
AUTONOMOUS CONSTRUCTION OF

THREE-DIMENSIONAL STRUCTURES

USING SELF-ACTUATED PARTS:

A layered self-assembly approach

CONSTRUCTION AUTONOME DE

STRUCTURES TRIDIMENSIONNELLES

À L’AIDE DE PIÈCES

AUTO-ACTIONNÉES:

Un approche d’auto-assemblage par couches

A Thesis Submitted to the Division of Graduate Studies
of the Royal Military College of Canada

by

Kleber Macedo Cabral

In Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

September, 2022
© This thesis may be used within the Department of National Defence
but copyright for open publication remains the property of the author.

To my wife, sons, mom, dad, and brother. You are my reason to keep
moving forward.

ii

Acknowledgements

I would first like to thank my wife, Kamylla, my parents, Genilda and Daniel,
my sons Guilherme and Mateus, my mother-in-law Aurizete, my aunt Gisela,
and all my family and friends for the support you have always provided me.
I would also like to thank Dr. Sidney Givigi and Dr. Peter Jardine for their
support and guidance in completing this thesis. It was an immense pleasure
and I am really grateful to have met such kind, productive, and smart people
in my academic life. I would also like to thank my professors, supervisors,
and colleagues from all stages of my academic endeavour. Thank you for the
inspiration, guidance, support and friendship. In addition, I’d like to thank
the staff of the Electrical and Computer Engineering Department at the Royal
Military College of Canada (RMC) for all their help and support. Finally, I
would like to thank Defence Research and Development Canada and RMC for
providing such a great opportunity.

iii

Abstract

Autonomous construction of structures is a broad area of research and includes
the use of robots to transfer structural materials or robots serving as part of
the structure themselves. The latter is commonly referred to as self-assembly.
Motivated by the challenges that design and execution of the assembly process
entails, this thesis focuses on the self-assembly of three-dimensional structures.
We propose a novel design of the system architecture for executing the assem-
bly, which establishes the structural elements and information flow for the
system. The self-assembly process occurs in three stages: moving, ordering,
and placing. Moving deals with the transit of autonomous parts from a de-
ployment position to the assembly position and network control methods are
used to control the movement of the robots. Once the assembly location is
reached, robots move to the structure one at a time, in order to avoid colli-
sions, and take their place within the structure. Ordering represents the stage
where robots compute the sequence at which individual agents will arrive at
the structure assembly. An auction-based assignment method is used to order
robots. Finally, the placing stage deals with how the robot identifies an empty
position in the structure to place itself based on local information only. A set
of behaviours are proposed for each robot that searches for an empty position
given a predefined structure blueprint. Our results show that the proposed
graph-based methods, auction processes, and programmed behaviours allow
robots to execute the three-dimensional assembly of the structure faster, using
less energy, and with less communication bandwidth when compared to base-
line methods. The efficacy of the algorithms proposed were validated using
real-world experiments. The structure parts used are micro quadrotors fixed
inside a light-weight cubic frame. The assembly of two stair-shaped struc-
tures took place in a controlled environment and a motion capture system
was responsible for computing robotic states.

iv

Résumé

La construction autonome de structures est un vaste domaine de recherche
et comprend l’utilisation de robots pour transporter des matériaux struc-
turels ou des robots eux-mêmes en tant que composant de la structure. Cette
dernière est communément appelée autoassemblage. Motivée par les défis que
représente la conception et l’exécution du processus d’assemblage autonome,
cette thèse porte sur l’autoassemblage de structures tridimensionnelles. Nous
proposons une nouvelle conception de l’architecture du système qui établit
ses éléments et ses flux d’informations. Le processus d’autoassemblage se
déroule en trois étapes: déplacement, ordre et placement. Le déplacement
traite du transit de parties autonomes d’un poste de déploiement à un poste
d’assemblage et les méthodes de contrôle en réseau sont utilisées pour contrôler
le mouvement des robots. Une fois le lieu d’assemblage atteint, les robots se
déplacent un par un vers la structure, afin d’éviter les collisions, et prennent
place à l’intérieur de la structure. L’ordre représente l’étape où les robots cal-
culent la séquence à laquelle les agents individuels arriveront à l’assemblage
de la structure. Une méthode d’affectation des tâches basée sur les enchères
est programmée dans les robots. Enfin, l’étape de placement traite de la façon
dont le robot identifie une position vide dans la structure pour se placer en
se basant uniquement sur des informations locales. Un ensemble de com-
portements est proposé pour chaque robot qui recherche une position vide
en fonction du plan de structure prédéfini. Nos résultats montrent que les
méthodes basées sur les graphes, les processus d’enchères et les comporte-
ments programmés permettent aux robots d’exécuter l’assemblage de struc-
tures tridimensionnelles plus rapidement, en utilisant moins d’énergie et avec
moins de bande passante de communication par rapport aux méthodes de
base. L’efficacité des algorithmes proposés a été validée à l’aide d’expériences
réelles. Les éléments de structure utilisés sont des micro quadrotors fixés à
l’intérieur d’un cadre cubique léger. L’assemblage de deux structures en forme
d’escalier a eu lieu dans un environnement contrôlé et un système de capture
de mouvement était chargé de calculer les états robotiques.

v

Contents

Acknowledgements iii

Abstract iv

Résumé v

List of Tables ix

List of Figures x

List of Acronyms xii

List of Symbols xiii

1 Introduction 1
1.1 Problem definition . 2
1.2 Motivation . 3
1.3 Objectives . 3
1.4 Contributions . 4
1.5 Publications from this thesis . 5
1.6 Outline . 5
1.7 Notation . 6

2 Literature background 7
2.1 Autonomous construction strategies 7
2.2 Robots as structure parts . 9
2.3 Structure modelling . 11
2.4 Control of robots in motion . 12
2.5 Assembly order and task assignment 13

3 Self-assembly fundamentals and formulation 16

vi

Contents

3.1 Self-assembly system architecture 17
3.2 Planning . 19
3.3 Control . 20
3.4 Robot - Self-actuated Construction Block 21

3.4.1 Quadrotor modelling . 23
3.4.2 Robot’s simplified model 24

3.5 Structure blueprint and assembly properties 25
3.6 Remarks . 29

4 Movement of robots from start location to assembly location 31
4.1 Preliminaries . 32

4.1.1 Problem Formulation 33
4.1.2 Swarm control law . 33

4.2 Decentralized control strategy for swarm motion 36
4.2.1 Connectivity Metric and Active Group Separation . . . 38
4.2.2 Selection of New Pins 39
4.2.3 Operators and RRT algorithm 40
4.2.4 Virtual Nodes and Control Law 42

4.3 Results . 43
4.3.1 Swarm guidance . 45
4.3.2 Comparison between pin selection methods 47

4.4 Conclusion . 51

5 Ordering of robots to assemble structures 53
5.1 Problem Formulation . 54
5.2 Auction-Based Assignment . 57
5.3 Algorithm’s analysis . 60
5.4 Results . 62
5.5 Conclusion . 65

6 Self-assembly of three-dimensional structures 67
6.1 Problem Formulation . 68
6.2 Self-Assembly . 70

6.2.1 Robots’ behaviours . 71
6.2.2 Self assembly algorithm proofs 81

6.3 Results . 84
6.3.1 Simulation setup . 84
6.3.2 Guidelines for performance analysis 85
6.3.3 Simulation trials . 86
6.3.4 Seed selection and assembly performance 86

vii

Contents

6.3.5 Assembly of more complex structures 91
6.3.6 Validation using embedded sensors for navigation 91
6.3.7 Experimental results . 94

6.4 Conclusion . 95

7 Conclusion 98
7.1 Moving of parts in space . 99
7.2 Ordering and task assignment 100
7.3 Placement using local information 100
7.4 Future work . 101

Bibliography 104

viii

List of Tables

4.1 Parameters for simulation . 43
4.2 Tracking error for different pin selection methods 50

5.1 Parameters for simulation . 65
5.2 Average battery decrease while a robot wait to be assigned 65

6.1 Movements performed by robots during assembly 88

ix

List of Figures

3.1 Description of the stages of the layered self-assembly process dis-
cussed in this thesis. 17

3.2 High-level description of an autonomous construction system. Source
[1]. 18

3.3 Construction block using the Crazyflie quadrotor. 22
3.4 VICON system setup. 22
3.5 The relationship between the coordinate frames used in this work. 27
3.6 Structure and its blueprint with grid lines. The blue circles repre-

sent desired positions to place a block, P , the red dots are external
positions, P̄ , and layers are indicated as Pl 28

4.1 Swarm control strategy. 38
4.2 Example of possible initial configurations, pin selection method

comparison. 45
4.3 Autonomous guidance using 10 agents, #operators = 3, andNmin =

3. 46
4.4 Connectivity metrics during part of the experiment. 47
4.5 Minimal group avoiding obstacles and maintaining cohesion. 48
4.6 Tracking error of the geometric center using two different pin se-

lection methods. 49
4.7 Control effort of the pin node using two different pin selection

methods. 49
4.8 Result of 100 iterations using the two pin selection methods. . . . 50

5.1 Connections in the graph showing the start topology (left side),
the computation of the tree and the leaf nodes (right side). 58

5.2 The stages of the assignment process. 63
5.3 Battery usage distributions. 64
5.4 Comparison between assignment strategies with ¯batR values for the

three experiments. 65

x

List of Figures

6.1 Local sensing of a robot with a top view perspective 69
6.2 Graph view of a 4× 4 cube with seed locations highlighted. Each

layer Gl in the graph contains only the edges in black. Red edges
between seeds represent the shortcuts taken during assembly, when
a robot moves to upper layers. 75

6.3 A newly arrived block inquires the seed if it should circle the cur-
rent layer. Once the layer is already full, the seed denies it and the
robot will apply MOV E.EXT (r,ρs2) to go to the next layer’s seed. 76

6.4 Top view: A robot (blue) circling the already placed blocks (grey)
in the layer until it reaches an empty position (green). The green
arrows describe CO(ρsl

) and CO(ρ11). The position to be circled,
ρc, starts as ρsl

and changes to ρ11 as the robot reaches ρ10. . . . 78
6.5 A robot that is at an internal position evaluates neighbouring po-

sitions N(ρr)
empty to determine if and where to move. 81

6.6 Exploded view of the structures assembled highlighting each layer. 85
6.7 The assembly of the chair with robots moving clockwise. 87
6.8 The distance traveled by each robot assembling the chair. 87
6.9 The relationship between the closeness and the NCG metrics with

the average distance travelled by robots when executing the pro-
posed assembly strategy. 90

6.10 The assembly of a bridge through multiple executions of the pro-
posed self-assembly approach. 92

6.11 Robots performing navigation and self-assembly using embedded
sensors. 93

6.12 Robots performing navigation and self-assembly using embedded
sensors. 94

6.13 Assembly of stairs with six robots. 96
6.14 Assembly of stairs with twelve robots. 97

xi

List of Acronyms

MDP - Markov Decision Process
MRS - Multi-Robot System
MST - Minimum Spanning Tree
NCG - Network Controllability Gramian
PID - Proportional–Integral–Derivative
RRT - Rapidly-Expanding Random Tree
SA - Self-Assembly
UAV - Unmanned Aerial Vehicle

xii

List of Symbols

a - acceleration vector in the inertial frame;
aij - elements of a matrix A;
apij - adjacency relationship between agents;
bj - input column vector on NCG computation;
bpi,k - adjacency relationship between agents and obstacles;

batinitiali - robot i battery level at the beginning of the ordering stage;

batfinali - robot i battery level at the end of the ordering stage (arriving
at the structure location);
¯batR - average battery usage among robots in a single assignment run;
¯batuse - mean value of ¯batR after multiple iterations with different initial
conditions;
cij - score function used during auction;
c(vi) - closeness metric of vertex vi;
di - number of neighbours of robot i;
dsp(vi, vj) - cost of traversing the graph in the shortest path between
vertices vi and vj ;
dist(ρi,ρj) - Manhattan distance;
dαα - desired distance between agents while moving;
dα - σ-norm of dαα;
dαβ - allowed distance to an obstacle (α-agent to β-agent);
dβ - σ-norm of dαβ;
eij - edge connecting vertex i to vertex j;
fm - force exerted by a motor in the direction of Zq;
fall - total exerted force in the Zq axis;
g - gravitational constant;
hij - number of hops in the network between two nodes;
larm - distance between the center of mass of the quadrotor and the axis
of rotation of the rotors;
mi - connectivity metric on robot i;
mna

a - message from auctioneer to non-auctioneer robots;

xiii

ma
na - message from non-auctioneer robots to auctioneer;

ma
s - message from a structure on the ground to the auctioneer to request

a new part;
ml

r - message from a moving robot to the seed of a layer l;
mr

l - message from the seed of a layer l to a moving robot;
mr - number of movements of each robot in the placing stage;
max(mr) - the maximum number of movements in the placing stage;
p - position of blocks described in the inertial frame;
p̂i,k - position of a β-agent;

pk
o - position of obstacle k;

pr
vn - position of the virtual node in a minimal group;
rko - obstacle radius;
rα - robot’s range of sensing/communication in the moving stage;
rα - σ-norm of the sensing/communication range between agents;
rβ - interaction range (i.e. detection range) between robot and obstacle;
rβ - σ-norm of the obstacles detection range;
ui - control signal of a robot i (acceleration) in the moving stage;
uc
i - cohesion control term;

uα
i - control signal given interaction with other robots;

uβ
i - control signal given obstacle avoidance;

uγ
i - control signal given the collective objective;

v - velocity of blocks described in the inertial frame;
v̂i,k - velocity of a β-agent;
vr
vn - velocity of the virtual node in a minimal group;

A - adjacency matrix of a graph G;
Adyn - network dynamics matrix;
CO(ρc) - cyclic order of ρc;
D - dictionary containing the position and blueprint for every structure
in S;
E - edge set in a graph;
G - graph symbol;
H - control horizon to which the Gramian is computed;
I - set of robots in the task assignment process;
J - set of tasks in the task assignment process;
L - number of layers of a structure;
N - number of robots in a structure;
Nt - total number of tasks generated by an assembly process with NT

blocks;
NR - total number of robots to assemble all structures;

xiv

Nα
i - set of robots connected to node i in the graph topology, G in the

moving stage;
Nβ

i - set of β-agents close to node i;
Ne - number of simulation runs with different initial conditions in the
ordering stage;
NO - number of obstacle in the environment in the moving stage;
N(ρr) - set of internal adjacent positions;
N(ρr)

empty - set of internal adjacent positions that are currently empty;
Nmin - minimum number of nodes allowed in a subgroup of agents;
NSG - number of robots in a VSG group;
OI - inertial reference frame;
Ob - block reference frame;
Oq - quadrotor reference frame;
OB - blueprint reference frame;
P - set of desired block positions in the blueprint, internal positions;
P̄ - set of positions that should remain empty in the blueprint, external
positions;
Q - Queue containing parts requests (positions of structure executing
the request);
R - set of robots;
Ra - set of robots already assigned to a structure;
Ru - set of unassigned (available) robots;
RI

q the rotation matrix from Oq to OI

S - set of seeds in the structure graph;
S - set of structures being assembled simultaneously;
V - Set of vertices in a graph;
VSG - set containing a group of agents in the swarm;
Wj - Network Controllability Gramian;
X - coordinate axis;
Y - coordinate axis;
Z - coordinate axis;
∆bati - battery usage of robot i in the ordering stage;
θ - pitch angle of the robot;
ιxx - inertia moment of the quadrotor with respect to the axis Xq;
ιyy - inertia moment of the quadrotor with respect to the axis Yq;
ιzz - inertia moment of the quadrotor with respect to the axis Zq;
µm - average number of movements for all robots in the placing stage;
ρ - position in the structure coordinate frame OB;
σm - standard deviation of the movements of all robots in the placing
stage;

xv

τx - torque around Xq axis;
τy - torque around Yq axis;
τz - torque around Zq axis;
ϕ - roll angle of the robot;
ψ - yaw angle of the robot;
ωx - angular velocity around axes Xq;
ωy - angular velocity around axes Yq;
ωz - angular velocity around axes Zq;
Γ - minimum spanning tree computed over a connected graph G;

xvi

1 Introduction

Despite recent advances in autonomous robotics, construction remains mainly
human-based process. Some tasks are aided by automation (e.g. computer-
aided design tools), but true autonomous construction is yet to be realized
at scale. There are still a variety of applications in which human action is
undesirable or impossible [2, 3], such as carrying heavy loads or performing
assembly in unsafe settings. This drives the usage and development of more
autonomous, scalable, and safe tools and methods for the construction process.

The use of robots to transport, manipulate, and place structural material
is a step towards autonomy in construction. Wheeled land vehicles [4, 5] and
aerial vehicles [6, 7] are two types of robotic platforms that have been used to
manipulate the structural components. Different aspects to the autonomous
construction can be studied given the robots used and also the characteristics
of structures being assembled. The technologies, methods, and algorithms
involved in the construction process are a vast research area. In addition, how
different shapes of pieces and final structure impact the construction process
can be investigated.

An approach that has recently being developed is the use of self-actuated
pieces as structure parts [8, 9, 1]. It considers that the parts are intelligent and
autonomous robots, thus the construction becomes the process of guiding each
robot to a place in the structure. Such assembly has been studied on a two-
dimensional environment, using boats to assemble bridges on water’s surface
[8], and to build three-dimensional structures using small quadrotors [1].

The autonomous structure parts can be programmed to spontaneously or-
ganize themselves into complex structures [10]. Such construction process is
called self-assembly and may involve large-scale structures containing mul-
tiple parts that are assembled entirely through local interactions and sens-
ing [11]. These assembly processes could be based on a central controller
architecture [12] or decentralized control methods [11, 13, 10]. In decentral-
ized approaches, decision is taken locally at every interaction between robots
and following specific rules. Designing the proper set of rules that governs the

1

1.1. Problem definition

robot’s behaviour is the main challenge of self-assembly strategies. These rules
are usually programmed at the robot’s internal computer, and are executed
until the system comes to a halt, when the assembly process finishes.

By definition, if parts are themselves robots, then the assembly process
is being executed by a Multi-Robot System (MRS). Different challenges arise
when multiple robots are operating simultaneously, such as how to coopera-
tively and orderly move robots in space, how to plan for robot’s trajectories,
and how to compute the sequence of placement of parts on the structure. In
the literature, complex networks are used to describe real-world systems with
multiple elements, such electrical power grids, the internet structure etc [14].
Complex networks are also used to describe MRSs [15, 16]. Moreover, network
control theory can be used to control robot navigation [17], model commu-
nication between robots [16] or model sensing [18]. Graphs are also used to
model the relationship between structure parts in autonomous construction
problems [10, 19].

In this thesis, the use of self-assembly methods that promote directed
growth using self-actuated parts is investigated. To construct three-dimensional
structures, first, robots must move in an organized manner from start posi-
tion to the assembly location in space. Second, robots coordinate which one of
them will move to the desired structure location at any given time. Lastly, self-
assembly algorithms must guide the robots to assemble the structure without
the need of a central coordinator.

1.1 Problem definition

In realistic autonomous construction settings, robots must be deployed on the
environment where the structure will be assembled. Specific conditions or ap-
paratus may be required to physically insert robots into the environment which
can cause robots to be deployed in a different location from where a desired
structure will be built with robots moving between the two locations.While
moving, objects and structures that are part of the environment must be taken
into account as these provide obstacles the robot must avoid. Additionally,
if multiple robots are deployed at the same time, moving to reach the assem-
bly location becomes a more complicated task as collisions become harder to
anticipate and avoid. Thus, robots need to coordinate their movement as a
group while planning for or reacting to conditions of the environment.

A group of robots may be responsible for assembling one or more structures
at the same time. Also, certain complex structures can be split into multiple
sub-structures, each being constructed interdependently. Robots can compute

2

1.2. Motivation

an assembly plan to solve the problem where multiple robots must assemble
multiple structures. An assembly plan could include, for example, which robot
will be assigned to which structure (or sub-structure), the path to be taken,
and/or when a robot should perform the assembly. The proper design of the
elements in the assembly plan can lead to fast and resource-saving construction
strategies.

Finally, to assemble three-dimensional structures, parts must be sequen-
tially placed at specific positions in space. Robots must be able to iden-
tify empty positions to place themselves such that the structural integrity is
maintained throughout assembly. The challenge is determining how to design
robot-to-robot interactions such that each robot is capable of finding an empty
position without access to global knowledge, i.e., the position of every other
robot in the structure.

1.2 Motivation

Autonomous construction of structures is a diverse area of research. The
complex nature of a construction process has inspired the study of different
robotic platforms, assembly plans, structure shapes and sizes, and also the
quantity of intelligent agents performing the task [20]. Consequently, the
assembly process poses as a compelling framework for investigation. In it, the
self-assembly of structures using self-actuated intelligent parts brings many
challenges in robotics.

We were driven by the possibility of increasing common knowledge and
developing new methods and algorithms that could be applied to (but not ex-
clusively) autonomous construction. As a result, different research areas that
were studied in this thesis are: multi-robot motion, decentralized assembly
and control methods, and three-dimensional structure modelling.

1.3 Objectives

Considering the problem and motivation described above, our objective is to
investigate the application of self-assembly techniques for the construction of
three-dimensional structures. The construction process is separated in stages
and specifically designed solutions are proposed on each stage.

The objective of this research is met through the investigation of the fol-
lowing research goals:
(i) Propose a system description for the self-assembly problem. Specifically,

we characterize the system elements and flow of information. Moreover,

3

1.4. Contributions

the types of robots used and structure shapes that can be assembled are
also addressed.

(ii) Develop the necessary control laws to guide the movement of robots in
space. We propose the use of network control methods to coordinately
move the robotic parts to the assembly location.

(iii) Design an assembly method that is capable of assembling multiple struc-
tures simultaneously. Specifically, we propose the use of graph methods
and auction algorithms to create a sequence of which robots reach the
structures being assembled.

(iv) Design the robotic behaviours that guide the robots to empty positions
in the structure without the necessity of a central coordinator, large
communication bandwidth, or global knowledge.

1.4 Contributions

Our contributions are mainly distributed along three areas related to the self-
assembly process:

• The first is the movement of robots in space, from a deployment po-
sition to the assembly area by applying network control methods. To
move to the assembly location a control strategy that deals with robot-
to-robot interaction, obstacle encounter, and group separation (when
robots are too far from each other) is proposed. While moving, a swarm
is controlled by using pin robots. Pins are the only robots in the swarm
that have access to the position of the assembly location. Moreover,
a Gramian-based approach for selecting pin robots in the swarm was
studied. This contribution is linked to objective (ii) and is discussed in
Chapter 4.

• The second area of study is the modelling of the robot ordering as a task
assignment problem. This modelling enables the task assignment to be
executed by the robots based on the actual disposition of the robots and
structures in space. The assignment uses the robots’ battery level and
position in space to compute the best robot to move to a structure at
any given moment. This contribution is linked to objective (iii) and is
discussed in Chapter 5.

• The third contribution is the assembly process of a three-dimensional
structure. Algorithms for a blueprint based assembly process where a
robot relies on local information to perform the assembly are proposed.
We show the properties the structure and the robots must have for the

4

1.5. Publications from this thesis

assembly to finish properly. We propose the algorithms to be imple-
mented on the robots and the structure blueprint. We also propose a
graph-based analysis methodology that can be used to determine the
seeds of each layer, in order to speed up the assembly process. This
contribution is linked to objective (iv) and is discussed in Chapter 6.

1.5 Publications from this thesis

Some publications derived from this work are
• “Design of a Self-Assembly System of Three-dimensional Struc-
tures using Autonomous Construction Blocks” [1] in which the
control architecture that can be used to the autonomous construction
problem is discussed. This publication also presents the elements of the
system, the flow of information, and the roles played by each element in
an autonomous construction process.

• “Autonomous assembly of structures using pinning control and
formation algorithms” [21] shows how swarm algorithms can be used
to compute the assembly plan and guide robot motion during autonomous
construction. Using simulation, we show that by applying swarm control
methods only, it is possible to command multiple robots to simultane-
ously move to the structure location in space, performing assembly.

• “Obstacle Avoidance of Swarms Using Pinning Control” [22]
shows how the swarm of robots can move in space to reach an assembly
location while performing obstacle avoidance. The swarm is controlled
using pin robots, which are the only robots in a group that are aware of
the path to be followed. Also, a selection method of the pin robot based
on the network controllability is proposed.

• “Design of a decentralized strategy for layered self-assembly of
3D structures using robotic blocks” [23] introduces an approach for
self-assembly where robots rely only on local information to assemble a
three-dimensional structure. The assembly is executed layer-by-layer,
from bottom to top. This paper is currently under review.

1.6 Outline

The remaining of this thesis is divided as follows. Chapter 2 presents pre-
vious works related to robotic construction and correlated areas. Chapter 3
describes the autonomous construction problem and the definitions that are
used throughout the thesis. Chapter 4 shows the movement of parts in a space

5

1.7. Notation

with obstacles, from the start position to the assembly location. Chapter 5
describes the decision process represented as a task assignment problem for
the MRS to choose the order of robots to move to each structure. Chapter 6
shows the algorithms that are used to construct a three-dimensional structure
based on local information. Finally, Chapter 7 finishes with our conclusions.

1.7 Notation

The notation used in this document is:
• a - italic letters describe scalar variables;
• a - bold letters describe vectors;
• A - capital and italic letters describe sets and scalar constants;
• A - capital and bold letters describe matrices;
• AT - is the transpose of the matrix A;
• m - roman style describe the messages among robots.

6

2 Literature background

In this chapter, the relevant literature on autonomous construction and re-
search areas therein is presented. We discuss the techniques, methods, and
robotic platforms applied to the construction problem. First, we explain the
different applications of robots in construction processes. Then, we focus on
strategies that use robots as structure parts and discuss how the assembly pro-
cess can be executed based on agent-level rules. Next, we present strategies to
represent the desired structure and analyze how the robots use that informa-
tion. Given the multi-agent characteristic of systems with robotic parts, we
proceed to describe strategies used to coordinate the movement of multiple
robots in space. Finally, we discuss the order of placement of parts in the
assembly and the possible approaches to compute a sequence among robots
in self-assembly problems.

2.1 Autonomous construction strategies

In autonomous construction, robots are used to carry parts to assemble a
desired structure. Either a single vehicle [24] or multiple platforms [25] can be
used for the assembly. Also, different strategies can be used when placing the
parts, e.g., vehicles can build structures layer-by-layer [6], where a layer needs
to be finalized before moving to the next, or the robots can consider all layers
at once [24, 21] and take advantage of the fact that parts of the structure are
independent of each other.

