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ABSTRACT

Kim, James Jaehak, M.Sc., Royal Military College of Canada, March, 2016, New and
Extended Results in Renewal and Queueing Theories. Supervised by Dr. M.L. Chaudhry.

This thesis encompasses new and extended results in renewal and queueing
theories.

In the renewal theory portion of this thesis, the asymptotic result of renewal mass
function and new asymptotic moments are found using the method of generating
functions. This method is not only simple but also provides the extra constant terms in the
asymptotic second moment which are unavailable in the literature. Higher asymptotic
moments and their corresponding extra constant terms can also be found using the
method of generating functions. Previous results in the existing literature do not have
these extra constant terms. Recent work in renewal theory has the extra constant terms in
a non-bulk renewal processes. The purpose of this thesis is to extend that recent work to
the bulk-renewal processes in discrete-time.

In the queueing theory portion of this thesis, the imbedded Markov chain
technique is used to determine the distributions of the number of uncompleted service
stages, the number of customers in the system, and the waiting-time-in-queue. Single-
server queues with a fixed number of service stages have been analyzed by many authors,
some of whom state that there is no simple way to analyze the queue GI/Ex /1. The
purpose of this thesis is to review and extend the previous work on GI/E, /1 to the more
general model GI/Ey /1 in which the number of stages is randomly distributed.

Keywords: Stochastic processes, Markov chains, Renewal theory, Discrete-time,

Bulk-renewal processes, Queueing theory, Single-server queues, Service stages.



RESUME

Kim, James Jaehak, M.Sc., College militaire royal du Canada, mars, 2016, Les Résultats
Nouveaux et Etendus en Théorie des Ensembles Renouvelés et des Files D’attente. Dirigé
par Dr. M.L. Chaudhry

Cette thése comprend des résultats nouveaux et étendus en théorie des ensembles
renouvelés et des files d’attente.

Dans la portion de la théorie des ensembles renouvelés de cette thése, la fonction
de masse de renouvellement asymptotique et de nouveaux moments asymptotiques sont
trouvés en employant la méthode de la fonction génératrice. Des résultats précédents dans
la littérature actuelle n’ont pas ces termes constants supplémentaires. Du travail récent
dans la théorie des ensembles renouvelés aux termes constants supplémentaires dans un
processus de renouvellement non-vrac. L’objectif de cette thése est d’étendre ce travail
récent a un processus de renouvellement vrac en temps discret.

Dans la portion de la théorie des files d’attente de cette thése, 1a technique
intégrée de la chaine de Markov est utilisée pour déterminer les distributions du nombre
des étapes de service, du nombre de clients dans le systéme, et le temps d’attente dans la
file d’attente. Les files d’attente de serveursuniques avec un nombre fixe d’étapes de
service ont été analysées par plusieurs auteurs, dont certains ont déclaré qu’il n’y a
aucune maniere simple d’analyser la file GI/Ex /1. L’objectif de cette note est de revoir et
d’étendre le travail précédent de GI/E,/1 a un modele plus général de GI/Ex /1, dans
laquelle le nombre d’étapes est distribué de facon aléatoire.

Mots-clés: Le processus stochastique, la chaine Markov, la théorie des ensembles
renouvelés, temps discret, processus de renouvellement vrac, la théorie des files d’attente,

les files d’attente de serveurs uniques, les étapes de service.
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1 INTRODUCTION

1.1 Problem Description

This thesis addresses two different but related problems in renewal and queueing
theories.
1.1.1 Problem description in renewal theory

Renewal theory is the study of renewal processes: Processes that count randomly
occurring events (known as renewals) over duration of time in either continuous or
discrete-time domain. Renewals can occur individually (single-renewal) or in groups
(bulk-renewal). In applying renewal theory to real world problems, the asymptotic results
of renewal processes serve as an important tool whenever there is a need to observe the
long term behaviour of the number of renewals. Despite their importance, such
asymptotic results were historically difficult to determine due to lack of available
computing power and techniques to handle lengthy and complex expressions. In recent
studies, asymptotic results in the discrete-time single-renewal processes were found, but
the extended results in the discrete-time bulk-renewal processes are yet to be determined.
In addition, the connection between the asymptotic results in continuous and discrete-
time domains is unavailable in literature. Acquiring new asymptotic results in the
discrete-time bulk-renewal processes and building the connection with their equivalent
results in the continuous-time bulk-renewal processes would further the knowledge and
understanding of asymptotic results in renewal theory. Such findings would also enable
researchers to apply renewal theory across both analog and digital spectrums (also
perform conversion between spectrums) which is considered an important practical

application of renewal theory in engineering and telecommunications.



1.1.2 Problem description in queueing theory

A queue forms whenever and wherever demand exceeds supply. It is for this
reason that a study of queues naturally emerged as a practical field of study known as
queueing theory. Among many different types of queues, queues with multi-staged
service (multi-staged queues) are particularly useful in modeling cases where a customer
must proceed through several service stages. Queues of this type are evident when
observing manufacturing lines, annual medical check-ups, or scheduled inspections of
any sort. In the past, extensive studies have been done on models with a server that has a
fixed number of service stages. On the contrary, almost no work has been done on models
with a server that has a random number of service stages. This is mainly due to
difficulties in handling the random nature of service stages and the associated
probabilities. In review of previous work done by others, Yao et al. (1984) state that
“there is no simple way to analyze queues with server that has random number of
service stages”. A thorough and a complete analysis of these queues would not only
address such a statement, but would also enhance previous knowledge of multi-staged
queues and provide gueueing theorists and practitioners with a new problem solving tool.
1.2 Thesis Objectives

The objective of this thesis is two-fold: To present new and extended results in
renewal and queueing theories.

1.2.1 Objectives in renewal theory
- To derive new asymptotic results in the discrete-time bulk-renewal processes.

- To build a connection between asymptotic results of discrete and continuous

time-bulk renewal processes.



- To provide new numerical examples of asymptotic results in the discrete-time
bulk-renewal processes.

1.2.2 Objectives in queueing theory
- To extend the queueing model GI/E,/1to GI /Ex /1.
- To solve and derive several relations between different findings in GI /Ex /1.

- To provide new numerical examples of GI/Ex /1.



2 RENEWAL THEORY

Readers may refer to Appendix A.1 for summaries on probability theory and
stochastic processes, which are important topics that lead to renewal theory. The
definitions and properties of a discrete r.v. and its moments, generating function (g.f.),
probability generating function (p.g.f.), and double generating function (d.g.f.) are
provided in Appendix A.3. In addition, all supplementary proofs, derivation, and theorem

that are used in discussing renewal theory are provided in Appendix B.

2.1 Literature review

Renewal theory can be divided into continuous and discrete-time renewal theories,
both of which are important tools of application when solving problems in areas such as
failure and replacement of equipment, traffic-flow, risk-based asset management models
and queues (see Van Noortwijk, 2003).

In literature, Cox (1962) and Feller (1968) are among the most prominent of the
various authors who discuss the theoretical (and analytical) aspect of renewal theory.
Their ideas are reiterated in the works of Heyman and Sobel (1982), Tijms (2003) and
Beichelt (2006). The computational aspect of renewal theory had been limited in the past
mainly due to lack of computing power, software, and known techniques to perform such
computations.

Particular interest in both continuous and discrete-time renewal theories is in
finding their asymptotic results. Asymptotic results consist of the asymptotic result of
renewal mass function (in discrete-time) or asymptotic result of renewal density (in
continuous-time) and asymptotic moments of the number of renewals. Such results are

important in practical applications of renewal theory due to their readily interpretable and



measurable way of describing the number of renewals in the long run. However, despite
their importance, asymptotic results were historically difficult to determine due to lack of
computing power and complex derivations that lead to such results (Fisher 2014).

In continuous-time renewal theory, Cox (1962) provides the renewal density, and
the first and second moments of the number of renewals in the continuous-time single-
renewal processes. For the same processes, he also derives the asymptotic renewal
density, as well as the asymptotic first and second moments of the number of renewals
using Laurent series. Cox (1962)’s results are largely theoretical and his asymptotic
second moment is missing the extra constant terms. Chaudhry (1995) discusses the
computational aspect of continuous-time renewal theory, where he considers several
different patterns of renewal periods in the continuous-time single-renewal processes. To
compute renewal density and the moments of the number of renewals, one has to first
take the L.T. of what is being computed. In doing so, Chaudhry (1995) classifies these
L.T.’s into three distinct groups (rational, irrational, and those that cannot be represented
in a closed-form) and shows how to perform computations for each group. Using the
computational technique established by Chaudhry (1995), Chaudhry et al. (2013) provide
various numerical examples in the continuous-time single-renewal processes. In their
work, Padé approximation (see Appendix A.2.6) is used for the group of L.T.’s that
Chaudhry (1995) classifies as irrational. Though the work by Chaudhry (1995), and
Chaudhry, Yang and Ong (2013) cover several examples including the asymptotic results,
the extra constant terms in their asymptotic second moment is still missing.

In extending previous works on the continuous-time single-renewal processes,
Fisher and Chaudhry (2014) provide new results in the continuous-time bulk-renewal

processes. In their derivations, the method of L.T. used by Chaudhry (1995) is extended



to a bulk-renewal case. Fisher and Chaudhry (2014) also provide the extra constant terms
in the asymptotic second moment.

In discrete-time renewal theory, the asymptotic first and second moments in the
discrete-time single-renewal processes are available in the study by van der Weide et al.
(2007). This result provides extra constant terms in the second moment yet states that it is
not clear from Feller (1949) as to how to obtain those terms using g.f.’s. The same
problem persists in Feller (1968) and Hunter (1983). Recently, Chaudhry and Fisher
(2012) have responded to this problem by providing the asymptotic first and second

moments in the discrete-time single-renewal processes using g.f.’s.

2.2 Discrete-time single-renewal processes

The discrete-time single-renewal processes are stochastic processes that count the
number of randomly occurring events known as ‘renewals’ over a discrete period of time.
These processes have been studied by several researchers in the past using various
techniques. For details, see Feller (1968), Hunter (1983), and recent work by Chaudhry
and Fisher (2012). A review of basic concepts in the discrete-time single-renewal
processes is required prior to discussing the discrete-time bulk-renewal processes.
2.2.1 Renewal periods

The fundamental building blocks of the discrete-time single-renewal processes are
renewal periods, which are time intervals between renewals. In the discrete-time single-
renewal processes, renewals occur individually at instances of time o, 7, 73, ..., and
renewal periods T,, = a,, — 0,,_, ,n = 1, with g, = 0 are independent identically
distributed random variables (i.i.d.r.v.’s) that are distributed as T. As well, T has a

probability mass function (p.m.f.) f, = P(T = k),k = 1, f; = 0 and a probability



generating function (p.g.f.) f(v) = Y52, fiv®, (lv| < 1) with mean u = u; = E[T] <
oo, variance 2 = E[T?] — E?[T] < »,a,, = %f(v)|v=1, (n = 1) and n-th
moment u,, = E[T"], (n = 1). If W, is the waiting time until the n-th renewal, then
W, =X, T; . The p.g.f. of W, is
E[v"r] = E[vZ=Ti],(n > 0,v = 1)
— E[UT1+T2+...+Tn]
Given that T;’s are i.i.d.r.v.’s distributed as T, without loss of generality, the p.g.f
of W, can also be written as
E[v"r] = E[v™] = {E[v"]}" = f"(v)
The stochastic processes {T,,,n = 1} is called recurrent if f(1) = 1, and transient
if f(1) < 1.
2.2.2 Renewal mass function
The renewal mass function is the probability of an event that there is a renewal at
time k. It can be described as
m; = P(renewal at k)
where k > 1. It is important to indicate that the renewal mass function is not a p.m.f.
since Y=o my # 1. Intuitively, m;, would consist of several different possibilities that
lead to a renewal at k. For instance, assuming that there is no renewal prior to k,
then m;, would be the same as f;.. Alternately, assuming that there is a renewal prior
to k (say at 1), then m;, would be m, f,,_;. Different possibilities that lead to a renewal

at k are depicted in Figure 1 below.
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Figure 1: Different possibilities that lead to a renewal at k.

By considering all different possibilities that lead to a renewal at k, the renewal mass

function can be expressed in terms of what is known as the renewal equation:

K
my = fi + ka—jfj
j=1

with m; = f; and my = 0 (implying that there is no renewal at time 0). The left-hand side
of the renewal equation is the probability of a renewal taking place at time k. The right-
hand side of the equation is either a probability of the first renewal at time k or a previous
renewal at time k — j, (1 < j < k) with probability m,_; and a subsequent renewal

after j time units with probability f;. Let m(v) be the g.f. of m,, which can be found by
taking the g.f. of the renewal equation such that

o) [o%] k
m(v)zkavk=Z fk+2mk_jfj vk
k=1 k j=1

=1

= ifkvk +§:ka_jfj vk

k
=1 k=1j=1

o] e9) [(00]
DR PR DV E
k=1 k=j j=1



or alternately expressed as

=f() + m@)f ()
and the g.f. of renewal mass function is
_ f)
m(v) = 1——f(v)'(|v| <1 €y

2.2.3 Number of renewals

With the understanding of time duration between renewals (renewal periods) and
the likelihood of a renewal at a particular point in time (renewal mass function), the
probability of the number of renewals over a time interval can be discussed. Let {N,, k >
1} be the discrete-time single-renewal processes where N, counts the number of renewals
in the time interval (0, k]. The average (mean) number of renewals in (0, k] is referred to
as the renewal function and defined as M, = E[N,], (k = 1). There exists a relation

between M, and m,, such that

The proof for the above relation is provided in Appendix B.1.1. To count the number of
renewals in a window of time, the following three relations between N, and W}, must be
used:

Q) Ny=2neW,<k

b) Ny <sne W, >k
both of which are true for n > 0 and k > 1. The two relations above between N, and W,
can be each explained as follows:

First relation: There are at least n renewals during (0, k] if and only if the time

until the n-th renewal is at most k.
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Second relation: There are at most n renewals during (0, k] if and only if the
time until the (n + 1)-th renewal is at least k + 1.
The importance of the above two relations is reflected in the fact that the number of
renewals can be described in terms of renewal periods (thus confirming the statement in
Subsection 2.2.1 that the fundamental building blocks of {N,, k = 1} are renewal
periods). Let the p.m.f. of N, be B,(k) = P(N, = n), (n = 0). Using the first relation
above, it can be expressed as
P,(k) =P(N,=n)=P(N,=2n)—P(N, =2n+1)
=P(W, < k) — P(W,, < k)

Since Ny, is a random variable (r.v.) of stochastic processes, the number of
renewals depends on the renewal periods. The stochastic nature of N, allows it to have a
double generating function (d.g.f.) such that it becomes P(z,v) = Yoo Yy Py (k) vF2z™,
This d.g.f. can be found by first taking a g.f. of k followed by a p.g.f. of n, which

becomes

NN . 1—f()
P(z,v)—;kzzan(k)vkz = o A <Lr<D @

The complete derivation for (2) is provided in Appendix B.2.1.

