MERGING OF OCTREE BASED 3D OCCUPANCY GRID MAPS

CONVERGENCE CARTOGRAPHIQUE PAR ARBE OCTAIRE DES
QUADRILLERS D'OCCUPATION 3D

A Thesis Submitted

to the Division of Graduate Studies of the Royal Military College of Canada

by

James Pieter Jessup, B.Eng., RMC
Acting Sub-Lieutenant

In Partial Fulfillment of the Requirements for the Degree of

Master of Applied Science

April, 2013

(© This thesis may be used within the Department of National
Defence but copyright for open publication remains the property of the author.

Abstract

Jessup, James Pieter. M.A.Sc. Royal Military College of Canada, April, 2013. Merg-
ing of Octree Based 3D Occupancy Grid Maps. Supervised by Dr. Sidney Givigi and

Dr. Alain Beaulieu.

A technique for merging 3D octree occupancy grid maps into a single global map
of an evironment is proposed and implemented in software. Octrees are a mem-
ory efficient way to represent a 3D environment by recursively subdividing space at
multiple depths in a tree structure. The use of an octree representation of a 3D
environment allows large environments to be mapped while limiting the amount of
memory used in comparison to other techniques. When multiple robots are used to
map an environment, a more accurate map of a larger space can be produced in less
time. Techniques are introduced to address information from multi-depth sources in
each map’s tree structure as well as techniques to address relative transformations
between maps that are not axis aligned. These techniques allow the octree representa-
tion of an environment to be extended to multi-robot applications, specifically those
situations where relative map reference frame transformations are unknown prior to
mapping. Given the flexibility of this work to situations involving no prior knowledge
of map transformations, this work also explores the problem of merging maps when
the sources of map transformations are uncertain. Therefore registration techniques
using commonly mapped portions of the environment to obtain a better estimate of
transformations between maps are explored. The application of these techniques is
demonstrated by merging maps built by robots in simulated and real-world environ-
ments. The results of this work show that the techniques proposed in this work to
merge octree based occupancy grids are valid and that an octree based occupancy

grid is a suitable map representation for multi-robot problem spaces requiring a 3D

1

model of the environment.

Keywords: Octrees, Mapping, Simultaneous Localization and Mapping (SLAM),
Cooperative Robotics, Navigation, Localization, Computer Vision, Data Fusion

1l

Résumé

Jessup, James Pieter. M.Sc.A. College militaire royal du Canada, Avril, 2013. Con-
vergence cartographique par arbe octaire des quadrillers d’occupation 3D. These dirigée

par M. Sidney Givigi, Ph.D. et M. Alain Beaulieu, Ph.D.

” Une technique pour la fusion de deux mappes représentées en forme de grilles
d’occupation octree en 3D vers une seule mappe globale d'un environnement est
proposée et implémentée en logiciel. Les Octrees sont efficaces en utilisation de
la mémoire pour représenter un environnement 3D en sous-divisant récursivement
I'espace dans une structure d’arbre a profondeurs multiples. L’utilisation de la
représentation octree d’un environnement 3D nous permet de mapper de vastes en-
vironnements tout en limitant la mémoire utilisée en comparaison avec les autres
techniques. Lorsque plusieurs robots sont utilités pour mapper un environnement,
une mappe plus précise d'un espace plus grand peut étre générée en moins de temps.
Des techniques sont introduites pour dénouer I'information de différentes sources qui
ont une profondeur différente dans chaque structure ainsi que des techniques qui
visent les transformations relatives entre les mappes qui ne sont pas alignées sur leurs
axes. Ces techniques permettent a la représentation par octree d’un environnement
a étre portée aux applications multi-robots, spécifiquement dans les situations ou les
transformations de cadre de référence relatif a chaque mappe sont inconnues avant le
mappage. Etant donné la flexibilité de ce travail qui adressent les situations qui im-
pliquent aucune connaissance des transformations des mappes avant le mappage, ce
travail explore aussi le probleme de la fusion de mappes quand les sources de transfor-
mations des mappes sont incertaines. Donc les techniques de régistration qui utilisent
des portions communes mappées de I’environnement pour obtenir un meilleur estimé
des transformations entre les mappes sont aussi examinées. L’application de ces tech-

niques est démontrée en fusionnant des mappes construites par des robots dans des

v

environnements simulés et dans le monde réel. Les résultats de ce travail démontrent
que les techniques proposées dans ce travail pour faire la fusion des mappes en forme
de grilles d’occupation octree sont valides et que les grilles d’occupation octree sont
une représentation satisfaisante pour les mappes générées par un espace couvert par

plusieurs robots qui ont besoin d'un modele de 'environnement en 3D.

Mots clés : Arbes octaires, Mappage, Localisation et mappage simultané, Robo-
tique coopérative, Navigation, Localisation, Vision artificielle, Fusion de données

Table of Contents

Abstract ii
Résumé iv
List of Tables ix
List of Figures X
List of Algorithms xii
List of Symbols xiii
List of Acronyms Xiv
Chapter 1. Introduction 1
1.1. Motivation 2
1.2. Thesis Topic 2
1.3. Contributions 3
1.4. Thesis Organization 3
Chapter 2. Mapping)
2.1. The Stochastic Map 5
2.2. The Simultaneous Localization and Mapping (SLAM) Problem 5)
2.3. Map Representations 6
2.3.1. The Feature Map 6

2.3.2. The Occupancy Grid 6

2.3.3. Representing an Environment in 3D 8

24. Octree Based Maps 9
2.5. Multi-Robot Mapping 11
2.6. Conclusion 12
Chapter 3. Map Merging 13
3.1. Multi Robot Mapping Strategies 13
3.2. Map Transformations 14
3.3. Improving the Transformation Estimate 18
3.3.1. The Iterative Closest Point Algorithm 19

3.3.2. 3D Map Registration with the Iterative Closest Point Algorithm 20

3.4. Conclusion 21
Chapter 4. Robotics Software Resources 22
4.1. Robot Operating System 22
4.1.1. Robot Operating System Communications Infrastructure . . 22

4.1.2. Robot Operating System Robot Specific Features 23

vi

4.1.3. Robot Operating System Development Tools 24

4.1.4. Robot Operating System Software Ecosystem 26

4.2, Octomap 26

4.2.1. The Octomap Library 26

4.2.2. Octomap Robot Operating System Implementation 30

4.3. Point Cloud Library 32

4.4. Conclusion 32

Chapter 5. Problem Formulation 34

5.1. The Octree Map 34

5.2. Map Merging L 34

5.2.1. Calculation of Transformation Matrix 35

5.2.2. Map Transformation 39

5.2.3. Integration of Map Data 40

5.3. Conclusion 43

Chapter 6. Implementation 44

6.1. Creation of Point Clouds from Octomap Octree Maps 44

6.2. Extraction of Intersecting Volumes from Point Cloud Sets. 45
6.3. Refinement of Initial Transform with the Iterative Closest Point Algo-

rithm 47

6.4. Execution of Refined Transform 48

6.5. Integration of Transformed Map into Global Map 50

6.6. Conclusion 52

Chapter 7. Results 56

7.1. Simulated Map Merging L. 56

7.1.1. Gazebo Simulation Environment 56

7.1.2. Map Building 56

7.1.3. Map Merging Results 59

7.2. Real-World Map Merging, 67

7.2.1. Mapping Environment 67

7.2.2. Map Building 67

7.2.3. Map Merging Results 70

7.3. Conclusion 73

Chapter 8. Conclusion 76

8.1. Contributions 7

8.2. Future Work 7

8.3. Conclusion 78

References 80

Appendices 83

vii

Appendix A. Source Code for Map Merging Algorithms 84

A.1. Source Code for Algorithms 1to3. 84
A.2. Source Code for Algorithms 4to 7. 88
A.3. Source Code for Algorithm 8, 91
Curriculum Vitae 97

viil

List of Tables

Table 7.1. ICP alignment error evaluation for simulated map merging. 64
Table 7.2. ICP alignment error evaluation for real-world map merging. 72

1X

List of Figures

Figure 2.1. An example of an occupancy grid map (used from [1] with permis-
SION) .
Figure 2.2. The subdivision of space and the tree structure of an octree . . .

Figure 3.1. An illustration of the process of bilinear interpolation.
Figure 3.2. An illustration of the process of trilinear interpolation.

Figure 4.1. Robot Operating System topic communication (used from [1] with
PErmiSSiON).
Figure 4.5. The class diagram of the Octomap library
Figure 4.6. A visual representation of an Octree occupancy grid as displayed
by the Octovis visualization tool.
Figure 4.7. An example of the topic connections between nodes of a mapping
application using Octomap.

Figure 5.1. Diagram illustrating how relative equations are determined (Used
from [2] with permission).

Figure 5.2. Diagram illustrating how transformation matrices and parameters
are determined (Used from [2] with permission).

Figure 5.3. The addition of another level below n; prior to merging.

Figure 5.4. The addition of another level below ns prior to merging.

Figure 7.1. The simulated environment to be mapped.
Figure 7.2. The simulated robot in its environment.
Figure 7.3. The transform tree for mapping a simulated environment.
Figure 7.4. The node and topic connections for mapping a simulated environ-
ment.o e e e
Figure 7.5. Built octree occupancy grid maps of the simulated environment
prior to merging. e
Figure 7.6. The results of ICP alignment of commonly mapped territory of
the simulation environment for yaw-angle initial transformation error.
Figure 7.7. The merged map of the simulated environment with exact trans-
formation knowledge
Figure 7.8. Built octree occupancy grid maps of the simulated environment
after merging with and without ICP refinement..
Figure 7.9. The experimental mapping environment.
Figure 7.10. Built octree occupancy grid maps of the real-world laboratory
environment prior to merging. L.
Figure 7.11. The node and topic connections for mapping a real-world environ-
MEeNt e e e e e e

10

15
17

23
29

31

32

37
38

42
42

57
o8
60
61
62
63
66

68
69

71

Figure 7.12. The results of ICP alignment of commonly mapped territory of the
real-world laboratory environment for yaw-angle initial transformation
EITOT. . v v v v e e e e

Figure 7.13. The merged map of the real-world laboratory environment with
exact transformation knowledge

Figure 7.14. Built octree occupancy grid maps of the real-world laboratory
environment after merging with and without ICP refinement.

x1

® N T W

List of Algorithms

Creation of point cloud sets from Octomap octree maps 45
Extraction of Point Clouds from Intersecting Volumes 46
Iterative Closest Point Map Transformation Refinement 49
Extraction of Transformed Map’s Bounding Box 51
Trilinear Interpolation 52
Trilinear Interpolation for Octree Occupancy Grids 53
Octree Map Transformation with Trilinear Interpolation 54
Octree Map Merging of Transformed Maps 55

xii

List of Symbols

A set of m maps to be merged into one global map

The result of the merger of a set of maps, M

The merger of the map M, into M,

A leaf node element corresponding to a voxel in the map M;

A transformation matrix from map 2 to map 1’s frame of reference.

Map 2 transformed into the reference frame of map 1.

The occupancy probability of a voxel corresponding to leaf node n

A state vector which is an element of a feature map

The covariance matrix of the state vector @

The log-odds occupancy of the voxel corresponding to leaf node n

The log-odds occupancy of node n from an observation z at time ¢

The log-odds occupancy of node n for all observations from ¢t =1tot =1
The lower log-odds clamping threshold for octree map compression

The upper log-odds clamping threshold for octree map compression

A point cloud

The ith element of a point cloud

A final interpolated value from consecutive interpolations

The displacement of an interpolated and nearest source point in the x-axis
The displacement of an interpolated and nearest source point in the y-axis
The displacement of an interpolated and nearest source point in the z-axis
A 2D rotation in the image plane by an angle a.

A “data” point cloud to be used for Iterative Closest Point registration

A “model” point cloud to be used for Iterative Closest Point registration
The set of points in W corresponding to points in X

An Iterative Closest Point registration state vector

A unit quaternion rotation vector, the rotation part g

A 3D vector, the translation part of q

The mean-square registration error

from an Iterative Closest Point iteration

The transformation of the pose of the current robot to its own map

The transformation of the pose of the other robot to its own map

The transformation of the pose of the current robot

to the pose of the other robot

The error metric for the rotation part of the refined transform

The error metric for the translation part of the refined transform

xiil

List of Acronyms

Al Artificial Intelligence

DOF Degrees of Freedom

EKF Extended Kalman Filter

ICP Tterative Closest Point

PCL Point Cloud Library

ROS Robot Operating System

SLAM Simultaneous Localization and Mapping
TCP Transmission Control Protocol

UAV Unmanned Aerial Vehicles

UGV Unmanned Ground Vehicles

UUV Unmanned Underwater Vehicles

Xiv

Chapter 1

Introduction

In order for robots to be autonomous they need to build maps of their environment.
The Simultaneous Localization and Mapping (SLAM) problem arises when a robot is
placed in an unknown environment and must estimate a map of its surroundings as
well as its position and orientation (pose) relative to the map. SLAM is a highly active
research topic in the Artificial Intelligence (AI) and robotics communities. This is not
a trivial problem since determining the robot’s position typically requires knowledge
of its surroundings, and in addition, building a map of the surroundings requires
knowledge of the robot’s pose. In order to build a map, the robot must traverse an
unknown environment and take measurements of its surroundings and new position
incrementally. Due to uncertainty and noise in measurements from sensors, errors
will accumulate over time and distort the map, which will in turn distort the robot’s
estimate of its position in the map.

To date many authors have proposed techniques to account for errors in measure-
ments that occur with SLAM. These techniques use a stochastic approach to create a
best-estimate for maps and robot position to reduce accumulated errors. Approaches
to SLAM have evolved since their introduction in 1990 [3]. These approaches have
evolved primarily in two ways. As the number of tasks performed by autonomous
robots has grown, as well as the complexity of their environments, the SLAM prob-
lem space has grown from two to three dimensions. In addition, the physical size of
unknown environments to be explored and mapped has increased. In order to map
a large area in a reasonable amount of time, multiple robots are now being used to
map an area.

Currently the state of the art in mapping and localization involves the explo-
ration of three dimensional spaces where a robot is free to move with a full six
Degrees of Freedom (DOF). This is a critical endeavour since autonomous vehicles

such as Unmanned Aerial Vehicles (UAV), Unmanned Underwater Vehicles (UUV),

and Unmanned Ground Vehicles (UGV) in complex environments currently explore a
three dimensional problem space. However, generalizing a robot’s map and localiza-
tion techniques to three dimensions presents significant challenges in limiting memory
consumption and required processing power. One approach to mitigate these issues
involves the use of an octree based map representation [4, 5, 6, 7, 8, 9]. This approach
is able to accurately map large spaces with efficient memory usage. Despite this rep-
resentation’s many advantages, it has not been extended to a distributed approach
with multiple robots building their own maps and merging them upon rendez-vous.
In order to build maps of large spaces quickly and more accurately, this approach can
be extended to multiple robots where the results of each robot’s individual maps are

merged into one global map.

1.1 Motivation

This thesis is motivated by the need to create accurate 3D maps from collaborative
and autonomous platforms deployed in an unknown environment. These maps must
be built in an efficient and accurate manner that reduces memory usage and processing

power.

1.2 Thesis Topic

Our research goal is to investigate the implementation of a map merging algorithm
which merges maps with a 3D representation of the environment using octree occu-
pancy grids for a memory efficient representation of the environment. Further, the
pursuit of map merging techniques in a distributed manner with a discretized model
of the environment implies that independent robots will not build maps with per-
fectly aligned discretizations due to the fact that they are unaware of each other’s
reference frames prior to beginning the mapping process. Therefore, the exploration
of interpolation techniques to merge maps with different discretization alignments is

of particular interest. Additionally, the nature of octree based mapping means that

commonly mapped areas may be mapped at different resolutions due to the individ-
ual mapping perspective of each robot. Therefore, the exploration of techniques to
address the problem of determining the best estimate of an environment from in-
formation of multiple resolutions is also of interest. Finally, since transformations
between maps to be merged are subject to error since they are derived from noisy
sensor observations, techniques to obtained improved transform estimates by align-
ing commonly mapped areas of the environment using data from each map is also of

interest.

1.3 Contributions
Our contributions through this research are as follows:

1. Proposal of theoretical algorithms and rules for merging octree occupancy grid

maps which address:

(a) The merger of commonly mapped areas which are mapped at different

depths in the octree.
(b) The merger of octree maps with misaligned discretizations.

(c¢) The refinement of erroneous transformation estimates using map data from

commonly mapped areas of the environment.
2. Implementation of the proposed algorithms in software.

3. Verification and validation of the software in the Gazebo simulation environ-

ment.

4. Verification and validation of the software on a physical platform (Turtlebot

UGV).

1.4 Thesis Organization

This thesis is organized in the following chapters:

In Chapter 2, an introduction to the problem of mapping as it pertains to

autonomous robotics is presented.

In Chapter 3, an introduction to the problem of creating a global map from the

maps of multiple robots is presented.
In Chapter 4, the software resources used to support this research are described.

