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Abstract

Jessup, James Pieter. M.A.Sc. Royal Military College of Canada, April, 2013. Merg-

ing of Octree Based 3D Occupancy Grid Maps. Supervised by Dr. Sidney Givigi and

Dr. Alain Beaulieu.

A technique for merging 3D octree occupancy grid maps into a single global map

of an evironment is proposed and implemented in software. Octrees are a mem-

ory efficient way to represent a 3D environment by recursively subdividing space at

multiple depths in a tree structure. The use of an octree representation of a 3D

environment allows large environments to be mapped while limiting the amount of

memory used in comparison to other techniques. When multiple robots are used to

map an environment, a more accurate map of a larger space can be produced in less

time. Techniques are introduced to address information from multi-depth sources in

each map’s tree structure as well as techniques to address relative transformations

between maps that are not axis aligned. These techniques allow the octree representa-

tion of an environment to be extended to multi-robot applications, specifically those

situations where relative map reference frame transformations are unknown prior to

mapping. Given the flexibility of this work to situations involving no prior knowledge

of map transformations, this work also explores the problem of merging maps when

the sources of map transformations are uncertain. Therefore registration techniques

using commonly mapped portions of the environment to obtain a better estimate of

transformations between maps are explored. The application of these techniques is

demonstrated by merging maps built by robots in simulated and real-world environ-

ments. The results of this work show that the techniques proposed in this work to

merge octree based occupancy grids are valid and that an octree based occupancy

grid is a suitable map representation for multi-robot problem spaces requiring a 3D
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model of the environment.

Keywords: Octrees, Mapping, Simultaneous Localization and Mapping (SLAM),
Cooperative Robotics, Navigation, Localization, Computer Vision, Data Fusion
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Résumé

Jessup, James Pieter. M.Sc.A. Collège militaire royal du Canada, Avril, 2013. Con-

vergence cartographique par arbe octaire des quadrillers d’occupation 3D. Thèse dirigée

par M. Sidney Givigi, Ph.D. et M. Alain Beaulieu, Ph.D.

’ Une technique pour la fusion de deux mappes représentées en forme de grilles

d’occupation octree en 3D vers une seule mappe globale d’un environnement est

proposée et implémentée en logiciel. Les Octrees sont efficaces en utilisation de

la mémoire pour représenter un environnement 3D en sous-divisant récursivement

l’espace dans une structure d’arbre à profondeurs multiples. L’utilisation de la

représentation octree d’un environnement 3D nous permet de mapper de vastes en-

vironnements tout en limitant la mémoire utilisée en comparaison avec les autres

techniques. Lorsque plusieurs robots sont utilités pour mapper un environnement,

une mappe plus précise d’un espace plus grand peut être générée en moins de temps.

Des techniques sont introduites pour dénouer l’information de différentes sources qui

ont une profondeur différente dans chaque structure ainsi que des techniques qui

visent les transformations relatives entre les mappes qui ne sont pas alignées sur leurs

axes. Ces techniques permettent à la représentation par octree d’un environnement

à être portée aux applications multi-robots, spécifiquement dans les situations où les

transformations de cadre de référence relatif à chaque mappe sont inconnues avant le

mappage. Étant donné la flexibilité de ce travail qui adressent les situations qui im-

pliquent aucune connaissance des transformations des mappes avant le mappage, ce

travail explore aussi le problème de la fusion de mappes quand les sources de transfor-

mations des mappes sont incertaines. Donc les techniques de régistration qui utilisent

des portions communes mappées de l’environnement pour obtenir un meilleur estimé

des transformations entre les mappes sont aussi examinées. L’application de ces tech-

niques est démontrée en fusionnant des mappes construites par des robots dans des
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environnements simulés et dans le monde réel. Les résultats de ce travail démontrent

que les techniques proposées dans ce travail pour faire la fusion des mappes en forme

de grilles d’occupation octree sont valides et que les grilles d’occupation octree sont

une représentation satisfaisante pour les mappes générées par un espace couvert par

plusieurs robots qui ont besoin d’un modèle de l’environnement en 3D.

Mots clés : Arbes octaires, Mappage, Localisation et mappage simultané, Robo-
tique coopérative, Navigation, Localisation, Vision artificielle, Fusion de données
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Chapter 1

Introduction

In order for robots to be autonomous they need to build maps of their environment.

The Simultaneous Localization and Mapping (SLAM) problem arises when a robot is

placed in an unknown environment and must estimate a map of its surroundings as

well as its position and orientation (pose) relative to the map. SLAM is a highly active

research topic in the Artificial Intelligence (AI) and robotics communities. This is not

a trivial problem since determining the robot’s position typically requires knowledge

of its surroundings, and in addition, building a map of the surroundings requires

knowledge of the robot’s pose. In order to build a map, the robot must traverse an

unknown environment and take measurements of its surroundings and new position

incrementally. Due to uncertainty and noise in measurements from sensors, errors

will accumulate over time and distort the map, which will in turn distort the robot’s

estimate of its position in the map.

To date many authors have proposed techniques to account for errors in measure-

ments that occur with SLAM. These techniques use a stochastic approach to create a

best-estimate for maps and robot position to reduce accumulated errors. Approaches

to SLAM have evolved since their introduction in 1990 [3]. These approaches have

evolved primarily in two ways. As the number of tasks performed by autonomous

robots has grown, as well as the complexity of their environments, the SLAM prob-

lem space has grown from two to three dimensions. In addition, the physical size of

unknown environments to be explored and mapped has increased. In order to map

a large area in a reasonable amount of time, multiple robots are now being used to

map an area.

Currently the state of the art in mapping and localization involves the explo-

ration of three dimensional spaces where a robot is free to move with a full six

Degrees of Freedom (DOF). This is a critical endeavour since autonomous vehicles

such as Unmanned Aerial Vehicles (UAV), Unmanned Underwater Vehicles (UUV),
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and Unmanned Ground Vehicles (UGV) in complex environments currently explore a

three dimensional problem space. However, generalizing a robot’s map and localiza-

tion techniques to three dimensions presents significant challenges in limiting memory

consumption and required processing power. One approach to mitigate these issues

involves the use of an octree based map representation [4, 5, 6, 7, 8, 9]. This approach

is able to accurately map large spaces with efficient memory usage. Despite this rep-

resentation’s many advantages, it has not been extended to a distributed approach

with multiple robots building their own maps and merging them upon rendez-vous.

In order to build maps of large spaces quickly and more accurately, this approach can

be extended to multiple robots where the results of each robot’s individual maps are

merged into one global map.

1.1 Motivation

This thesis is motivated by the need to create accurate 3D maps from collaborative

and autonomous platforms deployed in an unknown environment. These maps must

be built in an efficient and accurate manner that reduces memory usage and processing

power.

1.2 Thesis Topic

Our research goal is to investigate the implementation of a map merging algorithm

which merges maps with a 3D representation of the environment using octree occu-

pancy grids for a memory efficient representation of the environment. Further, the

pursuit of map merging techniques in a distributed manner with a discretized model

of the environment implies that independent robots will not build maps with per-

fectly aligned discretizations due to the fact that they are unaware of each other’s

reference frames prior to beginning the mapping process. Therefore, the exploration

of interpolation techniques to merge maps with different discretization alignments is

of particular interest. Additionally, the nature of octree based mapping means that
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commonly mapped areas may be mapped at different resolutions due to the individ-

ual mapping perspective of each robot. Therefore, the exploration of techniques to

address the problem of determining the best estimate of an environment from in-

formation of multiple resolutions is also of interest. Finally, since transformations

between maps to be merged are subject to error since they are derived from noisy

sensor observations, techniques to obtained improved transform estimates by align-

ing commonly mapped areas of the environment using data from each map is also of

interest.

1.3 Contributions

Our contributions through this research are as follows:

1. Proposal of theoretical algorithms and rules for merging octree occupancy grid

maps which address:

(a) The merger of commonly mapped areas which are mapped at different

depths in the octree.

(b) The merger of octree maps with misaligned discretizations.

(c) The refinement of erroneous transformation estimates using map data from

commonly mapped areas of the environment.

2. Implementation of the proposed algorithms in software.

3. Verification and validation of the software in the Gazebo simulation environ-

ment.

4. Verification and validation of the software on a physical platform (Turtlebot

UGV).

1.4 Thesis Organization

This thesis is organized in the following chapters:
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• In Chapter 2, an introduction to the problem of mapping as it pertains to

autonomous robotics is presented.

• In Chapter 3, an introduction to the problem of creating a global map from the

maps of multiple robots is presented.

• In Chapter 4, the software resources used to support this research are described.

• In Chapter 5, the problem of octree based occupancy grid map merging is

formally defined.

• In Chapter 6, we describe our algorithm for octree based occupancy grid map

merging and its implementation in software.

• In Chapter 7, we provide a summary of the experimental results, as well as the

validation and verification of the merged maps. We also discuss the hardware

and supporting software used to obtain these results.

• In Chapter 8, we present conclusions based on the results gathered and sum-

marize contributions and future work.



Chapter 2

Mapping

In this Chapter, we give a brief overview of mapping strategies in the literature,

followed by an outline of the basic concepts in the use of octrees as it applies to this

thesis.

2.1 The Stochastic Map

Smith et al. are the first authors in the literature to propose the use of a stochastic

solution for representing a robot’s environment [3]. Prior to their work, accurate

navigation relied on highly accurate, but also expensive sensors and controlled en-

vironments. The authors in this work argue that an alternative approach would be

to combine multiple sensors or measurements including their uncertainty to obtain

a better estimate. Therefore, their work presents a way to represent a map which

takes into account uncertainty in measurements, as well as procedures to read and

build the map. Not only do the authors build the mathematical model for represent-

ing uncertainty in the map, they consistently support their model with an example

of how one would apply their solution with a robot making observations about its

surroundings as it passes through an unknown space.

2.2 The Simultaneous Localization and Mapping (SLAM) Problem

The aforementioned problem of a robot traversing an environment and estimating a

map of its surroundings as well as its position in the map is known as the SLAM

problem. Smith et al. use the Extended Kalman Filter (EKF) as an estimator to

provide the best estimate of robot’s map and its location within that map. Subsequent

improvements have been made to this by Murphy in [10]. Murphy proposed that the

SLAM problem be approached from a Bayesian perspective and that Monte Carlo

methods or a particle filter be used to estimate the robot’s map and its position within

5
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the map. Murphy’s proposal has subsequently been implemented by Montemerlo et

al. in [11, 12] as the FastSLAM Algorithm.

2.3 Map Representations

For mapping scenarios which consider 2D space, the most common map representa-

tions are the feature map and the occupancy grid map. These representations have

grown to become the de facto standards for map representations in robotics [13].

while these representations are proven for 2D environments, they bring their own

challenges when extending the representation of the environment to 3D.

2.3.1 The Feature Map

The feature map was the first of the two representations commonly used in mapping,

originally proposed in the work of Smith et al. [3]. The feature map contains a

collection of uniquely identifiable landmarks represented as vectors x containing their

position, x and y, and orientation φ. Their uncertainty is represented using covariance

matrix C(x):

x =

xy
φ

 , C(x) =

σx2 σxy σxφ
σxy σy2 σyφ
σxφ σyφ σφ2

 (2.1)

Maps are then built by adding additional elements to the collection of landmarks,

or by making additional observations of existing landmarks. These additional mea-

surements are incorporated into the map as constraints to the system typically with

Kalman Filtering to improve the best estimate of the map.

2.3.2 The Occupancy Grid

In the case of an occupancy grid, the map contains an arbitrary grid of cells containing

the likelihood of whether or not that grid is occupied. This representation was first

proposed in [14]. In an occupancy grid, the environment is discretized into a set of

cells of a given size. Each cell in the grid contains a probability of whether it is filled

or empty. In the case of range sensors, cells where a measurement ray passes through
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unobstructed will be observed as empty, and cells that contain the end of the ray

will be observed as occupied. Occupancy grid representations often take into account

unknown territory, where grid cells may include counters to account for areas of the

environment that do not correspond to any received sensor observations. An example

of an occupancy grid is shown in Figure 2.1. Where, black represents occupied cells,

white represents empty cells, and grey represents unexplored territory.

Figure 2.1: An example of an occupancy grid map (used from [1] with permission)

While an occupancy grid map is built, grid cells in the map corresponding to new

sensor observations are updated according to a binary Bayes Filter [15]. The belief

of a particular cell, n, in the grid to be occupied given a set of measurements, z1:t, is

denoted:

belt(n) = P (n|z1:t) (2.2)
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Often a log-odds representation of a cell’s occupancy is used, where the odds of cell,

n, to be occupied is defined as:

P (n)

P (−n)
=

P (n)

1− P (n)
(2.3)

And the log-odds belief, L(n), is the logarithm of this ratio:

L(n) = log

[
P (n)

1− P (n)

]
(2.4)

Using a binary Bayes Filter as described in [15], the odds of a particular cell is updated

according to:

P (n|z1:t)
P (−n|z1:t)

=
P (n|zt)

1− P (n|zt)
P (n|z1:t−1)

1− P (n|z1:t−1)
1− P (n)

P (n)
(2.5)

Where P (n|z1:t) is the new occupancy probability of the cell, P (n|z1:t−1) is the cell’s

previous estimate, P (n|zt) is the probability that the cell is occupied given the current

measurement obtained through a sensor model, and P (n) is the initial assumption of

the cell’s occupancy.

Combining a log-odds belief representation with a common uniform cell prior

probability of P (n) = 0.5, equation 2.5 can be rewritten:

L(n|z1:t) = L(n|z1:t−1) + L(n|zt) (2.6)

Using a log odds representation for cell occupancy allows for faster updates since

additions computed instead of multiplications. In addition sensor models may be

precomputed so that the update step does not require the computation of logarithms

for each update.

2.3.3 Representing an Environment in 3D

When one considers how to model an environment in 3D space several approaches have

been adopted. As described in [8] the choice of map representation must satisfy the

criteria of a probabilistic representation, which models free, occupied, and unknown

territory, as well as an efficient implementation with respect to runtime and memory

usage.
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One popular approach is to extend an occupancy grid to 3D and use a grid of

cubic volumes of equal size, called voxels to subdivide the volume to be mapped [16].

This approach suffers from three difficiencies: for large spaces it has a high memory

requirement; it cannot represent spaces in finer resolutions when required for precise

tasks; and finally, there is a need to know the extent of the environment prior to

mapping.

Another approach which does not discretize the environment is the use of 3D point

clouds [17, 18]. A point cloud, PCl, is defined as a set of points p.

