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Abstract 

Time series analysis is widely used in various fields such as business, economics, finance, science, 

and engineering. A time series is a sequence of values or observations of a variable recorded at sequential 

points in time. One of the main purposes of time series data is that past observations of the data can be 

used to forecast future values. Many time series forecasting algorithms from machine learning and 

statistics have been proposed in the literature. This thesis focuses on a particular form of time series: the 

binary time series that contains instantaneous events that occur over time. However, predicting future 

upcoming events is extremely difficult. The sum squared error (SSE) is a common measure of 

performance that has difficulties for predicting time series with long-term dependences. In fact, the 

majority of machine learning algorithms try to minimize the sum squared error of each output at every 

time step. Therefore, a new computational approach using interval timing has been proposed in the 

literature. The idea of this approach, inspired by how animals learn, suggest to predict “when” a 

particular event will occur in the future instead of “what” event will occur at the next time step by 

minimizing the timing error for each event.  

An online learning algorithm namely time adaptive drift-diffusion model (TDDM) derived from this 

concept has been developed by Rivest et al. [1]. The TDDM algorithm is based on a bounded 

accumulation process similar to drift-diffusion models (DDM) that models animal decision making. It 

learns to predict the time remaining before an event occurs using binary input streams. 

This thesis aims at first developing an offline regression-based TDDM algorithm that learns to predict 

the time remaining before instantaneous events occur, and second at comparing some state-of-the art time 

series forecasting models from statistics (such as the multivariate vector auto-regressive moving average 

(VARMA) algorithm) and machine learning (such as the echo state network (ESN) algorithm) to TDDM 

on predicting when instantaneous events will occur.  

A detailed description and classification of the three algorithms is given while highlighting their 

strengths and drawbacks. We compare these three regression-based algorithms on three real world 

datasets namely the Bach Chorales for music notes, the NASDAQ stock prices, and the MIT-BIH 

Arrhythmia database. Two sets of experiments were conducted. In the first one, the algorithms tried to 

predict binary instantaneous event streams at each time step while in the second they learned to predict 

the time remaining before the events occur. It was found that the three algorithms have difficulties 

learning to predict binary event stream but perform much better in the prediction of the time remaining 

before the occurrence of events. 
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Résumé 

L’analyse de séries chronologiques est largement utilisée dans divers domaines tels que le commerce, 

l'économie, la finance, la science et l'ingénierie. Une série chronologique ou temporelle est une séquence 

de valeurs ou d'observations d'une variable enregistrée en des points successifs dans le temps. L'un des 

objectifs principaux des données de séries chronologiques est que les observations passées peuvent être 

utilisées pour prévoir les valeurs futures. Beaucoup de modèles de prévision des séries chronologiques 

provenant du domaine de l'apprentissage machine et celui de la statistique ont été proposées dans la 

littérature. Cette thèse s’intéresse à une forme particulière de séries temporelles: la série de temps binaire 

qui contient des événements instantanés qui se produisent au fil du temps. Cependant, la prévision des 

événements futurs à venir est extrêmement difficile. La mesure d’erreurs au carré (SSE) est une mesure 

commune de performance qui se révèle être un mauvais choix pour ce type de prédiction. En fait, la 

majorité des algorithmes d'apprentissage machine essayent de minimiser la SSE de chaque sortie, à 

chaque pas de temps. Par conséquent, une nouvelle approche de calcul en utilisant la synchronisation 

d'intervalle a été proposée dans la littérature. L'idée de cette approche, inspirée par la façon dont les 

animaux apprennent, suggèrent de prévoir "quand" un événement particulier se produira dans l'avenir au 

lieu de "quoi"  qui se produira au prochain pas de temps en minimisant les erreurs de synchronisation 

pour chaque événement.  

Un algorithme d'apprentissage en ligne basé sur les modèles d'adaptation de  dérivé -diffusion 

(TDDM) dérivé de ce concept a été développé par Rivest et al. [1]. L’algorithme TDDM est basé sur un 

processus d'accumulation similaire aux modèles (DDM) inspirée de l’apprentissage animale décision. Ce 

model apprend à prédire le temps restant avant qu’un événement se produit en utilisant des entrées 

binaires.  

Cette thèse vise à développer d'abord un algorithme hors-ligne basé sur la régression qui apprend à 

prédire le temps restant avant que des événements instantanés se produisent, et ensuite à le comparer avec 

certains modèles connus  pour prévision des séries chronologiques d’abord en statistique (à savoir 

l’algorithme vecteur auto régressive moyenne mobile (VARMA)) puis en apprentissage machine (avec 

l’algorithme du réseau de neurones (ESN) ) sur la prévision des événements instantanés.  

Une description détaillée des trois algorithmes est donnée tout en soulignant leurs avantages et leurs 

inconvénients. Nous comparons ces trois algorithmes basées sur la régression sur les trois ensembles de 

données du monde réel à savoir Bach Chorales pour les notes de musique, les cours boursiers NASDAQ, 
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et la base de données MIT-BIH d’arythmie. Deux séries d'expériences ont été réalisées. Dans la première, 

les algorithmes vont essayer de prédire des événements instantanés binaires à chaque pas de temps alors 

que dans le second, ils apprendront à prédire le temps restant avant que les événements se produisent. Il a 

été constaté que les trois algorithmes ont des difficultés d'apprentissage pour prédire  des événements 

binaire, mais beaucoup plus performants dans la prédiction de la durée restante avant la survenance 

d'événements. 
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1 Introduction 

Time series forecasting (TSF) is crucial to various practical domains. By definition, a time series is a 

sequence of observations on a phenomenon recorded over time (or space) [2] (see Figure 1). Often, these 

observations become available at discrete, equal time intervals. One purpose of time series data is that it 

can be used in forecasting. The use of observations from a time series available at time 𝑡 to predict its 

value at time 𝑡 + 𝑙 is called forecasting; where l is called the forecasting horizon or lead time [3]. The 

forecasting horizon is the number of time steps in the future for which the forecasts must be produce.  

Forecasting provides a basis for decision making, economic and business planning, inventory 

management, and the control and optimization of industrial process. For example, applications of TSF in 

economy and finance are forecasting gross domestic product (GDP), sales forecasting, prediction of stock 

markets ; in science, one can found earthquake forecasting, weather forecasting; in management, there are 

room bookings forecasting, emergency calls forecasting; in the medical field, one can find predictions of 

infectious diseases and so on.  

A forecasting method or algorithm is a procedure that computes forecast �̂�𝑡 for time t from past 

values ( 𝑦𝑡−1, 𝑦𝑡−2, 𝑦𝑡−3 …). Numerous TSF algorithms from machine learning and statistics have been 

proposed. The standard statistical forecasting models are the most predominant in the literature followed 

by the machine learning artificial neural networks (ANNs) models. Most of the latter usually focus on 

forecasting the output value of the time series at each time step by minimizing the sum squared error 

(SSE) cost function.  
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Figure 1: Examples of different time series plots from [4] 

The SSE is one of the most widely used cost functions in machine learning and in time series 

forecasting. It is obtained by summing the square of difference between known observations and 

predicted observations. The goal of many algorithms is to minimize this cost function using a gradient 

descent algorithm or other similar optimization techniques. However, this computational approach ends 

up being a poor choice for learning algorithms since a gradient-descent approach is numerically unstable 

for tasks requiring a long history or memory of previous observations [5]. As a matter of fact, training 

ANNs to learn long term dependencies is very difficult [6] . One of the tasks is to learn the precise timing 

of events using binary data. Although there has been some successful results with these applications [7] 

using ANNs, the training process remains computationally expensive (slow) and in some cases the 

network is shown not to learn at all [8].  
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On the other hand, animals learn the timing between consecutives events very easily [9]. The success 

of animals learning timing events is underlying by the fact that they are interested in knowing when the 

event will occur instead of what will happened at each time step. An approach has recently been proposed 

by Rivest et al.  [10] inspired by the animal model. Instead of minimizing the sum squared error of each 

output at every time step (SSE), to minimize directly the squared timing error (STE) for every event. 

In the case of instantaneous events, instead of predicting the complete time series at every time step, 

Rivest et al.  [10] make a single prediction for the length of time after which the event will occur 

instantaneously. In order to learn event timing, the original time series has to be transformed into binary 

time series and time remaining series (see Figure 2). In this way, instead of having access to the entire 

time series observations, the algorithm will have access to only relevant observations and will learn to 

predict the time remaining before these relevant observations occur. 

 An online time-adaptive drift-diffusion model [1] (TDDM) learning algorithm derived from this 

concept has been developed. The TDDM algorithm is based on a bounded accumulation process similar 

to drift-diffusion models (DDM) of decision making. It learns to predict the time remaining before an 

event occurs using binary input streams by learning the relative event-rate of each input stimulus for each 

event type. Then it uses each observation to accumulate evidence that a specific event is going to occur. 

In the light of this, an offline version of the time adaptive drift-diffusion model (TDDM) algorithm 

proposed by Rivest & al. [1] has been developed and compared to the multivariate vector auto-regressive 

moving average (VARMA) [11], a standard well known statistical algorithm, and echo state network 

(ESN) [12] , a standard recurrent neural network algorithm on two tasks. The first task focuses on training 

the three algorithms to learn the precise timing of events i.e. to learn to predict a specific value (1) at the 

time step the event shall occur. This task as stated before is difficult to learn [8]. The second task is an 

alternative proposed by Rivest & al., instead of learning the precise timing of events, to learn the time 

remaining before they occur. All three methods will be using regression to make the best possible timing 

predictions. Experiments are performed on three real world datasets including the NASDAQ stock prices 

the MIT-BIH Arrhythmia database and the Bach Chorales with the target of predicting the day of 

significantly higher stock price, the next heartbeat, and the note onset and offset respectively. 
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Figure 2: Example of transformations of time series data (a) into binary time series of events (b) and into 

time remaining time series (c). 

 

 

 

 

 

 

 

a 

c 
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1.1 Thesis Statement 

The research objectives are as follows: 

a) First an offline TDDM learning algorithm for forecasting time series is developed. It is 

derived from the online time adaptive drift-diffusion model algorithm (TDDM) [1] which is 

inspired by animal learning model. It is based on a bounded accumulation process similar to 

drift-diffusion process (DDM). The offline TDDM algorithm will be developed as a 

regression based model and expended to predict the time remaining before an event occurs 

using binary input stream and time remaining data. 

b) The predictive ability of the state-of-the art VARMA and ESN algorithms is evaluated on 

the task of : 

 First, forecasting events on precise time steps. 

 Second, forecasting the time remaining before an event occurs. 

 

1.2 Motivation 

 

Although there has been extensive research carried out in the time series forecasting field, the search 

for simple and fast algorithms that produce reliable forecast has never ceased. The current state-of-the art 

algorithms in the forecasting domain still have limitations.  For example, traditional statistical models 

such as the autoregressive AR (p) and the moving average MA (q) are linear models. They are appropriate 

for only some type of time series data (eg. autoregressive models are more appropriate for stationary 

series) [13] adding to that their inabilities to extract complex relationships in the data [14].   

The use of the SSE cost function to obtain prediction intervals for long term forecasts or to learn 

long-term dependencies may simply not be adequate. For learning long term dependencies, machine 

learning algorithms that try to learn this task are computationally expensive in the training process. 

Examples are the standard recurrent neural networks which have shown their inability to successfully 

learn timing events due to the problem of the vanishing gradient descent of the error through time [8] .   

In the quest for simple, practical, fast and accurate learning algorithms, a new perspective suggests to 

give up or change the SSE. Thus instead of clinging to the hope of minimizing the SSE for each output at 

every time step of a time series which involved long term dependencies in data Figure 2(a) such as the 
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events time series Figure 2(b), this thesis will look at  the idea of directly minimizing the squared timing 

error for every particular event Figure 2 (c). A particular event for example can be when the stock prices 

will go high or down past set thresholds when trying to do a stock price forecasting.  

This idea has been inspired by how animals learn. In fact, researchers have proved that animals have 

shown their capability to learn events timing very easily and rapidly unlike machine learning time series 

algorithms [9]. The biologically inspired approach of learning timing is an interesting example of 

prediction and a significant factor to take into account. F. Rivest et al [10], explain that the success of 

animal learning timing of events suggests that they are predicting events in a different way than we do in 

machine learning : “Animals are predicting when an event will occur by estimating the time remaining 

before particular events occurs instead of what event will occur” at the upcoming time steps . An online 

learning time series algorithm (TDDM) based on this concept has been proposed in the literature. It learns 

to predict the time remaining before an event occur using binary inputs stream by learning the relative 

event-rate of each input stimulus for each event type.  

Using the forecasting timing concept, some state-of-the art time series forecasting algorithms in 

statistics (using the VARMA algorithm) and in machine learning (using the ESN algorithm) have been 

investigated in order to see if they could be applied to predict when an event will occur as well. In 

addition, based on the online time adaptive drift-diffusion algorithm (TDDM) [1] an offline linear 

regression based TDDM algorithm has been developed so that it can be used for performance comparison 

to study offline VARMA and ESN algorithms. The comparison was based on two tasks. First, the 

algorithms will try to predict instantaneous events at the precise time step they shall occur and second, the 

algorithms will try to predict the time remaining before instantaneous events occur. The results show that 

it is indeed much easier to predict the remaining time than to predict events at the precise time step they 

shall occur.  

1.3 Contributions 

 

The contributions of this thesis are the following: 

 Provides a review and a comparison of the existing time series forecasting algorithms in the 

statistical and machine learning fields.  

 An evaluation of the statistical VARMA algorithm and the ESN algorithm on predicting timing 

events. 

 An offline TDDM algorithm for learning timing events. 
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 A comparative study of the performance of the three algorithms on two different formulation of 

the problem: 

o Predicting the events at precise time steps, 

o Predicting remaining time at each time step. 

The results show that predicting the events at precise time steps is hardly learned by all the algorithms as 

oppose to the time remaining predictions which was in general learned by the three algorithms. 

1.4 Organization 

 

This thesis is organized as follows. Chapter 2 provides a literature review of time series forecasting 

algorithms in the statistical and machine learning literature, including their descriptions, advantages and 

drawbacks. In Chapter 3, the problem of forecasting timing event and time remaining are formulated. In 

Chapter 4, the TDDM offline algorithm is described. Chapter 5 describes the methodology and the 

evaluation procedure used in this research as well as the experimental results from training the three 

algorithms on three real world datasets, namely the NASDAQ-100 stock closure prices time series, the 

Bach Chorales time series and the heartbeats. The last chapter states and summaries the results of the 

thesis. 
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2 Literature Review 

In this chapter, from research literature, a description of univariate and multivariate time series 

forecasting models is first presented followed by their application, their advantages, and lastly their 

drawbacks. Section 2.1 start with an overview of forecasting methods. The standard statistical forecasting 

models and the machine learning forecasting models, especially artificial neural networks, are presented 

respectively in  Section 2.2 and Section 2.3. Finally in Section 2.4, some hybrid models found in the 

literature that are a combination of statistical and machine learning models are given. 

