04N/V and the yaw motor/propeller
has a thrust force constant of 0.43N/V . Table 7.1 summarizes the main electrical
and mechanical proprieties of the 2-DOF helicopter system, as depicted from [61].
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Table 7.1 Electrical and Mechanical proprieties of the 2-DOF set up [61]

Symbol Description Value Unit
Jgp | Total moment of inertia about pitch axis 0.0384 Kg.m?
Jygy | Total moment of inertia about pitch axis 0.0432 Kg.m?
Mg Total moving mass of helicopter 1.3872 Kg
lem Center of mass length along helicopter body from pitch axis 0.0186 M
By Equivalent viscous damping about pitch axis 0.800 N/V
By Equivalent viscous damping about yaw axis 0.318 N/V

Kop Thrust torque constant acting on pitch axis from pitch /propeller 0.204 N.m/V

Koy Thrust torque constant acting on pitch axis from yaw /propel ler 0.0068 N.m/V

Ky Thrust torque constant acting on yaw axis from yaw /propeller 0.072 N.m/V

Kyo Thrust torque constant acting on yaw axis from pitch /propel ler 0.0219 N.m/V

7.3 Dynamicsof the system

7.3.1 Modd of the 2-DOF helicopter and state space representation

The 2-DOF helicopter pivots about the pitch axis by angle g and about the yaw
axis by angley . As shown in Figure 7.2, the pitch is defined positive when the

nose of the helicopter goes up and the yaw is defined positive for a clockwise
rotation. Figure 7.2 shows the thrust force F, acting on the pitch axis that is

normal to the plane of the front propeller and a thrust force F, acting on the yaw

axisthat is normal to the rear propeller. Therefore a pitch torque is being applied at
adistance r, from the pitch axis and a yaw torque is applied at a distance r, from

the yaw axis. The gravitational force F; generates atorque at the helicopter center

of mass that pulls down on the helicopter nose. As shown in Figure 7.2, the center
of massis at adistance of |, from the pitch axis along the helicopter body length
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[61]. The body center of massisto be described in xyz cartesian coordinates w.r.t.
thepitchq andyawy angles.

- =Ty Vaw axis
¥ "
\ \
[ '| |
- I -
\ : /] 1. y=0
\ he o
A F,
- 4
. 0 — J
s Iy
- —~ » —
- Vs .
B l-,m Fq I /!
W L1
i 1
- e !
vy ; e ——
Vo =0 I P e
Pich axis

Figure 7.2 Simplified free body diagram of the 2-DOF helicopter [61]

The equation of motion of this system is given by [61]

{(Jeq’p + m,,dlczm)d =-Mydl, cosq —B.q —mglZ singcosay * + KV, , + K, Vi, -

(Jeq’y + m)dlfmcosqz)y' =2mglZ singcosay'q —By + KV, + KV,

For more details about the modelization of this setup refer to appendix A. We
denoteby X the state vector

. . T
X=[X X, X3 XJ=[ay dy] (7.2)
We write from (7.2)
X=X, (7.3)
X, =X, '
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experiments
We denote by U theinput vector
T T
U :[Ul UZ] :[Um,p Um,y (74)

The equations (7.1)-(7.4) lead to the state space representation
X=X

X=X,

Y — rnlgtm %
) ()

MmO (g e

Ml vz @ g % (7.5)
S i) i) (i)
+ % U+ % U
(Jy o @sX) * (I, +myleaeX)

The system (7.5) represents the nonlinear dynamics of the 2-DOF helicopter and
can be written in compact form as

fl(x) gll(x) ng(X)
, B fz(X) 921()() gzz(x) (Ulj
X =F(X)+G(X)U = 00| aa(X) aa(x) |\, (7.6)
f4(x) g41(x) 942(X)
where
fl(x):X3
f2(x)=X4
TS i Mol g, .cos, - X, (7.7)
O ma2) ™ o) (aarmia) e
Y R :
R ERTY = e T =g
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0. (X)=0

9z (X)=

gﬂ(X):(prfzﬁJ;)

9 (X)= (Jegy + m:izm cosX,’)
and

0,(X)=0

gﬂ(X)z

0 ]

G X)= (Jgy + n;ly}m cosX,’)
7.3.2 Equilibrium

experiments

(7.8)

(7.9)

We denote by X, =[X, X, Xy X40]T and U =[U U20:|T the state and
the input at the equilibrium. We consider at the equilibrium all the states are equal
to zero, i.e., X, =0, X,, =0, X;,=0 and X,,=0. Then, from (7.5), we obtain
at the equilibrium

{KWUN+K
KUy + K

pr 20 r-nnel glcm =0
yyU20 =0

(7.10)
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By solving (7.10) in U,, and U,,, we obtain
”Lqulchyy
Yo=K KK
pp Ny T Npy Nyp (7.11)
U _ KypU _ n%dglchyp
27K, PTK K, —K K
Yy py" "yp pp" yy
7.3.3 Linearized model and high order approximations
Given the equilibrium point ( X,,U,) defined by
0 rnnelglchyy
0 K _K,—-K_K
Xo=| |andu,= * ¥ ¥ P (7.12)
O rT.‘ne|g|chyp
0

prKyp - KppKyy

The linearized form (i.e., 1* order approximation) of the dynamics (7.7) about the
equilibrium (X,,U,) isgiven by

X=X,
X=X,
&:(‘]%F’;B;Msn))(ﬁ(\]qpET}MI;)(UFU]DF(JW?M(UZ -U,) (7.13)
%= (vayl?nd 2) X (%, _Ifwwén)(Ul —Um)+(Jaw+Kz%ﬁn)(u2 ~Uy)
which can be represented in matrix form
x=FXx+Gyu (7.14)

with x=X and u=U-U, the change w.r.t. the equilibrium. The matrices
F=[0,, F.].F, and G, aregivenby
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1 0 0 0
0 1 0 0
-B, K K
| 0 DG = i a (7.15)
F34_ ( +rnne||<:2m) GO_ (‘]eq,p+rnne||czm) (‘]eq,p+rn19||czm)
0 -B, Ky Ky
(‘]eq,y+rnne||02m) (‘Jeq,y+rnne||czm) (‘]eq,y+rnne||czm)

The second order approximation of the dynamics (7.7) can be written using the
Taylor vector expansion (see sub-section 3.4.1 in chapter 3) about (X,,U,). We
obtain

X =%

%=X,

_ B 1 My e, K U . 7.16
& (‘]eq,p+md|§n)xs I Z(JGLW+|’Ipﬂ|§n)x1 I(%ﬁ%'&)“ %)'(Jmp+%|§n)(uz Uzn) ( )
S TV N TR N R T
X)) (o i)

which can be represented in matrix form
= Fx+ F,x? + Gy (7.17)

where F and G, are given by (7.15) and F, is built from F,=0,, and

4x16

1 myd
F,(31) = on___
(39 2(Jpgp +MglZ,)

The third order approximation of the dynamics (7.7) can be written using the
Taylor vector expansion about (X,,U, ). Weobtain

X=X

X=X,

! 1 mde e, M e K . 718
) ) ) o) Y g
: B L K 'Sy

) ) e Y g
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which can be represented in matrix form
%= Fx+ F,x? + Fx® + Gu (7.19)

where F, and G, are given by (7.15) , F, is built from F,=0,, and

|:2(3,1): 1 My glcm

, and F is  built from F,=0
Z(Jeq,p+”]r1d|<:2m) ’ ’

4543

_n.hellczm Zrnwdlczm
F.(316)=—* _ and F,(4,12)=———=C" |
3( ) (‘]eq,p+rrlr1e||(:2m) 3( ) (‘]eq,y+rnne||czm)

The fourth order approximation of the dynamics (7.7) can be written using the
Taylor vector expansion about (X,,U,). Weobtain

X=X
X2=X4
' 5 1 md 2 Myls . 1 md 4
%= Xt X X e
(‘]eqprrde;n) Z(Jeqprrde;n) (‘]anrmdljﬂ) ’ 24(‘]aq,p+md|§n) (7.20)
Kep Ky
—— (U, Yy )+———(U,-U
+(J€qyp+nﬂd|§n)( 1 10)+(Ja]’p+mdljn)( 2 20)
: B m,I2 1 myl 4
X,= X, + £ X, +=—0 (K U U
4 (Jm,y+mg|§n) 4 (qu"'mldlén))(lxs 4+2(J&]’y+mﬂ|§n)(Kw m+Ky 20)X1
which can represented in matrix form
<= Fx+ Fx? + Fx® + FX + Gu (7.21)

where F, and G, aregiven by (7.15) , F, isbuilt from F, =0, and

1 rnne:l glcm
F(31)=
2( ) Z(Jeq,p+”]r1d|<:2m)

, 5 isbuiltfrom F, =0,

43!
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F3(316)=% and F,(4 12):£ and F, isbuilt from
(Jeq,p"'mndlczm) (‘]eqy+rr]r16'|2 )
1 I
F4=O4x44, 4(3,1):__ rnnelgcm and

24(Jg,+myl2))

|2
F4(4,1)=1 L )(KypUlO+KWU20).

7.4 Control design

We show in chapter 6 that for a given order of truncation p, the suboptimal

control law U is given by the equation (6.84). Hence, for the dynamics (7.21), the
control law isin the form

—(Kpxr Kox® + Kox + K x* ) (7.22)

the gain matrices K., 1 <p < 4, are computed from (6.83). Their numerical
values are:

K _(14.0 21 7.2 1.3) K _(2.4 -04 02 -0.1 01]
'7l-21 140 -02 5.9 ~\-02 00 -00 0.0 04

3851 —187.0 -2.3 _44'5), i.e. the columns 1 to 4 of K,,

K
(Ks)1-s = (6.4 -7.7 =121 =21

(J"i56)2 ;7(_7173'247 ?ézgl 11‘%5'37 gijm the columns 5 to 8 of K, (Ky)y_q =
( 1 B 97 %% 3())24) '|.e. the columns 9 to 12 of K;, (K;)y 4 =
( 50234 (Z)fg 013490 1532 |e: the columns 13 to 16 of K;, (K;)q 2 =
( 415 71 %_109 0147) i.e. the columns 17 to 20 of K;, (K;); —» =
( _24 927 _0022 |.'e. the columns 21 to 24 of K;, (K;); -z =
{: 2 1_g3 _5.(2).2 0.4_0.1.), i.e. the columns 25 to 28 of K;, (K;); _3 =
( %8 0616 0_237 0102 |..e. the columns 29 to 32 of K, (K:)z; 3 =
( 1.9 02 0_4), i.e. the columns 33 to 36 of K;, (Kj)3 s =
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83 -27 2.2 _0'5), i.e. the columns 37 to 40 of K, (lK;)s _s =

=93 19°_09% 0!
00 01 0.0 0.0)' i.e. the columns 41 to 44 of K, (K;)s _2 =

4 —-0.7 06 -=0.1% . B
01 —01 _0.0), i.e. the columns 45 to 48 of K;, (Hy)s _5 =

74 4.1 2.7 . B
04 03 0_1), i.e. the columns 49 to 52 of Ky, (K;); 5 =

1.8 —-3.2 04

02 01 02 0.0
1.8 -06 06 -0.1

8
0.0 -01 -01 =0.0

-1.6 04 -—-08 0.1y . :
(0.0 00 04 O_O),|.e.thecolumn361t0640fHj,theelementsoftheﬂrst

raw of the 2 x 256-rectangular matrix K, are 191.6; -624.3; -130.5; -121.3; -353.1,
269.2; 120.9; 64.6; -11.1; 8.8; -16.5; -0.1; -55.4; 56.8; 26.7; 13.5; -182.6; 223. O;
120.5; 54.1; 56.8; -58.7; -84.7; -17.4; 21.3; -9.5; 11.5; -1. 0; 8.0; -12.2; -19.6; -3.8;
-64.7, 21.3; -18.1; 3.2; 34.1; -12.6; 12.4; -1.9; -4.8; 2.7; -1.8; 0.4; 8.0; -3.0; 2.9; -
0.5; -25.7; 45.7; 27.1; 10.9; 7.4; -11.2; -20.0; -3.4; 5.1; -2.5; 2.8; -0.3; 0.3; -2.1; -
4.6; -0.7; -216.7; 222.6; 121.5; 54.1; 56.4; -55.5; -84.3; -16.7; 22.2; -9.1; 11.3; -0.9;
8.0; -11.5; -19.6; -3.6; -11.1; -32.9; -85.5; -11.2; 54.6; -13.8; 48.2; -1.3; -15.5; 6.0;
-5.9; 0.9; 14.9; -4.0; 11.7; -0.4; 40.6; -15.0; 12.6; -2.6; -20.1; 7.5; -6.3; 1.4; 2.8; -
1.1; 0.9; -0.2; -5.1; 1.9; -1.6; 0.4; -8.8; -5.4; -20.2; -2.1; 15.6; -4.4; 11.8; -0.5; -4.1;
1.6; -1.5; 0.3; 4.1; -1.2; 2.8; -0.2; -64.5; 28.0; -17.4; 4.7; 40.8; -15.7; 11.8; -2.6; -
41; 2.1; -1.8; 0.3; 9.5; -3.8; 2.8; -0.6; 46.3; -18.3; 12.1; -3.3; -23.5; 8.5; -6.1; 1.6;
2.3;-0.9; 0.9; -0.1; -5.9; 2.2; -1.5; 0.4; -12.1; 3.5; -1.9; 0.6; 3.5; -0.9; 0.9; -0.1; -0.8;
0.3;-0.2;0.1; 0.9; -0.3; 0.2; -0.0; 11.9; -4.6; 2.9; -0.8; -6.0; 2.2; -1.5; 0.4; 0.7; -0.3;
0.2; -0.0; -1.4; 0.5; -0.4; 0.1; -35.9; 45.4; 27.0; 10.8; 7.1; -10.3; -19.8; -3.2; 5.0; -
2.2;2.7,-0.2; 0.2; -1.9; -4.5; -0.6; -9.1; -5.2; -20.0; -2.0; 15.8; -4.3; 11.7; -0.5; -3.8;
1.5;-1.5; 0.2; 4.2; -1.2; 2.8; -0.2; 10.2; -3.7; 2.9; -0.6; -5.1; 1.9; -1.6; 0.3; 0.7; -0.3;
0.2; -0.0; -1.2; 0.4; -0.4; 0.1; -3.2; -0.6; -4.6; -0.3; 4.3; -1.3; 2.8; -0.2; -0.9; 0.4; -
0.4; 0.1; 1.1; -0.4; 0.7; -0.1 respectively, and the elements of the second raw of the
2 X 256-rectangular matrix K, are -32.5; -42.7; -52.6; -12.2; -0.8; 15.6; 24.3; 4.8;
38,13, 21,04, 0.7, 31, 4.7, 0.9; 9.3; 12.9; 24.3; 4.2; 0.1; -2.5; -5.0; -0.8; -2.7; -
0.8;-1.7; -0.3; -0.1; -0.5; -0.9; -0.1; 6.4; 1.1; 1.8; 0.5; -2.9; -1.3; -1.5; -0.4; 0.0; 0.3;
0.3; 0.1; -0.6; -0.3; -0.3; -0.1; 2.0; 2.5; 4.7; 0.8; -0.1; -0.4; -0.9; -0.1;-0.6; -0.2; -0.4;
-0.1; -0.0; -0.1; -0.1; -0.0; 9.3; 13.7; 25.2; 4.4, 0.9; -2.4; -5.5; -0.7; -1.9; -1.3; -1.6; -
0.4;0.1; -0.4; -1.0; -0.1; 2.9; -1.8; -5.6; -0.6; -1.9; -1.3; -1.7; -0.5; 1.0; 0.7; 1.0; 0.2;
-0.4; -04; -05; -0.1; -3.9; -1.1; -1.5; -0.4; 1.3; 0.9; 1.0; 0.3; 0.1; -0.2; -0.1; -0.1;
0.3;0.2;0.2;0.1; 0.8; -0.3; -1.0; -0.1; -0.4; -0.4; -0.5; -0.1; 0.2; 0.2; 0.2; 0.1; -0.1; -
0.1; -0.2; -0.0; 4.6; 1.7; 1.5; 0.6; -2.4; -1.5; -1.4; -0.5; -0.2; 0.4; 0.2; 0.1; -0.5; -0.4;
-0.3;-0.1; -4.3; -1.0; -1.4; -0.4; 1.5; 0.8; 0.9; 0.3; 0.1; -0.2; -0.1; -0.1; 0.3; 0.2; 0.2;
0.1; 0.2; 0.3; 0.2; 0.1; 0.0; -0.2; -0.1; -0.1; -0.0; 0.0; 0.0; 0.0; 0.0; -0.0; -0.0; -0.0; -
0.9; -0.2; -0.3; -0.1; 0.3; 0.2; 0.2; 0.1; 0.0; -0.0; -0.0; -0.0; 0.1; 0.0; 0.1; 0.0; 2.3

Ul NO
O V1O

), i.e. the columns 53 to 56 of K, (Ky): _z =

(
(C
(2
(
(
(

), i.e. the columns 57 to 60 of K,;, (Ky)s _s =

127



Application to a 2-DOF helicopter model based setup — simulations and
experiments

2.7.4.9; 0.8; 0.1; -0.4; -1.0; -0.1; -0.4; -0.3; -0.4; -0.1; 0.0; -0.0; -0.1; -0.0; 0.8; -
0.3; -1.0; -0.1; -0.5; -0.4; -0.5; -0.1; 0.2; 0.2; 0.2; 0.1; -0.1; -0.1; -0.2; -0.0; -0.8; -
0.3; -0.3; -0.1; 0.3; 0.2; 0.2; 0.1; 0.0; -0.0; -0.0; -0.0; 0.1; 0.1; 0.1; 0.0; 0.3; -0.0; -
0.2; -0.0; -0.1; -0.1; -0.1; -0.0; 0.0; 0.0; 0.1, 0.0; -0.0; -0.0; -0.0; -0.0 respectively.

The matrices W), are given by the equation (6.23) and V;; given by (6.19). The
definition of the matrices Pi(j) is given by (6.12). The calculus of the matrix B is
given by the resolution of the ARE (6.26). The algorithm for the calculus of the
matrix P, is given by the equations (6.27) to (6.49) and the algorithm of calculus
of thematrices P,, p =3 isgiven by (6.50) to (6.81). The details of the algorithms
are shown in Appendix E.

7.5 Simulation results

The results of the smulations are shown for the different orders of truncation
(i=1,2,3,4). In order to minimize the steady state errors, the performance index
is minimized with the weighting matrices R and Q , where

200 0 0 O

10 |0 20 0 o0 .
Q_0 0 100 O (7.23)

0O O 0 100

j and i have been used in [61] with the linearized optimal control.

The ssimulations have been applied for the linear control, Lin, where the dynamics
is linearized about the origin and the proposed nonlinear controllers for the
different orders of truncations (2™, 3 and 4™). Note that the simulations were
done for a desired yaw angle of O degree and a desired pitch angle of different
values. For all simulations the initial condition of the pitch angle is —40.5degree.
The simulation results are summarized in Table 7.2. As a perspective for this work,
we suggest to investigation of a guideline to select the best order of truncation of
the optimal control. Now, the unique argument that justifies such a choice would
be the computation limits (time and memory size). In fact, a second or third order
control could be enough to improve the performance.
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Table 7.2 Costs and steady state errors for different orders of truncations

o Cost by ord Steady stat by ord
Desired pitch angle ost by order eady stateerror by order
in degree 1 2 3 4 1 2 3 4

Step 0 degree 0668 | 0681 | 1152 | 08L5 | 000 | 000 | 000 | 000
Step -30 degree 2750 | 2875 | 3019 | 2081 | 045 | 044 | 035 | 037
Sin 0.05Hz -10 1152 | 1149 | 2049 | 1397 | o011 | o011 | o011 | o11
degree

Sqa 0.05Hz -10 1450 | 1464 | 1942 | 187.6 | 035 | 035 | 034 | 034
degree

Sqa 0.02Hz -20 1888 | 1900 | 2553 | 2567 | 122 | 120 | 106 | 104
degree

Sin0.02Hz -20 1308 | 1314 | 1569 | 1374 | 039 | 038 | 029 | 032
degree

Esc (multi steps) 1057 | 1058 | 1074 | 107.6 | 045 | 044 | 038 | 038

Despite that there is no improvement of the cost using higher order controllers; we
see that there are improvements in the steady state errors for all the desired
trajectories except for the step O degree.

In the following we present the simulation results for a desired yaw angle of 0
degree, desired pitch angle of 0 degree and an initial condition of the pitch angle of

-40.5 degrees for four controllers: Linear, 2™ , 3 and 4™ truncation orders.
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{in =ec

Figure 7.3 Pitch evolution vs. time for a desired pitch angle of O degree

The simulations show in Figure 7.3 that the four controllers stabilize the system at
the desired pitch angle of 0 degree with an advantage for the 3 and 4™ onesin
terms of rise time and settling time when compared to the Linear and 2™
controllers. Those in Figure 7.4 show that the four controllers stabilize the system
at the desired yaw angle of O degree with the advantage for the linear and 2™
order onesin terms of settling time.
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Figure 7.4 Y aw evolution vs. time for desired pitch angle of O degree
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Figure 7.5 Front motor voltage evolution vs. time for desired pitch angle of O degree
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Rear Motor Voltage v, Time
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Figure 7.6 Rear motor voltage evolution vs. time for desired pitch angle of 0 degree

In terms of input control signals, Figures 7.5 and 7.6 show that the front motor
voltage presents amost the same behaviour for the four controllers, and the rear
motor voltage present the same behaviour with the first and second order
controllers but the third and fourth ones present a higher voltage. In terms of cost,
except for the third order controller which present a higher cost, the linear, second
and fourth order controllers present alower cost within same range.

More simulations have been tested and presented with different trgectories in
Appendix F.

7.6 Experimental results

7.6.1 Experimental set-up presentation

The 2-DOF helicopter setup of Quanser Inc consists of four major components: the
helicopter body, the power amplifiers, the data acquisition board and the real time
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control software. As mentioned in section 7.1 of this chapter and showed in Figure
7.1, the helicopter plant has six major components: two DC motors called the yaw
and pitch motors which are actuating respectively the back and front propellersin
which they have thrust force constants of 0.43N/V and 1.04N/V , respectively.

The two encoders are measuring respectively the yaw and pitch angles; the first
one has 8192 counts per revolution and it has a position resolution of
0.0439deg/count and the second one has 4096 counts per revolution and a

resolution of 0.791deg/count [61]. The two power amplifiers are two electronic

modules in which they amplify and control the voltage of the pitch and yaw
motors. These two amplifiers are called respectively UPM-2405 and UPM-1503,
and shown in Figures 7.7 and 7.8.

The wiring system of Quanser 2-DOF set up is composed of six connection cables
(numbered froml to 6) that connect the plant to the PCB and from one cable
(called J1) that connect the PCB to the computer. The function of each cable is
summarized in Table 7.3 [61].

Figure 7.7 Pitch motor voltage amplifier (UPM-2405) [61]
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Figure 7.8 Y aw motor voltage amplifier (UPM-1503) [61]

The data acquisition board consists of a Printed Circuit Board (PCB) and seven
connection cables as shown in Figures 7.9 and 7.10.