P = {p0,p1, . . . ,pn−1,pn} (2.7)

Where, an element of the point cloud pi is a 3D point.

pi =

xy
z

 (2.8)

Often additional data may be included in each point such as intensity, color, or a unit

normal, for processing purposes. When this is the case, the length of the point vector

p and this data is added as another element of the vector. This approach however

does not model free space or unknown areas, and requires increased memory usage

for every sensor observation. Finally an additional approach involves the creation

of 2.5D elevation maps. In this case a 2D grid stores the elevation of a particular

cell. This approach is memory efficient, however, it does not represent space in a

volumetric way. It is therefore not sufficient for representing the actual environment

for applications such as localization in 3D spaces.

2.4 Octree Based Maps

One popular topic in literature is the use of an octree based occupancy grid represen-

tation to map a robot’s environment in 3D space [4, 5, 6, 7, 8, 9]. This approach is

volumetric and avoids many of the drawbacks of approaches using a 3D grid of fixed

size voxels. An octree is a hierarchical data structure for spacial subdivision first

proposed in the computer graphics community for efficient rendering of 3D volumes
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[19]. An octree is a collection of nodes which discretizes a space into voxels which

then are recursively subdivided into eight sub-volumes or child nodes until a desired

resolution is reached. The subdivision of space and the tree structure of an octree is

shown in Figure 2.2. In an octree map, each node contains the occupancy probability

of the respective volume.

Figure 2.2: The subdivision of space and the tree structure of an octree

Hornrung et al. have implemented such an octree mapping framework as an open

source software library and integrated it into Robot Operating System (ROS) [8, 9].

A key contribution to their approach is the implementation of a compression method

to reduce the memory requirement of a map. In their approach, a map is built at the

lowest subdivision of the tree structure. In [8, 9], sensor observations are incorporated

into map such that the log-odds occupancy of a node, n, is clamped to be within an

upper and lower bound, lmin and lmax respectively:

lmin ≤ L(n) ≤ lmax (2.9)

This clamping strategy keeps the confidence in the map bounded while simultaneously

allowing the map to be more quickly adaptable to dynamic environments. Using this

clamping policy, it is shown in [8] that the map update formula described in Equation
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(2.6) becomes:

L(n|z1:t) = max(min(L(n|z1:t−1) + L(n|zt), lmax), lmin) (2.10)

This clamping policy allows the compression of the map by pruning, or removing

nodes from the octree. When the occupancy of a node in a tree reaches either lmin

or lmax it is considered stable. If all the children of an inner node in the map have

reached the same stable state those children are pruned from the map. Pruning is

efficient since it reduces the number of nodes to manage in the map. Furthermore,

by applying this compression method, the only probability information that is lost is

information close to P (n) = 0 and P (n) = 1.

2.5 Multi-Robot Mapping

In many cases it is necessary to use multiple robots to map a large space within a

reasonable time constraint. Therefore, it is necessary for robots to merge the results

of their individual maps into one large global map. The first work to consider multiple

robots mapping a large space used a common reference frame where relative poses

for each robot were known prior to mapping [20]. As it may not be reasonable to

assume that a team of robots mapping an area will have the same world reference,

it is necessary to determine a transformation from one robot’s frame of reference to

the other’s. This involves the calculation of the relative pose of each robot’s reference

frame as well as the transformation of the information in one map to the other map’s

frame of reference. In the two dimensional case any relative pose can be measured by a

rotation of some angle θ and a translation by some vector t [21]. In two dimensions the

transform for points x and y from one robot’s map into points x′ and y′ in the other’s

can be performed by one matrix multiplication using homogeneous coordinates:x′y′
1

 =

cos θ − sin θ tx
sin θ cos θ ty

0 0 1

xy
1

 (2.11)

This concept of using matrix multiplication to transform from one reference frame

to another can also be generalized to R3 to support 3D maps. This however provides
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added difficulty in accounting for additional degrees of freedom and for when a dis-

cretized representation of the environment is used.

2.6 Conclusion

This chapter presented an introduction to stochastic mapping and the SLAM prob-

lem. Different ways to represent the environment were discussed for both two and

three dimensional problem spaces, identifying octree occupancy grids as a suitable

choice for 3D mapping. Additionally, the problem of mapping with multiple robots

is introduced. This problem is discussed further in Chapter 3.



Chapter 3

Map Merging

In this chapter the problem of merging maps from multiple robots is discussed. A

review of literature pertaining to the process of merging maps is also presented.

3.1 Multi Robot Mapping Strategies

As previously mentioned the easiest way to map a large area with high accuracy within

a reasonable time constraint is to incorporate multiple mapping robots. In this case

it is necessary for the mapping robots to merge their maps into one global map of

the area. Early strategies solved the merging problem by using a team of robots,

with each robot building maps within a common reference frame [20]. This solution

is attractive since it is not all that different than single robot mapping. However it is

not a flexible solution since it might not be a reasonable assumption that all robots

will have the same reference frame.

More flexible solutions have presented themselves in the literature. One solution

involves a centralized approach to map merging where maps are merged once the

whole environment has been explored [22]. Another solution is a decentralized ap-

proach where maps are merged upon robots meeting one another while traversing the

environment [21]. Recently, reinforcement learning has been applied with a decentral-

ized approach so that maps will be merged only in situations where a better estimate

of the explored environment is obtained [23].

Regardless of the approach to map merging, when robots build maps in indepen-

dent reference frames, the merger requires the calculation of a transformation from

one robot’s reference frame to the other. This transformation can be represented by

a matrix multiplication of the same form as shown in Equation (2.11). This thesis

will focus on the merging process rather than the mapping strategy. Therefore, any

mapping strategy that does not use a common world reference frame will be suitable

13
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for this work.

3.2 Map Transformations

Once a suitable transformation matrix is found it is necessary to perform this trans-

formation so that a global map can be obtained. The implementation of this trans-

formation depends largely on the map representation itself.

For feature maps each state vector of the map is transformed using the matrix

multiplication described in Equation (2.11). In the case of an occupancy grid, the

matrix multiplication cannot be performed directly on the source elements due to the

environment discretization. Since its representation is equivalent to that of a pixel

image, the same geometric transformation techniques used for image processing can

be applied to the occupancy grid.

When transforms are performed by mapping source pixels to their destination

with transforms that include rotation, often the transformed image or map is no

longer continuous since some destination pixels are not addressed. This phenomenon

is known as aliasing. One common method to address the aliasing problem is to de-

termine the range of destination pixels that will be present in the transformed image,

then, for each destination pixel, determine the location of the source pixel by the

inverse transformation. Since this inverse transform will often not directly map to

integer pixel locations, interpolation techniques such as nearest neighbour, bilinear,

or bicubic interpolation may be used to determine the destination pixel’s final value.

Bilinear interpolation is often used due to it’s superior results over nearest neigh-

bour interpolation, while offering easier implementation and reduced computational

complexity over other options such as bicubic or cosine interpolation [24].

Bilinear interpolation is a method to interpolate between pixel values on a 2D grid.

In the case of a 2D occupancy grid, the pixel values would represent the occupancy of

each cell in the grid. When a destination pixel is transformed to a non-integer source

pixel coordinate, the final value is interpolated from the four closest surrounding

pixels, using their centre points as coordinates.
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Figure 3.1: An illustration of the process of bilinear interpolation.
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One simple way to perform bilinear interpolation is by performing two consecutive

linear interpolations as shown in in Figure 3.1. In this example, the final scalar value

to be interpolated, C, located at (x, y), falls between four source values, C00 to C11

located within the square bounded by the coordinates (x0, y0), (x1, y1). Firstly, linear

interpolation is performed in the x-direction, obtaining the values C0 and C1:

C0 = (1− xd)C00 + xdC10 (3.1)

C1 = (1− xd)C01 + xdC11 (3.2)

Where,

xd =
x− x0
x1 − x0

, yd =
y − y0
y1 − y0

(3.3)

Finally the result of the first linear interpolation can then be interpolated in the

y-direction obtaining the destination pixel’s final value:

C = (1− yd)C0 + ydC1 (3.4)

(3.5)

This process can also be done with 3D grids using trilinear interpolation in the

same fashion with three consecutive linear interpolations. In this case, the final value

of a destination voxel is interpolated between eight neighbour voxels. An illustration

is shown in Figure 3.2. When applying this technique to a 3D grid map, the location

of the values to be interpolated between , C000 to C111, represent the centre-points of

nodes in the map, and their values would be equal to the occupancy of each node.

For example, one could perform the first interpolation along the x-axis as:

C00 = (1− xd)C000 + xdC100 (3.6)

C10 = (1− xd)C010 + xdC110 (3.7)

C01 = (1− xd)C001 + xdC101 (3.8)

C11 = (1− xd)C011 + xdC111 (3.9)

Where,

xd =
x− x0
x1 − x0

, yd =
y − y0
y1 − y0

, zd =
z − z0
z1 − z0

(3.10)
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Figure 3.2: An illustration of the process of trilinear interpolation.

The second interpolation along the y-axis:

C0 = (1− yd)C00 + ydC10 (3.11)

C1 = (1− yd)C01 + ydC11 (3.12)

With the final value of the destination voxel using a third interpolation in the z-axis

as:

C = (1− zd)C0 + zdC1 (3.13)

One other interesting method to overcome the aliasing problem is the technique

proposed by Paeth [25] and Tanaka et al. [26]. Which decomposes a rotation in the

image plane into three consecutive shear transformations, expressed as:

TR(α) =

[
cos θ − sin θ
sin θ cos θ

]
=

[
1 0

− tan α
2

1

] [
1 sinα
0 1

] [
1 0

− tan α
2

1

]
(3.14)

Essentially, this transformation is a cascade of three shifts along the rows and columns

of a 2D grid. In the first transformation, the x-coordinates of each row are shifted by:

x′ = x− y tan
α

2
(3.15)
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Then the second shear is performed by shifting the y-coordinates of each column by:

y′ = y + x sinα (3.16)

And finally, the final shear is performed by the same shift described in Equation

(3.15).

This method avoids the aliasing problem while still mapping source pixels to des-

tination pixels because entire rows of the grid are shifted contiguously. Additionally

since these shifts are performed on a raster grid, shifts are only expressed in integer

values. Linear interpolation may then be used for the final value of the destination

pixels.

This method has also been extended to three dimensions. Initially this was per-

formed by simply performing nine consecutive shears, by expressing each rotation

about a major axis as a product of three shears [27]. Subsequently this method was

also improved by reducing the number of shear transformations required to perform a

general rotation by performing shears along “slices” and “beams” of the volume [28].

For this work, trilinear interpolation is used. The choice of trilinear interpolation

was chosen over consequtive shear transformations was due to ease of implementa-

tion. Initial success with shear transformations was acheived, however equivalent

development effort with trilinear interpolation acheived an equivalent result at much

less computational expense.

3.3 Improving the Transformation Estimate

The previously mentioned methods for merging maps apply when an exact transfor-

mation is known between the maps. Often this is not the case since obtaining the

transformation frequently relies on noisy sensor measurements that in many cases

are not accurate. When this is the case, data from the map itself is used to identify

commonly mapped areas to improve the transform by finding the best alignment of

those areas.
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3.3.1 The Iterative Closest Point Algorithm

One method for aligning 3D environment data is the Iterative Closest Point (ICP)

algorithm [29]. This algorithm uses two rigid bodies and an initial guess of their

alignment and iteratively minimizes an error metric.

The algorithm operates by matching a “data” shape W to be in best alignment

to a “model” shape X. The data and model representation may be in many forms,

however points will be considered as the choice for this work. The first step of the

algorithm is to determine a subset of points in X, Y that correspond to the points

in W . The ICP algorithm assumes that this corresponding point in X is the point

of least euclidean distance distance from the point considered in W . Where the

euclidean distance from one point in W , w, to another point in X, x, is equal to:

d(w,x) = ‖w − x‖ (3.17)

Now that a subset of points Y ∈ X is selected, least squares registration is per-

formed to determine the rigid transformation, consisting of a 3 x 3 rotation matrix

R, and a translation vector t to minimize the mean squared distance, S, from the

points in W to the corresponding points in Y , given by:

S(R, t) =
1

Nw

Nw∑
i=1

‖yi −Rwi − t‖22 (3.18)

Therefore, the parameters, R and t that yield the minimum mean squared distance

must be determined using the least mean squares algorithm.

The obtained rotation matrix and translation vector to minimize the squared

distance between corresponding points may be used to obtain a 4 x 4 transformation

matrix given by:

Ti =


R11 R12 R13 tx
R21 R22 R23 ty
R31 R32 R33 tz
0 0 0 1

 (3.19)

This transformation is then applied then to W . The whole process of selecting corre-

sponding points, and obtaining a transformation to minimize the mean square error
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between corresponding points, is then repeated until the change in mean square error

between iterations falls below an arbitrarily defined value. The final transformation

refinement obtained from ICP registration can then be obtained by the product of

the individual transformations from the n ICP iterations:

TICP =
n∏
i=i

Ti (3.20)

3.3.2 3D Map Registration with the Iterative Closest Point Algorithm

There are works in the literature which discusses the use of ICP algorithm to improve

the accuracy of registration of sensor observations into 3D maps [17, 18]. These works

are often used during SLAM to improve the estimate of both the robot’s relative pose

in its surroundings as well as the sensor’s pose relative to the robot’s map. In these

works typically point cloud representations of the environment are used and individual

sensor observations are registered on a scan-by-scan basis.

One interesting work connects an octree subdivision of an environment to regis-

tration of point clouds [30]. In this work, the performance of traditional point cloud

ICP registration is improved by creating an octree subdivision of the environment.

This is done by using voxel centres of the most commonly observed voxels as the

input points for the model and data sets. The authors demonstrate that this ap-

proach outperforms naively using the existing data for the data and model of the ICP

algorithm.

While these works focus on the registration of consecutive sensor observations,

the registration problem is closely related to the merging problem. For merging large

point cloud maps the use of ICP would be plagued by the requirement to process a

large number of points since nearly every observation is kept in the map as described

earlier. However, since in this work an Octree representation is used for an efficient

representation there is potential for the use of ICP to improve the transformation

estimate between two Octree occupancy grid maps. This is especially true, since the

performance of ICP with voxel centre points is shown to be strong [30].
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Although registration and merging are similar problems, additional challenges to

the merging problem are discussed in [31]. In order for registration to be successful

there needs to exist both a source and template such that a transformation can be

calculated to align the two data sets. In the context of mapping, this means there

must be some portions of each map that represent the same parts of the environment

for the use of the ICP algorithm to improve the transformation estimate. Another

challenge discussed in [31] is the ability to identify regions of each map that represent

the same parts of the environment. This being said, with some initial knowledge of

a transformation between the two maps, an estimate of commonly mapped regions

suitable for transformation improvement with ICP can be extracted from each map.