Mobile ground robots with manipulators attached can be used to handle
the parts of the structure [4, 26, 27]. In general, ground vehicles are very
stable when handling structure parts. However, physical devices are prone
to imprecise and incorrect movements, and issues may arise when performing
picking, transporting, and placing operations. To achieve high precision in
the manipulation of parts, redundancy can be added by applying cooperative
manipulation of parts using multiple robots [28, 29].

7

2.1. Autonomous construction strategies

To assemble three-dimensional structures, aerial vehicles can be used. Due
to their capability of carrying weight, vertical take-off and landing, and actu-
ating on different heights, quadrotors are applied to transport structure parts
[30, 6, 24]. Such vehicles are very versatile regarding the type of structure
that can be built, the parts they can carry, etc. The correct control of the
vehicle during load transportation and manipulation is crucial to guarantee
flight stability. Among others, linear and nonlinear techniques are used to
stabilize aerial robots [31, 32].

Not only are there control challenges related to the transportation of parts
but also planning challenges to transport and place the pieces. Commonly, the
assembly process and the robotic movement are guided by an assembly plan.
Assembly plans can contain: the location and sequence where parts should be
placed [33, 8], the trajectory of the robot [27], and which robot in a group is
responsible to transport each part [8, 34]. In that context, planning strategies
refer to the set of processes, methods, and algorithms used to create the as-
sembly plan. Planning strategies can apply learning and heuristic search [33],
be based on local rules (on each robot) [35], or even be executed online in
stochastic settings [36].

How a robot reacts to the environment can be written as a set of assembly
rules [35, 34]. Before placing a part, robots may need to identify allowed po-
sitions in the structure. Allowed positions are those that contribute to the as-
sembly avoiding “dead-ends” on the construction (e.g. avoid unfillable gaps).
The robot’s commands (actions to be executed) are generated based on the
set of assembly rules implemented on the agent’s algorithms. On rule-based
assembly, the planning strategy represents the design of the set of assembly
rules. Also, when the assembly process is based on rules of interaction, there
is not a explicitly defined assembly plan, instead, interactions between robots
and environment guide the agents.

Most of the works discussed here apply robots to the manipulation of
parts. However, robotic assembly strategies include not only autonomous con-
struction by having robots carrying parts, but also self-assembly, wherein the
parts themselves are mobile and contribute to the building of the structure. A
key difference between autonomous construction and self-assembly processes
is that, in the former, the number of agents is smaller and vehicles need to
go back and forth while assembling the structures. Therefore, the agents may
need to be more sophisticated, for example, by adding weight carrying capabil-
ities [30, 7] and also needing to plan the assembly and moving sequence [37, 25]
to optimize assembly and avoid collisions. On the other hand, simpler agents
are usually used for self-assembly processes, and they must move and place
themselves coordinately and cooperatively into the structure being assembled.

8

2.2. Robots as structure parts

2.2 Robots as structure parts

Self-assembly is the process wherein simple autonomous building blocks spon-
taneously assemble into more complex structures, resulting in large-scale shapes
entirely through local interactions and sensing [11, 10]. The main research
question of self-assembly methods is how to obtain the desired global out-
come (desired shape) by acting on local rules of interaction only [13, 10, 38].
Also, one may want to ensure that the desired structure is the only possi-
ble outcome of the group interaction. In some cases, such as in stochastic
environments, if not properly defined, interactions may lead to different struc-
tures or the necessary interactions to assemble a desired structure may not be
guaranteed [13, 10, 36].

In general, self-assembly methods can be additive or subtractive. In addi-
tive approaches, the material is added to form the structure [11, 10], whereas
in subtractive techniques material is removed from an initial volume until
the desired shape is reached [39]. Commonly, self-assembly additive processes
start with a seed agent. The remaining agents are added, starting from the
seed position, to form a user-specified shape. In the literature, this approach
is also called directed growth [40].

In self-assembly strategies, inter-agent relationships can be designed such
that robots have to actively process (e.g, accept, reject) interactions with each
other [10, 8]. On the other hand, agents can also passively process interactions,
for example by connecting only to specific DNA strands attached to its surface
[13]. Henceforth, we refer to the elements of the structure as robots for active
approaches and as parts to cover both active and passive approaches, when
needed. Also, self-assembly strategies can be based on a central controller
architecture [12] or decentralized control methods [11, 13, 10]. Note that, the
communication load tends to be higher on centralized approaches, given that
more information from individual agents must be sent to the central controller
to compute the robot’s actions.

Different robotic platforms have been used to study self-assembly prob-
lems. For example, autonomous boats are used to construct planar structures
on the surface of the water [41, 8, 9, 19] in which robots dock to each other
using a male-to-female connection mechanism and construct structures, such
as a landing platform or a bridge. Similarly, quadrotors mounted within a
cubic frame are used to construct structures in midair [42, 43]. Different
physical challenges are present on both platforms. Therefore, control laws
and assembly plans have to be specifically tailored for each application.

In self-assembly, agents can be defined as static, i.e., they have labels that
allow them to connect only with robots of certain labels. The agents’ labels

9

2.2. Robots as structure parts

can be defined by distinct physical characteristics of each agent, such as having
DNA strands attached to the particle’s surface [38, 13]. The labels and the
set of connections of each label are designed to form a specific shape. The
possible bonds between the strands will direct which particles will attach to
each other.

In contrast with static types, dynamic labels can be used to specify the type
of each robot. For example, a label can identify the number of other agents a
robot is attached to [10]. When robots physically attach and connections are
established, the agents’ labels are updated to represent their new “connectivity
status”. New connections are created depending on the actual label of a robot
(some labels allow new connections with adjacent robots, others do not). The
assembly stops when a given graph topology (and therefore a shape) is reached.
Note that decentralized methods for actuating on the graph topology permeate
other areas besides assembly tasks and can add, for example, robustness to
noise to multi-agent networks [44].

Instead of using labels, robots’ behaviour can be based on the local state
of the environment (the neighbourhood of the robot). Robots act (move,
rearrange in space, or change connections with others) until they reach a
stable and desired. The motion of the robots can be guided by a gradient
descent approach, with agents moving to be as close as possible to a reference
point [11] or use optimization methods to find stable configurations on the
ensemble [43].

The self-assembly is in many ways, similar to the control-related forma-
tion problem. Local and imprecise measurements may be taken by individual
robots, and, based on that, robots must find a way to cooperate and rearrange
into specified shapes [45, 46]. In [46], the authors also use a specific set of rules
for each robot. However, instead of rearranging into a structure, robots have
to reorganize themselves into a desired swarm formation. The robots do not
know their positions in the ensemble nor the global goal. Instead, each robot
stores a set of stable local configurations (relative position to neighbours),
and react whenever they are on non-stable configurations. Robots reorganize
themselves until all of them reach a stable configuration, which only happens
when the desired formation of the ensemble is achieved.

Some of the approaches discussed above consider that the assembly takes
place in a weightless environment or a two-dimensional plane. These assump-
tions simplify the assembly process by removing physical constraints intrinsic
to construction, such as order/sequence of placement (lower height comes first)
and structural integrity during the process. Other assumptions and properties
can be derived directly from how the structure being assembled is modelled,
for example, the possible formats of structure parts and the possible shapes

10

2.3. Structure modelling

of the final structure.

2.3 Structure modelling

Self-assembly generally must be accomplished without global knowledge, with
multiple agents coordinating their activities locally. Algorithmically, designing
a structure that is easy to assemble by a group of robots with local information
is a challenging problem [37]. Structure modelling is tightly coupled with the
algorithms used to execute the assembly, influencing algorithm performance
or even simplifying assembly strategies. The focus of this section lies on the
structure model and its impact on the planning and execution of assembly.
We refrain from categorizing the strategies on autonomous construction, self-
assembly, active, or passive where it is not relevant to the discussion.

The simplest model of structures uses lists with the position and orien-
tation of each part in a blueprint [1, 33, 28]. List formats tend to be easily
computed, stored on the robot’s memory, or transmitted over communication
channels. In addition, the assembly plan describes how the positions of the
list must be filled, i.e., how to transport a part (autonomous construction) or
how to move the robotic part to a position in the list (self-assembly).

Shape maps can also be used to model the desired structure, either by
specifying the desired overall shape of the group [11] or by representing relative
positions of individual parts [36]. Structure shape could be embedded into
other data formats, such as Octrees [47] and polygon-based descriptions [39].
Commonly, shape-based models do not use globally defined positions and the
planning strategies become more elaborated. In contrast with lists, planning
strategies using shape modelling may require different capabilities from the
assembly agents, such as awareness of surroundings and capability to identify
if the part is within the shape in space.

The models mentioned above (e.g. lists) can be used in rule-based assembly
strategies [35]. The assembly process is generic and adaptable to more than
one structure shape. In other cases, the structure model merges with the
concept of assembly rules [38, 13]. The proper design of the rules guarantees
that the structure is the only possible outcome of a group interaction. In this
case, there is not an explicitly defined assembly plan on how the process should
be performed. The passive self-assembly process is performed in stochastic
environments where interactions between parts happen following a probability
distribution.

In addition to these methods, graphs are another common approach to
model structures and can embed the desired position of the parts directly [8] or

11

2.4. Control of robots in motion

indirectly (via graph topology) [10]. An advantage of graph-based modelling is
that, commonly, graph methods and properties are used to represent complex
algorithmic logic and simplify planning. Therefore, assembly plans can be
derived directly from graph analysis [8]. Graphs (or trees) can also be used to
describe the assembly plan itself, containing the sequence of connections that
parts must make [48].

In this thesis, we combine shape modelling with graph methods to rep-
resent the structure (Chapter 3). Also, the assembly is based on rules of
interaction between parts (Chapter 6). Assembly rules are used to guide the
robots considering their surroundings and the relative positioning in a shape
is used to create different types of structures. Graph methods are used to
analyze the structures and the behaviour of the robots.

The model of the structure provides some insight into the assembly pro-
cess, e.g., the type of structures that can be assembled. However, models
do not define how robots interact with the environment when assembling the
structure. Specifically, it is not explicit how robots should move to reach a
position inside the desired shape. The next section will discuss techniques
that can be applied by the robots to move in the environment.

2.4 Control of robots in motion

The location in the space where robots start the construction process may
not be the same as the assembly location [9]. Therefore, the task of finding
paths or designing local assembly rules must be coordinated with no collision
with other robots or obstacles (static/moving objects, terrain, etc.) in the
environment. Planning strategies may compute the trajectories that each
robot should follow to avoid possible collisions [12, 34, 27, 37, 9].

For robots acting as structure parts, one can take the advantage that
robotic parts form an MRS and obstacle avoidance on swarms is a recurrent
topic of study [49, 50]. Networks and graph representations are commonly
used to model a group of robots moving in space [17]. A common practice is
to model the network edges as the sensor/communication range of agents. In
addition, when the nodes in the network are controlled or regulated, classic
control concepts can be used to analyze the behaviour of the whole system
[51, 52]. This is usually called network control theory.

Network control concepts are used to synchronize the states of nodes in
chaotic systems [14], synchronize delayed networks [53], synchronize networks
with changing topology [54], and to achieve consensus (agreement over certain

12

2.5. Assembly order and task assignment

quantity) [16, 55, 56, 57]. In MRSs, network control is applied to formation
[17, 18, 16], area coverage [18, 58], flocking [59, 16, 49], and rendezvous [15, 17].

To the self-assembly problem, flocking [49] strategies are particularly inter-
esting, given that similar design characteristics are implemented. Markedly,
rules based on local information (sensing) are implemented on each robot and
enable movement in a crowded space. Also, the mathematical description of
swarms uses graphs allowing the application of network control tools. Specifi-
cally, pinning control [54, 14] can also be applied to MRSs. On pinning control,
local feedback controllers are placed on a small fraction of the nodes in the
network. Such nodes are called pins or pinned nodes. The agents that are not
directly actuated, the pins, will be influenced only through their connections
in the network topology [60, 61, 62].

Network-based control methods are an alternative to the computation of
trajectories and enable coordinated and cooperative motion in space without
a heavy planning stage. One advantage of network control approaches is
that they can reduce problem dimension. Instead of computing trajectories
for every single agent of the MRS, a trajectory for the whole group can be
designed, and the group moves as a single entity [62].

Modelling and controlling swarms with network methods allows analysis
of the group behaviour with standard control techniques [51, 62, 52, 63]. That
increases the predictability of the MRS dynamics and behaviour. In this
thesis, such network control methods are applied to enable the navigation of a
swarm of robotic structure parts in an environment with obstacles (Chapter 4).
Commonly, by applying such methods, agents can operate in more dynamical
environments given that environmental aspects are processed on the control
level (not on the planning stage). On the other hand, it is not common
for control approaches to take high-level decisions needed during assemble, for
example, establishing an order on the assembly and deciding where each robot
should move to. Strategies for computing the order of placement of parts are
discussed in the next section.

2.5 Assembly order and task assignment

To execute the construction, it may be necessary to compute the order of
which robots move to a position in the structure, given that some positions
must be filled before others and some robots may have priority. Recall that
on Section 2.1 the sequence of which parts are placed in the structure is a
component of the assembly plan. We denote this sequence as the assembly
order. This section discusses the computation of the assembly order focusing

13

2.5. Assembly order and task assignment

on active self-assembly problems (robots as parts).
For ease of understanding, let us categorize the assembly order on self-

assembly problems into two areas: sequencing and ordering. Sequencing de-
notes the sequence of which positions in the structure will be occupied by
a robot and ordering refers to the process of selecting a robot to occupy an
empty position given that there are multiple robots equally capable of being
selected.

Sequencing is related to the current status of the assembly and can be
solved by selecting positions that are close to a starting point (seed loca-
tions) [11], through direct interpretation of the structure model using graph
methods [8], or using assembly rules that dictate available positions on the
structure [35]. In this thesis, we opt for a rule-based solution given its capa-
bility of assembling the structure based on local information on each robot
and the possibility of online computation.

While sequencing approaches involve the analysis of the environment and
the structure being assembled, ordering methods contemplate intrinsic robot
parameters and their relationship with the structure. In the literature, the
ordering problem is solved in different ways, for example, using optimization
of robots’ trajectories (robot with best trajectory is selected) [9], selecting
the closest part to the structure based on an attraction force [36], or using
rules based on robots’ surroundings, where a robot is allowed to move to
the structure if it is not physically blocked by others [11]. Also, ordering is
indirectly achieved on stochastic environments [10, 38], on them, the order of
“selected” parts depend random interactions with the structure.

The attribution of a robot to a position in the structure being assembled
can be seen as a task to be performed by the robot. Thus, task assignment
methods can be considered to perform ordering. Two relevant aspects of
the task assignment are: where the relevant information for the assignment
problem is processed and what is the assignment strategy.

Algorithms for task assignment can be centralized, decentralized, or hier-
archical. On centralized methods, the information from all agents are sent to a
single decision agent [64]. On decentralized methods, the information reaches
multiple decision agents distributed on the group [65, 66]. On hierarchical
approaches, a larger group of agents is split into multiple subgroups where
information is shared locally and tasks are assigned within the subgroups [67].
Centralized algorithms tend to find globally optimal solutions easier, given the
amount of information available. On the other hand, decentralized approaches
generally make use of consensus algorithms to achieve the same information
on different robots and are more scalable and robust to failures [68].

Auction processes [69, 70, 66] are well known strategies for assigning tasks,

14

2.5. Assembly order and task assignment

and are applicable for centralized and decentralized methods. In auction-based
approaches, robots bid for a task based on the internal computation of a cost
function. The auctioneer selects the highest (or lowest) bid, yielding the task
to the winner. In general, auction algorithms are computationally efficient
but not robust to communication losses [70].

In addition to auction strategies, the use of Markov Decision Processes
(MDP) is another approach for modelling decisions with multiple agents.
MDP modelling is particularly useful since optimal (or near-optimal) decision-
making is achieved in stochastic environments [71, 72, 73]. In a similar fashion,
MDP based modellings can use a central computing agent [74] or be inherently
decentralized [72, 75].

Two favorable aspects of MDP modelling approaches strengthen its use on
self-assembly problems. First, the capability of applying learning techniques to
compute the decision policy based on specific characteristics of the problem.
Second, decentralized strategies with multiple decision agents can be used
increasing robustness and scalability. On the other hand, when compared to
other methods, a disadvantage of MDP modelling is the higher complexity to
model the decision problem in a self-assembly process. In addition, learning
the decision policy is an additional, time consuming, step when designing the
assignment solution.

In this thesis, we propose an explicit computation of the ordering by mod-
elling it as a task assignment problem (Chapter 5). In the self-assembly con-
text, the objective is to distribute tasks (which are positions to be occupied)
to a group of robotic structure parts. We opt for a centralized auction-based
given modelling simplicity with satisfactory results. However, the communi-
cation network and the processing power of robots in self-assembly problems
enable, if needed, the implementation of decentralized or hierarchical strate-
gies. Also, assignment policies based on MDP modelling can be learned offline
and previously programmed to the robots performing assembly, similar to the
learn-based assembly plan in [33].

15

3 Self-assembly fundamentals
and formulation

In this chapter, we introduce the autonomous construction problem, focus-
ing on the self-assembly of three-dimensional structures using autonomous
cubic parts. We describe the fundamentals of the self-assembly, as well as
the premises used to develop our solution. Self-assembly strategies commonly
rely on the proper design of agent-to-agent interactions. How to obtain a
desired structure by designing local rules of interaction is a major research
question on self-assembly systems [13, 10, 11]. Also, one may want to guar-
antee that the desired structure is the only possible outcome of the local-level
interactions [10].

The assembly can be done using different strategies. For this work, struc-
tures are built layer-by-layer, from the bottom to the top. The self-assembly
problem, as proposed in this thesis is divided into three stages:

1. Moving - refers to the stage of the assembly when robots have to move,
from an initial deployment location towards the location where struc-
tures should be built.

2. Ordering - refers to the stage of the assembly when robots have to col-
lectively decide the order in which they will move to a structure being
assembled. This stage is relevant for two reasons, first, there may exist
more then one structure being assembled at the same time. Second, the
formulation of the placing stage requires that robots only move one at
a time to a structure.

3. Placing - this is the final stage of the assembly when robots will actively
search for an empty position in the three-dimensional structure.

Fig. 3.1 provides a visual representation to the self-assembly stages. In the
figure, grey blocks represent the robotic parts. Also, green squares represent
structure positions that must be occupied by a robot. Finally, the arrows
provide a generic notion of robotic motion in space, from the deployment area

16

3.1. Self-assembly system architecture

Figure 3.1: Description of the stages of the layered self-assembly process dis-
cussed in this thesis.

to structure position and through the stages. Some assumptions and premises
are considered at each stage, depending on the problem being solved. The
following sections discuss common (e.g., system architecture) and specific (e.g.,
planning algorithms) items. Finally, the robot’s dynamic model, the structure
blueprint, and the properties of the self-assembly problem are presented.

3.1 Self-assembly system architecture

Let us propose a high-level system architecture organization containing the
entities and information involved in the construction problem [1]. The archi-
tecture shown in Fig. 3.2 has two distinct components that can be categorized
as: a) System Modules represented as blue boxes; and b) System Information
represented as black arrows. The System Modules and their roles are:

• Planning: this module coordinates the desired tasks for each robot to
perform the construction of the structure.

• Control: this module is responsible for regulating the operation of the
robot to follow the desired references. For example, in a wheeled land
robot the controllers could be used (but not only) to regulate the speed of
the wheels, and for a quadrotor, the controllers can regulate the attitude
angles, velocity, and position.

• Robot: this represents the autonomous vehicle used for the construction
task. In this thesis, the robot is also the autonomous construction block,
which will form the final structure when grouped with other robots.

• Sensing: this module describes all sensors in the robot and, consequently,
the hardware and software needed to process their information. Phys-
ical devices, signal processing algorithms, filters, state estimators and
observers are all contained in this module.

17

3.1. Self-assembly system architecture

Figure 3.2: High-level description of an autonomous construction system.
Source [1].

• Learning Algorithm (LA): this module represents any approach to opti-
mize the planning task or the control operation. The machine learning
algorithms, heuristic search, or optimization techniques to improve the
performance of the whole system are expressed through this module.

Likewise, the System Information is:
• References: the information that the Planning module outputs are the
references that the robot must follow. For example, desired position,
velocities, trajectories, or maneuvers.

• Commands: the output of the controllers are commands given to the
robot, to execute a desired action. For example, voltage input of electric
motors.

• States: these are the physical states of the robot at a given moment,
that will be measured by the sensors. For example, the actual position
in space.

• Outputs: the outputs of the sensors are the actual measured or estimated
states of the vehicle. This information can be useful for the Control,
Planning or LA modules.

• Parameters: the results of an optimization process are the parameters
to be modified inside the other modules of the system, to achieve better
performance. For example, values for the gains of the control laws.

• Data: all information that can be extracted from the system, and is
useful to the LA, is considered as Data.

18

3.2. Planning

Commonly, each robot has its own dedicated set of controllers. However,
for other System Modules, the number of elements may not increase as the
number of robots increases. Thus, let us consider a few approaches:

• Centralized planning: there is only one planning algorithm responsible
for sending the references for all robots in the system.

• Decentralized planning: there are multiple planning algorithms. Each
planning effort can operate with one robot or with a group of robots.
It may be desirable that planning algorithms can communicate to co-
ordinate the tasks of the robots, hence this stage can be referred to as
distributed planning.

• Non-scalable sensing: this represents a set of sensors that will not be
replicated or expanded by increasing the number of robots. For example,
an infrared camera system that calculates the position of the robots in
space, or the number of GPS satellites in the constellation.

• Scalable sensing: by increasing the number of robots operating it is
also necessary to increase the number of these sensors. For example:
embedded sensors such as LIDAR, accelerometers, or gyroscopes.

The following sections describe the problem to be solved on the System
Modules, under the context of the three-dimensional self-assembly. Moreover,
the particularities of each assembly stage are highlighted as needed.

3.2 Planning

As seen in Sections 2.1 and 2.2, different approaches can be taken for the
placement of parts. In this thesis, it is assumed that horizontal layers are
assembled sequentially, from the bottom to the top of the structure, similar
to [6]. A layer-by-layer approach is particularly advantageous in real-world
assembly scenarios, given that new layers are placed on top of others already
constructed, providing structural integrity during the process [76]. Moreover,
it is assumed that directed growth from a seed position is obtained at every
layer. The use of directed growth is beneficial given that it is independent
from the final structure and initial configuration [40, 11], being applicable to
various shapes.

Planning strategies have a different meaning for each assembly stage. In
the moving stage, planning refers to the design of control rules and computa-
tion of reference trajectories to guide the robots from a start position to the
assembly location. While moving, it is assumed that robots can sense other
robots and obstacles in the vicinity. The planning strategies for the movement
of robots can be found in Chapter 4.

19

3.3. Control

After arriving at the assembly area, robots are then ready to move to one
of the (possibly) many structures being assembled. A key requisite of the
assembly algorithm developed in this thesis is that the robots must arrive at
the structure being constructed one by one. Therefore, in the ordering stage,
planning algorithms must be able to define a sequence of agents to move from
a hovering state to a structure. In this stage, robots are aware of the distance
to the structures being assembled and their internal sensory information (e.g.,
battery level). Planning algorithms that arbitrate which robot should move
and to which structure being built are presented in Chapter 5.

In the placing stage, planning algorithms are responsible for searching for
an empty position in the structure, without access to global knowledge (the
empty positions are not known a priori). Robots can locate themselves with
respect to other parts already placed in the structure and carry a structure
blueprint. The algorithms presented in Chapter 6 use the local information
to search for empty positions on the structure. As mentioned previously, in
the ordering stage, planning algorithms account for multiple structures being
simultaneously assembled by the same group of robots. Thus, in the placing
stage, each instance of the planning algorithms assembles a single structure.

3.3 Control

Control refers to the System Module that regulates the robots’ states to
achieve desired reference values. These setpoints are defined by the plan-
ning stage, based on the local task that the robots are pursuing. The set
of controllers on each vehicle is dependent on the platform, i.e., controllers
regulating autonomous surface boats [9] are not the same as those regulating
aerial vehicles [42].

In this thesis quadrotors are used as the robotic platform in the structure
parts (see Section 3.4). The control process on quadrotors involve attitude,
velocity and/or position controllers, with the planning algorithms command-
ing vehicles through setpoints. Commonly, for quadrotors, a set of nested
Proportional–Integral–Derivative (PID) controllers is used [32]. For this the-
sis, low-level controllers, namely attitude and angular rate are defined based
on the multicopter’s characteristics. Moreover, high-level controllers such as
position, velocity, and acceleration, are designed depending on the task to be
performed at each stage.

In the moving stage, the goal consists of designing control laws that can
regulate a group of parts moving as a swarm in a crowded environment. There-
fore, robots coordinate the swarm movement with the collision avoidance task.

20

3.4. Robot - Self-actuated Construction Block

Note that higher-level strategic planning for reference trajectories is executed
by planning algorithms. Swarm controllers explained in Chapter 4 are decen-
tralized, use local information, and help planning algorithms simplifying the
trajectories that must be planned.

The process executed in the ordering stage focuses on computing the se-
quence of which robots will move to structures being assembled. Thus, a
simple hover procedure is required from the robots. Hovering is a basic mul-
ticopter functionality, being achieved by a set of cascaded PID controllers
embedded in the quadrotor. Moreover, the same low-level controller previ-
ously mentioned on the moving stage can be reused in this state.

Finally, in the placing stage, it is assumed that the robots can sense their
immediate surroundings and navigate to position waypoints using such infor-
mation. Therefore, angular rate, attitude, acceleration, velocity, and position
controllers must be implemented in the quadrotor to allow waypoint navi-
gation. As it is shown in Chapter 6, controllers can be fed signals only by
onboard sensors, and still perform the required waypoint navigation. The
planning module computes waypoints until the robot is placed in an empty
position in the structure.

3.4 Robot - Self-actuated Construction Block

In our approach, the structure parts are cubic frames attached to a quadro-
tor, capable of moving autonomously. This aerial vehicle is similar to the
BitDrones, described by Rubens [77]. In contrast, in our approach, the con-
struction blocks use the Bitcraze Crazyflie 2.1 quadrotor1 as the quadrotor
platform, with 3D-printed pieces and carbon fibre structure around it. Fig. 3.3
shows the real-life autonomous part and the simulated version.

The quadrotor is embedded with sensors that allow it to estimate its atti-
tude, linear acceleration and angular speed. The vehicles are also embedded
with controllers to regulate their attitude and position in the environment.
Small magnetic spheres are placed at the corners of the cubic frame to assist
in attaching two adjacent blocks and reflective markers are placed on top of
each block (Fig. 3.3b). Such markers are visible to a VICON infrared camera
system2, providing the position, velocity and attitude of each part in real-
time. Fig. 3.4 shows the a high-level view of the loop of information when
using the camera system. Camera data is processed on a dedicated server and
the robots’ states are transmitted to the quadcopters.