Figure 7.9 Printed Circuit Board of Quanser 2-DOF set up [61]
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Figure 7.10 Wiring connections of Quanser 2-DOF set up [61]

Table 7.3 2-DOF Helicopter system wiring summary [61]

Cable# | From To Signal
Terminal Board: | Front-UPM "From :
1 DACHO D/A" connector Controls signa to the front UPM
Terminal Board: | Back-UPM "From :
2 DACHL D/A" connector Controls signal to the back UPM

UPM-2405 " to load

2-DOF helicopter

Power leads to the 2-DOF helicopter's

3 connector" "Front motor D/A 0" front DC motor (propeller)

4 UPM-1503 " to load 2-DOF helicopter Power leads to the 2-DOF helicopter's
connector" "Back motor D/A 1" back DC motor (propeller)

5 2-DOF Helicopter " Terminal Board: 2-DOF helicopter's yaw angle feedback
yaw encoder ENC 0" signal to the data acquisition card

6 2-DOF Helicopter " Terminal Board: 2-DOF helicopter's pitch angle feedback
pitch encoder ENC 1" signal to the data acquisition card

7 Terminal Board C Transfer al data from terminal board to

omputer

the computer

The real time software is a PC equipped with MATLAB®/SIMULINK® software,
in which we can program the designed (Linear, 2™ , 3 and 4™ order) controllers,

then realize the experiments.
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7.6.2 Experimental conditions

We consider the 2-DOF set-up of nonlinear dynamics given by (7.21) and the
control law given by (7.22). The performance index is minimized using the
weighting matrices given by (7.23). The experimental results are given for the
linear controller, Lin, and for the nonlinear controllers of 2™, 3 and 4" orders
of truncations. Note that the experiments were done for a desired yaw angle of 0
degree and desired pitch angle of different trgectories, with an initial condition of
the pitch angle of -40.5 degree.

7.6.3 Experimental resultsfor desired pitch and yaw angles of 0
degree

In the following, we present the experimental results for a desired yaw angle of O
degree, desired pitch angle of 0 degree and an initial condition of the pitch angle of

-40.5 degrees for four controllers: Linear, 2™ , 3% and 4™ truncation orders.

Piteh vs. Time

Xi(t)in °

— Lin. (experiment)

e I o — 2nd KP (experiment) |
— 3rd KP (experiment)
a0 - o 4th KP (experiment)
0 10 20 30 40
t in sec

Figure 7.11 Pitch evolution vs. time for desired pitch angle of O degree
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The experimental results show that the four controllers stabilize the 2-DOF
helicopter set-up around the desired pitch angle of 0 degree despite of an important
overshoot for the 3 order one. In comparison with the smulation results, the
experimental ones present almost the same predicted behaviour for all the
controllers except for the 3“order one which presents an important overshoot
during the experiment.

15 I: I: T T T T
! N R L Reference
— Lin. (experiment)
! ! - 2nd KP (experiment)
10r77-- FoTTTT CTTTTTTTT — 3rd KP (experiment) [
4th KP (experiment)

0 5 10 15 20 25 30 35 40

t in sec
Figure7.12 Yaw evolution vs. time for desired pitch angle of O degree

The experimental results show that the four controllers stabilize the 2-DOF
helicopter set-up around the desired yaw angle of O degree despite the important
overshoot for the 4™ order one. In comparison with the simulation results, the
experimental ones present almost the same behaviour for the linear and 2™ order
controllers while the 3 order controller presents a lower overshoot and the 4"
order controller a higher overshoot than the simulation ones. We note the important
discrepancy of the model representing the 2-DOF setup. In fact, the unmodeled
dynamics, such as static and kinematic frictions, make the model representation on
which depend our design less accurate. These uncertainties could be of great
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importance during the experiments and affect harmfully the performance of the
proposed control.
Front Motor Voltage vs. Time
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Figure 7.13 Front motor voltage vs. time for desired pitch angle of O degree

The experimental results for the input contral, i.e., front motor voltage show that
from 0 to 2.3s, the four controllers require higher voltage and then energy. The 4"
order one has bigger fluctuations between -20 and 20V. After 2.3s, the four
controllers behave almost the same way and have fluctuations in the range of 7 to
13V. In comparison with the simulation results, the experimental ones present
higher fluctuations around the equilibrium voltage of 10V, this is due to the
mathematical model of the control law which does not take into account the
nonlinear terms higher than the 4™ order of truncations and some "noise"
parameters. More experimental results have been tested and presented with

different trgjectoriesin Appendix G.
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7.7 Conclusion

The main objective of this chapter was to test the effectiveness of the proposed
new design through the run of simulations and experiments to a nonlinear
dynamics: the 2-DOF helicopter model set-up of Quanser Inc. It is important to
notice that the performance of the proposed control of higher order compete with
the linear control one. All these controllers have been computed to run essentially
the case where the equilibrium is at the origin for al states. All simulations and
experiments conducted for different pitch targets and traectories have been tested
to evaluate the limits of the different controllers. In fact, accurate control gains
would be recalculated for the different equilibriums to obtain consistent results.
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Most of real plants are nonlinear and linear control strategy does not represent the
best performance, have a limited domain of attraction and does not guarantee the
stahility of the closed loop systems. To overcome these issues, control engineers
and researchers write the nonlinear dynamics in polynomial forms in terms of KP
and then design an optimal nonlinear controller showing some interesting results.
Since this controller does not guarantee the stability of the closed loop system, we
had the idea to design a stabilizing one by choosing the cost minimum function to
be computed in a quadratic form to satisfy the conditions of a Lyapunov candidate
function. This new method was the main contribution of this work in addition to
the theoretical framework related to KP agebra, optimal control theory and
optimal control of polynomial systems, as well as an application to areal plant, the
2-DOF helicopter model.

The structure of this thesis was as follows, In chapter 1, we began by the
introduction of this work, in which we presented the general context, its purpose
and how it will be organized. In chapter 2, we presented the state of the art related
to the main topics of this work. We began by a brief history of the optimal control
theory, in which we showed the roots and the evolution of this theory from Newton
1685, when he presented a solution to the nose shape of a projectile providing
minimum drug problem, to Bellman in 1950, who he established the necessary and
sufficient conditions for the optimality through the popular HIB equation. Then,
starting from the optimality condition, we cited more recent works, in which
researchers presented numerous methods and agorithms to solve the optimal
control problem for many classes of nonlinear systems. As any nonlinear function
can be written in a polynomial form, the control design and the stability of
polynomial systems was a subject treated too. We cited many recent works of
design and analysis of the stability of nonlinear controllers. Due to the importance
of the KP algebra in this work, we presented this framework and some of its
applications in the last section of chapter 2. In chapter 3, we presented two major

topics. Thefirst one related to some basic definitions and proprieties of KP, vec(-)

and mat(-) operators. What's new in this section is that we stated and proved two

new theorems and three news lemmas useful in the following chapters. The second
topic was related to the vector power series motivation, in which we recalled the
multivariable Taylor expansion and applied this principle to three examples (scalar,
two variables and second order dynamics) and plotted the exact function versus the
different approximations to show the improvement and the best fitting obtained
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with high order approximations. Chapter 4 was dedicated to the optimal control
theory. First, we showed its roots through the presentation of the optimization
frame work, without and with equality constraints. In the optimization with no
constraint section we presented the necessary and sufficient conditions of
optimality and we illustrated with an example. Then, we stated the genera
optimization with no constraint problem, and we presented the necessary condition
(which is the Euler-Lagrange equation in this case) to have a solution, next we
illustrated with two examples. In the optimization with equality constraints section,
after stating the problem, we cited three methods to solve the problem, two of them
which are not detailed are the direct substitution method and the constraint
variation method. The third method given in details is the Lagrange multipliers.
For simplicity, we presented this method first in the case of two variable function
to be minimized and one constraint, and we illustrated with an example. Then, we
stated the problem formulation in case of integral functional and we finished by
stating the problem of minimization of an integral functional subject to many
constraints in its general form. Thereafter, we treated the general problem of
optimal control theory and how the Lagrange multipliers lead to the canonical
Hamilton equations. At this point two cases raised, problems with free final time
(called infinite horizon) and problems with fixed final time (called finite horizon),
the latter wasiillustrated with an example. The case of optimal control with equality
constraints and for finite horizon was the subject of the following section, in which
we treated the problem in details and we showed how this leads to the HJ equation
problem. For the infinite horizon problems, we stated the case of linear time
varying systems and the case of generd time invariant systems in which we stated
the optimal control laws and we illustrated with examples. In particular, we treated
LTI systems in which we showed the design approach of one of the most popular
controllers, the LQR in which the unknown part of its gain matrix is a direct
solution of the ARE. Some useful definitions and proprieties related to the ARE
were presented, the stability of the LQR was investigated and an illustrative
example of the LQR was showed. In chapter 5, we treated the optimal control of a
specific class of nonlinear systems written in a polynomial form in terms of KP.
We stated the problem and we showed how it was transformed to solve a nonlinear
equation. Since the latter is hard to solve analytically, some authors proposed an
approximating method to write the unknown vector in a polynomial form using the
KP tensor and by using its proprieties, the problem was transformed to calculate
algebraic matrix equations. The next section was dedicated to the calculus of the
unknown matrices, by cancelling the coefficients of the power series of the same
exponent. We began with the first order which led to the calculus of the gain
matrix of the linear controller by solving a classical ARE. Then, we presented the
resolution process of the second order equation using some KP proprieties leading
to the calculation algorithm of the second matrix gain in terms of the previous one
and al other known matrices. Next, we presented the resolution process of the
general order equation, which leads to solving an equation where two cases raised
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depending on the truncation order peven or odd. To illustrate the efficiency of this

method, we applied the proposed design to three polynomial scalar examples, the
F8 fighter model presented with a polynomial dynamics and to the Maglev set-up
dynamics we approximated by a polynomial form of athird order using the Taylor
series development. The application and the simulation of the KP-based controller
to the three scalar examples showed an improvement of the proposed high order
controllers (second and third order) versus the linear one, in terms of cost and
interval of attraction. The application and simulation of the F8 fighter system
showed an improvement in terms of interval of attraction. The third order KP
controller stabilizes the system for an initial condition of 0.6 while the linear and
the second order fail. The application and the simulation of the Maglev system
showed an improvement in terms of domain of attraction too. The second order KP
controller stabilizes the system for an initia condition equal to 0.050m, 0.075m
and 0.100m while the linear and the third order KP controllers fail. Those
simulations of the KP design to real plants (i.e., F8 fighter and Maglev set-up)
showed that the stability is not guaranteed with higher initial conditions. In fact,
there is no theoretical framework that can show the stability of the discussed design
approach. For this reason, we had the idea to design a stabilizing controller, by
extending the previous work of KP design and choosing the cost function to be
minimized in a quadratic form to satisfy the conditions of a Lyapunov function and
to guarantee the asymptotic stability. This method, called KP-Lyapunov-Function-
based design or simply KP-LF one, was the subject of the chapter 6. After the
introduction of this chapter, we stated the optimal control problem and we showed
how this problem was transformed into solving a nonlinear differential equation.
Different from the KP method in this one, we approximated the cost function by a
guadratic form and we re-wrote the differential equation to be solved. Then,
through the application of appropriate algebraic operators and using new KP
proprieties introduced in chapter 3, we wrote the same equation in a more compact
form in unknown matrices and a real scalar. The resolution of this equation to find
these matrices by cancelling the coefficients of the power state vector was
introduced. The procedure resembles the previous one to compute these unknown
terms leading to an ARE and first order algebraic equation problems. We used aso
some KP proprieties and introduced the non-redundant vector power to overcome
singularity issues. Thereafter, we discussed the stability of the closed loop system
controlled by the LF design, and we showed that the closed loop system could be
ideally globally asymptotically stable. To illustrate the efficiency of the LF method
we presented the application of two examples. For the scalar example, the
simulation results showed the cost improvement obtained with LF design (for both
second and third order) versus the KP and linear controllers. The simulation of the
F8 fighter showed an improvement obtained by the LF controllers versus KP and
linear controllers. This improvement was obtained in terms of cost reduction as
well as a larger domain of attraction (for different initial conditions, the LF
controller stabilizes the system, while the KP and linear controllers fail). As the
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rea world may be dightly different from the simulation and theoretical world, we
treated in chapter 7 the application of the proposed LF method to an experimental
set-up of a 2-DOF helicopter model of Quanser Inc. After the introduction, we
presented a brief description of the system and cited its mechanical and electrical
proprieties. Then, we introduced the dynamics of the system. The free body
diagram of the set-up which alowed writing its equation of motion by expressing
the kinetic and potential energies, and the application of the Lagrangian were
presented in Appendix A. Then, we wrote the state space dynamics of the system,
calculated the equilibrium and presented its linearized and approximated
polynomials (of second, third and fourth orders) using the Taylor vector power
expansion. Thereafter, we presented the control design and referred to Appendix B
for more details regarding the algorithm of calculus of the gain matrices. The
simulations of the proposed controllers, for different orders of truncation (linear,
second, third and fourth) and for different desired trgectories, were presented. The
simulation results showed some interesting results for some nonlinear controllers.
The redlization of the experiments for the same desired tragjectories showed amost
the same predicted behaviour obtained through the simulations with the exception
for some controllers which they presented a dlightly different behaviour (higher
overshoot), which is due (in our point of view) to the errors occurred by the
approximation of the equation of motion and some uncontrollable noises.

The experimental results remain biased due to discrepancies of the nonlinear model
representing the setup. We believe that the modelling errors affect the control
performances in particular with the higher orders. More accurate model estimation
would be devel oped to match the model with the setup dynamics. Finally we would
note that despite the theoretical framework of stability discussed in [57], thereisno
study to estimate the domain of attraction obtained by the LF method. This topic
can be a subject to future research.
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A Proofs of theorems and lemmas

A.1 Proof of Theorem 3.18

We have
- (AL1)
= Un><np 'Unp’lxnz (A12)

Multiplying the equation (A1.1) by U , and using Theorem 3.1, we obtain

U2, =U,, ,=U (AL3)

nPxn nPixn? (nxn”’z)xn2

=U_,-U (A1.4)

nxnP nP2xn?

Multiplying the equation (A1.3) by U , and using Theorem 3.1, we obtain

u:, =uU (A15)

nPxn nP2xn®

By repeating the same procedure, we obtain

Ui =Y =U, (AL6)
=U_,-U_ (AL7)

Thus

Ul =Y (A18)

By applying Theorem 3.16 to the equation (A1.8), we can write, for p=2q

2
nPxn _Unqun _Un“n“xn _Unqan"l 'Unqan"1 = (Unqan*l) - (Un-nq‘lan*l)

(AL9)
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=(U -

U 2
n-n?9 n%txnat )

2 4

(U nxn2 U n-n-2xnd+2 )2 =U ri(an ’ (U T2+ )2 (AllO)

Unxnzq ) (U nxn2d Unq‘zan*3 )2 = Un><nZq ) (U nI2xn®3 )2 = U:xn2q ’ (U n-n®3xn®d )2 (Alll)

=U :xn2q ) (U nd-25nd+3 )2 =U :xn2q ’ (U n-nd3xnt3 )2 =V :anq ) (U xn2 U nd-3xnd+4 )2 (A112)

Thus, we obtain

u, =u’

nPxn nxnP

A.2 Proof of Theorem 3.19
Two cases arise.

e (Case peven:

Assume (-1) isaneigenvalueof U ,

vV=-Vv

nPxn

2
—1)8 G
U nxn?9 (U n3xnd+4 ) T T Yk

2
' (U nd{(@Y) n2a ) =U v U :anq =U :jnzq (A113)

nxn?d

(A1.14)

o Thenit exists v+ 0 such that

(A2.1)

Using Theorem 3.1, by pre-multiplying (A2.1) by U _ _, that is,

mxnP = nPxn V== nxnP
Thatis,
nxnP =V

(A2.2)

(A2.3)
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Using Theorem 3.17, we have

Un"xn 'V:Unpxnp 'V:Un’)x;]lp 'Unxnp 'V:_Unpx;lp Y (A24)
=-U np><_n2p .Unxnp V= (_1)2 Uni_nzp v (A25)
=o=(-)"NU L v=(-1) v= (-1 v (A26)

That is,

V=V (A2.7)

nPxn

From (A2.1) and (A2.3), we have

V=-V (A2.8)

That means v=0, which isimpossible as v is selected nonzero. So (-1) isnot an
eigenvalueof U , , thatis,

#0 (A2.9)

Thus, (Unpxn + Inw) isregular.
e cCase podd:
Let | beaneigenvalueof U , and v=0 the corresponding eigenvector, that is,

v=]| v (A210)

Using Theorem 3.17, we write

Up ,-v=I.v (A2.112)

Multiplying the equation (A2.12) by U %, , we obtain

| -UP .v=v (A2.12)
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Using (A2.10), we have

| 1 P.v=]Pt.v=v (A2.13)
Asv=0, (A2.13) leadsto

| =1 (A2.14)

p isodd, then | e{1,-1}.

Identically, we obtain | {1,-1} is an eigenvalue of U_ .. Note from Theorem
3.17

U, =ur (A2.15)

nPxn nxnP

Thus,

p+l _ I
nxnP nPt

(A2.16)

Consider v#0 an eigenvalue of U__, associated with | €{1-1}. For a
eigenvalueof U , , we have

U, -v+a-v=U_ .v+a-UP".v=U_ .v+a-l"*.v=0 (A2.17)

nPx nxnP nPx

Using (A2.14), we abtain

U, -v+a-v=UP .v+a-l"".v=I".v+a -l ".v=I "(1+al )-v=0 (A2.18)

nPx

Note that | e{1,-1} andv=0, then 1+al =0. Assuming | =1 leadsto a =-1
eigenvalueof U , andif | =-1,then (1) iseigenvalueof U , .

A.3 Proof of Lemma 3.1
We have

e For j=1, using Theorem 3.15, we have
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ox' _ ox 9 9
—=—=1,=xX"®1,®x A3.1
aXT aXT n n ( )

As X% =1. Since D{” =1, then

aa—)izln =D = p™ -(|n®x‘°‘) (A3.2)
X

o For j=2,wewrite

x* 9
aXT 287(X® X) (A33)

Using Theorem 3.13, we can write

0 OX OX
y(X@X)=W®X+(Il®Uan)(§®X\J(In®U1X1) (A34)
=1, ®x+U, (1, ®X)1,=(1 . +U,,)(1,®X) (A3.5)
=(Up®1,+U,, ®1,)(1,®x) (A3.6)
1
= (ZUM ®1 . J(In ® X) (A3.7)
i=0
=D (1, ®x°%) (A3.8)
e For j=3,wewrite
GXH _ 0 2 ®
o e (e (h29

154



Proofs of theorems and |lemmas

Using Theorem 3.13, we can write

2
a%(ﬁ@x) ‘2’; ®x+(1, ®Unxn)[;ﬁ®x2j(|n®um) (A3.10)

2 2
X oxiU, [ ZEewtlu,,=2 U, (1,ex) (A31Y)
| oxt ox "

X'

=[(1: +Upa) (1, @x) [@x+U . (1,©x7) (A3.12)
=[(1: +Upa)®1, (1, ®@x®x)+U . (1,®x%) (A3.13)
=[15+Up.®1,+U_ ](1,©%) (A3.14)
=V, ®1.+U,,®1,+U, ®1,)(1,©x%) (A3.15)
=(i30Unixn ® |n§,flj-(|n ®x*)=DP (1,®x°4) (A3.16)

e Thus, for any nonzero integer j, wewrite

_ 0 (i
e~ (X ex) (A3.17)
oxi OX i1
v ®x+(|l®un,.1m)(a?®xl j'" (A3.18)
IE _
:a;T ®x+U,. (1,&x)U,, (A3.19)
X
== el ®x (A3.20)
X
5)(“ A 2 0 0
=15 ® X+ X~ ‘®I ® X1 ®x+x“”®| ® X1 (A3.22)
X
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li-2 . -
:8; _@x?+x 2ol @x X el, ox (A3.22)
X

T

li-3 _ . .
2[6(;( x+X eI ® qu®x2 + X2l ex +x el ®x° (A3.23)
X

ox

i @xT+x el @x?+x 2l @xt+ XMl ®x° (A3.24)
X

=xX1®I X' +x'®1 @x 1+l X' T+ +xX el ®x' (A3.25)

AN

=sz“‘ ®1 @I (A3.26)
i=0

_$ i i1

_i:O[U”‘*“(I“@)X i, J@x! (A3.27)

=STu(Lext)e(1,.x )] (A3.28)

]
o

Using Theorem 3.5, we obtain

i=0
_ (zu 8 |nwj(|n @ x) (A3:30)
i=0
=D (1,®x") (A3.31)
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A.4 Proof of Lemma 3.2
A

LetA=| : | bepartitionof n blockswith A e R*xR'. Wewrite

A
A:(Ok = O I O - Ok) A (A4.1)
A+1

A,
where 0, isthe null square matrix of order k. I, istheidentity of order matrix in
the i" block. We note

I =" ®1, (A4.2)

where €* isthe n-dimensional unit column vector whichis "1 inthe i" element
and zero el sewhere, introduced in Definition 3.2. We write Vi =1,---,n

vec(A' ) = vec[AT (q(”) ® IK)J (A4.3)

Using the second equality of Theorem 3.10, we obtain
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()

Now, we write

X" 0\ A
(1,®x")Ay= - Cly
0 X LA,
{My y' Ax
X'AY) (Y AX

(& @1 )@, |vec(AT)=(d" @1, Jvec(AT) 1

Using Theorem 3.7, the equation (A4.6) can be given by

vecT(Af.)(x@) y)

(1,©x")Ay= .
vec' (A )(x®y)

We substitute (A4.7) into (A4.5) to obtain

vec' (A7)(d" @1,
(1,®x")Ay= :
vec' (A )(dV @1, )
Noting that
e
[ : J_vec(ln)
e

0
(A4.4)
0
(A4.5)
vec’ ( y' Alx)
; (A4.6)
vec' (yT A]x)
vec' (A')
: (x®Yy) (A4.7)
vec' (A7)
d"
=[Lowc (A)]| i |®1, |(x®y) (A48)
¢’
(A4.9)
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we write

(1,®x")Ay=(1,®vec (A))(vec(l,)®1,)(x®Y) (A4.10)

A.5 Proof of Lemma 3.3

We have

(1, ®vec" (A))(vec(l,)®1,,)=(1,®vec’ [A - A])(vec(l,)®1,,) (A5

:(In®[va(A)... V&T(A])])(Va:(ln)®|PQ) (A5.2)

[[»eﬁ(a) v (A)] 0 J 3
_ : | (A5.3)
0 [\ (A)- &' (A)] |E
vec' (A) )
- ' =[vec(A)---vec(A))] (A5.4)
vec' (A)

Vi=1---,n vec(A) isacolumn-vector of dimension pq, then

vec(A)

[vec(a)---vec(a)]—mm( : }—mmxn[vec(a--A)]—rrmmm[vec(A)] (A5.5)
vec(A)

Thus,

(1, ®vec’ (A))(vec(l,)®1,,)=mat,, (vec(A)) (A5.6)

159



B Illustrative examples of VPS and
Taylor expansion

B.1 Example3.1

We consider the scalar function f (x)=€*. We denote by f,,i=13,5and 7, the

Taylor development functions of the orderi . Using (A5.1), the calculations of the
different approximation functions are

f,=1+x (B1.1)
1.,

f,=1+ X+EX (B1.2)

f,=1+ x+%x2 +%x3 (B1.3)

f4:1+x+1x2+1x3+ix4 (B1.4)
2 6 24

f5:1+x+lx2+lx3+ix“+ix5 (B15)
2 6 24 120

f :1+x+1x2+lxe’+ix“+ix5+ix6 (B1.6)

6
2 6 24 120 720

f7=l+x+ix2+£x3+ix“+ix5+ix6+ix7 (B1.7)
2 6 24 120 720 5040

The graphic representations of the function f and the polynomia approximation
f,, f;, fsand f,intheinterval [-2,2] are shownin Figure B.1.
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Exact Vs Taylor approximations of exp(x)

a
Exact
TE + 15t order
#  3rd ordar
B x 5th order
2 Tth order

fix)

Lo

Figure B.1: Exact vs. Taylor approximations of e

We notein Figure B.1 that as much as the order of truncation goes up, the fitting of
the exact function curve and the approximation function curve is better, and the
interval of attraction is larger. With the different approximations (B1.1) to (B1.7),
the magnitude of theinterval of a best fitting increases with the order of truncation.
In fact, for a best approximation with accuracy of lessthan 2% of the exact value

of f(x),wesimulate numerically the different ranges shownin Table B.1.
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Illustrative examples of VPS and Taylor expansion

Table B.1 Order of truncation vs. interval of best fitting of €" within £2% of accuracy

Range of fitting curves about x=0
Order of
Truncation
Xrnin Xmax
1 -0.19 0.21
2 -0.44 0.51
3 -0.72 1.02
4 -1.01 1.53
5 -1.29 2.09
6 -1.58 2.68
7 -1.87 3.31

B.2 Example 3.2

Consider the two-variable real valued function

f(x,%)=atan(x + x,f)-cos(xf +%J

(B2.1)

Using (A5.1), the calculus of the different approximation functions of order 2, 4

and 6 are
fz(xl.xz)=§(><f+><§)
f4(x1.x2)=§ ;
fe(><1,xz)=\@

2

(1 +2)- 5% -5 0¢ %)

1 5
(xf+x22)—5(xf+xf-x§)—4—\@xf—

3V3

4

(B2.2)
(B2.3)
1o
X, 2\/§X2 (B2.4)
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[llustrative examples of VPS and Taylor expansion

The graphic representation of the function f and its polynomial approximation
f,, f, and fginthe domain [-0.5,0.5]x[-0.5, 0.5] are shown in Figure B.2.