In Chapter 5, the problem of octree based occupancy grid map merging is

formally defined.

In Chapter 6, we describe our algorithm for octree based occupancy grid map

merging and its implementation in software.

In Chapter 7, we provide a summary of the experimental results, as well as the
validation and verification of the merged maps. We also discuss the hardware

and supporting software used to obtain these results.

In Chapter 8, we present conclusions based on the results gathered and sum-

marize contributions and future work.

Chapter 2

Mapping

In this Chapter, we give a brief overview of mapping strategies in the literature,
followed by an outline of the basic concepts in the use of octrees as it applies to this

thesis.

2.1 The Stochastic Map

Smith et al. are the first authors in the literature to propose the use of a stochastic
solution for representing a robot’s environment [3]. Prior to their work, accurate
navigation relied on highly accurate, but also expensive sensors and controlled en-
vironments. The authors in this work argue that an alternative approach would be
to combine multiple sensors or measurements including their uncertainty to obtain
a better estimate. Therefore, their work presents a way to represent a map which
takes into account uncertainty in measurements, as well as procedures to read and
build the map. Not only do the authors build the mathematical model for represent-
ing uncertainty in the map, they consistently support their model with an example
of how one would apply their solution with a robot making observations about its

surroundings as it passes through an unknown space.

2.2 The Simultaneous Localization and Mapping (SLAM) Problem

The aforementioned problem of a robot traversing an environment and estimating a
map of its surroundings as well as its position in the map is known as the SLAM
problem. Smith et al. use the Extended Kalman Filter (EKF) as an estimator to
provide the best estimate of robot’s map and its location within that map. Subsequent
improvements have been made to this by Murphy in [10]. Murphy proposed that the
SLAM problem be approached from a Bayesian perspective and that Monte Carlo

methods or a particle filter be used to estimate the robot’s map and its position within

the map. Murphy’s proposal has subsequently been implemented by Montemerlo et
al. in [11, 12] as the FastSLAM Algorithm.

2.3 Map Representations

For mapping scenarios which consider 2D space, the most common map representa-
tions are the feature map and the occupancy grid map. These representations have
grown to become the de facto standards for map representations in robotics [13].
while these representations are proven for 2D environments, they bring their own

challenges when extending the representation of the environment to 3D.

2.3.1 The Feature Map

The feature map was the first of the two representations commonly used in mapping,
originally proposed in the work of Smith et al. [3]. The feature map contains a
collection of uniquely identifiable landmarks represented as vectors x containing their
position, x and y, and orientation ¢. Their uncertainty is represented using covariance

matrix C(x):

T 032 Ogy Ozo
x= |y , Clx)= |0z 0, 0y (2.1)
0] Ozo Oy O 42

Maps are then built by adding additional elements to the collection of landmarks,
or by making additional observations of existing landmarks. These additional mea-
surements are incorporated into the map as constraints to the system typically with

Kalman Filtering to improve the best estimate of the map.

2.3.2 The Occupancy Grid

In the case of an occupancy grid, the map contains an arbitrary grid of cells containing
the likelihood of whether or not that grid is occupied. This representation was first
proposed in [14]. In an occupancy grid, the environment is discretized into a set of
cells of a given size. Each cell in the grid contains a probability of whether it is filled

or empty. In the case of range sensors, cells where a measurement ray passes through

unobstructed will be observed as empty, and cells that contain the end of the ray
will be observed as occupied. Occupancy grid representations often take into account
unknown territory, where grid cells may include counters to account for areas of the
environment that do not correspond to any received sensor observations. An example
of an occupancy grid is shown in Figure 2.1. Where, black represents occupied cells,

white represents empty cells, and grey represents unexplored territory.

Figure 2.1: An example of an occupancy grid map (used from [1] with permission)

While an occupancy grid map is built, grid cells in the map corresponding to new
sensor observations are updated according to a binary Bayes Filter [15]. The belief
of a particular cell, n, in the grid to be occupied given a set of measurements, 2y, is
denoted:

bely(n) = P(n|z1.) (2.2)

Often a log-odds representation of a cell’s occupancy is used, where the odds of cell,
n, to be occupied is defined as:

P() P
P(—n) 1-— P(n)

(2.3)
And the log-odds belief, L(n), is the logarithm of this ratio:

L(n) = log {1f<—lg()n)} (2.4)
Using a binary Bayes Filter as described in [15], the odds of a particular cell is updated
according to:
P(n|z14) _ P(nl|z) P(n|z14-1) 1— P(n)
P(—nl|z1y) 1—=P(n|z)1— P(n|z4-1) P(n)

(2.5)

Where P(n|z1.) is the new occupancy probability of the cell, P(n|z14—1) is the cell’s
previous estimate, P(n|z;) is the probability that the cell is occupied given the current
measurement obtained through a sensor model, and P(n) is the initial assumption of
the cell’s occupancy.

Combining a log-odds belief representation with a common uniform cell prior

probability of P(n) = 0.5, equation 2.5 can be rewritten:
L(n|z1.4) = L(n|z14-1) + L(n|z) (2.6)

Using a log odds representation for cell occupancy allows for faster updates since
additions computed instead of multiplications. In addition sensor models may be
precomputed so that the update step does not require the computation of logarithms

for each update.

2.3.3 Representing an Environment in 3D

When one considers how to model an environment in 3D space several approaches have
been adopted. As described in [8] the choice of map representation must satisfy the
criteria of a probabilistic representation, which models free, occupied, and unknown
territory, as well as an efficient implementation with respect to runtime and memory

usage.

One popular approach is to extend an occupancy grid to 3D and use a grid of
cubic volumes of equal size, called voxels to subdivide the volume to be mapped [16].
This approach suffers from three difficiencies: for large spaces it has a high memory
requirement; it cannot represent spaces in finer resolutions when required for precise
tasks; and finally, there is a need to know the extent of the environment prior to
mapping.

Another approach which does not discretize the environment is the use of 3D point

clouds [17, 18]. A point cloud, Py, is defined as a set of points p.

P = {p07p17'--apn—17pn} (27)

Where, an element of the point cloud p; is a 3D point.

P = (2.8)

IS ISR

Often additional data may be included in each point such as intensity, color, or a unit
normal, for processing purposes. When this is the case, the length of the point vector
p and this data is added as another element of the vector. This approach however
does not model free space or unknown areas, and requires increased memory usage
for every sensor observation. Finally an additional approach involves the creation
of 2.5D elevation maps. In this case a 2D grid stores the elevation of a particular
cell. This approach is memory efficient, however, it does not represent space in a
volumetric way. It is therefore not sufficient for representing the actual environment

for applications such as localization in 3D spaces.

2.4 Octree Based Maps

One popular topic in literature is the use of an octree based occupancy grid represen-
tation to map a robot’s environment in 3D space [4, 5, 6, 7, 8, 9]. This approach is
volumetric and avoids many of the drawbacks of approaches using a 3D grid of fixed
size voxels. An octree is a hierarchical data structure for spacial subdivision first

proposed in the computer graphics community for efficient rendering of 3D volumes

10

[19]. An octree is a collection of nodes which discretizes a space into voxels which
then are recursively subdivided into eight sub-volumes or child nodes until a desired
resolution is reached. The subdivision of space and the tree structure of an octree is
shown in Figure 2.2. In an octree map, each node contains the occupancy probability

of the respective volume.

/i\\
h\\

Figure 2.2: The subdivision of space and the tree structure of an octree

Hornrung et al. have implemented such an octree mapping framework as an open
source software library and integrated it into Robot Operating System (ROS) [8, 9].
A key contribution to their approach is the implementation of a compression method
to reduce the memory requirement of a map. In their approach, a map is built at the
lowest subdivision of the tree structure. In [8, 9], sensor observations are incorporated
into map such that the log-odds occupancy of a node, n, is clamped to be within an

upper and lower bound, [,,;, and l,,,, respectively:
lmin S L(n) S lma:v (29)

This clamping strategy keeps the confidence in the map bounded while simultaneously
allowing the map to be more quickly adaptable to dynamic environments. Using this

clamping policy, it is shown in [8] that the map update formula described in Equation

11

(2.6) becomes:
L(n|z1.;) = max(min(L(n|z14—1) + L(n|z), lnaz), lmin) (2.10)

This clamping policy allows the compression of the map by pruning, or removing
nodes from the octree. When the occupancy of a node in a tree reaches either [,,;,
Or 4, it is considered stable. If all the children of an inner node in the map have
reached the same stable state those children are pruned from the map. Pruning is
efficient since it reduces the number of nodes to manage in the map. Furthermore,
by applying this compression method, the only probability information that is lost is

information close to P(n) =0 and P(n) = 1.

2.5 Multi-Robot Mapping

In many cases it is necessary to use multiple robots to map a large space within a
reasonable time constraint. Therefore, it is necessary for robots to merge the results
of their individual maps into one large global map. The first work to consider multiple
robots mapping a large space used a common reference frame where relative poses
for each robot were known prior to mapping [20]. As it may not be reasonable to
assume that a team of robots mapping an area will have the same world reference,
it is necessary to determine a transformation from one robot’s frame of reference to
the other’s. This involves the calculation of the relative pose of each robot’s reference
frame as well as the transformation of the information in one map to the other map’s
frame of reference. In the two dimensional case any relative pose can be measured by a
rotation of some angle # and a translation by some vector ¢ [21]. In two dimensions the
transform for points and y from one robot’s map into points 2’ and 3’ in the other’s

can be performed by one matrix multiplication using homogeneous coordinates:

! cos 6 —sinf t,| |z
y'| = [sinf cos 0 ty| v (2.11)
1 0 0 1 1

This concept of using matrix multiplication to transform from one reference frame

to another can also be generalized to R3 to support 3D maps. This however provides

12

added difficulty in accounting for additional degrees of freedom and for when a dis-

cretized representation of the environment is used.

2.6 Conclusion

This chapter presented an introduction to stochastic mapping and the SLAM prob-
lem. Different ways to represent the environment were discussed for both two and
three dimensional problem spaces, identifying octree occupancy grids as a suitable
choice for 3D mapping. Additionally, the problem of mapping with multiple robots

is introduced. This problem is discussed further in Chapter 3.

Chapter 3

Map Merging

In this chapter the problem of merging maps from multiple robots is discussed. A

review of literature pertaining to the process of merging maps is also presented.

3.1 Multi Robot Mapping Strategies

As previously mentioned the easiest way to map a large area with high accuracy within
a reasonable time constraint is to incorporate multiple mapping robots. In this case
it is necessary for the mapping robots to merge their maps into one global map of
the area. Early strategies solved the merging problem by using a team of robots,
with each robot building maps within a common reference frame [20]. This solution
is attractive since it is not all that different than single robot mapping. However it is
not a flexible solution since it might not be a reasonable assumption that all robots
will have the same reference frame.

More flexible solutions have presented themselves in the literature. One solution
involves a centralized approach to map merging where maps are merged once the
whole environment has been explored [22]. Another solution is a decentralized ap-
proach where maps are merged upon robots meeting one another while traversing the
environment [21]. Recently, reinforcement learning has been applied with a decentral-
ized approach so that maps will be merged only in situations where a better estimate
of the explored environment is obtained [23].

Regardless of the approach to map merging, when robots build maps in indepen-
dent reference frames, the merger requires the calculation of a transformation from
one robot’s reference frame to the other. This transformation can be represented by
a matrix multiplication of the same form as shown in Equation (2.11). This thesis
will focus on the merging process rather than the mapping strategy. Therefore, any

mapping strategy that does not use a common world reference frame will be suitable

13

14

for this work.

3.2 Map Transformations

Once a suitable transformation matrix is found it is necessary to perform this trans-
formation so that a global map can be obtained. The implementation of this trans-
formation depends largely on the map representation itself.

For feature maps each state vector of the map is transformed using the matrix
multiplication described in Equation (2.11). In the case of an occupancy grid, the
matrix multiplication cannot be performed directly on the source elements due to the
environment discretization. Since its representation is equivalent to that of a pixel
image, the same geometric transformation techniques used for image processing can
be applied to the occupancy grid.

When transforms are performed by mapping source pixels to their destination
with transforms that include rotation, often the transformed image or map is no
longer continuous since some destination pixels are not addressed. This phenomenon
is known as aliasing. One common method to address the aliasing problem is to de-
termine the range of destination pixels that will be present in the transformed image,
then, for each destination pixel, determine the location of the source pixel by the
inverse transformation. Since this inverse transform will often not directly map to
integer pixel locations, interpolation techniques such as nearest neighbour, bilinear,
or bicubic interpolation may be used to determine the destination pixel’s final value.
Bilinear interpolation is often used due to it’s superior results over nearest neigh-
bour interpolation, while offering easier implementation and reduced computational
complexity over other options such as bicubic or cosine interpolation [24].

Bilinear interpolation is a method to interpolate between pixel values on a 2D grid.
In the case of a 2D occupancy grid, the pixel values would represent the occupancy of
each cell in the grid. When a destination pixel is transformed to a non-integer source
pixel coordinate, the final value is interpolated from the four closest surrounding

pixels, using their centre points as coordinates.

L SECEILITRIELE TETEITEITIRIEEITPERLY LS

| A SR

X0 X X1

Figure 3.1: An illustration of the process of bilinear interpolation.

15

16

One simple way to perform bilinear interpolation is by performing two consecutive
linear interpolations as shown in in Figure 3.1. In this example, the final scalar value
to be interpolated, C, located at (x,y), falls between four source values, Cyy to Ciy
located within the square bounded by the coordinates (¢, yo), (z1,y1). Firstly, linear

interpolation is performed in the x-direction, obtaining the values Cj and Cf:

OO = (1 — xd)Coo + iIIdClD (31)
01 = (1 — {L‘d)C()l + ZEdCH (32)
Where,
P , ya= 2= (3.3)
T1 — T Y1 — Yo

Finally the result of the first linear interpolation can then be interpolated in the

y-direction obtaining the destination pixel’s final value:

C = (1 — yd)CO + yq4C (34)
(3.5)

This process can also be done with 3D grids using trilinear interpolation in the
same fashion with three consecutive linear interpolations. In this case, the final value
of a destination voxel is interpolated between eight neighbour voxels. An illustration
is shown in Figure 3.2. When applying this technique to a 3D grid map, the location
of the values to be interpolated between , Ciypg to C11, represent the centre-points of
nodes in the map, and their values would be equal to the occupancy of each node.

For example, one could perform the first interpolation along the x-axis as:

w
D

~~ o~~~ o~~~
w
co

—_ — ~— =

1 — 24)Cooo + £4Cho00

Cio

w
|

()

(1 = 24)Co10 + 24C110
(1 = 24)Coo1 + zaCho
()

w
Ne

Cii = (1 —24)Con + 24Cina

Where,

. T — Xo y_y—yo . Z— 20
d 3 d —) d
Tr1 — Zo Y1 — Yo 21 — 20

(3.10)

17

C001

.

Ceo

—d

000 COO 100

Clo C

/ 110

C

Figure 3.2: An illustration of the process of trilinear interpolation.

The second interpolation along the y-axis:

Co = (1 = y4)Coo + yaCho (3.11)

Cr = (1 —=y4)Co1 + yaCia (3.12)

With the final value of the destination voxel using a third interpolation in the z-axis

as:
C= (1 — Zd)CO + chl (313)

One other interesting method to overcome the aliasing problem is the technique
proposed by Paeth [25] and Tanaka et al. [26]. Which decomposes a rotation in the
image plane into three consecutive shear transformations, expressed as:

cos 0 —sin 6 1 0l (1 sin « 1 0
Thee) = [sin@ cos 6 } N [— tan § 1] [0 1 } [— tan § 1} (3.14)

Essentially, this transformation is a cascade of three shifts along the rows and columns

of a 2D grid. In the first transformation, the x-coordinates of each row are shifted by:

r=x— ytan% (3.15)

18

Then the second shear is performed by shifting the y-coordinates of each column by:
Y =y+zsina (3.16)

And finally, the final shear is performed by the same shift described in Equation
(3.15).

This method avoids the aliasing problem while still mapping source pixels to des-
tination pixels because entire rows of the grid are shifted contiguously. Additionally
since these shifts are performed on a raster grid, shifts are only expressed in integer
values. Linear interpolation may then be used for the final value of the destination
pixels.

This method has also been extended to three dimensions. Initially this was per-
formed by simply performing nine consecutive shears, by expressing each rotation
about a major axis as a product of three shears [27]. Subsequently this method was
also improved by reducing the number of shear transformations required to perform a
general rotation by performing shears along “slices” and “beams” of the volume [28].

For this work, trilinear interpolation is used. The choice of trilinear interpolation
was chosen over consequtive shear transformations was due to ease of implementa-
tion. Initial success with shear transformations was acheived, however equivalent
development effort with trilinear interpolation acheived an equivalent result at much

less computational expense.

3.3 Improving the Transformation Estimate

The previously mentioned methods for merging maps apply when an exact transfor-
mation is known between the maps. Often this is not the case since obtaining the
transformation frequently relies on noisy sensor measurements that in many cases
are not accurate. When this is the case, data from the map itself is used to identify
commonly mapped areas to improve the transform by finding the best alignment of

those areas.