3.4 Conclusion

This chapter has presented an overview of the problem of merging maps from multiple

robots into one global map. No previous knowledge about transformations between

the reference frames of different robots has been shown to be the most flexible solution

of multi-robot mapping. Subsequently the process for calculating the transformation

estimate between the reference frames of two robots in a rendez-vous scenario is dis-

cussed. Once a transformation between reference frames is provided the problem of

performing a transformation on discretized is explored. The use of the ICP algorithm

on commonly mapped portions of the environment to refine this transformation esti-

mate is also discussed. Now that a theoretical background on the problem of octree

occupancy grid merging is presented, the software resources used to implement this

theory in actual robots will be discussed in Chapter 4.
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Robotics Software Resources

This chapter describes the three principal software resources used to support this

thesis, namely, ROS, Octomap and Point Cloud Library (PCL). These software re-

sources facilitate the implementation of the theory described in Chapter 3 for merging

of octree maps.

4.1 Robot Operating System

ROS is a middle-ware used to simplify the development of robotics software. ROS is

an open source collection of tools, libraries, and community developed software that

allows robotics software developers to be abstracted away from specific hardware.

ROS accomplishes this abstraction through the following core components:

1. Communications Infrastructure

2. Robot Specific Features

3. Development Tools

4. Vast Software Ecosystem

These core components will now be discussed.

4.1.1 Robot Operating System Communications Infrastructure

A ROS system is composed of a number of nodes which are processes which perform

various functions [32]. These nodes could be drivers for various sensors, tools pro-

vided by ROS itself, or even perform computation based on the data from other sensor

driver nodes (i.e., path planning). These nodes are written in C++ or Python with

the provided libraries, roscpp or rospy respectively. For inter-node communication,

22
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Figure 4.1: Robot Operating System topic communication (used from [1] with per-
mission).

ROS provides a message passing interface through the use of topics with an asyn-

chronous publish/subscribe model or services using a synchronous request/response

model. Messages are passed using pre-defined message formats, written in the message

interface description language. To facilitate message-passing, there always exists one

node on any ROS system called the master node. The master node manages com-

munication between nodes by acting as a name server and directs the connections

between nodes. The connections between nodes are most commonly Transmission

Control Protocol (TCP) streams, allowing a ROS system to be distributed accross a

network. The interaction with the master node for subscribing to a topic is shown

in Figure 4.1 where the master node orchestrates the connection between nodes, but

data transfer takes place between the nodes themselves. Multiple nodes in a system

are also capable of subscribing to a topic. The master node also provides a parameter

server which stores data available to every node in the ROS system.

4.1.2 Robot Operating System Robot Specific Features

ROS provides several robot-specific features to speed up the development time for

robotics software. One of these features is that there exist several standard messages

to cover the most commonly used use cases. These messages include, point-clouds,
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poses, transforms, odometry, images, etc. By using these standard messages, a user’s

code can interoperate easily with previously written software contained in the ROS

ecosystem.

Another useful feature provided by ROS is its description of Geometry with the

tf, or transform, library. The tf library abstracts the transformation of coordinate

frames to the user, while handling the fact that transform information is distributed

across a network and comes from sources updated at various rates. ROS uses a tree

representation to model transformations between coordinate frames in the system.

In this representation each coordinate frame has one or zero parents, and zero to

many children. With this representation, reference frames are represented as nodes

in the tree, and the transformations between each reference frame are the branches

of the tree. All ROS nodes that produce tf data broadcast this data on the same

topic. Therefore all transforms between reference frames in the system are available

by subscribing to the /tf topic, allowing the tree structure to be built. An example

of such a tree for the Turtlebot UGV is shown in Figure 4.2, where transformations

between reference frames corresponding to various parts of the robot are shown.

Finally, ROS provides a robot description language that allows manufacturers and

users wishing to customize their robot to describe the physical properties of the robot

and locations of the sensors in an XML document, and have those properties reflected

in the system with the tf library.

4.1.3 Robot Operating System Development Tools

ROS also provides several tools to facilitate debugging, plotting, and visualization.

ROS provides the tool, rxgraph to introspect connections between nodes in the system,

as well as rviz, a three dimensional visualization tool used to visualize many sensor

data types as well as the robots themselves. A screenshot of rxgraph is shown in

Figure 4.3 for a simulated mapping example. As well, a screen shot of rviz is shown

in Figure 4.4, where a 3D map building process is visualized. There also exists several

command line introspection tools to provide similar functionality without relying on a

graphical environment. ROS also provides rosbag, a mechanism to save and playback
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Figure 4.2: An example of the transform tree for the Turtlebot Unmanned Ground
Vehicle (UGV) used in this work.
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messages within the system. The rosbag tool is used in this research so that all sensor

observations during a map building process may be saved so that the map building

process may be altered offline. This allows the transform tree to be modified so that

the transform of maps with a wide range of discretizations may be explored.

4.1.4 Robot Operating System Software Ecosystem

Given that ROS is community developed, there exists a vast ecosystem of existing

software such that new developers may incorporate or build upon proven existing

work. Some examples of existing software include implementations of navigation

within an existing map, SLAM, path planning, etc. One of the most important

existing implementations for this work is Octomap. This implementation is discussed

further in Section 4.2

Several frequently used open source software projects are integrated into ROS. One

of these projects is the Gazebo simulation environment which allows the simulation of

robots described with the ROS robot description language. OpenCV as well as PCL

are also fully integrated to ROS providing built-in computer vision functionality. PCL

is discussed further in Section 4.3.

4.2 Octomap

Octomap is the open-source software implementation of Hornung et al.’s work in

octree mapping [8]. Their implementation is written in C++ and freely available

to build upon or modify. The discussion of Octomap is divided into the discussion

of the self contained library, and the discussion of its implementation into the ROS

environment.

4.2.1 The Octomap Library

Hornung et al.’s distribution of the Octomap library provides facilities for the creation,

building, and modification of Octree occupancy grids as well as facilities to load and

save these maps to disk. Their implementation consists of a series of OcTree types
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Figure 4.3: A screenshot of the rxgraph tool showing node and topic interconnections
for simulated mapping.
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Figure 4.4: A screenshot of the rviz tool visualizing a map building process.
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Figure 4.5: The class diagram of the Octomap library

which are a composition of a series of Node types. The class diagram used of the

Octomap library is shown in Figure 4.5.

Inheritance is used across the Octree classes, where basic tree functionality is

implemented in the OcTreeBase class, and mapping functionality is implemented in

the OccupancyOcTreeBase class. The OcTree types are templated over the data type

stored in the node. This strategy allows the same tree structure to be used while

allowing the data stored in the node to be modified so that it is relevant to the

mapping application.

The first node type OcTreeDataNode, includes a templated data value, as well as

child and parent pointers. The node implementation is memory efficient in comparison

to a naive implementation due the fact that nodes at the lowest level of the tree, or

leaf nodes, do not allocate pointers to their children, since only a pointer to an array

of children is allocated rather than the child pointers themselves. The main node

type, OcTreeNode inherits from OcTreeDataNode and defines the data values’ type.

The main type used for octree mapping is the OcTree class, which is a composition
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of the OcTreeNode class. This strategy of templating the octree across node types

allows the extensibility of the library to be used with additional data stored in each

node, such as the ColorOcTree shown in Figure 4.5.

Included with the library is a visualization tool, octovis, which can load an octree

map from disk and display it in 3D using OpenGL. Octovis allows users to verify

the correctness of constructed maps. Additionally it is used in this work to present

experimental results. Octovis is used throughout this work to present the validity of

merging results. An example of an Octree occupancy grid as displayed by octovis is

shown in Figure 4.6 where dark blue colours represent nodes with high occupancy

probability. In Figure 4.6 a map which represents a small part of an environment

containing the corner of a room and a doorway is shown.

Octomap does not however provide any functionality for transforming entire maps

or merging multi-depth sources efficiently. However, given that the source code for

the library is freely available it remains freely modifiable for contribution of the work

of this thesis. The theoretical background for the addition of this functionality shall

be discussed in Chapter 3.

4.2.2 Octomap Robot Operating System Implementation

Octomap is integrated into ROS such that 3D octree occupancy grid maps can be

build from 3D point cloud data within a ROS environment. The developers of Oc-

tomap provides a map server for the ROS system that subscribes to a topic publishing

point cloud messages and builds the map using localization from tf library. The con-

nection of ROS topics for an example octomap mapping application is shown in Figure

4.7. This example considers a robot using external localization data from a motion

capture system provided by the mocap node ROS node and an additional node that

incorporates the data published by mocap node into the transform tree. A Microsoft

Kinect sensor is used to provide 3D point cloud data to the octomap server node and

is published in the /camera/depth/points topic. Transforms between map and sensor

frames are published on /tf topics, which represent the transformation between ref-

erence frames pertaining to sensor relative to the map. The transform tree for this
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Figure 4.6: A visual representation of an Octree occupancy grid as displayed by the
Octovis visualization tool.
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Figure 4.7: An example of the topic connections between nodes of a mapping appli-
cation using Octomap.

mapping application is shown previously in Figure 4.2. The map is then accessible

through a service and a custom map message. A ROS node for requesting this service

and saving the map to disk is also provided.

4.3 Point Cloud Library

PCL is a software library for 3D image and point cloud processing [33]. The PCL li-

brary contains many algorithms for several aspects of point cloud processing including

filtering noisy data sources, estimating features, reconstructing surfaces, segmenta-

tion, and most importantly for this work, registration. The registration component

of PCL includes routines for performing alignment of 3D point clouds with the ICP

algorithm. The library includes several optimizations to the original ICP algorithm to

reduce computational complexity of the registration process. The registration com-

ponent of the library is used throughout this work as an implementation of the ICP

algorithm. PCL also provides visualization tools which are used in this thesis to pro-

vide an observation method to verify that the ICP registration routines converge to

a desired result.

4.4 Conclusion

This chapter presented an overview of the existing software tools used to support

this thesis. The Octomap library is used as the foundation of the work and provides

the functionality that allows us to build and manipulate 3D octree occupancy grid

maps. ROS provides us with a mechanism to interface the sensor observations of both

simulated and physical robotics platforms to the Octomap library and build maps.

Finally, the PCL library provides us with existing registration routines that may be
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used to improve the transformation estimate between two merged maps. Each of

these tools provide valuable functionality which is incorporated into the problem of

merging 3D octree occupancy grid maps. This problem is formally defined in Chapter

5.



Chapter 5

Problem Formulation

In this chapter we outline the problem being investigated and introduce the notation

that will be used throughout the work. We begin by describing the probabilistic

representation of an octree map. We follow by exploring the problem of calculating

a transformation between map reference frames from sensor observations of robots in

a rendez-vous scenario. The use of ICP to reduce the error in initial transformation

estimates is discussed. The problem of performing this transformation on an octree

map is also explored. Finally, once maps are in a common reference frame, rules for

incorporating data into a global map are introduced.

5.1 The Octree Map

In this work an octree map, M is defined as a set of m leaf nodes. Let n be a leaf

node in the map.

|M | = m (5.1)

n ∈M (5.2)

Each leaf node represents a volumetric subdivision of 3D space, and contains the

log-odds probability of its occupancy, L(n), a function of that volume’s occupancy

probability, P (n):

L(n) = log

[
P (n)

1− P (n)

]
(5.3)

5.2 Map Merging

Let a merged map M ′ be defined as the merger of one map M2 into another map M1

without loss of generality.

34
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M ′ = M2 ∪M1 (5.4)

Where,

n1 ∈M1 , |M1| = m1 (5.5)

n2 ∈M2 , |M2| = m2 (5.6)

It is important to note that M1 and M2 may not necessarily be of the same size

as shown in Equation (5.5).

This merger requires three key steps to be performed:

1. Calculation of the transformation matrix, T , to transform M2’s data into the

coordinate system of M1;

2. The transformation of M2’s data into M1’s coordinate system.

3. Integration of data from M2 into M1.

These steps are now described.

5.2.1 Calculation of Transformation Matrix

The merger of two maps requires the calculation of a 4 x 4 transformation matrix, T

from one map’s coordinate system to the other. Homogeneous coordinates are used

in the transformation matrices. The addition of another dimension to the transform

matrices allows both rotation and translation to be performed in the same matrix

multiplication. The transformation from M2’s coordinate system into M1’s coordinate

system is denoted, T 2
1 . This transformation can be used when merging data from M2

into M1. When merging data from a leaf node n2 in M2, centred at point x2 in

M2’s coordinate system, the corresponding point in M1’s coordinate system, x1, is

calculated as:

x1 = T 2
1x2 (5.7)
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The transformed point can be used to look up the corresponding leaf node n1 in

the map, M1 which encloses the point x1.

In order to calculate this matrix T 2
1 , this work considers a merger when two robots

are in a rendez-vous scenario where both can mutually observe each other. In this

case the transformation matrix is calculated in two steps:

1. Calculation of initial transformation estimate from mutual pose observations.

2. Calculation of final transformation estimate from map data.

5.2.1.1 Calculation of Initial Transformation Estimate

This step of the transformation calculation obtains an initial transformation matrix

from the two robots’ mutual observations of one another. This step assumes that the

robots are capable of mutually observing one another. This work follows the same

framework for obtaining a transformation matrix as described by Dinnissen in [2].

Since the robots make observations of one another in their local frames of reference,

the initial transformation matrix T 2
1 i is obtained from a product of three different

component transformations. The first component, Tc , is the transformation matrix

to convert points in the current robot’s local frame of reference to its global frame

of reference from its pose at the time of the merger. The second component, Tr ,

is the transformation matrix to convert points in the other robot’s local frame of

reference to the current robot’s local frame of reference. This matrix is built using

the other robot’s sensor observations. The final component, To , is the transformation

matrix to convert points in the other’s robot’s frame of reference to its global frame

of reference from its pose at the time of the merger. The following equations show

the calculation of T 2
1 i from each component. These equations are shown using two

dimensional transforms for ease of demonstration, however it can be extended to three
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dimensions without loss of generality.

T 2
1 i = TcTrT

−1
0

=

cos θc − sin θc txc
sin θc cos θc tyc

0 0 1

cos θr − sin θr txr
sin θr cos θr tyr

0 0 1

cos θo − sin θo txo
sin θo cos θo tyo

0 0 1

−1
(5.8)

Where:

θr = π − θo + θc (5.9)

txr = r cos θc (5.10)

tyr = r sin θc (5.11)

Figures 5.1 and 5.2 shows how all the component transformation matrices combine

to form the desired transformation matrix as well as the meaning of the remaining

variables in Equation (5.8).

Figure 5.1: Diagram illustrating how relative equations are determined (Used from
[2] with permission).