2.1 Forecasting 

Forecasting is the act of predicting the future based on the history. Using forecasting methods or 

algorithms, past data or information of a time series are processed in order to predict the future trends or 

outcomes of these data or time series.  

In statistics, the primary goal of forecasting is to provide valuable information for decision making, 

economic and business planning, inventory and production control, control and optimization of industrial 

process. There are two approaches to forecasting in this field: qualitative and quantitative approaches. The 

qualitative methods also called judgemental or subjective forecasting methods includes techniques that 

are based on the intuition, the judgement or the opinion of consumers, experts, commercial knowledge 

and any other relevant information. A common qualitative method is the Delphi technique [15]. 

Qualitative techniques are frequently used when past data are not available. The quantitative approach 

covers univariate and multivariate forecasting techniques. In univariate forecasting, forecasts are made 

depending only on present and past data of the single series being forecasted. However for many 

problems in economics, business, physical and environmental sciences, the time series data may be 

available on several related variables, which in this case, multivariate forecasting techniques are applied. 

Moreover in the multivariate case, one can find methods where forecasts of a given variable depend, at 

least partly, on values of one or more additional time series variables, called predictor or explanatory 

variables [2]. This section will focus on presenting univariate and multivariate forecasting models. 

In machine learning, the main advantage  of forecasting is to develop automated algorithms that 

can learn and make some predictions from data. Many machine learning methods of forecasting have 

been proposed in the literature. The common used method is based on ANNs which will be discussed in 

detail in section 2.3. 
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2.2 Statistical Forecasting Models 

 

This section covers some common algorithms used for time series forecasting in statistics. The 

forecasting field has been influenced, for a long time, by linear statistical methods such as the 

autoregressive (AR) model, the moving average (MA) model, and hybrid models that derive from them 

such as ARMA (autoregressive moving average), ARIMA (autoregressive integrated moving average), 

and SARIMA (seasonal ARIMA). 

2.2.1 Autoregressive (AR) Model 

 

In the autoregressive process, an output variable 𝑦𝑡  depends linearly on its own previous values 

(𝑦𝑡−1, … , 𝑦𝑡−𝑝) and some white noise 𝜀𝑡. By definition, a process {𝑦𝑡} is said to be an autoregressive 

process of order p denoted AR (p) if 𝑦𝑡 can be described by: 

𝑦𝑡 = 𝛼1𝑦𝑡−1 + 𝛼2𝑦𝑡−2 + ⋯ + 𝛼𝑝𝑦𝑡−𝑝 + 𝜀𝑡 (1) 

where  𝜀𝑡 is white noise with mean zero and fixed finite variance 𝜎𝑍
2 [2] , and 𝛼1, … , 𝛼𝑝 are the parameters 

of the model. The order  p  of the model determines the number of past observations used to predict the 

current value.  The simplest example of an AR process is the first-order case, denoted AR (1), given by  

𝑦𝑡  =  𝛼1𝑦𝑡−1  + 𝜀𝑡   (2) 

 

In the multivariable case where there are multiple observations for each time step, then we can consider a 

multivariate autoregressive or a vector autoregressive (VAR) model. Consider M time series generated 

from M variables, a VAR (p) model is defined by the following equation 

                                                                 𝒚𝒕  = ∑ 𝐴𝑘𝒚𝒕−𝒌
𝑝
𝑘=1 + 𝜺𝒕                     (3)  

where 𝒚𝒕=[ 𝑦𝑡
(1)

, 𝑦𝑡
(2)

, . . . , 𝑦𝑡
(𝑀)

]𝑇 is M-dimensional time series column vector at index t. Each  𝐴𝑘 is an M-

by-M matrix of parameters where 𝐴(𝑘)
𝑖,𝑗 is the element at position (i,j) in matrix 𝐴𝑘 and 

𝜺𝒕=[ 𝜀𝑡
(1)

. . . 𝜀𝑡
(𝑀)

]𝑇is a column vector of white noises.             
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Equation (3) can be re-written in a matrix form as: 

                                              [
 𝑦𝑡

(1)

⋮

𝑦𝑡
(𝑀)

]  = ∑ [
𝐴11

(𝑘)

⋮

⋯
⋱

𝐴𝑀1
(𝑘)

⋯

    
𝐴1𝑀

(𝑘)

⋮

𝐴𝑀𝑀
(𝑘)

] [
 𝑦𝑡−1

(1)

⋮

𝑦𝑡−1
(𝑀)

]
𝑝
𝑘=1  +  [

 𝜀𝑡
(1)

⋮

𝜀𝑡
(𝑀)

]                  (4) 

 

 

Figure 3: Two examples of data from autoregressive models with different parameters reprinted 

from [16]. Left: AR (1) with 𝒚𝒕 = 𝟏𝟖 − 𝟎. 𝟖𝒚𝒕−𝟏 + 𝜺𝒕. Right: AR (2) with 𝒚𝒕 = 𝟖 + 𝟏. 𝟑𝒚𝒕−𝟏 −

𝟎. 𝟕𝒚𝒕−𝟐 + 𝜺𝒕. In both cases, 𝜺𝒕 is normally distributed white noise with mean zero and variance 

one.  

2.2.2 Moving Average (AM) Model 

 

Suppose that {εt} is a purely random process with mean zero and variance σZ
2 , then a process {y𝑡} is 

said to be a moving average process {𝑦t} of order q denoted MA(q))  if 𝑦𝑡  can be expressed by 

 

𝑦𝑡 = 𝜀𝑡  + 𝛽1𝜀𝑡−1+𝛽2𝜀𝑡−2 + ⋯ + 𝛽𝑞𝜀𝑡−𝑞              (5) 

 

where 𝛽1, 𝛽2, … . 𝛽𝑞 are parameters of the model [2], [11]. 
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The moving average also describes a method where the next sample depends on the weighted sum of the 

past or present inputs of an exogenous time series {𝑥t} of  𝑁 dimensions described in the equation (6) 

below.  

𝑦𝑡 = 𝛽0𝑥𝑡  + 𝛽1𝑥𝑡−1+𝛽2𝑥𝑡−2 + ⋯ + 𝛽𝑞𝑥𝑡−𝑞                (6) 

Similar to the AR (p) model, in the case of multiple time series, a multivariate MA (q) model of M-

dimension can be written as  

                                                                 𝒚𝒕  = ∑ 𝐵𝑘𝒙𝒕−𝒌
𝑞
𝑘=0                                  (7) 

where 𝒙𝒕 is an exogenous 𝑁-dimension time series and 𝛣𝑘 are M-by-𝑁 matrices of parameters.  

 

Figure 4: Two examples of data from moving average models with different parameters reprinted 

from [16]. Left: MA(1) with 𝒙𝒕 = 𝟐𝟎 + 𝜺𝒕 + 𝟎. 𝟖𝜺𝒕−𝟏. Right: MA(2) with 𝒙𝒕 = 𝜺𝒕 − 𝟏𝜺𝒕−𝟏 + 𝟎. 𝟖𝜺𝒕−𝟐. 

In both cases, 𝜺𝒕 is normally distributed white noise with mean zero and variance one. 

2.2.3 ARMA (Autoregressive Moving Average) Model  

 

The ARMA model is one of the most widely used models since it combines the advantages of the 

auto-regressive AR(p) and the moving average MA(q) models. The ARMA model was originally 

proposed in 1951 by Peter Whittle in his thesis “Hypothesis testing in time series analysis” and was 

adapted by George E. P. Box and Gwilym Jenkins in 1971 [11]. An ARMA (p, q) model of order (p, q) is 
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defined by 

 

                     𝑦𝑡 = 𝛼1𝑦𝑡−1 + ⋯ + 𝛼𝑝𝑦𝑡−𝑝 + 𝜀𝑡 + 𝛽1𝜀𝑡−1 + ⋯ + 𝛽𝑞𝜀𝑡−𝑞              (8) 

 

where 𝑦𝑡 is the original series and  𝜀𝑡 is a series of unknown random errors which are assumed to 

followed the normal probability distribution.  

The multivariate version of the ARMA model is called vector auto-regressive moving average 

(VARMA) which is given by 

𝒚𝒕 = ∑ 𝐴𝑘𝒚𝒕−𝒌
𝑝
𝑘=1 + ∑ 𝐵𝑘

𝑞
𝑘=0 𝒙𝒕−𝒌                                 (9) 

where 𝒚𝒕 is the output, 𝒚𝒕−𝒌 and 𝒙𝒕−𝒌 are respectively the past outputs variables and the past inputs 

exogenous variables and 𝐴𝑘 and  𝐵𝑘 are 𝑀-by-𝑀 and 𝑀-by-𝑁 matrices of parameters respectively. 

2.2.4 ARIMA (Autoregressive Integrated Moving Average) Model 

 

The models defined previously as AR, MA, and ARMA are used in stationary time series analysis 

[14]. A time series is said to be stationary, if the mean of the series and the covariance among its 

observations do not change over time and do not follow any trend [17]. In practice, most time series are 

non-stationary, so in order to fit stationary models, it is indispensable to get rid of the non-stationary 

sources of variation [2]. One solution to this, introduced by Box and Jenkins [11], is the ARIMA model 

which generally overcomes this limitation by introducing a differencing process which effectively 

transforms the non-stationary data into a stationary one [2], [17]. This is done by subtracting the 

observation in the current period from the previous one. For example a first order differencing is done by 

replacing 𝑦𝑡 by 𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 . Hence, the ARIMA model is called “Integrated” ARMA because of the 

stationary model that is fitted to the differenced data that has to be summed or integrated in order to 

provide a model for the original non stationary data. The general form of the ARIMA (p, d, q) process is 

described as 

𝑦′𝑡 = ∇𝑘𝑦𝑡 = 𝛼1𝑦′𝑡−1 + ⋯ + 𝛼𝑝𝑦′𝑡−𝑝 + 𝜀𝑡 + 𝛽1𝜀𝑡−1 + ⋯ + 𝛽𝑞𝜀𝑡−𝑞           (10) 

where parameters p, d, and q are non-negative integers that refer to the order of the autoregressive part, 

the degree of first differencing involved, and the order of moving average part respectively. This capacity 
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to deal with non-stationary process has made the ARIMA model one of the most popular and widely used 

approaches in time series forecasting [14]. 

2.2.5 SARIMA (Seasonal ARIMA) Model 

 

SARIMA [2] is an extension to the ARIMA model. It is used when the data presents with a periodic 

characteristic which must be known ahead. For example, the seasonal component that repeats every s 

observations can be monthly s = 12 (12 in 1year) or quarterly s = 4 (4 in 1 year). The SARIMA model is 

usually termed as ARIMA (p, d, q) X (𝑃, 𝐷, 𝑄)𝑠 where P=number of seasonal autoregressive (SAR) 

terms, D=number of seasonal differences, 𝑄=number of seasonal moving average (SMA) terms. 

A standard example of seasonal time series is the airline passenger time series, from Box and Jenkins 

[11]. The dataset includes the number of international airline passengers (in thousands) for each month 

from January 1949 to December 1960 (see Figure 5 below).  

 

 

 

Figure 5: Time Series Plot of the Airline Passenger Seasonal Series from [11] 
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2.2.6 Training and Evaluation of Statistical Forecasting Methods 

 

In the statistical literature, the data is often divided in two sets [16]. The first set is used for 

estimating the parameters of the model: this part is called training. The second set is called the testing set 

which contains unseen data by the model that is used for estimating the forecasts using the parameters. 

The test set gives us a way to try the model on data that was unavailable to the model when the 

parameters were first calculated. From this, we can see how well the model performs at predicting other 

data for which we know the real outcome in order to compare this to the predicted outcome. The size of 

the test set is typically about 20% of the last part of the total sample length although this value may 

change on how far ahead the forecasts are needed and on how long the sample is. Other statistical 

references call the training set the "in-sample data" and the test set the "out-of-sample data". The 

parameters are found in the training part by using mostly linear regression. 

To identify the ability of the predictions, different forecast accuracy measures are used depending 

on the task and the model. An error measure is simply defined by the difference between a forecast and 

the actual value. Denote 𝑦𝑡 as the 𝑡𝑡ℎ observation and �̂�𝑡 as the forecast of 𝑦𝑡 . The forecast error is 

defined as  𝑒𝑡 = 𝑦𝑡 −  �̂�𝑡, which is on the same scale as the data and cannot be used to make comparisons 

between series that are on different scales. Commonly used measures are the mean squared error (MSE), 

the mean absolute error (MAE), the root mean squared error (RMSE) and the mean absolute percentage 

error (MAPE).  A list of commonly used forecast accuracy measures are show in the Table 1 [18] below. 
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Table 1: Commonly used forecast accuracy measures from [18] 

2.2.7 Applications 

 

The literature survey shows that most of these standard models for time series forecasting are rarely 

used alone. They are often mixed with others models in order to have more accurate and reliable 

forecasts. Nevertheless, we found several papers using only the AR model in the forecasting area. Hence, 

Forzieri et al. [19] used the AR model to forecast the spatiotemporal variability of terrestrial vegetation in 

environmental domain. An autoregressive model of order two (or AR(2)) with a MAPE value of 1.27% 

was found to be an appropriate model for forecasting the Malaysian peak daily load of electricity for the 

three days ahead prediction [20].  It is also widely used for short term load forecasting in the power 

generation domain [21], [22]. Yinghui et al. [23] explored the importance and predictive power of 

different frequency bands of subcutaneous glucose signals for the short-term forecasting of glucose 

concentrations in type 1 diabetic patients by using data-driven autoregressive (AR) models while Chen 

and al [24] used the AR model and the VAR (Vector Autoregressive) model to forecast three 

macroeconomic variables of Taiwan inflation based on consumer price index. Hsueh-Fang Chien et al. 

[25] forecast the monthly sales of cell-phone companies using the vector auto-regressive model. 

Applications of the ARMA models in the literature cover short load forecasting in power systems [26], 

[27] and [28] and short term traffic flow forecasting [29].  

The ARIMA model is commonly used in the domain of finance and economics due to its capacities 

to handle non-stationary time series. In fact, several authors [17], [30] , [31] and [32] used ARIMA model 

to predict electricity price. In medical applications, Abraham et al.  [33] worked on forecasting emergency 
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admissions in hospitals. Another strength of ARIMA model is that it is mixed with others methods 

particularly artificial neural networks (ANN) models to produce forecasts in various domains. Hybrid 

models are discussed further in section 2.4. SARIMA models have been also widely used in the medical 

field for forecasting infectious diseases [14] such as hemorrhagic fever with renal syndrome [34], dengue 

fever [35], and tuberculosis [36].  