1www.bitcraze.io
2www.vicon.com

21

3.4. Robot - Self-actuated Construction Block

(a) Physical robot (b) Physical robot (c) Simulated version

Figure 3.3: Construction block using the Crazyflie quadrotor.

Figure 3.4: VICON system setup.

Consider an inertial frame fixed in the environment, OI = (XI , YI , ZI).
The horizontal plane is described by the axes XI and YI , and ZI points up-
wards (see Fig. 3.4). Moreover, each block has its own coordinate frame,
Ob = (Xb, Yb, Zb), with the origin at its geometric center. Lastly, a third
coordinate frame, Oq = (Xq, Yq, Zq) is fixed at the center of gravity of the
quadrotor. The axes Xq and Yq are coplanar with the plane formed by the
four propellers. Xq points toward the front of the quadrotor between the two
front motors. The Yq axis is directed 90◦ to the left of Xq. Zq points up-
wards (towards the origin of Ob), perpendicular to the plane of the motors. In
Fig. 3.3c one can see both Ob and Oq. The coordinate system Ob is translated

22

3.4. Robot - Self-actuated Construction Block

with respect to Oq along the Zq = Zb axis, with no rotation between them.
The relationship between the inertial frame (OI) and the block frame (Ob)

is given by the angles of pitch (rotation about Yb), roll (rotation aboutXb), and
yaw (rotation about Zb). Moreover, the angles of (roll=ϕ, pitch=θ, yaw=ψ)
describe the rotation between quadrotor frame (Oq) and inertial (OI), as well
as between block frame (Ob) and inertial (OI), given that Ob and Oq are
perfectly aligned.

3.4.1 Quadrotor modelling

Denote by RI
q the rotation matrix from Oq to OI ,

RI
q =

cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ
cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ

 (3.1)

where c(·) and s (·) denote cosine (.) and sine (.), respectively.
Each motor generates a force fm in the direction of Zq. The total exerted

force, fall, is in the Zq axis. Also, the torques τx, τy, τz (around axes Xq, Yq,
Zq, respectively) can be computed as

fall = fm1 + fm2 + fm3 + fm4

τx =

√
2

2
larm (fm1 + fm4 − fm2 + fm3)

τy =

√
2

2
larm (−fm1 − fm2 + fm3 + fm4)

τz =
kM
kF

(fm1 − fm2 + fm3 − fm4)

(3.2)

where kF and kM are the propulsion and moment coefficients produced by
each rotor/propeller set. larm is the distance between the center of mass of
the quadrotor and the axis of rotation of the rotors. Also, it is assumed that
the rotors numbers 1, 2, 3, and 4 are on the front-left, front-right, back-right,
and back-left positions respectively.

Given the linear velocities in the axes Xq, Yq, and Zq (u, v, and w, re-

spectively), the linear acceleration vector is denoted by
[
u̇ v̇ ẇ

]T
and it is

measured at the center of mass of the quadrotor (origin of Oq).

23

3.4. Robot - Self-actuated Construction Block

The linear acceleration vector p̈ =
[
ẍ ÿ z̈

]T
in the inertial reference

system OI as can be computed as

p̈ =

 0
0
−g

+RI
q

u̇v̇
ẇ

 (3.3)

where g is the gravitational constant. The linear acceleration in Zq is com-

puted as ẇ = fall
m , wherem is the mass of quadrotor and cubic frame combined.

The rotational dynamics of the vehicle is

ωx = [(ιyy − ιzz)ωyωz/ιxx] + τx/ιxx

ωy = [(ιzz − ιxx)ωxωz/ιyy] + τy/ιyy

ωz = [(ιxx − ιyy)ωxωy/ιzz] + τz/ιzz

(3.4)

where ωx, ωy, and ωz are the angular velocities of roll, pitch, and yaw (around
axes Xq, Yq, and Zq). Also, ιxx, ιyy, and ιzz are the inertia moments of the
quadrotor with respect to the axis Xq, Yq, and Zq respectively.

Denote by
[
ωx ωy ωz

]T
the angular velocity vector described in Oq, and

by
[
ω̇x ω̇y ω̇z

]T
the angular acceleration vector (also in Oq). The angular

acceleration vector,
[
ϕ̈ θ̈ ψ̈

]T
, in the inertial coordinate frame (OI) can be

obtained by computingϕ̈θ̈
ψ̈

 =

1 sϕtθ cϕtθ
0 cϕ −sθ
0 sϕsecθ cϕsecθ

ω̇x

ω̇y

ω̇z

 (3.5)

where t(·) and sec(·) denote tangent (.) and secant (.), respectively.

3.4.2 Robot’s simplified model

Consider a set of robots, R, participating in the assembly. Each robot (ri ∈ R),
could be described as a double integrator,

ṗi = vi

v̇i = ai
(3.6)

where pi and vi are respectively the position and velocity of each agent. Also,
ai is the acceleration input signal of the system. Finally, pi, vi, and ai ∈ R3.

The double integration model is a simplification of the quadrotor dynamics
shown in Section 3.4.1. In the literature, the use of double-integrator systems

24

3.5. Structure blueprint and assembly properties

is shown to yield the same results of more complex models [49]. Note that,
the double-integrator model encapsulates the behaviour of complex control
architectures, such as those needed to control quadrotors. The simplified
model is particularly useful when the focus of the analysis is not the individual
robot’s control, but the group behaviour, such as in Chapter 4.

Given that the autonomous structure part was properly defined on this
section, we now proceed to describe the structure blueprint to be carried by
the robots. The blueprint is a representation of the structure to be assembled
and is used to derive some properties of the construction process.

3.5 Structure blueprint and assembly properties

Our structure parts are cube-shaped robots and the structures of interest
are those composed of N blocks. Let us propose a representation of the
structure composed of a) a blueprint B and b) a graph G. The blueprint carries
information about the distribution of blocks in space, while the graph is an
interpretation of the blueprint used to establish mathematical properties of the
structure and for our proofs. Note that, given that the self-assembly problem
was organized into three stages, the structure representation is particularly
relevant only in the last one, placing (Chapter 6).

In the blueprint, space is organized as a three-dimensional grid (3D lattice).
Let P ⊂ Z3 be the set of desired block positions in the blueprint referred to as
internal positions. The set of positions that should remain empty (outside the
structure) in the blueprint are called external positions and are denoted by P̄ .
Notice that P ∩ P̄ = ∅. Every grid position ρi is a possible block position and

it is addressed using coordinates ρi =
[
xi yi zi

]T ∈ Z3 in the structure’s
reference frame, OB = (XB, YB, ZB). Note that a position ρi can be either in
P or P̄ .

Positions in the blueprint are split into 2D horizontal layers Pl ⊂ P and
P̄l ⊂ P̄ , 1 ≤ l ≤ L. The coordinates of a part refer to the centre of the block,
i.e., of the robots. It is also assumed that the robots have access to their
required orientation locally, i.e., they are all oriented to an arbitrary orien-
tation. Also, perimeter positions are the positions in P that are horizontally
adjacent to positions in P̄ . In that sense, a block in a perimeter position
has at least one of its sides facing the exterior of the structure. Throughout

the text, the word adjacent is used to describe positions ρi =
[
xi yi zi

]T
and ρj =

[
xj yj zj

]T
in the same layer whose dist(ρi,ρj) = 1. Moreover,

25

3.5. Structure blueprint and assembly properties

dist(ρi,ρj) is defined as the Manhattan distance,

dist(ρi,ρj) = |xi − xj |+ |yi − yj |+ |zi − zj | (3.7)

with ρi and ρj described with respect to OB.
Note that the blueprint contains the set of positions to be occupied by a

block and the set of seeds positions, B = (P, S). Seed positions are preselected
at each layer of the blueprint and selection methods are discussed in Chap-
ter 6. Let the set of seed positions be S = {ρs1 ,ρs2 , ...,ρsL} ⊂ P . The seed
position at the bottom layer of the structure is ρs1 and ρsL is the seed posi-
tion at the top layer. Finally, the origin of the reference frame OB is placed at
position ρs1 . Therefore, without loss of generality, for all robots assembling
this structure ρs1 is the origin of the coordinate system, i.e., ρs1 = [0 0 0]T .
Fig. 3.6 shows an example of a pyramidal structure and its blueprint with seed
positions and reference frame. In the figure, L = 3.

Recall that Ob denotes the coordinate system of a block (see Fig. 3.3c).
Thus, the position ρ describes the origin of Ob with respect to structure frame
(origin of OB). Also, structures are assembled at a specific position in space.
Denote by ps as the position of a structure (its origin, OB) with respect to
the inertial frame, OI . Fig. 3.5 helps visualize these relationships between
assembly frames. Note that ρ is discrete (relative block positions inside the
structure) and p is continuous (positions in the environment). Chapters 4
and 5 only consider the structure location in space and use inertial coordi-
nates. Also, Chapter 6 describes local rules of assembly and only consider
local coordinates (with respect to OB).

For ease of explanation, an underlying graph G = (V ∪ V̄ , E) is extrap-
olated from the proposed blueprint B using a bijection f where f : V → P
and f : V̄ → P̄ . Two vertices v1, v2 are adjacent in G if and only if they are
on the same layer and dist(f(v1), f(v2)) = 1. In the same fashion as before,
vertices in V are called internal vertices and must be occupied by a block.
Also, vertices in V̄ are external vertices and are not meant to be occupied.
For each layer l, denote Vl and V̄l as the set of vertices that are mapped by f
to Pl and P̄l, respectively.

Let us introduce the notion of induced subgraph. Given a graph G = (V,E)
and a subset of its vertices denoted by V ⊂ V , G[V] is the subgraph of G
induced by V. The subgraph G[V] consists only of vertices in V and edges
{u, v} ∈ E connecting such vertices (u, v ∈ V). Therefore, given that Vl ⊂ V
and V̄l ⊂ V̄ , two special subgraphs can be defined, Gl = G[Vl] and Ḡl = G[V̄l],
consisting of only internal and external vertices, respectively. Furthermore,
internal vertex of G is either a perimeter vertex or a non-perimeter vertex

26

3.5. Structure blueprint and assembly properties

Figure 3.5: The relationship between the coordinate frames used in this work.

depending on whether it is adjacent to an external vertex or not in G. Finally,
sl denotes the seed vertex of graph G at layer l, corresponding to position ρsl
in the blueprint B such that f(sl) = ρsl

∈ S.
Let us define the following properties of the graph required by the con-

struction algorithms.

Property 1. For each layer 1 ≤ l ≤ L of the structure, Gl is connected.

Property 2. For each layer 1 ≤ l ≤ L of the structure, Ḡl is connected.

Property 3. All seeds are perimeter vertices, i.e., sl ∈ Gl implies that there
is at least one external vertex v̄ ∈ V̄l such that sl and v̄ are adjacent in G.

Property 4. Every internal vertex in G1 is mapped by f to a position on the
ground. For l > 1, each internal vertex vi in Gl must have a corresponding
vertex vj in Gl−1 such that for f(vi) = [xi yi zl], f(vj) = [xi yi zl−1].

Properties 1 and 2 ensure that there are no holes in the graph. Moreover,
Property 2 is also used to ensure that any perimeter vertex can be directly
reachable by a robot moving from outside the structure. Property 3 states that
all seeds need to be accessible from an external vertex. Property 4 guarantees
that each block in the structure is supported by blocks beneath it, thereby
ensuring structural stability. Chapter 6 shows that while these properties limit
the number and types of structures that can be assembled, there are several
important structures that can be represented using these constraints.

27

3.5. Structure blueprint and assembly properties

Figure 3.6: Structure and its blueprint with grid lines. The blue circles repre-
sent desired positions to place a block, P , the red dots are external positions,
P̄ , and layers are indicated as Pl

The following additional properties are assumed:

Property 5. Each robot is an entity that is capable of internal computa-
tion, three-dimensional movement, communication with other robots
and sensing its immediate surroundings (detect other blocks in the vicin-
ity).

Property 6. There exists a communication network that can be used by the
robots. Robots may use it to broadcast control messages while the assembly
process is taking place.

It is reasonable to assume Properties 5, and 6 because for the self-assembly
task, structure parts may have different levels of intelligence and capabilities.

28

3.6. Remarks

This is done by embedding the robots with processing unit, actuators, and
sensors [21, 1, 9, 41]. Also, Property 5 benefits from the use of multicopters
(such as those used in this thesis), given their movement capabilities.

Property 7. The set of structures being assembled simultaneously by the same
group of robots is S = {s1, . . . , sΣ}. Thus, the total number of robots in
the swarm is equal to the sum of the number of robots on each structure,
NR = N1 +N2 + ...+NΣ.

Property 8. The set of robots in the assembly of a single structure, R =
{r1, r2, ...rN}, equals the number of internal positions in the planned structure,
making |P | = |R| = N .

Property 9. Once a robot lands in a position, it shuts down. Thus, it will
no longer move or communicate any information with others. There are some
exceptions to this, with robots at seed positions. A robot at a seed position
(also called seed robot) continues to be active, capable of communicating with
others, but not moving. There is one seed position per horizontal layer of the
structure.

The rationale behind these properties follows. Properties 7 and 8 are stated
for completeness, and considers a system without redundancy of blocks. We
assume Property 9 for three reasons. First, shutting down mobile robots can
be used as a strategy for saving battery charge. Second, keeping a single robot
active can enable the system to store local information, e.g., local position and
orientation reference for other robots, as in [11]. Finally, to obtain directed
growth from a single point at every level of the structure, it is considered that
there is one seed per horizontal layer.

3.6 Remarks

Let us state some final remarks regarding the properties and characteristics
of the assembly discussed in this chapter.

Remark 1. Real-world cubic robotic parts can be modelled and studied using
their dynamic equations and the simplified model, if the focus of the analysis
is the on the group dynamics, that is, the interaction between robots.

Remark 2. Planning algorithms can be implemented on centralized or decen-
tralized approaches.

29

3.6. Remarks

Remark 3. Robots form a communication network based on distance through-
out the assembly. Robots are capable of communicating the necessary informa-
tion to others without compromising the assembly or the available bandwidth.

Remark 4. Robots can store structure blueprints on their internal memory
and are able to access its information when needed.

Remark 5. If multiple structures are being assembled simultaneously, the
ordering stage selects which structure a robot is responsible for assembling,
and therefore, which structure blueprint it should use, as will be discussed in
Chapter 5.

Each one of the parts of the architecture described in here will be discussed
in the following chapters.

30

4 Movement of robots from
start location to assembly
location

In this chapter, a method for coordinating the movement of the self-assembly
parts from an arbitrary start to the assembly location is presented. The swarm
of robots navigate cooperatively in an environment with obstacles. Coopera-
tive and coordinated movement refers to the process of translating all robots
in space as a single entity. While moving, robots must be sufficiently close
to each other and must not collide with other robots nor other objects in
space. After traversing the environment, all robots should reach the assem-
bly location and stop moving, waiting for the next stage of the self-assembly
process.

Guidance and navigation of multi-robot systems is a type of application
where obtaining the correct group behaviour is crucial. In such systems, robots
may collide if the rules of interaction are not properly configured. Moreover,
the obstacle encounters may change the spatial disposition of the swarm. As
a result, groups can split and connections (communication/sensing) between
robots may be broken, causing group fragmentation [49].

A swarm can be modelled as a network, represented by a graph. Network
modelling is useful in this context once the relationship between agents can be
formalized, and rules for the interactions between entities can be specifically
designed. In this chapter, local-level control laws are developed to govern the
interactions between robots, and between robots and obstacles. Moreover, it
is studied here the group separation phenomenon (also called group splitting or
network rupture) that happens at an obstacle encounter. The group separation
problem is approached by breaking specific network connections, splitting a
larger group of agents into smaller groups. A connectivity metric is proposed
for a robot to identify if it is moving away from its neighbours and breaking

31

4.1. Preliminaries

its network connections. The active redesign of the network topology aims to
reduce the level of swarm fragmentation.

Pinning control technique is used to control the swarm [62]. In fact, only
the pin robot in the group is aware of the assembly location in space (the group
objective). Other robots move given their direct or indirect connections with
the pin. Pin nodes must be properly selected to control the swarm. In addi-
tion, each subgroup must have its own pin robot after group separation. To
select pins, a controllability-based selection using the controllability Gramian
is proposed and it is shown to perform better than random selection. The
selection of a control node in a network using the controllability Gramian was
presented by [52, 51].

It is assumed that every pin is capable of communicating with an agent
external to the swarm, called operator. An operator is an abstraction of an
external entity such as a person, a computer, or a more complex system re-
sponsible for controlling and monitoring the robots in the swarm. In this work,
operators provide to the group the position of the assembly location, as well
as the position of obstacles in the environment. Also, operators are a limited
resource, i.e., there is a countable number of operators available. In addition,
a pin executes the rapidly-expanding random tree (RRT) algorithm [78] that
provides the collective objective in the form of a set of waypoints that a group
must follow.

This chapter presents an adaptation of the work published in the IFAC2020
World Congress, under the name “Obstacle avoidance of swarms using pinning
control” [22]. Thus, equations and explanations are adapted as needed to fit
the context of this thesis.

4.1 Preliminaries

In this section, we present a network-based model for swarms of vehicles. First,
assumptions over the network model and the premises of the control problem
are established. Given that core modelling of the self-assembly problem and
its structure parts were already introduced in Chapter 3, in this chapter, only
complementary information about the group movement problem is introduced.

Second, the control law for a swarm of moving robots is stated based on
the literature. The basic rules of interactions between agents as a dynamical
network are extended/improved throughout the chapter to solve the problem
of group fragmentation during movement.

32

4.1. Preliminaries

4.1.1 Problem Formulation

The focus of the group behaviour of the autonomous parts, while moving from
start to assembly location, is on the collective outcome given the control laws
we propose. Therefore, the internal dynamics and control characteristics of
individual robots may be neglected [79, 80, 62]. Thus, robots are approached
using the simplified model, described in section 3.4.2.

All robots start from the start area at random locations on the ground
level and with the minimum horizontal distance of dαα between each other.
When deployed, robots should fly at the same height with the altitude control
being approached individually. Thus, group dynamics analyzed in this work
considers only the two-dimensional coordinates in the horizontal plane, being
pi,vi ∈ R2. The objective of the swarm is to cooperatively move to the
assembly location where the structure must be built.

Each agent has limited sensing capabilities, with a neighbouring sens-
ing/communication region of radius rα. Therefore, the relationship between
robots can be described as a spatial graph, G = (V,E), where each robot
is a vertex i ∈ V . In addition, if two robots, i and j, are within a sens-
ing/communication range of each other, then exists eij ∈ E.

Let us assume that there could be objects, structures or even other robots
in the environment. These are modelled as obstacles, which are represented as
circles with radius rko and position pk

o , with 0 ≤ k ≤ NO. Also, obstacles could
be static or move around the environment. The states of robots and obstacles
(position and velocity) and the control signal may change over time. However,
for simplicity, we represent them without the parameter “(t)”. Finally, rβ is
the interaction range (i.e. detection range) between robot and obstacle.

4.1.2 Swarm control law

An acceleration input signal, ai = ui, can be defined to control the position
of agents in a flocking as the sum of three terms [49],

ui = uα
i + uβ

i + uγ
i (4.1)

where uα
i is a network term that determines the interaction with other agents;

uβ
i is an obstacle avoidance for collision term; and uγ

i is a navigational term
with the collective objective. Furthermore,

33

4.1. Preliminaries

uα
i = cα1

∑
j∈Nα

i

ϕα(||pj − pi||σ)ni,j + cα2
∑

j∈Nα
i

apij(vj − vi)

uβ
i = cβ1

∑
k∈Nβ

i

ϕβ(||p̂i,k − pi||σ)n̂i,k + cβ2
∑

k∈Nβ
i

bpi,k(v̂i,k − vi)

uγ
i = cγ1σ1(pr − pi) + cγ2(vr − vi)

(4.2)

where
• Nα

i = {||pj − pi|| < rα} is the set of robots connected to node i in the
spatial graph topology, G;

• Nβ
i = {||p̂i,k − pi|| < rβ} is the set of β-agents close to node i. A β-

agent is a imaginary agent (with dynamics p̂i,k, v̂i,k) at the surface of the
obstacle k to be avoided. The dynamics of the β-agent for an obstacle
k are computed as

ν = rko
||pi−pk

o ||
,

ak = pi−pk
o

||pi−pk
o ||
,

p̂i,k = νpi + (1− ν)pk
o ,

v̂i,k = ν(I− aka
T
k)vi,

(4.3)

where ak is a unit normal vector from obstacle center to robot position.
Note that the control law accounts for mobile obstacles (pk

o changing over
time) by constantly updating the states of β-agents using the equations
above.

• The vectors ni,j and n̂i,k are

ni,j =
pj−pi√

1+ϵ||pj−pi||2
,

n̂i,k =
p̂i,k−pi√

1+ϵ||p̂i,k−pi||2
.

(4.4)

• cα,β,γ1,2 are control law gains;
• (pr,vr) is the reference or γ-agent;
• ||.||σ is the σ-norm. The σ-norm is used instead of the ||.|| (the Euclidean
norm) because it is differentiable everywhere;

• ϕα(·) is the attractive/repulsive action function, used to maintain the
distance between agents approximately equal to dαα;

• ϕβ(·) is the repulsive action function, used to avoid collision with obsta-
cles;

• apij are adjacency relationships between agents and bpi,k between agents
and obstacles.

34

4.1. Preliminaries

The terms in the control law equation (4.2) are explained below in more
detail. First, the σ-norm is defined as a map Rn → R≥0, where n ≥ 1

||k||σ =
1

ϵ
(
√
1 + ϵ||k||2 − 1) (4.5)

with ϵ ∈ (0, 1).
Consider that, hereafter, the Greek letters ζ ∈ R2 and ξ ∈ R are used to

generically represent the input of the function being described. Also, the ζ
is two-dimensional given that the control task is executed on the horizontal
plane. Also, σ1(·) is

σ1(ζ) = (ζ)/
√

1 + ||ζ||2. (4.6)

Furthermore, ϕα(·) and ϕβ(·) are

ϕα(ξ) = ρh(ξ/rα)ϕ(ξ − dα),
ϕ(ξ) = 0.5((a+ b)σ1(ξ + c) + (a− b)), (4.7)

ϕβ(ξ) = ρh(ξ/rβ)(σ1(ξ − dβ)− 1), (4.8)

where
• 0 < a ≤ b, c = |a− b|/

√
4ab;

• rα = ||rα||σ is the σ-norm of the sensing/communication range between
agents;

• dα = ||dαα||σ, where dαα the desired distance between agents.
• rβ = ||rβ||σ is the σ-norm of the detection range to obstacles agents;
• dβ = ||dαβ||σ, being dαβ the allowed distance to an obstacle (α-agent to
β-agent).

The bump function ρh(·), used in (4.7) and (4.8), is a scalar function that
smoothly varies between 0 and 1,

ρh(ξ) =

1, ξ ∈ [0, h)

0.5(1 + cos
(
π ξ−h
1−h

)
), ξ ∈ [h, 1]

0, otherwise

, (4.9)

with h ∈ (0, 1).
Lastly, the adjacency relationships can be written as

apij(pj ,pi) = ρh(||pj − pi||σ/rα) ∈ [0, 1], j ̸= i,

bpi,k(p̂i,k,pi) = ρh(||p̂i,k − pi||σ/dβ) ∈ [0, 1].
(4.10)

Note that apij and bpi,k depend on the distance between agents (pj ,pi),
distance between agents and obstacles (p̂i,k,pi), the sensing radius rα, and

35

4.2. Decentralized control strategy for swarm motion

the desired distance to obstacle dβ. In addition, one may consider that iff
apij ̸= 0, then eij ∈ E exists.

For a detailed explanation on the meaning of terms described above (bump
functions, σ-norm, etc), and a deep analysis of their role on the swarm control
task, we kindly refer the reader to [49].

4.2 Decentralized control strategy for swarm
motion

In this this section, a strategy is proposed to control robots moving in an
environment with obstacles. It is the control law that regulates robots’ move-
ment, the interaction with each other and with obstacles. Moreover, given the
impact that obstacles may have in the swarm, a process to split the network
into smaller groups based on a connectivity metric and the selection of new
pins for the subgroups is introduced.

As robots move during operation their inter-agent distance change. Such
distance is mainly impacted by the presence of obstacles in the environment,
which each robot will individually try to avoid (given uβ

i). As a result, agents
may break and create new connections (edges) in the network topology (note
that apij depends on the distance between robots). The control law, equation
(4.1), does not guarantee that an agent will not break all of its connections,
separating itself from the group. Note that breaking network connections
is not desired, once it leads to disconnected groups or robots, and the or-
ganization/cooperativeness aspect of the swarm is lost. Moreover, in some
missions/modes of operation, it is actually an undesirable behaviour as it may
increase the necessity of monitoring more agents independently.

Assume that the number of operators (monitoring/controlling the swarm)
is smaller than the number of robots, which invalidates monitoring robots
individually. Pinning control strategy can be used to actuate on the swarm
while respecting such communication constraints. In pinning control the ref-
erence trajectory is only sent to the pin node (i.e, only the pin node has
the information to compute uγ

i). An operator is therefore assigned to each
pin. Other robots are indirectly controlled by their connections withing the
network. Also, the number of pins must not exceed the number of available
operators. Each group in the swarm contains only one pin robot and the
swarm may be divided in more than one group at a given time. Each pin is
connected to an operator, which provides the global objective, the location of
the assembly location, to the pin.

36

4.2. Decentralized control strategy for swarm motion

Every time the swarm breaks its connections the group can be fragmented
and create disconnected subgroups. Operators must be assigned to moni-
tor/control each subgroup. However, since there is only a finite number of
operators, only a finite number of subgroups can be formed. To restrict the
fragmentation of the group, we define the concept of minimal group, which are
groups with specially defined control laws that avoid subdivisions. Minimal
groups are discussed on Section 4.2.1. Recall that NR is the total number of
agents in the swarm. Thus, we can compute Nmin as the minimum number
of nodes allowed in a subgroup of agents. Nmin = floor(NR/#operators) is
computed using the number of available operators. The floor function rounds
the nearest integer less than or equal to the original number.

Given that the main function of the autonomous parts is to perform the
assembly task, commonly such robots are not designed to move at high speeds
or execute aggressive maneuvers. Therefore, moving speeds tend to be rela-
tively low. On the other hand, the communication between agents through the
network is faster (than moving) and the time for the information to spread
around the network is negligible. It is considered that information spreads
amongst the robots of a given group fast enough to enable the execution
of graph based algorithms (which require knowledge of the topology) or to
compute the cohesion control term (responsible for avoiding subdivision of a
minimal group, see Section 4.2.4).