2.3 Discrete-time bulk-renewal processes

The discrete-time single-renewal processes can be extended to the discrete-time
bulk-renewal processes in terms of the size of renewals. In the extended processes,
renewals occur in groups which results in interesting changes to the existing properties of

the single-renewal processes. Some of the previous derivations for the discrete-time
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single-renewal processes can be either reused or extended to the discrete-time bulk-
renewal processes.
2.3.1 Renewal periods

The renewal periods between individual renewals are also the renewal periods
between bulk-renewals. Since a renewal period measures the time elapsed between two
consecutive renewals (whether those renewals are single or bulk in size), the renewal
periods of the discrete-time single-renewal processes are the same as that of the discrete-
time bulk-renewal processes.
2.3.2 Renewal mass function

The renewal mass function of a single-renewal can also be the renewal mass
function of a bulk-renewal. This is possible since the renewal mass function provides the
probability of a renewal at time k, regardless of the size of that renewal.
2.3.3 Number of renewals

Assume that there are bulk-renewals at time s, s5, ..., with size X; . The
r.v.’s X; are i.i.d.r.v.’s that are distributed as X through a p.m.f. b, = P(X = n),(n > 1).

The p.m.f. b, has a p.g.f. Pxy(2) = E[zX] = ¥, b,z", where uy = Py(1) and P/ (1) =
:—ZZZPX(Z)|Z=1. In addition, N, in the discrete-time single-renewal processes can be re-

interpreted as the number of bulk-renewals (not the number of renewals) over the time

interval (0, k] in the discrete-time bulk-renewal processes. The number of renewals over
the time interval (0, k] is Yy, = %%, X; with pm.f. B, (k) = P(Yy, =n), (n = 0).
Let M{” = E[v{ ], (i = 1) be the i-th moment of Y, . In addition, Yy, hasa

d.g.f. B(z,v),(]z| < 1,|v| < 1) that can be found by taking the p.g.f. of B, (k) with

respect to n, such that
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i B, (k)z" = E[z"M] = E lE [zzlii'i"i|1vk]l = i E [zZﬁVJiXi|Nk =n|P.(k)

n=0

= Y A@IB®, (21 <1k=1D 3
n=0

where B, (k) is the probability of n bulk-renewals occurring in (0, k]. By taking the g.f. of

(3) with respect to k, it becomes

i i Bu(k)z" vk = i {i [P (k)}
n=0

k=1n=0 k=

= i[r’x(z)]ni G
n=0 k=1

Substituting Y5, P, (k)vk = % [1—f()], (lv] < 1) (see Appendix B.1.2 for proof)

in the above leads to

I @pr

n=0

Thus the d.g.f. of Yy, is found as

1-f(v)
B(z,v)—zzB(k)Z ~aoiororor | A<D @

where if Py(z) = z, then B(z, v) reduces to P(z, v) of the discrete-time single-renewal
processes. Interestingly, in the discrete-time single-renewal processes, a g.f. then p.g.f.
are taken to find (2) whereas in the discrete-time bulk-renewal processes, the steps are
reversed such that a p.g.f. then g.f. are taken to find (4). This reverse in procedure is due

to the composition of (4), where B, (k) is partially in terms of B, (k).
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2.3.4 Conclusion

In the discrete-time bulk-renewal processes, the renewal periods, renewal mass
function, and the d.g.f. of the number of renewals are derived. Given that both the
renewal periods and the renewal mass function strictly focus on the event that a renewal
occurs (rather than its size), previous derivations in single-renewal processes can be
reused. However, the d.g.f. of the number of renewals is an extension of that in single-
renewal processes since it takes the size of each bulk-renewal into consideration. This
d.g.f. has several advantages over its p.m.f. counterpart when considered as a tool in
deriving the asymptotic results. It is for this reason that (4) is derived.

The derivation of the d.g.f. in Section 2.3 is discussed in the manuscript that has
been accepted for publication in the Journal of Mathematics and System Science (Kim

and Chaudhry, 2014).

2.4 Asymptotic results in the discrete-time bulk-renewal processes

In this section, the asymptotic theory (see Appendix B.3.1) is applied to the
discrete-time bulk-renewal processes. Such application leads to the asymptotic results in
the discrete-time bulk-renewal processes that consist of the asymptotic result of renewal
mass function and the asymptotic moments. Asymptotic results provide a tangible way of
describing the number of renewals in the long run. For instance, the asymptotic result of
renewal mass function is the probability of a bulk-renewal at time k as k — oco. In

addition, the asymptotic first and second moments of Yy, are used to find the mean and

standard deviation of the number of renewals in the long run, respectively.
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2.4.1 Asymptotic result of renewal mass function
Consider the discrete-time bulk-renewal processes {Yy,, k > 1} that are recurrent

with u < oo, The asymptotic result of renewal mass function can be described as

_ 1
lim m;, = —

k—oo
where u is the mean renewal period. The proof of this result is as follows:
The renewal mass function my, (k = 1) is a probability for which0 <m;, <1

holds. Its p.g.f. m(v) is absolutely convergent in |v| < 1 since

co (o] (o]
v
k k k
mv”| = my||v SZv =
> k| = fmelvl < ) ol =
k=1 k=1 k=1

is true for |v| < 1. Since m(v) converges in |v| < 1, a procedure similar to the one

Imw)| =

discussed by Cox (1962) in the continuous-time single-renewal processes can be used to

express m(v) as

m(v) = 1CTU +0(1)
and
m, =C+o0(1)

where C is a positive constant (0 < C < o). In addition, 0(1) indicates a function of
(1 —v) bounded as v —» 1~ and o(1) indicates a function of k that tends to zero as
k — oo. The first of the above expression can be rearranged to

A-vmlv) -1 -v)0(1)=C
By taking a limitas v — 17, it becomes

Jim {(1 —v)m(v) - (1 =)0} =C

Since 0(1) is bounde near v = 1, the above expression simplifies to
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lim (1 —v)m(v) =C
v-1~

By substituting (1) in the above expression, and then applying L'Hopital's rule gives

Substituting C = 1/# intom, = C + o(1) and as k — oo, the asymptotic renewal density

becomes

lim m, = —
T

k—coo
There are several other ways of determining lim,,_,,, m;.. For one such method, see
Kohlas (1982). The same result can also be found using a theorem in Karlin and Taylor
(1975).
2.4.2 Asymptotic first moment in discrete-time
The asymptotic first moment in the discrete-time bulk-renewal

processes {Yy,, k = 1} is

M =] = (B (T ) o

where 0(1) — 0 as k — oo, and these processes are assumed to be recurrent with o <

o and uy < oo. The proof of (5) is as follows:

Let the g.f. of M{™ with respect to k be M® (1), (|v| < 1), such that

N 9
MOW) = ) MOV =—B()],m
k=1
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_ f)
A -l - fm]*™

(vl <1 (6)

where B(z, v) is provided in (4). Now, following the procedure similar to the one used by

Cox (1962) in the continuous-time single-renewal processes, M (v) and M,El) can be

alternatively expressed as

c. 3
MOW) =Gt T

+0(1) @)

and

M = (k+1)C_, + C_1 + 0(1) (8)
with 0 (1) indicating a function of v bounded as v — 1~ and o(1) indicating a function of
k that tends to zero as k — oo. The procedure to prove (5) is to first rearrange (7) and then
leverage (6) to solve for the unknown constant terms (C_; and C_,) one at a time. In

doing so, both sides of (7) are multiplied by (1 — v)? and as v — 17, it becomes

f)
1-v)(1-fW))

C_p = lim(1- v)2M® (v) = lim (1 - v)? Py(1)
) nd vo

L'Hopital's rule can be applied to determine C_, such that

Py (1) _ Ux

2= 2T

C_ can be found using a similar procedure. In doing so, both sides of (7) can be

multiplied by (1 — v) and as v — 1~ it becomes

fk® KO }
A-v)(1-f@w) wl-v)

pfWA-—v) -1 -f)
p(1-v)A - f@)

Applying L'Hopital's rule, it leads to

= Jm {0

= P,(1) lim
v-1~



"1 2 2 __
€1 = Pr(D) (sz(z)— 1) = i (%Zz”— 1)

Substituting C_; and C_, into (8) gives

2 2
(1) _ (Mx ot —pu - +u
Mk —(7)k+ﬂx<—2#2 +O(1)

where 0(1) — 0 as k — oo. When uy = 1in (5), it simplifies to the asymptotic first
moment in the discrete-time single-renewal processes that corresponds to that of Feller

(1968), Hunter (1983), and Chaudhry and Fisher (2012). The above finding leads to the

®

. . M . . .
well-known result in renewal theory, limy,_, 4, % = “TX which gives the arrival rate for

the discrete-time bulk-renewal processes.
2.4.3 Asymptotic second moment in discrete-time
The asymptotic second moment of the discrete-time bulk-renewal

processes {Yy,, k = 1} is

M

2 2 2u: Py (1)  2puio®
— sl = () k(g e 2 BED BT

82 22 42 P”]. P”].O'Z 2o 2
+<2u§—ux— ;’(’(1)+3—l’j’2‘— Hakls | e Hx  Pr()  Pr(Do”  2(om)

17

3u u p I 2p? u?
+ux02 +4(0ux)2 +3u§0“'
2u? 13 ut
+0(1) €))

where 0(1) — 0 as k — oo and the processes are assumed to be recurrent with p; < oo

and Py (1) < oo. The proof of this result is as follows:

Let the g.f. of M{? with respect to k be M@ (v), (|v| < 1), such that
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N 92 9
MO@) = > MOV = —— B V)]s + 2B V) oms
k=1

_ f(w) 2F(WUE + uy — uxf(v) .
S a-v)(1- f(v))( 1—f(v) + Py (1)>,(|VI <1) (10)

where B(z, v) is provided in (4). Similar to the first moment, a procedure like the one

used by Cox (1962) in the continuous-time single-renewal processes can be used to

express M@ (v) and M as

D D_, -1
MO =t A Y a—w

+0(1) (11)

and

@ (k+2)!
My = 21 k!

D+ (k+1)D_,+D_,+0(1) (12)

with 0 (1) indicating a function of v bounded as v — 1~ and o(1) indicating a function of
k that tends to zero as k — oo. (9) can be proven by first rearranging (11), substituting
(10) in that rearranged expression, and then solving for the unknown constant terms
(D_4,D_,,and D_3) one at a time. This procedure is demonstrated as follows: Both sides
of (11) are multiplied by (1 — v)3 and as v — 1~ it leads to

Pi(D) | 20— ) P + (=)A= f)
wover 0

By applying L'Hopital's rule, it leads to

P (25D (i
b=y <f'<1)>‘2(7)

D_ = lim (1~ v)*M@ (v) =

Similarly, multiplying both sides of (11) by (1 — v)? and as v — 17, it becomes

D= lim {(1 — V)" ME ) - (1D:3v)}
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L A ()]
= lim {(1 —v) M()(v)_,uz(l—v)}

-1~

i 1A= — KD @) + 2f @) (P(1)) La- v)*f ()P (1)
(1 - f))? 1-v)(1-fW)

v-1"

2(Py(D)”
pu*(1—v)
i 1 l __ p!
p L ey cpmon s vt G UQICOR SO/

+ 2f(W){Py(DIHA = v)(1 - fFW))u? (1 — v)+(1 — v)2f ()P (D(1
— f)2A(A —v) = 2{Px (DY A - f(@)*A - v)(1 - f(v))}

Applying L'Hopital's rule, it leads to

pru, — 4uzp® + 2pia; + p?Py (1)
U3

D_2 =

Lastly, multiplying both sides of (11) by (1 — v) and as v — 1~ it becomes

. 2 D_3 D—Z
Doy = i {0 =00~ )

= lim
v->1"

{f(V)(P;’((l) —Pr(Df ) + 2f){xD}*)A —v) N P (Df @) = f()?
(1=v)A = f))? (1-fW)?

_2(( (D} = fF){P (M)A = f()
(1 —v)*2(1 - f(v))*?

WP (D) = AP (DY p? + 2{Px(D}*a, + u*PY (1)
w31 -v)
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. 1 !
M T A FPa - f@rea - vra - fenrea - L OO

= Px(Df () + 2f M {Px(DIH (A - v)* A - fF)°p® + Py (Df () (1
— fNou*(1 - )" =2({Py (D} - fFM{Px(D}H (A —v)*(1
— f()*u]

Again applying L'Hépital's rule, above expression becomes

Bpz _tx _PXQ)  x 2m(ast3a ) pe px PA(D)

D_1=_—— —_—— —

2 2 2 612 3us 2u U 2u

L P az + 1= ) + 2050 + 1= 1) + px(ap + = 1)
2u?

N uz(ay +p — u?) N 3uz(aj + 2axu — 2a,0° + p? — 2% + u*)
I 2u*

Now substituting D_, D_, and D_3 into (12) with a; = E[(T — 2)(T — 1)T] = E[T?] —

3E[T?] + 2E[T] = u3 — 3u, + 2uand a, = E[(T — 1)T] = E[T?] — E[T] = 6% + u? —

u leads to
2 2 2 2 PII 1 2 20.2
k U pe uou % %
8uy  2uFus e 4pi PY(1) | PY(1)o?

+(2p% —p —PY () + 5= — +———+ +

< l’tx l’tx X( ) 3#2 3“3 ‘Ll l,[ ‘Ll 2/,[2

2(ou,)? 0% 4(ou,)? 3uic*
_ 200" ueo”  A(op)”  3u o(D)

u? 2u? w3 u*

where 0(1) — 0 as k — oo. The first two terms of the above expression correspond to
Feller (1968) and Hunter (1983) when Py (z) = z. However, in addition to the first two
terms, (9) provides extra constant which are unavailable in previous literature. In

addition, (9) matches exactly with its equivalent result in the discrete-time single-renewal
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processes by Chaudhry and Fisher (2012) when Py (z) = z. Higher asymptotic moments
can be found in a similar manner.
2.4.4 Conclusion

The asymptotic results in the discrete-time bulk-renewal processes are the
asymptotic result of renewal mass function and asymptotic moments of the number of
renewals. All asymptotic results (including the extra constant terms of the asymptotic
second moment) are found using the g.f. method, hence it addresses the statement made
by van der Weide et al. (2007): “It is not clear from Feller (1949) as to how to obtain
those terms using g.f.’s.”