T —
1 i,ull."'ﬁ\_ S &
_ i* 4
: 16
0.5 , :
£k
— 0 L.", f
e
0.5
=1 .l.-- ;
0.5 Ex‘& ;
P e i
"-\-\._\__\_\-‘-\-\-‘_:-:'_'_'__'_‘_'_._ﬂ_'_'_,_n—l D
0.5 -
2 0.5 %1

Figure B.2: Graphic representation of f and its polynomial approximations f, , f, and f,

The Figure B.2 shows that as long as the order of truncation is higher, the plot of
the polynomial approximation function f, iscloser to the plot of the function f .
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Table B.2: Radius of best fitting approximation of f vs. the order of truncation

Order of | Radiusof best fitting
truncation | approximation (w. +2%)
1 0
2 0.18
3 0.18
4 0.32
5 0.32
6 0.47

The Table B.2 shows the radius of best fitting approximation is higher aslong as
the order of truncation is higher.

B.3 Example 3.3

Consider the two variable artificial muscle dynamics [37]
% =%, (B3.1)
X, =—27.1% —12.6x, +10.9x% + 1.3x% —1.6x° — 0.04xX; + U (B3.2)

where X, represents the position of the muscle and X, its velocity. In the
following, we consider the unforced system (i.e. u=0). Note that the dynamics of
the second state variable X, is a polynomia of order 3, in the intermediate

variables x and x,. Wedenoteby f(x,X,) thefunction defining this dynamics
f(%,%)=-27.1% —12.6x, +10.9%7 +1.3x; —1.6x’ — 0.04%] (B3.3)

We denote also by f, and f,, the linear and second order approximations of f
given by
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[llustrative examples of VPS and Taylor expansion

f, (%, %, )=—-27.1% —12.6X, (B3.4)

f, (%% ) =—27.1% —12.6X, +10.9x +1.3x} (B3.5)
In order to visualize and compare the approximation functions to the original one,
we show the phase portrait x, = f (x,) of the unforced dynamics associated with
f, f, and f,, for different initia conditions (x,,%,)=(10),(-1,0),(0,3) and

(0,—3). Obviously, the truncated approximation of order 2 is closer than the
linerized approximation (see Figure B.3).

Phase Portrait of (x10,320)=(0,-3)

Full nonlinear system
==+ Approximated system of order 1
— Approximated system of order 2
-3 I T 1
-1 -0.5 0 0.5 1
T4

Figure B.3: Phase portrait of full nonlinear dynamics and its approximations of 1% and 2" order
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Illustrative examples of VPS and Taylor expansion

We can obvioudly note that the second order approximation has a better fitting
curve than the linear approximation to the exact function in terms of domain

attraction.

Table B.3 Initial condition vs. worst error of approximation of x, dynamicsin m/ ¢

R Estimate Error
X0 Xy Trunc.1 Trunc.2
1 0 0.57 0.08
-1 0 0.9 0.07
0 3 0.24 0.02
0 -3 0.21 0.01

The Table B.3 shows that for different initial conditions, we calculate the error
between the nonlinear system and the polynomial approximation of orders of
truncation 1 and 2. We can conclude that the approximation of 2™ order has a
lower margin of error than the 1% order, and then we can note that the 2™ order
polynomial is a better approximation than the 1% order one. Hence, the second
order approximation has a better fitting approximation and a larger domain of
approximation than the linear one.
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C Illustrative examples and proofs
of the optimal control theory

C.1 Example4.1

Consider the functiona

1
J= I x +2tx+x (C1)
0

with X(0)=0 and x(1)=1. X (resp. X) denotes the first (resp. second)
derivative of X with respect to t. From (4.17), we obtain

X—x—t=0 (CL2)
A solution of (4.25) can be written
X(t)=ce +ce’ —t (CL3)
where ¢, and ¢, are constant. Using the boundary conditions x(0)=0 and
x(1) =1, we deduce

‘ t

e 2
u(t)= — —t Ci14
( ) sinht sinht ( )
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[llustrative examples and proofs of the optimal control theory

C.2 Example4.2

Consider the minimization problem of the functiona J of a single mass-spring
(m k) from classicall mechanics. Given m and k the mass and stiffness

coefficient. For the position y and its velocity Y = % at te[t,t,], we propose

J :J%(T—U)dt (C2.1)

Y

where T = % my* isthe kinetic energy and U = % ky? —mgy the potential energy

with g isthe gravitational acceleration. From the functional minimization problem
t
t(1 1

J=|| =my—=ky’+ dt c2.2
{ (zmy Sk mgyj (C2.2)

by using (4.16), we obtain the Euler-L agrange equation

my + ky = mg (C2.3)

Thetrgjectory minimizing (C2.2) is

_M9 . 4nl K k
y(t)= o +clsn(\/;tj+czcos(\/;t] (C2.4)

where ¢, and C, are constant. Using the boundary conditions y(O): Y, and

y(0) =0, we obtain

y(t) =%+(yo —%Jcos[\/%tJ (C2.5)

168



[llustrative examples and proofs of the optimal control theory

C.3 Example4.3

For a volume of a funnel, in the form of right circular cone, estimated at
V, = 2000m®, the technician wants to construct it from a sheet metal minimizing

the latera surface area. The dimensions of funnel are the radius of the base, r , and
the height of the cone, h, respectively. Note that the surface of a right circular

coneis S(r,h)=pr (r2+h2) anditsvolumeV(r,h):%rzh.Theproblemis

min f (r,h):S(r,h)2 (C3.1)
subject to
g(r,h)=V,-V(r,h) (C3.2)

The Lagrange function is

L(r,h,1)=f(r,h)+1 g(r,h)

D (C3.3)
=p°r’(r’+ hz)—gl rzh+V,|
The necessary conditions for the solution of the problem are
a—L:4102r3+2p2rh2—2—pI rh=0 (C3.4)
or 3
oL 2.2 Py 2
—=2%*h-=1r’=0 C35
on- P 3 (C3.5)
and
G VA (c36)
al 3
(C3.5)-(C3.7) lead to
2
I LI (C3.7)
2 p
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[llustrative examples and proofs of the optimal control theory

r’=n? _h (C3.8)

2
| =6ph (C3.9)

The equation (4.58) has one rea solution f‘h =12.57 and two real imaginary

solutions h, = -6.03+10.74i and h, =—6.03—-10.74i . Since h" must be real,
we have

h =12.57 (C3.10)
Then,

r'=12.31 (C3.11)
and

| *=236.81 (C3.12)

The application of the sufficient condition of (4.36) to (4.38) yields

2
L, :% =12p°r" +2p°h* —EI "h" = -1596.07 (C3.13)
or<l . . . 3
(r o )
o°L as 2D
=L, = =4%r'h —==1"r" =61.06 C3.14
e = b oroh ) P 3 ( )
o°L 2 42
L,=— =2p°T “=2991.79 (C3.15)
oh| . . .
(r o )
6,-8 -2 vh - 7508822 (C3.16)
or (r*,h*,l*) 3
g, -9 = P2 _11856.04 (C3.17)
ah (rx,hk,l ) 3
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[llustrative examples and proofs of the optimal control theory

Then,

L,-z L, gl |-159607-z 6106  -75988.22

L,, L,-z g,|= 61.06 2991.79-z -11856.94|=0 (C3.18)
g, g, 0 —-75988.22 -11856.94 0

that is,

-1.69-10%+5.91.10°2=0 (C3.19)

Theroot of (C3.19) is

z=2859.56> 0 (C3.20)

Thus, the dimensions r” =12.31 and h' =12.57 correspond to a minimum lateral
surface area of the funnel of S = 680.

C.4 Example4d.4

Consider the ssmple mechanica system composed of a mass-spring-damper given
by the dynamic model

mMX+bXx+ kx=u (C4.1)

where x isthe positionin m, v=Xx thevelocity in m/s, X the acceleration and u
theforcein N . Themassis m=1Kg, the damping coefficient b=0.5 N.s/ m and

the tiffness k =2 N/m. The objective to be minimized is
T

J(u)=[udt (Ca.2)
0

which corresponds to the energy consumption.

We determine the optimal control law minimizing the cost functional (C4.2) over
the time [O,T] , with the final time T specified. This control moves the mass from

rest, i.e, v(0)=0m/s tothedesiredspeed v, a T ,i.e, v(T)=V,.
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[llustrative examples and proofs of the optimal control theory

We express (C4.1) in terms of the measured speed as follows

m\'/+bv+k.[vdt=u (C4.3)
which leads to
v+ bv+kv=u (C4.9)

The state-space representation, of the velocity dynamics (C4.4), can be written
using the modal representation

X = a,X% +U (C4.5)
Xy = 8% + 8%, +U (C4.6)
and

V=CX +CX, (C47)

with the numerical values a, =-1.686, a, =1.186, a ,,=-0.5, ¢, =0.25,
C,=0.25.Thatis,

{)‘(z AX + Bu (Cca8)

v=Cx

with

SREEHREN
A 1 G

The details of this modelization are shown as follows. Set the following state space
from

X =a,% +U (C4.10)

).(2 =a, % +a,X, +Uu (C4-11)
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[llustrative examples and proofs of the optimal control theory

and

V=CX +CX, (C4.12)

We have
V=¥ + G
=Gy (By%, +U)+Cy (8% + By X, +U)

=C,8,% +(Ca, +Cay, )X, +(¢ +¢,)u (C4.13)

and
V=Ca,% +(Ga, +Cay )%, + (6 +¢,)u

= Gy (X, +U)+ (G, + Gy ) (8 X + 8%, +U)+ (G +C, U

=(GR, +G, )% H(GAR, +CAA, +Ca, )% +(Ga, TG, +Ca, UG+ ) (C4.14)
Substitute (C4.10), (C4.11) and (C4.12) into (C4.14)

(G + Gy ) By +( G818, + Gy, + G, ) MK, +(Ca + Gy, + Gy, ) MU

(C4.15)
+(G,+6,)mu+bc,a, % +(Ga, +Gay, )b, +(G +6, )bu+kex +ke,x, =U

whichis equivalent to

[(ca, +Czazz)aawbzaa+ka]>a+[(czaa% +CRay +Ca, )M 418

H(GB +Ga, )D+KC, %+ (R +GR+GR, JMH(G +6, )b JurH] (G +6,)m-1]u=0

(C4.16) holdsfor all x,X,,uand u. By cancelling the terms of these variables, we
obtain

(Gay, +¢,a, )aym+bc,a, + ke =0 (C4.17)

(Coap8y, +C,8,8,, + a5 )M+ (Cay, +C,a, )b+ ke, =0 (C4.19)
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(G, +Cay, +C,a, )M+(C +¢,)b=0 (C4.19)
and
(q+c,)m-1=0 (C4.20)

Two possible solutions can be obtained

_x+2 =X _ P andg—c, =L with x= 22 " + 4k
a, = m 18 =X 8, = m C1_2_2m om .
The Hamiltonian function H iswritten
H(xu,l )=u®+1T(Ax+Bu)

=U?+1 (@,% +U)+1,(ayX +a,X, +u) (C4.21)
We obtain
oH
I, = _a =—ayl , (C4.22)
. oH
I 2 = —gz —a12| 1 —a22| 2 (C423)
and
oH
E=2U+(|l+|2)=0 (C424)
(C4.22) and (C4.23) arere written as
. 0 —
| (t)=( aﬂjl — ATl (1) (C4.25)
_a12 _azz
Then, we obtain
| (t)=e""c, (C4.26)
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[llustrative examples and proofs of the optimal control theory

with ¢, e R? aconstant vector. From (C4.24), we have

1

u(t):—E(I )

_ _%(1 e e, (c4.27)

Thetransversality conditionsat T specified are written from (4.93)
| (T) -dx(T)=1,(T)-dx(T)+1,(T)-dx(T)=0 (C4.28)

As dT =0 (T isspecified). Noting v(T) =% (T)+ ¢, (T) =6 (% (T) + x,(T))
isknown as ¢, =¢, , then dx,(T)+dx,(T)=0. So, for dx (T)=0,

(1,(T)=1,(T))-dx(T)=0 (C4.29)

Weobtain |, (T)=1,(T)=1;.

T 1 ) (1
From (4.121), wehave | (T)=e""c, :(JI e, =" (JI ;. Thus,

u(t)=-10 Dere” ﬁl .

- _% BTeX T0B| (C4.30)

u(t)=e**"" cos(1.392(T —t))l ; —0.180e **sin(1.392(T —t))l ;  (C4.31)

Integrating (C4.31) between 0 and T, and using (C4.29) and x,(0)=x,(0)=0,
we abtain
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.
x(T)= _'7T j e"TIBBTe" "B dt (C4.32)
0

and, v(T)=C-x(t)=V,.Given T=2 and v, =1m/s, we obtain
|, =1.707and v, =1.707 (C4.33)

The optimal costis J° =54.36. The results are shown in Figures C1. and C2. The
obtained optimal control alowsto reach the speed v, =1m/s within T =2s.

velocity vs. time

3 T
2t Tl
i
./"
1k -
Q £
E® \ / 7
g /
= -5 I~ .II'1 /'f =1
> \ A
2F ""\ _',r" -
\ ;
\, rd
3 \‘x_,.f’/ﬂ/ -
A 1 1 i |
0 05 | 1.5 2 25
time (s)

Figure C1. Velocity evolutions vs. time of the mass spring damper system
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force v, tirme

-5
o o
EL o
s 7 _,-'J:'.
a
g /
o} f/
n I o
-10

. =
o

1.5
Tirre (%)

[N] S

25

Figure C2. Force evolutions vs. time of the mass spring damper system

C.5 Example4.5
Consider the system [44]
x=€"u

with the performance objective

J :%T(x2+u2)dt

0

The HJE problemis stated as

eu=0

%(x2 +u?)- a(;:

(C5.1)

(C5.2)

(C5.3)
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The optimal control is given by
u=-——=e (C5.4)

Substituting (C5.4) into (C5.3) leads to

N _ o (C5.5)
OX

Then,

u =-x (C5.6)

The optimal cost isestimated at T™ = 0.264, the state evolution is shown in Figure
C3.

stale vs. ime

ool $ediin ; AT SRR, SRR i ; s
08 - : : J

DA ' : : Z ]

a3} \ ..... fross ..... _

0.2

il

01k Lt { _ " 4

time (5)

Figure C3. State evolutions vs. time of the scalar example (4.159)
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C.6 Proof of Theorem 4.2

The optimality condition
min(dd—\t/+ X"Qx+Uu'Ru+2x" Nu):O (C6.1)

can be rewritten

?j_\t/ +X'Qx+U"RU +2x'Nu=0 (C6.2)
that is,
% =—Xx"Qx—UuTRU - 2x"Nu’ (C6.3)

Integrating both sides of the resulting equation with respect to time from 0 to o,
we obtain

V(x())-V(x(0))= —J:(XTQX+ uTRU +2x Nu)dt (C6.4)

Since we assume that the closed loop system is asymptotically stable, we have
X(%0)=0 and V(x(c))=0. Then, we obtain

V(x(0))=x;Px, = I:(XTQX+ u"Ru” + 2x" Nu” Joit (C6.5)
Thus, the value of the performance index for such a stabilizing controller is
J(u")=xPx, (C6.6)

To show that such a controller is optimal, we use a proof by contradiction. We
assume that (C6.1) holds and that u” is not optimal. Suppose that a control U
yieldsasmaller valueof J , thatis,

J(a)<JI(u) (C6.7)
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It follows from (C6.1) that

(jj_\t/ +X'Qx+0"Ri+2x"NG >0 (C6.8)
that is
Oc'j_\t/ > X" Qx— 0" RI—2x" N (C6.9)

Integrating (C6.9) with respect to time from 0 to « e obtain

V(x(0)) < [ (X" Qx+a"Rai+2x" Na )t (C6.10)
which implies that

J(u")=x Px, < J(0) (C6.11)

(C6.11) isin contradiction with (C6.7). Hence u” isoptimal.

C.7 Proof of Theorem 4.6

Consider the following equation

(A-BR*N' )T P+P"(A-BR'N")+(Q-NR'N")-P'BR'B'P=0  (C7.1)
Denoteby A= A-BR'N" and Q=Q—- NR*N", the ARE (4.177) iswritten
A'P+P"A+Q-P'BR'B'P=0 (C7.2)

Let we prove that if Q=Q-NR'N" >0, then P>0. First, let we prove that
Ker (P)< Ker (Q).

Assume x e Ker (P),i.e, P-x=0.From (4.178), we have
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X' ATPx+ X PTA+x'Qx—x"P'BR'B"Px=0 (C7.3)

whichimplies xX"Qx =0, then Qx=0. Then, if Q>0 thatis xQx=0, then x=0.
Thus, Ker (Q)={0} . So, Ker (P)< {0} . Then, Ker(P)={0} =P>0.

Now, we prove if Q=Q—NR'N" >0, then P>0. Recall A= A—-BR'N" and
define A, = A—BR'B'P. Then, (C7.3) can be written as

P"(A-BR'B'P)+(A-BR'B' P)T P+Q+P'BR'B'P=0 (C7.4)
that is,
P'TA+AP+Q+P'BR'B'P=0 (C7.5)

Pre-multiply and post-multiply (C7.5) by z'e®" and ™'z, respectively

T T A~
z'e™'PTAeMz+ 2T e Al PeMz+ zTe Qe z

) (C7.6)
+z'e*'PTBR'B'Pe*'z=0
Let we calculate the following time derivative
i[ et PTe‘“z} =£[(e’*°tz)T PT (e‘\*z)}
dt dt
d
=2(eMz) PT = (eMz
(e¥2) PT (%)

- 2(e‘“z)T PTAeMz

=27 eM'PTAEMZ

=7 NP AN 2+ 2 N AT Pz (C7.7)

Considering R>0, i.e, R™">0. Then, using the Cholesky decomposition [50],
JR>0 suchthat R* = R"R. Wewrite
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7' PTBR'B"Pe'z= 7' PTBR RB"Pe™'z

= ( RBT pe™ z)T ( RBT Pe™ z)

-|Re"Pe"7 (C7.8)
Then, combining (C7.6), (C7.7) and (C7.8), we obtain

%[ Z M pTett z} =—7"eM'QeMz— H RB' pe"! 2H2 (C7.9)

Integrating (C7.9) from O to t, we have

i%[i e PTeN 7ot = —i(zTe*\:“ Qe™ z+|RBTPe® o] )dt (C7.10)
that is,
T t
(zT et pTet z) = —j( Z'eM QeM z+ H RB' P’ z”z )dt (C7.11)
0 0
or equivaently,
7T pTertz_ TP 7= —j( 7'M Qe z+ “ RB' Pe™ 2H2 )dt (C7.12)
0

Since the integrant term, the left side of the equality (C7.12), is non-negative.
Then,

0<Z e P eMz<7 P z=7Pz (C7.13)
Notethat if 3z# 0 suchthat Pz=0, then

P70 (C7.14)
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Hence, we have VzeKer(P), i.e, Pz=0. So, for any given ze Ker {P}, we
have

Az=(A-BR'B'P)z= Az-BR'B'Pz= Az (C7.15)
Then, Vt>0
etz=ez (C7.16)

In fact, note that for any matrix M , we define the exponential matrix of M ,

denoted by e" , as & :Z_—llMi . From (4.246), we have Vi >1 and Vze Ker (P),
i

(A-A) z=0 (C7.17)

Then, Vze Ker (P) and Vt>0

e Mz ZE(AE -A)z

>0 I!

—2 T (AR (A -A)

i>1 I+
=z (C7.18)

We write

=0 (C7.19)

Thus, from (C7.18), we abtain (C7.19). Now, pre-multiply (C7.16) by P
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Petz=Peiz (C7.20)

From (C7.14), we obtain Pe“z=0, i.e, Pe*zeKer(P). Thus, Ker(P) is

invariant under e™ . Also, by pre-multiplying and post-multiplying (C7.5) by z'
and z respectively, we obtain vze Ker (P), Qz=0. Then, Ker(P)c Ker(Q).

Assuming Pe*z =0, we obtain, from (4.236), Qe*'z=0 with ze Ker (P). Then,
QeMz=0Qe =0 (C7.21)

(C7.21) represents a contradiction to (ﬂ (3) observable, according to Theorem 4.6.

In fact, as z#0, then Ker(@e’“);t{o} and equivalently (A,Q) is unobservable;
which isacontradiction.
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D 2-DOF helicopter set-up kinetic
and dynamic models

D.1 Coordinatestransfor mations

E‘:]

Fig D.1 Genera Transformation of a vector [62]

Very often we know the description of a vector with respect to some frame, {B} ,
and we would like to know its description with respect t another frame, { A} . In the
general case of mapping the origin of the frame {B} is not coincident with that of
frame { A} but has a general vector offset. The vector that locates {B} 's origin is
called *P,,,. Also {B} is rotated with respect to { A} as described by oR. Given

®P, we wish to compute “Pas in Fig.A.1l. We can first change °Pto its
description relative to an intermediate frame which has some orientation as {A} ,

but whose origin is coincident with the origin of { B} . This is done by multiplying
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by [R, then we account for the translation between origins by simple vector
addition yielding [62]

"P=JR°P+ "R, (D1.1)
Equation (D1.1) describes a general transformation mapping of a vector from its
description in one frame to its description in a second frame. It can be written in a
compact form as

Ap=AT Bp (D1.2)

Where £T is called the homogenous transformation matrix. It can be written in a
(4x4) matrix as follows

oy
Il

(D1.3)

where SR is a (3x3) matrix which represents the rotational component of the
transformation matrix and APBorg isa(3x1) matrix which represents the trand ational
component.

D.2 Kinematic model of the 2-DOF helicopter
Asillusgtrated in Fig D.2, we define the following coordinates systems:

O,%,Y,z, is the frame located at the center of mass of the helicopter. It is related to
the frame Ox, y,z, by atrandation of adistance |, in the direction of the axis x,.

Ox,Y,z,is the frame located at the center of the front propeller. It is related to the
frame Ox,y,z, by arotation of an angle g around the axis vy, .