To avoid unnecessary fragmentation of the swarm, we propose a connectiv-
ity metric to be computed locally. The connectivity metric indicates if robots
are moving away from the swarm (being “less connected”), which triggers the
necessity of preemptively separating the swarm into smaller groups. If there
is the necessity for network redesign, that is communicated to the pin robot,
which actively computes a cut to be made in the graph to separate a larger
group into smaller ones.

Fig. 4.1 shows the proposed control strategy, described as a sequence of
steps. Note that there is a monitoring stage and an action stage. During the
monitoring, local metrics are constantly being computed to identify the co-
hesion (how close and capable of organized movement the swarm is). During
the action stage, the network topology is redrawn, to accommodate for an
increase in the connectivity metric. Also, the path planning stage computes a
viable trajectory for the groups in the swarm. The controller and the connec-
tivity metric are computed at each node, and the decision over the rupture
of network connections is based on the connectivity metric. Lastly, after the
division of a group, new pins are selected and new paths are computed for
each pin.

37

4.2. Decentralized control strategy for swarm motion

Figure 4.1: Swarm control strategy.

4.2.1 Connectivity Metric and Active Group Separation

In order to measure the spatial disposition of robots in space, let us propose the
connectivity metric mi . This metric quantifies both the number of adjacent
robots to a given agent in space (eij ∈ E) and how far the robot is from its
neighbours. The connectivity metric is given by

mi =
max(||pj − pi||)

di + 1
, j ∈ Nα

i , (4.11)

with di = |Nα
i | being the number of neighbours of robot i. The distance

between i to the farthest robot in its sensing range is computed by max(||pj−
pi||) ∀j.

Denote VSG ⊆ V as a group of agents in the swarm if there is a path in the
network topology between any two agents in VSG. The swarm may contain
one or many groups at any time.

As a group moves in the environment inter-robot distances could change
due to interactions with each other and with obstacles. Therefore their con-
nections, (network edges) could also change. A group VSG can potentially
be split into multiple sub-groups, with no path in the graph between distinct
groups.

Note that, |VSG| ≥ Nmin necessarily. Therefore, a minimal group denotes
an ensemble with less than 2Nmin agents. Any group with less than 2Nmin

38

4.2. Decentralized control strategy for swarm motion

agents is considered indivisible. That is, a minimal group cannot be split into
two new groups without violating |VSG| ≥ Nmin.

The connectivity metric of a robot, mi, is used to arbitrate when the
network topology must be redesigned. To do that, mi is monitored at every
robot i. If mi reaches a predefined threshold value, then the pin of the group
is advised to redesign network topology. Specific network connections are
removed (removing eij), splitting a group (VSG) into two new groups. The
cut is made such that the group containing the node with mi above threshold
is necessarily a minimal group with Nmin robots. Note that, groups may
reconnect if their agents get closer than the connection threshold, see (4.10).

4.2.2 Selection of New Pins

After separation of a bigger group into new smaller groups of agents, pins are
selected to act as group leaders and compute their desired trajectory to the
goal using Algorithm 1. The selection of a new pin happens after the cut
in the network, and it is executed by the pin, given that it holds the actual
topology information. New nodes selected as pins are advised of their new
roles. To select new pins, two approaches were used, the random selection of
one of the group’s agents or the decision based on the Network Controllability
Gramian (NCG).

Pins control the behaviour of the whole group, directly (influencing its
close neighbours) or indirectly through network interactions. Therefore, it
may be advantageous to identify influential robots in the network and select
those as pins. Centrality measures are a common way to identify highly influ-
ential nodes [51]. Given that in our case we have one control robot (the pin)
which has to control the position (states) of other nodes to move in space,
we explore the analysis of the network controllability. NCG is an energy re-
lated metric which comprises the cost of changing the states of the network
towards different directions of the state space [51, 52]. Shortly, higher the
control effort, higher the energy needed to actuate in a network. The NCG
depends on the network topology (described as a graph) and on which nodes
are selected as control inputs. In our case, the control input of the network
is the pin robot. In the literature, well connected nodes in the network are
known to yield higher controllability and therefore require less control energy
[52, 81, 82].

To compute the NCG, first the adjacency matrix of the group VSG, ASG =
[aij], is computed. For robots that are sufficiently close, aij = aji = 1. Vertices

39

4.2. Decentralized control strategy for swarm motion

that are not connected yield aij = aji = 0.

Adyn = e(−αI+ASG) (4.12)

where α is selected such that (−αI + ASG) is stable (negative eigenvalues)
[51]. The network controllability matrix is

Cj =
[
bj Adynbj ... (Adyn)

H−1bj
]

(4.13)

where the column vector bj represents the node, j, selected as control input
(possible pin robot). Thus, bj has a value 1 at the jth−row, and 0 otherwise.
Also, H is the control horizon (number of time steps) to which the Gramian
is computed. The NCG given the selection of vertex j as control input can be
computed as

Wj =

H−1∑
h=0

(Adyn)
hbjb

T
j ((Adyn)

T)h = CjC
T
j (4.14)

Finally, the trace of the NCG, trace(Wj), is inversely related to the average
energy to control the network [81]. Thus, choosing the node j that yields the
maximum controllability represents selecting the agent that will require less
energy to move the group in space [52]. Thus, H > 0 is defined such that the
values of Wj converged.

4.2.3 Operators and RRT algorithm

Recall that a pin is monitored by an operator and that an operator repre-
sents a remote computer, a person or a more complex system. In any case, it
is assumed that the operator is able to communicate with the pin providing
the position of the assembly location as the goal of the group. A pin robot
computes a trajectory to reach the assembly location, while avoiding possible
obstacles in the environment. Possible strategies to compute a trajectory in
the environment include grid-based algorithms, such as A* [83] and D* [84],
or sampling-based strategies, such as Probabilistic Road Maps [85] and the
Rapidly-Expanding Random Tree (RRT) [78]. Grid-based algorithms find op-
timal path if it exists but are computationally heavy for bigger search spaces.
On the other hand, sampling-based methods are more computationally effi-
cient but the optimal solution may take more time to be found.

In this thesis, to compute the trajectory to be followed by the swarm, the
pin implements an RRT. The use of RRT as a trajectory planner is appeal-
ing because of its simplicity, fast convergence, and for being probabilistically

40

4.2. Decentralized control strategy for swarm motion

complete (the solution will be found if there is one). RRT has been broadly
studied and its variations include operation in real time [86], adaptation to
different system dynamics [87], and path optimization [88].

Algorithm 1 shows the implemented version of the RRT. In it, a tree
is expanded from the current position of the pin to the goal position. Each
node in the tree contains candidate waypoints in the trajectory to be followed.
When the algorithm is executed, the pin robot instantiates pinit as the current
pin position in space. Then, the algorithm proceeds by generating a random
position in space (prand, line 4). A search within the tree finds the closest
node to prand (line 5). We call this node pnear. The next is step is to extend
the three from pnear towards prand by a fixed edge distance, ∆p. This process
(line 6) creates a node at position pnew (note that pnew is between pnear and
prand). If this newly generated node is located inside any obstacle, it is ignored
and a new pnew position will be generated. If pnew does not collide with an
obstacle, then it is added to the tree. By doing this sequentially, new nodes
are added and the tree expands through the search space. Moreover, if pnew is
close to pgoal (distance smaller than ∆p), then pnew and pgoal are connected
and added to the tree and the algorithm finishes (lines 12−13). The algorithm
returns the path (list of waypoints) from pinit to pgoal.

Algorithm 1 Rapidly-Expanding Random Tree Algorithm

1: function RRT(pinit,pgoal, obstacles)
2: T .init(pinit), initialize tree at position pinit

3: while pgoal not reached do
4: prand ← random(), generate a random position
5: pnear ← find near(prand, T), find nearest vertex
6: pnew ← new node(pnear, prand, ∆p), create new node at distance

∆p of pnear

7: if pnew does not collide with any obstacle then
8: T .add vertex(pnew), add node to tree
9: T .add edge(pnear, pnew), connect the new node to nearest node

10: end if
11: end while
12: T .add edge(pnew, pgoal), connect the new node to nearest node
13: return T .trace back(), return path from initial position to goal
14: end function

41

4.2. Decentralized control strategy for swarm motion

4.2.4 Virtual Nodes and Control Law

In order to maintain cohesion in a minimal group, let us introduce the concept
of virtual nodes. A virtual node is computed as the average position of all
nodes in a group. Thus, the virtual node is located at the geometric center of
the group. The real position and velocity of the virtual node at time t is

pr
vn(t) =

1
NSG

∑
j∈VSG

pj(t),

vr
vn(t) =

1
NSG

∑
j∈VSG

vj(t).
(4.15)

where VSG is a minimal group with NSG agents. NSG < 2Nmin.
However, note that an agent accesses the information of another agent in

the group delayed by a specific time. Therefore, each node (i) computes the
virtual node position and velocity separately as

p
(i)
vn(t) =

1
NSG

∑
j∈VSG

pj(t− hij∆t),

v
(i)
vn(t) =

1
NSG

∑
j∈VSG

vj(t− hij∆t).
(4.16)

where hij is the number of hops (edges) in the shortest path between two
nodes. Moreover, the delay for a node i to access information of a node j equals
to hij∆t, ∆t being the agent-to-agent communication time. If communication
happens faster than the robotic movement, the delay is negligible and the
virtual node computed by any agent will be is located approximately at the
real geometric center of the group.

The virtual node is used to compute the cohesion control term, uc
i , as

uc
i = cvn1 (p(i)

vn − pi) + cvn2 (v(i)
vn − vi), (4.17)

where cvn1,2 are the control term gains.
Also, note that in a minimal group, instead of guiding the pin controller

to the predefined trajectory, the navigation term is replaced to guide the
geometric center of the ensemble (virtual node) to the trajectory. Thus,

uγ
i =

gi[c

γ
1(pgoal − p

(i)
vn) + cγ2(vgoal − v

(i)
vn)],

i ∈ VSG, VSG is a minimal group

gi[c
γ
1(pgoal − pi) + cγ2(vgoal − vi)],

i ∈ VSG, VSG is not a minimal group.

(4.18)

where gi = 1 if i is a pin node, and it is 0 otherwise.

42

4.3. Results

The complete control law signal at each node is then given by

ui = uα
i + uβ

i + uγ
i + uc

i (4.19)

Note that, the uc
i term is only activated if the group containing i is a

minimal group. Thus, maintaining group cohesion while moving through space
becomes another objective (along with obstacle avoidance and navigation) of
a minimal group.

4.3 Results

This section shows results obtained when simulating the proposed swarm con-
trol strategy. First, the simulation procedure and the parameters used to
generate the results are presented. Second, it is shown the swarm guidance
process using the proposed control strategy. Finally, the Gramian-based pin
selection method is compared with a random selection in the guidance context.

As mentioned previously, the analysis on this chapter is constrained to the
two-dimensional space, given that the height control task is executed individu-

ally. Therefore, pi,vi ∈ R2 with pi =
[
pxi pyi

]T
and vi =

[
vxi vyi

]
. Table 4.1

shows the parameters used in simulation. Also, in the RRT algorithm, a safe
distance to an obstacle (point where a new waypoint is allowed in the path)
is rβ.

Table 4.1: Parameters for simulation

Parameters Value

cα1 ,
α
2 2, 2.83

cβ1 , c
β
2 3, 3.46

cγ1 , c
γ
2 1, 2

cvn1 , cvn2 1, 2
ϵ, h 0.5, 0.5

dαα, rα 1, 1.3
dαβ, rβ 0.6, 0.78

Connectivity Threshold 0.4

It is useful to observe the selection method for the parameters on Table 4.1.
First, parameters are selected to match the same order of magnitude of the
positions and velocities in the system (100). Guidelines, followed in here, were

proposed in [49] for the definition of gains cα,β,γ1,2 , where c2 > c1 generated

43

4.3. Results

stable control operation. Also, ϵ and h were arbitrarily defined as the middle
value of their respective ranges. Distances and ranges dαα, rα, dαβ, and rβ
were designed to obtain a stable swarm behaviour, i.e., robots should not move
too close nor be spread in space (few connections in the network topology).
Finally, the connectivity metric was defined to be below the maximum value.
To compute the maximum value for mi, we use the sensing range rα (two
robots are not topologically connected if they are above this range) and set
di = 1 (only connected to one other robot). In this scenario, the maximum
value is mi = 1.3/2 = 0.65.

Swarm guidance - In the simulation showed in Section 4.3.1, ten agents
performed the navigation in an environment with obstacles. In the beginning,
the agents started in random positions and network connections (eij) were
established only for every pair of agents closer than rα. After that, one agent
was selected as the pin node, responsible to follow a desired trajectory and
guide the group. Moreover, it was assumed that three operators are available
(#operators = 3), resulting in Nmin = 3.

Pin selection method - A simulation of a swarm with nine agents was
executed to characterize the error in position tracking using both approaches
for pin selection: random agent or Gramian-based selection. To obtain the
results showed in Section 4.3.2, the following procedure was applied in simu-
lation:

1. Start robots in random positions and establish network connections for
every pair of agents closer than rα;

2. Select a pin node using the Gramian-Based method;
3. Apply the navigational term, equation (4.18), on the control law of the

pin node to follow a desired trajectory. The trajectory is a sequence
of waypoints, 1 meter away from each other. The waypoints define the
desired position of the geometric center of the group;

4. Measure the tracking error, the pin node’s control effort, and the distance
travelled by each node;

5. Restart simulation using the same positions obtained in step 1;
6. Randomly select a node as the pin;
7. Apply the navigational term on the control law to follow the desired

trajectory;
8. Measure the tracking error, the pin node’s control effort, and the distance

travelled by each node;

Fig. 4.2 shows examples of possible initial configurations. The figure shows
robots identified by numbers, and connections in the graph topology are high-
lighted by green lines. Remember that a connection in the network topology

44

4.3. Results

(a) (b)

Figure 4.2: Example of possible initial configurations, pin selection method
comparison.

represent that robots have access to each other states. Moreover, one of the
robots in the swarm is selected as the pin, being the only robot that computes
the goal term, uγ

i , in the control law proposed. Other nodes will react to the
movement of the pin, being indirectly controlled.

4.3.1 Swarm guidance

In this section, we show the results of the swarm guidance using our control
strategy. Fig. 4.3 shows snapshots of the autonomous guidance task. It is
possible to see the beginning of the task, the moment when the agents break
their connections (e.g, Fig. 4.3c), and the guidance of minimal groups (e.g,
Fig. 4.3h). Furthermore, the figure shows the new pins selected after sepa-
ration, the creation of virtual nodes, and computation of the agents’ paths
to the goal as dashed lines. Note that, the trajectory computed is, in fact, a
series of sequential waypoints to be reached by a pin node (or a virtual node
in a minimal group).

Fig. 4.4 shows the connectivity metric for each node in the group as they
move through the environment with obstacles. In the figure, the moments
where the network topology is actively redesigned (splitting group and select-
ing new pins) are highlighted. Note that, after redesign, the cohesion term

45

4.3. Results

(a) Initial configuration (b) Object encounter

(c) Network rupture (d) Two groups reunite

(e) Network rupture (f) Minimal groups navigating

(g) Two groups reunite (h) Minimal groups navigating

(i) Groups reunite and end of mission

Figure 4.3: Autonomous guidance using 10 agents, #operators = 3, and
Nmin = 3.

46

4.3. Results

Figure 4.4: Connectivity metrics during part of the experiment.

was activated in minimal groups which causes the decrease of connectivity
metric value. In Fig. 4.4 two moments where the network is redesigned and
groups split are shown. These separation moments can be seen in Fig. 4.3c
and Fig. 4.3e.

Fig. 4.5 shows a minimal group during navigation. The group is composed
of four robots, the agent number i = 3 is the pin node, and Nmin = 3. Since
Nmin < |VSG| < 2Nmin, the group is indivisible (see Section 4.2.1). Thus,
instead of splitting the group, the agents rearrange their positions in order to
avoid the obstacles.

4.3.2 Comparison between pin selection methods

In this section, we show the comparison between the two pin selection meth-
ods, Gramian-Based and the Random pin selection (Section 4.2.2). For each
selection method, 100 iterations of 30 seconds of the procedure described in
Section 4.3 were performed. In each iteration of the simulation, the same ini-
tial configuration (nodal position and network topology) was used to compare

47

4.3. Results

(a) (b)

(c) (d)

Figure 4.5: Minimal group avoiding obstacles and maintaining cohesion.

both approaches.
Fig. 4.6 shows the resulting tracking error (distance between the geometric

center of the ensemble and the goal position), during one of the iterations.
Only the last ten seconds of simulation are shown in the figure to highlight
the difference between both methods. It is possible to see that, for the same
initial configuration, the swarm moved slower to the next waypoint using the
randomly selected pin.

Fig. 4.7 shows the magnitude of the control effort vector |ui| for the pin
node. In the figure, one can see that the selection of a non-optimal pin node
(random) yields a higher effort to be exerted by the pin node.

Table 4.2 shows the average RMS value of the Euclidean distance from the
swarm geometric center to the target location (tracking error). However, only
analyzing the geometric center does not provide a clear idea of the behaviour of

48

4.3. Results

Figure 4.6: Tracking error of the geometric center using two different pin
selection methods.

Figure 4.7: Control effort of the pin node using two different pin selection
methods.

49

4.3. Results

Figure 4.8: Result of 100 iterations using the two pin selection methods.

the whole swarm during navigation. Therefore, the distance travelled by each
agent was also analyzed. Let us consider pt

i as the total distance travelled by
the node i during operation. Thus, p̄t = (1/N)

∑N
i=1 p

t
i is the average distance

travelled by all agents in the swarm.

Table 4.2: Tracking error for different pin selection methods

Pin selection strategy RMS position error [meters]

Random selection 0.6771
Gramian based 0.6632

Fig. 4.8 shows a boxplot with the average travelled distance (p̄t) after 100
iterations. One can interpret from the figure that selecting a random robot
as pin caused all agents in the swarm to move more than using a Gramian-
selected pin. The higher travelled distance is the result of the whole group
rearranging its positions to accommodate the motion of the pin node. For
example, the randomly selected pin robot could be physically located at one
end of the network, and its motion may cause the whole group to rotate, or
even force network connections to be broken/created.

50

4.4. Conclusion

4.4 Conclusion

In this chapter, the guidance of a swarm of robotic structure parts in an en-
vironment with obstacles was studied. The problem was approached using
pinning control (applying the navigational control term in only one node) to
guide the swarm to the goal position. The parts were approached by their sim-
plified model given that the focus was on the group dynamics and behaviour
rather than individual characteristics. A control strategy was proposed that:
actively breaks the network connections creating new groups, dynamically de-
fines new pins, and maintains group cohesion while navigating in space. The
effectiveness of the approach was demonstrated using simulation trials. Moni-
toring the agent’s connections (distances to neighbours) and actively deciding
on splitting a group is shown as a valid approach for avoiding unnecessary
group fragmentation while navigating an environment with obstacles.

Moreover, the Gramian-based selection of new pins when compared to
the random selection showed to be a viable approach for pin selection. The
Gramian-based approach resulted in selecting a node that: i) guided the group
to its objective with a smaller overall error, ii) required less “control energy”
to control the group, and iii) required less motion (distance travelled) from all
robots.

Note that this chapter focused on movement of robots using ideal infor-
mation and the noises associated with sensors’ outputs are not discussed.
However, a certain level of robustness to the control operation can be ex-
pected given that in equation (4.2) the control signal is computed as a sum of
different measurements. It is a combination of the measured states of other
robots and obstacles in the environment. Therefore, individual measurement
errors tend to be diluted into the calculation, and the control signal reflects
the average knowledge about the states of other entities around the robot.

The results presented in this chapter can be compared with platooning
of agents [89, 90]. Platooning is a viable way of transposing an environment
with obstacles, once the vehicles align themselves in a straight line and can
avoid obstacles more easily. However, the area covered using platooning is
smaller, when compared to the swarm groups presented here. The distributed
displacement of the vehicles in a swarm is advantageous in certain applications,
such as surveillance. Also, the time delay of the information in the platooning
members could be a problem for bigger groups. In our approach, the active
rupture of the network and the cohesion control term help to solve such time
delay issues.

Finally, guidance and control strategies discussed in this chapter enable
the autonomous structure parts to traverse the environment, reaching the as-

51

4.4. Conclusion

sembly location. At the end of operation, all robots successfully and efficiently
arrived at the goal, while minimizing communication and power consumption.
The trajectory taken by the swarms and the power consumed to move are rel-
evant for the next stages of the assembly, given that a robot must have enough
energy to place itself in a structure. Also, robots finalize their moving stage
by forming a connected graph and waiting on top of the assembly location,
which we denote as the waiting stage. The communication between robots in
the waiting state is crucial to algorithms in the ordering stage to be discussed
in the next chapter.

52

5 Ordering of robots to
assemble structures

In this chapter, we study another area related to the autonomous assembly
process, which involves establishing premises and rules for the sequence of
placement of parts in the structure. Two possible strategies stand out regard-
ing how parts are added in a self-assembly process. Parts can be inserted
all at once in the environment and locally compute how to rearrange their
positions to form the structure [10], or new parts can be sequentially added
to the structure, one by one [11].

Adding parts one at a time enables the directed growth of the structure
from a seed position. Directed growth assemblies are independent from the
final structure and initial configuration, being applicable to various shapes [40,
11]. In this thesis, it is assumed that new blocks sequentially move to a
structure being assembled and directed growth is obtained at every layer of
the structure (see Chapter 6).

This chapter focuses on how to compute a sequence of which robots move
to a structure being assembled. As a result of the procedure described in
Chapter 4, it is assumed that a group of structure parts moved in space in a
coordinated manner. After moving, robots arrive at the assembly location and
hover above the ground in a waiting state. The assembly location is a region
in space where one or more structures are being assembled simultaneously. At
the end of the movement, the swarm forms a connected graph, i.e, there is a
path for communication between every pair of robots. Also, there is one pin
robot.

The objective is to design an assignment strategy that computes the next
robot in a swarm that will be selected to perform an assembly task, starting
from a waiting state. Note that an order is created between the robots in
the swarm by executing the assignment strategy iteratively. Moreover, af-
ter exiting the waiting state, robots move in the environment towards the

53

5.1. Problem Formulation

structure being assembled. As they arrive at the structure, robots start the
self-assembly procedure, studied in Chapter 6.

This thesis seeks an assignment approach that could be applied to real-
world robots. As expected, these robots need power to operate. Commonly,
that is provided by a battery embedded in the robot. In our case, UAVs
use battery energy to move in the environment, sense its surroundings, com-
municate with other robots, and perform internal computation. To move to
the assembly location it is expected that the battery level of each robot has
decreased depending on the path taken. That path, however, is nondeter-
ministic and changes from robot to robot as the interactions between agents
and with obstacles may lead to unpredictable trajectories. Regardless of the
trajectory, each robot must have enough energy to continue executing the as-
sembly process. Thus, the distance from the waiting position of a robot to the
structure being assembled and the current battery level are relevant factors
when computing the robot order.

The ordering strategy must be able to compute the sequence of which
robots perform the assembly. In this chapter, at any given moment, the
most suitable robot to execute the assembly task is identified by using an
auction process. Auction-based approaches are applicable on centralized and
decentralized decision methods and are known to be computationally efficient
[66, 70]. In our case, the auction uses a score function that is based on the
battery level of a robot and its distance to the structure being assembled.
Furthermore, the existing communication network is exploited by the decision
algorithms to exchange the necessary information.

Given the simplicity of algorithms and messages proposed, the auction
strategy does not compromise the communication bandwidth or the computa-
tional capacity of robots. Simulated results show the efficiency of the auction-
based assignment strategy when compared to a random selection of robots.
To compare the performance of different strategies we analyse the energy con-
sumed by robots while waiting to be assigned to a structure. The simulations
performed the assignment of robots to assemble three structures simultane-
ously. The number of robots being requested by each structure varied from 5
to 100 robots. Results show that the auction strategy is more energy efficient,
leading robots to save battery power.

5.1 Problem Formulation

Assume that the swarm is organized in a proximity-based network topology
and that sufficiently close robots can communicate. Thus, the relationship

54

5.1. Problem Formulation

between robots can be described as a spatial graph, G = (V,E), where each
robot is a vertex i ∈ V . In addition, edges eij ∈ E exist iff robots i and j are
within a sensing/communication range of each other.

Robots can communicate using such network topology directly or indi-
rectly, by having the messages relayed through others. Moreover, after arriv-
ing in the assembly area, there is only one pin node. The pin has access to the
current status of the network (its topology), and the is capable of receiving
messages from robots on the ground (in structures being assembled).

Denote by S the set of structures being assembled at any given moment.
A structure s ∈ S is an arrangement in space where robots place themselves,
working as parts. The first position in the structure occupied by a block,
on the bottom level, is called a seed position. The seed is the origin of the
OB coordinate system (as per Section 3.5) and it marks a position where the
structure grows from (see Chapter 6). Furthermore, the position of a structure
in space is given by ps (see Fig. 3.5).

Robots can be grouped into two separate sets, Ru ⊂ R as the set of
unassigned (available) robots and Ra ⊂ R as the set of robots already assigned
to a structure. Moreover, a robot is either available or assigned, Ra ∩Ru = ∅
and Ra ∪ Ru = R. Given that, the main research question is from the set of
robots available at any given instant t, which robot, ri, can be assigned to
which structure, s, being assembled?

The assignment process describes the action of commissioning a robot to
a structure. After assigned, the robot first moves to the location of s in space,
ps, and then starts its self-assembly procedure at arrival. A robot that was
already assigned is considered to be in Ra and not Ru. Note that, the vertex
set in V is only composed of robots in Ru. Also, network connections (E) are
broken and the topology of G is affected every time a robot is assigned and
moves away from other waiting robots.

Under this context, the structures being assembled can be denoted as a set
of tasks that must be executed by the available robots. A structure with Ns

parts yieldsNs
t tasks to be executed. Let us assume thatNt is the combination

of the number of tasks of all structures, Nt =
∑

∀s∈SN
s
t . Moreover, there

are as many robots, NR, as positions to be filled (tasks to complete), thus
Nt = NR. Given that each robot is a structure part, a robot can be assigned
a maximum of one task. After assigned a block can not be decommissioned.
The assignment is said to be completed once all robots have been assigned to
a structure.

The task to be executed can be decomposed into two steps: i) the robot
moves to the structure that it was assigned to at position ps; and ii) it executes
the self-assembly procedure. The first part of the task can be executed using

55

5.1. Problem Formulation

properly designed control laws, as discussed in Section 3.3. The second part
of the task requires the block to find the specific location to place itself in the
structure. Such procedure involves a specific set of data and behaviours that
is discussed in Chapter 6. The length of the task, i.e, how long it takes for a
robot to execute both steps, is not relevant to the assignment problem, given
the fact that a robot cannot be decommissioned.