The asymptotic results in the discrete-time bulk-renewal processes presented in
Section 2.4 are part of the manuscript that has been accepted for publication in the Journal

of Mathematics and System Science (Kim and Chaudhry, 2014).

2.5 Asymptotic results in the continuous-time bulk-renewal processes
The asymptotic results in the discrete-time bulk-renewal processes can be used to

derive their equivalent results in the continuous-time bulk-renewal processes. The two
processes are fundamentally different since one has a discrete-time parameter k, (k is a
nonnegative integer) while the other has a continuous-time parameter ¢, (t is a
nonnegative real number). The two time parameters can be related using the relation

t =Ak (13)
where A in (13) is a small, positive, and real number. Through this

relation, t encompasses all characteristics of a continuous-time parameter. Based on this
notion, there exists continuous-time ‘equivalents’ of f;, m,, and M,Ei) in the discrete-time

bulk-renewal processes. Let {Yy ), t > 0} be the recurrent continuous-time bulk-renewal
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processes, then the equivalencies across two different time domains can be summarized

as follows

Table 1: Summary of equivalencies between the discrete and the continuous-time
bulk-renewal processes

Time domain

Discrete-time

Continuous-time

Time parameter k t
Bulk-renewal processes | {Yy,,k =1} | {Yy,t > 0}
D.f. of time parameter fr f(®)

D.f. of a renewal at time my m(t)
Asymptotic i-th moment M,Ei) MO (t)

All asymptotic results in {Yy(,), ¢ > 0} are available in Fisher and Chaudhry (2014). The

purpose of Section 2.5 is to obtain the same results using a different and independent

approach by leveraging the asymptotic results in {YNk, k> 1}. The renewal density in

continuous-time, denoted by m(t), is equivalent to m,, in discrete-time. As stated in the

Master’s thesis by Fisher (2014), limy_,,, m;, and lim,_,., m(t) lead to the same result,

however that is not the case for the asymptotic moments. It is for this reason that the

derivation to manipulate M." into M® (t) is provided.

2.5.1 Asymptotic first moment in continuous-time

The asymptotic first moment in continuous-time M™ (t) can be derived by letting

B o _ (0

=\ 2
pu=-,0%= (Z) and k = % in (5), where 4, &, and t are the parameters of {Yy ), t > 0}.

Then as A— 0, the asymptotic first moment in the continuous-time bulk-renewal

processes becomes

W) = i
MEO =

S RSIEEE
=
®
_|_
=
®
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which can be simplified to
~2 52
@ (p) = ¢ g K 1
MD(t) = (u) +ux< 207 >+0( )
where 0(1) - 0ast — oo and t > 0. This result coincides with that of Fisher and

Chaudhry (2014), and Fisher (2014).
2.5.2 Asymptotic second moment in continuous-time

~ ~\ 2
Similar to M@ (¢), M@ (t) can be derived by letting u = % 0% = (%) Us =

% and k = % in (9). Then as A— 0, the asymptotic second moment in the continuous-time

bulk-renewal processes becomes

2 2 2 " 2[12 (i)z
M(Z)(t) _ km Myl .U ux b 2u; Py (D) x\A

O BT TE e

8uz Zﬂﬁ(iz) LK s P

OEEOCECG
@) 2AQul w6 Qs )
OGO E

Py (1) — 2u2 + 2622
M(Z)(t) — ¢2 (#jc) n t< x (1) : Hx T Uy n ,\3‘ux>
U U U

+lim (205 — pe — P (1) +

62Py (1) Uz.ux Iy 2ﬁ3#§+354u£ 52#§+3u5_P}(’(1)
22 22 2 3 2t T T2 2

+0(1)
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where 0(1) - 0ast — oo and t > 0. This result coincides with that of Fisher and
Chaudhry (2014), and Fisher (2014). Higher asymptotic moments in the continuous-time
bulk-renewal processes can be found in a similar manner.
2.5.3 Conclusion

Using the asymptotic results in the discrete-time bulk-renewal processes, the
equivalent results in the continuous-time bulk-renewal processes are derived. The
continuous-time parameter is built by multiplying the discrete-time parameter by a delta
(very small, real, and positive number) to make it possess the characteristics of a
continuous-time parameter. By doing so, the asymptotic first and second moments in the
continuous-time bulk-renewal processes are completely determined.

All derivations in Section 2.5 are part of the manuscript that has been accepted for
publication in the Journal of Mathematics and System Science (Kim and Chaudhry,

2014).
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3 NUMERICAL EXAMPLES IN RENEWAL THEORY

In this chapter, various numerical examples in discrete-time renewal theory are
presented. They are organized in the following manner: The discrete-time single-renewal
processes in Section 3.1 and the discrete-time bulk-renewal processes in Section 3.2. All
computations were done using MAPLE software that was configured to compute up to
the ninth decimal place. Final results were rounded to four decimal places in the tables

below.

3.1 Discrete-time single-renewal processes

In computing B, (k) in {Ny, k = 1}, the p.m.f. of renewal periods (f,) was
considered as a geometric, negative binomial, and Poisson distribution (see Appendix
A.3). The numerical computations of B, (k) at various values of (n, k) were done by first
performing a Taylor’s series expansion (see Appendix A.3.6) of (2) with respect to z.
This resulted in a power series of z, and for the coefficient of each term, second Taylor’s
series expansion but with respect to v was performed. The final product is a power series
of v, where the coefficient of each term are the probabilities P, (k).
3.1.1 Geometric renewal periods

The p.m.f. of the renewal period is a geometric distribution such that f;, =

pq*1, (k = 1) with p.g.f. f(v) = (:Zv)’ lv| < 1andp = 0.3, = 0.7. B,(k) was

computed at k = 1,5,10,15,20andn =0,1,2,3,4,5, 6.

Table 2: {N,, k = 1} with geometric renewal periods

k | Po(k) | Py(k) | Po(k) | Ps(k) | Po(k) | Ps(k) | Ps(k) | .| EINi] | E[N]
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1 | 0.7000 | 0.3000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |...| 0.3000 0.3000
5 | 0.1681 | 0.3602 | 0.3087 | 0.1323 | 0.0284 | 0.0024 | 0.0000 | ... | 1.5000 3.3000
10 | 0.0283 | 0.1211 | 0.2335 | 0.2668 | 0.2001 | 0.1029 | 0.0368 | ... | 3.0000 | 11.1000
15 | 0.0048 | 0.0305 | 0.0916 | 0.1700 | 0.2186 | 0.2061 | 0.1472 | ... | 4.5000 | 23.4000
20 | 0.0008 | 0.0068 | 0.0279 | 0.0716 | 0.1304 | 0.1789 | 0.1916 | .. | 6.0000 | 40.2000

3.1.2 Negative binomial renewal periods
The p.m.f. of renewal periods is a negative binomial distribution such that f,, =

(k+r—2

T
-1 )pqu‘l, (k=1) withp.gf f(v) = v(ﬁ) vl <landp =0.75, g =

0.25and r = 13. B, (k) was computed at k = 1,10,20,30andn = 0,1, 2, 3,4, 5.

Table 3: {N, k = 1} with negative binomial renewal periods

k Py (k) Py(k) | Py(k) | Ps(k) | Pu(k) | Ps(k) | ... | E[Ni] | EINg]
1 0.9762 0.0238 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ... |0.0238 | 0.0238
10 0.0295 04571 | 04317 | 0.0772 | 0.0045 | 0.0001 | .. |1.5703 | 2.9526
20 | 7.9845x107¢ |  0.0064 | 0.1343 | 0.4058 | 0.3328 | 0.1041 | .. | 3.4453 | 12.7406
30 | 7.4214x10711 | 6.0263x107° | 0.0015 | 0.0354 | 0.1929 | 0.3535 | ... | 5.3203 | 29.5570

3.1.3 Poisson renewal periods

The p.m.f. of renewal periods is a Poisson distribution such that f;, =

a

wye k=D withpgf f(v) = ve~ 0=V |p| < 1, where a = 2. P, (k) was

computedatk = 1,5,10,15 andn =10, 1, 2, 3, 4.

Table 4: {N,, k = 1} with Poisson renewal periods

k Py (k) P, (k) P, (k) Ps(k) | Py(k) | .| E[N] | EIN{]

0.8647 0.1353 0.0000 0.0000 | 0.0000 | ... | 0.1353 | 0.1353
5| 00527 0.5139 0.3715 0.0590 | 0.0030 | ... | 1.4459 | 2.5791
10 | 4.6498x107° |  0.0213 0.2347 04306 | 0.2463 | .. | 3.1111 | 10.5432
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15| 4.2000x107° | 7.6325x107° 0.0088 0.1031 0.3050 | ... | 4.7778 | 24.0617

3.2 Discrete-time bulk-renewal processes with binomial bulk-size
In computing B,, (k) in {YNk, k > 1}, a similar procedure from Section 3.1 was
used where the Taylor’s series expansion was performed twice, once with respect to z and

another with respect to v on (4). The same p.m.f. of renewal periods from Section 3.1

were used while incorporating a binomial bulk-size distribution. The p.m.f. of the bulk-
size (b,,) follows a binomial distribution such that b,, = (n Z 1) phg"T M, (1<n<

4) with p.g.f. Px(z) = z(q + pz)" where p = 0.45,q = 0.55 and r = 3. The numerical
results of asymptotic first and second moments in discrete-time bulk-renewal processes

are also presented in this section. M,El) and M,EZ) were computed by substituting different
values of k in (5) and (9).
3.2.1 Geometric renewal periods and binomial bulk-size

Table 5: {Yy,, k > 1} with geometric renewal periods and binomial bulk-size

k Bo(k) | Bi(k) | Ba(k) | B3(k) | Bs(k) | Bs(k) | Be(k)
1 0.7000 | 0.0499 | 0225 | 0002 | 00273 | 00000 | 0.0000
5 0.1681 | 0.0599 | 01556 | 01629 | 01231 | 0.1085 | 0.0864
10 0.0283 | 0.0201 | 00559 | 00734 | 00851 | 01019 | 0.1069
15 0.0048 | 0.0051 | 00150 | 0.0234 | 00342 | 00483 | 0.0608
20 0.0008 | 0.0011 | 00036 | 00064 | 00109 | 00174 | 0.0251

5 | 3.5250 | 19.3380
10 | 7.0500 | 63.5273
15 | 10.5750 | 132.5678
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| 20 | 14.1000 | 226.4595

3.2.2 Negative binomial renewal periods and binomial bulk-size

Table 6: {YNk, k> 1} with negative binomial renewal periods and binomial bulk-size

k | Bo(k) | Bi(k) | Bp(k) | Bs(k) | Bi(k) | Bs(k) | Bg(k)

1 0.9762 0.0040 0.0097 0.0079 0.0022 0.0000 0.0000
2 0.8990 0.0167 0.0410 0.0336 0.0093 0.0002 0.0001
3 0.7639 0.0386 0.0948 0.0780 0.0223 0.0013 0.0008

4 0.5950 0.0646 0.1591 0.1320 0.0400 0.0050 0.0031

5 0.4261 0.0879 0.2170 0.1826 0.0606 0.0136 0.0085

gD W (N - &
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As a remark, not applicable (N/A) applies to the cases where M ,El) <0.
3.2.3 Poisson renewal periods and binomial bulk-size

Table 7: {Yy,, k > 1} with Poisson renewal periods and binomial bulk-size

k By (k) Bi(k) | Ba(k) | B3(k) | Bu(k) | Bs(k) | Bg(k)
1 0.8647 0.0225 | 0.0553 | 00452 | 0.0123 | 0.0000 | 0.0000
5 0.0527 0.0855 | 02201 | 02225 | 01521 | 0.1192 | 0.0817

10 4.6498x107° 0.0036 0.0152 | 0.0410 | 0.0820 | 0.1208 0.1433

15 4.1957x107° | 1.2699x107° | 0.0003 0.0017 0.0062 0.0164 0.0343

5 | 3.3945 | 15.3219
10 | 7.3111 | 60.5349
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| 15 | 112278 | 136.4284

3.3 Discrete-time bulk-renewal processes with 1-3-6-9 bulk-size

In computing B,, (k) in {YNk, k> 1}, the same procedure from Section 3.2 was
used. The same p.m.f. of renewal periods from Section 3.1 were used while incorporating
a 1-3-6-9 bulk-size distribution. The p.m.f. of the bulk-size (b,,) follows a 1-3-6-9
distribution where b; = 0.1, b3 = 0.25, by = 0.45, by = 0.2 with p.g.f. Px(z) = 0.1z +
0.25z3 + 0.45z° + 0.2z°. The numerical results of asymptotic first and second moments

in discrete-time bulk-renewal processes are also presented in this section. M,El) and M,EZ)
were computed by substituting different values of k in (5) and (9).

3.3.1 Geometric renewal periods and 1-3-6-9 bulk-size

Table 8: {Yy,, k > 1} with geometric renewal periods and 1-3-6-9 bulk-size

k Bo(k) | Bi(k) | Ba(k) | Bs(k) | Bs(k) | Bs(k) | Be(k)
1 0.7000 0.0300 0.0000 0.0750 0.0000 0.0000 0.1350
5 0.1681 0.0360 0.0031 0.0902 0.0154 0.0010 0.1814
10 0.0282 0.0121 0.0023 0.0305 0.0117 0.0020 0.0693
15 0.0048 0.0031 0.0009 0.0078 0.0046 0.0013 0.0197
20 0.0008 0.0007 0.0003 0.0018 0.0014 0.0005 0.0050
® 2

k| M M

1 1.6050 10.4250

5 8.0250 103.6455

10 | 16.0500 336.0923

15| 24.0750 697.3403

20 32.1000 1187.3895
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3.3.2 Negative binomial renewal periods and 1-3-6-9 bulk-size

Table 9: {YNk, k> 1} with negative binomial renewal periods and 1-3-6-9 bulk-size

k| Bo(k) By (k) By(k) | Bs(k) | Bu(k) Bs(k) | Be(k)
1| 09762 0.0024 0.0000 | 0.0059 |  0.0000 0.0000 | 0.0107
2| 08990 0.0100 | 5.6441x107¢ | 0.0251 | 2.8220x1075 |  0.0000 | 0.0452
3| 07639 0.0232 | 4.2197x1072 | 0.0580 | 0.0002 | 1.0057x10~7 | 0.1046
4] 05950 0.0388 0.0002 | 0.0971 | 0.0008 |1.0787x107¢ | 0.1758
5| 04261 0.0528 0.0005 | 0.1321| 0.0022 |5.9502x1076 | 0.2406
1) (2)

k M¢ M

1 N/A 3.8765

2 0.3762 5.8639

3 1.3793 9.8639

4 2.3824 15.8764

5 3.3856 23.9014

As a remark, not applicable (N/A) applies to the cases where M ,El) <0.
3.3.3 Poisson renewal periods and 1-3-6-9 bulk-size

Table 10: {Y,, k > 1} with Poisson renewal periods and 1-3-6-9 bulk-size

k| Bo(k) B, (k) B, (k) B3(k) | Ba(k) | Bs(k) | Bes(k)
1| 08647 0.0134 0.0000 0.0338 | 0.0000 | 0.0000 | 0.0609
5| 00527 0.0514 0.0037 0.1285 | 0.0186 | 0.0004 | 0.2545
10|  0.0005 0.0021 0.0024 0.0058 | 0.0118 | 0.0032 | 0.0245
15 | 4.1957x107° | 7.6325x107¢ | 8.7512x1075 | 0.0001 | 0.0005 | 0.0008 | 0.0009

k| MO M®
1 0.5944 6.6880
5 7.7278 82.7040
10 16.6444 320.8364
15 25.5611 717.9827
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3.4 Conclusion

Most practical applications of renewal theory are done in terms of numerical
computations. After discussing the analytical aspect of renewal theory in Chapter 2, the
numerical examples in discrete-time renewal theory are presented in Chapter 3.