The traditional statistical models we have seen so far including AR, MA, ARMA, ARIMA and 

SARIMA are all linear models over the previous inputs and/or states. Their advantages are that they are 

well understood, easy to compute, and provide stable forecasts. However, in the late 1970s and early 

1980s, it became increasingly obvious that linear models are not adapted to many real applications [37]. 

Their major limitation is their pre-assumed linearity form of the data. Hence, despite their relative 

simplicity in understanding and implementation, linear models cannot capture nonlinear patterns [38]. To 

overcome the linear limitations of these time series models, a few models have been proposed in the 

literature. These include the bilinear model, the Threshold Autoregressive (TAR) model, and the 

Autoregressive Conditional Heteroscedastic (ARCH) model [38]. For example, the ARCH model has 

been recently used in [39] for forecasting Internet traffic.  Even though some amelioration has been 

noticed with these nonlinear models, still, they cannot be generalized to the forecasting problem because 

they are developed for specific nonlinear patterns, and are not capable of modeling other types of 

nonlinearity in time series [38].  Therefore, development of ANNs in the late 80s raises some interest for 

more capable alternatives. 

 

2.3 Machine Learning Forecasting Models 

 

This section covers some machine learning models used in time series forecasting mainly artificial 

neural networks (ANNs). ANNs originated with the mathematical modelling of how the human brain 

works. Biological neurons (see Figure 6) provide the transmission of bioelectrical signals. They receive as 

input a signal set, and when these signals reach a certain threshold (sufficiently large enough); the neuron 

is activated and the signals are routed through the axon to generate an output.  
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Figure 6: Biological Neuron from [40] 

 

 

An artificial neuron (see Figure 7) comes to imitate the behavior of a biological neuron. In the very 

beginning, McCulloch and Pitts developed the first artificial neuron model in 1943. ANNs consist of a set 

of neurons or nodes connected together. Each node is associated with a set of weights and can be seen as 

a computational unit. The network receives inputs, and processes them through one or more layers of 

nodes to obtain an output see Figure 7 and Figure 8. In each layer, the weighted sum (the sum of the 

inputs, multiplied by its respective weight) is computed and then passed through a squashing or activation 

function. The activation function is a nonlinear function that is usually sigmoidal. The connections 

determine the information flow between nodes.  By adjusting the weights of the nodes, one can obtain the 

specific or desired output for a given set of inputs. The weights are adjusted by a learning algorithm.  This 

process is called training or learning.  
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Figure 7: Basic Artificial neuron reprinted from [41] 

More recently, ANNs have been extensively studied and used in time series forecasting. Unlike the 

traditional statistical model-based methods they have shown their flexible nonlinear modeling capabilities 

[42]. Moreover, ANNs can generalize in the sense that they are able to learn from experiences and then 

generalize to new experiences never seen before. Lastly, ANNs are data-driven, self-adaptive methods 

which mean that there are few a priori assumptions on the underlying process from which data are 

generated [43]. 

Since the model of McCulloch and Pitts, a wide variety of ANNs has been developed. The 

differences might be in the architectures, the activation function, the learning algorithms etc…depending 

on the practical problem to solve. Among others there are feed-forward neural networks (FFNNs) or 

multilayer perceptron’s (MLP) (see Figure 8) which are the basic neural networks architecture [44].  

There exist as well recurrent neural networks (RNNs); among them one can find simple recurrent 

neural networks, long short term memory network (LSTM) [45] and echo state networks (ESN) [12]. 

Unlike standard FFNNs, RNNs can deal with sequential input data, using their internal memory to 

process arbitrary sequences of inputs. This is possible by using feedback connections or loop between 

neurons hence making them more powerful than FFNNs [8].  One can also find among ANNs architecture 

radial basis function (RBF) [46], cascading neural networks [47] and support vector machines (SVM) 

[48]. This research will focus on three architectures that are widely used for time series forecasting and 

are dealing with long term dependencies, namely feed forward neural networks, LSTMs, and ESNs.  
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2.3.1 Feed-forward neural network 

 

FFNNs (see Figure 8) are the standard artificial neural network architecture. They consist in general 

of three layers (one input layer, one hidden layer and one output layer).  

 

Figure 8: Feed-Forward Neural Networks [49] 

 

Using FFNNs for forecasting consists of having the inputs to the network as past observations of the data 

and the output as the predictions of the future value of the series. In this sense, a neural network with at 

least one hidden layer is functionally equivalent to a nonlinear autoregressive model (NAR). The ANN 

aims to perform the following nonlinear function mapping from the past observations to the future value 

𝑦𝑡 

𝑦𝑡 = 𝑓 (𝑦𝑡−1, … ,  𝑦𝑡−𝑝; 𝒘) + 𝜀𝑡                   (11) 

where 𝒚𝒕 is the series output being forecasted, (𝒚𝒕−𝟏,…, 𝒚𝒕−𝒑 ) are the past values of the series, w is a 

vector of weights or parameters and 𝜺𝒕 is the residual . Figure 9 (a) illustrates an example of forecasting 
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with artificial neural networks and Figure 9 (b) shows a typical non-linear autoregressive neural network 

for forecasting univariate time series. 

 

 

 

 

 

 

 

 

 

Figure 9: (a) Forecasting with ANNs reprinted from [44], (b) Typical non-linear autoregressive neural 

network for forecasting time series reprinted from [45]. 

 

 

Another type of FFNNs used for forecasting time series is the non-linear autoregressive with exogenous 

inputs neural network (NARX). The NARX [50] is a recurrent time delay network (TDNN) with a delay 

line (as in Figure 10) on the inputs and a feedback connection from the output to the inputs. A delay line 

is a lag of time in the inputs. The inputs like in the statistical VARMA model are a mixture of past values 

of the same time series, and past values of another independent time series. A NARX (see Figure 10) 

network can be mathematically represented as  

𝑦𝑡 = 𝑓(𝑦𝑡−1, 𝑦𝑡−2, . . . , 𝑦𝑡−𝑝, 𝑥𝑡, 𝑥𝑡−1, 𝑥𝑡−2, . . . , 𝑥𝑡−𝑞; 𝒘) + 𝜀𝑡     (12) 

where 𝑥𝑡 and 𝑦𝑡 denote, respectively, the input and the output of the model at discrete time t. The 

parameters 𝑝  and 𝑞  are memory delays, with 𝑞 <  𝑝 . The function  f is a non-linear function of the input 

and output of the model. The predicted output 𝑦𝑡 is regressed on the input values (exogenous) 𝑥𝑡−𝑘 and 
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the output value  𝑦𝑡−𝑘. Figure 10 shows the architecture of a NARX network with two hidden layer. This 

can be generalized to multiple inputs (N) and outputs (M). 

 

 

 

Figure 10: Typical architecture of NARX network with 𝒅𝒒 delayed inputs and 𝒅𝒑 delayed outputs [51]  

Standard RNNs are extremely slow to learn and although in theory they have state memory, in practice 

they cannot really learn long term dependencies [6]. The training will be discussed in section 2.3.4. 

 

2.3.2 LSTM Model 

 

The LSTM networks are special kind of RNNs developed in 1997 by Hochreiter & Schmidhuber 

[45] as a neural network architecture for processing long temporal sequences of data [52]. Previous to this 

development, standard RNNs even though in theory can use information with long sequences, in practice 

are limited to capture only few time steps ago. This problem was explored in depth by Hochreiter [53] in 

1991 and Bengio et al. [54] in 1994 who found some fundamental reasons why it might be difficult. The 

glaring reason for this is the decay of the back-propagated error when the size of the time lag between 

relevant information increases. This is called the “vanishing gradient” problem. LSTM were developed to 

overcome the problem of the vanishing gradient in RNNs by learning tasks involving long term 

dependencies [55]. LSTM has the particularity of having long short-term memory blocks which are 

constituted of memory cell units that are able to remember the value of a state for an arbitrary long time, 

as well as three different gate units that can learn to keep, utilize, or destroy a state when appropriate. 

Time delay 

Feedback 

connections 
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Although LSTMs are able to learn long term dependencies, they are extremely slow to train, often taking 

millions of iterations [8]. 

 

Figure 10: Example of LSTM memory block architecture reprinted from [7] 

 

 

2.3.3 ESN Model 

 

ESN is one of the key reservoir computing models. It has emerged in the last decade as an alternative 

to gradient descent based algorithms for training recurrent neural networks such as back-propagation 

through time (BPTT) and LSTM [12]. The reservoir (hidden layer) is a dynamical system which consists 

of a collection of recurrent neurons with randomly generated weights. The inputs feed the reservoir 

influencing the dynamics of the reservoir in a higher dimension. The training process consists of learning 

the reservoir output to connections meaning a simple readout mechanism where the state of the reservoir 

is read and mapped to the desired output. As opposed to standard RNNs, the hidden layer (or reservoir) is 

not trained. The output can be trained using fast regression instead of a slow gradient descend iterative 

learning method. Conceptually simple, practical and yet computationally inexpensive, ESN require 

nevertheless some insight and experience to be successfully applied [56]. In particular, the initialization of 

the weights of the reservoir needs to be wisely set in order to produce a correct timed output. Figure 11 

illustrates the basic schema of ESN. 
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Figure 11: Basic schema of an Echo State Network modified from [57] 

 

2.3.4 Training and Evaluation of ANNs forecasting models 

 

There exist different methods for training neural networks based on the error cost function used to 

measure the error between the desired output and the forecasted output (see section 2.2.6).  The most 

commonly used learning algorithm for training ANNs is the back-propagation (BP) algorithm proposed 

by Rumelhart, Hinton, & Williams in 1986 [58]. Back-propagation or “backward propagation of errors” is 

a supervised learning algorithm used in conjunction with an optimization method such as gradient 

descent.  The training begins with random weights and the goal is to adjust them in order to minimize the 

forecasting error  𝐸𝑡 = (�̂�𝑡 − 𝑦𝑡)2 for each time step. The algorithm consists of two passes. In the forward 

pass, a pattern (a set of input data) is processed through the network’s layers and the outputs for each time 

step are computed. This returns the network final output vectors and the partial derivatives of the outputs 

with respect to the weights. In the backward pass, the gradient of the cost or error function (sum squared 

error for example) with respect to each weight is computed and the weights are modified along the 

downhill direction of the gradient (negative gradient) in order to minimize the error. This is repeated until 

the error stop reducing significantly. 

Take, for example a univariate network forecast 

�̂�𝑡 = 𝑓(𝑦𝑡−1, 𝑦𝑡−2, . . . , 𝑦𝑡−𝑘 , 𝑥𝑡 , 𝑥𝑡−1, 𝑥𝑡−2, . . . , 𝑥𝑡−𝑘; 𝒘) where 𝑓  is the network. To minimize the error, 
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the gradients with respect to w are computed for each time step. Since the error is the difference between 

the actual output �̂�𝑗 and the desired output 𝑦𝑗, and since �̂�𝑗  depends on the weights, these can be adjusted 

in order to minimize the error. Finally, gradient descent only requires the use of each weight-vector 

gradient generated for each time step forecast to update each of the corresponding weight-vector by 

gradient descent describe below:  

𝒘 = 𝒘 − 𝛼∇𝒘𝐸𝑡                                         (13) 

where w is a vector of weights, ∇𝒘𝐸𝑡 is the gradient of the error 𝐸𝑡 at time step t with respect to w and 𝛼 

is the learning rate. If 𝑦𝑡 is a vector (multiple output), then 𝐸𝑡 =
1

𝑀
∑ ((�̂�𝑡

(𝑗)
− 𝑦𝑡

(𝑗)
)2 )𝑀

𝑗=1  

Training can be done one time step at a time (on-line) or all changes can be summed up before 

updating the weights (this is called batch or offline learning). Multiple iteration of this process must be 

done until the error stops decreasing. To avoid overfitting, some data can be reserved to determine when 

to stop early (this is called early-stopping). For example, as the errors on those patterns start increasing, 

one should stop training. But these are not used in the evaluation of the gradient. Note that ESN as 

already mentioned is not subject to iteration methods and instead often relies on linear regression like 

most statistical methods.  

After training the network and obtaining the appropriate weights, these later (weights) are tested on 

unseen data. This part is called testing. In machine learning, in order to assess performance of the network 

on unseen data, a cross-validation method is preferred [59]. Cross-validation is one of the most common 

approaches to automatically evaluate the performance of a model. In a nutshell, the cross-validation 

procedure allows for finding the best hyper-parameters and to measure how well the resulting estimated 

model is able to generalize the data. To reduce variance and bias on estimates forecast error, the data is 

split to allow different data to be used in training and testing.  Cross-validation works by dividing the 

dataset into several subsets. Each one of these subsets is then used alternatively as a training set or as a 

testing set. The training data will be used to learn the weights or the parameters of the model while the 

testing set will validate how good or precise the weights are using only unseen data. Note that machine 

learning often aims at automated learning as opposed to statistical approach which aims at modeling 

knowledge about the task. 
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2.3.5 Applications 

 

Artificial neural networks (ANNs) have been successfully applied to a number of time series 

prediction and modeling tasks. For example, Zhang et al. [60] did a survey of feed-forward ANNs 

applications in forecasting such as forecasting sunspot series, bankruptcy and business failure . Chen et al. 

[61] used ANNs to forecast the Taiwan stock index. Berardi et al. [62] studied bias and variance effect in 

neural network modeling for time series forecasting. A dynamic artificial neural network model for 

forecasting nonlinear processes such as Wolf's sunspot activity has been proposed by Ghiassi et al. [63] and 

Hosseini et al. [64] did a comparison of different feed-forward neural network for ECG signal diagnosis . 

NARX is widely used for time series predictions such as forecasting peak air pollution level done by 

Pisoni et al. [65] using a polynomial NARX model. Jiang et al. [66] used NARX to predict chaotic time 

series. J.Maria et al. [67] showed that NARX network can successfully use its output feedback loop to 

improve its forecasting performance in complex time series prediction tasks such as long term time series 

for variable bit rate (VBR) video traffic time series. Andalib and Atry [68] used NARX for multiple step 

ahead electricity price forecasting. Xie et al. [69] proposed an time series prediction approach based on 

NARX. 

Regarding LSTM network, Thierou et al. [70] worked on a bidirectional LSTM to predict the 

subcellular localization of proteins. Schmidhuber et al. [71] are interested on the vanishing gradient 

descent problem of recurrent networks and proposed an evolutionary LSTM model for sequence learning. 