19

3.3.1 The lterative Closest Point Algorithm

One method for aligning 3D environment data is the Iterative Closest Point (ICP)
algorithm [29]. This algorithm uses two rigid bodies and an initial guess of their
alignment and iteratively minimizes an error metric.

The algorithm operates by matching a “data” shape W to be in best alignment
to a “model” shape X. The data and model representation may be in many forms,
however points will be considered as the choice for this work. The first step of the
algorithm is to determine a subset of points in X, Y that correspond to the points
in W. The ICP algorithm assumes that this corresponding point in X is the point
of least euclidean distance distance from the point considered in W. Where the

euclidean distance from one point in W, w, to another point in X, x, is equal to:

dlw,z) = ||lw— x| (3.17)

Now that a subset of points Y € X is selected, least squares registration is per-
formed to determine the rigid transformation, consisting of a 3 x 3 rotation matrix
R, and a translation vector ¢ to minimize the mean squared distance, S, from the

points in W to the corresponding points in Y, given by:

N,
1 w

S(R,t) = N_Z”yi_Rwi_tug (3.18)
Woi=1

Therefore, the parameters, R and t that yield the minimum mean squared distance
must be determined using the least mean squares algorithm.

The obtained rotation matrix and translation vector to minimize the squared
distance between corresponding points may be used to obtain a 4 x 4 transformation

matrix given by:

Riy Rz Rz

Ry1 Roa Ra

R31 Rz Ras
0 0 0

~~ o+~
<

(3.19)

I

This transformation is then applied then to W. The whole process of selecting corre-

sponding points, and obtaining a transformation to minimize the mean square error

20

between corresponding points, is then repeated until the change in mean square error
between iterations falls below an arbitrarily defined value. The final transformation
refinement obtained from ICP registration can then be obtained by the product of

the individual transformations from the n ICP iterations:

Ticp = HTZ' (3.20)

3.3.2 3D Map Registration with the lterative Closest Point Algorithm

There are works in the literature which discusses the use of ICP algorithm to improve
the accuracy of registration of sensor observations into 3D maps [17, 18]. These works
are often used during SLAM to improve the estimate of both the robot’s relative pose
in its surroundings as well as the sensor’s pose relative to the robot’s map. In these
works typically point cloud representations of the environment are used and individual
sensor observations are registered on a scan-by-scan basis.

One interesting work connects an octree subdivision of an environment to regis-
tration of point clouds [30]. In this work, the performance of traditional point cloud
ICP registration is improved by creating an octree subdivision of the environment.
This is done by using voxel centres of the most commonly observed voxels as the
input points for the model and data sets. The authors demonstrate that this ap-
proach outperforms naively using the existing data for the data and model of the ICP
algorithm.

While these works focus on the registration of consecutive sensor observations,
the registration problem is closely related to the merging problem. For merging large
point cloud maps the use of ICP would be plagued by the requirement to process a
large number of points since nearly every observation is kept in the map as described
earlier. However, since in this work an Octree representation is used for an efficient
representation there is potential for the use of ICP to improve the transformation
estimate between two Octree occupancy grid maps. This is especially true, since the

performance of ICP with voxel centre points is shown to be strong [30].

21

Although registration and merging are similar problems, additional challenges to
the merging problem are discussed in [31]. In order for registration to be successful
there needs to exist both a source and template such that a transformation can be
calculated to align the two data sets. In the context of mapping, this means there
must be some portions of each map that represent the same parts of the environment
for the use of the ICP algorithm to improve the transformation estimate. Another
challenge discussed in [31] is the ability to identify regions of each map that represent
the same parts of the environment. This being said, with some initial knowledge of
a transformation between the two maps, an estimate of commonly mapped regions

suitable for transformation improvement with ICP can be extracted from each map.

3.4 Conclusion

This chapter has presented an overview of the problem of merging maps from multiple
robots into one global map. No previous knowledge about transformations between
the reference frames of different robots has been shown to be the most flexible solution
of multi-robot mapping. Subsequently the process for calculating the transformation
estimate between the reference frames of two robots in a rendez-vous scenario is dis-
cussed. Once a transformation between reference frames is provided the problem of
performing a transformation on discretized is explored. The use of the ICP algorithm
on commonly mapped portions of the environment to refine this transformation esti-
mate is also discussed. Now that a theoretical background on the problem of octree
occupancy grid merging is presented, the software resources used to implement this

theory in actual robots will be discussed in Chapter 4.

Chapter 4

Robotics Software Resources

This chapter describes the three principal software resources used to support this
thesis, namely, ROS, Octomap and Point Cloud Library (PCL). These software re-
sources facilitate the implementation of the theory described in Chapter 3 for merging

of octree maps.

4.1 Robot Operating System

ROS is a middle-ware used to simplify the development of robotics software. ROS is
an open source collection of tools, libraries, and community developed software that
allows robotics software developers to be abstracted away from specific hardware.

ROS accomplishes this abstraction through the following core components:
1. Communications Infrastructure
2. Robot Specific Features
3. Development Tools
4. Vast Software Ecosystem

These core components will now be discussed.

4.1.1 Robot Operating System Communications Infrastructure

A ROS system is composed of a number of nodes which are processes which perform
various functions [32]. These nodes could be drivers for various sensors, tools pro-
vided by ROS itself, or even perform computation based on the data from other sensor
driver nodes (i.e., path planning). These nodes are written in C++ or Python with

the provided libraries, roscpp or rospy respectively. For inter-node communication,

22

23

advertise(images) subscribe(images

viewer

images images

(a) the camera node noti- (b) the viewer node notifies (c) the viewer is receiving
fies the master it will pub- the master it will subscribe messages from the camera
lish images to images

Figure 4.1: Robot Operating System topic communication (used from [1] with per-
mission).

ROS provides a message passing interface through the use of topics with an asyn-
chronous publish/subscribe model or services using a synchronous request/response
model. Messages are passed using pre-defined message formats, written in the message
interface description language. To facilitate message-passing, there always exists one
node on any ROS system called the master node. The master node manages com-
munication between nodes by acting as a name server and directs the connections
between nodes. The connections between nodes are most commonly Transmission
Control Protocol (TCP) streams, allowing a ROS system to be distributed accross a
network. The interaction with the master node for subscribing to a topic is shown
in Figure 4.1 where the master node orchestrates the connection between nodes, but
data transfer takes place between the nodes themselves. Multiple nodes in a system
are also capable of subscribing to a topic. The master node also provides a parameter

server which stores data available to every node in the ROS system.

4.1.2 Robot Operating System Robot Specific Features

ROS provides several robot-specific features to speed up the development time for
robotics software. One of these features is that there exist several standard messages

to cover the most commonly used use cases. These messages include, point-clouds,

24

poses, transforms, odometry, images, etc. By using these standard messages, a user’s
code can interoperate easily with previously written software contained in the ROS
ecosystem.

Another useful feature provided by ROS is its description of Geometry with the
tf, or transform, library. The ¢f library abstracts the transformation of coordinate
frames to the user, while handling the fact that transform information is distributed
across a network and comes from sources updated at various rates. ROS uses a tree
representation to model transformations between coordinate frames in the system.
In this representation each coordinate frame has one or zero parents, and zero to
many children. With this representation, reference frames are represented as nodes
in the tree, and the transformations between each reference frame are the branches
of the tree. All ROS nodes that produce tf data broadcast this data on the same
topic. Therefore all transforms between reference frames in the system are available
by subscribing to the /if topic, allowing the tree structure to be built. An example
of such a tree for the Turtlebot UGV is shown in Figure 4.2, where transformations
between reference frames corresponding to various parts of the robot are shown.

Finally, ROS provides a robot description language that allows manufacturers and
users wishing to customize their robot to describe the physical properties of the robot
and locations of the sensors in an XML document, and have those properties reflected

in the system with the tf library.

4.1.3 Robot Operating System Development Tools

ROS also provides several tools to facilitate debugging, plotting, and visualization.
ROS provides the tool, rzgraph to introspect connections between nodes in the system,
as well as rviz, a three dimensional visualization tool used to visualize many sensor
data types as well as the robots themselves. A screenshot of rzgraph is shown in
Figure 4.3 for a simulated mapping example. As well, a screen shot of rviz is shown
in Figure 4.4, where a 3D map building process is visualized. There also exists several
command line introspection tools to provide similar functionality without relying on a

graphical environment. ROS also provides rosbag, a mechanism to save and playback

25

awely |eado qbl elRWed/Z0 J0g3| N

awely |eai3do L3dap RiaWED/Z0 T I0G3 ML

535 008'7 ‘Ybus| leyng 225 00g'y (4ibue| leyng
PlO 23S LBE 0- LUIOJSUB Y JUSOR ISOl Plo 23S LBE Q- (LILIOJSuUBI] JUS03 3501
ZH 80Z'G 2181 2Belany ZH 807G 2181 2Belany
Jaus1igndTa3e3s 3040/ IeiseopROIg Jaus|[gndTe3eIs 3040/ IiseopROIg

awel gl elawey/ 70" 3003(3NL

awely ydepTRIaWIED/Z0 002 3N

o2s 0og'y yBbus| Jeyng 235 008y :YPuz| Jeyng
PI0 028 /6E'0- (LIICSURI] JUS0D IS0l PIC 925 /6€’ 0 {WLI0JSUR] JUED21 501
ZH 807'G ‘238 abeJanY ZH 807'G 230l 2beloAy

Jaus|ignd @3e3s J0go.f (1eiseopealg Jaysiignd e3e3s j0goy/ (12iseopeo.g

Ul T 103U HopueE/z0 jege 1Ny Ul 07 13U JOPUBE/Z0 1002 [1NL/

225 008 ¥ :yIbu2| eyng 225 008'F :yIbuUS| Joyng 035 008'¥ :UIbua| Jeyng
110235 £6E°0- (WLIOJSURIY U202 1501 Plo 936 Z6E°0- LLIOJSURII U0 IS0\ PI0 935 £6€'0- (LUI0JSURIL W02 150
zH80zZ'g :21el abeleny zH 80Z's '21ed abeleny zZH 80z'c ‘21l sbelany
Jauplgnd 21835 10004/ Ue1sEDpRO.g Jauslignd 23835 1000/ U215E0pROIT Jaus|ignd 23e3s 30q0J/ 112iseopeolg

Ul Z =3ed/z0 " 0g2 3Ny

225 008t YUl l2yng
plo 08s £6E'0- (UII0jSUBI] JUS0S1 150
ZH 80Z'G i21eJ aBeiany
Jaus|igndT23e3s j0q0y/ (Jeiseopeolg

"1 =23e1d/z0 " 0gR 3L

22s Qo' 43Pu2| Jopng
plo 935 £6E'0- LLICSUB L] JUS031 150
ZH 807'G ‘218 3besRAY
Jaus|gnd 23e3s J0go./ (12iseopea.g

»ul|T 0" Ie0eds/Z0J00=2 [UNL/ [PaUm”Ies./Z0 1002 |1NL/ "0 =1e1d/Z0 30g211NL/

295 008'¥ :ybuz| 12yng
PIC 235 £6£'0- (UII0JSUEI] JUS02 1 IS0
ZH 80Z'S =212l sbeny
Jauslignd 21815 30g0)/ 11215ROpEDIS

228 008'F :yBue| ;2yng
P10 235 £6E°0- (ULIOJSUEI] JUS021 IS0
ZH 80Z'§ 212l abessay
Jaupliqnd 23035 10q0d/ 1 ielseapelg

U Eseq/z0 1002)3nL

225 008't 'YIbu2| Joyng
plo 286 £BE'0- 'UWUOJSUERI] JUSD3. 150
ZH 80Z'G ‘@l beRny
JauslIgndTe3e1s 10q0 Y/ [eIseapeOIg

é\ Z0™ 3008 LN

988 116'% yBbus| layng
plo 995 TZ0'0 'WI0JSURI] U031 150
ZH 6LE°00T 2324 aPeseny
Ja1seopeouq J3 deuy (e3sespeolg

dewy

ul”E 23ed/z0 " 0g2| Ny

BUBWED/Z0 10G3 [1LNY

235 008 ¥ :4Ibu2| eyrg

PI0 235 £6£' 0 (WII0JSURY W02 IS0
zZH 807'C 318l ebelRAY

Jausignd 21835 3040/ (121sRIpEROIS

Figure 4.2: An example of the transform tree for the Turtlebot Unmanned Ground

Vehicle (UGV) used in this work.

26

messages within the system. The rosbag tool is used in this research so that all sensor
observations during a map building process may be saved so that the map building
process may be altered offline. This allows the transform tree to be modified so that

the transform of maps with a wide range of discretizations may be explored.

4.1.4 Robot Operating System Software Ecosystem

Given that ROS is community developed, there exists a vast ecosystem of existing
software such that new developers may incorporate or build upon proven existing
work. Some examples of existing software include implementations of navigation
within an existing map, SLAM, path planning, etc. One of the most important
existing implementations for this work is Octomap. This implementation is discussed
further in Section 4.2

Several frequently used open source software projects are integrated into ROS. One
of these projects is the Gazebo simulation environment which allows the simulation of
robots described with the ROS robot description language. OpenCV as well as PCL
are also fully integrated to ROS providing built-in computer vision functionality. PCL

is discussed further in Section 4.3.

4.2 Octomap

Octomap is the open-source software implementation of Hornung et al.’s work in
octree mapping [8]. Their implementation is written in C++ and freely available
to build upon or modify. The discussion of Octomap is divided into the discussion
of the self contained library, and the discussion of its implementation into the ROS

environment.

4.2.1 The Octomap Library

Hornung et al.’s distribution of the Octomap library provides facilities for the creation,
building, and modification of Octree occupancy grids as well as facilities to load and

save these maps to disk. Their implementation consists of a series of OcTree types

27

B e B e e A
sjuiod/yadap/elawes/ D1dog

SOYdDL :Jedsues] «

punoqui e3P &

(/soeopasoyjede)//:dny) Js1sespeolq 1 dew/ 014
4/ 21do3«

SOYdDL :Jedsues) «

punoqui B3P &

(/as6t£:150)220)//:d11Y) 0qazeb/ 07 4
41/ 21doys

SOYdDL :Jedsues) «

punoqui e3P &

(/L5b65:35041RI0)//:d13y) 44373500 10G0I/ 103 «
41/ 21do3s

SOYdDL :Jedsues) «

punoqui B3P &

41/ 21doy s
SOYdDL :Jedsues) «
punoqui B3P &
(/886v£:350y)@30}//:dNY) ©q3786/ 03 4
¥20)2/21do3
SOYdDL :Jjedsues) «
PUNOGING :UOIIANP 5
ZIA/ 10 %
AeuseTsins)227 paidno/ d1dol «
SOYdDL :Jedsues) «
PUNOGING :UOIIANP 5
IN0501/:0 %
anosol/ 21dod «
:sUON23UU0D
Sehb |
Xqq Jeapd/3pou JanIas dewoydo/
s1232wesed 32s/apou Ianes dewoo/ «
Aieuiq dewono/ «
s1a660]136/apouIanas dewoo/ «
N4 dewoydo/

129] 12bB0o) 32s/2pou Jansas dewoydo/ .
sawely j1/apou” Janias dewono/
13salfapou”Ianas dewoo/ «

FEERIINES

Zpnopiulod/sbswosuas] syuledfyadap/esawed/ «
pnoj; P

[¥20)2/sBswydeibsoi] yoopd/ «

[sBessaw/nl 11/ «

:suondusgns

[Reurviasjew

/sBswucnezijensia] Ae1ieTsIA 133 9a1)/ «
[Aseuigdewo)do/sbsw dewoldo] fieuiq dewooy/
[uondinsagbyuod/anbiyucdzs2weulp]
suondisap”1z1awesed/apou”Ianes dewoo/ «

fsbsw uone
[Areuigdewo1d0/sbsw™dewoydo] ny dewodo/ «
[Bo/sbswydesbsou] Inosoyy «
[punfouedning/sbsw™aeu] dew™papafoid/ «

[3123[qouoisyjod

JsBsw uonebineu"wie] 13a/qouoisied” dewodo/ «
[dewuorsi)jon/sBsw uonebineu” wie] no”dew 3a.y/ «
[Byuod/2unbiyuod3. d1weudp]
sa1epdn1313weled/zpou” Janias dewoo/
[dewuoisyjod

Jsb6sw uonebineu” wie] jno” dew Uoisi|od/ «
:suoneangngd

[spou”Jansas”dewo1no/] apoN
:0ju)

sa1e 691668 “>psoube)p/

In0sai]
nosay Loser el]
Jnosalf smouy pnojujod/ #300/
nosal/
2201
nosal]

Ko sia7s)133 pardnaze)

13 9sod oqe

o

Swiodigidap/erawes/

nosoif

smseopeoiq Ji dewy

Jaysignd a3e3s j0q0./

o]

Inosalf

MOl Rse[2aURY

@ sudoaw (] 19nd [|

-

19/

SN PPow/0qaze0]

Papr

A0pf

interconnections

1C

de and top

ing no

A screenshot of the rzgraph tool showi

for simulated mapping.