Section 3.1 covered the discrete-time single-renewal processes by presenting the
probabilities of the number of renewals over a time interval. In considering geometric,
negative binomial, and Poisson renewal periods, there exists an intuitive pattern that is
reflected in the probabilities of table 2, 3, and 4: If the time interval is long then more
renewals are likely to occur, whereas if the time interval is short then less renewals are
likely to occur.

Section 3.2 and 3.3 covered the discrete-time bulk-renewal processes by
considering the same p.m.f.’s of renewal periods as Section 3.1 with additional
consideration of binomial and 1-3-6-9 bulk-sizes, respectively. The same pattern from
Section 3.1 can be observed in the probabilities of each table in Section 3.2 and 3.3. The
asymptotic first and second moments, which were computed using the final results of
Subsection 2.4.2 and 2.4.3, are also presented.

All numerical results presented in Section 3.2 and 3.3 are part of the manuscript
that has been accepted for publication in the Journal of Mathematics and System Science

(Kim and Chaudhry, 2014).
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4 QUEUEING THEORY

Readers may refer to Appendix A.1 for a summary on probability theory,
stochastic processes, and Markov processes, which are all important topics that lead to
queueing theory. The definitions and properties of a continuous r.v. and its moments,
Laplace transform (L.T.) and Laplace-Stieltjes transform (L-S.T.) are provided in
Appendix A.2. In addition, the basic concepts of queueing systems, as well as all
supplementary proof, derivation, and theorems that are used in discussing queueing

theory are provided in Appendix C.

4.1 Literature review

As discussed in Chaudhry and Templeton (1983), queueing theory has its origin in
the early 20" century and begins with the works of A.A. Markov and A.K. Erlang on
stochastic systems. Markov chains and processes remain among the principle analytical
tools in the theory of queues, while the telephone systems studied by Erlang constitute
one of the principle areas of application of queueing models.

Since the early developments by Markov and Erlang, various queueing models
have been studied in the theory of queues. A standard system to describe and classify
queueing models known as Kendall’s notation (see Appendix C.1) was developed by
Kendall (1953), and many peer-reviewed scientific journals began publishing various
applications of queueing theory. Applications went beyond telephones to include
automotive traffic, computers, military operations of various kinds, medical appointment
scheduling, machine repairs, inventory studies, and many more. In 1986, a research

journal entirely dedicated to queueing theory named ‘Queueing Systems’ had emerged,
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signifying the efforts to share collective advancements in queueing theory among
practitioners, engineers, mathematicians and queueing theorists.

Out of many different classifications of queueing models, single-server queues
with a server that offers service which is divided into several service stages (multi-staged
queues) are particularly useful in modeling areas where service is provided to customers
in a phased progression. In application, multi-staged queues are widely used when
analyzing manufacturing lines, annual medical check-ups, and scheduled inspections of
any sort. Due to their practical importance, multi-staged queues with server that has a
fixed number of service stages have been extensively analyzed by several researchers in
the past:

Wishart (1956) and Wu Fang (1960) solve the system GI/E} /1 by interpreting
the service mechanism as a single server with identically distributed service times and a
scale-modified chi-squared distribution of mean b and 2k degrees of freedom. In
solving GI/E, /1, Wu Fang (1960) uses the embedded Markov chain technique by
considering various scenarios of interactions between the r.v.’s of the number of
customers in queue, remaining service-stages, and completed service-stages, all between
two successive customer arrivals.

As done by Wu Fang (1960), the r.v.’s that represent different aspects of multi-
staged queues can be related through the use of a Markov chain. Bux (1979) builds on
this concept and introduces a new technique which involves numerical analysis of the
embedded Markov chains of the GI/E, /1 queue with mixed Erlang service times.

Neuts (1981) determines the steady state probability distribution of the model GI/

PH, /1 through the use of bivariate Markov chains. His solution procedure is based on the
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matrix-geometric method, which Ramaswami and Lucantoni (1985) follow to develop an
infinite sum expression of the waiting time distribution of a multi-staged queue that
involves the rate matrix R. When this matrix R has an order r, it becomes the rate matrix
of the GI/E, /1 system. In response to the work by Ramaswami and Lucantoni (1985),
Adan and Zhao (1996) state that when considering large values of r, the determination of
R may cause memory resource problems and require excessive computation times, the
latter of which is especially true for higher traffic loads.

Chaudhry and Templeton (1983) relate GI" /M /1 with GI /E,./1 by regarding the
group of customers as being present in the system until all of that group’s members have
completed their services. Such interpretation allows various d.f.’s in one model to also be
true in the other. As an example, the d.f. of the number of customers in GI" /M /1 is the
same as the d.f. of the number of uncompleted service stages in GI/E,./1. In addition,
they also state that the results when considering instances just before a customer arrival
for the system GI/E, /1 can be derived from those for the system E,./G /1.

Chaudhry and Templeton (1983) also discuss basic renewal theory in the context
of queueing theory. By interpreting renewals as customer arrivals (similarly, bulk-
renewals as bulk-arrivals), several properties and theorems in renewal theory can be
applied to solve problems in queueing theory. Examples of such application include
distributional Little’s law and length-biased sampling phenomenon.

Adan and Zhao (1996) solve GI/E, /1 through the use of Vandermonde matrix
where they express the solution as a geometric sum whose terms are the roots of the

underlying characteristic equation. Grassmann (2010) gives an alternative solution
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procedure to E,, /E,, /1 by deriving and solving a set of equations that stem from the roots
of the underlying characteristic equation.

In the case of finite buffer queues, Ohsone (1981) derives the distributions of the
number of customers in GI/E;/1/N at random and post-departure epochs. In addition,
Nobel (1989) uses the embedded Markov Chain technique to determine the solutions of
total and partial rejections in GI* /E, /1/N.

Despite several published works on multi-staged queues with server that has fixed
number of service stages (GI/Ey /1 or GI/E,. /1), no significant work has been done on
multi-staged queues with a server that has random number of service stages (GI/Ex/1)
(to the best of the author’s knowledge). In the review of literature, Yao et al. (1984) state

that “there is no simple way to analyze the queue GI/Ex/1”.

4.2 The queueing model GI/E; /1

Consider a queueing model with one server that runs a service that is divided
into k fixed number of exponential service stages (Ej). The customer arrival pattern is
generic (GI) and the system capacity is infinite (N — o). When all these conditions are
put together in Kendall’s notation, it becomes the GI/E, /1 queueing model. Although
this model has been extensively studied by several researchers in the past using various
techniques (see Section 4.1), a mathematical description of GI/E /1 is deemed necessary
prior to discussing its extended version GI/Ey /1.
4.2.1 Model description

The queueing model GI/E) /1 has inter-arrival times (time periods measured
between each pair of consecutive customer arrivals) T;, (i = 1) that are i.i.d.r.v.’s such

that T;~T. It has a cumulative distribution function (c.d.f.) A(t) = P(T <t),(t > 0), L-
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S.T.a(w) = fgo e~ “tdA(t), and mean 1//1. In Figure 2, the (n + 1)-th customer

arrives T time units after the n-th customer’s arrival. The server in GI/E} /1 consists

of k exponential service stages with k being a positive constant.

(n+1)-th arrival

kservice stages
I}
O Qe 00 O . o
T server
n-th arrival

Figure 2: Visual illustration of GI /E, /1.

The dynamics (everything that happens inside the model) of GI/E} /1 can be described in
terms of the number of uncompleted service stages in the system. For instance, the customer inside
the server in Figure 2 has k — 3 uncompleted service stages remaining until his/her departure.
Another example of this concept would be an arrival of a customer resulting in an increase of the
number of uncompleted service stages in the system by k. The waiting-time-in-queue of the n-th
customer would be equivalent to the number of uncompleted service stages in the system
immediately prior to the n-th customer’s arrival. In addition, the number of customers in the
queue, as well as in the system can be found in terms of the number of uncompleted service stages
in the system.

The observation of the number of uncompleted service stages in the system can be made at
three different time epochs. Let N,;, N,,, and N,} be the r.v.’s that count the number of uncompleted
service stages in the system at the following specific time instances:

Ny, : Just before an arrival of the n-th customer (the n-th pre-arrival epoch)
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N,,: Any time instance between the moment just before the arrival of the n-th customer to
the moment just before the arrival of the (n + 1)-th customer (the n-th random
epoch)

N,¥: Just after a departure of the n-th customer (the n-th post-departure epoch)

The r.v.’s N;;, N, and N,§ become steady-state r.v.’s (see Appendix B.3.1 for
explanation) N, N, and N* as n — oo. Each of these steady-state r.v.’s counts the number of
uncompleted service stages at following generic time instances:

N~: Just before an arrival of a customer (a pre-arrival epoch)

N: Any time instance between the moment just before the arrival of a customer to the
moment just before the arrival of the next customer (a random epoch)

N*: Just after a departure of a customer (a post-departure epoch)

The steady-state r.v.’s have respective p.m.f.’s p;’ = lim,, o, P(Ny, = j), p;j = limy,o, P(Ny, = j),
and p}L = lim,,_,o P(N,; = j) for j = 0. The service mechanism of GI/E},/1 is such that the server
serves each customer independently of previous customers and of the queue-length. Furthermore,
since the duration of each service stage follows the exponential distribution (see Appendix A.2.1),
service that consists of k service stages (or service time of the server) follows the Erlang-k

distribution (see Appendix A.2.3). Let B(t) be the c.d.f. of the Erlang-k distribution where

k-1
dB(t) = %e‘“dt, (0<t< )

_ " k
holds and has a L-S.T. B (w) = fo e ®'dB(t) = (L) . The mean of B(t) isb =

U+

© k . . . .
f o & dB(t) = " < oo. The service times of the server are also independent of the inter-

arrival times.
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Let D,, be the number of completed service stages between the instances just

before the n-th and the (n + 1)-th customer arrivals. It has the steady-state p.m.f.
kj = fo Tlli_r,?oP(D" =j|T = t)dA(t)

Since the d.f. of D,, follows a Poisson distribution (see Appendix A.3.4), k; can be

expressed as

7 dA(t), j=0

[t
0
and has a p.g.f.
K(z) = ijzf _ f e=HU-DtgA(r)
j=0 0

= c_L(,u(l — Z)), lz| <1

The traffic intensity (see Appendix C.1) of GI/E /1isp = %k < 1. The relations between

N, Ny, and D, can be expressed as

N, +k—-D, N;+k—D,>0

_ _ — _ + —
Nn+1 - (Nn + k Dn) { 0' Nn_ + k _ Dn S 0 (14)

where (a)* = max(a, 0) with a being an integer.

4.3 The queueing model GI/Ex/1
Consider an extension of GI/E} /1 where the server consists of X exponential

service stages with X being a random number between 1 and r, (1 < r < o). In Kendall’s
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notation, this extension is represented by the GI/Ex /1 queueing system. In describing the
model GI/Ex /1, some r.v.’s from GI/E;. /1 can be kept the same given that their
definitions do not change.
4.3.1 Model description

The definition of inter-arrival time (T), the number of completed service
stages (D,,), and the number of uncompleted service stages in the system (N,;, N,,, or N;)
in GI /E, /1 remain unchanged in GI /Ex /1. The service mechanism also remains
unchanged since in GI/Ex /1, the server serves each customer independently of previous
customers and of the queue-length.

The key difference between GI/E, /1 and GI/Ex /1 is in the service pattern since
the number of service stages the n-th customer has to go through is extended
fromkto X,,. Therv. X, hasap.mf. P(X, =j) =s;, (1<j<r)andap.gf S(z) =
E[z*"] = Y% _, spz", (12| < 1) where r is the maximum number of service stages that
the n-th customer has to complete. The mean of X, iss = §'(1) =
SMW (1) where SO (1) for i > 1 is the i-th derivative of S(z) evaluated at z = 1.
Since X,, forn > 1 are i.i.d.r.v.’s such that X,,~X, every customer in GI /Ex /1 must go

through X service stages as indicated in Figure 3.