Ox, Y,z is the frame located at the center of the back propeller. It is related to the
frame Ox,y,z, by arotation of an angley around the axis z,.
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Ox,Y,Z, s the frame located at the pivot point of the helicopter which is defined as

the point where the pitch axis and yaw axis intersect, or the midpoint of the pitch
axis

\
\ |
LY I ¥
I"..I. . -I'I'I.|._.||.:I___.- =
* \

Fig D.2 Kinematic model of the 2-DOF helicopter [61]

Let [x, Yy, 2] the coordinates of the center of mass O,in the frame Ox,y,z,,
according to (A.2) it can be written as

cm

X,
Y,
z,

0 0
0 0

: D2.1
1 0 (D2.1)
0 1

0
1
0
0

o O O -
= O O

0xY,2 09%3Ys23

Let [x Y, 2] the coordinates of the center of mass O,in the frame Oxy,z,
according to (D1.2) it can be written as
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X cosg sing O O] |Xx,
A _|~sng cosq 0 0|y, (D2.2)
A 0 0 1 0||z

Oxy12 0 0 01 1 0%,Y,2,

Let [x, Y, 2] the coordinates of the center of mass O,in the frame Oxy,z,
according to (D1.2) it can be written as

X, cosy sny 0 Of|x
—siny  co 00
yO — y w . yl (D2.3)
z, 0 0 1 0|z
O Y02 0 0 01 1 Ox Y12
By replacing (D2.1) into (D2.2) and (D2.2) into (D2.3), the latter will be
X coy sSny O Ofcosg sng O O|1 O O IO
Yo _|-sny coy O O|-snq cosg O 0|0 1 O 00O (D2.4)
Z 10 0O 100 0 ©0 10001 0}0 '
1%yozo 0 0O 01 O 0 0100011%%
In a compact form, the equation (D2.4) will be
X, cosy cosq siny —cosy sinq |, cosy cosq || O
L . . 0y 0
Yo _ sm.y cosq cosy  sSiny sing Cmsm)./ cosq (D2.5)
z, sinq 0 cosq |, Sing 0
OxX Yo% 0 0 0 1 1 O3X3Y3Z3
Hence
Xo | COSy COSq
-l siny co
yO — cm y Sq (D26)
ZO Icman
OxYo%o 1 O3%3Y323
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If we note x, =X, Y.,=Y,and z, =z, the equation (D2.6) leads to the
cartesian position of the helicopter center of massis

X =l COSy COSQ
Yom = _Icm Sny cosq (D27)

D.3 Kinetic and potential energy
The potentia energy due to the gravity is
V=my 97,
=my-g-l,,-sing (D3.1)
Thetotal Kinetic energy is

T=T ,+T,+T, (D3.2)

The total kinetic energy T isthe sum of the rotational kinetic energies acting from
the pitch, T and from the yaw T, along with the translational kinetic energy

generated by the moving center of massT, .

The pitch rotational kinetic energy is

1 .
L =§Jeq,pq2 (D3.3)
The yaw rotational kinetic energy is

1. .
Ty=5%ay (D3.4)

r

Where J,,  and J,,  are the equivalent moment of inertias of the pitch and yaw,
respectively.
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Thetrandational kinetic energy is

T = M5+ Vot 2 (035)

By deriving the equation (D2.7), the three dimensional velocity of the center of
massis

Xon ==lon (¥ SiNY cOSq +q cosy sing)
Yom =lem (Y COSY cOSQ +qsiny sing) (D3.6)
Z =l COSQ

In terms of the pitch and yaw angles the translational kinetic energy is

1 . . RV . - . 2 :
1;=72rmEj (—ltry sny ooy an) +(4qy oosy ooeg) +l, Sy an) +Hep’asy® (D3.7)

Hence the total kinetic energy of the systemiis:

1 o1 L, 1 - ' )
T =2 30s0" + 5 30y *+ 5 M (<l siny cosq —1,6 cosy sinq))
+ (-l cosy cosq +1,qsiny SiﬂQ)2 +15,0” cosq”® (D3.8)

D.4 Equation of motion
The Lagrangian L is the difference between the kinetic and potentia energy of the
system: L=T -V

1 5 1 1 . . i 2
L==J,,0°+=J, Yy *+=m,(-l,y siny cosq-I,qcosy sinq
g Vel T T 1 ) (D4.1)

+ (1Y cosy cosq +l,qsiny sing)” +12g2cosg? ~m,, - g-l,,-sing
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The generalized coordinates are

a=[a. & & al'=[ay dy] (D4.2)

The generalized forces are

{Ql =KV + KpViny =B (D4.3)

Q=K Vi, + K Vo, —BY

The input controls are V,, is the input pitch motor voltage and V,, is the input
yaw motor voltage. B,and B, are the viscous rotary friction acting about the pitch

o1 Ky Ky Ky are the thrust force constants acting on pitch/yaw
axis from pitch/yaw motor propeller.

and yaw axis. K

The Euler-Lagrange equations are given by

(D4.4)

By applying the equations (D4.1) and (D4.3) into the equations (D4.4), leads to the
nonlinear equation of motions

(3o + Ml )i =My 0l 00T~ B.G — M, 12, sinq cosay 2 + K Vi, + K Vo,

. (D4.5)
(Jeqyy + mjdlqzncosqz)y' =2m 2, sinqcosayq —By + KV, + KV,
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E MATLAB code of calculation of
control gain matricesfor 2-DOF
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% Initialization and Matrix Gain Calculus file
% Optimal control using Lyapunov-based Kronecker product tensor

%%
clear al
clc

%% 2-DOF HELI CONFIGURATION: Model
Parameters %%

% Set the model parameters of the 2-DOF HELI.

% Copyright (C) 2006 Quanser Consulting Inc.

% Parameters for Expeiments

% Cable Gain used for yaw and pitch axes.

K_CABLE_P=5;

K_CABLE_Y =3;

% Amplifier/V oltage and Position Settings

% Amplifier Gain: set to 3 when using VoltPAQ-X2.

% NOTE: If using VoltPAQ-X1, make sure both Gain switches are set to 3.
K_AMP=3;

% Maximum Output Voltage (V): YAW limited to 15 V. PITCH limited to 24 V.
VMAX_AMP_P = 24;

VMAX_AMP_Y =15;

% Digital-to-Analog Maximum Voltage (V): set to 10 for Q4/Q8 cards
VMAX_DAC = 10;

% Pitch and Yaw Axis Encoder Resolution (rad/count)

K_EC P=-2*pi/(4*1024);

K_EC Y =2*pi/(8*1024);

% Specifications of a second-order low-pass filter

wcf =2 * pi * 20; % filter cutting frequency

zetaf = 0.85; % filter damping ratio

% Gravitational Constant (m/s*2)

g=19.81;
% Pitch and Yaw Motor Armature Resistance (Ohm)
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R _m p=0.83;

R_m_y=1.60;

% Pitch and Yaw Motor Current-Torque Constant (N.m/A)

K_t p=0.0182;

K_t y =0.0109;

% Pitch and Yaw Propeller Torque-Thrust Constant (N.m/V)

K_pp =0.2041;

K_yy =0.0270;

% Pitch and Yaw Motor Voltage-Torgque Constant (N.m/V)
K_yp=0.0219;

K_py = 0.0068;

% Pitch and Yaw Viscous Damping Constant (N.m.s/rad)

B_p=0.8; % Tuned while running simulation and experiment in parallel
B_y = 0.318; % Identified as described in manual

% Mass of the Helicopter (kg)

m_heli = 1.3872;

% Helicopter Center of Mass from Pivot along Pitch Axis (m)
|_cm=0.1476;

% Equivalent Moment of Inertia about Pitch and Yaw Axis (kg.m"2)
J eq p=0.0384;

J eq y=0.0432;

%

% UPM Maximum Output Voltage (V): YAW has UPM-15-03 and PITCH has UPM-24-
05

VMAX_UPM_P =24,

VMAX_UPM_Y =15;

%% Paramter Iniaization for Controller Design %%
% Set the control parameter design.

% Feed-forward gain adjustment (V/V)
K _ff=1;

% State Vector: X = theta; psi; theta_dot; psi_dot]
n =4; % Number of States

% Input Vector: U =[ u_Pitch; u_Yaw]

m = 2; % Number of Inputs

% Operational point
theta 0=0;

xlo=theta 0; x20=0; x30=0; x40=0;
Xo =[x10;

X20;

x30;

x40];
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ulo= m_hei*g*l_cm*K_yy/(K_pp*K_yy-K_py*K_yp);
u20 =-m_heli*g*l_cm*K_yp/(K_pp*K_yy-K_py*K_yp);
Uo =[ulg;

u20];

% Cost functional coefficients

R = eye(m);
Q = diag([200, 200, 100, 100]);

% Truncation Order

nf = 4;% Truncation Order of F(x)
ng = 4;% Truncation Order of G(x)
nh = 4;% Truncation Order of H(x)

% Matrix F1 of F(x)

F1=[0,0,1 , 0;
0,0, 0, 1
0, 0,-B_p/(J_eq_p+m_heli*l_cm"2), (03
0,0, 0,-B_y/(J_eq y+m_hdi*l_cm"2)];

% Matrix F2 of F(x)
F2 = zeros(n,n"2);
F2(3, 1) = Y2*m_hdi*g*l_cm™2/(J_eq _p+m_heli*|_cn2);

% Matrix F3 of F(x)

F3 = zeros(n,n"3);

F3(3, 16) =-m_hdi*|_cm*2/(J_eq p+m_heli*|_cm”2);
F3(4, 12) = 2*m_heli*|_cm™2/(J_eq y+m_heli*|_cm”2);

% Matrix F4 of F(x)

F4 = zeros(n,n"4);

FA(3, 4"3) = -1/24*m_heli*g*|_cm/(J_eq_p+m_heli*|_cnm"2);

F4(4, 4"3) = 1/2*(K_yp*ulo*m_heli*|_cm™2/(J_eq y+m _hdi*|_cm”2)"2 + ...
K_yy*u2o*m_heli*|_cn2/(J_eq y+m_heli*|_cm"2)"2);

% Matrix GO of G(x)
GOo=[ 0, 0;
0, 0;
K_pp/(3_eq p+m_heli*l_cm2), K_py/(J_eq_p+m_heli*l_cn2);
K_yp/(3_eq y+m_heli*l_cm*2), K_yy/(J_eq y+m_heli*|_cn2)];

% Matrix G1 of G(x)
G1 = zeros(n,m*n"1);
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% Matrix G2 of G(x)
G2 = zeros(n,m*n"2);

% Matrix G3 of G(x)
G3 = zeros(n,m*n"3);

% Matrix G4 of G(x)
G4 = zeros(n,m*n"4);

% Matrix H1 of H(x)
H1 = eye(n);

% Matrix H2 of H(x)
H2 = zeros(n, N"2);

% Matrix H3 of H(x)
H3 = zeros(n, N"3);

% Matrix H4 of H(x)
H4 = zeros(n, N"4);

%%

%%
theta Odeg = -40.5; % Initial Pitch Angle (deg)
theta 0 = theta Odeg* pi/180;

% Initial conditions
x10=theta 0; x20=0; x30=0; x40=0;
x0 = [x10;

x20;

x30;

x40];

ul0 =0; u20 =0;
u0 = [ul0;
u20];

Tf =220; % Stop Time
Te = 1le-2; % Sampling Period

%%

set-up

Simulation/Experiment Parameters

Pi's %%

Computing

Max_p = 4; % Maximum order of truncation generating Pp's
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% Order of truncation 1: Term P1
%0%0%%6%%0%0%6%%0%6%6%%0%6%6%%0%0%%%0%0%6%%0%%6%0 %% %% %% %% %0 %0 %% %
p=1

[P, L, G] = care(F1, GO, H1*Q*H1, R);
P1 = chol(P);

% Scalar al pha %%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%%%%%0
alpha=10.1;

% Order of truncation 2: Term P2
%0%0%%6%%0%%0%%0%6%6%%0%6%6%%0%0%%%0%0%0%0%0 %0 %% %% %% %% %% %0 %0 %% %
p=2;

IFp2 = kron((F1-GO/R* GO™* P)', eye(n"2));
% Term of Hp21 (i.e. 1st term of Hp2)
%i=lorj=1

D1 =|DiffMatrix(n, 1);

% (i) = (L1)

P11 = PijMatrix(P, P1, alpha, 1, 1);

V11 = Vec2Mat(vec(P11*P11*D1), n, n)’;

% (i,j,b,c) =(1,1,1,1) and (k,d) = (0,1)

W110 = Vec2Mat(vec(V 11*GO0), n, m)";

% (i,j,b,c) =(1,1,1,1) and (k,d) = (1,0)

W111 = Vec2Mat(vec(V11*Gl), N2, m)';

Hp21 = vec(W110/R*W111) + vec(W111/R*W110);

% Term of Hp22 (i.e. 2nd term of Hp2)
%((,j)=(1Q1)andk=2
Hp22 = vec(V11*F2) + vec(F2*V11);

% Term of Hp23 (i.e. 3rd term of Hp2)
% (i,j) = (1,2) and (i,j) = (2,1)
Hp23 = vec(H1*Q*H2) + vec(H2* Q*H1);

% Total Term H2
Hp2 = Hp21 - Hp22 - Hp23;

% D_{p+1}"(n)
D3 = jDiffMatrix(n, 3);

T2 = NonRed2RedMat_of4thOrder(2); % At order p=2

T2p = (T2*T2\T2;
TT2p = kron(T2p, eye(n))*D3;
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vP2t = 1/(2*apha)* ((TT2p* TT2p\TT2p)/IFp2*Hp2;

alpha 2 = size(T2);
P2t = Vec2Mat(vP2t, n, alpha 2(2));
P2 = P2t*T2p;

% Order of truncation 3: Term P3
%0%0%%6%%0%0%0%0%0%6%6%%0%%6%%0%0%6%%0%0%6%0%0 %0 %% %% %% %% %% %0 %0 %% %
p=3;

IFp3 = kron((F1-GO/R* GO* P)’, eye(n"*3));

Hp31 = zeros(n\(p+1),1);
Hp32 = zeros(n\(p+1),1);
Hp33 = zeros(n\(p+1),1);

% Term of Hp31 (i.e. 1st term of Hp3)
for i=1:p-1,%p-1=2
for j=1:p-1,%p-1=2
switch i
casel,
Pi = P1;
case 2,
Pi = P2;
otherwise
disp('index out of range!");
end
switch j
casel,
A =P1,
case 2,
A =P2
otherwise
disp(‘index out of range!");
end
Pij = PijMatrix(P, Pi, alpha, i, j);
Fji = PijMatrix(P, Fj, alpha, j, i);
Dj =jDiffMatrix(n, j);
Vij = Vec2Mat(vec(Pij™* Pji*Dj), n*(i+j-1), n)’;
for k=0:p-1,%p-1=2
switch k
case 0,
Gk = GO;
casel,
Gk =G1;
case 2,
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Gk = G2;
otherwise
disp('index out of range!");

end
Wijk = Vec2Mat(vec(Vij™* Gk), n*(i+j+k-1), m)’;
for b=1:p-1,%p-1=2
for c=1:p-1,%p-1=2
switch b
casel,
Pb=P1,
case 2,
Pb=P2;
otherwise
disp('index out of range!");
end
switch ¢
case 1,
Pc=P1;
case 2,
Pc = P2,
otherwise
disp('index out of range!");
end
Pbc = PijMatrix(P, Pb, apha, b, ¢);
Pcb = PijMatrix(P, Pc, apha, c, b);
Dc = jDiffMatrix(n, c);
Vbc = Vec2Mat(vec(Phc* Pcb*Dc), n*(b+c-1), n)';
for d=0:p-1,%p-1=2
switch d
case 0,
Gd = GO;
casel,
Gd =G1;
case 2,
Gd=G2;
otherwise
disp('index out of range!");
end
Whbcd = Vec2Mat(vec(Vbc™* Gd), n*(b+c+d-1), m)';
if (i+j+k+b+c+d==p+3),
Hp31 = Hp31 + vec(Wijk'/R*Whcd);
end
end
end
end
end
end
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end

% Term of Hp32 (i.e. 2nd term of Hp3)
for i=1:p-1,%p-1=2
for j=1:p-1,%p-1=2
switch i
casel,
Pi = P1,
case 2,
Pi = P2;
otherwise
disp('index out of range!");
end
switch j
casel,
P =P1,
case 2,
P = P2,
otherwise
disp('index out of range!");
end
Pij = PijMatrix(P, Pi, alpha, i, j);
Fji = PijMatrix(P, Fj, alpha, j, i);
Dj =jDiffMatrix(n, j);
Vij = Vec2Mat(vec(Pij* Pji*Dj), n\(i+j-1), n)’;
for k=1:p,%p=3
switch k
casel,
Fk = F1,
case 2,
Fk = F2;
case 3,
Fk = F3;
otherwise
disp('index out of range!");
end
if (i+j+k==p+2),
Hp32 = Hp32 + vec(Vij*Fk) + vec(Fk'*Vij);
end
end
end
end

% Term of Hp33 (i.e. 3rd term of Hp3)
for i=1:p,
switch i
casel,
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Hi = H1;
case 2,
Hi =H2;
case 3,
Hi = H3;
otherwise
disp('index out of range!");
end
for j=1:p,
switch j
casel,
Hj =H1,
case 2,
Hj = H2;
case 3,
Hj = H3;
otherwise
disp('index out of range!");
end
if (i+j==p+1),
Hp33 = Hp33 + vec(Hi™* Q*Hj);
end
end
end

% Total Term H3
Hp3 = Hp31 - Hp32 - Hp33;

% D_{p+1}"(n)
D4 = jDiffMatrix(n, p+1);

T3 = NonRed2RedMat_of4thOrder(3); % At order p=3
T3p = (T3*TI\T3;

TT3p = kron(T3p, eye(n))*D4;

vP3t = 1/(2*apha)* ((TT3p* TT3p)\TT3p)/IFp3*Hp3;

alpha 3 =size(T3);
P3t = Vec2Mat(vP3t, n, alpha_3(2));
P3 = P3t*T3p;

% Order of truncation 4: Term P4

set-up

%%6%0%0%%%0%0%6%0%0%%%%6%0%0%0%%%%0%0%0%0%0%%6%6%0%0 %% %%%6%0%0 %% %%

p=4

|Fp4 = kron((F1-GO/R* GO* P)', eye(n4));
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Hp41 = zeros(n\(p+1),1);
Hp42 = zeros(n\(p+1),1);
Hp43 = zeros(n\(p+1),1);

% Term of Hp41l (i.e. 1st term of Hp4)
for i=1:p-1,%p-1=3
for j=1:p-1,%p-1=3
switchi
case 1,
Pi = P1,
case 2,
Pi = P2,
case 3,
Pi = P3;
otherwise
disp(‘index out of range!");
end
switch j
case 1,
A =P1,
case 2,
P =P2
case 3,
Py =P3;
otherwise
disp(‘index out of range!");
end
Pij = PijMatrix(P, Pi, alpha, i, j);
Fji = PijMatrix(P, Pj, alpha, j, i);
Dj =jDiffMatrix(n, j);
Vij = Vec2Mat(vec(Pij™* Pji*Dj), n*(i+j-1), n)’;
for k=0:p-1,%p-1=3
switch k
case 0,
Gk = GO;
casel,
Gk =G1;
case 2,
Gk = G2;
case 3,
Gk = G3;
otherwise
disp('index out of range!");
end
Wijk = Vec2Mat(vec(Vij™* Gk), n*(i+j+k-1), m)’;
for b=1:p-1,%p-1=3
for c=1:p-1,%p-1=3
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switch b
casel,
Pb = P1;
case 2,
Pb = P2;
case 3,
Pb =P3;
otherwise
disp('index out of range!");
end
switch c
case 1,
Pc =P1;
case 2,
Pc =P2;
case 3,
Pc =P3;
otherwise
disp('index out of range!");
end
Pbc = PijMatrix(P, Pb, apha, b, ¢);
Pcb = PijMatrix(P, Pc, apha, c, b);
Dc = jDiffMatrix(n, c);
Vbc = Vec2Mat(vec(Phc* Pcb*Dc), n*(b+c-1), n)';
for d=0:p-1,%p-1=3
switch d
case 0,
Gd = G0;
casel,
Gd=G1;
case 2,
Gd =G2;
case 3,
Gd =G3;
otherwise
disp('index out of range!");
end
Whcd = Vec2Mat(vec(Vbc™* Gd), n*(b+c+d-1), m)';
if (i+j+k+b+c+d==p+3),
Hp41 = Hp41 + vec(Wijk'/R*Whbcd);
end
end
end
end
end
end
end
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% Term of Hp42 (i.e. 2nd term of Hp4)
for i=1:p-1,%p-1=3
for j=1:p-1,%p-1=3
switch i
case 1,
Pi = P1;
case 2,
Pi = P2,
case 3,
Pi = P3;
otherwise
disp('index out of range!");
end
switch j
case 1,
A =P1,
case 2,
P =P2
case 3,
P =P3;
otherwise
disp('index out of range!");
end
Pij = PijMatrix(P, Pi, apha, i, j);
Fii = PijMatrix(P, Pj, apha, j, i);
Dj =|DiffMatrix(n, j);
Vij = Vec2Mat(vec(Pij* Fji*Dj), n\(i+j-1), n);
for k=1:p,%p=4
switch k
casel,
Fk = F1;
case 2,
Fk =F2;
case 3,
Fk = F3;
case 4,
Fk = F4;
otherwise
disp('index out of range!");
end
if (i+j+k==p+2),
Hp42 = Hp42 + vec(Vij*FK) + vec(Fk'* Vij);
end
end
end
end
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% Term of Hp43 (i.e. 3rd term of Hp4)
for i=1:p,
switch i
casel,
Hi = H1,
case 2,
Hi = H2;
case 3,
Hi = HS;
case 4,
Hi = H4;
otherwise
disp('index out of range!");
end
for j=1:p,
switch j
case 1,
Hj = H1;
case 2,
Hj = H2;
case 3,
Hj = H3;
case 4,
Hj = H4;
otherwise
disp(‘index out of range!");
end
if (i+j==p+1),
Hp43 = Hp43 + vec(Hi™ Q*Hj);
end
end
end

% Total Term H4
Hp4 = Hp4l - Hp42 - Hp43;

% D_{p+1}7(n)
D5 = jDiffMatrix(n, p+1);

T4 = NonRed2RedMat_of4thOrder(4); % At order p=4
Tap = (T4*TANT4,

TT4p = kron(T4p, eye(n))*D5;

VP4t = 1/(2*alpha)* ((TT4p* TT4p)\TT4p)/IFpd*Hp4,

alpha 4 = size(T4);

set-up
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P4t = Vec2Mat(vP4t, n, alpha_4(2));
P4 = PAt* T4p;
%% Control
Gains %%

% Term Kp's with p*bar = 1
%6%0%%6%0%%6%0%%6%0%0%6%0%0%6%0%0%6%6%0%6%6%0%6%6%0%6%6%0%6%6%0%0%6%0 %% % %% % %%
%%%%

pbar = 1;% Using only P (Order of truncation 1 for Pp)

% p from 1 to pbar = 1

p=1
% Theni=j=1landk=0
Kpl_pbarl = R\W110;

% Term Kp's with pbar = 2
%%6%0%0%0%6%0%6%0%6%6%6%0%6%0%6%6%6%0%6%0%6%6%6%0%6%6%6%0%6%0%6%0%6%0%6%0%6%0%6%6% %%
%%%%

pbar = 2;% Using P to order of truncation 2 for Pp)

% p from 1 to pbar = 2

p=1
% Caseofi=j=1landk=0
Kpl_pbar2 = R\W110;

p=2

%Caseofi=2,j=1landk=0

P21 = PijMatrix(P, P2, apha, 2, 1);

P12 = PijMatrix(P, P1, apha, 1, 2);

D2 =jDiffMatrix(n, 2);

V21 = Vec2Mat(vec(P21*P12*D1), "2, n)';
W210 = Vec2Mat(vec(V21*G0), "2, m)';
% Caseofi=1,j=2andk=0

V12 = Vec2Mat(vec(P12*P21*D2), "2, n)’;
W120 = Vec2Mat(vec(V12*G0), N2, m)’;

W2 =W210 + W120;
Kp2_pbar2 = R\W2;

% Term Kp's with p*bar = 3
%%0%0%0%0%0%0%%0%%0%0%0%0%0%6%6%%0%6%6%6%6%%6%6%6%%0%0%6%0%6%%6%6%6%6%6%6%6 %% %
%%%%

pbar = 3;% Using P to order of truncation 3 for Pp)

% p from 1 to pbar =3
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p=1
% Caseofi=j=1landk=0
Kpl pbar3 = R\W110;

p=2
% Caseofi=2,j=1landk=0andcaseofi=1,j=2and k=0

Kp2_pbar3 = RW2;

p=3;

%Caseofi=3,j=1landk=0

P31 = PijMatrix(P, P3, apha, 3, 1);

P13 = PijMatrix(P, P1, alpha, 1, 3);

V31 = Vec2Mat(vec(P31*P13*D1), "3, n)’
W310 = Vec2Mat(vec(V31*G0), M3, m)'
% Caseofi=2,j=2andk=0

P22 = PijMatrix(P, P2, apha, 2, 2);

