Please use this identifier to cite or link to this item: https://hdl.handle.net/11264/1861
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWolfe, Sean-
dc.contributor.otherRoyal Military College of Canada / Collège militaire royal du Canadaen_US
dc.date.accessioned2020-03-11T17:21:48Z-
dc.date.accessioned2020-06-10T19:00:02Z-
dc.date.available2020-03-11T17:21:48Z-
dc.date.available2020-06-10T19:00:02Z-
dc.date.issued2020-03-11-
dc.identifier.urihttps://hdl.handle.net/11264/1861-
dc.description.abstractIn this thesis, the idea of using teams of Unmanned Aerial Vehicles (UAVs) to track a ground vehicle and exploiting the benefits of multiple UAVs is considered. First, a novel state estimation algorithm is developed using the standard Extended Kalman filter (EKF). This filter is distributed over a team of three UAVs, each adopting a different model for the target's motion. The Distributed EKF (DEKF) is then paired with the T Test model selection criteria, which decides which UAV has the best estimate at each iteration. The algorithm is validated in a real-time indoor flight environment and compared against the single model equivalents, as well as compared to other multi model variants. Furthermore, an analysis of different selection methods to use in times of occlusions is done. The second part of the thesis involves the design and testing of a multiple model Distributed Model Predictive Controller (DMPC) for tracking in formation flight. Using information from state estimation about which target model is performing best, the DMPC changes its target motion model accordingly. The MPC controller is first implemented for a single UAV, then tested in both a real-time simulation environment and in an indoor flight. This MPC is then expanded to the multi-UAV scenario, which is tested in the same real-time simulation environment.en_US
dc.description.abstractLa thèse considère utiliser une équipe de drones dans le but de suivre une cible mobile au sol. Tout d'abord, un nouvel algorithme est développé avec l’EKF standard comme système de base. Cet EKF est distribué parmi une équipe de trois drones, chacun utilisant un modèle différent pour prédire le mouvement de la cible. Ensuite, l’EKF distribué est combiné avec une méthode de sélection, le test T, qui décide quel drone a la meilleure estimation de la cible. L’algorithme au complet est valide expérimentalement contre l’algorithme équivalent avec un seul modèle dans un environnement intérieur et avec de véritables drones. De plus, une comparaison de performance avec différents algorithmes et plusieurs modèles est effectuée. Finalement, une analyse de différentes solutions en temps qu'aucun des drones détectent la cible est faite. La deuxième partie de la thèse consiste en un contrôle de l’équipe de drones pour suivre la cible d’une manière efficace. Pour accomplir cet objectif, un contrôleur MPC distribué utilisant plusieurs modèles pour le mouvement de la cible est développé et validé. Le contrôleur pour un seul drone est premièrement validé en simulation et dans des essais en vol intérieur. Ensuite, des contraintes de coopération sont ajoutées pour que les drones suivent la cible en formation, ce qui est validé en simulation.en_US
dc.language.isoenen_US
dc.subjectState Estimationen_US
dc.subjectModel Predictive Controlen_US
dc.subjectControlen_US
dc.subjectUnmanned Aerial Vehicleen_US
dc.subjectTarget Trackingen_US
dc.subjectMultiple Modelsen_US
dc.subjectExtended Kalman Filteringen_US
dc.subjectDistributeden_US
dc.titleCooperative Multi Model State Estimation and Control for Target Tracking UAVsen_US
dc.typeTheses-
dc.title.translatedEstimation de l’état utilisant divers modèles et commande en coopération pour drones effectuant un suivi de cibleen_US
dc.contributor.supervisorGivigi, Sidney-
dc.contributor.cosupervisorRabbath, Camille-Alain-
dc.date.acceptance2020-01-
thesis.degree.disciplineElectrical and Computer Engineering/Génie électrique et informatiqueen_US
thesis.degree.nameMASc (Master of Applied Science/Maîtrise ès sciences appliquées)en_US
Appears in Collections:Theses

Files in This Item:
File Description SizeFormat 
Multi_Model_State_Estimation_and_Control_for_Target_Tracking_UAVs.pdfThesis5.43 MBAdobe PDFThumbnail
View/Open


Items in eSpace are protected by copyright, with all rights reserved, unless otherwise indicated.