Figure 4.3

28

3353y 0Z'zt| :pasdej3 soy 86'7.6ZBE96EL | :BWIL SO 0z'zh| pasde3jiem 86'v/6Z8696EL | BWIL|jBM
=@ awiL
PPV
= - s «
xyaid 41
--"duasap 30qos “"'sag 3oqoy
1 eydyy
0 "rurazepdn
3 uals)jod
B euzjensin
3O SMels <
**"0W30q0H %0 |3
saJedsaWeN <
®BE uoipRPRs 001 2zIS2NAND
11937 paldnaio/ Uy Jeysew
21920 peo U31IND 3AeS. 3O 'SMels «
2] - avaayiew o N
960 “TTUUI XeW
0 Misuajuuiw
B ~rdwedoiny
ssz'ssz'sse[] Jojodxew
o'o'offf e0ouw
YN B8N
Ayisuaqup N jauueyD
Rsuaqul “uedL sojod
ZAX "TiLuonisod
0 auwn fedaq
1 eydy
10°0 s pJeoq)iig
spieoq))ig 9fas
B 31emapEs
0L az153nand
013z - 1910 | :adfL 1dap/eiawes/ aidoy
3 3O smels <
®E SMaIA g s » TR -
000 135JJO «
AX aueld
<0 eydyy
rerzeL el 10102
saun 9)fas aun
l S22
|ewioN
ot 1132 aueid
<aweuy paxid> T AU
3O smels <
o] (puio) puo Lo 8
A0 5NILIS1eqo|D” «
— idoy <aWweltd paxid> "esd1abuel
R y dew/ aweid paxiy
21ewsI 2504 AZ & 0o
s aseq anow/ 21dog o'o'olll ::oa_uv_umm .
O — suendo 12qo|D” a
=@ sanadold jooL =@ skejdsig

2]PWNS3 3504 AZ |RODABN QZ 133135 12esa)u| [elswed anoW

Ing process.

A screenshot of the rviz tool visualizing a map buildi

Figure 4.4

29

‘AbstractOcTree |

[DataType : T|
OcTreeDataNode 1.8
[—— 1 walue : T
[N [

CoeType : T -childPtr : OcTreeDataMode <T=**

OccupancyOcTreeBase A ‘
-root @ T*
| 0.1 [childArray

FAY
OcTreeNode
SR > e : float
-root : OcTreeNode*
il
ColorOcTree ColorOctreeNode
“root : ColorOctreeNodet [-color : ColorRGE

Figure 4.5: The class diagram of the Octomap library

which are a composition of a series of Node types. The class diagram used of the
Octomap library is shown in Figure 4.5.

Inheritance is used across the Octree classes, where basic tree functionality is
implemented in the OcTreeBase class, and mapping functionality is implemented in
the OccupancyOcTreeBase class. The OcTree types are templated over the data type
stored in the node. This strategy allows the same tree structure to be used while
allowing the data stored in the node to be modified so that it is relevant to the
mapping application.

The first node type OcTreeDataNode, includes a templated data value, as well as
child and parent pointers. The node implementation is memory efficient in comparison
to a naive implementation due the fact that nodes at the lowest level of the tree, or
leaf nodes, do not allocate pointers to their children, since only a pointer to an array
of children is allocated rather than the child pointers themselves. The main node
type, OcTreeNode inherits from OcTreeDataNode and defines the data values’ type.

The main type used for octree mapping is the OcTree class, which is a composition

30

of the OcTreeNode class. This strategy of templating the octree across node types
allows the extensibility of the library to be used with additional data stored in each
node, such as the ColorOcTree shown in Figure 4.5.

Included with the library is a visualization tool, octovis, which can load an octree
map from disk and display it in 3D using OpenGL. Octovis allows users to verify
the correctness of constructed maps. Additionally it is used in this work to present
experimental results. Octovis is used throughout this work to present the validity of
merging results. An example of an Octree occupancy grid as displayed by octovis is
shown in Figure 4.6 where dark blue colours represent nodes with high occupancy
probability. In Figure 4.6 a map which represents a small part of an environment
containing the corner of a room and a doorway is shown.

Octomap does not however provide any functionality for transforming entire maps
or merging multi-depth sources efficiently. However, given that the source code for
the library is freely available it remains freely modifiable for contribution of the work
of this thesis. The theoretical background for the addition of this functionality shall

be discussed in Chapter 3.

4.2.2 Octomap Robot Operating System Implementation

Octomap is integrated into ROS such that 3D octree occupancy grid maps can be
build from 3D point cloud data within a ROS environment. The developers of Oc-
tomap provides a map server for the ROS system that subscribes to a topic publishing
point cloud messages and builds the map using localization from tf library. The con-
nection of ROS topics for an example octomap mapping application is shown in Figure
4.7. This example considers a robot using external localization data from a motion
capture system provided by the mocap_node ROS node and an additional node that
incorporates the data published by mocap_node into the transform tree. A Microsoft
Kinect sensor is used to provide 3D point cloud data to the octomap server node and
is published in the /camera/depth/points topic. Transforms between map and sensor
frames are published on /tf topics, which represent the transformation between ref-

erence frames pertaining to sensor relative to the map. The transform tree for this

31

Figure 4.6: A visual representation of an Octree occupancy grid as displayed by the
Octovis visualization tool.

32

/map tf broadcaster

Jcamera/depth/points foctomap server node
/open_ni_kinect

Figure 4.7: An example of the topic connections between nodes of a mapping appli-
cation using Octomap.

mapping application is shown previously in Figure 4.2. The map is then accessible
through a service and a custom map message. A ROS node for requesting this service

and saving the map to disk is also provided.

4.3 Point Cloud Library

PCL is a software library for 3D image and point cloud processing [33]. The PCL li-
brary contains many algorithms for several aspects of point cloud processing including
filtering noisy data sources, estimating features, reconstructing surfaces, segmenta-
tion, and most importantly for this work, registration. The registration component
of PCL includes routines for performing alignment of 3D point clouds with the ICP
algorithm. The library includes several optimizations to the original ICP algorithm to
reduce computational complexity of the registration process. The registration com-
ponent of the library is used throughout this work as an implementation of the ICP
algorithm. PCL also provides visualization tools which are used in this thesis to pro-
vide an observation method to verify that the ICP registration routines converge to

a desired result.

4.4 Conclusion

This chapter presented an overview of the existing software tools used to support
this thesis. The Octomap library is used as the foundation of the work and provides
the functionality that allows us to build and manipulate 3D octree occupancy grid
maps. ROS provides us with a mechanism to interface the sensor observations of both
simulated and physical robotics platforms to the Octomap library and build maps.

Finally, the PCL library provides us with existing registration routines that may be

33

used to improve the transformation estimate between two merged maps. Each of
these tools provide valuable functionality which is incorporated into the problem of

merging 3D octree occupancy grid maps. This problem is formally defined in Chapter

d.

Chapter 5

Problem Formulation

In this chapter we outline the problem being investigated and introduce the notation
that will be used throughout the work. We begin by describing the probabilistic
representation of an octree map. We follow by exploring the problem of calculating
a transformation between map reference frames from sensor observations of robots in
a rendez-vous scenario. The use of ICP to reduce the error in initial transformation
estimates is discussed. The problem of performing this transformation on an octree
map is also explored. Finally, once maps are in a common reference frame, rules for

incorporating data into a global map are introduced.

5.1 The Octree Map

In this work an octree map, M is defined as a set of m leaf nodes. Let n be a leaf

node in the map.

|M|=m (5.1)
neM (5.2)
Each leaf node represents a volumetric subdivision of 3D space, and contains the

log-odds probability of its occupancy, L(n), a function of that volume’s occupancy

probability, P(n):

L(n) = log L?—%} (5.3)

5.2 Map Merging

Let a merged map M’ be defined as the merger of one map M, into another map M,

without loss of generality.

34

35

M' = My U M, (5.4)

Where,
ny € My, |M|=my (5.5)
ng € My , |[Ms] =my (5.6)

It is important to note that M; and M, may not necessarily be of the same size
as shown in Equation (5.5).

This merger requires three key steps to be performed:

1. Calculation of the transformation matrix, 7', to transform Mj’s data into the

coordinate system of M;;
2. The transformation of My’s data into M;’s coordinate system.
3. Integration of data from M, into Mj.

These steps are now described.

5.2.1 Calculation of Transformation Matrix

The merger of two maps requires the calculation of a 4 x 4 transformation matrix, T’
from one map’s coordinate system to the other. Homogeneous coordinates are used
in the transformation matrices. The addition of another dimension to the transform
matrices allows both rotation and translation to be performed in the same matrix
multiplication. The transformation from M,’s coordinate system into M;’s coordinate
system is denoted, TZ. This transformation can be used when merging data from M,
into M;. When merging data from a leaf node ny, in Ms, centred at point s in
Ms’s coordinate system, the corresponding point in M;’s coordinate system, xq, is

calculated as:

36

The transformed point can be used to look up the corresponding leaf node n; in
the map, M; which encloses the point x;.

In order to calculate this matrix 7%, this work considers a merger when two robots
are in a rendez-vous scenario where both can mutually observe each other. In this

case the transformation matrix is calculated in two steps:

1. Calculation of initial transformation estimate from mutual pose observations.

2. Calculation of final transformation estimate from map data.

5.2.1.1 Calculation of Initial Transformation Estimate

This step of the transformation calculation obtains an initial transformation matrix
from the two robots’ mutual observations of one another. This step assumes that the
robots are capable of mutually observing one another. This work follows the same
framework for obtaining a transformation matrix as described by Dinnissen in [2].
Since the robots make observations of one another in their local frames of reference,
the initial transformation matrix 7%, is obtained from a product of three different
component transformations. The first component, T, , is the transformation matrix
to convert points in the current robot’s local frame of reference to its global frame
of reference from its pose at the time of the merger. The second component, 7). |
is the transformation matrix to convert points in the other robot’s local frame of
reference to the current robot’s local frame of reference. This matrix is built using
the other robot’s sensor observations. The final component, T, , is the transformation
matrix to convert points in the other’s robot’s frame of reference to its global frame
of reference from its pose at the time of the merger. The following equations show
the calculation of T7, from each component. These equations are shown using two

dimensional transforms for ease of demonstration, however it can be extended to three

37

dimensions without loss of generality.

T, =T.T, T,

cos 6, —sinf. t, | |cosb, —sind, te, | |cosb, —sind, te,
= |siné, cos 8, Ly, sin 6, cos 0, ty, sind, cosf, ty,
0 0 1 0 0 1 0 0 1
Where:
0,.=m7—0,+0, (5.9)
ty, =1 COS0, (5.10)
ty, =rsinf, (5.11)

Figures 5.1 and 5.2 shows how all the component transformation matrices combine
to form the desired transformation matrix as well as the meaning of the remaining

variables in Equation (5.8).

AN T = 90—>c + Hc—m

Figure 5.1: Diagram illustrating how relative equations are determined (Used from
[2] with permission).

5.2.1.2 Improvement of Transformation Matrix

It is important to recognize that the initial transformation estimate is obtained from
uncertain sensor observations. In addition, each robot’s knowledge of their own posi-

tion is uncertain given that it is subject to error in odometry and error in its previous

38

Figure 5.2: Diagram illustrating how transformation matrices and parameters are
determined (Used from [2] with permission).

39

sensor observations. As such, while the initial transformation estimate does provide
some useful information, it is often undesirable to rely on that information alone to
perform map merging.

For the case of octree occupancy grid maps, the ICP algorithm is chosen as the
method for improving the accuracy of the transform between maps. Although [29]
describes ICP as an algorithm that may be used on arbitraty features, a point cloud
representation will be generated from the maps M; and M, to be used with ICP as
described in [30].

Point cloud generation is performed by adding the centre point of each occupied
leaf node in the map to the point cloud. Once these point cloud sets are created the
initial transform estimate as discussed in section 5.2.1.1 is applied to the second point
cloud such that both point clouds are roughly in the same frame of reference. A Subset
of each point cloud which represents commonly mapped territory is extracted. This is
done by determining bounding boxes for each point cloud. Those points contained in
the intersection of the two bounding boxes are added to the subset which represents
commonly mapped territory.

The ICP algorithm is then performed on the point clouds which represent com-
monly mapped territory to obtain the registration vector, and subsequently a refine-
ment to the transformation between the two frames of reference for each robot, Trcp,

which is then used to refine the overall transformation as:

Tt = TrcpT?, (5.12)

Now that a sufficiently accurate transformation is obtained it is necessary to apply

this transformation to the map.

5.2.2 Map Transformation

Once a sufficient estimate for the transformation between maps is known it is nec-

essary to perform this transformation on M,’s data obtaining the transformed map,

Tt
M

40

This transformation is performed on the map using trilinear interpolation as de-
scribed in Section 3.2. The bounding region is of the transformed map is initially
determined using 77 and the bounding region of M,. The transformed map is then
built by iterating through each leaf node, n , at the lowest level of the octree hierarchy
in the bounding region of the transformed map and assigning an occupancy. This
occupancy is determined by looking up the source point x4 from the centre point of

the current voxel, x,, and the inverse transformation as:

T = Tf_lznn (5.13)

Once x4 is known, the occupancy of the voxels whose centre points enclose x, in
a cubic lattice are used to calculate the final occupancy assigned to node n.

Once all nodes in the bounding region have been accounted for, a map will have
been created entirely with leaf nodes. Map compression is then performed using the

existing algorithms from the Octomap library as described in Section 2.4.

5.2.3 Integration of Map Data

The creation of this merged map, M’, is then performed by updating M; with the
data from MQT 12. Given the nature of the octree data hierarchy, commonly mapped
portions of the environment may be mapped at different levels of the octree hierarchy.
While this problem could be overcome by simply expanding all nodes in each map to
the lowest level, this is inefficient since it requires the processing of additional nodes.
As such, this work only performs local map expansion in cases of map-level conflict.
This requires MQT 12’s data to be incorporated into M, differently corresponding to
four different cases which are described below. Readers should note that clamping as
described in Section 2.4 should be implemented for occupancy updates but is omitted

here for simplicity.

41

5.2.3.1 Case 1 - New Data Is from a Volume that Is Not Already Mapped in M;

2
If the new data to be integrated from MQT ! does not correspond to an existing leaf
node in M after performing the transformation described in equation (5.7), a new
leaf is then added to the octree. The leaf’s occupancy probability in log-odds notation

is then set to be equal to the log-odds occupancy of the node in MQT 12:
L(ni|z14) = L(na|z1:-1) (5.14)

Where, L(ng|z14—1) represents the log-odds occupancy of the leaf node from MQT 12
and L(nq|z1.) is the merged occupancy of the new leaf node at time ¢ following the

merger.

5.2.3.2 Case 2 - New Data is Already Mapped at the Same Level in M,

If the new data to be integrated from MZT : corresponds to an existing leaf node in
Mjy’s octree which is at the same level in the tree, the following update calculation
applies:

L(ni|z14) = L(ny|z14-1) + L(na|z14-1) (5.15)

L(nq]z14—1) then represents the existing log-odds occupancy at leaf node n;.

5.2.3.3 Case 3 - New Data corresponds to a Volume Already Mapped at a Coarser

Resolution in M;

If the new data to be integrated from MQT t corresponds to an area covered by a leaf
node nq, where ny is at a higher level in the octree, or a coarser resolution, the merger
is performed by first adding a lower level to M;’s tree below n;. This addition creates
eight new leaf nodes, n} to nf. This process is shown in Figure 5.3.

Where each sub-element of n; contains the log-odds occupancy of:

L(n}) = L(m) (5.16)

Following this step, ny’s data is then integrated to the sub-element of n; repre-

senting the same space by the formula:

42

ny
Mo
| |
1 2
n 1 n 1
ni | ni n2

Figure 5.3: The addition of another level below n; prior to merging.

L(nk|zy) = L(nﬂzl:t_l) + L(ng|z1.4-1) (5.17)

5.2.3.4 Case 4 -New Data corresponds to a Volume Already Mapped at a Finer Resolu-

tion in the Existing Octree

This case describes the situation where data from a leaf node, ny € M2T : maps a
volume already mapped in M; and data from MQT f is at a coarser resolution than in
the existing map, M;. In this case, the integration of data from ns is performed very
similar to 5.2.3.3. The integration of data is performed first by adding an additional
level to M2T 5 tree below ny. This addition creates eight new leaf nodes, ni to n$.

This process is shown in Figure 5.4.

L

)
ny
l |
ny |ni
3,1
m ns | ny

Figure 5.4: The addition of another level below ns prior to merging.

43

Where each sub-element of ny contains the log-odds occupancy of:

L(nk) = L(ny) (5.18)

Following this step, each sub-element of ny’s data is then integrated in to the

elements of M; representing the same space by the formula:

L(ni|z14) = L(ny|z1:-1) + L(nb|z1.1) (5.19)

Where n; represents any leaf node in M; which maps the same area as the sub-

element of ny that we are merging.