V22 = Vec2Mat(vec(P22*P22*D2), 3, n)’;
W220 = Vec2Mat(vec(V22*G0), N3, m)';
% Caseofi=1,j=1landk=0

V13 = Vec2Mat(vec(P13*P31*D3), N3, n)’;
W130 = Vec2Mat(vec(V13*G0), M3, m)';

W3 =W310 + W220 + W130;
Kp3_pbar3 = RWS3;

% Term Kp's with p*bar = 4
%%0%0%0%0%0%0%%0%%0%0%6%0%0%0%6%%0%6%0%6%6%%0%6%6%%0%0%6%6%6%%6%6%6%6%6%6%6 %% %
%%%%

pbar = 4;% Using P to order of truncation 4 for Pp)

% p from 1 to pbar =4

p=1
% Caseofi=j=1landk=0
Kpl pbard = R\W110;

p=2
%Caseofi=2,j=landk=0andcaseofi=1,j=2andk=0
Kp2_pbard = RW2;

p=3

% Caseof i=3,j=1landk=0,caseof i=2,j=2andk =0, and
%caseofi=1,j=1andk=0

Kp3_pbard = RW3;
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p=4;

% Caseofi=4,j=1land k=0,

P41 = PijMatrix(P, P4, apha, 4, 1);

P14 = PijMatrix(P, P1, apha, 1, 4);

V41 = Vec2Mat(vec(P41*P14*D1), M4, n)';
W410 = Vec2Mat(vec(V41*G0), 4, m)';
% Caseof i =3,j=2and k=0,

P32 = PijMatrix(P, P3, apha, 3, 2);

P23 = PijMatrix(P, P2, apha, 2, 3);

V32 = Vec2Mat(vec(P32*P23*D2), 4, n)’;
W320 = Vec2Mat(vec(V32*G0), 4, m)';
% Caseof i=2,j=3andk =0, and

V23 = Vec2Mat(vec(P23*P32*D3), N4, n)';
W230 = Vec2Mat(vec(V23*G0), 4, m)';
%Caseofi=1,j=4andk=0

V14 = Vec2Mat(vec(P14*P41* D4), "4, n)';
W140 = Vec2Mat(vec(V 14* GO0), 4, m)';

W4 =W410 + W320 + W230 + W140;
Kp4_pbard = R\W4;

%%6%0%%0%0%0%6%0%6%6%6%0%6%0%6%6%6%0%6%0%6%0%6%0%6%0%6%0%6%0%6%0%6%0%6%0%6%0%6%6% %%
%6%%0%%0%0%6%6%0%6%6%6%0%6%6%0%0 %% %% %% %% %% %% %%

% Choose Order of truncationp =1, 2, 3 or 4.
p = 4;%Kepp it equal to 4

%%0%%%0%0%6%0%0%6%6%6%6%6%%6%6%%6%6%%6%06 % %% % %% %0 %% %0 %% %0 %% %0 %% % %%
%%0%%6%0%%6%0%0%6%0%%6%0%%0%0% %% %0%0%0%0 %% %0 %% %%
switch p
case 1,

% Apply the following

% Term Kp'swith p =
1.9%%9%6%%%6%%%6%0%%6%0%0%6%0%0%6%0%0%6%0%%6%0%%6%6%%6%6 % %% % %% % %%0 % %%
%

% We abtain, with only p = 1:

p = 1,% Using only P (Order of truncation 1 for Pp)
Kp_1=Kpl pbarl;

Kp_2 = zeros(m, n"2);

Kp_3 = zeros(m, n"3);

Kp_4 = zeros(m, n"4);

Kp_5 = zeros(m, n"5);

Kp_6 = zeros(m, n"6);

Kp_7 = zeros(m, n"\7);
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%%0%0%%%%%0%0%0%0%%%%0%0%0%0%%%0%0%0%0%0 %% %0%0%6%0 %0 %% %% %% %% %% %%
%0%%0%0%%%%0%6%0%0%0%%%0%0%0%0% %% %0%6%0%0% %% %% %

case 2,
% Apply the following
% Term Kp'swith p =
2.9%0%%%%%6%0%6%%6%0%%0%6%0%6 %% %% %% %0%6%0%0%%6 %% %% %% %% %% %% %% %
%

% We obtain, with only p = 2:

p = 2;% Using only P (Order of truncation 2 for Pp)
Kp_1=Kpl pbar2;

Kp_2=Kp2_pbar2;

Kp_3 = zeros(m, n"3);

Kp_4 = zeros(m, n"4);

Kp_5 = zerog(m, n"\5);

Kp_6 = zeros(m, n"6);

Kp_7 = zeros(m, n7);

%0%0%0%0%%%%0%6%0%0%%%%6%0%0 %% %%%0%0%0 %0 %% %6%%0%0 % %% %% %% % %% %% %
%0%%0%0%%%%%6%0%0%0%%%0%0%0 %% %% %0%6%0%0% %% %% %

case 3,
% Apply the following
% Term Kp'swith p = 3.
%%0%0%0%0%0%0%0%0%%0%6%0%%0%6%6%0%0%6%0%6%0%%0%6%6%0%0%6%6%%6%%6%6%6%6%6% % %%

% We abtain, with only p = 3:
p = 3;% Using only P (Order of truncation 3 for Pp)

Kp_1=Kpl_pbar3;
Kp_2=Kp2_pbar3;
Kp_3=Kp3_pbar3;
Kp_4 = zeros(m, n"4);
Kp_5 = zeros(m, n"5);
Kp_6 = zeros(m, n"6);
Kp_7 = zeros(m, n"\7);

%0%%0%%%%%0%6%0%0%%%%0%0%0%0 %% %0%0%0%0%0 %0 %% %% %0 %0 %% %%0%6%0 %% %% %%
%%%0%0%%%%0%6%0%0%%%%0%0%0%0%%%%0%6%0%0% %% %% %

case 4,
% Apply the following
% Term Kp'swith p = 4.
%6%6%0%6%0%6%0%6%60%6%6%6%0%6%0%6%0%6%0%6%0%6%0%6%0%6%0%6%0%6%0%6%0%6%6%6%6%%6%%6% %
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% We obtain, with only p = 4:
p = 4;% Using only P (Order of truncation 4 for Pp)

Kp_1=Kpl_pbar4;
Kp_2 = Kp2_pbar4;
Kp_3=Kp3_pbar4;
Kp_4 =Kp4_pbar4;
Kp_5 = zeros(m, n"5);
Kp_6 = zeros(m, n"6);
Kp_7 = zeros(m, n"\7);

%%0%0%%%%0%0%0%0%0 %% %%0%0%0%0%%%0%0%0%0%0 %% %0%0%0%0%0 %% %% %% %% %% %%
%%%0%0%%%%0%6%0%0%0%%%0%0%6%0%%%%%6%0%0% %% %% %

otherwise
disp(‘'index out of range!’);
end

%% Run for Order of K with p's (from 1 to p).
for Order_of K =1:p,

%6%6%0%6%6%6%6%6%6%6%6%6%6%6%6%6%0%6%6%6%6%6%6%6%6%6%0%6%6%6%0%6%0%6%0%6%6%6%0%6%0 %% %
%6%6%0%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%0%6%6%6%6%6%6 %%

sim('Heli2dofNLOCSimulation’)

disp('Simulation done..")

%0%%0%0%%%%%6%0%0%%%%%6%0%0%%%%%6%0%0%0%%%%0%0%0%%0%% %% %% %% %%
%6%%0%0%%%%6%6%0%0%%%%6%6%0%0%%%% %% % %%

load States.mat states;

load Cmd.mat cmd;

load Jopt.mat Jopt;

switch Order_of_K
casel,
X_lin = states;
U_lin=cmd;
J lin= Jopt;

save X_lin.mat X_lin;

save U lin.mat U_lin;

save J lin.mat J lin
case 2,
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X_KP2 = dtates,
U _KP2=cmd;
J_KP2 = Jopt;

save X_KP2.mat X_KP2;

save U_KP2.mat U_KP2;

saveJ KP2.mat J KP2;
case 3,

X_KP3 = dtates,

U _KP3=cmd;

J_KP3 = Jopt;

save X_KP3.mat X_KPS3;

save U_KP3.mat U_KP3;

save J KP3.mat J KP3;
case 4,

X_KP4 = states;

U KP4 =cmd;

J_KP4 = Jopt;

save X_KP4.mat X_KP4;
save U_KP4.mat U_KP4;
save J KP4.mat J_KP4;
otherwise
disp('index out of range!");
end
end

save Pd.mat Pd
save Pdp.mat Pdp
save Yd.mat Yd

set-up

%%
End .. %%

%%0%0%%%%%0%0%0%0%%%%0%0%0%0%%%0%0%0%0%0 %% %0%0%6%0%0 %% %% %% %% %% %%

%%%0%0%%%%0%6%0%0%%%%0%0%0%0% %% %%6%0%0% %% %% %
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F Simulation resultsfor other
desired trajectories of 2-DOF
helicopter-model set-up

F.1 Constant desired pitch angle of -30 degree

In the following we present the simulation results for a desired yaw angle of O
degree, desired pitch angle of -30 degree and an initia condition of the pitch angle

of -40.5 degrees for four controllers (Linear, 2™ , 3 and 4™ orders).

Pitclh v Time
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" E E = 3rd KP (simulation)
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t i sec

Figure F1. Pitch evolution vs. time for desired pitch angle of -30 degree
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The simulations show in Figure 7.7 that the four controllers stabilize the system
around the pitch angle of -26 degree. The same simulations show also that the four

controllers have the same behaviour.
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Figure.F2. Yaw evolution vs. time for desired pitch angle of -30 degree

10

Figure 7.8 shows that the four controllers stabilize the system around a yaw angle

of -3 degree and they are similar.

212



Simulation results for other desired trajectories of 2-DOF helicopter-model set-up

20

15

I | in .l"r"I

10

Fromt Motor Voltage vs. T'ime

g

Ty —
1
1
1
1
1
1
1
1

"7
1
1
1
1
1
1
1
1
[
1
1
1
1
1
1
1
1
1
el el sttt

— - Lin. (simulation)
— = 2nd KP (simulation)
= = 3rd KP (simulation)

|
ﬂ
i
|
I
|

|
|
u

(@)
NfF---------

_b - — - — - — - — o

OpF---------

i in sec

10

Figure F3. Front motor voltage evolution vs. time for desired pitch angle of -30 degree
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Rear Motor Voltage o5 Tine
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Figure.F4. Rear motor voltage evolution vs. time for desired pitch angle of -30 degree

Figures F3 and F4 show the input voltages of the front and rear motors. They
present almost the same behaviour for the four controllers.

F.2 Square signal desired pitch angle of 0.05 Hz frequency
and 10 degree amplitude

In the following, we present the simulation results for a desired yaw angle of 0
degree, desired pitch angle of a square signal of frequency 0.05 Hz and amplitude
of 10 degree, with an initial condition of the pitch angle of -40.5 degrees for four

controllers: Linear, 2™ , 3% and 4" truncation orders.
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Figure F5. Pitch evolution vs. time for desired pitch angle of square signal of frequency 0.05 Hz and
amplitude of 10 degree

The simulation results for the pitch angle show that the four controllers stabilize
the helicopter around the desired signal with an advantage for 3 and 4" order
ones presenting a closer behaviour to the reference and better settling time.
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Figure F6. Yaw evolution vs. time for desired pitch angle of square signal of frequency 0.05 Hz and
amplitude of 10 degree

The simulation results of the yaw angle show that the four controllers stabilize the
helicopter around the desired yaw angle of zero degree, whilethe 3 and 4" order

ones present un important overshoot to reach the equilibrium, the linear and 2"
order controllers present aless steady state error.
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Figure F7. Front motor voltage evolution vs. time for desired pitch angle of square signal of
frequency 0.05 Hz and amplitude of 10 degree
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Figure F8. Rear Motor Voltage evolution vs. time for desired pitch angle of square signa of
frequency 0.05 Hz and amplitude of 10 degree
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The simulation results of the front and rear motor voltages show that the 3 and

4™ order controllers require a higher voltage, then more energy to stabilize the
helicopter around the desired pitch and yaw angles.

F.3 Square signal desired pitch angle of 0.02 Hz frequency
and 20 degree amplitude

In the following, we present the simulation results for a desired yaw angle of 0
degree, desired pitch angle of a square signal of frequency 0.02 Hz and amplitude
of 20 degree and for an initial condition of the pitch angle of -40.5 degrees for four

controllers; Linear, 2™, 3% and 4" truncation order.
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Figure F9. Pitch evolution vs. time for desired pitch angle of square signa of frequency 0.02 Hz and
amplitude of 20 degree

The simulation results of the pitch angle show that the four controllers stabilize the
helicopter around the desired signal with the advantage for the 3 and 4™ ones

presenting a closer behaviour to the reference and better performance in terms of
settling time.
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Simulation results for other desired trajectories of 2-DOF helicopter-model set-up
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Figure F10. Yaw evolution vs. time for desired pitch angle of square signal of frequency 0.02 Hz and
amplitude of 20 degree

The simulation results of the yaw angle show that the four controllers stabilize the
helicopter around the desired yaw angle of zero degree. The first and second order

controllers present a closer behaviour to the reference, while 3 and 4" ones
present a higher overshoot.
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Simulation results for other desired trajectories of 2-DOF helicopter-model set

-up
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Figure F11. Front motor voltage evolution vs. time for desired pitch angle of square signal of
frequency 0.02 Hz and amplitude of 20 degree
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Figure F12. Rear motor voltage evolution vs. time for desired pitch angle of square signal of
frequency 0.02 Hz and amplitude of 20 degree
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Simulation results for other desired trajectories of 2-DOF helicopter-model set-up

The simulation results for the input controls, the front and rear motor voltages

show that 3 and 4™ order controllers require a higher voltage, then more energy
to stabilize the helicopter around the desired pitch and yaw angles.

F.4 Sinesignal desired pitch angle of 0.05 Hz frequency and
10 degree amplitude

In the following, we present the ssimulation results for a desired yaw angle of O
degree, desired pitch angle of asine signal of frequency 0.05 Hz and amplitude of
10 degree with an initial condition of the pitch angle of -40.5 degrees for the four

controllers: linear, 2™ , 3 and 4™ truncation order.
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Figure F13. Pitch evolution vs. time for desired pitch angle of sine signa of frequency 0.05 Hz and
amplitude of 10 degree
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Simulation results for other desired trajectories of 2-DOF helicopter-model set-up

The simulation results of the pitch angle show that the four controllers stabilize the

helicopter around the desired signal with the advantage for 3 and 4" order ones
presenting a better performance in terms of rise time.
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Figure F14 Yaw evolution vs. time for desired pitch angle of sine signal of frequency 0.05 Hz and
amplitude of 10 degree

The simulation results of the yaw angle show that the four controllers stabilize the
helicopter around the desired angle of zero degree with the advantage for the

linear, 2™ and 4™ order ones, presenting a better performance in terms of
overshoot.
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Simulation results for other desired trajectories of 2-DOF helicopter-model set-up
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Figure F15 Front motor voltage evolution vs. time for desired pitch angle of sine signal of frequency
0.05 Hz and amplitude of 10 degree
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Figure F16 Rear motor voltage vs. time for desired pitch angle of sine signal of frequency 0.05 Hz
and amplitude of 10 degree
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Simulation results for other desired trajectories of 2-DOF helicopter-model set-up

The simulation results for the input controals, i.e., the front and rear motor voltages

show that 3 and 4™ order controllers require a higher voltage, then more energy
to stabilize the helicopter around the desired pitch and yaw angles.

F.5 Sinesignal desired pitch angle of 0.02 Hz frequency and
20 degree amplitude

In the following, we present the ssimulation results for a desired yaw angle of O
degree, desired pitch angle of asine signal of frequency 0.02 Hz and amplitude of
20 degree, with an initial condition of the pitch angle of -40.5 degrees for the four

controllers; Linear, 2™, 3¢ and 4" truncation order.
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Figure F17 Pitch evolution vs. time for desired pitch angle of sine signa of frequency 0.02 Hz and
amplitude of 20 degree
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Simulation results for other desired trajectories of 2-DOF helicopter-model set-up

The simulation results of the pitch angle show that the four controllers stabilize the

helicopter around the desired signal with the advantage for the 3 and the 4" ones
presenting a better performance in terms of rise time.
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Figure F18 Yaw evolution vs. time for desired pitch angle of sine signal of frequency 0.02 Hz and
amplitude of 20 degree

The simulation results of the yaw angle show that the four controllers stabilize the
helicopter around the desired angle of zero degree with the advantage for the
linear, 2™ and 4™ order ones, presenting a better performance in terms of
overshoot. We note that the proposed control design does not consider the transient
dynamic behaviour (e.g., overshoot). The optimal control gain calculus minimizes
a combination of the energy of error and control effort.
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Simulation results for other desired trajectories of 2-DOF helicopter-model set-up
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Figure F19 Front motor voltage evolution vs. time for desired pitch angle of sine signal of frequency
0.02 Hz and amplitude of 20 degree
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Figure F20 Rear motor voltage evolution vs. time for desired pitch angle of sine signal of frequency
0.02 Hz and amplitude of 20 degree
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Simulation results for other desired trajectories of 2-DOF helicopter-model set-up

The simulation results for the input controals, i.e., the front and rear motor voltages

show that 3 and 4™ order controllers require a higher voltage, then more energy
to stabilize the helicopter around the desired pitch and yaw angles.

F.6 Multi-step desired pitch angle

In the following, we present the ssimulation results for a desired yaw angle of O
degree, desired pitch angle of a multi-step signal with an initial condition of the

pitch angle of -40.5 degrees for the four controllers Linear, 2™, 3 and 4"
truncation orders.

Yaw 15 Time

6 : r :
----- Reference ! !
4H = - Lin. (simulation) ------------ ------------
= = 2nd KP (simulation) |, :
ol] = = 3rd KP (simulation) |- -------____ ]
4th KP (simulation)
L Qpeeeeeeaen- Y . N SR
- 2 7T\
= o A f N
SR By s P o
Mo e e —
V | | |
i R R e e
8 : : :
0 50 100 150 200

I in sec

Figure F21 Y aw evolution vs. time for desired pitch angle of multi-steps signal

The simulation results of the yaw angle show that the four controllers behave
similarly (i.e., thereis no mgjor differences).
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Simulation results for other desired trajectories of 2-DOF helicopter-model set-up
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Figure F22 Front motor voltage evolution vs. time for desired pitch angle of multi-steps signal
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Figure F23 Rear motor voltage evolution vs. time for desired pitch angle of multi-steps signal
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Simulation results for other desired trajectories of 2-DOF helicopter-model set-up

The simulation for the input controls, i.e., the front and rear motor voltages show
that for the four controllers, the input control signals have the same behaviour, and
then, the same amount of energy is needed in order to stabilize the system around
the desired trgjectory.

In conclusion, the simulation of the behaviour of the designed four controllers for
different tragjectories show that as high as we go in the order of truncation, we need
higher energy to stabilize the system but we see an improvement in the steady state
error.
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G Experimental resultsfor other
desired trajectories of the 2-DOF
helicopter-model set-up

G.1 Constant desired pitch angle of -30 degree
In the following, we present the ssimulation results for a desired yaw angle of O

degree, desired pitch angle of -30 degree with an initial condition of the pitch angle
of -40.5 degrees for four controllers: Linear, 2™ , 3% and 4™ truncation orders.
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Figure G1 Pitch evolution vs. time for desired pitch angle of -30 degree
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Experimental results for other desired trajectories of the 2-DOF helicopter-model
set-up

The experimental results show that the four controllers stabilize the 2-DOF
helicopter set-up around a pitch angle of -25 degree. The depicted error due to the
mathematical model approximation of the control law is reduced with truncation
order. In comparison with simulation results, the experimental results present the
same behaviour with closely the same error magnitudes. These results demonstrate
the effectiveness of the high order KP-L F-based method.
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Figure G2 Yaw evolution vs. time for desired pitch angle of -30 degree

The experimental results show how the four controllers stabilize the 2-DOF
helicopter set-up around a yaw angle within the range of -3 to -7 degrees. These
errors are due to the mathematical model approximation of the control law. In
comparison with simulation results, the experimenta results present almost the
sadme behaviour and closely same level of errors, with slight improvement with the
3 order.

231



Experimental results for other desired trajectories of the 2-DOF helicopter-model

set-up
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Figure G3 Front motor voltage evolution vs. time for desired pitch angle of -30 degree
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Figure G4 Rear motor voltage evolution vs. time for desired pitch angle of -30 degree
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Experimental results for other desired trajectories of the 2-DOF helicopter-model
set-up

The experimental results show that for the input controls, i.e., the front motor and
rear motor voltages that the four controllers behave the same way: for the front
motor the voltage fluctuate within the range of 7 to 12V and for the rear motor the
voltage fluctuate within the range of -8 to -6V. We assume that these fluctuations
are due to nonlinearities in the mathematical model of the system and some noise
levels which are not controllable. In comparison with the ssimulation results, the
experimental ones present the same genera tendency with more fluctuations
around the equilibrium input controls instead of a constant val ue.

G.2 Square signal desired pitch angle of 0.05 Hz frequency
and 10 degree amplitude

In the following, we present the experimental results for a desired yaw angle of 0
degree, desired pitch angle of a square signal of frequency 0.05 Hz and amplitude
of 10 degree with an initia condition of the pitch angle of -40.5 degrees for four

controllers: Linear, 2™, 3% and 4" truncation orders.
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Figure G5 Pitch evolution vs. time for desired pitch angle of square signal of frequency 0.05 Hz and
amplitude of 10 degree
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Experimental results for other desired trajectories of the 2-DOF helicopter-model
set-up

The experimenta results show that the four controllers behave the same way and
stahilize the 2-DOF set-up around the desired square pitch angle signa with some
overshoot when the signal is changing amplitude from 10 degrees to -10 degrees.
The 2™ order controller represents the best performance in terms of accuracy.
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Figure G6 Y aw evolution vs. time for desired pitch angle of square signal of frequency 0.05 Hz and
amplitude of 10 degree

The same experiments show that the four controllers stabilize the 2-DOF set-up
around the desired yaw angle of O degree with an improvement of the second order
one, presenting lower errors than the other controllers.
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Experimental results for other desired trajectories of the 2-DOF helicopter-model
set-up

Front Motor Voltage vs, Time
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Figure G7 Front motor voltage evolution vs. time for desired pitch angle of square signal of frequency
0.05 Hz and amplitude of 10 degree
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Figure G8 Rear motor voltage evolution vs. time for desired pitch angle of square signal of frequency
0.05 Hz and amplitude of 10 degree
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Experimental results for other desired trajectories of the 2-DOF helicopter-model
set-up

In terms of input controls, the experiments show for the front motor voltage that
the four controllers behave in the same way. But, the fourth order one presents a
higher voltage variation when the signal is changing direction from 10 degrees to -
10 degrees. For the rear motor voltage there is no major difference between the
four controllers.

G.3 Square signal desired pitch angle of 0.02 Hz frequency
and 20 degree amplitude

In the following, we present the experimental results for a desired yaw angle of O
degree, desired pitch angle of a square signal of frequency 0.02 Hz and amplitude
of 20 degree, with for an initia condition of the pitch angle of -40.5 degrees for

four controllers: Linear, 2™ , 3 and 4™ truncation orders.
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Figure G9 Pitch evolution vs. time for desired pitch angle of square signal of frequency 0.02 Hz and
amplitude of 20 degree

The experimental result for the pitch angle show that the four controllers stabilize
the 2-DOF set-up around the desired sguare signal with a slight improvement for

236



Experimental results for other desired trajectories of the 2-DOF helicopter-model
set-up

the second order one, presenting a lower overshoot when the signal amplitude is
changing from 20 degrees to -20 degrees.
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Figure G10 Y aw evolution vs. time for desired pitch angle of square signal of frequency 0.02 Hz and
amplitude of 20 degree

The experimental results for the yaw angle show that the four controllers stabilize
the system around the desired yaw angle of zero degree with errors of -5 t0 0
degrees, with some overshoot for the third and fourth order controllers when
changing the signal amplitude from 20 degrees to -20 degrees.
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Experimental results for other desired trajectories of the 2-DOF helicopter-model
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Figure G11 Front motor voltage evolution vs. time for desired pitch angle of square signal of
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Figure G12 Rear motor voltage evolution vs. time for desired pitch angle of square signal of
frequency 0.02 Hz and amplitude of 20 degree
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Experimental results for other desired trajectories of the 2-DOF helicopter-model
set-up

The experimental results for the input controls, i.e., front and rear motor voltages
show that the four controllers behave amost in the same way and then consume
amost the same amount of energy with the exception for the fourth order one
which presents higher voltage for both motors when changing the desired pitch
angle amplitude from 20 degreesto -20 degrees.