Eck et al. used LSTM network for music composition [72]. LSTM were used to predict Reber’s Grammar 

[73]. The aim of this task was to predict the next character after a given sequence. Echo state network has 

been used for forecasting short term load electricity [74]. Decai et al. [75] used ESN for chaotic time 

series prediction.   

ANNs have shown their intrinsic power in forecasting time series, sometimes far better than 

traditional statistic models [38]. Their advantages of handling and detecting nonlinear relationship among 

the data and dealing with noisy time series appear to explain their better forecasting performance [42]. 

Nonetheless ANNs have some limitations. Regarding FFNNs, their main drawback is the “lack of 

memory” meaning the inability to store information about past observations. As for RNNs, despite their 

great success in many natural language processing tasks, they have difficulties to learn long term 

dependencies i.e. dependencies between steps that are far apart. LSTM overcome to the vanishing 

gradient issue however the training still slows and computationally expensive. Regarding ESN, it requires 
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some experience and insight to achieve a good performance notably the initial generation of the reservoir. 

But once set, the training is easier and fast. The major limitation of ANNs is that it is usually impossible 

to understand their solutions or what they are really looking for in the data.  

2.4 Hybrid Forecasting Models 

 

Using ANNs for time series forecasting has opened the door to new hybrid models. Hybrid models 

comprise a mixture of different methods from machine learning and standard statistical models. In the 

literature, diverse combinations of techniques have been proposed in order to overcome the limitations of 

single models. The idea behind the mixture of different models in forecasting is to build a strong 

architecture that will use the unique features of each model in order to capture different patterns in the 

data [52]. A good example is the combination of ARIMA and ANNs where an ARIMA process combines 

three different processes comprising an AR function regressed on past values of the process, MA function 

regressed on a purely random process, and an integrated (I) part to make the data series stationary by 

differencing them in order to deal with the non-stationary linear component while the neural network 

model deals with nonlinearity [38] and [71]. The literature in this domain has covered various 

applications. Khashei and Bijari [76] applied their hybrid model to exchange rate forecasting, and Mahdi 

et al., [77] self-organised multilayer perceptron neural network was inspired by the immune algorithm for 

financial forecasting. Luxhoj et al. [78] described a combined methodology using radial basis function 

networks (RBF) and the Box–Jenkins models. Armano et al. [79] presented a new hybrid approach that 

integrated artificial neural networks with genetic algorithms (GAs) and applied it to stock market forecast. 

In recent years, several models combining fuzzy inference system (FIS) with neural networks and 

others methods have been proposed. A fuzzy inference system is the process of mapping a given input to 

an output using fuzzy logic (FL). FL is a problem-solving control system methodology that provides a 

simple way to arrive at a definite conclusion based upon vague, ambiguous, imprecise, noisy, or missing 

input information. It can be designed either from expert knowledge or from data [80]. Castillo and Merlin 

[81] described the application of several neural network architectures to the problem of simulating and 

predicting the dynamic behavior of complex economic time series. Damousis and Dokopoulos [82] 

presented a fuzzy expert system that forecasts the wind speed at a wind energy conversion system and 

implement two genetic algorithms for comparing the fuzzy expert system.  Potters and Negnevitsky [83] 

also describe in their paper an adaptive neuro-fuzzy inference system (ANFIS) for short term wind 

forecasting in Tasmania. Kasabov et al. [84] developed an online/offline evolving system for dynamic 

time series prediction. 
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Introduced by Boser, Guyon & Vapnik [48] in 1992, support vector machine (SVMs) are supervised 

learning algorithms used for classification and regression. There are several papers in the literature for 

time series prediction using SVMs such as Wu et al. [85], Zhang et al. [86], Hsu et al.  [87], Dong et al. 

[88] and Pai et al.  [89]. 

2.5 Summary 

In this section, a brief overview of several models for forecasting time series was given.  Used in various 

applications, all of them are important and bring their strength to the time forecasting domain. Traditional 

statistics models have shown their efficiency for linear low order models, while artificial neural networks 

have shown their capabilities to master nonlinear patterns. Hence, hybrid models that are a combination 

of artificial neural networks, statistics models, and sometimes other models are an emerging domain. 

However, most of them are only looking at learning the precise time series (as in Figure 2(a)) making it 

difficult for RNNs. Advantages and challenges of forecasting methods are summarized in the Table 2 

below. 

 

Figure 12: Overview of time series forecasting models 
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Time Series 

Prediction 

Method 

 

Advantages 

 

Challenges 

Standard 

Statistical  

Models 

 Can be computationally efficient for low order 

models. 

 Convergence guaranteed. 

 Minimizes mean square error by design. 

 Assumes linear, stationary 

processes. 

 Can be computationally expensive 

for higher order models. 

ANNs  Not model dependent. 

 Not dependent on linear, stationary processes. 

 Can be computationally efficient for feed 

forward process. 

 Capable of learning long term dependencies 

(LSTM). 

 Can detect all possible, complex nonlinear 

relationships between input and outputs. 

 

 Selection of free parameters 

usually calculated empirically. 

 Not guaranteed to converge to 

optimal solution. 

 Can be computationally expensive 

(training process). 

 Neural networks have a “black 

box” nature. Therefore, errors 

within the complex network are 

difficult to target. 

Table 2: Summary of advantages and challenges of classical and ANNs based time series prediction methods 

[90] 
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3 Problem Formulation 

This section discusses the forecasting timing events problem being investigated and introduces the 

notation that will be used from this section until the end of this work. Note that from this section to the 

end of this work, the notation for time series index will be change from 𝒙𝒕 to 𝒙(𝒕) (and similarly, for the 

time series 𝒚𝒕 and 𝒛𝒕). 

3.1 Forecasting the Time Remaining or the Precise Time Step of Events 

 

Time series forecasting is difficult and predicting many steps ahead into the future is problematic 

because the larger the forecast horizon, the larger is the uncertainty. Unlike one-step ahead forecasting, 

multi-step ahead forecasting tasks are more challenging [91] since many issues arise such as 

accumulations of errors, and less accuracy [92]. The forecasting field has been influenced for a long time 

by linear statistical models; nevertheless, it becomes clear that linear statistical models are not adapted for 

some applications due to their linear limitations [18]. Machine learning algorithms on the other hand are 

computationally expensive when trying to learn long term dependencies notably event onsets. For 

example predicting the precise time step of instantaneous events (marked as a value of 1 in a series of 0) 

that are far apart can take millions of trials [7] .Yet, animals seem to learn the precise timing of events 

very easily by estimating the time remaining before particular events occurs [9], [10].  

In the quest for simple, practical, fast and accurate learning algorithms, an online learning time series 

algorithm (TDDM) has been proposed in the literature. The idea behind this algorithm has been inspired 

by how an animal learns. F. Rivest et al [10] explain that the success of an animal learning the timing of 

events suggest that they are predicting events in a different way than we do in machine learning: 

“Animals are predicting when an event will occur instead of what event will occur” for each time step . 

The large majority of statistical and machine learning algorithms try to predict what event will occur at 

every time step. The proposed model suggests instead predicting when an event will occur.  

This problem can then be reformulated to learn to predict the time remaining before an event occurs, 

instead of its occurrence at a particular time step. In order to predict event timing as an event stream or as 

time remaining, a preprocessing of the datasets must be performed. The input time series first needs to be 

transformed into a binary series and the target time series transformed into an event time series or into a 

time remaining time series.  First, the original time series is transformed into a binary time series as input 

to the system. For each time series variable 𝑥(𝑡): 𝑥(𝑡) = 1 when a stimulus is observed, and 𝑥(𝑡) = 0 
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otherwise. For example, a data set of music could be transformed this way such that a sample is “1” if a 

note of music is heard or “0” otherwise. Then, a special binary time series called an event time 

series  𝑧(𝑡) is generated, such that for each time step, 𝑧(𝑡) = 1 when the event occurs, and 𝑧(𝑡) = 0 

otherwise. As an example, a financial time series could be transformed into a binary event time series 

considering significant stock price increases as events. Finally, the event time series is used to generate a 

remaining time series 𝑦(𝑡) corresponding to the time remaining before the next event; i.e., the next time 

step t such that  𝑧(𝑡) = 1. Figure 2(b) and (c) shows an example of a time series with its event time series 

and time remaining time series. 

This thesis compares the performance of three offline algorithms that use regression (VARMA for 

statistical method, ESN for neural networks and TDDM for animal model) on two different formulations 

of the forecasting event timing problem that are forecasting binary stream of instantaneous events and 

forecasting the time remaining before instantaneous events occur. The TDDM algorithm will be adapted 

for offline learning in section 4. The goal is to evaluate both the problem formulated and the algorithms’ 

performances.  
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4 TDDM (Time-Adaptive Drift-Diffusion Model) 

This chapter introduces the online multivariate time-adaptive drift-diffusion model algorithm 

proposed by F. Rivest et al. [1] from animal learning theory. Next, the developed offline version of the 

TDDM algorithm is described. This allows TDDM to work as a linear regression based model in the same 

way as VARMA and ESN. 

4.1 TDDM Description 

 The online multivariate time-adaptive drift-diffusion model [1] algorithm is derived from drift-

diffusion models (DDM). It has been inspired by how animals learn. In fact, research has shown that 

animals could learn the timing between events very easily and rapidly with a number of trials 

independent of the time-dependencies [9] contrary to machine learning algorithms which require a 

huge number of trials, at least quadratic with the time-dependencies scale (e.g. [8]). For each 

specific event, a drift-diffusion process works by accumulating evidence about when that specific 

event will occur and by learning the event-rate of each input stimulus. The learning is performed 

through a set of weights and accumulation processes. The equations of the algorithm can be 

described as follows:  

 

Given an N-dimensional binary time series {𝒙(𝑡) = (𝑥1(𝑡), … , 𝑥𝑁(𝑡))}  of the observable stimuli, an 

M-dimensional event time series {𝒛(𝑡) = (𝑧1(𝑡), … , 𝑧𝑀(𝑡))}  representing the occurrence of events such 

that a sample 𝑧𝑗(𝑡) = 1 only when an event of type 𝑗 is occurring at time 𝑡 and an M-dimensional time 

remaining time series {𝒚(𝑡) = (𝑦1(𝑡), … , 𝑦𝑀(𝑡))}. Let 𝑡𝑗,𝑘−1 be the timing of the most recent (𝑘 − 1)𝑡ℎ 

event of type j. Then, for each output j, there is a weight (row) vector 𝒘𝑗, such that the accumulator Φ𝑗(𝑡) 

accumulates evidences until time step t: 

 

                                                     Φ𝑗(𝑡) = ∑ 𝒘𝒋 ∙ 𝒙(𝜏)𝑡
𝜏=𝑡𝑗,𝑘−1

                                              (14) 

Assuming the accumulator should reach a threshold (say 1, without loss of generality) about when the 

event occurs, then one can estimate the remaining time �̂�𝑗(𝑡) using the equation: 

                                                              �̂�𝑗(𝑡) =
1−Φ𝑗(𝑡)

𝒘𝑗∙𝒙(𝑡)
                                                        (15) 
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For each output stream 𝑗, assuming the accumulators in 𝑗 are reset as soon as an event occurs on stream 𝑗, 

an estimation of the duration of when a given stimulus has been observed since the last event at time 

𝑡𝑗,𝑘−1 could be made using the formula 𝑎𝑗,𝑖(𝑡) = 𝜙𝑗(𝑡)/𝑤𝑗,𝑖. Given durations 

𝒂𝒋,𝒊(𝑡) = [(𝑎𝑗,1(𝑡), … , 𝑎𝑗,𝑁(𝑡))], the appropriate weights would be one such that  

                                          Φ𝑗(𝑡𝑗,𝑘) = 𝒘𝒋𝒂𝒋
𝑻(𝑡𝑗,𝑘) = 1                                                        (16) 

at the time of the next event  𝑡𝑗,𝑘 of type j . This constraint generates at time 𝑡𝑗,𝑘 of type an (𝑁 − 1)-

dimensional hyperplane of possible solutions for 𝒘𝑗. One can move 𝒘𝑗 perpendicularly toward that 

hyperplane using  

                                                   𝒘𝑗 = 𝒘𝑗 − 𝛼𝑑𝒂𝑗(𝑡𝑗,𝑘)                                                      (17) 

where 

                                                              𝑑 =
(𝒘𝑗∙𝒂𝑗

𝑻(𝑡𝑗,𝑘)−1)

𝒂𝑗(𝑡𝑗,𝑘)∙𝒂𝑗
𝑻(𝑡𝑗,𝑘)

                                                 (18) 

is the distance to the solution hyperplane, and 0 < 𝛼 < 1 is a small learning rate. 

This model has only a single hyper-parameter 𝛼 and has 𝒪(𝑁𝑀) parameters and requires 𝒪(𝑁𝑀) 

memory for the accumulation process.  

The offline TDDM algorithm is developed to use a linear regression method to improve all 

predictions �̂�𝑗(𝑡) made at each time step instead of correcting only the last prediction as in the online 

model. Given the accumulation 𝑎𝑗,𝑖(𝑡) = ∑ 𝑥𝑖(𝜏)𝑡
𝜏=𝑡𝑘−1

, where k-1 is the last event of type j observed, the 

estimated remaining time �̂�𝑗(𝑡) can be written using equation (14) as: 

                            �̂�𝑗(𝑡) =
1−∑ 𝑤𝑗,𝑖.𝑎𝑗,𝑖(𝑡)𝑁

𝑖=1

∑ 𝑤𝑗,𝑖
𝑁
𝑖=1 ∙𝑥𝑖(𝑡)

                                                         (19) 

A linear regression method can be applied independently for each event j using every available time step t 

to find the weights that can best fit the data. Equation (19) has been transformed into a set of linear 

equations for given target values 𝑦𝑗(𝑡) for each time step t in replacing �̂�𝑗(𝑡) by 𝑦𝑗(𝑡).  

                          ∑ 𝑤𝑗,𝑖
𝑁
𝑖=1 [�̂�𝑗(𝑡)𝑥𝑖(𝑡) + 𝑎𝑗,𝑖(𝑡)] = 1                                     (20) 

[𝑦𝑗(𝑡)𝑥1(𝑡) + 𝑎1(𝑡),    𝑦𝑗(𝑡)𝑥2(𝑡) + 𝑎2(𝑡), ⋯ ⋯ , 𝑦𝑗(𝑡)𝑥𝑁(𝑡) + 𝑎𝑁(𝑡)] ∗ 𝒘𝒋
𝑻=1             (21) 
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with j=1 to M outputs. The set of regression equations (21) for all available time steps t for a given stream 

j minimizes the error: (% of remaining time evidences +  % of elapsed time evidences − 1)2.  