(n+1)-th arrival

l Xservice stages
)
QO Q-+ + 00 O o o o
T server
n-th arrival

Figure 3: Visual illustration of GI/Ex/1.
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Since the duration of each service stage follows the exponential distribution, the
duration of service that consists of X exponential service stages follows the modified
Erlang distribution (see Appendix A.2.4). In extending the service pattern of GI /E},/
1to GI/Ex/1, B(t) from Subsection 4.2.1 can be extended such that it becomes the c.d.f.

of the modified Erlang distribution where

o put) Tt
dB(t) = ) si———e Hdt, (0<t< )

holds and has a L-S.T. b(w) = [, e “*dB(t) = ], 5; (ML(U)] The mean of B(t) is

b={ go t dB(t) = — < . The service times of the server are independent of the inter-

s
u
arrival times. The traffic intensity of GI /Ex/1isp = %5 < 1 and the relations

between N, , N,,,,, X, and D,, can be expressed as

N7 +X,—-D,,  Ny+X,—D,>0 s
0, Ny +X,—D, <0 (15)

Niws = (i + X, = D)* =
which is an extension of (14). As done in GI/E; /1 (Subsection 4.2.1), the dynamics
of GI/Ex /1 can also be described in terms of the number of uncompleted service stages
in the system. For this reason, the solution to the model is three-fold. The three parts of

the solution are defined in the table below as

Table 11: Three-fold solution to GI/Ex/1

Pre-arrival solution p;,(j=0)
Random solution Pr, (k = 0)
Post-departure solution | pi, (k = 0)
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4.3.2 Steady-state p.g.f. and its inversion

The pre-arrival solution to GI/Ey /1 can be determined using a g.f. where the
steady-state p.g.f. of Ny is constructed and then inverted to find p; for j = 0. This is
done as follows:

To construct the steady-state p.g.f. of N,,;, each r.v. in (15) needs to be expressed
in its steady-state form as n — oo. This results in several notational changes in (15)
where N, N, = N7, X,, = X and D,, = D. The steady-state p.g.f. of N, is thus

defined as
P_(Z) — E[ZN_] — E[Z(N‘+X—D)+]
and using (15), the above expression can be expanded as

=E[zV PN~ +X—-D>0]P(N"+X—D >0)

+ E[zV **PIN"+X—-D <0]P(N"+X—-D <0)
which leads to
= E[zN " PN+ X—-D>0]P(N"+X—D>0)+P(N"+ X —D < 0)

In the first term of the above expression, E[z" **PIN~+ X —D > 0] =
E[zX]E[zY ~P|N~ + X — D > 0] is true given that N~ + X — D > 0. Hence P~ (z)
becomes
= E[zX]E[zN PN +X =D >0]P(N-+X—D >0)+P(N- + X — D < 0)

Let the p.g.f. of N~ — D be
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E[zN"P1=E[zN"°? I[N"+X—-D>0]P(N"+X—D >0)

+E[zNP [IN"+X—-D<O0]P(N"+X—D <0)

By isolating E[zY ™ |[N~+ X — D > 0]P(N~ + X — D > 0) in the above expression

and then substituting that into the previous expression, it becomes
P~(2) = P~(2)E[z¥]E[z"]

—ZE[z-m IN"+X—-D=-m]P(N"+X—D =—-m)
=0

+ ) PN +X =D =-m)
m=0

Letq, = P(N"+X — D = —m),(m = 0), then isolating P~(z) in above gives

- _ %:O qm(]- B Z_m)
P @) == sk

(zl = 1) (16)

which is analytic (can be differentiated and evaluated) on |z| < 1. In general, the
inversion of a p.g.f. through Taylor’s series expansion (see Appendix A.3.6) requires no
unknown probabilities (that is the constant coefficient of each term) in that p.g.f..
Taylor’s series expansion is not a suitable tool to invert (16) since its numerator contains
undetermined probabilities (q,,). This problem can be mitigated by employing a
technique that is similar to the one given in Chaudhry and Templeton (1983) where they

express a rational p.g.f. with unknown terms as another form of p.g.f. that is readily
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invertible through Taylor’s series expansion. The illustration of their technique in finding
the alternate form of (16) is as follows:

Let the characteristic equation (see Appendix C.1) of GI/Ex/1 be

0=1-Sz"YHK(2)

where S(z™1) = Y} _, s, z". This equation has 7 roots on the inside of a unit circle |z| =
1 (see Appendix C.2.1 for proof), which can be easily found using MAPLE. Let these
inside roots be zy, z,, ..., z,. Since 1 = S(z71)K(z) is a reciprocal polynomial of 1 =
S(z)K(z™1), it can be said that the denominator of (16) has 7 roots on the outside of a
unit circle |z| = 1. Let those outside roots be z;1,z; 1, ...,z 1. Suppose that there is a

new complex function

B@) =P @] [a-z2)
h=1

which is analytic on |z| < 1 given that it consists of P~(z). Then by substituting (16)

into B(z), it becomes evident that

h=1(1 = 2p2) Y=o qm(1 —z7™)
1-S(2)K(z™1)

B(z) =

is a complex function that is analytic on |z| > 1 since the roots z; 1, z; 1, ..., z7 ! of its
denominator are also the roots of its numerator. With B(z) being analytic on the
inside, outside, and contour of a unit circle |z| = 1, by Liouville’s theorem (see Appendix

C.4.2), it becomes a positive constant B, such that

B = P~(2) Hu —2,2)
h=1

Using a property of the p.g.f.,, P~(1) = 1, B can be determined as
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B = ﬁ(l — Zp)
h=1

Finally, the alternate form of (16) with no unknowns is found as

r

P~(2) = 1—[ (11__22:2), lz] <1 (17)

h=1

where p; for j = 0 are the set of constant coefficients of each term in the Taylor’s series
expansion of (17). The technique illustrated in determining (17) is known as the roots
method. Once this pre-arrival solution (p]_) is determined, the model GI/Ey /1 can be
considered as solved. This is true since p; is a key p.m.f. which all other d.f.’s that
describe different dynamics of GI/Ey /1 are built upon. Two of these d.f.’s are discussed
in the next subsection.

4.3.3 Relations between solutions at different time epochs

The pre-arrival solution from Subsection 4.3.2 can be used to determine random
and post-departure solutions to GI/Ex /1. This can be done through the standard level
crossing analysis, which is a technique in queueing theory that is widely used to build
relations among d.f.’s of a r.v. at different time epochs. Similar applications in different
models are discussed by Yao et al. (1984) and Cordeau and Chaudhry (2009). The

standard level crossing analysis in the context of GI /Ex /1 is explained as follows:

In Subsection 4.2.1, N is defined as the steady-state r.v. that counts the number of
uncompleted service stages in the system at a random epoch. Suppose that throughout

some time interval (0, t], the value of N varies due to changes in the number of completed
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service stages (decrease of N) and the number of customer arrivals (increase of N)

during (0, t]. An example of N varying throughout (0, t] is depicted in Figure 4.

J/ Customer arrival

| ] |
I I I
- N=16 N =138 N =17 -
J/ Completion of a service stage

Figure 4: An example illustrating the variation of N throughout some time
interval (0, t].

Whenever N decreases, it will decrease by 1 since a customer in the server

completes one service stage at a time. Suppose that NV is initially at k then decreases

to k — 1. This is depicted in Figure 5.

Figure 5: Decrease of N from k to k — 1 due to completion of a service stage.

Let Dy (t), (k = 1) be the mean number of downward transitions from N =
k to N = k — 1 throughout (0, t]. On the contrary, whenever N increases due to a

customer arrival, it will increase by the number of service stages that the arriving
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customer has to complete, or h, (1 < h < r). To illustrate this, suppose that N is initially

at j, (0 < j < k) and becomes j + h after a customer arrival (see Figure 6).

i i t
- N=j N=j+h

Figure 6: Increase of N from j to j + h due to a customer arrival.

Let U;(t), (j = 0) be the mean number of upward transitions from N = jto N =
J + h where h varies according to its p.m.f. s, (1 < h < r). Since j < k,
whenever N increases from j, it will either become k or greater than k. Let U (t) be the
mean number of upward transitions of N from j to and over k. By intuition, U, (t) would
be in terms of U;(t) and sp,, (1 < h < r) since the number of times N increases
from j to k throughout(0, t] is same as the number of times N increases from j to j +
h when h = k — j throughout (0, t]. Similarly, the number of times N increases from j to
any value greater than k throughout (0, t] is same as the number of times N increases
from j to j + h when h > k — j throughout (0, t]. Based on this notion, Uy (t) can be

defined as

Ur(t) =I§Uj(t) ZT: Sh
] ,

J h=k—j



47

Given that a stable queueing system has an upward transition rate which is the

same as its downward transition rate (Foster and Perera, 1965), the expression

Dy (t U (t
lim A0 = lim A0 (18)
t—wo t t—w© t
must hold. The definition of Uy (t) can be substituted into (18) such that
Dy (t U)X s
20 _ g, B YO Ty 9)

Multiplying and dividing the left-hand side of (19) by Y- Dx (t) and doing the same on

the right-hand side by .7, U;(¢) gives

k-1

(R D®\ [ De® ) z;f":ouj(t))( U; (t) ) c
35“01( t )<Z?=1Dk<t)>‘t15?°z< ¢ )\S2,0,0 h;f"

—0

-

0

220:1 Dk(t) .

. . . Zj=oU;@) . .
where lim;_,, ==——s the service rate (1) and llrn == Ot . is the arrival rate (1) . In
)

addition, as defined by Foster and Perera (1965), p; = lim ij ©
J t—>002j=0 Uj(t)

and p;, =

lim —2k®

————— can be substituted into above expression, which gives
t—o 2k=1 Dy (t)

k-1 r
upk=zﬂpj‘ Z Sh

j=0 h=k—j

or

(20)

=
=

Il
Tl >
=
=~
—_

[
Mk..
%)

>
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where k > landpy =1—-Y5-1pr=1— (%) = 1 — p. By renewal theory, there exists

an alternate way of determining py, using p; (see Appendix C.3.1).

With p;, known from (20), the standard level crossing analysis enables the finding

of p} in terms of py,. This is done as follows: Given the definition of Uy (t), both of its

sides are summed over k, such that

i U, ( i U;(t) Sh

k=1 k=1j=0 h=k—j

S

Similarly, sum of (18) on both of its sides over k gives

. D () RAG)
lim— = lim ——
tooo t too t

1 k=1

]

&
1l

By rearranging Y5, Uy (t) = § 2520 Uj(t) and Y lim, DkT(t) = e limg g

leads to

iy 2k=1 k() Y=t Uy (t) — lim §Xjzo Ui () _
too e Dy(t) oo Sy Dy (0)

Multiplying both sides of the above by Dic (t)/ ¢ results in

lZ =0 Uj (t)“ sD(t) | lim Dy (¢)
t—)oo Z Dk(t) S too

Uk(t) .

(21)
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The right-hand side of (21) is upy, as can be seen in deriving (20). The left-hand side of

(21) indicates that if lim M is the arrival rate (1) then lim 2kl for ke > 1is the

t—0 Lj=q Di(t)
probability of there being k — 1 uncompleted service stages in the system just after the

departure of a customer (p;_,). Based on this, (21) can be rewritten as

ASDi—1 = UPk

or

N 1
Dk-1 = ;pk, (k=1) (22)

Hence the solution to GI/Ex /1 (defined in Table 11) is completely found.
4.3.4 Conclusion

In queueing theory, queues with multi-staged services are useful tools of
application when considering a setting where service is provided in a phased manner. In
the past, such queues with server that has fixed number of exponential service stages (GI/
E} /1) have been analyzed by various researchers. In extending GI/E; /1 to GI /Ex /1,
some r.v.’s and d.f.’s are kept the same both in terms of notation and definition for
consistency sake. What changed is the number of service stages that every customer has
to go through, which is extended from a constant to a r.v.. Relations between different
r.v.’s of GI /Ex /1 are derived, which are used to build the steady-state p.g.f. of the model.
This p.g.f. is then inverted to determine the pre-arrival solution, which is used to find its
counterpart solutions at random and post-departure epochs. Importantly, the pre-arrival
solution can be further leveraged to explore other d.f.’s within GI/Ey /1 which is

discussed in the next Section.
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All derivations and relations in Section 4.3 are part of the manuscript that has been
accepted for publication in the American Journal of Operations Research (Chaudhry and

Kim, 2015).

4.4 Additional findings in GI/Ex/1

The pre-arrival solution from Section 4.3 can be leveraged to determine other
important steady-state d.f.’s that describe different dynamics of GI/Ex /1. In this section,
the distribution of the waiting-time-in-queue of an incoming customer and the number of
customers in queue and the system are derived in terms of the pre-arrival solution. This
derivation is considered rigorous and lengthy, hence an analytical example of a special
case of GI /Ex /1 is provided for the purpose of demonstration. Lastly, the performance
measures of GI /Ey /1 are introduced, which were used in Chapter 5 to compute various
numerical results.
4.4.1 Waiting-time-in-queue

Let wy be the r.v. of the amount of time an incoming customer has to spend in
queue (waiting-time-in-queue) until entering service. The c.d.f. of wg is W, (t) =
P(Wq_ < t), (t = 0). Intuitively, if an incoming customer enters service immediately
upon arrival, then there must be no uncompleted service stages in the system prior to his

or her arrival. In other words,
Wy (0) = pg

must be true. Alternatively, if an incoming customer has to spend at least some amount of

time in queue (say t > 0) before entering service then there must be i, (i > 0)
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uncompleted service stages in the system prior to his or her arrival (see Figure 7 for visual

illustration).

Each of every customers in A customer receiving service
queue results in uncompleted has remaining service stages
Incoming  service stages to complete
customer | |
| o--.00[0 RN

|l server
|

Total i uncompleted service stages

Figure 7: Visual illustration of the composition of waiting-time-in-queue of an
incoming customer.

Based on this notion, when t > 0, the waiting-time-in-queue of an incoming customer is
the durations of i, (i = 1) uncompleted exponential service stages. The probability
distribution of that duration follows the Erlang-i distribution with a c.d.f.

Eux)t

Wl =) G

e M udx

which holds for t > 0. To complete the expression of W, (t), the c.d.f. above can be

multiplied with p;” and then summed over i in order to span all possible values of i and

associated probabilities. Thereby W, (t) becomes

Wy (t) = Z Jt(“)lle Wudx, (£ > 0)
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Finally, by combining W, (t) whent = 0 and ¢t > 0, the c.d.f. of waiting-time-in-queue

of an incoming customer is completely expressed as

> t i-1
W@ =p5 +iy b [ e (62 0) (23)
i=1 0 '

4.4.2 Number of customers in queue and the system

It is evident that (23) is in terms of the pre-arrival solution. The steady-state p.m.f.
of the number of customers in queue can be found in terms of (23), hence by composition,
it is also in terms of the pre-arrival solution to GI/Ey /1. This confirms the statement in

Subsection 4.3.2 that p; is a key d.f. which all other d.f.’s in GI /Ex /1 are built upon.

Distributional Little’s law is a technique in queueing theory that is used to build
connection between the steady p.m.f. of the number of customers in queue at a random
epoch and (22). In the following, distributional Little’s law is explained in the context

of GI /Ex /1.

Intuitively, if an incoming customer has to wait in queue for a long time, it
indicates that queue is large. On the contrary, if the waiting-time-in-queue of a customer
is short, it signifies that queue is small. It is evident that the two r.v.’s (waiting-time-in-
queue and queue-length) are directly proportional and nicely meet the criteria for the
application of distributional Little’s Law. This can be done by introducing renewal theory
in queueing theory: Processes that counts the number of renewals over duration of time
can be manipulated into processes that count the number of customers in queue, where
that number is proportional to the duration of waiting-time-in-queue. This is done as

follows:
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Let there be some continuous-time single-renewal processes {M,(t),t > 0}
where M, (t) is a r.v. that counts the number of renewals during the time interval (0, t].
Let the p.m.f. of M, (t) be Q,,(t) = Q(n,t) = P(M,(t) = n) with the p.g.f. Q(z,t) =

m=oP(My(t) =n)z"™ (|z| <1)anda L.T.