5.3 Conclusion

This chapter has presented the developed theoretical components required for map-
merging with unknown transformations between map reference frames. The imple-

mentation of this theory into software is described in Chapter 6.

Chapter 6

Implementation

This chapter discusses the implementation of the theory discussed in Chapter 5 into
software algorithms. In this chapter the overall global map merging algorithm is

divided into several sub-algorithms:

1. The creation of 3D point clouds from Octomap Octree maps such that the the
ICP algorithm can be performed on map data to refine the initial transformation

matrix within the context of PCL.
2. The extraction of intersecting volumes from each point cloud set.

3. The refinement of the initial transformation estimate between map reference

frames using the ICP algorithm.

4. The application of the transformation to the second map to be merged such

that each map is now in a common reference frame.

5. The integration of occupancy data from the transformed map into the first map

to create a global map from the data of each robot.

The sequential execution of these algorithms results in a merged octree occupancy
grid that is robust to error in the transformation estimate between the maps. A de-

tailed description for each sub-algorithm is given in addition to pseudo code notation.

6.1 Creation of Point Clouds from Octomap Octree Maps

In order to use the available ICP algorithms from PCL it is necessary to translate map
data into point clouds. This is done for both maps to be merged. This translation is
performed by iterating through each leaf node, njeqf, in a map, M, and adding the
node’s centre point to the Point Cloud if the node is occupied. This node uses the

same definition of occupied as [8] where the node’s log-odds occupancy must have

44

45

reached the clamping threshold, l,,,., to be considered occupied. Pseudo code for

this algorithm is shown in Algorithm 1. The C++ Implementation of this algorithm

Algorithm 1: Creation of point cloud sets from Octomap octree maps
Input: An Octomap M
Output: A Point Cloud Pg
begin
P« 0;
foreach n;.,; € M do
if L(n) > lpe, then
| Poy = Py + CentrePoint(n);
end

end
end

with PCL and Octomap is shown in Appendix A.1.

6.2 Extraction of Intersecting Volumes from Point Cloud Sets

In order to use the ICP algorithm successfully, one must have two feature sets which
represent the same rigid body as either the data set, W or the model set, X. To
extract these sets, this work first applies the initial transform estimate to the second
map’s data point cloud set, W. Those points representing intersecting volume of the
two sets are then extracted by initially extracting the points in W that are contained
within the bounding cubic lattice of the entire set X. This selection of points from
W is denoted W,. Secondly, those points from X contained in W,’s bounding
cubic lattice are extracted to obtain, X,.. Pseudo code for this algorithm is given
in Algorithm 2. It is important to note that the location of the bounding boxes for
each point cloud set are determined using utility functions, GetMetricMin() and
GetMetricMazx(). These functions return a vector where each component represents
the lowest and highest displacement from the origin along each axis in the point cloud
set. The C++ Implementation of this algorithm with PCL is shown in Appendix
Al.

Algorithm 2: Extraction of Point Clouds from Intersecting Volumes

Inputs : Point Clouds, W and X, Transformation Matrix 77,
Outputs: Point Clouds, Wy, and X,
begin
Wsel — (2)7
Xsel — @;
Tmaz = 0;
TransformPointCloud(P, TE,);
Tmin = GetMetricMin(X) ;
Tmae = GetMetricMax(X) ;
foreach w € W do
it Zring < We < Traze N Ting < Wy < Tmagy and
Tomins < Wy < Tymaz, then
‘ Weet = Wt + w;
end
end
Wpnin = GetMetricMin(W) ;
Wnae = GetMetricMax(W) ;
foreach x € X do
if Wining < o < Winazy and Wining < Ty < Winazy and
Wminz < Tz < Wnazy then
‘ KNsel = Xget +)
end
end
end

47

6.3 Refinement of Initial Transform with the lterative Closest Point Al-
gorithm

In merging situations prone to error in the initial transformation estimate between
map reference frames, it is necessary to perform map alignment using data from
commonly mapped territory. In the previous section, one method for extracting
a commonly mapped portion of the environment is introduced. Refinement of the
initial transformation is performed by iteratively performing the ICP algorithm on
the data and model sets W and X respectively. Each incremental transformation is
then incorporated into the overall refined transformation by post multiplication after
each ICP iteration.

It is important to note that the ICP algorithm described in Section 3.3.1 would be
computationally expensive to compute due to the requirement to determine the set
of points from the model that correspond to the target. In the PCL library, several
parameters exist to reduce the cost of determining this correspondence set. Most

importantly for this use of ICP are:

e Maximum correspondence distance;

e Maximum transformation e.

The maximum correspondence distance reduces the search space for correspondences
to be found in the model set by only searching for correspondences in a sphere centred
at a point in the data set with a radius equal to the maximum correspondence dis-
tance. The maximum transformation € reduces the search space for transforms that
minimize the mean square error. The maximum transformation € is a measure of the
maximum allowable transformation between ICP iterations, defined as the sum of all
elements in the difference between the transformation matrices from two consecutive
ICP iterations. Use of these parameters allows the ICP algorithm to begin with a
large correspondence distance to make large scale transformations initially. Then,
once the ICP algorithm has converged with its initial maximum correspondence dis-
tance, the maximum correspondence distance can be decreased to make further small

scale refinements to the transformation.

48

Another important observation is that the ICP algorithm performs better when
there is a larger number of points in the model set , X, than the data set, W. For
continuous sensor registration applications this is usually the case. However, for map
merging algorithms it may not always be the case that M; has more nodes in the
common portion of the environment than M,. Since both the generated point clouds
from M; and M, represent the same portion of the environment, the point cloud of
largest size is used as the model set, with the point cloud of smallest size used as
the data set. If point cloud sets are interchanged, then the inverse of the refinement
transformation matrix is returned.

The details of ICP refinement algorithm are also described further in Algorithm
3 with the C++ implementation using PCL shown in Appendix A.1.

6.4 Execution of Refined Transform

After obtaining a final transformation with ICP refinement, the overal transforma-
tion matrix to obtain MQT 12, T?Z, is obtained by multiplying the original transformation
matrix estimate by the ICP refinement. This transformation is then performed on
the map as described in Section 3.2. The process for performing this transformation
is described further in Algorithms 4 to 7. The high level transformation with pseudo
code shown in Algorithm 7, begins by first determining a cubic bounding region of the
transformed map. This is done by first determining the metric minimum and maxi-
mum points of the map using functions from the Octomap Library. These points are
then used to determine the eight vertices of the bounding cubic region for M. Subse-
quently each of these points are transformed with 72. The minimum and maximum
x, y, and z component are then extracted to obtain p,,,, and p,,,,. Pseudo code for
this process of extracting a bounding region of the transformed map is shown in Algo-
rithm 4. It is important to note that the bounding region for the transformed map is
determined using the, GetMetricMin() and Get MetricMaz() utility functions from
the Octomap library. These functions return a vector where each component repre-
sents the lowest and highest displacement from the origin along each axis in the map

specified as a parameter. The extracted points are subsequently used to iterate over

49

Algorithm 3: Iterative Closest Point Map Transformation Refinement

Inputs : Point Clouds, P, and X, Resolution of the Octree Map, mapRes

Output: Refined Transformation Matrix Trcp

begin

Set]ICPMaxEpsilon(mapRes/60) ;

Set]1CPMaxCorrespondence Distance(10mapRes) ;

Ticp=1;

Ti=1;

Ti1=1;

Presult — (Z) 3

if ‘Psel| < |Xsel| then

Presult = Psel ;

SetICPModel(Xse) ;

for ¢ =0 tomaxICPlterations do

SetICPData(Presu) ;

Tioa =1 ;

DolIC P Alignment(Pyesut, T;) ;

Ticp = TrcpT; ;

if ijl Sy Tiji — Tim1jp < GetICPMazxEpsilon() then
‘ Decreasel C PMaxCorrespondenceDistance() ;

end

end

else

Presult = Xsel ;

SetICPModel(Psy) ;

for i =0 tomaxICPlIlterations do

SetICPData(Presu) ;

Tiy=1;;

DolIC P Alignment(Pesut, T;) ;

Trcp = TicpT; ;

if 2?21 22:1 Tiji — Tim1j, < GetICPMazxEpsilon() then
‘ Decreasel C PMaxCorrespondenceDistance() ;

end

end

Ticp = Trep ™ ;
end

end

20

the voxels in the bounding box of the transformed map and look up the occupancy of
the nodes of the original map. Using utility functions from the Octomap library, the
leaf node nearest to the point generated by the inverse transform with the location of
the transformed map’s voxel centre point is determined. The offset of the generated
source point and the centre point of the nearest neighbour node is then used to deter-
mine the occupancy of the interpolated point with trilinear interpolation as described
in Algorithms 5 and 6. A leaf node is then added to the transformed octree with the
interpolated occupancy. Once all voxels in the transformed map’s bounding box are
addressed, the transformed map is then compressed with the Octomap library. The
overall algorithm for transforming octree maps is shown in Algorithm 7 with its C++

implementation shown in Appendix A.2.

6.5 Integration of Transformed Map into Global Map

Now that both maps are in a common reference frame, data from MQT ; can be inte-
grated into M to create a global map M. This global map is created by iterating over
each node in MQT ! and updating M; with its data according to the rules described in
Section 5.2.3. At each step of the iteration the location of ns is searched in M; to de-
termine if a corresponding node n; exists. If this is not the case, Case 1 from Section
5.2.3.1 applies. If n; does exist, it is required to determine the depth difference of n,
within MQT 12 's tree and ny within M;’s tree. If there is no depth difference, Case 2 from
Section 5.2.3.2 applies. If the depth difference is positive, Case 3 from Section 5.2.3.3
applies. This scenario requires children to be added to n;. The child corresponding
to the same volume as no is then updated. Finally, if the depth difference is negative,
Case 4 from Section 5.2.3.4 applies. This scenario requires children to be added to
no. Each added child is then used to update the corresponding nodes in M;. Given
that this algorithm is written with the intent to be implemented with the Octomap
library and the C++ programming language, a for loop may be used to integrate the
added children to ny on subsequent loop iterations. This is due to the specific imple-
mentation of the Octomap node iterator class. With this implementation, children

are simply added to ny and Case 2 updates are executed in later loop iterations for

Algorithm 4: Extraction of Transformed Map’s Bounding Box

Inputs : Octree Map M, Transformation Matrix 7%
Output: Points p,,;,, and p,,,.
begin

PBoundingBozv — @ 3

DPoin = GetMetricMin(M) ;
Ponaw = GetMetricMax(M) ;

P = P“i‘ [pmznm pminy Pmaz
P = P+ [pmmx pma:vy Pmin
P=P+ [pmmm Pmazy Pmaz
P = P+ [pmarm pmmy Pmin »
P = P+ [pmaxx pminy Pmaz
P = P+ [pmamm pmaxy Prmin
P=P+ [pmam Pmazy Pmaz
foreach p € P do

| p=Tp
end
foreach p € P do
if p, < pmin, then

— g —
S

[R—

[Ry RE—'

54 89 8 8 5 93 4

[A—

‘ Pming = Pz

end

if p, < Pminy then
‘ pminy = Py;

end

if p. < pmin, then
‘ Pminy = Pz

end

if p. < Pmaz, then
‘ Pmazyz = Pz

end

if p, < Pmaz, then

| Prasy = Py

end

if p. < pmaz, then
‘ Pmaz, = Pz;

end

end
end

52

Algorithm 5: Trilinear Interpolation
Inputs : Axis-Offsets x4, y4, and zg, Interpolation points cogo to 111
Output: Interpolated Occupancy, ¢
begin

coo = (1 — |zal)cooo + [2alc100 ;

cor = (1 — [za])coor + |zalcion ;

cio = (1 — |zal)coro + [2alci1o ;
cin = (1 — |zal)con + |zalenn ;

co = (1 — [yal)coo + [ydlcio ;

c1 = (1 = |yal)cor + |yalen ;

c=(1—|za|)co + |zalc1

end

the added children. Pseudo code for this algorithm is shown in Algorithm 8 and its

C++ implementation is shown in Appendix A.3.

6.6 Conclusion

This chapter has presented the implementation of the theory discussed in Chapter 5
into algorithms that may be implemented with PCL and Octomap. Each algorithm
was described in detail with pseudo code notation given for each and C++ source
code referenced in Appendix A. Now that a software implementation for merging
octree occupancy grids is given, experimental results of successful map mergers for

both simulated and true environments will be presented in Chapter 7.

23

Algorithm 6: Trilinear Interpolation for Octree Occupancy Grids

Inputs : Octree Map M, Nearest-Neighbour Node n,,, Axis-Offsets x4, y4,
and zy4
Output: Interpolated Occupancy, ¢
begin
res = GetResolution(M) ;
€000 = P(Nego) ;
coo1 =0 ;
Ny, = LookupNode(M, p,, —+ [0 0 resx Sign(zd)]T)
if n¢y, € M then
‘ Coo1 = P(ncom))
end
cor0 =0 ;
Ny = LookupNode(M, p,, —+ [0 res x Sign(ya) O}T)
if ng,, € M then
‘ Co10 = P(”Cow))
end
cor =0 ;
Neoyy, = LookupNode(M, Pp.,,, T [O res x Sign(yq) res x Sz’gn(zd)]T)
if ng,, € M then
‘ corn = P(ney,,)
end
c100 =0 ;
Neygo = LookupNode(M,p,, —+ [res x Sign(zq) 0 O]T)
if n.,,, € M then
‘ Ci00 = P(ncmo) ’
end
c101 =0
Neyy, = LookupNode(M, p,,, —+ [res x Sign(zq) 0 res x Sign(zd)]T)
if n.,,, € M then
‘ ci1 = P(ney,) ;
end
c110 =0
Neyyo = LookupNode(M, p,, —+ [res x Sign(zq) res x Sign(yq) O]T)
if n.,,, € M then
‘ C110 = P(ncno) ;
end
cinn =0;
Neyyy, = LookupNode(M
[res x Sign(xzq) res x Sign(yq) — res x Sign(zd)}T)
if n.,, € M then
‘ €111 = P(nclll))
end
¢ = Trilinear Interpolation(xq, Ya, 24, Co00s Coo1, C0105 Co11, C1005 €101, C110, C111)
end

P Tegoo

o4

Algorithm 7: Octree Map Transformation with Trilinear Interpolation

Inputs : Octree Map M, Transformation Matrix T, Points p,,;, and p,,q.
Output: Transformed Map M’
begin
Prmin = 03
Ppas = 0;
GetMapBoundingBox(M, T2, D, in: Prnaz)
T = Pming »
Y = Pming 5
Z = Pming
res = GetResolution(M) ;
while 2 < p,4., do
while y < py4z, do
while © < p;,4., do
T
Dgest = [x Y Z] ;
Psource = Tlg_lpdest ;
Meooo = LOOk‘upNOdG(M, psource) ;
if n¢,,, € M then
Py, = CentrePoint(ncy,) ;

Tq = (psourcew - pnCOOOm)/T&S ;
Ya = (psourwy - pncoooy)//res)

Zd = (psource,z - p”Coooz)/res ;
TrilinearOctreelnpterpolation(M, Ny, Ta, Ya, 2d) ;
AddLeafToTree(M', py.q,C) ;
end

r=2x-+res;

end

y=y+res;

end

zZ=z+res;

end

CompressMap(M') ;

end

5}

Algorithm 8: Octree Map Merging of Transformed Maps

Inputs : Octree Maps M; and M)
Output: Merged Map M
begin
foreach ny € M) do
ny = SearchMap(M,, CentrePoint(nsg)) ;
if ny € M; then
depthDif ference = NodeDepth(ny) — NodeDepth(n,) ;
if depthDif ference = 0 then
| UpdateNode(ny, LogOdds(ns)) ;
else if depthDif ference > 0 then
AddChildrenToNode(ny, depthDif ference) ;
n) = SearchMap(M,, CentrePoint(ns)) ;
UpdateN ode(n), LogOdds(ns)) ;
else if depthDif ference < 0 then
‘ AddChildrenToNode(nsy, depthDif ference) ;

end

else
| AddNodeToTree(M,, CentrePoint(n,)), LogOdds(ns)) ;
end

end
end

Chapter 7

Results

In this chapter, the results of successful map mergers are presented from both simu-
lated and real-world environments. In each of these cases, the ROS system used for
building each map is described as well as the use of the implemented software to merge

the maps together. The results of each merger are then presented and discussed.

7.1 Simulated Map Merging

In this section the merger of two maps built within a simulated environment is pre-
sented. This experiment uses the Gazebo simulation environment that is integrated
into ROS. This work uses the Fuerte release of ROS as well as the Turtlebot stack

included in the ROS Fuerte repositories.

7.1.1 Gazebo Simulation Environment

For this experiment, ROS’ integrated simulation environment, Gazebo, is used to
allow a simulated Turtlebot UGV with an artificial Microsoft Kinect Sensor to traverse
a synthetic environment and build an octree occupancy grid map of a portion of that
environment. Another simulated robot then maps a different part of that environment
while mapping a small portion of the same area covered by the first robot. The

simulated environment and robot are shown in Figures 7.1 and 7.2 respectively.