The assignment problem can be written as an integer program with binary
decision variables, xij , that indicate whether or not task j is assigned to robot
i. In addition, a score function, cij , is used to represent the cost to assign a
robot to a task. Therefore, the global objective function is assumed to be the
sum of local reward values (on each robot),

max

NR∑
i=1

 Nt∑
j=1

cijxij

 (5.1)

subject to
Nt∑
j=1

xij = 1 ∀i ∈ I

NR∑
i=1

xij = 1 ∀j ∈ J
NR∑
i=1

Nt∑
j=1

xij = Nt = NR

xij ∈ {0, 1} ∀(i, j) ∈ I × J

(5.2)

where xij = 1 if agent i is assigned to task j and 0 otherwise. Also, the index
sets are defined as I = {1, ..., NR} and J = {1, ..., Nt}. Note that J encodes
the part requests for all structures being assembled. The summation term
inside the parenthesis in (5.1) represents the local reward for the agent i. A
general version of the global objective function where reassignment is possible
can be found at [66].

Finally, a task is generated every time a structure under construction re-
quests a new part. We assume that the seed robot, located at the bottom
layer can communicate with the pin. Thus, seed robots of the structures un-
der construction send requests for new parts to the pin from time to time. The
pin then gathers requests from all structures in S and act as an auctioneer. A
discussion about how often a structure can request a new block is postponed
until Chapter 6.

56

5.2. Auction-Based Assignment

5.2 Auction-Based Assignment

In this section, it is proposed an auction-based algorithm to solve the as-
signment problem. The auctioneer is responsible to decide which robot must
execute the task at a given moment. Moreover, the assignment strategy can
be broken into some steps: i) the minimum spanning tree (MST), Γ, is com-
puted on G (spatial graph given swarm disposition); ii) from the set of the
robots unassigned Ru, the robots that are leaves in the MST are identified;
iii) new requests for the parts are received by the auctioneer; and iv) the pin
runs an auction to select the available robot to be assigned to the structure.

The MST is interesting in this scenario for two reasons. First, it helps
selecting a path for the information to flow in the network. Second, by an-
alyzing the structure of the tree, the robots that are crucial for the flow of
information are identified. Note that as robots are assigned, they move to the
structure location, leaving the ensemble and breaking their connections with
the nodes in G. The computation of MSTs is a widely studied area with a
range of algorithms being proposed over the years [91, 92]. After computing
Γ, the root of the tree is set to be the pin node and the nodes with no children
are the leaves. Note that if a leaf node is removed, the flow of information
between other nodes in the tree is not affected. Denote by Ru

l the set of “leaf
unassigned” robots, being Ru

l ⊆ Ru.
Figure 5.1 shows the different stages of the process. On the left side, the

robots are displayed assuming they just arrived and are in the waiting state.
Note that the swarm forms a connected graph, and hovers above the assembly
location. On the right side, the pin node computes the MST and its topology
is highlighted. Also, the leaves (robots in Ru

l) in the tree are marked with
“*”.

There is a blueprint, Bs, associated to every structure in s ∈ S being
assembled. The pair position in the environment and associated blueprint
(ps,Bs) for each structure can be already stored on the auctioneer’s memory,
or be provided by the operator at the beginning of the ordering stage. At the
beginning of the operation, the information D = (ps,Bs) ∀s ∈ S is broadcast
over the network, and is stored by each robot in the swarm as a dictionary
position-blueprint. When a robot is assigned to move to structure (move to
ps), it will look into such dictionary and retrieve the blueprint that will be
assembled at that location. Furthermore, the first round of robots must be
sent to start the assembly of each structure. As a result, the first assignment
round happens without any request, with the auctioneer iteratively assigning
leaves in Γ (Ru

l) by providing the location of the structures in space, ps. These
robots will be the first to arrive on the structures. Therefore, they will act

57

5.2. Auction-Based Assignment

Figure 5.1: Connections in the graph showing the start topology (left side),
the computation of the tree and the leaf nodes (right side).

as the bottom layer seed robots placing themselves at the seed location and
requesting new parts for the structures. Each seed robot requests parts by
messaging the auctioneer.

The requests for structure parts are handled through an auction process.
In auction methods, the bids are submitted to an auctioneer to determine the
winner based on the highest bids, given

i∗ = argmaxi cij(i,p
s) (5.3)

where i∗ is the selected robot. The task scores cij are based on the reward of
assigning task j to robot i,

cij(i,p
s) =

1

bati
+

1

||pi − ps||
(5.4)

where ||pi−ps|| refers to the Euclidean distance between the robot ri and the
structure s that generated the task j. Also, bati is the current battery level
of the robot. Note that, to compute the score value, cij , a robot needs both
an internal parameter (battery) and a information sent from the auctioneer
(position of the structure).

Allow us to define the set of messages that circulate between robots during
the auction process. Denote by mna

a the message sent from the auctioneer to
non-auctioneer robots. Depending on the stage of the auction process, the
message that is broadcast over the network can be

mna
a =

{
ps , the position of the structure that generated task j or

i∗ , the winner of the auction process.
(5.5)

58

5.2. Auction-Based Assignment

At the beginning of the auction, the auctioneer sends the position of the
structure that requested a part, ps. That information is then used for the
non-auctioneer robots to compute their bids. Afterwards, auctioneer messages
other robots with the winner id of the auction process, i∗. This message is
used by the winner robot to move to the structure.

Denote by ma
na the message that is sent back from non-auctioneer robots

to the auctioneer. The message contains both the id of the robot and its bid
(score function value),

ma
na = [i, cij(i,p

s)]. (5.6)

Finally, a request for a new part from a structure already placed on the
ground contains the position of the bottom layer seed,

ma
s = ps. (5.7)

Let us assume that each request for a part is received by the auctioneer in
an asynchronous process, separate from the auction process. As such, every
time message ma

s arrives, the position of the structure requiring a robot (ps,
content of message) is placed in a queue, Q. Note that Q is a first-in-first-out
queue of positions of structures being assembled. Therefore, the auctioneer
algorithm receives a new task by dequeuing a position from Q.

Algorithm 2 assumes that each agent is aware of its own unique identifi-
cation number in the swarm. Thus, when initiated, the algorithm is given the
robot’s id. On the other hand, the auctioneer only broadcasts messages to
the network, and its algorithm does not need to be initialized with the robot’s
id. The assignment procedure happens as follows. First, the request of a new
part is obtained from the queue (Algorithm 3 line 4). Then, the auctioneer
sends the position of the structure to all robots (Algorithm 2 lines 5 and Algo-
rithm 3 line 8). Robots compute their scores, cij and send their bids in return
(Algorithm 2 lines 7, 8 and Algorithm 3 line 9). Note that every robot bids
only once. Bids from robots that are not leaves are discarded and the lowest
cost is selected by the auctioneer as the winner (Algorithm 3 lines 11, 12).
The auctioneer broadcasts the result of the auction and updates its internal
representation of Γ, removing the winner robot from the tree (Algorithm 3
lines 13, 14). Non-auctioneer robots receive the result of the auction and the
winner robot moves to the structure location (Algorithm 2 lines 9, 10, 11, 15)
If the only robot available at the moment is the auctioneer, then the robot as-
signs itself and moves to the structure. Finally, after moving to the structure
location, the robot retrieves the blueprint to be assembled from the dictionary
(D) stored in its memory (Algorithm 2 line 16 and Algorithm 3 line 19).

59

5.3. Algorithm’s analysis

Algorithm 2 Non-auctioneer algorithm

1: function waiting state(robot id,D)
2: i← robot id
3: assigned ← false
4: while not assigned do
5: Wait for message from auctioneer with structure pos. (mna

a = ps)
6: if message received then
7: Compute local score, cij(i,p

s), using equation (5.4)
8: Send bid to auctioneer, ma

na = [i, cij]
9: Wait for message from auctioneer with winner id (mna

a = i∗)
10: if message received and i∗ = i then ▷ this is the winner
11: assigned ← true
12: end if
13: end if
14: end while
15: Move to ps

16: Retrieve blueprint Bs from the dictionary stored (D)
17: end function

5.3 Algorithm’s analysis

In this section, we analyze the proposed algorithms to prove that they suc-
cessfully assign all robots to structures.

Lemma 1. For every structure part request (task j) there is always a robot
that can be assigned, ∀j ≤ Nt

Proof. Recall that the total number of tasks being requested (Nt) equals the
total number of parts in all structures to be assembled. Also, there are as
many robots in the swarm as parts needed for each structure, Nt = NR (as per
Property 7). If a robot is still not assigned, it is part of the Ru. Additionally,
robots in the swarm form a connected graph, G, on which the MST, Γ, is
computed. In a finite rooted tree where |Ru| > 1, there is always at least one
leaf node. Thus, Ru

l ⊆ Ru is never ∅. If |Ru| = 1 the auctioneer is the only
robot in Γ. Given Algorithm 3 line 5, in that scenario, the auctioneer will
assign itself.

Lemma 2. Algorithm 3 sequentially assigns all robots.

60

5.3. Algorithm’s analysis

Algorithm 3 Auctioneer algorithm

1: function auction(D)
2: assigned ← false
3: while not assigned do
4: dequeue a request (position ps) from Q ▷ task j
5: if |Ru| = 1 then ▷ the auctioneer is the only robot available
6: assigned ← true
7: else
8: Broadcast structure position, mna

a = ps ▷ request bids
9: Wait for message ma

na containing cij from all ri ∈ Ru

10: if message received from all robots then
11: Select only bids (cij) for robots in ri ∈ Ru

l , ignore others
12: Compute the winner (i∗) using equation (5.3)
13: Broadcast winner’s id, mna

a = i∗ ▷ assign winner to task j
14: Remove the vertex i∗ from the tree (Γ)
15: end if
16: end if
17: end while
18: Move to ps

19: Retrieve blueprint Bs from the dictionary stored (D)
20: end function

Proof. In the auction process for each requisition, at least one of the robots in
Ru

l will have a maximum score value. Thus, one of the nodes with the max-
imum score is always assigned and it is removed from Ru

l . As per Lemma 1,
at every request one robot will be assigned (see Algorithm 3 lines 6, 12) . The
number of robots in Ru reduces by 1 per iteration. There are only a finite
number of nodes in Ru, thus, the size of the set will eventually reach 0.

Theorem 1. All structures will receive the sufficient number of parts to be
assembled.

Proof. The assembly starts with no robots assigned to structures, Ra = ∅. As
per Lemma 2, at every request |Ru| decreases by 1 and the number of robots
assigned, |Ra|, increases by 1. Thus, eventually, all nodes are selected. A
structure can only generate as many requests as there are spots to be filled by
a robot. Thus, after all requests have been completed, all robots have been
assigned and there are no positions yet to be filled by a robot.

61

5.4. Results

5.4 Results

In this section, simulation trials are used to analyze the performance of the
auction-based assignment algorithms. Moreover, the proposed strategy was
compared with a random selection methods of available robots.

The simulations performed used three different scenarios. In each scenario,
the number of parts needed to assemble the structures changed, but the posi-
tion where structures should be assembled remained the same. Table 5.1 shows
the number of parts per structure for the different experiments. Note that only
the number of parts of the structures is relevant to the assignment problem
and the shape of the structure is a topic of study in Chapter 6. The position
of structures are p1 = [−10,−10, 0] m, p2 = [10,−10, 0] m, p3 = [0, 10, 0] m,
in the OI frame.

The procedure described in Chapter 4 ends with the swarm flying above
the assembly location. Therefore, in simulation, robots were initiated at the
waiting state at random locations in space, hovering above ground at 1m. The
minimum distance between robots was set to 1 m, and any robots within the
sensing range of each other (1.33 m) were connected in the graph topology, G.
Robots are instantiated in space such that G is a connected graph. Moreover,
the pin was chosen using the NCG metric, following Section 4.2.2. Finally,
robots start the simulation with random battery levels, varying from 50% to
90%.

Two simulation runs were executed using the same initial disposition of
robots, one with available robots being randomly selected and one using the
proposed auction-based strategy. To compare both strategies being evaluated,
The algorithms proposed are executed almost the same way, with exception of
the auction winner. For the random selection method, instead of a using the
bids from robots, a random robot in Ru

l was assigned (Algorithm 3 line 12).
With that, the MST component of the algorithm is still used, guaranteeing
that there is always a robot in the swarm that can be assigned to a structure
(see Section 5.3). To create a more realistic scenario, the battery level of
the robots decreased while they were active. First, the battery would be
reduced by 0.1% per iteration, while the robot is hovering above the assembly
area. Second, when a robot moves to a structure, the battery level would
be discounted an amount proportional to ||pi − ps||. Note that an iteration
represents the processing of fulfilling one part request, i.e., from reception of a
task until a robot was assigned and moved to the structure location. Finally,
the queue Q was initiated with the requests from all structures randomly
ordered.

Figure 5.2 helps describe the assignment process for one robot. It shows

62

5.4. Results

-10 -5 0 5 10
Pos X

I

-10

-8

-6

-4

-2

0

2

4

6

8

Po
s

Y
I

1
2

3
4

5

6

7
8

9
10 11

12

13

14

15

16

17 18

Structure 3

Structure 2Structure 1

Auctioneer

(a) Start of the assignment

-10 -5 0 5 10
Pos X

I

-10

-8

-6

-4

-2

0

2

4

6

8

Po
s

Y
I

1
2

3
4

5

6

7
8

9
10 11

12

13

14

15

16

17 18

Structure 3

Structure 2Structure 1

Auctioneer

MST

(b) Computation of MST

-10 -5 0 5 10
Pos X

I

-10

-8

-6

-4

-2

0

2

4

6

8

Po
s

Y
I

1
2

3
4

5

6

7
8

9
10 11

12

13

14

15

16

17 18

Structure 3

Structure 2Structure 1

Auctioneer

Ru
l

(c) Identifying leaves in the tree

-10 -5 0 5 10
Pos X

I

-10

-8

-6

-4

-2

0

2

4

6

8

Po
s

Y
I

1
2

3
4

5

6

7
8

9
10 11

12

13

14

15

16

17 18

Structure 3

Structure 2Structure 1

Auctioneer

winner robot

(d) Selection of a winner bid after all bids were
received by the auctioneer

Figure 5.2: The stages of the assignment process.

the displacement of robots at the beginning of operation, the computation of
the MST and the leaf nodes. It also shows a robot that was selected after all
bids were received by the auctioneer. Note that the winner will be removed
from the network as it moves to the structure location and robot 2 will take
its place as leaf.

The average battery use (¯batuse) is selected to analyze the performance
of the proposed strategy. Given that the initial level of robots’ batteries are
randomly defined, the battery level decrease (battery usage while waiting and
to move to structure) is more relevant than focusing on absolute final values.

63

5.4. Results

0 10 20 30 40 50 60 70

Battery usage individual robots, "bati [%]

0

10

20

30

40

50

60

70

80

F
re

q
u
en

cy

Random selection
Auction-based strategy

(a) Individual battery usage on a single sim-
ulation run.

12 12.5 13 13.5 14 14.5 15 15.5

Battery usage, 7batR [%]

0

5

10

15

20

25

30

35

F
re

q
u
en

cy

Random selection
Auction-based strategy

(b) Average battery usage over 100 trials with
different initial conditions

Figure 5.3: Battery usage distributions.

The metric is computed as

∆bati = batinitiali − batfinali

¯batR = 1
NR

NR∑
i=1

∆bati

¯batuse = 1
Ne

Ne∑ ¯batR,

(5.8)

where batinitiali and batfinali are the initial and final values for robot’s i battery,
respectively. The final battery level is the value that each robot has when
it reaches the structure location. ¯batR is the average battery usage among
robots in a single simulation run and ¯batuse is the mean value of ¯batR after
multiple iterations with different initial conditions. Also, Ne is the number of
simulation runs and it was set to Ne = 100 for our trials.

Fig. 5.3 shows two histograms related to the battery usage during the
assignment process. On the left side, the battery usage of individual robots
during a task assignment process is presented. One can see that the energy
consumption among all robots participating in the assembly follows a normal
distribution, regardless of the assignment strategy. Given the curve profile,
the mean energy consumption within a run can be computed (obtaining ¯batR).
The second histogram shows that ¯batR also followed a normal distribution over
the multiple repetitions of the experiment. Which, by its turn, enables the
analysis of the ¯batuse metric proposed above.

Fig. 5.4 presents boxplots comparing the assignment strategies for the
three experiments proposed. Notice that, given the position of the blue boxes
(the majority of the data) and the red line (median value), there is a tendency
for robots to consume less energy when applying the auction method proposed.

64

5.5. Conclusion

Random Auction-based

13

14

15

B
a
tt

er
y

u
sa

g
e,
7 ba
t R

[%
]

(a) Experiment 1

Random Auction-based

20

25

30

35

B
a
tt

er
y

u
sa

g
e,
7 ba
t R

[%
]

(b) Experiment 2

Random Auction-based
25

30

35

40

45

B
a
tt

er
y

u
sa

g
e,
7 ba
t R

[%
]

(c) Experiment 3

Figure 5.4: Comparison between assignment strategies with ¯batR values for
the three experiments.

Table 5.1: Parameters for simulation

Experiment Number of robots per structure Nt

1 5, 6, 7 18
2 50, 60, 70 180
3 100, 100, 100 300

Table 5.2: Average battery decrease while a robot wait to be assigned

Experiment ¯batuse
Random selection Auction-based strategy

1 13.76% 13.59%
2 24.67% 23.13%
3 33.48% 31.96%

However, the standard deviation of ¯batR was higher for the auction assignment
strategy, which is related to sample skewness. Specifically, on experiments 1
and 3 the values of ¯batR clustered close to the median value and distorted the
Gaussian distribution, which changes the standard deviation values computed.

Table 5.2 summarizes the result of the simulation trials, focusing on the
average battery usage after multiple iterations. Notice that, the average bat-
tery usage is smaller when the proposed approach is used. A smaller battery
usage implies that the robots that are assigned to structures have, on average,
more power to keep operating and execute the self-assembly algorithms.

5.5 Conclusion

This chapter discussed the assignment problem for a swarm robotic structure
parts. An order of which the robots move to each structure being assembled

65

5.5. Conclusion

has to be collectively computed. The need for an assigning strategy comes
from the fact that robots must arrive at the structure location in sequence,
one after the other. Consequently, some robots have to stay in the waiting
state longer than others.

The assignment problem was modeled as an integer program with binary
decision variables that indicated either a robot was assigned to a structure or
not. This task assignment problem fits the particular case of single-assignment
in the literature, where decommissioning is not possible and each robot is as-
signed only once. An auction-based assignment solution was proposed and the
selection of robots used a minimum spanning tree computed from the commu-
nication topology. The tree helped to identify the robots in the swarm that
could be removed without breaking significant network connections, stopping
communication between robots. Also, the auction process was used to identify
the most suitable robot to be assigned among those available. In it, a score
function was proposed to evaluate candidate robots that combined distance
to the structure and battery level of the robot.

It was first showed that network communication is guaranteed if only leaves
of the spanning tree were selected and assigned. Moreover, in the results sec-
tion, simulation trials showed that the strategy proposed is more efficient than
a baseline approach. The auction-based assignment was more energy-efficient
than the random assignment strategy, leading the robots to, on average, save
battery power at the end of the ordering stage.

After performing the ordering procedure described, we assume that robots
have been correctly assigned to a structure in the environment. Also, robots
move to the structure position, ps, while carrying the structure blueprint, Bs.
Note that, by assigning agents one by one, the ordering stage was capable of
defining a sequence of which robots to arrive at the structure location. After
arrival, robots must start placing algorithms, which enables them to search
for empty positions in the structure using the blueprint as a reference. Placing
related algorithms are the topic of discussion in the next chapter.

66

6 Self-assembly of
three-dimensional structures

The correct placing of parts in the structure is a crucial stage of the assembly
problem. This chapter focuses on placement strategies for structure parts
that are autonomous self-actuated robots. Each robot is capable of sensing,
communicating, and actuating on the environment. A common challenge on
self-assembly is to define specific behaviours and rules of interaction between
robots and with the environment, such that the structures are correctly built
[13, 10].

Systems based on local interactions tend to be more robust to noises and
failures [46, 43, 9, 11]. These adverse conditions can be either locally identified
and corrected or automatically suppressed by the adding redundancy to the
system (increasing the number of parts).

In this chapter, self-assembly algorithms are proposed with rules based on
local interactions. The algorithms use the structure blueprint with the desired
shape (described in Section 3.5) to guide the movement of robots. Also, the
graph representation is used to derive the necessary proofs of convergence of
the assembly process.

This chapter focuses on the assembly procedure of a single structure. Re-
call that, one or more structures could be assembled simultaneously in the
assembly location. Also, as result of the assignment procedure, described in
Chapter 5, robots are sent to different structures as needed. Thus, if multiple
structures are being assembled at the same time, each one is assumed to be an
independent process. Each instance contains its own set of robots operating
based on a particular blueprint. In addition, for every structure, the assem-
bly is executed in layers from bottom to the top and, on each layer, blocks
sequentially place themselves starting from a seed position.

The contributions of this chapter are related to the three-dimensional lay-
ered assembly using autonomous parts. The assembly algorithms presented

67

6.1. Problem Formulation

should be programmed at each robot and encapsulate a set of behaviours to
guide the robots’ motion. The behaviours are triggered at an specific order,
enabling a single robot to place itself without global knowledge of the struc-
ture’s state. Moreover, mathematical proofs are derived based on the graph
representation of the structure, showing that the self-assembly process leads
to the construction of a desired shape.

Simulated results show the efficacy of the self-assembly procedure by com-
paring the traveled distanced of robots with best and worst paths to be taken
by the robots. Also, network controllability is used to investigate the influence
of the correct selection of seed positions on the assembly process. Finally, ex-
perimental results demonstrate that the algorithm is applicable to real-world
scenarios.

6.1 Problem Formulation

This section shows the fundaments of the self-assembly problem where robots
are the structure parts. Moreover, the focus is on blueprint-based assembly
and the characteristics of the construction process that can be derived from
it. The blueprint notation, its associated graph, and some of its properties
were previously defined on Section 3.5.

For simplicity, let us consider that the placing process is discrete, defined
by time steps t = 1, ..., tf . Note that tf defines the instant when all blocks
have been placed and the autonomous construction finishes. The assembly
starts when the first robot places itself in a seed position, in the bottom layer
(ρs1). As a result of the procedure on Chapter 5, robots arrive adjacent to ρs1 ,
sequentially. Also, the seed position is always the first position that a robot
will occupy in a layer (enabling directed growth, as discussed in Section 2.2).
Robots scan possible block positions, searching the best location to occupy
in the structure (under some metric). Given the sensing range, a robot can
only scan a position when it is physically adjacent to it. Fig. 6.1 shows that a
robot is able to detect objects or empty spaces that are adjacent to it on its
four lateral sides (red arrows represent occupied positions and green arrows
unoccupied.).

The block-shaped structure parts and the discrete nature of the positions
in the blueprint result in the placing process taking place in a grid-like en-
vironment. Moreover, the movement of a robot is limited to 1 grid space at
every time step. Thus, the movement between any two positions in the grid
should be performed sequentially, one unit at a time.

The assembly is layered, from bottom to top. Thus, a robot r ∈ R should

68

6.1. Problem Formulation

Figure 6.1: Local sensing of a robot with a top view perspective

search for unoccupied spaces in Pl = P1 first, and sequentially move to Pl+1.
The layered assembly ensures that the assembly of lower layers start before
upper ones.

Robots carry the structure blueprint, i.e., P , and the seed locations, S. A
robot uses the structure blueprint as a map to search for unoccupied positions
to place itself. A search is a process where a robot r ∈ R evaluates positions
ρ ∈ P , looking for a currently unoccupied position in the real-world (no
other block placed). The term search is used because the actual location
of an unoccupied spot in the structure is not known when the robot starts
the assembly procedure. This also implies that the robots do not have full
knowledge of their location in space as elaborated in the next property.

Property 10. In the placing stage, a robot does not have global localization
information (position in the environment); it can, however, compute its own
position and orientation with respect to a seed robot.

A robot r ∈ R can compute its position, ρr =
[
xr yr zr

]T
in OB, by

counting its grid movements with respect to ρs1 . Following Properties 5 and
6, each robot is capable of local sensing its surroundings, internal computation
and communication with a nearby robots. In real robots, embedded sensors
could be used to identify movement and compute robots’ position, e.g., inertial
sensors, odometers, and cameras among others. As expected, these sensors
will yield noisy and imprecise information. However, since robots move using
neighbouring placed blocks as reference, (Section 6.2), this information can be
used to deal with the noise generated by the sensors, e.g, using state observers
and sensor fusion techniques [93, 94, 95]. Also, to manage the communication
with multiple robots may be unfeasible due to communication errors, signal
jamming, limited bandwidth, among other issues. Thus, a design choice is

69

6.2. Self-Assembly

to consider only close range communication and on specif cases (discussed
in Section 6.2.1). However a solution based on local communication only
is advantageous given that it is still applicable on the cases where global
communication is possible.

Finally, recall that Property 8 states that a structure receives as many
robots as there are empty positions in to be filled. These robots are assigned
by the auctioneer as a response to a part request made by a structure being
assembled. Note that, as stated in Property 9, seed robots remain active and,
as shown in 6.2.1, they control the number of robots per layer. Thus, it is as-
sumed that bottom-layer seed robot, s1, requests new parts to the auctioneer.
New requests are made after a recently arrived robot communicates with the
seed and starts its assembly behaviours, moving away from s1.

Remark 6. Note that even though the parts are defined as cubes, other shapes
could be easily implemented, with the limitation that all parts are convex and
homogeneous. For example, hexagonal prisms could be used in the construc-
tion. The differences would be:

• the blueprint would be defined in a 3D hexagonal lattice instead of the
cubic lattice of Fig. 3.6;

• in the graph G = (V,E), each vertex v ∈ V would have potentially six
neighbours instead of four (on each one of the sides);

• and the algorithms in Section 6.2 would have to be modified to deal with
the new parts; the changes would increase the complexity of the algo-
rithms and make the presentation more intricate, therefore, they are
omitted.

6.2 Self-Assembly

In this section, the behaviours that lead to the assembly of the desired struc-
ture defined by a blueprint B are presented. The self-assembly process is
executed at each layer of the structure, and layers are assembled sequentially
from the bottom to the top. To place themselves, robots follow a process
that can be split in three parts: i) find the layer currently being assembled;
ii) circle blocks already placed until an unoccupied desired position is found;
and iii) move toward the seed position of the layer and stop at the closest
unoccupied position.