G.4 Sinesignal desired pitch angle of 0.05 Hz frequency and
10 degree amplitude

In the following, we present the experimental results for a desired yaw angle of O
degree, desired pitch angle of asine signa of frequency 0.05 Hz and amplitude of
10 degree, with an initia condition of the pitch angle of -40.5 degrees for the four

controllers: Linear, 2™, 3% and 4" truncation orders.
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Figure G13 Pitch evolution vs. time for desired pitch angle of sine signal of frequency 0.05 Hz and
amplitude of 10 degree

The experimental results for the pitch angle show that the four controllers stabilize
the 2-DOF set-up around the desired sine pitch angle with a dight advantage for
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Experimental results for other desired trajectories of the 2-DOF helicopter-model
set-up

the second order one which presents a better performance than the other controllers
in terms of overshoot, rise time and errors.
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Figure G14 Y aw evolution vs. time for desired pitch angle of sine signa of frequency 0.05 Hz and
amplitude of 10 degree

For the yaw angle, the simulation results show that the four controllers stabilize the
2-DOF set-up around the desired yaw angle of zero degree with a dight advantage
for third and fourth order controllers in terms of errors despite an important
overshoot.
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Experimental results for other desired trajectories of the 2-DOF helicopter-model
set-up
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Figure G15 Front motor voltage evolution vs. time for desired pitch angle of sine signal of frequency
0.05 Hz and amplitude of 10 degree
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Figure G16 Rear motor voltage evolution vs. time for desired pitch angle of sine signal of frequency
0.05 Hz and amplitude of 10 degree
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Experimental results for other desired trajectories of the 2-DOF helicopter-model
set-up

For the input controls, the experiments show that the four controllers behave in the
same way except for the fourth order one which presents a higher voltage and
hence energy for the front and rear motors during the start-up phase.

G.5 Sine signal desired pitch angle of 0.02 Hz frequency and
20 degree amplitude

In the following, we present the experimental results for a desired yaw angle of O
degree, desired pitch angle of asine signal of frequency 0.02 Hz and amplitude of
20 degree, with an initial condition of the pitch angle of -40.5 degrees for the four

controllers; Linear, 2™, 3% and 4" truncation orders.
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Figure G17 Pitch evolution vs. time for desired pitch angle of sine signa of frequency 0.02 Hz and
amplitude of 20 degree

The experimental results for the pitch angle show that the four controllers stabilize
the 2-DOF set-up around the desired sine pitch angle with an improvement for the
second and third order controllers.
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Experimental results for other desired trajectories of the 2-DOF helicopter-model
set-up
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Figure G18 Yaw evolution vs. time for desired pitch angle of sine signa of frequency 0.02 Hz and
amplitude of 20 degree

For the yaw angle, the experimental results show that the four controllers stabilize
the 2-DOF set-up, with some errors about zero. We depict a high overshoot for the
fourth order one.
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Experimental results for other desired trajectories of the 2-DOF helicopter-model

10
> . | | |
2 ot e R  REREEEE -
AP ? ________ E_ | ——Lin. (experiment)
! ! — 2nd KP (experiment)
20k ------- e i _ - | = 3rd KP (experiment) (|
| | — 4th KP (experiment)
0 20 40 60 80
P in sec

Fremt Motor Voltage 5. Time

set-up

T
I
I
+

100

Figure G19 Front motor voltage evolution vs. time for desired pitch angle of sine signal of frequency
0.02 Hz and amplitude of 20 degree

15

Bear Motor Voltage v, Tine

Li

2nd KP (experiment)

— 3rd KP (experiment)
— 4th KP (experiment)

n. (experiment)

¢ I =ec

Figure G20 Rear motor voltage evolution vs. time for desired pitch angle of sine signal of frequency
0.02 Hz and amplitude of 20 degree
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Experimental results for other desired trajectories of the 2-DOF helicopter-model
set-up

In terms of input controls, the four controllers behave almost in the same way and
they present small vibrations around the equilibrium voltages of 10V for the front
motor and -8V for the rear motor.

G.6 Multi-step desired pitch angle

In the following, we present the experimental results for a desired yaw angle of O
degree, desired pitch angle of a multi-step signal, with an initial condition of the
pitch angle of -40.5 degrees for the four controllers: Linear, 2™, 3 and 4"
truncation orders.
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Figure G21 Pitch evolutions vs. time for desired pitch angle of multi-steps.

The pitch angle evol utions show better results with the 3™ and 4™ order controllers.
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Experimental results for other desired trajectories of the 2-DOF helicopter-model
set-up

Yaw ve, Thne

----- Reference F

4H ——Lin. (experiment)  [---------- dmmmmeea
— 2nd KP (experiment) !

2H = 3rd KP (experiment) |- - rean - - - e
4th KP (experiment) !
= |

tn sec

Figure G22 Y aw evolutions vs. time for desired pitch angle of multi-steps

The experimental results of the yaw angles for a desired pitch angle of multi-steps
and a yaw angle of zero degree show that the four controllers stabilize the 2-DOF
within a range of -6 to 2 degrees. The yaw performance is affected by the pitch
behaviour.
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Experimental results for other desired trajectories of the 2-DOF helicopter-model
set-up

Front Motor Voltage ws, Time
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Figure G23 Front motor voltage evolution vs. time for desired pitch angle of multi steps

Rear Motor Voltage vs, Time
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Figure G24 Rear motor voltage evolution vs. time for desired pitch angle of multi steps
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Experimental results for other desired trajectories of the 2-DOF helicopter-model
set-up

In terms of input controls, the four controllers present almost the same behaviour

and vary within arange of 5 to 20V for the front motor voltage and -10 to -6V for
the rear motor voltage.
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1. Introduction

Numerous physical systems are very well known to be
nonlinear by nature, but methods for analysing and
synthesizing controllers for nonlinear systems are still not as
well developed as their counterparts for linear models
(Ekman, 2005). The investigation of new techniques for
nonlinear problems such as the stability, the estimation and
the control design remains a challenge until today (see eg.
(Zhu & Khayati, 2012; Zhu & Khayati, 2011; Won & Biswas,
2007; Khayati et al, 2006, Ekman, 2005)). In particular, to
deal with the nonlinear optimal control problem, it has been
stated in (Khayati, 2013) and references cited therein that a
great variety of works shown in the literature used simple
techniques, based on the local linearization, and more

complex ones, such as (but not limited to) the state-
dependent-Riccati (SDR) equation, the nonlinear-matrix-
inequality- and frozen-Riccati-equation-based methods (Won
& Biswas, 2007; Huang & Lu, 1996; Banks & Mhana, 1992).
These methods could work well in some applications but
rigorous theoretical proofs were lacking (Won & Biswas,
2007). The related grey area nevertheless covers the stability
analysis of these closed loop controllers and also their
implementation (complexity of the algorithms) within a large
set of plants. These concerns have been discussed in separate
works with a lot of compromises to achieve their goals (Won
& Biswas, 2007; Ekman, 2005; Banks & Mhana, 1992).

Recently, the KP algebra has shown an important role in
research activities dealing with control analysis and design
(Mtar et al, 2009; Bouzaouche & Braik, 2006; Rotella &
Tanguy, 1988). In these works, polynomial modelling
structures represent the nonlinearities using the matrix KP
and the vector power algebra (Steeb, 1997; Brewer, 1978).
This modelling resembles the classical linearization, but with
a difference. In fact, the order of truncation of the
decomposition is high enough to represent closely and fairly
the actual dynamics of the system.

In this paper, the optimal control for affine input
nonlinear systems (i.e. linear w.r.t. the input but nonlinear in
terms of the states (Rotella & Tanguy, 1988)) is considered.
Such a large class contains well-known examples in control
theory and many physical systems (e.g. mass-spring systems
with softening/hardening springs, artificial pneumatic
muscles, flight engine setups, etc.) (Chesi, 2009; Ekman, 2005;
Banks & Mhana, 1992). The controller is developed using the
well-known optimality conditions (Goh 1993; Borne et al,
1990; Rotella & Tanguy, 1988) by converting the nonlinear
SDR equation into a set of algebraic equations using the KP
algebra (Steeb, 1997; Rotella & Tanguy, 1988). The proposed
method is using the same technique developed in (Rotella &
Tanguy, 1988), but with a main difference of considering a
given quadratic form for the cost index functional allowing
the analysis of the stability of the optimal state-feedback



(Goh, 1993). In fact, this analysis will show cases where the
overall system will be globally asymptotically stable (GAS), or
will estimate alternatively its DA and how much this domain
can be large when the system is locally asymptotically stable
(LAS) eventually. The stability and DA estimate features will
be cast as convex problems that will be solved using LMI
frameworks (Chesi, 2009; Chesi, 2005). Indeed, we will
propose a technique that ensures the computation of the
largest estimation of the domain of attraction (LEDA) using
both the well-known complete square matrix representation
(SMR) (Chesi, 2009; Chesi, 2003) and a new formalism of a
complete rectangular matrix representation (RMR).

We will proceed as follows. In Section 2, we introduce a
set of useful notations, definitions and properties regarding
the matrix KP algebra, the vector power series and the
SMR/RMR formulations. Section 3 is devoted to the problem
statement of the nonlinear dynamics, the nonlinear quadratic
cost functional to be optimized and the related optimality
conditions. In Section 4, we introduce an LF-based optimal
cost index that will be used in the transformation of the
polynomial SDR equation. Then, Section 5 deals with the
computation of a ‘closely’ acceptable solution to this
nonlinear equation in the unknown constant matrices, while
in Section 6, an analytic and practical form of the state-
feedback sub-optimal control is developed. Section 7
introduces the stability issue of the designed sub-optimal
closed-loop. Moreover, in Section 8, we discuss the
computation of the LEDA of this closed loop system. Finally,
to illustrate the proposed technique, numerical and
comparative results are presented in Section 9, while Section
10 concludes this work.

2. Useful Notations, Definitions and Proprieties

Notations and properties of matrices, vectors, dot
product and KP tensors used in this paper are exhaustively
discussed in the literature; e.g. (Schott, 2001; Steeb, 1997;
Brewer, 1978). The proofs of the new lemmas introduced in
this Section are based on theorems introduced in these
references. Due to lack of space, all these theorems as well as
the proofs of the lemmas shown below are omitted.

2. 1. Definitions
Definition 1: For any vector xR" and any integer j,

i J o . ~J (),
x'eR" is the j -power of a vector x and &/ eR”" is the

non-redundant j-power of the vector x with 75.") standing

J sz (M)
n XT]

for the binomial coefficient. We have VjeN, EI!Tj eR s.t
X! =T 2 (Mtar et al, 2009; Brewer, 1978).

Definition 2: Let w(x) be any homogenous form of
degree 2j, then the SMR of w(x) in any xeR" is given by

w(x):)?WWX’M (Chesi, 2005; Chesi, 2003). £’ is considered
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a base vector of the homogenous function of degree j in x.

W is a suitable but non-unique symmetric matrix SMR, also
known as Gram matrix. All matrices W can be linearly

parameterized as W(B)=W+L(f), where SeR*"” is a
free vector with o(n, j) :%15") -(rg") +1)—r§'}?). L(B)e R
is a linear parameterization of the set
{L=LT |27 L&V =0, vx eR"}. We refer to W(B) as the
complete SMR of w(x).

Definition 3: Let w(x) any form of degree 2j+1 in
xeR" given by w(x)=v'x”"=x”""y, where veR"".
Using theorem T2.13 of (Brewer, 1978), w(x) can be written
RMR as
(v) and

(v). Then, similarly to the homogenous forms of

using a new formulation given Dby

W(X) =X M X TN X with M = mat”

nxn/ 1

N =mat"

ey

even order shown above, we propose a complete RMR of
1 il |t 1 i T _|i
w(x) as EXMT (M+L(,B))x" ! +Ex" 1‘(M+L(/i’)) " where

xzim

(n)
p is a vector of free parameters. L(ﬂ)eRr’ ' is a linear

parameterization of the set {)?‘j‘TL)?U”‘ =0,Vx ER"}. We refer

to M(B)=M+L(B) as the complete RMR of w(x). The

following two examples illustrate this new formulation.
Example 1: Consider the form of degree 3 in two

variables w(x)=x] +xix, +x; . Noting g =(x, x, )T and
T
%A :(xf X,X, x;) , we obtain, for B=(B, B, )T eR?,

1 1
M+L(B)= [—ﬁl ;Zﬂl /%J

Example 2: Consider the form of degree 3 in three
variables w(x)=x} +x,x,x, +x +x2x,. Noting &' =(x, x,

I 2 2 .
x3) and X" =(x; x,x, XX, X, X,X; X;),we obtain, for

B=(B B, B B B B B) <R, M+L(B)=
1 ﬂl IBZ ﬁ3 ﬂ‘l- ﬁS
B B 1-28, 1 B B
_ﬁz ﬂ4 _135 1_ﬂ6 _:B7 0

2. 2. Notations
Notation 1: If V is a vector of dimension p=n-m, then

M=mat,, (V) is the (nxm)-matrix verifying V =vec(M).
Therefore it is called the mat notation.

Notation 2: M™ stands for the Moore-Penrose pseudo-
inverse of any full rank matrix M.



Notation 3: Given xeR", for any integer p>1, we

T
denote by (XW X X ) and
)’Zp _ (}~(\1\T )N(‘Z‘T

T, eR" is the direct sum of T, T,, .., T,, denoted by

X, =

)?""T>. We have Xp:Tpf(p where

14
- i - 2 p — ) m
T,=@T,, with N,=n+n"+...+n" and 7, =7," +7," +---+
i=1

z{" (Halmos, 1974).
Notation 4: For any vector x € R" and integers p and y,

T
~1)p|T L )
we denote by ) = (1 X Xl )p‘) g RE et

2. 3. Lemmata

Lemma 1: VjeN\{0} and VxeR" (Khayati &
Benabdelkader, 2012a),
ax\f\ () j—1]
~ 7= (1, @x) 1)

o j-1
where C»}.(") eR™™ is given by (ﬁj(”):zun,.xn(ﬁln,,,»,l and
i=0

therefore called the j -differential Kronecker matrix. I, (resp.
1 ,,,) denotes the identity matrix of R™ (resp. R ),

U, the permutation matrix of R

nxn

(Rotella & Tanguy,
1988; Brewer, 1978). Equivalently, Mj(") can be derived from

oM =1 and =PI +U, ,Vj=1 (2)

Lemma 2: For x and y column-vectors of R* and R’

respectively and for any matrix 4<R"™, we have (Khayati
& Benabdelkader, 2012a)

(1,®x") Ay =(1,, ®vec” (AT))(vec(In)®Ik, )(x®y) 3)
Lemma 3: Consider a matrix AcR”™. Let [4, .. A4,]

be a partition of A, ie. Vi=1,..,n, A eR". We have

(Khayati & Benabdelkader, 2012a)

(In ®vec” (A))(vec(ln )®IL, ) =mat, , (vec(A)) 4)

3. Problem Statement
Consider the nonlinear system given by

#(t)=F(x)+G(x)-u(t)=F(x +gGk(x)~uk(t) ©
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where teR designates the time, x(t)eR" the state vector,
=[u(t) - u, (t)]T eR" the input vector. F(-) and
G () for k=1,...,

R" expressed as polynomials in x. Note that G [G

m are analytic vector fields from R" into

X } eR™. By using the KP tensor, we write
f 4 4

F(x):ZFj.x\]‘, Vk=1,.,m Gk(x):igkj,x\f\
J=1 =

g jl J J
)= G,(1,®x"), with F,eR™, G, eR™ Vk=1,.,m
=0

and then,

and Gj:|:Glj | G ] R™™ . Let z(t)=H(x)eR’ be a

h p
vector field in the state vector x given by H(x)=) H, XV

with H, eR™ (Khayati & Benabdelkader, 2012a; Rotella &

Tanguy, 1988).
For Q a symmetric non-negative definite matrix of R

and R a symmetric positive definite (SPD) matrix of R™",
we propose the design of a state feedback which minimizes
the continuous-time cost functional

1

1= [ e) @a(e) ru(e) Ru(e)Jae (6)

We denote by V(x) the optimal cost with an initial
condition x at £ (Goh, 1993; Borne et al, 1990)
V(x)=2] | #(2) Qz(e)+u (v) Ru () Jar 7)
t

where u” :arg(minu ]) is the optimal control. The optimality

conditions, corresponding to the problem (5) and (6), are
given by (Borne et al,, 1990)

u*(x):—R’lG(x)TVx(x) (8)
H(x) QH(x)+V,(x) F(x)+F(x) V,(x)=V,(x) G(x)-
V,(x) G(x)R7G(x) V,(x)=0  (9)

where V, (x) denotes the derivative of V(x) w.r.t. the state

vector x;ie. V, (x):Z—V.
X

4. Quadratic Cost Function Representation

Based on the optimality conditions discussed in (Borne
et al., 1990; Rotella & Tanguy, 1988), we build the following
procedure to obtain a suboptimal state feedback in a



polynomial form using the KP tensor, vec and mat notations
(Khayati & Benabdelkader, 2012a). Such a design is based on
the determination of the cost function V(x) in a quadratic

form. In fact, this function would be expected to satisfy the
conditions of any Lyapunov candidate function (Goh, 1993).
We propose (Khayati & Benabdelkader, 2012a)

X

3 5, ) g

with ¢ eR, P is an SPD constant matrix of R™ and Pl.

(10)

constant matrices of R™ . Note that V(x) can be expressed

in a compact form

1

V(x):EX;PXﬁ (11)
where
P aP, - aP;
po| o ER o RE (12)
al;’; P: B, P;.P,

And equivalently, by using the Cholesky decomposition, P,
exists s.t. P=P/P,, then the cost function V(x) can be

rewritten in a summation form as

i i
Z H 1(1 1 (13)
1] =1
with
P for i=j=1
Pl.(j) =qal, for i=1andj>2 (14)
P for i22andj21

The expression of V(x) given by (13) and (14) will be

advantageous to solve the nonlinear SDR (9). Using theorems
T2.3 and T4.3 in (Brewer, 1978) and applying lemmas 1, 2
and 3 and the mat notation, introduced in Section 2, we
obtain the derivative of (13) w.r.t. x

oxMr PR "
V. (x)= Z_P?) zu)xH :ZVU'X‘ o

i,j=1 i,j=1

(15)

with
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V,=mat ., [vec(PTP M("))J

inEim (16)

where & j‘(”)

R™ introduced in lemma 1 (see Section 2). Using the KP
tensor, the theorem T2.13 of (Brewer, 1978), the lemmas 2
and 3, and the mat notation, introduced in Section 2, we
obtain from the nonlinear SDR equation (9)

is the square j -differential Kronecker matrix of

b f
ZZ vec (V F) ‘1+]+k 1‘+ZZV6C ( ) ‘1+]+k 1‘+
j=1 k=1 i,j=1k=1
. N =
vec” (H,.TQHJ.)X"“‘ - Z Zvec ( R I/Vbcd)
i,j=1 i,j,bc=1k,d=0
X\i+j+k+b+c+d—2\ -0 (17)
where
W, =mat;ﬂmxm [vec(VijTGk )] (18)
5. Determination of Pp
In this Section, the matrices Pp, for p=1,...,p, will be

computed from (17) by cancelling the coefficients of X7

The details of such steps, based on the KP notations and
theorems introduced in (Steeb, 1997; Brewer, 1978) as well
as the lemmas 1, 2 and 3 shown in Section 2, are omitted due
to lack of space.

First, the matrix P, is obtained by cancelling the terms of

x4, in (17). The operator vec(-) is linear on matrices of the
same dimensions. Noting that the first differential Kronecker
matrix is given by <,*? =1 and that P=PP, is SPD, we use

(14), (16), (18) and the mat notation to obtain the classical
algebraic Riccati equation (ARE)

PF, +F/P+H,QH, —PGR'G,P=0 (19)

And thence, for a given ae€R, the calculation of Pp,
p=2,..,p, is

coefficients of x ‘.Using vec and mat notations, theorems
T1.5,T1.6, T3.2, T3.4 of (Brewer, 1978) and the iterative form
of the differential Kronecker matrix (2), we combine (14),
(16) and (18) to obtain

obtained from (17) by cancelling the

|p+1

( In" ot Un" xn

)72 aevee(R, )= 7,

(20)



p-1  p-1

ZZVGC

i,j,b,c=1k,d=0
i+j+k+b+c+d=p+3

where .7, =(F,-G,R'GP)®I, and .7, =

nP

(VI/IﬁR’ll/Vbcd) - 2:1 [veC(VUTFk)+vec(FkTV,.j)J—Zp:1 vec(HI.T
i,j=1 k= =
i+j+k=p+2 i+j=p+1

QH],). Note that (F1 —GOR’ngP) is a Hurwitz matrix, then

(n)
p+1

7, isregular for all peN. & 1’ is a singular matrix for all

nonzero integers p and (In,#1 +Unpxn) is regular for p even

and singular for p odd (Khayati & Benabdelkader, 2012a;

Rotella & Tanguy, 1988). Using the non-redundant vector
power notation (Bouzaouche & Braiek, 2006), and the

theorem T3.4 of (Brewer, 1978), we write f’p :Pp -Tp where

T e R”" is the transformation matrix defined in Section 2
(Bouzaouche & Braiek, 2006). Two cases arise depending on
p:

Case I - p is even: Let JTD:(TP+ ®In)(ﬁp{£) be a full rank

rectangular ((n . rf,"))x n””) matrix. We obtain

+U,,) 5" 7, e vee(B, )=, (21)

IfP, P, .. prl are known, 13p can be calculated as a solution

of the linear equation (21). Thus, P, :15pr+ is deduced. In

-1
fact, by using .7, =.7" (J/;?;T) the Moore-Penrose

pseudo-inverse of 7, ,we obtain

~ -1
_ —+T }/\7T )
vec(Pp)— 77 (Inpﬂ +Unpx,,) A,

(22)

ST

Case Il - p is odd: Eq. (17) is rewritten using the non-

. . s ~|p+1]
redundant power series. Then, the coefficients of x"”‘ are

given in (20), but multiplied by TpT+1 on the left hand side.

Thus, this linear equation becomes

.)/iT ~vec(13p)=.,/’/p’

(23)

where y‘; =a7, 7, (Inw1 +Um,,)T is a full rank rect-

p+1

angular ((n -z )>< ) ) matrixand .7/, =T},

- 0EP, By, .,
P

), are known, 13p can be calculated as a solution of the

linear equation system (23). Thus, P, =f’pr+ is deduced. In

30

fact, by using the Moore Penrose pseudo-inverse of %‘;,

~ ~ ~\—1 ~
7 — 'J,\T:J,\) 7T i
denoted by 7, (,/p 7, ) 7, we obtain

D\_ 57~T .
vec(Pp)—./p A,

(24)
6. Implementation of the State Feedback

Consider the nonlinear dynamics (5). The optimal
control minimizing the functional cost (6) is obtained by the
optimality conditions (8) and (9). We propose the design of a

practical sub-optimal control using the matrices P, P,, ..., PE

computed in Section 5. It is based on an approximated
optimal cost V(x) given by (10). An analytical form of the

state feedback can be obtained by using (8), (15), (16) and
(18) (Khayati & Benabdelkader, 2012a)

by

(x)=-Y K,x" (25)
p=1

with p, =2p+g—-1 and
1 b 9

K=k S5 W, 26)

i,j=1 k=0
i+j+k=p+1

The KP tensor is used here to design a systematic
computation of a sub-optimal state-feedback. The proposed
nonlinear feedback (25) with (26) would not necessarily be
implemented with a great number of computed matrices P,

to be so different from the linear control approximation, a
priori. According to (Rotella & Tanguy, 1988), it can be
concluded that the state-feedback obtained with only P (ie.,
only the first order of the SDR equation) is more efficient than
the solution issued from the linearized system. In fact, by
computing only P, we may obtain a polynomial sub-optimal
control of order g+1 (where g is the order of the term
G(x) in (5)), in particular, when g is non-zero. The stability

of the proposed closed-loop feedback (5) and (25) will be
discussed in the following section.