7.1.2 Map Building

To build each map, an instance of the Gazebo simulator is launched. The environ-
ment is then loaded with the wg_collada_world model included with the simulator
package. A simulated Turtlebot UGV is then spawned using the turtlebot_gazebo

package. This package includes facilities to visualize the simulated robot from the

o6

o8

Figure 7.2: The simulated robot in its environment.

29

simulator’s GUI and emulate sensor observations as if the robot were physically in
the same environment.

To provide localization for mapping, a transform broadcaster has been written
to publish tf data from Gazebo’s /gazebo/model_states topic. This transform broad-
caster, named the /map_tf broadcaster node, subscribes to the model_states topic.
This topic contains state data about each simulated model in Gazebo. This data in-
cludes the pose of the robot relative to the environment. As such, the /map_tf_broadcaster
node extracts the pose of the robot relative to the environment and adds a frame to
the transform tree called /map which is a parent of the robot’s /base_footprint frame.
This transform tree is shown in Figure 7.3.

Finally, to provide map serving capabilities, the /octomap_server node from [8] is
run. This node subscribes to the /camera/depth/points topic to provide 3D sensor
observations of the environment as well as the /map_tf broadcaster node’s /tf topic
to provide localization and subsequently uses the sensor observations to build and
host a map. The node and topic connections for this system is shown in Figure 7.4.

In order to build two separate maps to be merged, two separate mapping runs are
completed. In the first run, the robot is spawned using the /gazebo/model_states topic
directly for localization. The robot is then tele-operated through the environment
until it reaches a rendez-vous point with the second robot and the map is saved to
disk. In the second mapping run the robot is spawned in a different location. For
localization, /4 is added to yaw angle of the /gazebo/model_states topic’s orientation
so that maps are built in different voxel discretizations. The individual maps as well

as the combination of the two maps prior to transformation are shown in Figure 7.5.

7.1.3 Map Merging Results

The two built maps are then passed to the implemented map merging software as
command-line arguments along with an initial guess of the transformation between
map reference frames. The software as described in Chapter 6 converts these maps
to point cloud representations and performs ICP transform refinement to obtain an

improved transform between each map. The implemented software also includes

60

PO 225 BEE'0TB0LSSHET (LUIOJSURI] JUR0] 1500

awey |edo yidep eiawedf

auwely |eoido gbu”elBWwedf

995 1££'G y1bus] Jayng
P10 225 66€'0T80L9G6ET (WIojsURI] JUED3] 350
ZH TST°0€ ‘2124 sbeiony
Jaysignd aieE 000 (1215E0pEROIg

395 1££'S Yibus| Jayng

Pl0 225 65€°0TE0L9GEET (WI0J5URI] JUSD2 150
ZH 161'0€ 12384 2Bei2AY

Jaysignd 238 1000 1 1915EIPROIG

awely yidep essLIRY/

awely gbl emwe/

285 1££°G ybu| J2yng
Plo 385 66£'0T80L9SEE T (ULOJSURI U031 150
ZH 151 0€ :@1el sbeisay

Nd 23183 10904 :J2lsespeo.g

295 T//°5 (YPue| Joyng

Plo 225 668 0T80/9SEET WI0JSUBIY U021 IS0k
ZH 1S1'0€ 2381 2belany

Jays)gnd 21235 10g0 4 (J21SE0pE0IT

By

Um0 PaupHopuels/ su e a3e)df

1™ PBup Hopuels/

098 1££'S 'yibuz| Jayng
PI0 098 BEE'0TB0LISAET (LUIOSUEBI] JUS0S IS0
ZH TST'0€ ‘@38 sbeeny
Jays|gnd =3B 1000 (Ue1seopeOIg

028 1££'G 'yPus| Jayng
PIo 985 B6£ 0180/ 9SBET HLII0JSUEL] JUSD3. 150l
ZH 15T 0€ =238l sheleny

nd =3e3E 1090 ‘ieiseopeolg

028 1££'S yhuz| Jayng
|0 99s BEE'0TBOLSSAET (LUIOSUBI] JUS0S IS0l
ZH TST'0€ =238 sBeny
Jays|gnd =3eE 3090 (Ieisecpeolg

028 1££'S yhuz| Jayng

ZH TST'0€ =238 sBeny
nd =383 3090 'Ieisecpeolg

By By

SJul" g 23R/

985 1££°G (y3pus| Jayng
Plo 535 66€'0TB0LISEET iLLIIOjSURIY JUZD2 350

ZH 15T'0€ 38l abeiany
Jeysiignd aieE 000 U2isedpeoIg
EQ@
235 1/£°G :yipue| Jayng
PIo 935 66E'0T1B0L9S6ET (LLIIOJSUERIY JUSD3] 350
ZH 151 °0€ 2381 3Beleny
Jays|ignd a3eE joqoy [i2Isedpeolg

Um0 3edf

Ul "0 120 eds/ oy M IEa Y

028 1££'G yhuz| Jayng
Plo 325 B6£'0T80L9SBET (WIOJSURIL JUSD3. 150N
ZH TGT'0€ 230l 2heleny
Jeys|gnd 218 J0g0y/ 1 ielsespeoig

088 1//°G :yus| Jayng
PI0 985 B6E'0T80/9GAET (IIOJSUEL] U0 IS0l
zZH 1GT'0€ 2jed sberny
Jausignd =183 10qoy 1sisedpeo.g

U aseq/

Jujidion sseq/

dewy

Ironment.

imulated env

ing a s

The transform tree for mapp

Figure 7.3

61

/robot_state_publisher

/camera/depth/points

/map_tf broadcaster

Figure 7.4: The node and topic connections for mapping a simulated environment.

/joint_states

/gazebo

Joctomap_server _node

/gazebo/model_states

visualization for the ICP alignment. As previously stated, maps are built with a /4
reference frame rotation. Therefore they must be transformed with a — /4 rotation to
be merged correctly. Therefore erroneous initial transform estimates near the desired
transformation are artificially induced and passed as command-line arguments to test
the ICP refinement process. The ICP refinement is shown visually for commonly
mapped portions of the simulated environment for a transform estimate error in the
yaw angle of 0.265 radians in Figure 7.6 with the first map shown in red and the second
in green. Figure 7.6 shows the alignment results before and after ICP refinement using
the point clouds extracted from commonly mapped regions of the map

Since the transformation between both maps is known exactly, this knowledge al-
lows us to evaluate how well the ICP refinement restored an erroneous transformation
estimate. This is done using two error metrics. The first, €,, evaluates the difference
of the rotation parts of the correct transformation matrix and the transformation
matrix obtained by the product of the initial transformation estimate and the ICP
refinement transformation matrix. The absolute value of each element of the differ-
ence of the rotation part of the two matrices is then summed to obtain €¢,.. Where the

correct matrix is:

cos § sin § 0 0

exact _ |~ simj cosh 0 0
T 0 0 0 0 (7.1)

0 0 0 1

And,
3
€ = Z Z | Treet — TfiTIijk| (7.2)
j=1 k=1

The other metric, ¢, evaluates the difference of the translation parts of the correct

transformation matrix and the obtained transformation matrix. The absolute value

(a) The map of the first robot.

A
?
=
=
=
=

(¢) The two maps prior to transformation.

Figure 7.5: Built octree occupancy grid maps of the simulated environment prior to

(b) The map of the second robot.

62

63

(a) Point cloud representation of common ter- (b) Point cloud representation of common ter-
ritory with initial transform error. ritory with ICP refined transform.

Figure 7.6: The results of ICP alignment of commonly mapped territory of the sim-
ulation environment for yaw-angle initial transformation error.

of each element of the difference of the translation part of the two matrices is then

summed to obtain ¢;. Where,

(7.3)

k=4

4
_ exact 2
&= |T5* =T} Ticr |
=1

Two transformation metrics are used rather than one single metric for the complete
transformation matrix due to the fact that small orientation (rotation) errors can
have a drastic effect on map alignment in comparison to moderate translation errors.

For this experiment, the transformation from the first map to the second map is
a rotation about the z-axis of /4, therefore the transformation error metric, €, for
several different uncertain transformations is evaluated in Table 7.1 with the erroneous
transformation estimates passed to the merging software as well as the values of e,
and ¢; before and after ICP refinement. Refinement attempts where the error in initial
transform estimate was too large for ICP refinement to converge to a desired result
are highlighted in red.

After observation, using visualization throughout the ICP refinement process, it

64

Translation Rotation € €t € €;
(x,y, 2) (roll, pitch, yaw) pre ICP | pre ICP | post ICP | post ICP
0,0,0) 0,0, 05) 0796312 | 0 218382 | 20.3253
0,0,0) (0,0,-052) | 0.741876 | 0 | 0.0255836 | 0.11396
0,0,0) (0,0, —0.6) 0521384 | 0 | 0.00492871 | 0.0659221
0,0,0) 0,0, —7/4) 0 0 | 0.0677813 | 0.795031
(0,0,0) (0,0,—-0.8) 0.0413005 0 0.0961062 1.02546
(0,0,0) (0,0, 087 0239007 | 0 0164128 | 1.82068
(0,0,0) (0,0,-0.9) 0.323436 0 0.658751 6.70871
(1,0,0) 0,0, —7/4) 0 1 0.0605207 | 0.712245
(0,1,0) (0,0, —7/4) 0 1 | 0.0753039 | 0.884319
(1,1,1) (0,0, —0.6) 0521384 | 3 | 0.0274716 | 0.357402
(1,1,1) (0,0,—-0.8) 0.0413005 3 0.0410986 | 0.469403
(0,0,0) (—0.1,0, —7/4) | 0.25308 0 0.448877 | 0.0352201
(0,0,0) (0,01, —7/4) | 0.25308 0 117584 | 8.70397
(0,0,0) | (—0.1,—0.1, —7/4) | 0.371481 0 0.0762914 | 0.794496
(1,1,0) (—0.1,0, —7/4) | 0.25308 2 | 0.0150514 | 0.187039
(0,0,1) (—0.1,0, —7/4) | 0.25308 1 215134 | 3.30602
(1,1,0) (0, 0.1, —7/4) | 0.25308) 864066 | 1.16931
(0,0,1) 0, 0.1, —7/4) | 0.25308 1 024857 | 1.18748

Table 7.1: ICP alignment error evaluation for simulated map merging.

65

was observed that €, values less than 0.25 and ¢; values less than 0.9 yielded coher-
ent merging results. As seen in Table 7.1 the ICP refinement implementation allows
transformation correction for a wide range of transformation errors. The ICP refine-
ment algorithm was able to correct yaw-angle errors up to 0.265 radians as shown
in the second row of Table 7.1. However for angles larger than this such as an erro-
neous yaw rotation estimate of -0.5 (row 1 of Table 7.1), the ICP refinement does not
converge to a desired result. This is often due to the fact that the distance between
corresponding points is so great that the ICP algorithm converges to local minima
rather than the absolute minima. One thing that is important to note is that the ICP
refinement strategy is often not effective in the presence of error in roll and pitch an-
gles. This is due to the fact that when intersecting bounding boxes of each are used
with the initial transformation estimate to determine commonly mapped territory,
the extraction fails to produce sufficient data sets for registration. This is shown in
rows 13, 14, 17, and 18 of Table 7.1.

Once these refined transformations are obtained, the transformations are then ap-
plied to the maps then merged. Using the octovis visualization to the coherency of the
maps are qualitatively evaluated. Figure 7.7 shows the result of a map merger with
exact knowledge of the transformation between the two maps. Dark blue voxels cor-
respond to high occupancy where as lighter shades of blue represent lower occupancy.
It can be seen that data from the second map is interpreted as lower occupancy,
however this is due to the fact that data from the edge of occupied territory is spread
over several voxels due to the m/4 rotation. This being said, after being transformed
to the other robot’s reference frame the data is still coherent, as free and occupied
space, remains as such and additional information is added to the map.

Figure 7.8 also shows the results of a merger with an erroneous initial transform.
This figure compares the coherency of map mergers with and without ICP transform
refinement. The merger in this example has a yaw-angle error of 0.265 radians (row
1 of Table 7.1). Figure 7.8 demonstrates that the map is satisfactorily aligned by the
ICP refinement, allowing the implemented map merging algorithm to be a suitable

candidate for merging when transformation estimates are obtained from uncertain

66

Figure 7.7: The merged map of the simulated environment with exact transformation
knowledge

67

sensor observations.

7.2 Real-World Map Merging

In this section the merger of two maps built within a laboratory environment is
presented. In this experiment, an environment is set up for a Turtlebot to traverse
and build maps, each with a focus on different landmarks so that the merger of the two
maps will provide additional data for each of these landmarks. In the first mapping
run the robot circles the box formation to obtain information about both sides of the
box formation while omitting detailed observations about the hollow square wood
structure. In the second mapping run the robot makes observations about the edges
of the hollow square structure while omitting the far side of the box structure. This
allows the merged map to contain detailed information about both the box formation

and the perimeter of the the hollow square structure.

7.2.1 Mapping Environment

For this experiment, a Turtlebot UGV explores a physical environment within the
RMCC robotics laboratory. The robot then uses a Microsoft Kinect sensor to extract
3D observations of this environment. The environment is shown in Figure 7.9 with
two landmarks. These two landmarks are set up such that two separate mapping runs

obtain detailed information about each landmark.

7.2.2 Map Building

To build the first map, the robot is placed to the left of the boxes in the left of Figure
7.9. The robot then follows a path around the boxes on the left of Figure 7.9 making
detailed observations about the boxes. The path of the first robot is also shown in
yellow. In the second mapping run, the robot travels the perimeter of the wooden
fence like structure in the right of the image to build a detailed map of the wooden

structure. The path of the second robot is shown in red.

68

(b) The merged result in sumulation with ICP refinement.

Figure 7.8: Built octree occupancy grid maps of the simulated environment after
merging with and without ICP refinement.

69

Figure 7.9: The experimental mapping environment.

In each mapping run the Turtlebot UGV is booted with a provided system image
which automatically provides the majority of needed sensor drivers. A developed
launch script is then used to run the additional nodes required for mapping. This
includes the driver for the Microsoft Kinect which publishes point cloud data on the
/camera/depth/points topic. Additionally, a natural point “Optitrack” motion cap-
ture system is used to provide localization. The “Optitrack” system is an optical
motion capture system which is able to accurately track in 6DOF the position and
orientation of a predefined constellation of reflectors. A set of these reflectors is at-
tached to the Turtlebot UGV such that it may be tracked within the environment.
The cameras are then connected to a server which streams the robot’s pose infor-
mation Using the NatNet protocol to the ROS system. The /mocap_node is then
used to receive this information and publish pose messages in a ROS topic, /Ips. A
similar node to the /map_tf_broadcaster from the simulation is then used to publish tf
data by subscribing to the /Ips topic. Finally, a rosbag recorder is used to record all
publications to sensor observation and localization topics so that maps can be built
offline using any desired discretization.

Offline, the Octomap server is run to provide map serving capabilities. The sensor

observations and localization are then replayed using the bag file obtained from the

70

first mapping run. The server then subscribes to the point cloud topics as well as
required /tf topics for appropriate map building. The /octomap_saver node is then
run which saves the built map to a file. For the second map, the same process is
repeated with the exception that a simple transform broadcaster is used to add an
additional transform to the system which is a parent of the transform provided by
the Optitrack system. This frame is rotated by 7/4 from the Optitrack frame so that
the two maps are not built in common voxel discretizations. The node and topic
interconnections for the experimental mapping runs are shown in Figure 7.11, while
the transform tree remains the same. The individual maps as as well as the maps
shown together prior to transformation are shown in Figure 7.10 with height color

encoding to make interpretation of 3D shapes easier.

7.2.3 Map Merging Results

Once again, the maps are then passed to the implemented map merging software as
command-line arguments along with an initial guess of the transformation between
map reference frames. Several different initial guesses for the transformation are used
to evaluate the effectiveness of ICP transform refinement for erroneous initial guesses
using the same €, and ¢; as described in Section 7.1.3. The results of ICP refinement
for each transform estimate is shown in Table 7.2 with the erroneous transformation
estimates passed to the merging software as well as the values of ¢, and ¢, before
and after ICP refinement. Once again, refinement attempts where the error in initial
transform estimate was too large for ICP refinement to converge to a desired result
are highlighted in red.

As predicted, ICP remains a suitable candidate to refine transformation estimates
for uncertain transformations between maps. In the provided example a vast range
of transformation errors were able to be corrected including yaw angles of up to 0.685
radians of error (row 2 of Table 7.2), where the refinement process is shown in Figure
7.12. For several erroneous transformation estimates €, and ¢; converged to desired
results. Additionally, the magnitude of the error that the ICP refinement algorithm

was able to reduce was far greater. This is due to the fact that the maps of the

71

(a) The map of the first robot. (b) The map of the second robot.

(¢) The two maps prior to transformation.