4.2 Summary 

 

In this section we presented the online TDDM algorithm and developed an offline TDDM 

algorithm. These algorithms do not minimize the SSE cost function to compute the forecast at each time 

step; instead they minimize the errors in the percentage of remaining time added to the percentage of 

elapsed time to 1. The predictions are obtained through a set of weights and accumulation processes. 

The online version has a single hyper parameter 𝛼. The offline version uses a linear regression method to 

estimate the weights and does not need any hyper-parameter. The main drawback of TDDM for both the 

online and the offline version [1] is that unlike ANNs, its mathematical form may not allow it to 

discriminate cases where two events of the same type are preceded by distinct temporal patterns. But at 

least this expanded version of TDDM is trained using the same process as VARMA and ESN making it 

more comparable. From now on, the TDDM that will be used and discussed in the upcoming section is 

the TDDM offline unless it is specified otherwise.  
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5 Experiment Procedure and Results 

This chapter includes a description of the three real world datasets used, the methods used for 

evaluating the three algorithms on the tasks of predicting timing event, and lastly, the experiments results. 

The experiments were devised for two tasks. First the prediction of binary instantaneous event streams at 

each time step and second the prediction of the time remaining before the events occur by the three 

algorithms.  All the experiments, the datasets transformation and the preprocessing are done in 

MATLAB. Each algorithm is represented in oriented object MATLAB class. 

5.1 Data sets   

All the datasets (music, finance and heartbeats) used for the experiments are composed of sets of 

multivariate time series. The forecasting timing event approach suggests a transformation of the datasets 

into binary time series  𝒙(𝒕), event time series 𝒛(𝒕) and time remaining time series  𝒚(𝒕) in order to 

predict the event itself; in other words, to estimate the time remaining before an event occurs. The 

transformations of the datasets raise issues regarding some unknown remaining time. These missing 

values came from the last portion of the time series where no more events happen. The remaining time 

would be undefined, hence the use of NaN value (a notation that is used in MATLAB to denote Not a 

Number). Yet, linear regression methods do not work with data expressed as NaN for the simple reason 

that NaN data invalidates any arithmetic operation. In order to overcome this issue, all the variables of 

type 𝒙(𝒕), 𝒛(𝒕)  and 𝒚(𝒕) of each dataset were trimmed at the first NaN. 

5.1.1 Music  

 

The music dataset Bach Chorales from the UCI Machine Learning Repository [93] is composed of 100 

chorales (musical pieces). Each piece of music consists of approximately eight bars using notes from C4 

(midi 60) to G5 (midi 79) and each music note is a time series. The three main attributes of the data are 

the following: a start-time which shows the starting point for each of the 20 music notes; MIDI-Pitch 

numbers from C4 (midi 60) to G5 (midi 79); and a duration that indicates the time during which the note 

was played.  For predicting the timing of a single note, the inputs for the algorithm are the binary time 

series 𝒙(𝒕) indicating whether each note is on or off. The event time series 𝒛(𝒕) are made of the onsets 

and offsets of each note. Note onsets were extracted and their indices were computed assuming sampling 
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at 1/16th of a beat. As mentioned above, notes that never occur in a piece were removed from the  

𝒙(𝒕), 𝒛(𝒕)  and 𝒚(𝒕) time series for that piece reducing the input dimension N. Trimming at the first NaN 

in each piece generates a huge loss of data for the music dataset in many time series up to 51% of their 

initial lengths. In the worst case, some time series lost 90% of their initial length.  In order to reduce the 

amount of data loss, new pieces were made by repeating twice the same piece before trimming the end as 

if the music pieces were played twice. The previous piece and its repetition were separated by free bars 

added at the beginning and the end of piece. Repeating the piece guaranteed that each note in the first half 

at least reoccurs once in the second half.  Figure 13  shows an example of the transformation of one piece 

of music in binary, events and time remaining time series as well as the new piece generated by the 

process of repeating the piece see Figure 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Time series transformation respectively in binary time series, event time series and time remaining 

time series for the multivariate Bach Chorales 50. 
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Figure 14: The same music piece 50 above repeated twice. 

 

5.1.2 Finance 

 

The NASDAQ financial dataset [94] includes stocks prices from 100 different companies from April 

1𝑠𝑡 2011 to March 31 2014. Each stock represents a time series. For each day 𝑡 of each stock time series 

{𝑠𝑗}, the mean 𝜇𝑠𝑗
(𝑡) and standard deviation 𝜎𝑠𝑗

(𝑡) was calculated for the previous fourteen trade days 

(𝜇𝑠𝑗
(𝑡)  = 𝜇𝑠𝑗

(14) and 𝜎𝑠𝑗
(𝑡)  = 𝜎𝑠𝑗

(14)  ∀ 𝑡 < 14). Then, the entire series was transformed into two 

input binary time series: one series indicates if the closing price 𝑥𝑗(𝑡) = 𝑠𝑗(𝑡) > 𝜇𝑗(𝑡) was above average 

and the other if it was below  𝑥𝑗(𝑡) = 𝑠𝑗(𝑡) ≤ 𝜇𝑠𝑗
(𝑡). Finally, in order to detect a significant increase in 

stock values for representing the events, a threshold of  𝜃𝑠𝑗
(𝑡) = 𝜇𝑠𝑗

(𝑡)  + 0.7𝜎𝑠𝑗
(𝑡) was assigned. 

Therefore, event time series is obtained by generating events on days when the closing price is crossing 
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this threshold ( 𝜃𝑠𝑗
(𝑡) = 𝜇𝑠𝑗

(𝑡)  + 0.7𝜎𝑠𝑗
(𝑡)) as proposed in [1]. The data set has five attributes: the 

company name, the stock symbol, the closing price for a particular stock, the company sector and its 

corresponding number. The companies were grouped by sector or category with each sector forming one 

multivariate time series, for a total of 11 time series. Figure 15 shows an example of the transformation of 

the NASDAQ category #5 in binary, events and time remaining time series. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Time series transformation respectively in binary time series, event time series and time 

remaining time series for the multivariate stock sector 5 taken from 2011-2014. 

 

5.1.3 Heart-beats  

 

The MIT-BIH Arrhythmia database [95], [96] and [97] is composed of forty eight electrocardiograms 

(ECG) digitized at 360 Hz listed from different patients who had arrhythmias. Each heartbeat in the 

database has been converted into a binary time series: one if a heartbeat occurred at the time step, and 
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zero otherwise. From the 48 records, 16 were selected because these records had less than ten abnormal 

beats in any 20 second window [98]: 100, 101, 103, 105, 108, 112, 113, 114, 115, 116, 117, 121, 122, 

123, 215, and 230. For each individual heartbeat time series, the only input is a bias, and the events are 

the heartbeats themselves, with the output being the estimated time until the next heartbeat. The heartbeat 

dataset contains 16 univariate time series. 

5.2 Methods 

The three algorithms on which we based our experiment namely ESN, TDDM and VARMA are 

trained in an offline manner by performing a linear regression method on each of them. The offline or 

batch learning technique allows access to the entire training set and for the algorithms to compute the 

weights at once. The linear regression equation is expressed by 

𝒖 = 𝑉𝒃 + 𝜺                                      (21) 

where u is the outputs linear regression vector, V is the linear regression inputs matrix, 𝒃 is the vector of 

weights or coefficients and 𝜀  is the residual. From equation (21), one can derive the coefficients b vector 

as follows: 

𝑉𝑇𝒖 =  𝑉𝑇𝑉𝒃 +  𝜺                            (22) 

(𝑉𝑇𝑉)−1 𝑉𝑇𝒖 = 𝒃 + 𝜺                     (23) 

𝒃 ≅ (𝑉𝑇𝑉)−1𝑉𝑇𝒖                             (24) 

The training and testing errors are obtained by computing the root mean squared error (RMSE) for both 

experiments  which measures the root squares of averaged errors over every output and every time step 

for each multivariate set of time series in the folds. 

 

   MSE =
1

𝑛𝑇
∑ ∑ (�̂�𝑗(𝑡) − 𝑦𝑗(𝑡))

2𝑇
𝑡=1

𝑛
𝑗=1          with   RMSE = √MSE   (25) 

where n is the number of output variables in the time series, T is the length of time series or the number of 

time steps in the series, �̂�𝑗(𝑡) the predicted output and 𝑦𝑗(𝑡) the real output. For example, in a music piece 

with 10 notes and tested on 20 time steps, 𝑛𝑇 =  200. 

 



52 

 

The three algorithms were implemented in MATLAB and run independently on every multivariate 

time series. Regarding VARMA and TDDM, the \ operator has been used in order to compute the 

weights using linear regression. The \ operator performs a least-squares regression. The least squares 

fitting technique is the simplest and the most commonly applied form of linear regression. It provides a 

solution to the problem by finding the best fitting weights for a set of data. As for ESN, a MATLAB ESN 

toolbox written by H. Jaeger et al. [99] was used. 

5.2.1 Procedure of Experiment 

In order to find the best hyper-parameters for each algorithm, we performed a K-folds (with K=10) 

cross-validation procedure on the time series data. Each fold depending on the dataset contains a set of 

multivariate time series. K-fold cross-validation (see section 3) is a technique to assess the overall 

performance of an algorithm given a set of possible hyper-parameter values, and to evaluate the results of 

the model on unseen data. The K-folds cross-validation procedure used in this research is described as 

follows: It consists first of randomly partitioning the original dataset into 10 subsets or folds. Then nine 

folds are taken for training on the first 75% of the series and testing on the last 25% in order to find the 

best hyper-parameters. Once the best hyper-parameters are found, they are used on the last fold for final 

training and testing on those remaining and unseen time series. The cross-validation (see Table 3) 

technique allows us to evaluate the overall predictive performance of each algorithm as if the model was 

trained on new unseen time series using the best hyper-parameters.  

Therefore, the music dataset of 100 multivariate time series will be divided in 10 folds with K=10 

and each fold contains 10 multivariate time series. The NASDAQ dataset is composed of 11 multivariate 

time series with each fold containing at least one multivariate time series and finally the heartbeat dataset 

contains 16 univariate time series with each fold containing also at least one univariate time series. The 

hyper-parameters of VARMA (p,q) are the order p  and q of the VARMA model, the ESN hyper-

parameter is the number of internal neurons of the network, and the TDDM algorithm has no hyper-

parameter. The range of (p,q) used for VARMA is (p,q)∈ [1. .15] × [1. .15] for a total of 225 hyper-

parameters values. As for ESN, the following vector of hyper-parameters was 

used: 𝒗 = [10,20,30,40,50,60,70,90,100]. Regarding the heartbeat dataset, it uses less hyper-parameters 

on the VARMA algorithm since the simulations were very slow. The couple of VARMA hyper-

parameters chose for the heartbeats are (p,q) = (1,1), (1,15),(15,1),(15,15). 

The procedure below is a general cross-validation procedure that we used for the three algorithms.  
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Given a dataset D of all multivariate time series : 

Divide D into K=10 folds or subsets.  

Let’s denote 𝐷𝑖 a subset at fold 𝑖, for 𝑖 = 1, … ,10 such that ∪ 𝐷𝑖 = 𝐷 and ∩ 𝐷𝑖 = ∅ 

 For each fold 𝑖 

o T-test (testing set) =𝐷𝑖 ; 

o T-train (training set) = 𝐷\𝐷𝑖  

 For each multivariate time series in T-train : 

 For each possible value of hyper-parameter  

o Find the best weights using the first 75%  of the time series 

o Compute the predictions using the weights from above using the last 25% 

of the time series 

o Compute the testing errors 

 Choose the best hyper-parameters based on the predictions errors 

 For each multivariate time series in T-test : 

 For the best hyper-parameter 

o Find the best weights using the last 75% of the time series 

o Compute the predictions using the weights from above using the last 25% 

of the time series  

o Compute the testing errors 

 

 

 

Table 3: The Cross-Validation Procedure 
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5.3 Results  

Two sets of experiments were devised in this research. In the first experiment, the algorithms tried 

to predict binary instantaneous event streams at each time step i.e. to learn to predict the value (1) at the 

time step the event shall occur. In this case, the events correspond to: the note's onsets and offsets for 

Bach Chorales, the next significant jump in price for the stocks and the next heartbeat for MIT-BIH 

heartbeats database. The second experiment, as suggested by the forecasting timing event concept 

discussed in section 3, the algorithms learned to predict the time remaining before the events occur.  

Hence, for the music notes, the algorithms will learn to predict the time remaining before each note's 

onsets and offsets occur. In the case of the stock market data, the algorithms will predict the time 

remaining before the next significant jump in price and lastly in the case of heartbeats, the algorithm will 

learn to predict the time remaining before the next heartbeat.  

5.3.1 Experiment I: 

All the algorithms receive as inputs the binary time series 𝒙(𝒕) and as target output the events time 

series 𝒛(𝒕) they should predict. 

The VARMA algorithm estimates its predictions using multiple linear regressions applied on the 

model VARMA as stated earlier in equation (9) in section 2.2.3. Note that the time series 𝒚(𝒕) could be 

replaced by 𝒛(𝒕) in the equation below in order to apply the VARMA model for predicting instantaneous 

events stream. 

 

�̂�(𝑡)  = ∑ Α(𝑘)𝒛(𝑡 − 𝑘)𝑝
𝑘=1 + ∑ Β(𝑘)𝑞

𝑘=0 𝒙(𝑡 − 𝑘)          (26) 

TDDM for its part estimates the predictions using the weights and the binary inputs series as stated 

in the equation (27). An event occurs when the accumulator  Φ𝑗 crosses a threshold: 

�̂�𝑗(𝑡) = 1 𝑖𝑓  Φ𝑗(𝑡) > 1 𝑎𝑛𝑑  Φ𝑗(𝑡 − 1) ≤ 1                    (27) 

Lastly, the ESN algorithm receives as input the binary series 𝒙(𝒕) and as target output the events 

time series 𝒛(𝒕) and uses regression to forecast the next event at each time step. 

 

Table 4 below shows the overall algorithms performance of each algorithm for Experiment I by 
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calculating the average test root mean squared error over the 10 cross-validation folds as well as the 

majority vote results. The majority vote is a decision method that always chooses the alternatives which 

have a majority.  In this case, because the majority of the observations (data) are “0”, the majority vote 

would always say 0 which means no events are occurring. For this experiment, the best hyper-parameters 

of VARMA on the Bach Chorales, the stock data, and the heartbeats are respectively (1,1), (1,2) and 

(15,15). As for the ESN algorithm, the best hyper-parameters are respectively 10 internal neurons for both 

stock and Bach Chorales datasets and between 50 to 80 internal neurons in general for the heartbeat 

dataset.  