7. Stability of the Sub-Optimal State Feedback
To investigate the stability of the closed loop system, we

consider V(x), given by (10), as a Lyapunov candidate
function. V(x) is a radially unbounded continuous function,

and its derivative exists and is continuous. From (10), if

P al
>0
al, I

(27)



holds, then the Lyapunov candidate function V(x) is positive
definite; thatis V(x)>0, Vx=0. Note that (27) is equivalent

to P>a’l . The time derivative of the LF V(x), along the
trajectories of the closed loop system (5) and (25), is given by

V(x)=V(x) -%(t)=V(x) F(x)-u(x) Ra(x) (28)
Let us define B, and C, by G,R'G, and H|QH,,
respectively. We assume the triplet (Fl,Bl,Cl) is stabilizable-

detectable. Note that if a solution P of the ARE (19) exists,

then it is the unique SPD matrix solution of the optimal

control for the linearized system and (F, —B,P) is a Hurwitz

matrix (Rotella & Tunguy, 1988). Thus, the linearized system

is asymptotically stable. Moreover, the nonlinear closed loop

6(XTPX)
ot

system (5) and (25) is LASand 3x#0 s.t. <0.

In the following, we assume {x eR" \{O} |V < 0} # and

consider the closed ball (&)= {x eR"|

x||£5}. Given «a s.t.
P>o’l,; ie. V(x)>0 for all nonzero xeR", ®(5) is an
estimate of the DA if ®(5)cA= {x eR"|V< O} U {O} (Chesi,
2009; Chesi, 2003). The computation of the maximum ¢ s.t.
B(S)=A, ie. (5) and (25) is LAS, corresponds to the LEDA of

the closed-loop dynamics and is given by ®(y) where (Chesi,
2009)

= W 29)

XE]R"\{O} st V(x)=

8. LEDA Computation of the Closed Loop System
In this section, we present the mechanism to evaluate
the LEDA of the obtained sub-optimal closed-loop system. Let

5(0)={xeR"|
turns out that (Chesi, 2003)

x||:5} be a given sphere. The problem (29)

y:sup{5|V(x)<O, Vxe§(§),v5e(0,5]} (30)

We assume that P, P, .., P!7 are obtained from (19),
(21) and (23). The terms V(X)TF(X) and H(X)TRH(X) are
polynomials in x of degrees 2p+ f—1 and 2p_, respectively.
Forany 6>0,we have Vxe§(5)

. 2p-1 £ Py ,
V(x)=> Zx‘k‘TVZF,xM— Zx"‘TK,.TRKjXM

k=1 I=1 i,j=1
k+l=p i+j=p

(31

31

p
with v, = Z V,, where V, is given by (16). Using the non-
i,j=1
i+j]—1:k
redundant vector power series %" and the vector notations

X, introduced in Section 2, without loss of generality, we
assume that 3p, eN, with 0<p, <p , and IT, =I7 >0 st
ﬁy y y

Zx"‘TKI.TRKij =X:T X, +w,(x)+w,(x). The terms w,(x)
i,j=1

and w, (x) are polynomials in even and odd vector powers in
x of orders 2p, and 2p, +1, respectively. p, and p, are
integers s.t. 0<p, <p,6 and 0<p, <p, . Then, we use the SMR

and RMR notations introduced in Section 2 to set the time
derivative of the LF, V(x), in a quadratic form. If we denote

by p, = max(ﬁe, ﬁ+%) and p, =max [50, ﬁ+$j for
f odd, and p, = max(f)e, ﬁ+§—1j and

p, = max(f)a, D+ g - 1} for f even, respectively. We obtain

V(x)= _if(\f\rsﬁ (ﬁi(E) ))?M _ i[);\i\TSiM

i=1 i=1

ST (897 J ~X'TX,

(:81'(0)))?‘”1‘ +)?‘i+1‘T .

(32)

where Sii(ﬂi(e))eRr'(")”'(n) is the SMR matrix of the terms of

25-1 f ,
order 2i in > Y xMVIFx"+w,(x), B9 eR™™ a free vec-

k=1 I=1

stands for

i 2i i

tor with o-(n,i):%r.(").(ri(")+1)— " and 7"

binomial coefficients (Mtar et al.,, 2009), and S, (/)’i(”)> is the
o IEE o, 1
RMR of terms of order 2i+1 in —ZZX v, EX +EW0 (x)
k=1 I=1
(see Section 2). (32) can be rewritten as follows

V(x)=-XS()X, -X,T.X, (33)
where p, :max(ﬁq,ﬁr) and

S, S, 0 0 0

S;FZ SZZ SZS 0 0

0 S, S, - (34)
S(B)= N



The decision variables [ are set by the concatenation of all

free variables ﬂi(e) and ﬂ,.(”), Vi . Two cases arise depending
on the size of the values of p, and p, in (33).

8.1.Case of p,=p,
Using the transformation X, =T, )?Et introduced in

Section 2, we have V(x) <0 if the LMI

S(B)+T,I[, T, >0 (35)

holds in the free decision variable £ . Thus, for P solution of
the ARE (19), given a st P>a’l, and P, .., P, computed
from (21) and (23), if the LMI (35) problem is feasible in £,
then the sub-optimal state-feedback (5) and (25) is GAS.

8.2. Case of p_#p,

Let v be the least common multiple of p, and p,, ie.
3(v,v,)eN?\{(0,0)} st v=v,p,=v,p,. Consider the well-

posed vectors y'*) and "’ introduced in Section 2. Noting

V=1
vxes(s), |x|=6, then we have “;(g’)”z:z&m:dz,
i=0

2

2 vl
=257 =5 and Y ®X, =" ®X, =X,. Thus,
i=0

(33) is equivalent to

(36)

s t

V(x)=-X] [%1; ®s*(ﬂ)+%1§ ®FtJXV

with §°(8)=T,"S()T,. T, is the pseudo-inverse of
T eR" introduced in Section 2, E=1+n" +n +- 4

P E =14 n” 40 +---+n""%  Noting that T, is SPD,
let T,'T, T, =®'® be the Cholesky decomposition. Then,
from (36), Vxe5(5), V(x)<0 is equivalent to
(1, ®87)(1, ®S°(B))(1, ®O™)+5-1,, >0 (37)
where the factor 6 =57/ dependson §.1f v, >v, < b, <D,

then &>1
v,<v,<p,>p,, then 6<1 and monotically decreasing
with J . The following results hold.

Sub-case p,<p,: VB, 36 >1 st the LMI (37) holds.
Thus, for P solution of the ARE (19), given « st P>da’l,

and monotically increasing withd. If
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and P,, .., P, computed from (21) and (23), the sub-optimal

state-feedback system (5) and (25) is GAS.
Sub-case p, >p,: Given veR, consider the LMI

(1, ®87)(1, ®S°(B))(1, ®6™ )-vl,, >0 (38)
in the vector £ and the scalar v. If 30>0 s.t. the LMI (38)

holds, then the LMI constraint (37) holds Vé_‘>0, then we
select 6 <1 and we have § decreasing with § (i.e. § > as
& —0). Thus, for P solution of the ARE (19), given «a s.t
P>d’l, and P, ..., P, computed from (21) and (23), if the
LMI (38) is feasible in >0 and g, then the sub-optimal
state-feedback system (5) and (9) is GAS.

Sub-case p,>p, and v st. —1<v<0: A lower bound
yof 7y,
1+ 5% +"‘+5Z(Vf1)ﬁs
1467 4o g §ATIR
following eigen-value problem (EVP): v =maxv subject to
—1<v<0 and LMI (38). If arg max, of this EVP is negative,
then the linear inequality constraint —1<v <0 corresponds

given by (30), is computed by y=arg;

=(-0), where » is a solution of the

to 5<1as p,>p,.
Remark: The results discussed above can be proven

using simply the theorem 1 of (Chesi, 2003) and the
proposition 2 of (Chesi, 2005).

9. Example

As an example, we consider the design of a nonlinear
aircraft flight control problem which has been exhaustively
treated in literature (see eg. (Banks & Mhana, 1992)) and
defined by

x, =—0.877x, +x, —0.088x, x, +0.47x> —0.019x; — x}x, +
-0.215u+0.28x7u+0.47x,u* +0.63u’

X, =X,

X, =—4.208x, —0.396x, —0.47x’ —3.564x; —20.967u+
6.265x u+46x,u” +61.41°

where x, is the angle of attack in rad, x, the pitch angle in
rad, x, the pitch rate in rad/sec and u the control input
provided by the tail deflection angle in rad (Banks & Mhana,
1992). Note that terms involving nonlinearities in u with
small effect on the dynamics are eliminated, as the

approaches discussed here cannot account for nonlinear
control terms, but are taken into consideration in the

simulations. The performance index uses H(x):x, Q=

0.25-1, and R=1. The simulations have been applied for the
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proposed ‘LF’-based technique as well as the linear control " Input effort
‘Lin’ where the dynamics is linearized about the origin, the . || [ SDR-Pomntwise-based Design |
‘KP’-based design introduced in (Rotella & Tanguy, 1988) and N 2nd order LF-based Design

the SDR-equation-pointwise-based (referred to as ‘PW’) 3rd order LF-based Design

technique (Banks & Mhana, 1992). The sub-optimal cost | is %n """ 2nd order KP-based Design
evaluated with different initial conditions in terms of angle of = _:::iﬁ;‘ﬁﬁbmd Design
attack, x,(0), and same x,(0)=x,(0)=0 for the different g T
methods. Table 1 shows the cost performance errors 3

— =
& ). in %. The ‘LF’- (of orders 2 and 3), ‘KP’- (of z

pw

orders 2 and 3) and ‘Lin’-based design costs are compared
to the ‘PW’-technique one. A positive value corresponds to an
improvement (i.e., a lower cost) with the given method
compared to the ‘PW’ cost, meanwhile a negative value
corresponds to a higher cost. Figures 1-3 show the control
variable, the angle of attack and the pitch angle, respectively, Angle of attack vs. time
obtained with the initial condition x,(0)=23". Due to lack of '

Time in sec
Fig. 1. Input control vs. time.

()
i

SDR-Pointwise-based Design

SDR-Pointwise-based Design
2nd order LF-based Design
‘ 3rd order LF-based Design
{f e 2nd order KP-based Design
| === 3rd order KP-based Design |
| - Linear Design I

space the pitch rate figure is omitted. Curves of ‘LF’-based 21 2nd order LF-based Design ||
design, with orders of truncation 2 and 3, overlap almost 2 18 3rd order LE-based Design ||
. . : _ ; 5 2nd order KP-based Design
during all the time showing very similar results in terms of ki 3rd order KP-based Desien
. . s 5 - = H
transient behaviour and stability. Furthermore, the proposed 2" Linear Desien
design (with both orders 2 and 3 which are relatively small) E 12 s ST TSR SN RS SRRRR SR S g
exhibits a significant added-value in terms of cost estimation < i
and domain of attraction interval performances compared to =
the other methods. g6 .
Table 1. Costindex /™ and cost errors (expressed in % of J™)
LF LF KP KP Lin
E1io=2)r Eaio=3) Eaio=2)? Epip3)r €I 0
Time in sec
; Fig. 2. Angle of Attack vs. time
PW LF LF KP KP Lin
x(0) | J =) | G | Cae2) | Eae) &
6 0.0016 | 20.2 18.6 -0.6 -0.8 0.0 Pitch angle vs. time
120 | 00071 | 23.8 | 22.8 -1.6 -2.6 -0.2
17¢ | 00196 | 30.9 | 30.3 -3.7 -6.8 -0.7
o3 | 0.0519 | 463 | 457 | -133 -31.7 -4.3
-
29° 0.1056 | 48.3 46.3 Unstab. | Unstab. | Unstab. §D
=
34° 0.4081 | 71.4 65.6 | Unstab. | Unstab. | Unstab. s
40 | 16170 | 585 | 50.9 | Unstab. | Unstab. | Unstab. =
g
-_—
3
[

o 1 2 3 4 5 6 7 8 9 10 11 12
Time in sec
Fig. 3. Pitch Angle vs. time

10. Conclusions

A new nonlinear optimal control design for polynomial
systems subject to nonlinear cost objectives is proposed. We
develop a systematic and practical LF-based sub-optimal



control approach using the KP notations. The analysis of the
stability of the closed loop system is then discussed using LMI
frameworks. The problem of the LEDA computation is cast as
a convex EVP design. This method is expected to ensure a
best compromise between the feasibility of the implemented
scheme and the stability analysis of the overall system. An
example showing simulations and comparative results
successfully demonstrates the effectiveness of this technique.
Furthermore, a modified version of this nonlinear optimal
control will be presented to relax the conditions within the
computation of the Lyapunov function matrices of high order,
and also, improving the formulation of the stability feature
(Khayati, 2013). Nevertheless, all those changes will be
proposed by following the same overall procedure discussed
in this paper.
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Abstract -Many real world systems are inherently nonlinear and therefore the linear quadratic regulator theory is
rarely efficient for these systems. In this paper, we propose the design of an optimal feedback control for nonlinear
systems expressed as formal vector power series (VPS) in the indeterminate state variables. The problem of an
infinite horizon with a nonlinear cost function is investigated based on the Lyapunov function (LF) design and using
the Kronecker product (KP) algebra. The proposed scheme represents a key element for a follow-on work discussing
the stability of the given nonlinear state feedback. A practical sub-optimal control is evaluated through simulations.

Keywords: Polynomial systems, KP, Nonlinear optimal control.

1. Introduction

Numerous physical systems are very well known to be nonlinear by nature, and various control
problems need to be treated within nonlinear concepts in order to deal with their complexity maturely and
efficiently (Zhu and Khayati, 2011; Khayati et al., 2006; Ekman 2005). Thence, it still remains a
challenge to investigate new analytic rules and alternative numerical techniques for nonlinear problems
such as stability, control design and optimal control (Won and Biswas, 2007; Ekman, 2005). In particular,
the nonlinear optimal control design has been a popular subject for a number of researchers, but there are
still issues to overcome therein. Indeed, a great variety of work exists in the literature using simple
techniques based on local linearization or more complex ones, such as (but not limited to) the state-
dependent-Ricatti (SDR) equation, nonlinear-matrix-inequality-based and frozen-Riccati-equation-based
methods (Won and Biswas, 2007; Huang and Lu, 1996; Banks and Mhana, 1992). These methods seem to
work well in some applications but rigorous theoretical proofs are very weak regarding the stability of the
closed loop design, which is rarely globally asymptotically stable (GAS), and also the implementation,
due to the complexity of the algorithm (Won and Biswas, 2007). These concerns are often discussed in
separate works with less compromise (Won and Biswas, 2007; Ekman, 2005; Banks and Mhana, 1992).

In this paper, the nonlinear optimal control of a quadratic cost function with higher order terms
applied to an affine control nonlinear system (that is linear in control action but nonlinear in the states) is
considered to propose a practical state-feedback. Such a large class contains well-known examples in
control theory and many physical systems; e.g. mass-spring systems with softening/hardening springs,
artificial pneumatic muscles, flight engine setups, etc. (Chesi, 2009; Ekman, 2005; Banks and Mhana,
1992). The optimal controller is calculated using the well-known optimality conditions discussed in (Goh
1993; Borne et al., 1990; Rotella and Tanguy, 1988) by converting the given nonlinear Hamilton-Jacobi
equation (HJE) into a system of algebraic equations through the KP algebra introduced in (Steeb, 1997,
Brewer, 1978). This method is using the same technique developed in (Rotella and Tanguy, 1988), but
with a difference of considering a given quadratic form for the cost index function leading to the stability
conditions of the optimal state-feedback as discussed in the (Goh, 1993). In Section 2, some properties
that are useful for the present work will be introduced. Section 3 is devoted to the problem statement of
the nonlinear dynamics, the nonlinear quadratic cost function to be optimised and the related optimality
conditions. In Section 4, the LF-based optimal cost that will be used in the transformation of the nonlinear
polynomial HJE equation is discussed. Section 5 is devoted to the computation of a solution to this
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nonlinear equation in the unknown constant matrices based on the proposed KP and VPS decomposition.
In Section 6, an analytic and practical form of the state-feedback optimal control is discussed. Finally,
numerical and comparative results are presented in Section 7 to illustrate the proposed technique, while
Section 8 concludes this work.

2. Useful Proprieties and Notations

Notations and properties of matrices, vectors, dot product and KP tensors used in this paper are
exhaustively discussed in the literature (Steeb, 1997; Brewer, 1978). In the following, we limit our
presentation to new lemma and a given notation. The proofs of these lemmas are based on theorems
introduced in (Brewer, 1978). Due to lack of space, all notations and theorems useful for this work and
also the proofs of the following lemmas are omitted (and remain available upon request).

Lemma 1: V jel \{0} and ¥xel",

i |
Z’)‘(T =" (1,0x1%) (1)

i-1
where ™ 0™ isgivenby " =>U, ®I ., and therefore called the square j-differential
i=0

i+l

Kronecker matrix. I denotes the identity matrix of [0 ”J’H, U, the permutation matrix of [ '

defined in (Rotella and Tanguy, 1988; Brewer, 1978). Equivalently, <4," can be derived from

" =1,
{ @

o\WV=c"@1 +U Vjx1

Lemma 2: For x and y any column-vectors of 0% and ' respectively and for any matrix
Al ™" we have

(1, ®xT)Ay=(In ®vec' (AT ))(vec(ln)®lk,)(x® y) A3)

Lemma 3: Consider a matrix Ael P™ . Let [Al Aq] be a partition of A, ie. Vi=1...,n
A €l 79, We have

(1, ®vec (A))(vec(l,)®1,,)=mat],, (vec(A)) (4)

pgxn

Notation: If V is a vector of dimension p=n-m, then M =mat_ (V) is the (nxm)-matrix
verifying V =vec(M ). Therefore it is called the mat notation.

3. Problem Statement
3. 1. Nonlinear Dynamics and Nonlinear Optimal Objective Function
Consider the polynomial system given by
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X(t)=F (x)+6(x)-u(t) = F (x)+ 2,6, (x)-uc(t) (5)

k=1
where tell designates the time, x(t)e(1" the state vector, u(t)=[u,(t) - u,(t)] eR" the
input vector. F(-), G,(-) for k=1...,m are analytic vector fields from R" into R". By using the

f
KP tensor and the VPS decomposition, we denote by F(x)=YF -x", vk=1..m
=1

G, (x):Zg(;ij X and then, G(x)=[G,(x) - Gm(x)jzzg(;ej (ln®x"), with Fer™,
i= -
Gy €R™ vk=1..m,and G, =[G, || G, |eR™™ . Let z(t)=H(x)<R" be a vector function
of the states, where H (X):iHi X with H, e R
For Q asymmetric noni:egative definite matrix of R™ and R a symmetric positive definite (SPD)

matrix of R™™, the optimal control problem is to design a state feedback which minimizes the
continuous-time cost functional

0

J==%f[20)rQ20)+u(QTRu(Q}dt (6)

0

3. 2. Optimality Condition
We denote by V (x) the optimal cost with an initial condition x at t

V(=1 [[2() Qe(e) +u (o) R (1) Jde @)

where u”=arg(min, J) is the optimal control. The optimality conditions are given by (Borne et al.,
1990):

u"(x)=—R7G(x)"V, (x @®)
H(x)" QH (x)+V, (x)" F(x)+F(x)"V, (x)-V,(x)" G(x)RG(x)"V,(x)=0 )

4. Alternative for the Nonlinear HJE Equation
To find the cost function V (x) satisfying the conditions of any Lyapunov candidate function as
discussed in literature (Goh, 1993), we propose the following quadratic form

X
P al,

1 0 S o ]
V(X)Zi[x j:szH i ](m lijle-xi 1o
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with ¢ eR, P is an SPD constant matrix of R™ and P, constant matrices of R™™ . Note that using

Cholesky decomposition, P, exists s.t. P=R'P,. The cost function V( ) can be rewritten in a
summation form as

LQ itpT p i
V(X)=§i§1x FinPinX &
with

R for i=j=1
P =dal for i=land j>2 (12)

P for i>22and j>1

Using theorems T2.3 and T4.3 in (Brewer, 1978) and applying lemmas 1, 2 and 3 and the mat notation,
introduced in section 2, we obtain the derivative of (12) w.r.t. x

PP AT
(x _zz”_p;(,p, X =3 3y, (13)

i=1 j=1 i=1 j=1
with

B T T (n)
v, =mat’, . [vec(P( P )} (14)

where ™ is the square j-differential Kronecker matrix of R™ " introduced in lemma 1. Introducing

the KP tensor into the nonlinear HJE equation (9) and using theorem T2.13 in (Brewer, 1978), lemmas 2
and 3, and the mat notation, introduced in section 2, we obtain

g

iivec (VTR )X S ki HGRAL XIS e (HTQH, )X - Yy

i,j=1k=1 i,j=1 i,j=1 i,j,b,c=1k,d=0

vec (Vvu'll'( R 1VVde )X\i+j+k+b+c+d—2\ -0 (15)
where
W, =mat’ ... [vec (Vi )] (16)

5. Determination of Pp

The matrices P, for p=1...,p, will be calculated from (15) by cancelling the coefficients of x P

The details of such steps, based on KP, vec and mat notations and theorems introduced in (Steeb, 1997;
Brewer, 1978) as well as lemmas 1, 2 and 3 shown in Section 2, are omitted due to lack of space.
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5.1. First order
The matrix P, is obtained by cancelling the terms of X2 in (15). The operator vec(-) is linear on

matrices of the same dimensions. Noting that the 1% differential Kronecker matrix ™ =1_ and that

n

P=P'P is SPD, we use (12), (14), (16) and the mat notation to obtain the classical algebraic Ricatti
equation

PF, +F'P+H/QH, - PG,R'G]P=0 (17)
5.2. Higher order

For a given a el , the calculation of P,, p=2,...,p, is obtained from (15) by cancelling the

coefficients of x"*. Using vec and mat notations, theorems T1.5, T1.6, T3.2 and T3.4 of (Brewer,
1978), and the iterative form of the differential Kronecker matrix (3), we combine (12), (14) and (16) to
obtain

(10, ) 70 ()=, s
p-1 p-1 p-1 p
where .7, =(F-G,R'GjP)®I, and 7,= > > vec(WiRW,)- > [vec (Vi F )+
i jbrc=Lk,d=0 i\l k=1
i+j+k+b+c+d=p+3 i+j+k=p+2

vec(FV, )]— Zp: vec(H/QH; ). Note that (F, —G,R™G; P) is a Hurwitz matrix (Rotella, 1988), 7,

p+1
i,j=1

i+j=p+l

is a singular matrix for all integers p=2,...,p and ('W +Unpxn) is regular for p even and singular for
p odd. Using the non-redundant vector power notation %" introduced in (Bouzaouache and Braiek,

2006), and the theorem T3.4 in (Brewer, 1978), we write P, =P, -T, where T, €[l " with 7\ stands

npxr(pn)

for the binomial coefficient, and thus P, = I5pr*. Note that for any integer p, T, el exists, s.t.