Y ot 1 (1-a(w)-2)
e Q(Z,t)dt—w A 221 = 2a(@)

0z w) = f 24)

0
where d(w) is a L-S.T. of the c.d.f. of renewal periods A(t) (for a proof of (24) readers
may see Cox,1962 or Bertsimas and Nakazato,1995). Interestingly, expression (24) is
what would be equivalent to (2) in the renewal theory portion of this thesis. The

p.m.f. Q,,(t) can be manipulated into the steady-state p.m.f. of the number of customers
in queue at a random epoch (@,,) by conditioning then un-conditioning M, (t) on w; such

that

Qn(t) = P(Ma(t) = Tl)
becomes

1-p+P(M,(w;)=0), (n=0)
(25)

O = f P(Ma(wq‘) =n|wq‘ = t)qu_(t), (n=1)
0
Although (25) is an explicit expression of the steady-state p.m.f. of the number of
customers in queue at random epoch, its direct computation is inconvenient and
potentially time consuming since it requires the simultaneous finding of the inverse L.T.
as well as z-transform (see Appendix A.3.5) of (24). To mitigate this difficulty, suppose

that Q,, has ap.g.f. G Ng (z) such that



54

Gy = ) Quz", (121 <D
n=0

=1-p +.[; ;P(Ma(t) =n)z"dW; (t)

or
GNq(Z) =1—-p+ f Q(z,t) dW; (t) (26)
0

where Q(z,t) in (26) is an inverse-L.T. of (24). Additionally, in (26), the term 1 — p is
added to account for the case where the queue and server of GI /Ex /1 are empty and idle,
respectively (there exists an alternate case where the queue is empty but the server is
busy). In the case when Q (z, w) cannot be inverted directly to Q(z, t), Padé
approximation (see Appendix 2.6) can be used to accurately estimate Q(z, ) into a
rational form that is readily invertible. Once Q(z, t) is found, it can be substituted into

(26). By doing so, its Taylor’s series expansion becomes:

GNq(Z) = QO + le + QzZZ + Q3Z3+..., (lZl < 1) (27)

where {Q,,} for n = 0 is a sequence of the coefficients in (27). Also, the steady-state
p.m.f. of the number of customers in the system at a random epoch, say R,, (n = 0), can

be found directly from Q,, such that

1-p, (Tl = 0)
Ry=9p=14+Q, =1 (28)
Qn—ll (Tl 2 2)
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where Ry = py = 1 — p holds (probability of no customer in the system at a random
epoch equating to probability of no uncompleted service stages in the system at random

epoch).

Let R;_; forn > 1 be the p.m.f. of the number of customers in the system at a
post-departure epoch. Since the relation (22) is also true between R,, and R;'_, (see Yao

et.al, 1984), another relation can be established as

1
Rr-il-—l = ;Rnr (Tl = 1)

where R;f = R;; forn > 0.

4.4.3 Analytical example of GI/Ex/1

In this subsection, a demonstration is provided on how one would analyze GI/Ex/
1 using various findings in Subsection 4.3.2 (steady-state p.g.f. and its inversion), 4.3.3
(relations between solutions at different time epochs), 4.4.1 (waiting-time-in-queue), and

4.4.2 (number of customers in queue and the system).

Consider the model M/Ey /1 with p.m.f. of X as s, (1 < h < r). Customer
arrivals follow exponential distribution, hence the probability density function (p.d.f.) of

the inter-arrival time is
a(t) =de ™, (t > 0)

witha L.T. a(w) = ﬁ The p.g.f. of kj, (j = 0) is

KG) = ) kyr) = a(u(i = 2), Izl <1
=0
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and letting w = p(1 — z) in the above leads to

A

K= a=—o

The equation 0 = 1 — S(z"1)K(z) of M/Ey /1 can be solved to obtain the roots to build

(17). In doing so, the equation

(L% s ;>
0=1 (z+zz+ +Zr)</1+u(1—z)

can be solved using MAPLE or MATHEMATICA to determine the roots zy, z,, Z3, ..., Z.

These roots are then substituted into (17) which form the steady-state p.g.f. of M/Ex/1:

r

ro=T (). me

h=1

where the coefficients of its Taylor’s series expansion are the pre-arrival solution p;, (j =

0). Withp;, (G = 0), px, pi, (k = 0), and Wy (t), (t = 0) can be determined using (20),
(22), and (23), respectively. In determining Q,,, a(w) = ﬁ can be substituted into (24),

which results in

o]

Q(z,a)) :J;) e_th(Z, t)dt :m

The above expression has an inverse L.T.
Q(zt) = e M2, (|2] < 1,62 0)

The Taylor’s series expansion of Q(z, t) is
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1 1 1
e A1=2)t = =Mt {1 + ()7 + 5 (A0)*2% + 2 (A)*2° + 2 (A)*2" + }

Hence, by substituting the above series into (26), it becomes (27) such that

G =1-p+ [ QGO AW ®
0

= l1 —p+ fooe‘“qu‘(t)l + [Afwte"“d%‘(t)l z
0 0

2% [ 2
+ l?fo tze"’“dl/l/q"(t)] z% + lgjo t3e‘“dm‘(t)lz3 + o

The coefficients of G N (z) form the steady-state p.m.f. of the number of customers in

queue at a random epoch

1-p+ f e~ Mdw; (t),(n=0)
_ 0
Qn - /1” ©
L f e AW (),  (n=>1)
0

kn!

Using (28), the steady-state p.m.f. of the number of customers in the system at a random

epoch can be found as

1-p, (n=0)
p_1+Q0' (n:]-)

An—1 © L )
kmfo t"le MWy (), (n=2)

R, =

The steady-state p.m.f. of the number of customers in the system at pre-arrival and post-

departure epochs can be determined using (22):



58

(Qo— 1
(o +1, (n=1)
P '
Rn—l - ‘n-1 7 4 An—l 0
n-1,-At - >
—p(n—l)!fo e AW (1), (n22)

4.4.4 Performance measures

In queueing theory, performance measures are important since they provide the
best way of interpreting the different dynamics of the system. For example, to observe the
congestion level of the server, the average number of customers in queue would be a far
better indicator than the probability of each likely number of customers in queue. In
addition, there exist interesting relations among performance measures such as Little’s
law. The relations are often used as cross-checking tools to confirm that their respective

d.f.’s are correct.

In exploring the performance measures of GI/Ex /1, let Mppqse, Lg,

L, and Ew; be the mean number of uncompleted service stages in the system at a
random epoch, mean number of customers in queue at a random epoch, mean number of
customers in the system at a random epoch and mean waiting-time-in-queue of an
incoming customer, respectively. First, the mean number of uncompleted service stages in
the system at a random epoch is

o]

Mphase = Z i p; (29)

i=1

and similarly, Mpyqse = Xizq ip; and Myy,q, = Y72, i p; . The mean number of

customers in queue at a random epoch is
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Qb*
I
gl

nQn (30)

1

S
1l

and the mean number of customers in the system at a random epoch is

Nk

Ly= Y nR, (31)

S
1l
ey

The mean number of customers in the system at pre-arrival and post-departure epochs are
identical such that L¥ = Ly = Y%_; n R;}. The relation between (30) and (31) can be

established by expressing L, in terms of Ry, such that

Ly = Z(n 1R,
n=2

=Zan—ZRn

n=2 n=2
= LS - 1 + RO

and using the relation Ry = 1 — p gives

Lq =Ls—p (32)

which is one of the well-known properties of single-server queues in queueing literature.

The mean waiting-time-in-queue of an incoming customer can be defined as
0

and the mean waiting-time-in-system of an incoming customer is
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S

In addition, Little’s law in the context of GI /Ex /1 can be defined as
and

Ly = AEy,- (36)

where both (35) and (36) can be used as crosschecking tools when doing

numerical computations since (Lq, LS) and (EWq—, EW—) can be separately found.

4.4.5 Conclusion

Using the pre-arrival solution, other d.f.’s within GI /Ey /1 are found. These
distributions describe different aspects of GI/Ex /1, including the c.d.f. of the waiting-
time-in-queue of an incoming customer, and the p.m.f. of the number of customers in
queue and in the system. In determining the p.m.f. of the number of customers in queue at
a random epoch, renewal theory is introduced in queueing theory where a p.m.f. of a r.v.
in the continuous-time single-renewal processes is manipulated into a p.m.f. of the
number of customers in queue. This technique is known as distributional Little’s law. By
combining Subsection 4.3.2 and 4.3.3 with Subsection 4.4.1 and 4.4.2, a complete
analysis to GI/Ex /1 is presented, where various distributions are all expressed
fundamentally in terms of the pre-arrival solution. A demonstration of how one would
solve GI/Ex /1 is provided using M /Ex /1. Lastly, performance measures of GI /Ex /1 are

found using various d.f.’s.
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All additional findings in GI/Ex /1 are part of the manuscript that has been
accepted for publication in the American Journal of Operations Research (Chaudhry and

Kim, 2015).
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5 NUMERICAL EXAMPLES IN QUEUEING THEORY

In this chapter, various numerical examples of GI /Ey /1 are presented. They are
organized in the following manner: M /Ey /1 in Section 5.1, E,,,/Ex /1 in Section 5.2,
and D/Ey /1 in Section 5.3. A numerical comparison against existing results is provided
in Section 5.4. All computations were performed on MAPLE, calibrated to compute up to
the ninth decimal place. All results were rounded to four decimal places in the following

tables.

5.1 Computing M/Ex/1

Inter-arrival pattern is exponential (M) with a p.d.f. f(t) = 2e %, ¢t >
0. Parameters taken were b; = 0.4,b, = 0.2,b3 = 0.2,b, = 0.2,y =12 andp =

0.5 (with 1 = 2.7272).

Table 12: Computing M/Ex/1 withb; = 0.4,b, =0.2,b3=0.2,b, =0.2,u =
12 and p = 0.5 (with 4 = 2.7272)

P P pf Q; R R t | We(®)

0.5000 0.5000 0.2272 0.7632 0.5000 0.5264 0.0000 0.5000
0.1136 0.1136 0.1880 0.1282 0.2632  0.2564 0.0114 0.5154
0.0940 0.0940 0.1646 0.0596 0.1282  0.1192 0.1544 0.6807
0.0823 0.0823 0.1291 0.0271 0.0596  0.0542 0.4566 0.8815
0.0645 0.0645 0.0792 0.0122 0.0271  0.0244 0.6940 0.9470

AW N R O~

Sum 0.9999 0.9999 0.9999 0.9999 0.9999  0.9999 2.6666 0.9999

Myhase = 1.9091 L, = 0.9339 Ey- =0.3424
Mppase = 1.9091 L, = 0.4339 By =0.1591
Mihase = 2.8182 Lt = 0.8678 AEy- = 0.9339

AEy; = 04339
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5.2 Computing E,,,/Ex/1

mtm—le—lt

Inter-arrival pattern is Erlang-m (E,;,) with a p.d.f. f(t) = 4 —

,t>0.
Parameters taken were b; = 0.25,b, = 0.25,b3 = 0.4,b, = 0.1, u=4,m=3,andp =

0.75 (with A = 1.2766).

Table 13: Computing E,,/Ex/1 with by = 0.25,b, = 0.25,b3 = 0.4,b, = 0.1,
u=4m=3,andp =0.75 (with1 = 1.2766)

j | p v P} Qj R; R} t |(Wg(®
0 0.9234 0.2500 0.3929 0.9589 0.2500 0.9452 0.0000 | 0.9233
1 0.0390 0.2947 0.3113 0.0395 0.7089 0.0527 0.0114 | 0.9251
2 0.0233 0.2335 0.2188 0.0015 0.0395 0.0020 0.1544 | 0.9446
3 0.0107 0.1641 0.0596 5.1763x107° 0.0015 6.9018x10°5 0.4566 | 0.9720
4 0.0028 0.0447 0.0112 1.6313x107° 5.1763x10°5 2.1751x107° 0.6940 | 0.9842
Sum | 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 2.9999 | 0.9999
M pase = 0.1339 L, = 0.7927 Ey- =0.6210
Mypase = 1.5047 L, = 0.0427 Ew; =00334
M q5e = 1.0006 Lt = 0.0567 AEy- = 0.7927
AEy, = 00427

5.3 Computing D/Ex/1

Inter-arrival pattern is deterministic (D) with the inter-arrival time fixed
at 1. Parameters taken were b; = 0.65, b, = 0.10,b3 = 0.20,b, = 0.05, u =7 andp =
0.4 (with 1 = 1.6970).

Table 14: Computing D/Ex/1 with by = 0.65,b, = 0.10,b3 = 0.20,b, = 0.05,
nu=7T=1andp = 0.4 (withd = 1.6970)

P p;i b} Q; R; R} L/AG)

0.9882 0.6000 0.5989 0.9961 0.6000 0.9903 0.0000( 0.9882
0.0086 0.2396 0.2148 0.0038 0.3961 0.0095 0.0114| 0.9889

=
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2 0.0026 0.0859 0.1531 1.4x107° 0.0038 3.5000x107°> 0.1544| 0.9947
0.0006 0.0613 0.0321 3.6915x10°% 1.4x10°° 9.2288x1078 0.4566| 0.9990
4 | 6.1979x107> 0.0129 0.0008 8.1220x10*! 3.6915x10~% 2.0305x10°°  0.6940| 0.9992
Sum 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.8888| 0.9999
M E,- =0.2380
phase — w
— 0.0157 L, = 0.4038
Myhase L =0.0038 Ey; =0.0022
= 0.6487 4
M AE,- = 0.4038
phase + w
= 0eo18 Lt =0.0096
AEy- =0.0038
54 Computing E, /E,,/1

The numerical results of a simpler model E,,/E,,, /1 by Grassmann (2010) were

compared with the results obtained by using the method introduced in this paper.

Parameters taken were i = 1 and the remaining (p, n and m) were computed at various

parameters.

Table 15: Comparison against Grassmann’s numerical results in E,,/E,,, /1

p n m Grassmann L, Lg

0.5 2 3 0.1585 0.1585 0.6585
0.5 2 6 0.1228 0.1228 0.6228
0.5 4 3 0.0800 0.0800 0.5800
0.5 4 6 0.0505 0.0505 0.5505
0.9 2 3 3.2570 3.2570 41570
0.9 2 6 2.5930 2.5930 3.4930
0.9 4 3 2.1948 2.1948 3.0948
0.9 4 6 1.5417 1.5417 2.4417

All results matched with those of Grassmann (2010) up to 9 decimal places.