 

Algorithms 

 

ESN 

 

TDDM 

 

VARMA 

 

Majority vote 

 

Bach Chorales 

 

0.14 ± 0.04 

 

0.20 ± 0.01 

 

0.12 ± 0.01 

 

0.16 ± 0.01 

 

Stocks 

 

0.25 ± 0.02 

 

0.28 ±  0.02 

 

0.26 ± 0.03 

 

0.27  ± 0.02 

 

Heartbeat 

 

0.057 ±  0.005 

 

0.065 ± 0.008 

 

0.057 ± 0.005 

 

0.057 ± 0.005 

 

Table 4: Averaged test root mean squared error per prediction for all the algorithms on the task of predicting 

events onsets. 

 

In order to know if the three algorithms errors’ in Table 4 are significantly different from each other, an 

analysis of variance (ANOVA) has been made. ANOVA is used to determine whether there are any 

significant differences between the means of three or more independent groups. The ANOVA for the 

Bach Chorales had a p value of 7.9x10−08. A post-hoc Scheffe test (with 𝛼=0.05) reveals that all 4 

means are significantly different from each other. 

The ANOVA on stocks gives a p value equal to 0.036 and the post-hoc Scheffe test reveals that TDDM is 

worst than VARMA and ESN, however it is not worst than majority vote. Only ESN is significantly 

better than majority vote. 
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For heartbeat, the analysis of variance gives  p value of 0.0056 and the post-hoc Scheffe test shows that 

ESN and VARMA errors are likely the same, but TDDM is significantly worst than the two other . 

Because only binary values are used for this experiment, all the average errors in the table are relatively 

small. One can try to draw a conclusion based on these results but the errors only do not give much 

information on the performance of the algorithms on forecasting “1” i.e the event at a precise time step; 

hence the importance of the majority vote results. For each dataset all the errors are close to the majority 

vote errors (Table 4). This shows that all the algorithms are seldom predicting “1” where they should be 

as shown in Figure 16, Figure 17, Figure 18 and Figure 19 below.  

Figure 16 below shows the forecasts of the three algorithms on the Bach Chorales dataset for the 

music notes #2 from music piece 29. In the testing part, we observe an attempt by the three algorithms to 

predict the events. VARMA and ESN are able to find where the events occur but are not able to predict 

them entirely i.e. their predictions are not above 0.5 and barely reach 1. As for TDDM it misses some 

events but it was able to predict some of them just before they happened. In Figure 17 below, the ESN 

predictions are higher than “1” in the testing part. 



57 

 

 

Figure 16: ESN, TDDM and VARMA algorithms prediction of events of note 2 from Bach Chorales 29. The 

train/test set separation is indicated by a blue marker. The middle of the music piece before trimming, i.e. the 

repetition point is illustrated by a brown dot. 
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Figure 17: ESN, TDDM and VARMA algorithms prediction of events of note 11 from Bach Chorales 4. The 

train/test set separation is indicated by a blue marker. The middle of the music piece before trimming, i.e. the 

repetition point is illustrated by a brown dot. 

 

For the stocks dataset (see Figure 18 below), the predictions are worst for VARMA and ESN which are in 

most of the cases predicting zeros meaning no events. As for TDDM, it predicts the events just before 

they occur but also misses generally some. 
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Figure 18: ESN, TDDM and VARMA algorithms prediction of events of time series 3 from stock 9. The 

train/test set separation is indicated by a blue line. 

 

For the heartbeats, ESN and VARMA are predicting “0” all the time while TDDM predict some events 

but at the wrong place. Figure 19 below shows that the three algorithms are not learning at all to predict 

the events. One particularity to the heartbeats dataset is that each time series contains approximately 

7× 105  instances. In order to have a good visualization for the plots, only a portion of the time series i.e. 

2× 104 instances around the train/test boundary are shown in Figure 19 . 
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Figure 19: ESN, TDDM and VARMA algorithms prediction of events of heartbeats 10. The train/test set 

separation is indicated by a blue marker. 20000 instances are shown in this plot. 

 

The fact that ESN and VARMA are not predicting completely the events meaning that it does not reach 1 

in music and finance datasets, leads to the following question: Is VARMA and ESN trying to predict the 

events or are they predicting zeros all the time meaning that predicting the events is a new task for them 

and they are not learning it at all? For that reason, a confusion matrix has been made for each algorithm 

on each dataset to see how well or not the algorithms are classifying 1 as 1 and 0 as 0. A confusion matrix 

[100], also called table of confusion is a table that allows visualization of the performance of an 

algorithm. Mostly used in machine learning, it describes the performance of a classification model. The 

matrix contains information about actual and predicted classifications done by a classification system, for 

example the three algorithms in the case of this experiment. Using a confusion matrix, it will be easier to 

see if the algorithms are confusing two classes or confounding them one as another. In the context of this 
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The forecast of each algorithm on each dataset were transformed to 1 if �̂�𝑗(𝑡) ≥ 0.5 and 0 otherwise. 

The following table shows the confusion matrix for a two class classifier. Each column of the matrix 

represents the instances in a predicted class while each row represents the instances in an actual class (or 

vice-versa). The entries in the confusion matrix have the following meaning in the context of this 

experiment: 

I=Number of instances (or observations) Predicted data or Predictions 

Negative Positive 

Actual or Real data Negative u v 

Positive r s 

 

Table 5: Confusion Matrix 

 u is the number of correct predictions that an instance is negative, 

 v is the number of incorrect predictions that an instance is positive, 

 r is the number of incorrect of predictions that an instance negative,  

 s is the number of correct predictions that an instance is positive. 

Using the information above, one can estimate the percentages of how well an algorithm can distinguish 

two classes. Several standard terms have been defined for the two class confusion matrix:  

 True Positive Rate (TP): When the actual data are yes, how often does the system (in 

this case the algorithm) predict yes?  

o 𝑇𝑃 = 𝑠 /( 𝑟 + 𝑠) 
 False Positive Rate (FP): When the actual data are no, how often does the algorithm 

predict yes?  

o 𝐹𝑃 = 𝑣 /( 𝑢 + 𝑣) 
 True Negative Rate (TN): When the actual data are no, how often does the algorithm 

predict no? 

o 𝑇𝑁 = 𝑢 /( 𝑢 + 𝑣)  

 False Negative Rate (FN): When the actual data are yes, how often does the algorithm 

predict no?  

o 𝐹𝑁 = 𝑟 /( 𝑟 + 𝑠) 
 Misclassification Rate or Error rate (M): Overall, how often the algorithm is wrong?  

o 𝑀 =  (𝐹𝑃 + 𝐹𝑁) / 𝐼 
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The Table 6 and Table 7 below show the percentages of the confusion matrix and the misclassification 

rate obtained by averaging over the 10 cross-validation folds for each algorithm and each dataset 

respectively. 

Confusion matrix percentages 

 

Algorithms ESN TDDM VARMA 

Percentages TP TN FP FN TP TN FP FN TP TN FP FN 

Music 0.37% 98.87% 1.12% 69.01% 0% 98.58% 1.41% 69.3% 0.08% 98.96% 1.03% 69.3% 

Finance 0.06% 99.94% 0.05% 99.93% 0% 99.63% 0.36% 100% 0.05% 99.77% 0.22% 99.94% 

Heartbeat 0% 100% 0% 100% 0% 99.90% 0.09% 100% 0% 100% 0% 100% 

Table 6: Average percentages of the confusion matrix for the three algorithms over the 10 folds for all the 

datasets 

Misclassification Rate 

Algorithms ESN TDDM VARMA 

 

Music 

 

3.63% 

 

3.95% 

 

3.55% 

 

Finance 

 

7.62% 

 

7.91% 

 

7.78% 

 

Heartbeat 

 

0.33% 

 

0.42% 

 

0.33% 

Table 7: Algorithms average misclassification rate over the 10 folds for all the datasets 

 

For example, for Figure 18 of stock above, the total instances in the testing part is 182 with number of 

positive instances equal to 14, and negative instances equal to 168. The misclassification rate for ESN is 

0.082%, which is normal as more 0 exist than 1 in the time series. These tables are good at showing how 

well the 0 are classified for each algorithm with the average true negative (TN) percentage equal 

approximately to 99 %. One can notice that ESN and VARMA on the heartbeat are not learning at all. 

The true positive (TP) is 0% and the TN is 100%. The TP for VARMA on music is very small like the 

ESN on finance. As for TDDM the TP is 0% on all dataset. To investigate how well the positive instances 

“1” are predicted correctly by each algorithm the tables below are generated which contain the percentage 

of real positive instances and the percentage of predicted positive instances for each fold and for each 

dataset. These tables clearly show per fold how well the “1”, which represent the events, are predicted by 

each algorithm.  
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Fold Music: Percentages of positives instances 

 

Actual 

data 

Forecast data  

 

ESN 

 

TDDM 

 

VARMA 

1 2.90% 1.20 % 1.42% 1.18% 
2 2.71% 1.05 % 1.37% 1.02% 
3 2.14% 0.74 % 1.51% 0.80% 
4 2.67% 0.99 % 1.32% 1.002% 
5 2.15% 1.26 % 1.18% 0.70% 
6 2.78% 1.05 % 1.33% 1.054% 
7 2.86% 1.34 % 1.66% 1.25% 
8 2.70% 1.09 % 1.06% 0.84% 
9 2.11% 1.10 % 1.42% 0.92% 
10 2.68% 0.94 % 1.52% 1.001% 

Average 2.57% 1.07% 1.37% 0.97% 

 

Table 8: Percentages per fold of predicted and actual positives observations for the music dataset 

For the music dataset, TDDM has the higher average positive instances predictions of 1.37% compare to 

ESN with 1.07% and VARMA with 0.97%. This shows that the algorithms are barely predicted the half 

of the events correctly. 

Fold Finance: Percentages of positives instances 

 

Actual 

data 

Forecast data  

ESN TDDM VARMA 

1 7.18% 0% 0.55% 0% 

2 7.84% 0.17% 0.17% 1.50% 

3 7.22% 0% 0% 0% 

4 7.18% 0% 0.53% 0% 

5 8.08% 0% 0.43% 0% 

6 8.22% 0.07% 0.15% 1.25% 

7 6.48% 0% 0.54% 0% 

8 7.06% 0.54% 0.54% 0% 

9 8.28% 0.10% 0.45% 0% 

10 5.37% 0% 0.53% 0% 

Average 7.29% 0.08% 0.38% 0.27% 

Table 9: Percentages per fold of predicted and actual positives observations for the finance dataset 
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For the finance dataset, the results are showing that all the algorithms have difficulties in predicting even 

1% of the events. The best among them is TDDM with an average percentage of predicted events equal to 

0.38%. 

 

Fold 

Heartbeat: Percentages of positives instances 

 

Actual 

data 

Forecast data  

ESN TDDM VARMA 

1 0.44% 0% 0.10% 0% 

2 0.34% 0% 0.15% 0% 

3 0.33% 0% 0.09% 0% 

4 0.29% 0% 0.02% 0% 

5 0.39% 0% 0.07% 0% 

6 0.27% 0% 0.04% 0% 

7 0.28% 0% 0.07% 0% 

8 0.31% 0% 0.14% 0% 

9 0.23% 0% 0.06% 0% 

10 0.34% 0% 0.23% 0% 

Average 0.32% 0% 0.09% 0% 

Table 10: Percentages per fold of predicted and actual positives observations for the heartbeat dataset 

Regarding the heartbeat dataset, the ESN and VARMA are not at all learning to predict the events and 

TDDM has an average of 0.09% which is again very small. 

Experiment I shows that it is indeed very difficult to learn to predict event occurrences. Even though the 

percentage of events is small in the time series, the algorithms were hardly predicting correctly even one 

third of the events. TDDM which has been made to predict timing events was also not good enough on 

predicting event onsets. Moreover, although TDDM performs worst in RMSE, one can see that it is 

attempting to miss fewer events. But TDDM timing error increases its RMSE in a potentially unfair way 

compared to majority vote. In short, in this experiment, results are bias toward making no predictions at 

all rather than miss predicting the timing of an event. Given the poor results of Experiment I, an 

alternative to the prediction of timing events will be to learn to predict the time remaining before the 

occurrences of events as suggested by the forecasting event timing concept based on animal learning. The 

learning of time remaining may be easier as oppose to learning the binary events stream. For that reason, 

Experiment II is performed. 
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5.3.2 Experiment II:  

The procedure of the second experiment is similar to the first one but the difference is in the time 

series being used. As shown in Experiment I, the prediction of events is very difficult for all the 

algorithms. An alternative to this problem is to predict the time remaining before the event occurs.  

Therefore, in this experiment, all the algorithms receive as inputs the binary time series 𝒙(𝒕) and as target 

output the time remaining time series 𝒚(𝒕) instead of the events time series 𝒛(𝒕) and should output an 

estimate of the remaining time before an event occurs.  

The forecasts �̂�𝑗(𝑡) are estimated by VARMA using equation (9) as described in section 2.2. One 

can notice that VARMA uses the real time remaining 𝑦𝑗(𝑡) for the forecast estimation.  

�̂�(t)  = ∑ Α(𝑘)𝒚(𝑡 − 𝑘)𝑝
𝑘=1 + ∑ Β(𝑘)𝑞

𝑘=0 𝒙(𝑡 − 𝑘)     (9) 

The TDDM algorithm, as opposed to VARMA estimates the predictions using only the weights and 

the binary input series as described in equation (18) of section 4. Note that the accumulations 𝑎𝑖 imply 

that TDDM uses the past events 𝒛(𝒕) to estimate its predictions. 

                                      �̂�𝑗(𝑡) =
1−∑ 𝑤𝑗,𝑖.𝑎𝑖(𝑡)𝑛

𝑖=1

∑ 𝑤𝑗,𝑖
𝑛
𝑖=1 ∙𝑥𝑖(𝑡)

                           (18) 

The ESN algorithm receives as input the binary series 𝒙(𝒕) and as target output the time remaining 

series  𝒚(𝒕). Table 11 below shows the overall performance for each algorithm for Experiment II.  
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Table 11: Average root mean squared errors and standard deviation over the 10 folds for all the algorithms. 

The analysis of variance of Table 11 above gives a p value of 0.0024 for the Bach Chorales. A post-hoc 

Scheffe test (with 𝛼=0.05) reveals that VARMA is significantly worst than ESN and TDDM. The 

ANOVA on stocks had a p value of 0.36. Yet, a post-hoc Scheffe test suggested all means for the three 

algorithms to be significantly different. On heartbeat, the analysis of variance gives a p value of 

8.2x10−13 and the post-hoc Scheffe test reveals that all the three algorithms are significantly different 

from each other. In the light of the ANOVA and post-hoc Scheffe test results, a comparison can be then 

make between the algorithms errors. 