The self-assembly procedure starts by considering that all robots arrive in
the structure from an external position adjacent to ρs1 . To explain the robot’s
behaviour, let us look at a single robot r ∈ R that is starting its assembly
behaviour. After arriving at a position adjacent to ρs1 , r must move around

70

6.2. Self-Assembly

the structure to find an internal position to occupy (part ii of the process). By
moving around those already placed (i.e. moving adjacent), aiming to reach
an available structure position, the robot is performing the circling behaviour.
Note that, the circling behaviour implies a direction of movement, clockwise
or counterclockwise when seen from the top, around placed blocks. Recall
that r is able to sense its sides, determining if there are objects around it.
Thus, to find an unoccupied position, r must move to an adjacent position
and then scan for a block already placed.

Consider now that while circling the structure at layer l, r eventually finds
a position ρ ∈ Pl that is unoccupied. Then, r moves to ρ and must decide if it
will continue moving or stop and land. Direct growth from the seed position
is obtained by sequentially placing all blocks as close as possible from the seed
(part iii of the process). Therefore, r will evaluate neighbouring positions and
iteratively move as close as possible to the seed position.

However, if there are already |Pl| robots in a layer l, then the newly arrived
robot r would not find an unoccupied location at level l and should search the
next layer, l+1. We then introduce the main function of the seed robot (part
i of the process) — being the layer’s gatekeeper. The seed is responsible to
decide if an incoming robot should stay in a given layer or move to the next.
After communicating with seed at layer l, a robot r that was not allowed to
circle that layer will then move to layer l + 1. In the same fashion, r then
communicates with the seed of that layer, at position ρsl+1

.
Note that the design choice of storing local information in the seed robot

decreases the system robustness. That is, there is no way for a seed to detect if
a robot has failed after they have already communicated. Thus, if a robot fails
to place itself, the seed will not allow extra robots in the layer and the structure
will not be completely assembled. There are strategies to mitigate such issues,
e.g., extending the communication between robots in the layer until a valid
placement is detected. Such discussion is left for future work. However, the
seed robots act to speed up the assembly process. This is accomplished because
the seed robots add extra information to the autonomous assembly system.
This characteristic will be explored in Section 6.3.

6.2.1 Robots’ behaviours

Note that all behaviours are repeated by each robot r ∈ R, and for all layers.
Also recall that movement is performed discretely in time and in space, i.e.,
a robot is capable of moving one grid space at every time step.

The main program of the robots is shown in Algorithm 4. In the algo-
rithm, there are three functions that represent different behaviours. Also,

71

6.2. Self-Assembly

one behaviour is applied after the other. The result of each function is used
as the input (a start condition) of the next behaviour. After executing all
behaviours, the program finishes and the robot turns off.

Algorithm 4 Robots program

1: ρsl
← IDENTIFYING LAYER() ▷ Alg. 5
/* A layer being assemble was found, start circling the block at posi-

tion ρsl
*/

2: ρr ← CIRCLING(ρsl
) ▷ Alg. 7

/* Robot currently located at position ρr in the structure, move close
to the layer’s seed */

3: MOVING INTERNALLY(ρr) ▷ Alg. 8
4: Shutdown

Algorithm 4 starts by calling the first behaviour, which must identify the
layer being currently assembled. The correct layer is the bottom-most one
that has unfilled structure positions. To determine if a block is at the correct
layer, an arriving robot r ∈ R communicates with the seed robot of the layer
(positioned at ρsl

) by sending a message ml
r. This message serves to check the

status of the seed robot, similar to a ping in a network. Robot r then waits
for a response from the seed robot, mr

l . The possible responses from the seed
robot are:

mr
l =

Y ES

NO

no response

(6.1)

Depending on mr
l , robot r shows different behaviours:

• mr
l = YES, r circles the current layer;

• mr
l = NO, r moves to the next layer (layer l + 1);

• no response, the position is unoccupied and robot r becomes the seed
for layer l.

Such logic is implemented in Algorithm 5. The algorithm returns the
position of the seed of the layer that is currently being assembled. In the case
that the seed position is still empty, the robot moves to the seed location and
it starts the seed algorithm. Notice that in the case that the robot becomes a
seed, the execution does not return to the main program.

Robots at seed positions remain active, waiting for the message from new
blocks to count how many robots are currently in that layer, acting as the
gatekeeper of the layer.

72

6.2. Self-Assembly

Algorithm 5 Identifying layer

1: function IDENTIFYING LAYER()
2: l← 1 ▷ The robot starts adjacent to ρs1
3: while Robot ON do
4: Send message to layer’s seed, ml

r=circle layer?
5: Start timeout timer
6: Wait for message from seed, mr

l

7: if Message received before timeout then
8: if mr

l = Y ES then
9: Return ρsl

▷ End this behaviour
10: else ▷ mr

l = NO
11: MOV E.EXT (r,ρsl+1

)
12: l← l + 1, update current layer variable
13: end if
14: else ▷ No response, no block at seed position
15: MOV E(r,ρsl

)
16: Start Algorithm 6 on r ▷ Become seed robot
17: end if
18: end while
19: end function

To determine if a new block should circle the current layer or move forward,
a seed must answer the following question: is the number of blocks in the
current layer (circling or stopped) already enough to fill all desired positions,
|Pl|? This logic is implemented in Algorithm 6. Every new robot that arrives
in a layer communicates with the seed to inquire if it should circle or move to
the next layer (line 8) using the messages described above (equation (6.1)). A
seed uses this communication to compute (lines 9 − 11) nlrobots = nlrobots + 1
where nlrobots is the number of robots currently at layer l. If nlrobots = |Pl|,
a layer has already enough robots, moving or placed, to be fully assembled
(check in line 9). Thus, when nlrobots reaches its desired value, the seed starts
rejecting new robots (line 13). There is a particular case when the robot is
a bottom-layer seed (s1). This robot is responsible for requesting new blocks
to the structure by sending a request to the auctioneer in the swarm. To do
that, the robot keeps track of nrobots, and requests a new block until the there
are as many robots as position in the structure (lines 3 − 5). The message
sent to the auctioneer is the structure position, ma

s = ps.
Fig. 6.2 illustrates the relevance of the seeds from a graph perspective.

Recall that each layer form a grid graph Gl but layers are not connected

73

6.2. Self-Assembly

Algorithm 6 Seed program

1: Initialize counters nlrobots ← 1, nrobots ← 1,
2: while TRUE do
3: if l = 1 and nrobots < |P | then ▷ Bottom-layer seed
4: Send message ma

s to the auctioneer, ▷ Request a new block
5: nrobots ← nrobots + 1 ▷ Increase counter of robots in structure
6: end if
7: Wait ml

r message from a new block r.
8: if ml

r message received then
9: if nlrobots < |Pl| then

10: mr
l ← Y ES ▷ Should stay in this layer

11: nlrobots ← nlrobots + 1 ▷ Increase counter
12: else
13: mr

l ← NO ▷ Reject block in this layer
14: end if
15: Send mr

l to r
16: end if
17: end while

with each other. By acting as a gatekeeper and redirecting robots to upper
layers, seeds create shortcuts taken by the blocks to reach the layer being
assembled. This reduces the travelled distance for a robot when comparing
to the alternative of having all robots exploring every layer from bottom to
top until an empty position is found. Seed positions can be seen as local hubs,
and how “connected” the seed is to the rest of the layer affects the number
of movements robot perform when assembling a layer. Section 6.3 shows that
the assembly process can be more effective by using the correct seed positions.

Algorithm 5 uses two movement functions:
• Function MOV E(r,ρ) relocates the robot r ∈ R at position ρr to an
adjacent position ρ in the grid,

MOV E(r,ρ) : ρr ← ρ. (6.2)

• Function MOV E.EXT (r,ρsl+1
) moves the robot r ∈ R to a position

adjacent to the seed at ρsl+1
by sequentially applying MOV E(r,ρ)

(moving one grid space at a time). Movement is executed in one axis
at a time and the order to be followed is: i) move on the ZB axis
(change height), ii) move horizontally (XB and YB axes) until an ex-
ternal and adjacent position to the seed has been achieved. Note that

74

6.2. Self-Assembly

s4

s3

s2

s1

G1

G2

G3

G4

Figure 6.2: Graph view of a 4× 4 cube with seed locations highlighted. Each
layer Gl in the graph contains only the edges in black. Red edges between
seeds represent the shortcuts taken during assembly, when a robot moves to
upper layers.

MOV E.EXT (r,ρsl+1
) : P̄ → P̄ , i.e. only move through and always fin-

ish at an external position.
Fig. 6.3 shows a robot that just arrived at a layer that is completely assem-

bled. In the figure, green rectangles show the empty positions in the structure,
where a block should be placed. After communicating with the seed robot at
ρs1 , it decides to move adjacent to the second seed location, ρs2 . Note that,
after the robot moves adjacent to ρs2 , it sends the ping message ml

r, but it will
not obtain any response. Therefore, following Algorithm 5, the robot assumes
the seed position ρs2 and becomes a seed robot at layer l = 2. Recall that
robots do not have information about the state of all positions in the struc-
ture, but only those adjacent to it at the moment. Thus, empty (green) and
occupied (grey) positions are highlighted to help the reader visualise the par-
tial status of the assembly, but that does not reflect the current information
a robot has.

If robot r does not become a seed for a layer, after the layer that is
currently being assembled is found (mr

l = Y ES), the execution returns to

75

6.2. Self-Assembly

s2

Communicating with seed
and MOVE.EXT (r ,)

mr
l

ml
r

s2

s1
ρ

ρ

ρ

Figure 6.3: A newly arrived block inquires the seed if it should circle the
current layer. Once the layer is already full, the seed denies it and the robot
will apply MOV E.EXT (r,ρs2) to go to the next layer’s seed.

Algorithm 4 and the main program starts the second behaviour by calling
CIRCLING(ρsl

). The circling behaviour is used to guarantee that the execu-
tion of the assembly is deterministic: given a blueprint, circling will guarantee
that parts are always assembled in the same order. Furthermore, note that
the circling behaviour works in the same way if the structure is symmetric or
asymmetric. However, when the structure is asymmetric, the choice of seed
locations has a higher impact on how fast the structure is assembled.

Using the circling behaviour robot r ∈ R moves around a block located
at ρsl

by attempting to traverse the eight positions that encircles it. Using a
generic location ρc, let us define the cyclic order of ρc as the list containing
these eight positions,

CO(ρc) = (ρc + [0− 1 0]T , ρc + [−1− 1 0]T ,
ρc + [−1 0 0]T , ρc + [−1 1 0]T ,
ρc + [0 1 0]T , ρc + [1 1 0]T ,
ρc + [1 0 0]T , ρc + [1− 1 0]T).

(6.3)

Note that each pairwise adjacent elements in the cyclic order are one unit
apart in the grid. Furthermore, for any two positions, ρi and ρj , if ρi is in
CO(ρj), then ρj must be in CO(ρi) and these positions are called cyclically
adjacent. Also, note that a list such as the one in (6.3) can be created for
other block formats, such as a hexagon. In that case, though, the list would
be

CO(ρc) = (ρc + [−1 0 0]T ,ρc + [−1
2

√
3
2 0]T ,

ρc + [1
2

√
3
2 0]T ,ρc + [1 0 0]T ,

ρc + [1
2 −

√
3
2 0]T ,ρc + [−1

2 −
√
3
2 0]T).

76

6.2. Self-Assembly

Considering the cubic case in (6.3), assume that r is circling a position ρc

and is currently located at a position ρr ∈ CO(ρc). To compute the position
to move next (let us call it ρi), r uses Algorithm 7.

Algorithm 7 Circling

1: function CIRCLING(ρc) ▷ ρc = position to be circled
2: CL ← START.LIST (ρc,ρr)
3: while Robot ON do
4: ρi ← NEXT.POS(CL,ρr)
5: if ρi ∈ Pl then ▷ Internal position
6: Scan ρi

7: if ρi is occupied then
8: ρc ← ρi, change circled block to ρi

9: CL ← START.LIST (ρc,ρr)
10: else ▷ ρi is empty
11: MOV E(r,ρi)
12: Return ρi

13: end if
14: else ▷ External position
15: MOV E(r,ρi)
16: end if
17: end while
18: end function

The robot starts by creating a circular linked list [96], CL (lines 2, 9).
The START.LIST (ρc,ρr) function creates the list by, first, computing the
positions to move, CO(ρc), using ρc and (6.3). Then, an empty circular list,
CL, is created and the current robot position, ρr, is added as the head of
the list. Finally, starting from the robot position, ρr ∈ CO(ρc), elements of
CO(ρc) are sequentially added at the end of CL.

The robot proceeds by selecting the goal position, ρi, by using the function
NEXT.POS(CL,ρr) (line 4). It returns the next element in CL, linked to
the current position of the robot ρr.

Note that a robot must store in memory its actual position, ρr, and the
circular list, CL. With them, the robot can obtain the next position to move.
In Algorithms 4 and 5, ρc is initialized as the seed position of the layer, ρsl

.
Also, as mentioned in Section 6.1, the robot computes ρr by counting its
movement in the grid since the start of operation.

After robot r ∈ R at ρr ∈ CO(ρc) computes the goal position, ρi ∈
CO(ρc), three possible cases unfold:

77

6.2. Self-Assembly

r

 =

XB

YB

sl

ρ1 ρ2 ρ3 ρ4

ρ5 ρ6 ρ7 ρ8

ρ9 ρ10 ρ11 ρ12

ρ13 ρ14 ρ15 ρ16

ρ

Figure 6.4: Top view: A robot (blue) circling the already placed blocks (grey)
in the layer until it reaches an empty position (green). The green arrows
describe CO(ρsl

) and CO(ρ11). The position to be circled, ρc, starts as ρsl
and changes to ρ11 as the robot reaches ρ10.

1. The goal position ρi is external (ρi ∈ P̄): r moves from ρr to ρi (lines
14− 15).

2. The goal position ρi is an internal position (line 5):
a) The position ρi is occupied: then, robot r updates the position it

is circling by setting ρc ← ρi (lines 7− 9) and recomputes CL.

b) The position ρi is unoccupied: robot r moves to ρi, it ends the
circling behaviour, the execution returns to Algorithm 4, and the
robot starts the moving internal behaviour (lines 10− 12).

To better illustrate the behaviour, Fig. 6.4 shows a clockwise movement.
The cyclic order of two positions, ρsl

and ρ11 are highlighted as green arrows.
The robot’s first position is adjacent to the seed position. Let us assume that
in this case, the robot access the structure by position ρ5, i.e., ρr = ρ5 and
the robot is circling ρc = ρsl

. In this case, using (6.3), robot builds the list of
positions to move and the circular list as,

CO(ρsl
) = (ρ3,ρ2,ρ1,ρ5,ρ9,ρ10,ρ11,ρ7)

CL = ((ρ5)
head,ρ9,ρ10,ρ11,ρ7,ρ3,ρ2,ρ1).

(6.4)

Note that the head of the circular list is set as ρ5. Following the list, the robot
computes the goal position (line 4) as second element, i.e., ρ9.

The robot scans ρ9 and assess if it is empty. Since it is, it moves to that
position. On the next iteration, ρr = ρ9, and the goal position becomes the
third element in the list CL, i.e, ρ10. Again, the robot scans ρ10 and moves

78

6.2. Self-Assembly

to it because it is empty. At ρr = ρ10, the robot will try to continue following
CL by selecting the fourth element in the list, ρ11. But, as ρ11 is occupied,
the robot cannot move into it. Thus, the block being circled (ρc) changes from
ρsl

to ρ11. From that point, the robot uses (6.3) and computes CL based on
CO(ρ11) as

CL = ((ρ10)
head,ρ14,ρ15,ρ16,ρ12,ρ8,ρ7,ρsl

). (6.5)

Since ρr = ρ10, then ρ10 is set as the head of list. The goal position, following
the list, is the second element, ρ14 and the robot moves through ρ14, ρ15,
ρ16, ρ12. As ρ12 is an empty internal position, the robot ends its circling
behaviour here.

As it will be shown in Section 6.2.2, it is not expected that a robot moves
through all the positions in the list until it reaches the first position again.
If that was the case, it would mean that the robot was not able to find an
empty perimeter position to place itself and change its behaviour, which is
not possible. Moreover, equation (6.3) was taken “left-to-right” to construct
(6.4) and (6.5), and therefore such lists describe a clockwise movement. If
(6.3) was taken “right-to-left” the robot would describe a counterclockwise.

However, if different robots were allowed to move clockwise and counter-
clockwise when assembling the same layer, a special case could happen where
robots coming from both directions try to move to the same location at the
same time. In that case, both robots (say r1 at ρr1 = ρ + [1 0 0]T and r2 at
ρr2 = ρ + [0 1 0]T) would have identified position ρ as empty at time t but
would be unaware of each other. Thus, both robots would try to move to ρ
at time t+1. Therefore for all robots, the list CL based on CO(ρc) is always
constructed the same way, and only motion on the same direction is allowed,
avoiding collisions.

Once a robot has circled the layer and found an unoccupied internal posi-
tion, ρ ∈ Pl, it moves to it and it is considered to be inside the structure. From
inside, the circling behaviour ends and the execution returns to Algorithm 4.
The robot then starts the third behaviour, implemented in Algorithm 8, which
guides it to move as close as possible to the layer’s seed, ρsl

. From that point
on, r only moves through other internal positions.

Let us consider that the robot is currently located at position ρr. First,
the robot identifies neighbouring positions in the same layer (l) that are part
of the structure (line 3)

N(ρr) = { ρr +
[
−1 0 0

]T
,ρr +

[
1 0 0

]T
,

ρr +
[

0 −1 0
]T
,ρr +

[
0 1 0

]T } ∩ Pl.
(6.6)

79

6.2. Self-Assembly

Algorithm 8 Moving internally

1: function MOVING INTERNALLY(ρr)
/*Robot currently located at ρr*/

2: while Robot ON do
3: Compute internal adjacent positions, N(ρr)
4: Scan and remove occupied pos., N(ρr)

empty

5: Compute dist(ρe,ρsl
), ∀ρe ∈ N(ρr)

empty

6: if ∃ρe ∈ N(ρr)
empty s.t. dist(ρe,ρsl

) < dist(ρr,ρsl
) then

7: MOV E(r,ρe)
8: else
9: Scan the position below r

10: if Ground or an already placed robot then
11: Return
12: end if
13: end if
14: end while
15: end function

Second, the robot scans its neighbouring positions searching for empty lo-
cations, obtaining N(ρr)

empty ⊆ N(ρr) (line 4). Finally, the robot moves
to an unoccupied position ρe ∈ N(ρr)

empty if and only if dist(ρe,ρsl
) <

dist(ρr,ρsl
). That is, if the position ρe is closer to ρsl

(seed) than ρr (lines
6− 7).

If there is no other position to move to, a robot stops and shuts down if
it is not a seed robot. The seed robot limits the number of robots that have
“entered” a layer, but there is no control if these robots have already found a
position and stopped. Thus, a layer l may start being assembled before layer
l−1 has finished (all robots placed). In some special cases, it may occur that a
robot r at layer l, ρr = [xr yr zl], has stopped moving, but the position below
it, ρi = [xr yr zl−1], i) is still empty, because robots at l − 1 have to take
a longer path than those at layer l or ii) is temporarily occupied, because
the robot at ρi at time t will continue moving and relocate at time t+1. The
robot r scans the position below at least two consecutive times to guarantee
that the position below is permanently occupied and the block has settled.
This behaviour is shown in Fig. 6.5. The blue arrow shows the direction of r’s
motion so it reduces its distance from the seed (dist(ρ3,ρsl

) < dist(ρ1,ρsl
)).

After moving to ρ3, the robot will not find another empty position that is
closer to ρsl

(ρ4 is occupied, therefore, not part of N(ρ3)
empty). Then the

robot stops and shuts down. As before, in the figure, green are unoccupied

80

6.2. Self-Assembly

sl

r N (ρ1)={ρ2 ,ρ3 }

N (ρ1)
empty={ρ3 }

ρ ρ4 ρ3

ρ1ρ2

Figure 6.5: A robot that is at an internal position evaluates neighbouring
positions N(ρr)

empty to determine if and where to move.

positions, grey are occupied positions, and the robot is the blue square.

Remark 7. Note that, under the properties defined in Sections 3.5 and 6.1,
the behaviours described in the algorithms in this section are deterministic
for any arbitrary initial condition. Therefore, the construction of a specific
structure will always take the same number of steps and will always result in
the same sequence of movements. As a result, there is no stochasticity in the
assembly of structures.

6.2.2 Self assembly algorithm proofs

In this section, the graph G introduced in Section 3.5 is used to prove that the
proposed algorithms lead to the assembly of the structures in the blueprints.
Lemma 3 defines that every layer receives sufficient number of robots to occupy
all empty positions. In Lemma 4, all empty perimeter vertices are reached and
occupied by robots. Lemma 5 defines that a layer must first be assembled for
all its robots to finish their algorithms. Finally, Theorem 2 states that all
robots indeed complete their program assembling the structure.

Lemma 3. Every layer 1 ≤ l ≤ L receives |Vl| robots to build the layer.

Proof. By following Algorithm 4 and 5, the first robot that enters any layer
l positions itself onto the seed vertex sl. Each of the following |Vl| − 1 robot
coming to layer l are assigned to circle the layer, after which any remaining
robot is directed to move to layer l+1. Due to Property 8, there are sufficient

81

6.2. Self-Assembly

number of robots to occupy each vertex in the structure. Thus each layer
1 ≤ l ≤ L receives a total of |Vl| robots to build the layer.

Lemma 4. If a layer has an empty perimeter vertex and a circling robot, then
following Algorithm 7 a circling robot shall enter an empty perimeter vertex
in that layer.

Proof. Recall that Property 1 states that each layer of the structure can be
represented by a connected graph. Let us first assume that layer l is com-
pletely empty. Therefore, based on Algorithms 4 and 5, an arbitrary robot
r will occupy the seed vertex sl, which is a perimeter vertex. What is left
to demonstrate is that this is true for any other unoccupied perimeter vertex
v ∈ Vl.

Let us assume that an arbitrary robot r, following Algorithm 7, is circling
a layer l. For ease of exposition, let us assume that all perimeter vertices are
occupied. As a consequence of Algorithms 4 and 5, robot r starts from an
external position that is adjacent to sl. Let us call this external vertex v̄

1
r ∈ V̄l

meaning that it is the vertex occupied by robot r at time step 1. Then, using
Algorithm 7, r defines its current circling vertex vc ← sl and moves clockwise
around vc until it reaches the next perimeter vertex (say vi) that is cyclically
adjacent to vc. Since vi is occupied by assumption, r updates its current circled
vertex vc ← vi. Thus the state of r can be expressed with a tuple (vc, v̄

t
r) where

vc is the current perimeter vertex that r is circling clockwise, and v̄tr ∈ V̄l is the
vertex where r is located at time step t. Let the sequence of tuples describing
r’s states be Sr = ((vc1 = sl, v̄

1
r), (vc2 , v̄

2
r), (vc3 , v̄

3
r), . . . , (vck , v̄

k
r)). Since there

are only finitely many perimeter vertices, at some point the sequence shall
repeat itself so k is selected such that (vck+1

, v̄k+1
r) = (vc1 , v̄

1
r).

Notice that the sequence of external vertices r traverses form a cycle C̄ =
(v̄1r , v̄

2
r , . . . , v̄

k
r). Since sl is necessarily a perimeter vertex (Property 3), it is

in the interior of C̄. Also, since C̄ ⊂ V̄l, due to Property 1 and the Jordan-
curve theorem [97], no interior vertices can be on the outside of this cycle.
Finally, due to Property 2 and since r circles clockwise coming adjacent to
each perimeter vertex cyclically adjacent to the previous one, every perimeter
vertex must occur in Sr. Thus, as long as there is an empty perimeter vertex,
Algorithm 4 finds the first empty perimeter vertex in the sequence Sr and
takes its position.

Lemma 5. When the robots’ algorithms terminate, for any layer 1 ≤ l ≤ L,
all internal vertices of the grid graph Gl get occupied by robots.

82

6.2. Self-Assembly

Proof. Lemma 3 shows that for each layer, the required number of robots enter
the layer to search for empty positions. Two robots cannot occupy the same
vertex simultaneously. If there is an empty perimeter vertex, there must be
a robot circling the layer, and, due to Lemma 4, this empty perimeter vertex
will eventually be occupied by a robot.

Assume that the algorithm terminates without completing the building of
a layer of the structure. Since it was already demonstrated that perimeter
vertices get occupied, all the empty vertices must be non-perimeter vertices.
Let us assume vi is such an empty non-perimeter vertex whose distance to
the seed vertex is the greatest. Let vj be a vertex among vi’s four neighbours
such that dist(f(vj), f(sl)) > dist(f(vi), f(sl)). Then, vj must be either (i)
a non-perimeter vertex which as per assumption is already occupied, or (ii) a
perimeter vertex and hence due to Lemma 3 and Lemma 4 must get occupied
by a robot. In either case this robot r in vj would have moved to vi, making
the current state of Algorithm 4 not the terminating state.

Theorem 2. Algorithm 4 terminates forming the structure specified in the
blueprint B.

Proof. At the start of the algorithm, the behaviour state of all robots is set to
‘find layer’. Then every arbitrary robot r sequentially visits the layers from
bottom to top, until it finds a layer with more internal vertices than there are
robots in it. Thus due to Property 8, r finds such a layer and changes to the
‘circling’ behaviour.

Since there can be at most as many robots in a layer as there are empty
internal vertices in the layer, due to Lemma 4, after a sequence of circling
moves, r occupies a perimeter vertex and changes its behaviour to ‘internal’.
Whenever a robot r with behaviour state ‘internal’ moves, its distance to the
seed vertex reduces by one. Since this value cannot reduce indefinitely, after
a finite number of steps r reaches its optimal position. Due to Lemma 5,
the robots occupy every internal position of every layer after a finite number
of steps. Thus due to Property 4, every robot must have ground or another
robot immediately below it and hence all robots reach the shut down state
terminating the algorithm. Since every internal position in the blueprint is
now occupied and no robot is in an external position, the structure has been
built.

83

6.3. Results

6.3 Results

In this section, the effectiveness of the proposed approach is analyzed by look-
ing at distance travelled by the robots during assembly, comparing it to the
worst case (when robots take the longest path from start to stop) and the
best case (shortest path). Furthermore, by analysing the layer’s graph, a re-
lationship can be found between the distance travelled by the robots and the
position of the seed in the layer.

The remainder of the section is organized as follows. Section 6.3.1 describes
the simulation set up and the structures used in simulation. Section 6.3.2
shows the parameters used to analyse the algorithms’ efficiency. In Section
6.3.3 the proposed approach performance is evaluated. In Section 6.3.4, graph-
based metrics are proposed to quantify the impact of seed selection in the
assembly performance. Finally, Section 6.3.7 shows the application of the
proposed approach in real-world.