65

5.5 Conclusion

Numerical computations in queueing theory serve as an important proof of
concept for theoretical derivations. Specifically, numerical examples confirm that the
found solution to the model is correct. Thus, it is common in literature to publish
analytical results followed by numerical examples. In this thesis, Chapter 4 contains the
theoretical aspect of new and extended results in GI /Ex /1. Chapter 5 serves as a proof of
concept of Chapter 4 by computing numerical results at different parameter values.

Section 5.1, 5.2, and 5.3 cover numerical examples of GI/Ey /1 with exponential,
Erlang-m, and deterministic inter-arrival time patterns, respectively. Various probabilities
and performance measures are presented along with confirmation of results using Little’s
law (for both in queue and in the system).

Section 5.4 covers the comparison of results with that of Grassmann (2010) in
solving the model E,,/E,, /1. Although E,,/E,,,/1 is considered a special case of GI/E} /1,
a numerical comparison against it is made anyway since there are no numerical examples
of GI/Ex /1 available in literature.

All numerical examples in Chapter 5 are part of the manuscript that has been
accepted for publication in the American Journal of Operations Research (Chaudhry and

Kim, 2015).
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CONCLUSION

Thesis contribution

Contribution to renewal theory

o Extension of the d.g.f. of the number of renewals from the discrete-

time single-renewal processes to the discrete-time bulk-renewal processes.

. New derivation for the asymptotic results in the discrete-time bulk-
renewal processes, including the extra constant term in the asymptotic secon
d moment.

o New derivation for the connection between asymptotic results of the disc
rete and continuous-time bulk-renewal processes.

o New numerical examples of the discrete-time bulk-renewal processes.

Contribution to queueing theory

o Extension of the steady-state p.g.f. of the number of uncompleted service
stages at a pre-arrival epoch from GI/E, /1 to GI/Ex /1.

. New derivation for the solution to GI/Ey /1 at different epochs and relations
among them.

o New derivation for the c.d.f. of the waiting-time-in-queue and the steady-
state p.m.f. of the number of customers in GI/Ex /1.

o New numerical examples of GI /Ex /1.

Summary

In this thesis, new and extended results in renewal and queueing theories are

presented. In Chapter 2, the discrete-time single-renewal processes are discussed where
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the concept of renewal periods, renewal mass function, and the number of renewal
functions are introduced. These concepts are reintroduced in the discrete-time bulk-
renewal processes, and confirmation is made for the fact that renewal periods are the
fundamental building blocks of both processes. The asymptotic results in the discrete-
time bulk-renewal processes are found and their connections to the asymptotic results in
the continuous-time bulk-renewal processes are also derived.

In Chapter 3, numerical examples in discrete-time renewal theory are presented.
Different d.f.’s of renewal periods and bulk-sizes are considered in computing the p.m.f.
of the number of renewals. The asymptotic first and second moments of the number of
renewals are also presented.

In Chapter 4, queueing theory and different types of queues are introduced. Out of
different classes of queues, multi-staged queues with server that has fixed number of
service stages (GI/E, /1) is discussed in detail. Although this model has been solved by
several researchers, its discussion is deemed essential prior to introducing the class of
multi-staged queues with server that has random number of service stages (GI/Ex/1). A
complete analysis of GI/Ex /1 is provided using a wide range of techniques including the
imbedded Markov chain technique, g.f. method, roots method, standard level crossing
analysis, renewal theory, and distributional Little’s Law. Thus, Chapter 4 of this thesis
addresses the statement by Yao et al. (1984): “There is no simple way to analyze the
queue GI/Ex/1.”

In Chapter 5, the numerical examples of GI/Ex /1 are presented. Different d.f.’s of

inter-arrival times and the number of service stages within the server are considered in
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computing the solution, p.m.f. of the number in queue and the system, and various
performance measures.

The new and extended results in renewal and queueing theories discussed in the
four chapters of this thesis were drafted into two different manuscripts which were
accepted for publication. The two papers are pending at the accepted status as the author
of this thesis intends on including some of the future extensions discussed in the next

section.

6.3 Future extensions

The main contribution of this thesis in renewal and queueing theories can be
further extended in several ways. Some possible areas for further research are noted as
follows:

By considering the renewal periods of the discrete-time bulk-renewal processes
and the inter-arrival times of GI /Ex /1 to follow heavy-tailed distributions such as Pareto,
inverse-Gaussian, and Weibull, numerical results become more challenging to determine.
Such distributions possess attractive properties that are deemed suitable in areas such as
insurance, broad-band communications networks, and packet routing optimization.

The discrete-time bulk-renewal processes discussed in this thesis can be
generalized by assuming that the event of a first renewal has a different d.f. than the rest
of the renewals. This is defined by Chaudhry and Templeton (1983) as the modified (also
known as delayed or general) renewal processes. Such modification results in a more
general renewal equation, thus it leads to asymptotic results of the generalized discrete-

time bulk-renewal processes.
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In GI/Ey /1, instead of using distributional Little’s law, there may be another way
of finding the steady-state p.m.f. of the number of customers in queue in terms of the
p.m.f. of the number of uncompleted service stages at a pre-arrival epoch. Such an
alternate way has already been found in GI/E} /1, thus it could possibly be extended
to GI/Ex /1.

The model GI/Ey /1 can be extended to GI* /E, /1 such that customers may arrive
in groups, hence a batch arrival results in ‘XY’ additional uncompleted service stages in
the system. In addition, GI/Ex /1 can also be extended to GI/Ex/1/N such that it has a
finite capacity. Doing so results in an interesting outcome where a customer can be
rejected due to system’s finite capacity (known as blocking probabilities). Both GIX /Ey/
1 and GI/Ex/1/N remain unsolved in literature.

The model GI/Ex /1 has a discrete-time counterpart, GI /NBy /1 where NB is a
modified negative binomial distribution. The solution and analysis of GI/NByx /1 are

unavailable in literature.
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APPENDIX A

This appendix provides all preliminary knowledge that is required to understand
this thesis. This appendix begins with a brief summary of probability theory, stochastic
processes, and Markov processes in a progressive manner. The summary is then
supplemented by the following:

Under continuous probability theory, the definition of a probability density
function (p.d.f.) and several different examples of p.d.f.’s are presented. The Laplace
transform (L.T), Laplace-Stieltjes Transform (L-S.T.), and Padé approximation are also
discussed.

Under discrete probability theory, the definition of a probability mass function
(p.m.f.) and several different examples of p.m.f.’s are presented. The generating function
(g.f.), probability generating function (p.g.f.), and Taylor’s series expansion are also

discussed.

A.1 Brief summary on probability theory, stochastic processes, and
Markov processes

Probability theory can be explained with the example of a coin toss. When a coin
is tossed, it could lead to two possible outcomes (heads or tails), and each outcome has a
probability of 0.5. A random variable (r.v.) represents a group of outcomes (in this case,
heads or tails) and the distribution function (d.f.) allocates probability to each outcome (in
this case, 0.5 chance of getting heads and the same for getting tails).

In general, the outcomes of a r.v. can be nonnegative real numbers or nonnegative
integers. In the case of the former, the d.f. of a r.v. becomes a probability density function

(p.d.f.) and in the case of the latter, the d.f. of a r.v. becomes a probability mass function
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(p.m.f.). The cumulative distribution function (c.d.f.) is a sum of either p.d.f.’s or p.m.f.’s
from the smallest valued outcome up to a particular outcome of interest. In a holistic
sense, random variables can be added, subtracted, multiplied, divided, or collected to
describe a system.

A random variable could also be time sensitive such that its probability of an
outcome changes over time. Building on the previous example of a coin toss, the
probability of getting tails on the first coin toss (0.5) would be different from the
probability of getting five tails in a row (0.5°> = 0.03125). As explained, it is evident that
the probability of an outcome in the future depends on the probabilities of all previous
outcomes. In view of this, a collection of time dependent random variables form the
stochastic processes, which Parzen (1962) describes as the “dynamic part of probability
theory.” The concept of stochastic processes is familiar and extensively applied across
various fields including statistical physics (Brownian motion, fluctuations and thermal
noise), communication and control (automatic tracking of moving objects, reproduction
of sound and images), and inventory control (minimizing time-of-delivery lag and
deciding when to place an order for replenishment of stock).

There exists a special class of stochastic processes called the Markovian stochastic
processes (Markov processes). Markov processes inherit the basic property of the
stochastic processes but has an additional consideration known as the Markov property:
The probability of an outcome in the future only depends on the probability of the present
outcome and not that of the past. As an example, Markov property states that given a car
engine that has a mileage of 120,000 kilometers, the probability of this engine lasting for
another 50,000 kilometers is the same as the probability of the same engine lasting for

50,000 kilometers from the time it was first built. When comparing the two probabilities,
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the previous mileage on the engine (past) is simply forgotten when considering additional
mileage from the present to the future. The two well known d.f.’s that follow Markov
property are exponential and geometric distributions (see Appendix A.2.1 and A.3.1,
respectively). Markov property is also referred to as “the forgetfulness property” due to
its tendency to ignore the past. Interestingly, Markov processes are a powerful tool when
deducing predictions from a limited amount of information. It enables a great degree of
simplification of problems as readers will observe in the discussion on queueing theory. A
Markov processes are further divided into four sub-categories:

Table 16: Classification of Markov processes

Discrete-state Continuous-state
. . Discrete parameter Markov Discrete parameter Markov
Discrete-time .
chains processes
Continuous- Continuous parameter Markov Continuous parameter Markov
time chains processes

In addition, Markov chains are Markov processes whose state space is discrete.

A.2 Continuous probability theory

Assume that there is a continuous r.v., say T, such that it has a p.d.f. f(t) =
P(T = t) where 0 < t < . The n-th moment of T is defined as E[T"] = f0°° t"f(t)dt.
Some examples of p.d.f.’s in continuous probability theory are provided below.
A.2.1 Exponential distribution

When T is an exponential r.v., its p.d.f. becomes

fO) =2 ,t>0

where 4 > 0. The exponential distribution is a fundamental distribution of continuous

probability theory that is characterized by the forgetfulness property.



A.2.3 Erlang-k distribution

When T is an Erlangian r.v., its p.d.f. becomes

Aktk_l -t

O="a=r

,t=0

where A, k > 0. The shape parameter k takes positive integers and if k is not a positive
integer, then f(t) becomes a Gamma distribution. An Erlangian r.v. with shape
parameter k is the sum of k exponential r.v.’s, hence when k = 1, the Erlang-

k distribution simplifies to the exponential distribution.

A.2.4 Modified Erlang distribution

When T is a modified Erlangian r.v., its p.d.f. becomes

hhl
F = th“ 20
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where 4 > 0 and by, are the probabilities indicating the likelihood of each value of h, (h >

0). In addition, when b, = 1, modified Erlang distribution simplifies to the Erlang-
k distribution.
A.2.5 Laplace transform and Laplace-Stieltjes transform
As indicated in Chaudhry and Templeton (1983), applying Laplace transform
(L.T.) in continuous probability theory transforms a p.d.f. into a L.T. In defining L.T.,

assume that there is a continuous r.v. T with p.d.f. f(¢t), (t = 0). Its L.T. is defined as
f) =l = [ emtf@de
0

where f(0) = 1 and f(w) is an analytic function in the half-place Re(w) > w, (wq

IA

0) since 0 < f_ (w) < 1forw = 0. L.T. is a useful tool in both renewal and queueing
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theories due to its ability to express useful information in a fairly simple form.

When f(w) is inverted to f(t), the procedure is known as the inverse L.T. and defined as
1 a+ioo
t) = — Ot f(w)d
FO=55] e fl@do

where the contour is any vertical line w = a so that f(w) has no singularities on, or to the
right of it (Abate and Whitt, 1995).

The Laplace-Stieltjes transform (L-S.T) is considered to be more general than the
L.T. as it encompasses a wider class of r.v.’s than the simple L.T. The definition of the L-
S.T. is as follows: Let T be a non-negative r.v. with a d.f. F(t) = f(t < T), then the L-

S.T. of F(t) is defined as

(0]

@) = j et dF (1)

0

with Re(w) = 0. The integral on the right-hand side of the definition of L-S.T. is known
as the Stieltjes integral. In addition, the L-S.T. of F(t) becomes the L.T. of f(t) if f(t) =

dF(t)/dt

exists.

A.2.6 Padé approximation

A p.d.f. of a continuous r.v. may not have an explicit L.T. due to the nature of the
r.v.. When this is the case, the L.T. of a p.d.f. can be approximated using the Padé
approximation. Assume that a continuous r.v. T has a p.d.f. f(t) that does not have an
explicit L.T.. The Padé approximation of the L.T. of f(t) is

N(w) YiLomo
CD(w) ¥B,d !

where N(w) and D (w) are polynomials of degrees A and B, respectively with unknown

constant coefficients n; and d; such that the first A + B moments of f(w) are equal to
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some rational function, say f*(w). For additional details, readers may refer to Harris and

Marchal (1998) or Baker Jr and Graves-Morris (1996).

A.3 Discrete probability theory

Assume that there is a discrete r.v., say M, such that it has a p.m.f. f,, =
P(M = m) where 0 < m < oo. The n-th moment of M is defined as E[M"] =
Yim=oMm" fm. Some examples of p.m.f.’s in discrete probability theory are provided
below.
A.3.1 Geometric distribution

When M is a geometric r.v., its p.m.f. becomes

fm=pA-p)"tm=1

where p > 0. The geometric distribution is a fundamental distribution of discrete
probability theory that is characterized by the forgetfulness property. This distribution
provides the probability of the number of trials (m) until an event occurs with a
probability p(1 — p)™ ! form > 1.
A.3.2 Binomial distribution

When M is a binomial r.v., its p.m.f. becomes

fm = (,T,Ll) p"(1=p)""m=0
where p > 0 and n is a positive integer. The binomial distribution is characterized by
providing the probability of m events that occur in n trials where each event follows a
geometric distribution. As an example, when n = 1 and m = 1, it indicates that an event
occurs after the first trial with probability p. Whenn = 1 and m = 0, it indicates that no

event occurs after the first trial with probability 1 — p.
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A.3.3 Negative binomial distribution

When M is a negative binomial r.v., its p.m.f. becomes

m+n-—2 _
fm:( 1 )pn(l—p)m Im=>1

where p > 0 and n is a positive integer. Negative binomial distribution is characterized by
providing the probability of the number trials (m) until the n-th event occurs. Whenn =
1, the negative binomial distribution becomes a geometric distribution.