The ESN and TDDM algorithms perform better on the Bach Chorales while VARMA has the lowest 

error on the stocks data and heartbeats. Nonetheless, it is important to mention that the comparison is not 

totally fair since VARMA relies on knowing the exact remaining time at the previous time step to make 

its prediction while TDDM and ESN are generating their estimates based only on the previous inputs. 

5.3.2.1 Bach Chorales 

In music, even though the errors were smaller than the VARMA algorithm, it is on Bach Chorales 

47 that TDDM failed (see Figure 20 below) by having a unique prediction which went into the thousands 

by having an error of 1,29 × 103 compared to an average error of 61. This piece has a long blank space 

(no sound for a few bars).  

         Algorithms 

Datasets 

 

ESN 

 

TDDM 

 

VARMA 

Bach Chorales 

(1
16⁄ notes) 

 

35± 5  

 

94±113 

 

596±601   

Stocks  (days) 10 ± 3  721±2193 4.3 ± 0.6   

Heartbeats 

(1
360⁄ second ) 

 

95 ± 16 

 

33 ± 16 

 

18 ± 2  
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Figure 20: Music notes 47 causing the huge error in TDDM. On the middle right, one can see the two big 

blanks generating the huge error and the middle artificial blank. 

An analysis of all the pieces in the Bach Chorales was made to see if any others pieces had a similar 

blank. This unique piece has a blank of approximately 90 steps unlike the other pieces which do not have 

except at the middle where an artificial blank was added. The space we added in each piece while doing 

the repetitions was approximately 12 time steps. This outlier may explain why the TDDM performs 

poorly in Music. This piece has been removed and new averages have been calculated and presented in 

Table 12.  

Table 12: Average root mean squared errors and standard deviation over the 10 folds on Bach Chorales after 

removing the outlier time series. 
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             Algorithms 

Datasets 

 

ESN 

 

TDDM 

 

VARMA 

 

Bach Chorales 

(1
16⁄ notes) 

 

35± 5 

 

58 ± 17 

 

596 ±601  
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Even though VARMA has the lowest error in the finance; its errors in Bach Chorales are considerable. 

Unlike the TDDM algorithm, the high errors of order of thousands for VARMA occur in more than 

three pieces. A close look at these pieces didn’t show any irregularities that could explain the 

problem. The chorale #47 that causes the huge error in TDDM works fine in VARMA. The VARMA 

best p and q couple of hyper-parameters over the 10 cross-validation folds for Bach Chorales are 

listed in the table below. The folds that have the less prediction errors in the whole dataset 

respectively are F6, F7 and F2. One can notice that the best (p,q) for these folds are mainly (14,12). 

On the other hand, the fold that has the greatest error in the order of  thousands (3160) is the fold 9 

whose (p,q) is (1,10). It appears that when the order of the autoregressive part is higher, the predictions 

are better. Contrary to the general rule that the first order of an AR (p) process is satisfactory enough [2] , 

here, in the case of the prediction of timing event, the model needs higher orders  that can go farther in the 

past to predict the next time step.  

Table 13 below shows the best (p,q)  for each fold on the music time series. Note that 14 time steps 

is almost a full bar (16 time steps). 

Fold 1 2 3 4 5 6 7 8 9 10 

P 8 14 8 4 5 14 14 14 1 10 

Q 15 12 13 15 14 12 12 12 14 12 

 

Table 13: Best (p,q)  for each fold on the music time series 

 

Figure 21 below show the experiment results for the three algorithms on the Bach Chorales dataset. 

The three algorithms are mimicking the overall pattern of the actual remaining time with some 

errors. One can notice that for this time series, the TDDM algorithm predictions in the testing part 

look overall better than VARMA and ESN. 
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Figure 21 : ESN, TDDM and VARMA algorithms prediction of remaining and the mean squared error of 

note 11 from Bach Chorales 4. The train/test set separation is indicated by a blue marker. The middle of the 

music piece before trimming and repetition is illustrated by a brown dot. 

 

5.3.2.2 Stock dataset 

 

In finance, the TDDM had a unique prediction with an error of 105 orders of magnitude higher 

than any other prediction error. A numerical stability problem with a division by a value near zero is 

suspected. A close look at this stock shows that among the 40 time series of the stock, one particularly has 

an error of the order 105 (time series # 6) and a second one (time series # 33) has an error of the order 

104. For these time series, the huge errors occur at time step 𝑡=78 and 𝑡=64 respectively, which have not 

only their weights equal to zero but also the summation of the dot product between the inputs series at 

these time steps and the weights (∑ 𝒘𝒋,𝒊
𝑛
𝑖=1 ∙ 𝒙𝒊(𝑡)) is equal to 1.2× 10−6  and -2.09× 10−5 which are 
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tending toward zero. Therefore, these two time series were removed and new averages were calculated 

which are presented in Table 14 below.  

Table 14: Average root mean squared errors and standard deviation over the 10 folds on finance dataset after 

removing the outlier time series. 

VARMA has the lowest error in the finance. Nevertheless VARMA in this experiment has an 

advantage over TDDM and ESN since VARMA can rely on the exact previous remaining 𝑦𝑗(𝑡 − 𝑘) 

time to predict constant decrease at each time step while TDDM and ESN are generating their 

estimates based only on the previous binary inputs and their internal memory. In finance, VARMA best p 

and q couple of hyper-parameters over the 10 cross-validation folds are mainly p=1and q=1. Only 

one fold has a (p,q) of (1,2). 

ESN uses a different approach by mapping the temporal pattern into a hidden-neurons activity 

pattern that can then be used to predict the remaining time. This advantage suggests to us that the use of 

more internals neurons allows the ESN to learn more features of the data. The use of 10 internal memory 

neurons was the best for this experiment. Table 14 summarizes the average root squared errors for the 

three algorithms with the outlier removed for TDDM.  

 

 

 

 

 

 

 

          Algorithms 

Datasets 

 

ESN 

 

TDDM 

 

VARMA 

Stocks (days) 10±3 30±40 4.3 ± 0.6  
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Figure 22 : ESN, TDDM and VARMA algorithms prediction of remaining time and the mean squared error 

of the time series 3 from the stock 9. The train/test set separation is indicated by a blue marker. 

Figure 22 shows that the three algorithms are mimicking the overall pattern of the actual remaining time 

with some errors. Regarding TDDM, its mathematical form does not allow it to discriminate that two 

events from the same note can be preceded by different temporal patterns [1]. Therefore, although it has 

relatively good shape compared to ESN, it does not tend to restart at the appropriate time. In contrast, 

VARMA can rely on its previous remaining time to predict constant decrease at each time step. ESN uses 

a different approach by mapping the temporal pattern into a hidden-neurons activity pattern that can then 

be used to predict the remaining time. However, one can notice that despite the fact that ESN has less 

error; its predictions are not mimicking the original time series as well as VARMA and TDDM.  
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5.3.2.3 Heartbeat 

 

On heartbeats, the VARMA algorithm has the lowest error followed by TDDM. ESN as shown in 

Figure 23 is having difficulties both on training and testing part.  

 

Figure 23: ESN, TDDM and VARMA algorithms prediction of remaining time and the mean squared error 

of heartbeat 10. The train/test set separation is indicated by a blue marker. 

5.3.2.4 VARMA II 

 

As mentioned at the beginning, the comparison between the three algorithms is not fair since 

VARMA can rely on the previous real remaining time to predict constant decrease at each time step 

while TDDM and ESN are generating their estimates based only on the previous binary inputs and also 

the previous events as for TDDM. For this reason, in order to put VARMA in the same environment as its 

two other counterparts, some changes were made. A new version of VARMA has been developed 

where the algorithm instead of using the real past remaining time in the testing part to estimate the 

next time step,  will use its own past predictions to forecast the next time step if that one is in the 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

200

400

 

 

Train/Test Original series ESN TDDM VARMA

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

200

400

T
im

e
 r

e
m

a
in

in
g

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

200

400

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

5

10

15
x 10

4

Time 

E
rr

o
r

 

 

Mean Error=80.27

Mean Error=28.53

Mean Error=16.37



73 

 

test part (see equation 25 below). This new setup is called VARMA II. The difference is that in 

VARMA II, VARMA will receive as usual the inputs binary series and the time remaining outputs 

for the training however unlike experiment one, in the testing part, VARMA will use its owns past 

estimate of time remaining to estimate the next time step.  

                        �̂�(𝑡) = ∑ Α(𝑘)�̂�(𝑡 − 𝑘)𝑝
𝑘=1 + ∑ Β(𝑘)𝑞

𝑘=0 𝒙(𝑡 − 𝑘)   (25)      if time step (𝑡 − 𝑘) is in test  

Table 15 below shows the root mean squared error comparison between the VARMA and VARMA II. It 

clearly appears that the VARMA algorithm performs poorly when its uses its own past predictions. In 

both datasets (stocks and music) the errors increased compare to the previous version of VARMA 

specifically the music dataset where the RMSE increases to the order of 10100. 

 

Algorithms 

 

ESN 

 

TDDM 

 

VARMA 

 

VARMA II 

 

Bach Chorales 

(1
16⁄ notes) 

 

35± 5 * 

 

58± 17 

 

596±601   

 

410100 ± 210101  

Stocks (days) 10 ± 3 *  30±43 4.3 ± 0.6              10± 3 * 

Heartbeat 

(1
360⁄ second) 

 

95 ± 16 

 

33± 16 * 

 

18 ± 2  

 

 

94 ± 16  

Table 15: Averaged test root mean squared error per prediction for all the algorithms including VARMA II 

and outliers removed for TDDM. The * stand for significantly better algorithms (excluding VARMA). 

Because at each time step the next output is estimated based on the previous estimates, the 

predictions errors keep propagated in the future which explain the high error of VARMA II on Bach 

Chorales. 

On Table 15 where the outliers of TDDM have been removed and the errors of VARMA II have 

been calculated, an ANOVA and T-test has been performed. A T-test like ANOVA is a statistical 

technique used to verify if two population or two different methods means are reliably different from each 

other. The T-test is performed on the Bach Chorales and the ANOVA on the stocks and heartbeat. 

The T-test results for Bach Chorales are: the null hypothesis can be rejected with p=0.012; that 

means that ESN is significantly better than TDDM.  
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The ANOVA on stocks gives a p value of 0.14 while the post-hoc Scheffe test shows that TDDM is 

significantly different from ESN and VARMA II. Regarding the heartbeat dataset, the same 

conclusions as stocks were made. With p= 1.65x10−09, the errors of ESN and VARMA II are the 

same as oppose to TDDM’s error which is significantly different from the others. Note that although 

TDDM is worst on stocks, it is better on heartbeat.  

In Figure 24 below, the error of VARMA went very high in the testing part on the music notes 

showing by that the algorithm is not predicting anymore the actual remaining time unlike in the 

training part where it used the real time remaining to compute the parameters (weights). 

 

Figure 24: ESN, TDDM and VARMA II algorithms prediction of remaining time and the mean squared error 

of note 11 from Bach Chorales 4. The train/test set separation is indicated by a blue marker. The middle of 

the music piece before trimming and repetition is illustrated by a brown dot. 
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Regarding the stocks, one can still remark that the algorithm predictions are poor as soon as it reaches the 

testing part (see Figure 26 compare to Figure 22). Nonetheless the overall average root error (see Table 

15) for VARMA II on stock is still lower than TDDM and similar to ESN. 

 

Figure 25:  ESN, TDDM and VARMA II algorithms prediction of remaining time and the mean squared 

error of the time series 5 from the stock 8. The train/test set separation is indicated by a blue marker.  



76 

 

 

Figure 26: ESN, TDDM and VARMA II algorithms prediction of remaining time and the mean squared error 

of the time series 3 from the stock 9. The train/test set separation is indicated by a blue marker. 

On the heartbeat, the error increased from approximately 18 to 94, which is significant. One can also 

observe (see Figure 27 below) that as soon as the testing is reached, VARMA II was unable to generate 

any good predictions. In summary, VARMA II has difficulties in predicting the time remaining before an 

event occurs in a multiple time step forecasting setup.  



77 

 

 

Figure 27: ESN, TDDM and VARMA II algorithms prediction of remaining time and the mean squared error 

of the heartbeat 10. The train/test set separation is indicated by a blue marker. 

Overall VARMA II and ESN had similar performance on stocks and heartbeat. 

5.3.3 Comparison of the two experiments 

 

At the end of the experiments, a comparison of both experiments was attempted by changing the 

binary predictions of Experiment I in time remaining and then the latter was compared with the time 

remaining predictions of Experiment II. This means that in experiment I, the portion of the time series 

after the last event of type j occurs would be transformed in NaN as the time remaining will become 

undefined. However, when the percentage of NaN in each time series over the 10 folds was calculated, it 

was observed (in Table 16) that the bulk of the data become useless as most of it will be NaN.    
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Percentage 

of NaN over 

the 10 folds 

 

ESN 

 

TDDM 

 

VARMA 

Bach 

Chorales 

76.87% 93.28% 94.91% 

Stocks 
97.91% 99.03% 96.56% 

Heartbeat 
100% 7.9% 100% 

Table 16: Average percentages of NaN on the last 25% of the series over the 10 folds for each datasets and 

each algorithm, when using the predicted event stream �̂�𝒋(𝒕) to generate remaining time �̂�𝒋(𝒕) 

 

Nonetheless, using the event-rate, one can still draw a best case scenario in order to compare 

Experiment I and Experiment II. The event-rate is the occurrence of an event every K time steps. Using 

the percentages of real and predicted positive instances shown in Table 8, Table 9 and Table 10 from 

Experiment I, one can estimate the average K time steps predicted by each algorithm on each dataset. The 

real positive instances would produce the event-rate of an algorithm considering the best case scenario 

and the predicted positives instances produces the event-rate of the ESN, TDDM and VARMA 

algorithms. Therefore K can be calculated by doing the inverse of the average real and predicted positives 

instances for each dataset. The average K time steps for the predicted positive instances will be generated 

for all the datasets by choosing the TDDM averages in Table 8, Table 9 and Table 10 for the reason that 

TDDM has the highest percentages of predicted positive instances. By calculating the RMSE at every 

time step between the best case time series generated by the event-rate from the average of real positive 

instances and the predicted time series generated from the predicted positive instances of the TDDM 

algorithm, one can compare the obtained RMSE with the ones in Table 15 in order to see which 

Experiment (Experiment I or II) is better. 