6.3.1 Simulation setup

The proposed solution was tested in structures with different sizes and shapes,
as shown in Fig. 6.6. The structures varied from 13 to 98 blocks, with up to 7
layers. Notice that, one restriction imposed by Property 4 is that every block
in the structure must be either supported by another block below, or on the
ground. That reduces the number of possible structures that can be directly
assembled using the proposed algorithms. Note though that a large number
of structures of interest abide to this restriction. Furthermore, according to
Property 1 and Property 2, structures need to be connected, i.e., no holes
are allowed in a layer. However, many complex structures can be broken
down in smaller and simpler ones [20] and several executions of the proposed
approach (in parallel or sequentially) can be performed to build more complex
structures. For example, walls and pillars of a house could be built separately
and form the final structure after all have been assembled.

One implicit parameter is the time interval ∆t at which robots arrive
adjacent to ρs1 . Smaller this interval, bigger the number of robots moving
simultaneously during assembly. Recall that new robots arrive as per demand
from bottom-layer seed (Algorithm 6, line 4). After requested, a robot from
the swarm in the waiting state is assigned by auctioneer and sent to the
structure (see Section 5.2). Thus, the time needed for the auction process
and movement of the selected robot impacts ∆t directly. There is, however,
a minimum interval at which robots could arrive being computed as the time
for: i) a recently arrived robot to communicate with the seed at ρs1 (2 time

84

6.3. Results

(a) pyra-
mid

(b) stairs (c) pole (d) chair (e) asymmetri-
cal

Figure 6.6: Exploded view of the structures assembled highlighting each layer.

steps); and ii) move 1 grid space away from the arrival position (1 time step).
Note that short arrival intervals can result in other issues during assembly,
e.g., having robots in upper layers waiting for robots at layers below to stop
moving. On the other hand, the assembly algorithms are not affected by
changes on ∆t, e.g., the interval between the arrivals of the third and fourth
robots could be longer than the interval between the fourth and the fifth
robots. In the simulations performed, ∆t was arbitrarily defined as 5 time
steps always.

6.3.2 Guidelines for performance analysis

The distance travelled by the robots during assembly was used as a metric
to evaluate the performance of the proposed approach. In simulation, the
distance travelled is equal to the number of times the function MOV E(r,ρ)
is executed by each robot. As mentioned in Section 6.2, this function results
in the robot moving 1 grid space per call.

The proposed approach was compared with both the longest and the short-
est path a block could take from the position where it starts to its final des-
tination:

• Longest path (LP) - if there is no communication between robots, robots
starting adjacent to ρs1 would have to circle every layer of the structure
to identify if it was already assembled. The circling is performed se-
quentially, layer by layer, until an empty position is found.

• Shortest path (SP) - if there were no other blocks placed in the structure,
the shortest distance a robot would need to navigate to reach its final
position is simply the Manhattan distance from origin to destination.

85

6.3. Results

This path is computed using the robot’s start location (adjacent to ρs1)
and its final location (ρrf

), SP= dist(ρrf
,ρs1) + 1. Notice that SP

assumes an unrealistic path, for a robot cannot move through other
blocks in the assembly to reach its goal position. However, this metric is
still useful because it defines a lower bound for the movements a robot
has to perform before placing itself.

6.3.3 Simulation trials

Fig. 6.7 shows the multiple stages of the self-assembly of the chair, 6.6d. In
the figure, red robots are recently arrived robots, that are communicating with
the seed at ρs1 . Also, the magenta robots are currently circling the structure.
Finally, grey colored robots are already positioned blocks that have shutdown.

The seed positions were arbitrarily selected as ρsl
=

[
0 0 l

]T
(seeds form a

column on top of the origin of OB). The assembly demonstrates the proposed
self-assembly algorithms working for layers with different sizes and shapes.

In the simulation trials, the number of movements of each robot r ∈ R
participating in the assembly, mr, was measured. Table 6.1 shows the average
number of movements for all robots µm = (

∑
mr)/|R|, the standard deviation

σm, and the maximum number of movements max(mr) by a robot in the
assembly. Note that the robots’ motions are always of 1 unit, thus, this
measure corresponds to the distance traveled by the robots. To select seed
positions, first ρs1 is arbitrarily defined as one of the perimeter vertices in the
bottom layer. Then, for the subsequent layers, ρsl+1

in layer l + 1 is selected
as the closest position to ρsl

in layer l.
Fig. 6.8 shows the distance traveled by each robot to assemble the chair

(Fig. 6.6d). It shows that by taking LP, upper layer robots have to move
more to reach their final destination. Note that, with the proposed approach,
the travelled distance does not grow as fast as the LP approach. In fact, for
the second layer and above, the proposed approach is similar to the shortest
possible distance that the robots can travel, SP. The good performance of
the proposed approach is due to the fact that seeds create shortcuts in the
assembly and help robots to avoid unnecessary movement.

6.3.4 Seed selection and assembly performance

In this section, it is explored if the performance of the proposed assembly
strategy is influenced by the location of seed positions in the structure. Recall
that robots change from layer l to layer l+1 by moving from a position adjacent
to ρsl

to one adjacent to ρsl+1
. In that sense, the positions of seeds define the

86

6.3. Results

(a) (b)

(c) (d)

Figure 6.7: The assembly of the chair with robots moving clockwise.

0 10 20 30 40 50 60 70 80 90 100

Robots ordered by their stopping sequence:
 1 - first robot place itself
 98 - last robot place itself

0

20

40

60

80

100

120

140

M
o

v
e

m
e

n
t

in
 t

h
e

 g
ri
d

n
u

m
b

e
r

o
f

 M
O

V
E

(r
,v

)
 c

a
lls

Shortest path

Longest path

Our approach

Robots

in the

1st layer

2nd layer

6 th layer4 th layer

3 rd layer

5 th layer

Figure 6.8: The distance traveled by each robot assembling the chair.

87

6.3. Results

Table 6.1: Movements performed by robots during assembly

Structures SP LP Proposed approach

pyramid
µm 2.4 11.7 6.6
σm 1.3 7.7 3.5

max(mr) 4 27 11

stairs
µm 3.2 29.1 7.1
σm 1.4 20.1 3.1

max(mr) 5 68 12

pole
µm 6.4 55.5 11.6
σm 2.6 39.1 3.7

max(mr) 12 122 18

chair
µm 5.4 55.4 12.7
σm 2.4 39.1 4.5

max(mr) 12 135 21

asymmetrical
µm 5.5 39.0 12
σm 2.0 29.21 5.6

max(mr) 10 97 23

path the robots take when moving between layers. Using the structure graph,
it was evaluated if seed positions could be selected such that the distance
travelled by the robots is minimized.

As defined in Section 6.1, graphs representing different layers, Gl, were not
connected between them. Given that seed positions define a path to be taken,
the structure graph, G[V], is constructed by connecting the seed of layer sl to
the layers above and below, sl+1, sl−1 (see Fig. 6.2).

Two metrics were used to analyse the structure graph:
• Closeness - this is a graph centrality metric that outputs the average
distance between a given vertex and all other vertices. Closeness is
computed as

c(vi) =
1

N∑
j=1,j ̸=i

dsp(vi, vj)

(6.7)

where the distance dsp(vi, vj) is the cost of traversing the graph using
the shortest path between vertices vi and vj . In the graph, all edges
in the same layer have cost equal to 1. Thus, dsp(vi, vi) = dist(ρi,ρj)
and dist was defined in equation 3.7. Also, the cost for edges connecting
two seeds, say sl and sl+1, is dist(ρsl

,ρsl+1
). Therefore, for vertices on

88

6.3. Results

different layers vi ∈ Gi and vj ∈ Gj , 1 ≤ i ≤ j ≤ L,

dsp(vi, vj) = dist(ρi,ρsi) +

j−1∑
k=i

dist(ρsk
,ρsk+1

) + dist(ρsj+1
,ρj) (6.8)

• The Network Controllability Gramian (NCG) - this metric is used to
analyse the control effort to change the state of all nodes in a network.
Also, the trace of the NCG, trace(Wj), is inversely related to the av-
erage energy to control the network [81]. The hypothesis suggested is
that such energy-related metric can provide some understanding on how
the selection of different seed positions impact the structure graph, and
therefore, the assembly. To compute the NCG, first the structure’s ad-
jacency matrix, A = [aij], is computed. For vertices connected by an
edge and within the same layer, vi and vj , aij = aji = 1. Vertices that
are not connected yield aij = aji = 0. The connection between seeds
is represented as asl,sl+1

= asl+1,sl = 1/dist(ρsl
,ρsl+1

). Given the adja-
cency matrix, A, one may compute Wj (the NCG) by following equa-
tions (4.12)-(4.14) (see Section 4.2.2). When computing Wj , commonly
3 < α < 10 and 100 < H < 1000 for the structures analysed. Finally,
nodes in the network are sequentially selected (selecting each vertex as
input) to obtain an average controllability value, τ , for the topology,

τ =
1

N

N∑
j=1

trace(Wj). (6.9)

The assembly of two structures was analysed using the metrics proposed,
the chair in Fig. 6.6d and the asymmetrical structure in Fig. 6.6e.

The list of seed locations is denoted by S = {ρs1 , . . . ,ρsL}. The chair has
a total of six layers (L = 6) and the four corners of each layer were considered
as possible seed locations for a total of 46 = 4096 combinations. Note that
every combination forms a set Sβ, 1 ≤ β ≤ 4096. The asymmetrical structure
has four layers (L = 4), and all perimeter vertices were considered as possible
seeds for a total of 16×15×10×6 = 14, 400 combinations and 1 ≤ β ≤ 14, 400.

For every combination, Sβ, the assembly was executed twice: first with all
robots moving in the clockwise direction, and second with all robots moving
counterclockwise. Therefore, for each Sβ, it is computed µm = (µcw +µccw)/2
to account for assemblies on both directions.

Fig. 6.9 shows the correlation between the graph’s topology (given Sβ) and
the efficiency of the proposed strategy. The two metrics, average controllabil-
ity, τ , and closeness of the bottom-most seed vertex, c(s1) are compared with

89

6.3. Results

(a) Chair, Fig. 6.6d

(b) Asymmetrical, Fig. 6.6e

Figure 6.9: The relationship between the closeness and the NCG metrics with
the average distance travelled by robots when executing the proposed assembly
strategy.

the average travelled distance by the robots, µm. The figures show that the
higher the c(s1), the shorter the average distance to be traveled by robots in
the assembly. Also the higher the average controllability (lower control energy
required for a given topology), the lower the number of movements performed
by robots.

In the figure, it is also possible to notice that there is a correlation between
the regularity of the curves and symmetricity of the structure. The chair,
which has highly symmetrical layers, presented a curve that roughly followed
a decreasing exponential, whereas in the asymmetrical structure, such curve
seems noisier (bigger standard deviation) and roughly linear. However, the
investigation of the correlation between structure shapes and the metrics’
curves is a topic of future research. Finally, before starting an assembly, a
designer can calculate the closeness or NCG to choose the best locations for
the seeds. This has the potential to reduce the assembly process to manageable
time scales.

90

6.3. Results

6.3.5 Assembly of more complex structures

The set of possible structures that can be constructed by a single run of the
proposed self-assembly strategy is limited to structures where a block is either
on the ground or on top of another (properties in Section 6.1). However,
given the decentralized nature of the system, more complex structures can be
assembled by executing multiple runs of the approach presented.

Figure 6.10 shows an example where a bridge is assembled by executing
the self-assembly solution more than once. One execution of the algorithms
is necessary to assemble each pillar, and another for the top. Each pillar of
the bridge is assembled by a different set of robots. The robots carry the
same blueprint, but the position of the bottom seed, s1, is different. Recall
that the blueprint carries relative positions for the structure, with respect
to s1. Therefore the location of s1 in space determines the location of the
whole structure. The two pillars are assembled sequentially in the simulation,
followed by the top part, for ease of presentation. However, note that as
a result of auction-based assignment process (discussed in Chapter 5), the
structures could be assembled simultaneously. First, the bottom-layer seed
robot of each structure requests new blocks as needed (see Algorithm 6).
Second, the auction process selects robots from the swarm to send to each
structure.

To assemble the top of the bridge, Property 4 is relaxed to allow robots
to stop on top of others or at a position on the first level (s1 level). The top
part is assembled one level higher than the other blocks, with robots docking
in midair. After assembled, the top part can be lowered, landing on top of
the pillars. Note that this assumes that the robots are capable of docking in
midair and perform cooperative flight, similar to [42]. To enable cooperative
flight, Property 9 could be relaxed to allow communication and for the robots
to remain in operation (instead of shutting down). The study of connected
flight if left as future work.

6.3.6 Validation using embedded sensors for navigation

A simulation was developed to demonstrate that a robot with only embedded
sensors is capable to perform the self-assembly algorithms proposed. On the
robotics simulator V-Rep 3.5, each robot was embedded with an on-board
camera facing down, a range sensor to detect height, and an inertial measure-
ment unit (IMU) for attitude control. Camera data were sent through the
Robot Operating System (ROS) to an auxiliary Python script (a ROS node),
which processed the image detecting other robots in space and estimating the

91

6.3. Results

(a) First pillar being assembled (b) Second pillar

(c) Assembly of the top (d) End of execution

Figure 6.10: The assembly of a bridge through multiple executions of the
proposed self-assembly approach.

robot’s motion. To approximate the simulation with real-world results, esti-
mated noise values for the micro UAV Bitcraze Crazyflie [98] were added to
sensors’ outputs. Note that, the same UAV is used in the experiments (Section
6.3.7).

Figure 6.11 and Figure 6.12 show the simulation where two robots se-
quentially arrive adjacent to the s1 seed robot, already landed. Each moving
robot’s camera is used as an object detection sensor, showing if a neighbour-
ing position is empty or not. Robots start adjacent to the seed (already
landed) and compute their velocities, ṗr, using the Lucas-Kanade optical flow
technique [99]. A video of a typical run of the simulation can be found at
https://youtu.be/gZYQwoK7EZs.

The simulation shows that it is possible for a robot to navigate and ex-

92

https://youtu.be/gZYQwoK7EZs

6.3. Results

(a) A robot executing the circling be-
haviour (Algorithm 7)

(b) Robot moving internally (Algorithm 8)

(c) Second robot moving from adjacent to
the seed (Algorithm 7)

(d) All robots landed

Figure 6.11: Robots performing navigation and self-assembly using embedded
sensors.

ecute the proposed self-assembly approach relying only on embedded sen-
sors. Robots were able to correctly compute their location in the structure,
find empty positions and land, executing all behaviours in the proposed self-
assembly solution. For ease of demonstration, Figure 6.11 shows the assembly
of a single-layered structure, however, as shown in the sections above, the self-
assembly approach can be extended to structures with more layers. Figure
6.12a shows the trajectory described by each one of the robots and the be-
haviour that was being executed at each part. Moreover, Figure 6.12b shows
the output of the object detection and the optical flow algorithms, which are
used to detect other robots in space and compute the vehicles’ velocity.

93

6.3. Results

(a) Top view of the Trajectory

(b) Output of camera processing algorithms. Left: ob-
ject detection, right: optical flow

Figure 6.12: Robots performing navigation and self-assembly using embedded
sensors.

6.3.7 Experimental results

The proposed algorithms were implemented in real-world robots: small quadro-
tors placed inside carbon-fibre light weight cubic frames (Fig. 3.3) that act as
the structure parts. The length of each side of the block is 12 cm and it
weighs less than 50 g. The use of multicopters enable the robot to perform
three-dimensional movement, respecting Property 5.

Position, velocity, and orientation of the vehicles are captured by a VICON
camera system and sent to each robot. Such information is then used by the
embedded controllers during flight. Notice that the proposed self-assembly
solution is applicable to any robot with local sensing information, as shown

94

6.4. Conclusion

in Section 6.3.6. Therefore, using the camera system (a centralized sensor ap-
proach) to capture the states of robots is a limitation of the robotic platform
used and it does not invalidate Property 10 of the proposed self-assembly solu-
tion. Moreover, data obtained from the camera system is used to simulate the
embedded sensors (status of neighbouring positions), explained in Section 6.1.

To avoid possible collisions and air turbulence, real robots fly approxi-
mately 36 cm (length of three blocks) higher than the computed position in
the self-assembly algorithms. Such displacement is considered only at the
robots’ flight controllers and do not affect the self-assembly behaviours. To
the self-assembly algorithms, the robots move side-by-side of other blocks and
in a grid-like environment, as done in simulation.

Fig. 6.13 shows the assembly process of the stairs with three levels and
six robots (L = 3, |R| = 6) and Fig. 6.14 shows stairs with three levels and
twelve robots (L = 3, |R| = 12). The figures shows photos of the experiment
whilst videos of the assembly can be found at: a) 6 blocks, https://youtu.
be/WJ4kyx_M0xs and b) 12 blocks, https://youtu.be/l1Q2W28R6DU. The
assembly starts with a robot located at ρs1 . Other vehicles are sequentially
added to the process. After a new robot is started, first it moves adjacent to
ρs1 , and then it starts the self-assembly behaviours.

The closeness metric proposed previously was used to define the seeds
of each layer, Sβ. For both structures, every block is a perimeter vertex.
Thus, a total of 6 combinations where evaluated for the 6-block stairs and
48 combinations for 12-block stairs. The combination selected was Sβ = {
ρs1 = [0 0 0]T , ρs2 = [0 0 1]T , ρs3 = [0 0 2]T }, given that it returned the
highest metric values, c(s1) = 0.125 for the 6-block stairs and c(s1) = 0.045 for
the 12-block stairs. Finally, a video showing in detail the docking procedure,
with robots approaching and attaching to each other can be found at https:
//youtu.be/-uk45pwKqig.

As showed, the self-assembly strategy proposed led to structure assembly
under real-world conditions. Moreover, the structures tested did not present
any issues related to weight and balance distribution. This provides a reason-
able indication of the proposed approach’s applicability in realistic scenarios.

6.4 Conclusion

In this chapter, a novel approach for self-assembly of structures was proposed.
The blueprint-based assembly strategy relies on local information and it is
shown to work on three-dimensional environments. The proposed approach
follows a series of local behaviours that regulate interactions between robots.

95

https://youtu.be/WJ4kyx_M0xs
https://youtu.be/WJ4kyx_M0xs
https://youtu.be/l1Q2W28R6DU
https://youtu.be/-uk45pwKqig
https://youtu.be/-uk45pwKqig

6.4. Conclusion

(a) (b)

(c) (d)

Figure 6.13: Assembly of stairs with six robots.

The behaviours proposed guide the robots’ search for an empty position in
the structure. The self-assembly approach finishes when all robots have found
a location to stop and the structure has been assembled.

In Section 6.3, it is shown that by executing the proposed algorithms,
the robots efficiently place themselves, taking a path similar to the shortest
possible path. Also, using network analysis tools, it was demonstrated that the
effort to build a structure (distance travelled by all robots) is related to how
connected the structure graph topology is. Therefore, a careful selection of
seed positions can improve the self-assembly efficiency and possibly decrease
assembly time. A future topic of investigation is the impact of structure
asymmetry in the metrics chosen to select the seeds.

Finally, it is shown that the proposed approach is applicable to real life
construction, using real robots. The construction process was correctly per-
formed for two structures with different number of robots. The robots used

96

6.4. Conclusion

(a) (b)

(c) (d)

Figure 6.14: Assembly of stairs with twelve robots.

were aerial quadrotors inside cubic frames. Due to limitations in the number
of robots available, the structures used in simulations could not be tested with
real robots.

97

7 Conclusion

This chapter concludes the work presented. In this thesis, we discuss the
autonomous construction of three-dimensional structures. Specifically, the fo-
cus is on the self-assembly problem where robots are themselves structure
parts. We accomplish self-assembly by proposing a new high-level architec-
ture tailored to our problem. We then integrate movement, assignment, and
placement solutions into this architecture in a way that encourages efficient
inter-robot cooperation and minimizes energy consumption. Note that the
self-assembly of structures is a diverse area of research. Its challenges and char-
acteristics change depending on the robotic platform used, the environment
in which the assembly is taking place, or even the structure representation.
The broadness of the autonomous construction area, which include various
robotic platforms [10, 11, 8], structure shapes [11, 36, 35], and assembly rules
[100, 10], leverage the self-assembly problem to be used as a framework to
discuss different aspects of multi-robotic systems.

In Chapter 3 we start by proposing a systematization of the self-assembly
problem, i.e., the description of the overall architecture with the flow of in-
formation in the process. With the elements of the assembly system properly
defined, our analysis shows that further contributions could be made in the
planning and control stages, as well as in the structure representation. The
assembly process is then organized into three distinct stages. First, parts move
from the deployment location to the assembly location while maintaining co-
hesion and moving as a group. Second, an assembly order is computed among
robots in the group. Such computation defines a sequence in which robots
move to a structure being assembled. Finally, robots search for a position in
the structure being assembled to place themselves.

We can highlight the contributions on this thesis as:
• The use of a connectivity metric to identify network fragmentation (Chap-
ter 4);

• The concept of indivisible subgroups (minimal groups) and the proposal
of a cohesion control term to control these groups (Chapter 4);

98

7.1. Moving of parts in space

• A pin selection method based on network controllability (Chapter 4);
• The computation of the robot order using auction-based task assignment
and graph methods (Chapter 5);

• A blueprint-based layered assembly of three-dimensional structures that
implemented directed growth on each layer (Chapter 6);

• The set of behaviours to be programmed at each robot that enabled the
assembly process (Chapter 6);

• A structure design method that uses network controllability to define
the positions of the seeds (Chapter 6).

The remainder of this chapter discusses the stages of the assembly process
and details the contributions mentioned above. Lastly, recommendations for
future work are presented.

7.1 Moving of parts in space

The first step of the robotic assembly is conceived as the movement of robots
from deployment position to the assembly location. To represent objects,
other robots, or even structures in space, circular obstacles were added to
the environment. Network control techniques and swarm analysis are used
to design the control laws to be programmed on the robots. Also, planning
algorithms are used to find a path in the environment to be taken by agents
on the swarm to take the robots to the assembly location.

Our contributions start by proposing the connectivity metric, mi, (Sec-
tion 4.2.1) which is to determine if robots in the swarm are moving away
from each other, and network connections are about to be broken. We use
such metric to actively rewire network connections and split the swarm into
smaller groups, reducing group fragmentation. We also propose the definition
of minimal groups which could not be divided and are controlled by applying
a cohesion control term, defined in Section 4.2.4. The cohesion control term
was able to correctly avoid fragmentation of minimal groups even in the event
of multiple obstacle encounters. Moreover, we propose a controllability-based
method to choose the control node of a group in the swarm (Section 4.2.2).
The use of an energy-related metric for a swarm of self-assembly parts showed
to be more effective than a random selection. As a result, the swarm moved
faster between waypoints, with less control signal input.

Results from Chapter 4 show that properly defined network control tech-
niques can guide the robots through space by applying local control stimuli.
Two advantages of the decentralized control solution proposed can be high-
lighted. First, our control strategy does not depend on the robot’s model,
being applicable to various robotic platforms. Second, the control strategy

99

7.2. Ordering and task assignment

and the pin selection method are robust to different network topologies, being
applicable to different arrangements of robots in space.

Another positive aspect of the flocking controller as proposed in this thesis
is how it accommodates swarms with larger number of robots. The use of
pinning control technique reduces the communication bandwidth needed to
control the group. Also, obstacle encounters and robot-to-robot interactions
are dealt with at each agent without the necessity of information from other
swarm members.

7.2 Ordering and task assignment

The second step of the assembly is responsible to compute a sequence among
the robots to move to the structure. That is modelled as a task assignment
problem, where each requisition of a new part (coming from a structure being
assembled) is viewed as a task to be assigned to one of the robots in the swarm.

In Chapter 5 a combination between graph analysis and auction process
to solve the assignment problem is used. We propose the computation of
a Minimum Spanning Tree to identify the robots in the network that could
be removed without compromising the communication between robots in the
swarm. Also, we define the messages that should be exchanged by robots to
execute the auction process and how the information exchanged is processed.
We propose the algorithms to perform the auction and analyzed their be-
haviour (Section 5.3), proving that they converge to the correct completion
by assigning all robots to structures.

The energy consumed by robots while executing the ordering stage was
used to compare the performance of our strategy with a baseline approach.
Simulated results showed that, on average, the auction-based assignment strat-
egy required less power from robots to wait (before assignment) and move to
a structure (after assignment). In a realistic scenario, a higher energy level
when proceeding to the next stage is advantageous once it increases the chance
of each robot completing the assembly task. On the other hand, in the pro-
posed approach, the time to assign all agents grows (linearly) as the number
of agents grow, which could be problematic for larger swarm sizes. We discuss
in Section 7.4 possible strategies to speed up the assignment problem.

7.3 Placement using local information

The final stage of the self-assembly problem is the insertion of the autonomous
part into an empty position in the structure. For that, techniques are proposed

100

7.4. Future work

where robots used only local information (based on embedded sensing) with
no global knowledge about the assembly status.

In Chapter 6, we propose a self-assembly procedure for a three-dimensional
layered assembly. We introduce the behaviours to be programmed for each
robot, namely identifying layer, circling and moving internally (Section 6.2).
We show that a single robot is capable of placing itself using local informa-
tion by sequentially triggering these behaviours. We also define the messages
that circulate between robots and the information needed by each one of the
behaviours. Moreover, we present mathematical proofs that the self-assembly
process leads to the construction of a desired shape (Section 6.2.2).

The behavioural rules guide the robots to search for the best position in
the structure such that at every layer, the structure grew from a single po-
sition, called the seed position. Simulated results show the efficacy of the
self-assembly procedure (Section 6.3). It was demonstrated that such algo-
rithms are able to assemble the structure with robots moving close to the
minimum trajectory possible. We also analyze how the selection of seed po-
sitions influences the assembly problem by using the Network Controllability
Gramian and the closeness centrality (Section 6.3.4). The proper selection
of seeds was demonstrated to reduce the assembly time by reducing robot
motion.

7.4 Future work

This thesis contributes to different areas within the autonomous construction
problem. However, not all problems in the field were solved within this work.
Below we discuss possible research on each one of the investigated areas.

A key aspect of self-assembly construction is robustness to failures or noises
in the system [20]. There is a trade-off between the capability of dealing with
failures and the existence of global information in the system. Centralized
controllers or global sensors may enable assembly coordination but introduce
a single point of failure. In this thesis, we recognize that pins (moving stage),
auctioneer (ordering stage), and seeds (placing stage) are single points of fail-
ure. Commonly, the solution to these issues come in the form of decentralized
methods [17, 66, 73, 10] or redundancy in the number of robots [11] and could
be studied in the future.