A.3.4 Poisson distribution

When M is a Poisson r.v., its p.m.f. becomes

e—)%m—l

fm=m,m21

where A > 0. The Poisson distribution is characterized by providing the probability
of m events that occur over some duration of time where events occur on average A per
time unit. Each of these events follows the exponential distribution in A.2.1.
A.3.5 Generating function and probability generating function

Let {u,} be a sequence of real numbers. If U(z) = Y5, u,z™ converges in some
interval |z| < z,, (0 < z, < o), then U(z) is called the generating function (g.f.) of the
sequence {u,} (see Hunter (1983) for details). Here, z, is a unique number called the

radius of convergence such that
- Yo upz™ converges (absolutely) for |z| < z,
- Yo upz™diverges for |z| > z,
- Yoo upz™ converges uniformly for |z| < 6, where 6 < z,
Similarly, let {u, } be a double sequence of real numbers, then X ¥ _ up nz™ x™ is

known as the double generating function (d.g.f.) if |z| < z,, (0 < z; < ) and |x| <



81

X0, (0 < x, < 0). Since a g.f. transforms a sequence into a power series (procedure also
known as the z-transform) an inverse g.f. returns a power series back into a sequence.

In introducing g.f. in discrete probability theory, let there be a discrete
r.v. V. U(z) becomes a probability generating function (p.g.f.) of V if and only

if u,, matches the following characteristics of the p.m.f. of V:

- u,=PWV=n),nz=0)

- 0<u, <1,(n=0)

- XnoUn =1
When above three conditions are met, U(z) becomes the p.g.f. of V, such that

U(z) = E[z"],(lz] < 1)

In this regard, a p.g.f. is always a g.f. but a g.f. is not always a p.g.f. In addition, a

p.g.f is a power series that has advantages over its p.m.f. counterpart when obtaining

moments of a r.v.. For instance, the moments of a discrete r.v. are easy to derive from a

p.g.f. as illustrated by the following property:

d'U(z) d
UOW) = lim —= = o=

E[ZV]|Z=1l (T' > 1)

where U (1) is the r-th derivative of the p.g.f. of V evaluated at z = 1. This can be used
to find various parameters such as the mean, variance and moments of V.
A.3.6 Taylor’s series expansion

In simple cases, inversion of a g.f. can be done analytically, however, in complex
cases, they need to be inverted numerically (readers may refer to Kim et al. (2011) for
additional details on inversion of g.f.’s). Out of several ways to invert a g.f., the method

of inversion used throughout this thesis is Taylor’s series expansion at z = 0 (also known
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as the Maclaurin series) which can be easily done with today’s mathematical software
such as MAPLE or MATLAB. In the context of this thesis, a p.g.f. of V can be expressed

in a form of a Maclaurin series such that

U(z) = E[Z'] = z", (n=0)

where the probabilities {u,, } can be extracted directly from the coefficients of each term

in the Maclaurin series such that

(n)
un=U © (n=0)

n!
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APPENDIX B

In this appendix, all supplementary proofs, derivation, and theorem that are used

in discussing renewal theory are provided.

B.1 Supplementary proofs
B.1.1 Proof of the relation between renewal function and renewal mass
function

In proving the relation between M, and m;, let Z,, k > 1 be the r.v.’s which take
the values 1 if a renewal occurs at time k and 0 otherwise. The number of renewals

counted over the time period (0,k] is N, = Y¥_, Z;. The renewal function is then written

as

Therefore it becomes

where k > 1.
B.1.2 Proof of the relation between the probability of bulk renewals and p.g.f.
of renewal periods

As a first step of the proof, the g.f. of N, with respect to k is found in terms of the

p.g.f. of renewal periods. This is done as follows:
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oo

D ROVE = Y [P(Wh < ) = P(Wpyy < OT0*
k=1

k=1

- Z P(W, < k)vk —Z P(W,,, < k)vF
k=1 k=1

=[PW, <0’ +P(W, < Dvi+...] = [PWpe1 < 0OV’ + P(W,pq < Dvi+...]
= {(P(W, = 0) + [P(W, = 0) + P(W,, = D]v

+ [P(W,, =0)+P(W,, =1) + P(W,, = 2)]v?+...}

— {PWhi1 = 0) = [P(Wpiq = 0) + P(Wyyq = D]v

—[PWyyy = 0) + PWyey = 1) + P(Wypq = 2)]v2+...}
=[P(W, =0)+P(W, =0)v+...]+ [P(W,, = Dv + P(W,, = 1)v3+...]

+ [P(W,, = 2)v? + P(W,, = 2)v3+...]

—[P(Wyyq = 0) + P(Wypeq = 0)v+...]

— [PWpyp1 = Do+ PWpyy = Dv2+...]

— [PWyp1 = 2)V% + P(Wypyq = 2)V3+...]
=PW, =001 +v+v?+..)+PW,=1D(w+v2+v3+...)

+PW,=2)(w?+v3 +v*+...) —P(W,yy = 0)(A + v + v2+...)

—PWp1 =D+ v2+v3+...) = PWpy = 2)@% +v3 +v*+..))

_ P(W, = O)+vP(Wn = 1)+v2P(Wn =2) L
1—v 1—v 1—v

_ P(Wn+1 = 0)+UP(Wn+1 = 1)+v2P(Wn+1 = 2) +...
1—-v 1-v 1-v

- %{[p(wn =0) + vP(W, = 1) + v2P(W, = 2)+...]

- [P(Wn+1 = O) + VP(Wn+1 = 1) + UZP(Wn+1 = 2)+]}
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1 00] (o]
=15 z P(W, = k)vk + z PWyyq = k)v"]
v k=0 k=0

since P(W, = 0) = 0 ¥n > 0, and using Y5, P(W,, = k)vk = f*(v), the above

simplifies to

N "(v)
S hutit =22 11— vl < 1
k=1
This proof is also provided in Feller (1968).

B.2 Supplementary derivation

B.2.1 Derivation for d.g.f. in the discrete-time single-renewal processes
Using the relation that is proved in Appendix B.1.2, the p.g.f.

of X5, B, (k)v* with respect to n is

PG =Y Y BUIVEZ = 3 [F0) — W), (2l < D

n=0 k=1 n=0

(0]

[Z frwam =) iz ]
n=0
— {i 2f )" - () i[Zf(v)]”}
n=0

n=0

_1-f0)\ .
= )
n=0
Since|z| < 1, the d.g.f. is derived as

RNy 1-f)
P(z,v) —;;Pn(k)v oy (A < L < D)
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B.3 Supplementary theorem
B.3.1 Asymptotic theory

In simple terms, asymptotic theory is the study of the behaviour of a time-
dependent function as t — co. In renewal theory, asymptotic theory can be applied to the
renewal mass function and the moments of the number of renewals. When their time
parameter assumes a very large value, the functions converge to what is known as the
asymptotic results. In queueing theory, asymptotic theory can be applied to time-
dependent r.v.’s such that they become steady state r.v.’s as their common time parameter

assumes a very large value.
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APPENDIX C

In this appendix, the basic concepts and all supplementary proof, derivation, and

theorems that are used in discussing queueing theory are provided.

C.1 Basics of queueing theory and Kendall’s notation

Queueing theory analyzes the properties that surround a queueing model. In this
thesis, a ‘queueing system’ and a ‘queueing model’ are synonymous terms that refer to
the mathematical construct that composes of the server, the customer in the server (at any
stage of service), and the customers in queue (if any). Queueing models can be described
as mathematical models that describe the process of customers arriving for service,
waiting for service (if service is not immediately available), and receiving of service,
followed by leaving once service is complete. In the context of this thesis, a ‘system’
refers to the space that includes the queue of customers, and the server with a customer
under service. A queue refers to only the space which includes the queue of customers.
As well, a customer is a generic term that refers to any element (person, product, packet,
etc) that participates in a queueing system. ‘Queueing model’ is a broader term that is
described using Kendall’s notation. In Chaudhry and Templeton (1983), Kendall’s
notation is defined as

A (0)/BR [c/M

where
A, (t): Inter-arrival time distribution with arrival rate depending

ont,n (if t,n in A, (t) are missing, it means arrival rate is constant).
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X,:  Arrival group size distribution with group size probability depending
on n (if n in X,, is missing, it means the group size probability is independent
of n).
B,: Service time distribution with service rate depending on n (if n in B,, is missing, it

means service rate is constant).

a: Quorum for service group.

b: Capacity for service group.

c: Number of servers.

M: Storage capacity (if last descriptor is missing, it is assumed to be infinite).

In addition, although not indicated in the Kendall’s notation, the arrival rate (1) of a
queueing system indicates the rate at which customers arrive, whereas the service

rate (u) of the system indicates the rate at which customers are departing the system. The
traffic intensity (p) is a parameter that is uniquely defined for each queueing model.

In GI/E} /1, the traffic intensity is defined as p = Ak/ u- Given 0 < p <1, low traffic
intensity is indicated when p is closer to 0, whereas high traffic intensity is indicated
when p is closer to 1. In single-server queueing models, the magnitude of p indicates the

degree of server utilization. The characteristic equation of a queuing model is a unique

equation that is specific to that model.

C.2 Supplementary proof
C.2.1 Proof that the characteristic equation of GI/Ex/1 has r roots inside the
unit circle

The proof that the characteristic equation of GI/Ex /1

0=1-Sz"HK(2)
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has r roots inside the unit circle |z| = 1 is as follows: Rearrange and multiply z" on both

of its sides such that

or
T
0=2z"-— (Z shzr‘h> K(2)
h=1
Now let f(z) = z" and g(z) = Y-, spz" " K(z). Consider the absolute values
of f(z) and g(z) on the circle |z| = 1 — A, where A is a positive and sufficiently small
number. This gives
If@D)|=1z"l=(1—-A)"=1-Ar+o(b)

and

r

Z spz" MK (2)

h=1

r

<D sulalK(lz)

h=1

lg(2)| =

which leads to
N u
=1-A(r-5) _IA+O(A)
or

=1—Ar—%(1—p)A+o(A)

where p = % Since p < 1 and A is sufficiently small, we have |f(z)| > |g(z)| on |z| =

1 — A. Tt is evident that f(z) and g(z) satisfy Rouché’s theorem (see Appendix C.4.1)

thus the equation 0 = 1 — S(z~1)K(z) has r roots on the inside of unit circle |z| = 1.
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C.3 Supplementary derivation
C.3.1 Derivation for alternate relation between pre-arrival and random
solutions to GI/Ex/1

Instead of using the standard level crossing analysis, there exists another way to
determine py, in terms of p; using the g.f. method. This alternate way is explained in the
paragraphs that follow.

In GI/Ex /1, let the inter-arrival times be T, = g, — 0,_1, (n = 1) with mean
E[T], where o, for n > 1 are the time epochs just before each customer arrival. Let the
p.d.f. of T, be a(t), (t > 0), where a(t) = dA(t)/dt. Let there be a random time

epoch, say R, between a,, and 0,1, which is illustrated in Figure 8 below.

On On+1

Figure 8: Visual illustration of the n-th pre-arrival epoch to the (n + 1)-th
pre-arrival epoch and the n-th pre-arrival epoch to the (n + 1)-th random
epochs.

In renewal theory, the length-biased sampling phenomenon (see Chaudhry and
Templeton, 1983) indicates that the p.d.f. of U, say ag(t), can be found in terms

of a(t) such that
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an(t) = ﬁa(t), (¢ > 0)

and

1 t
AR(t)zﬁf [1— Aw)]dw, (w,t> 0)

where Ag (t) and A(w) are the c¢.d.f.’s of U and T,,, respectively. Let D* be the number of

completed service stages during the time interval U and define k; = P(D* = j) so that the

p.g.f. of {k;} becomes
K*(z) = Zk;zf - f e hA-DUGA L (1)
j=0 0

=az(u(1-2), (zI<1)

1-A(t)
E[T]

Using the definition ag(t) = (see modified renewal process in Chaudhry and

Templeton, 1983), the above leads to the following relation

1-—
@ =p [%{()l

where K (z) is from Subsection 4.2.1. The steady-state r.v. N from Subsection 4.3.3
represents the number of uncompleted service stages in the system at a random epoch.

Similar to what is done in (15), the relation

N=(N"+X-D"*
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can be established where (a)* = max(a, 0). Since X and D* are independent from N,

the g.f. of above relation becomes
P(Z) — E[ZN] — E[Z(N_+X—D*)+]

= E[zX]E[z" " IN"+X—-D*>0|P(N"+X —D* > 0)

+P(N"+X-D"<0)
Now considering the p.g.f. of N~ — D, it leads to
E[zV P | =E[zN P |[N"+X-D*>0|P(N"+X—D">0)
+E[zN" P IN"+X-D"<0|P(N"+X—-D*<0)
which can be substituted into the previous expression to get
P(z) = P~(2)E[zX]E[27""]

—ZE[Z‘"‘ IN"+X —D*=—i]P(N" + X — D* = —i)

i=0

+ZP(N‘+X—D* = —i)
i=0

By letting g; = P(N~™ + X — D* = —i) and using the relation between K*(z) and K(z), it

becomes

P(z) = P~(2)S(2)p [ )] Z qi(1—-2z7")
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From (16), K(z~1) can be isolated and then substituted into the above expression, which

leads to

by = L@@ P@S@ (1 (1 Fheodn( =2
DEPa=n TP a-) 5@ P=(2)

N ACErR)
i=0

_ P@SE-1) N Zm=0qm(1 —2"") N Z {(1-77)
T B R B
i=
Since P(z) is a steady-state p.g.f., it must be a power series with nonnegative powers (see
A.3.5). However, the right-hand side of the above expression must not have any terms
with negative power. Consequently, the terms inside the bracket {... } must cancel out,

leaving at the most a nonzero constant, say C. Thus the above expression simplifies to

P~ (2)(S(z) - 1)

P(z)=C+p a-z7

Since P(17) = 1, it leads to final result

P@E@ -1

P(z)=1+p 1,1

which is the alternate way to determine py in terms of p; using the g.f. method. As a
remark, this expression matches with that of a simpler model GI/E, /1 (see Chaudhry and

Templeton, 1983) by letting s, = 1, which implies S(z) = z".
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C.4 Supplementary theorems
C.4.1 Rouché’s theorem

If f(z) and g(z) are functions of z, which are analytic inside and on a closed
countour C, and if [f(2)| < |g(z)| on C, then g(z) and g(z) + f(z) have the same
number of roots inside C (Titchmarsh, 1939).
C.4.2 Liouville’s theorem

If f is entire and f(z) is bounded for all values of z in the complex plane, then f is

a constant (Churchill, 1960).
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