5.2.1.2 Improvement of Transformation Matrix

It is important to recognize that the initial transformation estimate is obtained from

uncertain sensor observations. In addition, each robot’s knowledge of their own posi-

tion is uncertain given that it is subject to error in odometry and error in its previous
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Figure 5.2: Diagram illustrating how transformation matrices and parameters are
determined (Used from [2] with permission).
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sensor observations. As such, while the initial transformation estimate does provide

some useful information, it is often undesirable to rely on that information alone to

perform map merging.

For the case of octree occupancy grid maps, the ICP algorithm is chosen as the

method for improving the accuracy of the transform between maps. Although [29]

describes ICP as an algorithm that may be used on arbitraty features, a point cloud

representation will be generated from the maps M1 and M2 to be used with ICP as

described in [30].

Point cloud generation is performed by adding the centre point of each occupied

leaf node in the map to the point cloud. Once these point cloud sets are created the

initial transform estimate as discussed in section 5.2.1.1 is applied to the second point

cloud such that both point clouds are roughly in the same frame of reference. A Subset

of each point cloud which represents commonly mapped territory is extracted. This is

done by determining bounding boxes for each point cloud. Those points contained in

the intersection of the two bounding boxes are added to the subset which represents

commonly mapped territory.

The ICP algorithm is then performed on the point clouds which represent com-

monly mapped territory to obtain the registration vector, and subsequently a refine-

ment to the transformation between the two frames of reference for each robot, TICP ,

which is then used to refine the overall transformation as:

T 2
1 = TICPT

2
1 i (5.12)

Now that a sufficiently accurate transformation is obtained it is necessary to apply

this transformation to the map.

5.2.2 Map Transformation

Once a sufficient estimate for the transformation between maps is known it is nec-

essary to perform this transformation on M2’s data obtaining the transformed map,

M
T 2
1

2 .
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This transformation is performed on the map using trilinear interpolation as de-

scribed in Section 3.2. The bounding region is of the transformed map is initially

determined using T 2
1 and the bounding region of M2. The transformed map is then

built by iterating through each leaf node, n , at the lowest level of the octree hierarchy

in the bounding region of the transformed map and assigning an occupancy. This

occupancy is determined by looking up the source point xs from the centre point of

the current voxel, xn and the inverse transformation as:

xs = T 2
1
−1
xn (5.13)

Once xs is known, the occupancy of the voxels whose centre points enclose xs in

a cubic lattice are used to calculate the final occupancy assigned to node n.

Once all nodes in the bounding region have been accounted for, a map will have

been created entirely with leaf nodes. Map compression is then performed using the

existing algorithms from the Octomap library as described in Section 2.4.

5.2.3 Integration of Map Data

The creation of this merged map, M ′, is then performed by updating M1 with the

data from M
T 2
1

2 . Given the nature of the octree data hierarchy, commonly mapped

portions of the environment may be mapped at different levels of the octree hierarchy.

While this problem could be overcome by simply expanding all nodes in each map to

the lowest level, this is inefficient since it requires the processing of additional nodes.

As such, this work only performs local map expansion in cases of map-level conflict.

This requires M
T 2
1

2 ’s data to be incorporated into M1 differently corresponding to

four different cases which are described below. Readers should note that clamping as

described in Section 2.4 should be implemented for occupancy updates but is omitted

here for simplicity.
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5.2.3.1 Case 1 - New Data Is from a Volume that Is Not Already Mapped in M1

If the new data to be integrated from M
T 2
1

2 does not correspond to an existing leaf

node in M1 after performing the transformation described in equation (5.7), a new

leaf is then added to the octree. The leaf’s occupancy probability in log-odds notation

is then set to be equal to the log-odds occupancy of the node in M
T 2
1

2 :

L(n1|z1:t) = L(n2|z1:t−1) (5.14)

Where, L(n2|z1:t−1) represents the log-odds occupancy of the leaf node from M
T 2
1

2

and L(n1|z1:t) is the merged occupancy of the new leaf node at time t following the

merger.

5.2.3.2 Case 2 - New Data is Already Mapped at the Same Level in M1

If the new data to be integrated from M
T 2
1

2 corresponds to an existing leaf node in

M1’s octree which is at the same level in the tree, the following update calculation

applies:

L(n1|z1:t) = L(n1|z1:t−1) + L(n2|z1:t−1) (5.15)

L(n1|z1:t−1) then represents the existing log-odds occupancy at leaf node n1.

5.2.3.3 Case 3 - New Data corresponds to a Volume Already Mapped at a Coarser

Resolution in M1

If the new data to be integrated from M
T 2
1

2 corresponds to an area covered by a leaf

node n1, where n1 is at a higher level in the octree, or a coarser resolution, the merger

is performed by first adding a lower level to M1’s tree below n1. This addition creates

eight new leaf nodes, n1
1 to n8

1. This process is shown in Figure 5.3.

Where each sub-element of n1 contains the log-odds occupancy of:

L(ni1) = L(n1) (5.16)

Following this step, n2’s data is then integrated to the sub-element of n1 repre-

senting the same space by the formula:
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Figure 5.3: The addition of another level below n1 prior to merging.

L(ni1|z1:t) = L(ni1|z1:t−1) + L(n2|z1:t−1) (5.17)

5.2.3.4 Case 4 -New Data corresponds to a Volume Already Mapped at a Finer Resolu-

tion in the Existing Octree

This case describes the situation where data from a leaf node, n2 ∈ M
T 2
1

2 maps a

volume already mapped in M1 and data from M
T 2
1

2 is at a coarser resolution than in

the existing map, M1. In this case, the integration of data from n2 is performed very

similar to 5.2.3.3. The integration of data is performed first by adding an additional

level to M
T 2
1

2 ’s tree below n2. This addition creates eight new leaf nodes, n1
2 to n8

2.

This process is shown in Figure 5.4.

Figure 5.4: The addition of another level below n2 prior to merging.
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Where each sub-element of n2 contains the log-odds occupancy of:

L(ni2) = L(n2) (5.18)

Following this step, each sub-element of n2’s data is then integrated in to the

elements of M1 representing the same space by the formula:

L(n1|z1:t) = L(n1|z1:t−1) + L(ni2|z1:t−1) (5.19)

Where n1 represents any leaf node in M1 which maps the same area as the sub-

element of n2 that we are merging.

5.3 Conclusion

This chapter has presented the developed theoretical components required for map-

merging with unknown transformations between map reference frames. The imple-

mentation of this theory into software is described in Chapter 6.



Chapter 6

Implementation

This chapter discusses the implementation of the theory discussed in Chapter 5 into

software algorithms. In this chapter the overall global map merging algorithm is

divided into several sub-algorithms:

1. The creation of 3D point clouds from Octomap Octree maps such that the the

ICP algorithm can be performed on map data to refine the initial transformation

matrix within the context of PCL.

2. The extraction of intersecting volumes from each point cloud set.

3. The refinement of the initial transformation estimate between map reference

frames using the ICP algorithm.

4. The application of the transformation to the second map to be merged such

that each map is now in a common reference frame.

5. The integration of occupancy data from the transformed map into the first map

to create a global map from the data of each robot.

The sequential execution of these algorithms results in a merged octree occupancy

grid that is robust to error in the transformation estimate between the maps. A de-

tailed description for each sub-algorithm is given in addition to pseudo code notation.

6.1 Creation of Point Clouds from Octomap Octree Maps

In order to use the available ICP algorithms from PCL it is necessary to translate map

data into point clouds. This is done for both maps to be merged. This translation is

performed by iterating through each leaf node, nleaf , in a map, M , and adding the

node’s centre point to the Point Cloud if the node is occupied. This node uses the

same definition of occupied as [8] where the node’s log-odds occupancy must have

44
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reached the clamping threshold, lmax, to be considered occupied. Pseudo code for

this algorithm is shown in Algorithm 1. The C++ Implementation of this algorithm

Algorithm 1: Creation of point cloud sets from Octomap octree maps

Input: An Octomap M
Output: A Point Cloud PCl
begin

P ←− ∅;
foreach nleaf ∈M do

if L(n) ≥ lmax then
PCl = PCl + CentrePoint(n);

end

end

end

with PCL and Octomap is shown in Appendix A.1.

6.2 Extraction of Intersecting Volumes from Point Cloud Sets

In order to use the ICP algorithm successfully, one must have two feature sets which

represent the same rigid body as either the data set, W or the model set, X. To

extract these sets, this work first applies the initial transform estimate to the second

map’s data point cloud set, W . Those points representing intersecting volume of the

two sets are then extracted by initially extracting the points in W that are contained

within the bounding cubic lattice of the entire set X. This selection of points from

W is denoted Wsel. Secondly, those points from X contained in Wsel’s bounding

cubic lattice are extracted to obtain, Xsel. Pseudo code for this algorithm is given

in Algorithm 2. It is important to note that the location of the bounding boxes for

each point cloud set are determined using utility functions, GetMetricMin() and

GetMetricMax(). These functions return a vector where each component represents

the lowest and highest displacement from the origin along each axis in the point cloud

set. The C++ Implementation of this algorithm with PCL is shown in Appendix

A.1.
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Algorithm 2: Extraction of Point Clouds from Intersecting Volumes

Inputs : Point Clouds, W and X, Transformation Matrix T 2
1 i

Outputs: Point Clouds, Wsel and Xsel

begin
Wsel ←− ∅;
Xsel ←− ∅;
xmax = 0;
xmin = 0;
TransformPointCloud(P, T 2

1 i);
xmin = GetMetricMin(X) ;
xmax = GetMetricMax(X) ;
foreach w ∈ W do

if xminx < wx < xmaxx and xminy < wy < xmaxy and
xminz < wz < xmaxz then

Wsel = Wsel + w;
end

end
wmin = GetMetricMin(W ) ;
wmax = GetMetricMax(W ) ;
foreach x ∈ X do

if wminx < xx < wmaxx and wminy < xy < wmaxy and
wminz < xz < wmaxz then

Xsel = Xsel + x ;
end

end

end



47

6.3 Refinement of Initial Transform with the Iterative Closest Point Al-
gorithm

In merging situations prone to error in the initial transformation estimate between

map reference frames, it is necessary to perform map alignment using data from

commonly mapped territory. In the previous section, one method for extracting

a commonly mapped portion of the environment is introduced. Refinement of the

initial transformation is performed by iteratively performing the ICP algorithm on

the data and model sets W and X respectively. Each incremental transformation is

then incorporated into the overall refined transformation by post multiplication after

each ICP iteration.

It is important to note that the ICP algorithm described in Section 3.3.1 would be

computationally expensive to compute due to the requirement to determine the set

of points from the model that correspond to the target. In the PCL library, several

parameters exist to reduce the cost of determining this correspondence set. Most

importantly for this use of ICP are:

• Maximum correspondence distance;

• Maximum transformation ε.

The maximum correspondence distance reduces the search space for correspondences

to be found in the model set by only searching for correspondences in a sphere centred

at a point in the data set with a radius equal to the maximum correspondence dis-

tance. The maximum transformation ε reduces the search space for transforms that

minimize the mean square error. The maximum transformation ε is a measure of the

maximum allowable transformation between ICP iterations, defined as the sum of all

elements in the difference between the transformation matrices from two consecutive

ICP iterations. Use of these parameters allows the ICP algorithm to begin with a

large correspondence distance to make large scale transformations initially. Then,

once the ICP algorithm has converged with its initial maximum correspondence dis-

tance, the maximum correspondence distance can be decreased to make further small

scale refinements to the transformation.
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Another important observation is that the ICP algorithm performs better when

there is a larger number of points in the model set , X, than the data set, W . For

continuous sensor registration applications this is usually the case. However, for map

merging algorithms it may not always be the case that M1 has more nodes in the

common portion of the environment than M2. Since both the generated point clouds

from M1 and M2 represent the same portion of the environment, the point cloud of

largest size is used as the model set, with the point cloud of smallest size used as

the data set. If point cloud sets are interchanged, then the inverse of the refinement

transformation matrix is returned.

The details of ICP refinement algorithm are also described further in Algorithm

3 with the C++ implementation using PCL shown in Appendix A.1.

6.4 Execution of Refined Transform

After obtaining a final transformation with ICP refinement, the overal transforma-

tion matrix to obtain M
T 2
1

2 , T 2
1 , is obtained by multiplying the original transformation

matrix estimate by the ICP refinement. This transformation is then performed on

the map as described in Section 3.2. The process for performing this transformation

is described further in Algorithms 4 to 7. The high level transformation with pseudo

code shown in Algorithm 7, begins by first determining a cubic bounding region of the

transformed map. This is done by first determining the metric minimum and maxi-

mum points of the map using functions from the Octomap Library. These points are

then used to determine the eight vertices of the bounding cubic region for M . Subse-

quently each of these points are transformed with T 2
1 . The minimum and maximum

x, y, and z component are then extracted to obtain pmin and pmax. Pseudo code for

this process of extracting a bounding region of the transformed map is shown in Algo-

rithm 4. It is important to note that the bounding region for the transformed map is

determined using the, GetMetricMin() and GetMetricMax() utility functions from

the Octomap library. These functions return a vector where each component repre-

sents the lowest and highest displacement from the origin along each axis in the map

specified as a parameter. The extracted points are subsequently used to iterate over
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Algorithm 3: Iterative Closest Point Map Transformation Refinement

Inputs : Point Clouds, Psel and Xsel, Resolution of the Octree Map, mapRes
Output: Refined Transformation Matrix TICP
begin

SetICPMaxEpsilon(mapRes/60) ;
SetICPMaxCorrespondenceDistance(10mapRes) ;
TICP = I ;
Ti = I ;
Ti−1 = I ;
Presult ←− ∅ ;
if |Psel| < |Xsel| then

Presult = Psel ;
SetICPModel(Xsel) ;
for i = 0 tomaxICPIterations do

SetICPData(Presult) ;
Ti−1 = Ti ;
DoICPAlignment(Presult, Ti) ;
TICP = TICPTi ;

if
∑4

j=1

∑4
k=1 Tijk − Ti−1jk < GetICPMaxEpsilon() then

DecreaseICPMaxCorrespondenceDistance() ;
end

end

else
Presult = Xsel ;
SetICPModel(Psel) ;
for i = 0 tomaxICPIterations do

SetICPData(Presult) ;
Ti−1 = Ti ;
DoICPAlignment(Presult, Ti) ;
TICP = TICPTi ;

if
∑4

j=1

∑4
k=1 Tijk − Ti−1jk < GetICPMaxEpsilon() then

DecreaseICPMaxCorrespondenceDistance() ;
end

end

TICP = TICP
−1 ;

end

end
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the voxels in the bounding box of the transformed map and look up the occupancy of

the nodes of the original map. Using utility functions from the Octomap library, the

leaf node nearest to the point generated by the inverse transform with the location of

the transformed map’s voxel centre point is determined. The offset of the generated

source point and the centre point of the nearest neighbour node is then used to deter-

mine the occupancy of the interpolated point with trilinear interpolation as described

in Algorithms 5 and 6. A leaf node is then added to the transformed octree with the

interpolated occupancy. Once all voxels in the transformed map’s bounding box are

addressed, the transformed map is then compressed with the Octomap library. The

overall algorithm for transforming octree maps is shown in Algorithm 7 with its C++

implementation shown in Appendix A.2.