XP=T %% and %" =T:X" where T :(TpTTp)_lTpT is the Moore-Penrose pseudo-inverse of T,
(Bouzaouache and Braiek, 2006). Two cases arise depending on p:

5.2.1. Case I - p iseven: Let .7, =(T; ®1,) ) be a rectangular ((n-rg”))x np*l)—matrix of full

rank. We obtain

(Inm1 +Unpxn),y§T,J/‘pT -vec(f’p)zik/r; (19)

. _ -1 . .
By using .7," = ,/)‘pT (.yp,J/‘pT) the Moore-Penrose pseudo-inverse of .7, we obtain

~ -1
_ o=+ /\7T )
vec(P,) =77 (1. +U, ) 7,

(20)

If P, P, .. P

p-1

P, = Ppr+ is deduced.

are known, If’p can be calculated as a solution of the linear equation (20). Thus,
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5.2.2. Case I — p is odd: Eq. (15) can be written in terms of non-redundant vector power .
Then the coefficients of %" are given in (20), but multiplied by T, on the left hand side. Then by the

p+1
use of the non-redundant form, this linear equation becomes

7T vee(P )= 1
7, vec( P, ) =,

(21)

- T e S L ) )
Where .7, =. 7,7, (1 . +U, )T, and .7, =T], -, , with .7, is a rectangular ((n 7 )xz'p+l)

. ) ~ ~ ~ a1 . - .
matrix of full rank. By using .7,* =.7," (.7,.7," )~ the Moore Penrose pseudo-inverse of .7, , we obtain

vec(P,)=7," -7, (22)

If P, P, ..., P, are known, I5p can calculated as a solution of the linear equation system (22). Thus,
P =P,T, is deduced.

6. Implementation of the State Feedback
Consider the nonlinear dynamics (5). The optimal control which minimizes the functional cost (6) is
obtained by the optimality conditions (8) and (9). We propose to use the procedure introduced in section 4

and 5 with the approximated optimal cost V (x) of (10). To solve the obtained nonlinear HJE equation
(9), transformed in the form of (15), it was shown that the cancellation of the P first terms x?, x*, ...,
X% Jeads to independent equations in P, P,, ..., P;, respectively. We propose to construct a practical
suboptimal control of the analytical expression O (x) by using (8), (13) and (16).

2p+g-1
u(x)=- > K" (23)
p=1
with
o p p p-1
- 358w, 2
i=1 j=1 k=
i+j+k=p+1

Thus, the use of KP algebra allows a systematic determination of a sub-optimal state-feedback. The
proposed nonlinear feedback (23) with (24) has not to be necessarily implemented with a high order of
computed matrices P, to be so different from the linear control approximation, a priori. According to

(Rotella and Tanguy, 1988), it can be concluded that the stat-feedback obtained with only P (i.e., only
the first order of the HJE equation) is more efficient than the solution issued from the linearized system.
In fact, by computing only P, we may obtain a polynomial sub-optimal control of order g +1 (where g

is the order of the term G(x) in (5)), in particular, when g is non-zero. The stability of the proposed

state feedback (24) will be discussed in a further work (see (Khayati, 2012)) by considering V(x) given
by (10) as a Lyapunov candidate function.
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7. Example

As an example, we consider the design of a nonlinear aircraft flight control problem which
has been extensively treated in literature (see e.g. (Banks, 1992)) defined by
% =-0.877x +X, —0.088x X, +0.47x’ —0.019x; — X’x, +3.846x’ —0.215u+0.28x’u +0.47xu* +0.63u*, % =x,  and
%, =—4.208 —0.396%, —0.47x’ —3.564%’ —20.967u +6.265%°u + 46xu° +61.4u°, where ¥, is the angle of attack in
rad, x, the pitch angle in rad, x, the pitch rate in rad/sec, u the control input provided by the tail
deflection angle in rad. Note that terms involving nonlinearities in u with small effect on the dynamics
are eliminated, as the approaches discussed here cannot account for nonlinear control terms (Banks,
1992), but are taken into consideration in the simulation. The performance index is minimized using
H(X)=X, Q=0.25-1, and R=1. The simulations have been applied for the proposed ‘LF’-based
technique as well as the linear control ‘Lin’ where the dynamics is linearized about the origin, the ‘KP’-
based design introduced in (Rotella and Tanguy, 1988) and an SDR-equation-pointwise-based technique
(Banks, 1992) (referred to as ‘pw’ in the following). The sub-optimal cost J, is evaluated with different

initial conditions in terms of angle of attack, xl(O) given in degree, but with the same initial conditions

Jow—J
x,(0)=%,(0)=0, vs. the different methods. Table 1 shows the cost performance errors &, =——— in

pw
% ; where the ‘LF’- based design (with p=2 and p=3), the ‘KP’-based design (of orders 2 and 3) and

the ‘Lin’-based design costs are compared to the ‘pw’-technique one. A positive value corresponds to an
improvement (i.e., a lower cost) with the given method compared to the ‘pw’ one; meanwhile the
negative value means a higher cost. Figure 1 shows the angle of attack and the control variable,

respectively, obtained with the initial condition xl(O) =23". Due to lack of space the pitch and pitch rate
figures are omitted. Curves of ‘LF’-based design with orders of truncation of p=2 and p=3 overlap
almost during all the time showing very similar results in terms of transient behaviour and stability.
Furthermore, the proposed design (with both orders p=2 and p=3 which remain relatively small)
exhibits a significant added-value in terms of cost estimation and domain of attraction interval
performances compared to the other methods.

LF KP KP Lin

Table. 1. Cost index J™ and cost errors (in % of J"7) gJL(szz), E3(pa) E5(p-2)® Expos)r €1
X (O) I gJL (F p=2) ‘9JL (F p=3) gf(Pp:Z) SJK(Pp:S) SJL "

6° 0.0016 20.2 18.6 -0.6 -0.8 0.0
12° 0.0071 23.8 22.8 -1.6 -2.6 -0.2
17° 0.0196 30.9 30.3 37 6.8 07
23° 0.0519 46.3 45.7 -13.3 —-31.7 —-4.3
29° 0.1056 48.3 46.3 Unstable Unstable Unstable
34 0.4081 714 65.6 Unstable Unstable Unstable
40° 1.6170 58.5 50.9 Unstable Unstable Unstable

8. Conclusion

A practical nonlinear optimal control design for nonlinear dynamics subject to nonlinear cost
objectives is proposed. An example with simulation and comparative results successfully demonstrates
the effectiveness of this technique. This method is developed in order to ensure a best compromise
between the feasibility of the implemented scheme and the stability analysis of the overall system; which
will be the subject of a follow-on work.
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Fig. 1. Angle of attack vs. time (left) and Input control vs. time (right)
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Abstract — This paper presents an investigation on the stability performance and the domain of attraction (DA) of a
Lyapunov function (LF) based infinite horizon nonlinear optimal control design. A polynomial modeling structure
represents the nonlinearities using the Kronecker Product (KP) algebra and the vector power series (VPS). A
practical scheme is proposed to reduce the complexity of such nonlinear design and to improve the requirements in
terms of stability and bounds of the DA. The computation of the control parameters is partially based on a linear
matrix inequality (LMI) feasibility problem. Furthermore the asymptotic stability analysis and the DA estimate are
cast as convex problems.
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1. Introduction

Many real world systems are inherently nonlinear, but methods for analyzing and synthesizing
controllers for nonlinear systems are still not as well developed as their counterparts (Ekman, 2005).
Recently, the LF-based control has been generating renewed interest in nonlinear optimal control (Won
and Biswas, 2007). Also, the KP algebra has an important role in recent researches dealing with control
analysis and design (Mtar et al., 2009; Bouzaouche and Braik, 2006; Rotella and Tanguy, 1988). A
polynomial modeling structure represents the nonlinearities using the KP and VVPS algebra (Steeb, 1997,
Brewer, 1978). This modeling resembles classical linearization, but with a difference. In fact, the order of
truncation of the decomposition is high enough to represent well (closely and fairest possible) the actual
dynamics of the system. In (Khayati and Benabdelkader, 2012), we have discussed the design and
implementation of a practical scheme for nonlinear control based on LF and KP concepts. We have
transformed the Hamilton-Jacobi equation (HJE) into a set of algebraic equations in the matrices elements
of the quadric candidate LF. The infinite horizon control design is derived in formal power series in the
indeterminate state variables.

The objective of this work is to evaluate the stability of the overall system, to estimate its DA and
eventually to enlarge this domain. The case of the globally asymptotically stable (GAS) state-feedback for
the nonlinear optimal control problem is definitely discussed. This investigation is led under a set of
convex problems that will be solved using the LMI frameworks (Chesi, 2009; Chesi, 2005). We propose a
technique that ensures the computation of the largest estimation of the domain of attraction (LEDA) using
both the well-known complete square matrix representation (SMR) (Chesi, 2009; Chesi, 2003) and a new
formalism of a complete rectangular matrix representation (RMR). In Section 2, we introduce a set of
useful notations and definitions; in particular definitions of the existing SMR and a new RMR. Then, we
recall, in Section 3, the problem statement and the key element of the sub-optimal control design
discussed in (Khayati and Benabdelkader, 2012). Section 4 is devoted to the sub-optimal state feedback
stability features. In Section 5, we discuss the computation of the LEDA of the closed loop system. The
evaluation of a numeric simulated scalar system expected to be shown is omitted due to lack of space
(readers can still refer to the optimal control of third order dynamics performances discussed in (Khayati
and Benabdelkader, 2012) in terms of stability and DA), while Section 6 presents concluding remarks.
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2. Useful Notations and Definitions

Notations and properties of matrices, vectors, dot product and KP tensors used in this paper are
exhaustively discussed in the literature (Steeb, 1997; Brewer, 1978) and are not shown here due to lack of
space (but remain available upon request).

e For any vector x (] "and any integer j, X is the J -power of a vector x and g is the non-
(")

. . JRON
redundant J -power of the vector X (Steeb, 1997; Brewer, 1978). We have: Vjell , 3T, el] T st
X1 =T, and % =T, %" with T, =(T[T;) T/ the Moore-Penrose pseudo-inverse of T,. 7\"
stands for the binomial coefficients (Mtar et al., 2009; Bouzaouache and Braiek, 2006; Brewer, 1978).

T .
e For any p>1, we denote by Xp=(me X2 x""T) and sz(imT G X""T).
T, 0 - 0
~ ~ 0 T, 0 N
We have X, =TX and X =T;/X, where T =|. | . e ™ and
0 O T,
T 0 0
|0 T N =’ > and 7 = 2" 4 o0 (0
p | - : wi p—n+n +...+N" an Tp—z'l +1, +"'+Tp )
0 O Tp+
:
e For any vector x e[]" and integers p and 1z, we denote by ;(E)”)z(l xPT x‘(“’l)p‘T)

14nP4n2P 4...4nl#YP
ell

e If V is a vector of dimension p=n-m, then M =mat,, (V) is the (nxm)-matrix verifying
V =vec(M). Therefore, it is called the mat notation.

e Let w(x) be any homogenous form of degree 2j, then the SMR of w(x) is defined as:

. R . T(n) . i i .
w(x)= KMWgH! where %1 17 is considered a base vector of the homogenous function of degree

inany x e " and W is a suitable but non-unique symmetric matrix SMR (Chesi, 2003; Reznick, 2003).
All matrices W can be linearly parameterized as: W (8)=W +L (), where Bel1°™) is a free
"

Al

vector and o (n, j)=%r§") -(z'gn)+1)— g:) with rﬁ") stands for binomial coefficients. L(S)el” ™

is a linear parameterization of the set {L: L™ | KLl =0,vx el “}. We refer to W(,B) as the
complete SMR of w(x).

e Let W(x) any form of degree 2j+1 inany xel]" given by W(x)szx‘ZM = x4y where
vel ™", Using theorem T2.13 of (Brewer, 1978), W(x) can be written using a new formulation given
by RMR as: w(x)=x""-M-x"* =x"".N-x", with M =mat’, ,.(v) and N=mat’, (V).

Then, similarly to the homogenous forms of even order, we propose a complete RMR of W(X) as:
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L qiim (M +L(B))x"™ +%>~(j+” (M+ L(,B))T 8T where S is a vector of free parameters.

w(x)=
(M) (M)

2"
L(B)eld” ™ is a linear parameterization of the set {Y(“‘lf(“*”:O,VXeD”}. We refer to

M(B)=M+L(p) (resp. M (ﬁ)T ) as the complete RMR of w(X).
Example 1: Consider the form of degree 3 in two variables w(x) =X+ x?x, +x¢. We have %" =

1 144 ﬂzj .

T o2 (o2 2\" ; —
(%, X,) and X _(x1 XX, xz). We obtain M +L(2) [_ﬂl 51

p=(h B) <0’
Example 2: Consider the form of degree 3 in three variables W(X) =X +XX,X; +X; +X; X, . We

have '=(x x x) and )”(‘Z‘z(xf XX, XX X2 XX x32) We obtain M +L(f)=

1 ﬁl :Bz ﬂ3 ﬂA ﬂS ﬂl
M+L(B)=|-B -B 1-28, 1 B B |andp=| "} |eD’.
_ﬁz ﬁ4 _185 1- ﬂs _ﬂ7 0 ﬂ7

3. Problem statement
3. 1. Nonlinear Dynamics and Nonlinear Optimal Objective Function
Consider the polynomial system given by:

X(t)=F(x)+G(x)-u(t)=F (x)+ > G (x)-u(t) (1)

where tell is the time, x(t)eD" the state vector, u(t)=[u,(t) - u, (t)]T eR" the input

vector. F(.), G, (.), Vk=L1..,m are analytic vectors fields from R" into R", given by the

polynomial forms F ( ZF X, G, ( ZG X' and then G(x [G m(x)]

g .
=>'G, (Im ®x“‘). Let z(t)=H (x)e0" a vector function of the states with H ( ZH X

j=0
Note F, el ™ G, el "' gk =1---,m and G, =[Glj |-+ ij]eD"*m”' (Khayati and

Benabdelkader, 2012).
For Q a symmetric non-negative definite matrix of R*“ and R a symmetric positive definite (SPD)

matrix of R™™, the optimal control problem is to design a state feedback which minimizes the
continuous-time cost functional

3 :%I[z(t)T Qz(t)+u(t)’ Ru(t) o )
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If we denote by u”=arg(min, J) the optimal control, the optimal cost V (x), with an initial
condition X at t, is

v (X)Z%T[Z(T)T Qz(e)+u' (7)) R’ () |dr 3

t

3. 2. Lyapunov-Function-Based Sub-Optimal Controller

Based on the optimality conditions introduced in literature (see e.g. (Borne et al., 1990; Rotella and
Tanguy, 1988)), we have built a procedure to obtain a sub-optimal state feedback in a polynomial form
using the KP tensor, vec and mat notations (Khayati and Benabdelkader, 2012). Such a design is based

on the determination of the cost function V (X) in a quadratic form, as

V(X)=%XEPXp O
where
P ab, - aPj
p| @ PP BR 5)
al;’g P:Pz P:Pp

with & € R, P is an SPD constant matrix of R™" and P, constant matrices of R™™  The matrices P,
P

25 o

p evenand (8) for P, with p odd, respectively (Khayati and Benabdelkader, 2012):

. Pﬁ are determined by the computation of a set of algebraic equations (6) for P, (7) for Pp with

PF, + F'P+H/QH, - PG,R'GIP =0 (6)
(In,ﬂ1 +Unpxn)<i;TJ;T -vec(ﬁp):;f,’//r; @)
T -vec(lsp):f}i,; ®)
p-1  p-l -1 p
where 7, =(F-GR'GIP)®1,, 7, = > ¥ vec(WiR™M,)- 2> [vec(V/F )+
i,j,b,c=1k,d=0 i,j=1 k=1
i+ j+k+b+c+d=p+3 i+ j+k=p+2

vec(FV, )]_ i vec(HQH;), 7, =(T, ®1,) ) and 7 =77 (1,0 +U, )T, be
il

rectangular full rank matrices of ((n : r(p”))x n p+1) and ((n : rg”) ) X rf)”)l), respectively, and finally

Ay=T] -7, Note V,=matl,, [vec(RTj)Pj(i)@’ j\(”)ﬂ and W, =mat’,.. [vec(ViJ.TGk )}

p+1 i (

where P, =F, with P is obtained from the Cholesky decomposition P=R'P, Py =al,
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Vj=23,... and R

matrix of ] " introduced in (Khayati and Benabdelkader, 2012). If P, P,, ..., P, are known, then I5p

=P Vi=23... Vj=12,.... @j‘(”) is the square | -differential Kronecker

can be calculated as a solution of the linear equations (7) and (8), and thus, P, = If’pr+ is deduced. Note
that (Fl—GOR‘ngP) is a Hurwitz matrix (Rotella, 1988), @'p(fl) is a singular matrix for all integers
p=2,...,p and (Inp+1 +Unpxn) is regular for p even and singular for p odd. The practical suboptimal

control U(x) introduced by (Khayati and Benabdelkader, 2012) is given by:

Py
a(x)=->, pr“" )
p=1
P9
with p, =2p+g-1land K,=R™ > > W,.
i,j=1k=0
i+j+k=p+1

4. Stability of the Sub-optimal State-feedback

To investigate the stability of the closed loop system, consider V (x) given by (4) as a Lyapunov
candidate function. Note that V (x) is radially unbounded continuous function and its derivative exists
and is continuous. From (4) and (5), if

P(a,P,PR,....,P,)>0 (10)

holds, then the Lyapunov candidate function V (x) is positive definite; that is V (x)>0, ¥x#0. The
time derivative of the LF along the trajectories of the closed loop system (1) and (9) is given by

\/'(x):aa_\):T.>'<(t)=‘2—\)iT F(x)-a(x)" RT(x) (11)

Let us define B, and C, by GyR™'G; and Hj QH,, respectively. We assume the triplet (F,, B;,C,)
is stabilizable-detectable. Note that if P a solution of an algebraic Ricatti equation (ARE) exists, then it
is the unique SPD matrix solution of the optimal control on the linearized system and (F1 —GOR‘ngP)

is a Hurwitz matrix. Thus, the linearized system is asymptotically stable (Rotella and Tunguy, 1988).
Moreover, the nonlinear closed loop system (1) and (9) is locally asymptotically stable (LAS) and

o(x"Px)

Ix#0 s.t. <0. In the following, assume {XED " \{0} |V <0} # . Consider the closed

ball %(5)= {XED "||X|< 5} Assuming that Jer s.t. (11) holds; ie. V (x)>0, Vxell", &(5) is
an estimate of the DA if %(5)CA:{XGD”|\/ <O}U{O} (Chesi, 2009; Chesi, 2003). The

computation of the maximum & s.t. B(5) = A, i.e. (1) and (9) is LAS and the LEDA is given by 3(y)
where (Chesi, 2009)
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Y= inf ||X|| 12
xell "\{0} s.t. V(x)=
5. LEDA Computation of the Closed-loop System

Let 5(5) be a sphere given by (Chesi, 2003): 5(5)= {x ed"||x| = 5}. The problem (12) turns
out that

y=sup{5 |V (x) <0, vxes(5),v5e(0,5 ]} (13)

T

The terms Z—V F(x) and U(x)T RT(x) are polynomials in x of degrees 2p+ f —1 and
X

2p, =4p+29g—2, respectively. Forany 6 >0, VX65(5), we write

2p-1

f Py Py .
V(x)= Y Sy Rx =SS MK TRK X! (14)

k=1 I=1 i=1 j=1

PD , .
with v, = ZZ V. Using the non-redundant VPS in %' and the vector notations of X, and X

i=1 j=1

i+j-1=k
introduced in Section 2, without loss of generality, we assume that 3T, =T} >0 s.t.
Py Py ) » » . o
>3 XTKIRK I = XT Ty X, +w, (x)+w, (x). The term w, (x) (resp. w,(x)) is polynomial in
i=1 j=1
odd (resp. even) vector power terms of x of order 2p, +1 (resp. 2p,). The integers p,, p, and
p, arest. 0<p, <p,, 0< P, <P, and 0< p, <2p, . Thus, we obtain

. 2 .
v (X) = Z—l: ﬂll XH _Ezl[x ‘T i+l ﬂ2| X‘H:u X‘Hm | i+1 (ﬁm)x‘ ‘:| ; Xﬁd (15)
n n 2p-1 f
Vie{l,2,...,0,}, Si(B;)el 4" is the SMR matrix of terms in - ZXMT v Fx 4w (x)
k=1 I=1

o(n
of order 2i,and g3, el ") 2 free vector with a(n,ﬁ”):%rf“).(ri(”)+1)—r§i“) and 7" stands

for binomial coefficients (Mtar et al, 2009). S;..(A,) is the RMR of terms in
2p-1

k

UN

1=1

f
SRR sw,(x)  of  order 2+l ﬁs=max[ﬁ+1—5,ﬁe] and

[ =max[ﬁ+%—g, ﬁoj if f isodd, and P, :max(ﬁ+£—l, Eej and P, :max[ﬁ+%—1, ﬁoj

if f iseven. Finally, we obtain
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V(x)==X; S(B)X, —X;TyX (16)

Py Py

where P, =max(P,, B,). S(B) is a general block-tridiagonal matrix in form

S, S, 0 O
S;—Z S22 S23 O 0
0 S, S, : . .
S(B)= S o | The decision variables A are set by the
0 Sﬁm—llﬁm—l Sﬁmvﬁmﬂ
0 0 ngvbmﬂ Sﬁmvbm

concatenation of all g, and g,;.

5.1. Case of p, =P,
We have V (x) <0 if the LMI S(8)+T, >0 holds in the free decision variable $. Thus if (10)

holds and the LMI S(8)+T, >0 is feasible in S, then the sub-optimal state-feedback (1) and (9) is
GAS.

5.2. Case of p, # P,
Consider v the least common multiple of P, and P, ie 3(v,.v,)ed?[{(0,0)} st

? _sz'lgzmm 5t [
- i=0 BRGE

;((fﬂm) X, =X =X, Thus, (16) is equivalent to V(x)=

d
P Py Pq v

1 + 1 + H + _7T+T + + + + +
—xT[g—;lz ®S (ﬂ)+§|§m®rdev, with S*(B)=T,'S(B)T, and I; =T, T, . T, (resp.

V=V, P, =V,P,. Vxe5(5), we have Hz(pvmm)

2 Vel
=> 5™ =57 and
i=0

v Sm
d

T, ) is obtained from T, e[l Nes 7 (resp. T, el Mem*%n ) Using notations introduced in Section 2,

E =14nP 40 4nt e g _1nPyn? oy (@ Based on the assumption
Iy=0>0,T;=T,T,T: isSPD. Let ® be its Cholesky’s factor, i.e. Iy =®'®. Then, it follows

P

Vxes(5), V(x)<O0 is equivalent to

(1, ®07)(1, ®s*(p))(1, ®87)+51,, >0 (17)

Pd

2

- 5 -
Note the factor 6 =—% is a function of &. Notice that if v, >V, < P, <P, then 6 >1 and

d
monotically increasing with ¢ . The following result holds.

a) Sub-case P, < Py: VS, 35 >1 s.t. the LMI (18) holds. Thus, if (10) holds, then the sub-optimal
state-feedback (1) and (9) is GAS.
b) Sub-case P,, > P, : Given v ell , consider the LMI
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(1,®07)(1, ®S"(B))(1, ®0*)-vl,, >0 (18)
In the vector £ and the scalar v. If 30 >0 s.t. the LMI (18) holds, then the LMI constraint holds

V& >0, then we select & <1 and we have & decreasing w.rt & (ie. § > as & —0). Thus, if
(10) holds and the LMI (18) is feasible in v >0 and £, then the sub-optimal closed-loop (1) and (9) is
GAS.

c) Sub-case p,, > p, and Elue(—l,O): then, a lower bound y of y, introduced in (14), is given
(1+ 52+ .4 5 Pn )

by: y =arg —- =(—0), where © is a solution of the following eigen-value
6(1+52+...+5Z(Vd‘1)"d) (=0)

problem (EVP): 0 =max v subjectto —1<wv <0 and LMI (18). If arg max,, of this EVP is negative,

then the linear inequality constraint —1< v <0 corresponds to & <1 as P> Py -

6. Conclusion

In this paper, the analysis of the stability of the closed loop infinite horizon control is discussed in
terms of the LMI feasibility problem. Then, the problem of computing the LEDA is cast as a convex EVP
design. The contribution of this work is to develop a systematic LF based approach and a practical KP-
based design for a large scale of nonlinear systems operating inside wider DA conditions.
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