Besides the points of failure described above, the system is also nonreactive
to individual robot failure. The actions of individual robots are not monitored
by the ensemble and therefore the system can not react if one of them fails. For
each one of the self-assembly stages, individual robotic failure can be handled

101

7.4. Future work

differently. For example, during the moving and ordering stages, a faulty robot
could be easily replaced with the proper adjustments of the algorithms and
system properties to allow redundancy. On the other hand, in the planning
stage, seed robots need to identify that a robot failed to place itself to adjust
their internal counters (robots in the layer) accordingly. Therefore, algorithms
need to be redesigned and the communication extended (with already placed
robots remaining active as in [11]).

Another possible extension of this research involves improving path plan-
ning efficiency in the moving stage. For example, learning [87] and con-
trol [101] can be applied to optimize the planning algorithm. Usually, these
strategies only consider the dynamics of a single robot. Instead, the positive
results obtained in this work (Sections 4.3.2 and 6.3.4) lead us to believe that
network control methods (e.g., Controllability Gramian [52], Laplacian [56])
could be used to optimize path planning strategies for a group of robots.

In the ordering stage, the number of decision agents could be increased with
the assignment process being decentralized. In this way, it is expected that
multiple requests for new structure parts could be handled simultaneously,
instead of the serial and centralized approach taken in this thesis. That could
increase power efficiency during assignment and decrease the total assignment
time. MDP and consensus algorithms are used in the literature to deal with
decentralized decisions [73, 68]. However, further research can be carried on
the application of decentralized and learning techniques to the ordering stage
of self-assembly problems.

In the placing stage, more information could be added to improve the
search process for an empty position. Already placed blocks could remain
active and keep local information about the assembly status. For example,
already placed robots could keep the information about empty positions in
their surroundings and guide moving robots to empty positions faster. A
gradient-based search is shown to effectively place parts in the two-dimensional
structure [11] using local communication between agents. In the context of
this work, local communication can enable, for example, robots to start their
circling behaviour from any layer (instead of the bottom layer). The search for
the empty position could apply gradient-based methods and would be guided
by already placed robots.

The circling and moving internally behaviours (Section 6.2) constrain the
movement of the robot to the horizontal plane. However, the fact that aerial
vehicles can operate at different heights could be exploited. In Section 6.3.5,
a complex structure was assembled by dividing the process into multiple sub-
structures. Note that the top of the bridge was assembled above others, in
midair. That is an example of how layers don’t necessarily need to be assem-

102

7.4. Future work

bled at the same place nor sequentially. Given that robotic parts could perform
coordinated connected flight [42], layers can be simultaneously assembled in
different places being stacked on top of each other after completed.

Finally, in this section we pointed out some future research topics, given
the advances of this work and the current literature. Future research can
include the study of redundancy to increase robustness to failures, the use
of decentralized methods for assignment and information storage, and the
redesign of assembly rules to optimize assembly efficiency.

103

Bibliography

[1] K. M. Cabral, S. N. Givigi, S. R. B. dos Santos, and P. T. Jardine,
“Design of a self-assembly system of three-dimensional structures using
autonomous construction blocks,” in 2019 IEEE International Systems
Conference (SysCon), pp. 1–8, 2019.

[2] A. Warszawski and R. Navon, “Implementation of Robotics in Build-
ing: Current Status and Future Prospects,” Journal of Construction
Engineering and Management, vol. 124, pp. 31–41, Jan. 1998.

[3] J. Wawerla, G. Sukhatme, and M. Mataric, “Collective construction
with multiple robots,” in IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, vol. 3, pp. 2696–2701, 2002.

[4] A. Bolger, M. Faulkner, D. Stein, L. White, S. Yun, and D. Rus, “Ex-
periments in decentralized robot construction with tool delivery and
assembly robots,” in 2010 IEEE/RSJ International Conference on In-
telligent Robots and Systems, pp. 5085–5092, Oct. 2010.

[5] J. Werfel, K. Petersen, and R. Nagpal, “Designing Collective Behav-
ior in a Termite-Inspired Robot Construction Team,” Science, vol. 343,
pp. 754–758, Feb. 2014.

[6] S. R. B. dos Santos, C. L. Nascimento, and S. N. Givigi, “Planning and
learning for cooperative construction task with quadrotors,” in 2014
IEEE International Systems Conference Proceedings, pp. 57–64, 2014.

[7] J. Willmann, F. Augugliaro, T. Cadalbert, R. D’Andrea, F. Gramazio,
and M. Kohler, “Aerial Robotic Construction towards a New Field of
Architectural Research,” International Journal of Architectural Com-
puting, vol. 10, pp. 439–459, Sep. 2012.

[8] J. Seo, M. Yim, and V. Kumar, “Assembly sequence planning for con-
structing planar structures with rectangular modules,” in 2016 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 5477–
5482, IEEE, May 2016.

104

Bibliography

[9] J. Paulos, N. Eckenstein, T. Tosun, J. Seo, J. Davey, J. Greco, V. Ku-
mar, and M. Yim, “Automated Self-Assembly of Large Maritime Struc-
tures by a Team of Robotic Boats,” IEEE Transactions on Automation
Science and Engineering, vol. 12, pp. 958–968, Jul. 2015.

[10] E. Klavins, “Programmable self-assembly,” IEEE Control Systems Mag-
azine, vol. 27, no. 4, pp. 43–56, 2007.

[11] M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable self-
assembly in a thousand-robot swarm,” Science, vol. 345, no. 6198,
pp. 795–799, 2014.

[12] M. P. B. Magueta, S. R. B. dos Santos, F. A. M. Cappabianco, and S. N.
Givigi, “Designing collective behavior for construction of containment
structures using actuated blocks,” in 2020 IEEE International Systems
Conference (SysCon), pp. 1–8, 2020.

[13] Z. Zeravcic and M. P. Brenner, “Spontaneous emergence of catalytic
cycles with colloidal spheres,” Proceedings of the National Academy of
Sciences, vol. 114, no. 17, pp. 4342–4347, 2017.

[14] W. Yu, G. Chen, and J. Lü, “On pinning synchronization of complex
dynamical networks,” Automatica, vol. 45, pp. 429–435, Feb. 2009.

[15] J. Cortés, S. Mart́ınez, and F. Bullo, “Robust rendezvous for mobile
autonomous agents via proximity graphs in arbitrary dimensions,” IEEE
Transactions on Automatic Control, vol. 51, no. 8, pp. 1289–1298, 2006.

[16] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proceedings of the IEEE,
vol. 95, pp. 215–233, Jan. 2007.

[17] J. Cortés and M. Egerstedt, “Coordinated control of multi-robot sys-
tems: A survey,” SICE Journal of Control, Measurement, and System
Integration, vol. 10, no. 6, pp. 495–503, 2017.

[18] G. Notomista and M. Egerstedt, “Constraint-driven coordinated control
of multi-robot systems,” in 2019 American Control Conference (ACC),
pp. 1990–1996, 2019.

[19] J. Seo, Grasping and Assembling with Modular Robots. PhD thesis,
Publicly Accessible Penn Dissertations, 2014.

[20] K. H. Petersen, N. Napp, R. Stuart-Smith, D. Rus, and M. Kovac,
“A review of collective robotic construction,” Science Robotics, vol. 4,
no. 28, p. eaau8479, 2019.

105

Bibliography

[21] K. M. Cabral, S. N. Givigi, and P. T. Jardine, “Autonomous assembly
of structures using pinning control and formation algorithms,” in 2020
IEEE International Systems Conference (SysCon), pp. 1–7, 2020.

[22] K. M. Cabral, S. N. Givigi, and P. T. Jardine, “Obstacle avoidance
of swarms using pinning control,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 9628–9635, 2020. 21st IFAC World Congress.

[23] K. M. Cabral, T. Kaykobad, J.-A. Delamer, P. T. Jardine, and S. N.
Givigi, “Design of a decentralized strategy for layered self-assembly of
3d structures using robotic blocks,” Revision Requested, 2022.

[24] S. R. B. dos Santos, S. N. Givigi, and C. L. Nascimento, “Autonomous
construction of multiple structures using learning automata: Descrip-
tion and experimental validation,” IEEE Systems Journal, vol. 9, no. 4,
pp. 1376–1387, 2015.

[25] S. R. dos Santos, S. N. Givigi, C. L. Nascimento, J. M. Fernandes,
L. Buonocore, and A. A. Neto, “Iterative decentralized planning for
collective construction tasks with quadrotors,” Journal of Intelligent &
Robotic Systems, vol. 90, no. 1, pp. 217–234, 2018.

[26] Y. Zheng, M. Allwright, W. Zhu, M. Kassawat, Z. Han, and M. Dorigo,
“Swarm construction coordinated through the building material,” in
Benelux Conference on Artificial Intelligence, pp. 188–202, Springer,
2020.

[27] S. R. B. dos Santos, D. O. Dantas, S. N. Givigi, L. Buonocore, A. A.
Neto, and C. L. Nascimento, “A stochastic learning approach for con-
struction of brick structures with a ground robot,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 5654–5659, 2017. 20th IFAC World Congress.

[28] M. Dogar, R. A. Knepper, A. Spielberg, C. Choi, H. I. Christensen, and
D. Rus, “Multi-scale assembly with robot teams,” The International
Journal of Robotics Research, vol. 34, pp. 1645–1659, Nov. 2015.

[29] A. Stroupe, T. Huntsberger, A. Okon, H. Aghazarian, and M. Robin-
son, “Behavior-based multi-robot collaboration for autonomous con-
struction tasks,” in 2005 IEEE/RSJ International Conference on In-
telligent Robots and Systems, pp. 1495–1500, Aug. 2005.

[30] Q. Lindsey, D. Mellinger, and V. Kumar, “Construction with quadrotor
teams,” Autonomous Robots, vol. 33, pp. 323–336, Oct. 2012.

[31] A. Jimenez-Cano, J. Martin, G. Heredia, A. Ollero, and R. Cano, “Con-
trol of an aerial robot with multi-link arm for assembly tasks,” in 2013

106

Bibliography

IEEE International Conference on Robotics and Automation, pp. 4916–
4921, 2013.

[32] K. M. Cabral, S. R. B. dos Santos, S. N. Givigi, and C. L. Nascimento,
“Design of model predictive control via learning automata for a single
uav load transportation,” in 2017 Annual IEEE International Systems
Conference (SysCon), pp. 1–7, 2017.

[33] S. R. dos Santos, S. N. Givigi, C. L. Nascimento, J. M. Fernandes,
L. Buonocore, and A. A. Neto, “Iterative decentralized planning for
collective construction tasks with quadrotors,” Journal of Intelligent &
Robotic Systems, vol. 90, no. 1-2, pp. 217–234, 2018.

[34] Y. Zhang, Y. Koga, and D. Balkcom, “Interlocking block assembly with
robots,” IEEE Transactions on Automation Science and Engineering,
vol. 18, no. 3, pp. 902–916, 2021.

[35] J. Werfel and R. Nagpal, “Three-dimensional construction with mobile
robots and modular blocks,” The International Journal of Robotics Re-
search, vol. 27, no. 3-4, pp. 463–479, 2008.

[36] M. T. Tolley and H. Lipson, “On-line assembly planning for stochas-
tically reconfigurable systems,” The International Journal of Robotics
Research, vol. 30, no. 13, pp. 1566–1584, 2011.

[37] F. Augugliaro, S. Lupashin, M. Hamer, C. Male, M. Hehn, M. W.
Mueller, J. S. Willmann, F. Gramazio, M. Kohler, and R. D’Andrea,
“The flight assembled architecture installation: Cooperative construc-
tion with flying machines,” IEEE Control Systems Magazine, vol. 34,
no. 4, pp. 46–64, 2014.

[38] S. Hormoz and M. P. Brenner, “Design principles for self-assembly with
short-range interactions,” Proceedings of the National Academy of Sci-
ences, vol. 108, no. 13, pp. 5193–5198, 2011.

[39] M. Gauci, R. Nagpal, and M. Rubenstein, Programmable Self-
disassembly for Shape Formation in Large-Scale Robot Collectives,
pp. 573–586. Springer International Publishing, 2018.

[40] K. Stoy and R. Nagpal, “Self-reconfiguration using directed growth,” in
In Proc. 7th Int. Symp. on Distributed Autonomous Robotic Systems,
pp. 1–10, 2004.

[41] J. Seo, M. Yim, and V. Kumar, “Assembly planning for planar struc-
tures of a brick wall pattern with rectangular modular robots,” in 2013
IEEE International Conference on Automation Science and Engineering
(CASE), pp. 1016–1021, IEEE, Aug. 2013.

107

Bibliography

[42] D. Saldana, B. Gabrich, G. Li, M. Yim, and V. Kumar, “Modquad:
The flying modular structure that self-assembles in midair,” in 2018
IEEE International Conference on Robotics and Automation (ICRA),
pp. 691–698, 2018.

[43] N. Gandhi, D. Saldana, V. Kumar, and L. T. X. Phan, “Self-
reconfiguration in response to faults in modular aerial systems,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 2522–2529, 2020.

[44] A. Y. Yazıcıoğlu, M. Egerstedt, and J. S. Shamma, “Formation of robust
multi-agent networks through self-organizing random regular graphs,”
IEEE Transactions on Network Science and Engineering, vol. 2, no. 4,
pp. 139–151, 2015.

[45] J. Fu, Y. Lv, G. Wen, and X. Yu, “Local measurement based forma-
tion navigation of nonholonomic robots with globally bounded inputs
and collision avoidance,” IEEE Transactions on Network Science and
Engineering, vol. 8, no. 3, pp. 2342–2354, 2021.

[46] M. Coppola, J. Guo, E. Gill, and G. C. de Croon, “Provable self-
organizing pattern formation by a swarm of robots with limited knowl-
edge,” Swarm Intelligence, vol. 13, no. 1, pp. 59–94, 2019.

[47] H. Medellin, J. R. Corney, J. B. C. Davies, T. Lim, and J. M. Ritchie,
“Octree-based production of near net shape components,” IEEE Trans-
actions on Automation Science and Engineering, vol. 5, no. 3, pp. 457–
466, 2008.

[48] L. Zhang, Z.-H. Fu, H. Liu, Q. Liu, X. Ji, and H. Qian, “An efficient
parallel self-assembly planning algorithm for modular robots in envi-
ronments with obstacles,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA), pp. 10038–10044, 2021.

[49] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algorithms
and theory,” IEEE Transactions on Automatic Control, vol. 51, pp. 401–
420, Mar. 2006.

[50] G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A. E. Eiben, and
T. Vicsek, “Optimized flocking of autonomous drones in confined envi-
ronments,” Science Robotics, vol. 3, no. 20, p. eaat3536, 2018.

[51] E. Nozari, F. Pasqualetti, and J. Cortés, “Heterogeneity of central nodes
explains the benefits of time-varying control scheduling in complex dy-
namical networks,” Journal of Complex Networks, Feb. 2019.

[52] F. Pasqualetti, S. Zampieri, and F. Bullo, “Controllability metrics, lim-
itations and algorithms for complex networks,” IEEE Transactions on
Control of Network Systems, vol. 1, pp. 40–52, Mar. 2014.

108

Bibliography

[53] D. Wu, J. Feng, and Y. Zhao, “Synchronization for switching networks
with multiple time-delay via aperiodically intermittent pinning control,”
in 2018 Chinese Control And Decision Conference (CCDC), pp. 6050–
6055, IEEE, Jun. 2018.

[54] G. Wen, P. Wang, X. Yu, W. Yu, and J. Cao, “Pinning synchronization
of complex switching networks with a leader of nonzero control inputs,”
IEEE Transactions on Circuits and Systems I: Regular Papers, pp. 1–13,
2019.

[55] X. Liu, T. Chen, and W. Lu, “Consensus problem in directed networks
of multi-agents via nonlinear protocols,” Physics Letters A, vol. 373,
no. 35, pp. 3122–3127, 2009.

[56] R. Olfati-Saber and R. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Transactions
on Automatic Control, vol. 49, pp. 1520–1533, Sep. 2004.

[57] T.-H. Cheng, Z. Kan, J. R. Klotz, J. M. Shea, and W. E. Dixon, “Event-
triggered control of multiagent systems for fixed and time-varying net-
work topologies,” IEEE Transactions on Automatic Control, vol. 62,
pp. 5365–5371, Oct. 2017.

[58] K. Laventall and J. Cortés, “Coverage control by multi-robot networks
with limited-range anisotropic sensory,” International Journal of Con-
trol, vol. 82, no. 6, pp. 1113–1121, 2009.

[59] X. Wang and H. Su, “Pinning control of complex networked systems:
A decade after and beyond,” Annual Reviews in Control, vol. 38, no. 1,
pp. 103–111, 2014.

[60] Zhi-Hong Guan, Zhi-Wei Liu, Gang Feng, and Yan-Wu Wang, “Syn-
chronization of complex dynamical networks with time-varying delays
via impulsive distributed control,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 57, pp. 2182–2195, Aug. 2010.

[61] A. Adaldo, F. Alderisio, D. Liuzza, G. Shi, D. V. Dimarogonas, M. di
Bernardo, and K. H. Johansson, “Event-triggered pinning control of
switching networks,” IEEE Transactions on Control of Network Sys-
tems, vol. 2, pp. 204–213, Jun. 2015.

[62] X. Wang, X. Li, and J. Lu, “Control and flocking of networked systems
via pinning,” IEEE Circuits and Systems Magazine, vol. 10, pp. 83–91,
Aug. 2010.

[63] S.-J. Chung, A. A. Paranjape, P. Dames, S. Shen, and V. Kumar, “A sur-
vey on aerial swarm robotics,” IEEE Transactions on Robotics, vol. 34,
pp. 837–855, Aug. 2018.

109

Bibliography

[64] S. J. Rasmussen and T. Shima, “Tree search algorithm for assigning
cooperating uavs to multiple tasks,” International Journal of Robust
and Nonlinear Control: IFAC-Affiliated Journal, vol. 18, no. 2, pp. 135–
153, 2008.

[65] M. Alighanbari and J. P. How, “Decentralized task assignment for un-
manned aerial vehicles,” in Proceedings of the 44th IEEE Conference on
Decision and Control, pp. 5668–5673, 2005.

[66] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentral-
ized auctions for robust task allocation,” IEEE transactions on robotics,
vol. 25, pp. 912–926, Aug. 2009.

[67] J. Chen, K. Xiao, K. You, X. Qing, F. Ye, and Q. Sun, “Hierarchical
task assignment strategy for heterogeneous multi-uav system in large-
scale search and rescue scenarios,” International Journal of Aerospace
Engineering, vol. 2021, 2021.

[68] X. Jia and M. Q.-H. Meng, “A survey and analysis of task allocation
algorithms in multi-robot systems,” in 2013 IEEE International Con-
ference on Robotics and biomimetics (ROBIO), pp. 2280–2285, 2013.

[69] B. P. Gerkey and M. J. Mataric, “Sold!: Auction methods for multirobot
coordination,” IEEE transactions on robotics and automation, vol. 18,
pp. 758–768, Oct. 2002.

[70] M. Otte, M. J. Kuhlman, and D. Sofge, “Auctions for multi-robot
task allocation in communication limited environments,” Autonomous
Robots, vol. 44, no. 3, pp. 547–584, 2020.

[71] T. Campbell, L. Johnson, and J. P. How, “Multiagent allocation of
markov decision process tasks,” in 2013 American Control Conference,
pp. 2356–2361, 2013.

[72] S. Proper and P. Tadepalli, “Solving multiagent assignment markov de-
cision processes,” in Proceedings of The 8th International Conference
on Autonomous Agents and Multiagent Systems-Volume 1, pp. 681–688,
2009.

[73] S. Abdallah and V. Lesser, “Modeling task allocation using a decision
theoretic model,” in Proceedings of the fourth international joint confer-
ence on Autonomous agents and multiagent systems, pp. 719–726, 2005.

[74] P. Plamondon, B. Chaib-draa, and A. R. Benaskeur, “A multiagent task
associated mdp (mtamdp) approach to resource allocation.,” in AAAI
Spring Symposium: Distributed Plan and Schedule Management, pp. 89–
96, 2006.

110

Bibliography

[75] R. Liu, M. Seo, B. Yan, and A. Tsourdos, “Decentralized task allocation
for multiple uavs with task execution uncertainties,” in 2020 Interna-
tional Conference on Unmanned Aircraft Systems (ICUAS), pp. 271–
278, 2020.

[76] V. Thangavelu, Y. Liu, M. Saboia, and N. Napp, “Dry stacking for auto-
mated construction with irregular objects,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 4782–4789, 2018.

[77] J. C. Rubens, “Bitdrones: Design of a tangible drone swarm as a
programmable matter interface,” Master’s thesis, Queen’s University,
Kingston, Ontario, Canada, 2019.

[78] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep. 98-11, Computer Science Dept., Iowa State Uni-
versity, 1998.

[79] M. Tognon, C. Gabellieri, L. Pallottino, and A. Franchi, “Aerial co-
manipulation with cables: The role of internal force for equilibria, sta-
bility, and passivity,” IEEE Robotics and Automation Letters, vol. 3,
no. 3, pp. 2577–2583, 2018.

[80] H. Rastgoftar and E. M. Atkins, “Cooperative aerial payload transport
guided by an in situ human supervisor,” IEEE Transactions on Control
Systems Technology, vol. 27, no. 4, pp. 1452–1467, 2019.

[81] F. L. Cortesi, T. H. Summers, and J. Lygeros, “Submodularity of energy
related controllability metrics,” in 53rd IEEE Conference on Decision
and Control, pp. 2883–2888, 2014.

[82] T. H. Summers, F. L. Cortesi, and J. Lygeros, “On submodularity and
controllability in complex dynamical networks,” IEEE Transactions on
Control of Network Systems, vol. 3, no. 1, pp. 91–101, 2015.

[83] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE transactions on
Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[84] A. Stentz, “Optimal and efficient path planning for partially known
environments,” in Intelligent unmanned ground vehicles, pp. 203–220,
Springer, 1997.

[85] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configura-
tion spaces,” IEEE transactions on Robotics and Automation, vol. 12,
pp. 566–580, Aug. 1996.

111

Bibliography

[86] K. Naderi, J. Rajamäki, and P. Hämäläinen, “Rt-rrt* a real-time path
planning algorithm based on rrt,” in Proceedings of the 8th ACM SIG-
GRAPH Conference on Motion in Games, pp. 113–118, 2015.

[87] L. Palmieri and K. O. Arras, “Distance metric learning for rrt-based
motion planning with constant-time inference,” in 2015 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 637–643,
2015.

[88] A. T. Khan, S. Li, S. Kadry, and Y. Nam, “Control framework for
trajectory planning of soft manipulator using optimized rrt algorithm,”
IEEE Access, vol. 8, pp. 171730–171743, 2020.

[89] P. Kavathekar and Y. Chen, “Vehicle platooning: A brief survey and
categorization,” in ASME 2011 International Design Engineering Tech-
nical Conferences and Computers and Information in Engineering Con-
ference, pp. 829–845, American Society of Mechanical Engineers, 2011.

[90] S. Huang and W. Ren, “Longitudinal control with time delay in pla-
tooning,” IEE Proceedings-Control Theory and Applications, vol. 145,
no. 2, pp. 211–217, 1998.

[91] R. L. Graham and P. Hell, “On the history of the minimum spanning tree
problem,” Annals of the History of Computing, vol. 7, no. 1, pp. 43–57,
1985.

[92] S. Pettie and V. Ramachandran, “An optimal minimum spanning tree
algorithm,” J. ACM, vol. 49, p. 16–34, Jan 2002.

[93] Z. Yue, B. Lian, C. Tang, and K. Tong, “A novel adaptive federated
filter for GNSS/INS/VO integrated navigation system,” Measurement
Science and Technology, vol. 31, p. 085102, May 2020.

[94] D. Wang, K. O’Keefe, and M. Petovello, “Decentralized cooperative
positioning for vehicle-to-vehicle (v2v) application using gps integrated
with uwb range,” in Proceedings of the ION 2013 Pacific PNT Meeting,
pp. 793–803, 2013.

[95] A. Gómez-Casasola and H. Rodŕıguez-Cortés, “Sensor fusion for quadro-
tor autonomous navigation,” in 2020 American Control Conference
(ACC), pp. 5219–5224, 2020.

[96] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

[97] T. C. Hales, “The jordan curve theorem, formally and informally,” The
American Mathematical Monthly, vol. 114, no. 10, pp. 882–894, 2007.

112

Bibliography

[98] G. Silano, E. Aucone, and L. Iannelli, “Crazys: A software-in-the-loop
platform for the crazyflie 2.0 nano-quadcopter,” in 2018 26th Mediter-
ranean Conference on Control and Automation (MED), pp. 1–6, 2018.

[99] S. Baker and I. Matthews, “Lucas-kanade 20 years on: A unifying frame-
work,” International journal of computer vision, vol. 56, no. 3, pp. 221–
255, 2004.

[100] J. Werfel, “Building Blocks for Multi-robot Construction,” inDistributed
Autonomous Robotic Systems 6 (R. Alami, R. Chatila, and H. Asama,
eds.), pp. 285–294, Springer Japan, 2007.

[101] S. Primatesta, A. Osman, and A. Rizzo, “Mp-rrt#: a model predictive
sampling-based motion planning algorithm for unmanned aircraft sys-
tems,” Journal of Intelligent & Robotic Systems, vol. 103, no. 4, pp. 1–
13, 2021.

113

	Acknowledgements
	Abstract
	Résumé
	List of Tables
	List of Figures
	List of Acronyms
	List of Symbols
	Introduction
	Problem definition
	Motivation
	Objectives
	Contributions
	Publications from this thesis
	Outline
	Notation

	Literature background
	Autonomous construction strategies
	Robots as structure parts
	Structure modelling
	Control of robots in motion
	Assembly order and task assignment

	Self-assembly fundamentals and formulation
	Self-assembly system architecture
	Planning
	Control
	Robot - Self-actuated Construction Block
	Quadrotor modelling
	Robot's simplified model

	Structure blueprint and assembly properties
	Remarks

	Movement of robots from start location to assembly location
	Preliminaries
	Problem Formulation
	Swarm control law

	Decentralized control strategy for swarm motion
	Connectivity Metric and Active Group Separation
	Selection of New Pins
	Operators and RRT algorithm
	Virtual Nodes and Control Law

	Results
	Swarm guidance
	Comparison between pin selection methods

	Conclusion

	Ordering of robots to assemble structures
	Problem Formulation
	Auction-Based Assignment
	Algorithm's analysis
	Results
	Conclusion

	Self-assembly of three-dimensional structures
	Problem Formulation
	Self-Assembly
	Robots' behaviours
	Self assembly algorithm proofs

	Results
	Simulation setup
	Guidelines for performance analysis
	Simulation trials
	Seed selection and assembly performance
	Assembly of more complex structures
	Validation using embedded sensors for navigation
	Experimental results

	Conclusion

	Conclusion
	Moving of parts in space
	Ordering and task assignment
	Placement using local information
	Future work

	Bibliography