6.5 Integration of Transformed Map into Global Map

Now that both maps are in a common reference frame, data from M
T 2
1

2 can be inte-

grated into M1 to create a global map M . This global map is created by iterating over

each node in M
T 2
1

2 and updating M1 with its data according to the rules described in

Section 5.2.3. At each step of the iteration the location of n2 is searched in M1 to de-

termine if a corresponding node n1 exists. If this is not the case, Case 1 from Section

5.2.3.1 applies. If n1 does exist, it is required to determine the depth difference of n2

within M
T 2
1

2 ’s tree and n1 within M1’s tree. If there is no depth difference, Case 2 from

Section 5.2.3.2 applies. If the depth difference is positive, Case 3 from Section 5.2.3.3

applies. This scenario requires children to be added to n1. The child corresponding

to the same volume as n2 is then updated. Finally, if the depth difference is negative,

Case 4 from Section 5.2.3.4 applies. This scenario requires children to be added to

n2. Each added child is then used to update the corresponding nodes in M1. Given

that this algorithm is written with the intent to be implemented with the Octomap

library and the C++ programming language, a for loop may be used to integrate the

added children to n2 on subsequent loop iterations. This is due to the specific imple-

mentation of the Octomap node iterator class. With this implementation, children

are simply added to n2 and Case 2 updates are executed in later loop iterations for
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Algorithm 4: Extraction of Transformed Map’s Bounding Box

Inputs : Octree Map M , Transformation Matrix T 2
1

Output: Points pmin and pmax
begin

PBoundingBox ←− ∅ ;
pmin = GetMetricMin(M) ;
pmax = GetMetricMax(M) ;

P = P +
[
pminx pminy pminz

]T
;

P = P +
[
pminx pminy pmaxz

]T
;

P = P +
[
pminx pmaxy pminz

]T
;

P = P +
[
pminx pmaxy pmaxz

]T
;

P = P +
[
pmaxx pminy pminz

]T
;

P = P +
[
pmaxx pminy pmaxz

]T
;

P = P +
[
pmaxx pmaxy pminz

]T
;

P = P +
[
pmaxx pmaxy pmaxz

]T
;

foreach p ∈ P do
p = T 2

1p
end
foreach p ∈ P do

if px < pminx then
pminx = px;

end
if py < pminy then

pminy = py;

end
if pz < pminz then

pminz = pz;
end
if px < pmaxx then

pmaxx = px;
end
if py < pmaxy then

pmaxy = py;

end
if pz < pmaxz then

pmaxz = pz;
end

end

end
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Algorithm 5: Trilinear Interpolation

Inputs : Axis-Offsets xd, yd, and zd, Interpolation points c000 to c111
Output: Interpolated Occupancy, c
begin

c00 = (1− |xd|)c000 + |xd|c100 ;
c01 = (1− |xd|)c001 + |xd|c101 ;
c10 = (1− |xd|)c010 + |xd|c110 ;
c11 = (1− |xd|)c011 + |xd|c111 ;
c0 = (1− |yd|)c00 + |yd|c10 ;
c1 = (1− |yd|)c01 + |yd|c11 ;
c = (1− |zd|)c0 + |zd|c1

end

the added children. Pseudo code for this algorithm is shown in Algorithm 8 and its

C++ implementation is shown in Appendix A.3.

6.6 Conclusion

This chapter has presented the implementation of the theory discussed in Chapter 5

into algorithms that may be implemented with PCL and Octomap. Each algorithm

was described in detail with pseudo code notation given for each and C++ source

code referenced in Appendix A. Now that a software implementation for merging

octree occupancy grids is given, experimental results of successful map mergers for

both simulated and true environments will be presented in Chapter 7.
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Algorithm 6: Trilinear Interpolation for Octree Occupancy Grids

Inputs : Octree Map M , Nearest-Neighbour Node nc000 , Axis-Offsets xd, yd,
and zd

Output: Interpolated Occupancy, c
begin

res = GetResolution(M) ;
c000 = P (nc000) ;
c001 = 0 ;

nc001 = LookupNode(M,pnc000
+
[
0 0 res× Sign(zd)

]T
)

if nc001 ∈M then
c001 = P (nc001) ;

end
c010 = 0 ;

nc010 = LookupNode(M,pnc000
+
[
0 res× Sign(yd) 0

]T
)

if nc010 ∈M then
c010 = P (nc010) ;

end
c011 = 0 ;

nc011 = LookupNode(M,pnc000
+
[
0 res× Sign(yd) res× Sign(zd)

]T
)

if nc011 ∈M then
c011 = P (nc011) ;

end
c100 = 0 ;

nc100 = LookupNode(M,pnc000
+
[
res× Sign(xd) 0 0

]T
)

if nc100 ∈M then
c100 = P (nc100) ;

end
c101 = 0 ;

nc101 = LookupNode(M,pnc000
+
[
res× Sign(xd) 0 res× Sign(zd)

]T
)

if nc101 ∈M then
c101 = P (nc101) ;

end
c110 = 0 ;

nc110 = LookupNode(M,pnc000
+
[
res× Sign(xd) res× Sign(yd) 0

]T
)

if nc110 ∈M then
c110 = P (nc110) ;

end
c111 = 0 ;
nc111 = LookupNode(M,pnc000

+[
res× Sign(xd) res× Sign(yd) res× Sign(zd)

]T
)

if nc111 ∈M then
c111 = P (nc111) ;

end
c = TrilinearInterpolation(xd, yd, zd, c000, c001, c010, c011, c100, c101, c110, c111)

end
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Algorithm 7: Octree Map Transformation with Trilinear Interpolation

Inputs : Octree Map M , Transformation Matrix T 2
1 , Points pmin and pmax

Output: Transformed Map M ′

begin
pmin = 0 ;
pmax = 0 ;
GetMapBoundingBox(M,T 2

1 ,pmin,pmax) ;
x = pminx ;
y = pminy ;

z = pminz ;
res = GetResolution(M) ;
while z < pmaxz do

while y < pmaxy do
while x < pmaxx do

pdest =
[
x y z

]T
;

psource = T 2
1
−1
pdest ;

nc000 = LookupNode(M,psource) ;
if nc000 ∈M then

pnc000
= CentrePoint(nc000) ;

xd = (psourcex − pnc000 x
)/res ;

yd = (psourcey − pnc000 y
)/res ;

zd = (psourcez − pnc000 z
)/res ;

TrilinearOctreeInpterpolation(M,nc000 , xd, yd, zd) ;
AddLeafToTree(M ′,pdest, c) ;

end
x = x+ res ;

end
y = y + res ;

end
z = z + res ;

end
CompressMap(M ′) ;

end
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Algorithm 8: Octree Map Merging of Transformed Maps

Inputs : Octree Maps M1 and M ′
2

Output: Merged Map M
begin

foreach n2 ∈M ′
2 do

n1 = SearchMap(M1, CentrePoint(n2)) ;
if n1 ∈M1 then

depthDifference = NodeDepth(n2)−NodeDepth(n1) ;
if depthDifference = 0 then

UpdateNode(n1, LogOdds(n2)) ;
else if depthDifference > 0 then

AddChildrenToNode(n1, depthDifference) ;
n′1 = SearchMap(M1, CentrePoint(n2)) ;
UpdateNode(n′1, LogOdds(n2)) ;

else if depthDifference < 0 then
AddChildrenToNode(n2, depthDifference) ;

end

else
AddNodeToTree(M1, CentrePoint(n2)), LogOdds(n2)) ;

end

end

end



Chapter 7

Results

In this chapter, the results of successful map mergers are presented from both simu-

lated and real-world environments. In each of these cases, the ROS system used for

building each map is described as well as the use of the implemented software to merge

the maps together. The results of each merger are then presented and discussed.

7.1 Simulated Map Merging

In this section the merger of two maps built within a simulated environment is pre-

sented. This experiment uses the Gazebo simulation environment that is integrated

into ROS. This work uses the Fuerte release of ROS as well as the Turtlebot stack

included in the ROS Fuerte repositories.

7.1.1 Gazebo Simulation Environment

For this experiment, ROS’ integrated simulation environment, Gazebo, is used to

allow a simulated Turtlebot UGV with an artificial Microsoft Kinect Sensor to traverse

a synthetic environment and build an octree occupancy grid map of a portion of that

environment. Another simulated robot then maps a different part of that environment

while mapping a small portion of the same area covered by the first robot. The

simulated environment and robot are shown in Figures 7.1 and 7.2 respectively.

7.1.2 Map Building

To build each map, an instance of the Gazebo simulator is launched. The environ-

ment is then loaded with the wg collada world model included with the simulator

package. A simulated Turtlebot UGV is then spawned using the turtlebot gazebo

package. This package includes facilities to visualize the simulated robot from the

56
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Figure 7.1: The simulated environment to be mapped.
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Figure 7.2: The simulated robot in its environment.
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simulator’s GUI and emulate sensor observations as if the robot were physically in

the same environment.

To provide localization for mapping, a transform broadcaster has been written

to publish tf data from Gazebo’s /gazebo/model states topic. This transform broad-

caster, named the /map tf broadcaster node, subscribes to the model states topic.

This topic contains state data about each simulated model in Gazebo. This data in-

cludes the pose of the robot relative to the environment. As such, the /map tf broadcaster

node extracts the pose of the robot relative to the environment and adds a frame to

the transform tree called /map which is a parent of the robot’s /base footprint frame.

This transform tree is shown in Figure 7.3.

Finally, to provide map serving capabilities, the /octomap server node from [8] is

run. This node subscribes to the /camera/depth/points topic to provide 3D sensor

observations of the environment as well as the /map tf broadcaster node’s /tf topic

to provide localization and subsequently uses the sensor observations to build and

host a map. The node and topic connections for this system is shown in Figure 7.4.

In order to build two separate maps to be merged, two separate mapping runs are

completed. In the first run, the robot is spawned using the /gazebo/model states topic

directly for localization. The robot is then tele-operated through the environment

until it reaches a rendez-vous point with the second robot and the map is saved to

disk. In the second mapping run the robot is spawned in a different location. For

localization, π/4 is added to yaw angle of the /gazebo/model states topic’s orientation

so that maps are built in different voxel discretizations. The individual maps as well

as the combination of the two maps prior to transformation are shown in Figure 7.5.

7.1.3 Map Merging Results

The two built maps are then passed to the implemented map merging software as

command-line arguments along with an initial guess of the transformation between

map reference frames. The software as described in Chapter 6 converts these maps

to point cloud representations and performs ICP transform refinement to obtain an

improved transform between each map. The implemented software also includes
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Figure 7.3: The transform tree for mapping a simulated environment.
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Figure 7.4: The node and topic connections for mapping a simulated environment.

visualization for the ICP alignment. As previously stated, maps are built with a π/4

reference frame rotation. Therefore they must be transformed with a−π/4 rotation to

be merged correctly. Therefore erroneous initial transform estimates near the desired

transformation are artificially induced and passed as command-line arguments to test

the ICP refinement process. The ICP refinement is shown visually for commonly

mapped portions of the simulated environment for a transform estimate error in the

yaw angle of 0.265 radians in Figure 7.6 with the first map shown in red and the second

in green. Figure 7.6 shows the alignment results before and after ICP refinement using

the point clouds extracted from commonly mapped regions of the map

Since the transformation between both maps is known exactly, this knowledge al-

lows us to evaluate how well the ICP refinement restored an erroneous transformation

estimate. This is done using two error metrics. The first, εr, evaluates the difference

of the rotation parts of the correct transformation matrix and the transformation

matrix obtained by the product of the initial transformation estimate and the ICP

refinement transformation matrix. The absolute value of each element of the differ-

ence of the rotation part of the two matrices is then summed to obtain εr. Where the

correct matrix is:

T exact =


cos π

4
sin π

4
0 0

− sin π
4

cos π
4

0 0
0 0 0 0
0 0 0 1

 (7.1)

And,

εr =
3∑
j=1

3∑
k=1

|T exactjk − T 2
1 iTICP jk| (7.2)

The other metric, εt, evaluates the difference of the translation parts of the correct

transformation matrix and the obtained transformation matrix. The absolute value
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(a) The map of the first robot. (b) The map of the second robot.

(c) The two maps prior to transformation.

Figure 7.5: Built octree occupancy grid maps of the simulated environment prior to
merging.
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(a) Point cloud representation of common ter-
ritory with initial transform error.

(b) Point cloud representation of common ter-
ritory with ICP refined transform.

Figure 7.6: The results of ICP alignment of commonly mapped territory of the sim-
ulation environment for yaw-angle initial transformation error.

of each element of the difference of the translation part of the two matrices is then

summed to obtain εt. Where,

εt =
4∑
j=1

|T exactjk − T 2
1 iTICP jk|k=4

(7.3)

Two transformation metrics are used rather than one single metric for the complete

transformation matrix due to the fact that small orientation (rotation) errors can

have a drastic effect on map alignment in comparison to moderate translation errors.

For this experiment, the transformation from the first map to the second map is

a rotation about the z-axis of π/4, therefore the transformation error metric, ε, for

several different uncertain transformations is evaluated in Table 7.1 with the erroneous

transformation estimates passed to the merging software as well as the values of εr

and εt before and after ICP refinement. Refinement attempts where the error in initial

transform estimate was too large for ICP refinement to converge to a desired result

are highlighted in red.