Figure 7.10: Built octree occupancy grid maps of the real-world laboratory environ-
ment prior to merging.

/map_tf broadcaster

Figure 7.11: The node and topic connections for mapping a real-world environment

[camera/depth/points

72

Translation Rotation € € € €t
(x,y, 2) (roll, pitch, yaw) pre ICP | pre ICP | post ICP | post ICP
0,0,0) 0,0, —0.07) 1.85521 0 2.695 | 1.07009
(0,0,0) (0,0, -0.1) 1.79034 0 | 0.121203 | 0.153779
(0,0,0) (0,0, -0.5) 0796312 | 0 | 0.121749 | 0.166057
0,0,0) 0,0, —7/4) 0 0 | 0.207669 | 0.1337277
(0,0,0) (0,0,-0.8) 0.0413005 0 0.123183 | 0.196204
(0,0,0) (0,0,—1.5) 1.85352 0 0.138249 | 0.133851
(0,0,0) (0,0,—1.7) 2.24102 0 2.88717 0.683354
(1,0,0) 0,0, —7/4) 0 1 0.135220 | 0.198153
(0,1,0) (0,0, —m/4) 0 T | 0.158971 | 0.228493
(1,1,1) (0,0, -0.6) 0.521384 3 0.188403 | 0.272216
(1,1,1) (0,0,-0.8) 0.0413005 3 0.202992 | 0.202992
(0,0,0) (—0.3,0, —m/4) 0.821276 0 0.17818 0.235683
0,0,0) (0,-0.3, —n/4) | 0.821276 0 | 0.103531 | 0.163994
(0,0,0) | (—0.3, 0.3, —7/4) | 0.371481 0 | 0.0762014 | 0.794496
(1,1,0) (—0.3,0,—7/4) | 0.821276 2 0.240368 | 0.32025
(0,0,1) (—0.3,0,—m/4) 0.821276 1 0.259235 0.41867
(1,1.0) | (0,—0.3,—#/4) | 0821276 | 2 | 0.130602 | 0.250326
(0,0,1) (0,03, —n/4) | 0.821276 T | 0.104994 | 0.218853

Table 7.2: ICP alignment error evaluation for real-world map merging.

73

(a) Point cloud representation of common ter- (b) Point cloud representation of common ter-
ritory with initial transform error. ritory with ICP refined transform.

Figure 7.12: The results of ICP alignment of commonly mapped territory of the
real-world laboratory environment for yaw-angle initial transformation error.

experimental environment had a far greater portion of commonly mapped territory
than the simulated environment. As well, the experimental sensor had a greater range
than the simulated sensor. This being said, some failures were observed in rows 1 and
7 of Table 7.2 due to the fact that the ICP algorithm once again converged to local
minima, rather than absolute minima.

Given that a reliable transformation refinement process is in place, this allows us
to merge the results from one mapping run with another to have detailed data about
both landmarks in the environment. The merged map with exact knowledge of the
correct transform between maps is shown in Figure 7.13. Additionally the contrast
of the merged map with an erroneous yaw angle estimate of 0.685 radians (row 2 of

Table 7.2) with and without ICP refinement is shown in Figure 7.14.

7.3 Conclusion

This chapter has presented success in map merging for both simulated and real-world
environments. This success has shown that the theory for merging octree occupancy
grids as presented throughout this work is indeed valid. The results presented in this

chapter will be brought into context with the complete work in Chapter 8. Addition-

74

Figure 7.13: The merged map of the real-world laboratory environment with exact
transformation knowledge

ally, Chapter 8 will also explore potential avenues for improvement of this research

through future work.

75

(b) The merged real-world result with ICP refinement.

Figure 7.14: Built octree occupancy grid maps of the real-world laboratory environ-
ment after merging with and without ICP refinement.

Chapter 8

Conclusion

Our research was motivated by the lack of a suitable 3D mapping framework for
multi-robot applications.

In Chapter 2 we motivated our research by presenting a summary of robotic map-
ping techniques as well as recent developments in 3D map representations.This chap-
ter also included a description of the octree occupancy grid map and the advantages
of its use in 3D mapping.

In Chapter 3 we continued to motivate our research by reviewing and summarizing
the problem of multi-robot map merging. This chapter introduced the concept of
transforming one map into another’s frame of reference as well as ways to implement
this transform when a discretized environment model is used. This chapter also
introduced the use of registration techniques with commonly mapped territory as a
way to improve transform estimates between maps.

In Chapter 4 we introduced the software resources that would be used to sup-
port this research. This included a description of ROS, the middle-ware used in the
deployment of the simulated and real-world robots, Octomap, the library and map-
building frameword for 3D mapping with 3D occupancy grids, as well as PCL, the
library used for transform refinement.

In Chapter 5, the strategies used to overcome the problem of merging octree occu-
pancy grids were described. These strategies overcame the problem of transforming
maps from one reference to the other despite the volume discretization, as well as the
problem of merging maps together with volumes mapped at different levels of the tree
hierarchy. Subsequently, in Chapter 6 the implementation of each of these strategies
in to software algorithms was presented

In Chapter 7 the proposed strategies for octree occupancy grid merging were
performed and validated with both simulated and experimental results. For each

environment, two maps were built independently of one another and successfully

76

77

merged with both exact and uncertain transformation estimates between each map.

8.1 Contributions

This thesis made several contributions to the field of autonomous robotics:

1. The proposal of a valid solution for merging data from two independent octree
occupancy grids where data is mapped at different depths in the octree tree
hierarchy. The solution uses local map expansion to minimize the computational

complexity of the overall merger in comparison to complete map expansion.

2. The proposal of a valid solution for transforming maps with a octree occu-
pancy grid representation. The solution determines the bounding volume of
the transformed map and subsequently looks up the correct occupancy for each

transformed voxel using trilinear interpolation with the source voxels.

3. The proposal of a solution for refining transformation estimates between the ref-
erence frames of two maps using registration techniques with commonly mapped
portions of the environment. The solution determines a subset of each map us-
ing commonly mapped parts of the environment with intersecting bounding
volumes. A point cloud representation of map subset is then created and ICP
registration is performed to obtain a refined transform between each map’s

frame of reference.

4. The verification and validation of each proposed solution was subsequently im-
plemented in both simulated and real-world environment. Each proposed solu-
tion was shown to be successful in the creation of coherent maps which closely

represented the environment.

8.2 Future Work

Although the use of intersecting bounding volumes produced suitable extraction of

commonly mapped parts of the environment for ICP registration for a wide variety

78

of transform errors, there were certain transform errors such as large errors in roll
and pitch angles that caused this strategy to fail to produce point clouds suitable for
ICP convergence. As such, an area that may be improved is the extraction of com-
monly mapped volumes in the environment. Alternatives to the technique proposed
in this work could be explored for better results. Currently PCL includes several
segmentation algorithms that could be explored to extract common shapes in each
map regardless of position as determined by the initial transform estimate.

In this work, the only registration technique that was used was the ICP algorithm
with point clouds extracted using the centre of each occupied leaf node in the maps.
While this technique is useful for a large range of transformation errors this range
could be improved by additional registration techniques. One possible avenue to
explore is the extraction of feature descriptors on each generated point cloud and to
perform initial alignment based on correspondence matching. ICP could subsequently
be used to further improve the transformation after an initial alignment using a feature
based registration technique.

The full integration of this work into ROS would make the success of this work
more suitable for others in the autonomous robotics community. Currently, the map
merging software runs offline using maps saved to disk and the transform estimate
given as a command-line argument. The full integration of this software into ROS
would consist of a node which requests maps as a service from other map servers much
like the octomap_saver node included with the octomap_mapping package. This node
could then use localization data from the ROS system as initial transformation data

and load the merged map into a local Octomap server.

8.3 Conclusion

Our work has shown that an Octree occupancy grid representation of the environment
is not only a suitable candidate for 3D mapping with individual robots, but for
multi-robot mapping applications as well. Our work has also shown that existing
techniques used for multi-robot mapping and map merging in 2D may be used for

multi-robot mapping, however with the added complexity of the additional 3 DOF in a

79

3D system. This leads us to conclude that Octree occupancy grid map representations
combined with the contributions of this work have exciting potential for use in future

applications.

[1]

2]

3]

[4]

[10]

References

Jay Thor Turner. A real-time implementation of a subsumtion based robot
control system. Master’s thesis, Royal Military College of Canada, Kingston,
Canada, 2013.

Pierre Dinnissen. Using reinforcement learning in multi-robot slam. Master’s
thesis, Carleton University, Ottawa, Canada, 2011.

Randall Smith, Matthew Self, and Peter Cheeseman. Estimating uncertain spa-
tial relationships in robotics. Autonomous robot vehicles, 1:167-193, 1990.

Pierre Payeur, Patrick Hébert, Denis Laurendeau, and Clément M Gosselin.
Probabilistic octree modeling of a 3d dynamic environment. In Proceedings of

the IEEFE International Conference on Robotics and Automation, volume 2, pages
1289-1296, Albequerque, United States, 1997. IEEE.

Jonathan Fournier, Benoit Ricard, and Denis Laurendeau. Mapping and explo-
ration of complex environments using persistent 3d model. In Fourth Canadian
Conference on Computer and Robot Vision, pages 403-410, Montreal, Canada,
2007. IEEE.

Kaustubh Pathak, Andreas Birk, Jann Poppinga, and Soéren Schwertfeger. 3d
forward sensor modeling and application to occupancy grid based sensor fusion.
In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2059-2064, San Diego, United States, 2007. IEEE.

Nathaniel Fairfield, George Kantor, and David Wettergreen. Real-time slam
with octree evidence grids for exploration in underwater tunnels. Journal of
Field Robotics, 24(1-2):03-21, 2007.

Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram
Burgard. OctoMap: An efficient probabilistic 3D mapping framework based on
octrees. Autonomous Robots, 2013.

Armin Hornung, Kai M. Wurm, and Maren Bennewitz. Humanoid robot local-
ization in complex indoor environments. In Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan,
2010.

Kevin Murphy et al. Bayesian map learning in dynamic environments. Advances
in Neural Information Processing Systems (NIPS), 12:1015-1021, 1999.

80

[11]

[19]

[20]

[21]

22]

81

Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Wegbreit, et al.
Fastslam: A factored solution to the simultaneous localization and mapping

problem. In Proceedings of the National conference on Artificial Intelligence,
pages 593-598, Edmonton, Alberta, 2002.

Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Wegbreit, et al.
Fastslam 2.0: An improved particle filtering algorithm for simultaneous localiza-
tion and mapping that provably converges. In International Joint Conference
on Artificial Intelligence, volume 18, pages 1151-1156, San Francisco, United
States, 2003. LAWRENCE ERLBAUM ASSOCIATES LTD.

Kai M Wurm, Cyrill Stachniss, and Giorgio Grisetti. Bridging the gap between
feature-and grid-based slam. Robotics and Autonomous Systems, 58(2):140-148,
2010.

Hans Moravec and Alberto Elfes. High resolution maps from wide angle sonar. In
Proceedings of the IEEE International Conference on Robotics and Automation,
volume 2, pages 116-121, San Francisco, United States, 1985. IEEE.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabolistic Robotics (In-
telligent Robotics and Autonomous Agents). The MIT Press, 2005.

Yuval Roth-Tabak and Ramesh Jain. Building an environment model using depth
information. Computer, 22(6):85-90, 1989.

David M Cole and Paul M Newman. Using laser range data for 3d slam in
outdoor environments. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 1556-1563, Orlando, United States, 2006. IEEE.

Andreas Niichter, Kai Lingemann, Joachim Hertzberg, and Hartmut Surmann.
6d slam—3d mapping outdoor environments. Journal of Field Robotics, 24(8-
9):699-722, 2007.

Donald Meagher. Geometric modeling using octree encoding. Computer graphics
and image processing, 19(2):129-147, 1982.

Wolfram Burgard, Mark Moors, Dieter Fox, Reid Simmons, and Sebastian
Thrun. Collaborative multi-robot exploration. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation, volume 1, pages 476481,
San Francisco, United States, 2000. IEEE.

N Ergin Ozkucur and H Levent Akin. Cooperative multi-robot map merging
using fast-slam. In RoboCup 2009: Robot Soccer World Cup XIII, pages 449—
460. Springer, 2010.

Andreas Birk and Stefano Carpin. Merging occupancy grid maps from multiple
robots. Proceedings of the IEEE, 94(7):1384-1397, 2006.

[23]

[27]

28]

[29]

[30]

[31]

[32]
[33]

82

Pierre Dinnissen, Sidney N Givigi, and Howard M Schwartz. Map merging of
multi-robot slam using reinforcement learning. In IFEFE International Conference
on Systems, Man, and Cybernetics (SMC), pages 53-60, Seoul, Korea, 2012.
IEEE.

George J Grevera and Jayaram K Udupa. IFEFE Transactions on Medical Imag-
ing, 17(4):642-652, 1998.

Alan W Paeth. A fast algorithm for general raster rotation. In Graphics Interface,
volume 86, pages 77-81, Vancouver, Canada, 1986.

At Tanaka, M Kameyama, S Kazama, and O Watanabe. A rotation method for
raster image using skew transformation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 272-277, Miami, United
States, 1986.

Peter Schroder and James B Salem. Fast rotation of volume data on data parallel
architectures. In Proceedings of the 2nd conference on Visualization, pages 50-57,
San Diego, United States, 1991. IEEE Computer Society Press.

Baoquan Chen and Arie Kaufman. 3d volume rotation using shear transforma-
tions. Graphical Models, 62(4):308-322, 2000.

Paul J Besl and Neil D McKay. A method for registration of 3-d shapes. IEFE
Transactions on Pattern Analysis and Machine Intelligence, pages 239256, 1992.

Marcus Strand, Frank Erb, and Riidiger Dillmann. Range image registration
using an octree based matching strategy. In International Conference on Mecha-
tronics and Automation, pages 1622-1627, Harbin, China, 2007. IEEE.

Andreas Birk and Stefano Carpin. Merging occupancy grid maps from multiple
robots. IEEE Proceedings, special issue on Multi-Robot Systems, 94(7):1384—
1397, 2006.

Robot operating system. http://www.ros.org.

Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL).
In [EEE International Conference on Robotics and Automation (ICRA), Shang-
hai, China, 2011.

Appendices

83

Appendix A

Source Code for Map Merging Algorithms

A.1 Source Code for Algorithms 1 to 3

#include <Eigen/SVD>

#include <pcl/common/common.h>

#include <pcl/io/pcd_io.h>

#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/filter .h>

#include <pcl/features/normal_3d.h>
#include <pcl/registration/icp.h>
#include <pcl/registration/icp_nl.h>
#include <pcl/registration/transforms.h>

//convenient typedefs

typedef pcl::PointXYZ PointT;

typedef pcl::PointCloud<PointT> PointCloud;

typedef pcl::PointNormal PointNormalT ;

typedef pcl::PointCloud<PointNormalT> PointCloudWithNormals;

#define MAXITER 500

void tree2PointCloud (OcTree *tree
pcl:: PointCloud<pel :: PointXYZ>& pclCloud) {
// now, traverse all leafs in the tree:
for (OcTree::leaf_iterator it = tree—>begin_leafs (),

end = tree—>end_leafs (); it != end; ++it)
{
if (tree—>isNodeOccupied (xit)){
pclCloud . push_back (
pel::PointXYZ (it .getX (),
it.getY (),
it.getZ ()
)
)
}
}

bool pointInBBox (pcl::PointXYZ& point ,
pcl :: PointXYZ& bboxMin,
pcl :: PointXYZ& bboxMax){

return (point.x < bboxMax.x && point.x > bboxMin.x) &&

(point .y < bboxMax.y && point.y > bboxMin.y) &&
(point .z < bboxMax.z && point.z > bboxMin.z);

84

85

}

Eigen :: Matrix4f getICPTransformation (
pcl:: PointCloud<pecl :: PointXYZ>& cloudl ,
pcl:: PointCloud<pecl :: PointXYZ>& cloud?2 ,
Eigen :: Matrix4f& tfEst ,
double mapRes) {

//apply the tfEst to cloud 2
pcl::transformPointCloud (cloud?2 , cloud2 , tfEst);

//get the bounding region of cloudl to

//extract the points from cloud 2 contained in the region
pcl :: PointXYZ minCloudl; pcl::PointXYZ maxCloudl;

pel :: getMinMax3D (cloudl ,minCloudl , maxCloudl);

//filter out the points in cloud 2 that are not in cloud 1’s range
pcl:: PointCloud<pecl :: PointXYZ >:: Ptr cloud2filtered (
new pcl::PointCloud<pecl::PointXYZ>);

for (pcl:: PointCloud<pcl:: PointXYZ>::iterator it=cloud2.begin ();
it!=cloud2.end (); it++){

if (pointInBBox (*it ,minCloudl ,maxCloudl)) {
cloud2filtered —>push_back (xit);
}

}

//filter out the points in cloud 1 that are not in cloud 2’s range
pcl:: PointCloud<pecl :: PointXYZ>::Ptr cloudlfiltered (
new pcl::PointCloud<pcl:: PointXYZ>);