Therefore considering the Bach Chorales dataset, with an average of real positives instances equal to 

2.57%, the 𝐾Bach Chorales would be equal to 38. Suppose that the events are occurring at constant intervals 

of time, a best algorithm would predict an event at every 38 time steps. With the average of predicted 

positive instances equivalent to the half of the real positives instances, meaning the three algorithms 

together are predicting 50% of the events, the 𝐾TDDM will be 73 time steps. This implies that the 

algorithms are missing at least one event every two events see Figure 28(a). When using the best 
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algorithm time series and the TDDM event-rate on Bach Chorales from Experiment I, an estimate time 

remaining error (RMSE) as in Experiment II can be obtained. The estimate RMSE for Bach Chorales 

from Experiment I is approximately equal to 27 of 1/16 of notes compare to the one in table 15 of 

Experiment II which best is 35 of 1/16 of notes. In this case it is better to predict 27 of 1/16 of notes 

compare to 35 of 1/16 of notes. Therefore, in Bach Chorales, it is not clear if Experiment I or Experiment 

II is better. 

  

Figure 28: Best algorithm time series vs TDDM predicted time series: a) Bach Chorale and b) Stocks 

 

The same analysis on the stock dataset will give 𝐾Stocks =14 time steps for a best algorithm. The event-

rate of TDDM which has the highest average predicted instances will give 𝐾TDDM = 263 time steps which 

means that approximately 18 events will be missed before the algorithm catches as one see Figure 28(b). 

The RMSE approximated from Experiment I is approximately equal to 138 days compare to the one in 

table 15 which are 4, 10 and 30 days for VARMA, ESN and TDDM respectively. It is highly much better 

when predicting the time remaining before the stock prices jump to have an error of 4, 10 or 30 days than 

138 days making Experiment II much better than Experiment I. 
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For heartbeat, by following the same analysis, 𝐾Heartbeat for a best algorithm is 312 time steps. The 

𝐾TDDM will be at every 1110 time step which means that approximately 3 events will be missed before 

the algorithm catches as one see Figure 29. The RMSE is approximately 400 in 1/360 second compare to 

respectively 33, 94 and 95 for TDDM, VARMA and ESN. Predicting the next heartbeat at 33 in 1/360 

second is much better than predicting 400 in 1/360 second. Therefore, for heartbeat, Experiment II is 

much better than Experiment I. 

 

Figure 29: Heartbeat: Best algorithm time series vs TDDM predicted time series 

 

This comparison scenario confirms results in Experiment I that predicting 1 at a precise time step is 

extremely difficult and of little use independently of the algorithms. Directly learning time remaining 

produces much better results allowing deeper analysis of the algorithms performances. 

Experiment I compared to Experiment II confirms the importance of predicting time remaining 

versus predicting instantaneous events. This will bring a valuable contribution to time series prediction. It 

is in fact much better, easier and more useful to predict the time remaining before an event occurs than to 

predict the precise time step at which it will occurs. This seems in line with animals that can learn timing 

of events rapidly with a precision proportional to the time interval length [9]. The time remaining 

perspective gives the algorithms more information on the task to achieve. It is important to mention that 
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the two tasks are completely different for the algorithms except for TDDM which uses the same weights 

to produce remaining time as well as instantaneous events. VARMA and ESN are producing different 

weights for both tasks. 

 When VARMA relies on real past time remaining, the predictions are good, but very bad when it 

comes to predict instantaneous events which support the event timing forecasting perspective suggested in 

this thesis. Moreover, in a multiple time steps setup as ESN, VARMA II was unable to learn time 

remaining appropriately. 

 TDDM was made for forecasting event timing hence it works the same way on both tasks.  

Actually, the two tasks are the same for TDDM as it still has the same weights but an important point here 

is that on Experiment II TDDM was far better in Experiment I. This again supports the idea that it is 

better to forecast the remaining time than the instantaneous events. Yet, in Experiment I, the conclusion 

on the TDDM algorithm was that it misses the events but predicts them in general just before they occur 

as oppose to ESN and VARMA whose predictions do not reach 1 at all in most of the cases. 

 ESN was poor on Experiment I, yet it outperforms TDDM on Experiment II in many cases. This 

ability came from the fact that ESN uses internal hidden neurons which allow capturing more features of 

the data. 

5.4 Summary 

 

In the first experiment, the three algorithms VARMA, ESN and TDDM were given as inputs the 

binary time series and event time series and should output a specific value(1) at the time step where 

the event occurs. The results of this experiment show that all the algorithms have difficulties in 

predicting the events time series. The predictions of ESN and VARMA were most of the time 0 and do 

not reach the value of 1. TDDM succeeds in predicting the values of 1 but most of the time at the wrong 

place or just before the event occurs. The conclusion of this experience is that the algorithms were not 

able to predict timing events by predicting the value of 1 where the events occur and 0 otherwise, except 

for TDDM which was able to fully predict 1 before it occurs. In conclusion, it is indeed very difficult [8] 

to predict instantaneous occurrences of events.  The alternative proposed in this thesis is to predict the 

time remaining before the events occur instead of the events themselves. 

The results of Experiment II show all the algorithms performances were much better as oppose 

to the first one. TDDM and ESN are able to learn timing events with some errors, with ESN being 
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currently superior, suggesting a need for some form of hidden layers in the TDDM algorithm. 

Although the VARMA algorithm seems better in predicting the time remaining, we stated that we 

can’t conclude on its ability to predict timing event because in this case it knows the exact previous 

remaining time through the auto-regression. For that reason, we changed the setup of VARMA to 

evaluate it on the case of multiple time steps forecasting when it uses its own past forecasts to 

predict the next time step. The results showed that the error of VARMA II algorithm on all the 

datasets increased as compared to VARMA and the two others. One can noticed that as soon as 

VARMA II lost the real time remaining and started to predict based on the past estimated remaining 

time, the predictions are no longer mimicking the original time series. This allows us to conclude 

that VARMA is unable to predict the timing events when it uses its own past predictions.  

At the end, a comparison of both experiments was attempted and showed that Experiment II is much 

better that Experiment I.  Below is a summary of the ability of the three algorithms to forecast timing 

event based on our experiments. 
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Time Series 

Forecasting Models 

 

Forecasting 

instantaneous 

events at 

precise time 

steps  

 

Forecasting 

time 

remaining 

before the 

events 

occur 

 

 

 

Advantages 

 

 

                 Drawbacks 

 

VARMA 

 

 

 

 

Unable 

 

 

 

Unable on 

music 

 

 Easy to understand 

 Easy to compute 

Computationally 

efficient for low order and 

linear models 

 

 

 

 Do not learn a high level 

representation needed to grasp 

structural regularities at the 

hundreds of time steps (or more) 

time scale 

  Linear models 

 

 

 

ESN 

 

 

Unable 

 

Able 

 

Independent from non-

linearity 

Capable of learning 

long term dependency 

 

 

 Difficult to design. 

 

 

TDDM 

( Note that in both 

experiments the 

same  model is 

learned) 

 

 

Barely 

 

 

Able 

 

 Easy to compute 

 Computationally 

efficient 

 

 

 Limited representational 

power 

Table 17: Summary on the advantages and limits of the three algorithms regarding the predictions 

of events 
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6 Conclusion and Recommendations 

6.1 Conclusion 

 

Improving time series forecasting accuracy is an important yet often difficult task facing 

decision makers in many areas. Therefore, in this thesis, an offline TDDM algorithm based on 

animal learning has been developed for predicting both instantaneous binary events stream and the 

time remaining before an event occurs. The performance of TDDM on both tasks was compared 

with the statistical VARMA and the machine learning ESN time series forecasting algorithms. 

Basically, the objective was to see whether or not these models could be used to forecast a binary 

event or a time remaining before an event occurs.  

This work began first by a survey of state-of-the art time series prediction methods in 

statistics and machine learning. A comprehensive review of the advantages and disadvantages for 

each method and how the algorithms derived from these methods were trained and evaluated has 

been provided. The forecasting domain has been influenced, for a long time, by linear statistical 

methods. But, because of their limitation of being linear models, they were not suitable for many 

applications. Two decades ago machine learning methods have drawn attention and have established 

themselves as serious contenders to classical statistical models in the forecasting community  [42]. 

The use of hybrid methods resulting by the combination of statistical methods and machine learning 

methods have become also an increasing phenomenon. All the methods have their benefits and 

drawbacks depending on the task to learn. Some methods are more adequate for some applications 

problems than others.  

The forecasting timing event concept came from the innate ability of how animals learn. In 

fact, animals learn the timing of upcoming consecutive events very easily. A possible explanation 

for this ability is that animals may learn the “when” instead of “what” by learning the temporal 

relationship between events. An online TDDM algorithm was developed from this concept by Rivest 

et al. [1], [10]. The TDDM algorithm works by minimizing the interval timing between specific 

events. It is derived from drift-diffusion models of decision making. For each specific event, a drift-

diffusion process works by accumulating evidences about when that specific event will occur and by 

learning the event-rate of each input stimulus. The learning is performed through a set of weights 

and accumulation processes. 
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The second step of this work was to develop an offline TDDM learning algorithm derived 

from the online one. It uses the same concept as the TDDM online but instead is based on linear 

regression methods like VARMA and ESN. 

To address the forecasting timing event concept, a preprocessing of the datasets has been 

made by transforming each datasets respectively into binary time series 𝒙(𝒕), event time series 𝒛(𝒕)  

and time remaining time series 𝒚(𝒕). The binary series correspond to the duration of the stimuli, the 

events time series contains events onsets corresponding to when the event occurred and the time 

remaining series correspond to the time remaining before the event happened.   

The experiments consisted first of applying the three algorithms to predict a binary events 

stream; that is, “1” when the event occurs and “0” otherwise. The algorithms were given as inputs 

the binary time series 𝒙(𝒕) and as output the events time series 𝒛(𝒕). In the second experiment, the 

algorithms were applied to predict the time remaining 𝒚(𝒕) before the occurrence of events. The three 

algorithms have been implemented in an offline mode using linear regression methods. In order to 

evaluate the overall performance of the algorithms on both tasks by finding the best hyper-

parameters, a 10 folds cross-validation procedure on each algorithm has been performed. In addition 

to that, in Experiment I a confusion matrix and a table of positive predicted instances have been 

used to see the classification performance of each algorithm. In Experiment II, a root mean squared 

error has been calculated over the ten cross-validation folds for each dataset and each algorithm. 

The results for the first and second experiment are summarized below.  

Experiment I: 

In the first experiment, the three algorithms VARMA, ESN and TDDM were given as inputs the 

binary time series and event time series and should output a specific value(1) at the time step where 

the event occurs. The three algorithms were implemented in an offline mode using linear regression 

methods to make the best possible timing predictions. In order to evaluate the overall performance 

of the algorithms on the task of predicting timing events, a 10 fold cross-validation procedure on 

each algorithm was carried out as well as a confusion matrix to see the classification performance of 

each algorithm. The results of this experiment show that all the algorithms have difficulties in predicting 

the events time series. The predictions of ESN and VARMA were most of the time 0 and do not reach the 

value of 1. TDDM succeed in predicting the values of 1 but most of the time at the wrong place or just 

before the event occurs which is relatively acceptable. The conclusion of this experience is that the 
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algorithms were not able to predict timing events by predicting the value of 1 where the events occur and 

0 otherwise. It is indeed very difficult to predict instantaneous occurrences for events.  The alternative 

proposed by in this thesis is to predict the time remaining before the events occurs instead of the events 

themselves. 

Experiment II: 

Experiment II consisted of evaluating the three algorithms on the task of forecasting the time 

remaining before a particular event occurs. The particular events were when a music note will play for the 

Bach Chorales, when stock prices would go up for the finance dataset, and when the next heartbeat would 

occur for the arrhythmia database. Each algorithm received the binary inputs time series and the time 

remaining outputs series. The results showed that all the algorithms performed much better than in 

Experiment I. The ESN algorithm in general performed better than VARMA and TDDM on Bach 

Chorales. This ability of ESN may be explained by the use of internal neurons by the ESN which allows it 

to capture more features of the data. TDDM failed on two time series in finance and music respectively 

by having its errors zooming off into the millions. The first one in finance occurred when the divisor was 

too small leading toward a division by zero, and the second, on a piece of music which has a great blank 

space in its time series. These time series were removed, and new averages were calculated. Nonetheless, 

TDDM was better than VARMA on the music time series and better than ESN and VARMA on 

heartbeat. VARMA had less error in finance, but performed poorly on music. The performance of 

VARMA was mainly explained by the fact that its predictions depend on the fact that the algorithm 

knows the exact remaining time at the previous time step while TDDM and ESN are generating their 

estimates based only on the previous inputs. Therefore, a second version of VARMA called VARMA II 

was developed and tested where the algorithm will rely on its past predictions to estimate the next time 

step. For this case, the results showed that all errors of VARMA increased considerably specifically on 

music dataset as compare to the first version. This showed that VARMA is unable, on some task, to learn 

the high level representation needed to grasp structural regularities. This showed that VARMA is unable 

to learn a high level representation needed to grasp structural regularities at the hundreds of time steps (or 

more) time scale. 

At the end, a comparison of both experiments was attempted and demonstrated that the task II of 

predicting the time remaining before the events occur is better to learn than predicting instantaneous 

events at a precise time step. 
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The conclusion of both experiments is that it is better for the algorithms to learn to estimate the time 

remaining as suggested by TDDM forecasting event concept than to predict instantaneous occurrences of 

events. As for the TDDM algorithm, and the forecasting event timing concept, they are an important step 

in the forecasting domain but especially in the machine learning one where the goal is to build algorithms 

that would learn by themselves to produce good results. 

6.2 Contributions 

 

The forecasting timing events concept is a step toward developing simple, robust and accurate 

algorithms that can learn or bring an alternative to the long term dependencies problem while using finite 

memory. 

In summary, this thesis  

 Provides a review and a comparison of the existing time series forecasting algorithms in the 

statistical and machine learning field. 

 Develops an offline TDDM algorithm for learning timing events. 

 Demonstrates that it is difficult to learn to predict binary events stream. 

 Introduces the concept of learning timing events by estimating the time remaining as a 

perspective for designing better algorithms for forecasting in statistics and machine learning 

fields. 

 Demonstrates the ability of TDDM and ESN algorithms to predict the time remaining before the 

occurrence of instantaneous events. 

6.3 Recommendations for Future Work 

The following are ideas for future work: 

1. More datasets preprocessing: Investigate more datasets in order to know which algorithm better 

fit the data or if there are any seasonality or trend which can affect the overall ability of the 

algorithms 

2. Regarding the TDDM algorithm there are several potential problems that would be worthwhile to 

investigate. 

a. Investigates the stability of TDDM with zeros: As seen in Experiment II, the prediction 

error of the TDDM algorithm tend to increased highly when it comes to a division by 

nearly zero and when the time series has some significant blank.   
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b. The limited representational power: Unlike ANNs, TDDM cannot distinguish between 

two different temporal patterns that precede the same type of event.  

c. Given the performance of ESN, it may be interesting for the TDDM algorithm to have 

some form of hidden layers or internal memory neurons. 
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