After observation, using visualization throughout the ICP refinement process, it
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Translation Rotation εr εt εr εt
(x, y, z) (roll, pitch, yaw) pre ICP pre ICP post ICP post ICP

(0, 0, 0) (0, 0,−0.5) 0.796312 0 2.18382 20.3253
(0, 0, 0) (0, 0,−0.52) 0.741876 0 0.0255836 0.11396
(0, 0, 0) (0, 0,−0.6) 0.521384 0 0.00492871 0.0659221
(0, 0, 0) (0, 0,−π/4) 0 0 0.0677813 0.795031
(0, 0, 0) (0, 0,−0.8) 0.0413005 0 0.0961062 1.02546
(0, 0, 0) (0, 0,−0.87) 0.239007 0 0.164128 1.82668
(0, 0, 0) (0, 0,−0.9) 0.323436 0 0.658751 6.70871
(1, 0, 0) (0, 0,−π/4) 0 1 0.0605207 0.712245
(0, 1, 0) (0, 0,−π/4) 0 1 0.0753039 0.884319
(1, 1, 1) (0, 0,−0.6) 0.521384 3 0.0274716 0.357402
(1, 1, 1) (0, 0,−0.8) 0.0413005 3 0.0410986 0.469403
(0, 0, 0) (−0.1, 0,−π/4) 0.25308 0 0.448877 0.0352201
(0, 0, 0) (0,−0.1,−π/4) 0.25308 0 1.17584 8.70397
(0, 0, 0) (−0.1,−0.1,−π/4) 0.371481 0 0.0762914 0.794496
(1, 1, 0) (−0.1, 0,−π/4) 0.25308 2 0.0150514 0.187039
(0, 0, 1) (−0.1, 0,−π/4) 0.25308 1 21.5134 3.30602
(1, 1, 0) (0,−0.1,−π/4) 0.25308 2 8.64066 1.16931
(0, 0, 1) (0,−0.1,−π/4) 0.25308 1 0.24857 1.18748

Table 7.1: ICP alignment error evaluation for simulated map merging.
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was observed that εr values less than 0.25 and εt values less than 0.9 yielded coher-

ent merging results. As seen in Table 7.1 the ICP refinement implementation allows

transformation correction for a wide range of transformation errors. The ICP refine-

ment algorithm was able to correct yaw-angle errors up to 0.265 radians as shown

in the second row of Table 7.1. However for angles larger than this such as an erro-

neous yaw rotation estimate of -0.5 (row 1 of Table 7.1), the ICP refinement does not

converge to a desired result. This is often due to the fact that the distance between

corresponding points is so great that the ICP algorithm converges to local minima

rather than the absolute minima. One thing that is important to note is that the ICP

refinement strategy is often not effective in the presence of error in roll and pitch an-

gles. This is due to the fact that when intersecting bounding boxes of each are used

with the initial transformation estimate to determine commonly mapped territory,

the extraction fails to produce sufficient data sets for registration. This is shown in

rows 13, 14, 17, and 18 of Table 7.1.

Once these refined transformations are obtained, the transformations are then ap-

plied to the maps then merged. Using the octovis visualization to the coherency of the

maps are qualitatively evaluated. Figure 7.7 shows the result of a map merger with

exact knowledge of the transformation between the two maps. Dark blue voxels cor-

respond to high occupancy where as lighter shades of blue represent lower occupancy.

It can be seen that data from the second map is interpreted as lower occupancy,

however this is due to the fact that data from the edge of occupied territory is spread

over several voxels due to the π/4 rotation. This being said, after being transformed

to the other robot’s reference frame the data is still coherent, as free and occupied

space, remains as such and additional information is added to the map.

Figure 7.8 also shows the results of a merger with an erroneous initial transform.

This figure compares the coherency of map mergers with and without ICP transform

refinement. The merger in this example has a yaw-angle error of 0.265 radians (row

1 of Table 7.1). Figure 7.8 demonstrates that the map is satisfactorily aligned by the

ICP refinement, allowing the implemented map merging algorithm to be a suitable

candidate for merging when transformation estimates are obtained from uncertain
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Figure 7.7: The merged map of the simulated environment with exact transformation
knowledge
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sensor observations.

7.2 Real-World Map Merging

In this section the merger of two maps built within a laboratory environment is

presented. In this experiment, an environment is set up for a Turtlebot to traverse

and build maps, each with a focus on different landmarks so that the merger of the two

maps will provide additional data for each of these landmarks. In the first mapping

run the robot circles the box formation to obtain information about both sides of the

box formation while omitting detailed observations about the hollow square wood

structure. In the second mapping run the robot makes observations about the edges

of the hollow square structure while omitting the far side of the box structure. This

allows the merged map to contain detailed information about both the box formation

and the perimeter of the the hollow square structure.

7.2.1 Mapping Environment

For this experiment, a Turtlebot UGV explores a physical environment within the

RMCC robotics laboratory. The robot then uses a Microsoft Kinect sensor to extract

3D observations of this environment. The environment is shown in Figure 7.9 with

two landmarks. These two landmarks are set up such that two separate mapping runs

obtain detailed information about each landmark.

7.2.2 Map Building

To build the first map, the robot is placed to the left of the boxes in the left of Figure

7.9. The robot then follows a path around the boxes on the left of Figure 7.9 making

detailed observations about the boxes. The path of the first robot is also shown in

yellow. In the second mapping run, the robot travels the perimeter of the wooden

fence like structure in the right of the image to build a detailed map of the wooden

structure. The path of the second robot is shown in red.
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(a) The merged result in simulation without ICP refinement.

(b) The merged result in sumulation with ICP refinement.

Figure 7.8: Built octree occupancy grid maps of the simulated environment after
merging with and without ICP refinement.
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Figure 7.9: The experimental mapping environment.

In each mapping run the Turtlebot UGV is booted with a provided system image

which automatically provides the majority of needed sensor drivers. A developed

launch script is then used to run the additional nodes required for mapping. This

includes the driver for the Microsoft Kinect which publishes point cloud data on the

/camera/depth/points topic. Additionally, a natural point “Optitrack” motion cap-

ture system is used to provide localization. The “Optitrack” system is an optical

motion capture system which is able to accurately track in 6DOF the position and

orientation of a predefined constellation of reflectors. A set of these reflectors is at-

tached to the Turtlebot UGV such that it may be tracked within the environment.

The cameras are then connected to a server which streams the robot’s pose infor-

mation Using the NatNet protocol to the ROS system. The /mocap node is then

used to receive this information and publish pose messages in a ROS topic, /lps. A

similar node to the /map tf broadcaster from the simulation is then used to publish tf

data by subscribing to the /lps topic. Finally, a rosbag recorder is used to record all

publications to sensor observation and localization topics so that maps can be built

offline using any desired discretization.

Offline, the Octomap server is run to provide map serving capabilities. The sensor

observations and localization are then replayed using the bag file obtained from the
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first mapping run. The server then subscribes to the point cloud topics as well as

required /tf topics for appropriate map building. The /octomap saver node is then

run which saves the built map to a file. For the second map, the same process is

repeated with the exception that a simple transform broadcaster is used to add an

additional transform to the system which is a parent of the transform provided by

the Optitrack system. This frame is rotated by π/4 from the Optitrack frame so that

the two maps are not built in common voxel discretizations. The node and topic

interconnections for the experimental mapping runs are shown in Figure 7.11, while

the transform tree remains the same. The individual maps as as well as the maps

shown together prior to transformation are shown in Figure 7.10 with height color

encoding to make interpretation of 3D shapes easier.

7.2.3 Map Merging Results

Once again, the maps are then passed to the implemented map merging software as

command-line arguments along with an initial guess of the transformation between

map reference frames. Several different initial guesses for the transformation are used

to evaluate the effectiveness of ICP transform refinement for erroneous initial guesses

using the same εr and εt as described in Section 7.1.3. The results of ICP refinement

for each transform estimate is shown in Table 7.2 with the erroneous transformation

estimates passed to the merging software as well as the values of εr and εt before

and after ICP refinement. Once again, refinement attempts where the error in initial

transform estimate was too large for ICP refinement to converge to a desired result

are highlighted in red.

As predicted, ICP remains a suitable candidate to refine transformation estimates

for uncertain transformations between maps. In the provided example a vast range

of transformation errors were able to be corrected including yaw angles of up to 0.685

radians of error (row 2 of Table 7.2), where the refinement process is shown in Figure

7.12. For several erroneous transformation estimates εr and εt converged to desired

results. Additionally, the magnitude of the error that the ICP refinement algorithm

was able to reduce was far greater. This is due to the fact that the maps of the
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(a) The map of the first robot. (b) The map of the second robot.

(c) The two maps prior to transformation.

Figure 7.10: Built octree occupancy grid maps of the real-world laboratory environ-
ment prior to merging.

Figure 7.11: The node and topic connections for mapping a real-world environment



72

Translation Rotation εr εt εr εt
(x, y, z) (roll, pitch, yaw) pre ICP pre ICP post ICP post ICP

(0, 0, 0) (0, 0,−0.07) 1.85521 0 2.695 1.07009
(0, 0, 0) (0, 0,−0.1) 1.79034 0 0.121203 0.153779
(0, 0, 0) (0, 0,−0.5) 0.796312 0 0.121749 0.166057
(0, 0, 0) (0, 0,−π/4) 0 0 0.207669 0.1337277
(0, 0, 0) (0, 0,−0.8) 0.0413005 0 0.123183 0.196204
(0, 0, 0) (0, 0,−1.5) 1.85352 0 0.138249 0.133851
(0, 0, 0) (0, 0,−1.7) 2.24102 0 2.88717 0.683354
(1, 0, 0) (0, 0,−π/4) 0 1 0.135229 0.198153
(0, 1, 0) (0, 0,−π/4) 0 1 0.158971 0.228493
(1, 1, 1) (0, 0,−0.6) 0.521384 3 0.188403 0.272216
(1, 1, 1) (0, 0,−0.8) 0.0413005 3 0.202992 0.202992
(0, 0, 0) (−0.3, 0,−π/4) 0.821276 0 0.17818 0.235683
(0, 0, 0) (0,−0.3,−π/4) 0.821276 0 0.103531 0.163994
(0, 0, 0) (−0.3,−0.3,−π/4) 0.371481 0 0.0762914 0.794496
(1, 1, 0) (−0.3, 0,−π/4) 0.821276 2 0.240368 0.32025
(0, 0, 1) (−0.3, 0,−π/4) 0.821276 1 0.259235 0.41867
(1, 1, 0) (0,−0.3,−π/4) 0.821276 2 0.180602 0.250326
(0, 0, 1) (0,−0.3,−π/4) 0.821276 1 0.104994 0.218853

Table 7.2: ICP alignment error evaluation for real-world map merging.
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(a) Point cloud representation of common ter-
ritory with initial transform error.

(b) Point cloud representation of common ter-
ritory with ICP refined transform.

Figure 7.12: The results of ICP alignment of commonly mapped territory of the
real-world laboratory environment for yaw-angle initial transformation error.

experimental environment had a far greater portion of commonly mapped territory

than the simulated environment. As well, the experimental sensor had a greater range

than the simulated sensor. This being said, some failures were observed in rows 1 and

7 of Table 7.2 due to the fact that the ICP algorithm once again converged to local

minima, rather than absolute minima.

Given that a reliable transformation refinement process is in place, this allows us

to merge the results from one mapping run with another to have detailed data about

both landmarks in the environment. The merged map with exact knowledge of the

correct transform between maps is shown in Figure 7.13. Additionally the contrast

of the merged map with an erroneous yaw angle estimate of 0.685 radians (row 2 of

Table 7.2) with and without ICP refinement is shown in Figure 7.14.

7.3 Conclusion

This chapter has presented success in map merging for both simulated and real-world

environments. This success has shown that the theory for merging octree occupancy

grids as presented throughout this work is indeed valid. The results presented in this

chapter will be brought into context with the complete work in Chapter 8. Addition-
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Figure 7.13: The merged map of the real-world laboratory environment with exact
transformation knowledge

ally, Chapter 8 will also explore potential avenues for improvement of this research

through future work.
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(a) The merged real-world result without ICP refinement.

(b) The merged real-world result with ICP refinement.

Figure 7.14: Built octree occupancy grid maps of the real-world laboratory environ-
ment after merging with and without ICP refinement.



Chapter 8

Conclusion

Our research was motivated by the lack of a suitable 3D mapping framework for

multi-robot applications.

In Chapter 2 we motivated our research by presenting a summary of robotic map-

ping techniques as well as recent developments in 3D map representations.This chap-

ter also included a description of the octree occupancy grid map and the advantages

of its use in 3D mapping.

In Chapter 3 we continued to motivate our research by reviewing and summarizing

the problem of multi-robot map merging. This chapter introduced the concept of

transforming one map into another’s frame of reference as well as ways to implement

this transform when a discretized environment model is used. This chapter also

introduced the use of registration techniques with commonly mapped territory as a

way to improve transform estimates between maps.

In Chapter 4 we introduced the software resources that would be used to sup-

port this research. This included a description of ROS, the middle-ware used in the

deployment of the simulated and real-world robots, Octomap, the library and map-

building frameword for 3D mapping with 3D occupancy grids, as well as PCL, the

library used for transform refinement.

In Chapter 5, the strategies used to overcome the problem of merging octree occu-

pancy grids were described. These strategies overcame the problem of transforming

maps from one reference to the other despite the volume discretization, as well as the

problem of merging maps together with volumes mapped at different levels of the tree

hierarchy. Subsequently, in Chapter 6 the implementation of each of these strategies

in to software algorithms was presented

In Chapter 7 the proposed strategies for octree occupancy grid merging were

performed and validated with both simulated and experimental results. For each

environment, two maps were built independently of one another and successfully

76
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merged with both exact and uncertain transformation estimates between each map.

8.1 Contributions

This thesis made several contributions to the field of autonomous robotics:

1. The proposal of a valid solution for merging data from two independent octree

occupancy grids where data is mapped at different depths in the octree tree

hierarchy. The solution uses local map expansion to minimize the computational

complexity of the overall merger in comparison to complete map expansion.

2. The proposal of a valid solution for transforming maps with a octree occu-

pancy grid representation. The solution determines the bounding volume of

the transformed map and subsequently looks up the correct occupancy for each

transformed voxel using trilinear interpolation with the source voxels.

3. The proposal of a solution for refining transformation estimates between the ref-

erence frames of two maps using registration techniques with commonly mapped

portions of the environment. The solution determines a subset of each map us-

ing commonly mapped parts of the environment with intersecting bounding

volumes. A point cloud representation of map subset is then created and ICP

registration is performed to obtain a refined transform between each map’s

frame of reference.

4. The verification and validation of each proposed solution was subsequently im-

plemented in both simulated and real-world environment. Each proposed solu-

tion was shown to be successful in the creation of coherent maps which closely

represented the environment.

8.2 Future Work

Although the use of intersecting bounding volumes produced suitable extraction of

commonly mapped parts of the environment for ICP registration for a wide variety
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of transform errors, there were certain transform errors such as large errors in roll

and pitch angles that caused this strategy to fail to produce point clouds suitable for

ICP convergence. As such, an area that may be improved is the extraction of com-

monly mapped volumes in the environment. Alternatives to the technique proposed

in this work could be explored for better results. Currently PCL includes several

segmentation algorithms that could be explored to extract common shapes in each

map regardless of position as determined by the initial transform estimate.

In this work, the only registration technique that was used was the ICP algorithm

with point clouds extracted using the centre of each occupied leaf node in the maps.