//same for other cloud
pcl :: PointXYZ minCloud2filtered; pcl::PointXYZ maxCloud2filtered;
pcl :: getMinMax3D (x cloud2filtered ,minCloud2filtered , maxCloud2filtered);

minCloud2filtered = pcl::PointXYZ(
minCloud2filtered .x—1,
minCloud2filtered .y—1,
minCloud2filtered .z—1

)

maxCloud2filtered = pcl::PointXYZ(
maxCloud2filtered .x+1,
maxCloud2filtered .y+1,
maxCloud2filtered . z+1

)

for (pcl:: PointCloud<pecl:: PointXYZ>::iterator it=cloudl.begin ();
it!=cloudl.end (); it++){

if (pointInBBox (*it ,minCloud2filtered , maxCloud2filtered)) {
cloud1filtered —>push_back (xit);

86

}

// Downsample for consistency and speed
PointCloud :: Ptr src (new PointCloud);
PointCloud :: Ptr tgt (new PointCloud);

pcl:: VoxelGrid<PointT> grid ;

grid.setLeafSize (10xmapRes, 10xmapRes, 10xmapRes);
grid .setInputCloud (cloudlfiltered);

grid. filter (xtgt);

grid.setInputCloud (cloud2filtered);
grid. filter (xsrc);

// Align

pcl:: IterativeClosestPointNonLinear <PointT , PointT> reg;
reg.setTransformationEpsilon (mapRes/60);
reg.setMaxCorrespondenceDistance (10xmapRes);

Eigen :: Matrix4f Ti = Eigen:: Matrix4f:: Identity (), prev;
PointCloud :: Ptr reg_result;

if (src—>size () < tgt—>size ()){

reg.setInputCloud (src);
reg.setInputTarget (tgt);

// Run the same optimization in a loop and visualize the results
reg_result = src;

reg.setMaximumIterations (2);

for (int i = 0; i < MAXITER; ++i)

{

// save cloud for visualization purpose
src = reg_result;

// Estimate
reg.setInputCloud (src);
reg.align (xreg_result);

//accumulate transformation between each Iteration
Ti = reg.getFinalTransformation () % Ti;

//if the difference between this transformation and the previous one
//is smaller than the threshold, refine the process by reducing
//the maximal correspondence distance
if (reg.getMaxCorrespondenceDistance () > 0.2){

if (fabs((reg.getLastIncrementalTransformation() — prev.sum()))

< reg.getTransformationEpsilon ())
reg.setMaxCorrespondenceDistance (
reg.getMaxCorrespondenceDistance () — 0.1

);
}

else if(reg.getMaxCorrespondenceDistance () > 0.002) {

}

87

if (fabs((reg.getLastIncrementalTransformation () — prev.sum()))
< reg.getTransformationEpsilon ())
reg.setMaxCorrespondenceDistance (
reg.getMaxCorrespondenceDistance () — 0.001

E

prev = reg.getLastIncrementalTransformation ();

}

else {

reg.setInputCloud (tgt);
reg.setInputTarget (src);

// Run the same optimization in a loop and visualize the results
reg_result = tgt;

reg.setMaximumIterations (2);

for (int i = 0; i < MAXITER; ++i)

{

// save cloud for visualization purpose
tgt = reg_result;

// Estimate
reg.setInputCloud (tgt);
reg.align (xreg_result);

//accumulate transformation between each Iteration
Ti = reg.getFinalTransformation () % Ti;

//if the difference between this transformation and the previous one
//is smaller than the threshold, refine the process by reducing
//the maximal correspondence distance
if (reg.getMaxCorrespondenceDistance () > 0.2){

if (fabs((reg.getLastIncrementalTransformation() — prev.sum()))

< reg.getTransformationEpsilon ())
reg.setMaxCorrespondenceDistance (
reg.getMaxCorrespondenceDistance () — 0.1

)i
}
else if(reg.getMaxCorrespondenceDistance () > 0.002) {
if (fabs((reg.getLastIncrementalTransformation() — prev.sum()))
< reg.getTransformationEpsilon ())
reg.setMaxCorrespondenceDistance (
reg.getMaxCorrespondenceDistance () — 0.001

);

prev = reg.getLastIncrementalTransformation ();

}

Ti = Ti.inverse ();

88

return TixTfEst;

}
A.2 Source Code for Algorithms 4 to 7

void transformTree(OcTree xtree, Eigen:: Matrix4f& transform) {

double treeRes = tree—>getResolution ();
OcTreex transformed = new OcTree(treeRes);

//build inverse transform

Eigen :: Matrix3f rotation;

Eigen :: Matrix3f invRotation;

Eigen :: Matrix4f invTransform;

rotation << transform (0,0), transform(0,1), transform (0,2),
transform (1,0), transform(1,1), transform(1,2),
transform (2,0), transform (0,2), transform (2,2);

invRotation = rotation.transpose ();

invTransform <<
invRotation (0,0), invRotation(0,1), invRotation (0,2), —transform (0,3),
invRotation (1,0), invRotation(1,1), invRotation(1,2), —transform (1,3),
invRotation (2,0), invRotation(2,1), invRotation(2,2), —transform (2,3),
0, 0, 0, 1;

//size in each coordinate of each axis.
double minX, maxX, minY, maxY, minZ, maxZ;

//get the minimum and max in y so we can step along each row

tree—>getMetricMin (minX, minY, minZ);
tree —>getMetricMax (maxX, maxY,maxZ) ;

//get a Look up table
OcTreeLUT ocTreeLUT (treeRes);

//allocate a vector of points
std :: vector<point3d> points;

//make 8 points to make a map bounding box, performing the tf on them

//to get the range of values in the transformed map

points.push_back (point3d (maxX, minY,minZ));

points.push_back (point3d (minX,minY, minZ))

points.push_back (point3d (minX,maxY, minZ))

points . push_back (point3d (maxX,maxY, minZ));

points.push_back (point3d (maxX,minY ,maxZ));
(())
(())
(())

b

)

points.push_back(point3d (minX,minY ,maxZ
points . push_back (point3d (minX, maxY , maxZ
points.push_back (point3d (maxX,maxY , maxZ

b

)

)

//transform the points

for (unsigned i = 0; i<points.size (); i++){
Eigen:: Vector4f point(points[i].x(),points[i].y(),points[i].z(),1);
point = transform * point;
points[i] = point3d(point (0),point (1), point (2));

89

}

//go through tf’d points to get a new bbox

minX = points [0].x(); minY = points [0].y(); minZ = points[0].z();
maxX = points [0].x(); maxY = points [0].y(); maxZ = points [0].z();
for (unsigned i=0; i<points.size (); i++){

minX = (points[i].x() < minX) ? points[i].x() minX;
minY = (points[i].y() < minY) ? points[i].y() minY ;
minZ = (points[i].z() < minZ) ? points[i].z() : minZ;
maxX = (points[i].x() > maxX) ? points[i].x() : maxX;
maxY = (points[i].y() > maxY) ? points[i].y() : maxY;
maxZ = (points[i].z() > maxZ) ? points[i].z() : maxZ;

}

//go through the possible destination voxels on a row by row basis
//and calculate occupancy from source voxels with inverse tf

for (double z = minZ —treeRes/2; z<(maxZ + treeRes/2); zt+=treeRes) {
for (double y = minY —treeRes/2; y<(maxY + treeRes/2); y+=treeRes) {
for (double x = minX —treeRes/2; x<(maxX + treeRes/2); x+=treeRes) {
OcTreeKey destVoxel = transformed—>coordToKey (
point3d (x,y,z)
)

Eigen:: Vector4f point(x,y,z,1);

point = invTransform % point;
point3d sourcePoint = point3d(point (0),point (1), point (2));
OcTreeKey sourceVoxel = tree—>coordToKey(sourcePoint);

point3d nn = tree—>keyToCoord(sourceVoxel);

//use nearest neighbour to set new occupancy
//in the transformed map
OcTreeNode *o0ldNode = tree—>search (sourceVoxel);

//Occupancies to interpolate between

double c¢000, c001, ¢010, cO011, c¢100, c101, cl110,
cllil, c00, cO01, cl10, cl1, cO, cl;

double xd, yd, zd;

//differences in each direction between next closest voxel

xd = (sourcePoint.x() — nn.x())/treeRes;
yd = (sourcePoint.y() — nn.y())/treeRes;
zd = (sourcePoint.z() — nn.z())/treeRes;

if (oldNode != NULL){

c000 = oldNode—>getOccupancy ();
OcTreeNode #node;

//c001
if ((node = tree—>search (
point3d (nn.x(),nn.y(),nn.z() +
getSign (zd)xtreeRes)))
I= NULL) {
c001 = node—>getOccupancy ();

} else
c001 = 0;

//c010
if ((node = tree—>search (
point3d (nn.x (),
nn.y() + getSign (yd)xtreeRes,

nn.z())))
I= NULL) {
c010 = node—>getOccupancy ();
} else
c010 = 0;
//c011

if ((node = tree—>search (
point3d (nn.x (),
nn.y() + getSign (yd)xtreeRes,

nn.z() + getSign(zd)*treeRes)))

I= NULL) {
c011 = node—>getOccupancy ();
} else
c011 = 0;
//c100

if ((node = tree—>search (
point3d (nn.x()+ getSign (xd)*treeRes,

nn.y (),
nn.z())))
!= NULL) {
c100 = node—>getOccupancy ();
1 else
cl00 = 0;
//cl01

if ((node = tree—>search(
point3d (nn.x()+ getSign (xd)*treeRes,

mn.y (),
nn.z() +getSign(zd)*treeRes)))
!= NULL) {
c101 = node—>getOccupancy ();
1 else
cl0l = 0;
//cl110

if ((node = tree—>search(
point3d (nn.x()+ getSign (xd)*treeRes,
nn.y() +getSign (yd)*treeRes,

nn.z())))
I=NULL) {
c110 = node—>getOccupancy ();
1 else
¢110 = 0:

//clll

90

if ((node = tree—>search (
point3d (nn.x()+ getSign(xd)*treeRes,
nn.y() +getSign (yd)=«treeRes,
nn.z()+getSign (zd)*treeRes)))
I= NULL) {

clll node—>getOccupancy ();
} else

¢111 = 0;
//Interpolate in x
c00 = (1—fabs(xd))*c000 + fabs(xd)*c100;
cl0 = (1-fabs(xd))*c010 + fabs(xd)*cl10;
c01l = (1—fabs(xd))*c001 + fabs(xd)*cl01;
cll = (1—fabs(xd))*c011 + fabs(xd)*clll;

//interpolate in y
c0 = (1—fabs(yd))*c00 + fabs(yd)*cl0;
cl = (1-fabs(yd))*c01 + fabs(yd)*cll;

//now let’s assign the new node value
OcTreeNode xnewNode = transformed—>updateNode (
destVoxel | true
)
newNode—>setLogOdds (

logodds ((1—fabs(zd))*c0 + fabs(zd)xcl)

E

}

tree—>swapContent (x transformed);

delete transformed;

}
A.3 Source Code for Algorithm 8

#include <octomap/octomap.h>
#include <octomap/OcTreeLUT . h>
#include <fstream>

#include <iostream>

#include <string.h>

#include <stdlib .h>

#include <list >

#include <cmath>

using std ::cout;

using std ::endl;

using namespace octomap;
using namespace octomath;

void expandLevel(std::vector<OcTreeNode x>

xnodePtrs)

91

92

unsigned size = nodePtrs—>size ();

for (unsigned i = 0; i<size; i++) {
OcTreeNode xparent = nodePtrs—>front ();
parent —>expandNode () ;
nodePtrs—>erase (nodePtrs—>begin ());
for (unsigned j=0; j<8; j++) {
nodePtrs—>push_back (parent—>getChild (j));
}

}

unsigned expandNodeMultiLevel (OcTree xtree, OcTreeNode xnode, unsigned currentDepth
if (currentDepth = (int) tree—>getTreeDepth()) {
return 0;
}

int levelsCounter = 0;
std :: vector<OcTreeNode *> nodePtrs;
nodePtrs. push_back (node);

for (unsigned i = 0; i<levels; i ++) {
if (currentDepth = (int) tree—>getTreeDepth()) {
return levelsCounter;
}

expandLevel(&nodePtrs);
levelsCounter++;
currentDepth++;

}

return levelsCounter;

*

Searches for a node at a given point

and returns the depth in the tree of that node
Assumes you have called search before and
know its actually there.

Returns —1 if it couldn’t find anything

EE S R G R

int getNodeDepth(OcTreex tree, point3d& point, OcTreeNodex node) {
for (int depth = tree—>getTreeDepth (); depth > 1; depth——) {
if (tree—>search (point ,depth) = node)
return depth;

}

return —1;

int main(int argc, charxx argv) {

93

std::string filenamel = std::string(argv[1l]);
std::string filename2 = std::string(argv[2]);
std::string outputFilename = std::string (argv[3]);

cout << 7\nReading._.octree_files ...\n”;
double roll, pitch, yaw;

point3d translation;
if(arge = 7 || arge = 10) {

translation = point3d(atof(argv[4]),atof(argv[5]),atof(argv[6]));
}

if (arge = 10) {
roll = atof(argv[7]);
pitch = atof(argv[8]);
yaw = atof (argv [9]

1)
8]
)

}
else {

roll = 0;
pitch = 0;
yaw = 0;

}

Pose6D pose(translation.x(),
translation.y(),
translation .z ()
roll | pitch ,yaw)

//build a transform matrix

Eigen :: Matrix4f transform;

std :: vector<double> coeffs;

pose.rot ().toRotMatrix (coeffs);

transform << coeffs [0], coeffs[1], coeffs[2], translation.x(),
coeffs [3], coeffs[4], coeffs[5], translation.y(),
coeffs [6], coeffs[7], coeffs[8] , translation.z(),
0, 0, 0, 1;

OcTreex treel = dynamic_cast<OcTreex>(OcTree:: read (filenamel));
OcTreex tree2 = dynamic_cast<OcTreex>(OcTree:: read (filename2));

//initial TF Matrix
std :: cout << transform << std::endl;

cout << ”"Registering _map._to._Improve TF_Estimate” << endl << endl;

//make point clouds from each map

pcl :: PointCloud<pcl :: PointXYZ> treelPoints;
tree2PointCloud (treel , treelPoints);

pcl:: PointCloud<pecl :: PointXYZ> tree2Points;
tree2PointCloud (tree2 , tree2Points);

//get refined matrix
transform = getICPTransformation(treelPoints ,tree2Points ,transform);

94

if(roll =0 ||
pitch != 0 ||
yaw = 0 |]
translation.x() != 0 ||
translation.y() != 0 ||
translation.z() != 0) {

transformTree (tree2 ,transform);

//begin merging algorithm

//traverse nodes in tree 2 to add them to tree 1

for (OcTree::leaf_iterator it = tree2—>begin_leafs ();
it != tree2—>end_leafs ();
++it)

if (tree2—>isNodeOccupied (xit)){
it —>setLogOdds (logodds (0.6));
}

//find if the current node maps a point in map 1
OcTreeNode *nodelnl = treel —>search(it.getCoordinate ());
OcTreeKey nodeKey = treel—>coordToKey (it .getCoordinate ());
point3d point = it.getCoordinate ();
if (nodeInl != NULL) {
//get the depth of already mapped space in 1 and compare to 2
int depthInl = getNodeDepth(treel , point, nodelnl);
if (depthInl = —1) {
int depthDiff = it.getDepth() — depthInl;
if (depthDiff = 0) {
treel —>updateNode (nodeKey , it —>getLogOdds ());
}

else if (depthDiff > 0) {
//map 2 is lower depth, add children to 1 if it’s not a leaf
for (int i=0; i<depthDiff; i++) {
if (depthInl = (int) treel—>getTreeDepth()) {
break ;
}

nodelnl—expandNode ();
nodeKey = treel—>coordToKey (point);
depthInl+—+;

nodelnl—setLogOdds (
logodds (nodelnl—>getOccupancy()+
it —>getOccupancy ()));

else if (depthDiff < 0) {
//map 1 is lower depth, add children to 2
expandNodeMultiLevel (tree2 ,tree2 —>search (point),
it . getDepth (), abs(depthDiff));
//now that we are expanded the other
//expanded nodes will be handled in subsequent loop
//iterations

}

1 oelse {
OcTreeNode #*newNode = treel —>updateNode(point ,true);
newNode—>setLogOdds (it —>getLogOdds ());

}

std :: cout << ”Compressing._merged_result\n”;
treel —>prune ();
//treel is now the compressed merged map

//write merged map to file
treel —>write (outputFilename);

delete treel;
delete tree2;

95

Curriculum Vitae

96

Curriculum Vitae

James Jessup joined the Canadian Forces in 2008 as a Naval Combat Systems Engi-
neering Officer (NCSEng). After completing his B.Eng. in Electrical Engineering at
the Royal Military College of Canada in 2012, he was posted Kingston, Ontario, to
complete his Master’s of Applied Science on a scholarship from DRDC.

97