While this technique is useful for a large range of transformation errors this range

could be improved by additional registration techniques. One possible avenue to

explore is the extraction of feature descriptors on each generated point cloud and to

perform initial alignment based on correspondence matching. ICP could subsequently

be used to further improve the transformation after an initial alignment using a feature

based registration technique.

The full integration of this work into ROS would make the success of this work

more suitable for others in the autonomous robotics community. Currently, the map

merging software runs offline using maps saved to disk and the transform estimate

given as a command-line argument. The full integration of this software into ROS

would consist of a node which requests maps as a service from other map servers much

like the octomap saver node included with the octomap mapping package. This node

could then use localization data from the ROS system as initial transformation data

and load the merged map into a local Octomap server.

8.3 Conclusion

Our work has shown that an Octree occupancy grid representation of the environment

is not only a suitable candidate for 3D mapping with individual robots, but for

multi-robot mapping applications as well. Our work has also shown that existing

techniques used for multi-robot mapping and map merging in 2D may be used for

multi-robot mapping, however with the added complexity of the additional 3 DOF in a



79

3D system. This leads us to conclude that Octree occupancy grid map representations

combined with the contributions of this work have exciting potential for use in future

applications.



References

[1] Jay Thor Turner. A real-time implementation of a subsumtion based robot
control system. Master’s thesis, Royal Military College of Canada, Kingston,
Canada, 2013.

[2] Pierre Dinnissen. Using reinforcement learning in multi-robot slam. Master’s
thesis, Carleton University, Ottawa, Canada, 2011.

[3] Randall Smith, Matthew Self, and Peter Cheeseman. Estimating uncertain spa-
tial relationships in robotics. Autonomous robot vehicles, 1:167–193, 1990.
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Appendix A

Source Code for Map Merging Algorithms

A.1 Source Code for Algorithms 1 to 3

#inc lude <Eigen /SVD>
#inc lude <pc l /common/common . h>
#inc lude <pc l / i o / pcd io . h>
#inc lude <pc l / f i l t e r s / v o x e l g r i d . h>
#inc lude <pc l / f i l t e r s / f i l t e r . h>
#inc lude <pc l / f e a t u r e s / normal 3d . h>
#inc lude <pc l / r e g i s t r a t i o n / i cp . h>
#inc lude <pc l / r e g i s t r a t i o n / i c p n l . h>
#inc lude <pc l / r e g i s t r a t i o n / trans forms . h>

// convenient typede f s
typede f pc l : : PointXYZ PointT ;
typede f pc l : : PointCloud<PointT> PointCloud ;
typede f pc l : : PointNormal PointNormalT ;
typede f pc l : : PointCloud<PointNormalT> PointCloudWithNormals ;

#d e f i n e MAX ITER 500

void tree2PointCloud ( OcTree ∗ t ree ,
pc l : : PointCloud<pc l : : PointXYZ>& pclCloud ) {

// now , t r a v e r s e a l l l e a f s in the t r e e :
f o r ( OcTree : : l e a f i t e r a t o r i t = tree−>b e g i n l e a f s ( ) ,

end = tree−>e n d l e a f s ( ) ; i t != end ; ++i t )
{

i f ( t ree−>isNodeOccupied (∗ i t ) ){
pclCloud . push back (

pc l : : PointXYZ( i t . getX ( ) ,
i t . getY ( ) ,
i t . getZ ( )
)

) ;
}

}

}

bool pointInBBox ( pc l : : PointXYZ& point ,
pc l : : PointXYZ& bboxMin ,
pc l : : PointXYZ& bboxMax){

re turn ( po int . x < bboxMax . x && point . x > bboxMin . x ) &&
( po int . y < bboxMax . y && point . y > bboxMin . y ) &&
( po int . z < bboxMax . z && point . z > bboxMin . z ) ;

84
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}

Eigen : : Matr ix4f getICPTransformation (
pc l : : PointCloud<pc l : : PointXYZ>& cloud1 ,
pc l : : PointCloud<pc l : : PointXYZ>& cloud2 ,
Eigen : : Matr ix4f& t fEst ,
double mapRes) {

// apply the t f E s t to c loud 2

pc l : : transformPointCloud ( cloud2 , cloud2 , t f E s t ) ;

// get the bounding r eg i on o f c loud1 to
// e x t r a c t the po in t s from cloud 2 conta ined in the r eg i on
pc l : : PointXYZ minCloud1 ; pc l : : PointXYZ maxCloud1 ;
pc l : : getMinMax3D( cloud1 , minCloud1 , maxCloud1 ) ;

// f i l t e r out the po in t s in c loud 2 that are not in c loud 1 ’ s range
pc l : : PointCloud<pc l : : PointXYZ> : : Ptr c l o u d 2 f i l t e r e d (

new pc l : : PointCloud<pc l : : PointXYZ>);

f o r ( pc l : : PointCloud<pc l : : PointXYZ> : : i t e r a t o r i t=cloud2 . begin ( ) ;
i t != cloud2 . end ( ) ; i t ++){

i f ( pointInBBox (∗ i t , minCloud1 , maxCloud1 ) ) {
c l o u d 2 f i l t e r e d−>push back (∗ i t ) ;

}
}

// f i l t e r out the po in t s in c loud 1 that are not in c loud 2 ’ s range
pc l : : PointCloud<pc l : : PointXYZ> : : Ptr c l o u d 1 f i l t e r e d (

new pc l : : PointCloud<pc l : : PointXYZ>);

//same f o r other c loud
pc l : : PointXYZ minCloud2 f i l t e r ed ; pc l : : PointXYZ maxCloud2f i l te red ;
pc l : : getMinMax3D(∗ c l o u d 2 f i l t e r e d , minCloud2f i l t e red , maxCloud2f i l te red ) ;

minCloud2 f i l t e r ed = pc l : : PointXYZ(
minCloud2 f i l t e r ed . x−1,
minCloud2 f i l t e r ed . y−1,
minCloud2 f i l t e r ed . z−1
) ;

maxCloud2f i l te red = pc l : : PointXYZ(
maxCloud2f i l te red . x+1,
maxCloud2f i l te red . y+1,
maxCloud2f i l te red . z+1
) ;

f o r ( pc l : : PointCloud<pc l : : PointXYZ> : : i t e r a t o r i t=cloud1 . begin ( ) ;
i t != cloud1 . end ( ) ; i t ++){

i f ( pointInBBox (∗ i t , minCloud2f i l t e red , maxCloud2f i l te red ) ) {
c l o u d 1 f i l t e r e d−>push back (∗ i t ) ;
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}
}

// Downsample f o r c o n s i s t e n c y and speed
PointCloud : : Ptr s r c (new PointCloud ) ;
PointCloud : : Ptr tg t (new PointCloud ) ;
pc l : : VoxelGrid<PointT> g r id ;
g r id . s e t L e a f S i z e (10∗mapRes , 10∗mapRes , 10∗mapRes ) ;
g r i d . setInputCloud ( c l o u d 1 f i l t e r e d ) ;
g r i d . f i l t e r (∗ tg t ) ;

g r i d . setInputCloud ( c l o u d 2 f i l t e r e d ) ;
g r i d . f i l t e r (∗ s r c ) ;

// Align
pc l : : I t e ra t iveC lo se s tPo in tNonL inear<PointT , PointT> reg ;
reg . s e tTrans format ionEps i l on (mapRes / 6 0 ) ;
reg . setMaxCorrespondenceDistance (10∗mapRes ) ;

Eigen : : Matr ix4f Ti = Eigen : : Matr ix4f : : I d e n t i t y ( ) , prev ;
PointCloud : : Ptr r e g r e s u l t ;

i f ( src−>s i z e ( ) < tgt−>s i z e ( ) ){

reg . setInputCloud ( s r c ) ;
reg . se t InputTarget ( tg t ) ;

// Run the same opt imiza t i on in a loop and v i s u a l i z e the r e s u l t s
r e g r e s u l t = s r c ;
reg . setMaximumIterations ( 2 ) ;
f o r ( i n t i = 0 ; i < MAX ITER; ++i )
{

// save c loud f o r v i s u a l i z a t i o n purpose
s r c = r e g r e s u l t ;

// Estimate
reg . setInputCloud ( s r c ) ;
reg . a l i g n (∗ r e g r e s u l t ) ;

// accumulate t rans fo rmat ion between each I t e r a t i o n
Ti = reg . getFina lTrans format ion ( ) ∗ Ti ;

// i f the d i f f e r e n c e between t h i s t rans fo rmat ion and the prev ious one
// i s sma l l e r than the thresho ld , r e f i n e the proce s s by reduc ing
// the maximal correspondence d i s t anc e
i f ( reg . getMaxCorrespondenceDistance ( ) > 0 . 2 ){

i f ( f abs ( ( reg . getLast Incrementa lTrans format ion ( ) − prev . sum ( ) ) )
< reg . getTrans format ionEps i lon ( ) )

reg . setMaxCorrespondenceDistance (
reg . getMaxCorrespondenceDistance ( ) − 0 .1
) ;

}
e l s e i f ( reg . getMaxCorrespondenceDistance ( ) > 0 . 002 ) {
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i f ( f abs ( ( reg . getLast Incrementa lTrans format ion ( ) − prev . sum ( ) ) )
< reg . getTrans format ionEps i lon ( ) )

reg . setMaxCorrespondenceDistance (
reg . getMaxCorrespondenceDistance ( ) − 0 .001
) ;

}

prev = reg . getLast Incrementa lTrans format ion ( ) ;
}

}
e l s e {

reg . setInputCloud ( tg t ) ;
reg . se t InputTarget ( s r c ) ;

// Run the same opt imiza t i on in a loop and v i s u a l i z e the r e s u l t s
r e g r e s u l t = tgt ;
reg . setMaximumIterations ( 2 ) ;
f o r ( i n t i = 0 ; i < MAX ITER; ++i )
{

// save c loud f o r v i s u a l i z a t i o n purpose
tg t = r e g r e s u l t ;

// Estimate
reg . setInputCloud ( tg t ) ;
reg . a l i g n (∗ r e g r e s u l t ) ;

// accumulate t rans fo rmat ion between each I t e r a t i o n
Ti = reg . getFina lTrans format ion ( ) ∗ Ti ;

// i f the d i f f e r e n c e between t h i s t rans fo rmat ion and the prev ious one
// i s sma l l e r than the thresho ld , r e f i n e the proce s s by reduc ing
// the maximal correspondence d i s t anc e
i f ( reg . getMaxCorrespondenceDistance ( ) > 0 . 2 ){

i f ( f abs ( ( reg . getLast Incrementa lTrans format ion ( ) − prev . sum ( ) ) )
< reg . getTrans format ionEps i lon ( ) )

reg . setMaxCorrespondenceDistance (
reg . getMaxCorrespondenceDistance ( ) − 0 .1
) ;

}
e l s e i f ( reg . getMaxCorrespondenceDistance ( ) > 0 . 002 ) {

i f ( f abs ( ( reg . getLast Incrementa lTrans format ion ( ) − prev . sum ( ) ) )
< reg . getTrans format ionEps i lon ( ) )

reg . setMaxCorrespondenceDistance (
reg . getMaxCorrespondenceDistance ( ) − 0 .001
) ;

}

prev = reg . getLast Incrementa lTrans format ion ( ) ;
}
Ti = Ti . i n v e r s e ( ) ;

}
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re turn Ti∗TfEst ;

}

A.2 Source Code for Algorithms 4 to 7

void transformTree ( OcTree ∗ t ree , Eigen : : Matr ix4f& trans form ) {

double treeRes = tree−>ge tReso lu t i on ( ) ;
OcTree∗ transformed = new OcTree ( t reeRes ) ;

// bu i ld i n v e r s e trans form
Eigen : : Matr ix3f r o t a t i o n ;
Eigen : : Matr ix3f invRotat ion ;
Eigen : : Matr ix4f invTransform ;
r o t a t i o n << trans form ( 0 , 0 ) , trans form ( 0 , 1 ) , t rans form ( 0 , 2 ) ,

t rans form ( 1 , 0 ) , trans form ( 1 , 1 ) , t rans form ( 1 , 2 ) ,
t rans form ( 2 , 0 ) , trans form ( 0 , 2 ) , t rans form ( 2 , 2 ) ;

invRotat ion = r o t a t i o n . t ranspose ( ) ;
invTransform <<

invRotat ion ( 0 , 0 ) , invRotat ion ( 0 , 1 ) , invRotat ion ( 0 , 2 ) , −trans form ( 0 , 3 ) ,
invRotat ion ( 1 , 0 ) , invRotat ion ( 1 , 1 ) , invRotat ion ( 1 , 2 ) , −trans form ( 1 , 3 ) ,
invRotat ion ( 2 , 0 ) , invRotat ion ( 2 , 1 ) , invRotat ion ( 2 , 2 ) , −trans form ( 2 , 3 ) ,
0 , 0 , 0 , 1 ;

// s i z e in each coord inate o f each a x i s .
double minX , maxX, minY , maxY, minZ , maxZ ;

// get the minimum and max in y so we can step along each row
tree−>getMetricMin (minX , minY , minZ ) ;
t ree−>getMetricMax (maxX,maxY, maxZ ) ;

// get a Look up t a b l e
OcTreeLUT ocTreeLUT ( treeRes ) ;

// a l l o c a t e a vec to r o f po in t s
std : : vector<point3d> po in t s ;

//make 8 po in t s to make a map bounding box , per forming the t f on them
// to get the range o f va lue s in the transformed map
po in t s . push back ( point3d (maxX, minY , minZ ) ) ;
po in t s . push back ( point3d (minX , minY , minZ ) ) ;
po in t s . push back ( point3d (minX ,maxY, minZ ) ) ;
po in t s . push back ( point3d (maxX,maxY, minZ ) ) ;
po in t s . push back ( point3d (maxX, minY , maxZ ) ) ;
po in t s . push back ( point3d (minX , minY , maxZ ) ) ;
po in t s . push back ( point3d (minX ,maxY, maxZ ) ) ;
po in t s . push back ( point3d (maxX,maxY, maxZ ) ) ;

// trans form the po in t s
f o r ( unsigned i = 0 ; i<po in t s . s i z e ( ) ; i ++){

Eigen : : Vector4 f po int ( po in t s [ i ] . x ( ) , po in t s [ i ] . y ( ) , po in t s [ i ] . z ( ) , 1 ) ;
po int = trans form ∗ po int ;
po in t s [ i ] = point3d ( po int ( 0 ) , po int ( 1 ) , po int ( 2 ) ) ;
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}

//go through t f ’d po in t s to get a new bbox
minX = po in t s [ 0 ] . x ( ) ; minY = po in t s [ 0 ] . y ( ) ; minZ = po in t s [ 0 ] . z ( ) ;
maxX = po in t s [ 0 ] . x ( ) ; maxY = po in t s [ 0 ] . y ( ) ; maxZ = po in t s [ 0 ] . z ( ) ;
f o r ( unsigned i =0; i<po in t s . s i z e ( ) ; i ++){

minX = ( po in t s [ i ] . x ( ) < minX) ? po in t s [ i ] . x ( ) : minX ;
minY = ( po in t s [ i ] . y ( ) < minY) ? po in t s [ i ] . y ( ) : minY ;
minZ = ( po in t s [ i ] . z ( ) < minZ) ? po in t s [ i ] . z ( ) : minZ ;
maxX = ( po in t s [ i ] . x ( ) > maxX) ? po in t s [ i ] . x ( ) : maxX;
maxY = ( po in t s [ i ] . y ( ) > maxY) ? po in t s [ i ] . y ( ) : maxY;
maxZ = ( po in t s [ i ] . z ( ) > maxZ) ? po in t s [ i ] . z ( ) : maxZ ;

}

//go through the p o s s i b l e d e s t i n a t i o n voxe l s on a row by row b a s i s
//and c a l c u l a t e occupancy from source voxe l s with i n v e r s e t f

f o r ( double z = minZ −t reeRes /2 ; z<(maxZ + treeRes / 2 ) ; z+=treeRes ) {
f o r ( double y = minY −t reeRes /2 ; y<(maxY + treeRes / 2 ) ; y+=treeRes ) {

f o r ( double x = minX −t reeRes /2 ; x<(maxX + treeRes / 2 ) ; x+=treeRes ) {
OcTreeKey destVoxel = transformed−>coordToKey (

point3d (x , y , z )
) ;

Eigen : : Vector4 f po int (x , y , z , 1 ) ;
po int = invTransform ∗ po int ;
point3d sourcePo int = point3d ( po int ( 0 ) , po int ( 1 ) , po int ( 2 ) ) ;
OcTreeKey sourceVoxel = tree−>coordToKey ( sourcePo int ) ;
point3d nn = tree−>keyToCoord ( sourceVoxel ) ;

// use nea r e s t neighbour to s e t new occupancy
// in the transformed map
OcTreeNode ∗oldNode = tree−>search ( sourceVoxel ) ;

// Occupancies to i n t e r p o l a t e between
double c000 , c001 , c010 , c011 , c100 , c101 , c110 ,

c111 , c00 , c01 , c10 , c11 , c0 , c1 ;
double xd , yd , zd ;

// d i f f e r e n c e s in each d i r e c t i o n between next c l o s e s t voxe l
xd = ( sourcePo int . x ( ) − nn . x ( ) ) / treeRes ;
yd = ( sourcePo int . y ( ) − nn . y ( ) ) / treeRes ;
zd = ( sourcePo int . z ( ) − nn . z ( ) ) / treeRes ;

i f ( oldNode != NULL){

c000 = oldNode−>getOccupancy ( ) ;
OcTreeNode ∗node ;

// c001
i f ( ( node = tree−>search (

point3d (nn . x ( ) , nn . y ( ) , nn . z ( ) +
getS ign ( zd )∗ t reeRes ) ) )

!= NULL) {
c001 = node−>getOccupancy ( ) ;
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} e l s e
c001 = 0 ;

// c010
i f ( ( node = tree−>search (

point3d (nn . x ( ) ,
nn . y ( ) + getS ign ( yd )∗ treeRes ,
nn . z ( ) ) ) )

!= NULL) {
c010 = node−>getOccupancy ( ) ;

} e l s e
c010 = 0 ;

// c011
i f ( ( node = tree−>search (

point3d (nn . x ( ) ,
nn . y ( ) + getS ign ( yd )∗ treeRes ,
nn . z ( ) + getS ign ( zd )∗ t reeRes ) ) )

!= NULL) {
c011 = node−>getOccupancy ( ) ;

} e l s e
c011 = 0 ;

// c100
i f ( ( node = tree−>search (

point3d (nn . x()+ getS ign ( xd )∗ treeRes ,
nn . y ( ) ,
nn . z ( ) ) ) )

!= NULL) {
c100 = node−>getOccupancy ( ) ;

} e l s e
c100 = 0 ;

// c101
i f ( ( node = tree−>search (

point3d (nn . x()+ getS ign ( xd )∗ treeRes ,
nn . y ( ) ,
nn . z ( ) +getS ign ( zd )∗ t reeRes ) ) )

!= NULL) {
c101 = node−>getOccupancy ( ) ;

} e l s e
c101 = 0 ;

// c110
i f ( ( node = tree−>search (

point3d (nn . x()+ getS ign ( xd )∗ treeRes ,
nn . y ( ) +getS ign ( yd )∗ treeRes ,
nn . z ( ) ) ) )

!=NULL) {
c110 = node−>getOccupancy ( ) ;

} e l s e
c110 = 0 ;

// c111
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i f ( ( node = tree−>search (
point3d (nn . x()+ getS ign ( xd )∗ treeRes ,

nn . y ( ) +getS ign ( yd )∗ treeRes ,
nn . z ()+ getS ign ( zd )∗ t reeRes ) ) )

!= NULL) {
c111 = node−>getOccupancy ( ) ;

} e l s e
c111 = 0 ;

// I n t e r p o l a t e in x
c00 = (1− f abs ( xd ) )∗ c000 + fabs ( xd )∗ c100 ;
c10 = (1− f abs ( xd ) )∗ c010 + fabs ( xd )∗ c110 ;
c01 = (1− f abs ( xd ) )∗ c001 + fabs ( xd )∗ c101 ;
c11 = (1− f abs ( xd ) )∗ c011 + fabs ( xd )∗ c111 ;

// i n t e r p o l a t e in y
c0 = (1− f abs ( yd ) )∗ c00 + fabs ( yd )∗ c10 ;
c1 = (1− f abs ( yd ) )∗ c01 + fabs ( yd )∗ c11 ;

//now l e t ’ s a s s i g n the new node value
OcTreeNode ∗newNode = transformed−>updateNode (

destVoxel , t rue
) ;

newNode−>setLogOdds (
logodds ((1− f abs ( zd ) )∗ c0 + fabs ( zd )∗ c1 )
) ;

}
}

}
}

t ree−>swapContent (∗ transformed ) ;

d e l e t e transformed ;
}

A.3 Source Code for Algorithm 8

#inc lude <octomap/octomap . h>
#inc lude <octomap/OcTreeLUT . h>
#inc lude <fstream>
#inc lude <iostream>
#inc lude <s t r i n g . h>
#inc lude <s t d l i b . h>
#inc lude < l i s t >
#inc lude <cmath>

us ing std : : cout ;
us ing std : : endl ;
us ing namespace octomap ;
us ing namespace octomath ;

void expandLevel ( std : : vector<OcTreeNode ∗> ∗nodePtrs ) {
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unsigned s i z e = nodePtrs−>s i z e ( ) ;

f o r ( unsigned i = 0 ; i<s i z e ; i++) {
OcTreeNode ∗parent = nodePtrs−>f r o n t ( ) ;
parent−>expandNode ( ) ;
nodePtrs−>e ra s e ( nodePtrs−>begin ( ) ) ;
f o r ( unsigned j =0; j <8; j++) {

nodePtrs−>push back ( parent−>getChi ld ( j ) ) ;
}

}
}

unsigned expandNodeMultiLevel ( OcTree ∗ t ree , OcTreeNode ∗node , unsigned currentDepth , unsigned l e v e l s ) {
i f ( currentDepth == ( i n t ) t ree−>getTreeDepth ( ) ) {

re turn 0 ;
}

i n t l eve l sCounte r = 0 ;
std : : vector<OcTreeNode ∗> nodePtrs ;
nodePtrs . push back ( node ) ;

f o r ( unsigned i = 0 ; i< l e v e l s ; i ++) {
i f ( currentDepth == ( i n t ) t ree−>getTreeDepth ( ) ) {

re turn l eve l sCounte r ;
}
expandLevel(&nodePtrs ) ;
l eve l sCounte r++;
currentDepth++;

}

re turn l eve l sCounte r ;

}

/∗
∗ Searches f o r a node at a g iven po int
∗ and re tu rn s the depth in the t r e e o f that node
∗ Assumes you have c a l l e d search be f o r e and
∗ know i t s a c t u a l l y the re .
∗ Returns −1 i f i t couldn ’ t f i n d anything
∗/

i n t getNodeDepth ( OcTree∗ t ree , point3d& point , OcTreeNode∗ node ) {
f o r ( i n t depth = tree−>getTreeDepth ( ) ; depth > 1 ; depth−−) {

i f ( t ree−>search ( point , depth ) == node )
re turn depth ;

}

re turn −1;
}

i n t main ( i n t argc , char ∗∗ argv ) {
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std : : s t r i n g f i l ename1 = std : : s t r i n g ( argv [ 1 ] ) ;
s td : : s t r i n g f i l ename2 = std : : s t r i n g ( argv [ 2 ] ) ;
s td : : s t r i n g outputFilename = std : : s t r i n g ( argv [ 3 ] ) ;

cout << ”\nReading o c t r e e f i l e s . . . \ n” ;

double r o l l , p itch , yaw ;

point3d t r a n s l a t i o n ;
i f ( argc == 7 | | argc == 10) {

t r a n s l a t i o n = point3d ( a t o f ( argv [ 4 ] ) , a t o f ( argv [ 5 ] ) , a t o f ( argv [ 6 ] ) ) ;
}
i f ( argc == 10) {

r o l l = a t o f ( argv [ 7 ] ) ;
p i t ch = a t o f ( argv [ 8 ] ) ;
yaw = a t o f ( argv [ 9 ] ) ;

}
e l s e {

r o l l = 0 ;
p i t ch = 0 ;
yaw = 0 ;

}

Pose6D pose ( t r a n s l a t i o n . x ( ) ,
t r a n s l a t i o n . y ( ) ,
t r a n s l a t i o n . z ( ) ,
r o l l , p itch , yaw ) ;

// bu i ld a trans form matrix
Eigen : : Matr ix4f trans form ;
std : : vector<double> c o e f f s ;
pose . ro t ( ) . toRotMatrix ( c o e f f s ) ;

t rans form << c o e f f s [ 0 ] , c o e f f s [ 1 ] , c o e f f s [ 2 ] , t r a n s l a t i o n . x ( ) ,
c o e f f s [ 3 ] , c o e f f s [ 4 ] , c o e f f s [ 5 ] , t r a n s l a t i o n . y ( ) ,
c o e f f s [ 6 ] , c o e f f s [ 7 ] , c o e f f s [ 8 ] , t r a n s l a t i o n . z ( ) ,
0 , 0 , 0 , 1 ;

OcTree∗ t r e e 1 = dynamic cast<OcTree∗>(OcTree : : read ( f i l ename1 ) ) ;
OcTree∗ t r e e 2 = dynamic cast<OcTree∗>(OcTree : : read ( f i l ename2 ) ) ;

// i n i t i a l TF Matrix
std : : cout << trans form << std : : endl ;

cout << ” R e g i s t e r i n g map to Improve TF Estimate ” << endl << endl ;

//make po int c louds from each map
pc l : : PointCloud<pc l : : PointXYZ> t r e e1Po in t s ;
t ree2PointCloud ( tree1 , t r e e1Po in t s ) ;
pc l : : PointCloud<pc l : : PointXYZ> t r e e2Po in t s ;
t ree2PointCloud ( tree2 , t r e e2Po in t s ) ;

// get r e f i n e d matrix
transform = getICPTransformation ( t ree1Po int s , t r ee2Po int s , trans form ) ;
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i f ( r o l l != 0 | |
p i t ch != 0 | |
yaw != 0 | |
t r a n s l a t i o n . x ( ) != 0 | |
t r a n s l a t i o n . y ( ) != 0 | |
t r a n s l a t i o n . z ( ) != 0) {

transformTree ( tree2 , trans form ) ;
}

// begin merging a lgor i thm
// t r a v e r s e nodes in t r e e 2 to add them to t r e e 1
f o r ( OcTree : : l e a f i t e r a t o r i t = tree2−>b e g i n l e a f s ( ) ;

i t != tree2−>e n d l e a f s ( ) ;
++i t )

{
i f ( t ree2−>isNodeOccupied (∗ i t ) ){

i t−>setLogOdds ( logodds ( 0 . 6 ) ) ;
}

// f i n d i f the cur rent node maps a po int in map 1
OcTreeNode ∗nodeIn1 = tree1−>search ( i t . getCoordinate ( ) ) ;
OcTreeKey nodeKey = tree1−>coordToKey ( i t . getCoordinate ( ) ) ;
point3d po int = i t . getCoordinate ( ) ;
i f ( nodeIn1 != NULL) {

// get the depth o f a l r eady mapped space in 1 and compare to 2
i n t depthIn1 = getNodeDepth ( tree1 , point , nodeIn1 ) ;
i f ( depthIn1 != −1) {

i n t depthDi f f = i t . getDepth ( ) − depthIn1 ;
i f ( depthDi f f == 0) {

t ree1−>updateNode ( nodeKey , i t−>getLogOdds ( ) ) ;
}
e l s e i f ( depthDi f f > 0) {

//map 2 i s lower depth , add c h i l d r e n to 1 i f i t ’ s not a l e a f
f o r ( i n t i =0; i<depthDi f f ; i++) {

i f ( depthIn1 == ( i n t ) tree1−>getTreeDepth ( ) ) {
break ;

}
nodeIn1−>expandNode ( ) ;
nodeKey = tree1−>coordToKey ( po int ) ;
depthIn1++;

}
nodeIn1−>setLogOdds (

logodds ( nodeIn1−>getOccupancy ()+
i t−>getOccupancy ( ) ) ) ;

}
e l s e i f ( depthDi f f < 0) {

//map 1 i s lower depth , add c h i l d r e n to 2
expandNodeMultiLevel ( t ree2 , t ree2−>search ( po int ) ,

i t . getDepth ( ) , abs ( depthDi f f ) ) ;
//now that we are expanded the other
// expanded nodes w i l l be handled in subsequent loop
// i t e r a t i o n s

}
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}
} e l s e {

OcTreeNode ∗newNode = tree1−>updateNode ( point , t rue ) ;
newNode−>setLogOdds ( i t−>getLogOdds ( ) ) ;

}
}

std : : cout << ”Compressing merged r e s u l t \n” ;
t ree1−>prune ( ) ;
// t r e e 1 i s now the compressed merged map

// wr i t e merged map to f i l e
t ree1−>wr i t e ( outputFilename ) ;

d e l e t e t r e e 1 ;
d e l e t e t r e e 2 ;

}
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